

Lecture Notes in Computer Science 3820
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Laurence T. Yang Xingshe Zhou
Wei Zhao Zhaohui Wu Yian Zhu
Man Lin (Eds.)

Embedded Software
and Systems

Second International Conference, ICESS 2005
Xi’an, China, December 16-18, 2005
Proceedings

13

Volume Editors

Laurence T. Yang
Man Lin
St. Francis Xavier University
Department of Computer Science
Antigonish, NS, B2G 2W5, Canada
E-mail: {lyang,mlin}@stfx.ca

Xingshe Zhou
Yian Zhu
Northwestern Polytechnical University
No. 127 West Youyi Road, P.O. Box 404
Xi’an City, Shaanxi Province, 710072, China
E-mail: {zhouxs,zhuya}@nwpu.edu.cn

Wei Zhao
Texas A&M University, Department of Computer Science
College Station, TX 77843-1112, USA
and
National Science Foundation, Division of Computer and Network Systems
4201 Wilson Blvd, Arlington, VA 22230, USA
E-mail: w-zhao@tamu.edu

Zhaohui Wu
Zhejiang University
College of Computer Science
Hangzhou, Zhejiang Province, 310027, China
E-mail: wzh@zju.edu.cn

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.3, C.2, C.5.3, D.2, D.4, H.4

ISSN 0302-9743
ISBN-10 3-540-30881-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30881-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11599555 06/3142 5 4 3 2 1 0

Preface

Welcome to the proceedings of the 2005 International Conference on Embed-
ded Software and Systems (ICESS 2005) held in Xian, China, December 16-18,
2005.

With the advent of VLSI system level integration and system-on-chip, the
center of gravity of the computer industry is now moving from personal com-
puting into embedded computing. Embedded software and systems are increas-
ingly becoming a key technological component of all kinds of complex technical
systems, ranging from vehicles, telephones, aircraft, toys, security systems, to
medical diagnostics, weapons, pacemakers, climate control systems, etc.

The ICESS 2005 conference provided a premier international forum for re-
searchers, developers and providers from academia and industry to address
all resulting profound challenges; to present and discuss their new ideas, re-
search results, applications and experience; to improve international commu-
nication and cooperation; and to promote embedded software and system in-
dustrialization and wide applications on all aspects of embedded software and
systems.

Besides the main conference, we also featured the following four workshops
to extend the spectrum of the main conference:

– Scheduling Techniques for Real-Time Systems
– IXA/IXP Application in Embedded Systems
– The Modeling and Security of Ubiquitous Systems
– Intelligent Storage System and Technology

There was a very large number of paper submissions (360) for the ICESS
2005 main conference, not only from Asia and the Pacific, but also from Eu-
rope, and North and South America. All submissions were reviewed by at least
three program or technical committee members or external reviewers. It was
extremely difficult to select the papers for the conference because there were so
many excellent and interesting submissions. In order to allocate as many papers
as possible and keep the high quality of the conference, we finally accepted 140
papers and 31 papers for the main conference and for the workshops, respectively.
There were 63 main conference papers and 8 workshop papers selected in the
LNCS proceedings. We believe that all of these papers and topics not only pro-
vided novel ideas, new results, work in progress and state-of-the-art techniques
in this field, but also promoted cutting-edge research and future cooperation,
and stimulated future research activities in the area of embedded software and
systems.

The exciting conference program was the result of the hard and excellent work
of program vice-chairs, external reviewers, and program and technical committee
members under a very tight schedule. We were also grateful to the members of the
local organizing committee for supporting us in handling so many organizational

VI Preface

tasks. Last but not least, we hoped you enjoyed the conference’s technical and
social program, and the natural and historic attractions of the ancient city of
Xian.

October 2005 Laurence T. Yang, Xingshe Zhou, Wei Zhao,
Zhaohui Wu, Yian Zhu and Man Lin

Organization

ICESS 2005 was organized by Northwestern Polytechnical University, China in
collaboration with St. Francis Xavier University, Canada.

Sponsors

National Natural Science Foundation of China
Important Software Committee of National 863 Program
China Computer Federation
Northwestern Polytechnical University, China
Springer, Lecture Notes in Computer Science (LNCS)

Executive Committee

General Chairs: Zhaohui Wu, Zhejiang University, China
Wei Zhao, Texas A&M University and NSF, USA

Program Chairs: Laurence T. Yang, St. Francis Xavier University,
Canada

Xingshe Zhou, Northwestern Polytechnical University,
China

Program Vice-chairs: Huiyang Zhou, University of Central Florida, USA
Walid Taha, Rice University, USA
Yann-Hang Lee, Arizona State University, USA
Naehyuck Chang, Seoul National University, Korea
Luis Gomes, Universidade Nova de Lisboa, Portugal
Mohammed Y. Niamat, The University of Toledo,

USA
Susumu Horiguchi, Tohoku University, Japan
Elhadi Shakshuki, Acadia University, Canada
Wenjing Lou, Worcester Polytechnic Institute, USA
Pin-Han Ho, University of Waterloo, Canada
Hong-Va Leong, Hong Kong Polytechnic University,

China
Qun Jin, Waseda University, Japan
Arjan Durresi, Louisiana State University, USA
Marios D. Dikaiakos, University of Cyprus, Cyprus

Workshop Chairs: Yian Zhu, Northwestern Polytechnical University,
China

Man Lin, St. Francis Xavier University, Canada
Panel Chairs: Joseph K. Ng, Hong Kong Baptist University, China

Xu Cheng, Peking University, China

VIII Organization

Conference Secretary: Yuying Wang, Northwestern Polytechnical University,
China

Publication Chair: Tony Li Xu, St. Francis Xavier University, Canada
Local Executive

Committee: Zhanhuai Li (Chair)
Hong Tang, Yubo Wang, Mingxing Sun, Yumei Zhang

Program/Technical Committee

Raza Abidi Dalhousie University, Canada
Esma Aimeur Université de Montréal, Canada
H. Amano Keio University, Japan
Leonard Barolli Fukuoka Institute of Technology, Japan
Darcy Benoit Acadia University, Canada
Marian Bubak Cyfronet University of Krakow, Poland
Jun Cai University of Waterloo, Canada
Jiannong Cao Hong Kong Polytechnic University, China
Keith Chan Hong Kong Polytechnic University, China
Karam Chatha Arizona State University, USA
Xiangqun Chen Peking University, China
Phoebe Chen Deakin University, Australia
Jing Chen National Cheng Kung University, Taiwan
Yu Chen Tsinghua University, China
Zhanglong Chen Fudan University, China
Xiuzhen Cheng George Washington University, USA
Xu Cheng Peking University, China
Jen-Yao Chung IBM, USA
Debatosh Debnath Oakland University, USA
Yunwei Dong Northwestern Polytechnical University, China
Stephen Edwards Columbia University, USA
Tomoya Enokido Rissho University, Japan
Thomas Fahringer University of Innsbruck, Austria
Farzan Fallah Fujitsu Laboratory in America, USA
Ling Feng University of Twente, The Netherlands
Hakan Ferhatosmanoglu Ohio State University, USA
Joao Miguel Fernandes Universidade do Minho, Portugal
Antonio Ferrari Universidade de Aveiro, Portugal
Jose Manuel Ferreira, Universidade do Porto, Portugal
Yue Gao Hopen Software Eng. Co. Ltd., China
Mukul Goyal University of Wisconsin Milwaukee, USA
Rick Ha University of Waterloo, Canada
Naiping Han Chinasoft Network Technology Co. Ltd., China
Anwar Haque Bell Canada, Canada
Takahiro Hara Osaka University, Japan
Martin Hofmann University of Munich, Germany
Seongsoo Hong Seoul National University, Korea

Organization IX

Program/Technical Committee (continued)

Zhigang Hu IBM T.J. Watson Research Center, USA
Michael C. Huang University of Rochester, USA
Xinming Huang University of New Orleans, USA
Liviu Iftode Rutgers University, USA
Clinton L. Jeffery New Mexico State University, USA
Hai Jiang University of Waterloo, Canada
Xiaohong Jiang Tohoku University, Japan
Roumen Kaiabachev Rice University, USA
Masashi Kastumata Nippon Institute of Technology, Japan
Vlado Keselj Dalhousie University, Canada
Ismail Khalil Ibrahim Johannes Kepler University of Linz, Austria
Cheeha Kim Pohang University of Science and Technology,

Korea
Jihong Kim Seoul National University, Korea
Jung Hwan Kim University of Toledo, USA
Kwanho Kim Samsung Electronics, Korea
Sung Won Kim Yeungnam University, Korea
Aris Kozyris National Technical University of Athens,

Greece
C.M. Krishna University of Massachusetts, USA
Morihiro Kuga Kumamoto University, Japan
Younggoo Kwon Sejong University, Korea
Anchow Lai Intel, USA
Wai Lam Chinese University of Hong Kong, China
Hsien-Hsin Lee Georgia Tech, USA
Chin-Laung Lei National Taiwan University, Taiwan
Qun Li College of William and Mary, USA
Tao Li University of Florida, USA
Minghong Liao Harbin Institute of Technology, China
Xinhau Lin University of Waterloo, Canada
Yen-Chun Lin Taiwan University of Science and Technology,

Taiwan
Antonio Liotta University of Essex, UK
Chunlei Liu Troy University, USA
Xiang Long Bei Hang University, China
Yung-Hsiang Lu Purdue University, USA
Jing Ma University of New Orleans, USA
Wenchao Ma Microsoft Research Asia, China
Zakaria Maamar Zayed University, UAE
Ricardo Machado Universidade do Minho, Portugal
Paulo Maciel Federal University of Pernambuco, Brazil
Evangelos Markatos ICS-FORTH and University of Crete, Greece
Grant Martin Tensilica, USA
Janise McNair University of Florida, USA

X Organization

Program/Technical Committee (continued)

Teo Yong Meng National University of Singapore, Singapore
Yan Meng Stevens Institute of Technology, USA
Tulita Mitra National University of Singapore, Singapore
S.M.F.D. Syed Mustapha University of Malaysia, Malaysia
Soraya K. Mostefaoui University of Fribourg, Switzerland
Tomasz Muldner Acadia University, Canada
Horacio Neto Instituto Superior Tecnico, Portugal
Naoki Nishi NEC, Japan
WenSheng Niu Aeronautics Computing Research Institute,

China
Sebnem Ozer Motorola Inc., USA
Gordon Pace University of Malta, Malta
Jens Palsberg University of California at Los Angeles, USA
Seung-Jong Park Louisiana State University, USA
Ian Philp Los Alamos National Lab, USA
Massimo Poncino University of Verona, Italy
Sunil Prabhakar Purdue University, USA
Elliott Rachlin Honeywell, USA
Omer Rana Cardiff University, UK
Minghui Shi University of Waterloo, Canada
Timothy K. Shih Tamkang University, Taiwan
Basem Shihada University of Waterloo, Canada
Youngsoo Shin KAIST, Korea
Dongkun Shin Samsung Electronics, Korea
Kimura Shinnji Waseda University, Japan
Sandeep Shukla Virginia Tech, USA
Valery Sklyarov Universidade de Aveiro, Portugal
Prasanna Sundararajan Xilinx Inc, USA
Wonyong Sung Seoul National University, Korea
Abd-Elhamid M. Taha Queen’s University, Canada
Makoto Takizawa Tokyo Denki University, Japan
Jean-Pierre Talpin INRIA, France
Kian-Lee Tan National University of Singapore, Singapore
Xinan Tang Intel Corp., Intel Compiler Lab., USA
Zahir Tari RMIT, Australia
P.S. Thiagarajan National University of Singapore, Singapore
Xuejun Tian Aichi Prefectural University, Japan
Hiroyuki Tomiyama Nagoya University, Japan
Ali Saman Tosun University of Texas at San Antonio, USA
Nur A. Touba University of Texas at Austin, USA
Andre Trudel Acadia University, Canada
Lorna Uden Staffordshire University, UK

Organization XI

Program/Technical Committee (continued)

Alexander P. Vazhenin University of Aizu, Japan
Jari Veijalainen University of Jyvaskyla, Finland
Salvatore Vitabile University of Palermo, Italy
Sarma Vrudhula Arizona State University, USA
Wenye Wang North Carolina State University, USA
Xiaoge Wang Tsinghua University, China
Ying-Hong Wang Tamkang University, Taiwan
Weng-Fai Wong National University of Singapore, Singapore
Eric Wong University of Texas at Dallas, USA
Jing Wu CRC, Canada
Dong Xie IBM China Research Lab, China
Yuan Xie Pennsylvania State University, USA
Lin Xu National Natural Science Foundation, China
Dong Xuan Ohio State University, USA
Ryuichi Yamaguchi Matsushita Co., Japan
Jie Yang Spirent Communications, Inc., USA
Jun Yang University of California, Riverside, USA
Chi-Hsiang Yeh Queen’s University, Canada
Y. Yokohira Okayama University, Japan
Muhammed Younas Oxford Brookes University, UK
Hsiang-Fu Yu National Center University, Taiwan
Demetrios Zeinalipour-Yazti University of California at Riverside, USA
Surong Zeng Motorola Inc., USA
Guozhen Zhang Waseda University, Japan
Daqing Zhang Agent for Science, Technology and Research,

Singapore
Shengbing Zhang Northwestern Polytechnical University, China
Zhao Zhang Iowa State University, USA
Wei Zhang Southern Illinois University, USA
Youtao Zhang University of Texas at Dallas, USA
Baihua Zheng Singapore Management University, Singapore
Jun Zheng University of Ottawa, Canada
Kougen Zheng Zhejiang University, China
Dakai Zhu University of Texas at San Antonio, USA

Additional Reviewers

Iouliia Skliarova Universidade de Aveiro, Portugal
Mário Véstias INESC-ID, Portugal
Anikó Costa Universidade Nova de Lisboa, Portugal
António Esteves Universidade do Minho, Portugal
Raimundo Barreto Universidade do Amazonas, Brazil

Workshop on Scheduling Techniques for
Real-Time Systems

Introduction

Welcome to the proceedings of the 2005 International Workshop on Schedul-
ing Techniques for Real-Time Systems (IWSRT 2005) held in conjunction with
ICESS 2005 in Xi’an, China, December 16-18, 2005. Traditionally, scheduling
has been an important aspect of real-time systems in ensuring soft/hard timing
constraints. As real-time computing becomes complicated and has more limita-
tions (e.g., power consumption), the demand for more sophisticated scheduling
techniques becomes increasingly apparent.

The purpose of this workshop was to bring together researchers from both
universities and industry to advance real-time scheduling techniques and its ap-
plications. IWSRT 2005 focused on the current technological challenges of de-
veloping scheduling algorithms:

– Power aware scheduling for real time systems
– Heuristic scheduling for real-time systems
– Parallel real-time scheduling
– Scheduling for distributed real-time systems
– Schedulability test, analysis and verification
– QoS scheduling for multimedia applications

From the many submissions, six papers were included in the workshop pro-
gram. The workshop consisted of short presentations by the authors and en-
couraged discussion among the attendees. We hope that IWSRT 2005 provided
a relaxed forum to present and discuss new ideas and new research directions,
and to review current trends in this area. The success of the workshop was the
result of the hard work of the authors and the program committee members. We
were grateful for everyone’s efforts in making the conference a success. Special
thanks go to the members of the ICESS 2005 organizing committee for their sup-
port and help in many organizational tasks. We hoped you enjoyed the workshop
program and the attractions of the ancient city of Xi’an.

Workshop Chairs

Man Lin, St. Francis Xavier University, Canada
Fan Zhang, Hong Kong University of Science and Technology, China
Dakai Zhu, University of Texas at San Antonio, USA

XIV Organization

Program/Technical Committee

Samarjit Chakraborty National University of Singapore, Singapore
Deji Chen Emerson Process Management, USA
Yuanshun Dai Indiana University-Purdue University, USA
Zonghua Gu Hong Kong University of Science and Technology, China
Hai Jin Huazhong University of Science and Technology, China
Rodrigo de Mello University of Sao Paulo, Brazil
Xiao Qin New Mexico Institute of Mining and Technology, USA
Gang Quan University of South Carolina, USA
Chi-Sheng Shih National Taiwan University, Taiwan
Shengquan Wang Texas A&M, USA

Workshop on IXA/IXP Application in
Embedded Systems

Introduction

The 2005 International Workshop on IXA/IXP Application in Embedded Sys-
tems (IWIXA) was held in conjunction with the International Conference on Em-
bedded Software and Systems (ICESS 2005), December 16-18, 2005, at North-
western Polytechnical University, Xi’an, P.R. China. The workshop aimed to
provide a stimulating environment for IXA/IXP researchers and developers to
share their experience in order to promote the understanding of the latest trends
in Network Processors and their application development in embedded systems.
The workshop invited new and original submissions addressing theoretical and
practical topics in the following fields (but not limited to these topics):

– Internet eXchange Architecture (IXA) in embedded systems
– Network Processors and IXP
– The IXA/IXP Network Processors-based applications
– New Network Technology
– IXA/IXP-related training and experiments

The workshop received 21 paper submissions. After careful review, 11 papers
were accepted for the workshop program. The workshop committee was grateful
to all authors for their interesting contributions.

Workshop Chair

Naiqi Liu, University of Electronic Science and Technology, China

Workshop Coordinator

Jeffrey Cao, Intel, China

Program/Technical Committee

Luo Lei University of Electronic Science and Technology,
China

Hang Lei University of Electronic Science and Technology,
China

Guangjun Li University of Electronic Science and Technology,
China

Workshop on the Modeling and Security of
Ubiquitous Systems

Introduction

Rapid progress in computer hardware technology has made computers compact
(e.g. laptop, palmtop), powerful, and more affordable. Furthermore, recent ad-
vances in wireless data communications technology have spawned an increasing
demand for various types of services. As a result, we are witnessing an explosive
growth for research and development efforts in the field of ubiquitous communi-
cation and computing systems.

The global growth of interest in the Internet and in high-quality audio, and
video conferencing and VOD, coupled with a growing high-bandwidth structure,
will lead to a rapidly expanding market for ubiquitous multimedia services. The
popularity of mobile services should eventually affect the market for ubiquitous
networks. For this reason, mobile based technologies, such as mobile synchroniza-
tion, QoS assurance, mobile IP-based multimedia technologies and the security
of mobile information systems, need to be studied and developed for future ser-
vices offered to subscribers in future mobile information systems. This ubiquitous
information technology will allow users to travel within an office building, from
office to home, around the country and the world with a portable computer in
their hands. Disconnection will no longer be a network fault, but a common event
intentionally caused by the user in order to preserve a consequence of mobility.

The workshop on Modeling and Security in Ubiquitous Information Systems
contained a collection of high-quality papers on this subject. In addition to
this, we received a few more papers, as a result of the call-for-papers for this
topic. Each paper went through a rigorous, peer review process as required by
the conference. Based upon the review committee’s decision, four papers were
selected for their original contributions as well as their suitability to the topic
of this workshop.

Many people have contributed to the creation of this workshop. Thanks are
due to the members of Howon University’s Mobile Networks Laboratory and the
members of Kyonggi University’s Security Laboratory for their support. Special
thanks go to the members of the review committee for their excellent coopera-
tion. Their hard work, comments and suggestions really helped to improve the
quality of the papers. We would like to take this opportunity to thank every-
one who made this workshop possible: the authors, the ICESS 2005 organizing
committee and the publisher.

Workshop Chair

Dong Chun Lee, Howon University, Korea

XVIII Organization

Program/Technical Committee

Bernard Burg HP Labs., USA
Kijoon Chae Ewha Womans University, Korea
Ying Chen IBM China Research Lab., China
Anthony Chung Depaul University, USA
Alex Delis New York Polytechnic University, USA
Maggie Dunham Southern Methodist University, USA
Adrian Friday Lancaster University, UK
ReX E. Gantenbein Wyoming University, USA
Takahiro Hara Osaka University, Japan
Yong-Sok Her Kyushu University, Japan
Hang Dai Hoon Kyung Won University, Korea
Jadwiga Indulska Queensland University, Australia
Christian S. Jensen Aalborg University, Denmark
Hai Jin Huazhong University of Science and Technology,

China
Myuhang-Joo Kim Seoul Women’s University, Korea
Sang-Ho Kim Korea Information Security Agency, Korea
Masaru Kitsuregawa Tokyo University, Japan
Shonali Krishnaswamy Monash University, Australia
Tae Won Kang Agency for Defense Development, Korea
Taekyoung Kwon Sejong University, Korea
Young Bin Kwon Chung-Ang University, Korea
Alexandros Labrinidis Pittsburgh University, USA
Jeong Bae Lee Sun Moon University, Korea
Wang-Chien Lee Pennsylvania State University, USA
Hui Lei IBM T. J. Watson Research Center, USA
Jong-In Lim Korea University, Korea
Seng Wai Loke Monash University, Australia
Hanqing Lu Chinese Academy of Science, China
Sanjay Kumar Madria Missouri-Rolla University, USA
Se Hyun Park Chung-Ang University, Korea
Oscar Pastor Valencia University, Spain
Evaggelia Pitoura Ioannina University, Greece
Andreas Pitsillides Cyprus University, Cyprus
Indrajit Ray Colorado State University, USA
Peter Reiher University of California at Los Angeles, USA
Claudia Roncancio ENSIMAG/LSR, France
Seref Sagiroglu Gazi University, Turkey
Ming-Chien Shan HP, USA
Theodore E. Simos Peloponnese University, Greece
SungWon Sohn Electronics and Telecommunications Research

Institute, Korea
Ki-Sung Yoo Korea Institute of Science and Technology

Information, Korea

Workshop on Intelligent Storage Systems and
Technology

Introduction

With the present explosive growth in information, the demand for storage sys-
tems is increasing rapidly. To satisfy such mounting demand, storage systems
are required to be more scalable, reliable, secure and manageable than they are
currently. There is a clear and recent trend in which some intelligence is moved
from host machines to storage devices and implemented in the embedded con-
troller. The 2005 International Workshop on Intelligent Storage Systems and
Technology (ISST 2005) brought together storage systems researchers and prac-
titioners to explore new directions in the design, implementation, evaluation,
and deployment of storage systems. ISST 2005 was one of the workshops held in
conjunction with the 2nd International Conference on Embedded Software and
Systems (ICESS 2005) held in Xian, China, December 16-18, 2005.

We were extremely grateful to the program committee members who worked
under a very tight schedule to complete the rigorous review process for the large
number of submissions received by ISST 2005. Their hard work lead to the
selection of the 10 papers presented at the workshop.

Workshop Chairs

Dan Feng, Huazhong University of Science and Technology, China
Hong Jiang, University of Nebraska-Lincoln, USA

Program/Technical Committee

Liang Fang National University of Defense Technology, China
Jizhong Han Chinese Academy of Sciences, China
Ben Xubin He Tennessee Technological University, USA
Xiao Qin New Mexico Institute of Mining and Technology, USA
Fang Wang Huazhong University of Science and Technology, China
Frank Zhigang Wang Cranfield University, UK
Song Wu Huazhong University of Science and Technology, China
Changsheng Xie Huazhong University of Science and Technology, China
Lu Xu Chinese Academy of Science, China
Ke Zhou Huazhong University of Science and Technology, China
Yifeng Zhu University of Maine, USA

Table of Contents

Keynote Speech

Are Lessons Learnt in Mobile Ad Hoc Networks Useful for Wireless
Sensor Networks?

Lionel Ni . 1

Compiler-Directed Scratchpad Memory Management
Jingling Xue . 2

Heterogeneous Multi-processor SoC: An Emerging Paradigm of
Embedded System Design and Its Challenges

Xu Cheng . 3

Track 1: Embedded Hardware

Trace-Based Runtime Instruction Rescheduling for Architecture
Extension

YuXing Tang, Kun Deng, HongJia Cao, XingMing Zhou 4

Bioinformatics on Embedded Systems: A Case Study of Computational
Biology Applications on VLIW Architecture

Yue Li, Tao Li . 16

The Design Space of CMP vs. SMT for High Performance Embedded
Processor

YuXing Tang, Kun Deng, XingMing Zhou . 30

Reconfigurable Microarchitecture Based System-Level Dynamic Power
Management SoC Platform

Cheong-Ghil Kim, Dae-Young Jeong, Byung-Gil Kim,
Shin-Dug Kim . 39

Track 2: Embedded Software

A Methodology for Software Synthesis of Embedded Real-Time
Systems Based on TPN and LSC

Leonardo Amorim, Raimundo Barreto, Paulo Maciel,
Eduardo Tavares, Meuse Oliveira Jr, Arthur Bessa,
Ricardo Lima . 50

XXII Table of Contents

Ahead of Time Deployment in ROM of a Java-OS
Kevin Marquet, Alexandre Courbot, Gilles Grimaud 63

The Research on How to Reduce the Number of EEPROM Writing to
Improve Speed of Java Card

Min-Sik Jin, Won-Ho Choi, Yoon-Sim Yang, Min-Soo Jung 71

A Packet Property-Based Task Scheduling Policy for Control Plane OS
in NP-Based Applications

Shoumeng Yan, Xingshe Zhou, Fan Zhang, Yaping Wang 85

RBLS: A Role Based Context Storage Scheme for Sensornet
Huaifeng Qin, Xingshe Zhou . 96

CDP: Component Development Platform for Communication Protocols
Hong-Jun Dai, Tian-Zhou Chen, Chun Chen,
Jiang-Wei Huang . 107

TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network
Processor

Xianghui Hu, Bei Hua, Xinan Tang . 117

Separate Compilation for Synchronous Modules
Jia Zeng, Stephen A. Edwards . 129

Implementation of Hardware and Embedded Software for Stream
Gateway Interface Supporting Media Stream Transmissions with
Heterogeneous Home Networks

Young-choong Park, Seung-ok Lim, Kwang-sun Choi,
Kawng-mo Jung, Dongil Shin . 141

Track 3: Real-Time Systems

On Using Locking Caches in Embedded Real-Time Systems
A. Mart́ı Campoy, E. Tamura, S. Sáez, F. Rodŕıguez,
J.V. Busquets-Mataix . 150

Trace Acquirement from Real-Time Systems Based on WCET Analysis
Meng-Luo Ji, Xin Wang, Zhi-Chang Qi . 160

Elimination of Non-deterministic Delays in a Real-Time Database
System

Masaki Hasegawa, Subhash Bhalla, Laurence Tianruo Yang 172

Table of Contents XXIII

Solving Real-Time Scheduling Problems with Model-Checking
Zonghua Gu . 186

Efficient FPGA Implementation of a Knowledge-Based Automatic
Speech Classifier

Sabato M. Siniscalchi, Fulvio Gennaro, Salvatore Vitabile,
Antonio Gentile, Filippo Sorbello . 198

Track 4: Power-Aware Computing

A Topology Control Method for Multi-path Wireless Sensor Networks
Zhendong Wu, Shanping Li, Jian Xu . 210

Dynamic Threshold Scheme Used in Directed Diffusion
Ning Hu, Deyun Zhang, Fubao Wang . 220

Compiler-Directed Energy-Aware Prefetching Optimization for
Embedded Applications

Juan Chen, Yong Dong, Huizhan Yi, Xuejun Yang 230

A Dynamic Energy Conservation Scheme for Clusters in Computing
Centers

Wenguang Chen, Feiyun Jiang, Weimin Zheng,
Peinan Zhang . 244

Track 5: Hardware/Software Co-design and System-On-Chip

Realization of Video Object Plane Decoder on On-Chip Network
Architecture

Huy-Nam Nguyen, Vu-Duc Ngo, Hae-Wook Choi 256

Network on Chip for Parallel DSP Architectures
Yuanli Jing, Xiaoya Fan, Deyuan Gao, Jian Hu 265

A New Methodology of Integrating High Level Synthesis and Floorplan
for SoC Design

Yunfeng Wang, Jinian Bian, Xianlong Hong, Liu Yang, Qiang Zhou,
Qiang Wu . 275

Designing On-Chip Network Based on Optimal Latency Criteria
Vu-Duc Ngo, Huy-Nam Nguyen, Hae-Wook Choi 287

XXIV Table of Contents

Track 6: Testing and Verification

Microprocessor Based Self Schedule and Parallel BIST for
System-On-a-Chip

Danghui Wang, Xiaoya Fan, Deyuan Gao, Shengbing Zhang,
Jianfeng An . 299

Self-correction of FPGA-Based Control Units
Iouliia Skliarova . 310

Detecting Memory Access Errors with Flow-Sensitive Conditional
Range Analysis

Yimin Xia, Jun Luo, Minxuan Zhang . 320

Deductive Probabilistic Verification Methods of Safety, Liveness and
Nonzenoness for Distributed Real-Time Systems

Satoshi Yamane . 332

Specification and Verification Techniques of Embedded Systems Using
Probabilistic Linear Hybrid Automata

Yosuke Mutsuda, Takaaki Kato, Satoshi Yamane 346

Formalization of fFSM Model and Its Verification
Sachoun Park, Gihwon Kwon, Soonhoi Ha . 361

Track 7: Reconfigurable Computing

Dynamic Co-allocation of Level One Caches
Lingling Jin, Wei Wu, Jun Yang, Chuanjun Zhang,
Youtao Zhang . 373

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing
Youngsun Han, Seon Wook Kim, Chulwoo Kim . 386

CCD Camera-Based Range Sensing with FPGA for Real-Time
Processing

Chun-Shin Lin, Hyongsuk Kim . 398

Track 8: Agent and Distributed Computing

Best Web Service Selection Based on the Decision Making Between
QoS Criteria of Service

Young-Jun Seo, Hwa-Young Jeong, Young-Jae Song 408

Table of Contents XXV

Data Storage in Sensor Networks for Multi-dimensional Range Queries
Ji Yeon Lee, Yong Hun Lim, Yon Dohn Chung, Myoung Ho Kim 420

An OSEK COM Compliant Communication Model for Smart Vehicle
Environment

Guoqing Yang, Minde Zhao, Lei Wang, Zhaohui Wu 430

Track 9: Wireless Communications

Resource Allocation Based on Traffic Load over Relayed Wireless
Access Networks

Sung Won Kim, Byung-Seo Kim . 441

An Adaptive Cross Layer Unequal Protection Method for Video
Transmission over Wireless Communication Channels

Jinbo Qiu, Guangxi Zhu, Tao Jiang . 452

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN
Sung Won Kim, Byung-Seo Kim . 462

Two Energy-Efficient, Timesaving Improvement Mechanisms of
Network Reprogramming in Wireless Sensor Network

Bibo Wang, Yu Chen, Hongliang Gu, Jian Yang, Tan Zhao 473

On Location-Free Node Scheduling Scheme for Random Wireless
Sensor Networks

Jie Jiang, Chong Liu, Guofu Wu, Wenhua Dou . 484

Leading Causes of TCP Performance Degradation over Wireless Links
Chunlei Liu . 494

The Study and Implementation of Wireless Network Router NPU-1
Yi’an Zhu . 506

Track 10: Mobile Computing

Performance Evaluation of Air Indexing Schemes for Multi-attribute
Data Broadcast

Qing Gao, Shanping Li, Jianliang Xu . 512

Hierarchical Route Optimization in Mobile Network and Performance
Evaluation

Keecheon Kim, Dongkeun Lee, Jae Young Ahn, Hyeong Ho Lee 522

XXVI Table of Contents

Track 11: Pervasive/Ubiquitous Computing and Intelligence

Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor
Networks

Xiaoling Wu, Lei Shu, Jie Yang, Hui Xu, Jinsung Cho,
Sungyoung Lee . 533

Weighted Localized Clustering: A Coverage-Aware Reader Collision
Arbitration Protocol in RFID Networks

Joongheon Kim, Wonjun Lee, Jaewon Jung, Jihoon Choi,
Eunkyo Kim, Joonmo Kim . 542

A Kind of Context-Aware Approach Based on Fuzzy-Neural for
Proactive Service of Pervasive Computing

Degan Zhang, Guangping Zeng, Xiaojuan Ban, Yixin Yin 554

Track 12: Multimedia and Human-Computer Interaction

A Novel Block-Based Motion Estimation Algorithm and VLSI
Architecture Based on Cluster Parallelism

Tie-jun Li, Si-kun Li . 564

Software-Based Video Codec for Mobile Devices
Jiajun Bu, Yuanliang Duan, Chun Chen, Zhi Yang 576

Real-Time Expression Mapping with Ratio Image
Weili Liu, Cheng Jin, Jiajun Bu, Chun Chen . 586

Power Consumption Analysis of Embedded Multimedia Application
Juan Chen, Yong Dong, Huizhan Yi, Xuejun Yang 596

Track 13: Network Protocol, Security and Fault-Tolerance

A Dynamic Threshold and Subsection Control TCP Slow-Start
Algorithm

ShiNing Li, JiPing Fang, Zheng Qin, XingShe Zhou 608

An Improved DRR Packet Scheduling Algorithm Based on Even
Service Sequence

Fan Zhang, Shoumeng Yan, XingShe Zhou, Yaping Wang 618

An Improvement on Strong-Password Authentication Protocols
Ya-Fen Chang, Chin-Chen Chang . 629

Table of Contents XXVII

Two-Step Hierarchical Protocols for Establishing Session Keys in
Wireless Sensor Networks

Kyungsan Cho, Soo-Young Lee, JongEun Kim . 638

A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP
Networks

Meng Ji, Shao-hua Yu . 650

Control Flow Error Checking with ISIS
Francisco Rodŕıguez, Juan José Serrano . 659

Support Industrial Hard Real-Time Traffic with Switched Ethernet
Alimujiang Yiming, Toshio Eisaka . 671

Integer Factorization by a Parallel GNFS Algorithm for Public Key
Cryptosystems

Laurence Tianruo Yang, Li Xu, Man Lin . 683

Localized Energy-Aware Broadcast Protocol for Wireless Networks
with Directional Antennas

Hui Xu, Manwoo Jeon, Lei Shu, Xiaoling Wu, Jinsung Cho,
Sungyoung Lee . 696

Track 14: Workshop Selected Papers

The Optimal Profile-Guided Greedy Dynamic Voltage Scaling in
Real-Time Applications

Huizhan Yi, Xuejun Yang, Juan Chen . 708

A Parallelizing Compiler Approach Based on IXA
Ting Ding, Naiqi Liu . 720

The Design of Firewall Based on Intel IXP2350 and Autopartitioning
Mode C

Ke Zhang, Naiqi Liu, Yan Chen . 726

AMT6: End-to-End Active Measurement Tool for IPv6 Network
Jahwan Koo, Seongjin Ahn . 732

Semantic Web Based Knowledge Searching System in Mobile
Environment

Dae-Keun Si, Yang-Seung Jeon, Jong-Ok Choi, Young-Sik Jeong,
Sung-Kook Han . 741

XXVIII Table of Contents

A General-Purpose, Intelligent RAID-Based Object Storage Device
Fang Wang, Song Lv, Dan Feng, Shunda Zhang 747

The Design and Implement of Remote Mirroring Based on iSCSI
Qiang Cao, Tian-jie Guo, Chang-sheng Xie . 757

Improvement of Space Utilization in NAND Flash Memory Storages
Yeonseung Ryu, Kangsun Lee . 766

Keynote Speech

Smart u-Things and Ubiquitous Intelligence
Jianhua Ma . 776

Author Index . 777

Are Lessons Learnt in Mobile Ad Hoc Networks
Useful for Wireless Sensor Networks?

Lionel Ni

Department of Computer Science,
Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

Abstract. Many researchers consider wireless sensor networks (WSNs)
as special case of Mobile Ad Hoc Networks (MANETs). Although WSNs
do share some similarities with MANETs, WSNs are very different from
MANETs and have many unique research issues. I argue that lessons
learnt from research in MANETs are of little use when studying WSNs.
This talk will address the major differences between MANETs and
WSNs. The focus of this talk will be on new challenging research is-
sues in WSNs, such as ID management, adaptive route - an exciting
research area.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Compiler-Directed Scratchpad Memory
Management

Jingling Xue

Programming Languages and Compilers Group,
School of Computer Science and Engineering,

University of New South Wales,
Sydney, NSW 2052, Australia

Abstract. On-chip memory, in the form of (hardware-managed) cache,
(software-managed) scratchpad memory (SPM) or some combination of
both, is widely used in embedded systems. Most high-end embedded
systems have both cache and SPM on-chip since each addresses a differ-
ent need. Caches allow easy integration and are often effective but are
unpredictable. SPMs are more energy-efficient than caches since they
do not need complex tag-decoding logic. In addition, SPMs provide ab-
solutely predictable performance but the programmer or compiler must
schedule explicit data/instruction transfers between the SPM and off-
chip main memory in an embedded system. In today’s industry, this
task is largely accomplished manually. The programmer often spends a
lot of time on partitioning data and/or instructions and inserting ex-
plicit data/instruction transfers required between the SPM and main
memory. Such a manual approach is time-consuming and error-prone.
Obtaining satisfactory solutions for large application programs by hand
can be challenging. Furthermore, hand-crafted code is not portable since
it is usually customised for one particular architecture.

This talk introduces a compiler approach, called memory coloring,
that we have recently developed to automatically allocating the arrays
in a program to an SPM. The arrays are frequently used in embedded
applications such as image processing and signal processing. The novelty
of this approach lies in partitioning an SPM into a pseudo register file,
splitting the live ranges of arrays to create potential data transfer state-
ments between the SPM and off-chip main memory, and finally, adapt-
ing an existing graph-colouring algorithm for register allocation to assign
the arrays in the program into the register file. This compiler-directed
approach is efficient due to the practical efficiency of graph-colouring al-
gorithms. We have implemented this work in the SUIF/machSUIF com-
piler framework. Preliminary results over benchmarks show that this
compiler-directed approach represents a promising solution to automatic
SPM management.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Heterogeneous Multi-processor SoC: An
Emerging Paradigm of Embedded System

Design and Its Challenges

Xu Cheng

Department of Computer Science,
Peking University, Beijing, China

Abstract. The recent years have witnessed a variety of new embedded
applications. Typical examples include mobile multimedia gadgets, dig-
ital televisions, high-end cell phones, wireless network applications, etc.
The salient features of these applications include more comprehensive
functionalities, higher performance demand, and low-power consump-
tion. These requirements render the traditional single processor-based
embedded systems no longer an appropriate realization for such appli-
cations. On the other hand, the continual advance of VLSI technologies
enables more and more transistors to be integrated on a single chip.
The International Technology Roadmap for Semiconductors predicts that
chips with a billion transistors are within reach. As a result, the push
(application demands) and pull (VLSI technology) forces together give
birth to the multi-processor system-on-chips (MPSoCs).

Heterogeneous MPSoCs are different from traditional embedded sys-
tems in many aspects and they ask for new design and implementation
methodologies. Heterogeneous MPSoCs are not merely a hardware de-
sign. The complexity and heterogeneity of the system significantly in-
crease the complexity of the HW/SW partitioning problem. Meanwhile,
evaluating the performance and verifying its correctness is much more dif-
ficult compared to traditional single processor-based embedded systems.
Constructing a simulator to simulate the system’s behavior and evaluate
its performance takes more effort compared to conventional embedded
systems. The verification of the system also becomes challenging.

Programming a heterogeneous MPSoC is another challenge to be
faced. This problem arises simply because there are multiple program-
mable processing elements and since they are heterogeneous, software
designer needs to have expertise on all of these processing elements and
needs to take a lot of care on how to make the software running as a
whole.

There are a lot more issues that do not appear or easier to tackle
on traditional embedded systems, trade-offs between performance and
low-power will dominate the design life time. However, the incoming
challenges also brought us many opportunities either to industry and
academic research.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 4 – 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Trace-Based Runtime Instruction Rescheduling for
Architecture Extension

YuXing Tang, Kun Deng, HongJia Cao, and XingMing Zhou

School of Computer, National University of Defense Technology, China 410073
{tyx, kundeng, hjcao, xmzhou}@nudt.edu.cn

Abstract. The update of embedded processor may introduce new function unit,
new coprocessor, or even new additional DSP. In many cases, software
application can’t be fully rebuilt to utilize these new resources. This paper
describes a novel framework, called Runtime Instruction Rescheduling (RIR), to
solve this problem. RIR can find hot spots in binary codes, build a large
instruction window to generate trace, reschedule and optimize instructions in
traces. Different scheduling policies have been simulated. Shown from detailed
simulation, RIR helps the old binary codes benefit from new hardware resources.

1 Introduction

Advance computer system may change quickly in architecture, especially in high-end
embedded or mainframe area. Extended instruction-set, new function unit or even a
new coprocessor may be added in the new and powerful system. For example, TI’s
new TMS320DM310 has a DSP and an additional imaging accelerator except for the
arm core [1].

Researchers have presented link-time instruction scheduling to optimize binary
codes [2] for new architecture. Rebuilding all applications maybe a good way to take
the full advantages of system updating. But full rebuilding may not be applicable in
many cases. Lacking of complete source codes may cause trouble in software
rebuilding. The widely used binary library will prevent application developer from
transforming them freely.

In this paper, we present a novel framework for Runtime Instruction Rescheduling
(RIR). RIR can detect hot spots during the dynamic execution. Without recompiling
or recoding, RIR will select suitable instructions for scheduling and inject the results
into the new executing engine. The scheduling is based on trace [3] and trace cache
[9], which is suitable for various instruction scheduling and aggressive optimizing
[3][8][10]. Profile-guided loop unrolling and function inline are the main optimizing
methods. Detailed simulations demonstrate that RIR is a good choice to accelerate
already-compiled application during system updating.

The rest of this paper is organized as follows. Section 2 presents related works.
Section 3 introduces the framework for runtime instruction rescheduling. Section 4
describes the details of experiments. Section 5 presents the simulation results, and
then concludes the paper and discusses future work in Section 6.

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 5

2 Related Works

Instruction scheduling is one of the main research topics in compiler and
microarchitecture design. Early researches focused on static compilation. J.Fisher [3]
introduced trace compaction for global code optimization.

Crusoe [5] used software to schedule CISC instructions to be executed in a VLIW
core. Researchers in UIUC [4][8] presented two runtime frameworks for superscalar
processor to optimize hot spot in runtime. Also Dynamo [6] exhibits promising result
for runtime optimization based on software.

Recent years, many projects of dynamic optimization or binary translation have
been proposed to scheduling code during architecture migration [2][4][5][6]. Most
researches use simple threshold of trace-begin and trace-end to control the trace
selection [6][10] or only use fill unit for optimization [16]. And all available
optimizing and scheduling will perform in small piece of code. Simple-threshold
methodology simplifies the trace control logic and keeps the cost low. But unalterable
scheduling can’t adapt to complex and various runtime situations well. Sometimes the
optimization has to be conservative [7][11]. RIR uses continuous trace profiling [15]
and multi-level mechanism to solve this problem.

Loop unrolling and software pipelining may be the most effective way to exploit
ILP [12]. Many optimizing algorithms and scheduling methods are focus on loop. But
it is difficult to select the number of unrolling iterations in runtime. Most of the time,
unrolling must be conservative to avoid the trace fail [12]. Aggressive strategy needs
a tiny kernel loop, which is familiar in scientific computing [13]. The method in RIR
tries to unroll the loop in general application, and implement the SMD scheduling in
dynamic unrolled loop body.

3 Runtime Instruction Rescheduling

3.1 Control Flow of RIR

The framework of Runtime Instruction Rescheduling (RIR) is designed to solve the
mismatch problem between hardware and software. As described in fig.1, unchanged
binary image is injected into the new architecture. In early iterations, these
instructions won’t take advantages from the new hardware resources added by system
updating.

Off the processor datapath, profiling is used to grasp execution behavior [11].
Those frequently executed code will form an instruction window for runtime
scheduling. In following iterations, scheduled code will be executed by the new
resource.

Compared with traditional solutions of recompiling source codes, RIR may have
following advantages.

• No burden for software developer. Rescheduling is transparent to all
software application. Software can be accelerated without recompiling source
code.

6 Y. Tang et al.

• Speed up old compiled code. RIR can reschedule old instructions, select
suitable new instructions as substitution, and use the new function units to
speed up the execution.

• Minor changes in architecture. A layer of special software completes most
work of RIR, introducing only small microarchitecture changes. Meanwhile
RIR software can perform more aggressive scheduling than hardware.

• Scheduling according to software’s real behavior. Runtime scheduling will
be directed by real-time profiling information. Thus scheduling can adapt to
dynamic behavior of execution.

Fig. 1. Execution flow of RIR (the shaded parts present active executing engine during different
iterations)

3.2 Trace-Based RIR

Trace is the basic scheduling unit in RIR. Guided by dynamic profiling [15], those
frequently executed sequential codes are formed into hot trace. Scheduling in trace
will stride over the boundary of branch. If the control exits from the middle of trace,
compensating code or roll back is need to keep right execution. We call this as trace
fail, otherwise trace hit. The large instruction window of long hot trace will enable
aggressive schedule and optimization, but it is easier to fail than small trace. Now
RIR use checkpoint mechanism. When trace failed, processor state would be
recovered to the beginning of trace, and lower level trace or even unscheduled code
would be executed instead.

As shown in Fig.2a, ABDEG is the hot path. This path will be extracted from
original Control Flow Graphic (CFG) (Fig.2b). The rescheduled trace will be
executed more efficiently (Fig.2c).

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 7

A

B C

D

EF

G

A

B
C

D

E

G

801

800

771

800

801

(a) (b) (c)

A

G

B

D

F

C

A

G

B

D

F

Rescheduled
Trace

A'

G'

29

1

Fig. 2. CFG transfer in RIR hot trace

c a ll c o n te x t
s ta c k

P a th
p r o f i le
s ta c k

c o m m it te d
in s t.

p a th in fo ty p e
c o n tr o l r e g .

R I R
c o n tr o l

P a tt e r n
d e c te c t o r

R I R
O p tim iz ie d

T ra c e

H o t
P a th

T a b le

b r a n c h
q u e u e 1

b r a n c h
q u e u e 2

Fig. 3. Main hardware components in RIR

Fig.3 presents the main hardware components of RIR. An instruction queue is used
to buffer the committed branches from pipeline. Combined with another queue, these
two queues are used to detect the dynamic pattern to direct optimization (section 3.3
for detail). As the profiler in [15], a path stack is used to discover execution path from
the stream of branches. The Least Frequently Used (LFU) policy serves the purpose
of keeping frequently executed path in hot path table. Dynamic optimization routines
must transform the instructions in every hot path into an optimized trace. An index
function connects the hot paths and optimized RIR traces, as a link between original
code and transformed code.

The kernel of RIR is the heuristic algorithm for trace generation, described as
following:

1) Dynamic profiling records the information of basic blocks, such as branch
type, branch bias level, target address, branch taken times.

2) Detect trace-begin condition. (various thresholds and metrics for different
control instruction and pattern)

8 Y. Tang et al.

3) Collect instruction to form trace. Each basic block is added to trace according
to its performance potential. This potential is calculated by the block size,
bias level, and possible optimization.

4) Detect trace-end condition. Predict possible performance gain from whole
trace, and the cost of useful global schedule and optimization.

5) Perform advised trace scheduling and optimizing.

Distinguish from simple threshold trace method, after a trace has been generated,
trace profiling will be use to detect the usefulness of every trace. Trace will be
organized and transformed in predefined levels. The frequently executed and
successful low-level trace will become the candidate to form a high-level trace. The
trace in higher level may have more exploited ILP, and apply more aggressive
optimizing then the trace in lower level.

3.3 Multi-level Trace Strategy

RIR use the instruction pattern and execution time to control the generation and level
changing of trace. Instruction pattern, especially the pattern of branch instruction, is
useful to select a suitable scheduling and optimizing method. Table 1 gives currently
concerned instruction Pattern in RIR.

Table 1. Instruction pattern and possible optimizing choice

Instruction Pattern Description
Biased direct conditional branch Biased block may be joined to a large trace
Backward direct conditional
branch + backward branch

Possible internal loop, branch occurs time
can tell the unrolling times

Biased indirect branch If the number of branch target is limited and
biased, it can be treat as an direct branch

Small function call the size of function and the frequency will
induce the optimization of inline

As shown in Fig.4, two branch queues are connected to detect the execution pattern.
The first is known as buffer queue, because it is also used to buffer the branch for path
stack (Fig.3). RIR will check the tail of buffer queue for backward branch. For possible
unrolling loop, the target of backward branch should in the second branch queue.
Illustrated in fig.4, when the call instruction moves to the tail of pattern queue, RIR
will search for corresponding return in both queue. The address of branch instruction
and its target address will help RIR calculate path size (loop size or function size).

1 buffer queue 2 pattern queue

Callreturn

Pattern
detector point

Pattern
detector point

Fig. 4. Pattern detect in branch queue

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 9

Direct unconditional branch will not be treated as the boundary of basic block.
According the type of end branch, the profiling will record additional information,
such as block size, continuous branch times or function size. All these information are
used to select the most suitable scheduling method and predict the gain and cost
before optimization.

RIR classifies the optimizing and scheduling into different levels. Low-level
optimization can be applied to all trace, with low cost and little gain. High-level
optimization can only applied to peculiar instruction stream. But high-level trace will
get huge performance improvement, and cost more storage and time. Current RIR has
three levels:

1. Copy propagation, constant propagation. Because of the ISA and data
dependency, such optimization still can be applied in runtime.

2. Conservative loop unrolling. Instructions in the unrolled loop may be
scheduled or substituted to use the hardware resources more efficiently and
effectively.

3. Aggressive loop unrolling and function inline. The hot loop will be unrolled
more times than in level-2.

Actually different embedded system may choose different optimization and
classification. In order to compare with traditional simple threshold control and
single-pass optimization, this paper uses loop unrolling and function inline as main
optimization.

Similar to PARROT’s gradual optimization [10], all trace in RIR will be in low-
level firstly. Then those hot traces will be recognized after several successful
executions. Hot traces will be rescheduled and re-optimized into high-level trace. If a
high-level trace jumps out from the middle and fails frequently, it will be degraded
into low-level.

Compared with popular simple trace management, multi-level trace has more
opportunity to apply different optimization. Trace generation will be quicker and
earlier than ever, because it is easy to construct a low-level trace. Trace profiling will
direct the unrolling times, and then help to construct a precise instruction window for
runtime scheduling. Continuous profiling makes RIR adaptive to changeful and
complex runtime behavior. The trace length limits in traditional method should be
loosed. Abutting trace cache lines can be combined to store a long trace, because
optimizing such as loop unrolling can spill the length limits.

4 Simulation

Highly recomposed SimpleScalar toolset v3.0d is used to evaluate the design of RIR.
The main processor is an embedded RISC core, much like MIPS 4Kp embedded core.
The baseline architecture parameters are in Table 2. The architectural extensions are
given in Fig.5. In this simulation, the SIMD unit is selected as the new hardware
resource added during architectural migration.

SIMD unit has similar function as AltiVec, MMX or SSE [14]. It can execute
multiply or add instruction for the packed data. Previously, recompiling is needed to
take the advantage of SIMD extension. RIR eliminate this rebuilt demand. Old

10 Y. Tang et al.

application, which has been built and compiled without the knowledge of new
extension, will also benefit from SIMD under the framework of RIR. Multiple
iterations of internal loop may be executed in parallel in SIMD unit. RIR can
substitute suitable instructions into SIMD instructions.

Table 2. Baseline architecture overview

Instruction Mips32 style instruction, quad word memory access
L1 Icache 8kB, 32 byte lines, 2-way set associative, 1 cycles for hit
L1 Dcache 8kB, 32 byte lines, 4-way set associative, 1 cycles for hit
Pipeline 5 stage, 4 issue out-of-order
RIR Trace cache 1024 internal operation storage
Fetch width 4 instruction per cycle
Issue width 4 instruction per cycle
Mis-prediction 3 cycle for pipeline flush
Reorder buffer 16 entry and other 8 entry for load/store
Function Units and
latency (total/issue)

4 Int ALU (1/1), 1 Int Mult (2/1) / Div (20/19), 4 memory
(1/1), 4 FP Add (2/1), 1 FP Mult (4/1) / Div (12/12) / Sqrt
(24/24)

Fig. 5. Simulated Microarchitecture. Deep shaded parts present the extensions of RIR. Grayish
parts present the new SIMD function unit added during architectural migration.

Dynamic profiling monitors instruction-fetch and gathers information from branch
unit. Those frequently executed codes will trigger trace generation. ROM or flash
memory is used to store RIR routines. They act just as normal system traps. A special
memory space named trace cache is used to store the scheduled traces.

Figure 6 presents a piece of code from one dimension FFT. At the beginning of
loop, the small variable i will direct internal if to perform the addition of a_rl not
b_im. The right side of figure 6 is the assembly code of internal loop. Frequent
instructions are in heavy black.

Figure 7 gives the level-1(a), level-2(b) and level-3(c) trace in RIR. Actually level-
1 trace equals to the result of popular simple threshold trace control. Several heuristic

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 11

f o r (i = 0 ; i < e x ; i + +) {
 l e n b /= 2 , t i m b = 0 ;
 f o r (j = 0 ; j < n u m b ; j + +) {
 w = 0 ;
 f o r (k = 0 ; k < l e n b ; k + +) {

 j 1 = t im b + k ;
 j 2 = j 1 + l e n b ;
 i f (i < e x /2)
 a _ r l [j 1] = a _ r l [j 1] + a _ r l [j 2] ;
 e l s e
 b _ im [j 1] = b _ im [j 1] + b _ im [j 2] ;

 w + = n u m b ;
 } t im b + = (2 * l e n b) ;
 } n u m b * = 2 ;
 }

L o o p K s l t R 2 , R 3 , R 4
 b n e R 2 , R 0 , L o o p J _ E N D

 a d d R 1 1 , R 5 , R 3
 a d d R 1 2 , R 4 , R 1 1
 s r a R 1 0 , R 9 , 1
 s l t R 1 0 , R 1 , R 1 0
 b n e R 1 0 , R 0 E L S E 1
 l w R 1 6 , R 1 1 (R 7)
 l w R 1 7 , R 1 2 (R 7)
 a d d R 1 6 , R 1 6 , R 1 7
 s w R 1 1 (R 7) , R 1 6
 j L o o p _ K e n d
E L S E 1 : l w R 1 8 , R 1 1 (R 8)
 l w R 1 9 , R 1 2 (R 8)
 a d d R 1 8 , R 1 8 , R 1 9
 s w R 1 1 (R 8) , R 1 1

L o o p K _ E N D : a d d R 6 , R 6 , R 2 0
 a d d R 3 , R 3 , 1
 j L o o p K
L o o p J _ E N D :

Fig. 6. The example code from FFT

 LoopK slt R2, R3, R4

 bne R2, R0, Loo J_END

 add R11,R5,R3

 add R12,R4,R11

 lw R16, R11(R7)

 lw R17, R12(R7)

 add R16, R16, R17

 sw R11(R7), R16

 j Loop_Kend

 add R6, R6, R30

LoopK_END: add R3, R3, 1

 j LoopK

LoopK slt R2, R3, R4

 bne R2, R0, LoopJ_END

 add R11,R5,R3 add R21,R5, R20

 add R12,R4,R11 add R22,R4, R21

 lw R16, R11(R7) lw R26, R21(R7)

 lw R17, R12(R7) lw R27, R22(R7)

 add R3, R3, 2 add R20, R3, 1

 add R6, R6, R30 add R6, R6, R30

 add R16, R16, R17 add R26, R26, R27

 sw R11(R7), R16 sw R21(R7), R26

 j LoopK

Loop _END:

LoopK slt R2, R3, R4

 bne R2, R0, LoopJ_END

 lwvh v1, R11(R7) lwvl v1, R21(R7)

 lwvh v2, R12(R7) lwvl v2, R22(R7)

 add R3, R3, 2 add R20, R3, 1

 add R11,R5,R3 add R21,R5, R20

 add R12,R4,R11 add R22,R4, R21

 addvE v1, V1, V2 mulad R6,R6,R30,2

 swvh R11(R7), v1 swvh R21(R7), v2

 j LoopK

LoopJ_END

 (a) level-1: threshold control to select

frequent instuctions
(b) level-2 unroll the loop twice (c) level-3 deep scheduling and SIMD optimization

Fig. 7. Multi-level trace optimized from the code of figure 6

threshold algorithms may unroll the internal loop conservatively, and then construct
level-2 trace. Elaborate RIR implements aggressive SIMD scheduling in level-3 trace
to accelerate trace further.

Level-1 trace (fig.7a) will be constructed firstly. Level-1 trace contains the frequent
instructions, but no further scheduling or optimization. Then RIR may unroll the
internal loop (fig.7b), and perform register renaming and scheduling to execute the
two iterations in a single level-2 trace. Aggressive SIMD scheduling and instruction
substitute can be seen in level-3 trace. Level-3 trace benefits from SIMD extension
much more, because of the special SIMD instructions.

Four policies of trace generation have be simulated:

1) Baseline (trace cache but no RIR and optimization). Naive trace generation,
which under the control of simple threshold. The main performance
contribution is from code layout of trace, not from dynamic optimization.

2) RIR+inline. Function inline is another fertile resources to enlarge trace size.

12 Y. Tang et al.

3) RIR+unroll. Most dynamic optimizations concentrate on the loops, because
unrolled loops are easy to be optimized by software pipelining or SIMD
(Vector) unit. The unrolling times will under the control of RIR framework.

4) RIR+full optimization. Predict gain and cost during trace generation. A set of
scheduling and optimizing algorithms, such as constant propagation, remove
branches, and strength reduction etc, are used as the same way of unroll and
inline.

Six benchmarks (gzip, vpr, gcc, parser, bzip2 and art) come from SPEC CPU2000,
the other 7(jpeg, mpeg, gsm, pgp, mesa and epic) are from MediaBench. All compiled
with “-finline-functions, -funroll-loops, -O2” flag.

5 Results

In fig.8, we try to construct large trace aggressively, but without the guide of RIR.
Large trace will fail more frequently (lower hit rate) than small one. The optimizing
and scheduling were done in vain if trace fails.

70

75

80

85

90

95

100

1 4 7 10 13 16 19
max basic

blocks per trace

in
st

ru
ct

io
n

hi
t r

at
e

in
 tr

ac
e

164.gzip
175.vpr
176.gcc
197.parser
256.bzip2
179.art

Fig. 8. Hit rates in different trace size
limits

0

10

20

30

40

50

60

in
st

ru
ct

io
n

ra
te

 f
or

 d
yn

am
ic

 lo
op

 u
nr

ol
lo

ng
(%

)

gzip
vpr

gcc
parser

bzip2
art

Fig. 9. Dynamic unrolling in unrolled benchmar

As illustrated in fig.9, RIR+unrolling is used to discover the usability of dynamic
loop unrolling. Note all benchmarks have unrolled the loops statically by compiler.
Every benchmark can benefit from RIR+unrolling. However, not all benchmarks can
gain enough from loop unrolling. In the dynamic scheduling of bzip2, 55.172% of
execution may hit in the dynamic unrolled loop. Gcc and vpr are the worst, less than
2% execution cycles hit in dynamic unrolled loop.

Fig.10 presents the hit rates for different trace policies with the same average trace
size (23 instructions per trace). The results are normalized to baseline (the leftmost
bar). Because more available optimizations result in the generation of more useful
large traces, proposed RIR has the highest hit rate. RIR achieve higher performance in
mediabench than spec2000, because the media applications are easier to be optimized
by loop unrolling, function-inline and other scheduling methods.

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 13

In Fig.11, we put those scheduled traces into SIMD unit to check the real
performance. Speedup rates are normalized to normal execution (no rescheduling for
SIMD). Although the improvement of hit rate in gcc is low (Fig.10), it still can get
benefits from SIMD acceleration. Bzip2 gets the largest improvement from high hit
rate of large trace.

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

gzip
vpr

gcc
parser

bzip2
art jpeg

mpeg
gsm

pgp
mesa

epic

baseline

RIR+inline

RIR+unrolling

RIR+full
opitimization

Fig. 10. Normalized trace hit rate for different policies

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

gzip
vpr

gcc
parser

bzip2
art jpeg

mpeg
gsm

pgp
mesa

epic

baseline

RIR+inline

RIR+unroll

RIR+full
optimization

Fig. 11. Speedup by SIMD unit executing rescheduled trace

Proposed RIR is always better than pure unroll and pure inline under multi-level
trace control. Although current RIR only integrate simple scheduling and optimizing,
average speedup to none-SIMD execution is 17%. This improvement comes from
RIR trace generation and scheduling for fast SIMD unit.

Fig.12 presents the percentage of trace in different level during the simulation of
fig.11. Normal means the instruction is not fetched from trace cache. As shown in
fig.12, most of the instructions come from trace cache. (Notes: High-level traces are
upgraded from low-level trace.) Because we give a strict limit to level-3 optimization,
level-3 traces in gzip and art are less than 1%. Recalling fig.8, the trace hit rate of
these two benchmark will decrease quickly if we try to construction large trace
aggressively but blindly. RIR framework will apply optimization and scheduling more
precisely.

14 Y. Tang et al.

0% 20% 40% 60% 80% 100%

gzip

gcc

bzip2

jpeg

gsm

mesa

normal

level 1

level 2

level 3

Fig. 12. The rate of trace in different level during dynamic execution

Path profiler, pattern detector, hot path table and trace storage may consume
additional hardware resource for advance embedded processor. These silicon areas
also can be used for larger L1 cache. In Fig.13, baseline architecture use 8KB L1 I
cache and 8KB L2 D cache. The 4k T-cache means that the trace cache can contain 4k
internal operations (16KB). RIR use a 3k t-cache to store the optimized trace, the rest
silicon are used for other RIR hardware in fig.3. Simulation shows that RIR may
achieve better performance than I cache enlargement or pure trace cache mechanism.
Scheduling code into additional new hardware resource (SIMD unit) improves the
execution further more.

gzip
vpr

gcc
parser

bzip2
art jpeg

mpeg
gsm

pgp
mesa

epic

Fig. 13. IPC improvement for large I cache, large T-cache, RIR and RIR+SIMD

6 Conclusion

Runtime Instruction Rescheduling can help old compiled code benefit from new
extension of system architecture. No source code rewriting, object rebuilding or
binary instrumentation is needed. Future RIR will be enhanced to save power by
shutting down main processor when trace is executed in accelerating resources. More
aggressive optimization will be implemented and evaluated. Aggressive optimization
may need the storage space for intermediate language or SSA code [17]. Code
expansion and storage cost should be giver further attention.

 Trace-Based Runtime Instruction Rescheduling for Architecture Extension 15

References

1. D. Talla, R. Austen, D. Brier, et al. TMS320DM310 – A Portable Digital Media
Processor. Proceeding of 15th Symposium on High Performance Chips. 2003

2. Lian Li, Jingling Xue. A Trace-based Binary Compilation Framework for Energy-Aware
Computing. Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools (LCTES '04), pages 95-106, 2004

3. J.A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE
Transaction on Computer. Pages 478-490,July 1981

4. M M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J. Gyllenhaal, and W. W.
Hwu. An Architectural Framework for Runtime Optimization. IEEE Transactions on
Computers, pages 567-589, June 2001

5. James C Dehnert, Brian K Grant, John P Banning, et al. The Transmeta Code Morphing
Software: Using Speculation, Recovery, and Adaptive Retranslation to Address Real-life
Challenges. Proceedings of the 2003 International Symposium on Code Generation and
Optimization]. Pages 15-24, 2003.

6. Vasanth Balsa, E. Duesterwald, S. Banerjia. Dynamo: A Transparent Dynamic
Optimization System. Proceedings of the ACM SIGPLAN '00 Conference on
Programming Language Design and Implementation, pages 1-12 , 2000.

7. Thomas M. Conte, Kishore N. Menezes, Mary Ann Hirsch. Accurate and Practical
Profile-Driven Compilation Using the Profile Buffer. Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages 36-45, 1996

8. Sanjay J. Patel and Steven S. Lumetta. Replay: A Hardware Framework for Dynamic
Optimization. IEEE Transactions on Computers, Vol.50 NO. 6 pages 590-608, 2001

9. E. Rotenberg, S. Bennett, and J.E. Smith. Trace Cache: A low latency approach to high
bandwidth instruction fetching. Proceedings of 29th International Symposium on
Microarchitecture, pages 24-35, 1996.

10. R. Rosner, Y. Almog, M. Moffie, N. Schwartz, A. Medelson. Power Awareness through
Selective Dynamically Optimized Traces, Proceedings of the 31st annual international
symposium on Computer architecture (ISCA-31), pages 162-173, 2004.

11. Marc Berndl, Laurie Hendren. Dynamic profiling and trace cache generation, Proceedings
of the international symposium on code generation and optimization: feedback-directed
and runtime optimization, pages 276-285, 2003.

12. Vicki H. Allan, Reese B. Jones, Randall M. Lee, Stephen J. Allan. Software Pipeline,
ACM computing Surveys (CSUR), vol.27 issue 3, Pages 367-432, 1995.

13. J.R. Ellis. Bulldog: A Compiler for VLIW Architecture. MIT Press, Cambridge, MA,
1986.

14. Intel Corp. IA-32 Intel Architecture Software Developer's Manual volume 1: Basic
Architecture, No.25366515, 2004.

15. Kapil Vaswani, Matthew J.Thazhuthaveetil, Y.N.SriKant. A Programmable Hardware
Path Profiler. Proceedings of the International Symposium on Code Generation and
Optimization, pages 217-228, 2004.

16. Manoj Franklin, Mark Smotherman. A Fill-unit Approach to Multiple Instruction Issue.
Proceedings of 27th annual international symposium on Microarchitecture, pages 162-171,
1994

17. Brian Matthew Fahs. An Analysis of A Novel Approach to Dynamic Optimization. M.S.
Thesis of the University of Illinois at Urbana-Champaign, 2003

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 16 – 29, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Bioinformatics on Embedded Systems: A Case Study of
Computational Biology Applications on VLIW

Architecture

Yue Li and Tao Li

Intelligent Design of Efficient Architectures Laboratory (IDEAL),
Department of Electrical and Computer Engineering,

University of Florida, Gainesville, Florida 32611
yli@ecel.ufl.edu, taoli@ece.ufl.edu

http://www.ideal.ece.ufl.edu/

Abstract. Bioinformatics applications represent the increasingly important
workloads. Their characteristics and implications on the underlying hardware
design, however, are largely unknown. Currently, biological data processing
ubiquitously relies on the high-end systems equipped with expensive, general-
purpose processors. The future generation of bioinformatics requires the more
flexible and cost-effective computing platforms to meet its rapidly growing
market. The programmable, application-specific embedded systems appear to
be an attractive solution in terms of easy of programming, design cost, power,
portability and time-to-market. The first step towards such systems is to
characterize bioinformatics applications on the target architecture. Such studies
can help in understanding the design issues and the trade-offs in specializing
hardware and software systems to meet the needs of bioinformatics market.
This paper evaluates several representative bioinformatics tools on the VLIW
based embedded systems. We investigate the basic characteristics of the
benchmarks, impact of function units, the efficiency of VLIW execution, cache
behavior and the impact of compiler optimizations. The architectural
implications observed from this study can be applied to the design
optimizations. To the best of our knowledge, this is one of the first such studies
that have ever been attempted.

1 Introduction

The study of genetics has remarkably advanced our knowledge of the fundamental of
life: in 1865, G. Mendel first discovered the phenomena of genetic inheritance,
whereas now, life sciences have matured to the extent of making cloning of living
beings a reality. Today, to understand biological processes and, in turn, advances in
the diagnosis, treatment, and prevention of genetic diseases, researchers rely on the
advanced laboratory technologies (e.g., electrophoresis and mass spectrometry, micro
array transcript analysis) [1] to study all the genes as well as their activity levels and
complex interactions in an organism.

As genomic science moves forward, having accessible computational tools with
which to extract and analyze genomic information is essential. The field of
bioinformatics, defined as the computationally handling and processing of genetic

 Bioinformatics on Embedded Systems 17

information, has experienced an explosive growth in the last decade. Since the human
genome [2] has been deciphered, it has become evident that bioinformatics will
become increasingly important in the future. Today, bioinformatics has become an
industry and has gained acceptance among number of markets especially in
pharmaceutical, biotechnology, industrial biotechnology and agricultural
biotechnology. A number of recent market research reports estimate the size of the
bioinformatics market is projected to grow to $243 billion by 2010 [3].

Clearly, computer systems which provide high-performance, cost-effective genetic
data processing play a vital role in the future growth of the bioinformatics market.
Many major IT companies (e.g., IBM, Microsoft, SGI, and Apple) have announced
products specific to bioinformatics applications [4, 5], while dozens of start-up
companies devoted to bioinformatics have arisen [6, 7]. Most of these solutions
continue to address the needs of bioinformatics by developing complex and expensive
high-end systems equipped with general-purpose processors. Costly and time-
consuming, these approaches can also result in hardware and software architectures
that are not optimized for the price, power, size and flexibility requirements of the
future bioinformatics computing.

As their popularities and market continue to grow, future bioinformatics and
computational biology are likely to adopt the application-specific processors and
systems to win the increased competition between manufacturers. It has been widely
accepted that embedded systems have become powerful enough to meet the
computational challenge from many application domains [8]. On the other hand, using
programmable, application-specific processors can provides much more flexible
solutions than an approach based on ASICs and is much more efficient than using
general-purpose processors in terms of cost, power, portability and the time-to-
market.

To achieve high-performance, genetic information processing needs to exploit
instruction level parallelism (ILP). General-purpose processor architectures, such as
aggressive, out-of-order execution superscalar, detect parallelisms at runtime using
highly complex hardware. In contrast, VLIW architectures use the compilers to detect
parallelisms and reduce hardware implementation cost. Consequently, the VLIW is
increasingly popular as the architecture paradigms for the programmable, application-
specific embedded processors [9].

The first step towards the cost-effective genetic data processing platforms is to
characterize the representative bioinformatics applications on the target architecture.
Such studies can help in understanding the design issues of the new generation of
programmable, application-specific processors to meet the needs of bioinformatics
market as well as the software/hardware tradeoffs that can be made to fine tune the
systems. This paper evaluates several representative bioinformatics software on the
VLIW based embedded systems. The workloads we used include the popular
DNA/protein sequence analysis, molecular phylogeny inference and protein structure
prediction tools. We investigate various architectural features, such as the basic
workload characteristics, impact of function units, the efficiency of VLIW execution,
cache behavior and the effectiveness of compiler optimizations. The architectural
implications observed from this study can be applied to the design optimizations. To
the best of our knowledge, this is one of the first such studies that have ever been
attempted.

18 Y. Li and T. Li

The rest of the paper is organized as follows. Section 2 provides brief reviews of
biology background and bioinformatics study areas. Section 3 describes the
workloads, the architectures modeled, and the simulation methodology. Section 4
presents the characterization of bioinformatics benchmarks and the architectural
implications. Section 5 concludes the paper.

2 Bioinformatics Background

This section provides an introductory background for biology and describes the major
areas of bioinformatics.

2.1 DNA, Gene and Proteins

All living organisms use DNA (deoxyribonucleic acid) as their genetic material. The
DNA is essentially a double chain of simpler molecules called nucleotides, tied
together in a helical structure famously known as the double helix. There are four
different kinds of nucleotides: adenine (A), guanine (G), cytosine (C) and thymine
(T). Adenine (A) always bonds to thymine (T) whereas cytosine (C) always bonds to
guanine (G), forming base pairs. A DNA can be specified uniquely by listing its
sequence of nucleotides, or base pairs. In bioinformatics, the DNA is abstracted as a
long text over a four-letter alphabet, each representing a different nucleotide: A, C, G
and T. The genome is the complete set of DNA molecules inside any cell of a living
organism that is passed from one generation to its offspring.

Proteins are the molecules that accomplish most of the functions of the living cell.
A protein is a linear sequence of simpler molecules called amino acids. Twenty
different amino acids are commonly found in proteins, and they are identified by a
letter of the alphabet or a three-letter code. Like the DNA, proteins are conveniently
represented as a string of letters expressing its sequence of amino acids. A gene is a
contiguous stretch of genetic code along the DNA that encodes a protein.

2.2 Bioinformatics Tasks

In this subsection, we illustrate the major interests in the bioinformatics, including
sequence analysis, phylogeny inference, and protein 3D structure prediction.

2.2.1 Sequence Analysis and Alignments
Sequence analysis, the study of the relationships between the sequences of biological
data (e.g., nucleotide and protein), is perhaps the most commonly performed tasks in
the bioinformatics. Sequence analysis can be defined as the problem of finding which
parts of the sequences are similar and which parts are different. By comparing their
sequences, researchers can gain crucial understanding of the biological significance
and functionality of genes and proteins: high sequence similarity usually implies
significant functional or structural similarity while sequence differences hold the key
information of diversity and evolution.

 Bioinformatics on Embedded Systems 19

Sequence A GAATTCAGT-A

 | | | | | | |

Sequence B GGA-TC-GTTA

Fig. 1. Alignment of two sequences (The aligned sequences match in seven positions)

The most commonly used sequence analysis technique is sequence alignment. The
idea of aligning two sequences (of possibly different sizes) is to write one on top of
the other, and break them into smaller pieces by inserting gaps (“-”) in one or the
other so that identical subsequences are eventually aligned in a one-to-one
correspondence. In the end, the sequences end up with the same size. Figure 1
illustrates an alignment between the sequences A = “GAATTCAGGTA” and B=
“GGATCGTTA”. The objective is to match identical subsequences as far as possible.
In the example, the aligned sequences match in seven positions.

Sequence A -AGGTCAGTCTA-GGAC
Sequence B --GGACTGA----GGTC
Sequence C GAGGACTGGCTACGGAC

Fig. 2. Multiple DNA sequence alignment

When using a given sequence to find similar sequences in a database, one very often
obtains many sequences that are significantly similar to the query sequence. Comparing
each and every sequence to every other in separate processes may be possible when one
has just a few sequences, but it quickly becomes impractical as the number of sequences
increases. Multiple sequence alignment compares all similar sequences in one single
step: all sequences are aligned on top of each other in a common coordinate system. In
this coordinate system, each row is the sequence for one DNA or protein, and each
column is the same position in each sequence. Figure 2 illustrates a multiple alignment
among the sequences A = “AGGTCAGTCTAGGAC”, B= “GGACTGAGGTC”, and
C=“GAGGACTGGCTACGGAC”.

2.2.2 Molecular Phylogeny Analysis
Biologists estimate that there are about 5 to 100 million species of organisms living
on earth today. Evidence from morphological, biochemical, and gene sequence data
suggests that all organisms on earth are genetically related. Molecular phylogeny is
the inference of lines of ancestry for organisms based on DNA or protein sequences
of those organisms. The genealogical relationships of living things can be represented
by an evolutionary tree. In the evolutionary trees, the relationships among the species
are represented, with the oldest common ancestor as the trunk or “root” of the tree.
The real problem is that of determining just how close or distant the relationship is.
Bioinformatics phylogeny analysis tools provide crucial understanding about the
origins of life and the homology of various species on earth.

20 Y. Li and T. Li

2.2.3 Protein Structure Prediction
A protein sequence folds in a defined three-dimensional structure, for which, in a
small number of cases, the coordinates are known. The determination of the three-
dimensional structures of the proteins is of great significance for many questions in
biology and medicine. For example, knowing how a protein is arranged in the cell
membrane helps us to understand how they work and can lead to understanding not
only the cause, but also eventually to the cure for virus infections, such as the
common cold. Bioinformatics protein analysis tools translate the chemical
composition of proteins into their unique three-dimensional native structure.

3 Experimental Methodology

This section describes the workloads and the methodology we used in this study.

3.1 Simulation Framework

Our experimental framework is based on the Trimaran system designed for research
in instruction-level parallelism [10]. Trimaran uses the IMPACT compiler [11] as it’s
front-end. The IMPACT compiler performs C parsing, code profiling, block
formation and traditional optimizations [12]. It also exploits support for speculation
and predicated execution using superblock [13] and hyperblock [14] optimizations.
The Trimaran back-end ELCOR performs instruction selection, register allocation and
machine dependent code optimizations for the specified machine architecture. The
Trimaran simulator generator generates the simulator targeted for a parameterized
VLIW microprocessor architecture.

3.2 Bioinformatics Workloads

To characterize the architectural aspects of the representative bioinformatics software,
we use six popular bioinformatics tools in this study. This subsection provides a brief
description of the experimented workloads.

Fasta: Fasta [15] is a collection of popular bioinformatics searching tools for
biological sequence databases. These tools perform a fast protein comparison or a fast
nucleotide comparison using a protein or DNA sequence query to a protein or DNA
sequence library.

Clustal W: Clustal W [16] is a widely used multiple sequence alignment software for
nucleotides or amino acids. It produces biologically meaningful multiple sequence
alignments of divergent sequences. It calculates the best match for the selected
sequences, and lines them up so that the identities, similarities and differences can be
seen.

Hmmer: Hmmer [17] employs hidden Markov models (profile HMMs) for aligning
multiple sequences. Profile HMMs are statistical models of multiple sequence
alignments. They capture position-specific information about how conserved each
column of the alignment is, and which residues are likely.

 Bioinformatics on Embedded Systems 21

Phylip: Phylip (PHYLogeny Inference Package) [18] is a package of the widely used
programs for inferring phylogenies (evolutionary trees). Methods that are available in
the package include parsimony, distance matrix, maximum likelihood, bootstrapping,
and consensus trees. Data types that can be handled include molecular sequences,
gene frequencies, restriction sites and fragments, distance matrices, and discrete
characters. In this study, we use dnapenny, a program that performs branch and bound
to find all most parsimonious trees for nucleic acid sequence.

POA: POA [19] is sequence alignment tool. POA uses a graph representation of a
multiple sequence and can itself be aligned directly by pairwise dynamic
programming, eliminating the need to reduce the multiple sequence to a profile. This
enables the algorithm to guarantee that the optimal alignment of each new sequence
versus each sequence in the multiple sequence alignment will be considered.

Predator: Predator [20] predicts the secondary structure of a protein sequence or a
set of sequences based on their amino acid sequences. Based on the amino acid
sequence and the spatial arrangement of these residues the program can predict
regions of alpha-helix, beta-sheets and coils.

Table 1. Benchmark description

Program Description Input Dataset

fasta compare a protein/DNA sequence to a
protein/DNA database

human LDL receptor precursor protein,
nr database (the primary database from
NCBI)

clustalw progressively align multiple sequences 317 Ureaplasma’s gene sequences from
the NCBI Bacteria genomes database

hmmer align multiple proteins using profile
HMMs

a profile HMM built from the alignment
of 50 globin sequences, uniprot_sprot.dat
from the SWISS-PROT database

dnapenny find all most parsimonious phylogenies
for nucleic acid sequences

ribosomal RNAs from bacteria and
mitochondria

poa sequence alignment using Partial Order
Graph

317 Ureaplasma’s gene sequences from
the NCBI Bacteria genomes database

predator
predict protein secondary structure
from a single sequence or a set of
sequences

100 Eukaryote protein sequences from
NCBI genomes database

Table 1 summarizes the experimented workloads and their input data sets. We use
the highly popular biological databases, including nr (the primary database from The
National Center for Biotechnology Information (NCBI) [21]) and SWISS-PROT (an
annotated biological sequence database from the European Bioinformatics Institute
(EBI) [22]). The two multiple sequences alignment tools (clustalw and POA) use the
same input data set: the 317 Ureaplasma’s gene sequences from the NCBI Bacteria
genomes database [23]. The input for the protein structure prediction tool predator is
the 100 Eukaryote protein sequences from the NCBI genomes database.

22 Y. Li and T. Li

3.3 Machine Configuration

The simulated machine architecture comprises a VLIW microprocessor core and a
two-level memory hierarchy. The VLIW processor exploits instruction level
parallelism with the help of compiler to achieve higher instruction throughput with
minimal hardware. The core of the CPU consists of 64 general purpose registers, 64
floating point registers, 64 predicate registers, 64 control registers and 16 branch
registers. There is no support for register renaming like in a superscalar architecture.
Predicate registers are special 1-bit registers that specify a true or false value.
Comparison operations use predicate registers as their target register. The core can
execute up to eight operations every cycle, one each for the eight functional units it
has. There are 4 integer units, 2 floating point units, 1 memory unit and 1 branch unit.
The memory unit performs load/store operations. The branch unit performs branch,
call and comparison operations. The level-one (L1) memory is organized as separate
instruction and data caches. The processor’s level-two (L2) cache is unified. Table 2
summarizes the parameters used for the processor and memory subsystems.

Table 2. Machine configuration

VLIW Core
Issue Width 8
General Purpose Registers 64, 32-bit
Floating-Point Registers 64, 64-bit

Predicate Registers 64, 1-bit (used to store the Boolean values of
instructions using predication)

Control Registers 64, 32-bit (containing the internal state of the
processor)

Branch Target Registers 16, 64-bit (containing target address and static
predictions of branches)

Number of Integer Units 4, most integer arithmetic operations: 1 cycle, integer
multiply 3 cycles, integer divide 8 cycles

Number of Floating Point Units 2, floating point multiply 3 cycles, floating point
divide 8 cycles

Number of Memory Units 1
Number of Branch Units 1, 1 cycle latency

Memory Hierarchy

L1 I-Cache 8KB, direct map, 32 byte/line, cache hit 1 cycle

L1 D-Cache 8KB, 2-way, 32 byte/line, cache hit 1 cycle

L2 Cache 64KB, 4-way, 64 byte/line, L2 hit 5 cycles, 35 cycles
external memory latency

4 Results

This section presents a detailed characterization of the VLIW processor running the
bioinformatics software. Unless specified, all the applications are compiled with
the IMPACT compiler with the maximum –O4 option to produce optimized code

 Bioinformatics on Embedded Systems 23

for the VLIW processor. All benchmarks are run to the completion of 1 billion
instructions. We examine benchmark basic characteristics, the efficiency of VLIW
execution, the impact of function units, cache behavior and the impact of compiler
optimizations.

4.1 Benchmark Basic Characteristics

Figure 3 shows the dynamic operations mix of the examined bioinformatics tools. The
dynamic operations are broken down into seven categories: branches, loads, stores,
integer (ialu) and floating point (falu) operations, compare-to-predicate (cmpp)
operations and prepare-to-branch (pbr) operations. Prepare-to-branch operations are
used to specify the target address and the static prediction for a branch ahead of the
branch point, allowing a prefetch of instructions from the target address. Compare-to-
predicate operations are used to compute branch conditions, which are stored in
predicate registers. Branch operations test predicates and perform the actual transfer
of control.

0%
20%

40%
60%

80%
100%

cl
ust

al
w

fa
st

a

hm
m

er

dn
ap

en
ny poa

pre
dat

or

%
 in

 D
yn

am
ic

 O
p

er
at

io
n

s pbr

cmpp

falu

ialu

store

load

branch

Fig. 3. Dynamic Operations Mix

As can be seen, load and integer operations dominate the dynamic operations in the
studied bioinformatics programs. Overall, loads and integer computations account for
more than 60% of dynamic operations. Only 5% of operations executed are stores.
Stores occur only when updating the dynamic data structures such as HMM (e.g. on
hmmer) and alignment score matrices (e.g. on clustalw, fasta and POA). Branches
constitute 12% of operations executed. Additionally, there are 11% compare-to-
predicate and 13% of prepare-to-branch operations in the dynamics operations. The
experimented workloads all contain negligible (less than 0.1%) floating point
operations, suggesting that floating point units are under-utilized. Therefore, the
bioinformatics embedded processors may remove the costly and power-hungry
floating point units and use software emulation for the floating point execution.

4.2 ILP

Figure 4 shows the number of dynamic operations completed each cycles on the
VLIW machine. To quantify the baseline ILP performance, we use the classic
compiler optimizations and assume the perfect caches. As can be seen, although the
VLIW machine can support 8 operations every cycle, on the average, only 1.3

24 Y. Li and T. Li

operations are completed per cycle. The processor baseline OPC (operations per
cycle) ranges from 1.27 (clustalw) to 1.45 (predator). This indicates that control and
data dependencies between operations limit the available ILP. Using conventional
code optimizations and scheduling methods, VLIW processors can not attain the
targeted ILP performance on the studied bioinformatics software.

1

1.1

1.2

1.3

1.4

1.5

cl
us

ta
lw

fa
st

a

hm
m

er

dn
ap

en
ny po

a

pr
ed

at
or

O
p

er
at

io
n

s
p

er
 C

yc
le

Fig. 4. Baseline ILP

4.3 Impact of Function Units

On the VLIW processors, the number and type of function units affects the available
resources for the compiler to schedule the operations. The presence of several
instance of certain function unit allows the compiler to schedule several operations
using that unit at the same time. Figure 3 shows that the integer and memory
operations dominate the bioinformatics software execution. We investigate the
impact of the integer and memory units on the benchmark performance in this
subsection.

0

0.5

1

1.5

2

clu
st

alw fa
st

a

hm
m

er

dnape
nny

poa

pre
dat

orO
p

er
at

io
n

s
p

er
 C

yc
le

1-ialu 2-ialu 4-ialu

Fig. 5. Impact of Integer Units

We vary the number of integer units from 1 to 4 while keeping other architectural
parameters at their default values. Figure 5 shows the impact of integer units on the
ILP performance. As can be seen, increasing the number of integer units provides a
consistent performance boost on the integer computation intensive benchmarks, since
it permits greater exploitation of ILP by providing larger schedulable resources. When
the number of integer units increase from 1 to 4, the processor ILP performance
increases from 2.4% (hmmer) to 35.5% (predator), with an average of 16%.

 Bioinformatics on Embedded Systems 25

0

0.5

1

1.5

2

cl
us

ta
lw

fa
st

a

hm
m

er

dna
pe

nn
y

poa

pr
ed

at
or

O
p
er

at
io

n
s

p
er

 C
yc

le

1-memu 2-memu 4-memu

Fig. 6. Impact of Memory Units

We also perform experiments varying the number of memory units. Similarly,
when we vary the memory units, the setting of other machine parameters are fixed.
Figure 6 shows the impact of the memory units on the performance. We find that
adding more memory units does not effectively improve performance on the majority
of workloads. Increasing the memory units from 1 to 2 provides a performance gain
ranging from 1% (dnapenny) to 19% (hmmer). Further increasing the memory units
from 2 to 4 yields negligible performance improvement. The traditional compiler
optimizations lack the capability of scheduling the instructions across the basic block
boundaries, making the added memory units underutilized.

4.4 Cache Performance

This section studies the cache behavior of bioinformatics applications. Figure 7 shows
the variation in the cache miss rates with cache associativity. We vary the cache
associativity from 1 to 4, keeping the sizes of the L1 I-cache, L1 D-cache and L2
cache fixed at their default values. Cache misses are further broken down into
conflict, capacity and compulsory misses. As can be seen, direct map instruction
caches yield high miss rates on nearly all of the studied benchmarks. The conflict
misses due to the lack of associativity dominate the cache misses. The instruction
cache miss rates drop significantly with the increased associativity: the 4-way set
associative, 8KB L1 I-cache shows a miss rate of less than 1%. This indicates that
bioinformatics applications usually have small code footprints. A small, highly
associative instruction cache can attain good performance on the bioinformatics
applications.

Compared with instruction misses, data misses are difficult to absorb, even with
the high cache associativity. Figure 7 (b) shows that on the 8-way L1 data cache, the
miss ratios exceed 12% on benchmarks fasta, hmmer and POA. Unlike the
instruction misses, the data cache misses are dominated by the capacity misses. This
is because sequence alignment programs normally work on large data sets with little
data reuse. Figure 7 (c) shows that the L2 misses on five out of six programs are
dominated by the capacity misses, suggesting that most of the L2 misses are caused
by data references. Increasing the L2 cache associativity does not seem to be very
helpful.

26 Y. Li and T. Li

 clustalw fasta hmmer dnapenny poa predator

L1 I-Cache

0%

10%

20%

30%

40%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Associativity

M
is

s
R

at
e

Conflict
Capacity
Compulsory

(a)
 clustalw fasta hmmer dnapenny poa predator

L1 D-Cache

0%

5%

10%

15%

20%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Associativity

M
is

s
R

at
e

Conflict
Capacity
Compulsory

(b)
 clustalw fasta hmmer dnapenny poa predator

L2 Cache

0%

2%

4%

6%

8%

10%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Associativity

M
is

s
R

at
e

Conflict
Capacity
Compulsory

(c)

Fig. 7. Impact of Cache Associativity

 clustalw fasta hmmer dnapenny poa predator

L1 I-Cache

0%

20%

40%

60%

80%

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Cache Size (KB)

M
is

s
R

at
e

Conflict
Capacity
Compulsory

(a)
 clustalw fasta hmmer dnapenny poa predator

L1 D-Cache

0%

5%

10%

15%

20%

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Cache Size (KB)

M
is

s
R

at
e

Conflict
Capacity
Compulsory

(b)
 clustalw fasta hmmer dnapenny poa predator

L2 Cache

0%

2%

4%

6%

8%

10%

Cache Size (KB)

M
is

s
R

at
e

Conflict
Capacity
Compulsory

32 64 128 256

(c)

Fig. 8. Impact of Cache Size

We also perform experiments varying the size of the caches. When we vary the L1
instruction cache, the sizes of L1 data cache and L2 cache are fixed. The associativity
of the L1 I-cache, L1 D-cache and L2 cache are set to be direct-map, 2-way and 4-
way. Figure 8 plots the cache miss rates for a range of varied cache sizes. As can be
seen, on a direct-map instruction cache, increasing the cache sizes from 8K to 16K
can nearly eliminates all the cache misses. For data references, a 32K L1 cache can
achieve good hit ratios across all the benchmarks. The large working sets of fasta,
hmmer and POA cause substantial traffic to the L2 cache. The entire working sets can
be captured by a L2 cache with a size of 256K Byte. Larger input data would increase
the working set requiring larger caches.

4.5 Compiler Optimizations

A compiler for VLIW processors must expose sufficient instruction-level parallelism
(ILP) to effectively utilize the parallel hardware. This subsection examines the impact
of compiler optimizations on the bioinformatics software execution.

 Bioinformatics on Embedded Systems 27

We first investigate the impact of basic compiler optimizations on the benchmark
performance. The IMPACT compiler provides a set of classic optimizations such as
constant propagation, copy propagation, constant folding, and strength reduction.
These optimizations do not necessitate any additional microarchitectural support. On
the IMPACT compiler, level 0 option does not contain any optimization. Level 1
option contains local optimizations. Level 2 option contains local and global
optimizations. Level 3 option contains local, global and jump optimizations. Level 4
option contains local, global, jump and loop optimizations.

1.0

1.1

1.2

1.3

1.4

1.5

clu
st

alw
fa

st
a

hm
m

er

dna
pe

nny
poa

pre
dato

r

S
p

ee
d

u
p

Opt L-1
Opt L-2
Opt L-3
Opt L-4

Fig. 9. Impact of Basic Compiler Optimizations

Figure 9 shows the effectiveness of using classic compiler optimizations. The
program execution time (presented in terms of speedup) is normalized to that with no
compiler optimizations. As can be seen, the basic compiler optimizations provide a
speedup ranging from 1.0X to 1.15X. The classic compiler optimizations yield limited
ILP performance improvement.

More aggressive compiler optimization technique can be used to further exploiting
ILP. The IMPACT compiler provides two types of such optimizations: superblock
and hyperblock optimizations. The superblock optimizations [13] form superblocks,
add loop unrolling and compiler controlled speculation, in addition to the basic block
optimizations. Compiler controlled speculation allows greater code motion beyond
basic block boundaries, by moving instructions past conditional branches. Hyperblock
optimizations [14] add predicated execution (conditional execution/if-conversion) to
superblock optimizations. Predicated execution can eliminate all non-loop backward
branches from a program.

Figure 10 shows the speedups of program execution due to superblock and
hyperblock optimizations. The data is normalized to that of using the basic
compiler optimization. Figure 10 shows that compared to the basic block
optimizations, the superblock optimizations further yield speedups ranging from
1.1X to 1.8X. The hyperblock optimization results in speedups ranging from 1.1X
to 2.0X. On the average, superblock and hyperblock optimizations improve
performance by a factor of 1.3X and 1.5X. These speedups present an opportunity
for improving the efficiency of VLIW execution on the bioinformatics
applications.

28 Y. Li and T. Li

1.0

1.2

1.4

1.6

1.8

2.0

cl
ust

alw
fa

st
a

hm
m

er

dn
ap

en
ny

poa

pre
da

to
r

S
p

ee
d

u
p

Superblock

Hyperblock

Fig. 10. Impact of Aggressive Compiler Optimizations

5 Conclusions

In the near future, bioinformatics and computational biology are expected to become
one of the most important computing workloads. Bioinformatics applications usually
run on the high-end systems with general purpose processors like superscalar. The
rapidly growing market and the increasingly intensive competition between
manufactures require the cost-effective bioinformatics computing platforms. The
programmable, application-specific embedded processors and systems appear to be an
attractive solution in terms of cost, power, size, time-to-market and easy of
programming.

In order to design the complexity/cost effective processors and specialize hardware
and software for the genetic information processing needs, a detailed study of the
representative bioinformatics workloads on the embedded architecture is needed. This
paper studies how the VLIW and compiler perform to extract the instruction level
parallelism on these emerging workloads. The workloads we used include the popular
DNA/protein sequence analysis, molecular phylogeny inference and protein structure
prediction tools. Characteristics including operation frequencies, impact of function
units, cache behavior, and compiler optimizations are examined for the purposes of
defining the architectural resources necessary for programmable bioinformatics
processors.

The major observations are summarized as follows: Loads and integer operations
dominate bioinformatics applications execution. Floating point unit is underutilized.
The baseline ILP performance is limited on the studied bioinformatics applications
due to the data and control dependences in the instruction flow. A small, set-
associative instruction cache can handle instruction footprints of bioinformatics
applications efficiently, suggesting that bioinformatics applications have good locality
and small instruction footprints. For the L1 data cache, capacity misses dominate the
cache miss, suggesting that the bioinformatics applications have poor data locality.
Therefore, in the L1 data cache design, increasing capacity is more efficient than
increasing associativity. Classic compiler optimizations provide a factor of 1.0X to
1.15X performance improvement. More aggressive compiler optimizations such as
superblock and hyperblock optimizations provide additional 1.1X to 2.0X
performance enhancement, suggesting that they are important for the VLIW machine
to sustain the desirable performance on the bioinformatics applications.

In the future, we plan to explore new architectural and compiler techniques for
VLIW processors to support bioinformatics workloads. We also plan to expend our

 Bioinformatics on Embedded Systems 29

study to include other bioinformatics applications such as molecular dynamics, gene
identification, protein function assignment, and microarray data analysis.

References

[1] D. E. Krane and M. L. Raymer, Fundamental Concepts of Bioinformatics, ISBN: 0-
8053-4633-3, Benjamin Cummings, 2003.

[2] The Human Genome Project Information, http://www.ornl.gov/sci/techresources/
Human_Genome/home.shtml

[3] Bioinformatics Market Study for Washington Technology Center, Alta Biomedical
Group LLC, www.altabiomedical.com, June 2003.

[4] SGI Bioinformatics Performance Report, http://www.sgi.com/industries/sciences/
chembio/pdf/bioperf01.pdf

[5] The Apple Workgroup Cluster for Bioinformatics, http://images.apple.com/xserve/
cluster/pdf/Workgroup_Cluster_PO_021104.pdf

[6] BioSpace, http://www.biospace.com/
[7] Genomeweb Daily News, http://www.genomeweb.com/
[8] A. S. Berger, Embedded Systems Design - An Introduction to Processes, Tools, &

Techniques, ISBN 1-57820-073-3 CMP Books, 2002
[9] P. Faraboschi, J. Fisher, G. Brown, G. Desoli, F. Homewood, Lx: A Technology

Platform for Customizable VLIW Embedded Processing, In the Proceedings of the
International Symposium on Computer Architecture, 2000

[10] The Trimaran Compiler Infrastructure, http://www.trimaran.org
[11] W.W. Hwu et.al. The IMPACT project, http://www.crhc.uiuc.edu/IMPACT
[12] A.V. Aho, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques and Tools,

Pearson Education Pte. Ltd., 2001.
[13] W.W. Hwu and S. A. Mahlke, The Superblock: An Effective Technique for VLIW

and Superscalar Compilation, In the Journal of Supercomputing, page 224-233, May
1993.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann, Effective
Compiler Support for Predicated Execution Using the Hyperblock, In the
International Symposium on Microarchitecture, 1994.

[15] D. J. Lipman and W. R. Pearson, Rapid and Sensitive Protein Similarity Searches,
Science, vol. 227, no. 4693, pages 1435-1441, 1985.

[16] J. D. Thompson, D.G. Higgins, and T.J. Gibson, Clustal W: Improving the
Sensitivity of Progressive Multiple Sequence Alignment through Sequence
Weighting, Positions-specific Gap Penalties and Weight Matrix Choice, Nucleic
Acids Research, vol. 22, no. 22, pages 4673-4680, 1994.

[17] S. R. Eddy, Profile Hidden Markov Models, Bioinformatics Review, vol. 14, no. 9,
page 755-763, 1998.

[18] J. Felsenstein, PHYLIP - Phylogeny Inference Package (version 3.2), Cladistics, 5:
164-166, 1989.

[19] C. Lee, C. Grasso and M. F. Sharlow, Multiple Sequence Alignment using Partial
Order Graphs, Bioinformatics, vol. 18, no. 3, pages 452-464, 2002.

[20] D. Frishman and P. Argos, 75% Accuracy in Protein Secondary Structure Prediction,
Proteins, vol. 27, page 329-335, 1997.

[21] NCBI, http://www.ncbi.nlm.nih.gov/
[22] The UniProt/Swiss-Prot Database, http://www.ebi.ac.uk/swissprot/
[23] The NCBI Bacteria genomes database ftp://ftp.ncbi.nih.gov/genomes/Bacteria/.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 30 – 38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design Space of CMP vs. SMT for High Performance
Embedded Processor

YuXing Tang, Kun Deng, and XingMing Zhou

School of Computer, National University of Defense Technology, China 410073
{tyx, kundeng, xmzhou}@nudt.edu.cn

Abstract. In embedded world, many researchers have begun to examine
Simultaneous Multithreading (SMT) and Chip Multiprocessing (CMP) for
various demands. SMT and CMP both make a chip to achieve greater
throughput. But the power, chip size and thermal features are also important for
embedded system. In this paper we compare the design space of both
architecture. As simulation results shown, although extending wide-issue
processor into SMT has the advantage of small design changes, high hardware
resource efficiency and high throughput, CMP presents better scalability in raw
performance and power metric under heavy multithreaded workload than SMP.
CMP integrates several similar processor in a single chip, so it can’t uses the
chip area efficiently like SMT. And the chip area limits will prevent the CMP
from equipping a large L2 cache, which will hurt the performance of memory-
bound application. The evaluation also points out the design problem and
possible solution for power, chip size and thermal efficiency in CMP and SMT.

1 Introduction

New developments and new standards in embedded processors, such as mobile
entertainment, high bandwidth network and multimedia application, call for a
significant increase in raw performance while at the same time the market demands
low power, small chip size and good thermal feature. Multimedia, mobile and
communication workloads are inherently multithreaded. Using multithreading
architecture to improve the whole performance rather than a single program makes
SMT and CMP attractive for high-end embedded processor.

In today’s processor design, the execution time of single processor is not the only
metric. The whole throughput, power, energy, size, security and fault-tolerate become
emergent metrics. The high IPC of SMT and CMP make them possible to
compromise for power, chip size and thermal feature. More hardware resources
promise SMT and CMP a wide design space for different metrics.

Having been developed for over 10 years, SMT and CMP architecture have many
new choices. Not limited by D.M.Tullsen’s extension in superscalar [2], there are
SMT based on VLIW and scalar core. Integrating two or three high-end cores or
dozens of simple cores, and using homogeneous or heterogeneous core for
integration, these are still unresolved questions in CMP design.

In this paper we compare the simulation results of SMT and CMP under different
hardware and workloads configuration. The main design metrics and targets include

 The Design Space of CMP vs. SMT for High Performance Embedded Processor 31

raw performance (IPC), power, chip area and temperature. Different metrics may
correlate with each other. For example, low power often means some sacrifice in
performance. This paper also discusses some interrelationships among main metrics.

2 Related Works

Hardware multithreading (MT) begin to enter the main stream of processor design
[1][4]. Comparing to MultiScalar or other MT architectures that change programming
mode or hurt the compatibility, SMT and CMP are the two most popular MT
architectures in academic and industry.

2.1 SMT

D.M. Tullsen proposed to extend a wide-issue superscalar processor into
multithreading context [2]. The original SMT was designed to improve the utilization
of superscalar hardware with tiny additional cost. SMT needs to add thread tag in
single thread (ST) architecture, and maintain a hardware context for every
simultaneous thread, including general register file, PC register and other state
registers.

L 1 I C ach e

4 -is su e
log ic

G P R F P R

A
L
U

F
P
U

L 1 D C a ch e

L 2 C a ch e

P C fetech

L 1 I C ach e

4-is su e
log ic

G P R 2 F P R 2

B
U

A
L
U

F
P
U

L 1 D C ach e

L 2 C ach e

P C fetch 1

P C fetch 2
G P R 1 F P R 1

L 1 I C ach e

4 -issu e
log ic

G P R

F P R

B
U

A
L
U

F
P
U

l
/
s

L 1 D C a ch e

L 2 C a ch e

P C fetch

L 1 I C ac h e

4 -issu e
log ic

G P R

F P R

B
U

A
L
U

F
P
U

l
/
s

L 1 D C ach e

P C fe tch

l/s
u n it

br
an

ch

un
it l /s

u n it

Fig. 1. ST superscalar, SMT and CMP architecture overview

2.2 CMP

L. Hammond et.al [3] argued that wire delay and complexity would prevent super
wide-issue (>4) processor to exploit more ILP. Their CMP use relatively simple
processor cores to exploit only moderate mounts of ILP within a single thread, while
executing multiple threads in parallel across these cores. Generally, the multiple
processor cores have their own L1 cache, but share L2 Cache. In early design, the
processor core in CMP is much simpler than SMT.

Alpha21364 and Hyper-threading have proved that it is an efficient and effective
way to implement SMT in existing design. S. Kaxiras et.al present the implementation
of SMT VLIW core for mobile phone workloads [8]. CMP have been used for many
years for network processor. Figure.1 presents the architecture different among single
thread superscalar, SMT and CMP processor.

32 Y. Tang, K. Deng, and X. Zhou

Early in 1997, architecture researchers have compared SMT and CMP performance
for possible billion-transistor architecture. Early researches focused on raw
performance (IPC) and execution time [2][3]. In 2001, S. Kaxiras et al [8] studied the
power consumption of CMP and SMT in DSP design. R. Sasanka et al [5][6] compare
the energy efficiency of SMT and CMP in multimedia workloads. Yingmin Li et al
[9] further compare the different thermal feature of SMT and CMP. This paper
surveys the comparing of SMT vs. CMP in performance, power, chip size and thermal
under different processor configuration and workloads.

3 Methodology and Workloads

SPEC2K is the most frequently used benchmarks for CPU design. For multithreading
test, several benchmarks will be united to construct a workload. MediaBench is more
suitable for the validation of embedded processor. In desktop, hand-hold and mobile
market, there are huge number of multithreaded media processing. For N person’s
net-meeting, one video/audio encoder and N-1 decoders are needed to run in parallel
in each terminal. In following experiments, the benchmarks have been classified into
4 types, according to their IPC in 4-issu out-of-order RISC processor (Table 2.)
deriving from MIPS 4Kp embedded core.

Table 1. Benchmarks and workloads classification

Type Benchmark Remark
Spec-H 175.vpr, 176.gcc, 252.eon, 256.bzip2 IPC > 1
Spec-L 164.gzip, 181.mcf, 197.parser IPC < 1
Media-H GSM, MPEG2-d, jpeg, epic IPC > 2
Media-L H.263-e, MPEG2-e, G.721 IPC < 2

Multimedia applications are easier to exploit ILP than SPEC, but H.263 and mpeg2
encoder has the IPC of 1.6 and 1.5 respectively, far below mpeg2-decoder from
mediabench (IPC=3.2). The average IPC of gzip , mcf and parser is lower than 1. mcf
suffers from high L2 cache miss rate, and delivers the worst IPC of 0.38. To
evaluation SMT and CMP performance in low ILP media applications, we added
H.263 and mpeg encoder into Media-L, although they are not included in official
MediaBench.

Table 2. Baseline single thread architecture

Issue width 4 instruction per cycle
Function unit 3-AlU, 2-FPU, 1-branch unit, 2 load/store units
Branch predictor 4K entry bimod
Register file 32 GPR, 32 FPR
L1 Icache/Dcache 8KB, 2-way, 32B blocks, 1-cycle/hit
L2 Cache 128KB, 4-way, 44B blocks, 8-cycle/hit

 The Design Space of CMP vs. SMT for High Performance Embedded Processor 33

The benchmarks in these 4 types will mixed together to form multithread
workloads. Several threads from SPEC-L can test the efficiency of multithread
architecture when ILP in each thread is difficult to be exploited. The composing of
workload uses the method in [5][9]. 4 simulation frameworks, SMTSIM, MP-
Simplesim, Wattch and Hotspot, have been used in following simulation. In
simulation, SMTx means that x threads run simultaneously in 1 processor of SMT
style; CMPx means that there are x processing core in 1 chip, each core execute 1
thread.

4 Compare the Raw Performance

4.1 Performance Under Same Processor Core

In the test of figure.2 and figure.3, similar processor core (Table 2) has been used in
SMT and CMP. SMT has the same total issue width as CMP, as well as L1 and L2
cache size.

Fig. 2. IPC of SMT vs. CMP in same core under 2-thread workloads

Fig. 3. IPC of SMT vs. CMP in same core under 4-thread workloads

For better hardware utilization, SMT2 have the same configuration of function
units as a single processor core in CMP. SMT4 extends the issue bandwidth into 16
instruction/cycle, and double the function units into SMT2.

As shown from results, CMP have better performance than SMT when they are
using the same processor core. Especially for SPEC-H and Media-H, because of the
low competition in hardware, CMP show better scalability than SMT.

34 Y. Tang, K. Deng, and X. Zhou

4.2 Performance When CMP Use Simple Core

To control the hardware cost of implementation, CMP may integrate several simpler
cores than SMT or ST processor. In the evaluation of figure.4 and figure.5,
CMP2/CMP4 use 2-issue superscalar processor, which has only 1-ALU and 1-FPU.
But SMT and CMP have the same size of L1 and L2 cache.

Fig. 4. IPC of SMT vs. CMP in different core under 2-thread workloads

Fig. 5. IPC of SMT vs. CMP in different core under 4-thread workloads

For SPEC2000 benchmarks, the performance of CMP2 is close to SMT4. SMT
achieves tiny superior in SPEC-H. However, for media benchmarks, CMP is limited
by its issue bandwidth, and its performance is much lower than SMT.

4.3 Performance with Limitation in Chip Size

The results from figure.2 to figure.5 indicate that CMP should integrate several high-
performance cores. But these cores will occupy more chip area. Keeping both the
CMP and SMT use the same chip size, CMP has to sacrifice its L2 cache size for
additional core. Section 6 discusses chip area in detail. In figure.6 and figure.7, SMT

 The Design Space of CMP vs. SMT for High Performance Embedded Processor 35

and CMP use the same high performance core. But SMT2 and SMT4 have 256KB
and 512KB L2 cache respectively, but CMP2 and CMP4 are 128KB and 245KB
respectively.

Fig. 6. IPC of SMT vs. CMP in limited chip size under 2-thread workloads

Fig. 7. IPC of SMT vs. CMP in limited chip size under 4-thread workloads

Except for SPEC-L, small L2 cache has little impact for CMP. This may because
that most benchmarks are cpu-bound, and have high hit rate in cache. Mcf in SPEC-L
is memory-bound. CMP suffer from the limited size of l2 cache in SPEC-L. SMT is
superior for memory-bound application because it has the ability to implement large
L2 cache.

5 The Power of CMP and SMT

Formula 1 has been widely used to calculate the power of processor. The value of
Power-Rate is to examine whether the throughput increasing brings further power
dissipation

36 Y. Tang, K. Deng, and X. Zhou

Power = V2 ∗ F ∗ ∗ C (1)

Power-Rate = Power / IPC = V2 ∗ F∗ ∗C / IPC (2)

V is the supply voltage of processor. F presents the operating frequency. is the
active factor of hardware components, which between 0 and 1. C is the load capacity
of circuit. We derive V, E and C from ITRS data [11]. After the simulation under
Wattch [10] framework, we get the value of .

Fig. 8. Power Rate of SMT vs. CMP in 2-thread workloads

Fig. 9. Power Rate of SMT vs. CMP in 4-thread workloads

Figure.8 and Figure.9 illustrate that CMP is better than SMP in low power design.
The competition in SMT’s register port and result bus makes the active factor high.
Furthermore, CMP is more suitable to use DVS (Dynamic Voltage Scalar)
mechanism for low power, because it has more separated hardware components for
scheduling than SMT. This means lots for handhold equipments which execute
multimedia application. They may use DVS to decrease the operating frequency in
order to increase battery time. The tests in [6] and [8] also indicate that CMP can
achieve lower voltage and dissipation than SMT by DVS, even under the real-time
demands of multimedia.

 The Design Space of CMP vs. SMT for High Performance Embedded Processor 37

6 Chip Size for SMT and CMP

Certainly CMP needs more chip area than SMT when they use the same processor
core. The chip size of CMP increases linearly with the number of cores (threads). The
increased interconnection, such as result bus and shared I/O port, impacts the chip
size of SMT. In previous research [1], SMT has the same function unit configuration
as single thread processor for high utilization. Actually, in 4-way and 8-way SMT,
more function units are needed than 2-way SMT. They will occupy more chip area,
but this increasing is lower than CMP.

Based on the method in [8] and the die area date of MIPS R4000, Table 3 shows
the predicated data of chip area for SMT and CMP. Without the consideration of
memory system (cache and TLB), SMT need a little more than half of the CMP’s
silicon area.

Table 3. The chip area for Multithread architecture

Component area ST 2-way MT 4-way MT 8-way MT
Function unit 47% 47% 70% 94%
Register File 21% 42% 84% 168%
Fetch-Issue logic 24% 24% 48% 86%
Reorder buffer 8% 16% 32% 64%
Further interconnection 0% 7% 14% 56%
SMT chip size 100% 136% 248% 468%
CMP chip size 100% 200% 400% 800%

Although SMT is simple in microarchitecture, it is more complex in layout and
physical implementation than CMP. The further interconnection part in Table 3
includes this exponential cost.

7 Thermal Feature

With the help of HotSpot and Wattch framework, we can identify the components
which have the highest competition and deliver most heat. SMT’s temperature
increases in sharing and competed unit, while CMP’s temperature increases globally
by heavy workloads. Comparing with ST architecture, the value of SMT is 78%
higher in register allocation and decode-issue logic. In reorder buffer, the value of
SMT is 89% higher than single thread architecture. The highest temperature of SMT
component may be 20 higher than average. But for CMP which has the same
average temperature, it has no outstanding high temperature parts.

For the high competition in register file, SMT can apply bank structure to limit the
competition. [9] was proposed to limit the fetch bandwidth or register read/writer
ability, in order to decrease the utilization of key components. Cluster methodology
can decrease the competition, but it will increase the delay of pipeline. The read/write
of cache is also the main reason of high temperature, multi-bank structure will be
helpful.

38 Y. Tang, K. Deng, and X. Zhou

8 Conclusion

From the purpose to use existing superscalar design, SMT has the advantage of small
chip size, high resource utilization and easy-to-implement. But the different thread in
SMT will compete the shared resources, such as issue logic and function unit. Under
heavy threaded workloads, CMP is more attractive in power and thermal feature
limited design. In future advance embedded processor, SMT may become a basic
design choice like superscalar. Using several SMT cores to construct CMP has been
proved to be a promising design, as well as integrating heterogeneous cores in CMP.
The performance, power, chip size and thermal feature of these designs should be
checked in future works.

References

1. Doug Burger, James R.Goodman. Billion-Transistor Architectures: There and Back
Again. IEEE Computer. Vol.37, No.3, pp.22-27, March 2004.

2. D.M. Tullsen. S.J. Eggers, and H.M. Levy. Simultaneous Multithreading: Maximumizing
On-Chip Parallelism. In Proceedings of ISCA 22nd, pp.392-403, 1995.

3. L. Hammond, B.A. Nayfeh, and K. Olukotum. A Single-Chip Multiprocessor. In IEEE
Computer Special Issue on Billion-Transistor Processors, September 1997.

4. Theo Ungerer, Borut Robic A Survey of Processors with Explicit Multithreading. ACM
Computing Surveys, Vol.35, No.1, pp.29-63, March 2003.

5. R. Sasanka, S. V. Adve, E. debes, and Y.K. Chen. Energy Efficiency of CMP and SMT
Architectures for Multimedia workloads. In UIUC CS Technical Report UIUCDCS-R-
2003-2325, 2003.

6. R. Sasanka, S. V. Adve, E. debes, Y.K. Chen, and E. Debes. The Energy Efficiency of
CMP vs. SMT for Multimedia workloads. In ICS, 2004.

7. J.Burns and J.L. Gaudiot. Area and System Clock Effects on SMT/CMP Processors. In
PACT, 2000.

8. S. Kaxiras. G. Narlikar, A.D. Berenbaum, and Z. Hu. Comparing Power Consumption of
and SMT and a CMP DSP for mobile phone Workloads. In CASES, 2001.

9. Yingmin Li, D. Brooks, Zhigang Hu, K. Skadron. Performance, Energy, and Thermal
Considerations for SMT and CMP Architectures. In HPCA, 2005.

10. D. Brooks, V. Tiwari, M. Martonosi. Wattch: A Framework for Architectureal-Level
Power Analysis and Optimizations. In ISCA27, 2000.

11. SIA. International Technology Roadmap for Semiconductors. 2004

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 39 – 49, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reconfigurable Microarchitecture Based System-Level
Dynamic Power Management SoC Platform

Cheong-Ghil Kim, Dae-Young Jeong, Byung-Gil Kim, and Shin-Dug Kim

Supercomputing Lab, Dept. of Computer Science, Yonsei University,
134 Shinchon-Dong, Seodaemun-ku, Seoul, Korea 120-749

{cgkim, dangbang, fokus, sdkim}@parallel.yonsei.ac.kr

Abstract. Power-aware design is one of the most important areas to be empha-
sized in multimedia mobile systems, in which data transfers dominate the power
consumption. In this paper, we propose a new architecture for motion compen-
sation (MC) of H.264/AVC with power reduction by decreasing the data trans-
fers. For this purpose, a reconfigurable microarchitecture based on data type is
proposed for interpolation and it is mapped onto the dedicated motion compen-
sation IP (intellectual property) effectively without sacrificing the performance
or the system latency. The original quarter-pel interpolation equation that con-
sists of one or two half-pel interpolations and one averaging operation is de-
signed to have different execution control modes, which result in decreasing
memory accesses greatly and maintaining the system efficiency. The simulation
result shows that the proposed method could reduce up to 87% of power caused
by data transfers over the conventional method in MC module.

Keyword: H.264/AVC, motion compensation, quarter-pel interpolation, low-
power, memory access, multimedia SoC, system architecture.

1 Introduction

The demand of low-power and high-speed computing architecture for mobile systems
has been increased dramatically due to the dominant popularity of multimedia proc-
essing and video compression. And the system-on-chip (SoC) technology integrating
many components onto a single chip allows designing embedded systems within a
short period; furthermore grows into SoC platform technology targeting a class of
applications [9]. In this era, data and video coding is very important function because
of small storage of mobile devices and limited bandwidth of wireless internet.
H.264/AVC [10], the latest video coding standard, is the most remarkable codec at the
present time since it can make high-quality motion pictures transmitted at low bit
rates. Therefore, H.264/AVC is used for many multimedia applications, such as tele-
conferencing, mobile video communication, education applications, and digital mul-
timedia broadcasting (DMB). As a key multimedia application, H.264/AVC requires
complex operations to achieve high-quality and high-density compression compared
with earlier ones. The primitive operation of H.264/AVC decoder is motion compen-
sation (MC) which requires extensive computations accompanied with heavy memory
accesses [11].

40 C.-G. Kim et al.

In general, multimedia applications involve data-dominant algorithms which re-
quire large amounts of data and complex arithmetic processing. It means that the data
transfer and memory organization will have a dominant impact on the power and area
cost of the realization [1]. In multimedia systems, this is why architectural and algo-
rithmic level approaches for low power could get the biggest result compared with
other level of abstractions such as technology, layout, circuit, and gate [2]. Therefore,
an efficient implementation method of the algorithms to reduce power consumption is
required at the system-level by designing application specific memory organization
and control flow. The paper [3] recalls the importance of this idea by showing that I/O
energy can be as high as 80% of the total energy consumption of the chip, and to
tackle this problem, there have been several methods on low power video and signal
processing applications [4-7].

This research proposes a new computing architecture for motion compensation
with low-power in H.264/AVC codec. It can achieve large savings in the system
power of a crucial part of H.264/AVC decoder by decreasing memory accesses with-
out sacrificing the performance or the system latency. For this purpose, we devise two
techniques; one is merging two different stages, half-pel interpolation and averaging,
into one; the other is reordering execution sequences of the interpolation. These are
mapped onto SIMD (single instruction multiple data)-style architecture equipping
with small intermediate memory, which result in much fewer memory accesses while
executing interpolation stages.

In the next section, we describe the motion compensation algorithm in
H.264/AVC. Section 3 introduces the basic architecture of SoC platform. In Section
4, the proposed method for quarter-pel interpolation is described. In Section 5, the
power model and the simulation results are introduced. Finally, the paper ends with
conclusions in Section 6.

2 Motion Compensation in H.264/AVC

Video coding is achieved by removing redundant information from the raw video
sequence. In general, pixel values are correlated with their neighbors both within the
same frame and between consecutive frames, which is known as spatial and temporal
redundancy, respectively. Those redundancies can be reduced by motion estimation
and compensation which are often based on rectangular blocks (MxN or NxN). A
16x16 pixel area is the basic data unit for motion compensation in current video cod-
ing standards, which is called as a macroblock.

2.1 Block-Based ME/MC and H.264/AVC

H.264 is based on the block-based motion estimation and compensation and similar
with previous standards; however, it can achieve significant gains in coding efficiency
over them. This may come from the enhanced key features to motion estimation and
compensation; (a) variable block-size motion compensation with small block sizes,
(b) quarter-pel motion estimation accuracy, and (c) multiple reference pictures selec-
tion. However, it is inherently accompanying with increased complexities. Fig. 1
shows MC kernel which contains nested loops using 6-tab FIR filter. And there are
several conditional branches at the last loop.

 Reconfigurable Microarchitecture Based System-Level Dynamic Power Management 41

Fig. 1. Fractional pixel interpolation in inter motion compensation

2.2 Half-pel / Quarter-pel Interpolation in H.264/AVC

In H.264, quarter-pel interpolation is presented for motion estimation accuracy. The
quarter-pel interpolation that make 1/4 pixels to offer more detail images is made up
with conventional half-pel interpolations that make 1/2 pixels and averaging operation
that calculate the average of half pixel and integer pixel. As shown in Fig. 2, the quar-
ter-pel and half-pel interpolations support for a range of block sizes (from 16x16
down to 4x4) and quarter resolution motion vectors.

Fig. 2. Macroblock partitions

The motion vector consists of two coordinates, x and y. If the motion vector of cur-
rent macroblock has two half values, half-pel interpolation is needed alone. But, if
motion vector has one or two quarter values, both half-pel interpolations and averag-
ing are needed. The half-pel interpolation needs six adjacent pixel values which lie on
a straight line to decide the middle value of two adjacent pixels, as shown in Fig. 3(a).
Gray rectangles are integer-pels and white rectangles with strips are half-pels. The
equation of half-pel interpolation is presented as:

[]32/)520205(JIHGFEb +−++−= (1)

Several addition, multiply, and shift instructions are required to compute b. Although
the equation looks like very simple, it has to be repeated many times and requires a lot
of data transfers.

42 C.-G. Kim et al.

As shown in Fig. 3(b), in averaging stage, the value is calculated with the average
of integer-pel value and half-pel value which are already computed in half-pel inter-
polation stage. The equation of averaging is presented as:

2/)(bGa += (2)

Fig. 3. Interpolation of half-pel and quarter-pel positions

From memory access point of view, the system has to bring the referenced macrob-
lock from off-chip memory to local memory while executing each interpolation. More-
over, local memory access is also required since the interim values have to be stored in
the half of quarter-pel interpolation execution. Table 1 shows the number of repeated
interpolation executions on each video resolution. The result shows that the number of
half-pel interpolations is twice as many as that of quarter-pel interpolations. However,
each quarter-pel interpolation consists of one or two half-pel interpolation stage and
averaging stage. Therefore, quarter-pel interpolations need more performance than
half-pel interpolations, and quarter-pel interpolations are most complex parts in motion
compensation. Table 2 shows how many values are needed from the memory by mac-
roblock sizes. Memory access is generated frequently and there’s no specific locality

Table 1. Interpolation count by resolution

Table 2. The number of memory access by macroblock sizes

 Reconfigurable Microarchitecture Based System-Level Dynamic Power Management 43

among memory accesses. Therefore, memory accesses are occurring on each interpola-
tion. This is a significant problem in H.264/AVC decoding scheme since memory
access not only extends the execution time, but also causes the oligopoly of the internal
bus that other memory requests from other system parts cannot be accepted.

3 Basic System Architecture

As depicted in Fig. 4 the basic architecture is composed of several IP cores dedicated
for target applications and components at system level. There is a 32-bit RISC-based
main processor which executes all decoding operations performs interface and trans-
fers data with other modules including DSP, memory subsystem, and on-chip system
bus. In addition various I/O peripherals can be configured through system bus. All
memories are independent from each and can be accessed concurrently.

Fig. 4. Overall system architecture

The target application discussed here is motion compensation of H.264/AVC; the
shaded module shown in the above figure is MC IP consisting of several processing
elements (PEs) operating on SIMD mode and small intermediate memory which is
application specific and shared by all PEs. Therefore, each PE can read the used data
from local shared memory instead of accessing to large external memory which con-
sumes energy heavily. Each PE can operate in parallel without data waiting cycles
since operations of them are independent and the data is fed from a shared local mem-
ory through internal 128-bit wide bus at every cycle.

And memory hierarchy is consisted of off-chip memory and local memory. We as-
sume that off-chip memory has 1M byte capacity and local memory is 1K byte. It is
sufficient to store 6 frames on off-chip memory and interim values of motion com-
pensation on local memory. Result values of entropy coding that is first decoding
stage of H.264 are saved in off-chip memory. Motion compensation stage gets these
values from off-chip memory and use local memory as interim reservoir. If all inter-
polation execution is over, then send results to off-chip memory again. So it is impos-
sible to reduce off-chip memory access unless compensation accuracy is diminished.
Only possible decrease of memory access is on local memory with reduced interim
load/store.

44 C.-G. Kim et al.

4 Proposed Methodology of Quarter-pel Interpolation

The proposed quarter-pel interpolation consists of two techniques resulting in the
reduction of memory accesses. One is merging two interpolation stages into one for
the (integer, quarter) interpolation shown in Fig. 5. This figure presents the flow dia-
grams of the conventional and proposed quarter-pel interpolation in conjunction with
the pixel representation shown in Fig. 3. The other is reordering the execution se-
quences for the (half, quarter) or (quarter, quarter) interpolation as shown in Fig. 6.
The proposed two methods are internally taking advantage of the temporal locality to
remove the redundant memory accesses.

4.1 The (Integer, Quarter) Case

The quarter-pel interpolation requires half-pel interpolations to be executed for an
entire macroblock. Then it can go further for either averaging stage directly or averag-
ing stage following one more execution of half-pel interpolations in another direction.
The decision is made by motion vector value types. In case of the motion vector of
(integer, quarter), (half, half) values are not necessary (j in Fig. 3), so only one half-
pel interpolation is needed. Otherwise, another half-pel interpolation is required for j
as the case of (half, quarter) or (quarter, quarter).

Fig. 5. Detailed view of two different interpolations

The conventional quarter-pel interpolation is composed of two stages executed
separately. However, in case of motion vector (integer, quarter), two stages are not
necessarily executed separately. Therefore, we propose a method of merging two
interpolation processes into one. And the modified equation is obtained as below:

[][]2/)32/)520205((GJIHGFEa ++−++−= (3)

 Reconfigurable Microarchitecture Based System-Level Dynamic Power Management 45

The shaded blocks shown in Fig. 5 are representing the result of the proposed
modification mapped on the SIMD module. In this way, memory accesses can be
reduced by removing interim loads/stores with simple controls. The effect will be
mentioned in detail in Section 5.

4.2 The (Half, Quarter) / (Quarter, Quarter) Case

For this stage, we devise a new execution flow by reordering conventional 17 steps as
shown in Fig. 7(b), and then it is mapped onto the array effectively to reduce local
memory accesses. In the figure, the left section shows the conventional flow; the right
section does the proposed one; the arrows signify the reordering positions; at the bot-
tom the counts show the number of reads/writes of each flow. In this Figure, reducing
method of folded memory access is not contained because mix of two methods is very
complex, so hard to understand. The reordered executions are summarized as below:

1. Execute 5 row interpolations to make old half pixels in horizontal direction,
and store the results.

2. Execute 1 row interpolation to make new half pixels.
3. Load the interim results and necessary pixel values, and execute proposed in-

terpolations (Eq.3) in vertical direction with loaded pixels and pixel executed
on stage 2.

4. Repeat step 2 and 3.

Fig. 6. Rearrangement of interpolation executions

Conventional quarter-pel interpolation method is shown in the left of Fig. 6. First,
all horizontal interpolations are executed to make interim values for vertical interpola-
tions; and then, all vertical interpolations which need the interim values are executed.
Consequently, there are unnecessary memory accesses that can be reduced. The pro-
posed interpolation method shown in the right of Fig. 6 can minimize unnecessary

46 C.-G. Kim et al.

interim memory accesses by changing the order of interpolation sequence. Stage 1 in
Fig. 6 is the part that cannot be modified, so this stage is same as the conventional
interpolation. Stage 2 makes one row half pixels as the interpolation results that are
going to be needed for vertical half-pel interpolations requiring 6 variables in column.
These 6 variables in column are interpolated in stage 3. And stage 3 utilizes the merg-
ing method generated in Section 4.1, so can make quarter pixels though there is no
interim memory access. Because the 5 variables in column are not required to be
loaded in vertical half-pel interpolation by utilizing temporal locality mentioned in
Section 4.3, six variables for horizontal half-pel interpolation to make black triangle
and one variable for quarter-pel interpolation to make black star are loaded for each
interpolation in stage 4.

Fig. 7. Reordering sequence and memory access counts

4.3 The Temporal Locality in Interpolation Stages

The temporal data locality of interpolation stages are utilized to achieve reductions of
interim loads/stores by keeping variables read in the previous interpolation stages. As
shown in Fig 8, first interpolation needs pixels starting from A to F; second interpola-
tion from B to G, and so on. In this case, there are needless folded memory accesses
that may increase power consumption. Those accesses could be removed in this stage,
which can be realized not by hardware configuration but by code optimization. Fig. 9
shows the result of code regeneration, in which all conventional interpolation codes
are merged and folded data loads are removed. This method is utilized in overall in-
terpolation stages.

 Reconfigurable Microarchitecture Based System-Level Dynamic Power Management 47

Fig. 8. Folded memory accesses between interpolations

Fig. 9. Difference between conventional method and reuse of register method

5 Power Model and Performance Evaluation

To obtain power estimation from high level system description, we used the method-
ology similar with [1], such that we conduct a relative comparison that selects the
most promising candidates. The application discussed here is H.264/AVC, a data-
intensive application in which power due to memory transfer is dominant, and both
conventional and proposed algorithms are mapped onto the same target architecture.
Therefore, we can neglect the power consumption in operators, controls and so on. In
this way, our emphasis is on the achieved power reduction that comes from decreas-
ing data transfer in another word memory accesses.

The power of data transfer is a function of the size of the memory, the frequency of
access, and the technology [1]. Here, the technology can be a memory type which will
be excluded on the assumption of on-chip, and then the simple power model function
can be expressed as below:

Second

Transfers
EP TrTransfers

#×=

)#,(# bitswordsfE Tr =

(4)

(5)

48 C.-G. Kim et al.

In [8] a function f is proposed to estimate the energy per transfer ETr in terms of the
number of words and with width in bits. Total system power can be considered line-
arly proportional to the numbers of data transfer. Supposing we compare the power
reduction ratio between two different operational models on the same system, we
have to know the required energy for one data transfer and the total number of data
transfers of input video streams for two operation models. Based on the power model
of [8] the energy for one read to a memory of 256×256 words of eight bit is estimated
to be 1.17μJ. We selected 4 input video streams; salesman, carphone, container, and
mthr_dotr. Their fame size is QCIF and 178 frames of each video stream are used.
For the simulation, an algorithm mapping method was used and programmed the two
operational models with C++ based on the hardware architecture shown in Fig. 4.

The result shows that the proposed method can reduce memory accesses greatly by
changing control flows of quarter-pel interpolation. It did not bring out the perform-
ance degradation and system latency because there is no deleting operation. In all
input video streams, the proposed method attained up to 87% of reduced local mem-
ory accesses, which resulted in decreasing power consumption at the same ratio.

As referenced above, these proposed methods are only for local memory access re-
duction. In Fig. 10, because both off-chip and local memory accesses are shown, only
about 46% of memory accesses are reduced. But, our result shows local memory
access reduction only.

Fig. 10. Simulation results

6 Conclusion

We have presented a new architecture for motion estimation of H.264/AVC with
power reduction by decreasing data transfers. In data intensive applications such as
H.264/AVC, data transfers dominate the power consumption. For this objective, we
used a microarchitecture level configurability according to the value of motion vec-
tors, which allow the system to operate on different control flows while executing
quarter-pel interpolation. As a result, we can achieve power reduction at system-level
significantly. The simulation result shows that the proposed interpolation method
could reduce up to 87% of power consumption compared with conventional method
on the target architecture without scarifying performance.

 Reconfigurable Microarchitecture Based System-Level Dynamic Power Management 49

Acknowledgement

This work was supported by the Korea Research Foundation Grant. (KRF-2004-041-D00545)

References

1. Smith, R., Fant, K., Parker, D., Stephani, R., Ching-Yi, W.: System-Level Power Optimi-
zation of Video Codecs on Embedded Cores: A Systematic Approach. Processing of Jour-
nal of VLSI Signal, 18 (1998) 89-109.

2. Kakerow, R.: Low Power Design Methodologies for Mobile Communication Computer
Design. Proceedings of 2002 IEEE International Conference on VLSI in Computers and
Processors, Sep. (2002) 8-13.

3. Musoll, E., Lang, T., Cortadella, J.: Exploiting the Locality of Memory References to Re-
duce the Address Bus Energy. Proceeding of 1997 International Symposium on Low
Power Electronics and Design, Aug. (1997) 202-207.

4. Kim, H., Park, I. C.: High-Performance and Low-Power Memory-Interface Architecture
for Video Processing Applications. IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 11, Issue 11, Nov. (2001) 1160-1170.

5. Kapoor, B.: Low Power Memory Architectures for Video Applications. Proceedings of the
8th Great Lakes Symposium on VLSI, Feb. (1998) 2-7.

6. Brockmeyer, E., Nachtergaele, L., Catthoor, F.V.M., Bormans, J., De Man, H.J.: Low
Power Memory Storage and Transfer Organization for the MPEG-4 Full Pel Motion Esti-
mation on a Multimedia Processor. IEEE Transactions on Multimedia, Vol. 1, Issue 2,
June (1999) 202-216.

7. Nachtergaele, L., Catthoor, F., Kapoor, B., Janssens, S., Moolenaar, D.: Low Power Stor-
age Exploration for H.263 Video Decoder. Workshop on VLSI Signal Processing IX, 30
Oct.-1 Nov. (1996) 115-124.

8. Landman, P.: Low-Power Architectural Design Methodologies. PhD thesis, U.C. Berke-
ley, Aug. (1994).

9. Vahid, F., Givargis T.: Platform Tuning for Embedded Systems Design. Computer, Vol.
34 N. 3, Mar. (2001) 112-114.

10. ISO/IEC 14496–10:2003: Coding of Audiovisual Objects-Part 10: Advanced Video Cod-
ing, 2003, also ITU-T Recommendation H.264: Advanced Video Coding for Generic
Audiovisual Services.

11. Sato, K.; Yagasaki, Y.: Adaptive MC Interpolation for Memory Access Reduction in JVT
Video Coding. Proceedings of Seventh International Symposium on Signal Processing and
Its Applications, Vol. 1, July (2003) 77-80.

A Methodology for Software Synthesis of Embedded
Real-Time Systems Based on TPN and LSC

Leonardo Amorim1, Raimundo Barreto1, Paulo Maciel1, Eduardo Tavares1,
Meuse Oliveira Jr1, Arthur Bessa2, and Ricardo Lima3

1 CIn - UFPE
{lab2, rsb, prmm, eagt, mnoj}@cin.ufpe.br

2 FUCAPI
arthur.bessa@fucapi.br

3 DSC - UPE
ricardo@dsc.upe.br

Abstract. This paper shows an approach for software synthesis in embedded
hard real-time systems starting from Live Sequence Charts (LSC) scenarios as
specification language. As the name suggests, LSCs specify liveness, that is,
things that must happen. Therefore allowing the distinction between possible
and necessary behavior as well as the specification of possible anti-scenarios.
Embedded software has become much harder to design due to the diversity of
requirements and high complexity. In such systems, correctness and timeliness
verification is an issue to be concerned. The software synthesis method takes a
specification (in this case composed by LSC scenarios) and automatically gener-
ates a program source code where: (i) functionalities and constraints are satisfied;
and (ii) operational support for task’s execution is provided. This paper adopts a
time Petri net (TPN) formalism for system modeling in order to find feasible pre-
runtime schedules, and for synthesizing predictable and timely scheduled code.
Embedded software synthesis has been receiving much attention. However, few
works deal with software synthesis for hard real-time systems considering arbi-
trary precedence and exclusion relations.

1 Introduction

Due to the increasing complexity and diversity of requirements, embedded software has
become much harder to design. Since several applications demand safety properties,
the correctness and timeliness verification is an important issue to be concerned. The
adoption of formal and/or semi-formal modeling methods in early phases of embedded
system design may significantly contribute for the success of the project, since they
allow verification of properties and validating the system’s requirements.

Message Sequence Chart (MSCs) for long has been adopted by the International
Telecommunication Union [1] and nowadays also adopted in the UML [2] as a language
of sequence diagrams. Sequence charts provide a visual representation of inter relation-
ship between processes, tasks, environments and object instances of a given specifica-
tion. MSCs can be used for testing scenarios that will be further checked against the

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 50–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Methodology for Software Synthesis of Embedded Real-Time Systems 51

behavior of the final system. Nevertheless, MSCs do not provide means for designers
to represent what may, must and may not happen (anti-scenarios).

Live Sequence Charts (LSCs) [3] is a language based on scenarios, which specify
liveness, that is, things that must happen, as well as anti-scenarios, that is, things that
must not happen during the whole system’s execution.

Software synthesis consists of two main activities [4]: (i) task handling, and (ii) code
generation. Task handling takes into account tasks scheduling, resource management,
and inter-task communication. Code generation is responsible for static generation of
source code for each individual task. The scheduling approach adopted is a pre-runtime
method and it is throughly described in [5], where schedules are computed entirely
off-line. Pre-runtime schedules can reduce context switching, their execution are pre-
dictable, and exclude the need of complex operating systems.

Xu and Parnas [6] present an algorithm that finds an optimal pre-runtime schedule
on a single processor for real-time process segments with release, deadline, and arbi-
trary exclusion and precedence relations, but real-world experimental results are not
presented. Abdelzaher and Shin [7] extended Xu and Parnas’ work in order to deal with
distributed real-time systems. The scheduler synthesis proposed by Altisen et.al. [8]
synthesizes all dynamic on-line scheduling satisfying a given property. However, they
do not directly address the state explosion problem. Sgroi et al. [9] propose a software
synthesis method based on quasi-static scheduling using free-choice Petri nets, which
does not deal with real-time constraints. Hsiung [10] presents a formal software syn-
thesis based on Petri nets, mixing quasi-static scheduling, and dynamic fixed-priority
scheduling. However, it does not show how to add preemption.

2 Proposed Method Overview

This section presents an overview of the proposed synthesis method. The method de-
scribed hereafter, takes into account single processor architecture only. The aim of this
paper is to present an approach for software synthesis in embedded hard real-time sys-
tems starting from LSC scenarios, for specifying constraints and inter-task relations.
After that, the tasks’ modeling is performed by adopting an transition-annotated TPN,
that is, a TPN with code associated with transitions. Afterward, the model is employed
for synthesizing a feasible schedule (one that satisfies all constraints), and generates a
scheduled code in accordance with the found schedule.

Figure 1 depicts a diagram of the phases composing the proposed methodology. In
this figure, the requirement analysis phase should provide the behavioral and constraints
specification. Besides, the hardware infrastructure should also be carefully considered.
The modeling phase deals with the translation from specification into the respective
TPN model. In order to allow portability, the TPN model is expressed in PNML (Petri
Net Markup Language) format [11]. The scheduling synthesis phase uses a pre-runtime
scheduling method. Starting from the TPN model, a schedule is entirely computed dur-
ing design time. The algorithm is based on depth-first search method. The code gen-
eration phase aims to generate the respective scheduled code, considering the previ-
ously computed schedule, constraints and processor architecture. More details about
the methodology are presented in the following sections.

52 L. Amorim et al.

User
Requirements

Behavioral
Specification

Code of
 Tasks

Communication
Pattern

Scheduling
Method

MODELING

SCHEDULING
SYNTHESIS

CODE
GENERATION

Annotated
TPN Model

Schedule

Scheduled
Code

Constraints
Specification

Timing
Constraints

Inter-task
Relations

Allocation
Task

Processors

#Processors Topology,
ID of Processors

Hardware
Infra-Structure
Architecutre

USER REQUIREMENTS ANALYSIS

Fig. 1. Proposed Software Synthesis Methodology Phases

3 Computational Model

Computational model syntax is given by a time Petri net [12], and its semantics by a
timed labeled transition system. A time Petri net (TPN) is a bipartite directed graph
represented by a tuple P= (P, T, F, W, m0, I). P (places) and T (transitions) are non-
empty disjoint sets of nodes. The edges are represented by F ⊆ (P × T) ∪ (T × P).
W : F → N represents the weight of the edges. A TPN marking mi is a vector mi ∈
N

|P |, and m0 is the initial marking. I : T → N × N represents the timing constraints,
where I(t) = (EFT (t), LFT (t)) ∀t ∈ T , EFT (t) ≤ LFT (t), EFT (t) is the Earliest
Firing Time, and LFT (t) is the Latest Firing Time.

A code-labeled time Petri net (CTPN) is an extension of the TPN, which is repre-
sented by Pc = (P , C). P is the underlying TPN, and C:T � SC is a partial function
that assigns transitions to behavioral source code, where SC is a set of source codes. It
is worth observing that C is a partial function, therefore, some transitions may have no
associated source code.

A set of enabled transitions is denoted by: ET (mi) = {t ∈ T |mi(pj) ≥ W (pj , t)},
∀pj ∈ P . The time elapsed, since the respective transition enabling, is denoted by
a clock vector ci ∈ N

|ET (mi)|. The dynamic firing interval (ID(t)) is dynamically
modified whenever the respective clock variable c(t) is incremented, and t does not
fire. ID(t) is computed as follows: ID(t) = (DLB(t), DUB(t)), where DLB(t) =
max(0, EFT (t) − c(t)), DUB(t) = LFT (t) − c(t), DLB(t) is the Dynamic Lower
Bound, and DLB(t) is the Dynamic Upper Bound.

A Methodology for Software Synthesis of Embedded Real-Time Systems 53

Let P be a TPN, M be the set of reachable markings of P , and C be the set of clock
vectors. The set of states S of P is given by S ⊆ (M × C), that is a state is defined by
a marking, and the respective clock vector.

FT (s) is the set of fireable transitions at state s defined by: FTP (s) = {ti ∈
ET (m) | π(ti) = min (π(tk)) ∧ DLB(ti) ≤ min (DUB(tk)), ∀tk ∈ ET (m)}.
The firing domain for t at state s, is defined by the interval: FDs(t) = [DLB(t),
min (DUB(tk))].

The semantics of a TPN P is defined by associating a timed labeled transition system
(TLTS) LP= (S, Σ,→, s0): (i) S is the set of states of P ; (ii) Σ ⊆ (T × N) is a set of
actions labeled with (t, θ) corresponding to the firing of a firable transition (t) at time
(θ) in the firing interval FDs(t), ∀s ∈ S; (iii) →⊆ S×Σ×S is the transition relation;
(iv) s0 is the initial state of P .

Let LP be a TLTS derived from a TPN P , and si = (mi, ci) a reachable state.
si+1 =fire(si, (t, θ)) denotes that firing a transition t at time θ from the state si, a
new state si+1 = (mi+1, ci+1) is reached, such that: (1) ∀p ∈ P, mi+1(p) = mi(p) −
W (p, t) + W (t, p); (2) ∀tk ∈ ET (mi+1): (i) Ci+1(tk) = 0 (if (tk = t) ∨ (tk ∈
ET (mi+1) − ET (mi))), or (ii) Ci+1(tk) = Ci(tk) + θ, otherwise.

Let LP be a TLTS derived from a TPN P , s0 its initial state, sn = (mn, cn) a final
state, and mn = MF is the desired final marking.

s0
(t1,θ1)−→ s1

(t2,θ2)−→ s2 −− → sn−1
(tn,θn)−→ sn

is defined as a feasible firing schedule, where si = fire(si−1, (ti, θi)), i > 0, if
ti ∈ FT (si−1), and θi ∈ FDsi−1(ti).

The modeling methodology guarantees that the final marking MF is well-known
since it is explicitly modeled.

4 Specification Model

LSC language fills out the gaps of the previous sequence diagram models, distinguish-
ing things that can happen of things that must happen. Sequence of events that can
happen in an execution of the system can be specified using existential chart that works
as a system test case. On the other hand, sequence of events that should happen for all
and any execution of the system should be modeled using universal charts. Each univer-
sal chart possesses a pre-condition (prechart) that, if successfully executed, forces the
execution of the scenario specified in the chart body. If the pre-condition is not satisfied,
a violation occurs.

In LSC language, the system is modeled using object oriented notions and terminolo-
gies. A system is composed by objects that represents class instances. Every object in
the application is associated with a set of properties and a set of methods. Each property
is based on a type, from which its value can be selected.

The specification model is composed by: (i) a set of periodic preemptable tasks with
bounded discrete time constraints; and (ii) inter-task relations, such as precedence and
exclusion relations.

Let T be the set of tasks in a system. A periodic task is defined by τi = (phi, ri, ci,
di, pi), where phi is the initial phase; ri is the release time; ci is the worst case com-

54 L. Amorim et al.

putation time required for execution of task τi; di is the deadline; and pi is the period.
A sporadic task is defined by τk = (ck, dk, mink), where mink is the minimum pe-
riod between two activations of task τk. A task is classified as sporadic if it can be
randomly activated, but the minimum period between two activations is known. Pre-
runtime scheduling can only schedule periodic tasks. However, Mok [13] has proposed
a translation from sporadic to periodic tasks.

A task τi precedes task τj , if τj can only start executing after τi has finished. A task
τi excludes task τj , if no execution of τj can start while task τi is executing. If it is
considered a single processor, then task τi could not be preempted by task τj .

All timing constraints are expressed in task time units (TTUs), where each TTU has
a correspondence with some multiple of a specific timing unit (millisecond, second,
etc). In this paper, a TTU is the smallest indivisible granule of a task, during which a
task cannot be preempted by any other task. A TTU is also called a preemption point.

In order to provide the specification model, LSC scenarios could be used as an in-
tuitive and user-friendly way for specifying timing constraints and inter-task relations
scenarios. Before modeling scenarios which represent task’s time constraints and inter-
task relations, it is necessary to create data types to represent a task and the processor,
so the following steps should be taken: Create a new class for representing a task, la-
beled “Task”, without properties and methods; Create the desired number of “Task”
instances; Create a new class for representing the processor, labeled “Proc”, which con-
tains a String property, called “task”, with an “execute” prefix and a method, called
“grant”, with one “STRING” parameter; Create one instance of “Proc” class.

After creating data types and the corresponding instances, it must be created a sce-
nario for each task, in which, its time constraints are defined. Individually, these sce-
narios do not specify any inter-task relation, hence tasks can execute concurrently. The
following steps should be taken to specify such scenarios: Create an universal chart for
each task and inserts the “grant” method call in the prechart section. The method pa-
rameter should be a sequence of characters that specifies task’s time constraints. Time
constraints should be separate by comma in the following way: “ph,r,c,d,p”, where ph is
the initial phase, r is the release time, c is the worst time of computation, d is the dead-
line and p is the period; In the chart body section of the created universal chart, inserts
the message “execute task(par)” (self message of Proc instance), where execute is the
property’s prefix, task is the property created above and par is a parameter, which value
is the task name. When this message occurs, it changes the value of “task” property of
“Proc” instance.

Figure 2 depicts two LSC charts, one for task T0 and other for task T1. T0 and T1
are “Task” instances and Proc is an “Proc” instance. If prechart (denoted by a dashed
border line) is successfully executed, then the chart body (denoted by a solid border)
should be satisfied by the system. So, these scenarios say that every time task T0 or T1
requests the processor and the processor grants the permission to these tasks to execute,
these tasks must be executed, and they can execute concurrently, because no relation
between them is specified.

In order to establishes some inter-task relations, additional scenarios must be created
for each kind of relation (precedence and exclusion). A precedence relation establishes
an order in the execution, which could be modeled in the following way: Create an

A Methodology for Software Synthesis of Embedded Real-Time Systems 55

Fig. 2. Time constraints scenarios for tasks T0 and T1

universal chart and inserts the message “execute task(t1)” in the prechart section, where
t1 precedes the task specified in the chart body section (next step); In the chart body
section, inserts the “grant” method, which is called from the task that must be executed
after the task specified previous.

Figure 3 depicts a precedence relation between task T0 and T1, where T0 precedes
T1. As described previously, each task has a scenario, in which, its time constraints
are defined. In Figure 2, whenever task T0 requests the processor, the processor should
execute this task. However, in Figure 3 a precedence relation between task T0 and T1
is specified, so when T0 finishes its execution, task T1 must requests the processor (see
Figure 3) and then executes (see Figure 2).

Fig. 3. Precedence relation between tasks T0 and T1

An exclusion relation prohibits the execution of some task while another task is
executing. An exclusion relation could be modeled using anti-scenarios (prohibitive) in
the following way: Create an universal chart and inserts an LSC condition that checks
if the value of “task” property of “Proc” instance is equals to the task that excludes the
other (specified next); After creating the above condition, inserts the “grant” method,
which is called from the task and it is excluded by the task specified previously; In the
chart body section, inserts a hot condition with FALSE value. This condition will never
be evaluated to a true value, so when it executes, a requirement violation occurs and
the chart must be aborted. Figure 4 depicts an anti-scenario modeling, where task T1
excludes task T2. Whenever task T1 is executing and task T2 requests the processor,

56 L. Amorim et al.

Fig. 4. Exclusion relation between task T1 and task T2

a requirement violation occurs, because the hot condition in the chart body always
evaluates to a false value, forcing the chart to be aborted.

In order to automate software synthesis process, we developed an LSC2SS engine
with the purpose to parse LSC inscriptions and creates the respective Petri Net model.

5 System Model for Scheduling Generation

This section shows how to model the tasks of the system, and inter-task relations, such
as precedence and exclusion relations, starting from LSC scenarios. Due to lack of
space, this section presents just a summary. The interested reader is referred to [5]. Time
Petri net (TPN) is a mathematical formalism that allows modeling of several features
present in most concurrent and real-time systems, such as, precedence and exclusion re-
lations, communication protocols, multiprocessing, synchronization mechanisms, and
shared resources. The proposed modeling applies composition rules on building blocks
models. These blocks are specific for the scheduling policy adopted, that is, pre-runtime
scheduling policy. One of these specific situations is that pre-runtime algorithm sched-
ules tasks considering a schedule period that corresponds to the least common multiple
(called PS) between all periods in the task set. Within this new period, there are sev-
eral tasks instances of the same task, where N (τi) = PS/pi gives the instances of
task τi.

In the proposed modeling, the considered building blocks are (Figure 5): (a) Fork; (b)
Join; (c) Periodic Task Arrival; (d) Deadline Checking; (e) Non-preemptive Task Struc-
ture; (f) Preemptive Task Structure; and (g) Processors. These blocks are summarized
below:

a) Fork Block. The fork block is responsible for starting all tasks in the system.
Therefore, this block models the creation of n concurrent tasks.

b) Join Block. The join block execution states that all tasks in the system have
concluded their execution in the schedule period. It is worth noting that a marking in
place pend represents the desirable final marking (or MF). In this case, M(pend) = 1
indicates that a feasible firing schedule was found.

c) Periodic Task Arrival Block. This block models the periodic invocation for all
task instances in the schedule period (PS). Transition tphi models the initial phase of the

A Methodology for Software Synthesis of Embedded Real-Time Systems 57

pwai pwri

pwdipsi

tai

tphi

ai

[pi, pi]

[phi, phi]

pwri pwgi pwci pwfi pfi

tri tgi tci
tfi

pprock pprock

pwdi

ci ci

[ri, di - ci] [0, 0] [1, 1]
[0, 0]

[ci, ci]

pwri pwgi pwci pwfi pfi

tri tgi tci

tfi

pprock pprock

pwdi

[ri, di - ci] [0, 0]

[0, 0]

pwdi pwpci

pdmi

tdi
tpci

pwci

[di, di] [0, 0]
pst1

tstart [0,0]

pstart

psti pstn

.

......

pf1 pfi pfn

tend [0, 0]

pend

q (T1) q (Ti) q (Tn)

(a) (b) (c) (d)

(e) (f)

Fig. 5. Proposed Building Blocks

task first instance. Similarly, transition tai models the periodic arrival (after the initial
phase) for the remaining instances. It is worth noting the weight (αi = N (τi) − 1) of
the arc (tphi , pwai), where this weight models the invocation of all remaining instances
after the first task instance.

d) Deadline Checking Block. Some works (e.g. [8]) extended the Petri net model
for dealing with deadline checking. The proposed modeling method uses elementary net
structures to capture deadline missing. Obviously, deadline missing is an undesirable
situation when considering hard real-time systems. Therefore, the scheduling algorithm
must eliminate states that represent undesirable situations like this one.

e) Non-preemptive Task Structure Block. Considering a non-preemptive schedul-
ing method, the processor is just released after the entire computation to be finished.
Figure 5(e) shows that time interval of computation transition has bounds equal to the
task computation time (i.e., [ci, ci]).

f) Preemptive Task Structure Block. This scheduling method implies that a task are
implicitly split into all possible subtasks, where the computation time of each subtask is
exactly equal to one task time unit (TTU). This method allows running other conflicting
tasks, in this case, meaning that one task preempts another task. This is modeled by the
time interval of computation transitions ([1,1]), and the entire computation is modeled
through the arc weights.

g) Processor Block. The processor modeling consists of a single place pproci , where
its marking states how many processors are available. If m(pproc) > 1, it is considered
a multiprocessor architecture with unified memory access (UMA).

6 Software Synthesis Approach

This section presents the software synthesis approach. It shows methods for scheduling
synthesis and code generation phases.

58 L. Amorim et al.

1 scheduling-synthesis(S,MF,TPN)

2 {
3 if (S.M = MF) return TRUE;

4 tag(S);

5 PT = pruning(firable(S));

6 if (|PT| = 0) return FALSE;

7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ);

9 if (untagged(S’) ∧
10 scheduling-synthesis (S’,MF ,TPN)){
11 add-in-trans-system (S,S’,t,θ);

12 return TRUE;

13 }
14 }
15 return FALSE;

16 }

Fig. 6. Schedule Synthesis Algorithm

6.1 Pre-runtime Scheduling Synthesis

The algorithm proposed (Fig. 6) is a depth-first search method on a TLTS. So, the TLTS
is partially generated on-the-fly. The stop criterion is obtained whenever the desirable
final marking MF is reached. Considering that, (i) the Petri net model is guaranteed to
be bounded, and (ii) the timing constraints are bounded and discrete, this implies that
the TLTS is finite and thus the proposed algorithm always finishes.

The only way the algorithm returns TRUE is when it reaches a desired final marking
(MF), implying that a feasible schedule was found (line 3). The state space generation
algorithm is modified (line 5) to incorporate the state space pruning. PT is a set of
ordered pairs 〈t, θ〉 representing for each firable transition (post-pruning) all possible
firing time in the firing domain. The tagging scheme (lines 4 and 9) ensures that no state
is visited more than once. The function fire (line 8) returns a new generated state (S′)
due to the firing of transition t at time θ. The feasible schedule is represented by a timed
labeled transition system that is generated by the function add-in-trans-system
(line 11). When the system does not have a feasible schedule, the whole reduced state
space is analyzed.

6.2 Scheduled Code Generation

This section aims to present the approach for C-code generation starting from the
scheduling found. The code is generated by traversing the TLTS (feasible firing sched-
ule), and detecting the time where the tasks are to be executed.

The proposed method for code generation includes not only the code of tasks (im-
plemented by C functions), but also includes a timer interrupt handler, and a small
dispatcher. Such dispatcher is adopted to automate several controls needed to the exe-
cution of tasks. Timer programming, context saving, context restoring, and tasks calling
are examples of such additional controls. The timer interrupt handler always transfers

A Methodology for Software Synthesis of Embedded Real-Time Systems 59

the control to the the dispatcher, which will evaluate the need for performing either
context saving or restoring, and calling the specific task.

Figure 7 shows a simplified version of the proposed dispatcher. The data structures
include a table containing the respective information: (i) start time; (ii) a flag indi-
cating if either it is a new task instance or a preemption resuming; (iii) task id; and
(iv) a function pointer. This table is stored in an array of type SchItem (Fig. 8).
There are some shared variables that stores information about the size of the schedule
(SCHEDULE SIZE), information of the task currently executing (struct SchItem
item), a pointer to the task function (taskFunction), and so on.

1 void dispatcher()
2 {
3 struct SchItem item=sch[schIndex];
4 globalClock = item.starttime;
5
6 if(currentTaskPreempted) {
7 // context saving
8 }
9 if(item.isPreemptionReturn) {

10 // context restoring
11 }
12 else {
13 taskFunction=item.functionPointer;
14 }
15 schIndex=((++schIndex)%SCHEDULE_SIZE);
16 progrTimer(sch[schIndex].starttime);
17 activateTimer();
18 }

Fig. 7. Dispatcher

void taskT1() {...}
void taskT2() {...}

#define SCHEDULE_SIZE 7

struct SchItem sch[SCHEDULE_SIZE] =
{

{0, false, 1, (int *)taskT1},
{3, false, 2, (int *)taskT2},
{8, false, 2, (int *)taskT2},
{11,false, 1, (int *)taskT1},
{14,false, 2, (int *)taskT2},
{17,false, 1, (int *)taskT1},
{20,false, 2, (int *)taskT2}

};

Fig. 8. Generated code example

7 Case Study

In order to show the practical fesiability of the proposed methodology, this section
presents a real-world case study, namely, Heated Humidifier. The purpose of this system
is insertion of water vapor in the gaseous mixture used in a sort of electro-medical
systems. For maintaining such vapor, the system must warm up the water in a recipient

Table 1. Heated-Humidifier Specification

Task r c d p
A (temp-sensor-start) 0 1 1,500 10,000
B (temp-sensor-handler) 11 1 1,500 10,000
C (PWM) 0 8 1,500 10,000
D (pulse-generator) 0 4 4 50
E (temp-adjust-part1) 0 1 5,000 10,000
F (temp-adjust-part2) 1501 2 5,000 10,000

Inter-task Relations
A PRECEDES B
B PRECEDES C
E PRECEDES F

60 L. Amorim et al.

Fig. 9. Tasks’ time constraints scenarios

Fig. 10. Precedence relation scenarios

and maintain the water temperature in a prescribed value. This equipment is very useful
in hospital’s critical care units (CCUs).

Table 1 shows part of the specification model. Considering the 8051-family archi-
tecture, the overhead of the interrupt and dispatcher is equal to 20μs (2 TTUs). The
values are expressed in task time units (TTUs), where each TTU (Section 4) is equal to
10μs. Figure 9 shows timing constraints scenarios for each task specified, and Figure
10 shows the LSC scenarios for the three precedence relation. These LSC scenarios was
modeled according to the rules presented in Section 4. As Figure 10 presents, before re-
questing the processor (chart body), the task with higher priority must be first executed
(prechart). Whenever the “grant” message is executed in these scenarios, the same event
is fired in the corresponding scenario specified in Figure 9, therefore enabling the cur-
rent task to be executed.

In order to avoid the key bouncing, the key reading for temperature adjustment is
divided in two tasks. If task E indicates that a key is pressed, after a specific minimal
time (generally 15ms), the task F must confirm such key pressing. The same solution
is applied for reading the temperature sensor. The first task (task A) is responsible for
starting the A/D conversion. After elapsing a specific time (generally 100μs), the sec-
ond task (task B) may start reading the temperature and updating a shared variable. A
feasible schedule was found in 0.486 seconds, verifying 6022 states, which is the min-
imum number of states to be verified. Figure 11 shows part of the heated-humidifier
generated code.

A Methodology for Software Synthesis of Embedded Real-Time Systems 61

void taskT1() {...} void taskT2() {...}
void taskT3() {...} void taskT4() {...}
void taskT5() {...} void taskT6() {...}

#define SCHEDULE_SIZE 505

struct SchItem sch[SCHEDULE_SIZE] =
{

{0, false, 4, (int *)taskT4},
{24, false, 1, (int *)taskT1},
{50, false, 4, (int *)taskT4},
{74, false, 5, (int *)taskT5},
{100,false, 4, (int *)taskT4},
{124,false, 2, (int *)taskT2},
{150,false, 4, (int *)taskT4},
{174,false, 3, (int *)taskT3},
{200,false, 4, (int *)taskT4},.

.

.
}

Fig. 11. Heated-Humidifier Code

8 Conclusions

This paper proposed a method for software synthesis of embedded hard real-time sys-
tems, where the specification of constraints and inter-task relations is based on LSC,
and the proposed scheduling model is based on TPNs.

LSC is a language based on scenarios, more powerful that its predecessors (UML
sequence diagram for instance), since it provides means for describing scenarios, things
that must happen and may happen, as well as anti-scenarios, that is, things that must not
happen during the whole system’s execution.

Predictability is an important concern when considering time-critical systems. Pre-
runtime scheduling approach is used in order to guarantee that all critical tasks meet
their deadlines. Despite the analysis technique (i.e. state space exploration) is not new,
to the best of our present knowledge, there is no similar work that uses formal methods
for modeling time-critical systems, considers arbitrary precedence/exclusion relations,
for finding pre-runtime schedules, and generates timely and predictable scheduled code.

Analysis of properties in large dimension nets is not trivial. Therefore, methods that
allow transforming models while preserving system properties has been largely stud-
ied. Usually, these transformations are reductions that are applied to larger models in
order to obtain smaller ones while preserving properties. This is a further work to be
investigated.

References

[1] ITU-T: Message Sequence Chart (MSC). (Geneva, 1996)
[2] OMG: Unified Modeling Language (UML) documentation. (2005) http://www.omg.org.
[3] Harel, D., Marelly, R.: Come, Lets Play: Scenario-Based Programming Using LSCs and

Play-Engine. (2003)
[4] Cornero, M., Thoen, F., Goossens, G., Curatelli, F.: Software synthesis for real-time infor-

mation processing systems. Code Generation for Embedded Processors (1995) 260–279
[5] Barreto, R., Tavares, E., Maciel, P., Neves, M., Oliveira Jr., M., Amorim, L., Bessa, A.,

Lima, R.: A time petri net-based approach for software synthesis considering dispatcher
overheads, IEEE Computer Society Press. Rio de Janeiro, Brazil (2005)

[6] Xu, J., Parnas, D.: Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. Soft. Engineering 16 (1990) 360–369

62 L. Amorim et al.

[7] Abdelzaher, T., Shin, K.: Combined task and message scheduling in distributed real-time
systems. IEEE Trans. Parallel Distributed Systems 10 (1999) 1179–1191

[8] Altisen, K., Göbler, G., Pnueli, A., Sifakis, J., Tripakis, S., Yovine, S.: A framework for
scheduler synthesis. IEEE Real-Time System Symposium (1999) 154–163

[9] Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of embedded
software using free-choice petri nets. DAC’99 (1999)

[10] Hsiung, P.A.: Formal synthesis and code generation of embedded real-time software. In
CODES (2001)

[11] Weber, M., Kindler, E.: The petri net markup language. Petri net Technology Communica-
tion Systems. Advances in Petri Nets. (2002)

[12] Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans. Comm.
24 (1976) 1036–1043

[13] Mok, A.K.: Fundamental Design Problems of Distributed Systems for the Hard-Real-Time
Environment. PhD Thesis, MIT (1983)

Ahead of Time Deployment in ROM of a
Java-OS

Kevin Marquet, Alexandre Courbot, and Gilles Grimaud

IRCICA/LIFL, University of Lille I, France
INRIA Futurs, POPS research group

{Kevin.Marquet, Alexandre.Courbot, Gilles.Grimaud}@lifl.fr

Abstract. This article shows how it is possible to place a great part of
a Java system in read-only memory in order to fit with the requirements
of tiny devices. Java systems for such devices are commonly deployed
off-board, then embedded on the target device in a ready-to-run form.
Our approach is to go as far as possible in this deployment, in order to
maximize the amount of data placed in read-only memory. Doing so, we
are also able to reduce the overall size of the system.

1 Introduction

Deploying a Java system dedicated to be embedded into a tiny device such as a
sensor involves producing a ready-to-run binary image of it. This binary image is
later burnt into a persistent memory of the device, usually Read-Only Memory
(ROM), to produce the initial state of the system on the device.

In addition to ROM, tiny devices include several types of writable memories
such as RAM, EEPROM, or Flash memory. All these memories have different
access times, physical space requirements, and financial costs. For instance, ROM
is very cheap and takes few physical space on the silicon, which usually makes
it this memory the most significant one in terms of quantity; but it cannot be
erased. Writable memories on the other hand are a rare ressource because of
their cost and physical footprint.

The memory mapping of data into these different memories is computed off-
board, when producing the binary image. A correct placement of the system data
at that time is critical for embedded systems. In a domain where the software
and hardware productions are tightly tied, placing more data in ROM can divide
the final cost of the device and makes the other writable memories available for
run-time computations.

Our approach is to go as far as possible in the off-line deployment of the system
to maximize ROM usage while decreasing the overall size of the system. We
operate at different steps of the deployment process. For each step, we measure
the amount of data that can safely be placed in ROM, as well as the overall size
of the system, thus obtaining an evolution of these two measurements all along
the deployment. Our experiments have been performed on the Java In The Small
(JITS[1]) Java-OS toolkit.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 63–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 K. Marquet, A. Courbot, and G. Grimaud

The remainder of this paper is organized as follows. Section 2 presents some
work related to this paper. Section 3 then introduces the issues related to the
placement in ROM of an embedded Java system. The deployment scheme of a
JITS system is then briefly described in section 4. In particular, we detail the
steps that are important for maximizing ROM placement and reducing the size
of the final system. Section 5 details our results, by showing the amount of data
it is possible to put in ROM and the size of the system for every deployment
step. Finally, we conclude on our results.

2 Related Work

Embedding Java systems into tiny devices while minimizing their size has been
studied using different approaches. Rayside [2] and Tip [3]’s approach is to ex-
tract the minimal necessary subset to run an application from a Java library.
They use abstract interpretation to determine classes, fields and methods that
may be used by the application and discard the rest. JITS uses a similar mecha-
nism to extract the needed parts of the library and core system according to the
threads that are being deployed. Squawk [4] is a CLDC-compliant implemen-
tation of the Java virtual machine targeted at next-generation smart cards. It
uses an indirection table containing the references of all objects. This implies a
run-time performance reduction, and the use of a part of the writable memory to
store this table. Java 2, Micro Edition [5] is a stripped-down specification of the
Java platform for small devices. It includes JavaCodeCompact, a class pre-loader
and pre-linker that allows classes to be linked with the virtual machine.

These works doesn’t take into account the specifics of the physical type of
memory that tiny devices use. In particular, such devices generally include a
high quantity of read-only memory. This important parameter is at the heart of
our deployment approach.

3 Placing Data in ROM

A tiny device of the range of the smart card includes different kinds of memories.
Their respective cost and physical footprint properties lead to the following pro-
portions: about hundreds of kilobytes of ROM, dozens of kilobytes of persistent,
writable memory and kilobyte(s) of RAM. Larger, more expensive devices can
embed more memory - but these proportions are usually respected.

In a traditional Java Virtual Machine (JVM), the loading of applications is
clearly defined: classes must be loaded, linked, and initialized [6]. In the case
of an embedded Java-OS, these phases can be made partly during the off-line
deployment, in order to embed a partially deployed system [7]. This results in a
faster start up of the system, but it is also possible to take advantage of various
steps during the deployment to increase the amount of data placed into ROM,
as well as reducing the size of the system. Indeed, some Java objects involved in
the deployment process reach their definitive form during these steps, and can

Ahead of Time Deployment in ROM of a Java-OS 65

then be considered as immutable. Others are just useful to initialize the system
and can be removed.

As placing objects in ROM prevents any further modifications of them, it is
impossible to place an object that the system needs to change at run-time in
a read-only memory. This leads to the definition of immutability of an object
[8], in relationship to the semantics of the program: an object is immutable if
it is never modified by the code of the program. Our approach is to detect all
immutable objects and to place them in ROM.

Among the objects that are needed at run-time, some are always immutable.
Their immutability does not depend on the deployment process. For instance,
the String objects and their associated character arrays are objects that can
never be modified. Other objects are created during the loading process and are
either not modified or even not used at run-time.

The next section describes the deployment process of JITS. It details how it
is possible, for each step of the deployment process, to increase the number of
objects in ROM and to decrease the size of the overall system.

4 Deploying Embedded Java

Before being embedded into a small device, a Java-OS is deployed off-board. All
the initializations that have not been made during this phase are performed when
the device starts up, in order to place the system in a state where it is ready to
run applications. While these operations are made at run-time in a traditional
JVM (section 4.1), they can also be performed during the offline deployment
of the embedded Java-OS in order to improve the size of the system and the
amount of data in ROM (section 4.2).

4.1 Java Class Loading Process

A Java platform initializes itself before being able to run applications. In par-
ticular, classes must go through different loading states described by the Java
virtual machine specification [6] before being ready to use.

Loading. During this phase, the class structure is read (from a stream on a file
or a network connection for instance) and the internal structures for classes,
methods and fields are created. All the external references are still symbolic.
Classes are marked as LOADED after this step.

Linking. The linking step transforms the external symbolic references into di-
rect ones. This step can either be performed once and for all (all the symbolic
references are resolved, which involves loading the classes that are referenced)
or just-in-time during runtime (each reference is linked when the bytecode in-
terpreter meets it for the first time). During this phase, methods are modified
in order to replace the non-linked bytecodes with linked counterparts.

Initializing. Before being ready to run, the static statements of the classes must
be executed. Once this phase is performed, the class is granted state READY.

66 K. Marquet, A. Courbot, and G. Grimaud

This class loading scheme is tightly linked to the upper-level application de-
ployment process.

4.2 Application Deployment Process

The pre-deployment phase of JITS is able to perform the class loading process.
At each step, useless objects can be removed and some others considered as
immutable. All these steps are performed by a tool called romizer). As the JITS
romizer initializes the system before producing a binary image of it, it differs
from JavaCodeCompact (JCC, [9]), the J2ME deployment tool, which only loads
and links Java classes and lets the initializations be made at run-time.

Loading. After this step, apart from objects that are always immutable such as
strings, very few objects can be placed in ROM. Bytecodes contained in the code
associated to a method are subject to modification during linking. However, if the
code associated to a method does not contain any mutable bytecode, this code
is immutable. In the same way, few objects can be considered useless after this
step. Only the objects used to read the class from the streams can be removed,
as well as all the information that has been extracted from them. The associated
useless classes can be removed as well. A previous study [10] has shown that the
constant pools of the classes can be compacted during this phase.

Linking. After the linking phase, all external references from the bytecode are
resolved, and more parts of the code can thus be considered immutable. All
methods are linked which makes them immutable as well. The LINKED state
also constitutes another important stage regarding the lifetime of classes: at
this state, all objects referenced by classes can be placed in ROM excepted the
static zones which can be modified at run-time. The classes themselves can be
considered immutable if their states is stored outside of them.

Initializing. In addition to the loading and linking phases, the JITS romizer is
able to execute the static statements of the classes. This avoids spending time to
execute the static statements at run-time but also allows to placethe immutable
objects attached to a static field in read-only memory. Although there are few
objects that are concerned by this in the Java libraries, applications are more
subject to use them.

Applications Initialization. Once the static statements are executed, our tool
instantiates the threads that will begin to run when the device starts up. Doing
this during deployment brings one benefit: it is possible to make a static abstract
interpretation [11] of the code in order to detect the parts of the deployed system
that will be used at run-time. Our approach at this level is the same as in [2]
and [12]. We extract a subset of the system containing only the libraries needed
for the system. From the run method of the selected threads, we perform a
depth-through analysis of the code in order to list all the classes, methods and
fields used, discarding the others. Our static analysis makes use of constant value
propagation in order to compute a precise control flow graph and detect more

Ahead of Time Deployment in ROM of a Java-OS 67

unused objects. In addition to the removal of these objects, it is possible to
remove their references in the static zones in order to compress them.

The use of a specific installation process such as Java Card or OSGI would
allow even better results, mainly placing more objects in read-only memory.
Indeed, the installation functions allow to go further in the deployment process.
However, we intend to provide a Java platform that is able to load and execute
traditional Java applications and not only applications in a specific format.

System Projection. In order to transform the off-board deployed system into its
binary image, the romizer builds the dependency graph of all the objects of the
system. All the objects it contains are walked through in order to assign them a
destination memory. This computation is made thanks to the the properties of
objects (such as types and values) that are retrieved from the graph of objects.
This permits for instance to identify all objects whose type is Class and whose
field value state is READY as objects that are immutable. This computation
also provides the relationships between objects. For example, all the objects
attached to the staticZone field of an instance of Class must be described
in the memory mapping as objects that must be placed in writable memory.
Building the graph of objects is also an elegant way to discard useless objects.
Indeed, the references to these objects are broken, thus making them unreachable
and garbage collectable when the graph is built.

All along the loading process, some objects become immutable and others
become useless. Next section shows the evolution of the amount of data in ROM
and the overall size of the system at each step of the deployment.

5 Results

This section measures the benefits of deploying the system off-board. The size of
the system and the amount of data in ROM are measured after each step of the
deployment. The parts of the OS written in native code are not included in our
measurements, although it will eventually be executed from a read-only memory.
Three applications are measured. The first one is a basic Hello World application
which shows the memory footprint of a minimal application. The second one
is Sun’s AllRichards which executes seven versions of the Richard scheduling
algorithm. This application is interesting because it includes a high number of
classes (76). Finally, the well-known Dhrystone benchmark is measured, showing
quite different results because it uses several static data structures.

Details concerning the impact on the run-time features are also discussed.

5.1 Loading

In addition to objects that are immutable as soon as they are instantiated
(strings), the majority of objects become immutable once the classes are loaded.
Excepted objects that are immutable as soon as they are created (as strings), the
majority of objects become immutable once the classes are loaded. All methods
containing a bytecode that will be changed during the linking phase are muta-
ble. However, parts of code that do not contain such bytecodes can be placed in

68 K. Marquet, A. Courbot, and G. Grimaud

ROM after this step; 9% are concerned for AllRichards. The compaction of the
constant pools allows to reduce their initial size by about 160 Kilobytes.

Table 1 gives the size of the system and the size of data it is possible to place
in read-only memory if the system were to be embedded just after this step.

Table 1. System sizes (in Kilobytes) after loading phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 308 181 59%
AllRichards 411 185 45%
Dhrystone 315 170 54%

5.2 Linking

We have seen that the linking phase is important. After this step, all classes (17
Kilobytes for AllRichards) and methods (60 Kilobytes for AllRichards) can be
placed in ROM. As bytecodes are mutated, a greater number of bytecode arrays
become immutable (33 Kilobytes over 87 Kilobytes). In addition, other entries
in the constant pools become useless, allowing to re-compact them. This leads
to the measuqrements given in table 2.

Table 2. System sizes (in Kilobytes) after linking phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 242 181 78%
AllRichards 319 258 81%
Dhrystone 247 194 79%

5.3 Initializing Static Fields

Initializing the static fields turns the classes into state READY. Once the classes
are in this state, all bytecodes can be replaced by their linked counterparts,
leading all fractions of code (87 Kilobytes) to be immutable. The benefits of this
phase also include to avoid these initializations when the device starts up. Table 3
presents the measurements we have done when all the classes are in the state
READY. These results takes account of the sizes of the objects allocated by the

Table 3. System size (in Kilobytes) after initialization phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 245 236 96%
AllRichards 323 307 95%
Dhrystone 318 238 75%

Ahead of Time Deployment in ROM of a Java-OS 69

static statements. In particular, the overall size of the system for Dhrystone is
greater than at the previous step because this application allocates 64Kilobytes
of static arrays that will be modified at run-time.

5.4 Threads Deployment

Deploying threads allows to dramatically reduce the size of the system, as pre-
sented in table 4. In particular, only 6440 bytes of classes, 14 Kilobytes bytes of
methods and 18 Kilobytes of code remains for AllRichards.

Table 4. System size (in bytes) after threads creation and analysis

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 11326 9795 86%
AllRichards 74134 68315 92%
Dhrystone 86558 14316 16%

6 Conclusion

This article addresses the issue of placing parts of a Java-OS in ROM, which is
necessary for tiny devices. At each step of the deployment of the system, it is
possible to place a number of objects in ROM in order to decrease the necessary
quantity of modifiable memory. It is also possible to remove objects that have
become useless in order to reduce the overall size of the embedded system.

The mechanisms involved in these optimizations take advantage of the par-
ticular deployment process of a Java-OS. We gave results concerning the size of

LOADED LINKED READY INSTALLED

System state

0

50

100

150

200

250

300

350

400

450

S
y
st

em
si

ze
(K

b
y
te

s)

In writable memory

In read-only memory

Hel

Ric

Dhr

Hel

Ric

Dhr Hel

Ric Dhr

Hel

Ric
Dhr

Fig. 1. Memory footprint and repartition across the different states of the system

70 K. Marquet, A. Courbot, and G. Grimaud

data it is possible to place in ROM and the overall size of the system. Figure 1
summaries the evolution of these two measurements. It shows that the more the
system is initialized off-board, the higher the proportion of objects in ROM is.

References

1. “Java In The Small.” http://www.lifl.fr/RD2P/JITS/.
2. D. Rayside and K. Kontogiannis, “Extracting java library subsets for deployment

on embedded systems,” Sci. Comput. Program., vol. 45, no. 2-3, pp. 245–270, 2002.
3. F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter, “Practical extraction

techniques for java,” ACM Trans. Program. Lang. Syst., vol. 24, no. 6, pp. 625–666,
2002.

4. N. Shaylor, D. N. Simon, and W. R. Bush, “A java virtual machine architecture
for very small devices,” in LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems, pp. 34–41, ACM
Press, 2003.

5. S. Microsystems, “Java 2 plateform, micro edition (j2me).”
6. T. Lindholm and F. Yellin, The Java Virtual Machine Specification. Addison-

Wesley, 1996.
7. D. Mulchandani, “Java for embedded systems,” IEEE Internet Computing, vol. 2,

no. 3, pp. 30–39, 1998.
8. I. Pechtchanski and V. Sarkar, “Immutability specification and its applications,” in

JGI ’O2: Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande,
pp. 202–211, ACM Press, 2002.

9. S. Microsystems, “The k virtual machine (kvm) white paper. technical report,”
1999.

10. C. Rippert, A. Courbot, and G. Grimaud, “A low-footprint class loading mecha-
nism for embedded java virtual machines,” in In Proc. of PPPJ’04., ACM Press,
2004.

11. P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252, ACM Press, 1977.

12. F. Tip, P. F. Sweeney, and C. Laffra, “Extracting library-based java applications,”
Commun. ACM, vol. 46, no. 8, pp. 35–40, 2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 71 – 84, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Research on How to Reduce the Number of
EEPROM Writing to Improve Speed of Java Card*

Min-Sik Jin**, Won-Ho Choi, Yoon-Sim Yang, and Min-Soo Jung***

Dept of Computer Engineering, Kyungnam University, Masan, Korea
{comsta6, hoya9499, ysyang, msjung}@kyungnam.ac.kr

Abstract. Java Card technology enables smart cards and other devices with
very limited memory to run small applications, called applets. It provides users
with a secure and interoperable execution platform that can store and update
multiple applications on a single device. This Java Card technology is now a
mature and accepted standard smart card standards and SIM technology. How-
ever, the main concern of Java Card is now its low execution speed caused by
the hardware limitation. In this paper, we propose several ideas about how to
improve an execution speed of Java Card. The key idea of our approach is that
an EEPROM writing operation is more expensive than that of RAM. We sug-
gest how to use RAM as much as possible; Transaction_In_RAM(TrIR), Reso-
lution_In_RAM and Java Object-buffer.

1 Introduction

Java Card technology [1, 2, 3] enables smart cards and other devices with very limited
memory to run small applications, called applets, that employ Java technology such as
a platform independence and a dynamic downloading(post-issuance). For these rea-
sons, Java Card technology is an accepted standard for smart card and SIM technol-
ogy [15]. SIM cards are basically used to authenticate the user and to provide encryp-
tion keys for digital voice transmission. However, when fitted with Java Card tech-
nology, SIM cards can provide transactional services such as remote banking and
ticketing, and also service a post-issuance function to manage and install applications
in cards after the cards issued [1, 3, 15].

A Java Card is essentially an Integrated Circuit Card(ICC) with an embedded Java
Card Virtual Machine. The Central Processing Unit(CPU) can access three different
types of memory: a persistent read-only memory(ROM) which usually contains a
basic operating system and the greatest part of the Java Card runtime environment, a
persistent read-write memory(EEPROM) which can be used to store code or data
even when the card is removed from the reader, and a volatile read-write mem-
ory(RAM) in which applications are executed [4, 7].

* This work is supported by Kyungnam University Research Fund, 2005.

** Ph.D Student of Kyungnam University.
*** Professor of Kyungnam University.

72 M.-S. Jin et al.

The major point of criticism with regard to Java for smart cards is its low execution
speed. The execution speed of Java bytecode executed by an interpreter is 10 to 20
times slower than program code written in C. Besides of slow speed in terms of Java
language, in a traditional Java Card, we first found inefficient parts that are making it
more slowly. It is related to many EEPROM writing. The speed of EEPROM write
operation is mainly 10000 times slower than that of RAM write operation. It causes a
drop in execution speed of Java Card [4].

The first reason of many EEPROM write operations in Java Card is for processing
a transaction. Java Card always stores all old values at the referenced location into a
transaction buffer in EEPROM during a transaction [1, 3]. We finally found that more
than 80% of the number of total EEPROM write operations occurs to process a trans-
action. The second reason of many EEPROM write operations is for resolution of
indirect references during the download of new application called post-issuance. The
Java Card installer performs the process of these resolutions that changes many indi-
rect references to real physical addresses of API in Java Card [2]. The third reason is
about a single EEPROM write operation with a page-buffer [14].

For these reasons, in this paper, we suggest three ideas to improve the speed of
Java Card; the Transaction_In_RAM(TrIR) that logs new value, not old value in
RAM, new Java Card Installer with the Resolution_In_RAM technology that re-
solves indirect references into direct reference in RAM during the post-issuance and
new Object-buffer based on a high locality of Java Card objects that are stored in
heap area.

This paper is organized as follows. Section 2 describes about Java Card, Java Card
memory model, Java Card installer as related works in detail. Section 3 gives a design
about how to improve an execution speed of Java Card with Transaction_In_RAM
and Resolution_In_RAM technologies that are introduced in this paper by using com-
paring to those of traditional Java Card. Section 4 explains about algorithms for the
implementation of these technologies. Section 5 gives the performance results about
each technology separately and also the result after integrating both algorithms. Fi-
nally, we present the conclusion and the future work in section 6.

2 The Java Card Environment

2.1 Java Card Memory System

Current and upcoming smart card hardware provides very limited storage capabilities.
The memory resources typically consist of Read Only Memory (ROM), Random
Access Memory (RAM) and Electrically Erasable Programmable Read Only Memory
(EEPROM). EEPROM is used to store long-lived data. In contrast, RAM loses its
contents after a power loss and is thus only available for temporary storage.

As illustrated in figure 1, a typical Java Card system places the JCRE code(virtual
machine, API classes, and other software) in ROM. Applet code can also be stored in
ROM. RAM is used for temporary storage. The Java Card runtime stack is allocated
in RAM. Intermediate results, method parameters, and local variables are put on the
stack. Native methods, such as those performing cryptographic computations, also
save intermediate results in RAM. Longer-lived data such as downloaded applet
classes are stored in EEPROM [1, 3, 4, 7].

 The Research on How to Reduce the Number of EEPROM 73

Fig. 1. Java Card Memory Model that is consisted of three areas and its contents

The applet instance and associated persistent objects of an application must survive
a session. Therefore they are placed in the non volatile storage on a card, usually
EEPROM. EEPROM provides similar read and write access as RAM does. However,
The difference of both memory is that writing operations to EEPROM are typically
more than 1,000 times slower than to RAM and the possible number of EEPROM
writing over the lifetime of a card is physically limited [4].

Table 1. Comparison of memory types used in Smart Card microcontrollers [4]

Type of memory Number of possible
write/erase cycles

Write time per
memory cell

Typical cell size

RAM Unlimited 70 ns 1700 μm2
EEPROM 100,000~1,000,000 3-10 ms 400 μm2

2.2 Java Card Installer for Post-issuance

Applet installation refers to the process of loading applet classes in a CAP file, com-
bining them with the execution state of the Java Card runtime environment, and creat-
ing an applet instance to bring the applet into a selectable and execution state [1, 2].

Class files

Converter

CAP file

Off Card Installa-
tion program

CAD

Interpreter

On Card Installer

runtime environ-

PC or Workstation

Java Card

Fig. 2. Java Card Installer and off-card installation program [3]

74 M.-S. Jin et al.

On the Java Card platform, the loading and installable unit is a CAP file. A CAP
file consists of classes that make up a Java package. To load an applet, the off-card
installer takes the CAP file and transforms it into a sequence of APDU commands,
which carry the CAP file content. By exchanging the APDU commands with the off-
card installation program, the on-card installer writes the CAP file content into the
card’s persistent memory and links the classes in the CAP file with other classes that
reside on the card. The installer also creates and initializes any data that are used
internally by the JCRE to support the applet. As the last step during applet installa-
tion, the installer creates an applet instance an registers the instance with the JCRE.

3 EEPROM Writing of a Typical Java Card

3.1 EEPROM Writing Mechanism

The EEPROM has an internal 128~256 bytes page organization. If the page size is
128bytes, users can write any size of data from 1 to 128 bytes. However when users
want to write data that are larger than 128 bytes or overlapped between two pages,
users should do memory write management. It may need to call write routine twice,
if it is overlapped between two pages, even its size is not more than 128bytes
[12, 14].

When Java Card first writes a data in the EEPROM address range, the data is in
fact written into the page-buffer. A typical EEPROM update(erase & write) routine
will generate the high voltage twice. At that time the data, stored in the page-buffer is
transferred into the non-volatile EEPROM cells. After the operation, the page buffer
will be cleared automatically.

EEPROM
80000

RAM

page-buffer
(128 bytes)

1 page
2 page 80128

80256

30 bytes

3 bytes

3 page
4 page
5 page

…

27 bytes

Fig. 3. Writing operation of EEPROM that is organized by 128 bytes by using the page-buffer
in RAM

As illustrated in figure 3, if the system writes consecutive 30 bytes (80100~80129),
first, The data to be written is transferred to the page-buffer. The data stored in page-
buffer on RAM can be available 1-byte up to 128-byte because EEPROM is organ-
ized 128-byte. For this reason, only 3 bytes first are written into 1 page area. And then
the remainder in the page-buffer is written into 2 page area in EEPROM.

 The Research on How to Reduce the Number of EEPROM 75

3.2 Basic Java Card Transaction Model Using Old Value Logging

A transaction is a set of modifications performed atomically, which means that either
all modifications are performed or none are performed. This is particularly for smart
cards, because the card reader powers them: when you unexpectedly remove the card
from the reader (this is called "tearing"), it's possible that you're interrupting a critical
operation that needed to run to completion. This could put the card in an irrecoverable
state and make it unusable.

To prevent this, the Java Card platform offers a transaction mechanism. As soon as
a transaction is started, the system must keep track of the changes to the persistent
environment(EEPROM). The Java Card must save old_value of EEPROM address
that will be written into a particular area(T_Buffer) in EEPROM. In other words, If a
transactional computation aborts, the Java Card must be able to restore old_value
from the T_Buffer in EEPROM to its previous position.

In case of commit, the check_flag byte of the T_Buffer must just be marked invalid
and the transaction is completed. In case of abort, the saved values in the buffer are
written back to their former locations when the Java Card is re-inserted to CAD.

Fig. 4. How to store old values in T_Buffer on EEPROM and the inner structure of T_buffer
has a lot of logs and each log consists of 4 parts; header, length, address and old_value

As illustrated figure 4, one object is created by new instruction during the execu-
tion. Before this object(20 11 20 04 00 08 87 12) is stored in its address, 0x00087170,
old value(80 11 20 04 01 02 03 04) of this address should first be stored in T_Buffer
with three additional fields that is mentioned earlier. Finally, new value is stored at
the referenced location. In the typical Java Card, all referenced old values are stored
T_Buffer area during a transaction. If a transaction is committed without any prob-
lems, All old values that T_Buffer has are ignored with a mark as a garbage. How-
ever, if a failure occurs before a transaction, the participating fields in the transaction
are restored to their original contents from the T_Buffer.

Table 2. The number of EEPROM writing per each area of whole EEPROM during the
downloading and executing of each applet

EMV Applet Wallet Applet
EEPROM area the number of writing EEPROM area the number of writing

StaticField 1,681 staticfield 752
Heap 1,659 Heap 1,121

T_buffer 10,121 T_buffer 8,478
Total 13,461 Total 10,351

76 M.-S. Jin et al.

Table 2 below shows the number of EEPROM writing per each area of whole
EEPROM. T_buffer area writing is about 75 to 80 percent of total number. The rea-
son why the writing number of this area is higher than other areas is a transaction
mechanism of a traditional Java Card to guarantee an atomicity. In a traditional Java
Card, this transaction mechanism makes the Java Card more slow and inefficient.

3.3 Basic Java Card Installer with the Resolution in EEPROM

The CAP file has a compact and optimized format, so that a Java package can be
efficiently stored and executed on Java Card. Among several components in the CAP
file, the constantpool_component and method_component include various types of
constants including method and field references which are resolved when the program
is linked or downloaded to the Java Card.

As mentioned earlier, the constant pool component has lots of constants that must
be resolved during the downloading of CAP file. Before constants are resolved to real
addresses, these are consisted of tokens. Namely, the token of each constant is re-
solved to real address of Java Card API. After the resolution of constants, Java Card
performs the resolution of indirect references into constants that are already resolved
if bytecodes in methodcomponent have indirect references as an operand. This linking
operation of the methodcomponent is executed when a referencelocationcomponent is
finally sent to Java Card.

constantpool_component

method_component

referencelocation_component

…

…

CAP

CAD

method_component

constantpool_component

RAM

EEPROM

referencelocation_component

JavaCard

APDU

 store

 store

send

resolution

linking

Fig. 5. The procedure for downloading a CAP file with resolution in EEPROM in a traditional
Java Card

Figure 5 above shows the procedure for downloading a CAP file. First, both
method_component and constantpool_component are saved in heap area in
EEPROM. Second, the installer performs the resolution for constants of constant-
pool_component that is already downloaded. Next, the referencelocation_component
is sent to RAM. This component has lists of offsets that must be replaced into con-
stant in constant_poolcomponent among bytecodes in the method_component.
Finally, the installer replaces bytecodes in method_component into resolved constants
by using the offset data of referencelocation_component [1, 3].

 The Research on How to Reduce the Number of EEPROM 77

06 80 03 00 03 80 03 01 01 00 00 00 … 80 38 03 00 80 3A 03 01 80 86 00 00 …

constantpool_component resolution

01 04 06 …
referencelocation component

Offset list for linking of
method component

method_component

8C 00 00 18 8B 00 01 7A 05 30 8F 00 02 3D 18 … 8C 80 38 18 8B 80 3A 7A 05 30 8F 80 86 3D 18 …

linking

1 1+4 1+4+6

Fig. 6. The raw method_component and resolved constantpool_component saved in EEPROM
and the linking result of method_component from constantpool and referencelocation

Consequently, the size of referencelocation means the number of bytecodes that
must be replaced in method_component. While referencelocation_component is
downloading, Java Card continually changes an operand of bytecodes in
method_component as the size of referencelocation. It makes Java Card Installer more
slow.

3.4 A Traditional Java Card with One Page-Buffer

As mentioned earlier, a Java Card can write between 1 byte and 128 consecutive bytes
with this page buffer into EEPROM. For example, If EEPROM addresses of objects
that will be written by a Java Card are sequentially 0x86005 and 0x86000, although
both addresses are within 128 bytes, Java Card will first writes one object data in
0x86005 through the page-buffer, and then, after the page-buffer is clear, another
object data will be written in 0x86000.

Fig. 7. How to write objects to EEPROM of the traditional Java Card using an inefficient page-
buffer algorithm

Above figure 7 shows the page-buffer algorithm of a traditional Java Card. this
page-buffer is just to write consecutive data to EEPROM. It dose not have the func-
tion for caching.

78 M.-S. Jin et al.

4 Our Changed Java Card with a Reduced EEPROM Writing

4.1 Our Transaction_In_RAM(TrIR) Technology

As mentioned in the related works, smart cards including a Java Card support a trans-
action mechanism by saving old_values in EEPROM. The number of EEPROM writ-
ing in order to support the transaction is about 75 to 80 percent of the total number of
EEPROM writing. EEPROM writing is typically more than 1,000 times slower than
writing to RAM. It makes also Java Card much more slow and inefficient.

We suggested new TrIR technology using RAM, not EEPROM in this paper. If
such tearing such as power loss happens in the middle of a transaction, all data after
transaction began should be ignored. If T_Buffer area to save old_values places in
RAM, in case of power loss, RAM is automatically reset. It means the preservation of
old_values.

Fig. 8. The algorithm of our TrIR technology that stores new value and old value into T_buffer
in RAM

Figure 8 shows the algorithm of our TrIR technology that stores new value and old
value into T_buffer in RAM. Our T_Buffer stores new value and old value in
T_Buffer on RAM. The last operation of our algorithms is to move all new values in
T_Buffer to referenced addresses. If tearing such as power loss happens during this
operation, new data that are already changed at target addresses are invalid. For this
reason, our T_Buffer has also old values in addition to new values. As soon as a trans-
action commits, T_Buffer is moved a backup area in EEPROM to prevent this
situation.

 The Research on How to Reduce the Number of EEPROM 79

Table 3. The comparison of between old value logging and new value logging [17]

Old value logging(a traditional JCVM) New value logging(our algorithm)
- fast read accesses a the up-to-date values are
always stored at the referenced location
- the original value for a given location must be
saved in T_Buffer.
- committing a transaction is cheap as the new
value are already in place
- abort a transaction is expensive as the saved
values have to be written back to the original
locations.

- a slow read access as the up-to-date values for a
location must be searched in the T_Buffer
- write operations always have to update the
T_Buffer as any new store operation has to be
recorded there
- committing a transaction is expensive as the new
values have to be written to their target locations.
- aborting a transaction is cheap as the original
values are still in place.

In our algorithm, Read performance lags always behind as T_Buffer must be
scanned-typically linearly-for a formerly written value. The situation can be better in
case of the much more expensive write operation. As mentioned earlier, writing costs
is more expensive than reading costs and EEPROM writing costs also is much more
expensive than RAM writing costs. The total number of EEPROM writing to support
a transaction is reduced by 50%.

Backup Area flag

log #1 log #2 log #3 … log #n log_
count

target
address

new valuelength old value

EEPROM RAM

 backup

Fig. 9. Backup Area in EEPROM and new structure of T_Buffer that consists of 4 fields:
length, target address, new value and old value

4.2 Our Resolution_In_RAM Technology

Our changed installer is very simple. The key idea of our Installer is to use RAM as
much as possible by resolving indirect references [5] in RAM, not EEPROM. The
important difference of both memory types is that writing to RAM is typically more
than 1000 times faster than that to EEPROM.

Our changed installer has more flexible than a traditional one. Especially, the size
of method_component is not always fixed. It means that the size of component can
exceed the remaining size of RAM. For this reason, when downloading a referencelo-
cation_component, first of all, the installer checks the total size of a method_compo-
nent to calculate proper block-size for resolution. Figure 5 show The resolution and
linking procedure of our changed installer using a RAM Area. The operation of to

 repeats until the end of referencelocation_component.

80 M.-S. Jin et al.

constantpool_component

method_component

referencelocation_component

…

…

CAP

CAD

method_component

constantpool_component

RAM

EEPROM

referencelocation_component

JavaCard

APDU

 store

 store

send

resolution

method_component
block

 copy as a
fixed size

 linking

 save and
copy again

Fig. 10. The resolution and linking procedure of our changed installer using a RAM Area

4.3 Our Object-Buffer Based on Java Card Objects with a High Locality

When an applet is executed on Java Card, if the information such as objects and class
data that the applet writes are close to each other, the total number of EEPROM writ-
ing would be reduced by adding a caching function to the page-buffer. First of all, to
do this, the writing address of objects and data created by Java Card must have a high
locality. It causes the number of EEPROM writing to reduce and also makes a hitting
rate of caching function more high.

Fig. 11. Heap-buffer that consists of 2 part; the buffer and cache. The data between Min and
Max can be written to EEPROM at a time.

In chapter 3, we explained how to write data in EEPROM by using one page buffer
in a traditional Java Card in the low level. We also discovered that all objects and data
that the Java Card creates during the execution have a high locality. It means that an
additional caching function makes the number of EEPROM writing go down. For
these reasons, we developed new Java Card with two page buffer in RAM; one is the

 The Research on How to Reduce the Number of EEPROM 81

existing page buffer for non-heap area, another (Object-buffer) is for heap area in
EEPROM. The heap area is where objects created by Java Card are allocated.

In our changed Java Card, the existing page buffer is the very same that of a tradi-
tional Java Card in terms of a size and a function. The existing page buffer can write
between 1 byte and up to 128 consecutive bytes to non-heap area at a time. However,
our Object-buffer is for only heap area in EEPROM. The object-buffer of 256 bytes
consists of 2 parts; 128 bytes for a buffer, 128 bytes for a cache.

Fig. 12. The Object-buffer algorithm that checks continually the Min and Max points to write
the object-buffer to EEPROM when Java Card writes data to heap area. (†E2p_addr : the
EEPROM address that data will be written, ‡ heap_buff(Obj_buff) : our new heap buffer with caching and
buffering function for just heap area in EEPROM).

Figure 12 above shows the main algorithm using the Object-buffer and page-buffer
The writing of non heap-area is performed with the existing page buffer. The writing
of heap-area is executed with the Object-buffer. When the Java Card writes data re-
lated to Java Card objects into heap area of EEPROM, the first operation is to get 128
bytes lower than the address that will be written and to copy them to the cache area of
the Object-buffer. Next, the buffer area(128-byte) of the Object-buffer is cleared. Two
points, Max and Min have the highest and lowest points that are written after Java
Card get new 256 bytes to the Object-buffer. the gap between them continually is
checked in order to write the heap buffer to EEPROM. Max and Min are non-fixed
points to raise the efficiency of the heap buffer. The reason why the gap between Max
and Min is 128 bytes is that our target chip, CalmCore16, supports the EEPROM
writing of 128 bytes at a once.

5 Evaluation of Our Approach

The key of our approach is to improve an execution speed of the Java Card by reduc-
ing the number of EEPROM writing. The main idea is also that EEPROM writes are

82 M.-S. Jin et al.

typically more than 1,000 times slower than writes to RAM. One of the analyzed
results of a traditional Java Card is that Java Card logs old values in T_Buffer area on
EEPROM during a transaction and has one low-level page-buffer to write data to
EEPROM regardless of the high locality of Java objects and has an installer using a
resolution in EEPROM. For this reason, we developed new TrIR technology, new
heap-buffer and new installer.

JCSystem.begin_transaction();
byte a = new byte[5];
JCSystem.commit_transaction();

JCSystem.begin_transaction();
byte a1 = new byte[5];
byte a2 = new byte[5];
…
byte a5 = new byte[5]
JCSystem.commit_transaction();

JCSystem.begin_transaction();
byte a1 = new byte[5];
byte a2 = new byte[5];
…
byte a10 = new byte[5]
JCSystem.commit_transaction();

Traditional 41.720 ms 150.475 ms 301.295 ms
Our approach(TrIR) 26.163 ms 83.173 ms 130.278 ms

Fig. 13. The comparison of an execution speed between a traditional Java Card and our
changed Java Card with the TrIR technology using the different number of the new operator

Below Table 4 and Figure 14 below shows the comparison between a traditional
Java Card and our changed Java Card in regard to the number of EEPROM writing
and the execution speed. During the dynamic downloading of applets called a post-
issuance, the speed of downloading, installation and execution is also reduced by
44%. Consequentially, the reduced EEPROM writing caused Java Card to improve an
execution speed.

One applet consists of over 11 components that include all information of one app-
let package. We also produced downloading results about each component. Basically,
when Java Card installer downloads one applet, the component that takes a long time
is the referencelocation component. The reason is that both are related to the resolu-
tion of indirect references during the downloading. Our approach almost reduced the
downloading time of the referencelocation by 50%.

Table 4. The comparison between a traditional Java Card and our changed Java Card with
regard to an execution speed. (Experiment is made with CalmCore16 MCU [14], SAMSUNG
MicroController for smart card).

Applets Reduced Rate
Channel Demo 76140 35645 53%
JavaLoyalty 72703 42495 42%
JavaPurse 232109 123944 47%
ObjDelDemo 159420 94898 40%
PackageA 90530 53498 41%
PackageB 74859 42342 43%
PackageC 32734 17322 47%
Photocard 64608 38934 40%
RMIDemo 57328 33243 42%
Wallet 57140 32156 44%
EMV small Applet 61766 35476 43%
EMV Large Applet 119812 64834 46%
Average 44%

 The Research on How to Reduce the Number of EEPROM 83

Cha
nn

el
Dem

o

Ja
va

Lo
ya

lty

Ja
va

Pu
rse

Obj
Del

Dem
o

Pa
ck

ag
eA

Pa
ck

ag
eB

Pa
ck

ag
eC

Ph
ot
oc

ard

RM
ID

em
o

W
all

et

EM
V sm

all
 A

pp
let

EM
V L

arg
e A

pp
let

Fig. 14. The comparison between a traditional Java Card and our changed Java Card with
regard to an execution speed

Fig. 15. The comparison between a traditional Java Card and our changed Java Card in regard
to Wallet applet’s downloading and execution speed per each component

6 Conclusion and Future Work

Java Card technology is already a standard for smart cards and SIM cards [11, 15]. A
Java language is basically slower than other languages. The card platforms also have
a heavy hardware limitation. In spite of a Java’s slow speed, the reasons why Java
Card technology is selected as a standard are a post-issuance and a platform inde-
pendence. When Java Card downloads new application, a post-issuance generally
spends a lot of time [10, 11].

In this paper, we have proposed the method to reduce the number of EEPROM
writing with new TrIR mechanism, new installer and new Object-buffer based on the
high locality of Java Card objects. It also makes the downloading time and execution
time of Java Card more fast. With our approach, the number of EEPROM writing and

84 M.-S. Jin et al.

the downloading speed reduced by 80% and 44% separately. It also enables an appli-
cation to be downloaded more quickly in the case of an application sent to a mobile
phone via the GSM network (SIM).

References

1. Sun Microsystems, Inc. JavaCard 2.2.1 Virtual Machine Specification. Sun Microsystems,
Inc. URL: http://java.sun.com/products/javacard (2003).

2. Sun Microsystems, Inc. JavaCard 2.2.1 Runtime Environment Specification. Sun Micro-
systems, Inc. URL: http://java.sun.com/products/javacard (2003).

3. Chen, Z. Java Card Technology for Smart Cards: Architecture and programmer’s guide.
Addison Wesley, Reading, Massachusetts (2001).

4. W.Rankl,. W.Effing,. : Smart Card Handbook Third Edition, John Wiley & Sons (2001).
5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. : The Java Language Specifica-

tion, Second Edition. Addison-Wesley, http://java.sun.com/docs/books/jls/index.html
(2001).

6. Marcus Oestreicher, Ksheerabdhi Krishna. : USENIX Workshop on Smartcard Technol-
ogy, Chicago, Illinois, USA, May 10–11, 1999.

7. M. Oestreicher and K. Ksheeradbhi, “Object Lifetimes in JavaCard,” Proc. Usenix Work-
shop Smart Card Technology, Usenix Assoc., Berkeley, Calif., (1999) 129–137.

8. Michael Baentsch, Peter Buhler, Thomas Eirich, Frank Höring, and Marcus Oestreicher,
IBM Zurich Research Laboratory, Java Card From Hype to Reality (1999).

9. Pieter H. Hartel , Luc Moreau. : Formalizing the safety of Java, the Java virtual machine,
and Java card, ACM Computing Surveys (CSUR), Vol..33 No.4, (2001) 517-558.

10. M.Oestreicher, “Transactions in JavaCard,”, Proc. Annual Computer Security Applica-
tions Conf., IEEE Computer Society Press, Los Alamitos, Calif., to appear, Dec. 1999.

11. Kim, J. S., and Hsu, Y.2000. Memory system behavior of Java programs: methodlogy and
analysis. In Proceedings of the ACM Java Grande 2000 Conference, June.

12. http://www.gemplus.com. : OTA White Paper. Gemplus (2002).
13. The 3rd Generation Partnership Project. : Technical Specification Group Terminals Secu-

rity Mechanisms for the (U)SIM application toolkit. 3GPP (2002).
14. MCULAND, http://mculand.com/e/sub1/s1main.htm.
15. X. Leroy. Bytecode verification for Java smart card. Software Practice & Experience,

2002 319-340.
16. SAMSUNG, http://www.samsung.com/Products/Semiconductor.
17. SIMAlliance, http://www.simalliance.org.
18. Beckert, B., Mostowski, W.: A program logic for handling Java Card's transaction mecha-

nism. In Pezze, M., ed.: Fundamental Approaches to Software Engineering, FASE'2003.
Volume 2621 of Lecture Notes in Computer Science. (2003) 246-260.

19. Oestreicher, M.: Transactions in Java Card. In: 15th Annual Computer Security Applica-
tions Conf. (ACSAC), Phoenix, Arizona, IEEE Computer. Soc, Los Alamitos, California
(1999) 291-298.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 85 – 95, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Packet Property-Based Task Scheduling Policy for
Control Plane OS in NP-Based Applications

Shoumeng Yan, Xingshe Zhou, Fan Zhang, and Yaping Wang

School of Computer Science, Northwestern Polytechnic University, Shaanxi Xi’an 710072
yansm@mail.nwpu.edu.cn

Abstract. In NP-based networking elements, there are various kinds of packet
traffic between data plane and control plane, which have different priorities and
are handled by different tasks running on control plane OS. The critical packets
need to be processed in time, otherwise the system, even the network, may enter
some unstable states. Thus, the packets should be processed according to their
priorities, i.e., packet-processing tasks for more important packets should be
executed sooner if they are both in ready state. From the perspective of control
plane OS design, packet-processing tasks should be scheduled based on some
properties of packets waiting to be processed. This paper proposes a packet
property-based task scheduling policy to alleviate the problem. The design and
implementation are described and the performance results are discussed. The
results show that this scheduling policy can achieve our design goal properly.

1 Introduction

Increasing requirements of network rates and sophisticated networking services make
the traditional networking devices based on GPP or ASIC become a bottleneck of
networking applications. As a solution, Network Processor (NP), which has high
processing rate and flexible programming ability, is adopted in the design of
networking application systems more and more widely. NP generally consists of
multiple packet processing engines and a general purpose processor. Networking
elements like routers and switches often involve two cooperating planes: one is used
for fast packet processing (data plane), and the other is used for exception handling,
data plane configuration and routing/signaling protocol processing (control plane). As
for a NP-based solution, works in the two planes are often accomplished by the
processing engines and general processor individually. There is no operating system
running on the processing engines because data plane functions are usually less
complex but more performance critical. However, for its complexity, control plane is
often equipped with an embedded operating system.

It is evident that there are various kinds of packet flows between the two planes,
especially from data plane to control plane, and each of which may have a unique
priority. Accordingly, on the control plane operating system, there are many different
handling tasks for these packets respectively, such as routing protocol daemons.
These tasks usually have a loop logic as “calling receiving system call1 packet

1 Receiving system calls include select, receive, and send etc.

86 S. Yan et al.

handling calling receiving system call”. In general, control plane tasks can run
slower than data plane ones. But, it does not mean that the control plane functions are
not time critical. In some routing protocols [1], for example, if packets for keeping
alive between neighbors cannot be responded in time, router may be declared down,
and which cause a network wide recalculation of the topology. For these critical
packets, we can expect naturally the related handling tasks should start to run as
soon as possible after packets arrive. Furthermore, if there are multiple packets
having arrived at the same time, their handling tasks should be executed in a
suitable order according to priorities of these packets.

However, commonly used control plane OS, e.g., VxWorks and Linux, are lack of
capability to guarantee that. Now, we consider what happens in Linux with a packet
handling task. If the receiving buffer of a task is empty, the receiving system call will
block the task until some packet arrives and make buffer non-empty. After that, the
task will enter ready state. However, it does not mean the task will be scheduled to
run immediately although the scheduling policy in Linux tries to give a higher priority
to the task that are blocked before being waken up. The reason is that there may exist
many other packet handling tasks, or even other I/O tasks having been waken up just
now. As Linux does not differentiate packet handling tasks with ordinary I/O tasks
and does not distinguish among packet handling tasks, a task for the most critical
packet may not necessarily be able to acquire CPU and the packet processing may be
delayed. This delay could be tens of milliseconds (We name this delay as scheduling
delay.). If other delays in packet journey are also taken into account, we will find
there maybe a quite long latency since a packet is sent out until the packet is handled.
In many occasions mentioned above, this delay may be too long to be acceptable.

To alleviate this condition, we suggest associating task scheduling with packet
attributes and propose a packet property-based task scheduling policy for control
plane OS in NP-based devices. The scheduling policy is able to derive a suitable
priority of the handling tasks according to attributes of the packets they are handling
currently. Thus, it can make more critical packets get processed sooner and suffer
shorter delay. From its open source property and its broad application in network
devices, Linux is chosen as the basis of our study.

The rest of this paper is organized as follows. Section 2 reports related works.
Section 3 gives an overview of relevant implementation in Linux. Section 4 proposes
the design of the packet property-based task scheduling policy and discusses the
implementation of individual components. In section 5, performance evaluation is
presented. Section 6 discusses an improved method and section 7 summarizes the paper.

2 Related Works

Because commonly used operating systems like Linux are not designed for network
processing purposely, they are lack of scheduling support for packet processing.
Previous researches mainly focus on general real-time performance improvement
techniques such as preemptive kernel [2, 3, 4], high-resolution timer [5, 6], and
scheduling policies [7] based on task attributes, e.g., period or deadline of task. Works
in preemptive kernel and high-resolution timer are not in conflict with our packet
property-based scheduling policy because they are for the same goal but address

 A Packet Property-Based Task Scheduling Policy for Control Plane OS 87

different aspects of the problem. In fact, they can be good supporting mechanisms for
our scheduling policy. As for scheduling policies based on task attributes, we think
they are not suitable for network processing environments. In such environments, it is
difficult to determine task attributes like period and deadline because packet arrival
has an asynchronous and even random fashion. Thus, these scheduling policies are
difficult to be applied in network processing systems.

AEM [8], an asynchronous event mechanism in Carrier Grade Linux [11], also
aims at shortening the delay that events suffered. If a packet is viewed as an event,
AEM can be applied for our goal. However, AEM requires all the tasks are
programmed with a completely new programming model. Considering the abundance
of applications currently running on Linux, there will be a huge amount of porting
work to be done. On the contrary, our scheduling policy does not require any
modification to existing applications.

3 An Overview of Relevant Implementation in Linux

Because our study is based on Linux, we now present an overview of relevant
implementation in Linux to give readers some related knowledge. The kernel under
investigation is 2.4.22.

3.1 Kernel Behavior After Packet Arrival

When a packet arrives, the protocol stack will firstly determine whether its destination
is local or remote. If the packet is for a remote host, ip_forward routine is called to
forward the packet. Otherwise, if the packet is for local delivery, sock_queue_rcv_skb
routine is called to append the packet to a socket receiving buffer. Then, in
sock_queue_rcv_skb routine, data_ready, a function pointer to sock_def_readable, is
called. If the handling task for the packet is sleeping on its socket, it is awakened by
wake_up_interruptible routine invocated in sock_def_readable. Finally,
wake_up_interruptible puts the task into the ready list through calling
try_to_wake_up, which will call reschedule_idle routine next. If reschedule_idle
routine finds that priority of current process is less than the awakened one, it will set
need_schedule flag to inform the scheduler to do reschedule.

3.2 The Scheduler

In Linux, a scheduling cycle is called an epoch. At the beginning of each epoch, the
scheduler allocates a time slice, of which default value is about 60ms, to each task
including the ones in sleeping state. The time slice of current task is decreased at each
timer interrupt. When the time slice of each ready task becomes zero, current epoch is
terminated and the scheduler allocates time slice for all the tasks again.

The scheduling policy is implemented in the schedule routine, which is used to
determine which task should acquire CPU. The routine is called when the time slice
of current task is exhausted, when current task returns to user space from system call
or after interrupt handling, when current task goes to sleep, or when a new task is put
into the ready list. schedule routine calculates priority or weight of each task via

88 S. Yan et al.

invocation of the goodness routine and selects the task with biggest priority to run.
The algorithm of goodness() is as follows:

if counter!=0, weight = 20 + counter− nice;
else weight = 0.

Here counter records the remaining number of ticks of task time slice, of which
initial value is about 6. If a task is occupying CPU, its counter will decrease with
time. nice can be used by user to improve or reduce the priority of a process, which
has the following relation with the initial value of counter: initial value of counter =
(20-nice)/4 + 1. Generally, nice ranges between -20 and 19. Thus, we can infer that
the initial value of counter should ranges between 1 and 11. Moreover, when nice is -
20, counter gets 11. As we know, the default value of nice is 0, and thus the default
value of counter is 6.

If time slice of all the ready tasks is exhausted, schedule will reallocate time slice
for all the tasks according to the following formula.

counter = (counter/2) + (20 - nice)/4 + 1

After the reallocation, all ready tasks have time slice equal to initial value of
counter. For each sleeping task, the time slice is equal to the summation of initial
value of counter and half the remaining time slice. Thus, in effect, the weight of
sleeping tasks is improved to make them more competitive after they are awakened.
But, the improvement is limited and not beyond two times of (20-nice)/4+1 [9]. When
nice is equal to -20, counter has maximum value of 22, which is recorded as
CounterLimit. As we has explained above, this priority improvement for sleeping
tasks is not enough and can not guarantee that packet handling task is scheduled to
run right after packet arrives. Thus, we design a packet property-based scheduling
policy to address the problem.

4 Task Scheduling Policy Based on Packet Property

4.1 Concept of the Design

The proposed scheduling policy will discriminate not only between packet handling
tasks and other tasks such as IO handling tasks, but also among packet handling tasks
according to property of packets being processed. The scheduling framework is
illustrated in Fig. 1 and discussed as follows.

After a packet arrives, a property table is looked up with packet metadata as input
to find the priority of the packet.

If lookup succeeds, i.e., there exists a matched item in the table, priority of the
handling task for that packet is calculated according to the packet priority. In our
policy, the calculated priority of handling tasks will be higher than other tasks and the
higher the priority of its packet, the higher the priority of the handling task. This
guarantees the handling tasks for more crucial packets can get more advantaged
position in competition for CPU and thus have a shorter scheduling delay to process
the packets in time.

If lookup fails, it means the system does not regard that packet as critical. Hence,
in our policy, the related handling task is treated as normal task and will be scheduled
with the original policy of Linux.

 A Packet Property-Based Task Scheduling Policy for Control Plane OS 89

Fig. 1. Packet Property-based Task Scheduling Framework

It has to be noted that in general, this policy will not let handling tasks with higher
priorities to starve ones with lower priorities because packet handling usually takes a
very short time. However, for fear that some handling tasks enter an abnormal state in
some conditions, e.g., enters a dead loop due to programming bugs, we design a
guaranteeing mechanism to detect the ill-behaved tasks and degrade them to normal
tasks. This mechanism is presented in detail in section 6.

Our packet property-based task scheduling policy is transparent to applications.
That means the existing applications need no modification and development of new
applications can also pay no attention to it. In fact, an application can be not aware of
the underlying scheduling policy at all, but can benefit from it.

4.2 Packet Property Table and Packet Priority Determining Algorithm

Our scheduling framework relies on a packet property table which consists of many
packet property records. Each record has some packet attribute fields and a priority
field. The Kernel will look up the table to determine priority of handling task before
waking it up. In theory, properties of packet can be any combination of its metadata or
payload. But, for simplicity, we now only consider the metadata of packet. A record
can have the following format.

Here, ip_protocol is protocol field in IP header of packet, which need to be set if
you want to give some protocol certain priority. dst_ip is the destination IP address of

90 S. Yan et al.

packet, which has direct relation to a physical port of certain line card. If you want to
give a priority to packets from certain data plane physical port, you should set dst_ip
field. dst_port is the destination port of packet. src_ip and src_port is source IP
address and source port of packet respectively. packet_priority is the priority you
want to give the matched packets, which should be greater than zero.

Not all the fields of a property record must be set except for packet_priority field.
Some fields may be simply left as blank, which means these fields can match
anything. Packet property table is maintained by system administrator with
configuration tool illustrated in Fig. 1. On the other hand, the table can be set by
applications using programming API.

When we have the packet property table, we can determine packet priority by
looking up the table in appropriate occasion. Obviously, packet priority should be
decided before it is put into a socket receiving buffer. Thus, according to the
discussion in section 3.1, we should add the implementation of packet priority
determining algorithm in sock_queue_rcv_skb routine.

In essence, packet priority determining algorithm is a process of table lookup, i.e.,
looking up the packet property table with packet metadata and obtaining the

 field of the matched record. To accelerate the lookup, we design
two data structure, i.e., a fast cache and a hash table. Thus, the algorithm is a two
level lookup process as follows.

(1) After a packet arrives, a fast cache matching process is started through
comparison between packet metadata and cache content. If succeed, goto (3.)

(2) If fast cache matching fails, a hash key is calculated based on packet
metadata and the key is used to search the hash table. When a conflict in
hash process is encountered, we use a chain to solve the conflict.

(3) A successful fast cache matching or hash table searching returns the
packet_priority field of the resulting record.

(4) If above fast cache matching and hash table searching both fails, we know
that there is no matched record for the packet. Thus, zero is returned. A zero
value indicates that the system regard the packet as an unimportant packet
and the related handling task is treated as a normal Linux task.

Up to now, priority of packet is determined (We should add a field in Linux
sk_buff struct to record the result). Then, the packet is to be put into one socket
receiving buffer (a linked list). The packet is not simply appended at the tail of the list
but it is inserted at a suitable position to guarantee the list has a descendent order by
packet_priority from head to tail. Because handling task always take packet from list
head, the sorted linked list structure in effect can guarantee that at least for the same
task , the higher the packet priority is, the sooner the packet is served.

4.3 Task Priority Determining Algorithm

Now that we have packet priority determined, we can then determine task priority.
According to the description in section 3.2, we implement the task priority
determining algorithm in goodness routine. Thus, we have a new goodness routine as
follows.

 A Packet Property-Based Task Scheduling Policy for Control Plane OS 91

(1) If packetProFlag is TRUE, goto (2). Otherwise, goto (3).
(2) weight = 20 + CounterLimit + packet_priority – nice.
(3) If Counter is not zero, weight = 20 + counter –nice. Otherwise, weight = 0.

Here, packetProFlag, a new field in task_struct of Linux, indicates whether a task is
for packet handling or not.

In the new goodness routine, we can see, packet handling tasks will obtain
advantageous position compared with common Linux tasks because CounterLimit is
greater than counter. As for different packet handling tasks, the priorities of them are
determined by priorities of the packets being processed now. This means handling
tasks for more critical packets will win the competition for CPU. Thus, it is true for
many different tasks that the higher the packet priority is, the sooner the packet
is served. Considering the conclusion in section 4.2, we in fact guarantee that for all
packets in all socket receiving buffers the higher the packet priority is, the
sooner the packet is served.

4.4 Manipulating the Packet Handling Task Flag

In the new implementation of goodness, we have introduced a packetProFlag
variable. In this section, we will discuss when and how to set or clear the flag for each
task. When a packet arrives, there are two cases for its handling task.

Case 1: Handling task is now being blocked to wait for packet
According to analysis in section 3.1, the handling task is sleeping on a socket in this
case. We can set its packetProFlag in sock_def_readable just before kernel wakes up
it by wake_up_interruptible invocation. The process can be depicted as follows.
Firstly, packet_priority field in sk_buff structure of packet is copied to the field with
same name but in task_struct of related task. If packet_priority is greater than zero,
i.e., there exists matched record for the packet in property table, packetProFlag is set
to TRUE. Otherwise, it is set to FALSE. Hereafter, goodness will be called by Linux
kernel to compare the priority of the task that is just awakened with that of current
task. If the awakened task has higher priority than current task, kernel will set
need_schedule flag to TRUE. This then triggers a kernel reschedule procedure. We
can infer that if current task is a common Linux task but not packet handling task, its
priority will always be lower than the awakened task and thus the awakened packet
handling task will be scheduled to run in time.

Case 2: Handling task is now not being blocked to wait for packet
In this case, the handling task is now processing other packet while a new packet is
arriving. The new packet will be put into socket receiving buffer by kernel, and when
the task issues another receiving system call, it will return immediately because it can
get packet from the buffer. We can modify the implementation of the receiving
system calls and add codes to manipulate the packetProFlag. In our new receiving
system call implementations, packet_priority field in sk_buff structure of packet is
copied to the field with same name but in task_struct of current task. As in case 1, if
packet_priority is greater than zero, packetProFlag is set to TRUE. If not, it is set to
FALSE. At the same time, need_schedule is set to TRUE, which triggers the kernel to
do reschedule. After the reschedule, if current task is still the task with highest
priority, it keeps to run. Otherwise, it means there must be a task just awakened by a
packet with higher priority and current task has to be preempted out.

92 S. Yan et al.

4.5 Redesign of ip_forward

From the analysis in section 3.1, we know that kernel protocol stack will invoke
ip_forward routine to forward the packets for remote host. In current implementation
of Linux, this forwarding routine executes in a soft interrupt environment and thus has
a higher priority than packet handling task. However, in control plane OS for network
processor, many packets for local delivery have higher priority than packets to be
forwarded in fact. Thus, forwarding should not always be preferred and the design of
forwarding process should be retrofitted. Our proposal is to give ip_forward an
incarnation of Linux kernel thread, which makes it get out of soft interrupt
environment. Besides, we add a forwarding buffer for the ip_forward kernel thread
mimicking the socket receiving buffer of packet handling task. The kernel protocol
stack will put the packet to be forwarded to the forwarding buffer. As a kernel thread,
ip_forward will loop to check the forwarding buffer. If the buffer is empty, it will be
blocked. If not, it will read a packet from the buffer and forward it out. Thus, in
essence, ip_forward thread now has a common structure with packet handling task
and can be regarded as a packet handling task. That is to say, the packet property-
based scheduling policy can be applied to this thread too. We can set various records
in the packet property table for different data flows to be forwarded. In this way,
ip_forward can introduce some flavor of QoS through giving different treatment to
packets belonging to different data flow, which is obviously better than the original
FIFO implementation.

4.6 Packet Property Table Configuration Tool and API

In addition to modifications to kernel presented above, we also provide system users a
table configuration tool to manipulate the packet property table. As illustrated in
Fig. 1, the tool consists of two components: a table interface kernel module and a user
space tool. The kernel module implements table reading and writing functions and
provide IOCTL interfaces through a character device to user space applications. The
user space tool fulfills table manipulating commands from system administrator
through issuing IOCTL calls to the character device. The system administrator can
construct suitable table records in system wide based on his knowledge of the system
using the configuration tool. The IOCTL interfaces can be used as the programming
API by developers of packet handling application to set task wide records in the
packet property table.

If user does not want to give some packets importance any more, he can simply
remove related records. This make the handling tasks behave as normal Linux tasks
when such packets arrive. Thus, we can say our proposed scheduling policy is very
flexible in real application.

5 Performance Evaluations

Packet property-based scheduling will make packet handling tasks get higher
priorities than normal Linux tasks and their priorities are proportional to importance
of the packets they are handling. As a result, such a scheduling policy should make
packet handling tasks for more critical packets experience shorter scheduling delay.

 A Packet Property-Based Task Scheduling Policy for Control Plane OS 93

Fig. 2. Experiment Platform

And as for total delay packets experienced, the conclusion should also be true because
scheduling delay is part of the total delay. Thus, in our experiments, delays that
packets experienced are measured.

Our experiment platform is illustrated as Fig. 2. There is an ENP2611 [10] network
processor board and three Linux/PCs. They are connected through gigabit fiber
channel. On each PC, there runs a UDP client program which sends a packet of 500
bytes to ENP2611 board with predefined interval (i.e., 30ms for PC1, 40ms for PC2,
and 50 ms for PC3). On control plane of ENP2611, i.e., the XScale processor, there
runs three UDP servers which receive packets from the three UDP clients
individually and send back the received packets immediately as acknowledgements.
Besides, there are 20 or 40 background common tasks (bckgrd) which possess a loop
logic as “computing for 10ms sleeping for 200ms computing for 10ms”.
According to original scheduling policy of Linux, sleeping periodically will make
bckgrd tasks get relatively high priority after being awakened. Thus, they are very
advantageous competitors for CPU in original Linux.

We give packets from the three UDP clients different priorities individually
through setting property table, i.e., give low priority to packets with 30ms interval,
medium priority to packets with 40ms interval, and high priority to packets with 50ms
interval. We measure the time since UDP clients sent packet out until they received
the reply for common Linux case and extended Linux case. In each experiment, we let
each UDP client send out 100,000 packets.

The results are shown in Table 1. For constraints of paper length, we only
present in the table the delay data of packets with high priority. As for packets for low
and medium priority, our results show that they experience a little longer delay than
packets with high priority, but the bckgrds have no influence on them. This proves
that packet handling task has advantage over common Linux task.

From table 1, we can see that on original Linux, packets of high importance was
still delayed for so large a time span that it is cannot tolerable in some cases
mentioned in section 1. The long delay is because that original Linux does not
differentiate among packets and not differentiate between packet handling tasks and
common I/O processing tasks (In our experiments, bckgrd simulates the behavior of
I/O processing task.). However, in the extended Linux, the average packet round trip
time and round trip time of most packets both stay at a very lower level. Also, the

94 S. Yan et al.

results for packets with high priority are not influenced by the number of bckgrd and
other packets with lower priority.

Table 1. Experimental Results

Packet
Number with

RoundTripTime<
200us

Packet Number with
RoundTripTime>10ms

Average
RoundTripTime

Original
Linux (20
bckgrd)

93,578 2,019 178us

Extended
Linux (20
bckgrd)

99,958 5 89us

Original
Linux (40
bckgrd)

91,244 3,019 271us

Extended
Linux (40
bckgrd)

99,957 4 91us

6 An Improved Algorithm

In general, our scheduling policy will not let handling tasks with higher priority to
starve ones with lower priority because packet handling usually takes a very short
time. However, in some abnormal cases, e.g., a packet handling task enters a dead
loop due to programming bugs, the task will not go to sleep and thus not relinquish
the CPU until packet with higher priority arrives. If no packet with higher priority
arrives for a long period, other tasks will be starved. To attack such a problem, it is
necessary to have a guaranteeing mechanism to detect the ill-behaved tasks and get it
out of the abnormal conditions in time. In our design, a variable called
packetProCounter denoting the maximum time slice a packet handling task can have,
is introduced for each packet handling task. This variable can have different value
from counter variable of common task but will be decreased at the same time when
counter is decreased (Usually, the decrease is done when timer interrupt occurs).
When the handling task is scheduled to run due to it has the packet with highest
priority, the packetProCounter variable is initialized. And later, its value is decreased
when each timer interrupt occurs. Here, we have an expectation that the task should
go to sleep before the maximum time slice is exhausted. Thus, if the packet handling
task still runs when packetProCounter becomes zero, the kernel knows that there
should be something wrong with the task. In this case, the kernel will degrade this
packet handling task to a common Linux task (The kernel simply sets its

 A Packet Property-Based Task Scheduling Policy for Control Plane OS 95

packetProFlag to FALSE.). Thus, this ill-behaved task will no longer have advantages
over other tasks and will not starve other tasks any more.

With this mechanism integrated, we have an improved algorithm for goodness as
follows.

(1) If packetProFlag is TRUE, goto (2). Otherwise, goto (3).
(2) If packetProCounter is not zero, weight=20+CounterLimit+packet_

priority-nice; Otherwise, weight=0 and packetProFlag is set to FALSE.
(3) If counter is not zero, weight=20+counter-nice; Otherwise, weight=0.

7 Conclusions

This paper proposes a packet property-based task scheduling policy for control plane
operating system of NP-based network elements. This policy determines priority of
packet handling task based on properties of the packets it in charge of. With this
scheduling policy, we can make packets get processed in an appropriate order and keep
the system or even the network away from some related unstable states. The
experimental results show that the scheduling policy can achieve our design goal
properly. Because the research is for network processing system purposely, the
scheduling policy is only for packet handling now. But, with minor extensions, we
believe the policy can also be used to handle other events. In the future, we will extend
current work and form a more general event property-based task scheduling policy.

Acknowledgements

This work is supported by the 863 project of China (No. 2003AA1Z2100) and the
Scientific and Technological Innovation Foundation for Youth teachers of NPU (No.
M016213). We gratefully acknowledge the financial and technical support from the
committee of the 863 project. We also wish to thank the anonymous reviewers for
their constructive comments.

References

1. RFC 2328 - OSPF Version 2, http://www.faqs.org/rfcs/rfc2328.html
2. MontaVista, Powering the embedded revolution, http://www.mvista.com.
3. Shui Oikawa and Raj Rajkumar, Linux/RK: A portable resource kernel in Linux. In IEEE

Real-Time Systems Symposium, December 1998.
4. Yu-Chung and Kwei-Jay Lin. Enhancing the real-time capability of the Linux kernel. In

IEEE Real Time Computing Systems and Applications, October 1998.
5. Mohit Aron and Peter Druschel, Soft timers: Efficient microsecond software timer support

for network processing, ACM Transactions on Computer Systems, August 2000.
6. KURT Linux, http://www.ittc.ku.edu/kurt/
7. Linux Kernel Scheduler Enhancements, http://tik.cs.hut.fi/~knuppone/kernel/
8. AEM – The Linux Asynchronous Event Machanism, http://aem.sourceforge.net/
9. D. Bovet and M. Cesati, Understanding the Linux Kernel, O'Reilly & Associates, 2001.

10. Radisys, ENP2611 Data Sheet, Radisys, 2003
11. Carrier Grade Linux, http://www.osdl.org/lab_activities/carrier_grade_linux/

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 96 – 106, 2005.
© Springer-Verlag Berlin Heidelberg 2005

RBLS: A Role Based Context Storage
Scheme for Sensornet*

Qin Huaifeng and Zhou Xingshe

School of Computer Science, Northwestern Polytechnical University
qinhf@mail.nwpu.edu.cn

zhouxs@nwpu.edu.cn

Abstract. To addressing the self adaptation problem arises from large scale
densely deployed sensornet, we argue that integrating the principle of context
aware with sensornet is feasible. To build such a context aware sensornet,
proper context describing and storing mechanisms must be provided. In this pa-
per, we propose RBLS, a Role Based Local Storage scheme. RBLS is designed
simple and energy efficient. Aimed at providing context storage support for
sensornet, RBLS stores contexts at node’s local space and dynamically allocates
extra spaces according to the roles a node holding. A “snapshot” is used by
RBLS to record a neighbor’s private contexts. We evaluate the performance of
RBLS against a primitive scheme. Simulation results are included in this paper.

1 Introduction

Advances in MEMS technology, wireless communications, and digital electronics
have enabled the development of low-cost, low-power, multifunctional sensor nodes
that integrating the ability of sensing, computing, and communication[1]. The low per
node cost will enable the development of densely distributed sensor networks for a
wide range of applications. While single sensor node can perform signal processing
and computation, its ability is limited. Nodes in these dense networks will coordinate
to accomplish sensing task. These large number of wireless connected sensor nodes
composed a distributed ad hoc network which we call sensornet. Usually, sensornet is
deployed in remote and hostile environment where manual configuration is not al-
ways possible. To achieve scalable, robust and long-lived goal, nodes of sensornet
must be self adaptable. Learning the lesson from context aware computing, we pro-
posed the idea of context aware sensornet (CASN) [2]. Nodes of CASN are able to
adjust their behaviors according to the relevant situation, that is, be context aware.

One of the challenge arises from CASN is the representation of context. To
efficiently using context, context aware systems should provide permanent or tempo-
ral context storage schemes. As most of the traditional context aware systems are built
upon well defined infrastructure, they care little about context storage problem. There
are many off the shelf database products can be selected by these systems to store
context. However, the situation of CASN is different. In CASN, there is no mature
data storage technology can be directly applied. The limited memory size and battery
energy of sensor node worsen the problem of context storage in CASN.

* The paper is supported by Doctorate Foundation of Northwestern Polytechnical University

(No.200348).

 RBLS: A Role Based Context Storage Scheme for Sensornet 97

Different from traditional context aware system, we consider that CASN is node
centric. That is, the situations of the node and the neighbor but not the situations of
the human are important to CASN. Limited by the radio range, to communicating
with other nodes hops away, one node must depend on its neighbors to relay the
packets. Therefore, node’s neighbors are the immediate objects a node can interact
with. We believe that the contexts of the neighbors’ have important impact on node’s
decision of adjusting its behaviors while other peer nodes’ context may have no effect
on it. Also, there are some global contexts which are meaningful to the node. For
example, the location of the sink node can contribute to selecting next hop node in a
context aware routing algorithm. But we argue that accessing global context is not
frequently happened in CASN. Be node centric, query of context is initiated within
sensornet by the sensor node but not by the user of the sensornet. Again, this kind of
query is frequently initiated between pairs of adjacent nodes. Considering the costs of
communication, storing contexts on a centric point (within or outside the sensornet) is
inefficient and energy consumptive. Therefore storing node’s context locally is more
suitable and can results in significant energy savings [3].

In a summary, context storage problem of CASN exhibit following features:

• A node can act as both the producer of the context and the consumer of the con-
text.

• There are global contexts in CASN.
• Contexts of neighbors have important impact on node’s behavior.
• Partial query and local storage is the primary query & storage mode of CASN.

Considering the features above, in this paper, we proposed a role based local stor-
age scheme, which we call RBLS (Role Based Local Storage). RBLS is designed
simple and energy efficient. It is a distributed storage scheme. There is no single cen-
tric storage point provided in RBLS. Sensornet scale up or adding new context has
gentle effects on the overhead of RBLS.

In this paper, we present the motivation and the algorithms of RBLS. The remain-
der of this paper is organized as follows. Section 2 reviews some related research
work. Section 3 describes our previous. Then in section 4 we present our approach of
RBLS. Section 5 gives a simulation result and conclusions are in Section 6.

2 Backgrounds and Related Work

Computers in traditional context aware systems are designed to adapt its behavior
according to the context of user. However, be node centric, each node of CASN is
expected to adjust its behaviors according to the situation of other peer nodes. A node
can get services from other nodes. It can also provide services to other nodes. How-
ever, sensor node is indistinctive from one to another. This makes it difficult to pro-
gram specific actions for specific node. To distinguish these indistinctive nodes, we
proposed a sensor society model to modeling sensornet[2]. A sensornet can be mod-
eled as sensoc:

Sensoc=(SAgent, SCL, SRole, SRule, f)
• SAgent is a non-empty set of society member.
• SCL is the communication language of society.

98 H. Qin and X. Zhou

• SRole is a non-empty set of society role names.
• SRule is the sets of social rule all members should obey.
• f(SAgent T SRole This function indicates that at time t, each member of the

society should be assigned at least one role.

Each role is associated with certain services. By modeling sensornet using sensor
society, each node of sensornet is assigned at least one role. It is assumed that all the
nodes have the common knowledge of sensor society. Therefore, a node can match
the required services based on the roles held by its neighbors. Consequently, a pair of
nodes can act properly according to the roles they are holding. “Role” is an important
concept in CASN. It is also useful to settle the cooperative relationship between
nodes. When considering the enable technologies of CASN, we find that “role” plays
important role.

Referring Dey’s definition of context[4], we defined context of CASN as: Context
of CASN is any information that can be used to characterize the situation of the entity
that is involved in sensornet actions. Entities of CASN include sensor nodes, sensing
task and sensing data. This definition is given under the background of sensornet.
Based on this definition, context of CASN is categorized into node context (including
role context), task context and sensing data context. To use context effectively, con-
text must be represented properly. However, restricted by node’s limited resource,
existing context represent technologies such as ontology based method can not be
applied in CASN. Referring ontology’s concept of knowledge sharing, we proposed a
Micro Sensornet Ontology (μSONG). μSONG provides simple and flexible way to
expressing context. It is also helpful when reasoning high level context in
CASN1.μSONG provides: (1) a set of CASN context vocabulary; (2) formalized con-
text describing method; (3) semi-formalized relationship describing method.

Another important work of context representation is providing permanent or tem-
poral context storage scheme. While most of the traditional context aware systems
care little about context storage problem, resource restricted feature of sensornet ex-
trude the problem distinctively.

Most of the traditional context aware researches apply off the shelf database prod-
ucts to store permanent context. However, those database products are too big to be
adopted by CASN.

Data management is one of the hottest research topics of sensornet. Many re-
searches have studied the data storage problems of sensornet, such as[3;5-9], etc.
However, considering the application backgrounds of sensornet, how to manage data
streams originated from thousands of sensor nodes in energy efficient manner and
report the events occurred in target regions to the user timely is crucial to these re-
searches. As boosted by the need of the specific application, technologies derived
from these researched are usually application specific and need specific supporting
infrastructure. Queries are usually initiated outside the sensornet by sensornet user. As
data type, data scale and data accessing modes of these two kinds of schemes are
different, a special designed light weighted context storage scheme for CASN is
required.

1 Detailed introduction of μSONG is beyond the scope of this paper. We will discuss it in

another paper.

 RBLS: A Role Based Context Storage Scheme for Sensornet 99

3 Our Approach of Context Storage

In this section, we first show a primitive way of context storage. Then referring to this
primitive scheme, we discuss our role based context storage scheme.

3.1 A Primitive Way

As discussed before, considering the context accessing mode of CASN, storing con-
text on node is reasonable. A node provides context to its neighbor, but it also gets
context from its neighbors. A context storage scheme should facilitate the context
storing and accessing between nodes.

A primitive context storage scheme is allocating all the required spaces in one
time. Considering the node be a context provider, the scheme allocates spaces for
each context listed in μSONG vocabulary. Let’s tag the region allocated as S. Now,
considering the node be a context consumer, a simple way to get neighbors’ contexts
is copying their contexts to node’s local space. At the first time, node copies the
whole S from its neighbor, after that, it only updates neighbor’s changing contexts.
Therefore, the available contexts a node can get are the collections of contexts its
neighbors provided. When a node gets global context from one of its neighbor, it
updates the corresponding context it provided and inform the change to its neighbors.
Then neighbors of this node also get this global context.

Let’s use s denoting the size of μSONG vocabulary, use t(i) denoting the space re-
quired by i-th context. Supposing each node has n neighbors. Then using this primi-
tive storage scheme, the spaces required by a node can be expressed as:

() ()
1

1
s

i

n t i
=

+ × (1)

The advantages of this primitive scheme lie in that it is simple to implement and it
can ease the localized processing of context. However, its disadvantage is also dis-
tinct. First, the contexts a node can provide are uncertain during life of the node. Al-
locating spaces for all the contexts listed in μSONG vocabulary wastes node’s pre-
cious memory space. Second, as many nodes can provide same global context, copy-
ing all the contexts from a node’s neighbors may result storing redundant contexts.
Finally, if s and n are large enough, totally spaces required by a node will very big.
Besides this, required spaces will increase rapidly when sensornet grown bigger or
new context added in.

3.2 Node’s Local Contexts

Obviously, a node does not necessarily providing all the contexts in μSONG vocabu-
lary. To study the minimized contexts set node is required to provide, we decompose
the contexts residing on the nodes. Fig.1 shows the contexts residing on n nodes.

Fig.1 divided contexts into two parts. The one is basic context which is used to
characterize the situation of the node. Some situations or properties of the node are
common for all the nodes, such as node’s ID and node’s location, etc. Basic context is
used for these common situations. The knowledge of basic context is sharing among
nodes. Therefore if node A wants to query the basic context of node B, A needs not to
ask if B can provide it. A can directly query required context by name.

100 H. Qin and X. Zhou

Fig. 1. Node’s local contexts

Except basic context, other contexts residing on the node are categorized into pri-
vate context. A node has no previous knowledge of its neighbor’s private context.
Therefore if node A wants to query the private context of node B, the first thing it
need to do is confirm that B can provide specific context. Private context includes
global context and extra context. Supposing global context is diffused through the
sensornet from one node to another, different node may have different global context.
When node undertakes specific processing, it may get extra contexts and provides
them consequently. For example, to execute sensing task, a node may get and provide
task contexts.

The number of node’s private context is uncertain. Therefore, dealing the uncer-
tainty of node’s private context is important to designing reasonable context storage
scheme.

3.3 Role Based Local Storage Scheme

Based on the analysis above, we proposed a localized context storage scheme - Role
Based Local Storage (RBLS). The motivation of RBLS is storing minimal contexts on
node. Therefore, RBLS avoids allocating storage space for all the contexts in one
time. Also, RBLS does not support totally copy neighbor’s contexts to local space.

We argue that the difference of nodes’ private context is actually resulted from the
different roles nodes holding. For example, if the role Sensor is held by the node that
execute sensing task and the role Router is held by the node that help forwarding sens-
ing data, the contexts required by these tow roles may different. A Sensor node may
require specific task contexts to decide the types of sensor, the frequency of sampling,
the duration of sensing task, etc. While a Router node may need the location context of
target node. These specific required contexts are node’s private contexts.

In our sensor society model, Post Condition (PoC) of holding role explicitly ex-
presses the extra information required by the node who holding this role. If we use a
CRD (Context Requirement Descriptor) expressing the extra contexts required by
holding specific role, then the extra contexts required (and thus provided) by a node is
determinable at runtime.

Working process of RBLS can be simply described as below. Initially, RBLS allo-
cates context storage spaces for basic context. Then based on the roles held by node,
RBLS calculates CRD and allocates extra context storage spaces for the node. When
the node lost specific role, context spaces that no longer required are freed by RBLS.

Because RBLS does not support totally copy neighbor’s contexts to local space,
when a node wants to query context from its neighbors, it must know which neighbor
can provide required context. To address this problem, RBLS records a “snapshot” of
neighbors’ private context. RBLS maintains “snapshot” for each of its neighbor.

 RBLS: A Role Based Context Storage Scheme for Sensornet 101

Node’s neighbor table is used to store “snapshot”. Node Id in neighbor table can in-
dex neighbor quickly. Node C in Fig.2 has 3 neighbors (B, C and D). As shown in
Fig.2, node C maintains a neighbor table which stores the “snapshots” of neighbors’
private context.

Fig. 2. Snapshots of neighbors’

Supposing the number of node’s basic context is l, and the number of node’s pri-
vate context is k. The space required to store “snapshot” of i-th neighbor is marked
as ()'t i . Then using RBLS, the space required by the node which has n neighbors can

be expressed as:

() () ()'

1 1 1

l k n

i j

t i t j t
γ

γ
= = =

+ + (2)

Because l k s+ ≤ , we get:

() () () () ()' '

1 1 1 1 1

l k n s n

i j i

t i t j t t i t
γ γ

γ γ
= = = = =

+ + ≤ +

() ()}{ '

1
1

max
s

n
i

t i n t
γ

γ
≤ ≤=

≤ +

Referring formula (1), we can conclude that if the formula below is valid then
RBLS is better than previous primitive scheme. Therefore, the method used to record
private context’s “snapshot” has strong effect on the performance of RBLS.

 ()}{ ()'

1
1

max
s

n
i

t t i
γ

γ
≤ ≤ =

 (3)

3.4 Implementation Issues

In this subsection, we discuss implementation issues related to RBLS.

 Build CRD
Removing basic context from μSON vocabulary, we get a set of private context. Let’s
denote this set as P. P has p members. We use bitmap represent CRD. That is, CRD is

102 H. Qin and X. Zhou

a p bits bitmap and each bit of CRD corresponds with a member of P. Setting a bit of
CRD to 1 indicates that corresponding context in P is required by role and vice versa.

Bitmap can efficiently reduce the size of CRD. However, if p is large, the size of
CRD is also big. For example, if p=256, then each role will require 32 bytes to
declare its extra contexts requirement. To reduce the size of CRD, bitmap must be
compressed. By repartitioning P, we get 4 subsets, i.e. global context, task context,
sensing data context and free context. These 4 subsets are marked as PGlobe, PTask, PData
and PFree and corresponding size are pGlobe, pTask, pData and pFree. Similar to basic con-
text, PTask includes minimal contexts for characterizing sensing task, while PData in-
cludes minimal contexts for characterizing sensing data. All the other contexts that
can not be included in PGlobe, PTask and PData are categorized into PFree. We argue that
if a role require task contexts, all the members in PTask are required. Carried the idea
farther, as sensing data is the product of executing sensing task, we infer that if a role
require task contexts, members in Task DataP P are all necessary. Therefore, as shown

in Fig. 3, a p bits bitmap can be compressed to a pGlobe+1+pFree.

pGlobe 1 pFree

PTask PData

Compressed bitmap

Using 1 bit representing
members of PTask PData

Fig. 3. Bitmap compression

Each node maintains a CRD. Each role is assigned a CRD when definition. To
identify them, role’s CRD is marked as rCRD. CRD is recalculated when node’s hold-
ing roles changed. In a summary there are 3 kind of role changing situation: getting
new role, getting extra role, and losing role. CRD is recalculated according to one of
these 3 situations. Shifting role from one to another is seen as the process of losing
one role first then getting another role. During this process, CRD is calculated twice.

 Allocating spaces for private context
A node got new role may require extra contexts and need additional storage spaces.
While a node lost role may result freeing unnecessary context space. Different from
calculating CRD, RBLS does not trigger space reallocating action at each point of
role changing. In fact, RBLS reallocates spaces based on calculated CRD. And this is
happened when the whole role changing process is finished.

To handle the spaces allocated, RBLS also maintains a CAB (Context Allocation
Bitmap) to mark the spaces allocated for. CAB is in fact a copy of CRD. However,
after CRD changed, RBLS can compare CAB with CRD to find the contexts that no
longer require by the node and correctly free corresponding spaces.

When reallocating spaces for private context, RBLS first frees no longer required
spaces then allocates spaces for newly added contexts. When freeing spaces, RBLS
calculates the value of CAB CRD∧ ¬ . The bits that set to “1” in result indicate that
corresponding contexts are no longer required. Fig. 4(a) shows the process of finding
contexts that no longer required. To ease illustrating, 8 bits bitmaps are used. Again,
when allocating additional spaces, RBLS calculates the value of CAB CRD¬ ∧ . The

 RBLS: A Role Based Context Storage Scheme for Sensornet 103

bits that set to “1” in result indicate that corresponding contexts require allocating
new spaces. Fig. 4(b) shows the process of finding contexts that require allocating
new spaces.

CAB CRD∧ ¬ CAB CRD¬ ∧

Fig. 4. Free vs. Allocating

 About “snapshot”
One good feature of CRD is that it also records the private context node provided. It
can be proved that using CRD as snapshot can satisfy the restriction of inequality (3).

Because (){ } ()
1

1

min
s

i s
i

s t i t i
≤ ≤ =

< is valid, to satisfy ()}{ ()'

1
1

max
s

n
i

t t i
γ

γ
≤ ≤ =

, we need to

prove that the inequity ()}{ (){ }'

11
max min

i sn
t s t i

γ
γ

≤ ≤≤ ≤
is valid. As CRD is used as “snap-

shot”, it can be inferred that ()}{ '

1
max 1Globe Free

n
t p p

γ
γ

≤ ≤
= + + .

 Because 1Globe Freep p s+ + < , we only need to prove that (){ }
1

s min
i s

s t i
≤ ≤

is valid. It

is equal to (){ }
1

1 min
i s

t i
≤ ≤

. Obviously, this inequality is valid.

A node gets complete CRDs from its neighbors when building neighbor table at
initialization phase. Later, if neighbor’s CRD changed, “snapshot” of the neighbor
must be synchronized. To reduce packet size, when synchronizing “snapshot”, CRD
does not always being sent completely. RBLS adopts a zone based way to update
“snapshot”. As Fig. 3 shown, there are 3 zones in CRD. If the change of CRD occurs
only in one of these 3 zones, neighbor can sent only the CRD fragment of that zone to
the node. This avoids resending whole CRD every time.

Table 1. CRD zone codes

00 Updating whole CRD 01 Updating PGlobe zone only
10 Updating PTask PData zone only 11 Updating PFree zone only

3.5 Long Term Storage

Long term storage is provided in CASN. However, it is not “long” enough to store
history contexts days or months ago. As CASN is node centric, most of the contexts
are node’s situation related. It is a fact that to adjust node’s the behavior, contexts
minutes ago is much meaningful than contexts days ago. Therefore, CASN only

104 H. Qin and X. Zhou

stores history contexts a short time ago. FIFO queues are used to manage history
context. Historic contexts belong to same context are queued into same queue.

4 Simulation Results

We have coded an implementation of RBLS by adding new library into TinyOS[10].
We also evaluate the performance of RBLS using TOSSIM[11].TOSSIM is a simula-
tor for wireless sensor networks. It can capture network behavior at a high fidelity
while scaling to thousands of nodes. We employ a grid topology which has same
distance between two nodes. Radio range used in TOSSIM is 50 feet. This means
each mote transmits its signal in a disc of radius 50 feet. The radio model we used in
our simulation is “lossy” model. The “lossy” radio model means that a bit transmitted
by a node has a certain chance of being flipped. The probabilities of bit error between
pairs of nodes can be generated using LossyBuilder tool which provided with
TOSSIM. In our simulation, a node sends CRD to its neighbor respectively. If the
neighbor receives CRD, it echoes a respond. Node will send CRD repeatedly until all
the neighbor responded or it reaches max retry times.

There are 37 contexts in our simulation. In these contexts, 15 contexts belong to
basic contexts; 10 belong to task context; 5 belong to sensing data context; 2 belong
to global context and 5 belong to free context. Therefore, there are totally 22 contexts
can be used as private context. These 22 contexts can be described using an 8 bit
CRD. To simplify the scenario, we assumed that each context occupied 6 bytes space.
There are 3 roles (R1, R2, and R3) defined in our simulation. The CRD of R1 is zero
which means that R1 does not require extra contexts. The CRD of R2 is 00101000. The
CRD of R3 is 10011100. Each node is originally assigned a role R1. Node’s holding
role can shift from one to another. Role shifting actions happen at least once every
half-hour. Simulation time is 5 hours after all nodes is initialized.

In our first test, we measured the spaces required by single node that holds R1 using
RBLS and primitive scheme respectively. We vary the number of node’s neighbor.
Fig.5 (Test#1) shows the result. The result shows that when node’s neighbors in-
creased, spaces required by node using primitive scheme increased sharply. However,
when using RBLS, space augment was not so remarkable. In our second test, we
measured the spaces required by a node when it holds different roles. In this test, node
has no neighbor. Fig.5 (Test#2) shows the result. The result reveals that role shifting
has no effect on the performance of primitive scheme. However, at each point, using
RBLS consumes fewer spaces than using primitive scheme.

Our third test measured the max messages transmitted by node using RBLS. Node
density in this test is 4 nodes/35 feet2. We vary the network size. Fig.5 (Test#3) shows
the result. As shown in figure, network size has no significant influence on the per-
formance of RBLS. This result coincides with our expectation. As we mentioned
before, node’s situation is influenced by the nodes in neighborhood. Therefore result
in Fig.5 (Test#3) is reasonable.

In our last test, we measured maintaining costs of RBLS and primitive scheme. We
use a moderate network size (100 nodes) and vary the deploy density of sensornet.
Fig.5 (Test#4) shows max messages transmitted by node having max neighbors.
Simulation result shows that max messages transmitted increase sharply when node

 RBLS: A Role Based Context Storage Scheme for Sensornet 105

density is high. We think this can ascribe to our CRD updating mode. Because a node
sends CRD to its neighbor respectively, when node’s neighbor increased with the
increase of node density, the node must send more messages. Interesting, when the
distance between two nodes is close to 50 feet, messages transmitted increased too.
We believe this is because bit error rate is increased sharply when the deploy distance
close to 50 feet. As a result, node must always resend messages time and times again.
Reducing node’s retry times may optimize the performance. Results from Fig.5
(Test#4) reveal that maintaining costs of RBLS is much lower than that of primitive
scheme.

Fig. 5. Simulation result of RBLS

5 Conclusion and Future Work

This paper presented the design and evaluation of RBLS, a context storage scheme for
sensornet. Our analysis reveals that dealing the uncertainty of node’s private context
is important to designing reasonable context storage scheme. We argue that the differ-
ence of nodes’ private context is actually resulted from the different roles they are
assigned. Extra contexts required (and thus provide) by a node can be determined by
the roles held by it. RBLS takes advantage of this feature and allocates context stor-
age space dynamically.

106 H. Qin and X. Zhou

In a summary, RBLS is a simple and energy efficient context storage scheme. Our
simulation results show that maintaining costs of RBLS is very small comparing to
that of primitive scheme. Another good feature of RBLS is that the size of sensornet
has no significant effects on its performance. The simulation results show that the
number of messages transmitted increases rapidly when node density increased. How-
ever, when node density increased, redundant nodes are also increased. We believe
that the performance of RBLS can be improved by dynamically turn some redundant
nodes off.

A cache may useful for some frequently queried contexts. Currently, we are work-
ing to enable RBLS support cache. We expect this feature can improve the perform-
ance of RBLS farther. RBLS is one of the enable technologies of CASN. Based on it,
we are intending to develop a context managing component to providing transparent
context accessing services to CASN applications and other CASN services.

References

[1] I.F.Akyildiz et al., "Wireless Sensor Networks: a survey," Computer Networks, vol. 38,
no. 4, pp. 393-422, 2002.

[2] Qin Huaifeng and Zhou Xingshe, "Integrating Context Aware with Sensor Network," to
appear in Proceedings of the 1st International Conference on Semantics, Knowledge and
Grid (SKG2005), 2005.

[3] Deepak Ganesan, Deborah Estrin, and John Heidemann, "DIMENSIONS: Why do we
need a new Data Handling architecture for Sensor Networks?," in Proceedings of the
ACM Workshop on Hot Topics in Networks, pp.143-148, 2002. ACM Press.

[4] Anind K.Dey and Gregory D.Abowd, "Towards a Better Understanding of Context and
Context-Awareness," in Workshop on The What, Who, Where, When, and How of Con-
text-Awareness, as part of the 2000 Conference on Human Factors in Computing Sys-
tems (CHI 2000), Hague, Netherlands, Apr.2000.

[5] Benjamin Greenstein et al., "DIFS: A Distributed Index for Features in Sensor Net-
works," in Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications, May.2003.

[6] Yong Yao and Johannes Gehrke, "The Cougar Approach to In-Network Query Process-
ing in Sensor Networks," SIGMOD Record, vol. 31, no. 3, pp. 9-18, 2002.

[7] Samuel Madden et al., "TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Net-
works," in Proceedings of the Fifth Symposium on Operating Systems Design and Im-
plementation (OSDI), pp.131-146, Boston, MA, USA, Dec.2002.

[8] Xin Li et al., "Multi-dimensional Range Queries in Sensor Networks," in Proceedings of
the First International Conference on Embedded Networked Sensor Systems, 2003.

[9] Sylvia Ratnasamy et al., "GHT: A Geographic Hash Table for Data-Centric Storage," in
Proceedings of the First ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA 2002), pp.78-87, Sep.2002.

[10] TinyOS, http://www.tinyos.net/, 2005.
[11] Philip Levis et al., "TOSSIM: Accurate and scalable simulation of entire TinyOS applica-

tions," in Proceedings of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), Nov.2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 107 – 116, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CDP: Component Development Platform
for Communication Protocols

Hong-Jun Dai, Tian-Zhou Chen, Chun Chen, and Jiang-Wei Huang

College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
{Dahogn, tzchen, chenc, hjw}@zju.edu.cn

Abstract. Complexity of software systems has significantly grown with social
dependence on computer system, especially for mobile and internet. So we pre-
sent component-based communication protocol architecture. In this architec-
ture, Component Development Platform (CDP) is the kernel software. CDP is
one of the rapid communication components’ development tools. It is the col-
lection of views and plug-ins to form a series of tools and it takes much flexibil-
ity and configuration ability. For the customization of component-based com-
munication protocols, code analysis tools make a good abstract from original
practical source codes to visual structure model too. This becomes the feasible
guidance and roadmap to develop the components and component-based com-
munication protocols.

1 Introduction

Complexity of software systems has significantly grown with social dependence on
computer system. Especially communications become prevalent with more complex-
ity, such as mobile and internet. To deal with these, software systems model with
component-based architecture such as COM, CORBA and EJB [7]. Many tools for
complex systems have widely used to aid programmers such as IDE and CASE tools.

On the other hand, embedded communication systems have universally used for
mobile and internet, for example, wireless mobile telephones and internet routers. It is
different with common applications because of the limitation of processor speed or
memory capability [2, 3]. This brings different component-based architecture to soft-
ware development, test and maintenance. It is in great need of convenient tools.

Communications are maintained by communication protocols. The protocols are
more complex because of the consideration of synchronization, mutex etc [4]. For
embedded systems, there are many kinds of embedded operating systems (EOS).
Protocols need transport among various EOS. Furthermore, system support for
communications may be partial and fixed because of the hardware limitation, so
protocols may transplant according to device too. The transport equals to protocol
implementation.

The utilization of component-based communication protocols is a good solution to
reduce the repetitive implementation of protocols [6]. This also brings more flexible
functionality. We present component-based communication protocol architecture
(CCPA) [1] to develop, test, store, assemble and load the components. In this

108 H.-J. Dai et al.

architecture, component development platform is the kernel software. Good develop-
ment tools can lead to high efficiency.

CDP is an IDE to develop and test the communication components. The protocols
for given hardware and EOS are made up with these components. IDE may be not
necessary for software development. Usually we can use a series of tools in order,
with a name tool-chain. So developers need to read many documents, which describe
the developing process from beginning to end. For example, the organization of the
projects, the usage of cross-platform compilers and build tools, the test and quality
assurance of the products, the storage of the products [5]. Each step uses the specific
tool, this makes the development so complex. If CDP exists, we can link all these
tools together and use them within this IDE.

For a long time, we have paid much attention to design and implement compo-
nents. Common compilers such as gcc (g++), JDK, and common commercial IDE
such as Visual C++, Borland C++ Builder, are generally used for the protocol devel-
opment. There is few optimization and customization for the development of commu-
nication protocols. We can find the features of this kind of development.

There is a strong resemblance among various protocol implementations. The trans-
port is only suitable for hardware or EOS. We can analyze the existing stable source
codes to abstract the unalterable parts. In CCPA, we rewrite these source codes as
components, so the analysis should point to the loose coupling points. CDP then pro-
vides a guidance to assemble and describe the components.

To reduce the complexity of embedded software development, the process to com-
pile and debug is seldom on chip. We use tool chains target to the embedded systems.
There are so many kinds of tool chains that the parameters may be different. We can
analyze the common parameters to abstract a list of popular switches. CDP provides a
uniform interface to programmers suitable for these tool chains.

The components we get are used to assemble protocols. These need to be more sta-
ble and robust, so the components must test strictly. The tests base on two aspects:
component itself and assembly global reliability. Not only the quality of components
but also the usage into protocols should validate. CDP provides the virtual environ-
ments to test components.

On all accounts, CDP is a customized IDE for component-based communication
protocol development. The paper first explains CCPA briefly in Part 2, and then in-
troduces the CDP framework as a whole in Part 3. Code analysis abstract is the kernel
of the paper and it is illuminated in Part 4. Part 5 gives the implementations with
multiple views, various plug-ins and how to link cross-platform compilers.

2 CCPA Overview

CDP is a part of CCPA. CCPA modularizes the implementation of protocols compo-
nent-based. It is the architecture for the development, storage and utilization of par-
ticular components for different EOS. Based on CCPA, We devise multiple light-
weight protocol components that are customized for application requirements and
device characteristics. We can analyze the existing source codes of the protocols,
develop and test qualified components target to different EOS. The stable and certi-
fied components store into a library for further reuse. Only necessary components

 CDP: Component Development Platform for Communication Protocols 109

load into devices automatically or manually, keep partly active according to the cur-
rent network and environment status. The protocols in active can be remote controlled
without the communication shutting down.

CCPA includes a set of correlative software systems, such as Component Devel-
opment Platform (CDP), Component Library (CL), Component Assembly Platform
(CAP), and Operating System Support Environment (OSSE). Component Description
Language (CDL) joins these software systems together and encapsulates the compo-
nents description accurately. A general scenario of the architecture illuminates with
figure 1.

Fig. 1. CCPA Basic Deployment

CDP generates the components suitable for EOS. It uses the certain cross platform
tool-chains customized for target EOS. The built binary components need to check the
quality and reusability. Only qualified components are regarded as stable and stored
into CL. CL is not merely a binary data base for component storage. It does much
quality assurance, exchange and component transfer work. OSSE executes on EOS or
joins into EOS kernel. It supports the component-based protocols and protocol stacks.
It can self-adapt with the application requirements and network environment, or can
manually controlled by CAP remotely. OSSE loads or unloads the components while
keeps the communication services active.

3 CDP Framework

CDP includes many units, which are shown in figure 2. Code editor is an enhanced
text notepad basically. For convenient programming, code assist tools associate
tightly to provide the highlight of the reserved words and auto fill-in of source codes
according to the build-in templates. These templates support C, C++ and Java etc.
Code analysis tools analyze the invoke methods and relations in source codes. Code
wizards generate the templates of source codes framework which are universal to
given programming model. This avoids the iterative boring work to write the change-
less framework codes.

110 H.-J. Dai et al.

Fig. 2. Main units in CDP structure

Build tools are used to link existing tool-chains to compile and link, through which
the source codes compile into binary components executable to target EOS. Test tools
check the quality and reusability of the binary component. It can invoke the compo-
nents on the simulation systems of the target devices and EOS. Press test and integral-
ity test of the component all can finish on these simulation systems. Component de-
scription tools create the CDL files. Sometimes, it is graphic interface which fills in
the items according to the prompt facilities. This avoids the users to know the details
of CDL, because CDL is only the basis of the platform information exchange, it can
be merely understood by software. CL Connector transfers the components and the
corresponding CDL files to CL. Only the components which have passed the test can
upload to CL.

As an IDE, CDP is implemented with Model-View-Control (MVC) patterns. We
design many views to help the visual programming. For more flexibility of CDP or-
ganization, each unit maintains in figure 2 implements as plug-in. A plug-in may
encapsulate the data models and views, it provides extern interface with XML file
descriptions. Each unit has more than one plug-in. We can load useful plug-ins ac-
cording to the project requirements. Only the framework of CDP is unchangeable.

4 Code Analysis Abstract

Almost all the common protocols have at least one version of their robust C language
implementation, because of more efficiency and flexibility. We give the example
using C description too. These source codes are almost used procedural-based pro-
gramming concept. This means the main structure of the codes is that function calls
another function or function is invoked by another function. There is always a "main"
function found as program entry. We present an ideal model of procedural-based
programming like this:

There are no global variables, "goto" statements and macros to substitute functions.
The "main()" function is the unique root of the program. All the functions invoke
other functions hierarchically. All the variables are also all local variables which only
exert within the functions. This means no matter how many source codes, the struc-
ture of the program can be abstracted as a tree and be expressed as tree data structure.
The example codes are shown in program 1 and the tree views are shown in Figure 3.

 CDP: Component Development Platform for Communication Protocols 111

static int udpv6_sendmsg(...)
{
 ...
 udpv6_destroy_sock(sin6);
 ...
 udp_v6_flush_pending_frames(sin6);
 ...
 udpv6_close(sk);
 ...
 return 0;
}
static int udpv6_destroy_sock(...)
{
 lock_sock(sk);
 udp_v6_flush_pending_frames(sk);
 release_sock(sk);
 inet6_destroy_sock(sk);
 return 0;
}
static void udp_v6_flush_pending_frames(...)
{
 ...
 if (up->pending) {
 ...
 ip6_flush_pending_frames(sk);
 }
}
static void udpv6_close(...)
{
 inet_sock_release(sk);
}

Program 1. A segment of ideal source codes

Fig. 3. The tree abstract

112 H.-J. Dai et al.

An integral tree can be cut into several small trees according to the explicit hierar-
chy and few associations exist between the small trees. We can separate the program
tree of above ideal model into several sub-programs too. Each sub-program can com-
pose a component easily. If all the sub-programs are all component-based, the full
functions of programs can assemble through linking all these components.

This ideal model has a certain distance to common C program. On the other hand,
some difference can be found between common C programs and original communica-
tion protocol programs. First, protocols are utilization-oriented that programs nor-
mally divide into many units logistically according to various implementation fo-
cuses. Functions frequently invoke each other inside the unit and seldom invoke the
functions outside its unit. Second, efficiency is the most important for protocol im-
plementation while programming style becomes the secondary, so there are many
"goto" statements, global variables and macro definitions in source codes. Although it
is hard to read, it exists actually. Third, many basic protocols are related to device or
EOS. They are optimized for special hardware, many assembly language codes appear
in the function and functions invoke static library directly.

We find a feasible way to compromise between the ideal model and practical origi-
nal programs. Because the analysis of Code Analysis Tools (CAT) in CDP is only a
generic computer-aided way and there is no need to be too much precise, it is accept-
able to do abstract work to only get the structure of the programs and relations of
calling functions. We can even simplify the practical programs before abstract. We
constitute the following basic rules.

Global variable is a static entity that acts throughout the program. The lifetime be-
gins as soon as program starts and ends until program terminates. We consider global
variables as functions because they have the same scope. We even pre-process the
global variables in programs with function encapsulation: the initializations and value
assignments are regarded as functions "init(), get(),set()".

Macros are the most complicated. But they are widely used in C as constants or
templates. We classify them into two types according to the functionality: simple type
and complex type. Simple type means macro is only the alias of constant or string,
such as "#define TCP_TWKILL_QUOTA 100" or "#define INTEGER int". Other
macros are defined as complex type. They even may be used as substitution of func-
tions or expression segments. They may be used as templates in C++. We care few
about simple type macros because they only can be considered as value substitution.
We can substitute them back during pre-process. In contrast, almost nothing can be
done with the complex type macros because of too much complexity. We usually
leave them unchanged or mark them out.

For procedural-based program, there is a unique starting point which is "main()"
function or a specific function. From this entry, the running process steps forward
statement-by-statement. These statements normally are declaration statements, as-
signment statements, branch statements and loop statements.

Local variables are common in functions. Declaration statements and assignment
statements mainly act on them. Because we care more about the structure analysis,
parameters of local variables can be certain ignored. We omit all the local variables
definitions and value assignments by constants during analysis, because which vari-
ables and which values pass into a function are unconcerned indeed. Concretely, if a
local variable is assigned by function return value, only function invoke is considered.
If a global variable is assigned by a local variable, it is regarded as a "set()" function

 CDP: Component Development Platform for Communication Protocols 113

invoke of the global variable. If the local variable is a function pointer, it needs to be
considered as function invoke too when the pointer is initialized or assigned value.
All the other types of local pointer variables are all omitted.

There are two main types of processing statements: branch statement and loop state-
ment. In the ordinary course, branch statements include "if…else…, switch…case…"
and loop statements include "for…, do…while…, while…" in C language. These
statements divide programs into units according to its scope and construct the structure
of the program.

Loop statement units often can be marked as a whole in the analysis because the
loop unit can hardly be separated alone. We may build a component to contain the
loop unit or abstract a component in the loop units, but the loop is coherent and it is
no use to only pack the segment process of the loop statements.

Branch statements are important for our analysis because there often may be loose
couple point of the program. It may be potential logical division designed by the
original source code programmers. The logical division sometimes shows the division
of the utilization-oriented unit which can form a functional component easily.

There is a special statement: "goto" statement, which is so powerful that the proc-
essing step can jump directly to the specified location. Although the program becomes
artistic and comprehensible, this leads too much complexity and always destroys the
procedural structure of the program. The "goto" statement is considered as a kind of
function invoke from the "goto" statement point to the pointed label. The result of
goto may be branch structure or loop structure. If it is a kind of branch, the division
may take place here too.

After the abstract above, the result approaches the ideal model shown in Figure 3.
The basic relations of the programs are invoking relations among the functions and
the branch or loop statements point to the possible associations among the segments.
This kind of code analysis tools has approximated original programs as the tree
model, which can be used to guild the division of suitable components.

5 Implementation Details

We use CDP for a kind of enterprise router protocol development. The main interface
is shown in figure 4. We design the entire units of the CDP framework (shown in
figure 2) as plug-ins and form the entire visible contents with views.

Fig. 4. CDP main interface

114 H.-J. Dai et al.

5.1 CDP Views

In CDP, we design many views to help the display of the analysis and guild the de-
velopment of the component. Views are all the visible contents of CDP. Each view
shows the unit function or the analysis result. There are mainly four types of views:
code management views, code analysis views, task views and component description
views. These views also have associations with all kinds of plug-ins.

Fig. 5. Code wizard view

Code management views include code editor view, project management view, and
code wizard view. As seen in figure 4, code editor view, which is the main body of
IDE, lies in right-middle and project management view lies in left. Code assist tools
color the source codes with different highlights and mark all the pairs of brackets back
and forth. Project management view forms the total source files as a tree and classifies
with different folders according to the component division and file type. A project can
build more than one component and each folder has its own source file, head files,
configuration files. One of code wizard view is shown in figure 5. We can set many
common options of the compilers by the click of the switches. These settings decide
the generation and optimization of the build tools for component source codes.

Code analysis views have two types: accurate analysis views and abstract views.
Accurate views show the results of lexical analysis and grammar analysis by analysis
tools. Macros, global variables and functions are the main atoms of the codes and each
atom has its view to list all of their elements. Some tools even can provide a mecha-
nism to translate all the simple type macros back into actual values automatically.

Fig. 6. Abstract view of Program 1

 CDP: Component Development Platform for Communication Protocols 115

Abstract view is the display of the analysis according to the abstract and simplifi-
cation principles as illustrated in Part 4. This is a tree view and marks Macros (M),
global variables (G), functions (F), branch statements (B), loop statements (L) for the
guidance. This view helps us to divide components according to this hierarchy tree.
We even can easily click and drag the mouse to reform and construct the components
through visualization. Figure 6 shows the abstract view of Program 1.

Tasks views mainly include the feedbacks and the results of the build tools. The
search results of the code editor and the planning tasks made by users, the trace informa-
tion during the build process and the debug state of the running debug tools are shown
here too. Task views including result views lies in the right-bottom of CDP as shown in
figure 4. The user also can define own planning tasks and reminders tasks too.

Component description views are used to generate CDL files. CDL files do not only
describe the generated component’s characters but also define the communication
protocols. Because CDL is merely used between software so that it is not necessary to
be known by CDP users, the component description views are not the text editor of
CDL but the graphic interface. It provides much convenience that users only fill in the
blanks according to the prompts. There is auto translation to generate CDL files.

5.2 CDP Plug-Ins

Except the framework of CDP, all the other units, even including code editors, are
plug-ins. This means all the units including code editor are replaceable too. Plug-in is
not a component but a set of components, it is the basic unit of functional implemen-
tation. There is often more than one plug-in for one function unit. This makes much
flexibility and configuration ability. All of the plug-ins obey open programming stan-
dards, describe by format-fixed files which are organized by XML. They store in the
same directory from where the CDP framework can load all of the plug-ins automati-
cally. This is something like the popular open source project, such as Eclipse Project.

Many plug-ins are visual tools, they control both display contents and functions of
the views. Some other plug-ins are the link and pipes of other tools, such as test plug-
in is the link of the corresponding simulate systems according to the EOS or hardware
types of components. Usually plug-ins are partly installed, for examples, build tools
plug-in has tight association with different tool-chains. For a certain kind of EOS or
devices, it only loads a series of tool chains. If the program needs compile compo-
nents for Intel XScale architecture with embedded Linux, we only load arm-Linux-
gcc (arm-Linux-g++) tool-chains.

CDP executes on Windows OS. To use tool-chains on Linux, we have configured
Cygwin to support the tool-chains. Cygwin environment is built previously. All the
work has done in advance to form the basic foundation to mask the OS.

5.3 Cross-Platform Build Tools

Generally CDP is an IDE used on common PC whose OS is Windows or Linux. The
source codes are edited and managed on PC, but the generative components are used
in EOS. The cross-platform compilers must be used to compile the source codes. We
analyze the most popular compilers and design a uniform graphic interface to switch
most commonly used compiler options.

116 H.-J. Dai et al.

We can find comparability among different tool-chains. For example, while using
GCC series cross-platform compilers, GCC has own option switch and corresponding
patches for different CPU. It has wonderful mechanism to coordinate the used stan-
dard library and the dynamic library in the compiling process. The trace of the build
process and the debug of the program are the simple link to tools such as GDB for
target Linux.

6 Conclusions

CDP is one of the rapid communication components development tools. It is the col-
lection of views and plug-ins to form a series of tools such as code editor, code wiz-
ards, code analysis tools, code assist tools, build tools, component description tool,
test tools and CL connector. This takes much flexibility and configuration ability so
that many existing tools and tool-chains can link into CDP conveniently. Furthermore,
for the customization of component-based communication protocols, code analysis
tools make a good abstract from original practical source codes to visual structure
model. This is the feasible guidance and roadmap to construct the components. As a
complex development process of communication protocols, CDP does much com-
puter-aided analysis and development work.

References

1. Dai, H.J, Chen, T.Z., Chen, C: CCPA: Component-based communication protocol architec-
ture for embedded systems. Journal of Zhejiang University: Science. 6A (2005) 79–86

2. Ascia, G., Catania, V., Palesi, M.: A GA-based design space exploration framework for pa-
rameterized system-on-a-chip platforms. IEEE Transactions on Evolutionary Computation.
Vol. 8 (2004) 329–346

3. Lim, K., Wan, L., Guidotti, D.: System-on-a-package (SOP) module development for a
digital, RF and optical mixed signal integrated system. Electronic Components and Tech-
nology, 2004. ECTC '04. Proceedings. Vol.2 (2004) 1693–1697

4. Subramanian, V., Tront, J.G., Bostian, C.W., Midkiff, S.F.: Design and implementation of a
configurable platform for embedded communication systems. Parallel and Distributed Proc-
essing Symposium, 2003. Proceedings. International. (2003) 22–26

5. Perkusich, A., Almeida, H.O., de Araujo, D.H.: A software framework for real-time embed-
ded automation and control systems. Emerging Technologies and Factory Automation,
2003. Proceedings. ETFA '03. IEEE Conference. Vol. 2 (2003) 181–184

6. Volgyesi, P., Ledeczi, A.: Component-based development of networked embedded applica-
tions. Euromicro Conference, 2002. Proceedings. (2002) 68–73

7. Xia, C., Michael, R., Lyu, K.F.: Component-based software engineering: technologies, de-
velopment frameworks, and quality assurance schemes. Seventh Asia-Pacific Software En-
gineering Conference (2000)

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 117 – 128, 2005.
© Springer-Verlag Berlin Heidelberg 2005

TrieC: A High-Speed IPv6 Lookup with Fast Updates
Using Network Processor

Xianghui Hu1, Bei Hua1, and Xinan Tang2

1 Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, P.R. China 230027

xhhu@mail.ustc.edu.cn, bhua@ustc.edu.cn
2 Intel Compiler Lab, USA

xinan.tang@intel.com

Abstract. Address lookup is one of the main bottlenecks in Internet backbone
routers, as it requires the router to perform a longest-prefix-match when
searching the routing table for a next hop. Ever-increasing Internet bandwidth,
continuously growing prefix table size and inevitable migration to IPv6 address
architecture further exacerbate this situation. In recent years, a variety of high-
speed address lookup algorithms have been proposed, however most of them
are inappropriate to IPv6 lookup. This paper proposes a high-speed IPv6 lookup
algorithm TrieC, which achieves the goals of high-speed address lookup, fast
incremental prefix updates, high scalability and reasonable memory
requirement by taking great advantage of the network processor architecture.
Performance of TrieC is carefully evaluated with several IPv6 routing tables of
different sizes and different prefix length distributions on Intel IXP2800
network processor(NPU). Simulation shows that TrieC can support IPv6 lookup
at OC-192 line rate. Furthermore, if TrieC is pipelined in hardware, it can
achieve one IPv6 lookup per memory access.

Keywords: Network processor, IPv6 lookup, parallel programming, embedded
system design, routing, prefix expansion.

1 Introduction

Due to the rapid growth of the Internet bandwidth and continuously increasing size of
the routing tables, IP address lookup becomes one of the most challenging tasks in
backbone routers. By the inevitable migration to the next generation IPv6 128-bit
address space, IPv6 lookup becomes even more demanding.

Traditional routers generally use application specific integrated circuits (ASIC),
FPGA, or general-purpose processor (GPP) as a building block. ASIC provides
guaranteed high-performance with low power, but lack of flexibility makes it unable
to keep up with the rapid changes in network protocols. FPGA offers certain
flexibility but it costs more to build and its power consumption is very high. On the
other hand, GPPs can meet the requirements of flexibility, short development period
and low cost, but often fail to meet the performance requirements because they are not
specially optimized for network processing. For example, the efficiency of the GPP
cache system relies on data’s temporal locality, which is not a common case in

118 X. Hu, B. Hua, and X. Tang

today’s high-speed and aggregated networks. As a consequence, network processor
unit(NPU) emerges as a promising candidate for networking building block. It retains
both the high performance of ASIC and flexibility advantage of GPP through parallel
and programmable architecture. At present, many companies including Intel,
Freescale, Agrere, AMCC and EZchip have developed programmable NPUs. Many
system companies including Cisco, Alcatel, HUAWEI, and ZTE use NPUs to build
switches and routers.

This paper presents an efficient IPv6 address lookup scheme called TrieC, which
achieves O(1) search time with fast incremental updates and reasonable memory
requirement by taking great advantage of the characteristics of NPU, especially of
Intel IXP network processor. Although our experiment was done on Intel IXP2800,
the same performance can be achieved on other similar NPUs. The main contributions
of the paper are as follows:

• A new IPv6 address lookup algorithm (TrieC) is proposed with the features of high
speed, fast prefix incremental updates, high scalability and reasonable memory
requirement.

• A modified compact prefix expansion (MCPE) technique is designed to use less
memory for address search and prefix incremental update than traditional prefix
expansion.

• An architecture awareness algorithm implementation aiming at IXP2800 NPU is
elaborated, which: 1) takes advantage of the special instruction set of IXP 2800,
especially the bit counting and CRC instruction to make the search of the
compressed tables fast; 2) distributes IPv6 routing table in four SRAM channels to
support simultaneously data accesses; and 3) partitions the tasks appropriately on
three IXP2800 Microengines(MEs) to achieve IPv6 lookup at OC-192 line rate.

The rest of the paper is organized as follows. Section 2 describes issues of existing
approaches in IP address lookup, especially in the IPv6 circumstances. Section 3
explains the design and mechanism of TrieC. Section 4 discusses how to implement
incremental prefix updates efficiently. Section 5 introduces the optimized
implementation on IXP2800. Section 6 shows simulation results and performance
analysis. Finally, section 7 concludes.

2 Related Work

The most popular data structure for longest prefix match is trie[6-8]. In order to
reduce memory accesses in trie, various kinds of techniques such as prefix expansion
and multibit trie[12] have been proposed. Multi-bit trie expands a set of arbitrary
length prefixes to a predefined set of prefixes by prefix expansion. Its search time is
linear with the multi-bit tree levels and its update time depends on both prefix length
and maximum node size. However, its worst-case memory requirement is
O(2k*N*W/k), where k, N and W are search stride, number of prefixes and maximum
prefix length respectively. Basic-24-8-DIR[13] is a hardware implementation using
prefix expansion for IPv4 lookup with maximum two memory accesses, but it needs
more than 32Mbytes memory and even more memory or dual memory bank for
routing updates.

 TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor 119

Waldvogel et al.[9] use binary search on hash table organized by prefix length. The
scheme requires log2W memory accesses, where W is the maximum prefix length, in
the worst case. However, it requires very long preprocessing time to compute markers
noting the existence of longer prefixes, hence the update time is O(N*log2W) and the
whole routing table must be reconstructed. Multiway range tree [11] reduces search
time and update time to O(k*logkN) through modifying binary search by prefix
length, it also analyzes the feasibility for IPv6 address lookup. However, its memory
requirement is O(k*N*logkN).

Lapson et al.[10] introduce multicolumn search for IPv6 addresses that avoided the
multiplicative factor of W/M inherent in basic binary search by doing binary search in
columns of M bits, and moving between columns using pre-computed information.
However, in the worst case, it needs approximate 15 memory accesses for IPv6
address lookup because of O(logk2N+W/M) search time.

Additionally, TCAM-based, CPU caching[5], reconfigurable fast IP lookup
engine[14], binary decision diagrams[20] etc. are all hardware-based IP lookup
schemes. Their advantages are high lookup speed, whereas their disadvantages like
specific hardware support, high power consumption, complicated prefix update and
high cost limit their application to a certain degree.

Obviously, the main problem of existing lookup schemes is that they cannot
combine high-speed lookup, fast updates and acceptable memory storage for IPv6
address lookup at the same time.

This paper presents our solution of an IPv6 lookup scheme-TrieC based on the
modified compact prefix expansion (MCPE) technique and fixed-level multibit trie
structure. High performance search is achieved through fixing the levels of TrieC tree,
and fast incremental update is achieved by storing the unexpanded prefix length in
MCPE nodes. Moreover, memory requirement is reduced to a reasonable capacity due
to compressed MCPE technique.

3 Algorithm Design and Mechanism

3.1 Basic Idea

In trie structure, prefix information is stored along the path from the root to the leaf
node of the tree. To reduce the path length and thus memory access times, prefix
expansion technique is applied to increase the routing table size in a fixed stride so
that the resulted expanded table could be visited in the same stride index. The
proposed scheme is based on the following observations:

1. 2n-m redundant next-hop information must be stored if an m-bit prefix is expanded
to 2n n-bit prefixes, where n is equal to or greater than m, using prefix expansion.

2. Statistics of existing IPv6 routing tables and the IPv6 addresses allocation policies
indicate that the percentage of the prefixes whose lengths are equal to or greater
than 48-bit is approximate only 5%.

3. Only aggregatable global unicast addresses, whose format prefix (FP) field is
always set to 001, need to be searched in the allocated IPv6 address space.
Additionally, the lower 64 bits of IPv6 address are allocated to interface ID, so the
core router can ignore them.[1-3]

120 X. Hu, B. Hua, and X. Tang

Therefore, the basic idea of TrieC is to ignore the highest three bits, build a four-level
compressed multibit trie tree using the stride 21-8-8-8 for the prefixes whose lengths
are longer than 3bits and shorter than 49bits, then use hash to search the other prefixes
whose lengths are longer than 48bits and shorter than 65bits.

3.2 Modified Compact Prefix Expansion

The modified compact prefix expansion (MCPE) technique is motivated by the fact
that there is a lot of redundant next-hop information in traditional prefix expansion.
For example, if the IPv6 prefix (2002:4*::/18,A) and (2002:5*::/20,B) are expanded
to 24-bit prefixes using the traditional prefix expansion, 64(=224-18) new prefixes are
formed as shown in Fig.1(a). Obviously, the same next-hop index repeats many times.
A repeats 48 times totally, and B repeats 16 times.

Next-Hop24-bit Index

A2002:7F*::/24

…....
....
....
....
....

A2002:71*::/24

A2002:70*::/24

A2002:6F*::/24

…....
....
....
....
....

A2002:61*::/24

A2002:60*::/24

B2002:5F*::/24

…....
....
....
....
....

B2002:51*::/24

B2002:50*::/24

A2002:4F*::/24

…....
....
....
....
....

A2002:41*::/24

A2002:40*::/24

(a) Traditional prefix expansion (b) Modified compact prefix expansion

NHIA

.......................

.......................

.......................

0000 0000
0000 0000
0000 0000
0000 0001
0000 0000
0000 0001
0000 0000
0000 0001

6-bit BAindex

nulABA2002:4*::/18

18-bit Tindex

.......................

Fig. 1. Traditional prefix expansion vs. modified compact prefix expansion (MCPE)

The main idea of MCPE is to store consecutively identical next-hop index only
once in a next-hop index array (NHIA). The NHIA in Fig.1(b) has three entries (A, B,
A); the highest 18 bits of 24-bit prefix are used as the index to search a Tindex table
and the next 6 bits are used as another index to search a bit-vector BitAtlas in a
BAindex table. The 64-bit BitAtlas is organized as follows: if the next-hop
information denoted by bit I is the same as that denoted by bit I-1, bit I is set to 0;
otherwise, bit I is set to 1, indicating that different next-hop information must be
added into NHIA. In Fig. 2 (b), bit 0 is 1 since it starts a new NHIA entry; bit 16 is 1
since its NHIA is B that is different from previous entry A; bit 32 is 1 since its NHIA
is A again which is different from previous entry B.

Now assume we want to search the next-hop information relating to IPv6 address
2002:6A*::/24. Firstly, we use the highest 18 bits as Tindex to find out the MCPE
entry 2002:4*::/18, then we use the next 6 bits ‘101010’ as BAindex to find the bit
offset in BitAtlas, which is 42. Since total three bits are set in BitAtlas from offset 0
to offset 42, the third element ‘A’ in NHIA is the lookup result.

The TrieC table in Fig.1 is called TrieC18/6. Similarly, TrieCm/n is designed to
represent 2(m+n) uncompressed (m+n)-bit prefixes. Using MCPE technique, the TrieC
tree eliminates redundant information and preserves the high-speed index access
characteristic of traditional prefix expansion technique.

 TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor 121

3.3 Data Structure

Our stride series for TrieC algorithm is 24-8-8-8-16. The data structures include three
types of tables: TrieC15/6 table (ignored highest three bits 001), TrieC4/4 table, and
Hash-16 table. TrieC15/6 table is the first-level table that stores all the prefixes whose
lengths fall into [1:24]-bit. TrieC4/4 tables are from the second to the fourth level of
TrieC trees, whose prefix lengths belong to [25:32]-bit, [33:40]-bit, and [41:48]-bit
respectively. Hash16 table stores all the prefixes whose lengths belong to [49:64]-bit.

Index into Next Level TrieC1

Prefix LengthNext-Hop ID0

6bits9bits1bit

(a) Next-Hop Index

Next-Hop Index 4Next-Hop Index 3

Next-Hop Index 2Next-Hop Index 1

26BitAtlas

0123

(b) Basic TrieC15/6 entry

Reserved

Index into ExtraNHIA table

26BitAtlas

0123

(c) TrieC15/6 entry with ExtraNHIA

Next-Hop Index 3Next-Hop Index 2

Next-Hop Index 124BitAtlas

0123

(d) Basic TrieC4/4 entry

Index into ExtraNHIA table

Reserved24BitAtlas

0123

(e) TrieC4/4 entry with ExtraNHIA

NHI TotalPosition

NHI TotalPosition-1

………………….

NHI 2

NHI 1

NHI TotalPosition

NHI TotalPosition-1

………………….

NHI 2

NHI 1

Fig. 2. Data structures of TrieC scheme

The next-hop index (NHI) structure, which stores the lookup result including the
next-hop IP address and the output interface, is shown in Fig. 2(a). The original prefix
length is stored in NHI due to the requirement of incremental prefix updates. Each
NHI entry is 2 bytes, with the most significant bit setting to 0 indicating that the
remaining bits consist of a next-hop ID in NHI[14:6], and an unexpanded prefix
length in NHI[5:0], while a “1” in this bit indicating that the remaining 15 bits contain
a pointer to the next level TrieC node.

The TrieC15/6 table contains 215 entries, which is called TrieC15/6_entry, and has
two types of structures: Basic and ExtraNHIA. The basic structure supports up to four
NHIs and ExtraNHIA supports more NHIs, in which:

1. TrieC15/6_entry [127:64]: stores a 64-bit vector BitAtlas. The least significant bit
is always set to one because each IP address absolutely matches the default route.
TotalEntropy that is the total number of bits set in the bit vector represents the size
of array NHIA or ExtraNHIA. For a bit position P, the number of bits set in
BitAtlas[P:0] named PositionEntropy[P] gives the NHI index in array NHIA or
ExtraNHIA. For each P, the equation PositionEntropy[P]<=TotalEntropy always
holds.

2. TrieC15/6_entry[63:0]: stores up to 4 NHIs or a pointer to ExtraNHIA array. If
TotalEntropy of BitAtlas field is no greater than 4, TrieC15/6_entry[63:0] stores
NHI1, NHI2, NHI3 and NHI4 orderly as shown in Fig. 2(b). Otherwise,
TrieC15/6_entry[63:32] stores a 32-bit pointer that points to ExtraNHIA array as
shown in Fig. 2(c).

Similarly, each TrieC4/4 table has 24 entries and each entry is 8 bytes. The
structures of basic and ExtraNHIA TrieC4/4 entry are shown in Fig. 2 (d) and (e). The

122 X. Hu, B. Hua, and X. Tang

unique difference among all TrieC4/4 tables is that if the flag bit of NHI in the fourth
level of TrieC tree is set to one, the Hash16 table must be searched. The Hash16 table
uses cyclic redundancy check (CRC) as a hash function that is known as a semi-
perfect hash function. The structure of a Hash16 entry is (prefix, next-hopID) pair.

3.4 Lookup Mechanism

Fig. 3 gives a routing table search algorithm based on compressed TrieC tables. We
will use an example to show how these tables are searched.

Fig. 3. Pseudo code to search TrieC multi-level tree for IPv6 address

Assume that the following routes are already in the TrieC table:
(2002:4C60::/18,A), (2002:4C6F::/28,B). The first route requires an entry in
TrieC15/6 that corresponds to the 24-bit prefixes from 2002:40*::/24 to
2002:7F*::/24. The second route further needs a second level TrieC4/4 to be used
because its length is 28-bits.

Suppose we are looking up the destination IPv6 Address 2002:4C6A::200C, Fig. 4
shows the detailed lookup process. Firstly, DstIP[124:110] that is ‘000000000001001’
is used as the Tindex to find the entry 2002:4*::/18 in TrieC15/6; then DstIP[109:104]
that is ‘001100’ is used as the BAindex to find the bit offset that is 12 in BitAtlas; two
bits set from offset 0 to offset 12 makes PositionEntropy=2, thus the second entry in
NHIA is located; a ‘1’ in NHI[15] indicates that NHI[14:0] contains a pointer to the

IPv6_Lookup_TrieC (IN DstIP, OUT Next-HopID)
{
1. Current_Block = TrieC15_6;
2. Tindex = DstIP [124:110];
3. Bit_Vec = GetBitVec (Current_Block, Tindex);
4. BAindex = DstIP [109:104];
5. NHI = GetNHI(Bit_vec, BAindex);
6. if (NHI.flag = 0) return NHI.Next-HopID;
7. else
8. {// search TrieC4/4 tables, base[i] is base of (i+1)th-level TrieC tree
9. Current_Block = TrieC4/4 at Base[0]+NHI[14:0];
10. for (i=1;i<=3;i++)
11. {
12. Tindex = DstIP[103-8*(i-1):100-8*(i-1)];
13. Bit_vec = GetBitVec (Current_Block, Tindex);
14. BAindex= DstIP[99-8*(i-1):96-8*(i-1)];
15. NHI = GetNHI (Bit_Vec, BAindex);
16. If (NHI.flag = 0) return NHI.Next-HopID;
17. else
18. {
19. if (i!=3) Current_Block=TrieC4/4 at Base[i]+NHI [14:0]<<4;
20. else break; //search longer prefix in Hash16
21. }
22. }
23. if (Hash (DstIP [79:64])) return Next-HopID;
24. else return Default-Next-HopID;
25. }
}// IPv6_Lookup_TrieC

 TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor 123

next level TrieC4/4, so NHI[14:0]<<4+DstIP[103:100] is used as the Tindex to the
next level TrieC4/4, and then DstIP[99:96] is used as the BAindex to find out the
PositionEntropy that is 1, which then locates the desired next-hop ID, which is B.

00000000000000000000000000000000 0x200C01101010000000000001001001100001

Interface ID

00000 0000 001001

nullA 180Index118A0

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0011 0000
0000 0001

001100

nullnull28B00000 0000
0000 0001

TrieC4/4

0110

NHI[14:0]<<4+DstIP[103:100]

1010

Destination IPv6Address 2002:4C6A::200C

Example Routing Table:

2002:4C60::/18 A

2002:4C6F::/28 B

Next-hop ID=B

PositionEntropy=2

Tindex

Tindex

BAindex BAindex

TrieC15/6

24 bits 8 bits 8 bits 8 bits 16 bits

PositionEntropy=1

Fig. 4. IPv6 address lookup example of the TrieC scheme

4 Routing Updates

New routing information must be exchanged among routers as network topology
changes. The frequency of routing updates could be as high as a few hundred times
per second. Since the routing table cannot be accessed during update, routing updates
must be executed fast and efficiently.

The operation of adding a new prefix, NewRoute(new_prefix/new_length,
new_next-hop), can be classified into two categories according to the value of
new_length: BitAtlas affected and BitAtlas unaffected. The range of the prefix length
corresponding to the former is called TableRange[start_length, end_length] and the
range corresponding to the latter is called BitAtlasRange[start_length, end_length].
For instance, the TableRange and BitAtlasRange of TrieC15/6 table are [4,18] and
[19,24] respectively.

Consider the updates in a TableRange. Because a NewEntry matches
2(TableRange.end_length-new_length) TrieC entries and their whole BitAtlas fields, we only need
update the NHIs of matched entries. If an old NHI satisfies: flag=0,
PrefixLength<=NewEntry.new_length and Next-HopID ≠ NewEntry.new_next-hop,
it is replaced by the NewEntry. Otherwise, we need search and update the next level
of TrieC tree. In the case of BitAtlasRange, NewEntry exactly matches one TrieC
entry and 2(BitAtlasRange.end_length-new_length) bits in the BitAtlas field of the matched entry.
For each matched bit, we only need update the bit and its corresponding NHI if
PrefixLength<=NewEntry.new_length and Next-HopID ≠ NewEntry.new_next-hop.
Otherwise, we need search and update the next level of TrieC tree.

The process of adding new prefixes (2002:E7B::/17,C) and (2002:279::/23,D) into
the example routing table is shown as Fig. 5. The prefix (2002:E7B::/17,C) matches
two TrieC15/6 entries with the Tindex ‘000000000001000’ and ‘000000000001001’.
Only the first NHI(null) of the former TrieC15/6 entry is replaced by NHI(0,C,17)
because the NHI(null) matches the update condition. In Fig. 5(b), the prefix

124 X. Hu, B. Hua, and X. Tang

17C

null18A

nullnullnull

0118A0
00000000 00000000
00000000 00000000
00000000 00000000
00110000 00000001

0
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000001

nullnull28B0
0000
0000
0000
0001

TrieC4/4

(a) TrieC tree after (2002:E7B::/17,C) added

Routing Table
2002:4C60::/18 A
2002:4C6F::/28 B
2002:E7B::/17 C
2002:279::/23 D

TrieC15/6

17C23D17C

null18A

null00

0118A0
00000000 00000000
00000000 00000000
00000000 00000000
00110000 00000001

0
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00010101

(b) TrieC tree after (2002:279::/23,D) added

000000000001000

000000000001001

000000000000000

111111111111111

000000000001000

000000000001001

000000000000000

111111111111111

TrieC15/6

6

F

0

nullnull28B0
0000
0000
0000
0001

TrieC4/4

6

F

0

Fig. 5. Routing updates of the example IPv6 routing table

(2002:279::/23,D) matches only one TrieC15/16 entry, whose Tindex is
‘000000000001000’, and two bits in the BitAtlas field of this entry. Because the NHI
corresponding to these two bits matches the update condition, i.e., NHI.Prefix-
Length=17<new_length=23 and NHI.Next-HopID=C ≠ new_next-hop=D, both of
these two bits are set to one and the corresponding NHIs are updated.

5 Optimization on IXP2800 Network Processor

Intel IXP2800 NPU is a programmable network processor that comprises a single
XScale processor, sixteen Microengines(MEs), four SRAM controllers, three
RDRAM controllers and high-speed bus interfaces. Each ME has eight hardware-
assisted threads of execution. All threads in a particular ME execute the same code
stored on that ME. Complete descriptions of the hardware architecture and software
framework are available from the IXP2800 manuals[19]. We implemented TrieC
algorithm in MicroengineC language and simulated it on Intel Developer
DevWorkbench 4.1[19], which offers a cycle-accurate simulator of IXP2800 network
processor.

Through analysis, we identified the following operations as time-consuming ones:
calculation of TotalEntropy and PositionEntropy, SRAM memory accesses, and CRC
hash operation. The efficiency of those operations affects the performance of TrieC
greatly. We will show how to optimize these operations by taking advantage of the
characteristics of IXP2800 network processor.

Firstly, the main workload of entropy calculation in TrieC is to count the number
of bit set in bit-vector BitAtlas. The naive implementation of checking each bit and
counting the number of bit set seen so far it is very slow and needs a few hundred
shift, ALU and branch instructions. Intel IXP2800 network processor has a built-in
instruction POP_COUNT that can calculate the number of bit set in a 32-bit register
in three clock cycles. Such tremendous reduction of the number of instructions lays a
solid foundation for TrieC to achieve line rate.

 TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor 125

On IXP2800 NPU, each SRAM access takes more than 100 cycles, hiding memory
latency becomes another important step towards high-performance. We hid the
memory-access latencies by means of:

− Parallelized access: IXP2800 NPU contains four independent SRAM controllers
and each channel supports up to 64Mbytes SRAM. We partitioned the TrieC
tables, and then distributed them properly into four SRAM channels. TrieC15/6
table and hash16 table were stored in SRAM channel 0, because their sizes were
smaller than that of each TrieC4/4. The second, third and fourth level TrieC4/4
tables were stored in SRAM channel 1, 2 and 3 respectively, so that they could be
accessed in parallel.

− Vectoring access: On IXP2800 NPU, adjacent SRAM locations can be fetched in
one instruction to the array of SRAM transfer registers, which allows for a
significant reduction in the number of SRAM access. As the maximal length of
each SRAM access instruction can be up to 64-bytes, we carefully designed the
data structures of Tries15/6 and TriesC4/4 such that the sizes of TrieC15/6 entry
and TrieC4/4 entry were less than 64-bytes and thus each table entry could be
fetched in one SRAM access.

Finally, each ME has a CRC Unit, which operates in parallel with the execution of
data path and supports one time CRC operation within the period of each two
consecutive instructions. By using the CRC unit to perform hash calculation, TrieC
speeded up the search of hash16 table.

6 Simulation and Performance Analysis

Since IPv6 is not yet widely deployed, existing IPv6 tables, which normally have less
1000 prefixes[16][17], are small and unlikely to reflect future IPv6 network growth.
Currently, randomly generated tables are often used for IPv6 research and
development. To reflect the IPv6 address distribution as objectively as possible, we
used three different ways to generate nine IPv6 routing tables whose prefix length
distributions are shown in Tab. 1. Group A was generated from the CERNET[17],
6Bone, 6Net and Telstra BGP IPv6 routing tables[16], reflecting the existing IPv6
prefix length distribution. Group B was generated from the non-random generator
IPv6 table proposed by M Wang et. al[18], reflecting the ideal IPv6 routing tables.
Group C was calculated as the arithmetical average of A and B, reflecting the future
IPv6 tables.

Table 1. Prefix length and entries used in simulation

Prefix Number

N=200000 N=300000 N=400000
Length A B C A B C A B C
1-24 8439 110 4274 12660 165 6413 16878 220 8549
25-32 138821 14806 76814 208231 22209 115220 277641 29612 153627
33-40 11029 31080 21053 16543 46620 31582 22056 62160 42109
41-48 29224 142640 85932 43836 213960 128899 58448 285280 171864
49-64 12487 11360 11923 18731 17040 17886 24975 22720 23847

126 X. Hu, B. Hua, and X. Tang

M
em

o
ry

 r
eq

u
ir

em
en

t(
M

B
)

Number of prefix

Group A Group B Group C DIR-24-8-BASIC(IPv4)

Fig. 6. Memory requirements of nine IPv6 routing tables vs. of DIR-24-8-BASIC(IPv4)

For each group, we generated three different sizes of tables with 200K, 300K and
400K entries. All the prefix values are generated randomly.

Memory requirements of the nine IPv6 tables are shown in Fig. 6. Obviously,
memory requirements increase along with table sizes. Note that the memory
requirement of table B-400K is approximate 35Mbytes,which is slightly higher than
33Mbyes of DIR-24-8-BASIC for IPv4, but is significantly lower than the estimated
memory requirement of multibit-trie, which is approximately more than 820Mbytes at
8-bit strides for 400K entries. With such high a compression rate, the entire routing
tables can be stored in SRAM.

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
es

Simulat ion routing table

Fig. 7. Average memory accesses of nine IPv6 routing tables

In the worst case, TrieC needs eight memory accesses and one hash operation. It is
clear from Fig. 7 that there is no any relation between average memory accesses and
size of IPv6 routing table; the average memory accesses depend only on the prefix
length distribution of the table. For example, the average memory accesses of the
three tables belonging to group-B are all close to four, because the percentages of the
prefixes whose lengths between 41-48 bits in these tables are all higher than 70%. On
average, the number of memory access of these nine IPv6 tables is far less than eight,
which indicates that the percentage of the ExtraNHIA nodes is extremely low.
Simulation results demonstrated it, and found that the percentage was only about
3.6%.

 TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor 127

Table 2. Minimal threads number required to meet OC-192 line rate on IXP2800 NPU

Lookup rate (Mlps.)
Routing table

Minimal Threads
number Single-thread Multi-threads

Group A 9 3.72 23.84
Group B 17 1.81 21.36
Group C 11 2.55 21.32
Worst case 19 1.54 21.18

Assume that the minimal packet size is 60-bytes, then approximate 20.83Mlps
lookup rate is required to support OC-192 line rate. Tab. 2 gives the minimal number
of threads required to reach the line rate speed for each group, in which on average 9,
17 and 11 threads are needed for group A, B and C respectively. Considering that
there are 16 MEs on IXP2800, and TrieC just consumed less than three MEs of entire
ME budget; therefore, there is still enough room for other networking application
such as classification and traffic management to meet their line rate requirements.

Finally, we compare the performance of TrieC with some existing outstanding
schemes in Tab. 3.

Table 3. Comparison of search, update, space complexities and scalability for IPv6

Scheme Search time Update time Memory requirement IPv6
Patricia trie O(W) O(W) O(N*W) N
Multibit trie O(W/k) O(W/k+2k) O(2k*N*W/k) N
Binary search O(log2W) O(N*log2W) O(N*log2W) Y
Multiway search O(logK2N) O(N) O(N) Y
DIR-24-8-BASIC O(1) Dual bank memory 33MB@IPv4 N
TrieC O(1) O(W/k) O(N*W/k) Y

7 Conclusion

This paper proposes an IXP2800-based high performance IPv6 lookup algorithm
(TrieC) that features high-speed address lookup, fast routing table update, high
scalability, and reasonable memory requirement. A modified compact prefix
expansion (MCPE) technique that supports faster address search and prefix
incremental update with less memory requirement than traditional prefix expansion is
designed to build a four-level TrieC tree for IPv6 address lookup. Techniques such as
distributed routing table allocation in four SRAM channels, functional pipelining,
BitAtlas field calculation speedup, parallelized SRAM accesses, consolidating
adjacent SRAM accesses and hardware CRC hash unit are used to optimize the
proposed scheme on IXP2800 network processor. These optimizaiton techniques can
also be applied to other similar NP architectures. Performance of TrieC is evaluated
with nine IPv6 routing tables of different sizes and different prefix length
distributions on Intel IXP2800 network processor. Simulation shows that TrieC
implemented on IXP2800 can support IPv6 lookup at OC-192 line rate. Furthermore
this algorithm can be easily implemented in a pipelined architecture (ASIC) and
achieve one IPv6 lookup per SRAM access.

128 X. Hu, B. Hua, and X. Tang

References

1. R. Hinden, S. Deering, RFC2373 IP Version 6 Addressing Architecture
2. R. Hinden, S. Deering, RFC2374 IPv6 Aggregatable global unicast address format,
3. S. Deering, R. Hinden, RFC2460 Internet Protocol, Version 6 IPv6 Specification
4. Internet Performance Measurement and Analysis Project, http://www.merit.edu/~ipma
5. M. A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, “Survey and taxonomy of IP

address lookup algorithms,” IEEE Network, vol. 15, pp.8–23, Mar.-Apr. 2001
6. Morrison, “PATRICIA-Practical Algorithm to Retrieve Information Coded in

Alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, Oct. 1968
7. W. Doeringer, G. Karjoth and M. Nassehi, “Routing on Longest Matching Prefixes,” IEEE

Trans. on Networking, vol. 4, no. 1, pp.86-97, Feb. 1996
8. N. Yazdani and P. S. Min, “Fast and scalable schemes for the IP address lookup problem,”

in Proc. IEEE Conf. High Performance Switching and Routing, 2000, pp. 83–92.
9. M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP routing

lookups,” Proc. ACM SIGCOMM ’97, vol. 27, no. 4, pp. 25–36, Oct. 1997.
10. B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using multiway and

multicolumn search,” in Proc. IEEE INFOCOM’98, San Francisco, CA, 1998, pp. 1248–
1256.

11. Subhash Suri; Varghese, G.; Warkhede, P.R., “Multiway Range Trees: Scalable IP Lookup
with Fast updates”, Global Telecommunications Conference, 2001.GLOBECOM'01. IEEE
Volume 3, 25-29 Nov. 2001 pp. 1610-1614 vol.3

12. V. Srinivasan, G. Varghese, “Fast address lookups using controlled prefix expansion”,
Proc. ACM Sigmetrics’98, June 1998 pp. 1–11.

13. P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access
speeds,” in Proc. IEEE INFOCOM’98, vol. 3, San Francisco, USA, 1998, pp. 1240-1247.

14. E. Taylor, J. W. Lockwood, T. S. Sproull, J. S. Turner, and D. B. Parlour, “Scalable IP
lookup for programmable routers,” in Proc. IEEE INFOCOM’2002, vol. 2, New York,
2002, pp. 562-571.

15. Raj Jain, “A Comparison of Hashing Schemes for Address Lookup in Computer
Networks”, Communications, IEEE Transactions on Volume 40, Issue 10, Oct. 1992 pp.
1570-1573

16. http://bgp.potaroo.net/index-v6.html
17. http://bgpview.6test.edu.cn/bgp-view/index.shtml
18. M Wang, S Deering, T Hain, L Dunn “Non-random Generator for IPv6 Tables” High

Performance Interconnects, Proceedings 12th Annual IEEE Symposium on 25-27 Aug.
2004 pp. 35-40

19. http://www.intel.com/design/network/products/npfamily/ixp2xxx.htm
20. Sangireddy, R.; Somani, A.K.; “High-speed IP routing with binary decision diagrams

based hardware address lookup engine”, Selected Areas in Communications, IEEE Journal
on Volume 21, Issue 4, May 2003 pp. 513-521

Separate Compilation for Synchronous Modules

Jia Zeng and Stephen A. Edwards�

Department of Computer Science, Columbia University,
New York, USA

Abstract. Synchronous models are useful for designing real-time embedded
systems because they provide timing control and deterministic concurrency.
However, the semantics of such models usually require an entire system to be
compiled at once to analyze the dependencies among modules. The alternative
is to write modules that can respond when the values of some of their inputs are
unknown, a tedious and error-prone process.

We present a compilation technique that allows a programmer to describe syn-
chronous modules without having to consider undefined inputs. Our algorithm
transforms such a description into code that does as much as it can with unde-
fined inputs, allowing modules to be compiled separately and assembled later.

We implemented our technique in a compiler for the Esterel language and
present results that show the technique does not impose a substantial overhead.

1 Introduction

The synchronous model of computation [1] has emerged as a successful, practical way
to assemble models of concurrent embedded systems because of its deterministic con-
currency and its precise control over time. Each process in a synchronous model oper-
ates in lock-step with a global clock, and communication between modules is implicitly
synchronized to this clock. Provided the processes execute fast enough, processes can
precisely control the time (i.e., the clock cycle) when something happens.

In addition to domains including avionics [2] and hardware design [3], the synchro-
nous model has been used for constructing processor simulations [4, 5]. Especially in
this latter setting, heterogeneous synchronous models [6], which can assemble and run
synchronous components with no knowledge about their contents, is preferable because
it allows separate compilation of components (e.g., cache models, branch prediction
units) and even allows them to be written in different programming languages.

In the heterogeneous synchronous model [6], a system is assembled from a collection
of concurrently-running blocks that communicate through instantaneous “wires” each
connected from a single block’s output port to one or more input ports on other blocks.
That the blocks be able to respond when not all their input wires are defined is the main
requirement for being able to run such blocks without knowledge of their contents.
Furthermore, a block must be well-behaved when presented with unknown inputs, e.g.,
if a block decides output o has value v even though input i is undefined, it may not
change its mind, e.g., change the output to w once i becomes defined. But if blocks

� Edwards and his group are supported by an NSF CAREER award, a grant from Intel corporation,
an award from the SRC, and from New York State’s NYSTAR program.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 129–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 J. Zeng and S.A. Edwards

do obey these rules, such a system can adopt a Ptolemy-like philosophy [7] in which
systems can be assembled from black-box components and executed efficiency with
precise, deterministic semantics.

Although it is possible to write such well-behaved synchronous blocks in a general-
purpose language such as C, it is a tedious and error-prone process. The alternative,
which we propose here, is for the programmer to write blocks only taking into account
their behavior when all their inputs are applied and have the compiler interpolate the
correct behavior of the block when only some of the inputs are applied. While it would
be correct to make the blocks strict, i.e., to respond with no information about any
output unless all the inputs are defined, but this is not very helpful.

In this paper, we propose an algorithm that does this interpolation on programs writ-
ten in the synchronous concurrent, imperative language Esterel [8]. Constructs in Es-
terel only explicitly address the behavior when all inputs are known (i.e., the user cannot
control them to respond in a certain way to unknown values), but their semantics are
clear when not all inputs are known.

Our work generates code from Esterel that responds to unknown inputs. The enables
separate compilation and the assembly of modules written in other languages.

2 Related Work

Digital logic simulators often perform a similar two- to three-valued interpolation. In
hardware description languages such as Verilog or VHDL, users often compose sys-
tems out of apparently two-valued logic functions such as AND or OR. The simula-
tor, however, interprets them as three-valued functions and performs the simulation in
the extended domain. It has long been known, however, that this tends to greatly slow
the simulation and attempts have been made to circumvent it where possible (e.g., by
detecting when two-valued-only simulation is possible and doing it when possible).
Overcoming this speed penalty is a primary goal of our work.

Our intermediate representation bears some resemblance to binary decision diagrams
(BDDs—see, e.g., Bryant’s survey [9]), but differ enough to make their manipulation
very different. Compared to the most common type of BDD, the ROBDD (reduced, or-
dered BDD), our programs may test variables in different orders and multiple times
along a path. Although certain styles of BDDs (e.g., free BDDs) relax this restric-
tion, our formalism is even less like most BDDs because it can communicate within
itself, i.e., assign and later test the value of the variable assigned, whereas BDDs typ-
ically only make assignment at their leaves. As a result, most BDD algorithms, which
are able to assume disciplined variable orderings and a single type of node, are in-
applicable for our application. Others, however, have used BDDs to synthesize soft-
ware [10].

Our algorithm is like a partial evaluation of a three-valued simulator on programs
represented as graphs, which resembles many other techniques for generating sequen-
tial code from concurrent models [11]. Our algorithm, as a side-effect, orders the nodes
under forks and generates a purely sequential program. While this is probably undesir-
able for certain systems, more clever techniques, such as Zeng et al. [12] could probably
be woven into ours to more efficiently generate sequential code.

Separate Compilation for Synchronous Modules 131

3 GRC: Graph Code

We represent the programs we are compiling using a variant of the Graph Code (GRC)
format due to Potop-Butucaru [13]. GRC is like a traditional control-flow graph aug-
mented with concurrency and nodes for controlling it. However, loops are prohibited
(cross-cycle loops are allowed). The result is a compact, precise way to represent Esterel
programs [8], which we compile with our technique, although the same representation
could be used for other synchronous, imperative languages.

A GRC program is a rooted directed acyclic graph G = (N,r,c,V,O,S, t) where N is
the set of nodes, r ∈ N is the distinguished root node, c : N → (N∪{null})∗ is a function
that returns the vector of control successors of a node (Successors are ordered, e.g., if
c(n) = (n1,n2,n3), then node n can pass control to its first successor n1, its second
successor n2, or n3). A null successor represents no successor, used, for example, when
there is a then branch from a predicate, but no else branch.

The finite set V denotes variables. O ⊂V are the output variables. V \O are the input
variables. S denotes the set of possible states of the program.

Each node has a type given by the function t : N → {assign-v-to-one, assign-v-to-
zero, predicate-on-v, fork, switch, enter, terminate-at-l, sync }. When executed, an
assign-v-to-one node sets the variable v to 1 (v is a variable in V). Predicate-on-v tests
variable v and sends control to one of its successors; switch is similar but tests program
state instead of a variable; enter changes the program state. A fork node sends control to
all its successors, which must eventually re-converge at a sync node. All predecessors
of a sync must be terminate-at-l nodes, which indicate the exit level of their respective
threads. A sync node passes control to the successor whose number corresponds to the
highest-numbered terminate node that passed control to it.

The assign-v-to-zero nodes are only added to the graph during our construction.
As its name suggests, an assign-v-to-zero node sets the variable v to 0. In two-valued
execution, a variable’s default value is 0, making such nodes unnecessary. But in the

E=1

1

E=1

1

B

0

C

D

0

E

F=1

0 1

A

B

E=1E=0E

F=0F=1F=0

E=1

D

B

E=1

C

A

E=0 C

F=0 D

E

F=0

B

E=0

(a) (b)

Fig. 1. (a) A two-valued GRC. Arcs with bubbles are taken when a variable is 0. (b) Its three-
valued projection produced by our algorithm. Arcs with solid bubbles are taken when a variable’s
value is unknown. Figure 6 shows the construction of the nodes in the dotted region.

132 J. Zeng and S.A. Edwards

three-valued execution that is the result of our procedure, variables default to the unde-
fined value and therefore require assign-v-to-zero nodes.

Figure 1 depicts such a program graphically. All arcs point downward. The type of
each node is indicated by its shape. Assignments are boxes, predicates are diamonds,
forks are triangles, terminates are octagons, and syncs are upside-down triangles. The
label on a predicate or assignment node indicates the variable tested or set. For predicate
nodes, the first (false-valued) arc is indicated with a bubble at its source. The label on a
terminate indicates the exit level of the corresponding thread. For sync node, each arc
is labeled with a number which matches the exit level. A dashed line denotes a data
dependency (as shown in Figure 6a: 6 → 10, 9 → 10, 10 → 14, 15 → 16).

A two-valued execution of a GRC program (which contains no assign-to-zero nodes
by definition) starts with an initial program state and an assignment of values to input
variables (i.e., either v = 0 or v = 1 for all v ∈ V \O). Then it derives a subset S of
the nodes as follows. S includes the root node; every successor node of each fork, as-
signment, enter, or terminate node in S; and for every predicate node n in S that refers
to variable v, the first (true) successor is in S if v is an input variable with value 1 or
the graph includes an assignment-to-one node for v, and the second (false) successor of
n otherwise. For a sync node, all of its predecessors’ (terminate nodes) exit levels are
checked, and S includes the sync’s successor under the branch whose label is the same
as the highest exit number. The value of each output variable is 1 if the set includes an
assignment-v-to-one node to variable v and 0 otherwise.

Consider executing the graph in Figure 1a using the node numbers from Figure 6a
and with the assignments A=1, B=1, C=0, and D=1. Node 1 is in S since it is the root,
and since A=1, node 2 is also. This adds nodes 3 and 8. Since B=1, node 12 is in S but
node 9 and node 11 are not, and since C=0, node 4 is in S, and since D=1, node 6 and
7 are in S but node 5 is not. Since node 7 and node 12 are included, and node 7’s exit
level (1) is higher than node 12 (0), sync node 13’s branch 1 is executed. That excludes
node 14 and 15 from S. In the end, S = {1,2,3,4,6,7,8,12,13} so E=1 and F=0.

The above procedure requires the value of every input variable to be known when
the program starts; we want to relax this. In particular, if we know the values of only
certain inputs, we would like to conclude whatever we can about as many outputs as
possible provided they are consistent with any future values for the unassigned inputs.

One way to answer this question is to execute the GRC program using three-valued
logic, i.e., adding a third value that represents unknown or undefined (we write it ⊥) to
the usual 0s and 1s. This introduces another set of nodes to the simulation procedure:
those that might run if additional input is provided later. This is a more complicated
procedure that does not reduce to the usual sequential execution behavior of impera-
tive programs, unlike the two-valued simulation of GRC defined above, which can be
transformed into sequential code using a fairly inexpensive procedure [12].

4 Our Construction Algorithm

Our main contribution is the algorithm described here that takes a GRC program and
constructs a fast sequential program that evaluates the graph in the three-valued domain,
i.e., it allows some of the input variables to be undefined. Our algorithm works in four

Separate Compilation for Synchronous Modules 133

procedure Main(G)
Add data dependencies
s = topological sort of the augmented graph
ComputeRelavantVars()
Set val[v] = ⊥ for all variables
Set ctrl[n, i] = ⊥ for all nodes & successors
Set term[n, i] = ⊥ for all sync & exit lvls
Construct(root of G, val, ctrl, term)

procedure ComputeRelavantVars()
for i = 1, . . . ,N do schedule is s1, . . . ,sN

Set relevant arcs[si] = /0
Set relevant vars[si] = /0
for each j = i, . . . ,N do

for each arc sk → s j with k < i do
add sk → s j to relevant arcs[si]

if s j tests or set any variable v then
add v to relevant vars[si]

(a) (b)

Fig. 2. (a) The Main procedure and (b) ComputeRelevantVars

phases (see Figure 2a). Given a GRC program, we add nodes and arcs to represent data
dependencies, compute a topological order of this annotated graph, compute informa-
tion about the subgraph under each node that will tell us what information we can forget
during a simulation of the program, and finally construct a sequential program by per-
forming this simulation. We try to keep the size of the generated program under control;
we do this by allowing as much reconvergence as possible in the generated code, i.e. by
identifying (and reusing) equivalent states during the simulation.

4.1 Adding Data Dependencies

The algorithm starts by adding data dependencies. For each output variable v, this
process adds an assign-v-to-zero node and then adds arcs from each assign-v-to-one
node to this new node, and arcs from this new node to each predicate-on-v node that
tests v. The result is that there is now a path from each assign-v-to-one node for a vari-
able to each node that tests that variable, hence ensuring the topological sort respects
data dependencies. Furthermore, it introduces an assign-v-to-zero node that will appear
in the schedule when it is possible to determine that a particular variable may be zero.
Figure 6a shows the effect of applying this procedure on Figure 1a.

4.2 Summarizing Dependency Information

Keeping the size of the generated graph under control is the main trick in our algorithm.
Although it would be correct to consider the value of each variable and control arc
when considering which subgraphs can be shared during code generation, this would
be very inefficient and always produce an exponentially-large tree as a result. Instead,
we attempt to model the state of a simulation using as little information as possible
because we want to consider a maximum number of states to be identical so code for
them can be shared.

Our insight is this: at a particular point in the schedule, we only care about nodes that
appear later in the schedule since by definition we must have already executed anything
earlier, and only two things matter about them: the variables they test and the state of
control arcs that lead from nodes earlier in the schedule to later nodes.

Consider building a subgraph for the nodes starting at 8 in Figure 6a, and assume the
node numbers correspond to their position in the schedule. At this point, the simulation

134 J. Zeng and S.A. Edwards

will have established values for variables A, C, and D, but we do not directly care about
any of them since code for them has already been generated and we will not test any
of them later. However, we do care about whether node 10 will be executed, which can
be affected by node 6, and whether node 13 was triggered by its predecessors, since we
will be generating code for nodes 10 and 13 (they appear after 8 in the schedule).

As a result, we consider identical any simulation states that differ only on vari-
ables A, C, or D. We also consider the control flowing in to nodes 8, 10, and 13.

The ComputeRelavantVars procedure (Figure 2b) builds two sets that exactly capture
this notion of which variables and control states we care about during the construction.
By stepping through the nodes of the graph in scheduled order, ComputeRelavantVars
computes relevant arcs[si], the set of all arcs that go from nodes before si in the schedule
s to nodes after si, and relevant vars[si], the set of all variables that are either tested or
set in the nodes after si. Note that because s is a topological order, nodes after si in the
schedule necessarily include the subgraph under si.

In Figure 6a, if s = (1,2,3,4,5,6,7,8,9,10,11), ComputeRelavantVars finds rele-
vant arcs[8] = {2→8, 6→10, 5→13, 7→13}, relevant vars[6] = {B,E,F}. Both rele-
vant vars and relevant arcs are global and are not modified after ComputeRelavantVars.

4.3 Construct

The Construct procedure (Figure 3) simulates the three-valued behavior of the GRC
program and, as a side-effect, constructs our objective: a graph that reproduces its be-
havior. In addition to the node n that is being synthesized, it takes three arrays: val[v] is
the value (0, 1, or ⊥) of each variable; ctrl[n, i], i = 0,1, . . . is the state (again, 0, 1, or ⊥)
of each control arc leaving each node; and term[n, i] is the state of each termination level
i = 0...M reaching each sync node n (M is the maximum possible exit level reaching n).

Construct begins by checking for an end condition: for the last node in the sched-
ule s, the “node following it” is simply null. It then computes two partial functions
(associative arrays): var state, which contains the value of each relevant variable, i.e.,
those set or tested by any node that comes after n in the schedule (computed earlier
by ComputeRelavantVars); and node state, which computes the execution state (1=will
run, 0=will not run, or ⊥=might run) of all the relevant nodes, i.e., predecessors of n
plus all those with incoming arcs that come before n in the schedule (again, computed
earlier by ComputeRelavantVars).

Together, the node itself and the two partial state functions constitute the total state
on which the subgraph to be built for n. The procedure then looks to see whether a
subgraph with identical state has already been built and returns it if it exists.

Otherwise, the real work starts. First, the node following n in the schedule is iden-
tified as m, since it will be recursed on later. The procedure assumes the node n is a
flow-through type (e.g., assign-v-to-one or a fork) and sets all its control successors to
have the same activation condition as the node itself. These assignments will be modi-
fied below when necessary, especially for predicate and switch nodes.

There are two main cases: once the node is known not to run, this information is
propagates as far as possible by the PropagateZeros procedure. Nodes that set each such
variable to zero are created, assembled into a chain. Finally the subgraph that executes
the nodes after n is connected to the end of this chain after a recursive call to Construct.

Separate Compilation for Synchronous Modules 135

1: function Construct(n, val, ctrl, term)
2: if n is null then
3: return null bottom of the program
4: Clear node state partial function on nodes
5: node state[n] = 1 if n is the root node, ⊥ otherwise
6: for each arc p

i→ q in relevant arcs[n] do
7: node state[q] = node state[q] OR ctrl[p, i]
8: var state = val partial function on variables
9: for each v not in relevant vars[n] do

10: var state[v] = DONTCARE
11: if BuiltNode[〈n, var state, node state〉] exists then
12: return BuiltNode[〈n, var state, node state〉]
13: m = node following n in s on which to recurse
14: for each successor ni of n do assume flow-through
15: ctrl[n,ni] = node state[n]
16: if node state[n] = 0 then node known not to run
17: PropagateZeros(n, node state, ctrl, val)
18: Create chain (v1 = 0) → (v2 = 0) → ·· · → (vk = 0) for each variable vi such that

val[vi] = 0
19: Add an arc from (vk = 0) → Construct(m, val, ctrl,term)
20: n′ = the first node in the chain: “(v1 = 0)”
21: else node state[n] is �= 0
22: n′ = NULL
23: case n.type of
24: Assign-v-to-one :
25: if node state[n] = 1 and val[v] = ⊥ then
26: n′ = Copy(n) assign-v-to-one that executes
27: val[v] = 1;
28: Enter :
29: if node state[n] = 1 then
30: n′ = Copy(n) Enter that executes
31: Terminate-at-l :
32: c = SyncMap[n] the sync node related with n
33: term[c][l] = term[c][l] OR node state[n]
34: Sync :
35: BuildSync(n,ctrl,term)
36: Switch or predicate-on-v :
37: n′ = BuildCondition(n,m,val,ctrl,term)
38: goto End
39: n′′ = Construct(m, val, ctrl,term)
40: Link(n′,n′′)
41: End: BuiltNode[〈n,var state,node state〉] = n′

42: return n′

Fig. 3. The Construct Function

136 J. Zeng and S.A. Edwards

1: function BuildCondition(n,m,val,ctrl,term)
2: if n is predicate-on-v and val[v] is known then
3: ctrl[n,val[v]] = node state[n] active branch
4: ctrl[n,1−val[v]] = 0 inactive branch
5: n′ = Construct(m, val, ctrl,term)
6: else switch or predicate with unknown variable
7: n′ = Copy(n)
8: for each successor ni of n do
9: ctrl[n, i] = node state[n] active branch

10: for each successor n j of n other than ni do
11: ctrl[n, j] = 0 inactive branch
12: if v is not NULL then predicate value is ⊥
13: val[v] = i
14: Add an arc n′ → Construct(m, val, ctrl,term)
15: if n is a predicate then
16: for each successor ni of n do
17: val[v] = ⊥
18: ctrl[n, i] = node state[n] active branches
19: Add an arc n′ → Construct(m, val, ctrl,term)
20: return n′

Fig. 4. The BuildCondition Function

The other case, when the node might or is known to run (node state = ⊥ or 1), is
handled quite differently. Dealing with assign-v-to-one and enter nodes is simple: If it
is known to run, it is simply copied to the new graph. Furthermore, for an assign-v-to-
one node, the value of v is set to 1 so that it will be propagated to later constructions.

Conditional nodes (predicate-on-v and switch) are more complicated. To deal with
them, the BuildCondition function is called (Figure 4). If the processed node n is a
predicate-on-v and v’s value is known, the branches under n are set to active and inactive
depending on the value.

Otherwise, if the node is a switch or a predicate-on-v whose variable v is unknown,
the algorithm constructs an identical conditional node in the generated program and
considers all possibilities: one of the branches—corresponding to a possible
condition—is set active, and the others are made inactive (their control state is set to
zero). For switch, the possible conditions correspond to each of its successors. For a
predicate node, the possible conditions are related to the variable’s value, which can
be true, false, or unknown when the generated program runs. In the last condition, all
branches are set active. For each condition, the variable value is saved appropriately in
val array and then Construct is called on the next node in sequence with the new state.

Terminate and sync nodes deal with exit levels and are handled separately. For every
sync node, its related threads’ exit levels are preserved by the term array. When a
terminate-at-l node is met at the end of a thread, if it is known to be executed, it sets the
term array element of the exit level l to be 1 for the corresponding sync; if its control
value is ⊥ and no other thread exited at the same level, the element in the term array
is set to ⊥. The sync node computes the highest possible exit level(s) by looking at the
term array, then passes its control value to the corresponding branch. This algorithm
simulates the two-valued behavior. BuildSync in Figure 5a simulates sync’s behavior.

Separate Compilation for Synchronous Modules 137

function BuildSync(n,ctrl,term)
unknown ctrl = false
findmax = false
for each i in term[n], max to min do

if term[n][i] is 0 then
ctrl[n][i] = 0;

else
if findmax is false then

findmax = true
if term[n][i] is ⊥ then

unknown ctrl = true
if unknown ctrl is true then

ctrl[n][i] = ⊥
else

ctrl[n][i] = node state[n]
if term[n][i] is 1 then

break
return ctrl

function PropagateZeros(n, node state, ctrl, val)
if n is null then

return
node state′ = node state
for each arc t

i→ n do
node state′[n] = node state′[n] OR ctrl[t, i]

if node state′[n] is 0 then
for each successor ni of n do

ctrl[n, i] = 0
if n.type is Assign-v-to-zero then

val[v] = 0
m = node following n in s
PropagateZeros(m, node state′, ctrl, val)

(a) (b)

Fig. 5. (a) The BuildSync Function and (b) the PropagateZeros function

For all these types, Construct is called on the next node m and saves the root of re-
turned subgraph to n′′. Switches and predicates are exceptional: they have different new
states built to meet all possible conditions, so Construct is called for every condition.

Finally, n′ is the new node as the root of the subgraph constructed on n. To make it
possible to later identify its state, this fact is recorded in BuildNode. n′ is returned to
the caller, which probably adds an arc leading to it.

We use a few simple helper functions (not shown). Link(n,m) connects arcs: if n is
null, it returns m; otherwise, a control arc n → m is added and n is returned. Copy(n)
creates a new node in the generated program with the same type and variable as node n.

4.4 State

The Construct procedure maintains a collection of subgraphs in the generated program,
each corresponding to a particular node in the original program and the state that it
implicitly assumes the original program was in before reaching the subgraph. Such a
state is a triple: 〈n,var state,node state〉. n is the node leading the subgraph constructed,
var state is a partial assignment of values to variables the subgraph cares about, and
node state is an analogous assignment of values to control arcs relevant to the subgraph.
Specifically, those that pass into the subgraph from outside: arcs within the subgraph,
by definition, will be evaluated as part of the subgraph.

4.5 Monotonicity

The code generated by our algorithm is monotonic. When adding data dependencies
(Section 4.1), an assign-v-to-zero node is linked after all assign-v-to-one and before all
predicate-on-v nodes. This ensures assign-to-one nodes appear first in the topological
order, followed by the assign-to-zero node, and finally all predicates that test v.

138 J. Zeng and S.A. Edwards

A v = 0 assignment is made only when none of the assign-v-to-one nodes could
or did execute (see Figure 3 line 17-18 and Figure 5b), so the code will never change
a variable’s value from 1 to 0. It is also impossible for the generated code to change
v’s value from 0 to 1 because the topological ordering of nodes places assign-to-ones
before assign-to-zeros. The val array records variables’ values throughout the Construct
function. So when a predicate-on-v node is met (see Figure 3 line 36-38 and Figure 4),
val[v] is checked first. If v’s value is known, the only active branch will be set, and the
val[v] will not be touched but just passed to later construction (see Figure 4 line 2-5).

4.6 The Example

Figure 6 illustrates some of the algorithm’s behavior on Figure 1. A, B, C, and D are
input variables; E and F are outputs. Figure 6a was derived from Figure 1 by adding data
dependencies. Figure 6b shows the graph after assuming A=⊥, C=0, D=0, and B=0 and
arriving at node 14. The label on each arc indicates its value in the ctrl array. Figure 6c
is similar, but it assumes A=⊥, C=1 and B=⊥ (predicate-on-D is known not to run in
this configuration, so D’s value is irrelevant). Our algorithm determines that the code
generated for these two states is the same and can be shared.

Specifically, at node 14, variables E and F are relevant (and unknown in both Fig-
ures 6b and 6c) and the state of node 14 is relevant. In both cases, the state of 14 is ⊥,
which is equal to the ctrl value of incoming arc 13→14.

9 E=1

11 110 E=0

6 E=1

7 1

8 B

12 0

13

2

3 C

4 D

5 0

14 E

15 F=1

0 1

16 F=0

1 A

9 E=1

11 1

⊥

10 E=0

⊥

6 E=1

7 1

00

8 B

⊥

12 0

0

13

0

2

⊥3 C

⊥

04 D

⊥

0

5 0

⊥

⊥

14 E

15 F=1

⊥ ⊥

⊥0

⊥ ⊥

16 F=0

1 A

⊥ ⊥

9 E=1

11 1

⊥

10 E=0

⊥

6 E=1

7 1

⊥⊥

8 B

⊥

12 0

⊥

13

⊥

2

⊥3 C

⊥

⊥4 D

0

0

5 0

0

0

14 E

15 F=1

⊥ ⊥

⊥⊥

⊥ ⊥

16 F=0

1 A

⊥ ⊥

9 E=1

11 1

0

10 E=0

0

6 E=1

7 1

00

8 B

0

12 0

⊥

13

⊥

2

⊥3 C

⊥

04 D

⊥

0

5 0

⊥

⊥

14 E

15 F=1

⊥ 0

00

⊥ 0

16 F=0

1 A

⊥ ⊥

A=⊥ C=0 D=0 B=0 A=⊥ C=1 D=⊥ B=⊥ A=⊥ C=0 D=0 B=1
(a) (b) (c) (d)

Fig. 6. (a) After adding data dependence nodes and arcs to Figure 1a. (b), (c), (d) Possible simu-
lation states upon reaching node 14. Cases (b) and (c) are equivalent since the relevant variables
(E and F) and state of node 14 (the one with incoming arc(s) from outside of the subgraph) are
the same. Case (d) is different. Cases (b) and (c) share the node that tests E, whereas case (d)
creates the E=0 node in the dashed box in Figure 1b.

Separate Compilation for Synchronous Modules 139

Table 1. Experimental Results

Example Lines Average cycle times
Esterel V5 SCFG 3-Valued

comexp 88 1.67s 0.61s 0.80s
iwls3 70 1.04s 0.35s 0.26s
3vsim2 48 0.68s 0.32s 0.46s
multi3 120 1.39s 0.45s 0.47s

In these two states, node 10 may still run in the future, so no code is generated to
set E to 0, E is therefore also unknown, so it is tested, and F=0 may later be able to run.
The code generated for these states is the test of E followed by the assignment of F to 0
in the dashed region of Figure 1b. Paths from the test of C (i.e., when C is 0—Figure 6b)
and the test of B (i.e., when B is ⊥—Figure 6c) converge on this subgraph because the
algorithm has identified these states as equivalent.

By contrast, assuming A=⊥, C=0, D=0 and B=1 gives the state in Figure 6d. Here
it is known that node 10 (assign 0 to E) will run because none of its predecessors will
(this is reversed from the usual rule because such nodes are specially designed to detect
when a variable is set to 0). This leads to different code of the other two cases, i.e., the
assignment of 0 to E attached to the true branch under the test of B in Figure 1b.

5 Experimental Results and Conclusions

We compared the speed of the code generated by our algorithm to that from the Es-
terel V5 compiler, which translates the Esterel program into a logic circuit and gener-
ates code to simulate it, and to the code generated by the algorithm described by Zeng
et al. [12], which generates sequential code by adding guard variables. To obtain the
average cycle times in Table 1, we ran the generated C code from all three compilers
(compiled with gcc -O3) for 10 million cycles on a 2.5 GHz Pentium 4 running Linux.

Table 1 shows our results. While the theoretical complexity of our algorithm is ex-
ponential, the experiments we ran show it appears to not be an issue in practice.

The code generated by the other two compilers (V5 and SCFG) only perform two-
valued computation. Because our compiler adds code for three-valued computation, it
generates slower code. However, the experimental results suggest that the slow-down is
fairly mild and in some cases, our compiler actually generates faster code. We suspect it
is because our compiler uses a different technique to sequentialize the concurrent code.

Together, these experiments suggest that our algorithm is practical, at least for
modest-sized programs. There are certainly additional opportunities for optimization.
In particular, we intend to integrate this technique with our earlier technique for pro-
ducing efficient sequential code from (concurrent) program dependence graphs [12].

Although our algorithm was originally designed to generate monotonic three-valued
programs from two-valued ones to work with the heterogeneous synchronous model
of computation, it may have other applications. The general idea of partially simulat-
ing networks and recording the results as a branching program resembles some ap-
proaches for generating efficient simulators for gate-level circuit descriptions [14, 15].

140 J. Zeng and S.A. Edwards

While these approaches insisted on a BDD-like representation, our technique suggests
the possibility of selectively “forgetting” inputs, which should give an interesting trade-
off between efficiency and code size.

References

1. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone, R.: The
synchronous languages 12 years later. Proceedings of the IEEE 91 (2003) 64–83 Invited.

2. Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., De Simone, R.: Esterel: A formal
method applied to avionic software development. Science of Computer Programming 36
(2000) 5–25

3. Arditi, L., Bouali, A., Boufaied, H., Clave, G., Hadj-Chaib, M., Leblanc, L., de Simone,
R.: Using Esterel and formal methods to increase the confidence in the functional validation
of a commercial DSP. In: Proceedings of the ERCIM Workshop on Formal Methods for
Industrial Critical Systems (FMICS), Trento, Italy (1999)

4. Vachharajani, M., Vachharajani, N., August, D.I.: The Liberty structural specification lan-
guage: A high-level modeling language for component reuse. In: Proceedings of the ACM
SIGPLAN Conference on Program Language Design and Implementation (PLDI). (2004)

5. Penry, D.A., August, D.I.: Optimizations for a simulator construction system supporting
reusable components. In: Proceedings of the 40th Design Automation Conference, Anaheim,
California (2003) 926–931

6. Edwards, S.A., Lee, E.A.: The semantics and execution of a synchronous block-diagram
language. Science of Computer Programming 48 (2003) 21–42

7. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A mixed-paradigm simula-
tion/prototyping platform in C++. In: Proceedings of the C++ At Work Conference, Santa
Clara, California (1991)

8. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design, semantics,
implementation. Science of Computer Programming 19 (1992) 87–152

9. Bryant, R.E.: Binary decision diagrams and beyond: Enabling technologies for formal ver-
ification. In: Proceedings of the IEEE/ACM International Conference on Computer Aided
Design (ICCAD), San Jose, California (1995) 236–243

10. Chiodo, M., Giusto, P., Jurecska, A., Lavagno, L., Hsieh, H., Suzuki, K., Sangiovanni-
Vincentelli, A., Sentovich, E.: Synthesis of software programs for embedded control ap-
plications. In: Proceedings of the 32nd Design Automation Conference, San Francisco, Cal-
ifornia, Association for Computing Machinery (1995) 587–592

11. Edwards, S.A.: Compiling concurrent languages for sequential processors. ACM Transac-
tions on Design Automation of Electronic Systems 8 (2003) 141–187

12. Zeng, J., Soviani, C., Edwards, S.A.: Generating fast code from concurrent program depen-
dence graphs. In: Proceedings of Languages, Compilers, and Tools for Embedded Systems
(LCTES), Washington, DC (2004) 175–181

13. Potop-Butucaru, D.: Optimizations for faster execution of Esterel programs. In: Proceedings
of Memocode, Mont St. Michel, France (2003) 227–236

14. Murgai, R., Hirose, F., Fujita, M.: Logic synthesis for a single large look-up table. In:
International Workshop on Logic Synthesis. (1995) 6–11–6–19

15. Ashar, P., Malik, S.: Fast functional simulation using branching programs. In: Proceedings
of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose,
California (1995) 408–412

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 141 – 149, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Implementation of Hardware and Embedded Software
for Stream Gateway Interface Supporting Media Stream

Transmissions with Heterogeneous Home Networks

Young-choong Park1, Seung-ok Lim1, Kwang-sun Choi1, Kawng-mo Jung1,
and Dongil Shin2,*

1 Korea Electronics Technology Institute, #8th FL, Good Friend Bank B/D 270-2,
Seohyun-Dong, Pundang-Gu Sungnam-Si, KyungGi-Do, Korea
{ycpark, solim, kwchoi, jungkm}@keti.re.kr

2 Department of Computer Engineering, Sejong University, 98 Gunja-dong,
Kwangjin-Gu, Seoul, Korea
dshin@sejong.ac.kr

Abstract. In modern information society, we are confronted by an alteration
paradigm called the information technology (IT) revolution. Recently, along
with advances in various computing technologies, new concepts, such as a con-
vergence phenomenon among information devices, have given rise to ubiqui-
tous and pervasive computing around the world. Also, the realization of the
home network, which is one of the core solutions for future computing, has be-
come an important issue. This paper describes the architecture of the next gen-
eration home network interface hardware, which will support various home
networks and media services through a media stream transmission in heteroge-
neous home networks. For the transmission of media streams, such as MPEG-2
TS and DVD, we designed and implemented hardware and embedded software
for the stream gateway interface which supports media stream transmission
with heterogeneous home networks.

1 Introduction

In the 21st century, we are confronted by an alteration paradigm called the information
technology (IT) revolution. Recently, along with advances in various computing tech-
nologies, new concepts, such as a convergence phenomenon among information de-
vices, have given rise to ubiquitous and pervasive computing around the world.
Emerging ubiquitous computing technology aims to “enhance computer use by mak-
ing many computers available throughout the physical environment. Computing
power and communication capability is embedded in every appliance, including digi-
tal-TVs, air-conditioners, sensors, and so forth, and users can access the ubiquitously
present appliances anywhere and anytime via home networks like IEEE1394, WLAN,
PLC, UWB and Zigbee[1]-[4].

Many researchers consider a home network to be one of the core infrastructures for
the realization of ubiquitous computing. In the past decade, there have been numerous

* Corresponding author.

142 Y.-c. Park et al.

research efforts in home networks. The research and development needed for home
networks has existed for a long time but have not been used because of difficulties in
market formation from the lack of a killer application, a scramble for the technology,
and an absence of commercial technology. However, through the development of a
national communication infrastructure and the spread of an acknowledgement of our
home life, many researchers have proposed a detailed solution to the interspersed
problems. Thus, in two or three years, the technology related to a home network will
be a popular issue in the IT area.

In this paper, we discuss how we designed, implemented and tested the stream
gateway interface (SGI) of a home station (HS) for media stream transmission, to
handle a media stream such as MPEG-2 TS, DVD, or VoD in a heterogeneous home
network. This interface will be referred to as HS_SGI. Also, we explain the transmis-
sion of the media stream by HS_SGI.

This paper is organized as follow: in Section 2, we explain several requirements
and system architectures for the next generation home platform (NGHP) through
related work on the future home network. In section 3, we describe the HS_SGI archi-
tecture in detail. Sections 4 and 5 present the implementation and test of the HS_SGI,
respectively. Finally, we conclude with a brief summary and a description of future
work in Section 6.

2 Related Work

In the heterogeneous home network environment, the key element is interoperability
among the heterogeneous home network devices, multimedia processing for home
digital services and linking with the ubiquitous computing technology for the coming
ubiquitous home. There are several research studies that have been done to ensure the
above key elements.

Schulzrinne et al. describes the requirements of a globally-scalable ubiquitous
computing system and is developing such a system based on Session Initiation Proto-
col (SIP), with Bluetooth devices for location sensing and Service Location Protocol
(SLP) for service discovery. Also they introduce context-aware location information
to augment device discovery and user communication called the Columbia InterNet
Extensible Multimedia Architecture (CINEMA) infrastructure for multimedia col-
laboration[1].

Moon, et al. presents universal home network middleware (UHNM) architecture,
which guarantees seamless interoperability among the heterogeneous home network
middleware for future homes and provides high-level abstraction and zero-
configuration, as well as makes new services available without a great effort.

Bae, et al proposes a new scheme for the home server platform for providing home
digital services by connecting a home network and the internet. This scheme is an
integrated form of a home multimedia server, a home control server and a home in-
formation server and has an interface between access networks and home networks,
various kinds of wired and wireless home network devices, and multimedia process-
ing modules[3].

As shown in the above studies, there are many research studies in the areas of
home gateways and servers for multimedia transmission in heterogeneous home net-
works. This indicates the development of the NGHP in these environments.

 Implementation of Hardware and Embedded Software 143

The NGHP is taking shape as an integration station that combines the set-top gate-
way and multi-service gateway. It is becoming a digital convergence media gateway
with the abilities of the set-top, broadband modem, home networking and IP stream-
ing. It also has the set-top box function of providing services such as HDTV, Contents
Protection, PVR, Web browsing and Interactive TV, along with the transmission of
data, voice and entertainment. In order to have the aforementioned functions, there are
several requirements for the NGHP:

 universal networking platform based on open architecture
NGHP needs data communication between the heterogeneous network and the

communication platform for an open architecture supporting many to many com-
munications.
 multimedia data Switching architecture

Since various kinds of stream sources, such as audio, video, control, data and
voice are present in the Internet world, the switching architecture needs features
such as data-capability, real-time, delay and a mechanism that can switch between
channels.
 QoS architecture based on next-generation services

Since various kinds of multimedia data are present in a home, NGHP should clas-
sify and process the heterogeneous traffic.
 common connectivity standardization

NGHP needs the modularization of the gateway internal function and network in-
terface and the common connectivity standardization to be able to connect universally.

The architecture of the NGHP considering the above proposed features is illustrated
in Fig. 1.

Video
Channel

Common
Bus

PHY
IP

Common
Bus

Common
Bus

PHY
LonWork Common

Bus PHY
UWBCommon

Bus

PHY
1394

Common
Bus

QoS
Any Network Management
Integrated Device Control

Switchin
g

Audio
Channel

Control
Channel

Data
Channel

Video
Channel
Video

Channel

Common
Bus

PHY
IP

Common
Bus

Common
Bus

PHY
LonWork Common

Bus PHY
UWBCommon

Bus

PHY
1394

Common
Bus

QoS
Any Network Management
Integrated Device Control

Switchin
g

Audio
Channel

Control
Channel

Data
Channel

Video
Channel

Fig. 1. Architecture of the NGHP

3 Architecture of the HS_SGI

In this section, we describe the hardware and software of the SGI module specified
for the transmission of the media stream in NGHP.

144 Y.-c. Park et al.

Fig. 2 shows the internal architecture of the SGI module. The core hardware archi-
tecture consists of the following sub-modules: the LVDS Prot Interface, SGI field
programmable gate array (FPGA), CPU Module and Common Bus Interface. The
LVDS Port Interface is in charge of providing the MPEG-2 TS packets to the process-
ing module by connecting to the MPEG Test System. We have implemented the
HS_SGI Hardware Module using the internal architecture of the SGI hardware of Fig.
2 and made the test board based on it as shown in Fig. 3.

PHY or
PHY/MAC

RS-232
CPU

RX
Dual-Port

SRAM

TX
Dual-Port

SRAM

addr
data

Reset
clk

Control
signals

/TXINT

/IRQ

Back
Plane

Line
Driver

Flash DRAM

Gateway Interface Block HSIP Interface Block

FPGA

SPR

Address
Decoder
Register
Control

RX Common Bus
Interface

Tx Common Bus
Interface

Control Signal GeneratorLVDS
to

TTL

Dual-Port
SRAM

FPGA

Serial-to
-parallel

TS
Detector

Buffer
Controller

Packet
Processing

PHY or
PHY/MAC

RS-232
CPU

RX
Dual-Port

SRAM

TX
Dual-Port

SRAM

addr
data

Reset
clk

Control
signals

/TXINT

/IRQ

Back
Plane

Line
Driver

Flash DRAM

Gateway Interface Block HSIP Interface Block

FPGA

SPR

Address
Decoder
Register
Control

RX Common Bus
Interface

Tx Common Bus
Interface

Control Signal GeneratorLVDS
to

TTL

Dual-Port
SRAM

FPGA

Serial-to
-parallel

TS
Detector

Buffer
Controller

Packet
Processing

Fig. 2. Internal Architecture of SGI

LVDS Port Interface SGI FPGA

Common Bus Interface

CPU Board (MPC860)

LVDS Port Interface SGI FPGA

Common Bus Interface

CPU Board (MPC860)

Fig. 3. HS SGI Hardware Module

We have exemplified the SGI Algorithm to operate the module. Fig. 4 shows the
operation process of the SGI Algorithm. The system initialization process begins by
booting the SGI module. The SGI Module confirms whether the MPEG-TS packet is
transferred through the loading of the Polling LVDS module by checking the Rx
DPSRAM. After it makes sure of the input of the MPEG-2 TS packet from the MPEG
Test System, the Input data is transmitted to the Common Protocol (CP) header gen-
erator and the BDP(Buffer Description Protocol) for sending the input data to the
HGI (Home Gateway Interface) Module through the Common Bus. After it checks the

 Implementation of Hardware and Embedded Software 145

Start

Input MPEG-TS

Polling LVDS

TS Transfer Module

CP Header Generator

BDP Generator

Send
the Common Bus Interface

Check the Rx DPSRAM &
Confirm Whether the MPEG-2 TS packet

inputs or not

// Next Input Data
// Nonconforming TS Packet

// CP Header + Payload(MPEG-TS)
// Making the BDP Packet

Bandwidth Manager

Conforming TS Packet Yes

No

Yes

No

// Multicast & Broadcast

// To FPGA board

SPR Check?

Yes

Confirm Whether the Common Bus is ready to
receive the data or not

No

WAIT

Start

Input MPEG-TS

Polling LVDS

TS Transfer Module

CP Header Generator

BDP Generator

Send
the Common Bus Interface

Check the Rx DPSRAM &
Confirm Whether the MPEG-2 TS packet

inputs or not

// Next Input Data
// Nonconforming TS Packet

// CP Header + Payload(MPEG-TS)
// Making the BDP Packet

Bandwidth Manager

Conforming TS Packet Yes

No

Yes

No

// Multicast & Broadcast

// To FPGA board

SPR Check?

Yes

Confirm Whether the Common Bus is ready to
receive the data or not

No

WAIT

Fig. 4. SGI Algorithm

Special Purpose Register (SPR), which is able to check whether the data is sent to the
Common Bus, Packets are stored in the Tx DPSDRAM and input packets are trans-
mitted to the Common Bus via the TS Transfer Module. Through a repetition of this
series of steps, input packets are sent to the HGI from the SGI by forwarding the input
packets to the HGI Module via the Common Bus.

We are implementing the parts of the bandwidth manager[4] and the TS transfer
module mentioned above for a one to one test system. After this, we are going to
complement these modules for the processing of a media stream in a many to many
test system[6,7]. Until now, we have described the SGI Algorithm for efficiently
processing a media stream. In section 4 Implementation of the HS_SGI, we delineate
the detailed operating procedure for transmitting media data using this algorithm[5].

4 Implementation and Testing of the HS_SGI

4.1 Implementation of the HS_SGI

In this section, we discuss how we embodied the above SGI design in practice and
tested a module to verify the sending of media data via the data scenario (“SGI-
>HSIP->HGI”). MPEG-2 TS packets produced from the AD953 MPEG Test System
are transmitted to the SGI Module via the LVDS interface. The embedded SGI FPGA
in the SGI internal module and a CPU board using an MPC860 manages the process-
ing of Module transmission.

146 Y.-c. Park et al.

MPEG Generator

LVDS Interface

Common Bus

FPGA

FPGA

Sgi_App

SGI Line Board MPC860 Board

HGI Line Board MPC860 Board

Hgi_App

Ethernet Interface

Common Bus Interface

Common Bus Interface

FPGA

MPEG Generator

LVDS Interface

Common Bus

FPGA

FPGA

Sgi_App

SGI Line Board MPC860 Board

HGI Line Board MPC860 Board

Hgi_App

Ethernet Interface

Common Bus Interface

Common Bus Interface

FPGA

Fig. 5. Data Transmission Architecture between SGI and HGI

‘ ’

‘ ’

‘ ’

‘ ’

Fig. 6. SGI Data Transfer Flow

Fig. 6 shows the detailed operating procedure using the SGI module. The data pro-
duced from the MPEG TS generator is encapsulated as CP packets in the application
software of the MPC 860 dotter board, which is the CPU board of the HS SGI board,

 Implementation of Hardware and Embedded Software 147

and stored in the Rx DPSRAM. Thus it creates a BDP using the address of the Rx
DPSRAM that is stored in the header information and the data of the CP packet and
the created BDP is sent to the FPGA of the HS SGI, after setting the RxRDY register
to ‘1’. When the RxRDY register is set to ‘1’, the HS SGI FPGA sends a Common
Bus Request (CB_REG) signal to the HSIP’s FPGA. And HSIP’s FPGA sends Com-
mon Bus Grant (CB_GNT) signal, which means the Bus Admission, to the HS SGI.
In order to get the bus admission into the common bus arbitration method, the HS SGI
can send the data via the common bus.

The HS SGI receives the CB_GNT signal from the HSIP’s FPGA when it is sent via
the common bus. After packet processing, the HSIP’s FPGA sends the Common Bus
Send (CB_SND) signal and the Common Bus Receive (CB_RCV) signal to the HS
SGI and the HS HGI respectively. CB_SND means the packet sending signal and
CB_RCV means the packet receiving signal. The HS SGI transmits the CP packets
stored in the Rx DPSRAM to the Tx DPSRAM of the HS HGI based on the CB_SND
and CB_RCV. The HS HGI generates the TXINT signal and transmits the packet in
the Tx DPSRAM of the HS HGI to the application software of the MPC 860 board.
After setting the TxRDY register to ‘1’, the HS SGI’s FPGA is able to receive the data.

4.2 Test of the HS_SGI

Fig. 7 shows the test-bed for data transmission between the heterogeneous interfaces.
It shows that packets being sent to the HGI board from the SGI board in our

Fig. 7. Data Transmission Test-bed

148 Y.-c. Park et al.

SGI Module

MPEG-2 TS Generator LVDS Port Interface

SGI Module

MPEG-2 TS Generator LVDS Port Interface

Fig. 8. HS SGI Test Suite

home station. The MPEG-2 TS packets produced from an MPEG Generator are sent
to the HGI board, where they are sent to PC#2, which is connected to the HGI inter-
face via Home Station Internal Protocol (HSIP) and HGI. We have implemented the
core module using VxWorks as an operating system and tested the core module
with several end-devices using various operating systems, such as Linux and
Windows.

Fig. 8 shows the test sight of the home station in our lab. It presents a media stream
transmission sight through the SGI module of the home station.

5 Conclusion and Future Work

In this paper, we have discussed the design and implementation of the SGI module for
the next-generation HS for the transmission of a media stream like MPEG-2 TS pack-
ets. Also, the operation of transmission of multimedia data over an HS_SGI has been
explained. Since we developed the prototype related to an HS_SGI, we have the abil-
ity to develop advanced functions related to the SGI module, such as a bandwidth
manager, multicast, broadcast and so forth.

In the near future, based on the diffusion of ubiquitous computing technology and
home network technologies, users will require the ability to ubiquitously access pre-
sent appliances from anywhere and at anytime. Thus, the end-to-end connectivity
between appliances inside the home is possible where all the information transported
will be multimedia data.

 Implementation of Hardware and Embedded Software 149

References

[1] H. Schulzrinne, X. Wu, S. Sidiroglou, S. Berger, “Ubiquitous Computing in Home Net-
works”, IEEE Communications Magazine, November.

[2] K. Moon, Y. Lee, Y. Son and C. Kim, “Universal Home Network Middleware Guarantee-
ing Seamless Interoperability among the Heterogeneous Home Network Middleware”,
IEEE Transaction on Consumer Electronics, Vol. 49, No. 3, August, 2003

[3] C. Bae, J. Yoo, K. Kang, Y. Choe and J. Lee, “Home Server for Home Digital Service En-
vironments”, IEEE Transaction on Consumer Electronics, Vol. 49, No. 4, November,
2003

[4] A. Croll, E. Packman, “Managing Bandwidth: deploying QoS In Enterprise Networks”,
Prentice Hall PTR

[5] N. Chaddha, “A Software Only Scalable Video Delivery System for Multimedia Applica-
tions over Heterogeneous Network”, Image Processing, 1995. Proceeding., International
Conference on, Vol. 3, 23~26, Oct 19, 1995

[6] Bichot Guillaume, Ramaswamy Kumar, Burklin Helmut, and Stahl Thomas, “Methods for
bridging a HAVi sub-network and a UPnP sub-network and device for implementing said
methods”, Thomson Multimedia, 2002

[7] Eiji Tokunaga, Hiro Ishikawa, Makoto Kurahashi, Yasunobu Morimoto, and Tatsuo Naka-
jima, “A Framework for Connecting Home Computing Middleware”, ICDCSW’02, 2000

On Using Locking Caches in
Embedded Real-Time Systems�

A. Mart́ı Campoy1, E. Tamura2, S. Sáez1,
F. Rodŕıguez1, and J.V. Busquets-Mataix1

1 Departamento de Informática de Sistemas y Computadores,
Universidad Politécnica de Valencia,

Camino de Vera s/n, 46022 Valencia, Spain
{amarti, ssaez, prodrig, vbusque}@disca.upv.es

2 Grupo de Automática y Robótica,
Pontificia Universidad Javeriana – Cali, Colombia

eutamo@doctor.upv.es

Abstract. Cache memories are crucial to obtain high performance on
contemporary processors. However, they have been traditionally avoided
in embedded real-time systems due to their lack of determinism. Unfor-
tunately, most of the techniques to attain predictability on caches are
complex to apply, precluding their use on real applications. This work
reviews several techniques developed by the authors to use cache memo-
ries in “real” embedded real-time systems, with the ease of use in mind.
Those techniques are based on a locking cache, which offers a very pre-
dictable behaviour. Both static and dynamic use are proposed as well as
the algorithms and methods required to make the schedulability analysis
using two different scheduling policies. Also proposed is a genetic algo-
rithm that finds, within acceptable computational cost, the sub-optimal
set of instructions that must be preloaded in cache. Finally, a set of sta-
tistical analyses compares the locking cache versus a conventional one.

Keywords: Cache memories, embedded real-time systems, genetic al-
gorithms, predictability, schedulability analysis, performance evaluation,
execution time, response time.

1 Introduction

Embedded systems are composed of a combination of hardware and software
components which perform specific functions in host systems, which range from
domestic appliances to space explorers. The vast majority of processing elements
manufactured worldwide are used in such systems. In some cases, embedded
systems need to satisfy stringent timing requirements. Hence, they also may be
Real-Time systems, in which the correctness of the system depends not only

� Work partially supported by Ministerio de Educación y Ciencia, Dirección General
de Investigación under project DPI2003-08320-C02-01.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 150–159, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Using Locking Caches in Embedded Real-Time Systems 151

on the logical result of computations, but also on the time at which the results
are produced.

Embedded Real-Time Systems is a very exciting and expanding field, whose
applications are found in command and control systems, process control, auto-
mated manufacturing. In every case, they typically control the environment in
which they operate and they need to guarantee the response times. To cope with
the increasing complexity, many embedded real-time systems use modern micro-
processors, which provide a higher throughput. Contemporary microprocessors
include cache memories in their memory hierarchy to increase system perfor-
mance. General-purpose systems benefit directly from this architectural improve-
ment, but for embedded real-time systems, their inclusion raises the complexity
when analysing task set schedulability. In fact, using cache memories presents
two problems. The first problem lies in estimating the Worst Case Execution
Time, WCET, due to intra-task or intrinsic interference. Intra-task interference
occurs when a task removes its own instructions from the cache due to conflict
and capacity misses. When the task tries to execute those removed instructions,
cache misses increase the execution time of the task. This way, the delay caused
by the cache memory interference must be included in the WCET calculation.
The second problem is to estimate the task response time due to inter-task or
extrinsic interference. Inter-task interference occurs in preemptive multitask sys-
tems when a task displaces the working set of any other task from the cache.
When the preempted task resumes execution, a burst of cache misses increases
its execution time. This effect, called cache-refill penalty or cache-related pre-
emption delay must be considered in the schedulability analysis, since it situates
task execution time over the precalculated WCET. Modelling cache behaviour
is very complex, like described in several proposals [3], [8], [7], [6], [2]. Thus,
several alternatives to conventional caches have been proposed. One of these
alternatives is the use of locking caches.

2 Locking Cache Basics

Several processors include a cache memory with the ability to lock its contents,
thus precluding its replacement when the processor fetches new instructions. The
use of locking caches in embedded real-time systems offers several advantages:

– Intrinsic interference is eliminated, and extrinsic interference is bounded and
can be estimated in advance. This makes cache behaviour very predictable,
allowing a simple analysis, even when other architecture improvements are
used, since memory access delays are constant. This is an improvement over
other alternatives like SMART [5] and others that do not fully remove in-
terferences and still demand complex analyses.

– Necessary hardware is nowadays present in several commercial processors,
and only minor hardware modifications are mandatory in order to get the
best performance.

– In several cases, the use of locking caches presents about the same or better
performance than that obtained when using a conventional cache.

152 A.M. Campoy et al.

– The use of locking cache is transparent to programmers, since he/she does
need to neither include any special instructions nor use additional tools to
write the applications.

The only disadvantage when using locking caches is that system performance
depends on selecting the instructions loaded and locked in cache. This selection
must be carefully accomplished and presents some degree of complexity.

3 Static Use of Locking Caches

The main goal of using statically locking caches is its full predictability and
thus, the simplicity when estimating execution and response times [10]. In this
case, the locking cache is loaded with a well-known set of instructions before the
execution begins, and the cache remains unmodified during system operation.
Although locking caches are present in several processors, some minor modifica-
tions in these architectures are needed in order to get full predictability and the
best possible performance:

– Cache can be totally locked or unlocked. When cache is locked, there are no
new tag allocations.

– Cache can be loaded using a cache-fill instruction, selecting the memory
block to load it.

– There exists a one-cache-line size buffer to temporarily store those instruc-
tions not selected to be loaded into cache, thus improving its sequential
access. The penalty incurred for executing instructions to be loaded in this
buffer is the same as those executing from cache.

The WCET of tasks may be easily estimated using the timing analysis pre-
sented in [13]. The effect introduced by the cache inclusion is then reduced to
know which instructions are loaded and locked in cache and which not. Thus,
since there are no replacements in cache memory and the set of instructions to
be locked is selected by the system designer, the WCET is easily estimated.

Regarding response time of tasks, it can be estimated using Cached Response
Time Analysis, CRTA, [2], an extension to Response Time Analysis, RTA, [1] for
fixed priority, FP, scheduled systems. CRTA is based in an iterative equation (1)
where the cache effect is incorporated in parameter γj . This parameter represents
the time required to refill the cache after each preemption. When a locking cache
is used statically, only the temporal buffer changes during preemptions, so in the
worst case the value of γj is the time needed to reload the temporal buffer, one
cache miss.

wn+1
i = Ci + Bi +

∑
∀ j ∈hp(i)

⌈
wn

i

Tj

⌉
× (Cj + γj) . (1)

When the priority of tasks is dynamically assigned, as it happens with an
Earliest Deadline First, EDF, scheduler, the schedulability analysis is accom-
plished using the Initial Critical Instant, ICI, analysis proposed in [12]. This

On Using Locking Caches in Embedded Real-Time Systems 153

schedulability test does not consider any cache penalty due to preemptions, so
the effect of cache memories must be included in this analysis. Two questions
arise when cache effect wants to be considered: the time needed to reload the
cache; and the number of preemptions a task suffers. The first question has an
easy answer. When a locking cache is statically used, only the temporal buffer
must be reloaded. The second question is more difficult to answer in systems
with dynamic priorities. It is quite easier however to determine the number of
preemptions a task originates when an EDF scheduler is used: these preemptions
can only occur on task arrivals. Therefore, a task generates a preemption when
it arrives or does not generate any preemption at all.

Since the ICI test is not based upon the individual times of tasks but rather
upon the global system utilisation, the cache penalty (reload of temporal buffer)
can be accounted for to the preempting task, instead of incorporating this delay
in the preempted task. Thus, equations (2) and (3) show the resulting ICI test
equations, where the only modification is to add the time needed to reload the
temporal buffer (Tmiss) to the WCET of each task. By making use of functions
G(t) and H(t) it is possible to derive the value of the initial critical instant, R,
by resolving the recurrence formula given in equation (4) until Ri+1 = Ri.

G(t) =
n∑

i=1

(Ci + Tmiss) ×
⌈

t

Pi

⌉
. (2)

H(t) =
n∑

i=1

(Ci + Tmiss) ×
⌊

t + Pi − Di

Pi

⌋
. (3)

Ri+1 = G(Ri), R0 = 0 . (4)

4 Dynamic Use of Locking Caches

Dynamic use of locking cache is proposed with a single objective: getting better
performance than that obtained through the static use, and at the same time,
keeping a high degree of predictability [11]. The operation of dynamic use is
quite similar to the one proposed in the static use: loading and locking in a
cache memory a previously selected set of instructions. However, in dynamic
use, the cache contents change in well known instants of time: every time a task
begins or resumes execution, the cache memory is flushed and reloaded with a
set of instructions belonging to the new scheduled task. Once the instructions are
loaded, the cache is locked until a new task is dispatched for execution. This way,
each task may use all the available cache space in order to improve its execution
time, in clear contrast with static use, where all tasks must share the cache. In
order to operate as desired, hardware and software requirements must be met.
First, the processor must offer instructions to unlock and flush the cache. In
addition, the operating system must store the list of instructions (addresses) to
load in cache for each task; finally, the scheduler must include a small loop to load
the cache every time a new task is scheduled. In this scenario, WCET is estimated
in the same way that when cache is statically used, since intra-task interference

154 A.M. Campoy et al.

does not exist. However, the estimation of response time of tasks must consider
the effect of reload cache after preemptions, and computing this effect is not
easy because tasks may suffer two kinds of interference: direct interference or
indirect interference. Direct interference means that a task increases its response
time because it is forced to reload its own instructions that were previously
removed during preemption. Indirect interference means that a task increases
its response time because executing any other higher priority tasks increases its
response time, due to its own extrinsic interference.

The value of direct-extrinsic interference is the time a task needs to load and
lock its instructions in the cache. The value of indirect-extrinsic interference is
the time other higher priority task needs to load and lock its instructions in the
cache. Since response time analysis must consider the worst-case scenario in order
to provide an upper bound of tasks’ response time, the maximum possible incre-
ment of time must be taken into account for each preemption. Equations (5) and
(6) show the cache refill penalty and CRTA equation respectively. time to loadz

is the time a task needs to load its instructions, and γi
j is the cache refill penalty

for a task τi preempted by a task τj .

γi
j = max

j<z≤i
(time to loadz) . (5)

wn+1
i = Ci + Bi +

∑
∀ j ∈hp(i)

⌈
wn

i

Tj

⌉
× (Cj + γi

j) . (6)

When a dynamic scheduler as EDF is used, the sequence in which the tasks
are activated is unknown. This means that a task may be preempted by any
other task in the system, but it also means that the preempting task may be
preempted at the same time by any other task. That is, the number of tasks that
may produce indirect interference has no limit. This way, the value of cache-refill
penalty due to indirect interference may be the time to reload the cache of any
task in the system but the preempted. Thus, the cache refill penalty for any task
will be the maximum from the time to load of all system’s tasks, every time, and
every preemption. Since the time needed to reload the cache may significantly
vary between tasks, considering this scenario will produce a high overestimation
when computing the response time of tasks and the system utilisation. Therefore,
dynamic use of locking cache is not suitable for dynamic schedulers, due to the
impossibility of getting accurate analysis results.

5 Selecting Contents for the Locking Cache

The increase of performance due to the use of cache memories is very significant;
hence, embedded real-time systems must take advantage of it. The architecture
of a locking cache guarantees determinism, but not performance. In order to
achieve both goals, i.e., a fully predictable cache and a performance similar to
that provided by a conventional cache, the instructions to be locked must be
carefully selected. It is not easy however to find an algorithm that select blocks

On Using Locking Caches in Embedded Real-Time Systems 155

to load and lock in cache in a straight way. In preemptive, multitasking systems,
the execution time of tasks depend on the execution time of higher priority
tasks. In addition, indirect interference in dynamic use causes that the response
time of tasks depends on the time needed to reload the cache contents. This
way, cache contents must be selected considering not the isolated tasks, but all
of the tasks interacting in the system. Exhaustive search, including branch and
bound, presents an intractable computational cost, since the number of possible
solutions is huge. In addition, since the problem is not monotonic, algorithms
like hill climbing are not useful. Genetic algorithms, proposed in [4], performing
a randomly directed search, can be used in this problem, finding a sub-optimal
solution within an acceptable computational time. Two versions of a genetic
algorithm [9], one for static and the other for dynamic use, have been developed.
The algorithm evaluates a set of possible solutions using a fitness function to
sort them. New solutions are created by combining the best individuals of the
previous generation, and the process is repeated a fixed number of times. Since
the block is the minimum unit of information that can be transferred from main
memory to cache, the algorithm provides the set of blocks to be locked, rather
than its individual instructions. It also brings an estimation of the WCET of each
task executing in a locked cache with the chosen set of blocks, and the response
time of all tasks considering the estimated WCET using the locking cache as
given by equations (1) and (6). The main disadvantage of the genetic algorithm
is its temporal cost, whose execution takes between four and six hours and it may
take up to twelve hours when solving some problems. But, on the other hand,
it offers an interesting advantage, because several fitness functions may be used
to sort the solutions, thus guiding the algorithm to improve the performance
in the way that the system designer is most interested on: minimising system
utilisation, maximising task slacks, or tuning the response time of tasks.

6 Experimental Results

Predictability and performance of locking cache have been evaluated using a
large set of experiments. Around 30 systems have been used. Each experiment
is composed of a set of tasks, ranging from three to eight tasks. Tasks used in
experiments are artificially created to stress the proposed cache scheme. A simple
tool is used to create tasks. The tool requires the main parameters of every task,
such as the number of loops and nesting level, its size, loops size, the number of
if-then-else structures and their respective sizes. Task period is hand-defined to
make the system schedulable, and the task deadline is equal to its period. The
workload of any task may be a single loop, if-then-else structures, nested loops,
streamlined code, or any mix of these. The code size for a task may be large (up
to 32 Kbytes) or short (lower than 1 Kbyte). More than two hundred experiments
had been accomplished. Each experiment is simulated using direct-mapped, two-
set associative, four-set associative and fully associative caches, with cache sizes
ranging from 1 Kbyte to 64 Kbytes. For all cases, line size is 16 bytes (four
instructions) and in most of the cases, the task set footprint is bigger than the

156 A.M. Campoy et al.

cache size; furthermore, in some cases, just one task may require more space
than the cache can provide. Fetching any instruction from main memory takes
10 cycles, while fetching any instruction from cache (or temporal buffer) takes
just 1 cycle. For each experiment, the response time of each task is estimated
using the genetic algorithm, then simulated in a locking cache using the blocks
selected by the genetic algorithm, and finally it is simulated in a conventional
cache to evaluate performance and predictability.

First results concern predictability and accuracy of analysis methods. For a
Fixed Priority Scheduler, FPS, response time of tasks (RTe) as estimated by
the genetic algorithm is compared with the response time of tasks obtained by
simulating its execution with a locking cache (RTsl). For the EDF scheduler,
the system utilisation (Ue) as estimated by the genetic algorithm is compared
with the system utilisation obtained by simulating its execution with a locking
cache (Usl).

Figure 1 show the cumulative frequency polygons of error between the es-
timated and simulated results. For an FPS, the error (or overestimation) is
defined as efps = (RTe/RTsl) − 1; in the case of EDF the following formula is
used: eedf = (Ue/Usl) − 1.

Fig. 1. Cumulative frequency polygon of error between estimated and simulated re-
sponse time

From Figure 1 it can be seen that for static use and FP scheduler, the error is
less than 1% in the whole set of experiments. Furthermore, in more than 90% of
the cases, the error is lower than 0.05% and it is below than 0.01% in around 50% of
the cases. The results obtained when using a statically locked cache with an EDF
scheduler look very similar to those achieved with the FP scheduler. However, it is
possible to observe a slightly greater error; it is 0.01% in around 40% of the cases.
This is due to the excessively conservative assumption that states that every task
causes a preemption when it is activated. Yet, since cache refill penalty is extremely
low, error increases in an almost negligible way. Figure 1 also shows the dynamic

On Using Locking Caches in Embedded Real-Time Systems 157

use of locking cache with an FP scheduler and shows an overestimation, which is
higher than that in the two previous cases since taking into account the worst case
is inherent to indirect preemptions. In 10% of the cases, error fluctuates between
10% and 30% but it falls down to 1% for more than 50% of the cases. Certainly,
there exists a high variability in the error obtained.

Figure 2 illustrate results concerning performance and show the cumulative
frequency polygons of gain/loss of performance, P , when comparing utilisation
using a conventional (simulated) cache, Uc, and the utilisation using a locking
cache as estimated by the genetic algorithm, Ue. Here, P = Uc/Ue. A result less
than one indicates that the utilisation using the locking cache is higher than the
utilisation using the conventional cache, thus losing performance. On the other
hand, results higher than one mean that the use of locking caches offers, not just
determinism, but also a performance gain.

Fig. 2. Cumulative frequency polygon of gain/loss of performance of locking cache in
front of conventional cache

In Figure 2, it is also possible to note that for static use and FP scheduler
in more than 60% of the cases, there are no significant losses in performance
(those in which the ratio is above 0.9). The same conclusions can be drawn from
Figure 2 for static use and EDF scheduler. As can be seen in Figure 2, in the
case of the dynamic use and FP scheduler, about 70% of the experiments do
not demonstrate significant losses in performance; besides that, in 20% of the
cases, there is a significant gain in performance (above 1.2) when dynamic use
is employed.

7 Conclusions and Future Work

The use of locking caches in embedded real-time systems has proved to be
very useful, since it exhibits a highly predictable behaviour, thus facilitating

158 A.M. Campoy et al.

the schedulability analysis and, at the same time, offering a performance analo-
gous to that provided by a conventional cache, which on the other hand, is hard
to incorporate into the real-time system analysis.

Moreover, dynamic use of locking cache beats any previous proposal using
cache memory in an embedded real-time system:

– In contrast to alternative proposals to conventional caches, the locking cache
completely removes intrinsic interference while extrinsic interference is
tightly bounded. Other approaches have some level of unpredictability, thus
requiring more complex models and analyses to estimate both the execution
and the response times.

– Even though using locking cache poses performance losses in some cases when
compared to using conventional caches, none of the existing proposals is able
to offer a tightly precise estimation, thus resulting also in a performance loss
in practical terms.

Albeit it might seem that there are no further possibilities in using locking
caches in embedded real-time systems, there still exist some paths to follow. In
all of them, the main goal is to increase the performance of the locking cache.
This can be done as follows:

– By reducing the time required reloading cache contents in dynamic use of
locking cache. This has a twofold effect. First, minimising the time required
to reload cache obviously minimises the execution times. In addition, the
overestimation of the response times is minimised, which in practical terms
is equivalent to a performance increase, since the designer may fine-tune the
system in a better way. This reduction can be accomplished by means of a
memory hierarchy like those proposed in [14] in which the cache memory
can be locked on a per-line basis and include flags to reflect the line lock
status for the blocks pertaining to the current executing task. The memory
hierarchy also needs an extra, dedicated SRAM to store the locking state
information for the whole task set plus some simple, easy to add hardware
for proper operation.

– In addition, since it has been found that the performance of the outcome of
the genetic algorithm can be very dependant on the fitness function used,
the genetic algorithm may provide different fitness functions to satisfy the
system designer needs by allowing him/her to optimise the utilisation, the
slack, or by trying to find a trade-off solution in between.

– Finally, the genetic algorithm is being parallelised to be executed in a Linux
cluster with a message-passing environment by using the homogeneous “is-
land” approach, in which several loosely-related sub-populations are processed
by different processing elements to speed up the calculations.

References

1. Audsley, A.N., Burns, A., Richardson, M., Tindell, K.: Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering Journal, 8
(1993) 284-292

On Using Locking Caches in Embedded Real-Time Systems 159

2. Busquets-Mataix, J.V., Wellings, A.J., Serrano-Martin, J.J., Ors-Carot, R., Gil, P.:
Adding instruction cache effect to an exact schedulability analysis of preemptive
real-time systems. In: Proc. of the Eighth Euromicro Workshop on Real-Time
Systems. IEEE Computer Society Press, Los Alamitos (1996) 271-276

3. Healy, C.A., Arnold, R.D., Mueller, F., Harmon, M.G., Walley, D.B.: Bounding
pipeline and instruction cache performance. IEEE Trans. Comput. 48 (1999) 53-70

4. Holland, J. H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge (1992)

5. Kirk, D.B.: SMART (Strategic Memory Allocation for Real-Time) cache design. In:
Proc. of the 10th IEEE Real-Time Systems Symposium. IEEE Computer Society
Press, Los Alamitos (1989) 229-237

6. Lee, C.-G., Hahn, J., Seo, Y.-M., Min, S.L., Ha, R., Hong, S., Park, C.Y., Lee, M.
C., Kim, S.: Enhanced analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. In: Proc. of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97). IEEE Computer Society Press, Los Alamitos (1997) 187-198

7. Li,Y.-T.S.,Malik, S.,Wolfe, A.:Cachemodeling for real-time software: beyonddirect
mapped instruction caches. In: Proc. of the 17th IEEE Real-Time Systems Sympo-
sium (RTSS ’96). IEEE Computer Society Press, Los Alamitos (1996) 254-263

8. Lim, S.-S., Bae, Y.H., Jang, G.T., Rhee, B.-D., Min, S.L., Park, C.Y., Shin, H.,
Park, K., Moon, S.-M., Kim, C.S.: An accurate worst case timing analysis for RISC
processors. IEEE Trans. Softw. Eng. 21 (1995) 593-604

9. Mart́ı Campoy, A., Pérez Jiménez, A., Perles Ivars, A., Busquets Mataix, J.V.:
Using genetic algorithms in content selection for locking-caches. In: Proc. of
the IASTED International Symposia Applied Informatics. Acta Press, Innsbruck
(2001) 271-276

10. Mart́ı Campoy, A., Perles Ivars, A., Busquets Mataix, J.V. Static Use of Locking
Caches in Multitask Preemptive Real-Time Systems. Proceedings of the IEEE/IEE
Real-Time Embedded Systems Workshop (Satellite of the 22nd IEEE Real-Time
Systems Symposium), London, UK, December 2001.

11. Mart́ı Campoy, A., Perles Ivars, A., Busquets Mataix, J.V. Dynamic Use of Lock-
ing Caches in Multitask, Preemptive Real-Time Systems. Proceedings of the 15th
Triennial World Congress of the International Federation of Automatic Control,
Elsevier Science, Barcelona, Spain. July 2002.

12. Ripoll, I., Crespo, A., Mok, A.: Improvement in feasibility testing for real-time
tasks. Journal of Real-Time Systems. 11 (1996) 19-40

13. Shaw, A.C.: Reasoning about time in higher-level language software. IEEE Trans.
Softw. Eng. 15 (1989) 875-889

14. Tamura, E., Rodŕıguez, F., Busquets-Mataix, J.V., Mart́ı Campoy, A.: High Per-
formance Memory Architectures with Dynamic Locking Cache for Real-Time Sys-
tems. In: Proc. of the Work-In-Progress session of the 16th Euromicro Confer-
ence on Real-Time Systems. Available as Technical Report from the University
of Nebraska-Lincoln, Department of Computer Science and Engineering (TRUNL-
CSE-2004-0010), (2004) 1-4

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 160 – 171, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Trace Acquirement from Real-Time Systems Based
on WCET Analysis*

Ji Meng-Luo, Wang Xin, and Qi Zhi-Chang

Department of Computer Science and Technology,
National University of Defense Technology, 410073 Changsha, China

Jimengluo@Yahoo.com.cn

Abstract. Embedded real-time systems often operate under strict timing con-
straints. In order to test a real-time system thoroughly, we should instrument the
system under test with assertions. Thus, the timing behaviors of such a system
will change more or less. In this paper, we present two methods to weaken or
even remove the timing related impact of the inserted assertions. Firstly, a new
monitoring schema is presented which has less time intrusive than software mo-
toring and can test the target system completely. This schema is a mixture of
hardware monitoring and software monitoring. Secondly, in order to weaken
the time intrusiveness of assertions as much as possible, we present a WCET
analysis based time correction method. This method can compute the accurate
execution time of assertions and corrects the recorded time of interested events.

1 Introduction

Embedded real-time systems such as avionics are often complex and safety-critical.
Their functionality must be thoroughly validated before they are deployed in actual
environment. So it is a contemporary challenge for testing such safety-critical real-
time systems.

In order to assure their correctness and safety, timing constraints are specified dur-
ing the design process. In the testing process, test oracles are generated from these
timing constraints. Test oracle is a method to verify whether the system under test has
behaved correctly on a particular execution [1]. It can not only automatically check if
the system under test is acted correctly, but also promotes the efficiency of software
testing, and relieves programmers from the tedious work of checking testing results.
Obviously, it is inevitable that the traces of real-time systems must be acquired during
the process of real-time systems testing.

The inputs of test oracles are traces of real-time systems. Either the hardware
monitor or the software monitor is used to acquire the traces of real-time systems.
While hardware monitors detect and collect the occurrences of the events outside the
system under test, software monitors insert assertions (set of instructions, also called
software probes [2]) into the systems under test to detect and collect the occurrences

* This work was supported by the National Natural Science Foundation of China under Grant

No. 60303013 and the National Grand Fundamental Research 973 Program of China under
Grant No.2005CB321804.

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 161

of the events inside the systems. Hardware monitors will not change the timing be-
haviors of the systems under test, but they can’t collect all the information needed.
For example, hardware monitors cannot detect local variables. Contrariwise, the exe-
cution of assertions introduced by a software monitor will disturb the timing behav-
iors of the application tasks in the systems under test. In the research of test oracle,
most effort is on the issues about how to automatically generate executable oracles
from real-time specifications, but few of them concerns the acquirement of run-time
traces from real-time systems.

In this paper, we discuss the methods of acquiring run-time traces from real-time
systems, and present a schema, which is a trade-off between hardware monitors and
software monitors, to thoroughly collect run-time traces and introduce as less timing
intrusiveness as possible. We quantify the additional time needed to schedule testing
task and all the application tasks of the system under test. Then, we present a new
method to calculate the execution time of the assertions by the techniques of Worst
Case Execution Time (WCET) analysis and correct the timing behaviors recorded by
assertions.

The remainder of this paper is organized as follows. Section 2 discusses the advan-
tages and disadvantages of different real-time monitor schema and quantify the time
of the intrusiveness caused by the software monitor and inserted assertions. In section
3, we present a method to calculate the execution time of different types of assertions
and a method to correct the time recorded by the assertions. We discuss the related
works and present a conclusion in section 4 and section 5.

2 Test Oracle and Real-Time Monitoring

2.1 Test Oracle and Monitoring

Test oracle is used to check whether the system under test has behaved correctly on a
particular execution based on its specifications. A test oracle consists of two parts; the
first part is the oracle information (sometimes is called test oracle directly) that speci-
fies what are the correct actions (behaviors) for the system under test, i.e. designates
properties that the system must be satisfied. The second part is the oracle execution
process that validates the correctness of the traces acquired from system under test
according to the oracle information. It is often the case for the real-time systems that
reactivity and timing relations are very complex, so it is an error-free and efficient way
to use formal methods and automated techniques during generating test oracles. Fig. 1
shows the role of test oracles in the software testing. Obviously, the acquirement of
run-time traces from real-time systems is a premise for the test oracle to work.

Rearrange
 Timed State
 Sequences
 received from
 Real-Time
 System Test Oracles

Real-Time System

Fig. 1. The role of test oracles in software testing

162 M.-L. Ji, X. Wang, and Z.-C. Qi

The main job of test oracle is to monitor the execution of the system under test, and
validate whether or not the traces of the system under test satisfy their specifications.
Jahanian [3] classifies the monitoring into two modes: synchronous and asynchronous.

In synchronous monitoring, the software probes (assertions) are inserted into the
program and explicitly check the satisfiability of the constraints at a particular point
during the execution of the program by directly manipulating the event histories that
shared by the cooperating tasks. Thus, handling of any violations against the con-
straints is carried out synchronously on the threads of the executing tasks. In this
mode, the test oracle is executed as a part of the application. Because the execution
time of test oracle is immense (it is exponential) [3], the timing behaviors of the ap-
plication tasks are changed greatly.

Alternatively, in asynchronous monitoring, the monitor, which handles the excep-
tions asynchronously, is a separate task. The conformance of the run-time sequences
of system under test with the specification is checked and handled separately from the
application tasks. The program that checks the conformance is called monitor soft-
ware, as shown in Fig.2.

Fig. 2. Asynchronous monitoring

The monitor software is an individual task in the system under test, so it is neces-
sary for a hard real-time system to schedule monitor software as a task with the appli-
cation tasks together. The application will possibly become unavailable because of the
immense resource consuming of the test oracle. So it is a natural choice to place the
monitor software out of the system under test. In this manner, in order to flexibly
control the events, it is better to split the monitor software into two part, the simple
one is called monitor client which stays in the system under test and is scheduled with
application tasks, and another one is still called monitor software which runs on a
individual system and takes the main jobs of the original monitor software. The role
of monitor client and monitor software is shown in Fig. 3.

Additionally, monitors can be classified into hardware monitors and assertion
monitors. Hardware monitors [2] [4] use special hardware (such as specialized co-
processors) to detect and collect event occurrences by snooping and matching bus
signals of the systems under test. This method allows non-intrusive monitoring, but it
is not sufficient to monitor all the needed changes of events especially when there
exist some state changes that are invisible out of the system under test.

Assertion monitor is a kind of software monitors [5] [6] [7] that insert the asser-
tions (software probes) into the systems under test to detect and collect the event data.

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 163

Although this kind of monitoring can detect all the event behaviors, the software
probes will introduce timing intrusiveness to the target system. Timing predictability
is a fundamental requirement of real-time systems. When assertion monitor is used to
acquire the system states, the timing intrusiveness introduced by assertions must be
quantified.

Based on the above characteristics of monitoring, we present a specification- and
system character-dependent trace acquirement schema.

2.2 Specification- and System Character-Dependent Trace Acquirement
Schema

Specification- and system character-dependent trace acquirement schema uses differ-
ent ways to get the traces of an event in system under test relying on whether the
monitored event in specifications is external or internal and whether the event occur-
rence is periodic or sporadic.

Fig. 3. Mixture monitoring of software and hardware monitoring

As showed in Fig. 3, we adopt a mixture asynchronous monitoring schema, which
is a mixture of hardware and software monitoring and place the monitor out of the
system under test.

In fig.3, the monitor client and the monitor software are as mentioned in previous
section. Monitor client collects data from the application tasks under test and sends the
collected data to monitor system. Monitor client is simple and little-resource-
consuming. Monitor input device 1 receives the data from monitor client. Monitor
input device 2 collects data from the input and output of the system under test. Monitor
software deals with the collected data from input device 1 and 2, and checks the con-
formance of the run-time sequences of the system under test with the specification.

In the mixture schema, assertions are only inserted after the statements that may
change the internal states. When an internal state is changed, its value and occurring
time will be sent to monitor client and output to the monitor software. When an exter-
nal event value is changed, monitor software will capture its state and occurring time.

164 M.-L. Ji, X. Wang, and Z.-C. Qi

The advantage of this mixed monitoring include: all the states can be
monitored; Monitor client spends less time because the function of test oracle is
moved to software monitor out of the system under test. This schema is suitable for
hard real-time system.

2.3 Quantify the Intrusiveness of Asynchronous Monitoring

No matter how simple the inserted assertions are, the timing behaviors of the system
under test would be influenced more or less. So when designing the real-time system,
apart from the time saved for application tasks, we should save enough spare time for
testing. The quantity of the spare time saved for testing is:

() (() ())Instr Uninstr
i Tasks

TimeForTest WCET MonitorClient WCET i WCET i
∈

= + − (1)

where Tasks is the set of application tasks, ()InstrWCET i and ()UninstrWCET i are the

WCET of i-th task after and before insertion of assertions, respectively,
WCET(MonitorClient) is the WCET of the monitor client who is mentioned in previ-
ous section.

Apart from the spare time saved for testing, the timing order of the events in
original system would be changed by the insertion of assertions. For instance, a
specification specifies that event B is required to occur before event A within 1ms,
i.e. (A [0,1] B)→ . If event A occurred at moment 10 and event B occurred at

moment 11 during the first normal running of the real-time system, the specifica-
tion was satisfied. But event A would occur at moment 13 and event B occur at
moment 12 during the second running of the real-time system after assertions for
event A and event B have been inserted, the specification would no longer be sat-
isfied. This is a typical run-time error due to the insertion of assertions.

To guarantee that the timing order of the real-time system would not be affected by
the inserted assertions, the offset time caused by the assertions should be removed
from the time they recorded. The affect of the assertions to the original application
tasks include two part: one is the execution time of the assertions themselves that
would prolong the execution time of the application task, another is the different exe-
cution time of the application tasks, which is changed by the existence of the asser-
tions in the system under test, for example, the instruction address of the application
tasks would be changed due to the insertion of assertions, and as a result, its cache
behavior would be changed.

3 Time Analysis and the Correctness of Inserted Assertions

3.1 WCET Analysis

In order to guarantee each task to be completed within its deadline, we must analyze
each task’s Worst-Case Execution Time (WCET). WCET analysis is an important
area in real-time research area [8], which focuses on computing upper bounds of the
processor execution time of code segment for a given application. WCET analysis
must fulfill safety and tightness. Safety means that the WCET estimate must not be

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 165

under the worst case. Tightness of the computed WCET bounds can save the time that
must be reserved for each task and, as a result, reduce the cost of the system.

A WCET analysis process for C program is showed in Fig. 4 and is depicted in de-
tail in [9]. The parser translates a C source code program into an immediate code that
contains the structure information of the program. Based on the program structure
information, the program flow analyzer extracts flow information for WCET analysis.
These flow information contains the call graph of functions, recursive calls, bounds of
loops, whether the branches of a if statement contain a loop exit statement (e.g. break
and return statement), and so on.

Fig. 4. WCET analysis process for C source code

The C compiler translates the C source code into the object code and generates
mapping information between the source code and the object code. Based on above
information, the program flow information and the specific machine information, low-
level analysis calculates the execution time of each instruction and/or each basic block
[10]. The specific machine information includes the configuration of the computer and
the timing characteristic of each instruction. Time analyzer computes the upper bounds
of the processor execution time of pieces of code for a given task based on the program
flow information and the timing behaviors of each basic block that we need.

3.2 Changed Time Analysis for the System Under Test

An instrumentation point CS is a place in program where an assertion can be inserted.
As an assertion is a set of statements, for the syntax correctness, CS must be a place
before some statement. Suppose an inserted assertion is DS, CS is before 1S , the

statements after instrumentation would be 1;DS S .

A checking point JS is a place in program at which we measure the time impact of
the inserted assertions. Suppose the beginning place of the program is KS (KS is not
always the first statement of the program, it is the first statement of the application
task to be scheduled [11]), and the statements after instrumentation is 1;DS S , nor-

mally JS is just before 1S , but in some cases it maybe in or even after 1S .

For any checking point JS, the difference between the time after instrumentation
and before the instrumentation is

166 M.-L. Ji, X. Wang, and Z.-C. Qi

() () ()Instr UninstrTimeChanged JS Time KS JS Time KS JS= → − → (2)

where KS JS→ denotes the program path from KS to JS, ()InstrTime KS JS→ and

()UninstrTime KS JS→ denotes the execution time running from KS to JS after and

before the instrumentation, respectively.
Because the program after instrumentation is composed of the original program

and the inserted assertions, so there exists

() () ()TimeChangedInstr JS DSTime JS ChangedUninstr JS= + (3)

where

()
i

i

i
DS KS JS
DS DSSet

DSTime JS DS
∈ →
∈

=
(4)

() (() ())
i

i

Instr i Uninstr i
S KS JS
S DSSet

ChangedUninstr JS Time S Time S
∈ →
∉

= −
(5)

denote the execution time of inserted assertions and the changed time of the original
program due to instrumentation, respectively. And DSSet denotes the set of assertions.

Equation (3) shows that the difference time ()TimeChangedInstr JS of JS is com-

posed of two parts: one is the execution time of inserted assertions and another is the
difference time of the original program before and after instrumentation, and the latter
is related to the former. Similarly, the precision of the computation of

()TimeChangedInstr JS is also determined by the two parts mentioned above.

For simple CISC processors (i.e. the execution time of two instructions is equal to
the sum of the execution time of each instruction), the inserted assertions have no
impact on the execution time of the original program statements, so

()TimeChangedInstr JS =0. But this is not the case for modern RISC processors.

According to the timing property, Engblom [12] classifies the characteristics of mod-
ern processor to two classes: global and local. Cache and branch prediction are global
and pipeline is local, for instance. For the instrumented statements 1;DS S , the pipeline

information of 1S is changed due to the insertion of DS [13], so the execution time of

1S is changed accordingly. The memory address of 1S may change due to the insertion

of DS, so the cache behaviors and the timing behavior of 1S will change at last.

In this paper, we only concern the timing behaviors of inserted assertions. We sup-
pose here that ()TimeChanged JS can always be calculated accurately for checking

point JS. There are several cases: either the processor is a simple CISC processor,
or ()InstrTime KS JS→ and ()UninstrTime KS JS→ can be calculated accurately by the

WCET analysis technique for the program structure (e.g. the analysis for cache of
pipeline by Healy [14] [15]), or although there is an offset of the time analysis, but the
difference between ()InstrTime KS JS→ and ()UninstrTime KS JS→ is accurate because

they have the same offset.

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 167

3.3 Construction of Assertion

Assertions are inserted in the source code of a real-time system. There are two mo-
dalities for the construction of assertions: the initial assignment assertions and the
normal assertions. Initial assignment assertions assign the initial values to every state
at the beginning of the program. The initial values are determined by the specifica-
tions. Normal assertions are inserted before the statements that would change the
internal state (variable) of the system. Altogether, there are four types of assertion:
conditional assertion, for all assertion, exist assertion and the other, as showed in
Table 1.

Table 1. Four types of assertion

 Conditional For all Exist Other
Meaning for judging the

change of state
for the formulas contains
more than one variable

initialize

Statement
Structure

1;...;if () S E

t1 tn n{ ;...; }...; ;S S S
1 j1 t t;...;for (') {if () { ;...; ;S E E S S

1 mo nbreak;} ...; }...; ;oS S S
1 2 n; ;...; ;S S S

Initial
Normal

For example, a constraint [0, 100](∀i∈1..20(A[i] != Emergency)) in a specifica-
tion, whose meaning is that any component of array A can not be in Emergency state
within 100 unit, is a for all assertion. And a constraint [0, 100](∃i∈1..20(A[i] ==
Emergency)) , which means that there exists a component of array A which will be in
Emergency state within 100 time unit, is an exist assertion. These two assertions have
a same statement structure:

1 j1 t t;...;for (') {if () { ;...; ;S E E S S
1 mo nbreak;} ...; }...; ;oS S S , where

S is a program statement, E and E' are the codes of conditional expression.

3.4 Execution Time Analysis of the Inserted Assertions

From the point of execution time analysis, the statement shapes showed in Table 1
can be decomposed into three kinds of statement sequences: sequential statements,
conditional statement and loop statement.

Sequential statements 1 2;S S
For a simple CISC processor, its execution time is

1 2 1 2(;) () ()Time S S Time S Time S= + (6)

For a pipelined processor, its execution time can be analyzed by using the reserved
table [16][14], i.e. after the concatenation of the reserved table of S1 and S2, the execu-
tion time of S1;S2 is the cycles from the first stage of the first instruction to the last
stage of the last instruction.

When there is a cache miss, the penalty time should be added. Healy presented a
more accurate calculation for pipeline and instruction cache processor [15].

168 M.-L. Ji, X. Wang, and Z.-C. Qi

Conditional statement if (E) then S1; else S2;
The execution time of a conditional statement can be calculated as two sequential
statements when the evaluation result of conditional expression E is known:

Time (if (E) then S1; else S2;) :=
(; 1) if =TRUE

(; 2) if =FALSE

Time E S E

Time E S E
 (7)

where E is the code of conditional expression as mentioned before, Time(E; S1;) is the
execution time of the conditional expression E and the statement S1. Time(E; S2;) is
similar.

Loop statement
1 jt tfor (') {if () { ;...; ;E E S S

1 mobreak;} ...; }oS S

Suppose the iterations of loop is n>0, then
Time (

1 jt tfor (') {if () { ;...; ;E E S S
1 mobreak;} ...; }oS S)=

1 m 1 j

1 m

o t t

o

('; ; ...;) * (1) ('; ; ...;) if evaluated to TRUE once

if never evaluated to TRUE('; ; ...;) * (')

o

o

Time E E S S n Time E E S S E

ETime E E S S n Time E

− +

+
 (8)

Equation (7) shows that the computation needs to know the evaluation result of the
conditional expression E, and moreover, equation (8) needs to know not only the
evaluation result of the conditional expression E but also the iterations of the loop. All
these information can be acquired through monitor. For example, by inserting some
identification statement at a statement entry, monitor can determine the execution
path of an inserted assertion.

3.5 Time Computation and Correction of the System Under Test

For any checking point JS, ()TimeChanged JS , which is the changed time after the

instrumentation, not only rely on the inserted assertion but also the original program.
In previous section, we suppose that ()TimeChanged JS can be calculated accurately.

For accurate computation of the execution time of a program, loop iterations are the
first to be known. Here we discuss how to deal with loop structure of a program in the
system under test, the other structures are discussed in [17] [16] [14].

Because of the existence of monitor, the result of ()TimeChanged JS is not re-

quired to know in advance. So we can take a more accurate time analysis method than
the methods presented in WCET analysis literatures such as [18] and [19]. For exam-
ple, we can let monitor extract the loop iterations exactly through inserting loop iden-
tification at the entry of loop. In the following, we suppose that the loop is at i-th
iteration, where i>0. And for any checking point JS, we use ()Time KS JS→ to de-

note ()InstrTime KS JS→ and ()UninstrTime KS JS→ , where KS is the beginning place

of the program.
It is natural to consider that KS is outside of any loops. If not, when JS and KS are

in the same level of a loop, it is obvious that ()Time KS JS→ = ()KS STime P → , where

KS SP → denotes the statement sequence from KS to JS.

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 169

Suppose JS is at a level deeper than KS, i.e. JS is in a loop for () E S , then

()iTime KS JS→ = () (1)* (;) (;)KS WKS WKS JSTime P i Time E S Time E P→ →+ − + (9)

where WKS is the beginning location of statement S, KS WKSP → denotes the statement

sequence from KS to WKS , and WKS JSP → denotes the statement sequence from WKS

to KS.
Using WCET analysis, the monitor can determine ()KS WKSTime P → , (;)Time E S and

(;)WKS JSTime E P → by equation (6)(7)(8), according to the values of conditional ex-

pressions of the conditional statements and loop statements and the iterations of loop.
From equation (9), we also have

()iTime KS JS→ = 1() (;)i WKS JSTime KS JS Time E P− →→ + (10)

Other kind of loop statements (such as while and do...while) and multiple level
loop statements can be handled in the similar way.

The occurring time of an event would be changed due to the insertion of assertions,
so the timing order of the events from a real-time system would be changed. Through
the above computation, we can correct the recorded event time. And as a result, the
event timing order is corrected.

Suppose the monitoring time for assertion A is AT , the corrected time 'AT should be

' ()A AT T TimeChanged JS= − (11)

4 Related Work

Hardware monitoring approaches are proposed in [2] [4]. These approaches use spe-
cial hardware (such as specialized co-processor) to detect and collect event occur-
rences by snooping and matching bus signals of the systems under test. These meth-
ods allow for non-intrusive monitoring to the system under test, but are not sufficient
to monitor all needed events such as local variables changed in program. Software
monitoring [5] [6] [7] approaches insert software probes into the systems under test
for event detection and event data collection. Although these methods can detect all
event activities, but software probes introduce large timing interference for the sys-
tems under test.

F. Jahanian[20] [3] emphasized the quantification of timing intrusiveness of soft-
ware probes on the behaviors of application tasks and proposed to view monitoring
activities as time-constrained tasks and to include them in the scheduling analysis of
the systems under test.

Peters [21] designed a monitor for real-time systems which combines software
monitor and hardware monitor. The hardware monitor, who is called system monitor
in his literature, observes by using specific input devices. Peters’ work was similar to
ours but does not discuss the problems of timing intrusiveness to the systems under
test.

170 M.-L. Ji, X. Wang, and Z.-C. Qi

5 Conclusion

In this paper we discuss the timing behaviors of different kind of monitor in real-time
test oracle. We propose an asynchronous monitor schema that is a mixture of hard-
ware monitor and software monitor. The proposed schema has as little intrusiveness
as possible and can test the target system thoroughly. The only drawback of the
schema is its complication.

To test a real-time system completely, the system under test must be instrumented
with assertions. The inserted assertions will affect the timing behaviors of the target
system. Based on the WCET analysis tool, we accurately calculate the execution time
of assertions and correct the event time records.

While the schema is especially suitable for hard real-time system because of its
complication, the time corrected method can be applied to both hard and soft real-
time system.

References

1. Baresi, L., Young, M.: Test Oracles. Report No. CIS-TR01-02, Dept. of Computer and In-
formation Science, University of Oregon. (2001) http://www.cs.uoregon.edu/-
michal/pubs/oracles.html

2. Liu, A.C., Parthasarathi, R.: Hardware Monitoring of a Multiprocessor System. IEEE Mi-
cro. 9(5) (1989)44-51

3. Jahanian, F.: Run-time monitoring of real-time systems. In: Son, S.H. (eds.): Advances in
Real-time Systems, Prentice-Hall (1995)435-460

4. Tsai, J.J.P., Fang, K.-Y., Chen, H.-Y.: A Noninvasive Architecture to Monitor Real-Time
Distributed Systems. Computer, 23(3) (1990)11-23

5. Dodd, P.S., Ravishankar, C.V.: Monitoring and Debugging Distributed Real-Time Pro-
grams.,Software–Practice and Experience, 22(10) (1992)863-877

6. Joyce, J., Lomow, G., Slind, K., Unger, B.: Monitoring Distributed Systems. ACM Trans.
Computer Systems, 5(2) (1987)121-150

7. Tokuda, H., Kotera, M., Mercer, C.W.: A Real-Time Monitor for a Distributed Real-Time
Operating System. Proc. ACM Workshop Parallel and Distributed Debugging, (1988)68-77

8. Puschner, P., Burns, A.: Guest Editorial: A Review of Worst-Case Execution-Time Analy-
sis. Real-Tim Systems,18(2-3) (2000)115-128

9. Ji, M.L., Li, J., Wang, X., Qi, Z.C.: An Automatic WCET Analysis Tool Based on Ab-
stract Interpretation. Computer Engineer, to be printed in 8(2006)

10. V. A, Alfred, Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools. Addi-
son-Wesley, (1997)

11. Hu, E.Y.S., Bernat, G., Wellings, A.: Addressing Dynamic Dispatching Issues in WCET
Analysis for Object-Oriented Hard Real-Time Systems. Proceedings of the 5th IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing. Washing-
ton D.C., USA. (2002)109--116

12. Engblom, J.: Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD
thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden. (2002)

13. Engblom, J., Jonsson, B.: Processor pipelines and their properties for static WCET analy-
sis. In Proc. 2nd Embedded Software Conference: Alberto, S.V.L., Sifakis, J. (Eds.): Em-
bedded Software, LNCS 2491 Springer Verlag, Grenoble, France (2002) 334-348

14. Healy, C.A., Arnold, R.D., Mueller, F., Whalley, D.B., Harmon, M.G.: Bounding Pipeline
and Instruction Cache Performance. IEEE Transactions on Computers, 48(1) (1999)

 Trace Acquirement from Real-Time Systems Based on WCET Analysis 171

15. Healy, C.A., Whalley, D.B.: Automatic Detection and Exploitation of Branch Constraints
for Timing Analysis. IEEE Transactions on Software Engineering, (2002)763-781

16. Lim, S.S., Bae, Y.H., Jang, G.T., Rhee, B.D., Min, S.L., Park, C.Y., Shin, H., Park, K.,
Moon, S.M., Kim, C.S.: An accurate worst case timing analysis for RISC processors. IEEE
Transactions on Software Engineering, 21(7) (1995)593–604

17. Shaw, A.C.: Reasoning about time in higher level language software. IEEE Transactions
on Software Engineering, 15(7) (1989)875–889

18. Healy, C.A., Sjödin, M., Whalley, D.B.: Bounding Loop Iterations for Timing Analysis. In
Proc. IEEE Real-Time Technology and Aplications Symposium, (1998)12–21

19. Gustafsson, J., Ermedahl, A.: Automatic derivation of path and loop annotations in object-
oriented real-time programs. Parallel and Distributed Computing Practices, (1998)1(2)

20. Jahanian, F., Rajkumar, R., Raju, S.C.V.: Runtime Monitoring of Timing Constraints in
Distributed Real-Time Systems. Real-Time Systems, 7(3) (1994)247–273

21. Peters, D.K., Parnas, D.L.: Requirements-based Monitors for Real-Time Systems. IEEE
Transactions on Software Engineering, 28(2) (2002)146-158

Elimination of Non-deterministic Delays in a
Real-Time Database System

Masaki Hasegawa1, Subhash Bhalla1, and Laurence T. Yang2

1 Graduate School of Computer Science and Engineering,
University of Aizu, Aizu-wakamatsu,

Fukushima 965-8580, Japan
2 Department of Computer Science, St. Francis Xavier University,

Antigonish, NS, B2G 2W5, Canada

Abstract. In a real-time database system, the conventional method of
transaction method can not be used. In these methods, the deadlock
detection is based on (a) use of delay to cause and watch deadlocks,
(b) high overheads of periodic checking (c) Non-deterministic nature of
the delays, and lastly, (d) difficulties to scale up the existing solutions
(centralized). The proposal is based on enhanced local processing and
peer-to-peer (P2P) communication for distributed transaction process.
The earlier procedures incorporate additional steps for handling wait-for
states and deadlocks. This activity is carried out by methods based on
wait-for-graphs or probes. These methods introduce a centralized compu-
tation at source (for each occurrence of a delay). The proposal introduces
asynchronous operations in transaction processing. As a result the de-
tection processes do not wait for occurrences of delays (time-out). These
start the delay elimination process instantaneously. The technique incurs
low overheads and eliminates the possibility of occurrence of waiting.

1 Introduction

The distributed computing paradigm emphasizes the use of distributed resources
in a decentralized manner. However, the distributed systems perform services
such as deadlock detection in a localized (centralized) manner. That is, on each
occurrence of a wait-for state, a probe or effort to make a transaction wait-for
graph (TWFG) is initiated [4, 9, 10, 14, 15, 16]. This leads to high computation
overheads [3, 13].

In the present proposal, a peer-to-peer (P2P) message algorithm attempts to
perform detection of wait-for states, by using a P2P model of message commu-
nication by using local wait-for precedences [13] (Figure 1 and Figure 2).

1.1 Transaction Processing Using Message to Waiting Peer

We consider performance enhancements using the following.

1. Local processing: In a P2P system, it is possible to reduce inter-site com-
munication by considering the available wait-for information in close prox-
imity (next in waiting) of a transaction manager(TM) at its (local) data
manager (DM) [13];

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 172–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Elimination of Non-deterministic Delays in a Real-Time Database System 173

2. Asynchronous Processing: Many occurrences of wait-for situations can
be avoided by informing a peer (data manager or transaction manager), in
advance. For example,

Transaction Wait−for Graph (TWFG) in a distributed system

T2

T1

T4

Wait−for states in Peer−to−Peer message model

Site 1 : (TM) T1 −−> T2

(DM) T1 −−> X ; T2 −−> X ;

Site 2 : (TM) T3 −−> T4 ; T2 −−> T3 ;

 (DM) T3 −−> X ; T4 −−> X ;

Site 3 : (TM) T4 −−> T5 ;

DM receives access requests for X from peers at Site 1 and 2.

(DM) X <−− T5 <−− T4 <−− T3 <−− T2 <−− T1

 T2 −−> T3 ;

 T4 −−> T5 ;

Site 2

Site 1

Site 3
X

T3

T5

Fig. 1. Equivalent Wait-for states in P2P Computing

– at each event when a peer transaction holding locks, enters a wait stage,
it informs the waiting peer transaction of the change in its TWFG.

Most of the earlier research techniques do not consider any co-operation be-
tween a TM and DMs [16, 9, 10]. The following is a summary of the proposal
made by the present study.

– In place of a global activity to form TWFGs the transaction activity focuses
on available information by introducing asynchronous operations, local com-
putations, and parallel computations (see Example 1 and Example 2);

174 M. Hasegawa, S. Bhalla, and L.T. Yang

– Commonly occurring precedences as per the order of arrival of transactions
can be ignored; The other type of precedences in which a later transaction
gets the precedence to execute before older transaction, are termed as ’odd
precedences’. Their presence is essential to form any deadlock. Therefore,
• Deadlock is removed by handling few odd precedences in a P2P man-

ner. Many odd edge precedences can be reversed as soon as these occur
without a need to wait for the occurrence of a deadlock.

• Odd precedence can be substituted by an orderly precedence through an
exchange one pair of messages (with no losses) in all the cases of static
locking. These can be substituted with similar effects in most cases of
dynamic locking.

• Multiple odd precedences within a TWFG can be processed in parallel
to reduce delays; Such local computations can reduce the number of odd
precedences and thus reduce inter-site communication overheads;

– For prevention of repeated roll-backs the time-stamp priority can be assigned
to a transaction.

These possibilities are briefly described in the following sections. The next
section presents details of the mechanism using examples. An analysis of the
automatic detection model is presented in Section 3. Section 4 considers higher
level wait-for conditions such as multi-level deadlocks. In section 5, the remaining
cases that need exchange of a message are examined with the help of a perfor-
mance evaluation study. The section 6 presents a discussion of the results. The
last section presents summary and conclusions.

2 Asynchronous Steps in Transaction Management

2.1 Increased Local Processing Activity in P2P Computing

Deadlock detection is difficult in a distributed environment. Existing algorithms
detect deadlocks by constructing a transaction-wait-for-graph(TWFG - a directed
graph whose nodes represent transactions and arcs represent the wait-for relation-
ships). The performance studies indicate that a major component of cost of run-
ning the detection algorithms is wasteful (occurs in the absence of a deadlock) [15].

The present study proposes an asynchronous detection scheme. It also uses
transaction wait-for information. For example, let us assume that transaction
T1 is executing at a site (site 1). On receiving a denial of request that data
item is locked by T2 (T1 → T2), it attempts to find the deadlock forming edge
(T2 → T1) from local information. If transaction T2 is waiting at site 1 for T1,
it indicates a deadlock (Figure 2). Scheduling can be carried out by using such
partial graphs without use of lock tables [7, 15, 11, 12, 2, 3]. The change permits
increased interaction between a transaction manager(TM) and local and other
data managers DMs. The graphs are referred to as local access graphs (LAGs).
A LAG of Ti at site Sk contains conflicting edges of all transactions Tj such that,
both Ti and Tj have a conflict on some data items resident at Sk (DM5 at Site3
in Figure 1).

Elimination of Non-deterministic Delays in a Real-Time Database System 175

Transaction T1 Transaction T2
(access for data items X, Y)(access for data items X, Y)

 to TM 1

access denied
information −
local

by DM 1

T2 − > T1

access denied
T1 − > T2

local
information −

Site 1

YX

T 1

Site 2

TM 1

TM 2

T 2

x (y)

(x)

DM 2

y

DM 1

Fig. 2. Deadlock detection process with no inter-site messages

Thus, the possibility of deadlocks is eliminated by local computations. Please
consider the following examples. In static locking, all lock requests are granted
prior to start of transaction execution. In a distributed database system, in some
cases the static locking schemes are preferable to dynamic ones as these allow
concurrent transmission of all lock requests. Also, the execution proceeds with
no delays, after the grant of locks.

Example 1 : Static Locking (no message exchange for deadlock detection)
Consider a distributed system with 2 sites. Assume that two transactions T1
and T2 arrive at the same time (time t) and request data items x and y (Figure
2). Initially, TM at site 1 (TM1) receives the lock for data item ’x’. It sends a
message to DM at site 2 (DM2) for grant of lock for item ’y’ (at time t+1). The
request is denied. TM1 receives the message (at time t+2) (Table 1).

The following tests need to be performed at the local site before sending a
lock request and after receiving a reject message.

1. examination of all pending locking requests at the local DM (find conflicting
transactions, if any).

2. examine the received reject message and search among pending requests at
local DM to detect a deadlock .

176 M. Hasegawa, S. Bhalla, and L.T. Yang

Table 1. Allocation of data accesses in static locking

Site Time t Time t+1 Time t+2
TM1:T1 needs (x,y) DM1: T2 needs (x,y) TM1 receives

Site 1 lock x send reject message reject message
request DM2 for y T2 → T1 T1 → T2

TM2: T2 needs (x,y) DM2:T1 needs (x,y) TM2 receives
Site 2 lock y sends reject message reject message

request DM1 for x T1 → T2 T2 → T1

abort T2

In the given example both sites detect a deadlock during the second test.

Example 2 : Dynamic Locking (no message exchange for deadlock detection)
Assume that two transactions T1, and T2 arrive at the same time and request
data items T1(x) and T2(y). After few steps of execution more requests for data
are generated (T1(y) and T2(x)). Each site performs the above (two) tests locally.

Table 2. Allocation of data accesses in dynamic locking

Site Time t Time t+1 Time t+2
TM1:T1 locks (x) TM1 : receives

Site 1 TM1:T1 needs (y) reject message
request DM2 for y T1 → T2

TM2: T2 locks y DM2 : TM1 needs (x,y) TM2 : T2 also needs (x)
Site 2 DM2 send reject message request causes deadlock

T1 → T2 T2(x, y) → T1(x, y)
unlock y, grant T1(y)

Site 2 (on the basis of test 1) detects a deadlock during time t+2 before issuing
a request for item ’x’. Transaction T2 releases y to remove the conflict at the
local DM (exchange of precedence). The examples 1 and 2 show ideal conditions
(please refer to section on ’Two Site Model’ for an analysis).

3 Automatic Detection of Wait-For Condition

Definition 1: (Odd edge, Even edge): Given that, two transactions Ti and Tj

have a conflict over data item ’x’. Let Ti be an older transaction with Tj >
Ti. If Tj waits and accesses data items after Ti, it forms a naturally occurring
precedence. The event Tj → Ti is termed as an ’even edge’. The occurrence of a
reverse wait-for precedence Ti → Tj is an antagonistic edge, called an ’odd edge’.

Definition 2: A deadlock occurs when a cyclic wait-for graph is formed. It
contains at least one even edge and at least one odd edge.

Elimination of Non-deterministic Delays in a Real-Time Database System 177

Definition 3: If two transactions Ti and Tj form a deadlock (Tj → Ti and Ti →
Tj), it is termed as a ’2-level deadlock’. A deadlock involving ’n’ transactions is
termed as a n-level deadlock.

3.1 One Site Model

In case of one computation site having two transactions, the deadlock can be
detected locally (without inter-site communication). The TM and DM have in-
formation about all the wait-for states. By choosing appropriate data structure
(section 16.1.4, [17]), it is possible to detect the deadlock, as soon as soon as
it occurs. The lock table maintains a list of data items being requested with
a linked list of transactions that seek the data items. The data manager also
maintains an index of transaction identifiers, so that it is possible to determine -

1. set of locks held by a given transaction;
2. set of other items in the intent list (locks not granted, but waiting) of a given

transaction; and
3. set of known transactions in the wait-for graph of a given transactions;

The above index lists are updated as soon as a wait-for condition arises.

3.2 Two Site Model

In a distributed database with 2 sites, if transactions or data items are at the
same site, The TM or DM has all the information to detect deadlock (One Site
Model, as above). When transactions and data items are separated (Figure 2),
messages are needed in some cases. For example, in Example 1 both sites detect
the deadlock.

But, in another case(Figure 3), T1 locks Y(at site2, other site), T2 locks X(at
site1, other site). T1 needs X, and T2 needs Y. Then TM1 receives information
that T1 waits for T2 from DM1. TM2 receives information that T2 waits for T1
from DM2. To detect deadlock, a message is needed in this case (a message from

X

T1

 X

DM1

TM2TM1

T2

DM2

 Y

 Y

 Y
 X

Fig. 3. Two system sites-case 2

178 M. Hasegawa, S. Bhalla, and L.T. Yang

DM1 to its peer (at T2) about the occurrence of an odd precedence.). Also, if
T2 informs its peer DM2 about occurrence of an odd precedence, DM2 locally
informs TM1. A cyclic wait-for condition (deadlock) is detected. The possibilities
of occurrences of data items X,Y and transactions T1 and T2 at sites 1 and 2
are listed in Table 3.

Table 3. Enumeration of cases of occurrence of Transaction and data items

Case X Y T1 T2
1 1 1 1 1
2 1 1 1 2
3 1 1 2 1
4 1 1 2 2
5 1 2 1 1
6 1 2 1 2
7 1 2 2 1
8 1 2 2 2

In cases 1-5 and 8, the deadlocks are detected by local computations (either,
all transactions are co-located, or all data items are co-located). In cases 6 and 7,
possibilities of occurrence of Example 1 (and Example 2) cover 50 % cases (with
no message exchange). This leaves about 12.5 % chances of occurrences of cases
that need an additional message. (In practice, this number may be less, if at the
time of refusing a grant of lock, the DM1 also informs T2 about the wait-for
condition of T1. However, in this study, we consider exchange of wait-for edges
and not wait-for graphs).

We examine the permutations by which the data or transactions can be at the
same site to support conflict detection (see section 4.2). For a general case, bino-
mial distribution of probability (of message exchange cases) for 2 level deadlocks
is given by Pn, given n sites in equation (1) (Figure 4) [13].

Pn =
n(n − 1)2 + (n − 1)(n − 2)(n − 3)

2n3 (1)

3.3 Multi-site Model

With increase in the number of sites, the number of cases with no message
exchange, are given by equation 1 (above), (Figure 4.). A similar analysis for 3-
level deadlocks, shows the number of cases with no message exchange, as shown
by (Figure 4.).

3.4 Deadlock Detection by Exchange of Messages

The remaining cases of deadlocks, are detected by incorporating minimal ex-
change of messages.

Elimination of Non-deterministic Delays in a Real-Time Database System 179

T2
even edge

odd edge

48.6

67.2

41.2

T1

20

30

40

50

60

70

80

90 87.5

77.8

2 73 4 5 6 8

10

(%) with no exchange of messages

Number of sites (n)

Detection of deadlocks

90

80

70

60

50

40

30

6

17

7

15

8

14

T 1 T 2

T 3

edge
odd

T 1
odd
edge

T 2

T 3

edge
odd

(%)

2
Number of sites (n)

10

43 5

20

72

48

33

23

Detection of deadlocks
with no exchange of messages

2
Number of sites (n)

10

43 5

20

72

48

33

23

Detection of deadlocks
with no exchange of messages

(%)

90

80

70

60

50

40

30

6

17

7

15

8

14

T 1 T 2

T 3

edge
odd

T 1
odd
edge

T 2

T 3

edge
odd

Fig. 4. Proportion of no message exchange cases (2 level and 3 level deadlocks)

Remaining 2 Level Deadlocks. Each transaction has an associated set of
DMs that have granted or are considering lock grant requests from the trans-
action’s TM site. As soon as a transaction faces a wait-for condition, its TM
informs its peer group (its DM sites and other waiting TMs) about its wait-for
condition by virtue of a message. Similarly, as soon as a wait-for condition occurs
at a DM, it informs its peers (the transactions that form the wait-for condition),
about the occurrence of a wait-for condition. In contrast, conventional techniques
wait for delays to occur and then start a deadlock detection process. We have
studied the possibilities of message exchanges, and delays, in the Performance
Consideration section.

Theorem 1. If an odd edge occurs at data manager site DMi, then DMi

informs, both transactions Ti and Tj that form the odd edge. A 2-level deadlock
will be detected as soon as it occurs.

Proof. The event Tj → Ti will be detected by either, Tj or Ti. Both transactions
also know about the occurrence of the Ti → Tj . This is a sufficient condition for
deadlock detection.

Remaining 3 Level Deadlocks. If a wait-for edge occurs at data manager site
DMi, DMi informs, both transactions Ti and Tj that form the wait-for edge.

Theorem 2. In case of two participating sites, A 3-level deadlock will be de-
tected as soon as it occurs.

180 M. Hasegawa, S. Bhalla, and L.T. Yang

Proof. In case of two-sites, there are two cases:

Case I: (all three transactions occur at one site) A deadlock will be detected by
local computations of wait-for conditions of Ti, Tj and Tk.

Case II: (Two transactions Ti and Tj occur at one site, and third transaction Tk

occurs at the second site) A deadlock will be detected by local computations of
wait-for conditions at the site with two transactions Ti and Tj, as both transac-
tion have the information about the preceding and successive transaction.

Similarly, in the case of 3 sites, in the worst case, the transactions are sepa-
rated and are at different sites. At least one of the transactions share additional
wait for information with a co-located DM.

4 Remaining Multi-level Deadlocks

4.1 Asynchrony in Processing Steps: Edge Substitution

The sites prepare the wait-for graphs (also called local access graphs (LAGs))
and carry out the following odd edge elimination locally [13]. As a point of
departure from the existing practice, the DM does not serve the TM in the first-
come-first serve order, but according to transaction order. This steps prevents
occurrences of a few wait-for edges and delays due to deadlocks.

Theorem 3: If an odd edge occurs at data manager site DMi, then, there are
two possibilities.

1. The preceding transaction is executing transaction (which will terminate in
finite time). If the preceding transaction enters a wait state, it is aborted.

2. The preceding transaction is a waiting transaction, the odd edge is reversed
and substituted with an even edge.

This prevents occurrence of n-level deadlock.
This is a sufficient condition for deadlock detection and elimination. This

step prevents conflicts by virtue of improved local computations. Thus, by adop-
tion of edge substitution through additional message exchanges many aborts do
not occur.

5 Advance Message Communication

For the detection of a deadlock (multi-level wait-for state), asynchronous opera-
tions are supported, as per the following description. Advanced wait-for informa-
tion messages are sent by a waiting TM to the concerned DMs. Each transaction
has an associated set of DMs that have granted or are considering lock grant
requests from the transaction’s TM site. As soon as a transaction faces a wait-
for condition, its TM informs its peer group (its DM sites and other waiting
TMs) about its wait-for condition by virtue of a message. In contrast, conven-
tional techniques wait for delays to occur and then start a deadlock detection

Elimination of Non-deterministic Delays in a Real-Time Database System 181

process. We have studied the possibilities of message exchanges, and the delays
that are possible. In many cases, it is possible to detect the global occurrence of
a deadlock with no additional messages. The following asynchronous exchanges
of messages have been examined.

1. Odd-Messages : A blocked transaction, checks if the waiting order is proper
(that is, it is waiting for an older transaction). Otherwise, it informs the
its peer sites (waiting TMs, or data access site DMs) about its wait-for
condition.

2. Even-Messages : A blocked transaction, checks if the waiting order is proper
(it is waiting for an older transaction). It informs its peer sites, about its
wait-for condition.

3. All-Messages : A blocked transaction, informs its peer sites, about changes
in its present TWFG.

5.1 Performance Considerations

Simulation Model. A comparison of performance of a similar edge interchange
approach with respect to conventional techniques has been presented in [3]. In-
tuitively, many transactions gain quick response on account of local processing.
Many advanced steps carried out on account of asynchronous computing pre-
vent delays for later transactions. Our simulation study in this report considers
the performance of the following four types of asynchronous messages as sepa-
rate cases.

1. No messages are sent (example 1 and example 2),
2. even message: A site at which an even edge occurs, sends a message to its

peer sites (e.g. when T2 → T1, the site (TM of T2) sends messages to data
sites of T2 and to other waiting TMs),

3. odd message: A site in which an odd edge occurs sends a message to its
peer sites,

4. both messages: A site at which a wait-for state (an even or an odd edge)
occurs sends a message to its peer sites.

Under these conditions, we study the formation of deadlocks and their detec-
tion. We use an independent algorithm which detects all deadlocks. Thus, we
find the number of all deadlocks and the percentage of deadlocks which the algo-
rithm could detect. Table 4 shows parameters of the simulation model. During

Table 4. Data for the simulation model

No. of sites 2-20
Total No. of data items in all sites 10000
Range of transaction size 12 - 30 (data items)
Total No. of transaction 40000
No. of active transaction 5 (range 1 - 10)

182 M. Hasegawa, S. Bhalla, and L.T. Yang

Table 5. Percentage deadlocks detected in first cycle of wait-for messages

Number of Sites 2 3 4 5 6 7 8 9 10
/messages
Even edges 98 97 96 97 94 96 93 93 93
Odd edges 99 98 97 97 95 94 94 95 94
All edges 100 100 100 100 100 100 100 100 100

Table 6. Average number of messages per transaction (MPL level = 5)

Number of Sites 2 3 4 5 6 7 8 9 10
/messages
Even edges 0.9 1.25 1.6 1.85 2.2 2.5 2.7 2.9 3.1
Odd edges 0.8 1.0 1.2 1.35 1.45 1.5 1.65 1.7 1.8
All edges 1.0 1.4 1.9 2.35 2.75 3.2 3.5 3.75 4.0

simulation, the number of messages (NM) of each type and number of deadlocks
(ND) are counted.

The possibility of using asynchronous operations method is demonstrated by
the following tables. These show the percentage of deadlocks detected by local
processing and message communication (one message to a peer (next in waiting)
site for conveying edge information). Table 5 and Table 6 show that odd edge
detection method incurs fewer overheads and detects more deadlocks. However,
detection of all deadlocks, requires sending both types of messages.

Figure 5 shows the proportion of 2 level or 3 level deadlocks within all occur-
rences of wait-for states.

All 2 level deadlocks can be detected. Similarly, 3 or more level deadlocks in
1 or 2 sites can be detected with few or no message communication.

5.2 Related Studies

In conventional systems, the idea to wait for an occurrence of deadlock and sub-
sequent removal leads to large delays due to synchronized transaction processing
activity which causes blocking [6, 8]. Similar delays exist in case of databases with
respect to synchronization activity and point out the need for improvements in
techniques [1, 6, 5]. Currently, there are few proposals in this area of research
[6, 8]. The proposed P2P approach introduces, asynchronous conflict detection.
It enhances local and parallel computations.

A few wait-for edge removal approaches have been proposed earlier. In the
algorithm [15], the deadlocks are eliminated by reordering the lock requests. The
algorithm must also be run regularly to detect deadlocks.

In case of a conventional distributed system, TWFGs can be large and ana-
lyzing these for cycles, each time a transaction has to wait, can be time consum-
ing. Based on this observation there have been earlier studies in time-stamp
based deadlock prevention. These consider aborting the waiting transactions.
Two approaches are commonly followed, namely, the Wait-Die approach and

Elimination of Non-deterministic Delays in a Real-Time Database System 183

3 level deadlock in 3 or more sites

2 level deadlock

3 level deadlock in 1 or 2 sites

Sites, 40000 transactions, MPL is 5

100%

2 3 4 5 6 7 8 9 10

80%

D
ea

d
lo

ck
s

10%

30%

20%

40%

50%

60%

70%

90%

Fig. 5. Proportion of multi-level wait-for states with deadlocks

the Wound-Wait approach. Both approaches depend on the occurrence of wait-
for status and do not consider the absence or occurrence of a deadlock to de-
cide about the abort. These approaches are similar to the locking based ap-
proaches with no waiting policy. These reduce waiting delays but incur more
wasted processing on account of many restarts [14].

For implementation of P2P computing, the proposed approach is similar to
the Wound-Wait approach. However, in place of transaction abort, it attempts
to correct the transaction order asynchronously, if it is possible. It considers
confirmation (or reversal) of precedence as soon as an odd precedence occurs.
Similarly, in the case of data items that are sought by many transactions (hot
spots) the wait-for precedences are sorted.

Similar to the wound-wait schemes, older transactions succeed in getting data
access before newer transaction in case of a conflict. A few remaining transac-
tions restart with their old time-stamp. Eventually each transaction becomes the
oldest in the system and is sure to complete (no starvation).

184 M. Hasegawa, S. Bhalla, and L.T. Yang

6 Summary and Conclusions

The proposal considers enhancements to local processing by considering im-
proved co-operation between peer sites (next in waiting). This mechanism results
in removing wait-for delays caused by earlier synchronization activity. Thus, the
time-out delays are removed. The proposal depends on use of the asynchronous
techniques, such as TM to TM (P2P) computing (edge substitution) and ad-
vancing message communication (instantly informing a known wait-for graph to
next in the waiting peer sites).

For the server side enhancements, the proposal recommends,

– A wait-for edge (partial wait-for graphs) as a unit for message exchange (in
place of a ’wait’ or ’lock grant’ message).

– The TMs and DMs improve sharing of local (and P2P) information and use
improved data structures.

As a result, by asynchronously sending wait-for (even and odd) messages,
the system can detect all deadlocks in 1 cycle considering up to 3 server sites.
In any system, most of the cases of deadlocks are covered by 2 level and 3
level deadlocks. These are eliminated as a result of local processing. Considering
the overheads, the communication of wait-for edges is an asynchronous activity
and causes no synchronization overheads. On the contrary, it removes timeout
delays. The two proposals, the edge substitution and abort of odd precedences,
(as techniques), are P2P activity. These eliminate delays caused by multi-level
deadlocks (more than 3 level deadlocks). The proposal attempts to provide true
distributed computing environment to achieve higher level of performance. The
simulation study confirms the analytical inferences derived for the automatic
detection for the wait-for model.

References

1. D. Agrawal, A. El Abbadi, and R.C. Steinke, ”Epidemic Algorithms in Replicated
Databases,” Proceedings of the 16th Symposium on Database Systems (PODS),
1997.

2. S. Bhalla, ”Executing Serializable Transactions within a Hard Real-Time Database
System,” 5th International Conference on High Performance Computing, (HiPC
98), Dec. 1998, published by IEEE computer society, pp. 408-415.

3. S. Bhalla, ”The Performance of an Efficient Distributed Synchronization and Re-
covery Algorithm,” Journal of Supercomputing, Kluwer Academic publisher, vol.
19, No. 2, pp. 199-219, June 2001.

4. P.A.Bernstein, V.Hadzilacos and N.Goodman, Concurrency control and recovery
in database systems, Addison-W

5. Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz, ”Update
Propagation protocols For Replicated Databases,” Proceedings of the SIGMOD
Conference on Management of Data, SIGMOD record, vol. 28, No. 2, June 1999.

6. L. Do, P. Ram, and P. Drew, ”The Need for Distributed Asynchronous Transca-
tions,” SIGMOD Record, vol. 28, No. 2, June 1999.

Elimination of Non-deterministic Delays in a Real-Time Database System 185

7. M.H.Eich and S.H. Garad, ”The performance of flow graph locking,” IEEE Trans-
actions on Software Engineering, vol.16, no.4, pp.477-483, April 1990.

8. J. Gray, P. Helland, P. O’Neil and D. Shasha, ”The Dangers of Replication and
a Solution,” Proceedings of 1996 Annual SIGMOD conference, SIGMOD Record,
June 1996, pp. 173-182.

9. N. Krivokapic, A. Kemper and E. Gudes, ”Deadlock Detection in Distributed Data-
base Systems : a New Algorithm and a Comparative Analysis”, VLDB Journal,
vol. 8, no. 2, pp. 79-100, Oct. 1999.

10. A. Kshemkalyani and M. Singhal, ”On Characterization and Correctness of Dis-
tributed Deadlock Detection,” Journal of Parallel and Distributed Computing, vol.
22, no. 1, pp. 44-59, July 1994.

11. P.K.Reddy, and S.Bhalla, ”Deadlock prevention in a distributed database system,”
SIGMOD Record, vol. 22, no. 3, pp. 40-46, September 1993.

12. P.K. Reddy, and S. Bhalla, ”A Non-Blocking Transaction Data Flow Graph Based
Protocol for Replicated Databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 7, no. 5, pp. 829-834, October 1995.

13. P.K. Reddy, and S. Bhalla, ”Asynchronous Operations in Distributed Concurrency
Control”, IEEE Transactions on Knowledge and Data Engineering, vol. 15, No. 3,
May 2003.

14. I.K. Ryu and A. Thomasian, ”Performance Analysis of Dynamic Locking with the
No-Waiting Policy,” IEEE Transactions on Software Engineering, vol. 16, no. 7,
July 1990.

15. S.C.Shyu, V.O.K.Li, and C.P.Weng, ”An abortion free distributed deadlock detec-
tion/resolution algorithm,” Proc. IEEE 10th International Conference on Distrib-
uted Computing Systems, pp.1-8, June 1990.

16. M.Singhal, ”Deadlock detection in distributed systems,” IEEE Computer, pp.37-
47, November 1989.

17. A. Silberschatz, H.F. Korth, and S. Sudarshan, ”Database Systems Concepts”,
Mc-Graw Hill Book Company, 4th edition, 2002.

Solving Real-Time Scheduling Problems with
Model-Checking

Zonghua Gu

Department of Computer Science,
Hong Kong University of Science and Technology

Abstract. Real-time scheduling is a well-studied field with mature tech-
niques such as Rate Monotonic Analysis. In this paper, we investigate
an alternative approach to solving real-time scheduling problems with
model-checking. We use the modeling formalism Hybrid Automata and
the model-checker HyTech for this purpose, and illustrate advantages
and limitations of this approach as compared to the conventional real-
time scheduling techniques. In particular, we can use model-checking for
analysis of best-case response time of tasks in addition to the worst-case
response time, and we can take advantage of HyTech’s parametric analy-
sis capability to derive task parameters such as the critical scaling factor.

1 Introduction

Real-time scheduling is a well-studied field with mature techniques such as Rate
Monotonic Analysis (RMA)1 [1] that are widely applied in industry. RMA
addresses the class of systems where each task is assigned a fixed priority. A
set of recursive equations are used to calculate the Worst-Case Response Time
(WCRT) of each task, that is, the longest possible time the task takes to finish its
execution, taking into account interference and blocking times caused by higher-
priority tasks and shared variables. If a task’s WCRT is less than its deadline,
then the task is schedulable; if all tasks in the taskset are schedulable, then the
entire taskset is schedulable. There are other scheduling techniques for dynamic-
priority systems, such as the Earliest-Deadline First (EDF) algorithm, but we
focus on fixed-priority systems in this paper, which can be analyzed with the
RMA algorithm.

Model-checking is an automated formal verification technique that relies on
exhaustive state-space exploration to prove or disprove system properties. This
field started with untimed system models and properties, e.g., SMV and Spin,
and was later extended to address real-time and hybrid systems, e.g., Uppaal [2]
and HyTech [3]. RMA is typically used to determine if the system is schedulable,
while model-checking is typically used to verify concurrency properties, as well
as system-level timing properties such as freshness, correlation and separation
constraints.
1 Abbreviations: BCET–Best-Case Execution Time; BCRT–Best-Case Response Time;

HA–Hybrid Automata; RMA–Rate Monotonic Analysis; TA–Timed Automata;
WCET–Worst-Case Execution Time; WCRT–Worst-Case Response Time.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 186–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving Real-Time Scheduling Problems with Model-Checking 187

In this paper, we use model-checking to address the real-time scheduling
analysis problem. Specifically, we use the Hybrid Automata (HA) formalism as
defined in the model-checker HyTech [3]. There are a number of reasons for
adopting the model-checking approach:

– RMA has certain assumptions and restrictions that make it non-applicable
to certain scheduling problems, for example, certain types of Ada tasking
models [4]. Since model-checking relies on exhaustive state-space exploration
instead of analytical derivation, it can handle arbitrary tasksets.

– RMA analysis focuses almost exclusively on WCRT analysis, while it is also
desirable to analyze the system’s Best-Case Response Time (BCRT) when
task jitter is important, defined as the difference between the WCRT and
BCRT of a task.

– The parametric analysis capability of model-checkers such as HyTech enables
us to perform reverse queries on the system taskset to answer questions such
as: how should we modify the taskset parameters in order to satisfy certain
system-level timing constraints?

This paper is structured as follows: We first discuss the motivation for cal-
culating BCRT in Section 2. We then provide a brief introduction to Hybrid
Automata and the HyTech model-checker in Section 3. We then discuss model-
ing of real-time scheduling with Hybrid Automata in Section 4, and apply our
techniques to an application example in Section 5. We draw conclusions and
discuss future work in Section 6.

2 Motivation for Bast-Case Response Time

There are a number of reasons for needing the BCRT in addition to the more
typical WCRT of a task. First, some systems may have requirements imposed
by the external environment on maximum allowable task jitter. It may not be
enough to guarantee that a task completes before its deadline. The task also has
to complete after a certain time to achieve optimal performance. Second, when
analyzing precedence-constrained task-chains, the upstream task’s jitter is often
a large contributing factor to the downstream task’s response time. Due to lack
of BCRT analysis techniques, the BCRT is typically assumed to be zero in order
to be on the safe side. This results in task jitter that is often much larger than the
actual value. This in turn yields overly pessimistic scheduling results for these
types of systems, causing low system utilization and wasted system resources.

As an example, consider the taskset in Figure 1. Tasks T1, T2 and T4 are
triggered by periodic signals from the outside environment(e1 with period 10,
e2 with period 30, e4 with period 50, respectively), and T3 is triggered by a
message sent by T2 over the network upon its completion. We assume network
delays are negligible compared to task execution times. Within the boxes are
shown the task’s [BCET, WCET] pair and its priority. Even though the external
trigger is strictly periodic, the upstream task T2 has variable response times,
which translates into the release jitters of the downstream task T3. This has

188 Z. Gu

T3

T = 50

T = 30

T = 10

P=High

P=Low

P=Low

P=High

[5,5]

[10,10]

[4,5]

[7,7]

e4

e2

e1

CPU−2CPU−1

T1 T4

T2

Fig. 1. Taskset with 4 tasks and 2 processors

0

T1T1, T2

WCRT = 19
19171070

T1T2T1

BCRT = 11

Fig. 2. Calculation of T3’s release jitter

J3 = 8

T3

T3

T3T3,T4

T3,T4

T3,T4

0

J3 = 0

J3 = 8

J3 = 19

WCRT = 15

WCRT = 20

WCRT = 15
301511

J3 = 19

Fig. 3. The effects of high-priority T3’s release jitter on low-priority T4’s response time

a detrimental effect on a lower-priority task T4. In Figure 2, downward arrows
indicate task release. BCRT of T2 is achieved when it is released at time 7
and executes for its BCET 4. WCRT of T2 is achieved when it is released at
time 0 and executes for its WCET 5. The release jitter of T3 is therefore J3 =
WCRT2−BCRT2 = 19−11 = 8. The top part of Figure 3 shows the case where
J3 = 0. T4 is preempted only once and has a WCRT of 15. The middle part shows
the case where J3 = 19, that is, we consider WCRT2 = 19 and BCRT2 = 0 in
the absence of appropriate BCRT analysis techniques. Here excessive release

Solving Real-Time Scheduling Problems with Model-Checking 189

jitter of T3 results in a pessimistic estimate of T4’s WCRT (20). The bottom
part shows the case where J3 = 8, the true release jitter of T3. Here T4 achieves
a WCRT of 15. This example shows the importance of obtaining BCRT for
accurate estimation of release jitters.

This point can be seen clearly from the RMA equations for calculating WCRT
of a task Ti:

wn+1
i = Ci + Bi +

∑
∀j∈hp(i)

�Jj + wn
i

Pj
�Cj (1)

Ri = wi + Ji (2)

Ri WCRT of task Ti.
wi intermediate variable for calculating Ri.
hp(i) set of tasks that can preempt Ti.
Cl WCET of Tl.
Pj period of Tj.
Bj blocking term, i.e., worst-case delay caused by shared-resource synchroniza-

tion with lower-priority tasks.
Jj worst-case jitter for Tj.

The jitter Jj is equal to the maximum variation of the response time of
the task that precedes Tj . Let’s call it Tk with BCRTk and WCRTk. Then
Jj = WCRTk − BCRTk. Without effective techniques for calculating BCRT,
we assume that BCRTk = 0, hence Jj = WCRTk. However, if we can have a
more accurate estimation of BCRTk, then we can have a smaller jitter Jj , and in
turn, a smaller WCRTi for Ti. Using HyTech, we can derive accurate BCRT and
WCRT values for all tasksets that can be modeled with HA. Next, we discuss
the details of our modeling approach.

3 Introduction to Hybrid Automata and HyTech

A hybrid dynamical system has both real-valued and boolean-valued variables.
A system trajectory is a sequence of flows and jumps: during flows, the boolean
part of the state stays constant and the real part of the state evolves over time; at
jumps, the entire state changes instantaneously. We describe hybrid dynamical
systems using Hybrid Automata (HA). A HA annotates the control graph of a
finite automaton with conditions on real-valued variables. Each node of the graph
represents an operating mode of the system, and is annotated with differential
inequalities that prescribe the possible evolutions (flows) of the real variables
while the system remains in the given mode. Each edge of the graph represents
a switch in operating mode, and is annotated with a condition that prescribes
the possible changes (jumps) of the real variables when the system executes the
mode switch. HyTech [3] is a model-checker for Linear Hybrid Automata (LHA),
where the dynamics of the continuous variables are defined by linear differential
inequalities of the form Aẋ ∼ b, where x is the vector of first derivatives of the
variables x. Since the only real-valued variable involved in real-time scheduling

190 Z. Gu

turn on dx = −x

off

65 <= x <= 68

x = 66

x’ = 68

x’ = 65

65 <= x <= 68

on

dx = −x + 5

turn_off

Fig. 4. The thermostat automaton

is time, which always increases linearly, all real-time scheduling problems can be
encoded with LHA, hence are amenable to analysis using HyTech.

Figure 4 shows the HA model for a thermostat, taken from [3]. It has two
operating modes: the heater is on (mode on), or off (mode off). Initially, the
heater is on and the temperature x is 66 degrees. When the heater is on, the
temperature rises at the rate of −x + 5 degrees per minute; when the heater is
off, the temperature falls at the rate of −x degrees per minute. The heater can
be turned off when the temperature reaches 68 degrees, and it can be turned
on when the temperature falls to 65 degree. This is due to the edge conditions
x = 68 and x = 65, which assert when a mode switch may occur. To force
mode switches, such as forcing the heater to be turned off when the temperature
reaches 68 degrees, we annotate the operating modes with so-called invariant
conditions (in addition to the annotation with differential equations): the system
can remain in a mode only as long as the corresponding invariant condition is
satisfied. Thus, the invariant conditions 65 ≤ x ≤ 68 of both operating modes
prescribe that a mode switch must occur before the temperature leaves the
operating interval of [65, 68] degrees.

Though not shown in the example, events permit the synchronization of jumps
between concurrent hybrid automata. Events has a broadcast synchronization se-
mantics, as opposed to the conventional pairwise synchronization semantics in
processes algebras, with explicit notation of input and output channels like e?
and e!. In HA, event labels do not have input or output direction, but all au-
tomata with the same event label must synchronize and make a transition simul-
taneously. An urgent event is denoted by having asap in front of the event label.
Jumps enabled by urgent events must be taken as soon as possible without delay.

A major strength of HyTech is its ability to perform parametric analysis.
Often a system is described using parameters, and the designer is interested in
knowing which values of the parameters are required for correctness. For exam-
ple, we can set the rate condition in the on state of the Thermostat automaton
to be dx = −x + α, and then determine the necessary range of the parameter
α in order to satisfy the requirement that the heater is active less than 2/3 of
the first 60 minutes. In comparison, UPPAAL [2], a model-checker for Timed
Automata, does not have parametric analysis capabilities, and one must resort
to a trial-and-error approach based on binary search to obtain similar results.

Real-time modeling formalisms can be either discrete-time, where time pro-
gresses in discrete steps, or dense-time, where time is a continuous variable.
Using discrete-time formalisms such as Verus [5], we can easily model preemp-

Solving Real-Time Scheduling Problems with Model-Checking 191

tive scheduling, where a higher-priority task can preempt a lower-priority task
during its execution, by explicitly keeping a discrete counter that keeps track of
the lower-priority task’s accumulated execution time. In order to model preemp-
tive scheduling with a dense-time formalism without a stopwatch mechanism,
where a clock can be stopped and restarted, e.g., Timed Automata (TA) [2], we
can simulate discrete-time semantics by only allowing state transitions at dis-
crete, periodic clock-ticks [6]. As we adopt finer clock-tick granularity, modeling
accuracy increases, but the system state space grows exponentially. This severely
limits the smallest clock-tick interval we can adopt. Even though scheduling of
the real system is driven by clock-ticks of the operating system and hardware,
we have to adopt a clock-tick interval in the TA model that is much larger than
that of the operating system and hardware. Therefore, the model built with
this technique is only a coarse approximation of the real system behavior. An-
other shortcoming is that we can only model integer time, so we have to convert
non-integer numbers into integers. For example, a task with execution time 7.3
and period 10.1 can be converted into another task with execution time 73 and
period 101 with a proportional increase in all other system timing parameters,
or as a conservative approximation, a task with execution time 8 and period
10. However, the latter approach breaks down for time intervals, for example,
the set of discrete time values [4, 5, 6] is not a correct abstraction of the con-
tinuous time interval [4.3, 5.8], but the continuous time interval [4.0, 6.0] is.
HA is a dense-time formalism with a stopwatch mechanism, which allows us to
keep track of how long a lower-priority task has been executing before being
preempted by a higher-priority task. This allows us to construct a more accu-
rate model of preemptive scheduling than using discrete-time formalisms. Even
though the stopwatch mechanism makes reachability analysis of HA undecidable
in the general case, some authors[4] have shown that the HA model is actually
decidable for most practical scheduling problems. We did not run into any decid-
ability problems for our application examples. Also, HA has no problem dealing
with fractional numbers as long as they are rational. Therefore, we use HA in
this paper to model and analyze real-time scheduling problems.

4 Task Modeling with Hybrid Automata

Figure 5 shows a periodic task modeled with HA, and Figure 6 shows an au-
tomaton that works together with the task automaton. As shown in Figure 5, A
task initially goes into wait state. When it gets triggered it goes into waitready
state and then immediately goes into ready state after issuing a check_request,
and setting rt_pri = pri, i.e., setting its runtime priority to its nominal pri-
ority. This triggers the auxiliary automaton in Figure 6 to go from waiting to
check_all. This enables the channel check and forces all the task automata
currently in states ready and run into the checking state. Each task checks
to see if it’s the highest priority task. If yes, then it goes to the run state; if
not, it goes to the ready state. runtime is a stopwatch that keeps track of the
task’s execution time by increasing at rate 1 in the run state, and stopping in

192 Z. Gu

druntime=0

asap

asap
check

asap
check

check
asap

rt_pri’ = pri

rt_pri’ = 0

rt_pri < MAXPRI & clk2=0

rt_pri = MAXPRI & clk2 = 0

overrun

clk>=period

clk>=period

clk <= period
runtime<=wcet

clk<=period

check_request

runtime >= bcet

clk2 = 0

clk >= period
clk<=period

check_request
asap

asap
check

runtime’ = 0

clk’ = 0

tstart

waitready

runwait

druntime=1

ready

running

waiting

druntime=0

checking

druntime=0

check

Fig. 5. An automaton modeling a periodic task

check_allwaiting

check_request2

check_request1

checkasap

Fig. 6. An auxiliary automaton used in conjunction with the task automata in Figure 5

the ready state. When the task has been running for [BCET, WCET], it can
choose to finish its execution and go back to the wait state after issuing an-
other check_request, which in turn triggers another round of checking among
all ready tasks.

Figure 7 shows two observer automata used to check the WCRT and BCRT.
HyTech checks for reachability of the violation states in order to detect task
response times falling outside of the range of [BCRT, WCRT]. When a task
is triggered, the task automaton issues event tstart, and forces the observer
automaton to go from idle state to waiting state. At the same time, clk is
reset to 0, a real-time clock variable that always increases at a uniform rate. We
consider the two observer automata separately:

– If the task finishes within a specified upper bound WCRT, then the task
automaton issues event tfin before clk reaches WCRT, and the observer
automaton for WCRT goes back to the idle state. Otherwise, it goes into the

Solving Real-Time Scheduling Problems with Model-Checking 193

reset(clk)

Observer automaton for WCRT

Observer automaton for BCRT

clk <= BCRT

clk >= BCRT

clk >= WCRT

clk <= WCRT

reset(clk) tfin

tfin

waiting violationidle tstart

idle violationwaitingtstart

tfin

tfin

Fig. 7. Observer automata for checking WCRT and BCRT

violation state, and the model-checker detects a violation of the specified
WCRT (deadline).

– If the task finishes after a specified lower bound BCRT, then the task au-
tomaton issues event tfin after clk reaches WCRT, and the observer au-
tomaton for BCRT goes back to the idle state. Otherwise, it goes into the
violation state, and the model-checker detects a violation of the specified
BCRT.

Note that we will need one pair of observer automata for each task that we
want to check BCRT and WCRT for. Due to the broadcast synchronization
semantics, the pair of observer automata will be both triggered concurrently
with the task automaton under observation, hence the model-checker can report
violations of either BCRT or WCRT within the same model-checking session.

5 Application Examples

Table 1 shows a taskset consisting of two precedence-constrained task-chains:
J11 → J12 → J13 → J14 and J21 → J22 → J23. It took HyTech about 4 hours to

Table 1. A taskset taken from [7]. CS stands for critical section.

Task Name Priority Release Time BCET WCET Longest CS WCRT BCRT
J11 2 0 10 40 0 50 10
J12 4 20 5 10 0 60 25
J13 2 75 20 30 10 130 95
J14 4 130 15 50 0 240 145
J21 3 30 10 10 0 50 40
J22 3 60 5 40 20 110 65
J23 1 120 20 70 60 250 140

194 Z. Gu

check each WCRT or BCRT parameter. As discussed in [7], when all jobs have
their maximum execution times we may not observe the worst-case completion
times of all the jobs, and vice-versa. So non-trivial extensions to the techniques
discussed in [7] will be needed if we want to obtain the BCRTs analytically.

T1

Preprocess

and

Read Sensor

Send

Process

and

Shared

Data

Measurement

System

Remote

System

T2

T3

ISR

Servo

Control

Input
from

Sensors

Control

Outputs

Task periodi Ci1 Ci2 Ci3 Di Pi1 Pi2 Pi3 WCRT BCRT
T1 40 1 5 – 40 10 7 – 18 6
T2 100 10 5 5 100 4 8 4 72 20
T3 50 8 12 – 50 5 8 – 31 20

Fig. 8. One example taskset

We use another application example to demonstrate the parametric analysis
capabilities of HyTech. Figure 8 shows a taskset considered by Harbour, Klein
and Lehoczky in [8]. This is a single-processor system. (The original example
in [8] has five tasks, but we reduced it to three for clarity purposes.) Task T1 reads
inputs from the servo sensors and performs the control action. Task T2 reads the
distance sensors, does some preprocessing, writes it to the shared data area. Task
T3 does some further processing and sends the results to a remote system. All
three tasks are periodic. Each task consists of sequentially-executing subtasks of
varying priorities. For example, task T1 is composed of two subtasks, Interrupt
Service Routine (ISR) (priority=10, WCET=1) and Servo Control(priority=7,
WCET=5).

In [8], this taskset was analyzed with extended RMA techniques to obtain the
WCRT of each end-to-end task. However, no general techniques are available for
calculating the BCRT for this task model. Using HyTech and taking advantage
of its parametric analysis capability, we have obtained the BCRT values, as
shown in Figure 8. In this case the BCRT is equal to the WCET, since for each
task it happens to be possible to find a best-case phasing such that it suffers no
preemption, but that is not true in general.

We can query the model-checker for a variety of other timing properties of
the taskset. Suppose T2 writes its outputs at the end of its execution, and T3

Solving Real-Time Scheduling Problems with Model-Checking 195

reads its inputs at 0.1ms after it starts execution, then the time interval between
the two events is the possible age of the shared data between T2 and T3, i.e.,
the minimum and maximum length of time that the data stays in the shared
data area before its consumption by T3. We may want to put an upper bound on
this value in order to make sure that T3 does not consume a piece of data that
is too stale. Using HyTech, we can determine the time interval to be [4.1, 18.1],
when the phasing between all 3 tasks is 0, i.e., T1, T2 and T3 all start their first
job at the exact same instant. This information is not readily available from
conventional real-time scheduling analysis techniques.

We can also answer other questions such as:

– If we would like to achieve a WCRT of 68 instead of 72 for T2 by reducing
the WCET of all subtasks by an equal speedup factor fspeedup, what is the
minimum fspeedup? The answer is 1.05, i.e., the WCET of each subtask needs
to be uniformly reduced by a factor of 1.05. To achieve the same goal, if we
can only modify one subtask T32 to reduce its WCET by δt while leaving all
other task parameters unchanged, what is the minimum δt? The answer is
3, i.e., the WCET of T32 has to be reduced from 12 to 9.

– Suppose the taskset is schedulable as given, what is the critical scaling factor
fslowdown for the taskset while still maintaining schedulability? The answer is
1.45, that is, we can afford to increase the WCET of each subtask uniformly
by a factor of 1.45 while still keeping the system schedulable. We may want
to do this in order to move the application to a slower processor.

Without the parametric analysis capability of HyTech, the designer would
have to resort to a trial-and-error approach, i.e., guessing a value and plugging
it into the RMA equations to see if it works, possibly using binary search. Since
the RMA equations are recursive, it is not straightforward to derive an analytical
relationship that can be used to solve for the needed parameters. This is one of
the main advantages of model-checking with HyTech over RMA.

6 Conclusions and Future Work

In this paper, we have considered application of model-checking to solving real-
time scheduling problems. In particular, we have used the Hybrid Automata
formalism and its corresponding model-checker HyTech. To reiterate, our model-
checking approach to real-time scheduling analysis has several advantages over
RMA. First, we can deal with arbitrary tasksets within a uniform modeling
framework. For example, the two tasksets considered in Section 5 have different
characteristics and must be solved with different real-time scheduling techniques,
but we can model and analyze both of them within the HyTech framework.
Second, we can calculate both WCRT and BCRT of a task to obtain a more
accurate estimate of its release jitter, and in turn, obtain less pessimistic WCRT
values for the downstream tasks. Third, we can use parametric analysis to query
the model-checker for a variety of timing properties, which can only be done via
a trial-and-error approach with RMA.

196 Z. Gu

However, state-space explosion severely limits the utility of the model-
checking approach, especially when continuous time variables are involved as
in Hybrid Automata or Timed Automata. Even the 5-task system in [8] causes
a memory exhaustion error in HyTech. Most model-checkers provide a set of
guidelines for tweaking the models in order to improve scalability, such as re-
ducing the number of clocks, manually composing a set of automata instead of
letting the tool compose them, abstraction techniques to eliminate or minimize
the irrelevant parts of the model, etc. If the designer has followed all of the
guidelines and still cannot check the model successfully, then the only remaining
suggestion is to “use the biggest and fastest machine you can get” (quote from
an online user’s group). Significant progress in model-checking technology will
have to be made before it can be directly applied to realistic-sized systems.

As users of the model-checking technology instead of developers, we do not
plan to address the state-space explosion problem directly. However there are a
number of practical techniques at the application-level that can help with the
scalability issue. One possible approach is to use RMA to obtain the [BCRT,
WCRT] pair of a task, which is in turn used as the transition time intervals for a
system-level Timed Automata model. Then the model can be checked for system-
level timing properties, assuming that the system schedulability is guaranteed
by RMA. Another possibility is to use a model-checker to check for the [BCRT,
WCRT] of an upstream task, and then use the derived jitter value in the RMA
equation for the downstream task. However this approach breaks down if the
task graph has a loop, i.e., the downstream task can in turn affect the upstream
task’s release jitter. In that case we can either model-check the entire end-to-end
task system, or use the holistic schedulability analysis technique [9]. As part of
our future work, we plan to investigate techniques for improving scalability by
combining the use of real-time scheduling theory and model-checking. We also
plan to extend our modeling framework to address dynamic priority systems as
well as mixed systems where some tasks are scheduled with static priorities while
others are scheduled with dynamic priorities.

References

1. M. H. Klein, T. Ralya, B. Pollak, and R. Obenza, A Practitioner’s Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

2. (2005) The UPPAAL website. [Online]. Available: http://www.uppaal.com
3. T. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model checker for hybrid

systems,” Software Tools for Technology Transfer, pp. 110–112, 1997.
4. S. Vestal, “Modeling and verification of real-time software using extended linear

hybrid automata,” in Proc. the Spin Workshop, 1998, pp. 12–25.
5. S. Campos, E. Clarke, W. Marrero, and M. Mineam, “The Verus tool: A quantitative

approach to the formal verification of real-time systems,” in Proc. International
Conference on Computer-Aided Verification (CAV), LNCS 1254, 1997, pp. 452–455.

6. G. Madl and S. Abdelwahed, “Model-based analysis of distributed realtime embed-
ded system composition,” in ACM Conference on Embedded Software (EMSOFT),
September 2005.

Solving Real-Time Scheduling Problems with Model-Checking 197

7. J. Sun, M. K. Gardner, and J. W. Liu, “Bounding completion times of jobs with
arbitrary release times, variable execution times and resource sharing,” IEEE Trans.
Software Eng., vol. 23, pp. 603–615, 1997.

8. M. Harbour, M. H. Klein, and J. Lehoczky, “Timing analysis for fixed-priority
scheduling of hard real-time systems,” IEEE Trans. Software Eng., vol. 20, no. 2,
pp. 13–28, 1994.

9. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-
time systems,” Microprocessing and Microprogramming - Euromicro Journal (Spe-
cial Issue on Parallel Embedded Real-Time Systems), vol. 40, pp. 117–134, 1994.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 198 – 209, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient FPGA Implementation of a
Knowledge-Based Automatic Speech Classifier

Sabato M. Siniscalchi1,3, Fulvio Gennaro1, Salvatore Vitabile2,4, Antonio Gentile1,4,
and Filippo Sorbello1,4

1 Dipartimento di Ingegneria Informatica, Università di Palermo,
V.le delle Scienze (Edif. 6), 90128 Palermo, Italy

2 Dipartimento di Biotecnologie Mediche e Medicina Legale, Università di Palermo,
Via del Vespro, 90127 Palermo, Italy

3 Center for Signal and Image Processing, School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332, USA

4 Istituto di CAlcolo e Reti ad alte prestazioni – Consiglio Nazionale delle Ricerche,
V.le delle Scienze (Edif. 11), 90128 Palermo, Italy

Abstract. Speech recognition has become common in many application
domains, from dictation systems for professional practices to vocal user inter-
faces for people with disabilities or hands-free system control. However, so far
the performance of Automatic Speech Recognition (ASR) systems are compa-
rable to Human Speech Recognition (HSR) only under very strict working
conditions, and in general far lower. Incorporating acoustic-phonetic knowledge
into ASR design has been proven a viable approach to rise ASR accuracy.
Manner of articulation attributes such as vowel, stop, fricative, approximant,
nasal, and silence are examples of such knowledge. Neural networks have
already been used successfully as detectors for manner of articulation attributes
starting from representations of speech signal frames. In this paper an optimized
digital Knowledge-based Automatic Speech Classifier for real-time applications
is implemented on FPGA using six attribute scoring Multi-Layer Perceptrons
(MLP). Digital MLP key features are a virtual neuron architecture and use of
sinusoidal activation functions for the hidden layer. Implementation results on
FPGA show that use of sinusoidal activation functions decrease hardware re-
source usage of more than 50% for slices, FFs, LUTs and more than 35% for
FPGA RAM blocks when compared with the standard sigmoid-based neuron
implementation. Furthermore, neuron virtualization allows for a significant
decrease of concurrent memory access, resulting in improved performance for
the entire attribute scoring module.

1 Introduction

Artificial Neural Networks (ANN) have been proposed as solution for design of medi-
cal expert systems, handwritten character recognition [2], automatic road signs recog-
nizers [3], and so on. An Multi-layer perceptron (MLP) neural network on a SIMD
architecture was presented in [1]. The implementation exploits the SIMPil processor
precision giving the same performance of the software implementation. A real-time
road signs recognition system was designed by means of the same architecture in [3].

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 199

In [5], Porrmann at al. propose an artificial neural networks implementation on recon-
figurable hardware accelerator which requires a high resource rate. Operations are
implemented in fixed point and the internal numerical precision is a trade-off between
hardware resources, calculation time and approximation quality. In [4], Huelsbergen
proposes a representation for dynamic graphs in reconfigurable hardware and its ap-
plication to some fundamental graph algorithms. The bottleneck of this approach is
the high level of required connections. In [7] a standard MLP implementation for
speech recognition on FPGA is proposed. The paper presents the results of both serial
and parallel MLP implementation. VHDL and Handel-C languages are then com-
pared. The used hidden activation function is the sigmoid one with 8-bit discretization
for inputs, for weights, and for post-synaptic values. For the pre-synaptic values a 23
bits accumulator is used.

Although there exists plenty of literature about the hardware implementation of an
ANN, this problem is still an open research issue. In this paper a real-time manner of
articulation classifier based upon an optimized MLP with sinusoidal activation func-
tion is presented. The manner of articulation attributes are vowel, stop, fricative, ap-
proximant, nasal, and silence. They are speech features that show strong relation to
human speech production [7], and robustness to speech variations [10] as well. These
six events are extracted directly by short time MFCCs, and represent the direct input
to six detectors, which are afterward combined to generate the classification score.
The manner of articulation system is part of the Automatic Speech Attribute Tran-
scription (ASAT) project [11], and a software neural network-based architecture for
these manner of articulation attributes was already implemented in [14]. The main
idea of the ASAT project is that the performance of conventional knowledge-ignorant
modeling approaches can be improved integrating the knowledge sources available in
a large body of speech science literature. In [10] it is showed that the idea of a direct
incorporation of acoustic-phonetic knowledge into ASR design rises its accuracy.
These “knowledge-based” features (also referred to as speech attributes in the same
work) are used to augment the front-end module of a conventional ASR system by
means of a set of feature detectors able to capture the speech attributes. The idea of
using ANNs as backbone of the ASAT project is due because neural networks can
learn a mapping from an input space to an output space realizing a compromise be-
tween recognition speed, recognition rate and hardware resources. The generalization
capability of neural networks is acquired during the training phase and the generaliza-
tion degree achieved is strictly related to the training set characteristics.

In addition, a digital Knowledge-based Automatic Speech Classifier for real-time
applications has been implemented on FPGA using six attribute scoring Multi-Layer
Perceptrons. Each one of the MLP detector classifies input speech frames into a single
attribute category. The performance is evaluated on continuous phone recognition
using the TIMIT database [12]. The MLP design incorporates a virtual neuron archi-
tecture and sinusoidal activation functions for the hidden layer. Neuron virtualization
allows for a significant decrease of concurrent memory access, whilst use of sinusoi-
dal activation functions optimizes hardware resource employment.

The rest of the paper is organized as follows. Section 2 describes the general
framework of the knowledge extraction module. The digital implementation of the six
MLP detectors is shown in section 3. Section 4 presents the experimental set-up and
results with comparison to the baseline architecture. Concluding remarks are given in
the last section of the paper to summarize its main contributions.

200 S.M. Siniscalchi et al.

2 Knowledge Extraction Module

The Knowledge Extraction (KE) module uses a frame-based approach to provide K
manner of articulation attributes Ai, where i=1,2, … K, from an input speech signal
s(t). In this paper the manner classes were chosen as in [5], and are listed in Table 1.
The KE module, depicted in Figure 1, is composed of two fundamentals blocks: the
feature extraction module (FE), and the attribute scoring module (SC). The FE mod-
ule consists of a bank of K feature extraction blocks FEi, where i=1,2, … K, and it
maps a speech waveform into a sequence of speech parameter vectors Yi, i=1,2, …
K. Actually, each of the FEi is fed by the same speech waveform s(t,) and for each
speech-frame it computes a thirteen MFCC feature vector Xi (12 MFCCs + Energy).
The frame length is of 30 msec overlapped by 20 msec. Finally, FEi produces as
output a 117-feature vector Yi combining the actual frame with the eight surrounding
frames, 4 frames before and after, so that each speech parameter vector represents

Table 1. Manner of articulation attribute definition

Articulation Manner Class Elements Anti-Class Elements
Vowel IY, IH, EH, EY, AE, AA, AW,

AY, AH, AO, OY, OW, UH, UW,
ER, AX, IX

JH, CH, S, SH, Z, ZH,
F, TH, V, DH, B, D, G,
P, T, K, DX, M, N, NG,
EN, L, R, W, Y, HH,
EL, SIL

Fricative JH, CH, S, SH, Z, ZH, F,
TH, V, DH

IY, IH, EH, EY, AE,
AA, AW, AY, AH, AO,
OY, OW, UH, UW, ER,
AX, IX, B, D, G, P, T,
K, DX, M, N, NG, EN,
L, R, W, Y, HH, EL,
SIL

Stop B, D, G, P, T, K, DX

IY, IH, EH, EY, AE,
AA, AW, AY, AH, AO,
OY, OW, UH, UW, ER,
AX, IX, JH, CH, S, SH,
Z, ZH, F, TH, V, DH,
M, N, NG, EN, L, R, W,
Y, HH, EL, SIL

Nasal M, N, NG, EN

IY, IH, EH, EY, AE,
AA, AW, AY, AH, AO,
OY, OW, UH, UW, ER,
AX, IX, JH, CH, S, SH,
Z, ZH, F, TH, V, DH,
B, D, G, P, T, K, DX,
L, R, W, Y, HH, EL,
SIL

Silence SIL IY, IH, EH, EY, AE,
AA, AW, AY, AH, AO,
OY, OW, UH, UW, ER,
AX, IX, JH, CH, S, SH,
Z, ZH, F, TH, V, DH,
B, D, G, P, T, K, DX,
M, N, NG, EN, L, R, W,
Y, HH, EL

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 201

nine frames. The SC module is composed of six feed-forward neural networks, and its
goal is to attach a score, referred to as knowledge score (KSi), to each vector Yi. The
input of each network is a 9 frames of 12 MFCCs + energy, so that the input layer is
of 117 nodes. The output layer has two nodes, one for the desired class, and one for
the anti-class. Actually, the value obtained for the desired class for case i is defined to
be the KSi.

Confusion
 Matrix

 2KS

KY

2Y

1Y
SC module

s (t)

FE module

FE 1

FE 2

FE K

Nasal
detector

1KS

KKS
|
 |
 |

|

|

|

|

|

|

Max
module

Vowel
detector

Silence
detector

Fig. 1. Knowledge Extraction Module, adapted from [5]. The detectors are based on a MLP
neural network.

3 Multi-layer Perceptron Digital Design

In [15] an efficient MLP digital implementation for road signs recognition and high
energy physics experiments classification has been proposed. This initial design has
been adapted and optimized for automatic speech classification and is presented in
this section.

A single MLP digital architecture is used to implement each of the detectors de-
scribed in Figure 1. As depicted in Figure 2, this architectural design aims to satisfy

Fig. 2. Functional block diagram of the MLP architecture

202 S.M. Siniscalchi et al.

high design modularity, high density of neurons on device, high recognition rate and
speed. As a results, (a) data input acts in a serial way; (b) data processing acts in par-
allel among the neurons and serially within each neuron; (c) second layer processing
is pipelined with first layer processing. The Winners Takes All (WTA) circuit selects,
among a set of m numbers, the greatest activation level units.

The basic digital neural network elements, as multipliers and accumulators, are de-
signed following the standard solutions. Single neuron architecture is depicted in
Figure 4. The output activation function is a linear function, whilst sinusoidal activa-
tion function is employed as activation function of the hidden layer. Fixed point
arithmetic with two's complement representation is used for the chip implementation
of the MLP. Principal constrains of this project are the compromise between the neu-
ral network accuracy and the bit depth for input and weight data, and the compromise
between the neural network accuracy and the bit depth for the pre-synaptic value and
the post-synaptic value of the hidden activation function.

4 The Digitized Sinusoidal Activation Function

Conventional MLP digital implementations use 8 bits for inputs, weights and post-
synaptic discretization [7], and a bit depth discretization related to the application
domain. In what follows, some formulas have been developed in order to obtain the
digitized value from floating point neural network training. These formulas are re-
ferred to input (Idj) and weight (Wdi) digitized values.

Idj = Ij
eInput Rang

1- lsInput Leve , Wdi = Wi .
 RangeWeights

1-lsInput Leve (1)

Concerning the sinusoidal activation function, the number of input level, the input and
the output range affect the sinusoid period. For the sinusoidal function, considering its
periodicity in order to obtain a module with a minimum pre-synaptic value, the above
said influence is expressed by the following formula.

.
eInput Rang

1 - lsInput Leve

Sin. RangeWeights

1 - Sin elsWeight Lev ××=Π πd

(2)

Where Πd is the digitized value shown in the Figure 3.

Fig. 3. The digitized sinusoidal function: Πd is the digitized value

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 203

The relative accumulator dimension (AD), expressed as number of bits, must at
least represent Πd. This dimension does not depend upon the number of inputs. Figure
4 gives the neuron architecture used in the hardware approach, with the accumulator
that is the fundamental used resource.

Fig. 4. The neuron architecture in the hardware approach

The number of bits used during the floating point to fixed point conversion related
to network inputs, hidden layer weights, pre-synaptic values, and post synaptic values
are critical issues during the digitalization phase.

Following the approach proposed in [7], a digital MLP classifier for speech recogni-
tion has been implemented on a Xilinx VirtexII XC2V3000-4 FPGA. Table 2 lists the
required resources for a full precision parallel MLP implementation with 117 inputs,
100 hidden neurons having the standard sigmoid activation function, and 2 output neu-
rons having the linear activation function. Also in this implementation 8-bit bit depth for
inputs, for weights, and for post-synaptic values were used. For the pre-synaptic values
a 23 bits accumulator was used. The slight difference between the two implementations
can be ascribed to the different Xilinx FPGA families used here and in [7].

Table 2. FPGA required resources for a 117-100-2 neural network implementation on a Xilinx
VirtexII XC2V3000-4. The standard sigmoid based implementation uses 8 bits for inputs, 8 bits
for weights, 23 bits for pre-synaptic values and 8 bits for post-synaptic. The sinus based im-
plementation (ID=B) uses 3 bits for inputs, 5 bits for weights, 5 bits for pre-synaptic values and
3 bits for post-synaptic valus.

Hidden Activation function Slices FFs LUTs RAMs

Sigmoid

5506
(38%)

3725
(12%)

10058
(35%)

94
(98%)

Sinus

 (ID=B)

2539
(17.5%)

1533
(4.9%)

4112
(14.3%)

60
(62.5%)

204 S.M. Siniscalchi et al.

Table 3. Network configurations using sinusoidal activation functions. Relative result accuracy
is also given for the case of the nasal detector.

ID Hidden Activation function Input bits Weight bits Pre-Synaptic
bits

Post-Synaptic
bits

Accuracy

A Sinus 3 4 4 3 94%

B Sinus 3 5 5 3 99,5%

C Sinus 4 5 5 4 100%

To evaluate the effectiveness of the sinusoidal hidden activation function, a set of ex-
perimental tests have been performed to obtain the optimum number of bit for inputs,
weights, pre-synaptic functions, and post-synaptic functions. Some of the tested con-
figurations for the case of the nasal detector are reported in Table 3. These values are
normalized respect to percentage of accuracy of the software version, which is 88,65%.

Although it is possible to reach the same level of accuracy of the software imple-
mentation (C case), the sinus based MLP was implemented following B configuration
to get a trade-off between used resource and accuracy. The used resources of related
neural network implementation are listed in Table 2. The aforementioned study was
conducted for the other five detectors.

The difference between the two implementations can be ascribed to the sinusoidal
activation function that determines an high FPGA resources saving of above 50% for
slices, FFs, LUTs and of above 35% for FPGA RAM blocks. Resources saving is
related to the chosen hidden activation function that needs a lower accumulator di-
mension since it can be optimized with a smaller number of bits. FPGA RAMs block
saving is related to the smallest number of bits used for weights discretizing.

5 The Virtual Neuron Architecture

As pointed out in a real classification tasks require a large number of neurons, conse-
quently a FPGA based neural prototypes use external RAM memory to store neuron
weights.

The virtual neuron implementation makes efficient the mapping of a neural net-
work into hardware devices since it leads to a significant decreasing of concurrent
memory access. Since each neural network is large in size and input data are proc-
essed once, memory subsystem is typically the bottleneck. The virtual neuron based
implementation allows to exploit a serial-parallel architecture since data input acts in
a serial way, data processing acts in parallel among the virtual neurons and serially
within each neuron first layer processing is pipelined with second layer processing.
The proposed architecture is composed by N hidden neurons, M output neurons, h
hidden virtual neurons, k output virtual neurons and h FIFO buffers between hidden
and output layer. In Figure 5 the hardware neural architecture is shown. The approach
is based on the instantiation of h and k virtual neurons, where h is a sub-multiple of
the hidden layer neurons and k is a sub-multiple of the output layer neurons. At net-
work start-up, the h virtual entities take the first h input data and their relative weights
from RAM.

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 205

Fig. 5. The proposed neural architecture shown two first layer virtual neurons and one second
layer virtual neuron; in (a) the first processing step is shown; in (b) the second processing step
is shown

After the first cycle, the obtained partial results are stored in the shift-register ac-
cumulator of each virtual neuron (on internal FIFO buffer). Successively, the next
group of h virtual neurons, representing the real neurons of first layer ranging from
h+1 to 2h, are considered. Therefore, the same processing on input data and relative
weights is repeated. The process ends when the last block of real neurons of first
layer, between N-h and N neuron, is processed. Finally, the bias value previous and
the chosen activation function are applied to the FIFO list. The obtained results are
stored in h external FIFO lists, one for each virtual neuron. These values represent the
input data for the second layer. The external FIFO lists are used for pipeline imple-
mentation. In fact, after the pipeline latency time, second layer processing starts while
the execution of first layer is still running.

For second layer the same elaboration is performed using the k virtual neurons:
data stored in the external FIFO buffers are the input values for the output layer. The
second layer weights are stored in the external RAM, too.

Finally, the WTA circuit selects, among all output values of the second layer, the
higher output in 1 clock cycle. With serial inputs the total execution time of hidden
and output layer is T=ts1+ts2. Considering the pipeline, this time is T=max(ts1, ts2);

206 S.M. Siniscalchi et al.

where ts1 and ts2 are respectively the execution time of hidden layer and output layer
(including TWTA).

6 Experiments and Results

The evaluation of the proposed Manner of Articulation Extraction module was per-
formed on the TIMIT Acoustic-Phonetic Continuous Speech Corpus database [12],
which is a well-known speech corpus in the speech recognition field. This database is
composed of a total of 6300 sentences; it has a one-channel, 16-bit linear sampling
format, and it was sampled at 16000 samples/sec. The MLP detectors were trained on
3504 randomly selected utterances, and to be consistent with [10] and [9] the four
phones “cl”, “vcl”, “epi”, and “sil” were treated as a single class, thus reducing the
TIMIT phone set to a set of 45 context-independent (CI) phones. The front-end mod-
ule is in the process of being implemented following the guidelines given in [13].
Instead the max module is a simple comparator circuit. The MLP module is the focus
of this work, and a detailed description is given in what follows.

Each of the six detectors is a three-layer network the input of which is a window of
nine frames, that is, 117 parameters. The nodes of hidden layers are 100. The output
layer contains two units, and a simple linear activation function is used. Finally, the
max module applies a max function to the KSi outputs in order to compute the overall
confusion matrix. As previously stated, the detectors work in a frame-based para-
digm, so that their performance was evaluated in term of frame error rate. Each frame

Table 4. Software (Hardware) phoneme percentages accuracies for the manner of articulation
attributes using sinusoidal activation function

% Vowel Fricative Stop Nasal App. Silence

Vow. 91,00

(89,85)

1,38 1,53 1,26 4,64 0,19

Fric. 3,16 88,06

(87,02)

5,53 1,02 0,89 1,24

Stop 6,32 7,41 81,03

(79,89)

1,71 1,57 1,96

Nas. 9,65 2,44 3,25 81,45

(81,04)

2,20 0,90

App. 30,82 2,88 3,26 2,74 59,11

(58,07)

1,19

Sil. 1,10 1,09 1,88 0,61 0,58 94,74

(94,21)

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 207

was classified according to the neural network with the largest value. The global con-
fusion matrix for the manner of articulation attributes is given in Table 4. The (p, q)-
th element of the confusion matrix measures the rate of the p-th attribute being classi-
fied into the q-th class. In addition, the results of the digitalized attribute scoring
module are given in parenthesis.

The digital version Knowledge-based Automatic Speech Classifier is implemented
on Celoxica RC203 board [6] equipped with a Xilinx VirtexII XC2V3000-4 FPGA.
Neural architectures were described using the VHDL language and were synthesized
using the Xilinx ISE 6.3 tools.

In Figure 6, the relations between execution time and hardware resources using
sinusoidal functions for the configuration B topology are shown. The execution time
as well as the hardware resources decreases with the hidden layer virtual neurons
number in inversely proportional way. In addition, the pair (for the configuration B)
topology has been considered to calculate the used hardware resources for their im-
plementation on FPGA. The execution time is compared with the execution time of
the related software implementation on a standard Pentium IV, 2Mhz with 1Gbyte of
RAM.

Fig. 6. The relation between execution time and used resource vs the number of virtual hidden
neurons

The number of hidden virtual neurons for each of the MLPs has been fixed to 10,
representing the best trade-off between execution time and allocated resource. The
above MLP digital implementation requires 1187 cycles and, consequently, 0,0236ms
for its execution.

Table 5 illustrates the synthesis report for a single MLP architecture implementa-
tion using the Xilinx ISE 6.3 tools as well as the allocated resources for the entire
scoring module. It is easy to see that the chosen configuration for each MLP allows
the implementation of the 6 detectors in a single FPGA. The same results could not
have been accomplished if 8 bits for each of the neural network parameters had been
used.

208 S.M. Siniscalchi et al.

Table 5. Synthesis report for a single MLP architecture as well as for the entire scoring module
using the sinusoidal activation function

 Slices FFs LUTs RAMs
Single MLP
architecture

802
(5.6%)

654
(2.3%)

1359
(4.7%)

10
(10.5%)

Entire scor-
ing module

4830
(33.7%)

4058
(14.1%)

8234
(28.7%)

60
(62.5%)

7 Conclusion

In this paper a Knowledge-based Automatic Speech Classifier was implemented using
six attribute scoring Multi-Layer Perceptrons. The entire scoring module was synthe-
sized on a single FPGA chip. Each MLP features a virtual neuron architecture and
uses sinusoidal activation functions for the hidden layer. Implementation results on
FPGA show that use of sinusoidal activation functions decrease hardware resource
usage of more than 50% for slices, FFs, LUTs and of more than 35% for FPGA RAM
when compared with the standard sigmoid-based neuron implementation. Further-
more, neuron virtualization allows for a significant decrease of concurrent memory
access, resulting in improved performance for the entire attribute scoring module. The
obtained scoring module execution time gives ample room to implement a real-time
speech classifier.

References

1. S. Vitabile, A. Gentile, G. Dammone, F. Sorbello. “MLP Neural Network Implmentation
on a SIMD Architecture”, Lecture Notes in Computer Science 2486, Springer-Verlag, pp.
99-108, 2002.

2. F. Sorbello, G.A.M. Gioiello, S. Vitabile, “Handwritten Character Recognition using a
MLP”, Knowledge-Based Intelligent Techniques in Character Recognition, Chapter 5, pp.
91-119, CRC Press Publishers, 1999.

3. S. Vitabile, A. Gentile, F. Sorbello, “Real-Time Road Signs Recognition on a SIMD Ar-
chitecture”, WSEAS Transactions on Circuits and Systems, Issue 3, Volume 3, May 2004,
pp. 664-669, ISSN: 1109-2734.

4. L. Huelsbergen, “A Representation for Dynamic Graphs in Reconfigurable Hardware and
its Application to Fundamental Graph Algorithms”, 8th International Symposium on Field
Programmable Gate Arrays, ISBN 1-58113-193-3.

5. M. Porrmann, U. Witkowski, H. Kalte, U. Ruckert, “Implementation of Artificial Neural
Hardware Accelerator”, 10th Euromicro Workshop on Parallel, Distributed and Network-
based Processing, pp.243-250, January 9-11, 2002, Spain.

6. RC203 Software Manual http://www.celoxica.com/support/documentation
7. E.M. Ortigosa, P.M. Ortigosa, A. Canas, E. Ros, R. Agis, and J. Ortega, “FPGA Imple-

mentation of Multi-layer Perceptrons for Speech Recognition”, LNCS Vol. 2778,
Springer-Verlag, pp. 1048 – 1052.

8. K. Kirchhoff. "Combining Articulatory and Acoustic Information for Speech Recognition
in Noisy and Reverberant Environments", Proc. of the International Conference on Spo-
ken Language Processing, Sydney, Australia, pp. 891-894

 Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier 209

9. K. F. Lee and H. W. Hon, “Speaker-independent phone recognition using hidden Markov
models”, IEEE Trans. On Acoust., Speech and Signal Process., Vol. 37, No. 11, pp. 1641-
1648, 1989.

10. J. Li, Y. Tsao and C.-H. Lee, “A Study on Knowledge source integration for candidate
rescoring in automatic speech recognition,” Proc. of ICASSP05.

11. Lee, C.-H., “From knowledge-ignorant to knowledge-rich modeling: a new speech re-
search paradigm for next generation automatic speech recognition,” Proc. ICSLP, 2004.

12. J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren,
“DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus,” U.S. Dept. of Com-
merce, NIST, Gaithersburg, MD, February 1993.

13. J.-C. Wang et al, Chipdesign of MFCC extraction for speech recognition,
INTEGRATION, the VLSI journal 32 (2002) 111–131)

14. S. M. Siniscalchi, J. Li, G. Pilato, G. Vassallo, M. A. Clements, A. Gentile, F. Sorbello,
“Application of E-αNets to Feature Recognition of Manner of Articulation in Knowledge-
based Automatic Speech Recognition,” Proceeding of the Italian Workshop on Neural
Nets (WIRN 2005), Springer-Verlag.

15. S. Vitabile, V. Conti, F. Gennaro, F. Sorbello (2005). “Efficient MLP Digital Implementa-
tion on FPGA”, 8° EUROMICRO Conference on Digital System Design (DSD 2005), pp.
218-222, IEEE Computer Society Press.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 210 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Topology Control Method for Multi-path Wireless
Sensor Networks*

Zhendong Wu1, Shanping Li1, and Jian Xu2

1 College of Computer Science, Zhejiang University, Hangzhou, China 310027
zhendongwu@hotmail.com

shan@cs.zju.edu.cn
2 Department of Computer Science, Dianzi University, Hangzhou, China 310018

Jian.xu@hziee.edu.cn

Abstract. Future sensor networks will be consisted of large number of
untethered and unattended sensors. Energy efficiency and load balance will be
two important design issues for these networks. Some researches [2] [3] have
found that topology control, which changes the set of neighbors of some nodes in
the networks, can be used to improve the energy efficiency and load balance. In
this paper, we take link reliability and multi-path into consideration when
designing topology control algorithms. Based on an analytical link loss model
[8], the relationship of energy efficiency, load balance and number of neighbors
is analyzed. We found that there is a contradiction in improving energy
efficiency and load balance at the same time. A layered topology control method
LELBM (Layered Energy-efficient and Load Balance Method) is proposed to
adjusting network’s topology for increasing energy efficiency and meanwhile
getting good load balance. Analysis and simulation show that this method can
significantly improve the network’s performance.

Keywords: Sensor Networks, Topology Control, Load balance, Energy
efficiency, Multi-path.

1 Introduction

Future sensor networks will be consisted of large number of untethered and unattended
sensors. Energy efficiency and load balance will be important design considerations for
these networks [1]. Many topology control algorithms, which assign different transmit
powers to different nodes to meet a globe topology property, have been proposed to
increase the energy efficiency [2] [3]. The experiments showed that a good designed
topology would increase the energy efficiency significantly [2] [3]. But, in 802.11 [4]
environment, which are widely used in MANET(mobile ad hoc networks), the sensors
will use a confirmed transmit power. So we need some new topology control
algorithms that do not change sensors’ transmit powers.

Recent studies [5] [6] have shown that wireless links in real sensor networks are
unreliable. This unreliability exposes one of greedy forwarding algorithm’s
weaknesses, which is the node we chosen may have “poor links” with the current node.

* This paper is supported by National Natural Science Foundation of China (No. 60473052).

 A Topology Control Method for Multi-path Wireless Sensor Networks 211

The “poor links” may result in a high rate of packet drops and energy wastage. It brings
us the idea that a good topology should take link reliability into consideration.

Base on the reliability consideration, we introduce the concept of multi-path into
sensor network. Multi-path is favorite alternative for both circuit switched and packet
switched networks, as it provides an easy mechanism to distribute traffic and balance
network load, as well as considerate fault tolerance. So using multi-path will be a good
choice for sensor networks due to its limited energy and unreliable links.

In this paper, we adjust the network’s topology through changing the set of neighbors
of some nodes at the condition of fixed transmit power. Two strategies are found to
select the set of neighbors for optimizing energy efficiency, balancing energy load
respectively. For making two strategies work together, we provide a layered method
LELBM (Layered Energy-efficient and Load Balance Method). Simulations show that
using LELBM, we get a good load balance and energy efficiency.

The rest of the paper is organized as follows. In section 2, we introduce the related
work. In section 3, we describe the statistical link-loss model and metrics of our work.
In section 4, we propose two strategies and a method for making them work together. In
section 5, we introduce the results of our simulations. In section 6, we present our
conclusions.

2 Related Works

We are inspired by previous work in topology control [2] [3], energy-efficient
forwarding strategy [1] [7], multi-path algorithm [13] [14] [15] [16].

Ramanathan R et al [2] and Alaa M et al [3] found that energy efficiency could be
improved through adjusting the transmit powers of nodes in a multi-hop wireless
network. These algorithms work well in one type sensor networks that the transmit
powers of nodes can be adjusted. Then, in 802.11 environment, which uses a confirmed
transmit power, these algorithms can’t work.

GEAR [1] selected the lower consumed energy nodes as the next hops. One
drawback of this algorithm is it has not considered link reliability, so it would not get
very good performance in real sensor networks because of the unreliable links. Seada et
al. [7] provided an energy-efficient forwarding strategy. It assumes that the number of
the neighbors is unchanged and the source-destination path can be described as a chain
topology. This assumption is a little too ideal. Normally, the number of the neighbors is
changed from source to destination. Especially in multi-path environment, the number
of neighbors is more important for correct routing and load balance. We studied the
relationship of the energy efficiency, load balance and the number of neighbors, and
give a method to choose neighbors.

Multi-path algorithms, such as [13] [14] [15] [16], have not taken energy efficiency
into consideration.

3 Model and Metrics

3.1 Model

To take link reliability into consideration, we need a link loss model. We take
advantage of link layer model in paper [8] to do our link reliability analysis. From it we
can derive:

212 Z. Wu, S. Li, and J. Xu

f
dr

dPRR 864.0

1

2

)(

)exp
2
1

1()(ρ−
−= (1)

Where PRR is the packet reception rate, d is the transmitter-receiver distance, r is the
signal to noise ratio (SNR), is the encoding ratio and f is the frame length. Figure 1
show instances of the link layer model where the different regions can be observed,
where ‘m’ means meters. It shows the existence of a large “transitional region” where
the link quality has high variance, including both good and highly unreliable links [8].

Fig. 1. Samples from a realistic analytical link loss model

We can conclude from this model that there is a trade-off between PRR and d. It
means that higher value of d will result in lower value of PRR in the neighbor node.
Obviously, lower values of PRR will cause more energy wastage due to more
retransmissions operation. But high value of PRR does not equal to energy efficiency.
In condition of fixed transmit-power, lower values of d (higher values of PRR) will also
result in more energy wastage because of more transmission operations. So, it worths
studying how to choose neighbor set in different link reliability for better network’s
energy efficiency.

In conclusion, our work is based on the following assumptions:

 Nodes know the neighbor’s location, the neighbor’s n (the number of
neighbors) and the link’s PRR of their neighbors.

(II) Nodes are randomly distributed.

3.2 Metrics

In order to evaluate the energy efficiency and the load balance in multi-path, we use the
following metrics:

• Delivery Rate (r): Percentage of packets sent by the source which reached the
sink

 A Topology Control Method for Multi-path Wireless Sensor Networks 213

• Energy Efficiency (Eeff): The energy spent by the network for sending one
byte from the source to the sink successfully.

• Mean Energy Consume (Emean):

 Emean =
N

spentenergy theof sum the
 (2)

• Energy Variance (Evar): we use this metric to evaluate the load balance of a
network. When the value is lower, the load balance is better. If the value is very
high, it means some nodes will exhaust their energy soon, and result in the
useful system lifetime decline.

 Evar =
N

1
[(E1 - Emean)2+(E2 - Emean)2+…+(EN - Emean)2] (3)

 The N is the sum of the nodes.
We assign Psrc to be the number of packets sent by the source, Etx and Erx the

amount of energy required by a node to transmit and receive a packet, and Ere the
energy used to read only the header of the packet. We have:

 Etotal = Etx + Erx + (n -1) Ere (4)

The Etotal is the total amount of energy consumed by the network for each
transmitted packet. The n is a variant, the number of neighbors.

Subsequently, Eeff is given by:

)(
)(

)(
)(

kEtotal

Lr

kEtotalPsrc

LrPsrc
Eeff

⋅
⋅=

⋅⋅
⋅⋅= (5)

The L is the length of each packet. For analyzing easily, in our analysis model, we
require L be a constant (L = 1024 or 512), and it is a reasonable assumption in WLAN.
The k is the total hops from source to sink.

According to these metrics, if we want to improve energy efficiency and load balance
simultaneously, then we should increase Eeff and decrease Evar at the same time.

4 LELBM: A Topology Control Method for Multi-path

In this section, we study how to increase Eeff firstly, and then how to decrease Evar
secondly, and finally how to make them work simultaneously.

4.1 Increasing Energy Efficiency

According to equation (5), Eeff =
)(

)(

kEtotal

Lr

⋅
⋅

, Where L is constant. To get better

energy efficiency, we need increase (r/k) and reduce Etotal.
In our model, all packets sent by the source would reach the sink, unless the link

lost the packet. The PRR(d) describes the probability of packet sending in one hop. In
reality, the nodes are not uniformly distributed. However, they are in the large scale in
networks, so we can assume the longer and shorter distance will be counteracted. Then

214 Z. Wu, S. Li, and J. Xu

we get a reasonable assumption that the nodes are uniformly distributed in the region,
we can compute the total hops from the source to the sink when the d is confirmed.

Total hops = (dsrc – dsink) / (d) (6)

Then the (r/k) is:

(r/k) =
d

dPRR d

/)dsinkdsrc(

)()/)dsinkdsrc((

−

−

 (7)

ln(r/k) = (dsrc – dsink)
d

dPRR)(ln
 + lnd - ln(dsrc – dsink) (8)

Here, dsrc – dsink is a constant when the source and destination are confirmed. Thus,

in order to increase (r/k), we need to maximize the value of (dsrc – dsink)
d

dPRR)(ln

+ lnd.
Now, we need reduce Etotal. According to equation (4) and our assumptions, Etx,

Erx and Ere are constant in one scene. Moreover, in 802.11, the length of packet is
512byte or 1024byte normally, and the header of the packet is about 50byte. Then (t is a
constant):

Erx (10~20) Ere, Etx = tErx; (9)

Etotal (1+t)Erx + (n-1)Ere (15(1+t) + n – 1)Ere (10)

So a small n is hoped for reducing Etotal. The n is the number of neighbors. Sum up,
we get:

Eeff
Erent

dPRR
k

L d

kddsrc

)1)1(15(

)(
sin

−++

−

 (11)

lnEeff [lnL -lnEre -ln(dsrc – dsink)] + (dsrc – dsink)
d

dPRR)(ln
 + lnd -

ln(15t+14+n) (12)

Equation (12) shows the relationship of the energy efficiency and the number of
neighbors. It can be concluded from the equation (12) that we can improve energy

efficiency by increasing the value of (dsrc – dsink)
d

dPRR)(ln
 + lnd and decreasing

the n.

4.2 Improving Load Balance

In order to get a good load balance, we need decrease Evar to get a low value. It can be
deduced from the equation (3) that if all items (Ei) close to Emean, we can get a good
load balance. In multi-path conditions, according to equation (4), the energy
consumption of every node that belongs to the same route is Etx and Erx, and for the
node does not belong to the route is Ere. If there are some nodes to participate many

 A Topology Control Method for Multi-path Wireless Sensor Networks 215

routes transmission simultaneously, the load balance will not be good. Moreover, if
there are some nodes that consume all Eres of each route, which means that the selected
paths are too close, the load balance will not be good either. So in multi-path
conditions, node-disjoint routes and some appropriate distance away from two routes
are expected for good load balance. Because a larger n can provide more opportunities
for choosing appropriate nodes satisfy two conditions above, a large n is expected for
good load balance.

It is a contradiction to decrease the n for improving energy efficiency while to
increase n to get good load balance. To deal with this condition, we should find an
appropriate number of neighbors (n) for energy efficiency and load balance both side.

The work of K.Chintalapudi et al [11], concerning the relationship of the network’s
service quality and the number of neighbors, shows that an average degree of 11-12
nodes within the ranging neighborhood is needed for good network’s service quality. It
means that for good load balance the n (number of neighbors) need greater than 12 (n
12), but once the number (n) satisfied this suggestion, it should be the less the better.

4.3 Working Together

From above, we can get two strategies for topology control. Next, we will demonstrate
a specific method LELBM to make them work together.

LELBM use a layered method to generate a topology for energy efficiency and load
balance. The mainly benefit to use this layered method is that it can make two strategies
(one for energy efficiency, one for load balance) work together. In order to avoid nodes
with weak links, we blacklist a set of neighbors based on a certain criteria, and then
route in the remaining neighbors. For example, the criteria could like this: the PRR is
lower 20%, or the number of neighbors is lower 12. Of course, there is a risk that greedy
routing fails when a node has no neighbors closer to the destination in the remaining
neighbors. But, in a dense network, this situation will happen scarcely, so this approach
is reasonable.

LELBM:

First, we blacklist a set of neighbors that the PRR is lower one value. We use V1
denotes the set of the remaining neighbors.

Second, we choose a set of neighbors that have the highest value of (dsrc –

dsink)
d

dPRR)(ln
 + lnd in the V1. We use V2 denotes the set we chosen.

Third, we choose a set of neighbors that (n 12) in the V2. We use V3 denotes the set
we chosen.

All nodes with their neighbor set V3 construct a topology for energy efficiency and
load balance.

5 Simulations and Comparisons

LELBM is designed to improve energy efficiency and load balance, so we primarily
measure the performance of network’s energy efficiency and load balance. Moreover,
we are interested in how this comparative measure scales with network density. We
evaluate how LELBM that equipped with multi-path routing algorithm [16] compares
with GPSR [9] that not used topology control.

216 Z. Wu, S. Li, and J. Xu

5.1 Simulation Environment

We simulated LELBM in ns2 [10], using the wireless extensions developed at Carnegie
Mellon (CMU). Because the CMU have not realized the link layer model derived in [8],
we slightly modify the simulation code of CMU (in wireless-phy.cc). At the same time,
we install our own route agent to ns2.

In the simulations where we compare LELBM with GPSR, we initialize the Shared
Media interface with parameters to make it work like the 914MHz Lucent WaveLAN
DSSS radio interface. Our simulations are for networks of 50 nodes with 802.11
WaveLAN radios, with a nominal 250-meter range. The nodes are initially placed at
random in a rectangular region. Through adjusting the size of the region, we get
different node density. 10 CBR flows in 1k/s are used in our simulation. We present the
link layer model derived in [8] in a simpler style as Table 1.

Table 1. A simple link layer model

d
(distance)

0~50 50~100 100~150 150~200 200~250

PRR(d) 100% 90% 70% 50% 30%

We evaluate LELBM and GPSR using three metrics: delivery rate, average consumed
energy (it reflects the energy efficiency of a network), and Energy Variance (Evar).

5.2 Delivery Rate

Figure 2 shows the number of packets the source delivers successfully for various
densities (Neighbors/Range). The delivery rate of “weak links” is very low, so “weak
links” will deeply affect the delivery rate of whole route. It can be derived from Figure
2 that GPSR has more “weak links” than LELBM because of the lower delivery rate.

Fig. 2. Delivery rate

 A Topology Control Method for Multi-path Wireless Sensor Networks 217

5.3 Average Consumed Energy

Figure 3 shows how much energy is consumed for various densities
(Neighbors/Range). Obviously, LELBM has better energy efficiency than GPSR. In
simulation, we find that when there are “weak links” in GPSR, LELBM can observably
improve the link’s performance through choosing “good links”. So, the more “weak
links” GPSR has, the better performance LELBM has comparing with GPSR.
However, with increase of node density, there are less “weak links” in GPSR. So when
the density is 50, the consumed energy of LELBM and GPSR are almost the same.
What’s more, the number of nodes in our simulation is 50, which equal to the highest
density we used. If the number of nodes we used is greater than 50, the energy
consumed of LELBM would still less than GPSR.

Fig. 3. Average Consumed Energy

Fig. 4. Energy Variance (Evar)

218 Z. Wu, S. Li, and J. Xu

5.4 Energy Variance

Figure 4 shows energy variance at different densities. When the density of the network
is not high (n < 40), the load balance get notably improvement in LELBM. “Weak
links” causes repeated resending, and result in too much energy consumption. LELBM
help us replace the “weak links” by “good links”, in which resending is not frequent.
Moreover multi-path also balances the energy load. So, in all densities we tested, the
energy variance (Evar) changed smoothly. It’s a very good property.

6 Conclusions

We have presented a topology control method LELBM with two energy efficiency and
load balance concerned strategies for multi-path wireless sensor networks. We have
studied the relationship of the energy efficiency, load balance and the number of
neighbors to get LELBM. Our method achieves considerably better energy efficiency
and load balance than GPSR, which do not used topology control algorithms. In order
to get better performance, we will try to figure out the tradeoff between the energy
efficiency and load balance in future work.

References

1. Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks. Technical report, May
2001.

2. Ramanathan R, Rosales-Hain R. Topology control of multihop wireless networks using
transmit power adjustment. In: Proc. of the IEEE INFOCOM. Tel-Aviv: IEEE,2000.
404~413.

3. Alaa M, Marwan K. Power controlled dual channel (PCDC) medium access protocol for
wireless ad hoc networks. In: Proc. of the IEEE INFOCOM. San Francisco: IEEE,2003.
470~480.

4. IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications 1999.

5. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker. “Complex
Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks”.
UCLA CS Technical Report UCLA/CSD-TR 02-0013, 2002.

6. A. Woo, T. Tong and D. Culler. “Taming the Underlying Issues for Reliable Multhop
Routing in Sensor Networks”. ACM SenSys, November 2003.

7. K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari. “Energy-Efficient Forwarding
Strategies for Geographic Routing in Lossy Wireless Sensor Networks”. SenSys’04,
November 3–5, 2004, Baltimore, Maryland, USA.

8. M. Zuniga and B. Krishnamachari, “Analyzing the Transitional Region in Low Power
Wireless Links”, IEEE Secon 2004.

9. B. Karp and H. Kung. “Greedy Perimeter Stateless Routing.” In Proceedings of the Sixth
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(Mobicom 2000), 2000.

10. NS2. URL http://www.isi.edu/nsnam/ns/

 A Topology Control Method for Multi-path Wireless Sensor Networks 219

11. K.Chintalapudi, R.Govindan, G.Sukhatme, A.Dhariwal, “Ad-Hoc Localization Using
Ranging and Sectoring ,” in Proceedings of IEEE Infocom, 2004.

12. W.R.Heinzelman, A.Chandrakasan and H.Balakrishnan. Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In Proceedings of the 33rd Hawaii
international Conference on System Sciences – 2000.

13. F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient Broadcast: A Robust Data Delivery
Protocol for Large Scale Sensor Networks. To appear in ACM Wireless Networks (WINET),
Vol. 11, No. 2, March 2005.

14. A Nasipuri, R Castaneda, S DAS. Performance of Multipath Routing for On-Demand
Protocols in Mobile Ad Hoc Networks[J]. ACM/Kluwer Mobile Networks and
Applications(MONET) Journal, 2001,6(4): 339-349.

15. Kai Wu, Janelle Harms. Performance study of a multipath routing method for wireless
mobile Ad hoc Networks[A]. Cincinnati, Ohio Aug: Proceedings of IEEE/ACM 9th
International Symposium on Modeling, Analysis and simulation(MASCOTS 01). New
York: ACM Press, 2001.99-107

16. D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, "Highly resilient, energy efficient
multipath routing in wireless sensor networks," in Mobile Computing and Communications
Review (MC2R), 2002.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 220 – 229, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Threshold Scheme Used in Directed Diffusion

Ning Hu1, Deyun Zhang1, and Fubao Wang2

1 School of Electronics and Information Engineering, Xi’an Jiaotong University,
Xi’an, Shannxi 710049, China

{huning, dzhang}@xanet.edu.cn
2 Institute of Broadband Network, Northwest Polytechnical University,

Xi’an, Shannxi 710072, China
wangfb@nwpu.edu.cn

Abstract. Since sensor nodes are generally constrained in on-board energy
supply, saving energy is crucial in extending the lifetime of the wireless sensor
networks. In this paper, we present a dynamic threshold scheme used in the data
propagation phase of Directed Diffusion, which can decrease the traffic between
nodes and therefore prolongs the longevity of wireless sensor networks. The
sensor node sends data to the sink only when the sampling value reaches the hard
threshold and the difference between the current sample value and the last sent
value is greater than the soft threshold, which reduces data traffic to conserve
energy. The soft threshold will be adjusted by using the historical values to make
the proportion of sending due to timeout equal to the expected value. Whether the
values of a sensed attribute change drastically or not, the data sent will continue
at a reasonable rate, which adapts the sensor network to the changeful
circumstance. Simulation results show that the improved Directed Diffusion
based on dynamic threshold can prolong the network lifetime about 35%
compared with the original system and can reacting immediately to drastic
change in the values of a sensed attribute.

1 Introduction

Advances in MEMS-based sensor technologies and low-power communication
technologies have made it possible to manufacture small sensors with sensing,
processing, and wireless communication capabilities in a cost effective and low
energy consumption fashion. These micro sensor nodes scattered in the sensed area
can be organized as ad hoc network dynamically, witch forms a wireless sensor
network. They sample independently and send the sampled value to the sink –
information collected point. The wireless sensor networks have the advantages of
fault tolerance, easy deployment and accurate sensing, which can be applied in many
fields, such as battlefield surveillance, environment monitoring and biological
detection [1][2]. Since sensor networks are based on the dense deployment of
disposable and low-cost sensor nodes, destruction of some nodes by hostile actions
does not affect a military operation as much as the destruction of a traditional sensor,
which makes sensor networks concept a better approach for battlefields.

The wireless senor networks have been hot research area at recent years, in which
information aggregation and data routing with low energy consumption become the
important research area. Since the sensor networks often work in the unattended
circumstance, which battery replacement is impossible, the nodes must use all kinds of

 Dynamic Threshold Scheme Used in Directed Diffusion 221

energy-saving methods to decrease the energy consumption and prolong the longevity
of the sensor network. So energy-saving is a critical problem to be considered first.

Some routing protocols have been proposed for Ad-Hoc network [10]. But these
protocols defined for wireless ad hoc networks are not well suited for wireless sensor
networks because what they take into account firstly is not energy saving, so the
research results can not be applied to wireless sensor networks directly. Further
researches have to be done to use energy efficiently.

The inspiration in this paper is from TEEN [6]. The idea is applying the threshold
scheme to the data propagation of Directed Diffusion, which can decrease traffic for
reducing the energy consumption. Data transmission based on threshold is to transmit
sensed data if the data value exceeds predefined thresholds. Using static thresholds
would be efficient if the changes in the environment are usual and the threshold values
are well predicted. Nevertheless, when the thresholds are not appropriate for the
network, sensor nodes can run out of energy in a short time because of frequent
transmissions or users can not get enough information about the current status of the
network because of rare transmissions. So the dynamic threshold generation algorithm
has been further presented to adjust threshold with the proportion of sending due to
timeout, which keeps the data traffic a reasonable level.

2 Related Works

Researchers have suggested some energy-aware routing protocols from the aspect of
reducing the data traffic in the wireless sensor networks.

A data-center routing protocol, SPIN [3], is introduced by Kulik. Nodes running
SPIN assign a high-level descriptor to completely describe their collected data (called
meta-data) and perform meta-data negotiations before any data is transmitted. This
assures that there is no redundant data sent throughout the network. There are three
phases defined in SPIN to exchange data between nodes. The nodes received data
firstly broadcast ADV message containing meta-data, and their neighbors being
interested in this data send REQ message to request the specific data, then the nodes
owning the data send DATA message that carry the actual data.

The most well known protocol is Directed Diffusion [4], where a sink queries the
sensors in an on-demand fashion by disseminating an interest, i.e., a list of
attribute-value pairs for the desired data, in order to build reverse paths from all
potential sensing sources to the sink. This reverse path vector is named a “gradient”. As
the interest is propagated hop-by-hop throughout the network, paths are established
between sink and sources. Directed Diffusion uses the reinforcement mechanism to
select a high quality path for the data flow among multiple paths available. Each node
only forwards a packet to a specific next hop neighbor along the reinforced path, which
can eliminate redundant transmissions to save energy.

Clustering is another good idea to save energy by data aggregation. LEACH [5] is
such a clustering-based protocol, which forms clusters of the sensor nodes based on the
received signal strength and use local cluster heads as routers to the sink. All the data
processing such as data fusion and aggregation are local to the cluster and cluster heads
perform data aggregation in order to save energy. Cluster heads change randomly over
time in order to balance the energy dissipation of nodes.

222 N. Hu, D. Zhang, and F. Wang

The threshold scheme is introduced firstly in TEEN [6], which is another
hierarchical routing protocol. A cluster head sends its members a hard threshold, which
is the minimum possible value of an attribute to trigger a sensor node to switch on its
transmitter and transmit to the cluster head and a soft threshold, which further reduces
the number of transmissions if there is little or no change in the value of sensed
attribute. APTEEN [7] is a hybrid protocol that uses both periodic and event based data
gathering. In addition to TEEN, a set of parameters are announced by cluster heads.
These are Attributes (user interests - physical parameters), Schedule (TDMA schedule -
a slot for each node) and Count Time. Thresholds are used in the same way with TEEN;
moreover, when a sensor node does not sense a value exceeding thresholds for a period
equal to the count time, it transmits the sensed value. This avoids that there is no data to
be sent in long time. Simulation of TEEN and APTEEN has shown that these two
protocols outperform LEACH. The main drawbacks of the two approaches are the
overhead and complexity of forming clusters in multiple levels, implementing
threshold-based functions and dealing with attribute-based naming of queries.

Location-based routing scheme can eliminate the number of transmission
significantly by diffusing query message only to that particular region. GEAR [8] is
such a protocol that restricts the number of interests in Directed Diffusion by only
considering a certain region rather than sending the interests to the whole network. It
forwards the packet to the target region. When the packet has reached the region, it can
be diffused in that region by either recursive geographic forwarding or restricted
flooding.

GAF [9] divides the network area into fixed zones and form a virtual grid. In each
virtual grid, nodes will select one sensor node to stay awake for a certain period of time
and then they go to sleep. It can substantially increase the network lifetime as the
number of nodes increases.

3 Motivation

Many works have been done to save energy of the sensor node, but those are not
enough to achieve our objects of energy consumption. Some trivial information is not
necessary for kinds of applications. We think that there are also lots of works remain
to do and many existing protocols can be further improved. We also believe that
sensor networks should provide the end user with the ability to control the trade-off
between energy efficiency, accuracy and response times dynamically. Moreover, the
sensor network system should also react immediately to drastic changes in the value
of a sensed attribute when the circumstance has changed. So, in our research, we have
focused on improving a popular data-center routing protocol – Directed Diffusion,
which can fulfill these requirements.

4 Improved Directed Diffusion Base on Dynamic Threshold

Since wireless sensor networks are application-oriented, this paper takes example for
temperature monitoring to describe the improved Directed Diffusion based on
dynamic threshold. When the temperature value sampled by sensors of the sensor
network varies drastically or becomes too high, the wireless sensor network can

 Dynamic Threshold Scheme Used in Directed Diffusion 223

provide more detail information by sending more data to the sink, by which user can
get enough information to cope with these abnormal events.

In this paper, we only introduce the Directed Diffusion routing protocol sketchily.
You can get the detail description by consulting document [4].

4.1 Parameters Related

There are two thresholds used in our scheme, which is similar to those presented in
TEEN [6]. We have further proposed an algorithm to adjust the threshold dynamically
when the circumstance changes. This dynamic threshold adjusting algorithm is simple
enough to easy implement in sensor nodes and has low overhead, which is very
suitable to the systems of resource limited.

Hard Threshold (TH): This is a threshold value for the sensed attribute, beyond

which the data sampled by sensor node can be sent to the sink.

Soft Threshold (TS): This is a small change in the value of the sensed attribute

which triggers the node to switch on its transmitter and transmit.

Sending Timeout (timeoutT): It is the maximum time period between two successive

reports sent by a node.

4.2 Task Description

Interest is a task description for data matching the attributes. In directed diffusion,
task descriptions are named by, for example, a list of attribute-value pairs that
describe a task [4]. The temperature monitoring task might be described as:

 type = temperature // task type
 interval = 0.5s // sampling interval
 startAt = 00:10:00 // start time of the task
 expiresAt = 01:30:00 // end time of the task
 hardThreshold = 35 // hard threshold
 softThreshold = 2 // initial value of the soft threshold
 timeout = 2.5s // maximal sending interval
 slideWindow = 5s // size of the set storing historical records
 alpha = 0.4 // the proportion of sending data due to timeout

This task description constitutes an interest, which represents following scenes: This
temperature monitoring task starts after 10 minutes and lasts 80 minutes, samples
current temperature every 0.5 seconds. The sampled data is sent to the sink only when
the current sample value is higher than 35 and the difference between this sample
value and last sent value is greater than the soft threshold (its initial value is equal to
2 and may adjust dynamically later). To avoid no data transmitted to the sink too long
time, the sensor node forces to send the current sample value when there is no data to be
sent beyond 2.5 seconds.

4.3 Interest Propagation and Gradients Establishment

The improved Directed Diffusion based on dynamic threshold works the same as the
original Directed Diffusion does in both interest propagation and gradients
establishment. Main process about these aspects is described as follows.

224 N. Hu, D. Zhang, and F. Wang

The sink broadcasts interests through its neighbors. Interest diffuses throughout the
network hop-by-hop, and is broadcast by each node received it to its neighbors. Each
node received the interest caches it and builds an interest entry, which contains several
gradient fields. Each gradient field presents a gradient that is a reply link to a neighbor
from which the interest was received. So there might be multiple paths to reach the sink
from this node. A node also might receive data from several neighbors, which makes it
have a change to do in-network data aggregation. The process of interest propagation
and gradient establishment continues until gradients are setup from the sources back to
the sink. The whole gradient field has been established by far.

The path along which data are received firstly will be reinforced, through which data
can be transmitted at higher rate. Any node that has data to send selects a path
according to a local policy to transmit the data to its neighbor. The sink has to resend
periodically the interest throughout the sensor network to maintain the gradients

4.4 Data Propagation and Dynamic Threshold Generation

After the gradients establishment completes, the source can send data to the sink
along these gradients. The node will send data only when both the following
conditions are true:

1. The current value of the sensed attribute is greater than the hard threshold.
2. The difference between the current value of the sensed attribute and the data value

last sent is greater than the soft threshold.

A series of data sent by one sensor node can be regarded as a data stream, which is a
set that contains infinite elements. Each element can be represented as >< tv, , where

v is the sample value and t is its corresponding transmission time. The recent
elements constitute a slide window on the data stream, by which the soft threshold is
calculated to adapt to the drastic changes in the value of a sensed attribute.

We assume that the data enter the slide window in time sequence. So the data in slide
window can be represented as

><><><>< −−++ uuuullll tvtvtvtv ,,,,,,,, 1111 (1)

where ul < and Ttt lu =− at any time. That is to say, only sample value in the

slide window will be stored in sensor node.
The elements of which data are sent due to timeout constitute a subset.

{ } , | , 1
* uilHvorSvvtvS TiTiiii ≤<<<−><= − (2)

To decrease the energy consumption, it should try its best to increase the sending
interval. At the same time, enough data have to be sent when sample values change
drastically. This can be achieved by controlling the proportion of sending due to
timeout in the slide window. During interval of T , the proportion of sending due to
timeout is calculated as follows.

 Dynamic Threshold Scheme Used in Directed Diffusion 225

1

*

*

+−
=

lu

S
P (3)

Assuming that the proportion of sending due to timeout is set to α in advance, the
algorithm of adjusting soft threshold is as follows:

 (1) If α>*P , then set TT SS *9.0' = ;

 (2) If α<*P , then set TT SS *1.1' = ;

 (3) If α=*P , then set TT SS =' .

Parameter α in this algorithm used to let user designate an expected value, which is
the goal value to let the proportion of sending data due to timeout achieve by adjusting
soft threshold. This gives the user a chance to control the trade-off between energy
efficiency, accuracy and response times. Choosing α depends on the statistical
character of the data generation.

The algorithm described above means that the soft threshold should be decreased
when the sending interval is too long, be increased when the sending interval is too
short, and have no change when the sending interval is equal to the expected value.

5 Performance Evaluation

To evaluate the performance of our improved protocol, we have implemented it based
on Intanagonwiwat’s code on the ns-2 simulator [11]. Our goals in the simulation are
as follows:

1. Compare the performance of the improved Directed Diffusion and the original
Directed Diffusion on the basis of the longevity of the network.

2. Study how the related parameters, such as the size of the slide window (T), the
expected proportion of sending due to timeout (α), and the characters of the sample

value of source, effect on the soft threshold (TS).

5.1 Simulation Environment

The simulation has been performed on a network of 50 nodes, which dispersed in a
rectangular area with 160x160m. Five sources and one sink have been chosen
randomly in those nodes. The value of a sensed attribute subjects to normal
distribution, where EX is equal to 30 and DX is equal to 10. These sources send data
packet whose size is 64 bytes at the interval of 0.5s. The sink generates interest
message whose size is 36 bytes at the interval of 5s.

The ns-2 simulator implements a 1.6 Mb/s 802.11MAC layer. To more closely
mimic realistic sensor network radios [12], we altered the ns-2 radio energy model such
that the idle-time power dissipation was about 0.035W, or nearly 10% of its receive
power dissipation (0.395W) and about 5% of its transmit power dissipation (0.660W).
Each node has a radio range of 40 m. The initial energy is set to 100J. The simulation
ends when the energy of all nodes is exhausted.

226 N. Hu, D. Zhang, and F. Wang

0 50 100 150 200 250 300

0

20

40

60

D
at

a
V

al
ue

Sample Time

Fig. 1. Data generated by source subjecting to normal distribution (EX=30, X=10)

Figure 1 show us the data generated by source subjecting to normal distribution,
where EX is equal to 30 and DX is equal to 10. It impresses on us the values of the
sensed attribute changing drastically in our given data source. In our study, we will
generate more smooth data based on it.

5.2 Results

We simulate the original Directed Diffusion, the improved Directed Diffusion based
on hard threshold and the improved Directed Diffusion based on both hard and soft
threshold at the same simulation scene described above. Other parameters correlating
with the simulation is set as follows: α is set to 0.4, the size of slide window is set to
10 sending periods (5s), hard threshold is set to 35, soft threshold is initially set to 2
and sending timeout is set to 5 sending periods (2.5s).

2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

N
um

be
r

of
 N

od
e

A
liv

e

Time(s)

 Directed Diffusion
 Hard Threshold
 Soft Threshold

Fig. 2. Comparison of the number of nodes alive

Figure 2 shows that the threshold scheme can actually decrease the energy
consumption and prolong the longevity of the wireless sensor network. The current
sensed value little differing from the value last sent will not be transmitted, which
decreases the traffic. So the energy dissipation in a node, especially one belongs to the

 Dynamic Threshold Scheme Used in Directed Diffusion 227

sharing path from several sources to the sink, is reduced. The longevity of the node first
died prolongs 35% compared with that in the original system.

2500 2600 2700 2800 2900
0

10

20

30

40

50

N

um
be

r
of

 N
od

e
A

liv
e

Time(s)

 Window10
 Window50
 Window100
 Hard

Fig. 3. Effect of window size upon node longevity

Since adjusting soft threshold depends on sending history recorded in the slide
window, whose size will effect on the node longevity. Figure 3 shows that the more
large the window size, the more short the node longevity. This because large window is
not sensitive to little change of sensed value and soft threshold is not adjusted in time
with changing in the value of the sensed attribute.

Simulation also shows that the energy consumption changes little with different α
if the statistical character of the data generation has no change.

2600 2650 2700 2750 2800 2850
0

10

20

30

40

50

N
um

be
r

of
 N

od
e

A
liv

e

Time(s)

 Difference1
 Difference5
 Normal

Fig. 4. Effect of data character upon node longevity (0=α)

228 N. Hu, D. Zhang, and F. Wang

2760 2780 2800 2820 2840
0

10

20

30

40

50

N
um

be
r

of
 N

od
e

A
liv

e

Time(s)

 Difference1
 Difference5
 Normal

Fig. 5. Effect of data character upon node longevity (4.0=α)

The sampling value little differing from last sent data will not be sent when soft
threshold scheme has been introduced. Data character - the difference between adjacent
sampling values, will have an effect on actual sending rate of a node, which affects the
node longevity. Figure 4 shows the effect of data character upon the node longevity
under the condition of timeout sending is not allowed (here the soft threshold will
become very little). The three curves in figure 4 separately represent different data
characters - sampling value subjects to normal distribution (EX=30, DX=10), and two
other sources in which the difference of adjacent sampling values is no more than 1 or 5
(they are generated based on that normal distribution and inserted values to make the
change more smooth). Simulation result shows the more smooth data changes, the more
node longevity is long. Small variety in sampling value results in few data value
reaching soft/hard threshold, which decreases the energy consumption for transmitting
or receiving.

Figure 5 shows how the data characters affect the node longevity when α is set to
0.4. Since 40% data being allowed to transmit due to timeout, part of the data changing
smoothly will also be sent to sink. The soft threshold can be adjusted dynamically with
the change of the data character, so the data sending rates of three sources are quite
similar, which results in node longevity of these sources being close to each other. This
can be proved by our simulation.

6 Conclusions

This paper introduces soft/hard threshold scheme into data propagation phase of
Directed Diffusion, which prolongs the node longevity through reducing the traffic
between potential sources and the sink. Hard threshold can filter out unimportant data
sampled by sensor and soft threshold farther discards the trivial data, which decreases
the energy consumption of the sensor node. The ability of adapting to the drastic
change in the source character is introduced by dynamic soft threshold. Whether the
values of a sensed attribute change drastically or not, the data sent will continue at a

 Dynamic Threshold Scheme Used in Directed Diffusion 229

reasonable rate, which adapts the sensor network to the changeful circumstance.
Simulation results show that the improved Directed Diffusion based on dynamic
threshold can prolong the lifetime of the wireless sensor networks.

References

[1] D. Estrin, R. Govindan, J. Heidemann, et al., “Next Century Challenges: Scalable
Coordination in Sensor Networks,” in the Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom’99), Seattle,
WA, August 1999.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, et al., “Wireless Sensor Networks: A
Survey,” Computer Networks, vol. 38, pp. 393-422, March 2002.

[3] J. Kulik, W. R. Heinzelman, and H. Balakrishnan, “Negotiation-based Protocols for
Disseminating Information in Wireless Sensor Networks,” Wireless Networks, vol. 8, pp.
169-185, March-May 2002.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion for Wireless Sensor
Networking,” IEEE/ACM Transactions on Networking, vol. 11, pp. 2-16, February 2003,

[5] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,” in the Proceedings of the 33rd Hawaii
International Conference on System Sciences (HICSS '00), Maui, Hawaii, January 2000.

[6] A. Manjeshwar and D. P. Agrawal, "TEEN: A Protocol for Enhanced Efficiency in
Wireless Sensor Networks," in the Proceedings of the 1st International Workshop on
Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing,
San Francisco, CA, April 2001.

[7] A. Manjeshwar and D. P. Agrawal, "APTEEN: A Hybrid Protocol for Efficient Routing
and Comprehensive Information Retrieval in Wireless Sensor Networks," in the
Proceedings of the 2nd International Workshop on Parallel and Distributed Computing
Issues in Wireless Networks and Mobile computing, Ft. Lauderdale, FL, April 2002.

[8] Y. Yu, D. Estrin, and R. Govindan, “Geographical and Energy-Aware Routing: A
Recursive Data Dissemination Protocol for Wireless Sensor Networks,” UCLA Computer
Science Department Technical Report, UCLA-CSD TR-01-0023, May 2001.

[9] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed Energy Conservation for Ad
Hoc Routing,” in the Proceedings of the 7th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom’01), Rome, Italy, July 2001.

[10] E. M. Royer, C. K. Toh, “A Review of Current Routing Protocols for Ad-Hoc Mobile
Wireless Networks,” IEEE Personal Communications Magazine, vol. 6, pp. 46–55, April
1999.

[11] UCB/LBNL/VINT, “Network Simulator-ns,” http://www.isi.edu/nsnam/ns/.
[12] W. J. Kaiser, “WINS NG 1.0 transceiver power dissipation specifications,” Sensoria

Corporation, San Diego, CA.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 230 – 243, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Abstract. High energy consumption has become a limiting factor for battery-
operated embedded systems. Most low-power compiler optimization techniques
take the approach of minimizing the energy consumption while meeting small
performance loss. In addition, it is possible that the available energy budget is not
sufficient to meet the optimal performance objective. In such situation, energy-
constrained optimization is more significant. In this paper, we explore two kinds
of energy-aware prefetching optimizations: prefetching optimization with
minimizing energy consumption and energy-constrained prefetching optimization.
We exploit energy saving opportunities through reducing memory stalls and CPU
stalls caused by too early or too late prefetching. We build models for these two
kinds of energy-aware prefetching optimization approaches and use a group of
array-dominated applications to validate our approach.

1 Introduction

High energy consumption has become a limiting factor to develop designs for battery-
operated embedded systems due to exorbitant cooling, packing and power costs.
Dynamic Voltage Scaling (DVS) is a major low-power technique
[1][2][3][4][5][10][11][12]. In this article, we consider two kinds of energy-aware
prefetching optimizations: the first is minimizing energy consumption within small
performance loss; the second one is optimizing performance within the available
energy budget (budgetE). Assume energy required to meet the optimal performance

without energy constraint is boundE . In scarce-energy settings where boundbudget EE < ,

energy-constrained optimization may cause some performance loss.
Software prefetching improves performance by effectively hiding memory access

latency through overlapping memory access with computation [6]. However, software
prefetching does not always implement perfect data prefetching because it requires
prefetch instructions are inserted at the right places. Prefetching too early or too late
may cause memory or CPU stalls. By reducing memory frequency or CPU frequency
or both, we can save energy consumption.

There usually exist two imperfect prefetch optimization cases: CPU-bound case
and memory-bound case. In CPU-bound case, prefetching operation is too early or

* This work was supported by the National High Technology Development 863 Program of

China under Grant No. 2002AA1Z2101 and No. 2004AA1Z2210.

Juan Chen1, Yong Dong2, Huizhan Yi3, and Xuejun Yang

School of Computer, National University of Defense Technology,
Changsha 410073, P.R. China

Compiler-Directed Energy-Aware Prefetching
Optimization for Embedded Applications*

1{juanchen@nudt.edu.cn}, 2{luckpeople@163.com},
3{huizhanyi@nudt.edu.cn}

Compiler-Directed Energy-Aware Prefetching Optimization 231

memory access latency is too short so that the prefetched data is provided before
actually being used. Although memory access latency is completely hidden,
prefetching too early makes memory access completes ahead of the actual data access.
We refer to this time interval as memory stalls. The second case is memory-bound
case, where memory access dominates the whole time and CPU stalls cannot be
avoided due to prefetching too late or too long memory access latency. Figure 1
illustrates the behavior of prefetching.

With DVS, we utilize CPU stalls and memory stalls to reduce memory frequency
or CPU frequency or both so as to minimize energy consumption or meet scarce
energy budget. In CPU-bound case, the major method is to adjust memory frequency
to eliminate memory stalls combined with small CPU frequency scaling. In memory-
bound case, the major method is to reduce CPU frequency to eliminate CPU stalls
while adjusting small memory frequency. Furthermore, it is necessary to adjust both
of their frequencies instead of one of them for energy savings.

In this research effort, we introduce the notion time to characterize the performance
benefits from prefetching—time denotes the program execution time with software
prefetching optimization. In energy-constrained prefetching optimization, time is
minimized. In energy optimization problem, performance (time) loss is limited within
some degree.

Time

A B
P2 P3 P4

T1 T2 T3

M1
(a) Perfect Prefetching

(b) CPU-bound (Complete Overlap)

P2 P3 P4

T1 T2 T3

M1

(c) Memory-bound (Incomplete Overlap)

P2 P3

T1

P4

T2 T3

P5

T4

M1

CPU stalls

Computation overhead
Prefetch instruction overhead

CPU stalls
Memory access overhead

memory stalls

Memory stalls

C D E

Prefetching loop regions before
frequency scaling

Achieve the optimization problem
parameters

Acquire the optimal CPU frequency
and memory frequency for minimal

energy consumption

Prefetching loop regions with new
CPU frequency and memory

frequency

Profiling Phase

Solution Phase

Code Generation Phase

Original program

Instrumentation Phase

Fig. 2. Compilation Framework

Fig. 1. Prefetching Optimization. P2, P3, P4, P5
represent prefetchinstrution overhead for the second,
third, fourth and fifth iteration, respectively. M1
represents memory access overhead caused
byprefetching. T1, T2, T3 and T4 represent
computation overhead in thefirst, second, third and
fourth iteration. Note: here iteration denotes
theoutmost iteration.

J. Chen et al. 232

The prototype implementation consists of four phases. It starts by instrumenting
the original program at selected program locations (instrumentation phase). The
instrumented code is then simulated, drawing out some profiled data (profiling phase).
Once the profiling is done, all the parameters of this optimization problem are
determined. The next work is to obtain the optimal CPU and memory frequencies
through solving the above optimization problem (solution phase). Finally, the
frequency-setting calls are inserted at the appropriate situations so that the selected
region is executed at the appropriate frequency and the rest of the program be
executed at the highest frequency (code generation phase). The first three phases have
been implemented and we are working for code generation phase. The whole
compilation framework is shown in Figure 2.

In this article, we evaluate the impact of different parameters on optimization
results and draw some conclusions. Finally, we use a group of array-dominated
applications to validate our conclusions.

For the research on software prefetching techniques [6][7][8], Todd [6] provided a
comprehensive analysis on software prefetching. Ricardo Bianchini et al. [9] presented
analytical models of the performance benefits of multithreading and prefetching. Xiaobo
Fan et al. [5] believed the best voltage/frequency for minimizing power consumption
should be obtained by including memory power in the decision. We exploited memory
stalls and CPU stalls existing in imperfect prefetching to reduce CPU or memory
voltage/frequency for energy savings. We have done some initial research on energy-
constrained prefetching optimization [15]. In this article, we present a comprehensive
analysis on energy-aware prefetching optimization from two different perspectives.

The remainder of this paper is organized as follows. In section 2, we build energy-
aware prefetching optimization model. Section 3 provides experimental results and
analysis. Section 4 gives the conclusions and Future Works.

2 Energy-Aware Prefetching Optimization

2.1 Overview

The prototypical loop that we optimize with prefetching looks like:

for (i = 0 ; i < N ; i ++) Compute (i) ;
After software prefetching optimization, the above loop is changed into:

// iteration 0, prefetch b blocks
prefetch (0, b);
for (i = 0 ; i < N - step ; i += step) {
 // prefetch b blocks for iterations i+step to i+2*step-1
 prefetch (i + step , b);
 // compute iterations i to i + step - 1
 for (j = 0 ; j < step ; j ++) Compute (i * step + j);
}
for (j = 0 ; j < step ; j++) Compute (i * step + j) ;

In the above prefetching loop, several prefetch instructions are inserted. The major
parameters involved in modeling the energy behavior of the above prefetching loop
are the number of the cache blocks prefetched for each prefetching instruction, b; the
number of prefetching instructions per iteration, Nb; the energy overhead of each
prefetched cache block, Eb; the time overhead of each prefetched cache block, Cp; the

Compiler-Directed Energy-Aware Prefetching Optimization 233

total latency of cache misses per iteration, Cm; and the computation between two
consecutive prefetch instructions, Cc. Table 1 summarizes these parameters.

Prefetching allows greater flexibility when trying to overlap memory access and
computation, since the compiler or user can schedule the prefetches according to the
memory access latency and the amount of work per iteration of each loop in the
program. This intelligent scheduling of prefetches adjusts b and the iteration step size
appropriately as the above code segment shows.

The optimal number of blocks to prefetch at a time depends on the available cache
space; blocks prefetched into the cache may be replaced before being used. Another
limitation is the number of prefetched blocks that can fit in a prefetch/transaction
buffer. With these constraints, the amount of useful work that can be overlapped with
memory access may be insufficient to hide memory latency completely. To analyze
this problem, we simplify it as Figure 1 shows.

Figure 1 illustrates the behavior of the prefetching loop. The execution alternates
between prefetch instruction and computation intervals. Each prefetch accessing
cache blocks are to be used one computation block ahead. While it is possible to have
loops that prefetch more than one computation block ahead, we can always transform
such loops into an equivalent loop that prefetches a single computation block ahead.

In Figure 1(a), P2 denotes prefetch instruction operation, where calculates the data
address to be prefetched (b, Nb, Eb are involved). M1 executes memory access
operations caused by prefetch instruction (Cm, fm are involved). T2 accesses the
prefetched data at point B (Cc, fc are involved). Figure 1(a) shows perfect prefetching
behavior. Memory accesses caused by prefetch are fully overlapped with computation,
where no CPU stall or memory stall exists. If prefetech instructions cannot be inserted at
the right places, two kinds of imperfect prefetchings occur as shown in Figure 1(b) and
Figure 1(c). In terms of CPU-bound or memory-bound case, we adjust memory
frequency fm and CPU frequency fc to save energy consumption. In this article, we
present two energy-aware prefetching optimization problems as follows.

Problem 1: given a loop L optimized with software prefetching and a DVS-enabled
CPU and memory system, find optimal CPU frequency fc and memory frequency fm,
then minimize energy consumption while permitting small performance loss.

Problem 2: given a loop L optimized with software prefetching and a DVS-enabled
CPU and memory system, find optimal CPU frequency fc and memory frequency fm,
then the performance objective is optimal while meeting a given energy budget.

2.2 Energy and Performance Analytical Models

2.2.1 Energy Model
The total energy consumption mcptotal EEEE ++= , where Ep represents the energy

consumption of prefetching instructions. We assume the number of prefetched cache
block per iteration is B, which is the product of b and Nb. Thus the energy
consumption for N loop iterations NNbEE bbp ⋅⋅⋅=

Ec represents the energy consumption of CPU computation. Due to continuously
variable CPU frequency, Pc(fc) is denoted the CPU power dissipation for CPU
frequency of fc. cc fC / represents CPU computation time. Then CPU energy

consumption during N loop iterations NfCfPE ccccc ⋅⋅= /)(.

J. Chen et al. 234

Em represents memory energy consumption. Due to continuously variable memory
frequency, Pm(fm) represents the memory power dissipation for memory frequency of
fm. mm fC / represents memory access time. Then the memory access energy

consumption for N iterations NfCfPE mmmmm ⋅⋅= /)(

Thus, we can get NfCfPNfCfPNNbEE mmmmccccbbtotal ⋅⋅+⋅⋅+⋅⋅⋅= /)(/)(.

In CMOS systems, dynamic power dissipation varies linearly with frequency and

quadratically with supply voltage as given by the equation fCVP 2α∝ , where α is

the switching activity factor, C is the load capacitance, V is the supply voltage and
f is the clock frequency. The relationship between supply voltage V and frequency f

is VVVf th /)(β−∝ , where thV represents threshold voltage, and β is a proportional

factor between 1 and 2. It is reasonable to assume frequency f is linearly proportion
with voltage V so as to draw the following formula:

3fCP ⋅⋅= α (1)

In terms of formula (1), 3
11)(ccc fCfP ⋅⋅= α and 3

22)(mmm fCfP ⋅⋅= α . So we can get:

NCfkNCfkNNbEE mmccbbtotal ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= 2
2

2
1 (2)

where 111 Ck ⋅= α and 222 Ck ⋅= α .

2.2.2 Performance Model
In the previous section, we have defined performance objective—time. Time calculates
the execution time for prefetching loop. To calculate this value, two cases need to be
considered. In CPU-bound case (Figure 1(b)), the total execution time of prefetching
loop is calculated by prefetching instruction and CPU computation as follows.

1)(cond
f

C

f

CNb
NT

c

c

c

pb
total +

⋅⋅
⋅=

In memory-bound case, CPU stall occurs every other prefetching operation as
Figure 1(c) shows. The time interval from C to D and the time interval from D to E
are identical. We can conclude that the total execution cycles are N/2 times as many
as the execution cycles during C to D. Since the execution cycles during C to D are

)(
c

c

m

m

c

pb

f

C

f

C

f

CNb
++

⋅⋅ , and we assume 02mod =N , thus the total execution time is

 2)(
2

cond
f

C

f

C

f

CNbN
T

c

c

m

m

c

pb
total ++

⋅⋅
⋅=

where cond1 and cond2 represent CPU-bound case and memory-bound case,
respectively. That is,

000
1

c

c

c

pb

m

m

f

C

f

CNb

f

C
representscond +

⋅⋅
≤ ,

000
2

c

c

c

pb

m

m

f

C

f

CNb

f

C
representscond +

⋅⋅
>

where 0
cf and 0

mf represent initial CPU and memory frequencies, respectively. We can

easily judge which case one application belongs to in terms of profiled data and initial
frequency value. Then, the total execution time is calculated in terms of the individual
case as follows.

Compiler-Directed Energy-Aware Prefetching Optimization 235

++
⋅⋅

⋅

+
⋅⋅

⋅
=

2)(
2

1)(

cond
f

C

f

C

f

CNbN

cond
f

C

f

CNb
N

T

c

c

m

m

c

pb

c

c

c

pb

total
 (3)

Replace cf and mf with 0
cf and 0

mf in equation (3), the initial time 0
totalT is easily

calculated.

2.3 Energy-Aware Prefetching Optimization

For energy optimization problem, β of performance loss is satisfied. Inequality (5-1)

and (5-2) show two performance constraints under CPU-bound case and memory-
bound case, respectively. Inequality (6-1) and (6-2) guarantee CPU-bound case
(memory-bound case) still belongs to CPU-bound case (memory-bound case) during
voltage/frequency scaling. For energy-constrained optimization problem, performance
objectives have the different presentations under two cases due to equation (3). The
meanings of all the parameters and variables are listed in Table 1.

)min(2
2

2
1 NCfkNCfkNNbE mmccbb ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅

++
⋅⋅

⋅⋅+≤++
⋅⋅

⋅

+
⋅⋅

⋅⋅+≤+
⋅⋅

⋅

2)(
2

)1()(
2

1)()1()(

000

00

cond
f

C

f

C

f

CNbN

f

C

f

C

f

CNbN

cond
f

C

f

CNb
N

f

C

f

CNb
N

c

c

m

m

c

pb

c

c

m

m

c

pb

c

c

c

pb

c

c

c

pb

β

β

>+⋅⋅−

≤+⋅⋅−

20/)(/

10/)(/

condfCCNbfC

condfCCNbfC

ccpbmm

ccpbmm

"'
ccc fff ≤≤
"'

mmm fff ≤≤

(4)

(5-1)

(5-2)

(6-1)

(6-2)

(7)

(8)

Energy optimization problem

++
⋅⋅

⋅

+
⋅⋅

⋅

2))(
2

min(

1))(min(

cond
f

C

f

C

f

CNbN

cond
f

C

f

CNb
N

c

c

m

m

c

pb

c

c

c

pb

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
2

2
1

>+⋅⋅−

≤+⋅⋅−

20/)(/

10/)(/

condfCCNbfC

condfCCNbfC

ccpbmm

ccpbmm

"'
ccc fff ≤≤

"'
mmm fff ≤≤

(9-1)

(9-2)

(11-1)

(11-2)

(12)

(13)

(10)

Energy-constrained optimization problem

J. Chen et al. 236

3 Experiments

We assume CPU and memory frequency vary continuously and satisfy
3)2772.7(cc feP ⋅−= and 3)2409.1(mm feP ⋅−= in terms of equation (1). Parameter 1k and

2k are estimated according to Transmeta’s Crusoe TM5900 processor parameters

[13]. The power specifications for TM5900 CPU and DDR are shown in Table 2.

We use SimpleScalar tool set [14] to profile some necessary parameters such as

cC and mC . Modified SimpleScalar tool set [14] models a 1 GHz 4-way issue

dynamically-scheduled processor. This simulator models all aspects of the processor
including the instruction fetch unit, the branch predictor, register renaming, the
functional unit pipelines, and the reorder buffer. This modified SimpleScalar tool set
enables software prefetching through adding a prefetch instruction to the ISA of the
processor model. In addition, our simulator also models the memory system in detail.
A split 8-Kbyte direct-mapped L1 cache with 32-byte cache blocks, and a unified
256-Kbyte 4-way set-associative L2 cache with 64-byte cache blocks are assumed.
Such cache configuration can meet our input data sets.

As Table 1 shows, there are 11 system parameters and 6 program parameters. In
this section, we analyze the impact of four program parameters on two kinds of
optimization problems. The parameter analysis is divided into two groups: cC and

mC ; β and budgetE .

CPU Fre (MHz) CVDD (V)
1000 1.25
900 1.20
800 1.10
667 1.00
567 0.90
433 0.80

(a) The relationship between CPU frequency and voltage

CPU Fre (MHz) CVDD (V) Power (W)
1000 1.25 6.50

433 0.80 0.35

433 0.80 0.30

State
Normal

Auto Halt
(ACPI C1)
Quick Start
(ACPI C2)
Deep Sleep
(ACPI C3) - 0.80 0.15-0.40

DSX - 0.625 0.10-0.25

(b) The relationship between CPU frequency, voltage and power
Current (A) Power (W)

1 2.5
0.5 1.25
0.2 0.5

0.048 0.12
(c) The relationship between DDR current and power.

DDR frequency is 83MHz-133MHz.

System
Paramter Meaning Value

Energy consumption by a cache block prefetched 10 pJ

b The number of cache block prefetched by a
prefetching instruction 4

A prefetched cache block computation time 1 cycles

Initial CPU frequency 1000 MHz
Initial memory frequency 133 MHz

The lower bound of continous CPU frequency 433 MHz
The upper bound of continuous CPU frequency 1000 MHz

The lower bound of continuous memory frequency 83 MHz
The upper bound of continuous memory frequency 133 MHz

Program
Parmeter Meaning Value

Prefetching loop iteration counts Program
specified

Computation time in once iteration (cycles) Profiled
Memory access time in once iteration (cycles) Profiled

Nb
The number of prefetching instructions in one

iteration
Optimization

specified

k2 The coefficient for 1.09e-24
k1 The coefficient for 7.72e-27

Ebudget Energy budget specified

Performance loss degeree (100%) User
specified

bE

pC

0
cf
0

mf
'

cf
"
cf
'

mf
"

mf

N

cC
mC

3
1 cc fkP

3
2 mm fkP

Table 1. System parameters and program
parameters for our optimization problems

Table 2. Clock frequency, supply voltage,
and power dissipation for TM5900 CPU and
DDR. Come from Transmeta Crusoe
TM5700/5900 Data Book.

Compiler-Directed Energy-Aware Prefetching Optimization 237

3.1 cC and mC

(1) Problem 1
For two kinds of energy-aware optimizations, we simulate the impact of cC and

mC on these two objectives. In Problem 1, minimizing energy consumption is our

objective. Assume initial energy consumption before frequency scaling is Eini, and the
minimum energy consumption after frequency scaling is Emin, the energy saving
percentage is represented by formula (14).

%100min ×
−

=
ini

ini

E

EE
savingEnergy (14)

Figure 3 gives the energy saving percentages under different cC and mC values.

Fig. 3. Energy saving percentage
as Cc andCm vary

Fig. 4. Optimal CPU and memory frequencies as Cc and
Cm vary

Focus on the curve where 90=mC , we notice three points (A, B, C) on this curve,

among which the minimum energy saving is obtained at point B. That is because
point B is the dividing point for memory-bound case and CPU-bound case: the left
points of B belong to memory-bound cases; the right points of B belong to CPU-
bound cases. More approach to point B, CPU stalls or memory stalls are smaller so
that less energy savings can be obtained. On the contrary, farther away from point B,
CPU stalls or memory stalls are bigger so as to achieve more energy savings. Thus,
the whole curve looks like a ‘V’ shape and point B lies in the minimum of ‘V’ shape.

Figure 4 presents the varying curves of CPU and memory frequencies under the
same conditions. The point A, B and C are the same with those in Figure 3.
(2) Problem 2

In Problem 2, performance optimization is our objective. Figure 5 shows time
variance as Cc and Cm vary. From point Ai to Bi (i=1, 2, 3, 4), the change trends occur
an exception. That is because the points before Ai belong to memory-bound cases and
the points after Bi belong to CPU-bound cases and the calculation formulas for these
two cases are different.

Figure 6 gives the optimal CPU and memory frequency settings as cC and mC vary.

From these two curves, the optimal CPU frequency value is non-decreasing as

cC increases while the optimal memory frequency value is non-increasing as

cC increases under a fixed mC value. The cC value and mC value at points Ai and Bi

En
er

gy
 sa

vi
ng

 p
er

ce
nt

ag
e

(a) Optimal CPU Fre. as Cc and Cm vary

O
pt

im
al

 C
PU

 F
re

. (
M

H
z)

Cc

O
pt

im
al

 m
em

or
y

Fr
e.

 (M
H

z)

Cc
Cc (b) Optimal memory Fre. as Cc and Cm vary

J. Chen et al. 238

(i=1, 2, 3, 4) are the same with those in Figure 5. Therefore, we can contrast Figure 6
with Figure 5.

From the above analyses, we can conclude that:

 Cc and Cm determine CPU-bound case or memory-bound case. More approach
to the dividing point, less energy saving is obtained in Problem 1. The
optimal CPU frequency and memory frequency variances have different
characteristics;

 For Problem 2, under fixed Cm value, performance decreases as Cc increases.
A little exception occurs around the dividing point.

3.2 β and budgetE

(1) Problem 1
Interestingly, the objective in Problem 1 is just the constraint in Problem 2; the
objective in Problem 2 is just the constraint in Problem 1. In the previous section
5.2.1, we have analyzed two objectives variances as Cc and Cm vary. In this section,
we will discuss

1) the impact of β on energy objective in Problem 1;

2) the impact of
budgetE on performance objective in Problem 2.

Figure 7 shows energy saving percentage under different β values. Four curves

represent 0=β , %5=β , %10=β , %15=β , respectively. Obviously, as β

increases, more energy saving can be obtained. We also notice that when 0=β ,

different properties for CPU-bound case and memory-bound case are showed: In
CPU-bound case, energy saving can be achieved without performance loss while in
memory-bound case, no energy saving can be achieved without performance loss.
That can be explained by Figure 8. If we adjust CPU frequency through prolonging
the time of T1 from Figure 8(a) to Figure 8(b), then the time of T2, T3 and T4 are all
prolonged. So performance penalty cannot be avoided. Later energy-constrained
parameter analyses also explain this from the other perspective.

Cc

O
pt

im
al

 ti
m

e
(s

)

(b) Optimal memory frequency as Cc and Cm vary
Cc

O
pt

im
al

 C
PU

 fr
eq

ue
nc

y
(M

H
z)

O
pt

im
al

 m
em

or
y

fr
eq

ue
nc

y
(M

H
z)

Cc
(a) Optimal CPU frequency as Cc and Cm vary

Fig. 5. Time variances as Cc
and Cm vary. Here = 90%

Fig. 6. Optimal CPU and memory frequency settings as Cc
and Cm vary. here =90%

Compiler-Directed Energy-Aware Prefetching Optimization 239
E

n
e
rg

y
 s

a
v

in
g
 p

e
rc

e
n
ta

g
e

Cc

Time

(a) before CPU frequency scaling

P2 P3

T1

P4

T2 T3

P5

T4

M1

Idle

Performance

penalty

Computation overhead

Prefetch instruction overhead

CPU stalls

Memory access overhead

(b) after CPU frequency scaling

P2 P3

T1 T2

M1

P4 P5

T3 T4

(2) Problem 2
For Problem 2, we only consider scarce-energy settings, where boundbudget EE < . To

describe the degree of energy scarce, we define α as the ratio of energy budget to
energy bound as follows.

boundbudget EE ⋅= α

As α increases, energy budget is more approach to energy bound and performance
is more approach to the optimal value. All of these varying trends are shown in Figure
9(a) and Figure 10(a), where blue solid lines represent execution time (inverse
proportion to performance) under different α values and black dot lines represent the
optimal performance when energy bound is reached. Performance is approach to the
optimal performance value as α increases.

For CPU-bound case as Figure 9(a) shows, when %1.91=α , performance has
reached the optimal value instead of %100=α . In contrast, for memory-bound case
shown in Figure 10(a), performance doesn’t achieve the optimal level until

%100=α . This shows that in CPU-bound case, the optimal performance can be
reached under less energy budget (less than energy bound). While in memory-bound
case, the optimal performance must be reached with energy bound. This conclusion is
consistent with the conclusion of Problem 1. That is, in CPU-bound case, energy
saving can be obtained with no performance loss while in memory-bound case, no
energy saving can be obtained with no performance loss.

To illustrate the optimal CPU frequency setting and memory frequency setting, we
also show the optimal CPU and memory frequency under the same conditions in
Figure 9(b)-(c) and Figure 10(b)-(c). In CPU-bound case (Figure 9(b)-(c)), CPU
frequency keeps at 1GHz while memory frequency is climbing and it reaches the
highest point until %100=α . In terms of objective (9-1), the performance value in
CPU-bound is determined by CPU frequency. Therefore, when CPU frequency
reaches the highest value, performance reaches the optimal value. After that, memory
frequency increase only consumes unnecessary energy. That is why the energy saving
can be obtained with no performance loss for CPU-bound case.

Fig. 7. Energy saving variance as varies.
here Cm=90.

Fig. 8. No energy saving can be obtained
without performance penalty in memory-
bound case

J. Chen et al. 240

In contrast, in memory-bound case, performance is determined by both CPU
frequency and memory frequency in terms of objective (9-2). Only when both of them
reach the highest values, the performance reaches the optimal. That explains why no
energy saving can be obtained with no performance loss.

T
im

e
(0

.0
1s

)

(Ebudget / Ebound)α (Ebudget / Ebound)α (Ebudget / Ebound)α

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

M
em

or
y

fr
eq

ue
nc

y
(M

H
z)

(a) time (b) CPU frequency (c) memory frequency

(Ebudget / Ebound)α (Ebudget / Ebound)α (Ebudget / Ebound)α
(a) time (b) CPU frequency (c) memory frequency

T
im

e
(0

.0
1

s)

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

M
em

or
y

fr
eq

ue
n

cy
 (

M
H

z)

From the above analyses on β and budgetE , we can conclude that:

 For Problem 1, when CPU-bound case, energy saving can be obtained
without performance loss while in memory-bound case, no energy saving can
be achieved with no performance loss;

 For Problem 2, when CPU-bound case, the optimal performance can be
reached under less energy budget (less than energy bound). While in memory-
bound case, the optimal performance must be reached with energy bound.

3.3 Experimental Results

After the detailed parameter analyses, we choose a set of array-dominated
applications to validate the effectiveness of our energy optimization approach. They

Fig. 9. The impact of Ebudget on the optimization results when CPU-bound case.Cc=1000,
Cm=90

Fig. 10. The impact of Ebudget on the optimization results when memory-bound case.Cc=1000,
Cm=150

Compiler-Directed Energy-Aware Prefetching Optimization 241

include Matmult, Stencil, Syr2k, Adi, and 2D Jacobi. Matmult represents matrices
product, Stencil is a stencil computing program for five dots, Syr2k is Rank-2K
update computation program for solving zonal symmetry matrix from BLAS, Adi
derives from the core base benchmark of Livermore, and 2D Jacobi performs a 2D
Jacobi relaxation. These benchmarks description is given in Table 3.

Table 3. The description of benchmarks

Benchmarks The number of Array Size
Matmult 3 1024*1024

Adi 6 1024*1024*3
2D Jacobi 2 1024*1024

Stencil 2 1024*1024
Syr2k 3 1024*1024

3.3.1 Minimizing Energy Consumption
Energy saving for each benchmark under different β values is shown in Figure 11.
The experimental results accurately reflect our analytical results. Adi and 2D Jacobi,
which belong to CPU-bound cases, achieve 10.1% and 1.1% energy savings with no
performance loss, respectively. Other benchmarks all belong to memory-bound cases
and no energy saving can be achieved without performance loss. Table 4 shows the
detailed data about CPU frequency, memory frequency and energy savings.

E
n

e
rg

y
 s

a
v

in
g
 p

e
rc

e
n
ta

g
e

T
h
e
 d

e
g
re

e
 o

f
p

e
rf

o
rm

a
n

c
e
 l

o
s
s

(Ebudget / Ebound)

3.3.2 Energy-Constrained Optimization Problem
Assume execution time (inverse proportion to performance) under energy constraint
is Time and execution time without energy constraint is InitialTime, the degree of
performance loss can be calculated by formula (15).

%100
1

11

%)100(×
−

=

eInitialTim

TimeeInitialTimLossePerformanc (15)

Fig. 11. Energy saving percentage for each
benchmark

Fig. 12. The degree of performance loss for
each benchmark

J. Chen et al. 242

As α value varies, the performance loss for each benchmark is shown in Figure
12. Experimental results validate our analytical conclusions. Benchmark Adi reaches
the optimal performance with 91.1% of energy bound. Table 5 gives the detailed
experimental data for the optimal CPU and memory frequency settings.

CPU

frequency

(MHz)

Memory

frequency

(MHz)

Energy

Savings

10% 896 123 18.37%

20% 825 112 31.20%

0 1000 133 0

10% 709 133 24.02%

20% 649 122 36.15%

0 1000 83 10.11%

10% 910 83 24.45%

20% 834 83 35.51%

0 1000 130 1.10%

10% 910 118 18.20%

20% 834 109 31.03%

0 1000 133 0

5% 940 129 10.17%

15% 860 117 25.16%

5% 830 133 15.03%

15% 669 128 30.50%

5% 953 83 17.77%

15% 870 83 30.39%

5% 953 124 10.14%

15% 870 113 25.17%

0 1000 133 0

5% 856 133 14.75%

10% 747 133 24.40%

15% 688 130 31.07%

20% 656 125 36.67%

Benchmarks

Matmult

Stencil

Syr2k

Adi

2D Jacobi

Type

memory-bound

case

CPU-bound

case

Type

memory-bound

case

CPU-bound

case

CPU

frequency

(MHz)

Memory

frequency

(MHz)

Performance

Loss

91.1% 942 127 5.0%

100% 1000 133 0

82.2% 782 133 6.3%

91.1% 898 133 2.7%

100% 1000 133 0

82.2% 942 88.6 5.8%

91.1% 1000 88.6 0

100% 1000 133 0

82.2% 898 122 10.2%

91.1% 942 127 5.8%

100% 1000 133 0

82.2% 898 122 9.3%

86.7% 927 122 7.8%

95.6% 971 127 3.6%

86.7% 840 133 4.4%

95.6% 942 133 1.5%

86.7% 971 88.6 2.9%

95.6% 1000 111 0

86.7% 927 122 7.3%

95.6% 971 127 2.9%

82.2% 811 133 6.4%

86.7% 869 133 4.2%

91.1% 913 133 2.7%

95.6% 956 133 1.3%

100% 1000 133 0

Benchmarks

Matmult

Stencil

Syr2k

Adi

2D Jacobi

4 Conclusions and Future Works

Energy consumption is more and more important for battery-powered embedded
systems due to the need for longer battery life and portability. Compiler-directed
optimization techniques are more and more concerned. In our article, we combined
two kinds of energy-aware prefetching optimization approaches: one is minimizing
energy consumption within some performance loss; the other is energy-constrained
optimization approach. We implement these two optimizations mainly through
simultaneously adjusting CPU and memory frequencies. For CPU-bound case and
memory-bound case, frequency scaling shows the different characteristics. We
analyze the impact of several parameters on optimization results and draw some
conclusions. Finally, a group of array-dominated applications are used to validate our
analytical conclusions. In the future, we will consider more actual model, i.e.
Considering N discrete voltage/frequency levels instead of continuous
voltage/frequency scaling. Thus, more exact and actual model should be built.

Table 4. Optimal CPU and memory
frequency settings and energy savings for
each benchmark with variable

Table 5. Optimal CPU and memory frequency
settings and performance loss for each
benchmark with variable

Compiler-Directed Energy-Aware Prefetching Optimization 243

References

1. Gang Qu. What is the Limit of Energy Saving by Dynamic Voltage Scaling? In the
Proceedings of International Conference on Computer-Aided Design (ICCAD’01), Nov 4-
8, 2001, San Jose, CA, USA. pp:560-563.

2. H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu, U. Kremer.
Energy-Conscious Compilation Based on Voltage Scaling. In LCTES’02-SCOPES’02,
June 19-21, 2002, Berlin, Germany.

3. Fen Xie, Margaret Martonosi and Sharad Malik. Compile-Time Dynamic Voltage Scaling
Settings: Opportunities and Limits. In the Proceedings of ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI’03), June 9-11,
2003, San Diego, California, USA.

4. Woo-Cheol Kwon and Taewhan Kim. Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors. In the Proceedings of 2003 Design Automation
Conference (DAC’03), June 2-6, 2003, Anaheim, California, USA.

5. Xiaobo Fan, Carla S. Ellis and Alvin R. Lebeck. The Synergy between Power-aware
Memory Systems and Processor Voltage Scaling. In Proceedings of the Workshop on
Power-Aware Computer Systems (PACS’03), Dec 2003.

6. Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching.
Ph.D. thesis, Stanford University, Computer System Laboratory, March 1994.

7. Shimin Chen, Phillip B. Gibbons and Todd C. Mowry. Improving Index Performance
through Prefetching. In Proceedings of the 2001 SIGMOD International Conference on
Management of Data. pp: 235-246.

8. Abdel-Hameed Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen Tseng. The
Efficacy of Software Prefetching and Locality Optimizations on Future Memory Systems.
Journal of Instruction-Level Parallelism. June 2004.

9. Ricardo Bianchini and Beng-Hong Lim. Evaluating the Performance of Multithreading
and Prefetching in Multiprocessors. Journal of Parallel and Distributed Computing
(JPDC), special issue on Multithreading for Multiprocessors, August 1996.

10. C. Hsu, U. Kremer, and M. Hsiao. Compiler-Directed Dynamic Voltage/Frequency
Scheduling for Energy Reduction in Microprocessors. In International Symp. On Low
Power Electronics and Design (ISLPED’01), pages 275-278, August 2001.

11. Chung-Hsing Hsu. Compiler-Directed Dynamic Voltage and Frequency Scaling for CPU
Power and Energy Reduction. Ph. D. Dissertation. New Brunswick, New Jersey. October
2003.

12. J. Pouwelse, K. Langendoen, and H. Sips. Dynamic Voltage Scaling on a Low-Power
Microprocessor. In the Seventh Annual International Conference on Mobile Computing
and Networking 2001, pp: 251-259.

13. Crusoe Processor Model TM5700/TM5900 Data Book. http://www.transmeta.com/
crusoe_docs/tm5900_databook_040204.pdf

14. D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0”. CS TR 1342,
University of Wisconsin-Madison, June 1997.

15. Juan Chen, Yong Dong, Hui-zhan Yi, Xue-jun Yang. Energy-Constrained Prefetching
Optimization in Embedded Applications. To be appeared in the Proceedings of the 2005
IFIP International Conference on Embedded and Ubiquitous Computing (EUC ‘05).
Nagasaki City, Japan, 6-9 December 2005.

A Dynamic Energy Conservation Scheme for
Clusters in Computing Centers�

Wenguang Chen1, Feiyun Jiang1, Weimin Zheng1, and Peinan Zhang2

1 Dept. of Computer Science and Technology, Tsinghua University, Beijing, China
2 Intel China Research Center, Beijing, China

Abstract. HPC clusters are widely used to execute parallel tasks. With
the increasing number of nodes and frequency of processors, they con-
sume huge amount of energy. The heat generated by clusters also imposes
very heavy load for cooling infrastructures. The utilization of some clus-
ters is not always high, indicating that there is a huge space to conserve
energy consumption with more intelligent energy management scheme.
Although there has been some energy conservation schemes proposed for
web clusters, they are not applicable to HPC clusters. In this paper we
propose a dynamic energy conservation scheme for HPC clusters. The
scheme is to turn some cluster nodes on and off dynamically according
to the current and historical workload. The goal is to reduce the energy
consumption of clusters with minimal performance loss. We evaluate our
scheme by simulation and show that it can effectively conserve energy
consumption.

Keywords: Energy Conservation, Cluster, Parallel Computing.

1 Introduction

HPC clusters are widely used to execute parallel tasks. Energy consumption is
becoming a key design issue for HPC clusters now. Because off-the-shelf hard-
ware prices constantly decrease, clusters are more affordable to be purchased
than before. However, the operational cost of clusters is even higher than be-
fore. The reasons are: (1)The energy consumed by clusters increases because of
higher processor frequency and larger number of nodes.(2) The heat generated
by clusters also increases greatly. For a cluster with medium to large number of
nodes, it requires significant investment on equipments and energy consumption
of cooling systems.

On the other hand, utilization of some HPC clusters is just 50% or even
lower[1]. Although most modern processors and systems can be put into power
saving mode by voltage-scaling techniques [5], idle nodes in HPC clusters still
consume quite huge amount of energy. Chase et.al. found that conventional
servers used at least 60% of their peak power in idle state[10], which indi-
cates that more energy can be conserved by more intelligent power management
scheme for HPC clusters.
� This project is partially supported by Intel Corp.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 244–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 245

Some energy conservation schemes have been proposed for web server clusters
[10, 11, 12, 17]. Although web servers clusters and HPC clusters share the com-
mon term cluster, there are substantial difference between them regarding their
workload. A job submitted to HPC clusters normally requires multiple proces-
sors and much more execution time. So the energy conservation scheme designed
for web server clusters could not be applied to HPC clusters trivially.

In this paper we characterize workload logs of several HPC clusters. Then we
propose a simple yet effective scheme to conserve energy consumption for HPC
clusters. In our scheme, not all idle nodes are turned off immediately, some spare
nodes are reserved for future tasks. When the workload becomes heavy, some
nodes will be turned on in advance for future jobs. In this way, we can conserve
energy consumption with minimal performance loss.

This paper is organized as follows. Section 2 describes related work. Section
3 shows the origin of the workloads used in this research, then characterizes the
workload in various aspects. Different energy management schemes are presented
in section 4. Section 5 describes the experimental results and Section 6 closes
the paper with a summary.

2 Related Work

Power-efficient design are receiving increasing attention recently. The research
work on this area can be characterized with three levels: chip level, single system
level and multiple-system level.

Chip level power-efficient design[2, 3] is motivated by the requirement of pro-
viding long battery life time for portable electronic appliances. The design needs
to explore tradeoff between power and conventional design constraints, i.e., per-
formance and area.

Above the chip level, single-system level techniques such as dynamic power
management(DPM)[4] and dynamic voltage scaling(DVS)[5] have been applied
extensively with good results. In computer systems, DRAM is a big source to
consume energy. So memory energy optimization has also been researched[6, 7].
In addition to the hardware only approach, some software/hardware integrated
methods have also been proposed[7, 8, 9].

Some operating systems, such as Microsoft Windows 2000 and Microsoft Win-
dows server 2003 could support the hibernate mode or sleep mode which uses
very little power. However, these features are mainly designed for notebook and
desktop computers, and could not be applied to either HPC clusters or web
server clusters directly. In Microsoft’s document on configuring server clusters,
it is suggested that ”Do not use APM/ACPI Power saving features”[18].

At the multiple-system level, there has been some research work on conserv-
ing energy consumption for server clusters, e.g., data center with many WWW
servers. Node vary-on/vary-off(VOVO) scheme for web server clusters has been
proposed in [10, 11]. In this scheme, CPU demand of servers is monitored. When
it exceeds a certain threshold, e.g. 90%, more nodes will be turned on. When
the CPU demand becomes lower than a certain threshold, some nodes should be

246 W. Chen et al.

turned off. Elnozahy et.al evaluates five policies for cluster-wide power manage-
ment in server farms[12]. The policies employ various combinations of dynamic
voltage scaling and node vary-on/vary-off(VOVO). The best results are obtained
by using a coordinated voltage scaling policy in conjunction with VOVO. Ra-
jamani et.al identified the key system and workload factors that impact power
management policies for server clusters. They also proposed two improvement
over the simple threshold policies: spare servers and history-based schemes. The
spare servers scheme was used to deal with the observed spikes in workload[17].

Although the above power management schemes works well for server clusters,
they are essentially variation of utilization threshold -based schemes and could
not be used in HPC clusters trivially.

In HPC clusters, a single job is sufficient to push the CPU utilization to almost
100% in cluster nodes allocated to it. What’s more, memory, I/O and network
bandwidth in allocated cluster nodes are also used heavily with a single job only.
Allocating multiple jobs to the same node would cause resource conflict and
damage the performance seriously. Thus, it is a common practice that different
jobs do not share cluster node in HPC clusters. So the CPU utilization threshold-
based power management scheme could not be applied to HPC clusters trivially.

In this paper, we propose to use spare nodes to conserve energy consumption
of HPC clusters. Although the idea of spare nodes has also been proposed by
Rajamani et.al. [17] for server clusters, it was proposed as an improvement of
threshold based schemes. While in this paper, we use the spare nodes scheme
only in the context of HPC cluster. We propose an algorithm to determine the
number of spare nodes dynamically and verify its effectiveness by simulating
various HPC cluster workloads.

Choi et.al proposed an disk storage power management approach for the server
systems which accesses remote active storage devices instead of turning on local
storage devices[16]. It is another dimension of the problem and was orthogonal
to ours.

3 Collecting Information

Since our key goal is to propose an energy conservation scheme for HPC clusters,
we need information on the workload experienced by production systems. Unfor-
tunately, there is no standard benchmarks for workload in HPC clusters. We got
3 workload logs from supercluster.org[1], which were generated by production
cluster systems with the Maui scheduler[19]. In fact, there are totally 5 work-
loads there, but only 3 of them are downloadable. They are described in Table 1.

Table 1. Workload used in this research

Site/Machine Name Procs jobs Period
CHPC/Icebox 266 20000 Mar. 2000-Mar 2001
OSC/Linux Cluster 178 80000 Jan. 2000-Nov. 2001
MHPCC/Tsunami 224 4100 Mar. 1998-Apr. 1998

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 247

There are many fields in the log files, such as submission time, nodes re-
quested, dispatch time, start time, completion time and wall clock limit etc. In
our research, we just take the following fields into account:

– Submission time tsubmission: The time when job was submitted.
– Nodes of requested prequested: The number of processors requested.
– Start time tstart: The time when job began execution.
– Completion time tcompletion: The time when job completed execution.

These systems have different architectures. For example, the MHPCC/T-
sunami is an IBM SP2 machine, which is indeed a clusters of SMPs, i.e., we
can not turn-off one processor for this machine. The OSC/Linux Clusters is
also a cluster with both quad-processor nodes and dual-processor nodes. In this
paper, however, we will first assume that all nodes are just single processor
nodes for simplicity, so each processor can be turned on or turned off inde-
pendently. The effect of multi-processor nodes will be discussed later in this
paper.

3.1 System Utilization

To identify the potential benefits of energy conservation on these workloads, we
need to know the utilization of each system. Table 2 demonstrates the average
number of active processors in each system, and calculates utilization accord-
ingly.

In all systems, the system utilization is below 50%, which indicates that more
than 50% processors are idle in average. It is obvious that if we can turn the
inactive processors off, we will be able to save a lot of energy.

Table 2. Utilization of Our Reference Systems

Site/Machine Name Average Number of Total Number Utilization
Active Processors of Processors

CHPC/Icebox 102.9 266 38.7%
OSC/Linux Cluster 75.4 178 42.4%
MHPCC/Tsunami 67.9 224 21.5%

3.2 Distribution of Job Size

The job size is the number of processors requested by a job. Both Downey and
Cirne have reported that the uniform-log distribution provides a good fit for the
job size in supercomputer workload[13, 14]. This was the case for our reference
workloads. Table 1 shows the cumulative distribution function of job size of our
reference workloads. It should be noticed that the size of more than 90% jobs
is less than 16. Comparing with around 200 processors in each system, most of
jobs only have very small size.

248 W. Chen et al.

1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y(

C
D

F
)

Task Size

 OSC
 CHPC
 MHPCC

Fig. 1. Size of Jobs CDF

1 8 64 512 4096 32768 262144
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y(

C
D

F
)

Execution Time of Tasks

 OSC
 CHPC
 MHPCC

Fig. 2. Time of Jobs CDF

3.3 Distribution of Job Execution Time

As noticed by Downey[14], the uniform-log distribution provides a good fit for
the job execution time in our 3 reference workloads. Figure 2 plots the observed
job execution time. It should be noticed that for all of our 3 reference workloads,
more than 30% of tasks are tasks whose execution time is less than 1024 seconds.
For the OSC workload, the ratio is even higher than 50%. Because a normal
system boot up time is about 200 seconds, which is comparable with the ”short”
tasks’ time. The distribution of job execution time indicates that using naive
energy management scheme,which would cost some time to bring idle systems
up, will damage the the system performance considerably.

4 Schemes of Energy Management for Computing
Clusters

In this section, we define some schemes of energy management for computing
clusters. In order to describe them more clearly, we define some notations first.

– nqueue(t) : The number of nodes that required by tasks in queue at time t
– nidle(t) : The number of idle nodes in cluster at time t
– nact(t) : The number of active nodes in cluster at time t.
– noff (t) : The number of nodes which is in the power-off state at time t in

cluster
– nturning off(t) : The number of nodes that are being turning off
– nturning on(t) : The number of nodes that are being turning on
– narvl(t1, t2) : The number of nodes that are required by tasks which arrive

between time t1 and t2
– ncmpl(t1, t2) : The number of nodes that are required by tasks which complete

between time t1 and t2
– toff : Time required to turn off a node

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 249

– ton : Time required to turn on a node
– ncluser : The number of total nodes in the cluster.

It should be noted that at any given time t,

ncluster = nact(t) + nidle(t) + ndown(t) + nturning off (t) + nturning on(t)

4.1 Always-On Scheme

This is the scheme used by current computing clusters. Nodes in cluster are not
turned off and on in normal situations at all. They are always on, which could
be described as

n(t)off = 0 for any time t.

4.2 Naive Scheme

Under this scheme,

n(t)idle = 0 for any time t.

In another word, the nodes in clusters are turned off as soon as they becomes
idle if there is no task in queue. Similarly, a certain number of nodes will be
turned on as soon as there is a coming request for the number of nodes.

4.3 Optimal Scheme

In this scheme, we assume a perfect knowledge of the arrival time of tasks, which
enable us to avoid situations where tasks wait for required nodes to start up.
In this scheme, the total completion time of all tasks is the same as the always-
on scheme, i.e. a node is turned off only if it will not damage the system’s
performance.

Because there’s no way for us to get the perfect knowledge of the arrival times
of tasks in practical, the scheme shows the upper bound of amount of energy
that can be conserved without damaging the performance of parallel clusters .

The scheme includes strategies for completion and arrival of tasks.

– On completion of tasks
At time t, when a task which requires m nodes has just completed, let
t′ = t + toff + ton,
then
ntbt off (t) = m+nidle(t)+ncompl(t, t′)+nturning on(t)−nqueue(t)−narrl(t, t′)
if ntbt off (t) > 0, it is the number of nodes to be turned off at time t.
Otherwise, we do nothing at time t.

– On arrival of tasks
If a task will arrive at time t which requires m nodes, let
t′ = t − toff − ton,
then
ntbt on(t′)=m+nqueue(t′)+narrl(t′, t)−nidle(t′)−ncompl(t′, t)−nturning on(t′)
if ntbt on(t′) > 0, it is the number of nodes to be turned on at time t′.
Otherwise, we do nothing at time t′.

250 W. Chen et al.

4.4 N-Redundant Scheme

Since no perfect knowledge of the arrival times of tasks are available in practice,
we need to find a good approach to deal with the dynamic arrival of tasks. We
proposed a simple yet effective scheme n − redundant.

The n−redundant scheme is motivated by the analysis on job size distribution
in section 4.2, which indicates that most jobs are with small sizes. So only a small
number of redundant active nodes would meet the requirement of most jobs.

In general, we use n(t) to denote the maximum number of idle nodes at time t.
The n − redundant scheme is to hold at most n(t) idle nodes whenever pos-

sible, i.e.

nidle(t) ≤ n(t) for any time t.

In n-redundant schemes, the maximum number of idle nodes is n(t), so the
energy that may be consumed by other idle nodes are conserved. On the other
hand, the performance of the system is not damaged greatly by latency intro-
duced by power-on time, since the n(t) idle nodes can be used immediately for
arrival of tasks.

We still use the actions taken on completion and arrival of parallel tasks to
describe the n − redundant scheme.

– On completion of tasks
At time t, when a task which requires m nodes has just completed, first

recompute the value of n(t)(the algorithm to compute n(t) will be discussed
in the next section), then let

ntbt off (t) = m+nidle(t)+nturningon −nqueue(t)−n(t) where n(t) is the
maximum number of

if ntbt off (t) > 0, it is the number of nodes to be turned off at time t.
Otherwise, we do nothing at time t.

– On arrival of tasks
If a task arrives at time t which requires m nodes, then

ntbt on(t) = m + nqueue(t) + n − nidle(t) − nturningon

if ntbt on(t) > 0, it is the number of nodes to be turned on at time t. Other-
wise, we do nothing at time t.

4.5 Determine the Value n(t) for the N-Redundant Scheme

In the n − redundant scheme, it is very important to determine the value of
n(t). Since the redundant nodes are used to obtain better performance for short
tasks, we should use statistics of size of short tasks to determine it. We define the
threshold ts, so that all tasks with execution time less than or equal to ts will
be considered as short tasks, whose performance will be damaged significantly
by the latency of system boot-up.

To calculate the n(t), we maintain a task queue qq which contains the most
recently quitted short tasks. The size of the queue is m, so at most recent m
quitted tasks will be stored in qq. The n(t) remains unchanged unless there is

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 251

a quitted job. When a job quits at time t, we need to update the value of n(t).
We choose the number of redundant nodes n as the minimum integer such that
p% or more short tasks in qq are of size less than or equal to n. The algorithm
is trivial based on the above definition and omitted due to limited space. The
value n is stored in a global variable. The complexity of the algorithm is O(N),
where N is the number of nodes in the HPC cluster.

Table 3 shows the typical value n for the 3 clusters according to the rule
described above. It could be observed that the value is relatively small comparing
with the number of nodes in clusters.

Table 3. Determine the number of redundant nodes for each workloads

Site/Machine Name Number of Short tasks n
CHPC/Icebox 7014 12
OSC/Linux Cluster 43235 16
MHPCC/Tsunami 1744 10

5 Experimental Results

5.1 Performance Metrics

In order to evaluate the system performance for different energy conservation
schemes, we need to define a proper performance metric.

Feitelson et.al. have suggested the ”bounded-slowdown” metric to avoid the
extreme effects introduced by very short tasks[15]. For bounded-slowdown, a
threshold value τ is used to filter the short tasks, its definition is

bounded − slowdown = max{ tc−ts

max{tc−tr,τ} , 1}
It is obvious that the behavior of this metric depends on the choice of τ . In

this paper, we choose 20 seconds for it. The reason for this value is that we
believe that it represents the typical time for a user to submit a very short job
to parallel clusters and get the result. Users will not be very sensitive when the
response time of the job is already less than 20 seconds, no matter how short
the job is.

5.2 Experimental Results

We implemented a simulator to evaluate the performance of our proposed energy
conservation scheme. The simulator uses the traces of maui scheduler as its
input, which is described in Section 3. It implements the FCFS (First Come,
First Serve) scheduler.

We simulated various energy conservation schemes for the 3 selected workloads
by comparing their average bounded-slowdown and consumed energy.

Fig 3 shows the bounded-slowdown of different schemes on systems with
different boot time. We simulated boot time from 25 seconds to 250 seconds.
The typical boot time is around 150s for current Linux servers, yet 250s boot

252 W. Chen et al.

time is also observed on some servers. The simulation result shows that the
always−on and opt schemes almost always get the same bounded-slowdown for
all the three workloads and they almost remain constant when the boot time
changes. The naive scheme changes with the boot time sharply and obtains much
worse bounded-slowdown performance than always− on/opt schemes when the
boot time is 150 seconds or larger. Even when the boot time is only 50s, there
is still considerable performance difference between the naive scheme and the
always− on/opt scheme. The n− redundant scheme, however, changes with the
boot time much more mildly, it’s performance is only slightly (5%) worse than
always− on/opt scheme’s when the boot time is less than 150s. The simulation
result encourages the server/OS manufacturers to provide servers/OS with fast
boot time, which could be used by both the n−redundant scheme and the naive
scheme to reduce the performance lost. When the boot time could be reduced
to less than 25 seconds, naive scheme becomes more favorable.

Figure 4 shows the experimental results on energy consumption of differ-
ent schemes. Because the energy consumption of different schemes change only
slightly with the boot time, we just show the data when the boot time is set
to 150 seconds. Since we don’t really experiment on real systems, we use the
aggregate active processor ∗ hour of a cluster as the metric for energy conser-
vation. It could be illustrated that the always − on scheme consumes the most
energy. The naive scheme and the opt scheme performs the best in this metric
because they almost don’t waste any energy. The n− redundant conserves more
than 40% energy than the always − on scheme. The figure also indicates that
the n − redundant scheme can conserve more than 80% of conservable energy
consumption by comparing the n − redundant scheme to the opt scheme.

6 Conclusion and Future Work

In this paper, we proposed an energy conservation scheme n − redundant for
clusters in computing centers which execute parallel tasks. It is compared with
naive schemes and optimal schemes. Experimental results demonstrated that
the n− redundant scheme is efficient in energy conservation while maintain the
performance well: it can reserve 40% energy consumption of with performance
loss around 5%.

The simulation results also shows that if servers could support fast boot time,
the energy conservation scheme could be more efficient. We are investigating the
situations when server supports several level of low power states with different
power consumption and enter/exit time.

We are integrating the n − redundant scheme with the OpenPBS cluster
scheduler now. Then it will be installed in several production clusters to test the
performance of the scheme in real workloads.

Other future work includes: In addition to calculate the number of idle nodes,
we could go one step further to determine which nodes should be turned on and
off wisely by considering the topology of the cluster. This would get two more
potential benefits: 1) By allocating neighbor nodes in clusters to parallel tasks,

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 253

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

OSC/Linux Cluster

 n-redundant
 always-on
 opt
 naive

B
ou

nd
ed

 S
lo

w
do

w
n

Boot Time(s)

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CHPC/Icebox

 n-redundant
 always-on
 opt
 naive

B
ou

nd
ed

 S
lo

w
do

w
n

Boot Time(s)

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

MHPCC/Tsunami

 n-redundant
 always-on
 opt
 naive

B
ou

nd
ed

 S
lo

w
do

w
n

Boot Time(s)

Fig. 3. Bounded-slowdown with different strategies

254 W. Chen et al.

Always-On Naive Optimal N-Reduant
0

500000

1000000

1500000

2000000

2500000

3000000

C
on

su
m

ed
 E

ne
rg

y(
P

ro
ce

ss
or

*h
ou

rs
)

OSC/Linux Cluster

Always-On Naive Optimal N-Reduant
0

500000

1000000

1500000

2000000

2500000

CHPC/Icebox

C
on

su
m

ed
 E

ne
rg

y(
P

ro
ce

ss
or

*h
ou

rs
)

Always-On Naive Optimal N-Reduant
0

50000

100000

150000

200000

MHPCC/Tsunami

C
on

su
m

ed
 E

ne
rg

y(
P

ro
ce

ss
or

*h
ou

rs
)

Fig. 4. Energy Consumed with different strategies

communication overhead of the parallel tasks could be reduced. 2) When the
nodes connected by a switch are all in power-off state, the switch itself can also
be turned-off and more energy could be conserved.

References

1. Supercluster.org: http://www.supercluster.org/research/traces/
2. Chandrakasan A. and Brodersen R.: Low-Power Digital CMOS Design. Klumer,

1995
3. Nebel W. and Mermet J., eds.: Low-Power Design in Deep Submicron Electronics,

Kluwer, 1997
4. Eui-Young, C., Luca, B., Alessandro, B., Yung-Hsiang, L. and Giovanni D.M.: Dy-

namic Power Management for Nonstationary Service Requests, IEEE Transaction
on Computers, 51(11),(2002),1345-1361

5. Pering, T., Burd, T., and Brodersen, R.: The simulation and evaluation of Dynamic
Voltage Scaling Algorithms. Proc. Int’l Symp. Low Power Electronics and Design,
pp. 76-81, Aug. 1998

6. Kirubanandan, N., Sivasubramaniam, A., Vijaykrishnan, N., Kandemir, M. and
Irwin M. J.:Memory Energy Characterization and Optimization for SPEC2000
Benchmarks, Proc. IEEE 4th Annual Workshop on Workload Characterization,
pp. 193-201, 2001

7. Delaluz, V.,Kandemir, M.,Vijaykrishnan, N., Sivasubramaniam, A. Irwin, M.J.:
DRAM Energy Management Using Software and Hardware Directed Power Mode
Control, Proc. 7th Int’l Symp. on High Performance Computer Architecture, pp.
159-170, 2001

8. Pouwelse, J., Langendoen, K. and Sips, H.: Application-Directed Voltage Scaling,
IEEE Transactions on Very Large Scale Integration Systems,11(5),(2003),812-826

9. Vijaykrshnam, N.,Kandemir, M., Irwin, M.J., Kim, H.S. and Ye, W. :Energy-driven
Integrated Hardware-Software Optimizations using SimplePower, Proc. 27th An-
nual Int’l Symp. on Computer Architecture, pp 95-106, 2000

10. Chase, J.S., Anderson D.C., Thakar, P.N., Vahdat A.M. and Doyle R.P.:Managing
Energy and Server Resources in Hosting Centers,Proc, Eighteenth ACM Symp. on
Operating systems principles, pp 103-116, 2001

11. Pinheiro, E., Bianchini, R., Carrera, E.V. and Heath T.: Load Balancing and Un-
balancing for Power and Performance in Cluster-Based Systems. Technical Report
DCS-TR-440, Department of Computer Science, Rutgers University, May 2001

A Dynamic Energy Conservation Scheme for Clusters in Computing Centers 255

12. Elnozahy, E.N., Kistler, M. and Rajamony R.: Energy-Efficient Server Clusters,
Proc. Second Workshop on Power Aware Computing Systems, 2002

13. Walfredo, C. and Francine B.: A Comprehensive Model of the Supercomputer
Workload, Proc. IEEE 4th Workshop on Workload Characterization, pp 140-148,
2001

14. Downey, A.: Using Queue Time Predictions for Processors Allocation. Proc. Job
Scheduling Strateies for Parallel Processing 1997 , LNCS 1291, Springer-Verlag,
1997

15. Feitelson D. G., Rudolph L., Schwiegelshohn U., Sevcik K.C. and Wong P.: Theory
and practice in parallel job scheduling. Proc. Job Scheduling Strateies for Parallel
Processing 1997 , LNCS 1291, Springer-Verlag, 1997

16. Choi J. H. and Franke H.: Storage Power Management for Cluster Servers Using
Remote Disk Access. Proc. Euro-Par 2004, LNCS 3149, pp. 460-467, Springer-
Verlag, 2004

17. Rajamani K. and Lefurgy C.:On Evaluating Request-Distribution Schemes for Sav-
ing Energy in Server Clusters, Proc. IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS‘03), pp111-122,March 2003.

18. Microsoft Company, Inc, Best practices for configuring and operating server
clusters, http://www.microsoft.com/technet/prodtechnol/windowsserver2003/
library/ServerHelp/2798643f-427a-4d26-b510-d7a4a4d3a95c.mspx, Jan 2005

19. Bode B., Halstead D. M., Kendall R. and Lei Z. The Portable Batch Scheduler
and the Maui Scheduler on Linux Clusteres, Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, October 10-14, 2000, Atlanta, Georgia, USA

Realization of Video Object Plane Decoder on
On-Chip Network Architecture

Huy-Nam Nguyen, Vu-Duc Ngo, and Hae-Wook Choi

System VLSI Lab Laboratory, SITI Research Center, School of Engineering,
Information and Communications University (ICU),

Yusong P.O. Box 77, Taejon 305-714, Korea
{huynam, duc75, hwchoi}@icu.ac.kr

Abstract. System-on-chip (SoC) designs provide integrated solutions
to challenging design problems in the telecommunications, multimedia,
and so on. Present and future SoC are designed using pre-existing com-
ponents which we call cores. Communication between the cores will be-
come a major bottleneck for system performance as standard hardwired
bus-based communication architectures will be inefficient in terms of
throughput, latency and power consumption. To solve this problem, a
packet switched platform that considers the delay and reliability issues
of wires so called Network-on-Chip (NoC) has been proposed. In this
paper, we present interconnected network topologies and analyze their
performances with a particular application under bandwidth constrains.
Then we compare the performances among different ways of mapping
the cores onto a Mesh NoC architecture. The comparison between Mesh
and Fat-Tree topology is also presented. These evaluations are done by
utilizing NS-2, a tool that has been widely used in the computer net-
work design.

1 Introduction

Traditionally, on-chip global communication has been addressed by shared-bus
structures and ad-hoc direct interconnection. These architectures are not scal-
able on large SoC de-signs [1]. Future SoC will contain a multitude of different
intellectual property (IP) blocks. Though sub-micron technology creates good
chances to reduce the gate delays, the global wire delays significantly increase
due to interconnect width and thickness or remain constant by including re-
peaters [2]. This matter leads to high power consumption. In order to support
the communication between these blocks in a structured way, a scalable commu-
nication architecture that supports the trend of SoC integration consists of an
on-chip packet switched network, generally known as Network-on-Chip (NoC)
[3]. By using this design approach, the need of global wire can be omitted. The
wires are now used only as the connections between switches. Also, we do not any
longer worry about global synchronization due to decoupling of the processing
nodes. Hence, Network-on-Chip designs have addressed the distinctive challenges
of providing an efficient, reliable interaction among System-on-chip components.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 256–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Realization of Video Object Plane Decoder 257

The two promising Network-on-Chip topologies are Mesh and Fat-Tree [6], [7].
Their performance evaluation with respect to physical constrains was introduced
by Petrini et al. [4]. The comparison showed clearly that the Fat-Tree topology
[5] has superior performance to that of Mesh topology.

In several application domains, such as multimedia processing, the bandwidth
requirement between the cores in SoCs is increasing. As an example of such a
media processing application, the block diagram of Video Object Plane Decoder
[8] is introduced in Fig. 1. In order to implement this VOP decoder and verify
all above mentions in terms of NoC architecture, we need to carry out the high
level NoC topology in the scenario of on chip network implementation. Choos-
ing simulation tool and defining the physical constraints for it are now at the
beginning stage. Among network simulation tools, NS-2 [9], with its capabilities
of describing network topologies, network protocol, packet scheduling schemes,
routing algorithm, and also traffic generation methods, emerges to be the suit-
able solution.

In [6] and [7], the author proposed the Mesh and Fat-Tree architectures for
NoC design. However, the performances of these architectures are not yet men-
tioned in terms of high level of topology evaluation. The mapping of cores onto
NoC architecture presents new challenges when compared to the mapping in
parallel processing because of the traffic requirements on the links of a NoC are
known for a particular application, thus the bandwidth constrains in the NoC
architecture need to be satisfied by the mapping [10]. The cores onto NoC archi-
tectures mapping problem is addressed in [10], [11]. In [11], a branch-and-bound
algorithm is used to map cores onto a mesh-based architecture satisfying the
bandwidth constraints and minimizing the total energy consumption.

ARM

stripe
memory

Inverse
scan

demux

AC / DC
prediction

Run
length

decoder

Var .
length

decoder

iQuant IDCT

padding

VOP
reconstr

VOP
memory

up
samp

70 362
362 362 357

27 49

16

353

313

94
500

300

313

16

Fig. 1. Block Diagram of Video Object Plane Decoder (VOPD)

In this paper, we take the advantage of NS-2 to simulate and verify the per-
formance of our proposed interconnection architecture for a particular NoC’s
application. Because of particular application, VOPD with the communication
bandwidth in Fig. 1, we can manually choose the mapping modes and compare
the performances among these architectures and these mapping modes as well
with the relevant bandwidth between cores.

258 H.-N. Nguyen, V.-D. Ngo, and H.-W. Choi

2 Interconnection Architectures for Realizing VOPD

2.1 Mesh Architecture

The k − ary d− dimensional Mesh architecture is built by its dimension d and
radix k. The total number of switches is kd. The kd switches are organized in an
d−dimensional grid such that there are k switches located in each dimension and
wrap-around connections. Since the number of cores (IPs)that can be connected
to one switch is d−1 so the total number of mounted cores is clearly calculated by

NMesh = kd(d − 1). (1)

Denote b as the unidirectional bandwidth, the total bandwidth of the network
can be obtained by

BMesh = 2kdb. (2)

Mesh architecture offers a simple connection scheme and the number of the
mounted IPs is relatively high compared to the total bandwidth. Therefore the
Shortest Path routing is mostly applied on Mesh but the performance of Mesh
architecture is not high. Fig. 2 shows the example of 4-ary 2-dimensional Mesh
architecture.

Resource

16

S

Resource

1 5

S

Resource

1 4

S

Resource

1 3

S

Resource

1 2

S

Resource

1 1

S

Resource

1 0

S

Resource

9

S

Resource

8

S

Resource

7

S

Resource

6

S

Resource

5

S

Resource

4

S

Resource

3

S

Resource

2

S

Resource

1

S

RNI RNI RNI RNI

RNI RNI RNI RNI

RNI RNI RNI RNI

RNI RNI RNI RNI

Fig. 2. 4-ary 2-dimensional Mesh topology

2.2 Fat-Tree Architecture

Fat-Tree is an indirect interconnection network based on a complete binary tree
that gets as thicker as it approaches the root. So The bandwidth of the Fat-
Tree increases as it goes closer to the root. A set of processors are located
at the leaves of the Fat-Tree and each edge of the tree corresponds to a bi-
directional channel between parent and child. These above feature make Fat-
Tree sufficiently applicable with advanced routing algorithm as Distance Vector

Realization of Video Object Plane Decoder 259

S

S

S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

 Fat node represented by a combination of
normal nodes

 Resource

Normal switch or node

S

Fig. 3. 4-ary 2-dimensional Fat-Tree topology

instead of Shortest Path routing. The number of cores that can be mounted on
one certain Fat-Tree depends on the depth of the tree. As this depth increases,
the number of mounted cores and therefore the total capacity of the network
raise. This leads Fat-Tree architecture have better performance compared with
Mesh architecture. With k − ary d − dimensional Fat-Tree architecture, which
is shown in Fig.3 (case of k = 4, d = 2), the number of mounted IPs and the
number of switches are respectively calculated as follow

NFat−Tree = kd, (3)

SFat−Tree = kd−1d, (4)

Therefore the total bandwidth is presented by

BFat−Tree = 2kddb. (5)

3 VOPD Implementation Based on NS-2

The network simulator, NS2, with its capabilities of describing network topolo-
gies, network protocols, routing algorithms, packet scheduling schemes, as well
as traffic generation methods, has been broadly using in the field of computer
network design and simulation. Moreover, NS2 provides also the routing strate-
gies and the basic network transmission protocols, such as UDP and TCP. By
using the built-in NS-2, we can work out above mentioned obstacles.

With increased processing speed of cores and the integration of many applica-
tions onto a single device, the bandwidth demands will scale up to much larger
values. In Video Object Plane decoder shown in Fig. 1, each block corresponds to
a core and the edges connecting the cores are labelled with bandwidth demands
of the communication between them. The bandwidth demands are hundreds of

260 H.-N. Nguyen, V.-D. Ngo, and H.-W. Choi

Table 1. Application of On chip network constraints to NS2

On chip network model Applied NS2 constraints

Connections Rs2Rt and Rt2Rs
Transmission protocols UDP

Packet size 8 bytes
Buffer size 8, 16, 32 (packets)

Queuing schemes FQ or SFQ
Routing strategy Static
Routing schemes Shortest Path
Traffic generator Exponential

Mbytes/s. There are 12 blocks (or 12 cores) need to be considered. Hence, to
implement this decoder, the 16 switches NoC architecture is needed. It is 4x4
Mesh architecture or 4 - ary 2 - dimensional Fat-Tree. In this context, we carry
out the simulation for a random mapping as well as the suboptimal mapping
of the IPs onto the NoC architectures in the sense of data rate constraint. The
communication protocol used by NS-2 is defined in Table 1.

In particular, the VOPD must be implemented as the heterogeneous NoC
architecture. Therefore, the demands of communication bandwidth originated
from each core are different. This leads us to use fair queuing schemes such
as Fair Queuing (FQ) or Stochastic Fair Queuing (SFQ) instead of Drop Tail
queuing despite of their overhead in terms of complexity. This complexity can
be compensated by using UDP protocol and static routing strategy.

4 Simulation Results and Discussion

In this paper, we simulate to compare the performances offer by the two archi-
tectures, Mesh and Fat-Tree, using the similar options of routing, queuing as

0 5 10 15 20
0

500

1000

1500

2000

2500

Time (x 0.0005 second)

A
gg

re
ga

tiv
e

T
hr

ou
gh

pu
t

FT−DV−DropTail−8
FT−Static−DropTail−8
FT−DV−SFQ−8
FT−Static−SFQ−8
Mesh−Static−DropTail−8
Mesh−Static−SFQ−8

Fig. 4. Throughput Comparison of Fat-Tree (FT) and Mesh topologies

Realization of Video Object Plane Decoder 261

well as buffer sizes to verify the better architecture which is Fat-Tree. With 4x4
Mesh and 4 - ary 2 - dimensional Fat-Tree, data rate of each resource up to
200Mbps, the simulation result is shown in Fig. 4. As we can see, the Fat-Tree
topology with the embedded routing algorithm of Distance Vector and SFQ
queuing algorithm gains highest throughput. In the stable period, this design
achieves approximately 250Mbps higher than that of Mesh architecture using
Shortest Path routing and DropTail queuing schemes [12].

With certain application that is VOPD as mentioned, we use NS-2 with the
communication protocols described in Table. 1 to simulate 12-block VOPD for
the 4x4 Mesh architecture. We compare the performances between random map-
ping and suboptimal mapping with different bisection bandwidths. At first, we
just simply map the 12 VOPD blocks randomly onto 4x4 Mesh architecture
(Fig. 5). The AC/DC prediction block is mapped onto switch 0, ARM block is
mapped onto switch 1, IDCT block is mapped onto switch 2, and so on. The
corresponding data rates (in Mbps)of the connections between each two relative

AC / DC

prediction
ARM IDCT

VOP
memory

stripe
memory

padding
run

length
decoder

iQuant

up
samp

var .
length

decoder

inverse
scan

VOP
reconstr

Fig. 5. Random Mapping of VOPD blocks onto Mesh Architecture

ARM padding
VOP

memory
VOP

reconstr

up
samp

IDCT iQuant
stripe

memory

AC / DC

prediction

inverse
scan

run
length

decoder

var .
length

decoder

Fig. 6. Suboptimal Mapping of VOPD blocks onto Mesh Architecture

262 H.-N. Nguyen, V.-D. Ngo, and H.-W. Choi

blocks were presented in Fig. 1. The simulations are done with different values
of the defined bisection bandwidth and the results indicate that with higher bi-
sectional bandwidth, the number of drop packets is smaller. This means that
aggregated throughput of each IP (block) increase. Particularly, when the 1000
Mbps bisectional bandwidth is applied to the connections between every two
adjacent switches, the throughput of each IP is saturated and is satisfy the
bandwidth requirement.

However, the saturated bisectional bandwidth above is high due to non-
optimal mapping of the IPs onto NoC architecture. This random (or non-optimal)
mapping not only results in high complexity and used area but also increases the
unnecessary usage of switches’ power. Therefore, due to the high requirement of
data transaction, the two IPs which transfer large amount of data to each others
should be allocated next to each others as shown in Fig. 6. This so called subop-

0 5 10 15 20
0

50

100

150

200

250

300

Time

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

non−optimal − 500Mbps
sub−optimal − 500Mbps
non−optimal − 800Mbps
sub−optimal − 800Mbps
non−optimal − 1000Mbps

Fig. 7. Throughput comparison of Mapping Modes with different Bisection Bandwidth

0 5 10 15 20
0

50

100

150

200

250

300

Time

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Mesh − 500Mbps
F−T − 500Mbps
Mesh − 800Mbps
F−T − 800Mbps
Mesh − 1000Mbps

Fig. 8. Throughput Comparison between Fat-Tree (F-T) and Mesh Architecture with
Different Bisection Bandwidth

Realization of Video Object Plane Decoder 263

timal mapping will decrease the load in links between switches so it will decrease
the data conflict as well as packet drop. Fig. 7 shows that with the bisectional
bandwidth of 800 Mbps we can obtain the saturated throughputs. It is signifi-
cantly better than previous non-optimal mapping with saturated bandwidth of
nearly 1 Gbps.

The last experiment is carried out to show the superior performance of Fat-
Tree architecture compare to Mesh architecture when applying them to VOPD
application. Fig. 8 depicts the throughput of the two architectures with bisec-
tional bandwidth of 500 Mbps, 800 Mbps and 1000 Mbps. It is shown that that
the Fat-Tree provides better performance in term of throughput. When the 800
Mbps bisectional bandwidth is applied to connections between every two adja-
cent switches in Fat-Tree case, the throughput of each IP also reach the saturated
point. It is the same as the case of suboptimal Mesh.

5 Conclusion

In this paper, we use NS-2 tool to simulate and carry out the high level simulation
of NoC based on Mesh and Fat-Tree topologies and achieve the best combination
for our design is Fat-Tree topology with the embedded routing algorithm of
Distance Vector and SFQ queuing algorithm. By allocating the Video Object
Plane Decoder’s blocks onto the Mesh NoC architecture and comparing the
performance of the non-optimal mapping and sub-optimal mapping we obtain a
fast mapping mode satisfying the bandwidth constraints of a Mesh NoC. With
the same mapping and the same condition, we reaffirm the superior of Fat-
tree architecture to Mesh architecture. For the time being, we just mention the
performance in term of throughput. Other parameters such as latency or area
are beyond of this paper. We will analyze them in the other works.

References

1. P. Guerrier, A. Grenier,”A generic architecture for on-chip packet-switched inter-
connection ”, Design automation and test in Europe conference, pp. 250-256, Aug.
2000.

2. M. A. Horowitz et al.,”The future of wires,” Proceeding of IEEE, Vol. 89, Issue. 4
, pp. 490-504, Apr 2001

3. L. Benini and G. De Micheli,”Networks On Chips: A new SoC paradigm,” IEEE
computer, Jan. 2002.

4. F. Petrini and M. Vanneschi, ”Network performance under Physical Constrain,”
Proceedings of International Conference on Parallel Processing, pp.34 - 43, Aug
1997.

5. C. E. Leiserson,”Fat Trees: Universal networks for hardware efficient supercomput-
ing,” IEEE Transactions on Computer, C-34, pp. 892-90,1 Oct 1985.

6. H. Kariniemi, J. Nurmi, ”New adaptive routing algorithm for extended generalized
fat trees on-chip,” Proceedings of International Symposium on System-on-Chip, pp.
113 - 118, Nov 2003.

264 H.-N. Nguyen, V.-D. Ngo, and H.-W. Choi

7. P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, ”Design of a switch for network on
chip applications,” Proceedings of the 2003 International Symposium on Circuits
and Systems, pp. V-217 - V-220 vol. 5, May 2003.

8. E. B. Van der Tol, E. G. T. Jaspers, ”Mapping of MPEG-4 Decoding on a Flexible
Architecture Platform”, SPIE 2002, pp. 1-13, Jan, 2002.

9. Ns2: www.isi.edu/nsnam/ns/.
10. S. Murali and G. De Micheli, ”Bandwidth Constrained Mapping of Cores onto NoC

Architectures,” Proc. Conf. DATE 2004.
11. J. Hu and R. Marculescu, ”Energy-Aware Mapping for Tile-Based NoC Architec-

ture under Performance Constraints,” Proc. Asia and South Pacific Design Au-
tomation Conf. 2003, pp. 233-239, Jan. 2003.

12. Yi-Ran Sun, S. Kumar, A. Jantsch, ”Simulation and Evaluation for a Network on
Chip Architecture Using NS-2,” Proceeding of 20th IEEE Norchip Conference, Nov
2002.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 265 – 274, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Network on Chip for Parallel DSP Architectures

Yuanli Jing, Xiaoya Fan, Deyuan Gao, and Jian Hu

Aviation Microelectronic Center, Northwestern Polytechnical University,
710072, Xi’an, China

jingyl2002@yahoo.com.cn

Abstract. Network-on-Chip is a new methodology of System-on-Chip design.
It can be used to improve communication performance among many computing
nodes of parallel DSP architectures. Simulations based on the 16-node 2D-mesh
DragonFly DSP architecture show that the routing distance of 72.9% inter-node
communication is 1. A fast local router is proposed to improve the performance
of this communication. Experiments on our simulator show that overall inter-
node communication delay is decreased by 59.4%.

1 Introduction

High-end and Large-scale DSP applications need more computing nodes to be inte-
grated into a chip. Advances in semiconductor technology make this trend possible.
By the end of the decade, SoCs, using 50-nm transistors operating below one volt,
will grow to 4 billion transistors running at 10 GHz, according to the International
Technology Roadmap for Semiconductors. The major challenge designers of these
systems must overcome will be to provide for functionally correct, reliable operation
of the interacting components. On-chip physical interconnections will present a limit-
ing factor for performance and, possibly, energy consumption [1].

As the feature size of process technology continues to shrink, the performance
of interconnect has not scaled as rapidly as the transistor switching speeds. Criti-
cal paths are becoming dominated by interconnection delays, especially when the
logic is spread across the chip.

A scalable communication architecture that supports the trend of SoC integration
consists of an on-chip packet-switched micro-network of interconnects, generally
known as Network-on-Chip (NoC) [1][2][3]. The scalable and modular nature of
NoCs and their support for efficient on-chip communication potentially leads to NoC-
based multiprocessor systems characterized by high structural complexity and func-
tional diversity [4].

The DragonFly is a multiprocessor system for DSP applications, based on Net-
work-on-Chip methodology. Its network is delicately designed to achieve low delay
with high channel utilization.

2 DragonFly DSP Architecture

The DragonFly DSP architecture integrates 16 DSP nodes, 8 I/O processing units
(IOP) and 8 DRAMs (Fig.1.a). These DSP nodes, IOPs and DRAMs are intercon-
nected by two-dimension mesh.

266 Y. Jing et al.

D0 D5D4D1

DSP
Core

L1
IM

L1
PM

L1
DM

Local
Router

MC0 MC1

Hybrid
Router

Network
Interface

SC

D3 D6D7D2

D12 D9D8D13

D15 D10D11D14

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

IOP IOP IOP IOP

IOP IOP IOPIOP

a b

Fig. 1. DragonFly DSP architecture (a) and DragonFly DSP node (b)

Each DSP node contains (Fig. 1b):

(1) A four-stage, in-order, single-issue, pipelined DSP core with three computing
units: ALU, MAC, shifter [5].

(2) One level-1 instruction memory (L1 IM); Two independent level-1 data memory
blocks (L1 DM, L1 PM) to support double data accesses simultaneously [5].

(3) Two memory controllers (MC) for remote memory access: MC0 for IM and
PM, MC1 for DM; One system controller (SC) for passing system control mes-
sages, such as synchronization and system interrupt.

(4) Network interface for packet buffering and translation between packet and origi-
nal message to or from MC and SC.

(5) One fast local router for only inter-neighbor routing and one slow hybrid router
for both local and remote routing.

3 Network-on-Chip Subsystem

The original DragonFly DSP node contains only a hybrid router for packet routing.
Statistical results of the simulation that statically maps 6 benchmarks to 16-node 2D-
mesh DragonFly show that average 72.9% inter-node communication is between
neighbors, that is to say, its routing distance is 1 (Table 1).

Table 1. Routing distance (h) distribution for benchmarks

 FIR FFT MM CONV ADPCM SSA
h=1 56.8% 80% 57% 65.7% 93% 85%
h>1 43.2% 20% 43% 34.3% 7% 15%

Based on this communication locality, a double-router network is proposed to im-
prove performance of inter-neighbor routing by a fast local router and the original

 Network on Chip for Parallel DSP Architectures 267

hybrid router is used for both local and remote routing. Performance analysis below
will show the improvement by this double-router network.

3.1 Performance Analysis

Agarwal’s contention model [6] for buffered, direct networks is used to evaluate per-
formance of our different NoC architectures. This model can estimate average delay
for k-ary d-cube networks, in which there is no flow control and deadlock. The aver-
age delay of n bytes packet in k-ary d-cube networks is

(, , , ,) () (, , , ,)ave ave

n
T n k d w h h W n k d w

w
ρ ρ= + ⋅ Δ + ⋅ . (1)

and

2

1 1
(, , , ,) (1)

1
ave

ave

hn
W n k d w

w dh

ρρ
ρ

−
= ⋅ ⋅ +

−
 ,

1
()

2ave

k
h d

−= . (2)

Here, w is network bandwidth; aveh is average routing distance; is channel utiliza-

tion and is router delay.
Suppose there is no flow control and deadlock in two networks and their total

bandwidth is same. The 16-node 2D-mesh network is a 4-ary 2-cube, that is to say,
4k = , 2d = . Other parameters for double-router network and single-router network

is depicted in Table 2.

Table 2. Parameters for two networks

Routers Parameters
Local router (LR) 1aveh = , 1Δ = , Lw w=

Hybrid router (HR) 4aveh = , 2Δ = , Hw w= , Hρ ρ=

Single hybrid router (SR) 3aveh = , 2Δ = , H Lw w w= + , 4

3 H
H

w

w
ρ ρ= ⋅ ⋅

The average delay of n bytes packet in local router (LR), hybrid router (HR) and

single hybrid router (SR) is LT , HT , ST .

(,) 1L L
L

n
T n w

w
= + . (3)

9
(, ,) 8

8 1
H

H H H
H H H

n n
T n w

w w

ρρ
ρ

= + + ⋅ ⋅
−

 . (4)

(, ,) 6
1S

n n
T n w

w w

ρρ
ρ

= + + ⋅
−

 . (5)

268 Y. Jing et al.

Suppose w = 12 bytes, : 1:1, 2 :1,4 :1L Hw w = and n = 6,12,24 bytes respec-

tively. According to equations (3)(4)(5), performance comparisons for different
routers are given in Table 3, Table 4 and Table 5. It can be concluded that

(1) ST increases more faster than HT as increases and LT isn’t affected by .

That is to say, single-router network is more sensitive to channel utilization
than double-router network.

(2) ST increases more faster than HT and LT as n increases. That is to say, sin-

gle-router network is more sensitive to packet size than double-router net-
work.

(3) ST is greater than HT after goes beyond certain point. That is to say, dou-

ble-router network guarantees lower delay under higher channel utilization
than single-router network.

Table 3. Packet average delay under different channel utilization () for three routers. Packet
size is 6 bytes.

ST LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1)

0.1 6.56 2 1.75 1.63 9.04 9.54 10.54
0.3 6.71 2 1.75 1.63 9.14 9.64 10.63
0.5 7 2 1.75 1.63 9.26 9.74 10.73
0.7 7.67 2 1.75 1.63 9.4 9.86 10.83
0.9 11 2 1.75 1.63 9.57 9.99 10.94

Table 4. Packet average delay under different channel utilization () for three routers. Packet
size is 12 bytes.

ST LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1)

0.1 7.11 3 2.5 2.25 10.09 11.09 13.09
0.3 7.43 3 2.5 2.25 10.29 11.27 13.27
0.5 8 3 2.5 2.25 10.52 11.48 13.46
0.7 9.33 3 2.5 2.25 10.80 11.72 13.66
0.9 16 3 2.5 2.25 11.15 11.98 13.88

Table 5. Packet average delay under different channel utilization () for three routers. Packet
size is 24 bytes.

ST LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1)

0.1 8.22 5 4 3.5 12.18 14.17 18.17
0.3 8.86 5 4 3.5 12.57 14.55 18.53
0.5 10 5 4 3.5 13.04 14.96 18.91
0.7 12.67 5 4 3.5 13.60 15.47 19.32
0.9 26 5 4 3.5 14.29 15.96 19.76

 Network on Chip for Parallel DSP Architectures 269

In Table 2, it is supposed that LR’s is half of HR’s . In fact, the router delay
 is dependent on router micro-architecture. Optimized micro-architecture will de-

crease delay of the local router greatly.

3.2 Hybrid Router Micro-architecture

The hybrid router adopts the micro-architecture of virtual-channel router proposed by
Li-Shiuan Peh [7][8] (Fig. 2). There are p input controllers, each with routing logic,
and virtual channel (vc) state and buffers for the v virtual channels per physical
channel. The architectures of the global virtual-channel allocator and switch allocator
vary with pi, po and v. The crossbar switch design is unaffected by v, and varies only
with pi, po and w.

Routing logic

Flit in

Switch allocator
(pi,po,v)

pi× po
crossbar switch

(pi,po,w) Flit out

Input controller 1..p

......State 1..v

Buffers 1..v

Virtual channel
allocator
(pi,po,v) Credits

in

....

....
....

....

....

Credits
out

.......

Output controller

Fig. 2. Canonical micro-architecture of a virtual-channel router [7]

The flow of flits through the states of routing, virtual-channel allocation, switch al-
location and switch traversal in a virtual-channel router is depicted in Fig. 3. Here,
consider a two-flit packet, a head flit followed by a tail flit, flowing through a virtual-
channel router. In the virtual-channel router, there is a separate input queue and a
separate copy of the channel state (vc state) for each virtual channel. When the head
flit of this packet arrives at the input controller of the injection channel, its virtual-
channel identifier (VCID) field is decoded and the entire flit buffered in the appropri-
ate flit queue. For instance, the packet in our example is injected into input virtual
channel 0 (vi=0) of the injection channel, and buffered accordingly into queue 0. At
this point, virtual channel 0 enters the routing state, and the destination field of the flit
is sent to the routing logic, which returns the output virtual channels {vo} (not physi-
cal channels) the packet may use. In this example, we assume the routing logic returns
{vo=e0, e1} for the eastern output port [8].

270 Y. Jing et al.

head?
flit in

virtual channel
(vc) allocation

granted?

buffer
available?

yes

yes

yes

no

no

no

routing

traversal
flit out

switch
allocation

granted?

yes
no

{vo}

vo

Fig. 3. Flow of a flit through routing, virtual channel allocation, switch allocation and switch
traversal in a virtual-channel router [8]

Upon receipt of the output virtual channels, the state for vi is set to virtual-channel
allocation. Input virtual channel vi then sends its requests for desired output virtual
channels to the global virtual-channel allocator, which collects all the requests from
each virtual channel of the input controllers and returns available output virtual chan-
nels to successful requestors. When vi is allocated an output virtual channel, say,
output virtual channel 1 (vo=e1) of the eastern port, the head flit consults the buffer
count for vo and if there is a buffer available to hold the flit, it sends requests for the
eastern output port to the global switch allocator. Instead of reserving output ports for
the entire duration of a packet, the switch allocator of a virtual-channel router allo-
cates crossbar passage to flits of different packets on a cycle-by-cycle basis. Once this
head flit secures passage through to the eastern output port, it leaves for the crossbar
switch and on to the next hop, with its VCID field overwritten with vo. The buffer
count for vo is then decremented. At the same time, a credit containing vi is returned
to the previous hop, prompting the injection channel’s buffer count for virtual channel
0 to be incremented [8].

 Network on Chip for Parallel DSP Architectures 271

When the subsequent tail flit arrives, it is put into the buffer queue of input virtual
channel 0, as its VCID field is 0. It then inherits the output virtual channel vo reserved
by its head flit, and submits a request to the global switch allocator for the eastern
output port if there are buffers available to hold it. Once it is granted crossbar passage,
it informs the virtual-channel allocator to release the reserved vo, and leaves for the
next hop, with its VCID field also updated to vo=1 [8].

3.3 Local Router Micro-architecture

The routing delay of hybrid router is high. Its static circuit delay (no load) is at least 4
cycles - routing, virtual channel allocation, switch allocation and switch traversal -
and there are three kinds of dynamic contention delay (with load), respectively for
virtual channel allocation, buffer allocation and switch allocation (Fig.2). Local router
aims at routing inter-neighbor packets of the DragonFly architecture with stable one-
cycle delay. Its micro-architecture is optimized for this target.

In local router, there are routing paths only between neighbor ports and local
port(s), without neighbor-to- neighbor paths. That is to say, the local router is dead-
lock-free because no routing loop can exist; so virtual channel is not necessary any
more for eliminating deadlock [9]. Suppose it has n neighbor ports and one local port.
The local router is partitioned into two independent routers: router A for neighbors-to-
local path and router B for local-to-neighbors path (Fig. 4).

State

Buffers
Flit in

Arbiter (n)

n:1 Multiplexer
(n,w)

Flit out

Input controller 1..n

......

Output controller

Buffers
Flit in

Output enable
(n)

Flit out

......

Credit in

Tri-state
(n,w)

....Credits out
...

....

Credits in

....

Credit out

....

....

a

b

Routing tags

Input controller Output controller

State

Fig. 4. Canonical micro-architecture of a local router. (a) Router A for n neighbor ports to 1
local port; (b) Router B for 1 local port to n neighbor ports.

272 Y. Jing et al.

head?
flit in

arbitration

granted?

buffer
available?

traversal
flit out

yes

yes

yes

no

no

no

a b

head?
flit in

routing

buffer
available?

traversal
flit out

yes

yes

no

no

Fig. 5. Flow of a flit through the router A (a) and the router B (b)

Flow of a flit through the local router is similar to that of the hybrid router. A flit in
router A goes through output arbitration and multiplexer traversal, without routing and
virtual channel allocation (Fig. 5a). A flit in router B goes through routing and tri-
state traversal, without switch allocation and virtual channel allocation (Fig.5b). The
local router becomes faster than the hybrid router by eliminating two static routing
states and one dynamic contention delay for virtual channel allocation.

The local router can support more local ports to increase parallelism of local com-
munication and decrease its routing delay further. Suppose it has n m k= ⋅ neighbor
ports and m local ports. Partition neighbor ports into m clusters and k neighbor ports
in each cluster share a different local port. If n m= , the local router becomes ex-
tremely parallel and fast, and flits in it just request the available buffers and traverse it
when granted.

4 Simulation

The simulator is our 16-node 2D-mesh DragonFly (Fig. 1). It supports two different
networks: single-router or double-router. The size of its memory subsystem is config-
urable. The simulator configuration is listed in Table 6.

Table 6. Simulator configuration

 Single-router Double-router
DSP node 16 16
L1 memory 16K*16 16K*16
DRAM 2M*8 2M*8
Channel width 64 bits 32 bits for each router

 Network on Chip for Parallel DSP Architectures 273

Table 7. Benchmarks Description

Benchmark Description
FIR Finite Impulse Response
FFT Fast Fourier Transform
MM Matrix Multiple
CONV 2D Image Convolution
ADPCM Adaptive Differential PCM Coder/Decoder
SSA Signal Spectrum Analysis

Benchmarks include four typical DSP algorithms and two complex DSP appli-
cations (Table 7). The communication locality is greatly affected by how bench-
marks are mapped. Two rules are followed:

(1) Load balance. The DragonFly architecture aims at maximizing parallelism of
DSP applications. Load balance among so many nodes is the primary rule for
mapping.

(2) Communication minimization. Map those loads with more inter-node com-
munication to closer nodes as possible as it is.

5 Conclusion and Future Work

The simulation results (Table.8) show that DRN’s average delay is 40.6% of SRN’s.
That is to say, the proposed local router decreases original network delay by 59.4%.
This result is consistent with performance comparisons depicted in Tables.3-5,
because average 72.9% inter-node communication is transferred through the fast local
router.

The DRN is introduced on the basis of 16-node 2D-mesh DragonFly DSP architec-
ture. It can be used to speed up communication in many NoC applications where
communication locality is high.

Table 8. Communication delays on 6 benchmarks for single-router network (SRN) and double-
router network (DRN)

 FIR FFT MM CONV ADPCM SSA
SRN 7200 36864 34560 8352 5964 97748
DRN 2800 16096 12840 3628 4491 37619

Area of DRN ‘s data-path is similar to that of SRN, because their overall
bandwidth is same. A little more area is needed for DRN ‘s additional control logic.
Two independent small routers of DRN may consume less power than one large
router of SRN, especially when dynamic power management (DPM) techniques are
used. Our future work will focus on area and power analysis of SRN and DRN.

274 Y. Jing et al.

References

[1] Benini. L.; De Micheli. G., “Networks on chips: a new SoC paradigm,” IEEE Computer,
Vol.35, Jan 2002, pp.70-78.

[2] Kumar, S.; Jantsch, A.; Soininen, J.-P.; Forsell, M.; Millberg, M.; Oberg, J.; Tiensyrja, K.;
Hemani, A.; “A network on chip architecture and design methodology,” VLSI on Annual
Symposium, IEEE Computer Society ISVLSI, 2002, pp.105 –112.

[3] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for Energy/Performance
Aware Mapping of Regular NoC Architectures,” Proceeding of DATE Conference. 2003,
Mar. 2003.

[4] Bertozzi, D.; Jalabert, A.; Srinivasan Murali; Tamhankar, R.; Stergiou, S.; Benini, L.; De
Micheli, G.; “NoC synthesis flow for customized domain specific multiprocessor systems-
on-chip”, IEEE Transactions on Parallel and Distributed Systems, vol.16, no.2, Feb 2005,
pp.113-129.

[5] Jing Yuanli. “DSP Processor Architectures,” MS dissertation, March, 2002.
[6] Agarwal. A. “Limits on Interconnection Network Performance,” IEEE Transactions on

Parallel and Distributed Systems, Vol.2, 1991, pp.398-412.
[7] Li-Shiuan Peh; Dally, W.J.;” A delay model for router microarchitectures,” IEEE Micro,

Vol.21, Issue 1, Jan.-Feb. 2001, pp.26-34
[8] Li-Shiuan Peh, “Flow control and micro-architectural mechanisms for extending the per-

formance of interconnection networks,” PhD dissertation, 2001, pp.76-89.
[9] Culler D.E., Singh J.P., Gupta A. “Parallel Computer Architecture: A Hardware/Software

Approach (Second Edition),” August 1998.

A New Methodology of Integrating High Level
Synthesis and Floorplan for SoC Design�

Yunfeng Wang1, Jinian Bian1, Xianlong Hong1, Liu Yang1,
Qiang Zhou1, and Qiang Wu2

1 Tsinghua University, Beijing, China 100084
{wangyf00, yliu02}@mails.tsinghua.edu.cn

{bianjn, hxl-dcs, zhouqiang}@tsinghua.edu.cn
2 Hunan University, Changsha, China 410082

wuqiang@hnu.cn

Abstract. As silicon CMOS technology is scaled into the nanometer
regime, a whole system can be integrated into one chip. At the same
time, the computer-aided design technology is challenged by two major
features: the ever-increasing design complexity of gigascale integration
and complicated physical effects inherent from the nanoscale technology.
In this paper, a new methodology of integrating High Level Synthesis
and Floorplan together is presented. The whole design flow is divided
into two phases: a fast searching space scan procedure and a detailed
solution optimize procedure. The searching space of integrating HLS and
Floorplan is first “smoothed” by a “Behavior Information based Cluster
Algorithm”, and then a fast scan of this smoothed searching space is
proceeded. The result of the first phrase will be used as the start point
of the detailed optimize procedure. The experimental result show that
the methodology is efficient.

1 Introduction

As silicon CMOS technology is scaled into the nanometer regime, a whole system
can be integrated into one chip. Also, the computer-aided design technology is
challenged by two major features: the ever-increasing design complexity of gi-
gascale integration and complicated physical effects inherent from the nanoscale
technology.

It has been presented that, for a 50M-gates design (available on CMOS tech-
nology), more than 7M lines VHDL codes are needed at RT Level [9]. This will
be a big challenge for manual design. A higher level abstraction of circuit model,
such as high level synthesis, is needed to manage this huge functional complexity.
It has been presented that High Level Synthesis can ten times reduce the number
of lines of source codes [11] [10]. High Level Synthesis, will greatly enhance the
design efficiency.

� This work is mainly supported by NSFC 90407005 and partially supported by NSFC
90207017 and NSFC 60236020.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 275–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 Y. Wang et al.

At the same time, with the proceed of manufacture technology, the feature size
of integrated circuits has been proceed into deep sub-macron level. As CMOS
technology scales down deeply, designing of devices and chips will encounter
the fundamental electrical and material limits[8]. Emerging physical problems
for design quality in nanometer technology is needed. In the nanometer regime,
interconnects has demonstrates over 70% of the total delay of a circuit, are un-
doubtedly a major factor in determining the chip performance. A manufacture-
aware design phases of EDA flow is needed to manage this deep sub-macron
physical effects.

In traditional design flow of integrated circuits, high-level synthesis does
scheduling and allocation, and then Floorplan determines the actual positions
of modules in a physical design. Since Floorplan is separated from high level
synthesis, no interconnect information can be supplied to synthesis process, and
no behavior information is left in Floorplan procedure. This communication-
less flow will cause serious problems. Because these two phases of design flow
are based on different delay estimation model, the result of high-level synthesis
may be totally wrong for floor-planning, especially in timing aspect. An effi-
cient and physically-based methodology to represent closer coupling between a
process technology and circuit/system design must be devised. The relentless
pursuit of cost reduction per function has made the interaction inevitable. Thus,
traditional assumptions for weak coupling and so called “divide and conquer”
approach no longer holds in searching for a self-consistent design solutions based
on nanometer technology[1]. To solve this problem, a co-operation between the
two phases is necessary

Several researchers has addressed the problem of integrating HLS and Floor-
plan together. J. P. Weng presented 3D algorithm in [2], which was known as the
one of the earliest research of this problem. P.Prabhakaran presented a simul-
taneous scheduling, allocation and floorplan algorithm in [7]. Recently, an algo-
rithm for unifying HLS and physical design is provided by M. Rim [6]. However,
the HLS and Floorplan are still separated in these algorithms, and the “complex-
ity explosion” problem can not be avoid. S. Tarafdar presented a data-centric
HLS and Floorplan algorithm in [4]. But the algorithm in [4] is a constructive
algorithm. As we known, most times, a simulated annealing approach may find
a better result in this kind of problems.

In this paper, a new methodology which combine High Level Synthesis and
Floorplanning together is presented. The main idea of the methodology is to
combine the High Level Synthesis phase and Floorplanning phase into one phase,
which do scheduling, allocation and floorplanning at same time, in order to
provide a self-consistent design solution.

However, because High Level Synthesis and Floorplan are both NP-HARD
problems, the simple combination of this two phrases will cause a “complex-
ity explosion”. To solve this problem, the whole flow of this new methodology is
divided into two phrases: a fast scan of a “smoothed” searching space of integrat-
ing HLS and Floorplan, and a detailed optimization phrase. In the first phrase,
the searching space is first smoothed by a behavior information based cluster

A New Methodology of Integrating HLS and Floorplan for SoC Design 277

algorithm, and then a fast scan of this “smoothed” searching space is proceeded.
And then, a rather detailed High Level Synthesis and Floorplan phrase is used
to search an optimized solution on the original searching space.

The paper is organized as following: in section 2, the problem formulation and
the representation of the solution is presented; in section 3, the first phrase of the
methodology is introduced in detail, including the behavior information based
functional units cluster algorithm; in section 4, the detail optimize algorithm is
described; the experimental result and the conclusion is given out in the last
section.

2 Problem Formulation and Representation of the
Solution

2.1 Problem Formulation

The inputs to our approach are a CDFG(Control Data Flow Graph)[5] and
resource constraints. The total delay of the circuit can be calculated by following
equation:

D = d × s (1)

where D is the total delay of the circuit, d is the delay of each control step, s is
the number of control steps. d is calculated as following:

d = max{di}; i = 1, 2, . . . (2)

where di is the delay of the ith control step. di can be calculated as following:

di = max df + dw (3)

where df is the delay of one active functional unit in the ith control step, and
dw is the delay of corresponding interconnect wires. dw can be calculated as
following:

dw =
R · C

2
R = r · l
C = c · l

(4)

where r is the unit-resistance of interconnect wires, and c is the unit-capacitance
of interconnect wires. l is the length of each interconnect wire.

The target of our approach is to optimize D in equation 1 under resource
constraints.

2.2 Representation of the Solution

A two-dimension grid is used to present the result of scheduling and allocation,
as shown in Figure 1, which was first presented in [3]. The rows of the grid

278 Y. Wang et al.

a b

A

B
A

4

3

2

1

4

3

2

1

B B
A

Fig. 1. Using Two Dimension Grid to Represent the Result of High Level Synthesis

stand for control-steps of scheduling; while the columns stand for the functional
units to be used in the circuit. The result of scheduling and allocation can be
considered as the placement of the two-dimension grid.

As shown as in Figure 1 (a), operation B is placed in row 2 and column 2,
means that operation B is scheduled to control step 2 and allocated to functional
unit 2. When operation B is moved into row 2 and column 1, as shown in figure
1 (b), means the operation B is re-allocated to functional unit 1.

A Corner Block List (CBL) representation is used to represent the result of
Floorplan. CBL use 3 strings (S, L, T) to represent the result of Floorplan. A
typical CBL is shown as Figure 2.

e

c g

d

f

a

b

Corner Block List:
S=(fcegbad)
L=(001100)
T=(0 0 10 10 0 10)

Fig. 2. Use CBL to represent the result of Floorplan

CBL representation is a topology based non-slicing Floorplan representation
method. The detailed information about CBL is presented in [12].

3 Fast Scanning on a Smoothed Searching Space

3.1 Basic Process of the First Phrase

A simulated annealing approach is used in this “fast searching space scan”
phrase. For each iteration of simulated annealing approach, a new solution of
High Level Synthesis is retrieved. And then, a behavior information based func-
tional unit clustering algorithm is used to cluster functional units into several
groups. The functional units which are clustered into one group will be con-
sidered as a single “big” functional unit in Floorplan process. This will highly

A New Methodology of Integrating HLS and Floorplan for SoC Design 279

reduce the computational complexity of Floorplan, and the original searching
space is also smoothed by this clustering process. The whole flow of this first
phrase can be illustrated as Figure 3.

Obtain a new HLS solution

Calculate interconnect weight Matrix

Functional Unit Pre-Cluster

Floorplan based on the clustered
functional units

Solution Evaluatioin

Finished

To Detailed
Optimization

Fig. 3. Optimization Procedure in the First Phrase

As shown in Figure 3, any time a new HLS solution is obtained, a functional
unit clustering process will be used to cluster functional units before Floorplan.
This functional unit clustering procedure will highly reduce the complexity of
Floorplan. Also, this procedure will reduce the accurateness of interconnect infor-
mation, but it’s not fatal in this phrase. The interconnect information between
clustered functional units is enough for such a fast scan. A detailed optimize
procedure will be proceeded based on the result of this phrase.

In the first phrase of our methodology, the new solution of HLS is retrieved
by following actions:

– Reschedule an operation to a valid control step
– Reallocate an operation to an currently empty functional unit
– Reallocate two operations by exchange their functional units

These actions will be selected randomly to be proceeded in each iteration.

3.2 Behavior Information Based Functional Unit Clustering

The functional unit clustering algorithm is based on the weight of each intercon-
nect wire. In traditional design flow, the behavior information is lost in Floorplan

280 Y. Wang et al.

phrase. Interconnect optimization in Floorplan can only base on the physical
weight of each interconnect wire. A new algorithm is presented in this section.
This algorithm calculates the weight of interconnect wires based on behavior
information.

An interconnect weight matrix M is used to proceed functional unit clustering.
For convenience, let’s assume that the number of functional units is n, and
assume that the number of operations in CDFG is m.Then, the interconnect
weight matrix will be a n × n matrix, as shown in equation 5.

M = |ai,j |; i ∈ [1, n], j ∈ [1, n] (5)

where ai,j means the interconnect weight between functional unit i and func-
tional unit j. Registers are considered as a special kind of functional unit too.
The value of ai,j can be calculate by equation 6

ai,j =
∑

k

WOk · Wok,i · Wol,j · Wok,ol
; k ∈ [1, m], l ∈ [1, m] (6)

where m is the number of operations in CDFG. Wok,i will be 1 if the kth operation
is allocated to functional unit i, 0 if not. Wol,j will be 1 if the lth operation is
allocated to functional unit j, 0 if not. Wok,ol

will be 1 if there is a direct data
flow between the kth operation and the lth operation (storing variables into
register is considered a special operation), other wise 0. WOk can be calculated
by equation 7.

WOk =
Dcs

Dcs − Do
(7)

In equation 7, Dcs means the delay of a control step, and Do is the functional
unit delay of this operation.

As shown in Figure 4 (a), operation A and operation B are both allocated
to functional unit FU1, and their outputs are both stored in register Reg1. It

Reg

A

B

Reg
1ns

2ns

10ns

11ns

Reg1 Reg2 FU1 FU2

Delay of Operation A on Functional Unit 1 = 0.8ns

Delay of Operation B on Functional Unit 1 = 0.7ns

Delay of Each Control Step = 1ns

WFU1,Reg1 = 1/(1-0.8) + 1/(1-0.7) = 8.33

(a) (b)

Fig. 4. Interconnect Weight between Two Functional Units

A New Methodology of Integrating HLS and Floorplan for SoC Design 281

easy to know that there will be only one group of interconnect wires between
functional unit FU1 and register Reg1 in physical design. The weight of this
interconnect, WFU1,Reg1, will be calculated as Figure 4 (b). This weight not
only represents the density of physical interconnects between two functional
units, but also represents the density of behavior interconnects between two
functional units.

For each time a new HLS solution is obtained, this matrix will be calculated.
The sum of each line of this matrix is calculated also. The functional unit with the
maximum value-sum will be considered the most “heavy traffic” functional unit.
This functional unit and all its neighbor functional units (who has interconnects
with this functional unit) will be clustered together. The weight between these
functional units will be updated to 0, and then another functional unit cluster
is calculated by the same algorithm until there is no functional unit left.

As we described above, for each iteration of the simulated annealing algo-
rithm: 1) a new HLS solution is obtained; 2) the interconnect weight matrix is
calculated, and functional unit clustering is then proceeded; 3) Floorplan based
on clustered functional units. The cost will be evaluated based on this Floorplan
result. When the simulated annealing algorithm is finished, a detailed optimiza-
tion process is proceeded.

4 Detail Optimization

When the first phrase is finished, an initial result of High Level Synthesis and
Floorplan is obtained. This result includes a two-dimension grid described in
section 2.2, and a initial Floorplan. A detail optimization procedure is then
proceeded based on this result. Because the initial Floorplan is based on pre-
clustered functional units, it will be unwrapped firstly. A simulated annealing
approach is used to proceed this detail optimization procedure. For each iter-
ation of simulated annealing algorithm, a new High Level Synthesis result is
firstly retrieved based on the floorplan information, and then a new floorplan
is obtained if necessary. Because the searching space of this phrase has been
constrained in a relative “small” scale, the floorplan according to this new High
Level Synthesis result will not change too much. An incremental Floorplan is
used to retrieve the new floorplan result. The design flow of the second phrase
can be shown as Figure 5.

A heuristic algorithm is used to get a new High Level Synthesis result based
on the floorplan information. The basic idea of this algorithm can be shown as
Figure 6.

The initial result of synthesis is shown as Figure 6 (a), and the result of
floorplan based on this result is shown as Figure 6 (f). From Figure 6 (f), it
is found that operation A is allocated to functional unit f2, which is too far
from reg4 to satisfy the delay constraint. It is also found that f3 is just the
very position for operation A. The following action will be taken to optimize the
solution: 1) The operation allocated to f3 (operation C in this case) will be taken
out of the grid. Then, operation A is re-allocated to f3, as shown in Figure 6 (b).

282 Y. Wang et al.

Initial Solution

Generate A New Solution of HLS

Unwrap Pre-Clustered Functional Units

Incremental Floorplan

Need Floorplan?

Final Result

Yes

No

Fig. 5. Detailed Optimization

A B A B A B

f2

(a) original solution of
synthesis

(b) take C out of the table and
reallocate A

(c) reschedule C

(f) Result of Floorplanning

reg4

C

C

reg1

f3

A B

C

A B

C

C

(d) disturb the grid under
constraint

(e) reallocate C

Fig. 6. High Level Synthesis Optimization Based on Floorplan Information

This action can be repeated several times to find a better solution. 2) Operation
C is allocated to another functional unit. If it is possible to allow operation C
to execute in more control steps, then re-schedule it, as shown in Figure 6 (c).
3) Disturb the grid under constraints by rescheduling some operations under

A New Methodology of Integrating HLS and Floorplan for SoC Design 283

constraints, as shown in Figure 6 (d). 4) Repeat these procedures to find a
better solution.

The basic idea and the entire searching procedure has been described above.
In detail, a virtual force-balance algorithm is used to obtain a new High Level
Synthesis result.

For each operation O in the grid, the local path set S of this operation can
be defined as following:

S =< f × R >

R = {r1, r2, . . .}
(8)

where f is the functional unit where operation O is allocated. R is the set of
registers which has direct data flow with operation O, as shown in Figure 7.

A

B

C

r

r

r

f

local path set of
operation B

Fig. 7. Local Path Set

For each operation O in the grid, assume that the operation is allocated to
functional unit f . A virtual force acted on the operation O is calculated by
following equation:

Fo =
∑

i

Fo,ri (9)

where Fo,ri is the force caused by the ith register in the “local path set” of
operation O.

Fo,ri = Pri − Pf (10)

where Pf is the position of functional unit f , Pri is the position of the ith
register in the local path set of operation O. In this case, the best position for
operation op on a chip is the functional unit where the virtual force acted on O
is minimized.

While the best situation of the circuit is that all its operations are on their
best position or nearly best position. According to the grid representation, the

284 Y. Wang et al.

For each control step (cstep) in grid {
For each kind of operation begin in this cstep {

Select an operation O of this kind of operation which begin
execute in this cstep randomly.

Set the iterative count to be zero.
Calculate the best column for O in this cstep.
Take O out of the grid.
While (count is less than max-count and

the best column of O is not empty in this cstep)
if (the best column in this cstep is locked by an operation O′) {

Calculate the next best column for O in this cstep.
} else {

Take O′ out of the grid.
Put O into the best column in this cstep.
Set O = O′.
Calculate the best column of O in this cstep.
count ++

}
}
if (the best column of O in this cstep is not empty) {

Calculate the best empty column for O in this cstep.
Put O into the best column in this cstep

}
}

Fig. 8. Reallocation/Rescheduling Algorithm based on Floorplan

best column for operation O in a grid is the column represents the best functional
unit for O on the chip. The re-allocation algorithm is described as Figure 8.

The re-allocation procedure was called alternatively to find a good solution. If
a better result is not found in finite iterations, one operation will be re-scheduled,
or an additional functional unit resource will be added. No matter new resources
are added or not, an incremental Floorplan procedure will be called when a new
High Level Synthesis result is retrieved.

As we can see from the description above, this new HLS solution will not
change the original searching space of Floorplan too much. An incremental Floor-
plan will find a stable Floorplan result rapidly.

5 Experimental Result and Conclusion

The methodology is implemented and tested by C++, on Sun Sparc, Solaris.
The value of unit-resistance and unit-capacitance is presented in table 1. Table 2
presents the experimental result under 250nm technology, and Table 3 presents
the experimental result under 160nm technology. Table 2 and Table 3 have a
same structure. column 1 presents the example name, column 2 presents the
final number of control step of each circuit. column 3 gives out the used area

A New Methodology of Integrating HLS and Floorplan for SoC Design 285

ratio of the chip. The original delay of each control step and optimized delay of
each control step is presented in column 4 and column 5.

The experimental result shows that the performance of the final circuit can
be optimized 24% at most under 160ns technology.

Table 1. Parameter List

Description Value
r Wire resistance per unit length (ω/ m) 0.075
c Wire capacitance per unit length (fF/ m) 0.118

Table 2. Experimental Result under 250nm Technology

Sample Name No. of CS Area Ratio Orig. Delay of each CS Opt. Delay of each CS Opt. Ratio
fir11 14 95.63% 3.4 2.7 79.41%
iir7 18 93.75% 2.4 2.0 83.33%

ellipf 17 91.21% 2.7 2.2 81.48%

Table 3. Experimental Result under 160nm Technology

Sample Name No. of CS Area Ratio Orig. Delay of each CS Opt. Delay of each CS Opt. Ratio
fir11 14 95.63% 1.7 1.3 76.47%
iir7 18 94.47% 1.9 1.6 84.21%

ellipf 17 94.62% 2.5 1.9 76%

We can draw a conclusion from the experimental result: in this paper, a new
methodology (including its supporting algorithms) is presented to integrate HLS
and Floorplan together; and the experimental result show that the methodology
is efficient.

The detailed algorithms of functional unit clustering based on behavior infor-
mation and the algorithm of the detailed optimization algorithm is also provided
in this paper, in order to support the methodology. However, the basic idea of
this methodology is the most important contribution of this paper. In traditional
methodology of EDA, the computational complexity is too high to find a good
result by simultaneously optimization of HLS and Floorplan. The motivation of
the first phrase of this methodology is to reduce the complexity of integrating
HLS and Floorplan, and avoid uncomplete search of the solution space. A be-
havior information based functional unit cluster algorithm is used to smooth the
searching space.

The main contributions of this paper are: 1) provides a new methodology
to integrate HLS and Floorplan together; 2) provides a behavior information
based functional unit cluster algorithm; 3) provides a detailed optimization al-
gorithm. The algorithms and the methodology are tested by examples, and the
experimental result show that the methodology is efficient.

286 Y. Wang et al.

References

1. Jeong-Taek Kong, CAD for Nanometer Silicon Design Challenges and Success
IEEE Transactions on Very Large Scale Integration(VLSI) Systems, Vol. 12, No.
11, November 2004

2. J.P.Weng and A.C.Parker, 3D Scheduling: High Level Synthesis with Floorplanning
28th ACM/IEEE Design Automation Conference, pp. 668-673, 1991.

3. H. Jang and Barry M. Pangrle, A Grid-Based Approach for Connectivity Binding
with Geometric Costs ICCAD-93, pp. 94-99, 1993.

4. S.Tarafdar, M.Leeser et al., A Data-Centric Approach to High-Level Synthesis,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol.19, No.11, November 2000

5. Qiang Wu, Yunfeng Wang, Jinian Bian, Weimin Wu and Hongxi Xue, A Hier-
archical CDFG as Intermediate Representation for Hardware/Software Codesign,
Proceeding of ICCCAS’02, Chengdu, China, 2002.

6. William E. Dougherty and Donald E. Thomas, Unifying Behavior Synthesis and
Physical Design Design Automation Conference, 2000. Proceedings 2000. 37th ,
June 5-9, 2000 pp. 756 - 761

7. P.Prabhakaran and P.Banerjee, Simultaneous Scheduling, Binding and Floorplan-
ning in High-level synthesis, Proceedings of the IEEE International Conference on
VLSI Design, pp. 428-434, 1998.

8. The International Technology Roadmap for Semiconductor, 2003
9. R. Goering, Panelists ponder why U.S. lags in ESL design, EE Times, Feb. 17,

2005
10. K. Wakabayashi, C-based behavioral synthesis and verification analysis on indus-

trial design examples, Proceedings of the Asian and South Pacific Design Automa-
tion Conference, pp. 344-348, Jan. 2004.

11. K. Wakabayashi and T.Okamoto, C-based SoC design flow and EDA tools: an ASIC
and system vendor perspective, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 19(12), pp.1507-1522, Dec. 2000.

12. Hong Xianlong, Huang Gang et al., Corner Block List: An Effective and Efficient
Topological Representation of Non-slicing Floorplan, Proceeding of ICCAD 2000,
pp. 8-12

Designing On-Chip Network Based on Optimal
Latency Criteria

Vu-Duc Ngo, Huy-Nam Nguyen, and Hae-Wook Choi

System VLSI Lab Laboratory, SITI Research Center, School of Engineering,
Information and Communications University (ICU),

Yusong P.O. Box 77, Taejon 305-714, Korea
{duc75, huynam, hwchoi}@icu.ac.kr

Abstract. A new chip design paradigm, so called Network on Chip, has
been introduced based on the demand of integration of many heteroge-
neous semiconductor intellectual property (IP) blocks. The Network on
Chip design not only requires the good performance but also the min-
imization of several physical constraints such as the network latency,
the used area as well as the power consumption of design. This paper
analyzes the average latency of heterogeneous Network on Chip archi-
tectures in which the shortest path routing algorithm is applied. This
average latency includes the queuing latency and the wire latency, and
is calculated for general cases of allocating IPs onto the fixed generic
switching architectures such as 2-D Mesh and Fat-Tree. With different
allocation schemes of IPs, the network has different average latencies.
Hence, this article presents an optimal search that adopts the Branch
and Bound algorithm to find out the optimal mapping scheme to achieve
the minimal network latency. This algorithm automatically map the de-
sired IPs onto the target Network on Chip architecture with the criteria
of lowest network latency. Some experiments of On Chip Multiprocessor
Network application are simulated. The results show that the network
latency is significantly saved with the optimized allocation scheme for the
several cases of generic architectures of On Chip Multiprocessor Network
application.

1 Introduction

The idea of designing a mass integration of System on Chip (SoC) IPs such
as processors, DSPs, as well as memory array was proposed in [1], so called
Network on Chip (NoC). This new design methodology allows us overcome the
hardest problem of SoC design which is the non-scalable global wires that used
to connect all the IPs. This complex system of wires, the main factor that leads
to the propagation delay exceeding the system’s clock period [5], is replaced
by the packet based switching core and the communication protocols which are
defined on it. The packet based interconnection network allows us flexibly choose
the network architectures, network protocols, etc. Obviously, these merits lead
to the improvement of the system’s performance as well as modularity.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 287–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

The NoC, somewhat, resembles the parallel computer network. From the view
point of the parallel computer network, Agrawal [2] analyzed the limit of the in-
terconnection network in terms of the network latency. However, in this context,
the author strictly assumed that the network is homogenous. The work showed
the relation between the network performance and the variation of the required
bandwidth as well as the latency. Recently, the authors in [6, 7, 8] had different
approaches for the NoC design. They proposed the algorithms to automatically
map IPs onto the target NoC architecture so as to optimize the power consump-
tion. These papers used the same energy model for the power consumption, the
energies of one bit data consumed by switches and wires were assumed to be
constant. However, from our knowledge, these mentioned energies depend much
on the processing capability of switch and the flying time on wire [4, 12], re-
spectively. Due to the fact that the NoC architecture is totally heterogeneous in
terms of the differences in switch capabilities and wire connections, the desired
IPs are naturally different from one to the others such as DSP, RAM, USB, and
processor, etc. These lead us to model the latencies on the switches and wires to
calculate the network latency and then to optimize it by the optimal mapping
scheme of IPs onto the target NoC architecture.

For most of the applications, the satisfaction of the latency is one of the most
important factors that need to be strongly considered. In other words, it must
be extremely tight. Recently, an On Chip Multiprocessor Networks (OCMN) is
proposed by Ye et al. [3]. This application is expected to be mostly suitable for
NoC design due to its requirements of high computation and connectivity as
well. In this paper, we do analysis on the issue of NoC latency with different
generic architectures. Because the fact is that the longer the packet is travelling
around network in the single chip the more power is consumed. Consequently, the
fundamental issue that needs to be solved is: Which switching core should each
IP core be mounted to in order to minimize the network latency. To do so, we
first derive the closed form equation of the network latency including queuing
and wire latencies for the case of random mapping of IPs onto a pre-selected
NoC architecture to which the shortest path routing algorithm is applied. The
latencies of these random mappings would be varied due to the following realities:

– The routing table of applied routing algorithm would be changed in accor-
dance with the change of mapping IPs onto pre-selected NoC architecture.

– The queuing and wire latencies would be changed in accordance with the
content of the routing table.

We then utilize the optimal search algorithm, so called the Branch and Bound
algorithm, to automatically map the desired IPs onto the NoC architecture along
with guaranteeing that the network latency is minimized. The novelty of our
work in this paper can be summarized as follows:

– We design the NoC with the minimum network latency criteria with the IPs
being allocated automatically onto a pre-selected architecture as the outcome
of an optimal search

– The generic NoC architecture is considered in our latency derivation as well
as optimization.

Designing On-Chip Network Based on Optimal Latency Criteria 289

The rest of this article is organized as follows. The model of the NoC architecture
and its queuing as well as wire latency are analyzed in Section 2. The Branch
and Bound algorithm and the optimization of the latency constraint of the On
Chip Multiprocessor Networks application are introduced in Section 3. Finally,
we conclude our contribution and mention about our future work in Section 4.

2 Analysis of the On-Chip Network Latency

The network latency is composed by two components, queuing latency and wire
latency. The queueing latency stands for the latency that occurs inside the net-
work node (a combination of one switch and one mounted IP). While, the wire
latency presents the latency occurs along the wires that connect every two neigh-
bor switches. In this section, we analyze the mentioned latencies one by one.

2.1 Queuing Latency

Let us define the network node to be a combination of one switch and one
mounted IP as illustrated in Fig.1. This subsection derives the queuing latency
of the network. First, let us define the network node as M/M/1 model. The
average number of packets at the simple network node shown by Fig.1, Np, is
presented by

Np =
λ

μ − λ
, (1)

where λ denotes the arrival rate of the packet to the switch, while μ represents
the mean of the processing time of the network node. Applying the Little theorem
for this simple network node, the queuing latency is obtained by

TQueue =
Np

λ
=

1
μ − λ

. (2)

In this context, we consider a real complex network case depicted in the Fig. 2.
Without loosing generality, we can define the set Cj as the set of the incoming

IP Core
Switching

Core Server

Single Network
Node

Buffer

Packets arrive

Fig. 1. Single network node and queuing model

290 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

Node
p

Node j

Node i
Node

q

lamda j

lamda 2

lamda i

Fig. 2. Complex network model

routes of the jth network node. For an ith individual route that belongs to Cj, the
average number of packets is N i

p = λiTi. Since the routes are i.i.d, we apply the
Little theorem to calculate the complex network node as the following equation

T j
Queue =

∑
i∈Cj

λiTi∑
i∈Cj

λi
=

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
. (3)

Here we should note that the set Cj includes the jth route which stands for the
route where the data from the jth IP is generated toward the jth switch, the λi is
the corresponding arrival rate of ith routes, and μj is the mean of the processing
time of the jth network node. The route latency is considered as the sum of the
latency of several given nodes that belong to this route.
Thus, the latency of ith route (Ri) is

T Ri

Queue =
∑

j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
× δij , (4)

where

δij =
{

1, ifjthnode ∈ Ri,
0, otherwise.

(5)

For certain mapping scheme of the pre-connected IPs onto a pre-selected NoC
architecture, the routing table will be determined accordingly to the used routing
algorithm (with an given application, the connections between IPs are predeter-
mined). By the known routing table, the network latency in terms of the queuing
latency is simply calculated.

2.2 Wire Latency

The wire latency, so called time-of-flight, basically implies the on-chip intercon-
nection latency. It is calculated based on how electrically it is modelled and

Designing On-Chip Network Based on Optimal Latency Criteria 291

designed. From [4], the on-chip interconnection can be modelled by RC, or RLC
models. The power dissipation increases analogously with the time-of-flight of
the signal. Among these mentioned models, the most popular one that we apply
in this article is RLC described by Fig.3. The wire latency of RLC model, or the
time of flight of signal through the interconnection, is represented by

loadC

x

Wx 0W
Driver

Fig. 3. General tapped RLC line model

TWire =
√

LlineCline, (6)

where Lline and Cline are the interconnection inductance and capacitance, re-
spectively. However, the values of interconnection inductance and capacitance
are depended on the physical shape of the designed interconnection. In terms of
the interconnection width, they are calculated as follow

Lline =
L0

W (x)
; Cline = C0W (x) + Cf , (7)

where L0 is the wire inductance per area unit, C0 is the wire capacitance per
area unit, Cf is the fringing capacitance per unit of length, and W (x) denotes
the line width as the function of x. For a given shape function W (x), the wire
latency of an interconnection that used to connect the two neighbor switches
finally is

TWire =

√∫ l

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx, (8)

where l is the wire’s length. Hence, it is clearly seen that the different lengths of
wires result in different values of wire latencies.
To find out the optimum shape function W (x) that minimize the wire delay
with the given value of l, we differentiate the right hand side of (8) and set the
differentiated equation to be 0 then solve it. The relation of W (x) with the other
parameters consequently is obtained as follows

W (x) = W0e
2L0C0

c x, (9)

292 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

where c= 2Cf L0l
W0

. Therefore, we can conclude that the optimum shape function
of the RLC interconnection model must follow the general exponential function.
The above discussion shows how to calculate the wire latency of signal flying over
one hop (one hop is defined as the interconnection that connects two neighbor
switches). The route latency in terms of wire latency is calculated as the sum
the wire latencies over all the hops that belong to the mentioned route.

Thus,

T Ri

Wire =
∑

j

√∫ lj

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δij (10)

where T Ri

Wire is the ith route latency, and

δij =
{

1, ifjthwire ∈ Ri,
0, otherwise.

(11)

Consequently, the wire latency of the entire network is the sum of the wire
latencies of all the routes that belong to the routing table.

2.3 Network Latency

This subsection finalizes the equations that are used to calculate the network
latency. In the previous subsections, we already obtained individually the closed
form formulas of the queuing latency and the wire latency for one given route.

Based on the the predetermined connection between IPs and the shortest
path routing table of a certain mapping scheme of IPs onto the NoC architecture
considered in this article, the network latency in terms of the wire and queuing
latencies is calculated by

TNet =
m∑

i=1

[
T Ri

Wire + T Ri

Queue

]
, (12)

where m is the fixed number of routes belonging to the routing table.
Finally,

TNet =
m∑

k=1

[∑
j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
δkj

]
+

m∑
k=1[∑

n

√∫ ln

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δkn

]
, (13)

where the δkj and δkn are equal to 1 if the jth node and the nth wire belong
to the kth route, respectively, otherwise they are equal to 0. Straightforwardly,
TNet is the function of mapping IPs onto NoC architecture due to the fact
that the mapping scheme changes the given route between the 2 certain IPs
changes accordingly. It follows that the network nodes and the wires belonging

Designing On-Chip Network Based on Optimal Latency Criteria 293

to this route are different compared to those of the other mapping schemes.
Finding the minimum value of the cost function TNet returns the NP − hard
problem. To solve it, this article utilizes the Branch and Bound algorithm for
the latency metric. This algorithm automatically maps the IPs onto the target
NoC architecture to obtain the minimum latency.

3 Optimal Mapping Based on Minimum Latency Criteria

As discussed in the previous sections, the latency of the NoC depends very
much on how the mapping scheme of the IPs onto the fixed NoC architecture
is established. Simply described, for certain application, we identify that onto
which switch should IP be mapped so that the of network latency is minimized
under the assumption of the shortest routing algorithm is applied. To do so, we
have some definitions as follows:

Definition 1. An IPs Implementation Graph (IIG) G = G(V, λ) is a directed
graph where

– Each vertex vi represents a certain IP.
– Each directed arc λij represents the arrival rate of the data packets generated

from the ith IP toward jth IP.

Definition 2. An Switching Architecture Graph (SAG) G′ = G(U, R) is a di-
rected graph where

– Each vertex ui presents a certain switch core, the corresponding μj denotes
its switch’s mean of processing time.

– Each directed arc rij represents the route from ui to uj in the routing table.

Now we can state our mapping problem as follows:
Given an IIP and a SAG graphs that satisfy

Size(IIG) ≤ Size(SAG), (14)

and after mapping, the arc T (rij), as the cost function, denotes the route latency
that calculated by the summation of the RHS of the equations (4) and (10). The
Size() function denotes the number of vertexes on the graph. The shortest path
routing is applied in this context and the cost function of found path is the
accumulated latency after every hop.

Find a mapping scheme map() from IIP onto ASG which:

min
{
TNet =

∑
rij∈RT

T (rij)
}
, (15)

where RT denotes the routing table, or

min

{
TNet =

m∑
k=1

[∑
j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
δkj

]
+

m∑
k=1[∑

n

√∫ ln

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δkn

]}
, (16)

294 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

such that: ⎧⎨
⎩

map(vi) = uj ,
∀vi ∈ V, ∃uj ∈ U,
∀vi �= vj , map(vi) �= map(vj).

(17)

Without loosing generality, we assume that Size(IIG) = p ≤ Size(SAG) = q.
The example of mapping of 11 IPs onto the 4× 4 Mesh architecture is shown in
Fig. 4.

V4/U1 V2 /U2 V6/U3 U4

V3/U5 V5 /U6 V8/U7 U8

V1/U9 V7U10 U11 U12

V10/
U13 V9/ U14 U15 U16

Core IP
V4

Router
U1

V4/U1 V2 /U2 V6/U3 U4

V3/U5 V5 /U6 V8/U7 U8

V1/U9 V7U10 U11 U12

V10/
U13 V9/ U14 U15 U16

Core IP
V4

Switch
U1

V6 V2

V8
V4

V1
V10

V3

V7

V 9

V5

V6 V2

V8
V4

V1
V10

V3

V7

V 9

V5

Core IPs graph (IIP)

NoC architecture graph
(SGA)

How do we map to achieve
the minimum latency ?

Mapping result: An
example

Fig. 4. A mapping example

Since the number of ways of choosing p switches among q switches of the
target NoC architecture for p IPs is Cp

q , and also we can have p! permutational
cases of p given IPs. It follows that if we apply the simple Min-Max algorithm to
find out the minimum network latency accordingly with the optimum mapping
scheme, the complexity can be measured by

Complexity = O
(
p! × Cp

q

)
. (18)

This order of complexity returns the NP-hard search. In order to reduce the
complexity while working out the automatically optimal mapping as well as the
minimum network latency, we apply the wellknown search algorithm, so called
Branch and Bound (BnB) [10]. The adding, removing and sorting path opera-
tions of BnB algorithm for figuring out the optimal path (equivalent to finding
out the optimal mapping) of this mentioned case are based on the accumulated
latency at each network node. The BnB algorithm is shortly presented by the
piece of random code depicted in Fig. 5. The Optimum mapping cost is the min-
imum latency metric and the new path’s cost is the accumulated latency of one
route. This route must belong to the shortest path routing table. The optimal
mapping’s latencies of Mesh and Fat-Tree architectures of OCMN in terms of
topology sizes are respectively depicted in Fig. 6 and Fig. 7.

Designing On-Chip Network Based on Optimal Latency Criteria 295

Sort the IPs by their arrival rates
Optimum_mapping_cost = + infinity
1. QUEUE <-- path only containing the root_node;

2. WHILE (QUEUE is not empty
AND first path does not reach goal

(Optimum_mapping_cost)) {
 For each unoccupied switche node {

create new_path (to a children node);

allocate routing paths (with respect to shortest
path routing table);

calculate the accumulated cost as the
accumulation of network node latency;
if (new path's cost < Optimum_mapping_cost){

Optimum_mapping_cost = new_path's
cost;

Optimum_mapping = new-path; }
 add the new_path to the QUEUE;
 }

3. IF Optimum_mapping_cost reached
THEN success;
ELSE failure;

Fig. 5. The BnB algorithm

8 10 12 14 16 18 20 22 24 26
200

250

300

350

400

450

500

550

600

Topology size

O
pt

im
al

 n
et

w
or

k
la

te
nc

y
(m

ic
ro

 s
ec

on
d)

Mesh architecture: Latency vs. Topology size

Fig. 6. Optimal network latency of Mesh architecture

296 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

5 10 15 20 25 30 35
100

200

300

400

500

600

700

800

Topology size

O
pt

im
al

 n
et

w
or

k
la

te
nc

y
(m

ic
ro

 s
ec

on
d)

Fat−Tree architecture: Latency vs topology size

Fig. 7. Optimal network latency of Fat-Tree architecture

Table 1. Mesh architecture of OCMN

Architecture RM Latency BnB latency Latency saved

3 × 3 Mesh 374μs 237.5μs 36.5%
4 × 4 Mesh 627μs 374μs 40.3%
5 × 5 Mesh 836μs 588μs 29.6%

Table 2. Fat-Tree architecture of OCMN

Architecture RM Latency BnB latency Latency saved

8 Fat-Tree 258μs 174μs 32.4%
16 Fat-Tree 516μs 338μs 25.6%
32 Fat-Tree 924μs 714μs 22.7%

As can be seen in this figure, the bigger size or the higher number of mounted
IPs and switches is, the more latency occurs. The number of mounted IPs and
also the number of switches of Mesh architecture are 9, 16, and 25, respectively.
For the Fat-Tree architecture, we simulate three topologies with number of IP
are 8, 16, and 32, respectively. The simulation results of this work in terms of
latency savings for the Mesh and Fat-Tree architectures of OCMN are depicted
in Table 1 and Table 2. As we can see in these table, the most latency saving in

Designing On-Chip Network Based on Optimal Latency Criteria 297

case of Mesh architecture is 40.3% compared to Random Mapping (RM) scheme
corresponding to 4 × 4 Mesh, and the most latency saving in case of Fat-Tree
architecture is 32.4% compared to RM scheme corresponding to 8 Fat-Tree. We
denote the RM schemes are the mapping schemes that IPs are mounted onto
switches randomly. Hence, the network latency metrics are randomly achieved.
In these experiments, we apply the 0.18μm technology for the RLC wire model
and Markovian models for IPs and switches.

4 Conclusion and Future Work

In this paper, we analyzed the heterogenous NoC network latency in terms of the
queuing and wire latencies. We also applied the Branch and Bound algorithm
to automatically map the desired IPs onto the pre-selected NoC architecture in
order to obtain the minimum latency. We carried out the experiments for generic
Mesh and Fat-Tree architectures of OCMN application. The results showed that
the optimal network latencies corresponding to optimal mapping of IPs onto
NoC architecture are significantly saved in comparison with the random map-
ping latency. In the future, we have plan to figure out the relationship between
the latency and the power in the sense of both analytical analysis as well as
simulation for the RTL level of IPs and NoC architectures.

References

1. L. Benini and G. DeMicheli, “Networks On Chips: A new SoC paradigm”, IEEE
computer, Jan, 2002.

2. A. Agarwal, “Limit on interconnection network performance”, Parallel and Dis-
tributed Systems, IEEE Transactions on Volume 2, Issue 4, Oct. 1991 pp. 398 -
412.

3. T. Ye, L. Benini and G. De Micheli,“ Packetization and Routing Analysis of On-
Chip MultiProcessor Networks”, JSA Journal of System Architecture, Vol. 50,
February 2004, pp. 81-104.

4. M. A. El-Moursy and E. G. Friedman, “Desing Methodologies For On-Chip Induc-
tive Interconnection”, Chapter. 4, Interconnect-Centric Design For Advanced SoC
and NoC, Kluwer Academic Publishers, 2004.

5. R. Ho, et al, “The future of wires,” Proceedings of the IEEE, pp. 490 - 504, April
2001.

6. J. Hu, R. Marculescu, “Exploiting the Routing Flexibility for Energy Performance
Aware Mapping of Regular NoC Architectures”, in Proc. Design, Automation and
Test in Europe Conf, March 2003.

7. J. Hu, R. Marculescu, “Energy-Aware Communication and Task Scheduling for
Network-on-Chip Architectures under Real-Time Constraints, in Proc. Design, Au-
tomation and Test in Europe Conf, Feb. 2004.

8. S.Murali and G.De Micheli, Bandwidth-Constrained Mapping of Cores pnto NoC
Architectures, , DATE, International Conference on Design and Test Europe, 2004,
pp. 896-901.

9. T. Tao Ye, L. Benini, G. De Micheli, “Packetization and Routing for On-Chip Com-
munication Networks,” Journal of System Architecture, special issue on Networks-
on-Chip.

298 V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi

10. T. H. Cormen, et al, “Introduction to algorithms,” Second Edition, The MIT press,
2001.

11. D. Bertozzi, L. Benini and G.De Micheli, “Network on Chip Design for Gigascale
Systems on Chips,” in R. Zurawski, Editor, Industrial Technology Handbook, CRC
Press, 2004, pp. 95.1-95.18 on Chips, Morgan Kaufmannn, 2004, pp. 49-80.

12. L. Benini and G. De Micheli, “Networks on Chip: A new Paradigm for component-
based MPSoC Design,” in A. Jerraja and W.Wolf Editors, “Multiprocessor Systems
on Chips”, Morgan Kaufmannn, 2004, pp. 49-80.

13. D. Bertsekas and R. Gallager, “Data Networks,” Chapter 5., Second Edition,
Prentice-Hall, Inc., 1992.

14. A. Jalabert, S. Murali, L. Benini, G. De Micheli, “xpipesCompiler: A Tool for
instantiating application specific Networks on Chip”, Proc. DATE 2004.

15. M. Dall’Osso, G. Biccari, L. Giovannini, D.Bertozzi, L. Benini, “Xpipes: a latency
insensitive parameterized network-on-chip architecture for multiprocessor SoCs”,
21st International Conference on Computer Design, Oct. 2003, pp. 536 - 539.

16. C. E. Leiserson, “Fat Trees: Universal networks for hardware efficient supercom-
puting,” IEEE Transactions on Computer, C-34, pp. 892-90,1 Oct 1985.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 299 – 309, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Microprocessor Based Self Schedule and Parallel BIST
for System-On-a-Chip

Danghui Wang, Xiaoya Fan, Deyuan Gao, Shengbing Zhang, and Jianfeng An

Aviation Microelectronic Center, Northwestern Polytechnical University,
Xi’an, P.R. China 710072

{wangdh, zhangsb, anjf}@mail.nwpu.edu.cn
{fanxy, gaody}@nwpu.edu.cn

Abstract. The purpose of this paper is to develop a flexible test method with
high efficiency for core-based system-on-a-chip (SOC). The novel feature of
the approach is the use of an embedded microprocessor/memory pair to test the
remaining components of SOCs. The characteristics are: (1) Several IP cores
can be tested in parallel; (2) The order of test tasks need not to be queued
during test integration, but scheduled by test program. It is called
microprocessor based self schedule and parallel BIST for SOC (MBSSP-BIST).
By analyzing the bandwidth of test data, the feasibility of MBSSP-BIST is
proved. Finally, several SOCs in ITC’02 benchmark are used to verify the
approach and the results show that MBSSP-BIST can improve test efficiency
significantly.

1 Introduction

Recent development in semiconductor technology have made it possible to design an
entire system onto a single chip, commonly known as the System-On-a-Chip
(SOC)[1]. A related practice which is evolving is the use of predefined logic called
Cores or Macros[2]. A Core is a highly complex logic block which is fully defined in
terms of its behavior, also predictable and reusable[2]. System designers can purchase
cores from core-vendors and integrate them with their own user-defined
logic(UDL)[3] to implement SOCs. It is referred to these designs as core-based
systems.

Core-based SOCs have significant advantages. Because most of system is on the
same chip, SOCs can operate faster with less power. SOCs reduce the number of
discrete components used, thereby reducing the total size and cost of the end-product.
Furthermore, using embedded cores in SOCs has the potential of greatly reducing the
time-to-market because of the design re-use involved.

Testing core-based systems is a major challenge. The major factor is that the
accessibility of the cores and blocks is greatly reduced. Furthermore, the system
designer might have a restricted knowledge of the core internals due to the protection
of Intellectual Property(IP) of the cores.

Unlike the way smaller designs are tested, SOCs cannot be tested as a single unit
because such a test solution would give a poor fault-coverage and the overall test
generation is impractical, and often impossible. A better way to test SOCs is testing

300 D. Wang et al.

each of the cores separately, with other tests to determine whether the system
functions as a whole.

Researchers have focused on several aspects of the SOC testing, such as Test
Access Mechanism(TAM)[4][5][6], Test Wrapper design[7][8][9], Test Scheduling
and optimization[10][11][12][13], etc. All these researches are based on the testing
method that uses the Automation Test Equipment(ATE) directly. According to
ITRS01, the ATE performance is improving at a much slower rate than the speed of
the device. This implies an increasing yield loss due to external testing since ground-
banding to cover tester errors results in a loss of more and more otherwise good
chips. Furthermore, high-speed testers are very costly and might not be available for
some high performance chips.

Built-in self-test(BIST) and design-for-testability(DFT) have been regarded as
possible solutions. BIST solutions eliminate the need for high speed testers and offer
the ability to apply and analyze at-speed test signals on chip with greater accuracy
than that of the tester. However, the addition of DFT hardware incurs non-trivial area,
performance, and design time overhead, and thus slowing down the time-to-market.
In addition, existing structural BIST techniques cause abnormal power consumption
due to the high-switching random patterns applied in the test mode. Therefore, new
BIST techniques have to be developed.

2 Related Works

In IP core based SOCs, examples of IPs are microprocessors, DSPs, PCI, MPEG and
JPEG cores. In addition, memory cells such as RAM/ROM may be embedded in
SOC. User defined logic(UDL) consists of all other logic entities added by the user to
customize the circuit. The embedded microprocessors or DSPs can realize complicate
functions, and can be used to test other parts of the SOCs.

Kwang Ting Chen et al proposed an “embedded software-based self-test for SOC
design”[14]. They constructed an SOC based on PCI bus. The SOC contains a
microprocessor. Test program can be downloaded into the embedded memory first,
then microprocessor runs in functional mode and executes the test program. The test
program contains test pattern generation, test pattern application and test response
analysis. In this method, IP testing and connection testing can be done with the
microprocessor on the SOC, and this can eliminate the requirement of the high-speed,
high accuracy ATE.

Like Kwang Ting Chen, Papachristou et al also uses a microprocessor as test
controller. In this research, IP core vendor is responsible for test pattern generation. IP
testing is divided into three steps: (1)Download phase, the compressed test data are
organized into frame format and downloaded into the embedded memory through
DMA interface. (2) Test pattern application, the embedded microprocessor reads test
data from memory, decompresses them and then applies the decompressed data on the
IP under test. Once an IP testing begins, the IP occupies the microprocessor and
memory until its testing is over. (3) Test response analysis, when a test pattern is
applied on the IP core, test controller reads the response and compares it with the
anticipated response to see if there are errors in the circuit.

 Microprocessor Based Self Schedule and Parallel BIST for SOC 301

Compared to the conventional structural BIST, the above two methods improve
test efficiency, and have the following characteristics: (1)Resource reuse; (2) Test
costs reduction; (3) Test accuracy improvement; (4) Functional test and at-speed test.

In the methods, all the IPs in an SOC are tested serially. When an IP test task
occupies the test controller, embedded memory and data bus, it will not release these
resources until its test task is finished, even if these resources are idle during its test
procedure. This obviously reduces the usage efficiency of these test resources.

In the methods, the order of all the test tasks are queued in the test integration
procedure. But the different test order can result in different test time[15], so test
integration engineers have to schedule the test order elaborately, and this is an aspect
of test schedule, and is also an NP complete problem which can be solved by all kinds
of heuristic algorithms. These algorithms have high complexity and long computation
time, which reduce the test development efficiency and prolong the test development.

This paper proposes a test method named “Microprocessor Based Self Schedule
and Parallel BIST” for SOC, which does not need to order the test tasks manually and
can test different IPs in parallel.

3 Basic Method

In order to improve the usage of the microprocessor, memory and system bus,
different steps of IP test can be overlapped, this method results in parallel testing of
different IPs.

Because of the programmability of the embedded microprocessor, if a test task
(IP1) does not need shared test resources for a period of time before its test procedure
finishes, these test resources can be assigned to other test tasks. In this period, IP1
tests itself under the control of its local test resources, such as scan chain controller or
BIST controller etc. This can overlap the test steps of different test tasks as fig.1.

Fig. 1. Parallel Test

In Fig.1, during period 0~T1, microprocessor is used to schedule for IP1, data bus
is used to transfer test data for IP1 during period T1~T3, the local DFT circuit of IP1
is working and applying test data during period T3~T7. In the same way, IP2 is
scheduling during T1~T2, transferring test data during T3~T5, and applying test data

302 D. Wang et al.

during T5~T9. From the figure, it can be seen that during period T5~T6, IP1 and IP2
are tested in parallel, and IP1, IP2 and IP3 are tested in parallel during T6~T7.

Because there exist many memories in SOCs, the test state of every IP core can be
stored in memories. Software which runs on the microprocessor can record the
execution of every test task and every test resource, and can decide which test task
will be served in the next period. This test schedule is controlled by the test program
which is stored in the embedded memories, rather than controlled by the test
integration engineers during test integration period. This method has the characteristic
of self schedule.

In fig.2, at the T7 moment, IP1 cannot execute its test procedure because there is
either no test data to consume or no space to store test response, IP1 has to send a
request to test controller. But at this moment, test controller is serving for IP2, IP1 has
to send the request repeatedly. IP3 sends a request at T8 moment. At T9 moment,
IP2’s request has been finished and the test controller becomes idle, IP1 and IP3 are
both sending request at this moment. The arbiter program in the test program selects
one of the IPs of IP1 and IP3 according to their request types and the states of the
shared resources. In fig.2, IP3 is selected at the T9. At the T12 moment, the test task
of IP2 is finished, the test controller selects IP4 from waiting queue and actives it.

Fig. 2. Self Schedule

The test method is called “Microprocessor Based Self Schedule and Parallel Built-
in-Self-Test” (MBSSP-BIST).

The conceptual architecture of MBSSP-BIST is shown in fig.3. Test program and
test data are stored in External Tester, which can be a cheap, low-speed ATE or a
computer system. When the test procedure begins, test data and test program are
downloaded into embedded memories through Memory/IO Interface. Microprocessor
is working in functional mode, fetching instructions and executing test program. At
the appropriate moment, microprocessor transfers test data from memories to the
wrapper of IP through system bus. The IP under test is tested by the control circuit
located in wrapper, and the test response is stored into the buffer in the wrapper.
Microprocessor reads test response from buffer and analyzes it at the appropriate
moment.

 Microprocessor Based Self Schedule and Parallel BIST for SOC 303

From fig.3, it can be seen that there are several buffers on the path from external
tester to IP under test. These buffers can act as pipeline buffers and support parallel
test. In this architecture, the required hardware almost exists in the architecture of
SOC test which uses ATE directly. As a path that transfers data in/out of SOCs,
Memory/IO interface is a dedicated unit for all SOCs, memory and microprocessor(or
DSP) almost exist in all SOCs. System bus can be reused in test mode. IP wrapper
must be added in structural test. So in MBSSP-BIST, little hardware has to be added.

Fig. 3. Conceptual Architecture

Because there are memories used as data buffers, the real test speed can be higher
than that of the External Tester.

4 Feasibility Analysis

When testing an SOC with ATE directly, test data transfer from external tester to
circuit under test (CUT) through TAM, the bandwidth of tester is equal to the
bandwidth of the CUT consuming, so the test speed is under restriction of the tester’s
speed and the TAM width.

Assuming the frequency of the memory/IO interface is
IOMemf /

, the width of the

data is
IOMemW /

, the speed of test data transferring from external tester to SOCs is

IOMemIOMemIOMem WfV /// ×= . In the same way, test data consumption speed is

ernalernalernal WfV intintint ×= , where
ernalfint

 is the test frequency of IP, and ernalWint is

the test data consumed in one cycle.
In order to describe the problem, 2 conceptions are defined:

Definition 1: Test Data Flux on Interface is the amount of test data transferred
through Memory/IO interface to SOC under test, and is identified as

IOMemM /
.

304 D. Wang et al.

Definition 2: Equality Test Data Flux is the real amount of test data applied on the
circuit under test, and is identified as

equalityM . It determines the time that test data can

be consumed. For scanned circuits,
equalityM equals to the amount of test data

transferred through Scan-in and Scan-out port of the scan chains. For BISTed circuits
which use pseudo-random method,

equalityM is the amount of test data that are

generated by the longest LFSR.
From these 2 definitions, the test data transfer time

transferT and the test data

consumed time
consumeT can be defined as follows:

IOMemIOmemtransfer VMT // /= =)/(/// IOMemIOMemIOMem WfM × (1)

ernalequalityconsume VMT int/= =)/(intint ernalernalequality WfM × (2)

The relationship of these 2 values can be used to prove that the parallel test is
reasonable. The ratio of the two values is:

transferconsume TT /

=)]/(/[)]/([///intint IOMemIOMemIOMemernalernalequality WfMWfM ××

=)/()/()/(/intint// IOMemernalernalIOMemIOMemequality WWffMM ××

(3)

For any IP core, 1)/(/ ≥IOMemequality MM , when IOMemernal ff /int = , ATE tests the IP

core directly.
IOMemW /

 is the data bus width of the SOC, which is generally 32 bits at

the current manufacturing techniques.
ernalWint is the amount of test data consumed by

the circuit in one cycle, and it equals to the number of scan chains when the DFT
method of the circuit is scan. From the analysis of the benchmark circuits in ITC’02,
it can be seen that most of the IP cores have less than four scan chains [16]. For a
single IP , the speed of the memory/IO interface is fast enough to provide test data,
and because of

ernalIOMem WW int/ > , the value of expression (3) is larger than 1, it is

possible for multiple IP cores to be connected on test bus to realize parallel test, but
the frequency of the ATE and test are equal.

When
IOMemernal ff /int > , 1/ int/ <ernalIOMem ff , because 1/ /int >IOMemernal WW and

1/ / ≥IOMemequality MM , the value of expression (3) is possibly larger than 1, and

possibly less than 1. From the analysis result of ITC’02 Benchmark, it can be seen
that the value of IOMemernal WW /int / is about 8, so the value of expression (3) will not

be less than 1 if ernalIOMem ff int/ / is not less than 1/8, which is reasonable under the

current technique.
Furthermore, the value of IOMemequality MM // can be discussed. According to the

types of DFT and the application method of test patterns, IP cores can be classed into

 Microprocessor Based Self Schedule and Parallel BIST for SOC 305

the following types: (1) Cores with decompressed and deterministic test patterns.
These cores have the characteristic that isiticerequalityisticerIOMem MM mindetmindet/)()(= .

(2) Cores with compressed and deterministic test patterns. The compressed ratio is K,
that is, KMM compressedequalitycompressedIOMem =)/()(/

. (3)Cores with structural BIST.

When testing these cores, only the BIST circuits need to be activated. When BIST
finishes, BIST results are read and analyzed. In this case, test data transferring
through memory/IO interface is only the length of 2 instructions, and the amount of
test data applied to the CUT is the test data generated by the DFT circuit.

lengthninstructioM BISTedIOMem _2)(/ ×= bits, where instruction_length is

generally 32 bits, 64)(/ =BISTedIOMemM bits. In BISTed circuit, it is the most popular

to generate test patterns with LFSR, an n bits LFSR can generate nn ×−)12(bits test

data. Because all the LFSRs in a IP can work in parallel,

nM n
BISTedequality ×−=)12()(bits where),max(iln = and il is the length

of ith LFSR. (4)Cores with pseudo-random test pattern generated by software.
In this case, software simulates LFSR to generate test
patterns, lengthninstructionubmerninstructioM BISTedPIOMem __)(_/ ×= bits,

nM n
BISTedPequality ×−=)12()(_

 bits. In any microprocessor, a software program which

simulates LFSR has instructions less than several hundred.
Suppose in an SOC, the number of cores of these 4 types are

BISTedcompressedisticer jjj ,,mindet and
BISTedPj _

, the total amount of test data to be

downloaded through memory/IO interface is:

icompressed

j

i
IOMemiisticer

j

i
IOMemIOMem

compressedistcicer

MMM])[(])[(
1

/mindet
1

//

mindet

==

+=

iBISTedP

j

i
IOMemi

j

i
BISTedIOMem

BISTedPBISTed

MM])[(])[(_
1

/
1

/

_

==

++

(4)

The amount of test data applied on the CUT is :

icompressed

j

i
equalityiisticer

j

i
equalityequality

compressedistcicer

MMM])[(])[(
1

mindet
1

mindet

==

+=

iBISTedP

j

i
equalityi

j

i
BISTedequality

BISTedPBISTed

MM])[(])[(_
11

_

==
++

(5)

So, we have expressions (6) (on the next page). In expressions (6), the two parts of

the denominator
i

j

i
BISTedIOMem

BISTed

M])[(
1

/
=

 and
iBISTedP

j

i
IOMem

BISTedP

M])[(_
1

/

_

=

 is much small

compared to test data applied to the CUT, so they can be ignored approximately. In
this way, expression (6) changes to expression (7).

306 D. Wang et al.

}])[(])[(

])[(])[({

}])[(])[(

])[(])[({

)/(

_
1

/
1

/

1
/mindet

1
/

_
11

1
mindet

1

/

_

mindet

_

mindet

iBISTedP

j

i
IOMemi

j

i
BISTedIOMem

icompressed

j

i
IOMemiisticer

j

i
IOMem

iBISTedP

j

i
equalityi

j

i
BISTedequality

icompressed

j

i
equalityiisticer

j

i
equality

IOMemequal

BISTedPBISTed

compressedistcicer

BISTedPBISTed

compressedistcicer

MM

MM

MM

MM

MM

==

==

==

==

++

+÷

++

+

=

(6)

expression (7) is as follows:

icompressed

j

i
IOMemiisticer

j

i
IOMem

iBISTedP

j

i
equalityi

j

i
BISTedequality

icompressed

j

i
equalityiisticer

j

i
equality

IOMemequality

compressedistcicer

BISTedPBISTed

compressedistcicer

MM

MM

MM

MM

])[(])[(

}])[(])[(

])[(])[({

)/(

1
/mindet

1
/

_
11

1
mindet

1

/

mindet

_

mindet

==

==

==

+÷

++

+=

(7)

For cores with compressed and deterministic test patterns, it is assumed that the
compressed ratio for ith core is iK . For cores with decompressed and deterministic

test patterns, their compressed ratio can be considered 1, so expression (7) changes as
follows:

icompressed

j

i
equalityiiBISTedP

j

i
equality

i

j

i
BISTedequalityicompressed

j

i
equality

IOMemequality

compressedBISTedP

BISTedcompressed

MKM

MM

MM

])[(}])[(

])[(])[({

)/(

1
_

1

11

/

_

==

==

×÷+

+=

(8)

Because 1≤iK , expression (9) can be deduced (On the next page):

From 1)/()/(/intint/ >× IOMemernalernalIOMem WWff , by replacing the appropriate

parts in expression (3), the following result can be obtained: 1/ >transferconsume TT .

In order to eliminate the inaccuracy of ATE, more and more IP cores take BIST or
pseudo-BIST as their DFTs, and this results in the last part of the numerator in
expression (8) larger and larger, the denominator smaller and smaller, and the value of

IOMemequality MM // larger and larger , which causes transferconsume TT / to become larger

and larger.

 Microprocessor Based Self Schedule and Parallel BIST for SOC 307

icompressed

j

i
equalityi

BISTedP

j

i
equalityi

j

i
BISTedequality

IOMemequality
compressed

BISTedPBISTed

MK

MM
MM

])[(

])[(])[(
1)/(

1

_
11

/

_

=

==

×

+
+≥

(9)

For certain number of IP cores, several test tasks can run parallel if
1/ >transferconsume TT . If the value of transferconsume TT / is larger than the number of IP

cores under test, all the cores can be tested at-speed. If the value of transferconsume TT / is

less, some of IP cores under test can be tested at-speed, and this is valuable if some
IPs must detect delay faults.

5 Experiment Results

An experiment environment is constructed to verify the MBSSP-BIST according
fig.3. In the experiment, a microprocessor based on Intel 486DX4 is used as test
controller, the circuits in ITC’02 are used as IP cores. They are connected through a
32-bit data bus. The width of data bus is also extended to 64 bits. Some logic that is
only for test purpose is added to the processor and a kind of IP test wrapper is
designed. A test control program is designed to control the test procedure according to
the basic method of MBSSP-BIST in section 3.

The test time of every SOC is shown in Table1.

Table 1. Experiment for ITC’02

SOC TAM Width [17]1 [17]2 [17]3 M-BIST4
32 87400 67680 49927 40841 D695
64 38006 27804 24688 20699
32 657574 590661 518722 422453

P22810
64 630646 319212 270676 211385

32 1923386 1468967 121589
6

992425
P34392

64 1278277 633937 610760 534613
32 3905079 2575413 1974419 1667646

P93791
64 1532709 1127242 1076828 947649

Notes: 1. Only one Scan Enable Pin.
 2. A Scan Enable Pin per TAM.
 3. Pin-Constrained TR-Architect.
 4. MBSSP-BIST.

In this case, test control signals[17] are considered. The test time is given in test
clock cycles. From the experiment, it can be deduced that MBSSP-BIST also
improves the efficiency of TAM bandwidth. The improved ratio is shown as
Table 2.

308 D. Wang et al.

Table 2. The Improved Ratio of ITC’02

SOC TAM Width [17]1 [17]2 [17]3
32 53.68% 40.19% 18.92% D695
64 45.54% 25.55% 16.16%
32 35.76% 28.48% 18.56%

P22810
64 66.48% 33.78% 21.90%
32 48.40% 24.44% 18.38%

P34392
64 58.18% 15.67% 12.47%
32 57.30% 35.25% 15.54%

P93791
64 38.17% 15.93% 12.00%

From Table 2, it can be seen that MBSSP-BIST improves by about
12.00%~21.90% compared to other methods when the test frequency equals to that of
external tester. In MBSSP-BIST, because the test frequency can be higher than that of
external tester, the test efficiency will be improved more notably.

6 Conclusion

In this paper, a test method named MBSSP-BIST is proposed. Based on the
microprocessor and memories embedded on SOCs, every test task of IP cores can be
done as software program of microprocessor. Using this test method, test integration
engineers need not schedule the IP test order, this work is done by the test program
during test procedure. This can greatly reduce the work of test integration engineers
and improve test development efficiency. Since the test procedure is divided into
several phases and can be overlapped, and since the SOC test speed is not limited to
the tester’s speed, the overall testing time is reduced.

References

[1] VISA. VSI Alliance Test Access Architecture Version1.0(TST 21.0). http://www.vsi.org.
(2001. 9)

[2] K. Dc, “Test Methodology for Embedded Cores Which Protects Intellectual Property”,
VLSI Test Sym. (1997). 2-9,

[3] N. Touba and B. Pouya, “Testing Embedded Cores Using Partial Isolation Rings”, VLSI
Test Sym. (1997). 10-16,

[4] Mounir Benabdenbi, Walid Maroufi, Meryem Marzouki: CAS-BUS:a Test Access
Mechanism and a Toolbos Environment for Core-based System Chip Testing. Journal of
Electronic Test: Theory and Application. (2002)

[5] Erik Jan Marinissen, Robert Arendsen, Gerard Bos, Hans Dingenmanse, Maurice
Lousberg, and Clements Wouters: A Structured And Scalable Mechanism for Test
Access to Embedded Reusable Cores. Proceedings IEEE International Test
Conference(ITC), (1998), PP284-293

[6] I. Ghosh, S. Dey, N.K. Jha: A Fast and Low-Cost Testing Technique for Core-Based
System-Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. Vol. 19, NO.8 (2000), 863-877,

 Microprocessor Based Self Schedule and Parallel BIST for SOC 309

[7] Yervant Zorian: System-on-Chip: Embedded Test in Practice. The 12th Asia Test
Symposium Tutorial. (2003)

[8] E.J. Marinissen, R. Kapur, M. Lousberg, T. Mclaurin, M. Ricchetti, Y. Zorian: On IEEE
P1500’s Standard for Embedded Core Test. Journal of Electronic Testing: Theory and
Application, Volume 18(2002), 365-283.

[9] S. Koranne: A Novel Reconfigurable Wrapper for Testing of Embedded Core-Bsed
SOCs and its AsSOCiated Scheduling Algorithm, Journal of Electronic Testing: Theory
and Application, Volume18,issues 4-5(2002)

[10] E. Larsson, Z. Peng: Testing Scheduling and Scan-Chain Division Under Power
Constraint. IEEE Proc. Asia Test Symposium,(2001),259-264,

[11] M. Sugihara, H. Date, H. Yasuura: A Novel Test Methodology for Core-Based System
LSIs and a Testing Time Minimization Problem. IEEE Proc. International Test
Conference(1998),465-472

[12] W. Jiang, B.Vinnakota, Defect-Oriented Test Scheduling. IEEE Transactions on VLSI
Systems, Volume 9, Issue 3(2001),427-438

[13] T. J. Chakraborty Test Scheduling for Core-Based Systems. Computer-Aided Design,
Volume11 (2000). 391 – 394

[14] Angela Krstic, Li Chen, Wei-Cheng Lai, Kwang-Ting Cheng, Sujit Dey: Embedded
Software-Based Self-Test for Programmable Core-Based Designs. IEEE Design & Test
of Computer, Volume 19, Issue 4(2002), 18-27

[15] C. A. Papachristou, F. Martin, M. Nourani: Microprocessor Based Testing for Core-
Based System on Chip. Proceeding of Design and Automaton Conference(1999),
586-591

[16] IEEE P1500 Standard for Embedded Core Test. http://grouper.ieee.org/group/1500.
(2003)

[17] Wei Zou, Sudhakar M. Reddy, Irith Pomeranz, Yu Hhuang: SOC Test Scheduling Using
Simulated Annealing. Proceedings of the 21st IEEE VLSI Test Symposium(2003),
325-330.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 310 – 319, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self-correction of FPGA-Based Control Units

Iouliia Skliarova

University of Aveiro, Department of Electronics and Telecommunications, IEETA,
3810-193 Aveiro, Portugal
iouliia@det.ua.pt

http://www.ieeta.pt/~iouliia/

Abstract. This paper presents a self-correcting control unit design using
Hamming codes for finite state machine (FSM) state encoding. The adopted
technique can correct single-bit errors and detect two-bit errors in the FSM
register within the same clock cycle. The main contribution is the development
of a parameterizable VHDL package and the respective error-correcting
modules, which can easily be added to an FSM specification using any state
assignment strategy and having any number of inputs, outputs and states.
Besides of application to FSM error correction, the developed tools can easily
be adapted to other applications where error detection and correction is
required.

Keywords: Self-correcting finite state machines, Hamming codes, specification
in VHDL.

1 Introduction

Concurrent error detection and correction is very important in many high-reliability
applications. Nowadays, FPGA are increasingly being used for such applications,
working in hazardous operating environments. In such circumstances, radiation or
overheating can cause either a temporary or a permanent fault in a system prohibiting
that it functions correctly.

A control part of the system is the most critical part since it plays the central role in
correct functioning of the whole system. Therefore, providing the control units with
the properties of self-checking and self-correction is very important.

A number of synthesis techniques have been proposed aimed at design of control
units with concurrent error detection [1-3]. These techniques permit a circuit to be
synthesized that is capable of providing the identification of an erroneous behavior as
soon as it is observable. In this paper, we propose using error-correcting codes that
allow for changing the illegal system state to the correct state.

For such purposes, a VHDL package has been developed that includes functions
required for generating error-correcting codes and a number of VHDL modules have
been designed that make use of these functions and can be employed for constructing
a self-correcting control circuit. Besides of specifying self-correcting control units,
the developed tools can directly be used for providing error correction and detection
properties in other application domains, such as communication systems (data
networks, memory caches, etc.).

 Self-correction of FPGA-Based Control Units 311

This paper is organized in 5 sections. Section 2 that follows this introduction is
devoted to an overview of the adopted error-correcting codes. Section 3 proposes a
general structure of self-correcting control unit and includes the detailed description
of the developed VHDL functions and modules. The results of experiments are
reported in section 4. Finally, concluding remarks are given in section 5.

2 Error Correction

The control units are usually modeled with the aid of Finite State Machines (FSMs).
An FSM can be defined as a 6-tuple M = (S, X, Y, ϕ, ψ, s0), where S={s0,...,sM-1} is a
finite set of states, X={x0,...,xL-1} is a finite set of inputs, Y={y0,...,yN-1} is a finite set
of outputs, ϕ: S × X → S is the next state function, ψ: S × X → Y is the output
function, and s0∈S is the initial state.

The hardware model of FSM is shown in fig. 1. The FSM consists of a
combinational circuit (that produces the primary outputs and calculates the next state
based on the input values and the present state) and a register (a number of flip-flops or
latches) that stores the present FSM state. If the FSM register experiences a fault, it
could place the FSM in either a legal (but not correct) state or an illegal state. To allow
for recovering from such erroneous state transitions, Hamming codes [4] can be used
for state encoding. Hamming codes have a minimum distance of 3 (between different
code words) and can therefore be employed for correcting any single-bit fault.

combinational circuit

register

clk rst

inputs outputs

present
state

next
state

Fig. 1. Hardware model of FSM

Hamming codes can easily be constructed for any FSM encoding scheme, such as
one-hot, Gray, etc. For d data bits, the Hamming method requires adding p parity bits,
such that d ≤ 2p–1–p, thus yielding (d+p)-bit codes. The bit positions in a Hamming
code can be numbered from 1 through d+p. In this case, those bit positions whose
number is a power of 2 are parity bits, and the remaining positions are data bits.

Fig. 2 illustrates how a 10-bit state code can be augmented with parity bits. Each
parity bit is grouped with a subset of those data bits whose numbers have a 1 in the
same bit when expressed in binary. For instance, parity bit p0 with position 110 (00012)
is grouped with data bits with positions 3 (00112), 5(01012), 7(01112), 9(10012),
11(10112), and 13 (11012) as illustrated by dashed arrows in the upper part of fig. 2.
Then, such a value is assigned to each parity bit as to guarantee that the respective
group produces even parity (has an even number of 1s).

312 I. Skliarova

Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data/parity bit p4 d9 d8 d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0

Fig. 2. Hamming code data and parity bits

A distance-3 Hamming code can easily be modified to obtain a distance-4 code by
adding one more parity bit (overall parity bit p4 in fig. 2) chosen so that the parity of
all the bits including the new one is even. This new code can detect double errors that
are not correctable.

For error correction, all the parity groups are checked. The possible error types and
the respective actions to take are summarized in table 1. If one or more parity groups
have odd parity and the overall parity bit is 0, then a double-bit error has occurred,
which is not correctable. If all the parity groups have even parity then the state code is
assumed to be correct. Otherwise, if one or more groups have odd parity and the
overall parity bit is 1, then a single-bit error is supposed to have occurred. In this case,
a syndrome (the pattern of groups that have odd parity) is created indicating the bit
position whose value is assumed to be wrong and consequently has to be
complemented. The syndrome can be calculated by XOR-ing the parity bits read out
of the FSM register with the new parity bits generated from the data stored in the
register. For example, if the FSM register outputs the code 000000000000100, then
the new parity bits p0 (with position 1) and p1 (with position 2) will have odd parity
corresponding to the position 3 (00012 ⊕ 00102 = 00112) whose value has to be
complemented producing the correct state code 000000000000000.

Table 1. Error detection and correction

Syndrome Overall parity bit Error type and actions to take

= 0 0 no error

= 0 1
overall parity bit error; no problem for correct
FSM operation

≠ 0 0 double-bit error; not correctable

≠ 0 1
single-bit error; correctable by calculating the
syndrome and inverting the respective bit position

3 Self-correcting FSM

3.1 Hardware Model

The hardware model of self-correcting FSM is presented in fig. 3. The Parity Encoder
block creates the parity bits to store with the FSM state bits in the FSM register. The
parity bits can trivially be calculated by XOR-ing the relevant FSM state bits.

 Self-correction of FPGA-Based Control Units 313

The Code Corrector block receives the present state from the FSM register and
corrects it if required. For such purposes the syndrome is generated by calculating the
new parity bits and XOR-ing them with the parity bits read out of the register. Then, a
correction mask is produced based on the result of the syndrome.

combinational circuit

register

parity encoder
code corrector

error inserter

clk rst

inputs outputs

state next state

Fig. 3. Hardware model of self-correcting FSM

When either no error is detected or a double error is detected, all the bits of the
mask are set to 0. Otherwise the mask is generated so as to conceal all the state bits
except for the erroneous bit. Finally, the mask is XOR-ed with the data read out of the
FSM register. As a result, when no single-bit errors are detected, the FSM state passes
through the Code Corrector without any changes, whereas when a single-bit error is
detected the corrupted bit is inverted to the correct value. It is important that error
correction is performed within the same clock cycle.

To allow for diagnosis, Error Inserter block is used to introduce single or multiple
bit errors to the FSM state (see fig. 3).

3.2 Specification in VHDL

To facilitate the VHDL description of the blocks introduced in section 3.1, a package
parity_types was developed, which includes the following functions:

� Function calculate_parity (constant state : in std_logic_vector;
constant n : in natural) return std_logic – this function receives two
parameters: an FSM state and a number of a parity group, and calculates the required
parity bit value for this parity group;

� Function calculate_mask (constant syndrome : in std_logic_vector ;

constant n : in natural) return std_logic_vector – this function
receives a syndrome and the number of bits used for FSM state encoding and
generates the mask used for correcting single-bit errors;

These functions are described in VHDL as indicated in fig. 4 for FSMs using at
most 11 bits for state encoding and consequently requiring at most 4 parity bits (not
counting the overall parity bit). This restriction is due to the space limitations. In
order to support more bits for state encoding only two constant arrays parity_table

314 I. Skliarova

and mask_table (and the respective data types) have to be modified; the functions
themselves do not require any changes to be introduced.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

package parity_types is

 type PAR is array (natural range 0 to 3) of std_logic_vector(10 downto 0);
 type MASK is array (natural range 0 to 15) of std_logic_vector(10 downto 0);

 constant parity_table : PAR := (0 => "10101011011", 1 => "11001101101",
 2 => "11110001110", 3 => "11111110000");

 constant mask_table : MASK := (0 => "00000000000", 1 => "00000000000",
 2 => "00000000000", 3 => "00000000001",
 4 => "00000000000", 5 => "00000000010",
 6 => "00000000100", 7 => "00000001000",
 8 => "00000000000", 9 => "00000010000",
 10 => "00000100000", 11 => "00001000000",
 12 => "00010000000", 13 => "00100000000",
 14 => "01000000000", 15 => "10000000000");

 function calculate_parity (constant state : in std_logic_vector;

 constant n : in natural) return std_logic;
 function calculate_mask (constant syndrome : in std_logic_vector;

 constant n : in natural) return std_logic_vector;
end parity_types;

package body parity_types is

function calculate_parity (constant state : in std_logic_vector;

constant n : in natural) return std_logic is
 variable masked : std_logic_vector(state'high downto 0);
 variable result : std_logic;
 begin
 masked := state and parity_table(n)(state'high downto 0);
 result := '0';

 for i in masked'range loop
 result := result xor (masked(i));
 end loop;

 return result;
 end function calculate_parity;

function calculate_mask (constant syndrome : in std_logic_vector;

 constant n : in natural) return std_logic_vector is
 variable mask : std_logic_vector(n downto 0);
 variable address : natural range mask_table'range;
 begin
 address := conv_integer(syndrome);
 mask := mask_table(address)(n downto 0);
 return mask;
 end function calculate_mask;

end parity_types;

Fig. 4. VHDL package defining functions and data types required for parity calculation and
error correction

 Self-correction of FPGA-Based Control Units 315

In the developed package two data types are declared. The first data type PAR is an
array of four 11-bit standard logic vectors. A constant parity_table of type PAR,
for every parity group (from 0 to 3), marks by 1s the FSM state bits that have to be
used for calculating the parity of the group. For example, in order to calculate the
parity bit p0 state bits 0, 1, 3, 4, 6, 8, and 10 have to be analyzed, resulting in a vector
10101011011. The remaining FSM state bits, denoted by 0s in the constant
parity_table, are not relevant for the considered parity groups. The function
calculate_parity firstly masks out with the aid of the constant parity_table
not relevant state bits and stores the result in the variable masked. Then, in a loop
statement, all the relevant state bits are XOR-ed together calculating in such a way a
value to be assigned to the respective parity bit. This value is kept in a variable
result and is returned from the function. Note that the number of state bits to be
analyzed is not fixed and is selected with the attribute high applied to the FSM state.
Consequently, the function can be used for calculating the parity bit values for FSM
states encoded with an arbitrary number of bits.

The second data type MASK is an array of sixteen 11-bit standard logic vectors. A
constant mask_table of type MASK stores for each possible syndrome to be
calculated in the Code Corrector block, the relevant mask that has to be applied to the
FSM state in order to correct possible errors. For example, if the generated syndrome
is equal to 00112, the mask 00000000001 indicates that state bit 0 is in error and has
to be complemented. The function calculate_mask firstly converts a received
syndrome from standard logic vector to a natural value with the aid of function
conv_integer (defined in package std_logic_unsigned of ieee library). Then,
the calculated value is used for accessing one of the vectors declared in the constant
mask_table, which is subsequently returned from the function.

With the aid of the developed package, the Parity Encoder and the Code Corrector
block can de described in VHDL as shown in the code below.

The Parity Encoder block is parameterizable with the aid of two generic constants
(n and m) which indicate respectively the number of bits used for FSM state encoding
and the number of the required parity bits. Inside the block, the value to be assigned
to each parity bit is calculated with the aid of a generate statement which permits the
function calculate_parity to be invoked the required number (m) of times. The
resulting parity bit values are written to the output parity vector.

The Code Corrector block is similarly parameterizable with the aid of two generic
constants (n and m) which indicate the number of bits used for FSM state encoding
and the number of the required parity bits, respectively. Inside the block, first of all
the new parity bits are calculated with the aid a generate statement invoking the
calculate_parity function m times. After that a syndrome is generated by XOR-
ing the previously calculated parity vector (read out of the FSM register) with the
newly calculated parity vector. Based on the syndrome, a mask is produced with the
aid of the function calculate_mask. Finally, the mask is applied to the FSM state
read from the FSM register allowing a possible error to be corrected.

It is very important that the developed functions and modules are parameterizable
(with the aid of attributes and generic constants [5]) and can therefore be used for
providing error correction ability for any number of data bits (currently at most 120
data bits are supported). Consequently, the proposed modules can directly be

316 I. Skliarova

employed for any FSM with any number of states and using any state encoding
technique (as far as the number of state bits does not exceed the currently imposed
120-bit limitation) and also for other applications.

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
library corr_codes; use corr_codes.parity_types.all;

entity encoder is
 generic(n : natural := 11; m : natural := 3);
 port (state : in std_logic_vector(n downto 0);
 parity : out std_logic_vector(m downto 0));
end encoder;

architecture Behavioral of encoder is
begin
 calc_parity: for i in 0 to m generate
 parity(i) <= calculate_parity(state, i);
 end generate;
end Behavioral;

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
library corr_codes; use corr_codes.parity_types.all;

entity corrector is
 generic (n : natural := 11; m : natural := 3);
 port (state : in std_logic_vector(n downto 0);
 in_parity : in std_logic_vector(m downto 0);
 corr_state : out std_logic_vector(n downto 0));
end corrector;

architecture Behavioral of corrector is
 signal new_parity : std_logic_vector(m downto 0);
 signal syndrome : std_logic_vector(m downto 0);
 signal mask : std_logic_vector(n downto 0);
begin
 calc_parity: for i in 0 to m generate
 new_parity(i) <= calculate_parity(state, i);
 end generate;

 syndrome <= in_parity xor new_parity;
 mask <= calculate_mask(syndrome, state'high);
 corr_state <= mask xor state;
end Behavioral;

The complete self-checking FSM can be constructed from the designed modules as
shown in fig. 5 for a simple sequence detector having one input, one output, and 5
states and using Gray state encoding technique. The respective state diagram and
state/output table are shown in fig. 6. The developed parameterizable modules and the
parity_types package were put in a library corr_codes.

 Self-correction of FPGA-Based Control Units 317

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity sec1_gray is
 Port (clk, reset : in std_logic;
 X : in std_logic;

Y : out std_logic);
end sec1_gray;

architecture mixed of sec1_gray is
 signal state, next_state, corr_state : std_logic_vector(2 downto 0);
 signal parity, next_parity : std_logic_vector(2 downto 0);
begin

FSM_register: process(clk, reset)
begin
 if reset = '0' then
 state <= (others => '0'); parity <= (others => '0');
 elsif rising_edge(clk) then
 state <= next_state;

 parity <= next_parity;
 end if;
end process FSM_register;

--error inserter, not shown here for the sake of clarity

par_encoder: entity corr_codes.encoder(behavioral)
 generic map (n => state'high, m => parity'high)
 port map(state => next_state, parity => next_parity);

corrector: entity corr_codes.corrector(behavioral)
 generic map (n => state'high, m => parity'high)
 port map(state => state, in_parity => parity, corr_state => corr_state);

combinational_circuit: process (corr_state, X)
begin
 case corr_state is
 when "000" => --S0
 Y <= '0';
 if (X = '0') then next_state <= "000"; --S0
 else next_state <= "001"; end if; --S1
 when "001" => --S1
 Y <= '0';
 if (X = '0') then next_state <= "000"; --S0
 else next_state <= "011"; end if; --S2
 when "011" => --S2
 Y <= '0';
 if (X = '0') then next_state <= "010"; --S3
 else next_state <= "011"; end if; --S2
 when "010" => --S3
 Y <= '0';
 if (X = '1') then next_state <= "110"; --S4
 else next_state <= "000"; end if; --S0
 when "110" => --S4
 Y <= '1';
 if (X = '1') then next_state <= "011"; --S2
 else next_state <= "000"; end if; --S0
 when others => next_state <= "000"; --S0
 Y <= '0';
 end case;
end process combinational_circuit;

end mixed;

Fig. 5. VHDL code describing a Moore self-correcting FSM with the aid of the developed
modules

318 I. Skliarova

S0
[0]

S1
[0]

x=0
reset

S2
[0]

S3
[0]

S4
[1]

x=1 x=1 x=0 x=1

x=0 x=1

x=0

x=0

x=1

next state
present state

x = 0 x = 1
y

000 (S0) 000 001 0

001 (S1) 000 011 0

011 (S2) 010 011 0

010 (S3) 000 110 0

110 (S4) 000 011 1

Fig. 6. State diagram and state/output table of a simple 4-bit sequence detector

4 Experiments

Obviously, the introduced error correction facility leads to area overhead and overall
performance degradation. To estimate the influence of the added modules on the
required FSM resources and the resulting clock frequency, two FSMs (sec1 and sec2)
have been selected.

Each FSM was synthesized using the Xilinx Synthesis Technology (XST) tool [6]
targeted to Spartan-IIE xc2s300e –6 speed grade FPGA. For each FSM three types of
state encoding have been examined (one-hot, binary, and Gray). After that each FSM
was modified so as to provide for single-bit error correction as described in section 3,
and the resulting VHDL descriptions were also synthesized. The obtained results
expressed in terms of the required FPGA slices and the maximum attainable clock
frequency, are presented in table 2. The synthesis process for both cases (i.e. for
FSMs with and without error correction facilities) was optimized for speed.

Table 2. The results of experiments

without error correction with error correction
FSM inputs outputs states state

encoding FPGA slices performance FPGA slices performance

binary 2 285 MHz 7 133 MHz

Gray 2 270 MHz 10 97 MHzsec1 1 1 5

one-hot 4 245 MHz 20 83 MHz

binary 18 123 MHz 39 65 MHz

Gray 17 142 MHz 30 65 MHz sec2 4 3 17

one-hot 16 183 MHz 112 45 MHz

 Self-correction of FPGA-Based Control Units 319

The worst results, in terms of both the increase in the number of FPGA slices and
the performance degradation, were received for one-hot state encoding technique.
This can be explained by the fact that one-hot state encoding technique requires more
bits to represent FSM states and therefore always obligates more parity bits to be
introduced than in the case of compact binary or Gray state encoding techniques. For
example, sec1 FSM has 5 states, which can be encoded with 3 bits (binary or Gray
codes) supplemented by 3 parity bits (not counting the overall parity bit), whereas in
the case of one-hot state encoding, 5 data bits and 4 parity bits are required.
Augmenting the total number of bits from 6 (3+3) to 9 (5+4) leads obviously to
increasing the complexity of both Parity Encoder and Code Corrector blocks and
consequently increments the latency and the resource consumption of the whole
control circuit.

From table 2 we can also see that as the FSM complexity increases, the error
correction logic overhead becomes less noticeable and can be tolerated for high-
reliability applications.

5 Conclusion

This paper proposed a design methodology for implementation of self-correcting
control circuits derived from a VHDL specification. The entire approach has been
presented, focusing the attention on the developed parameterizable VHDL package
and the error-correcting modules, which can easily augment any VHDL FSM
description with a single-bit error correction facility. The results obtained for a
number of control circuits have been presented, which show that the inevitable area
and performance overhead can be tolerated for high-reliability applications.

References

1. Bolchini, C., Montandon, R., Salice, F., Sciuto, D.: Design of VHDL based Totally Self-
Checking Finite-State Machine and Data-Path Descriptions. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 8, no. 1 (2000) 98-103

2. Zeng, C., Saxena, N., McCluskey, E.J.: Finite State Machine Synthesis with Concurrent
Error Detection. In: Proc. Int. Test Conf. (1999) 672-679

3. Levin, I., Sinelnikov, V.: Self-Checking of FPGA-based Control Units. In: Proc. of the 9th
Great Lakes Symposium on VLSI (1999) 292-295

4. Wakerly, J.F.: Digital Design. Principles and Practices. 3rd ed. Prentice Hall (2000)
5. Ashenden P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers, Inc. (1996)
6. ISE, FPGAs. [Online]. Available: www.xilinx.com

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 320 – 331, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Detecting Memory Access Errors with Flow-Sensitive
Conditional Range Analysis

Yimin Xia, Jun Luo, and Minxuan Zhang

School of Computer Science, National University of Defense Technology,
Changsha 410073, P.R. China
ymxia@nudt.edu.cn

Abstract. Accessing an out-of-bounds memory address can lead to nondeter-
ministic behaviors or elusive crashes. Static analysis can detect memory access
errors from program source codes without runtime overhead, but existing tech-
niques are either very imprecise or exponential cost. This paper proposes a pre-
cise and effective method to detect memory access errors. Firstly, it generates a
state for each statement with a flow-sensitive, inter-procedural algorithm. A
state includes not only range constraints like the traditional range analysis, but
also occurrence conditions of the range constraints. Secondly, it solves states of
memory access statement to evaluate the sizes of accessed memory bounds. The
costs of state generation and state resolution are polynomial. We have imple-
mented a prototype of the analysis method. Applied to 7 popular programs, the
prototype found 40 memory access errors with a high precision of 80%.

1 Introduction

Memory corruption errors can lead to serious consequence. Type unsafe languages,
such as C and C++, do not check memory accesses at runtime, and such errors will
lead to software’s nondeterministic behaviors or elusive crashes. Type safe languages,
such as Java, check memory accesses at runtime and raise an exception when it de-
tects a memory access error. If one of these exceptions is unhandled by the program-
mer, the program will be aborted. In 1996, the explosion of Ariane 501 shortly after
launch was due to an overflow in an arithmetic conversion. This failure cost over
$500 millions to the European space program. CERT advisories show that almost
50% of security attacks on computer systems were related to buffer overruns[1, 2].
Classical verification techniques based on development process, code reviewing and
testing were unable to detect that defect.

In recent years, static analysis techniques have been used to detect memory access
errors from source codes. Previous works have focused on path-sensitive analysis[2, 3]
and flow-insensitive analysis[4, 5]. Path-sensitive analysis is accurate but expensive. It
tracks every branch in the control-flow of a program in which the execution state
differs along the two branch paths may result in an exponential complexity. The flow-
insensitive analysis is rapid but its result is very imprecise because it does not con-
sider statement orders and branch conditions.

In this paper, we propose a conditional, symbolic range analysis to detect memory
access errors. Range analysis computes the potential bound of each access that may

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 321

be attained for any program input. Traditional range analysis[8, 9] only considers con-
straints between value ranges of variables, which lead to too conservative analysis and
imprecise results. However, conditional range analysis considers occurrence condi-
tions of range constraints, which can improve the precisions of range resolution evi-
dently.

The major contributions of this paper can be summarized in the following:

1. A fundamental, new insight for range analysis. Except generating range con-
straints from assignment statements, we also track conditions of range con-
straints from branch statements, assertion statements and assignment statements.
When we judge whether a memory access would be out-of-bounds, the condi-
tions of range constraints can prevent most false alarms and improve the preci-
sion of range analysis.

2. A flow-sensitive, inter-procedural algorithm for constraint states generation. The
algorithm propagates range constraints and condition constraints along the con-
trol flow of a program, and merge constraints at join points. Because all states are
independent of paths, the algorithm avoids states explosion of full path-sensitive
analysis, as well as it has better precision than traditional range analysis.

3. An algorithm for constraint resolution. For the state of a memory access state-
ment, the algorithm first uses a linear programming solver to compute tightest
ranges of constraint variables, and then solve the inequality group that includes
tightest ranges of constraint variables, constraint conditions in the state and a
out-of-bounds condition for the statement.

4. A prototype of our analysis method. We applied the prototype to 7 popular pro-
grams. The experimental results show it is accurate and effective: it can analyze
ten thousands lines of code in a minute with the precision of 80%.

The rest of the paper is organized as follows: In Section 2, an example for our al-
gorithm is given. In Section 3, we present the algorithm for state generation. In Sec-
tion 4, we present the algorithm for state resolution. In Section 5, the experimental
results are discussed. We discuss related work in Section 6 and conclude at last.

2 Example

In this section, we use an example to explain how memory access errors can be de-
tected using conditional range analysis. Consider the simplified snippet of code
shown in Figure 1 and suppose we are interested in determining the safety of memory
access argv[optind++] in line 6 and spec_fd[fd] in line 13. We compare
two range analysis methods as follows.

Ranges are expressed as lower and upper bounds on program variable. A range
constraint has the form γ(e1) ⊇ γ(e2), where function γ maps a variable expression to
its value range, e1 and e2 are variable expressions. Though the following analysis is
flow-sensitive and context-sensitive that generates a state for each statement, these
methods can also be path-sensitive or flow-insensitive.

Traditional range analysis: The traditional range analysis ignores conditions of
range constraints, so the value range of optind and fd are regarded as [0, +∞]. As a
result, a false alarm about optind is reported.

322 Y. Xia, J. Luo, and M. Zhang

struct spec_fd_t {
 int len,pos;
 unsigned char *buf;
} spec_fd[3];

int main(argc, argv) {
 env = add_envopt(&argc, &argv, OPTIONS_VAR);
 if (env != NULL)
 args = argv;
 while (optind < argc) {
 ifd = open(argv[optind++], O_RDONLY | O_BINARY,
RW_USER);
 len = spec_read(ifd, buf, size);
 }
…
}

int spec_read(int fd, unsigned char *buf, int size) {
 if (fd > 3)
 return -1;
 if(spec_fd[fd].pos >= spec_fd[fd].len)
 return EOF;
...
}

Fig. 1. Running Example

Conditional range analysis: A state in conditional range analysis is composed by
range constraints and conditions of the range constraints. The value range of env in
line 5 is [0, +∞] and its condition is (optind<argc). The condition (opt-
ind<argc) guarantees the safety of memory access argv[optind++] in line 6,
and avoids a false alarm. The condition of line 13 is (fd ≤ 3), which cannot guaran-
tee that fd is less than 3. But fd is a parameter, we analyze its call statement in line
7, which has range constraints {γ(env)⊇[0,+∞], γ(ifd)⊇[0,+∞], γ(fd)⊇ γ(ifd)}
and conditions {optind < argc, fd≤3}. Because the range constraints and its
condition cannot guarantee that fd is less than 3, and no parameter of main is rela-
tion to the constraints and conditions, an alarm about fd in line 13 is emitted.

3 State Generation

In this section, we first give the definition of state, then present the algorithm of state
generation, and analyze the algorithm at last.

Since memory addresses are accessed through pointers, a pointer analysis should
be processed before state generation. Many pointer analysis algorithms, such as
Steensgaard[20], DAS[21], can used to determine the set of each pointer point-to and the
alias set of each pointer.

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 323

Definition 1: Locations = {v| v is a variable in the program} ∪ {malloci| i is a pro-

gram point where malloc instruction is called}
For a location l∈ , we have the following constraint variables:

− l.val represents potential values stored in l, including primitive type (int, long,
char, etc.) values and locations;

− l.assize represents the allocation size of l;
− l.len represents the accessed length by a load or store instruction to l;
− l.offset represents potential offsets from the base address to the addresses of lo-

cations that are pointed by l.val.

In this paper, we write V to represent the set of constraint variables, write Ω to rep-
resent the value set of constraint variables, function loc maps the name of a variable
to its location, and function pt maps the name of a pointer to the location set it points
to. We also assume that programs are in static single assignment (SSA) form. A pro-
gram is in SSA form when every variable within it has at most one defining state-
ment.

3.1 State Definition

A state represents range constraints between constraint variables and value constraints
between constraint variables, and the latter is the necessary condition for the former
occurrence.

Definition 2: , pP=< > is a lattice, where:

1.
1

= Z } { , }
n

i i i i
i

P t t a v +b, a ,b ,v uninit unknown
=

={ | ∈ ∈Ω is the value set of

linear expressions of constraint variables, where Z is the set of integer, uninit
represents the value of uninitialized constraint variables, and unknown repre-
sents the value of non-linear constraint expressions;

2. 1 2pp p if p1= uninit, or p2= unknown or p1- p2 ≤ 0;

3. Unknown is the top element of and uninit is the bottom element of .

The value of a constraint variable is uninit if either the program variables that it
correspond to have not been initialized in the source code, or program statements that
affect the value of the program variables have not been captured by our analyzer. The
latter case may arise when the constraint generator does not have a model for a library
function that affects the value of the constraint variable.

A range can represent the set of potential values that a constraint variable attains at
runtime. Ranges are symbolically expressed as lower and upper bounds on constraint
variables. The computing of an range expression can be safely approximated by the
following equations:

γ(uninit) = ∅ (1)

γ(unknown) = [-∞ , +∞] (2)

324 Y. Xia, J. Luo, and M. Zhang

γ(c) = [c , c], where c ∈ Z (3)

[inf1, sup1] + [inf2, sup2]= [inf1+ inf2, sup1+ sup2] (4)

[inf1, sup1] - [inf2, sup2]= [inf1- sup2, sup1 - inf2] (5)

1 1
1

((),..., ()) (, ...,)
((, ...,))

[,]
n n

n

x x if x x P
x x

otherwise

σ γ γ σ
γ σ

∈
=

−∞ +∞
 (6)

Define 3: A state S = [R, C], where:

1. R = { γ(x) ⊇ γ(σ(x1,…,xn)) | x,x1,…,xn∈V } is a set of inclusion relations between
the value ranges of constraint variables and the value range of constraint vari-
able expressions.

2. C={ σ(x1,…,xn)↑0 | σ(x1,…,xn)∈P, ↑∈{<, ≤, =, ≥, >} } is a set of condition con-
straints that represent relations between values of constraint variables.

3.2 Algorithm

The control flow graph of a procedure is G = N, E, start, exit with a set of nodes N
and a set of edges E ⊆ N × N. A node n∈N represents a statement or a predicate in the
procedure and a edge e = (m, n) ∈ E indicates transfer of control between nodes m,
n∈N. Respectively, start and exit are the unique start node and the unique exit node in
the procedure.

A program is represented by a super graph G* = (N*, E*), where G* consists of a
collection of control flow graphs G1, G2, … . The other nodes of control flow graphs
represent the statements and predicates of procedures in the usual way, except that a
procedure call statement is represented by two nodes, a call node and a return node.
The sets of all start, exit, call and return nodes in the super graph will be denoted by
Start, Exit, Call and Return, respectively. In addition to the ordinary intraprocedural
edges that connect the nodes of the individual flow graphs, for each procedure call
represented by call node c and return node r, G* has an intraprocedural edge from c
to r.

We write S(n) to represent the state of node n, R(S) to represent the range con-
straints of state S, C(S) to represent the condition constraints of state S, and S* to
represent the set of states associated with statements in a program. Each edge is as-
signed to a transfer function Trans: E* × S* → S*. For a edge e∈E* and a input state
Sin∈S*, Trans(e, Sin) generates a output state Sout with following rules:

1. R(Sout) = R(Sin) ∪ {γ(x) ⊇ γ(f(x1,…,xn))} if the source node of edge e has a side ef-

fect of 1 (,...,)nx f x x , otherwise R(Sout) = R(Sin).

2. The condition constraints C(Sout) = C(Sin) ∪ Cond(e), where
− if the source node of e is a branch statement, such as if and while in language

C, Cond(e) is the transfer condition of e.
− if the source node of e is an assertion statement, Cond(e) is the assertion of the

assertion statement.

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 325

− if the source node of e has a side effect, Cond(e) is the addition constraint be-
tween constraint variables. For example, the addition constraint of

 5x y + is x > y.

The pseudo code of state generation is presented in Figure 2. This is a worklist al-
gorithm that updates constraints of statements until no further updates are possible.

global
1. Worklist: 2E*
2. SS: N* → S*

procedure Propagate(G* = N*, E*)
begin
3. for each m ∈ N* do SS(m) := (∅,∅)
4. Worklist := E*

5. while Worklist ≠ ∅ do
6. Remove a node e from Worklist
7. d = dst(e)
8. R(SS(d)) =

, () (((,), ()))r p pre d R Trans p d SS p∈

9. C(SS(d)) =
, () (((,), ()))c p pre d C Trans p d SS p∈

10. switch(d)
11. case d ∈ Exit:
12. Worklist := Worklist ∪ retSite(procOf(d))
13. case d ∈ Call:
14. for each actual parameter ap in d and its corresponding formal parameter

fp do
15. R(SS(d)) = R(SS(d)) ∪ {γ(fp) ⊇ γ(ap)}
16. case d ∈ Return:
17. R(SS(d)) = R(SS(d)) ∪ R(SS(exit(calledProc(d))))
18. if SS(m) has changed then Worklist := Worklist ∪ {(d, n) | n∈succ(d)}

end

Fig. 2. Algorithm for state generation

The algorithm uses the following functions:

− calledProc: maps a call node or a return node to the name of the called proce-
dure.

− procOf: maps a node to the name of its enclosing procedure.
− retSite: maps the name of a procedure to return nodes that return from the pro-

cedure.

The meet operator of range constraints R r R' is set union R ∪ R'. The meet op-

erator of condition constraints C c C' is computed as follows:

326 Y. Xia, J. Luo, and M. Zhang

1. Build two variable relation graphs Gv = (Nv, Ev) and Gv' = (Nv', Ev'). The vertices
of Gv and Gv' are the constraint variables in C and C' respectively. For each condi-
tion constraint x↑y in C (or C'), where ↑∈{<, ≤, = , ≥, >}, we add the labeled

edge x ↑⎯⎯→y in Gv (or Gv');
2. Form a variable relation graph Gv''= (Nv'', Ev''), where Nv'' = Nv ∪ Nv', Ev'' = {

x
↑⎯⎯→y | x ↑⎯⎯→y ∈ Ev and x ↑⎯⎯→y ∈ Ev' }

3. Delete redundant edges of Gv'': if there is a path x , *↑⎯⎯→z
↑⎯⎯→y, delete edge

x
↑⎯⎯→y, where x , *↑⎯⎯→z represents a path from x to z;

4. Generate the result: C c C' = C ∪ C' ∪ { x
↑⎯⎯→y | x ↑⎯⎯→y ∈ Ev''}.

3.3 Algorithm Analysis

The algorithm guarantees all statements not in the Worklist satisfy equations

, () , ()() ((((,), ())), (((,), ()))r p pre s c p pre sSS s R Trans p s SS p C Trans p s SS p∈ ∈= . At the end,

Worklist is empty, so the algorithm is correct.
At each iteration, the set of range constraints of a statement is increased and the set

of condition constraints of a statement is reduced, so the meet operator and transfer
functions are monotone. We use widening/narrowing operators to ensure termination
and accelerate convergence [6].

Let |N| and |E| be the number of nodes and edges in the super graph of a program
respectively. Assume each statement in a loop can be computed by
widening/narrowing at most M times, and the maximum depth of loop nests is K, the
node number to be processed is at most O(MK|E|). Let the time of transfer function be
J, the time of meet operator of range constraints be H, the time of meet operator of
condition constraints be Q. The complexity of state generator is O(Mk|E| (J+H+Q)).

4 State Resolution

After state generation, each statement is concerned with a set of linear range
constraints and a set of linear condition constraints. For the state s of a statement st,
range constraints R(s) defines a constraint system 1 i n iRC≤ ≤ , where each RCi∈R(s).

The solution of 1 i n iRC≤ ≤ represents possible value ranges of constraint variables.

Each constraint variable has a solution [-∞, +∞], but it is too conservative and no any
use. Linear program[7] can provide the minimal ranges of constraint variables for a set
of range constraints, which is enough precise for our analysis.

A linear program is an optimization problem that can be expressed as follows:

Objective function: cx
Constraint condition: Ax ≥ b

Where constraint matrix A is an m×n matix, cost coefficient c and right-hand-side
vector b are vectors of constants, decision variable x is a vector of variables.

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 327

A linear program is said to be feasible if one can find finite values for all the vari-
ables that satisfy all the constraints. A solution is said to be optimal if it maximizes
(or minimizes) the value of the objective function. A linear program is said to be
unbounded if a solution exists, but no solution optimizes the objective function.

Since the bounds of memory regions are integer, the problem of memory access er-
ror detection is called mixed integer programming that is a NP-complete problem, and
several approximation of optimal solution can be attained in polynomial time[22].

4.1 Constraint Reduce

Though linear program can solve a set of linear range constraints, it does not attain
optimal solution for all cases. If there is a uninitialized constraint variable or a
dependency cycle between constraint variables, the linear program may be unbounded
or infeasible.

A constraint variable is uninitialized if either the program variables that it corre-
spond to have not been initialized in the source code, or program statements that af-
fect the value of the program variables have not been captured by the analyzer. To
remove uninitialized constraint variables from the set of linear range constraints R, we
search constraint variables whose ranges do not include any constant or any range of
constraint variable, and remove these constraint variables from R. Repeat this process
until no constraint variable can be removed.

To break dependency cycles in the set of range constraints R, we form a
dependency graph Gd = (Nd, Ed), whose vertices are constraint variables in R. If there
is a constraint () ((...))1 nx f x , , xγ γ⊇ ∈R, we add a directed edge xi→x, 1≤ i ≤ n.

Search strongly connected components (SCCs) in Gd with DFS algorithm, we can find
dependency cycles in R. We delete incoming edges of the node that has the least
outcoming edges in a SCC of Gd, and set the node’s range to [-∞, +∞]. At last, we
transfer Gd to a acyclic graph Gd' and transfer R to a new set of range constraints R'.

4.2 Algorithm

For a memory access through pointer p in statement st, the out-of-bounds conditions
are loc(p).offset < 0 and pt(p).asize - loc(p).offset - pt(p).len < 0. If one of out-of-
bounds conditions is satisfied under state S(st), the dereference of p is said a memory

access error. The precision of a detection algorithm to a program is | |

| |

W

T
, where |W|

is the number of real errors, |T| is the number of total warnings.
The pseudo code of state solution is presented in Figure 3, where ε is an out-of-

bounds condition and S is the state of memory access statement. If any out-of-bounds
condition is analyzed at most once in a procedure, the algorithm can be terminable.
Because any nontrivial property about the language recognized by a Turing machine
is undecidable[23], no one can have a solution of a nontrival property that is both sound
and complete. To avoid generating too many false positives, our alogirthm ignores
undecidable solutions that may lose some vulnerabilities.

328 Y. Xia, J. Luo, and M. Zhang

procedure Solve(ε, S)
begin

1 Remove uninitialized constraint variables from R(S) to R'(S);
2 Break dependency cycles in R'(S), to attain a acyclic dependency graph G'd

and a new set of range constraints R''(S);
3 VS {v| v∈ε or there is a path from v to v', where v'∈ε}
4 Use R'(st) as the constraint condition, and apply linear program to solve

minimal rangs of constraint variables in VS;
5 Solve the inequality group, which includes condition constraints C(S), minimal rangs

of constraint variables in VS and ε:
5.1 If the inequality group exist a solution, the ε is unsafe and the analyzer re-

ports a warning;
5.2 If the inequality group exists a solution and there is any parameter of the

current procedure in VS, the analyzer resolves ε in the state of call
nodes that call the enclosing procedure of the current statement.

end

Fig. 3. Algorithm for state solution

5 Experiments

We have designed a static analysis tool, called MOC, to implement our algorithms.
The architecture of MOC is shown in Figure 4. MOC uses the front-end of LLVM[10]
to transform C/C++ source programs into static single assignment (SSA) form[11].
MOC applies Steensgaard algorithm, a whole program flow-insensitive context-
insensitive pointer analysis algorithm, to analyzing pointer alias.

Fig. 4. The architecture of MOC

We applied MOC to two group experiments. These experiments were taken on a
2.2GHz Pentium 4 machine with 512MB of memory running Linux. The first group
experiments measure some programs in SPEC2000 package, and the result is summa-
rized in Table 1. The column LOC displays the number of source lines in the original
source, the column FN displays the number of source function. The TW reports the
number of total warnings, and the FA reports the number of false alarms.

Programs in SPEC2000 have been developed many years and they are high quality
systems as benchmarks to measure compilers. MOC reported 43 bugs in 4 applica-
tions of SPEC2000, and had an average precision of 84%. Many bugs in 186.crafty
can be easily exploited by supplying an especially command line argument to the
program.

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 329

Table 1. The experimental results for SPECK2000

Program LOC FN time (s) TW FA Precision
164.gzip 17444 40 1.6 3 0 100%
186.crafty 21182 104 14.6 31 5 84%
197.parser 11421 299 23.4 4 0 100%
256.bzip2 4675 61 1.8 5 2 60%
Total 54722 504 41.4 43 7 84%

The second group experiments compared MOC with [3]. The latter presents an al-
gorithm that identifies buffer overruns using path and context-sensitive analysis with
the demand-driven technique. Table 2 is the experimental results, where bold font is
MOC and italic is [3]. The speeds of MOC are higher clearly. Especially, MOC only
spends 0.4 second to analyze lhttpd, and [3] spends 99 seconds. It shows our
analysis is much faster than path-sensitive analysis.

Table 2. The results of contrast experiment

Program LOC FN time (s) TW FA Precision
bftpd
1.0.11

2946 47 1.4 2.3 2 1 0 0 50% 100%

gzip 1.2.4 8162 93 0.9 2.0 1 1 0 0 100% 100%
lhttpd 0.1 888 21 0.4 99 2 1 1 0 100% 100%
Total 11996 161 2.7 103.3 5 3 1 0 80% 100%

6 Relation Work

Dynamic analysis techniques[13~16] can detect out-of-bounds memory access in run-
time, but fail to eliminate errors from source code. Several static analysis techniques
have been proposed to detect memory access errors from source code, and thus help
the developer to eliminate errors before the source code is deployed.

CSSV[17] and Splint[18] are annotation driven tools. These tools use user-supplied
annotations, such as pre- and post-conditions of a function, to aid static analysis.
Since annotations burden users, these tools are limited to existing code bases.

BOON[4] and [5] model strings as abstract data types and transform the buffer over-
run detection problem into a range analysis problem. With flow-insensitive and con-
text-insensitive analysis, they are efficient, but their false positive rates are very high.

CGS[19] checks out-of-bounds array accesses in multithreaded C programs. CGS
analyzes programs using flow-insensitive analysis, except the numerical invariants of
loops. It also makes context-sensitive analysis for functions that have a pointer in
their signature, and context-insensitive analysis for others. The false alarm rate of
CGS is low for multithreaded C programs, but unknown for others. CGS depends
specializing algorithms to analyze loops in different software, which limits its impact
in the software industry.

330 Y. Xia, J. Luo, and M. Zhang

ARCHER[2] and Xie et. al.[3] make path-sensitivity analysis to detect memory er-
rors. Since path-sensitive analysis follows the actual program paths, the false alarm
rates of these tools are very low. However, the exponential cost limits their scale to
large code bases.

7 Conclusion

In this paper, we propose a conditional symbolic range analysis to detect memory
access errors statically. First, we use a flow-sensitive, inter-procedural algorithm to
generate a state for each statement in a program, and a state includes a set of range
constraints and a set of conditions. Then, we solve states of memory access statements
to evaluate the sizes of accessed memory bounds with linear program, and determi-
nate access errors in a program with inequality group resolutions. We implement a
prototype. The experimental results show that it is precise and effective.

References

1. CERT/CC. Advisories. http://www.cert.org/advisories.
2. Yichen X., Andy C., Dawson E.: ARCHER: Using Symbolic, Path-sensitive Analysis to

Detect Memory Access Errors. European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), Hel-
sinki, Finland, 2003.

3. V. Benjamin Livshits, Monica S. L.: Tracking Pointers with Path and Context Sensitivity
for Bug Detection in C Programs. ESEC/FSE, Helsinki, Finland, 2003.

4. D. Wagner, J. Foster, E. Brewer, A. Aiken.: A first step towards automated detection of
buffer overrun vulnerabilities. The Symposium on Network and Distributed Systems Se-
curity, USA, 2000.

5. Vinod G., Somesh J., David C., David M., David V.: Buffer Overrun Detection using Lin-
ear Programming and Static Analysis. ACM conference on computer and communi-
cations security, USA, 2003.

6. P. Cousot, R. Cousot.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. ACM Symposium on PLDI,
USA, 1977.

7. R. Wunderling.: Paralleler und Objektorientierter Simplex-Algorithmus. PhD thesis, Kon-
rad-Zuse-Zentrum fur Informationstechnik Berlin, TR, 1996.

8. W. Blume, R. Eigenmann.: Symbolic range propagation. The 9th International Parallel
Processing Symposium, USA, 1995.

9. Suan H.Y., Susan H.: Pointer-Range analysis. Static Analysis Symposium, Italy, 2004.
10. Chris L., Vikram A.: LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. 2nd IEEE / ACM International Symposium on Code Generation and
Optimization, USA, 2004.

11. LLVM Language Reference Manual, http://llvm.cs.uiuc.edu/docs.
12. R. Hastings, B. Joyce.: Purify: Fast detection of memory leaks and access errors. The

Winter USENIX Conference, USA, 1992.
13. R. Jones, P. Kelly.: Backwards-compatible bounds checking for arrays and pointers in C

programs. The International Workshop on Automatic Debugging, Sweden, 1997.
14. Greg M.: Bounds Checking Projects. http://gcc.gnu.org/projects/bp/main.html

 Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis 331

15. Olatunji R., Monica S.L.: A Practical Dynamic Buffer Overrun Detector, Network and
Distributed System Security Symposium, USA, 2004.

16. John W., Mariam K.: A Comparison of Publicly Available Tools for Dynamic Buffer
Overrun Prevention, Network and Distributed System Security Symposium, USA, 2003.

17. Nurit D., Michael R., Mooly S.: CSSV: Towards a Realistic Tool for Statically Detecting
All Buffer Overruns in C. ACM Conference on PLDI, USA, 2003.

18. David E., David L.: Improving Security Using Extensible Lightweight Static Analysis.
IEEE Software, Jan/Feb 2002.

19. Arnaud V., Guillaume B.: Precise and Efficient Static Array Bound Checking for Large
Embedded C Programs. ACM Conference on PLDI, USA, 2004.

20. Steensgaard B.: Points-to Analysis in Almost Linear Time. ACM Conference on PLDI,
USA, 1996.

21. Manuvir D.: Unification-based pointer analysis with directional assignments. ACM Con-
ference on PLDI, USA, 2000.

22. Thomas H.C., Charles E.L., Ronald L.R., Clifford S.: Introduction to algorithms, the MIT
press, 2001.

23. H.G. Rice.: Classes of Recursively Enumerable Sets and their Decision Problems. Trans-
actions of the American Mathematical Society No. 89, pp. 25-29, 1953.

Deductive Probabilistic Verification Methods of
Safety, Liveness and Nonzenoness for

Distributed Real-Time Systems

Satoshi Yamane

Dept. of Information Engineering, Kanazawa University,
Kanazawa City, Japan

Tel:+81.76.234.4856, Fax:+81.76.234.4900
syamane@is.t.kanazawa-u.ac.jp

Abstract. Recently, model-checking and probabilistic timed simulation
verification methods of probabilistic timed automata have been devel-
oped. In this paper, we propose probabilistic timed transition systems
by generalizing probabilistic timed automata, and propose deductive ver-
ification rules of probabilistic real-time linear temporal logic over prob-
abilistic timed transition systems. As our proposed probabilistic timed
transition system is a general computational model, we have developed
general verification methods.

1 Introduction
Distributed real-time systems are of vital economic importance and are liter-
ally becoming ubiquitous. They have already become an integral component of
safety critical systems involving aviation, telecommunications, and process con-
trol applications. Today, timed automaton [1] is the standard tool for specifying
and verifying real-time systems by model-checking methods [2]. On the other
hand, in order to express the relative likelihood of the system exhibiting cer-
tain behavior, M. Kwiatkowska has developed probabilistic timed automata and
their model-checking method [3]. Moreover, the verification method of proba-
bilistic timed simulation of probabilistic timed automata has been developed
[4]. In this paper, we develop probabilistic timed transition systems by gener-
alizing probabilistic timed automata, and develop deductive verification rules
over probabilistic timed transition systems. Our probabilistic timed transition
system is a general computational model with discrete probability distributions.
By probabilistic timed transition systems, we can construct general verification
methods. Here we mention related works about temporal verifications of both
probabilistic and real-time systems as follows:

1. In 1982, A. Pnueli has developed a proof principle for liveness properties
based on the general idea of well-founded descent [5]. But the work [5] consti-
tutes only a partial solution to the general problem of verifying probabilistic
concurrent programs, since it only presents an isolated proof principle for
liveness properties. Several subsequent works have tried to extend it into

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 332–345, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Deductive Probabilistic Verification Methods 333

more comprehensive proof systems [6, 7, 8] as follows: (1)First, M. Sharir has
developed the system based on generalization of branching time temporal
logic [6]. (2)Next, D. Lehmann has developed the system [7]. Lehmann’s
system is essentially a linear time system which follows a linear history but
may refer to untaken alternatives [7]. (3)Moreover, an alternative approach
based on the standard linear temporal logic is presented by A. Pnueli [8].
In 1986, A. Pnueli has adopted the linear approach suggested in the work
[8] and extended it to multiprocess concurrent programs, i.e., to programs
for n processes for n processes for unspecified but n ≥ 2. A. Pnueli’s proof
system is first applied to the free philosophers algorithm. But A. Pnueli has
not considered real-time aspects.

2. In 1991, H.A. Hansson has developed bisimulation verification of discrete
time probabilistic process algebra, and model-checking of discrete time prob-
abilistic temporal logic [10]. Namely, H.A. Hansson has extended classical
process algebra with discrete time and probability. But H.A. Hansson has
not considered dense time models.

3. A notable contribution to the area of the verification of probabilistic systems
operating in dense time was offered by R. Alur, C. Courcoubetis and D.L. Dill
[11, 12], who provided a model checking technique for a variant of Generalized
Semi-Markov Processes against timed properties in 1991. But they have not
developed deductive verification systems.

4. N. Lynch and F. Vaandrager have developed several kinds of timed simula-
tion proof methods their timed automata [13] in 1991. Their timed automata
[13] can serve as a semantic model, and their proposed proof methods are con-
structed on this semantic model. Our proposed model includes their timed
automata. Moreover, we consider probabilistic behaviors, but they have not
considered probabilistic behaviors.

5. R. Segala has developed the model of probabilistic timed automata, which
is a dense time model, but is used in the context of manual simulation
and bisimulation verification techniques in 1995 [14]. But R. Segala has not
developed deductive temporal verification systems.

6. In 1996, Y. Kesten, Z. Manna and A. Pnueli have developed clocked transi-
tion systems by generalizing timed automata, and verification rules of real-
time temporal logic [15]. But they have not considered probabilistic behav-
iors.

7. In 1999, M. Kwiatkowska has developed probabilistic timed automata with
discrete probability distributions, and their model-checking method [3]. After
that, S. Yamane has developed some simple timed simulation verification of
probabilistic timed automata [4]. Moreover, M. Kwiatkowska has applied
probabilistic timed automata into specification of IEEE 1394 FireWire Root
Contention Protocol [16]. But they have not developed deductive verification
systems.

In this paper, we develop probabilistic timed transition systems by gener-
alizing probabilistic timed automata, and deductive verification rules such as
safety and liveness properties, nonzenoness of probabilistic real-time temporal

334 S. Yamane

logic. The verification of liveness properties requires adjustments of the proof
rules developed for untimed systems [17, 18], reflecting the fact that progress in
the real time systems is ensured by the progress of time and not by fairness.
By our proposed method, we can construct a general computational model and
verification methods. Our proposed method does not refer to the region graph.
In general, deductive verification method is completely general but typically re-
quires significant human guidance, whereas model checking though restricted to
a limited range of properties of small finite state systems, is largely automatic.
Recently, in LICS2003 [19], M. Kwiatkowska mentions that the proof system
of probabilistic timed automata is an important open problem. To the best of
our knowledge, deductive verification systems of probabilistic real-time tempo-
ral logic over probabilistic timed transition systems have never been developed
before now.

2 Real-Time Systems with Discrete Probabilities

In this section, we propose probabilistic timed transition systems by generalizing
probabilistic timed automata [3].

2.1 Probabilistic Timed Transition Systems

First, we define discrete probability distributions as follows:

Definition 1. (Discrete probability distribution)
We denote the set of discrete probability distributions over a finite set Q by μ(Q).
Therefore, each p ∈ μ(Q) is a function p : Q → [0, 1] such that

∑
q∈Q p(q) = 1.

Supp(p) denotes the support of p, i.e. the set of elements q∈ Q with p(q)> 0.

Next, we define probabilistic timed transition systems as follows:
First, we consider a finite set of system variables. System variables are typed,

where the type of a variable, such as boolean, integer, etc., indicates the domain
over which the variables ranges. We define a state s to be a type-consistent
interpretation, assigning to each variable u a value s[u] over its domain. We
denote by Σ the set of all states.

Definition 2. (Probabilistic timed transition system)
A probabilistic timed transition system PTS = (V, Θ, prob, Π) consists of :

1. V : A finite set of system variables.
The set V = L ∪ D ∪ C is partitioned into L = {l1, . . . , lo} the set of

location variables, D = {u1, . . . , un} the set of discrete variables, and C =
{t1, . . . , tm} the set of clocks. Clocks always have the type real. The discrete
variables can be of any type. The location variable has the location value.
We introduce a special clock T ∈ C, representing the master clock, as one of
the system variables. We define sL∪D to be a type-consistent interpretation,
assigning to each variable u ∈ L∪D a value sL∪D[u] over its domain. Each
variable u ∈ L ∪ D is time-invariant. We denote by ΣL∪D the set of all

Deductive Probabilistic Verification Methods 335

type-consistent interpretations of location and discrete variables. Moreover,
we define sC to be a type-consistent interpretation, assigning to each variable
ci ∈ C a value sC [ci] over its domain. Each variable ci ∈ C is time-variant.
We denote by ΣC the set of all clock values.

2. Θ : The initial condition. A satisfiable assertion characterizing the initial
states. It is required that

Θ → t1 = . . . = tm = T = 0,

i.e., the clocks are reset to zero at all initial states.
3. Π FThe time-progress condition.

An assertion over V . The assertion is used to specify a global restriction
over the progress of time.

4. prob : A finite set of transitions.

Fig. 1. A transition of Probabilistic timed transition system

(a) Each transition τp(s′L∪D) ∈ T is a function

prob : ΣL∪D → 2TICK×μ(ΣL∪D),

mapping each sL∪D ∈ ΣL∪D into both a set of TCIK and a set of
discrete probability distributions μ(ΣL∪D) as shown in figure 1. If we
consider sL∪D ∈ ΣL∪D and (tick, p) ∈ prob(sL∪D), a probabilistic tran-
sition from a state s to a state s′ with probability p(s′L∪D) occurs, where
tick ∈ TICK, p ∈ μ(ΣL∪D) and sL∪D ∈ ΣL∪D.

(b) Now we define a set of TCIK as follows:
Transition tick ∈ TICK is a special transition intended to represent the
passage of time. Its transition relation is given by:

ρtick : ∃� > 0.Ω(�) ∧ L′ = L ∧ D′ = D ∧ C′ = C + �

where Ω(�) is given by

Ω(�) : � > 0 ∧ ∀t ∈ [0,�).Π(L, D, C + t).

Let L={l1, . . . , lo}be the set of location variables of PTS, D={u1, . . . , um}
be the set of discrete variables of PTS and C = {t1, . . . , tk, T } be the set
of its clocks. Then, the expression C′ = C + � is an abbreviation for

t1′ = t1 + �∧ . . . ∧ tk′ = tk + �∧ T ′ = T + �

336 S. Yamane

and Π(L, D, C + t) is an abbreviation for

Π(l1, . . . , lo, u1, . . . , um, t1 + t, . . . , tk + t, T + t).

(c) The function associated with a transition τp(s′L∪D) is represented by an
assertion ρτp(s′L∪D)(V, V ′), called the transition relation, which relates
a state s ∈ Σ to its τp(s′L∪D)-successor s′ ∈ τp(s′L∪D)(s) by referring to
both unprimed and primed versions of the system variables. An unprimed
version of a system variable refers its value in s, while a primed version
of the same variable refers to its value in s′.

Next, we define a path of a probabilistic timed transition system as follows:

Definition 3. (Path)
Paths in a probabilistic timed transition system arise by resolving both the nonde-
terministic and probabilistic choices. A path of the probabilistic timed transition
system is a non-empty finite or infinite sequence:

ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,P2−→ s3

tick3,p3−→ s4

where si ∈ Σ, si ∈ τpi−1(siL∪D)(si−1) or Ci = Ci−1 + �i−1. Here Ci denotes C
at si and Ci−1 denotes C at si−1. ω(k) denotes the k-th state of ω. The location
and discrete values of the last state of ω is denoted by last(ω). Pathfin is the set
of finite paths, and Pathfin(s) is the set of paths in Pathfin such that ω(0) = s.
Pathful is the set of infinite paths and Pathful(s) is the set of paths in Pathful

such that ω(0) = s. Also, Pathfin(sL∪D) is the set of paths in Pathfin such
that ω(0) = s. Moreover, Pathful(sL∪D) is the set of paths in Pathful such that
ω(0) = s.

A path ω of PTS is a finite or infinite sequence of states satisfying:

1. Initiation: s0 |= Θ
2. Consecution:

(1) Case of probabilistic transitions: si ∈ τpi−1(siL∪D)(si−1).
(2) Case of tick transition: Ci = Ci−1 + �i−1, where Ci denotes C at si

and Ci−1 denotes C at si−1.

Moreover, in some case, a path ω of PTS is an infinite sequence of states
satisfying:

3. Time Divergence: The sequence s0[T],s1[T],. . .,si[T],. . . grows beyond any
bound. That is, as i increases, the value si[T] of T at si increases beyond
any bound.

2.2 Adversary

We now introduce adversaries of probabilistic timed transition systems as func-
tions which resolve all the nondeterministic choices of the system [3]. The concept
of adversaries has been proposed by A. Pnueli [5] and M. Vardi [20]. Moreover,
M. Kwiatkowska has applied it into probabilistic timed automata with discrete
probability distributions [3]. In this paper, we use M. Kwiatkowska’s definitions.

Deductive Probabilistic Verification Methods 337

Definition 4. (Adversary of a probabilistic timed transition system)
An adversary of a probabilistic timed transition system PTS = (V, Θ, prob, Π) is
a function A mapping every finite path ω of PTS to (tick, p) ∈ prob(sL∪D) such
that A(ω) ∈ prob(last(ω)), where last(ω) denotes the last location and discrete
values of ω, sL∪D ∈ ΣL∪D, tick ∈ TICK, p ∈ μ(sL∪D).

For an adversary A of a probabilistic timed transition system
PTS = (V, Θ, prob, Π), we define PathA

fin to be the set of finite paths. With
each adversary A we associate a sequential Markov chain, which can be viewed
as a set of paths in PTS. Formally, if A is an adversary of the probabilistic timed
transition system PTS, then MCA=(PathA

fin,PA) is a Markov chain where:

PA(ω, ω′) =

{
p(sL∪D) if A(ω) = (tick, p) and ω′ = ω

tick,p−→ s
0 otherwise.

For any probabilistic timed transition system and adversary A, let Fpath
A be

the smallest σ-algebra on Pathful
A which contains the sets:

{ω|ω ∈ Pathful
A and ω′ is a prefix of ω } for all ω′ ∈ Pathful

A.

We now define a measure ProbA on the σ-algebra Fpath
A, by first defining

the following function on the set of finite paths Pathful
A.

Definition 5. (Probfin
A)

Let A be an adversary of the probabilistic timed transition system PTS. Let
Probfin

A : PathA
fin → [0, 1] be the mapping inductively defined on the length of

paths in Pathfin
A as follows:

1. If |ω| = 0, then Probfin
A(ω) = 1.0.

2. If |ω| �= 0, then if ω = ω′ tick,p−→ s for some ω′ ∈ Pathfin
A, then ProbA

fin(ω) =
ProbA

fin(ω′) ·PA(ω′, ω), where PA(ω′, ω) = p(sL∪D).

Definition 6. (ProbA)
The measure ProbA on Fpath

A is the unique measure such that:
ProbA({ω|ω ∈ pathA

ful and ω′ is a prefix of ω }) = Probfin
A(ω′).

A common restriction imposed in the study of real-time systems is that of
nonzenoness. A probabilistic timed transition system is defined to be nonzeno
if every finite path can be extended into an infinite path. Here a state is called
accessible if it appears in a path of a probabilistic timed transition system.
Nonzenoness requires that a state s is accessible iff it appears in some path of a
probabilistic timed transition system.

3 Probabilistic Real-Time Linear Temporal Logic

In this section, we introduce probabilistic real-time linear temporal logic. To
specify properties of probabilistic timed transition systems, we use the language
of temporal logic, as presented in the book [17].

338 S. Yamane

First, we define syntax of probabilistic real-time linear temporal logic. Here
we only use the following:

Definition 7. (Syntax of probabilistic real-time linear temporal logic)
Syntax of probabilistic real-time linear temporal logic is inductively defined as
follows:

1. q is any first-order formula.
2. [�q]�λ, where q is any first-order formula, and λ ∈ [0, 1], � is ≥ or >.

[�q]�λ means that q always holds true satisfying � λ.
3. [�(q → ♦r)]�λ, where q and r are any first-order formula.

[�(q → ♦r)]�λ means that q entails eventually r satisfying � λ.

Next, we define semantics of probabilistic real-time linear temporal logic as
follows:

Definition 8. (Semantics of probabilistic real-time linear temporal
logic)
Given a probabilistic timed transition system PTS and a set A of adversaries,
then for any state s of PTS, probabilistic real-time linear temporal logic formula
φ, the satisfaction relation s|=Aφ is defined inductively as follows:

1. s|=Aq
⇐⇒ s |= q, where s |= q means that an assertion q holds true on state s.

2. s|=A[�q]�λ

⇐⇒ ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }) � λ for all

A ∈ A.
3. s|=A[�(q → ♦r)]�λ

⇐⇒ ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and for some j ≥ i

ω(j) |=A r for every i }) � λ for all A ∈ A.

Next, we define concepts of q-state, state valid and valid as follows: (1)Given
a probabilistic timed transition system PTS, a set A of adversaries, an assertion
q, a state s of PTS, if q holds on s, then s is a q-state. (2)Given a probabilistic
timed transition system PTS, a set A of adversaries, an assertion q, if it holds
over all accessible states for every A ∈ A, then an assertion q is called state
valid. In this paper, we say that a state s is accessible if it appears in some
path of PTS. (3)Given a probabilistic timed transition system PTS, a set A of
adversaries, a temporal formula φ, if it holds over all the paths of PTS for every
A ∈ A, then a temporal formula φ is called valid.

4 Verifying Safety Property

In this section, we present methods for verifying safety property ([�q]�λ) of
probabilistic timed transition systems. We construct methods for verifying safety
property of probabilistic timed transition systems by extending Z. Manna’s and

Deductive Probabilistic Verification Methods 339

A. Pnueli’s verification methods of reactive systems [17] and real-time
systems [15].

First, we define the deductive verification rule of safety property.
For every adversary A of PTS = (V, Θ, prob, Π), a path of the probabilistic

timed transition system is a non-empty finite or infinite sequence:

ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,p2−→ s3

tick3,p3−→ s4
tick4,p4−→ s5

where si ∈ Σ, si ∈ τpi−1(sL∪Di)(si−1) or Ci = Ci−1 + �i−1. The transition
relation ρticki is given by :

ρticki : ∃�i > 0.Ω(�i) ∧ L′ = L ∧ D′ = D ∧ C′ = C + �i,

where Ω(�i) is given by

Ω(�i) : �i > 0 ∧ ∀t ∈ [0,�i).Π(L, D, C + t).

Let A be an adversary of the probabilistic timed transition system PTS. Let
Probfin

A : PathA
fin → [0, 1] be the mapping inductively defined on the length

of paths in Pathfin
A as follows:

1. If |ω| = 0, then Probfin
A(ω) = 1.

2. If |ω| �= 0, then if ω = ω′ ticki,pi−→ s for some ω′ ∈ Pathfin
A, then we let

ProbA
fin(ω) = ProbA

fin(ω′) ·PA(ω′, ω) , where let PA(ω′, ω) be pi(sL∪D).

In general, we can define ProbA
fin(ωn) = PA(ω0, ω1) ·PA(ω1, ω2) ·PA(ω2, ω3) ·

. ·PA(ωn−1, ωn) where ωn = s0
tick0,p0−→ s1

tick1,p1−→ s2
tickn−1,pn−1−→ sn.

We verify whether ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }) � λ

for all A ∈ A are satisfiable or not, where ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,p2−→

s3
tick3,p3−→ s4
We must compute the minimal probability of ProbA({ω|ω ∈ Pathful

A(s),
and, ω(i) |=A q for ∀i }) for all A ∈ A.

Lemma 1. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. We can define the minimal probability of ProbA as follows:

pmin(ω) = infA∈A ProbA({ω|ω ∈ Pathful
A, and, ω(i) |=A q for ∀i }).

Then, pmin is the least fixed point of the operator

F : (Pathful → [0, 1]) → (Pathful → [0, 1])

that is defined as follows:

F (f)(ω) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick, p ∈

μ(last(ω))}
where sL∪D = last(ω) and C′ = C + �.

Here C′ denotes the set C at si and C denotes the set C at s.

340 S. Yamane

Theorem 1. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. We can define the minimal probability of ProbA as follows:

pmin(s) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }).

We can also denote the minimal probability of ProbA as follows:

pmin(sL∪D) = infA∈A ProbA({ω|ω ∈ Pathful
A(sL∪D), and, ω(i) |=A q for

∀i }).

Then, pmin is the least fixed point of the operator

F : (ΣL∪D → [0, 1]) → (ΣL∪D → [0, 1])

that is defined as follows:

F (f)(sL∪D)=min{ s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · f(s′L∪D) |ρtick, p ∈ μ(sL∪D)}.

Proposition 1. (Computing the minimal probability)
Theorem 1 yields that the value pmin can be approximated with the following
iterative method.

For sL∪D ∈ ΣL∪D and n = 0, 1, 2,,
pmin

n+1(sL∪D) = min{
∑

s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin
n(sL∪D) |ρtick,

p ∈ μ(sL∪D)}.

Finally, we define verification rule of safety property as follows:

Definition 9. (Verification rule of safety property)
For every adversary A of PTS = (V, Θ, prob, Π), and assertions ϕ and q, we
define the verification rule as follows:

1. Θ → ϕ
2. ϕ → q
3. For every τ ∈ TH , ρτ ∧ ϕ → ϕ′
4. For every initial state s, which satisfies Θ,

pmin
n+1(sL∪D) = min{

∑
s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin

n(sL∪D) |ρtick,

p ∈ μ(sL∪D)} � λ
5. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6. [�q]�λ

This rule is a verification rule of safety property. If premises 1,2,3 and 4 are
satisfied, [�q]�λ can be verified.

Next, we present the soundness of the rule as follows:

Theorem 2. (The soundness of the rule for verifying the safety
property)
If all the premises of the rule are state valid, [�q]�λ is valid.

Deductive Probabilistic Verification Methods 341

5 Verifying Liveness Property

In this section, we present methods for verifying liveness property ([�(q →
♦r)]�λ) of probabilistic timed transition systems. We construct methods for
verifying liveness property of probabilistic timed transition systems by extending
Z.Manna’s and A.Pnueli’s verification methods of reactive systems [18] and real-
time systems [15].

First, we define the deductive verification rule of liveness property.
The rule uses auxiliary assertions ϕ1, . . . , ϕm and refers to assertion r also

as ϕ0. With each assertion ϕi we associate one of the clocks ti ∈ C, to which
we refer as the clock, and a real-valued upper bound bi. The intention is that
while remaining in states satisfying ϕi, the clock ti is bounded by bi and never
reset. Since time in a computation grows beyond any bound, this will imply that
we cannot continually stay at a ϕi for too long. Moreover, for all i, ϕi entails
eventually ϕj satisfying � λ, where j ≤ i.

Next, we define the deductive verification rule of liveness property. We can
compute the minimal probability of ProbA({ω|ω ∈ Pathful

A(s), and, ω(i) |=A q
and for some j ≥ i ω(j) |=A r for every i }) � λ.

Lemma 2. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. Let ω(k) ∈ Σ1, k = i, i + 1, . . . , j − 1, and ω(j) ∈ Σ2. We can
define the minimal probability of ProbA as follows:

pmin(ω) = infA∈A ProbA({ω|ω ∈ Pathful
A, and, ω(i) |=A q and for some

j ≥ i ω(j) |=A r for every i }).

Then, pmin is the least fixed point of the operator

F : (Pathful → [0, 1]) → (Pathful → [0, 1])

that is defined as follows:

If s ∈ Σ2 then F (f)(ω) = 1.
If s ∈ Σ \ (Σ1 ∪ Σ2) then F (f)(ω) = 0.
If s ∈ Σ1 \ Σ2 then

F (f)(ω) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick, p ∈

μ(sL∪D)}
where sL∪D = last(ω) and C′ = C +�. Here C′ denotes C at si and C denotes
C at s.

Theorem 3. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. Let ω(k) ∈ Σ1, k = i, i + 1, . . . , j − 1, and ω(j) ∈ Σ2. We can
define the minimal probability of ProbA as follows:

pmin(s) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and for

some j ≥ i ω(j) |=A r for every i }).

342 S. Yamane

We can also denote the minimal probability of ProbA as follows:

pmin(sL∪D) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and

for j ≥ i ω(j) |=A r for all i }).

Then, pmin is the least fixed point of the operator

F : (ΣL∪D → [0, 1]) → (ΣL∪D → [0, 1])
that is defined as follows:
If s ∈ Σ2 then F (f)(sL∪D) = 1.
If s ∈ Σ \ (Σ1 ∪ Σ2) then F (f)(sL∪D) = 0.
If s ∈ Σ1 \ Σ2 then

F (f)(sL∪D) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick,

p ∈ μ(sL∪D)}

where sL ∪ D = last(ω) and C′ = C+�. Here C′ denotes C at si and C denotes
C at s.

Proposition 2. (Computing the minimal probability)
Theorem 1 yields that the value pmin can be approximated with the following
iterative method.

We put pn(sL∪D) = 1.0 if s ∈ Σ2 and pn(sL∪D) = 0 if s ∈ S \ (Σ1 ∪ Σ2),
n = 0, 1,

For s ∈ Σ1 \ Σ2, n = 0, 1, 2,,

pmin
n+1(sL∪D) = min{

∑
s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin

n(sL∪D) |ρtick,
p ∈ μ(sL∪D)}.

Definition 10. (Verification rule of liveness property)
For every Adversary A of PTS = (V, Θ, prob, Π), and assertions q, r, ϕ0 =
r,ϕ1,. . ., ϕm, clocks t1,. . .,tm ∈ C, and real constants b1,. . .,bm ∈ R, we define
the verification rule as follows:

1. q →
∨m

j=0 ϕj

2. For i = 1, . . . , m:
1. For every τ ∈ T , ρτ ∧ ϕi → (ϕi′ ∧ ti′ ≥ ti) ∨

∨
j<i ϕj ′

2. For every τ ∈ T ,
pmin

n+1(sL∪D) = min{
∑

s′L∪D∈ΣL∧�>0 p(s′L∪D) · pmin
n(sL∪D)

|ρtick, p ∈ μ(sL∪D)} � λ
3. ϕi → ti ≤ bi

4. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5. [�(q → ♦r)]�λ

This rule is a verification rule of liveness property. If premises 1 and 2 are
satisfied, [�(q → ♦r)]�λ can be verified.

We simply explain the premises as follows:

1. The premise 1. requires that every q-state satisfies one of ϕ0 = r, ϕ1,. . .,ϕm.
2. For i = 1, . . . , m, three following premises hold true :

Deductive Probabilistic Verification Methods 343

1. The premise 2.1. requires that every τ-successor (∀τ ∈ T) of a ϕi-state
s is a ϕj-state for some j ≤ i. In this case that the τ-successor state
satisfies ϕi, it is required that the transition does not decrease the value
of ti.

2. The premise 2.2. requires that the minimal measure satisfies � λ.
3. The premise 2.3. requires that assertion ϕi implies that ti is bounded by

the constant bi.

Next, we present the soundness of the rule as follows:

Theorem 4. (The soundness of the rule)
If all the premises of the rule are state valid, [�(q → ♦r)]�λ is valid.

6 Verifying Nonzenoness

It is a widely accepted notion that the only interesting real-time systems are
those which obey the nonzeno restriction [21]. In the view of the significance of
the nonzeno restriction, it is important to be able to verify that an arbitrary
given probabilistic timed transition system is nonzeno.

The general strategy we propose for proving that a given probabilistic timed
transition system PTS is nonzeno in the following rule. We construct the fol-
lowing rule by combing A. Pnueli’s verification rule of nonzenoness [15] with
M. Kwiatkowska’s divergent adversaries [3]. But both A. Pnueli
and M. Kwiatkowska have not proposed the proof rule of nonzenoness for prob-
abilistic timed systems. We can compute the minimal probability ProbA({ω|ω ∈
Pathful

A(s)}) in the same way as the verification rule of safty property.

Definition 11. (Verification rule of nonzenoness)
For every divergent adversary Adiv of PTS = (V, Θ, prob, Π), and assertions ϕ,
we define the verification rule as follows:

1. PTS ‖= ϕ
2. PTS |= AG(ϕ ∧ Ta = 0 → EF (Ta ≥ 1))
3.

∑
A∈Adiv

{ pmin
n+1(sL∪D) = min{

∑
s′L∪D inΣL∪D∧�>0 p(s′L∪D)·

pmin
n(sL∪D) |ρtick, p ∈ μ(sL∪D)} } = 1

4. −−
5. PTS is nonzeno

This rule is a verification rule of nonzenoness. If premises 1,2 and 3 are
satisfied, PTS is nonzeno can be verified.

We have already defined the premise 3, but have not defined premises 1 and
2. Now we will define them as follows:

1. premise 1 :
The premise 1 is a rule that establishes the state validity of an assertion ϕ.
We define the rule as follows:
For every divergent adversary Adiv of PTS = (V, Θ, prob, Π), and assertions
ϕ and q,

344 S. Yamane

1. q → ϕ
2. Θ → q
3. For every τ ∈ T , ρτ ∧ q → q′
4. −−−−−−−−−−−−−−−−−−−−−−−−
5. PTS ‖= ϕ

This rule have been firstly defined by A. Pnueli [15]. This rule follows that ϕ
holds on every accessible state of PTS for every divergent adversary Adiv,
and therefore, an assertion ϕ is state valid.

2. premise 2 :
The premise 2 belongs to the realm of branching-time temporal logic [15],
which is different from the linear-time temporal framework we have been
consistently using this paper. We use the branching-time temporal logic CTL
[22] for formulating the required property, as in the premise 2. The premise
2 states that, from every ϕ-state s, it is possible to trace a path segment in
which time increases by at least 1 from its value at s. We use the constant
a to represent the global time at s. The proof rule of the premise 2 has been
propoesed by A. Pnueli [15]. The proof rule is omitted in this paper because
of lack of spaces.

Next, we present the soundness of the rule as follows:

Theorem 5. (The soundness of the rule for verifying nonzenoness)
If all the premises of the rule are state valid, PTS’s nonzenoness is valid.

7 Conclusions

In this paper, we have developed probabilistic timed transition systems by gen-
eralizing probabilistic timed automata, and verification rules of probabilistic
real-time temporal logic. By our proposed methods, we could construct a gen-
eral computational model and verification method. We have omitted the proofs
of completeness of rules because of lack of spaces. We are now planning to apply
our proposed methods into real distributed real-time systems. Moreover, we will
support deductive verification jobs by mechanical theorem provers. Moreover,
we will reduce deductive verification jobs into model-checking by transforming a
probabilistic timed transition system into a finite probabilistic timed automaton
based on abstract interpretation.

References

1. R. Alur, D.L. Dill. A theory of timed automata. Theoretical Computer Science,Vol.
126, pp.183-235, 1994.

2. T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, Vol. 111, pp. 193-244, 1994.

3. M. Kwiatkowska, G. Norman, R. Segala, J. Sproston. Automatic verification of
real-time systems with discrete probability distributions. Theoretical Computer
Science 282, pp 101-150, 2002

Deductive Probabilistic Verification Methods 345

4. S. Yamane : Probabilistic Timed Simulation Verification and its application to
Stepwise Refinement of Real-Time Systems. LNCS 2896, pp.276-290, Springer-
Verlag, 2003.

5. S. Hart, M. Sharir, A. Pnueli. Termination of Probabilistic Concurrent Programs.
ACM TOPLAS, Vol. 5, pp.356-380, 1983. (In 9th ACM POPL , pp.1-6, 1982.)

6. M. Sharir, S. Hart. Probabilistic temporal logics for finite and bounded models.
Proc. of the 16th ACM Symposium on Theory of Computing, pp. 1-13, 1984.

7. D. Lehmann, S. Shelah. Reasoning about time and chance. Information and
Control, Vol.53, pp.165-198, 1982.

8. A. Pnueli. On the Extremely Fair Treatment of Probabilistic Algorithms. Proc. of
the 15th ACM Symposium Theory of Computing, pp. 278-290, 1983.

9. A. Pnueli, L. Zuck. Verification of multiprocess probabilistic protocols. Distributed
Computing, 1(1), pp.53-72, 1986.

10. H.A. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Uppsala University, 1991.

11. R. Alur, C. Courcoubetis, D.L. Dill. Verifying automata specifications of proba-
bilistic real-time systems. LNCS 600, pp. 28-44, 1991.

12. R. Alur, C. Courcoubetis, D.L. Dill. Model-checking for probabilistic real-time
systems. LNCS 510, pp. 115-136, 1991.

13. N.A. Lynch, F.W. Vaandrager. Forward and Backward Simulations for Timing-
Based Systems. LNCS 600, pp.397-446, 1992.

14. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, 1995.

15. Y. Kesten, Z. Manna, A. Pnueli. Verifying Clocked Transition Systems. LNCS
1066, pp. 13-40. Springer-Verlag, 1996.

16. M.Z. Kwiatkowska, G. Norman, J. Sproston. Probabilistic Model Checking of
Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal
Aspects of Computing 14(3), pp 295-318, 2003.

17. Z. Manna, A. Pnueli. Temporal Verification of Reactive Systems : Safety. Springer-
Verlag, 1995.

18. Z. Manna, A. Pnueli. Temporal Verification of Reactive Systems: Progress. Un-
published, Stanford University (http://theory.stanford.edu/ zm/), 1996.

19. M.Z. Kwiatkowska. Model Checking for Probability and Time: From Theory to
Practice. Invited talk at LICS’03, pp.351-360, 2003.

20. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems.
Proc. 26th IEEE Symp. Found. of Comp. Sci., pp. 327-338, 1985.

21. M. Abadi, L. Lamport. An Old-Fashioned Recipe for Real Time. ACM Transac-
tions on Programming Languages and Systems, Vol.16, no.5, pp.1543-1571, 1994.

22. E.M. Clarke, E.A. Emerson. Synthesis of synchronization skeletons for branching
time temporal. LNCS 131, 1981.

Specification and Verification Techniques
of Embedded Systems Using

Probabilistic Linear Hybrid Automata

Yosuke Mutsuda, Takaaki Kato, and Satoshi Yamane

Graduate School of Natural Science & Technology, Kanazawa University,
Kakuma-machi, Kanazawa city, Japan ZIP/CODE 920–1192

Tel: +81.76.234.4856, Fax: +81.76.234.4900
{0163muts, 1118kato, syamane}@is.t.kanazawa-u.ac.jp

Abstract. We can model embedded systems as hybrid systems. More-
over, they are distributed and real-time systems. Therefore, it is impor-
tant to specify and verify randomness and soft real-time properties. For
the purpose of system verification, we formally define probabilistic linear
hybrid automaton and its symbolic reachability analysis method. It can
describe uncertainties and soft real-time characteristics. Our proposal
method is the first attempt to symbolically verify probabilistic linear
hybrid automata.

1 Introduction

As ubiquitous computing has progressed, systems are embedded in widespread
environments. Then it is important to guarantee their formal correctness, for in-
stance, safety, reliability, dependability, randomization, and soft real-time prop-
erties. In this paper, we propose the formal verification of probabilistic hybrid
systems. Probabilistic hybrid systems are digital real-time systems that embed-
ded in analog environment and exhibit probabilistic characteristics.

There have been several formal verification methods based on automaton
models as follows: 1. Symbolic model-checking procedure and its implementa-
tion HyTech for linear hybrid automata have been developed using manipulat-
ing and simplifying (R,≤, +)-formulae [1]. 2. For probabilistic timed automata
[5], zone-based symbolic model checking algorithms and tool Prism have been
presented [4]. 3. Reachability for probabilistic rectangular automata has been
mentioned in [6], but the verification methods for general class of probabilistic
hybrid automata have not been developed.

We consider probabilistic linear hybrid automata, an extension of linear hy-
brid automata [1] with discrete probability distributions or probabilistic timed
automata [4] with continuous dynamics. This model contains probabilistic rec-
tangular automata [6], moreover, our reachability analysis method differs from
[6] on the point that J. Sproston [6] generates a finite-state reachability graph,
but our approach uses symbolic computation of logical formulae without graph
construction. To verify probabilistic hybrid systems, we define the polyhedron
labeled by probability as the data structure. And we collectively compute state

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 346–360, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Specification and Verification Techniques of Embedded Systems 347

transitions by the symbolic operations. Probabilistic linear hybrid automata can
model uncertain behaviors such as statistical estimates regarding the environ-
ment in which a system is embedded. And its verification and performance eval-
uation allow for soft real-time quantitative properties.

This paper is organized as follows: In section 2, we define probabilistic linear
hybrid automata and some preliminary concepts and notations. Section 3 defines
the reachability problem of probabilistic linear hybrid automata. The symbolic
reachability analysis method and trial examples are presented in section 4, and
case study of industrial application is section 5 using prototype tool. Finally, in
section 6, we conclude this paper.

2 Probabilistic Linear Hybrid Automata

Probabilistic linear hybrid automata are defined in this section as our model
for probabilistic-nondeterministic real-time and hybrid systems. This system de-
scription language is an extended linear hybrid automaton [1] by discrete prob-
ability distributions.

2.1 Preliminaries

In preparation, we define basic concepts as follows:

Linear Constraints. Let u be a vector of real-valued variables. A linear term
over u is a linear combination of variables from u with integer coefficients. A
linear inequality over u is an inequality between linear terms over u. A convex
linear formula over u is a finite conjunction of linear inequalities over u. A linear
formula over u is a finite boolean combination of linear inequalities over u. Let
clf(u) and lf(u) be the set of convex linear formulae over u and the set of
linear formulae over u, respectively.

Distributions. A discrete probability distribution over a finite set Q is a func-
tion p : Q → [0, 1] such that

∑
q∈Q p(q) = 1. Let support(p) be the subset of Q

such that support(p) = {q | p(q) > 0}. For a possibly uncountable set Q′, let
Dist(Q′) be the set of distributions over finite subsets of Q′.

2.2 Syntax

First, we define the syntax of probabilistic linear hybrid automata.

Definition 1. A probabilistic linear hybrid automaton
PLHA = 〈x, L, init, inv, dif , prob, (grdl)l∈L, E〉 consists of the following components:

Data Variables. Let x be the finite vector (x1, x2, . . . , xn) called real-valued
data variables. A point s = (s1, . . . , sn) ∈ R

n is referred to as a data state, or,
equivalently, a valuation of data variables. The convex linear formula f ∈ clf(x)
defines the convex polyhedron [[f]] ⊆ R

n, where [[f]] = {s | f [x := s] is true.}. A
polyhedron is a finite union of convex polyhedra. For each data variable xi, we
use the dotted variable ẋi to denote the first derivative of xi. For data variables

348 Y. Mutsuda, T. Kato, and S. Yamane

x, we use the primed variable x′ to denote the new value of x after a transition.
Let updated variables X be the subset of x, similarly, X ′ ⊆ x′.

Control Locations. L is a finite set of control locations. A state (l, s) of the
automaton PLHA consists of a control location l ∈ L and a valuation s ∈ R

n. Sl

is the set of data states at location l. A region R =
⋃

l∈L{(l, Sl)} is a collection
of polyhedron Sl ⊆ R

n with respect to each control location l ∈ L. A predicate
π =

⋃
l∈L{(l, fl)} is a collection of linear formula fl ∈ clf(x). The predicate π

defines the region [[π]] =
⋃

l∈L{(l, [[fl]])}.
Initial State. init = (l0, s0) is an initial state of the probabilistic linear hybrid
automaton, l0 ∈ L is an initial node, a single point s0 ∈ R

n is an initial value.

Locations Invariants. The function inv : L → clf(x) assigns invariant con-
dition to each location. The control of the automaton PLHA may reside in the
location l only as long as the invariant inv(l) is true (s ∈ [[inv(l)]]).

Continuous Flows. dif : L → clf(ẋ) is a labeling function assigning flows
to locations. The flows constrain the rates at which the values of data variables
change: while the automaton control resides in the location l, the values of first
derivatives of all data variables stay within the differential inclusion ṡ ∈ [[dif (l)]].
The probabilistic linear hybrid automaton PLHA is time-nondeterministic if there
exists a location l ∈ L such that [[dif (l)]] is not a single point.

Discrete Probability Distributions. The function prob :
L → 2Dist(2

x×clf(xX′)×L)
fn assigning to each location a finite, non-empty set

of discrete probability distributions prob(l) = {p1
l , . . . , p

|prob(l)|
l } ⊆ Dist(2x ×

clf(x � X ′) × L).

Enabling Conditions. The family of functions (grdl)l∈L, where for any l ∈
L, grdl : prob(l) → clf(x) assigns an enabling condition (or guard) to each
pi

l ∈ prob(l) at l ∈ L. It may happen that the intersection of multiple guards is
not empty. In such a case, nondeterminism on selecting probability distributions
arises, i.e. there are a number of possibilities. We solve this by the adversary.
We will explain the concept of the adversary in § 2.3.

Probabilistic Edges. For each l ∈ L, pi
l = p ∈ prob(l), grdl(p) = g, we define

the probabilistic edges e = (l, g, p, X, updt, l′) by discrete probability distribu-
tions, where X ⊆ x, updt ∈ clf(x�X ′), l′ ∈ L. Let E be the finite set of proba-
bilistic edges such that E = {e | p(X, updt, l′) > 0}. An update is a convex linear
formula updt over the set x�X ′. The action of the update updt is the convex lin-
ear formula over the set x�x′, act = updt∧(

∧
xi∈x\X(x′

i = xi)), all data variables
that are not updated remain unchanged. In other words, the update updt defines
a function act : R

n → clf(x′) from valuations to convex linear formulae over
x′. For all valuations s, s′ ∈ R

n, let s′ ∈ [[act(s)]] iff act[x, x′ := s, s′] is true.

Examples. We will show some simple example as follows:
We consider probabilistic linear hybrid automaton as shown in Figure 1 and

its formal description is below. Guard is assigned to the distribution, and both
update formula and the probability are assigned to the edge.

Specification and Verification Techniques of Embedded Systems 349

x = {x, y}, L = {l1, l2}, inv(l1) = (1 ≤ y ≤ 2), inv(l2) = (y ≥ 0), dif (l1) =
(1 ≤ ẋ ≤ 2∧ 1 ≤ ẏ ≤ 2), dif (l2) = (ẋ = 1∧ ẏ = 2), prob(l1) = {pl1}, prob(l2) =
{pl2}, grdl(pl1) = (x ≤ 3), pl1({x, y}, x′ ≥ 1 ∧ y′ = x, l2) = 0.6, pl1(∅, -, l1) =
0.4, pl2(∅, -, l2) = 1.

In Figure 1, the initial state init is (l1, x = 0 ∧ y = 1). First, time passes in
location 1 or the location changes. If time passes, the values of data variables
change at the rate (1 ≤ ẋ ≤ 2 ∧ 1 ≤ ẏ ≤ 2). Location might change if the guard
(x ≤ 3) of the distribution is satisfied. If the location changes, the variables are
updated according to the action formula of the edge. For example, the transi-
tion to location 2 with the probability 0.6 updates the values of data variables
according to (x′ ≥ 1 ∧ y′ = x).

We verify whether the automaton reaches the target from the initial state or
not by tracing transitions. For example, if the target is (l2, 1 ≤ x ≤ 2∧2 ≤ y ≤ 3),
it is possible to reach the target from the initial state init = (l1, x = 0 ∧ y = 1)
with probability 0.6 as follows:

(l1, x = 0 ∧ y = 1) passage of one time unit under (ẋ = 2 ∧ ẏ = 2)
→ (l1, x = 2 ∧ y = 2) transition to l2 under (x′ = 2 ∧ y′ = 2) with probability 0.6
→ (l2, x = 2 ∧ y = 2)

We can specify probabilistic hybrid systems, which are reactive systems that
intermix discrete and continues components with randomization, using proba-
bilistic linear hybrid automata. Typical examples are digital controllers that in-
teract with continuously changing physical environments, the steam boiler shown
in § 5 is the one. Because probabilistic linear hybrid automata can describe the
probability, statistical information such as the reliability of the switch can be
described, too. Moreover, reset of the values can be described by update formula.

2.3 Semantics

Concurrent Probabilistic Systems. Next, we define concurrent probabilistic
systems as a semantic model.

Definition 2. A concurrent probabilistic system is a tuple CPS = 〈Q,Σ, Steps〉 :

– Q is a set of states;
– Σ is a set of events;
– Steps : Q → 2Σ×Dist(Q) is a function which assigns to each state a non-

empty set Steps(q) of pairs (σ, μ) ∈ Σ × Dist(Q) comprising an event and
a distribution on Q.

A probabilistic transition q
σ,μ−→ q′ is made from a state q by nondeterministi-

cally selecting an event-distribution pair (σ, μ) ∈ Steps(q), and then making a
probabilistic choice of target state q′ according to μ, such that μ(q′) > 0. An
execution of a concurrent probabilistic system is represented by a path ω, that
is, a non-empty sequence of transitions ω = q0

σ0,μ0−→ q1
σ1,μ1−→ q2

σ2,μ2−→ · · ·. We
denote by ω(i) the ith state of a path ω, step(ω, i) the ith transition of ω, |ω|
the length of ω and if ω is finite, the last state by last(ω). We say that a finite

350 Y. Mutsuda, T. Kato, and S. Yamane

path ω(k) of length k (≤ |ω|) is a prefix of ω if ω(k)(i) = ω(i) for all 0 ≤ i ≤ k,
and step(ω(k), i) = step(ω, i) for all 0 ≤ i ≤ k − 1. Pathfin is the set of all finite
paths. Event-distribution pair (σ, μ) ∈ Steps(q), is nondeterministically chosen.
According to the general technique [9, 10, 11], we represent concurrency by the
nondeterministic choice.

We now introduce adversaries of concurrent probabilistic system as functions
which resolve all of the nondeterministic choices of the model.

Definition 3 (Adversaries). A deterministic adversary (or scheduler) of
concurrent probabilistic system is a function A : Pathfin → Σ × Dist(Q) which
assigns to each finite path ω ∈ Pathfin an event-distribution pair (σ, μ) deter-
ministically such that A(ω) ∈ Steps(last(ω)).

For an adversary A, we define PathA
fin to be the set of finite paths such

that step(ω, k) = A(ω(k)) for all 0 ≤ k < |ω|. PathA
fin means the one (de-

terministic) computation tree labeled by probabilities. Let Adv be the set of
adversaries. An adversary decides the nondeterministically selecting performed
event-distribution pairs in concurrent probabilistic system. Therefore, given an
adversary, the nondeterministic model under the adversary can be described by
a deterministic model.

With each adversary, we associate a sequential markov chain, which can be
regarded as a set of paths in concurrent probabilistic system. Formally, if A is
an adversary, then MCA is a markov chain.

Definition 4 (Markov Chains). An infinite-state Markov chain which corre-
sponds to A is MCA = 〈PathA

fin ,PA〉, where:

– A set of states of MCA is PathA
fin .

– PA : PathA
fin ×PathA

fin → [0, 1] is a transition probability matrix, such that:

PA(ω,ω′) = {μ(q) if A(ω) = (σ, μ) and ω′ = ω
σ,μ−→ q

0 otherwise.

Definition 5 (Probabilities over Paths). Let PA be the mapping inductively
defined on the length of paths in PathA

fin as follows. If |ω| = 0, then PA(ω′)
= 1. If |ω| > 0 and ω′ = ω

σ,μ−→ q for some ω ∈ PathA
fin , then we let :

PA(ω′) = PA(ω) ·PA(ω, ω′).

Semantics of Probabilistic Linear Hybrid Automata. The following no-
tation ([6]) is used to reason about the next states of the probabilistic edges of
PLHA. For the distribution p, if support(p) = {(X1, updt1, l′1), (X2, updt2, l′2), . . . ,
(Xm, updtm, l′m)}, then we let the tuple of actions extract(p)=(act1, act2,. . ., actm)
and generate the tuple of valuations 〈v〉 = (v1, v2, . . . ,vm) in the following way:
for each 1 ≤ j ≤ m, we choose a valuation vj ∈ R

n such that vj ∈ [[act(s)j]]. Ob-
serve that, for any 1 ≤ i, j ≤ m such that i �= j, it may be the case that [[act(s)i]]
and [[act(s)j]] have non-empty intersection, and therefore it is possible that vi =
vj , where vi ∈ [[act(s)i]] and vj ∈ [[act(s)j]]. Let Combinations(s, extract(p))
be the set of all such tuples 〈v〉 for a given state (l, s) and the distribution p.

Specification and Verification Techniques of Embedded Systems 351

Definition 6. The concurrent probabilistic system CPSPLHA = 〈QPLHA,
ΣPLHA, StepsPLHA〉 of probabilistic linear hybrid automaton PLHA is defined as fol-
lowing infinite-state transition system:

– QPLHA ⊆ L × R
n is the set of states, defined such that (l, s) ∈ QPLHA if s ∈

[[inv(l)]];
– ΣPLHA = R≥0 is the set of events. CPSPLHA is not event-driven system using

the alphabet but a time-driven system that uses time as a trigger. Therefore,
time becomes an event;

– For each state (l, s) ∈ QPLHA, let StepsPLHA((l, s)) = Cont(l, s)∪Disc(l, s) be
the smallest set of event-distribution pairs such that:
• Time transition for each duration δ ∈ R≥0, there exists (δ, μ(l,s′)) ∈

Cont(l, s) such that μ(l,s′)(l, s′) = 1 if and only if either
1. δ = 0 and s′ = s, or
2. δ > 0 and s′−s

δ ∈ [[dif (l)]];
• Discrete transition

Disc(l, s)=
⋃

p∈prob(l)Disc(l, s, p), where for each distributionp ∈prob(l),
if s ∈ [[grdl(p)]], then, for each 〈v〉 ∈ Combinations(s, extract(p)),
there exists the pair (0, μp,〈v〉) ∈ Disc(l, s, p) such that

μp,〈v〉(l′, s′) =
∑

i∈{1,...,m=|support(p)|}&l′=l′j&s′=vj

p(Xj, updtj , l′j). (1)

Expression (1) resolves the case of probabilities summation as the same way
[4][6].

An adversary chooses the event-distribution pair (σ, μ) ∈ StepsPLHA((l, s)) =
Cont(l, s) ∪ Disc(l, s) that can be performed in CPSPLHA. In other words, it
chooses one from various possibilities as follows. At any time, if the system
is in a location, then the system can either remain in its current location and
let time advance, or make a discrete transition if there exists a distribution.
Discrete transitions are instantaneous and consist of the two steps performed in
succession: firstly, the system makes a nondeterministic choice between the set
of distributions. Secondly, supposing that the distribution is chosen, the system
then makes a probabilistic transition according to the distribution. In this non-
deterministic choice between the set of event-distribution pairs, if we define an
adversary, the nondeterministic model under the adversary can be described by
a deterministic model.

3 Reachability Problem

We now formally define our reachability problem.

Definition 7 (Probabilistic Reachability Problem). Given a probabilistic
linear hybrid automaton PLHA = 〈x, L, init, inv, dif , prob, (grdl)l∈L, E〉, let T be
a predicate called the target, let �∈ {≥, >}, and let λ ∈ [0, 1] be the target

352 Y. Mutsuda, T. Kato, and S. Yamane

probability. Then probabilistic reachability problem for PLHA can be defined as
the tuple (T,�, λ), the answer to this problem is “Yes, reachable” if and only
if there exists an adversary A ∈ Adv of CPSPLHA (or, equivalently, a series of
nondeterministic choices) and a path ω ∈ PathA

fin starting in an initial state of
PLHA init = (l0, s0) such that last(ω) in (l, [[fl]]) ∈ [[T]] with probability (over
path) � λ, and “No” otherwise.

We now review two subclasses of reachability properties: time bounded reach-
ability and invariance which are particularly relevant for the verification and
the performance evaluation of probabilistic real-time and hybrid systems [5][6].
About the former, PLHA has certain time deadlines. On the other hand, about the
latter, PLHA is required that does not leave an invariant region [[I]] ⊆ QPLHA, or,
equivalently, always satisfies some properties. (e.g. [[I]] as desirable or expected
region for safety property).

4 Verification: Symbolic Reachability Analysis

The following extended expression is used to express the probabilities of the
transitions of CPSPLHA.

Definition 8 (Polyhedra labeled by Probabilities). For a linear formula
f ∈ lf(x) and a corresponding polyhedron [[f]], we define the probabilistic poly-
hedron ([[f]], P) to be the pair comprising a polyhedron [[f]] ⊆ R

n and its proba-
bility P ∈ (0, 1]. The function plf : L → 2lf(x)×(0,1] assigning to each location
a set of probabilistic linear formulae, where a probabilistic linear formula is the
pair of a linear formula f and its probability P such as (f, P) ∈ lf(x) × (0, 1].
Let [[plf(l)]] ⊆ 2R

n × (0, 1] be the finite set of probabilistic polyhedra in the lo-
cation l such that [[plf(l)]] = {([[fl]], P) | for some [[fl]], P > 0}. Note that,
for any ([[fl

a]], P a), ([[fl
b]], P b) ∈ [[plf(l)]] such that [[fl

a]] = [[fl
b]], it is the case

that P a �= P b. In the sequel, we use R =
⋃

l∈L{(l, [[plf(l)]])} as a region, and
a predicate π corresponding to the region R is π =

⋃
l∈L{(l, plf(l))}, where

[[π]] =
⋃

l∈L{(l, [[plf(l)]])}.
We introduce extra edge relations to deal with summing up probabilities with

respect to the same next state (cf. § 2.3 and expression (1)).

Definition 9 (Extra edge relations). For a set E, let E be the set of extra
probabilistic edges such that:

E =
⋃

l∈L,p∈prob(l),Act∈2extract(p)
ne

{e = (l, g, pr, act, l′) | condition};

condition ≡ ∀actj ∈ Act such that |Act| ≥ 2, l′ = l′j and (
⋂

actj∈Act

[[act(s)j]])
= ∅,

where pr =
∑

actj∈Act

p(Xj , updtj , l′
j), act =

∧
actj∈Act

actj .

All the cases of duplication of act or all the nondeterministic combination in
addition of probability is treated by 2extract(p)

ne , where notation ne means non-
empty set.

Specification and Verification Techniques of Embedded Systems 353

We define the following precondition operators to calculate the state transition
relation in probabilistic linear hybrid automata symbolically and collectively.

4.1 Precondition Operators

We define the time-precondition operator and the discrete-precondition oper-
ator based on the non-probabilistic precedent of [1]. Non-probabilistic hybrid
automata case was showed in [1]. So, emphasis is placed on probabilities and
the definition of precondition operators follows from probabilistic transition of
CPSPLHA, we can define the following precondition operators according to Defini-
tion 6. Because we use the backward algorithm later, the operations are inverse
image computations defined as follows.

Definition 10 (Time Precondition). We write tpre(plf(l)) for the prob-
abilistic linear formula such that from any state in the corresponding region
(l, [[tpre(plf(l)]]) a state in (l, [[plf(l)]]) can be reached in a single time
transition.

tpre(plf(l)) =⋃
(fl,P)∈plf(l)

{(inv(l) ∧ (∃δ ≥ 0.∃c.(((δ ·dif (l))[ẋ := c] ∧ (fl ∧ inv(l))[x := x + c])), P·1)}.

Definition 11 (Discrete Precondition). We write dpre(l′, plf(l′)) and
expre(l′, plf(l′)) for the predicate, the corresponding region of states from which
a state in (l′, [[plf(l′)]]) can be reached in a single discrete transition according
to probabilistic edges E and extra edges E, respectively.

dpre(l′, plf(l′)) =
⋃

e=(l,g,p,X,updt,l′)∈E

{(l,
⋃

(fl′ ,P)∈plf(l′)

{(inv(l) ∧

∃x′.(g ∧ act ∧ (fl′ ∧ inv(l′))[x := x′]), P · p(X,updt, l′))})}.

expre(l′, plf(l′)) =
⋃

e=(l,g,pr,act,l′)∈E
{(l,

⋃
(fl′ ,P)∈plf(l′)

{(inv(l) ∧ ∃x′.(g ∧ act ∧ (fl′ ∧ inv(l′))[x := x′]), P · pr)})}.

Definition 11 enables us to calculate the state transitions that follows the same
probability distribution symbolically and collectively. By one calculation, the
length of path increases by one, (refer to Definition 5). Since calculation of
probability is multiplication, we can calculate it reversely.

Finally, we define precondition operator pre consisting of time and discrete
precondition operator. For a predicate π, any state in the corresponding region
[[pre(π)]] can reach to some states in the region [[π]] with single probabilistic
transitions.

Definition 12 (Precondition Operators).

pre(π) = Tpre(π) ∪ Dpre(π), where

Tpre(π) =
⋃
l∈L

{(l, tpre(plf(l)))}, Dpre(π) =
⋃

l′∈L

(dpre(l′, plf(l′)) ∪ expre(l′, plf(l′))).

354 Y. Mutsuda, T. Kato, and S. Yamane

It is well known [1, 2, 3] that we can solve the reachability problem by repeat-
ing inverse image computations and calculating all the states where it can follow
from the target. We use the backward algorithm, because it is said that the
backward algorithm is more efficient than the forward algorithm. We can trace
all the operation of probabilistic linear hybrid automaton by using precondition
operator pre previously defined when we perform inverse image computations.

4.2 Symbolic Backward Reachability Analysis Procedure

We propose the symbolic backward reachability analysis procedure as below:

Procedure SRA:
Input: a probabilistic linear hybrid automaton PLHA;
an initial state init = (l0, s0);
a target predicate and a probabilistic requirement (T, �, λ).
Output: YES, reachable / NO;
(a region [[Qi]] which can reach [[T]].)
Y := T /∗ Q0 ∗/
Z := T
repeat
/∗ computation of a region [[Qi]] which can reach [[T]]. ∗/
Z := pre(Z) \ Y /∗ prei \ Qi−1 ∗/
Y := Y ∪ Z /∗ Qi ∗/
/∗ judgment of reachability every time i, Z is the form of⋃

l∈L{(l, plf(l))} =
⋃

l∈L{(l,⋃(fl,P)∈plf(l){(fl, P)})}. ∗/
for each z = (l, plf(l)) ∈ Z wrt l ∈ L

if l == l0
for each (fl, P) ∈ plf(l)
if s0 ∈ [[fl]]
if P � λ
return YES, reachable.
halt SRA

end if
end if
end for each
end if
end for each
until Z == ∅
return NO.

In general, the convergence of the least fixed point, and thus the termination of
this reachability analysis procedure is not guaranteed, as already the reachability
problem for constant-slope hybrid systems is undecidable [2][1].

Afterwards, we transform predicates into logical formulae with the aim of
implementing the above procedure by symbolic computation of logical formulae.
Let lc and Pc be control variables that ranges over the set of locations L and

Specification and Verification Techniques of Embedded Systems 355

Fig. 1. Probabilistic linear hybrid automaton Fig. 2. Time Pre-
condition

Fig. 3. Discrete
Precondition

the set of real numbers R, respectively. The predicate π =
⋃

l∈L{(l, plf(l))} =⋃
l∈L{(l,

⋃
(fl,P)∈plf(l){(fl, P)})} defines the logical formula φ in the following

manner:

φ ≡
∨
l∈L

(lc = l ∧ plf(l)) =
∨
l∈L

(lc = l ∧ (
∨

(fl,P)∈plf(l)
(fl ∧ Pc = P)))

In precondition operators, union operators
⋃

and ∪ are replaced by disjunctions∨
and ∨, respectively.

4.3 Examples

We will show some simple example as follows:

Probabilistic reachability problem (T,≥, 0.35).
Probabilistic linear hybrid automaton Figure 1, init = (lc = l1 ∧ x = 0∧ y = 1),
T = (lc = l2 ∧ 1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1).

Predecessor calculation using quantifier elimination [12][1].
tpre(1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1)

= (y≥0 ∧ (∃δ≥0.∃cx, cy.(cx =δ ∧ cy =2·δ ∧ 1≤x+cx ≤2 ∧ 2≤y+cy ≤3 ∧ y+cy ≥0))

∧ Pc = 1 · 1)
= (y ≥ 0 ∧ (∃δ ≥ 0.(1 ≤ x + δ ≤ 2 ∧ 2 ≤ y + 2δ ≤ 3)) ∧ Pc = 1)

= (x ≤ 2 ∧ 0 ≤ y ≤ 3 ∧ −2 ≤ y − 2x ≤ 1 ∧ Pc = 1). see Figure 2

dpre(lc = l2 ∧ 1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1)

= (lc = l1 ∧
(1 ≤ y ≤ 2 ∧ ∃x′.∃y′.(x ≤ 3 ∧ x′ ≥ 1 ∧ y′ = x ∧ 1 ≤ x′ ≤ 2 ∧ 2 ≤ y′ ≤ 3 ∧ y′ ≥ 0))

∧ Pc = 1 · 0.6)

= (lc = l1 ∧ (1≤y≤2 ∧ ∃x′.(x≤3 ∧ 1≤x′ ≤2 ∧ 2≤x≤3)) ∧ Pc =0.6)

= (lc = l1 ∧ 2 ≤ x ≤ 3 ∧ 1 ≤ y ≤ 2 ∧ Pc = 0.6) = φ1. see Figure 3

pre(T) = Tpre(T) ∨ Dpre(T)

= (lc = l2 ∧ x≤2 ∧ 0≤y≤3 ∧ −2≤y − 2x≤1 ∧ Pc =1) ∨ φ1∨ T

= φ1 ∨ φ2 ∨ T.

356 Y. Mutsuda, T. Kato, and S. Yamane

Reachability Determination
For pre2 = pre(pre(T) \ T) = pre(φ1 ∨ φ2) = pre(φ1) ∨ pre(φ2), cpre(φ1) = (lc =
l1 ∧x ≤ 3∧1 ≤ y ≤ 2∧2x−y ≤ 5∧2y−x ≤ 2∧Pc = 0.6) and init have a non-empty
intersection. Then probabilistic requirement is satisfied (Pc = 0.6 ≥ 0.35), and
therefore we conclude this reachability problem with “Yes”.

The example of operation shown in § 2.2 is correctly calculated in Figure 2
and 3 that uses the procedure described in § 4.2. This calculation is symbolically
performed. We have implemented a prototype of verifier based on Mathemat-
ica.

5 Case Study

5.1 Probabilistic Steam Boiler

We now consider the problem of modelling an industrial application [13][14],
namely that of a steam boiler (Fig. 5), using probabilistic linear hybrid automata.
The system consists of a number of physical units, namely a vessel containing
an amount of water, a water pump, a series of sensors, and a message trans-
mission system. The vessel is continuously heated in order to produce steam.
The constant L denotes the minimal limit level of water, with U denoting the
corresponding maximal limit level. When the water level remains within the nor-
mal operating interval of [N1, N2], the controller need not intervene. However,
if the water level falls below N1, then the pump is switched on, and if the wa-
ter level rises above N1, the pump is switched off. There is the possibility of a
failure in the water level sensor [15][6]. Given the occurrence of such a failure,
the controller uses an approximate guess of the actual water level when deciding
whether to switch the pump on or off. Periodically, there is the possibility of the
water level sensor being repaired.

5.2 Modelling

Probabilistic linear hybrid automaton to model the steam boiler system de-
scribed above is given in Figure 4. We ease the graphical notation by enclosing
the locations in the dotted boxes, and draw a single edge from each box to the
location. The variable w denotes the water level, t and cl are clocks, gl repre-
sents the lower bound on the current guess on the water level, gu represents the
corresponding upper bound.

Location Off and On. When control resides in these two locations, the value of
the water level is affected by the steam. We express the rate of change of the steam
emission volume as 0 ≤ ṡ ≤ e for some positive integer constant e. In the location
On the pump being on. The pump water the vessel at any rate between 0 and p
litres per time units. Both location have the invariant condition t ≤ Δ; therefore,
control must leave either of these locations if the value of the clock t is equal to Δ.

Location Urgent Off and Urgent On. The purpose of the two locations
is to ease the graphical notation of probabilistic linear hybrid automaton. In

Specification and Verification Techniques of Embedded Systems 357

Fig. 4. Probabilistic linear hybrid automaton for probabilistic steam boiler

these locations no time is permitted to elapse. They correspond to the controller
making estimates of the water level. All of the distributions available in these
locations reset the guess variables, gl and gu.

Location Off/Failure and On/Failure. Naturally, these two locations corre-
spond to the case in which the water level sensor has failed. As the controller
is now maintaining an estimate of the water level, the flow conditions of the
variables representing the bounds on the guess of the water level, gl and gu, are
altered to take into account the fact that the real water level may change as time
elapses.

Location Emergency Stop and Shutdown. If the real water level falls
below the lower limit L or exceed the upper limit U , then control can pass to
the terminal location Emergency stop. If the lower bound on the estimate of
the water level is below the lower normal water level at the same time as the
upper bound on the estimate is above the upper normal level, then control can
pass to a terminal location Shutdown.

358 Y. Mutsuda, T. Kato, and S. Yamane

Fig. 5. Steam boiler Fig. 6. An example run of the probabilistic
steam boiler

An example run of the probabilistic steam boiler control is shown in Figure 6.
We assume that the system constants are such that L < N1 < G1 < G2 < N2 <
U , and that the initial water level of the boiler, denoted by w0, is some point
in the interval (G1, G2). When the system commences operation, the pump is
switched off.

5.3 Analysis

Property Description. In this paper, the property that we wish to check is
whether or not the system can reach the terminal location (Emergency stop,
Shutdown) in 10 time units have elapsed. However, it is possible to ignore the
location Emergency stop by doing a little arithmetic as follows; if the amount of
the steam emission volume s during Δ time units is not more than N1 minus L
at the same time as the amount of water absorption a during Δ time units is not
more than U minus N2, then the system never reaches the location Emergency
stop. Therefore, we consider only the location Shutdown the terminal location.
We note states T for which it is possible to make a single transition in order
to reach Shutdown; we omit the actual target states (Shutdown) for simplicity.
Finally, the probabilistic reachability property that requires that the system
reach the location Shutdown within 10 time units, with the probability strictly
greater than 0, can be expressed as the tuple (T, >, 0).

Our first task is to specify the probabilities of the discrete transitions of the
steam boiler control. For convenience, we select very simple distributions. We de-
cide that the possibility of a failure in the water level sensor is 0.1, otherwise 0.9.

Implementation and Results. The results are as follows. “ The system can
reach the states for which it is possible to make a single transition in order to
reach Shutdown within 10 time units, with probability 0.1 at 4th transition”.
This automatic analysis took about 14 minutes and up to 100MB memory. (In-
tel Pentium 4 CPU 3.00GHz with 2.00GB RAM under MS Windows XP OS on
Mathematica 5.0). Mathematica can execute the commands such as quan-
tifier elimination,QE [12]. We can transform the formula into another formula

Specification and Verification Techniques of Embedded Systems 359

that is equivalent to the former, and does not contain ∃ by using QE. We use this
QE when we compute the tpre(), dpre(), and expre(). This is fully automated
in analysis.

Here, we refer to the symbolic run (set of paths) that has reached Shutdown,
as follows.

(lc = Off ∧ 0 ≤ cl < 1 ∧ 0 ≤ t ≤ 5 ∧ 0 ≤ w < 35 − 3t

∨ 1 ≤ cl < 6 ∧ −1 + cl < t ≤ 5 ∧ 0 ≤ w < 35 − 3t)

→ (lc = Off ∧ 0 ≤ w < 20 ∧ 0 ≤ cl < 6 ∧ t = 5)

→ (lc = Urgent on ∧ 0 ≤ w < 30 ∧ 0 ≤ cl < 6 ∧ t = 0)

→ (lc = On/failure ∧ 0 ≤ t ≤ 5 ∧
(0≤cl≤5+t ∧ gu >25+5t ∧ gl <35−3t ∨ 5+t<cl≤10 ∧ gu >5cl ∧ gl <50−3cl))

→ (lc = On/failure ∧ gl < N1 ∧ gu > N2 ∧ 0 ≤ t ≤ Δ = 5 ∧ 0 ≤ cl ≤ 10)

The probability of these paths is 0.1. Note that the first region contains the sys-
tem commences operation init = (lc = Off ∧ w = 0 ∧ t = 0 ∧ cl = 0), and the
last region is contained the target T.

In this paper, we regarded the states for which it is possible to make a sin-
gle transition in order to reach Shutdown as the target region. Generally, it is
undesirable that the system can enter Shutdown. So, we should remodel the de-
sign parameter of the steam boiler control to avoid the above case. Now, we
change the parameter (initial water level w0 and guard G1) and analyze again.
Then the system do not enter the undesirable target within 10 time units in four
times transition.

6 Conclusions

In this paper, we have defined the probabilistic linear hybrid automata as system
modelling language, and presented its symbolic reachability analysis method.
Our proposal method is the first attempt to symbolically verify probabilistic
linear hybrid automata. By our method, we will be able to handle many sys-
tems such as distributed control systems, timed randomized protocols and so
on. We have implemented an experimental verification system using Mathe-
matica, and demonstrated that our method can help the system designer to
choose critical system parameters, via case study. We are now working for an
abstraction/approximation method of probabilistic linear hybrid automata to
handle complicated realistic problems.

References

1. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embed-
ded systems. IEEE Transactions on Software Engineering, 22(3):181-201, 1996.

2. R. Alur, C. Coucoubetis, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J.
Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3-34, 1995.

360 Y. Mutsuda, T. Kato, and S. Yamane

3. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193-244, 1994.

4. M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic model checking for proba-
bilistic timed automata. Technical Report CSR-03-10, School of Computer Science,
University of Birmingham, 2003.

5. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101-150, 2002.

6. J. Sproston. Model checking for probabilistic timed and hybrid systems. PhD thesis,
Technical Report CSR-01-04, School of Computer Science, University of Birming-
ham, 2001.

7. J. Sproston. Analyzing subclasses of probabilistic hybrid automata. Technical Re-
port CSR-99-8, School of Computer Science, University of Birmingham, 1999.

8. J. Sproston. Decidable model checking of probabilistic hybrid automata. Lecture
Notes in Computer Science 1926, pp 31-45, Springer-Verlag, 2000.

9. S. Hart, M. Sharir, and A. Pnueli. Termination of Probabilistic concurrent program.
ACM Transactions on Programming Languages and Systems (TOPLAS), 5(3): 356-
380, 1983.

10. E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science
(vol. B): formal models and semantics, Pages 995-1072, MIT Press, 1991.

11. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM (JACM), 42(4):857-907, 1995.

12. A. Tarski. A decision method for elementary algebra and geometry. University of
California Press, Berkeley and Los Angeles, California, 2nd ed., 1951.

13. J.R. Abrial, E. Borger, and H. Langmaack, editors. Formal methods for industrial
applications: specifying and programming the steam boiler control. volume 1165
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

14. T.A. Henzinger and H. Wong-Toi. Using HYTECH to synthesize control parame-
ters for a steam boiler. in [13], pp. 265–282.

15. A. McIver, C. Morgan, and E. Troubitsyna. The probabilistic steam boiler: a case
study in probabilistic data refinement. In Proc. of IRW/FMP’98, Australia, 1998.

16. E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press, 1999.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 361 – 372, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formalization of fFSM Model and Its Verification

Sachoun Park1, Gihwon Kwon1, and Soonhoi Ha2

1 Department of Computer Science, Kyonggi University,
San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea

{sachem, khkwon}@kyonggi.ac.kr
2 Department of Computer Engineering, Seoul National University,

Seoul, Korea 151-742
sha@iris.snu.ac.kr

Abstract. PeaCE(Ptolemy extension as a Codesign Environment) was developed
for the hardware and software codesign framework which allows us to express
both data flow and control flow. The fFSM is a model for describing the control
flow aspects in PeaCE, but it has difficulties in verifying their specifications due
to lack of their formality. Thus we propose the formal semantics of the model
based on its execution steps. To verify an fFSM model, it is translated into SMV
input language with properties to be checked, automatically. As a result, some
important bugs such as race condition, ambiguous transition, and circular
transition can be formally detected in the model.

Keywords: Finite state machine, Step semantics, Formal verification, Model
checking.

1 Introduction*

To make narrow the gap between design complexity and productivity of embedded
systems, hardware/software codesign has been focused as a new design methodology.
Various codesign procedures have been proposed, and formal models of computation
for system specification by using "correct by construction" principle make ease design
validation. The PeaCE[1] is the codesign environment to support complex embedded
systems. The specification uses synchronous dataflow (SDF) model for computation
tasks, extended finite state machine (FSM) model for control tasks and task-level
specification model for system level coordination of internal models (SDF and FSM).
It gives automatic synthesis framework from the proposed specification with good
results compared with hand-optimized code, and the automatic SW/HW synthesis
from extended FSM model, called fFSM(flexible FSM), and automatic SW synthesis
from task-model is developed. The synthesis framework generates architecture
independent code which can be used for functional simulation, design space
exploration, synthesis and verification steps by varying the definitions of APIs.

The fFSM is another variant of Harel’s Statecharts, which supports concurrency,
hierarchy and internal event as Statecharts does. Also it includes global variables as

* This work was supported in part by IT Leading R&D Support Project funded by Ministry of

Information and Communication, Republic of Korea.

362 S. Park, G. Kwon, and S. Ha

memories in a system. This model is influenced from STATEMATE of i-Logix inc.[2]
and the Ptolemy[3] approaches. But the formal semantics for internal models is not
defined explicitly. Especially, in the case of fFSM(flexible FSM), the absence of
formal semantics causes problems such as confidence for simulation, correctness of
code generation, and validation of a system specification. Since no formal semantics
exit, unexpected behavior may occur after system built and also it dilute original
purpose of codesign to produce complex embedded system cost-effectively

In this paper, we define the step semantics for fFSM model, which becomes
foundation about reliable code generation and formal verification. Step semantics or
operational semantics of an fFSM defines how the model changes state from one
configuration to another on the reception of some events, while it at the same time
executes actions consisting of emitting output and internal events and updating of
global variables. In this field, many works have proposed, but among these formal
semantics, we turned our attention to Erich Mikk’s hierarchical automata[4] and Lind-
Nielsen’s hierarchical state/event model[6].

Hierarchical automata semantics was defined to formally express the STATEMATE
semantics of Statecharts described by Harel and Naamad in 1996[5]. After he defined
pure hierarchal automata which have no inter-level transition, he described EHA
(extended hierarchical automata) to handle the inter-level transition. As the semantics
of EHA was presented in the Kripke structure, three rules at EHA were applied to:
progress rule, stuttering rule, and composition rule. If any enabled transition is
activated, sequential automaton takes progress rule. If an active sequential automaton
does not have an enabled transition and the active state is a basic state then the
automaton stutters and consumes events. And each automaton delegates its step to its
sub-automata with respect to the composition rule. But it wasn’t dealt with the delta-
delay and variables.

HSEM(Hierarchical State/Event Model), the variant of Statecharts in IAR
visualSTATE[7], is based on the Unified Modeling Language(UML) state diagram,
where again the UML is based on Harel’s Statecharts. Although HSEM has its origin
in Statecharts, its semantics is distinguishable. The behavior of the model described N
flat parallel machines, where the N is the number of Or-states: serial and history states.
Thus a configuration of HSEM consists of exactly one state per each Or-sate, so it
may include inactive states. This method is able to perform compositional model
checking which one of solution for state explosion problem. However, in the HSEM
semantics, there is only use of state reference to express guarding condition, without
event occurring.

Firstly, we define the step semantics with concept of the delta-delay, variables and
event. And then verifying some system properties, we automatically translate the
model to SMV input language with these properties. This translation is based on the
proposed step semantics and synchrony hypothesis.

In this paper, the semantics of the fFSM model in PeaCE approach is defined by
borrowing from EHA and HSEM semantics. In the next section, N flat parallel
machine of fFSM, pFSM, is defined with its example. The definition of step
semantics of pFMS is presented in section 3, our efforts for debugging a model is
described at section 4 and then we conclude the paper in section 5.

 Formalization of fFSM Model and Its Verification 363

2 Formal Definition of pFSM

2.1 Reflex Game: The Example of fFSM Model

This version of reflex game is used for describing formal model of fFSM. The set of
input events to the system are coin, ready, stop, and time. All but the last are user
inputs, while the last generated by system simply counts off time. The game scenario
is as follows: after a coin is inserted, ready signal becomes on after a randomly
distributed latency. When the ready signal is one, the player should put down the stop
button as quickly as possible. Then the output is produced to indicate the time
duration between the ready signal and the stopping action. To compute the time
duration, we use “remain” and “randn” as variable states. The resultant fFSM graph is
concurrent and hierarchical.

Fig. 1. fFSM example of reflex game

Initially, each atomic fFSM is triggered by input events and makes a transition
when its guard condition is satisfied. If the transition produces internal events,
transitions triggered by the internal events are made iteratively until there is no more
internal event. After every delta-delay, it clears all existing events and sets newly
produced internal events at the previous delta-delay. Briefly, an execution of an
atomic fFSM consists of a transition triggered by an input event and subsequent
transitions triggered by internal events produced by the previous transition. And
variable state and output events keep their values to make them persistent.

2.2 Syntax of pFSM

In this section, we introduce definitions about pFSM which is based on the thesis[8].
To define the step semantics of fFSM, we propose N flat parallel machine of fFSM,
pFSM. Like an fFSM, there exit events, global variables, states, and transition.

364 S. Park, G. Kwon, and S. Ha

I, O, and IT are sets of input events, output events, and internal events, respectively.
Unlike previous definition of the event of fFSM, these sets disjoint each other. Each

event ie in }...,,{ 1 neeITOI =∪∪ is composed of its domain iD and initial value id ,

and)(ieval denotes current value of the event. Simple FSM is defined by 4-tuples

),,,(0 scrTsS , where S is a set of states, s0 is the initial state, and T is set of transition

relations. In the PeaCE approach, dataflow models are controlled by external signals
generated by fFSM, which can be labeled at a proper state as a set of atomic
proposition. We call the labels scripts, and Script represents the set of all scripts
occurring in the fFSM. Thus, ScriptSscr 2: → is the label function to map a set of
scripts into a state.

fFSM has two types of composition like other variants of Harel’s Statecharts:
concurrent and hierarchical compositions. HSEM used N flat parallel machines for
describing its operational semantics, because BDD(Binary Decision Diagram) could
be easily represented and the compositional model checking applied. In this paper, we
refer to HSEM semantics to define the fFSM semantics.

Definition 1 (pFSM). Now, formal semantics of fFSM is defined as N flat parallel
machines pFSM.),,,,,(VMITOIpFSM γ= , where I, O, IT are set of events above, V

is a set of global variables, jv ∈(jD , jd) , and },...,{ 1 nmmM = is the set of simple

FSM. Let
n

i
iS

1=

= be the set of all states in M, hierarchical relation γ maps a state to

the set of machines which belong to the state: .2: M→γ

The hierarchical function γ has three properties: there exist a unique root machine,
every non-root machine has exactly one ancestor state, and the composition function
contains no cycles. Let ,2: →sub and }')(|'{)(ii SssMsssub ∈∧∈= γ is another

function to relate between a super state and its sub states. sub+ denotes the transitive
closure of sub and sub* denotes the reflexive transitive closure of sub.

Definition 2 (Simple FSM).),,,(0
iiiii scrTsSm =

i. }...,,,{ 10 n
iiii sssS = is the finite set of states of mi,

ii. 0
is is a initial state,

iii.
iT is the set of transition of mi, and a transition)',,,(sAgsTt i =∈ is composed

of source and target states s, s′∈Si, guarding condition g which is Boolean
expression, and set of actions A,

iv. Script
ii Sscr 2: → is a function to map a set of script into a state.

Guards that include variables and events have the following minimal grammar.

ExpvExpvExpeExpeGGGtrueG =<=<∧¬= ||||||:: 21

21||:: ExpExpvnExp •= ,

where n is an integer constant, Vv ∈ is a global variable, •∈{+, −, ×, / } represents a
set of binary operators. To select some facts of a transition)',,,(sAgst = , following

projection functions are useful: source(t) = s, target(t) = s′, guard(t) = g, action(t) = A.

 Formalization of fFSM Model and Its Verification 365

Also, in a set of actions A, each action element a∈A consists of variable assignment
or event emission:

a ::= v:=Exp | e:=Exp.

For an action element, following three projection functions are used, because an
action set is composed of updating variables, emitting some output events, and
producing internal events.

}):.(|:{)(AExpvVvExpvAupdate ∈=∈∃==

}):.(|:{)(AExpeOeExpeAoutput ∈=∈∃==

}):.(|:{)(AExpeITeExpeAsignal ∈=∈∃==

Figure 2 shows pFSM corresponding to figure 1, and the below example presents the
definition of figure 2.

I = {coin, ready, stop, time}, O = {game_on, waitGo, waitStop, ringBell, tilt, game_over}
IT = {timeset, timeout, error, exit}, V = {randn, remain}
M = {m

1
, m

2
, m

3
, m

4
}, γ(m

1
) = {m

3
, m

4
}, γ(m

2
) = γ(m

3
) = γ(m

4
) = ∅,

),,,(11
0
111 scrTsSm = , S1 = {GameOff, GameOn}, 0

1s = GameOff,

T1 = {(GameOff, coin = 1, {game_on = 1, timeset = 1000}, GameOn),
 (GameOn, exit = 1, {game_over = 1, ringBell = 1}, GameOff),

(GameOn, error = 1, {game_over = 1, tilt = 1}, GameOff)}, scr1 = ∅
…

Fig. 2. Flatten machine pFSM

3 Semantics of pFSM

Step semantics or operational semantics of an fFSM defines how the model changes
state from one configuration to another on the reception of some events, while it at the
same time executes actions consisting of emitting output and internal events and
updating of global variables.

Definition 3 (Configuration). Δ represents the whole configurations of pFSM model,
for each mi of pFSM, its formal definition is }0,|},...,{{ 1 niSsss iin ≤<∈∃=Δ .

Δ∈0δ , },,{ 00
10 nss=δ is an initial configuration.

Erich’s definition of a configuration is a set of active states, so the size of the set is
not fixed. But the size of a configuration δ is the same of the set of machines M, so we
need to define which state is active.

366 S. Park, G. Kwon, and S. Ha

Definition 4 (Active state). It can be defined that a state s is active in configuration δ
as follow:

s=|δ iff δ∈∈∈∀ ')'(.' * sssubss .

Definition 5 (Satisfiability). To decide which transition is enabled, given the set of
events ITIE 22 ∪⊆ and the current configuration δ, configuration δ and events E

satisfies a guard g,)(|, tguardE =δ , is defined inductively.

trueifftrueE =|,δ

GEnotiffGE =¬= |,|, δδ

2121 |,|,|, GEandGEiffGGE ==∧= δδδ

)()(|, ExpvalevalandEeiffExpeE <∈<=δ

)()(|, ExpvalevalandEeiffExpeE =∈==δ

)()(|, ExpvalvvaliffExpvE <<=δ

)()(|, ExpvalvvaliffExpvE ===δ ,

where nnval =)(,)(eval denotes the current value of event e, and)(vval denotes

the current value of variable v.)()()(2121 ExpvalExpvalExpExpval •=• .

Definition 6 (Enabled transition). Through the definitions of active states and
satisfiability relation, we define a set of enable transitions for each active state.

)}(|)(|,}.,...,1{|{ tsourcetguardETtnitET i =∧=∧∈∈∀= δδ

Definition 7 (Executable transition). The set of executable transitions are non-
conflicting set of transitions and every simple FSM must contribute at most one
transition. As fFSM model has no inter-level transition, the conflict only occurs
between two transitions which have different and comparable priorities.

))}'(()(.'|{ tsourcesubtsourceETtETtXT +∈∈¬∃∈= ,

1||. ≤∩∈∀ ii TXTMm

Definition 8 (LKS). Step semantics of pFSM is defined by LKS(Labeled Kripke
Structure).),,,(0 LRqQLKS = is defined:

},...,{ 0 nqqQ = is the finite set of states in LKS,

),,(000 cq ∅= δ is an initial state,

QQR Act ××⊆ 2 is the set of transitions with label as the set of actions,
ScriptQL 2: → is label function such that

δ|
)()(

=∀

=
s

i sscrqL .

The step could be explained both micro step and macro step. The micro step stands
for one step triggered by input or internal events, and macro step is a finite sequence
of micro steps each of which is triggered by one input event or consequent internal
events until the produced internal event won’t exit any more.

 Formalization of fFSM Model and Its Verification 367

Definition 9 (Micro step).),,(),,(cEcE Act ′′′⎯→⎯ δδ

Given the current configuration δ and the set of events E, the next configuration δ′ is
defined as follow:

)}))(((

))())(((

))()(.(.|{

* sstsourcesubs

sresetstsourcesubs

tgettarstsourcesXTtss

=′∉∨
=′∈∨

=′=∈∃∈∀′=′
+

δδ
 ,

where
iii Sssmssubsssreset ∈∧′′∈∧′′∈=)()(,)(0 γ

XTt

tactionsignalE
∈∀

=′))((,

and)(qLc ′=′ ,

XTtXTt

tactionupdatetactionoutputAct
∈∀∈∀

∪=))(())((

Definition 10 (Macro step). Step semantics of pFSM is represented by qq Exe ′⎯→⎯ ,

called an execution, which is triggered by input event and produces cascaded input
events. Thus one input event and consequent internal events make transitions until
any internal event cannot be produced. After each micro step, all previous events are
consumed by delta-delay. In the following definition, k > 1 is the first k which makes
Ei,k to ∅, and

kj
ji ActExe

<<∀

=
0

 is a set of all actions during macro step.

),,(),,(11 ++ ∅⎯⎯ →⎯ ii
Exe

iii ccE i δδ iff),,(),,(,,1,1,1,
11

kiki
ActAct

iii ccE k ∅⎯⎯ →⎯⎯⎯→⎯ − δδ .

Fig. 3. Example of micro step(a) and macro step(b)

When input event “coin” occurs, control of the system is moved from the initial
configuration {GameOff, TimeInit, Ready, Rand} to {GameOn, wait, Ready, Rand}.
For error detection, we define three kinds of error: Race Condition(There can be
multiple writers for an output event or a variable state during an execution of fFSM

368 S. Park, G. Kwon, and S. Ha

model), Ambiguous transition(Multiple transitions from one state can be enabled
simultaneously), and Circular transition(There can be exist circular transitions by
cascaded transitions).

For example, if a snapshot of the system contains a configuration {GameOn, Wait,
Ready, Rand}, occurring event set is consist of user event “ready” and system event
“time”, and variable remain is zero, although it is a rare case, it breaks the output
constraint that output value must be persistent during one execution, since remain
have multiple assignments. Table 1 presents it.

Table 1. Violation of Race Condition for a variable “remain”

events Configuration Actions
{time, ready} {GameOn, Wait, Ready, Rand} {waitGo:=1, remain:=0}

{timeset, timeout} {GameOn, TimeInit, Go, Rand} {waitStop:=1, remain:=randn*128}

{timeset} {GameOn, Wait, Stop, Rand} { remain:=1000}

∅ {GameOn, Wait, Stop, Rand} −

4 Debugging fFSM Model

4.1 Stepper: Simulation Tool for fFSM Model

To debug a model, simulating a system model is widely used. In the PeaCE approach,
integrated simulation is provided. But it could not simulate control model only. Thus,
we develop a simulation tool for fFSM model with respect to our step semantics.
Figure 4 shows the framework of the Stepper.

Stepper receives textual description of fFSM model written by design tool in the
PeaCE framework. Then, it presents a model like a tree structure and input event
generator. Input events generated by a user execute one macro step. The Stepper,
then, shows all micro steps during one execution. Also it provides translation from
fFSM to SMV, with some important properties to be checked automatically. In figure
5, as you can see, after “time” and “ready” events occur, the variable remain is
updated in twice 999, 384 at the macro step, STEP[2].

Fig. 4. Framework of the Stepper

 Formalization of fFSM Model and Its Verification 369

Fig. 5. Detecting a race condition violation via simulation in Stepper

4.2 Model Checking fFSM Model

Simulation is very useful tool to present an error in a model, tracing an execution path
step by step. But by simulation, it is apt to spend much time or in some cases may be
impossible to detect an error. So more efficient debugging, automatic and formal
technique is required. Our tool provides formal verification which is implemented by
translating fFSM into SMV. Figure 6 shows the result of detecting a race condition
violation via model checking and the result is the same of simulator’s.

Fig. 6. Detecting a race condition violation via model checking

4.3 Translation fFSM Model to SMV

Our translation rules are based on Chan[10] and Clarke[11]. Following translation
rules are based on the step semantics defined in the previous section.

Rule 1 (Machine and states). For each machine,),,,(0
iiiii scrTsSm = , machine and

its states are encoded as ;)(;: 0
iiii sminitASSIGNSmVAR = .

370 S. Park, G. Kwon, and S. Ha

Rule 2 (Transitions). Transition relations can be expressed in SMV through the
definition 6. For),,,(0

iiiii scrTsSm = and
iTt ∈ , each transition t in mi is encoded as

);(&))((:_ * tguardtsourceuptmDEFINE i = , where })'(|'{)(ii SssMssup ∈∧∈= γ is

the function to return a super-state of s and up* is transitive reflexive closure of up.

DEFINE
 Machine1_t1 := Machine1 = GameOn & error=1;

VAR
 Machine1 : {GameOff, GameOn};
ASSIGN
 init(Machine1) := GameOff;
 next(Machine1) :=
 case
 Machine1_t1 : GameOff;

 1 : Machine1;

 esac;

Rule 3 (Synchrony hypothesis). To express synchrony hypothesis in SMV, we
define a particular variable stable, which means that a system stays in stable state
where any events does not occur. stable is also used in formulating circular transition
and race condition. When sets of internal events, input events and variables are
respectively {internal1, …, internall}, {input1, …, inputm} and {variable1, …,
variablen}, the translation rule is:

VAR
 stable : boolean;
ASSIGN
 init(stable) := 1;
 next(stable) :=
 case
 !(valued1 = next(valued1)) : 0;

!(valuedn = next(valuedn)) : 0;
 next(input1) | … | next(inputm) : 0;
 (internal1=0) & … & (internall=0) : 1;
 1 : 0;
 esac

Rule 4 (Input event). Every input event e whose initial value is d and domain D is
[min, …, max] can be translated as follow:

VAR
 e : min .. max;
ASSIGN
 init(e) := d ;
 next(e) :=
 case
 stable : min .. max;
 1 : 0;
 esac;

 Formalization of fFSM Model and Its Verification 371

Rule 5 (Output event and internal event). For a transition)',,,(sAgst = and each

output or internal event e whose initial value is d, through a set of transitions {t1, …,
tn}, a set of expressions {exp1, …, expn} and }):.(|:{ AExpeITOeExpe ∈=∪∈∃= ,
the translation rule can be expressed as follow:

VAR
 e : min .. max;
ASSIGN
 init(e) := d ;
 next(e) :=
 case
 t1 : 1Exp ;

 tn : nExp ;
 1 : 0;
 esac;

Rule 6 (Variable). While default value of event e is 0 because of delta-delay, each
variable v stores its previous value. This rule of variable is similar with Rule 5.

VAR
 v : min .. max;
ASSIGN
 init(v) := d ;
 next(v) :=
 case
 t1 : 1Exp ;

 tn : nExp ;
 1 : v ;
 esac;

Table 2 shows CTL templates for some important properties which can be
automatically generated for user’s convenience. The first three are trivial, but the rest
are more complex.

Table 2. Built-in properties and its CTL formulae

Properties CTL formulae
No unused

components EF component1 ∧ ... ∧ EF componentn

No unreachable
guard EF (si ∧ EX sj), source(t) = si and target(t) = sj

No unambiguous
transitions

AG ¬((t1 ∧ t2) ∨ (t2 ∧ t3) ∨ (t1 ∧ t3)),
where {t1, t2, t3} is a set of outgoing transition from the same state.

No deadlocks
¬EF AG Deadlock(fT),

where Deadlock(fT) = ¬ t∈fT tn
No divergent

behavior AG(¬stable A[¬ stable U stable])

Race condition
violation

AG ((update(v) ∧ ¬stable) AX A[¬update(v) U stable])
AG ((emit(o) ∧ ¬stable) AX A[¬emit(o) U stable])

372 S. Park, G. Kwon, and S. Ha

In below table, components might be all states, events and variables. Checking
about a guard is replaced with whether the transition labeled by the guard is enabled
or not. Ambiguous transitions must be checked in all states with their possible
transitions. In the formula encoding the deadlock, fT denotes a set of all transitions of
a model. The formula to detect circular transition, “AG(¬stable A[¬ stable U
stable])”, means “whenever the system is in an unstable state, eventually it must reach
a stable state.” To formulate the race condition, the additional functions update and
emit are introduced. Encoding update or emit for each output event or variable could
be implemented by a new Boolean variable. Thus, user can select some properties or
type in CTL properties.

5 Conclusions

fFSM is a model for describing the control flow aspects in PeaCE, but due to lack of
their formality, it has difficulties in verifying the specification. In this paper, for
lifting the reliability for code generation in the codesign framework and enabling
formal verification of the control model, we defined the step semantics for the fFSM
model. And we implemented tool to simulate and verify an fFSM model. As a result,
some important bugs such as race condition, ambiguous transition, and circular
transition can be formally detected in the model. Especially, to obtain the convenience
of user to check properties, we constructed some templates for automatic generation
of specifications. Now we are developing a specific model checker for fFSM and
researching an effective abstraction technique to be applied in the new model checker.

References

1. D. Kim, S. Ha, "Static Analysis and Automatic Code Synthesis of flexible FSM Model",
ASP-DAC 2005 Jan 18-21, 2005

2. iLogix: http://www.ilogix.com/
3. http://ptolemy.eecs.berkeley.edu/
4. E. Mikk, Y. Lakhnech, M. Siegel, "Hierarchical automata as model for statecharts", LNCS

Vol. 1345, Proceedings of the 3rd ACSC, pp. 181-196, 1997.
5. D. Harel, A. Naamad, "The STATEMATE semantics of statecharts", ACM Transactions

on Software Engineering Methodology, 5(4), October 1996.
6. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. J. Kristoffersen, K. G.

Larsen, "Verification of Large State/Event Systems Using Compositionality and
Dependency Analysis", FMSD, pp. 5-23, 2001.

7. IAR: http://www.iar.com/products/vs/
8. D. Kim, "System-Level Specification and Cosimulation for Multimedia Embedded

Systems," Ph.D. Dissertation, Computer Science Department, Seoul National University,
2004.

9. J. B. Lind-Nielsen, "Verification of Large State/Event Systems," Ph.D. Dissertation,
Department of Information Technology, Technical University of Denmark, 2000.

10. W. Chan, “Symbolic Model checking for Large software Specification,” Dissertation,
Computer Science and Engineering at University of Washington, pp. 13-32, 1999.

11. E. M. Clarke, W. Heinle, “Modular translation of Statecharts to SMV,” Technical Report
CMU-CS-00-XXX, CMU School of Computer Science, August 2000.

Dynamic Co-allocation of Level One Caches

Lingling Jin1, Wei Wu1, Jun Yang1, Chuanjun Zhang2, and Youtao Zhang3,�

1 University of California at Riverside, Riverside CA 92521
2 University of Missouri at Kansas City, Kansas City, MO 64110

3 University of Texas at Dallas, Richardson, TX 75083

Abstract. The effectiveness of level one (L1) caches is of great impor-
tance to the processor performance. We have observed that programs
exhibit varying demands in the L1 instruction cache (I-cache) and data
cache (D-cache) during execution, and such demands are notably dif-
ferent across programs. We propose to co-allocate the cache ways be-
tween the I- and D-cache in responses to the program’s need on-the-fly.
Resources are re-allocated based on the potential performance benefit.
Using this scheme, a 32KB co-allocation L1 can gain 10% performance
improvement on average, which is comparable to a 64KB traditional L1.

1 Introduction

Many applications have transitory high or low demands on instructions or data
at different running stages [4, 10]. We observed that even if a program has a ten-
dency of favoring one cache over the other, this tendency is drastically different
across different programs. Using a “one-size-fits-all” cache for different stages
of a program or different programs puts a limit on the attainable performance.
Previous reconfigurable cache memories are mostly for one cache [9, 14]. In this
paper, we demonstrate an additional source of performance benefits through re-
configuring between the I-cache and D-cache in response to the varying needs of
programs.

We present a technique for set associative caches where some cache ways can
be used in either the I-cache or the D-cache, depending on which setting yields
a better performance. Essentially, we treat I-cache and D-cache as a global L1
cache resource and allocate ways to two caches with the goal of maximizing the
program performance. We choose to allocate in unit of cache ways instead of
subarrays so that the modifications in hardware are trivial. The allocation is
performed periodically and hence the I- and D-cache have different set associa-
tivities at different time, but the total L1 cache size remains the same. When
deciding whether to “move” one way from one cache to the other, we compute
the changes in the average memory access time in both choices and select the
configuration with larger positive impact on performance. Such a criteria proves
to be much more accurate than using the cache miss rates alone in traditional
performance tuning algorithms.

� Authors are supported in part by NSF grants CCF-0429986 and CCF-0430021.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 373–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

374 L. Jin et al.

Using our co-allocation technique, we can utilize moderate-sized L1 caches
more efficiently. On a set of 15 SPEC2K benchmarks experimented, the perfor-
mance improvement can reach as high as 36% with 10% on average. Moreover,
our technique can perform equally well with contemporary L1/L2 optimization
techniques, demonstrating its effectiveness in achieving better L1 resource uti-
lization.

This remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 shows the programs’ varying requirements on I-cache
and D-cache. Section 4 and 5 describes our co-allocation design in details. Ex-
perimental results are in Section 6 We conclude this paper in section 7.

2 Related Work

There has been plenty of research on improving cache performance. We will
discuss only those that are closely related to ours.

Providing flexibility in utilizing the cache spaces has been investigated previ-
ously in several different ways. In a technique developed by Balasubramonian et
al., the L1 D-cache and the L2 cache, or the L2 and L3, are combined so that the
boundary between them can drift [2]. The variations include set associativities
and number of sets which result in variable L1 and L2 sizes. In such a design, it
is possible that a cache block is mapped to a wrong position since the number of
sets is not always the same among different configurations. Our design exploits
the boundary between the L1 I-cache and D-cache and a mis-map would incur
a second access to the cache. Such a situation is not favored in L1 and it could
happen quite frequently especially for instruction reads. Therefore, we choose to
configure at a larger granularity, i.e. the cache ways, due to the structure sym-
metry between the I-cache and D-cache and the simplicity in the modifications
in the cache circuitry.

Ranganathan et al. has proposed to use a portion of cache for another function
such as instruction reuse, hardware prefetching, or compiler controlled memory
[9]. This design is suitable for multimedia applications where the cache is inef-
fective for stream data or large working sets with poor locality. We target at the
general purpose architectures where a wide range of applications are considered.
Therefore, we study the efficiency of L1 space utilization to better capture the
program locality rather than refunctioning them for different purposes. Drach et
al. proposed a technique where one of the L1 caches can be used as a backup for
the other [5]. In effect, this design treats I-cache and D-cache as both L1 and L1.5
(accessed after L1 but before L2)unified caches, resembling a pseudo-associative
unified cache. This design is limited to direct-mapped caches and did not take
into account the port contention of instruction and data accesses in L1.5.

Many recent work have been carried for improving the L2 cache performance
through compression [1, 13], prefetching [8], and novel indexing [7]. Our co-
allocation technique reduces total accesses to the L2 cache, and performs equally
well when L2 hit rate is greatly improved by those techniques.

The programs’ dynamically changing demands in the L1 cache represent one
kind of program characteristic at a finer granularity than the notion of working

Dynamic Co-allocation of Level One Caches 375

set [4] or program phases[10]. In our technique, the change of a cache config-
uration may comply with a change of a program phase, but may also happen
within a single phase. Moreover, since our technique has a specific target, i.e.,
the L1 caches, our hardware detection mechanism can be implemented in a much
lightweight manner. Therefore, we do not need to use the substantial hardware
to first detect phases and then change the cache configuration.

3 Program’s Varying Demands on L1

To understand the programs’ varying demands on the I-cache and D-cache, we
performed measurements on the SPEC CPU2K benchmarks with different cache
configurations which are statically defined. Without the loss of generality, we used
a 4-way set associative L1. The cache sizes were set to 16KB I-cache and 16KB D-
cache akin to the PIII [16] or a Celeron processor [17]. The associativity of a cache
can vary from 2-way to 6-way, i.e., we leave minimum of 2 cache ways for each, and
set 4 ways as configurable between the I-cache and D-cache. The programs were
fast forwarded for one billion and executed for another one billion instructions.
We collected the IPCs on every ten million instruction interval basis.

We found four main categories of programs: (1) those that favor larger I-cache
throughout; (2) those that favor larger D-cache throughout; (3) those that have
alternating transitory demands on larger I-cache and D-cache; and (4) those that
have huge demands on one (usually data cache) constantly and little demands
on the other but giving more resources to the former does not help. For the
first type, the programs typically have larger code sizes and using larger I-cache
clearly benefits. The second type happens when the data set is relatively large
and preserves good locality. Increasing the data portion in the L1 has positive
impact. The third type is most interesting: programs have changing preferences
to the L1. These programs have changing sizes of working sets and code re-
gions. Lastly, there are some programs that are extremely biased to one type
of resource, typically the data cache. Moreover, the working data sets present
poor locality, and increasing data caches does no good. For these programs, the

0 20 40 60 80 100
1 Billion Instructions

0

1

2

3

4

IP
C

apsi

D2I6
D3I5
D4I4
D5I3
D6I2

Fig. 1. Varying demands on I-cache and D-cache for program apsi

376 L. Jin et al.

bottlenecks typically lie in other components such as L2. Re-allocation of L1
will work well in joint with other optimization techniques for L2 cache. Fig. 1
shows a sample benchmark apsi that belongs to type 3 described above (Due
to the space limitation, we do not include graphs for other categories). Legend
“DxIy” denotes x-way D-cache and y-way I-cache. As we can see that the IPC
is improved when the cache configuration adapts to the program’s need.

4 Cache Design

4.1 Modifications to the Circuit

The cache circuitry needs to be adjusted so that some of its ways can be used
for both instruction and data accesses. This means that these shared ways can
take either the instruction address or the data address, and output to either
the instruction bus or the data bus, but not both at the same time. Thus, we
need to add a multiplexer in front of the cache decoders to select between two
addresses. Similarly, the output of the shared ways now can reach both buses
depending on the current way configuration. These changes are depicted in Fig.
2 using colored lines.

DO1 DO2 DO3 DO4 DO5 DO6IO6 IO5 IO4 IO3 IO2 IO1

D$

I$

F1

DH3

II

IH1IH2
DD
DH2DH1

Data address

421 87

D$

I$

F2

DH4 I$

D$
F3

IH4
I$

D$
F4

IH3

Inst. address

Data bus
Inst. bus

0
1

0
1

0
1

0
1

0 1 0 1 0 1 0 1F1 F2 F3 F4

653

 32

 32

Fig. 2. Cache circuit designs

We use a 4-way set associative cache as an illustrative example. Each large
rectangle represents a cache way, including its decoder, tag array, and data array.
Way number 1 to 4 belong to original D-cache and way 5 to 8 belong to I-cache.
We assume that way 3 to 6 can be used as shared ways. The muxes between
the address lines and the cache ways are added as explained above. The output
wires are extended to another output bus with a tri-state driver in parallel with
the original ones. At any time, only one of them is turned on. The control of the
new tri-state drivers are determined by ‘IO6’, ‘IO5’, ‘DO5’, and ‘DO6’ which
are generated by the control flags F1 ∼ F4. These flags indicate whether the
corresponding way has been configured for the other cache, with ‘1’ meaning
yes and ‘0’ meaning no. The flags are set by the dynamic cache co-allocation
algorithm explained later.

Take way number 3 in Fig. 2 as an example (other ways are similar). When it
is accessed as an I-cache way, F1 will be ‘1’ so that instruction address (cache set

Dynamic Co-allocation of Level One Caches 377

index indeed) will flow through the mux on the top. Next the tag comparison
should be carried with the instruction address’s tag, as selected by the mux
near the comparator controlled by F1. Finally, if the selection logic selects the
output from way 3 (not shown in the figure), its output wires to the instruction
bus should be turned on at the tri-state driver by ‘IO6’. The ‘IO6’ is generated
by F1 as illustrated in Fig. 3. The ‘IO6’ should be asserted if both F1 and DH3
are ‘1’, and that the tri-state buffer is selected by the line offset from the address.
Meanwhile, ‘DO3’ should be low since it is to the data bus. As shown in Fig. 3,
‘DO3’ is turned off if F1 is 1.

Icache_late_hit

F2

F1

DH4

DH3

IO5

IO6

Offset.

DO4

DO3

F3

F4 Dcache_late_hit

IH4

IH3

DO5

DO6

IO4

IO3Dcache_hit

DH2
DH1

IH2
IH2

Icache hit

Offset.
Offset.

Offset.

Offset.

Offset.
Offset.

Offset.

Fig. 3. Circuit of the output control

4.2 Timing Analysis

We have added extra hardware along the critical path of the shared ways from
the address input to the data output. The overall overhead amounts to two levels
of gate delays plus wire delays from the lengthened buses. The first level of gate
delay is from the added mux, and the second level comes from the ANDing of
F1 and DH3 before the OR gate in Fig. 3. The extra gates will increase the
cache access time but not necessarily in terms of the number of clock cycles. To
verify this claim, we simulated a cache in HSPICE using IBM 0.18μ and 0.13μ
technology files from MOSIS. The cache delays, gate delays, and the proper clock
frequencies are shown in Fig. 4.

Technology Tbase mux AND Tnew Frequency cycles
0.18μ 1.28ns 0.06ns 0.11ns 1.45ns 1GHz 2
0.13μ 1.07ns 0.05ns 0.056ns 1.176ns 2GHz 3

Fig. 4. Timing analysis of the new cache of 16K-byte using HSPICE

Take the 0.13μ technology as an example. The absolute access time to this
16KB cache is 1.07ns while the number of clock cycles allocated to this cache is
3 (since 2 would not be enough at 2GHz clock frequency). We illustrate the time
distribution of a cache access in each clock cycle in Fig. 5. The activities and
their required time are indicated in shaded slots. As we can see, every cycle has
some slack in the end. When we insert extra timing due to mux and the AND

378 L. Jin et al.

MUX delay AND gate delay

0 0.5 1 1.5
Time (ns)

SADecoder WL & BL Tag cmp OutputA
D

Cycle
1

Cycle
2

Cycle
3

Fig. 5. Cache access time breakdown (0.13μ). The extra time are pointed by arrows.

gate before the address decoding (AD) and before the output driving (output),
the overall time requirements still fit in each clock cycle. The same observation is
made for the 0.18μ technology as well. Therefore, we conclude that even though
the cache access time is increased, the number of cycles needed by this cache
remains the same.

Let us still assume that way 3 is configured to the I-cache. If ‘IO6’ is ‘1’,
meaning that this is an I-cache hit, we generate an “Icache late hit” signal. This
hit comes a little bit later than those hits from way 5 to 8 since the instructions
sent on the bus need to be sent over a longer wire. The wire delay will become
a major concern in future smaller technology size. And thus, we conservatively
charge several clock cycles due to the wire delay. In the evaluation section, we will
vary the number of cycles on the wires and show its impact on the performance.

Other design issues. Our design will be easy to implement if the I-cache and
D-cache are of a symmetric structure, e.g, same size and associativity such as
the AMD Opteron 64-bit core [15]. For different sized caches, especially different
sized ways of I- and D-cache, extra handling to the cache indexing must be
present, similar to that in [2]. Our technique does not favor specialized caches,
e.g., trace caches since the architecture of a trace cache and a conventional D-
cache are significantly different. Adding complex control for reconfigurability
may be an overkill. We do not consider the case where I-cache and D-cache have
different number of ports. This is because additional control logic must be added
and the cache access time will be prolonged. On the other hand, some processors
provide virtually different number of ports for I-cache and D-cache. Internally,
an interleaved banking technique is used and the physical ports per cache way
is the same between I-cache and D-cache [15]. In those cases, our technique can
still be applied.

5 Dynamic Co-allocation Algorithm

In this section, we explain our dynamic cache way co-allocation algorithm in
details. We keep track of several statistics counters in the cache hardware. Peri-
odically, we examine those counters and judge whether the current cache config-
uration should be changed. If there could be an increase in performance, we set
proper flag bits F1 ∼ F4 in Fig. 2. Otherwise, the cache configuration stays the
same. The statistics counters are then reset to reflect new cache performance in
the next time interval.

When it is decided that an I-cache way should be moved to D-cache, the
invalid bits of that array are all reset so that the D-cache can use it as a clean

Dynamic Co-allocation of Level One Caches 379

way. Reversely, when a D-cache way is moved to the I-cache, the dirty entries
in that way should be written back to the L2 first. We modeled this overhead
by stalling the CPU while flushing all dirty lines. Since our monitoring period is
quite long (10 million instruction), the overhead due to dirty write backs are not
noticeable. Both caches’ MSHRs may be non-empty when the reconfiguration
takes place. This is not of much a concern since we simply block the updating
of the new line to the reallocated ways. The new instruction/data can still be
forwarded to the CPU.

5.1 Analyzing the Changes in Performance

The most important part in the dynamic co-allocation algorithm is to calculate
whether there is a gain or a loss in the performance by adding or removing a way
from a cache. Since this is a co-allocation scheme, adding a way to a cache means
removing it from another. Therefore, the net change in the memory performance
is the gain by adding a way to one minus the loss by removing a way from the
other. We calculate the net change for I-cache, denoted as ΔI, and the net change
for D-cache, denoted as ΔD. If ΔI > ΔD > ε, one cache way is moved from the
D-cache to the I-cache. We require that they be greater than a small positive
value since both Δ’s can be negative which means moving one way from another
cache over will hurt performance. Similarly, one way is moved from I-cache to
D-cache if ΔD > ΔI > ε.

Take the I-cache as an example. To obtain ΔI, we must calculate the per-
formance gain, GI , when a new way is added, and the performance loss, LD,
when this way is removed from the D-cache. That is, ΔI = GI − LD. Assume
components other than the L1 caches are not affected by the reconfiguration,
and so the performance change from them is not considered. Therefore, GI is the
reduction in the memory access time contributed by the I-cache. This reduction
is due to the additional I-cache hits brought in by the new way. Ignoring the cold
start of this new way, the increase in the I-cache hits is the difference between
the hits of an n + 1 way cache (Ihitn+1) and an n way cache (Ihitn) where n is
the current set associativity of I-cache. Let Ihit ↑= Ihitn+1 − Ihitn. Therefore,

GI = [Ihitn × TI$ + (1 − Ihitn) × (TL2 + ML2 × TM)

A

]

−[Ihitn+1 × TI$ + (1 − Ihitn+1) × A]
= Ihit ↑ ×(A − TI−$) = Ihit ↑ ×(TL2 + ML2 × TM − TI$) (1)

where TI$/L2/M stands for I-cache/L2/memory access time, and ML2 means L2
miss rates. By replacing the I with D above and considering the D-cache is now
reduced by one way, we can obtain LD as follows:

LD = [Dhitn−1 × TD$ + (1 − Dhitn−1) × A] − [Dhitn × TD$ + (1 − Dhitn) × A]
= Dhit ↓ ×(TL2 + ML2 × TM − TD$) (2)

380 L. Jin et al.

where Dhit ↓= Dhitn−Dhitn−1. Combining the GI and LD into ΔI and assume
TI$ = TD$ = TL1 we obtain

ΔI = GI − LD = (Ihit ↑ −Dhit ↓) × (TL2 + ML2 × TM − TL1) (3)

Using the same derivation, we can obtain ΔD as:

ΔD = GD − LI = (Dhit ↑ −Ihit ↓) × (TL2 + ML2 × TM − TL1) (4)

The most naive way of making a reconfiguration decision seems to be using the
cache miss rates for two caches and comparing them to predefined thresholds.
From equation (3), we can see that there are three variables that determine
the value of ΔI: Ihit ↑= Ihitn+1 − Ihitn = IMissn − IMissn+1, Dhit ↓=
Dhitn − Dhitn−1 = DMissn−1 − DMissn, and L2 miss rates. Clearly, using
IMissn and DMissn instead of ΔI is overly rough since other three terms
are neglected even though they contribute equally to the performance. In fact,
we experienced that dropping terms in (Ihit ↑ −Dhit ↓) results in inferior
performance and using IMissn and DMissn in place of ΔI sometimes gives
mis-configured L1 that could hurt the performance. The Ihit ↑ and Dhit ↓ can
be found in a similar way as in previous techniques [12, 1]. The cost of finding
them is an extra tag array for both caches. We will show the effect of narrowing
such tags to reduce the area overhead in the experiment section.

Note that we have been using the memory access latency in our analysis as the
indication to the performance. In out-of-order execution processors, some of the
memory latency are overlapped with the CPU execution, and therefore do not
contribute to the overall performance. We do not account for the overlapping
part for the following two reasons. First, measuring it at runtime is complex
and may not be very beneficial since it is a secondary factor to the performance
as analyzed by Karkhanis et. al. [6]. Second, reducing the total memory access
latency means the memory hierarchy can respond more quickly to the CPU
making it proceed to the dependent instructions sooner. Consequently, more
overlapping between the CPU and the memory time is likely, further reducing
the non-overlapping portion and improving the performance.

5.2 Overhead

The overhead of calculating ΔI and ΔD is merely four multiplications and four
additions (TL2 − TL1 can be pre-computed). We need four counters for the hits,
which will be explained next, and a couple of temporary registers. Since we per-
form such an analysis on every 10 million executed instructions, such an overhead
is negligible. Nevertheless, we still conservatively charge 200 clock cycles for this
overhead.

Our algorithm currently considers of moving only one cache way at a time. It is
not necessary to have this restriction. In fact, we can find a best configuration by
attempting to add more ways. That is, we can iterate our algorithm several times
to find the best number of ways that should be moved at once, forming a greedy

Dynamic Co-allocation of Level One Caches 381

algorithm. Of course, the time spent on such an algorithm will increase and the
hardware counters required also increase since now we need to consider beyond
the second least recently used access numbers. If the maximum number of cache
ways allowable to move is N , N ≤ cache associativity. The maximum number
of iterations is N , and the maximum number of hardware counters is N × 2. We
will compare the performance differences between a single-step algorithm and
the greedy algorithm in our experiments.

6 Evaluations

We performed experiments using the SimpleScalar Tool Set [3]. The benchmarks
we used are 15 programs from SPEC CPU2K compiled into Alpha binaries. All
the programs were fast forwarded for one billion and executed for one billion
instructions. The processor configurations are shown in Fig. 6.

Parameter Value Parameter Value Parameter Value
Fetch queue entry 8 Branch miss penalty 3 RUU size 128
Issue width 8 L1 I/D-cache 16KB 4way L2 latency 15 cycles
Integer ALU/Multiplier 4/4 L1 latency 2 cycles LSQ entry 32
FP ALU/Multiplier 4/4 L2 512K Memory latency 100 cycles

Fig. 6. Architectural parameters

6.1 Performance Improvements

In this section, we show the performance improvements four aforementioned
algorithms: 1) Single-step. This refers to our basic co-allocation scheme which
moves only one cache way at a time; 2) Greedy. This refers to the greedy algo-
rithm which intends to find the configuration that can maximize the performance
by iterating the Single-step algorithm multiple times; 3) Reduced-tag. This refers
to the Single-step algorithm but with a narrower width for the extra tags that
we maintain for both I-cache and D-cache. We used only a 4-bit array record-
ing only the least significant portion of a regular tag; 4) Using the miss rates.
This refers to the Single-step algorithm that does not use Ihit ↑ −Dhit ↓, and
Dhit ↑ −Ihit ↓ in equation (3) and (4) respectively. Instead, the I-cache and
D-cache miss counts during current monitoring interval were used as discussed
in Section 5.1.

The percentages of IPC improvements are plotted in Fig. 7. We can see that
the Single-step scheme achieves significant speedups — up to 36% for crafty
and 10% on average. The greedy algorithm generally equals Single-step or does
slightly better but the differences are very small. Only in one benchmark twolf
did the greedy algorithm perform worse than the Single-step. This is because
our co-allocation decision is based on the performance in the last monitoring
interval. This is beneficial when the program does not have dramatic changes
from interval to interval. Otherwise, a wrong decision, as in case of twolf, might
be made. Here we can see the advantage of the Single-step algorithm: it makes

382 L. Jin et al.

gzip gcc
cra

fty

parse
r

eon
vo

rte
x

bzip tw
olf

mgrid
applu

mesa art

equake
fm

a3d
apsi

Ave
rage

−5

5

15

25

35

45

IP
C

 Im
pr

ov
em

en
t (

%
)

Single
Greedy
Reduced
Missrate

Fig. 7. Speedups for single-threaded workloads

only “one step” away from the current configuration. If it was wrong, it is not
too late to correct it back in the next interval. Whereas in the greedy algorithm,
it tries to make “multiple steps” aggressively. This is good if the decision is
correct, but damaging otherwise.

Using a narrower tag array (‘Reduced’ bar in the chart) achieves very good
approximation to using a full-width tag array. A narrow tag array may generate
some false positive hits, i.e., the 4 bits match with the address but it is not a hit.
Such a situation affects only one benchmark appluwhere we observed 20% of hits
are false positive in the extra tag array for the D-cache. This resulted in a very
high hit count that increases the ΔD which then generates more configurations
favoring the D-cache. The last algorithm uses the miss rates in equation (3) and
(4). The only advantage is to remove the extra tag that helps in collecting the
cache hit changes. However, using the miss information greatly degrades our
performance gains, and sometimes even slows down the programs (parser, bzip
and art). This is due to the inaccuracy of using miss rates only to characterize
program performances.

6.2 Sensitivity to L2 and L1 Optimizations

There has been abundant research on improving the L2 cache performance.
Examples are content compression, prefetching, using novel indexing schemes,
etc. We would like to see the potential of our L1 cache co-allocation scheme
with the presence of those L2-based techniques in this section. Since most of
those techniques aim at reducing the L2 miss rates, we increased the L2 size
(effectively decreasing its miss rates) to mimic those techniques in a uniform
way. The results are presented in Fig. 8.

On average, our L1 co-allocation scheme performs even better than before.
This is mainly because when a major bottleneck in L2 has been removed, the
next important component is likely to be the L1 caches. Hence, any improve-
ment in the L1 will be very sensitive to the overall performance. Of course,
a slight decision mistake may introduce negative impact on the performance
as in parser. Nevertheless, this experiment also demonstrates that our L1 co-
allocation scheme is not only not diminished by, but also additive to existing
L2-based optimization schemes.

It is also of great interest to see similar effects to existing L1 optimization
techniques. The well known L1 cache performance improvements include line

Dynamic Co-allocation of Level One Caches 383

gz
ip

gc
c

cr
af

ty
pa

rs
er

eo
n

vo
rte

x

bz
ip

tw
ol

f
m

gr
id

ap
pl

u
m

es
a ar
t

eq
ua

ke
fm

a3
d

ap
si

Av
er

ag
e

−5

5

15

25

35

45

IP
C

 Im
pr

ov
em

en
t(

%
)

L2 Cache = 4M
L2 Cache = 128M

Fig. 8. With a near-ideal L2 cache

0
5

10
15
20
25
30
35
40
45
50

gz
ip gc

c
cr

af
ty

pa
rs

er eo
n

vo
rte

x
bz

ip
tw

olf

m
gr

id
ap

plu
m

es
a ar

t

eq
ua

ke

fm
a3

d
ap

si

Ave
ra

ge

IP
C

Im
p

ro
ve

m
en

t
(%

)

line buffer line buffer + victim buffer line buffer + victim buffer + co-allocation

i

Fig. 9. Comparison among line buffer,
victim buffer, and co-allocation scheme

buffer for I-cache, victim buffer for D-cache, prefetching for D-cache, pseudo-set
associative I- or D-cache etc. We will compare the former two since prefetching
into L1 has the risk of polluting the cache and is thus more suitable for L2, and
pseudo-set associative L1 cache is more applicable to direct-mapped caches.

In Fig. 9, we show the results of the following three techniques: 1) add a single-
entry line buffer to the I-cache; 2) on top of 1), add an 8-entry victim buffer to
D-cache; and 3) on top of 2), add our co-allocation technique. The purpose
of this experiment is to see if the performance gain we showed earlier cannot
be achieved by simply a line buffer, a victim buffer or both. The conclusion is
quite clear from the results. For programs such as appsi, crafty, fma3d etc,
the IPC increase from case 2) to case 3) is 14%, 20%, and 19% respectively.
On average, a single line buffer improves IPC by 6.7%. With victim buffer, the
IPC is further improved by 3%. Finally, with our co-allocation technique, the
IPC is increased further by 5.3%. The reason the co-allocation technique being
constantly effective is that it exploits a dynamic program execution demand that
is distinct from those phenomena exploited by line buffer or a victim buffer.

6.3 Using a Larger L1

Another interesting result we want to show is that using 32KB L1 cache (16KB
each) with our cache co-allocation scheme can achieve comparable performance
to a 64KB baseline L1 (32KB each). This is shown in Fig. 10. As we can see
that except for a few programs, e.g. crafty and apsi, our claim is true for most
other programs. Thus, we can reduce the area cost of L1 yet still achieve the
performance of a larger L1. This is a beneficial feature to embedded type of
processors where area is of a big concern.

6.4 Sensitivity to Wire Delays

With the trend in technology size shrinking, wire delays will become evident in
future processors. To accommodate locations of I-cache and D-cache in different
floorplans of different processor models, we vary the number of cycles that might
be taken when data/instruction comes from the opposite cache ways. However,
when significant wire delays are taken into account, our analytical models for

384 L. Jin et al.

gz
ip

gc
c

cr
af

ty
pa

rs
er

eo
n

vo
rte

x
bz

ip
tw

ol
f

m
gr

id
ap

pl
u

m
es

a ar
t

eq
ua

ke
fm

a3
d

ap
si

Av
er

ag
e

0

1

2

3

4

IP
C

32K Cache(I16K−D16K)
64K Cache(I32K−D32K)

Fig. 10. Comparing our 32KB L1 and a
normal 64KB L1

-5

0

5

10

15

20

25

30

35

40

gz
ip gc

c
cr

af
ty

pa
rs

er eo
n

vo
rte

x
bz

ip
tw

olf

m
gr

id
ap

plu
m

es
a ar

t

eq
ua

ke

fm
a3

d
ap

si

Ave
ra

ge

IP
C

Im
p

ro
ve

m
en

t
(%

)

1 extra cycle 2 extra cycle 3 extra cycle

-1.58

Fig. 11. Performance sensitivity to wire
delays

performance gain and loss in section 5.1 should be revised to accommodate the
delays. We measured IPC increases when 1, 2, or 3 additional cycles are added
to the wires in Fig. 11.

We can see that our scheme is quite resistant to the impact from wire delays.
This is because when co-allocation algorithm calculates that moving ways does
not yield benefit, it simply keeps the original configuration. We observed that the
worst case happens only in bzip when 3 extra cycles are added to the wires. The
slowdown is 1.58%. On average, there are still 7.8% (6.3%) IPC improvements
when 2 (3) extra cycles are added on the wires.

7 Conclusion

We have presented a simple and accurate technique of dynamically co-allocating
cache ways between L1 I-cache and D-cache according to the programs’ varying
demands. Our cache co-allocation algorithm can accurately capture the changing
demands on L1 caches. It works even better when combined with other L1 or
L2-cache optimization techniques. For many programs we tested, a 16KB I-cache
and a 16KB D-cache can achieve the same or better performances of L1 caches
doubling the size. On average, our cache co-allocation scheme can yield 10%
speedup for the benchmarks we tested.

References

1. A. Alameldeen, D. Wood, “Adaptive cache compression for high-performance
processors,” ISCA, pp. 212-223, 2004.

2. R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas, “Memory
Hierarchy Reconfiguration for Energy and Performance in General-Purpose Proces-
sor Architectures,” Micro, pp. 245-257, 2000.

3. D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,” Technical
Report 1342, Univ. of Wisconsin-Madison, Comp. Sci. Dept., 1997.

4. P. Denning, “The working set model for program behavior,” Communications of
the ACM, Vol. 11, Iss. 5, pp. 323-333, 1968.

Dynamic Co-allocation of Level One Caches 385

5. N. Drach, A. Seznec, “semi-unified caches,” ICPP, pp. 25-28, 1993.
6. T. Karkhanis, J. Smith, “A first-order superscalar processor model,” ISCA, pp.

338-349, 2004.
7. M. Kharbutli, K. Irwin, Y. Solihin, J. Lee, “Using prime numbers for cache indexing

to eliminate conflict misses,” HPCA, pp. 288-299, 2004.
8. K. J. Nesbit, J. E. Smith, “Data cache prefetching using a global history buffer,”

HPCA, pp. 96-105, 2004.
9. P. Ranganathan, S. Adve, N. Jouppi, “Reconfigurable caches and their application

to media processing,” ISCA, pp. 214-224, 2000.
10. T. Sherwood, E. Perelman, G. Hamerly, B. Calder, “Automatically Characterizing

Large Scale Program Behavior,” ASPLOS, pp. 45-57, 2002.
11. P. Shivakumar, N. P. Jouppi, “CACTI 3.0 An Integrated Cache Timing, Power,

and Area Model,” WRL Research Report, 2001/2.
12. G. E. Suh, S. Devadas, L. Rudolph, “A new memory monitoring scheme for

memory-aware scheduling and partitioning,” HPCA, pp. 117-128, 2002.
13. J. Yang, Y. Zhang, R. Gupta, “Frequent value compression in data caches,” MI-

CRO, pp. 258-265, 2000.
14. C. Zhang, F. Vahid, W. Najjar, “A highly configurable cache architecture for em-

bedded systems,” ISCA, pp. 136-146, 2003.
15. “Understanding the detailed architecture of the AMD’s 64 bit core,” http://www.

chip-architect.com /news / 2003 09 21 Detailed Architecture of AMDs 64bit Core.
html#3

16. Intel, “Intel Pentium III Processor for the SC242 at 450 MHz to 1.0 GHz
Datasheet,” http://www.intel.com/design/pentiumiii/datashts/244452.htm

17. CPU Comparison
http://www.pantherproducts.co.uk/Articles/CPU/CPU %20Comparison.shtml

Jaguar: A Compiler Infrastructure for Java
Reconfigurable Computing�

Youngsun Han, Seon Wook Kim, and Chulwoo Kim

Department of Electronics and Computer Engineering,
Korea University, Seoul, Korea 136-701

Tel.: +82-2-3290-3252
ckim@korea.ac.kr

Abstract. In this paper, we present our compiler infrastructure,
called Jaguar for Java reconfigurable computing. The Jaguar compiler
translates compiled Java methods, i.e. sequence of bytecodes into Verilog
synthesizable code modules with exploiting the maximum operational
parallelism within applications. Our compiler infrastructure consists
of two major components. One is a compiler to generate synthesizable
Verilog codes from Java applications, which performs full compilation
passes, such as bytecode parsing, intermediate representation (IR)
construction, program analysis, optimization, and code emission. The
other component is the Java Virtual Machine (JVM) which provides
Java execution environment to the generated Verilog modules. The
JVM closely interacts with hardware during the execution through
an interrupt method. We discuss the performance issues and code
transformation techniques to reduce the interaction overhead in our
Java reconfigurable computing environment.

Keywords: Reconfigurable computing, compiler, Java, Verilog, FPGA.

1 Introduction

The applications written in Java can be compiled into location-independent
codes moving on the Internet and running on every platform. Java’s portabil-
ity is achieved by compiling its classes into a distribution format, called a class
file. The class file contains information about class fields and methods, and each
method is represented as architecturally-neutral representation, i.e., a sequence
of bytecodes. The class files are interpreted and executed on any computer sup-
porting the Java Virtual Machine (JVM). Java’s code portability, therefore, de-
pends on both platform-independent class files and the implicit assumption that
the full featured JVM is supported on every client machine. However, despite of
the distinguished advantages over other programming languages, performance
limitation due to interpretation in software-manner is a serious shortcoming to
prevent from using Java on small devices like mobile phones and PDAs.
� This work was supported by grant No. R01-2005-000-10124-0 from Korea Science

and Engineering Foundation in Ministry of Science & Technology.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 386–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 387

Nowadays according to fast development of semiconductor technologies, the
speed of FPGAs (Field Programmable Gate Arrays) has been dramatically im-
proved as much as that of microprocessors. Several approaches to accelerate
execution of Java applications using a reconfigurable hardware have been pro-
posed. There are three closely related works in area of reconfigurable hardware
generation using high-level languages such as C/C++ and Java.

NENYA [1] compiler was developed to generate VHDL hierarchical RTL de-
scriptions from user-specified regions of a Java program. The intermediate repre-
sentations of NENYA is best-tailored to performance-driven hardware synthesis
described in terms of interconnections between macro-cells in hardware libraries.
And a C to HDL compiler [2] is designed to generate high speed pipeline cir-
cuits for loop and recursive parts written in C language, which consumes the
most execution time of many applications. The compiler aims at extracting the
most exhaustive parts of a C program, such as loop and recursive function,
that can be accelerated by FPGAs and achieving the co-computation by mi-
croprocessor and FPGAs. But, full functions are not supported by the compiler
yet. Finally, the Streams-C compiler [3] synthesizes hardware circuits for recon-
figurable FPGA-based computers from parallel programs written in Streams-C
language, including a small number of native libraries added to a synthesizable
subset of C, and supporting a communicating process programming model. The
Streams-C language and compiler make it easy to develop reconfigurable com-
puting applications with high level expressibility.

In contrast of JOP [4] (full-featured hardware JVM), these researches are
commonly based on a concept for reconfigurable computing which is supported
by automatic code translation from high level languages such as C and Java into
synthesizable hardware descriptions. There are large number of related work
to reconfigurable computing, such as hardware/software co-design [5], software
compilation [6], and high-level synthesis (HLS) [7].

In this paper we present code translation and optimization techniques for
Java reconfigurable computing. For this purpose, we have developed a compiler
infrastructure, called the Jaguar compiler which translates compiled Java meth-
ods, i.e. sequence of bytecodes into Verilog synthesizable code modules with ex-
ploiting the maximum operational parallelism within applications. Our compiler
infrastructure consists of two major components. One is a compiler to generate
synthesizable Verilog codes from Java applications. The compiler performs full
compilation passes, such as bytecode parsing, intermediate representation (IR)
construction, program analysis, optimization, and code emission. The compiler
emits Verilog codes by using macro-cell libraries, which is a set of Verilog codes
to represent semantics of a bytecode. The other component is Java Virtual Ma-
chine (JVM) which provides Java execution environment to the generated Verilog
modules. The JVM closely interacts with hardware during execution through an
interrupt method. We discuss the performance issues and code transformation
techniques to reduce the interaction overhead in our Java reconfigurable comput-
ing environment. Differently from [1, 2] our infrastructure is a complete compiler

388 Y. Han, S.W. Kim, and C. Kim

solution for Java reconfigurable computing, i.e. there is no limitation in use to
generate synthesizable Verilog codes from Java bytecodes.

The paper is organized as follows: In Section 2 we present the execution model
for our Java reconfigurable computing and the structure of our Jaguar compiler
infrastructure, and in Section 3 we analyze the performance of our execution
platform using SciMark 2.0 benchmark [8]. Finally in Section 4 the conclusion
is made.

2 Jaguar Compiler Infrastructure

2.1 Execution Model

Figure 1 shows an architecture of the Jaguar system for Java reconfigurable
computing. The Jaguar execution consists of software-only and hardware-only
execution, and their interactions. The software execution is done by Java Virtual
Machine (JVM) running on the ARM processor, and the hardware execution is
done by a set of synthesizable Verilog method blocks (MBs), i.e. Jaguar Hardware
(Java Hardware), called J-Hardware on FPGA. The J-Hardware is connected to
ARM through the AMBA protocol as a passive slave. We use the Altera Excal-
ibur FPGA to support our execution model. We need an interaction between
JVM and J-Hardware to control hardware-implemented method blocks on the
FPGA, and to maintain program and data consistency. For this purpose, we
use an interrupt method, and the JVM has been modified to handle interrupt
requests from J-Hardware.

Fig. 1. Jaguar execution model for Java reconfigurable computing

Figure 2 shows the Jaguar execution flow, which is very similar to Just-In-
Time (JIT) compiler execution. When JVM interprets bytecodes for a method
invocation, the JVM checks whether the invoked method block is available in
J-Hardware or not. If the desired method block exists in hardware, the JVM

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 389

enables the J-Hardware to execute. Otherwise, the JVM executes bytecodes in
software manner. After enabling J-Hardware, the JVM waits for interrupt signals
from the J-Hardware. The J-Hardware interacts with the JVM when the J-
Hardware needs 1) to access heaps inside the JVM, 2) to determine a method
invocation at runtime, and 3) to handle exception handling. The J-Hardware is
waiting in a wait state, while the JVM services the interrupt requests except
for return, i.e. a termination state. The JVM also contains other components in
order to execute Java applications, such as a class loader, an execution engine,
a memory manager, and so on, which are the basic functionalities of the Java
virtual machine.

Fig. 2. Jaguar execution flow diagram

2.2 Compiler Structure

The Jaguar compiler is designed to translate the most time consuming and arith-
metic intensive Java methods into Verilog synthesizable modules with exploiting
the maximum operational parallelism. The whole compilation flow of our Jaguar
compiler appears in Figure 3.

First, the Java decoder decodes a class file, and the Java analyzer analyzes
bytecode sequences of an application and builds the application’s intermedi-
ate representation, called Java IR. The Java IR includes basic information for
code analysis and generation, such as a control flow and a data flow. The con-
trol dependence between basic blocks is resolved by control bytecodes, such as
1) general control jump bytecodes, 2) switch-type bytecodes that select one of
multiple outgoing edges based on an operand value, and 3) exception handling
bytecodes such as athrow, jsr and ret. The data dependence between bytecodes
inside a basic block, except for bytecodes to need to interact with JVM such as
getfield, invokevirtual and so on, is resolved by simulating Java operand stacks
and local variable arrays. Additionally, we have integrated our compiler with the
Jikes compiler [9] to get dependence information between bytecodes accessing

390 Y. Han, S.W. Kim, and C. Kim

Fig. 3. Jaguar compilation flow for Java reconfigurable computing

the heap inside JVM. The Java IR for a basic block is scheduled and optimized
to exploit maximum operational parallelism by using dependence information.

The Java-to-Verilog IR translator translates Java IR into High-Level Verilog
IR. And the translator generates J-Hardware description to contain hardware-
implemented method block information, such as a list of method names and
interactions. The JVM reads the J-Hardware description when starting JVM
execution. When the JVM interprets bytecodes for a method invocation, the
JVM uses the J-Hardware description to know which method blocks are avail-
able into J-Hardware. And each entry for an interaction list has three fields: an
interrupt index, a bytecode number and a program counter (PC). During exe-
cution, the entry is hashed by the interrupt index as a hash key and a value of
the entry consists of a pair of the bytecode number and the PC. The interrupt
information is used to know what kind of interrupts are requested and how they
should be handled by the JVM.

The Java-to-Verilog IR translation generates three hardware components for
a method block module, such as a basic block, and connection between basic
blocks, and a method block controller to handle interrupts from basic block
modules. Figure 4 shows an architectural organization for a method block mod-
ule. Two interrupt masks are used to check interrupts from basic block modules
and to support control speculation between basic block modules for future re-
search. But the current version is to use only one interrupt mask at one time.
When an interrupt mask is set by interrupts, an interrupt checker enables an
operand fetcher to get operands from an operand table. The operand table in-
cludes a start index of operands for each interrupt. The operand fetcher enqueues
the fetched operands into an operand queue, which is dequeued by JVM for an
interrupt service.

Each basic block in the Java IR is translated into Verilog as shown in Fig-
ure 5. The Verilog code for a basic block consists of a basic block controller to

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 391

Fig. 4. Architectural organization of a method block

Fig. 5. Architectural organization of a basic block

handle a system clock for itself and a set of bytecode modules. If an interrupt is
generated by getfield bytecode module, the interrupt checker inside a basic block
disables the system clock. When an acknowledge signal from the method block
controller is received, the system clock is enabled again. And the bytecode mod-
ules are connected to each other by using data flow information, and scheduled
synchronously by using D FFs.

392 Y. Han, S.W. Kim, and C. Kim

We connect basic blocks by considering control and data flow information. The
control flow is represented as an enable signal to start execution of successor basic
blocks. Similarly data flow is represented as wires and tri-state buffers controlled
by the enable signal.

Finally, High-Level Verilog IR is emitted and linked with macro-cell libraries
to generate synthesizable Verilog codes. Figure 6 shows iadd macro-cell written
in Verilog as an example.

module Bc_iadd(data_out, data_op1, data_op2);
parameter WIDTH = 32;
output [WIDTH-1:0] data_out;
input [WIDTH-1:0] data_op1, data_op2;

assign data_out = data_op1 + data_op2;
endmodule

Fig. 6. Example of a macro-cell for iadd bytecode

2.3 Interaction Between JVM and J-Hardware

For interaction between JVM and J-Hardware, Figure 7 shows an interrupt se-
quence diagram, whose mechanism consists of the following three steps: (i) When
J-Hardware needs an interaction with JVM for a heap access, a method invo-
cation, and an exception handling, it sends an interrupt request signal to JVM.
When J-Hardware receives an acknowledgment (ACK) signal from the JVM, J-
Hardware inactivates itself and waits for completion of the interrupt service. (ii)
In order that JVM provides an interrupt service, the JVM needs operands from
J-Hardware. The JVM reads all 32 bit operands which are generated by simulta-
neously occurring interrupts. The operands are provided by the operand queue
in Figure 4 from the J-Hardware (read an operand). (iii) In the last step, the

Fig. 7. An interrupt sequence diagram

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 393

JVM executes an interrupt handling routine and returns a service completion
signal to J-Hardware one by one.

2.4 Code Optimization

In performance evaluation of our infrastructure, we have found that the per-
formance of the Jaguar system highly depends on the number of interactions
between JVM and J-Hardware through an interrupt mechanism. The interac-
tion is required for heap accesses, method invocations, and exception handling.
In this subsection, we discuss code optimization issues in heap accesses, since
interactions due to method invocations can be reduced only by control spec-
ulation and aggressive inlining. In order to alleviate the overhead, we applied
the following three code optimization techniques as shown in Figures 8 and 9:
an interrupt scheduling, a common subexpression elimination (CSE) and a loop
unrolling.

Fig. 8. Jaguar code optimization. The shaded nodes in DFG are the target of each
optimization. (a) Bytecode sequence. (b) DFG. (c) DFG after interrupt scheduling. (d)
DFG after CSE.

394 Y. Han, S.W. Kim, and C. Kim

Fig. 9. Loop unrolling optimization in Jaguar. The shaded nodes in DFG are the target
of each optimization. (a) Bytecode sequence. (b) DFG. (c) Bytecode sequence after loop
unrolling. (d) DFG after loop unrolling.

Interrupt Scheduling. Some interrupt requests from J-Hardware can be gen-
erated at the same time. For example, if there is no data dependence between
heap accesses, the related bytecodes can be scheduled to ask interrupt services
simultaneously to JVM, as shown in Figure 8 (c). The method block controller
in Figure 4 is designed to manipulate several interrupts at the same time. The
interrupt scheduling technique reduces the overhead (i) described in Section 2.3.

Common Subexpression Elimination (CSE). If there exists only input
dependence, we can apply a common subexpression elimination technique to
heap access bytecodes. This technique reduces overhead (ii) and (iii) described
in Section 2.3. If the heap access bytecodes access the same data space, we can
remove all the bytecodes except for an input dependence source. The example
is shown in Figure 8 (d).

Loop Unrolling. For more aggressive interrupt schedule, we apply a loop un-
rolling if there is no cross-iteration dependence. In the applications which include

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 395

loop intensive codes like SparseMM, our Jaguar compiler can reduce interaction
occurrences significantly. The example is shown in Figure 9. The bytecode se-
quence in Figure 9 (a) is unrolled by two, and heap accesses in loop unrolled two
iterations (Figure 9 (d)) can ask an interrupt service at the same time.

3 Performance Analysis

The performance of the Jaguar compiler has been tested using three Java
SciMark 2.0 benchmarks, FFT, SOR and SparseMM [8] on Altera Excalibur
Device [10]. The JVM runs on the 50 MHz ARM processor and Embedded

Fig. 10. Speedup of code optimizations. Ische: Interrupt scheduling. CSE: Common
expression elimination. Unroll: Loop unrolling by 4.

Table 1. Reduction of interrupt occurrences by code optimization. Ische: Interrupt
scheduling. CSE: Common expression elimination.

Benchmark Optimization No. of interrupt No. of interrupts Reduction
occurrences in codes (%)

FFT Basic 122936 204900 40.0
Ische 61496 204900 70.0

Ische + CSE 61496 163940 62.5
SOR Basic 38615 57922 33.3

Ische 19407 57922 66.5
Ische + CSE 19407 57922 66.5

SparseMM Basic 22992 32987 30.3
Ische 21992 32987 33.3

Ische + CSE 21922 32987 33.3
Ische + Loop unrolling by 4 8799 32987 73.3

396 Y. Han, S.W. Kim, and C. Kim

Linux. And J-Hardware executes at 25 MHz, being connected to AMBA as a
slave. There is difference in clock speeds between the JVM and the J-Hardware
due to the Excalibur chip. The Excalibur enables the PLD circuits like J-
Hardware to be connected only to the secondary bridge as a slave of the main
bridge.

Figure 10 shows the speedup with respect to execution without any code opti-
mization. The performance gain comes from reducing the number of interactions
between JVM and J-Hardware, and it is shown in Table 1.

Table 1 shows that our code optimization schemes reduce the interrupt oc-
currences by up to 73%, and all schemes are very effective.

4 Conclusion

Several approaches to facilitate the hardware development have been studied.
Especially, demands for researches on the hardware description using high-level
languages like C and Java is dramatically increasing as the size of hardware
system is getting larger and hardware complexity becomes larger.

In this paper, we presented the Jaguar compiler infrastructure which trans-
lates compiled Java applications to hardware, written in synthesizable Ver-
ilogHDL, without any modification of source bytecodes. Also we evaluated the
performance on Excalibur device, where JVM executes on the ARM processor
and our hardware executes on the FPGA. The heap accesses and method invo-
cations from Java hardware need to interact with JVM through interrupts. The
interactions incur huge overhead in time, so we applied three compiler optimiza-
tion techniques to code generation.

For our ongoing research, we have integrated our Jaguar infrastructure with
a hardware-based Java processor. On this architecture, the interaction overhead
can be significantly reduced because the reconfigurable Java hardware can di-
rectly accesses the heap area.

References

1. J. M. P. Cardoso and H. C. Neto. Macro-based hardware compilation of java
bytecodes into a dynamic reconfigurable computing system. In K. L. Pocek and
J. M. Arnold, editors, Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, pages 2–11, Napa, CA, 1999. IEEE.

2. Tsutomu Maruyama and Tsutomu Hoshino. A C to HDL compiler for pipeline
processing on FPGAs. In IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 101–110, April 2000.

3. Jan Frigo, Maya Gokhale, and Dominique Lavenier. Evaluation of the streams-C
C-to-FPGA compiler: An applications perspective. In International Symposium on
Field Programmable Gate Arrays, pages 134–140, Monterey, CA, 2001.

4. JOP - Java Optimized Processor. http://www.jopdesign.com/.
5. G. De Micheli and R. Gupta. Hardware/software co-design. Proceedings of the

IEEE, 85(3):349–365, March 1997.

Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing 397

6. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, Inc., 1997.

7. G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill, 1994.
8. SciMark 2.0. http://math.nist.gov/scimark2/.
9. David Bacon, Stephen Fink, and David Grove. Space and time efficient imple-

mentation of the Java object model. In European Conference on Object-Oriented
Programming (ECOOP2002), pages 10–14, Malaga, Spain, June 2002.

10. Excalibur devices. http://www.arm.com/.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 398 – 407, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CCD Camera-Based Range Sensing with FPGA for
Real-Time Processing

Chun-Shin Lin1 and Hyongsuk Kim2

1 Electrical and Computer Engineering, University of Missouri-Columbia,
Columbia, MO 65211 USA
LinC@missouri.edu

2 Electronics and Information Engineering, Chonbuk National University,
Republic of Korea

hskim@chonbuk.ac.kr

Abstract. A depth measurement system that consists of a single camera, a laser
light source and a rotating mirror is investigated. The camera and the light
source are fixed at position and face a rotating mirror. The laser light is
reflected by the mirror and projected to the scene for depth measurement. The
camera detects the laser light location on object surfaces through the same
mirror. The scan over the measured area is done by mirror rotation. FPGA is
used to quickly process the collected images to generate a range image. A 136
× 240 range image can be generated in 2.3 seconds. This speed is 4 times faster
than that of a PC with a 2.8GHz clock. If the frame rate can be increased to 300
per second, the speed improvement will be about 15 times. The technology, on
the other hand, offers a solution for embedded implementation.

1 Introduction

Depth images have applications in environment modeling and understanding, and
robot navigation. An efficient method for depth measurement is the active lighting
with structured patterns [1][2]. The active lighting-based technique has one camera of
a stereo vision system replaced by a light source [3-5]. Projecting multiple striped
[6][7] or rectangular grid patterns of lights [9] on objects makes depth measurement
easier and results more reliable. However, potential ambiguities in matching stripe
segments resulting from object surfaces at different depths remain [10]. Though such
ambiguity can be avoided by employing the encoded striped lighting technique [3][8]
or color lighting [1][5], their spatial resolution is relatively low. One alternative to
achieve a higher resolution is to use a single light stripe and have it swept over the
scene [11][12] by rotating the light projector. One drawback of this method is that the
image of projected light gets blurred easily due to the movement of the projected light
during each frame of acquisition period.

In this study, a CCD camera based depth image system is investigated. The system
is composed of a single camera, a laser light projector and a rotating mirror. The
striped laser light is projected toward the rotational axis of the mirror, and reflected to
the surface to be measured. The camera detects the striped light on object surfaces
through the same mirror. One special characteristic of this new system is that the
light projected to any point (at any direction) at the same horizontal level with the

 CCD Camera-Based Range Sensing with FPGA for Real-Time Processing 399

same distance to the mirror axis always forms an image at the same pixel on the
camera. Consequently, there exists a unique association of pixel location to object
depth. This association can be stored in a lookup table for direct pixel to depth
mapping. From each video frame, only the depth on the laser light projection plane is
collected. With the light scanning over an area, a sequence of depth data can be
collected from a sequence of images. For real-time response, FPGA is used for
processing. The WildCard-II from Annapolis Micro Systems Inc. has an embedded
analog to digital converter, which can be used to convert analog video signal into
digital values. A logic system that detects synchronization signals, captures frames,
detects the laser light on each line, converts the light locations into depth data, and
transfers the range image back to the host has been designed. The real-time
processing finishes 136 frames in 2.3 seconds to derive a range image.

In this paper, the new system is presented in Section 2. Equations for depth
calculation are derived. The calibration procedure for two system parameters is
introduced in Section 3. In Section 4, realization of the real-time processing using FPGA
is introduced with experimental results provided. Conclusions are given in Section 5.

2 The New Depth Measurement System with Striped Lighting

The new depth measurement system has the single vertical laser light stripe projected
to the rotating mirror, and reflected to the scene. The image formed by the same
mirror is acquired by the CCD camera. Fig. 1 shows the picture of the developed
measurement device and the triangulation geometry for the single point projection.
Without losing the generality, we focus on the image formation of a single light point.
Fig. 1(b) shows that the light is reflected by the mirror and projected to an object
surface. Note that the mirror can be rotated.

Let the angle between the vertical line and the light source be ζ , and the angle of

the mirror from the horizontal axis be θ . Also, let the distance between the camera

M

Mirror

Light source

C
S

Camera

Fig. 1. Depth measurement with light projection and mirror reflection. (a) The measurement
device. (b) Triangulation geometry for a single point projection.

400 C.-S. Lin and H. Kim

axis and the rotating axis of the mirror be oδ , the distance between the focal point of

the camera and the horizontal axis be md , and the focal distance of the camera be f .
The laser light is reflected onto the object at point T with the mirrored image at T’.

When the mirror angle is θ, ∠SOT, which is the angle between the projected light and
the reflected light, equals 2(θ-ζ) and the angle ∠TOM equals (90o-θ+ζ). Since T’ is
the mirrored image of T, we have ∠T’OM = ∠TOM = 90o-θ+ζ. Consequently,
∠SOT’ = 2(θ-ζ) + (90o-θ+ζ) + (90o-θ+ζ) = 180o. This shows that T’ will always be
on the line along the laser beam, at a distance R from the point O. This characteristic
makes it possible to use a lookup table for converting the light position to depth.

To derive equations for projection in 3-dimensional space, let’s use the cylindrical
coordinate system with the mirror axis as the Z-axis. Assume that the light point T
with coordinates (R, φ, Z) has its image on the CCD sensor at p = (px, pz) in the
coordinates of image plan. Fig. 1(b) shows the projection of a point on x-y plane. In
this figure, px is the distance from P to the camera optical axis. Using the property of
similar triangles, one obtains

 ': :Txp f Dδ= , where D = dm + dT’ (1)

or ' ' .()m T Txp d d f δ+ = (2)

T ' ' ' 'Note that = cos , and sin . ThusT O T Td R l l Rζ δ δ ζ= − =

 (cos) (sin).m Oxp d R f Rζ δ ζ+ = − (3)

Solving the above equation for R gives

.
sin cos

O x m

x

f p d
R

f p

δ
ζ ζ

−
=

+
 (4)

The angle for the observed point T is φ, which is defined as the angle measured
clockwise from the vertical axis to the line OT. This angle is determined by the laser
light direction and the mirror angle as

φ = 2(θ-ζ) + ζ = 2θ - ζ. (5)

For the value Z, the triangular similarity will give

 : :zp f Z D= , or (6)

 ' .()m Tzp d d fZ+ = (7)

Dividing (7) by (2), one obtains

'/ /z x Tp p Z δ= 0/(sin).Z Rδ ζ= − (8)

Solving the above equation for Z gives

0(sin)
.z

x

p R
Z

p

δ ζ−
= (9)

As a summary, R, φ, and Z can be computed by

sin cos

O x m

x

f p d
R

f p

δ
ζ ζ

−
=

+
 (4)

 CCD Camera-Based Range Sensing with FPGA for Real-Time Processing 401

φ = 2θ - ζ, and (5)

0(sin)
.z

x

p R
Z

p

δ ζ−
= (9)

Note that the mirror angle is not involved in equation (4) for depth computation.
Only the fixed angle ζ is included and needs to be carefully calibrated. Conceptually,
one can consider the 3-D measurement problem as one to determine the position of
T’, which is the intersection of lines SO and PC (see Fig. 1(b)); an error arises when
either of those two lines is inaccurately determined. In this setup, the error from
inaccurate SO can be minimized by calibrating the angle ζ. Note that for a setup with
its laser projector rotated, a measurement error of the projection angle is harder to
prevent; so is the depth error. The error from inaccurate PC is caused by inaccurate
position of P. Since P is the pixel position of the light point, a sharper image tends to
provide a more precise and reliable result. The characteristic of sharp image
illustrated in Fig. 2 helps minimize the error from this factor.

Although equations for R, φ, and Z have been provided, in this study, we are more
interested in the depth R, which will be the focus in the following sections.

3 Calibration and Depth Computation

To use equations (4) to determine the range R, system parameters must be either
measured or calibrated. In our experiments, δ0 and dm are measured and known
parameters. Other parameters needed include f, inter-cell distance cellδ on the CCD

sensor and the angle ζ. Since the measurement precision is very sensitive to the error
of ζ, it is impractical to measure ζ directly. This parameter must be determined
through careful calibration. Precise values of internal parameters of camera such as
the inter-cell distance on the CCD plane and the focal length f may not be available
and need to be obtained through calibration too.

It is noted that equation (4) can be rewritten such that only the ratio k=f/δcell needs
to be calibrated. Let the integer xn be the pixel number corresponding to xp , which

is the distance from the center of image plane to P. Then xp can be expressed as

xp = cellδ xn (10)

Plugging (10) into (4) gives

sin cos sin cos

O x m
O cell x m cell

cell x
x

cell

f
n d

f n d
R

ff n n

δ
δ δ δ
ζ δ ζ ζ ζ

δ

−
−= =
+ +

 (11)

Replacing
cell

f

δ
by k in (11) results in

sin cos

O x m

x

k n d
R

k n

δ
ζ ζ

−
=

+
 (12)

402 C.-S. Lin and H. Kim

3.1 Calibration of the Internal Parameter k =
cell

f

δ

The camera and the projector can be set up in parallel, i.e., with ζ = 0. This is
achieved by adjusting the laser light source orientation so that the distance between
the laser beam and the camera optical axis at a long distance (e.g., longer than 5
meters) equals δ0. Upon having ζ set to 0, experiments can be performed to obtain
nx’s for different known ranges of R. The collected pairs of R and nx can be plugged
into (12) to obtain the estimated values of parameter k; the average of these estimated
values is used. This parameter needs to be calibrated only once.

3.2 Calibration of the External Parameter ζ

For a system with unknown ζ, equation (12) can be used for calibration. One can
set up the system to measure a known distance R. The value nx can be obtained
from image. Values of Oδ and md are known and k has been calibrated. As a

result, the only unknown in (12) is ζ, which can be solved. Since the value of depth
is sensitive to the error of angle ζ, recalibration is recommended if the angle is
possibly changed.

3.3 Experimental Results on Depth Measurement

Performance was evaluated for objects at different distances. Fig. 2 shows the results
for calculations with ζ = 3.869o and ζ = 4o. The result for ζ = 4o is provided to show
the sensitivity of the precision to ζ and the importance of good calibration. The
mirror angle for this experiment was set to 40o.

Fig. 2. Results with and without having ζ calibrated

 CCD Camera-Based Range Sensing with FPGA for Real-Time Processing 403

4 FPGA Realization of the Design

For real-time processing, FPGA is used for the implementation. The WildCard-II
from Annapolis Micro Systems Inc. was selected for the experiment. This device has
an embedded analog to digital converter that samples analog signal at a rate of
64MHz. In our design, one out of five sampled data is used. Fig. 3 shows an
example of captured signal. The signal near the sample numbers 7000-9800 is the
vertical synchronization signal. At two ends, there are segments of signals for about
9 horizontal lines.

sampled at 16MHz

-1000

-500

0

500

1000

1500

1 1105 2209 3313 4417 5521 6625 7729 8833 9937 11041 12145 13249 14353 15457 16561 17665 18769 19873 20977 22081 23185 24289 25393 26497 27601 28705 29809 30913

Fig. 3. Video signal from our camera (consisting of a vertical synchronization pulse)

The A/D converter converts the analog video signal into digital values. Our signal
analyzer implemented on FPGA chip at first finds the vertical synchronization and
then starts to process the video signal line by line. It finds the brightest point in each
line and converts the pixel position into a range value. Each frame consists of 240
horizontal lines. The 240 locations for the 240 lines from the nth frame give the depth
information for the nth column of the range image. In our experiments, 136 frames
were collected in nearly 2.3 seconds (60 frames per second). With the FPGA for real-
time processing, a range image of 136 × 240 pixels can be generated in 2.3 seconds.
Due to the use of brightest points, one restriction is that the surrounding light must be
dimmed and controlled in order to clearly see the laser light and obtain a good range
image.

The state machine (SM) chart for the major process to locate the brightest pixel is
given in Fig. 4. The SM chart, which is a different form of the state transition
diagram, gives details for developing VHDL models. The three different shapes -
rectangle, diamond and oval - represent the state, decision box, and list of conditional
outputs, respectively. Notation for the control actions and conditions in the SM chart
is described below:

404 C.-S. Lin and H. Kim

Actions/Control Signals of the State Machine:

• global_reset: reset all values to default. State <= “11”, most other variables set
to zero

• found_pul: signal that a pulse has been located.
• clr_line_no: set the line number to zero (at the beginning of each frame)
• clr_line_loc: set the current line location to zero (at the beginning of each line).
• clr_max: clear the max A/D reading value and clear the location of the max

value (same time as clr_line_loc)
• clr_pw: set the pulse width to zero (reset for the next time we need to count).
• inc_line_no: increment the line number to keep track of the position within the

frame.
• inc_pw: increment the count for the duration of the current pulse.
• save_max: record the current (max) reading and line location of said reading.
• write_line: signal that we have reached the end of the line and may record the

data if desired. This signal is only part of the global write_enable signal.
Another condition is that the line number must be within a specified range.

global_reset

S3:STARTUP

NEG_P S0: PULSE LOW

NO_ P

found_pul
clr_pw

SH_P
inc_line_no
clr_line_loc

clr_max

S1: LINE SAMPLE HSYNC
found_pul
write_line

inc_line_loc

MAX

inc_pw

S2: VERT SYNCH

POS_P

found_pul
clr_pw

SH_P2

clr_line_no
clr_line_loc

clr_max
save_max

Fig. 4. SM Chart for the process that detects lines and locates the brightest pixel in each line

 CCD Camera-Based Range Sensing with FPGA for Real-Time Processing 405

Conditions:

• NEG_P: a negative pulse has been located (large negative derivative).
• POS_P: a positive pulse has been located (large positive derivative).
• NO_P: the opposite of POS_P.
• SH_P: the pulse width is shorter than the width of a vertical synch pulse.
• SH_P2: the pulse width is shorter than the width of a line.
• HSYNC: the line location is close to its end and a negative pulse is detected.
• MAX: the current reading is larger than the saved maximum reading.

Fig. 5 gives two range images generated by our design. The scene for Fig. 5(a)
includes part of a monitor at the right with an electrical cable (0.6m away) and three
boxes stacked together on a 4-leg stool (1.5m away). A shelf on the back is about 5-7
meters away. The scene for Fig. 5(b) includes the back of a chair (with a hollow
portion on it) at the right (1 meter away), A small corner of a table can be seen to its
right. A tripod at a distance of 2.5 meters is to the left of the chair with a bookshelf
behind it. Another chair is at the left. A tiny part of a third chair appears at the left
(dark stripe). All the pixel positions outside of the reasonable range are set to infinity
(white). The white shadow in Fig. 5(a) illustrates the portion where the camera cannot
see the projected light because the displacement between the camera and projector.
Shadow is larger when object is at a closer distance.

20 40 60 80 100 120

20

40

60

80

100

120

140

160

180

200

(a) Range image 1

20 40 60 80 100 120

20

40

60

80

100

120

(b) Range image 2

Fig. 5. Two range image examples

406 C.-S. Lin and H. Kim

A C++ program for finding the light stripe in the same way used by the FPGA has
been tested on a PC with a CPU clock of 2.8GHz. The processing time for the same
size of image (189696 pixels) is 51 ms. The major runtimes will then be 51 ms + tFC,
where tFC is the time for frame capture. If tFC is 16.67ms, it will take at least 9.2
seconds (from 136*(51ms+16.67ms)) to generate a range image and the technique
using the FPGA will take only 2.3 seconds (a speedup of 4 times). It is noted that
with the use of FPGA, the actual processing time is much shorter than that for typical
frame capture. If the design uses the full speed of the A/D converter, the frame rate
that can be handled will be 300 frames/second. At this frame rate, tFC will be 3.33ms
and the processing time to generate a range image using FPGA will be reduced to 460
ms (2.3s/5) while the time for PC will be 7.4 seconds (from 136*(51ms+3.33ms)).

5 Conclusions

A new depth measurement system that consists of a single camera, a laser light stripe
projector and a rotating mirror has been investigated. Error analysis provides an idea
on the magnitude of expected measurement error. For the distance 400-500cm, a
20cm depth error is expected to be from one-pixel error. Experimental results show a
similar magnitude. This arrangement makes it possible to use a lookup table to
determine the depth directly from pixel location. Real-time processing is
implemented on an FPGA card with an A/D converter. It is capable of processing
136 frames in 2.3 seconds to obtain a 136 x 240 range image. Compared to the use of
a PC with a clock rate of 2.8GHz, the speed of the design is 4 times faster and could
be 15 times faster if the frame capture rate is increased to the limit of the A/D
converter (64MHz).

Acknowledgement

The research was partially supported by an International Research Collaboration
Project sponsored by IITA, Republic of Korea. Mr. Ryan Duren helped develop the
VHDL codes for FPGA implementation.

References

1. C. S. Chen, Y. P. Hung, C. C. Chiang, and J. L. Wu: Range Data Acquisition Using Color
Structured Lighting and Stereo Vision. Image and Vision Computing 15 (1997) 445-456.

2. D. Scharstein and R. Szeliski, High-accuracy Stereo Depth Maps Using Structured Light.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1
(2003) I-195-202.

3. J. Batlle, E. Mouaddib and J. Salvi: Recent Progress in Coded Structured Light as a
Technique to Solve the Correspondence Problem: A Survey. Pattern Recognition 31
(1998) 963-982.

4. R. A. Jarvis: A Perspective on Range Finding Techniques for Computer Vision. IEEE
Trans. on Pattern Analysis and Machine Intelligence 5 (1983) 122-139.

 CCD Camera-Based Range Sensing with FPGA for Real-Time Processing 407

5. K. L. Boyer and AC. Kak: Color-encoded Structured Light for Rapid Active Ranging.
IEEE Trans. on Pattern Analysis and Machine Intelligence 9 (1987) 14-28.

6. V. Srinivasan and R. Lumia: A Pseudo-interferometric Laser Range Finder for Robot
Applications. IEEE Trans. on Robotics and Automation 5 (1989) 98-105.

7. M. Baba and T. Konishi: Range Imaging System with Multiplexed Structured Light by
Direct Space Encoding. IEEE Instrumentation and Measurement Technology Conference
(1999) 1437-1442.

8. R. J. Valkenburg and A. M. McIvor: Accurate 3D Measurement Using a Structured Light
System. Image and Vision Computing 16 (1998) 99-110.

9. P. M. Will and K. S. Pennington: Grid Coding: A Preprocessing Technique for Robot and
Machine Vision. Artificial Intelligence 2 (1971) 319-329.

10. R. Jain, R. Kasturi, and B. G. Schunck: Machine Vision. McGraw-Hill Inc. (1995).
11. Y. Shirai and M. Suwa: Recognition of Polyhedrons with a Rangefinder. International

Joint Conference on Artificial Intelligence (1971) 80-87.
12. T. C. Strand: Optical Three-dimensional Sensing for Machine Vision. Optical Engineering

24 (1985) 33-40.

Best Web Service Selection Based on the
Decision Making Between QoS Criteria of

Service

Young-Jun Seo1, Hwa-Young Jeong2, and Young-Jae Song1

1 Dept. of Computer Engineering, Kyunghee University,
1, Seocheon-ri, Giheung-eup, Yongin-si, Gyeonggi-do 449-701, Republic of Korea

{yjseo, yjsong}@khu.ac.kr
2 Faculty of General Education, Kyunghee University,

1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
hyjeong@khu.ac.kr

Abstract. Recently, extensive studies have been carried out on web
service standards because of the necessity of developing large-scale ap-
plications in open environments. In particular, they enable services to
be dynamically bound. However, current techniques fail to address the
critical problem of selecting the right service instances. Service selec-
tion should be determined based on customer preferences and service
level. We propose a best web service selection method which helps to
find a service provider providing the optimal quality. Web service se-
lection process was described with multi-criteria decision making ap-
proach(e.g. PROMETHEE) on the basis of evaluated values of qualities
and the defined service level. The PROMETHEE method has advan-
tages in comparison with the others(e.g. MAUT, AHP) as follows. First,
the PROMETHEE method classifies alternatives which is difficult to be
compared because of a trade-off relation of evaluation standards as non-
comparable alternatives. Second, the PROMETHEE method is different
from the AHP method in that there’s no need to perform a pair-wise
comparison again when comparative alternatives are added or deleted.
Therefore, this method is a suitable approach in the web service se-
lection problem. Because the problem has a lot of quality parameters
which are measured and evaluated at the same time and frequently in-
duces a drop of another quality parameter by the improvement of one
quality attribute. Consequently, our approach enables applications to be
dynamically configured at runtime in a manner that continually adapts
to the preferences of the customers. We verify our approach through case
study.

1 Introduction

Recently, there has been increasing interest in web service because of the follow-
ing advantages: platform independent, interoperability and service availability.
IDC estimated that the amount of sales of software related to web service is
about 3 billion dollars in the year 2004 which are just 1.6% of 188 billion dollars,

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 408–419, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Best Web Service Selection Based on the Decision Making 409

the whole software market. But it is expected to grow by 58% per year for next
5 years and will be 11 billion dollars in the year 2008[1].

Web service is a component-based distributed computing service independent
of a platform and an implementation language in the wired/wireless web and
consists of three operations, i.e. publish-find-bind. Each operation means a ser-
vice provider which develops a web service and publishes in UDDI registry, the
UDDI registry which helps service consumers to find the web service they need
and a service consumer which binds to the web service and uses the function of
the web service actually.

In a current web service model, the UDDI registry includes not an evaluation
for the web service but an explanation and has defects that 48% of the UDDI
registry have a link which contains information that are lost or broken or incor-
rect[2]. When a service consumer chooses one among a lot of similar web services,
he generally gets to need information about the service quality(QoS) of the web
service. Although UDDI was not designed to provide service quality information,
UDDI registries tend to include this information to give convenience to service
consumers.

This paper suggests the best web service selection method which helps to find
a service provider providing the optimum quality that the consumer needs in
a position of service consumer. In this paper, we considered the multi-criteria
of QoS(Quality of Service) and CoS(Cost of Service) in the evaluation process
to solve the problem of existing researches[3,4] related to the web service selec-
tion and used PROMETHEE as an evaluation method which is most suitable
for the web service selection among MCDM approaches. The PROMETHEE
method has advantages in comparison with the others(e.g. MAUT, AHP) as
follows[5]. First, the PROMETHEE method classifies alternatives which is dif-
ficult to be compared because of a trade-off relation of evaluation standards
as non-comparable alternatives. Second, the PROMETHEE method is different
from the AHP method in that there’s no need to perform a pair-wise compar-
ison again when comparative alternatives are added or deleted. Therefore, this
method is a suitable approach in the web service selection problem. Because the
problem has a lot of quality parameters which are measured and evaluated at
the same time and frequently induces a drop of another quality parameter by
the improvement of one quality attribute[6].

This paper was organized as follows. We introduced the research trend about
the web service selection and the theoretical background about the multi-criteria
decision making approach in chapter 2 and suggested the quality evaluation
criteria and the selection method used in the best web service selection process
in chapter 3. In chapter 4, the selection method was verified through a case study
and lastly conclusions and future works were described in chapter 5.

2 Related Work

In this chapter, we reviewed existing researches related to the web service selec-
tion and representative approaches about the multi-criteria decision making.

410 Y-J. Seo, H.-Y. Jeong, and Y.-J. Song

2.1 Research Trends of Web Service Selection

Patrick’s[3] research proposed the combination that could increase the whole
value between two issues(QoS and CoS) by trading more preferred issue for
less preferred issue between two parties. In this model, QoS is related to the
performance-oriented capability(distance and time), CoS is related to resources
(ca-pital, hardware, software, network bandwidth) which are required to ensure
QoS and a token-based approach was suggested to quantify the two-issue. In the
proposed token-based approach, Resource is measured by the unit of QoS-token
and Dollar is measured by the unit of CoS-token. If QoS and CoS are measured
by token, the token trading between two parties is possible. As a result, the
efficient allocation of resources can be caused. But, since this model considered
just two issue groups except the other sub-issues included in QoS and CoS, there
are defects that it can not handle a multi-issue and a multi-party.

Julian[4]’s research adopted a semantic model based on RDF and OWL to
model the interaction between the client and the web service and proposed a rea-
soning engine constructed with JESS(Java Expert Systems Shell) to allow the
client to reason what can provide the best web service among many web services
that have the same sentences. This proposed research adopted the client-side
augmentation approach to gain the experience information that is shared. The
experience related to the generic QoS parameter is availability, reliability and
execution time and is stored in the QoS forum that can be accessed in common.
The QoS forum returns vectors of semantic models and the reasoning engine ex-
tracts the experience information from them. Through the evaluation equation
that is the set of extracted experience information and weights, the service with
the highest weighted sum is selected as the best one. But, in Julian’s research,
the web service selection problem was handled only as the past-experience stand-
point and, since the cost was not considered, the negotiation strategies were not
used.

2.2 Multi-criteria Decision Making Approach

MAUT(Multi-Attribute Utility Theory)[7] is a commonly used method to pro-
vide analytical support to the decision-making process. Utility theory allows
decision makers to give formalized preference to a space defined by the alterna-
tives and criteria. For example, in one method, each alternative/criteria pair is
given a score reflecting how well the alternative meets the criteria. The scores
for each alternative are combined with measures of each criterion’s importance
(i.e. weight) to give a total utility for the alternative. Utility is a measure of
preference for one alternative relative to another.

AHP(Analytic Hierarchy Process)[8] proposed by Thomas Saaty is the ap-
proach on the basis of following three main principles: the principle of con-
structing hierarchies, the principle of establishing priorities, and the principle of
logical consistency. The use of hierarchies helps to itemize the alternatives and
attributes. Establishing priorities is based on pair-wise comparisons between the
alternatives, one criterion at a time. Thus a problem with 5 alternatives and
4 criteria requires 40 comparisons. He then reduces this data using a weighted

Best Web Service Selection Based on the Decision Making 411

Table 1. MCDM approaches[10]

Partial and complete ranking
order

Relative preference orderRelative preference orderResult

NoSaaty’s Eigenvector approachTrade-off Swing Direct-ratio
Eigenvector approach

Approaches to
determine criteria
weights

Pair-wise Comparison by
means of Preference Function

Pair-wise Comparison matrix
by means of 9 point scale

Utility Function additive modelBasis

Outranking ApproachSaaty’s Eigenvector ApproachClassical MCDM ApproachFoundation

PROMETHEEAHPMAUT

average to find the ranking of the alternatives. The method allows for checking
consistency, the third principal.

PROMETHEE(Preference Ranking Organization METHod for Enrichment
Evaluations)[9] have been proposed for the outranking analysis. PROMETHEE
is based on the positive(out-) and negative(in-) preference flows for each alter-
native in the valued outranking relation to derive the ranking. The positive flow
is expressing how much an alternative is dominating the other ones. And the
negative flow how much it is dominated by the other ones. Based on the pref-
erence flows, PROMETHEE I provides a partial preorder. PROMETHEE II is
also introduced to obtain a complete preorder by using a net flow, though, it
loses much information of preference relations.

Table 1 gives an overview on the basic characteristics of the mentioned MCDM
approaches[10].

3 Web Service Selection Method Using PROMETHEE
Approach

3.1 Selection Process

Web service selection process consists of QoS Identification, QoS Selection, QoS
Evaluation, Decision Making and Service Selection steps as illustrated in
Figure 1[11]. QoS Identification step finds all quality characteristics related to
the web service. QoS Selection step chooses the characteristics which can be mea-
sured among all quality characteristics that are found in previous step. In QoS
Evaluation step, the service level[12] for selected quality characteristics should
be defined by service provider or consumer and according to the measurement
criteria, measured values are calculated. Decision Making step calculates the
outranking relation of web services provided by service providers by applying
PROMETHEE approach on the basis of measured result values. Finally, Service
Selection step compares net flows of web service providers on the priority(partial

412 Y-J. Seo, H.-Y. Jeong, and Y.-J. Song

QoS Identification

QoS Selection

QoS Evaluation

Decision Making

Service SelectionBest Web Service

Performance, Safety, Cost and Interoperability,
Transaction Support, Security

Response time, Throughput,
Availability, Reliability, Cost

PROMETHEE, MAUT, AHP

Web Service Level Agreement

Fig. 1. Web Service Selection Process

ranking) and decides the web service having the largest net flow as the best web
service.

3.2 Quality Evaluation Criteria

Since there is no the international web service quality standards model, in this
paper, we classified qualities from five different views roughly[13,14]. Perfor-
mance and safety quality mean that the provided web service is how perfor-
mance is outstanding and provides services stably. Transaction support quality
means the quality that can ensure the integrity when one web service transac-
tion interacts with another web service transaction. Cost and Interoperability
quality mean the service cost and the quality level that can be operated with
several web services just like one system. Security quality means the web service
quality that provides confidentiality and non-repudiation by providing authen-
tication, message encryption and authorization of parties concerned in the web
service.

From the web service characteristics, since the quality at the point of time
when a customer use the web service acts as an important decision factor, we
considered just performance and safety quality and cost in this paper. Table 3
shows the list of qualities except for unmeasurable cases among selected qualities
and each quality is measured by given measurement method through web service
stress tool periodically. At present, there are two type servers providing web
services and these are divided into QoS server and legacy server according to
supporting QoS or not[15].

In case of QoS server, service provider can provide the web service according
to various service level like gold, silver and bronze and each service level are
differentiated by each different quality parameter[12]. But at present most web
service provider is a legacy server without the service quality level concept.
Therefore, in this paper subjected to the legacy server, we considered the service
level in Table 3 according to the level criteria of qualities requested by service
consumers.

Best Web Service Selection Based on the Decision Making 413

Table 2. Web Service QoS Criteria

A principal cannot deny requesting a
service or data after the fact

Non-Repudiation

Method that the service encrypt dataData encryption

Only authorized principals can access
data or treat data to modify

Confidentiality

Authorization allowance for only
parties concerned to accessing the
protected services

Authorization

Authentication of principals for the
accessibility to service and data

AuthenticationSecurity

Guarantee of integrity when the web
service transaction interacts with another
web service transaction

IntegrityTransaction
Support

Compatibility with another web
services

Compatibility

Service compliance with standardStandardization

The cost involved in requesting the
service

CostCost and
Interoperability

Reliability degree for serviceReliability

Whether a service exists and is
available instantly

AvailabilitySafety

Ratio of service request completed in
unit time

Throughput

Time form sending Request to
receiving response

Response timePerformance

DefinitionSubcharacteristicCharacteristic

Table 3. Selected Web Service QoS Criteria to be measured

€

414 Y-J. Seo, H.-Y. Jeong, and Y.-J. Song

3.3 Web Service Selection Method

In order to select the best web service with result values calculated by 5 quality
criteria, this paper adopted PROMETHEE approach and five steps are neces-
sary[5]. The algorithm can be summarized as follows:

Step 1: Define criteria
PROMETHEE is built on the basic notation, with as set A of N alternatives

that must be ranked, and K criteria that must be optimised:

A := a1, ..., aN : Set of discrete alternatives at(t=1...N)
F := f1, ..., aK : Set of criteria relevant for the decision fk(k=1...K)

First step requires the definition of attributes concerning criteria. Relevant
aspects of this input procedure are shown next.

5. Linear Criterion

P0

1

d

4. Level Criterion

P0

1

d Q

1/2

Q

1. Usual Criterion

0

1

d

2. U-shape Criterion

0

1

d

3. V-shape Criterion

0 dQ P

1

6. Gaussian Criterion

0

1

dσ

Ecology, dramatic impact Discrete resource,
manpower Operational criteria

Financial long term,
maintenance cost, life

cycle cost

Financial short term,
acquisition cost,

construction cost

Quality, Security,
Aesthetics

Fig. 2. The ranking obtained using the PROMETHEE method

In Min/Max, Max means an index which gives more positive influence to
the relevant web service selection as the evaluation criteria value increases and
Min means an opposite case. Weight is decided by experiences of the past and
opinions of service consumers. Preference function is defined with 6 kinds as
illustrated in Figure 2 and each function is selected by the type of criteria. Here,
P and Q and σ mean preference, indifferent and Gaussian threshold that are
needed to decide the concrete form of the preference function per evaluation
criteria.

In this paper, we considered multi-party and multi-issue negotiation which
contains service requester, several service providers and attributes, and focused
on the method which finds the optimal compromise suggestion between both
sides and decides the service provider offering the maximum gains.

Step 2: Define a vector containing the weigths
Define a vector containing the weights, which are a measure for the relative

importance of each criterion, wN = [w1, ..., wK]. If all the criteria are of the

Best Web Service Selection Based on the Decision Making 415

same importance in the opinion of the decision maker, all weights can be taken
as being equal.

Step 3: Define for all the alternatives WSPi, WSPj ∈ WSP the
Outranking-Relation Π:

First, the preference function value per quality criteria should be calculated
and the preference function value pk(WSPi, WSPj) of the basis k means
pk(fk(WSPi), fk(WSPj)) which is the difference between WSPi and WSPj .
The preference index Π(WSPi, WSPj) is a measure for the intensity of the
service consumer’s preference for an alternative WSPi in comparison with an
alternative WSPj for the simultaneous consideration of all quality criteria. It is
basically a weighted average of the preference functions pk(WSPi, WSPj).

Π(WSPi, WSPj) =
K∑

k=1

Wk · pk(WSPi, WSPj) (1)

Step 4: As a measure for the strength(weakness) of the alternatives
WSPi ∈ WSP, the outranking flow is calculated:

The outranking relation of alternatives is calculated by figuring out leaving
flow(φ+), entering flow(φ−) and net flow(φ) like equation 2 with preference index
Π(WSPi, WSPj).

φ+(WSPi) =
1
N

N∑
n=1
n�=i

Π(WSPi, WSPn) (2)

φ−(WSPi) =
1
N

N∑
n=1
n�=i

Π(WSPi, WSPn)

φnet(WSPi) = φ+(WSPi) − φ−(WSPi)

Step 5: Graphical evaluation of the outranking relation:
The higher the leaving flow and the lower the entering flow, the better the

alternative. In case a complete pre-order is requested, PROMETHEE II yields
the so-called net flows. As the net flow φnet(WSP) of preference is higher, the
relevant WSP means the more superior alternative.

4 Case Study

In order to exemplify concretely the application process of PROMETHEE in
this chapter, we evaluated web services provided by five different web service
providers and selected the most suitable web service considering QoS among
them.

416 Y-J. Seo, H.-Y. Jeong, and Y.-J. Song

4.1 Decision of Weight, Preference Function and Threshold by
Evaluation Criteria

Table 5 gives the QoS parameters for the five criteria considered to have the
same importance for the web service consumer, therefore all the weights are
equal to 0.2. The Response time can become lower in case of failure than in
case of accessing the reliable service. On this account, the default weight of the
response time tends to be lower than that of the availability or the reliability[4].
But, for the convenience of analysis, we endowed the same weight as another
criteria.

Table 5. Decision Table for the Criteria

€

As illustrated in Figure 2, the preference function of COST criterion was es-
tablished as a linear type. The others were established as a Gaussian type. Web
service consumer must endow a threshold to decide the concrete form of the pref-
erence function per evaluation criteria and for this we referred to service level of
previous Table 3 in this paper. This paper supposed that the web service con-
sumer require bronze level as COST criterion and more than silver level as other
criteria. If the web service consumer is indifferent from 0.01 to 0.02(indifference
threshold=0.01) and increases the preference from 0.02 to 0.04(preference thresh-
old=0.03), the consumer definitely chooses the cheapest web service. Gaussian
thresholds of other criteria were fixed at the middle value between the lowest
limit of the gold level in which the preference increases and the lowest limit of
the silver level which was set up as a default.

4.2 Calculation for Leaving Flow, Entering Flow and Net Flow of
Preference

Table 6 shows the calculation result for the preference function value per the
evaluation criteria. For example in Table 6, by the preference function between
WSPi and WSP2 in case of the response time(RESP), each preference func-
tion value(pj(WSP1, WSP2)=0.9889, pj(WSP2, WSP1)=0.0000) is calculated

Best Web Service Selection Based on the Decision Making 417

Table 6. Preference Function Value per Evaluation Criteria

)2,1(WSPWSPp j)3,1(WSPWSPp j)4,1(WSPWSPp j)5,1(WSPWSPp j)1,2(WSPWSPp j)3,2(WSPWSPp j)4,2(WSPWSPp j)5,2(WSPWSPp j)1,3(WSPWSPp j)2,3(WSPWSPp j)4,3(WSPWSPp j)5,3(WSPWSPp j)1,4(WSPWSPp j)2,4(WSPWSPp j)3,4(WSPWSPp j)5,4(WSPWSPp j)1,5(WSPWSPp j)2,5(WSPWSPp j)3,5(WSPWSPp j)4,5(WSPWSPp j

)2,1(WSPWSPp j

)3,1(WSPWSPp j

)4,1(WSPWSPp j

)5,1(WSPWSPp j

)1,2(WSPWSPp j

)3,2(WSPWSPp j

)4,2(WSPWSPp j

)5,2(WSPWSPp j

)1,3(WSPWSPp j

)2,3(WSPWSPp j

)4,3(WSPWSPp j

)5,3(WSPWSPp j

)1,4(WSPWSPp j

)2,4(WSPWSPp j

)3,4(WSPWSPp j

)5,4(WSPWSPp j

)1,5(WSPWSPp j

)2,5(WSPWSPp j

)3,5(WSPWSPp j

)4,5(WSPWSPp j

Table 7. Preference index per evaluation criteria and leaving, entering and net flow

+φ −+ −= φφφ −φ +φ −+ −= φφφ

−φ

like followings. Since RESP criterion has a more positive effect on the web ser-
vice selection as it is smaller, in case that x, the difference of evaluation scores
between two WSP, is negative, we calculated the selected preference function,
Gaussian type func-tion, by substituting (x = 0.8 − 0.2) for the difference of
evaluation scores and (σ = 0.2) for Gaussian threshold. Reversely, in case that
x is positive, it was calculated at 0.0000 since it is not preferred. The preference
index can be calculated by summing up preference function values per evaluation
criteria and then by multiplying them by the weight. For example, the preference
index between WSP1 and WSP2 can be calculated by summing up preference
function values per evaluation criteria shown at each row of Table 6 and then
by multiplying them by weight(0.2) like equation (3).

Π(WSP1, WSP2) =
1
5
(0.9889 + 0 + 0.9961 + 0.9961 + 0) = 0.5962 (3)

Π(WSP2, WSP1) =
1
5
(0 + 0.9439 + 0 + 0 + 0.5) = 0.2888

Table 7 represents calculation results for the preference index per evaluation
criteria, the leaving flow, the entering flow and net flow by applying above cal-

418 Y-J. Seo, H.-Y. Jeong, and Y.-J. Song

culation procedures to all pairs of (WSPi, WSPj). The leaving flow and the
entering flow of each WSPi are the average values for the summation of all pref-
erence indexes in each ith row and column in table 7 and the net flow is the
difference between them.

4.3 Graphical Evaluation of the Outranking Relation

Figure 3 presents the graphical ranking of the investigated alternatives for best
web service selection resulting from the outranking method PROMETHEE. Ac-
cording to this evaluation, the web service provided by 5th Web Service Provider
(WSP5) is the best choice, followed by the 1st Web Service Provider(WSP1),
while the use of 2nd Web Service Provider(WSP2) comes offer as the worst alter-
native. Since no incomparibilities occur, both PROMETHEE I and the complete
ranking in PROMETHEE II give the same order of investigated alternatives.

1
WSP5

0.23

3
WSP3

-0.02φ

5
WSP2

-0.28φφ

2

WSP1

0.21φ

4

WSP4

-0.14φ

Fig. 3. The ranking obtained using the PROMETHEE II method

5 Conclusion

In this paper, we have presented the web service selection method that can help
service consumers to find the service provider who provides the most optimal
quality. Our approach allows the dynamic selection of Web services depending on
various QoS values and defined service level. The results show that the proposed
approach effectively selects high quality web service (i.e., web service which have
higher overall QoS). From what has been discussed above, we can conclude that
the proposed web service selection approach can be used as a solution for the
complexity and reliability problem.

In future work, we will include the support for exception handling during ser-
vice binding. For example, after a best web service has been decided and while it is
being bounden, an exception may occur (e.g., unavailability of a web service). An-
other interesting issue is to extend our framework with support for mobile clients.

References

1. Sandra Rogers, ”Web Services Software 2004-2008 Forecast”, IDC, April, (2004)
2. Mike Clark, ”UDDI weather report”, Nov, (2001), Available online: http://www.

webservicesarchitect.com/content/articles/clark04.asp

Best Web Service Selection Based on the Decision Making 419

3. Hung, P.C.K, ”Web Services Discovery Based on the Trade-off between Quality
and Cost of Service: A Token-based Approach”, in the ACM SIGecom Exchanges,
Vol. 4.2, Sept, (2003), 20-26

4. Julian Day, Ralph Deters, ”Selecting the Best Web Service”, In Proceedings of
the 14th Annual IBM Centers for Advanced Studies Conference (CASCON), Oct,
(2004), 293-307

5. Jae Hyung Min, Young Min Song, ”A Comparison of MAUT, AHP and
PROMETHEE for Multicriteria Decisions”, Proceedings of the Korean Operations
and Management Science Society Conference, (2003), 229-232

6. K.H.Bennett, and others, ”A Broker Architecture for Integrating Data Using a
Web Services Environment”, ICSOC, Vol.2910, (2003) 409-422

7. David G. Ullman, ”The Ideal Engineering Decision Support System”, Technical
paper, Robust Decisions Inc., (2004)

8. Thomas Saaty, ”Decision Making for Leaders”, RWS Publications, (1995)
9. Brans, J. and P. Vincke, ”A Preference Ranking Organization method(The

PROMETHEE Method for Multiple Criteria Decision-Making)”, Management Sci-
ence, Vol. 31, No. 6, (1985), 647-656

10. Jutta Geldermann, Otto Rentz, ”Multi-criteria analysis for the assessment of
environmen-tally relevant installations”, Journal of Industrial Ecology, (2004)

11. Torsten Bissel, Manfred Bogen, Christian Bonkowski, Volker Hadamschek, ”Ser-
vice Level Management with Agent Technology”, Proceedings of the TARENA
Networking Confer-ence, (2000), 831-841

12. Asit Dan, Heiko Ludwig, Giovanni Pacifici, ”Web Services Differentiation with
Service Level Agreements”, White Paper, IBM Corporation, May, (2003)

13. Shuping Ran, ”A Model for Web Services Discovery With QoS”, ACM SIGecom
Ex-changes, Vol.4, Issue.1, (2003), 1-10

14. NCA, ”A Study on Technical Trends and Deployment Strategies of Web Service
Quality Management”, National Computerization Agency Research Report, Dec,
(2003), Available online: http://www.nca.or.kr/eindex.htm

15. Yu, T., Lin, K.-J., ”The Design of QoS Broker Algorithms for QoS-Capable Web
Services”, Proceedings of the e-Technology, e-Commerce and e-Service Conference,
(2004), 17-24

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 420 – 429, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Storage in Sensor Networks
for Multi-dimensional Range Queries

Ji Yeon Lee1, Yong Hun Lim2, Yon Dohn Chung3,*, and Myoung Ho Kim4

1 E-Government Team, National Computerization Agency, Seoul, Korea
jylee@nca.or.kr

2 Home Platform Group, Samsung Electronics, Seoul, Korea
yonghun.lim@samsung.com

3 Department of Computer Engineering, Dongguk University, Seoul, Korea
ydchung@dgu.edu

4 Department of Computer Science, KAIST, Daejon, Korea
mhkim@dbserver.kaist.ac.kr

Abstract. In data-centric sensor networks, various data items, such as tempera-
ture, humidity, pressure and so on, are sensed and stored in sensor nodes. As
these attributes are mostly scalar values and inter-related, multi-dimensional
range queries are very useful. However, the previous work on range query
processing in sensor networks did not consider overall network lifetime. To
prolong network lifetime and support multi-dimensional range queries, we pro-
pose a dynamic data placement method for multi-dimensional data, where data
space is divided into equal-sized regions and placed over sensor nodes in a dy-
namic way. Through experiments, we show the efficiency of the proposed
method compared with the previous work.

Keywords: Sensor network, data-centric storage, multi-dimensional range
queries, data placement and distribution.

1 Introduction

A sensor network consists of widely distributed sensors, where each sensor node is a
small device with some limited computing, storage and wireless communication ca-
pacity [1, 2, 4, 5, 8]. The applications of sensor networks have been widely expanded
into areas of military, environment, health, and so on. For example, in an environ-
mental monitoring application, sensor nodes which are widely and randomly deployed
over deserts or volcanic areas periodically sense environmental parameters such as the
temperature, humidity, and air pressure. The sensor data can be stored locally into
sensor nodes or delivered to other sensor nodes/outer gateways. The sensor network
where measured data are stored within sensor nodes is called data-centric, which is
the target environment of this paper. The stored data are analyzed or processed
through various queries including point queries, range queries, aggregation queries,
and so on.

* Corresponding author.

 Data Storage in Sensor Networks for Multi-dimensional Range Queries 421

Sensor network has some unique properties compared with the conventional wire-
less network [2, 4, 5, 7, 8]. First, the capacity or resource of a sensor such as comput-
ing power, storage, and energy is very restricted. Especially, since sensor nodes use
batteries for their energy source and the batteries cannot be re-charged or replaced,
efficient control of energy consumption in sensor nodes is very important. Second,
sensor nodes are randomly (i.e., not-controlled) deployed over a target area, and
hence they are not informed of the overall network configuration. (That is, a sensor
node is aware of only its neighbor nodes within its radio scope.) Third, the sensor
node is not gathered and reused, so it is important to fully use the deployed sensors by
prolonging their lifetimes. Since the lifetime of a sensor network is determined by that
of the shortest-life sensor node, we have to elaborate on the energy consumption of
sensor network not to be concentrated on some hot-spot nodes.

In data-centric sensor networks [5, 7, 8], data are stored in sensor nodes based on
their values, not stored in the collector node or delivered to external storage (or a
predefined processor). In this approach, each sensor node has a predefined region of
data domain it will store. This prevents the cases that the sensor nodes which are
located near to external storage or collect more data than the others become hot-spot
(i.e., consuming much more energy than the others). In this paper, in order to balance
the energy-consumption of sensor nodes, we propose a dynamic data placement
method, where we initially assign each sensor node a range of data domain, and dy-
namically adjust the ranges of sensor nodes based on their workload. For region as-
signment, we linearize the multi-dimensional data space by using Hilbert space-filling
curves, and make a linear address space by zigzag traversing of sensor nodes.

The rest of the paper is organized as follows. In Chapter 2, we describe some re-
lated work on data-centric sensor networks. In Chapter 3, we propose a dynamic data
placement method for multi-dimensional queries on sensor networks. In Chapter 4,
we show the performance of the proposed method through experimental results. In
Chapter 5, we conclude the paper with some remarks on future work.

2 Related Work

In data-centric sensor networks, addressing scheme which determines sensor node to
store data is needed. The address (also called the ‘index’) denotes the logical position
of data storage, which is used for routing data or queries to target sensors. A popular
addressing scheme in the conventional data-centric sensor networks is GHT (Geo-
graphic Hash Table) [8]. In the GHT method, data are stored sensor nodes which are
determined based on their geographic locations. Although this method is so effective
for exact-match queries and prefix queries, it is not efficient for range queries. It is
because data objects of similar values are stored into geographically dispersed sensor
nodes, and hence partial queries should be transmitted over many sensor nodes in the
network for range-query processing.

In the DIM (Distributed Index for Multi-dimensional data) approach [5], the geo-
graphic area of sensor networks are iteratively divided by X-dimension and Y-
dimension in an alternative way until there remains one sensor node for a region.
Then, the data space is partitioned and assigned into the geographic regions of sensor
nodes. Differently from GHT, DIM assigns data objects of similar values into geo-

422 J.Y. Lee et al.

graphically near sensor nodes. This improves energy-efficiency for range-query proc-
essing because the number of communications between sensor nodes is reduced com-
pared with GHT. However, since the sensor nodes are deployed in a not-controlled
manner, the data region assignments of sensor nodes cannot be guaranteed to be bal-
anced. (In Figure 1(b), you can observe that the data allocation for each sensor node is
not equal.) Because the energy-consumption of sensor nodes for query processing is
in proportion to the amount of data it stores, non-uniform data assignment to sensor
nodes will cause non-uniform energy-consumption between sensor nodes, which
results in shortening the lifetime of the sensor networks.

Fig. 1. Data Distribution in GHT and DIM Methods

3 The Proposed Method

Our solution for dynamic distribution of sensor data consists of the following steps:
(1) We construct a single dimensional address space of sensor nodes (i.e., lineariza-
tion of sensor nodes) through a zigzag traversing such that geographically near nodes
are located near in the linear address space. (2) We transform the multi-dimensional
data space into a single dimensional data space (i.e., linearization of data space) using
Hilbert space-filling curves. (3) Initially, the data regions on the one dimensional data
space are uniformly assigned into one dimensional address space of sensor nodes.
Then, during the lifetime of the sensor networks, parts of data regions initially allo-
cated to sensor nodes are dynamically migrated to near sensor nodes based on the
workload of sensor nodes.

3.1 Construction of One Dimensional Address Space of Sensor Nodes

If we assign data regions into sensor nodes based on geographic positions as in DIM,
the amount of data allocated to sensor nodes may be unbalanced. This causes the

 Data Storage in Sensor Networks for Multi-dimensional Range Queries 423

energy-consumption of some nodes that covers relatively large data regions to be
more than the others, which leads to shortening the lifetime of entire sensor networks.

For addressing sensor nodes without geographic position information, we construct
a linear address space of sensor nodes through zigzag traversing. The zigzag travers-
ing allows sensor nodes which are deployed geographically near to be assigned near
addresses in the linear address space.

The procedure for zigzag traversing is shown in Figure 2. All nodes are initially as-
signed level numbers through constructing a spanning tree via flooding (See Figure
3(a)). A level number denotes the number of hops needed for reaching the node from
an outer point. After complete level numbering, we traverse the sensor nodes in a
zigzag way. The sequence of traverse becomes the one dimensional address space of
sensor nodes, where the start node is numbered as ‘1’. Figure 3(b) shows an example
of zigzag traversing. In the figure, sensor node ‘a’ has three same-level neighbors
(node ‘b’, ‘c’ and ‘d’). According to Step 1.A of Figure 2, node ‘b’ is selected.

1. Choose a sensor node in the lowest level among ne
ighboring sensor nodes.

A. When there are multiple candidates (i.e., the
 same level), choose a sensor the number of neig
hbors of which is minimal. (This is a heuristic
for selecting outlier nodes first.)

i. When there are still multiple candidates
(i.e., the same level and the same number of
 neighbors), choose the nearest one

2. When no more neighbor node exists, we backtrack o
n the traversed path and checked if there are still
not-chosen neighboring sensor nodes. If any, we proc
eed to the above Step1 from that node.

3. When we backtrack to the start node (i.e., number
 ‘1’ node), the traversal is terminated.

Fig. 2. The Algorithm of Zigzag Traversing

Fig. 3. Generation of Linear Address Space by Zigzag Traversing of Sensor Networks

424 J.Y. Lee et al.

3.2 Transforming Multi-dimensional Data Space into One Dimensional Data
 Space

In this paper, we consider multi-attribute sensor data (e.g., temperature, humidity, air
pressure, lightness and so on) on which multi-dimensional range queries are proc-
essed. In order to store multi-dimensional data into sensor nodes, we transform the
multi-dimensional data space into one dimensional one. For this purpose, we use a
popular space-filling curve, called the Hilbert curve. It is known that the Hilbert curve
has the best locality-preserving characteristic among many space-filling curves such
as Z-ordering, Peano curve, etc [3, 6].

Since the Hilbert curve method assumes a normalized data space, we have to nor-
malize the sensor data. In this paper we assume that sensor nodes are aware of all
domains of sensor data space, and compute the normalized values as aN = (a – aMIN) /
(aMAX – aMIN), where a is the measured data , aN is normalized data value of a, aMIN is
the minimum value of the attribute, and aMAX is the maximum value.

3.3 Data Allocation and Dynamic Adjustment

After generating linear address space of sensor nodes via zigzag traversing and linear
data space via Hilbert curve, we map the data regions evenly into sensor nodes as in
Figure 4. Since both the zigzag traversing and Hilbert space-filling curve tend to pre-
serve the locality property, this data placement on sensor nodes also has good cluster-
ing effects on range queries. For example, in Figure 4, data regions 31~34 which are
adjacent with each other in the original multi-dimensional data space are actually
allocated in neighboring sensor nodes 4 and 5. This entails low cost when a range
query includes data regions 31~34 is processed, since partial queries need not be
delivered to other far-away nodes.

Fig. 4. Allocation of Data Regions to Sensor Nodes

1

2

3

4

5

6

7

8

Addresses

57~64

49~56

41~48

33~40

25~32

17~24

9~16

1~8

Humidity

Light

64 61

63 62

38 35

37 36

4 1

3 2

30 27

29 28

64 61

63 62

64 61

63 62

38 35

37 36

38 35

37 36

4 1

3 2

4 1

3 2

30 27

29 28

30 27

29 28

Temperature

01 0.5

1

1

3

6

2

5

4

Multi-dimensional Data
Space

Sensor Networks

 Data Storage in Sensor Networks for Multi-dimensional Range Queries 425

The above allocation of data is fair when the workload on every data regions is
uniform, since the amount of data space allocated to each sensor node is equal. How-
ever, according to specific characteristics of attributes, some data regions will be
highly accessed than other regions. Query patterns are also dynamically changed
during the lifetime of sensor networks. If the workload of sensor nodes is not uniform,
the energy-consumption could be skewed. For the purpose of balancing the workload
of sensor nodes, which is the goal of our proposed method, we dynamically adjust the
data regions allocated to sensor nodes based on the current workload of sensor nodes.

Region Adjustment for Overloaded Sensor Nodes
For balancing the workload, we have to measure the amount of load of a sensor node
in a quantitative way. Based on the assumption that the amount of energy consump-
tion of a sensor node primarily depends on the amount of data it has stored and the
frequency of queries it has processed, we define the load of a sensor node as follows:

Definition 1. The load(Li) of sensor node i is defined as =
j

jji qeL , where j are

the data regions allocated to sensor node i, ej is the amount of data region j, and qj is
the frequency of queries for j.

In the paper, we use the following two terms, ‘neighboring sensor’ and ‘adjacent
sensor’. The neighboring sensor denotes the sensor which is connected directly i.e.,
located in a single hop communication range. The adjacent node denotes the sensor
node whose data region is adjacent. Usually, the adjacent node of a sensor node is
chosen among its neighboring nodes. When a node is overloaded, its two adjacent
nodes will take parts of data of the overloaded node for load balancing.

The state of ‘overloaded’ means the sensor has been consuming relatively more
energy than the other sensors. In the proposed method, dynamic adjustment of data
regions between sensor nodes is activated by detection of any overloaded sensor
nodes. In this paper, we define the criteria of being overloaded as follows: “Compared
with the initial amount of energy in the battery and the amount of storage space, when
the amount of currently remained energy or the amount of currently available free
storage space are below the half of initial ones, we call those sensor nodes are over-
loaded.” (The criteria can be modified according to target environments and
applications.)

When adjusting data regions of sensor nodes, parts of data regions of overloaded
sensor nodes are distributed into their adjacent nodes. Here, the amount of data for
migration is determined according to the relative loads of overloaded node and its
adjacent nodes.

Definition 2. The amount of data space (pq) to be transferred from sensor node p to
sensor node q is as follows: (Here, pmax and pmin are the max/min addresses (on the 1-
dimensional address space) for sensor node p, Lp and Lq are the amount of load of
sensor nodes p and q, respectively.

p

qp
pq L

LLpp −
×

−
=Δ

2
minmax

426 J.Y. Lee et al.

When data transfer is performed on two (i.e., left and right) adjacent nodes, these
nodes might be overloaded due to the transferred data. Then, those nodes can also
transfer parts of their data to their adjacent nodes progressively. For example, in Fig-
ure 5, some data are transferred from n3 (initially overloaded sensor node) to node n2
and n4, then n2 and n4 can send parts of their data to n1 and n5, respectively.

Fig. 5. Data Transfer for Overloaded Sensor Nodes

4 Performance Experiments

We have conducted simulation experiments for evaluating the performance of our
approach compared with the previous one. We set the size of area for deploying 300
sensor nodes as 800m x 800m, where a sensor node has 14 neighbor nodes (in aver-
age) within its radio coverage 100m. A data record in a sensor consists of 5 attributes,
and a sensor node contains 100 data records at the beginning. We have conducted the
experiment until a failure of sensor node is occurred. We have generated multi-
dimensional range queries which cover 5%, 10% and 20% of data space in a normal-
ized way and in randomly chosen sensor nodes. The amount of energy consumption is
determined by the number of message hops multiplied by the number of bytes for
each message. In this experiment, the energy consumption for data storage is ignored
for convenience.

Energy Consumption
In DIM, when two sensor nodes are located very closely, one sensor is assigned a
very big region of data space while the other is assigned a small one. Observed
through experiments, the size of maximum region assignment is 5 times bigger than
that of the average one. This unbalanced region assignment leads to the increase of
differences of energy consumption between sensor nodes, which results in shortening
the lifetime of overall networks.

Figure 6 shows the comparison result of energy consumption of our method and
the DIM, where the data records are uniformly generated over the entire data space,
and range queries access the data space uniformly. The results indicate energy con-
sumption ratios of sensor nodes at the time when a sensor node has failed due to ex-

32 3421 32 3421

 Data Storage in Sensor Networks for Multi-dimensional Range Queries 427

haustion of its energy. The DIM method has many highly consumed nodes compared
with our method.

We have tested a non-uniform setting, where data generation follows a normal dis-
tribution with the mean value of 0.5 and the standard deviation of 0.1, and also the
query generation is based on the normal distribution of 0 and 0.1. Figure 7 shows the
result of experiment, where we have measured the energy consumption ratios of sen-
sor nodes at the time when 10% of the sensor nodes in our method are failed. (Here,
we sort the id’s of sensor nodes for readers convenience.) In the result we can see that
more than half of the sensor nodes in DIM have consumed most of their energy at the
time of 10% node failure whereas our sensor nodes consume relatively little energy.

Fig. 6. Energy Consumption Ratios under Uniform Data and Queries

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180 210 240 270

sensor id

N
od

e
E
ne

rg
y

C
on

su
m

pt
io
n(

%
) Ours

DIM

Fig. 7. Energy Consumption Ratios under Non-uniform Data and Queries

Network Lifetime
Figure 8 shows the network lifetime (in terms of unit time) comparison result of our
method and DIM. As you can see in the figure, the lifetime until one node failure of
DIM is very short compared with ours. This indicates that DIM is not appropriate for
mission-critical applications where a single node failure would not be admitted. By
the time of 15% node failure, our method survives longer (about 150%) than DIM.

428 J.Y. Lee et al.

Fig. 8. Network Lifetime according to Node Failure Ratios

5 Conclusion

In data-centric sensor networks, the lifetime significantly depends on data placement
(or distribution). The use of hash functions is effective for load balancing since it
distributes (i.e., de-cluster) data over the entire network. However, it is inefficient for
range queries since many sensor nodes must be involved for the query processing. In
other aspects, the previous approach DIM for range query processing did not consider
load balancing on sensor nodes, which results in differences of energy consumption
between sensor nodes and thus short network lifetime.

In this paper we have proposed a new data storage method which balances work-
loads of sensor nodes, and thus improves overall network life time. We have con-
structed the address space of sensor nodes by using zigzag traversing, and assigned
the linearly transformed (via Hilbert curves) data space on it. Since this approach
assigns adjacent addresses onto neighboring sensor nodes, (multi-dimensional) range
queries can be efficiently processed. In addition, the dynamic and progressive update
of address assignments effectively copes with the changes of workloads and balances
energy consumption ratios of sensor nodes. Through simulation experiments, we have
shown that the proposed approach efficiently balances the energy-consumption of
sensor nodes and improve the lifetime of sensor networks.

We in the paper considered that the data are stored on sensor nodes in a non-
replicated way. For future work, we will investigate on data replication in sensor
networks and query processing over replicated data. If some replication of data be-
tween sensor nodes is allowable, the performance of query processing and the avail-
ability of sensor database will be significantly improved.

Acknowledgement

This work was done as a part of Information & Communication Fundamental Tech-
nology Research Program, supported by Ministry of Information & Communication
in Republic of Korea.

 Data Storage in Sensor Networks for Multi-dimensional Range Queries 429

References

[1] Bhardwaj, M.. and Chandrakasan, A. P. Bounding the Lifetime of Sensor Networks Via
Optimal Role Assignments, IEEE INFOCOM 2002.

[2] Greenstein, B. et. al. DIFS: A Distributed Index for Features in Sensor Networks, Elsevier
Journal of Ad Hoc Networks, 2003.

[3] Jagadish, H. V., Linear clustering of objects with multiple attributes, International Confer-
ence on Management of Data, Proceedings of the ACM SIGMOD 1990.

[4] Karp, B. and Kung, H. Greedy Perimeter Stateless Routing In Proceedings of the Sixth
Annual ACM/IEEE International Conference on Mobile Computing, pp. 243~254, 2000.

[5] Li, X. et. al. Multi-dimensional Range Queries in Sensor Networks, Proceedings of the 1st
international conference on Embedded networked sensor systems, pp. 63~75, 2003.

[6] Moon, B. et. al. Analysis of the clustering properties of Hilbert space-filling curve. IEEE
Trans. on Knowledge and Data Engineering, pp 124~141, 1996.

[7] Newsome, J. and Song, D. GEM: Graph EMbedding for Routing and Data-Centric
Storage in Sensor Networks without Geographic Information. SenSys 2003.

[8] Ratnasamy, S. et. al. Data-Centric Storage in Sensornets with GHT, a Geographic Hash
Table, Mobile Networks and Applications, 8, pp. 427-442, 2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 430 – 440, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An OSEK COM Compliant Communication Model for
Smart Vehicle Environment

Guoqing Yang, Minde Zhao, Lei Wang, and Zhaohui Wu

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, China 310027

{ygq78, zmdd48, alwaysbeing, wzh}@zju.edu.cn

Abstract. Smart Vehicle Environment (SVE) is an important application of the
idea of smart spaces. This paper presents Smart Vehicle Multi-Agent System
(SVMAS) to achieve the goal of SVE and put forwards a commutation model
for SVMAS based on SmartOSEK COM [1] to support data exchange. The pa-
per also presents an approach to encapsulate the message to transport by CAN
bus, and bring forward a simulator model for SVMAS. Finally the paper gives
an example of the communication model which implements a dialogue between
two agents and analyzes the performance. The contribution of our work is three-
fold. First, we adopt Knowledge Query and Manipulation Language (KQML) to
describe the communication in vehicles. Second, we develop SmartOSEK COM
to implement communication in vehicles. Third, we define the ACLcan proto-
col to transform the message from SmartOSEK COM to CAN frame.

1 Introduction

Weiser introduced the field of Ubiquitous Computing [2] and presented a vision of
people and environments augmented with computational resources that provide in-
formation and services when and where desired [3]. Smart spaces adopt the concept
of ubiquitous computing, and embed computation resource and perceptive equipment
into our daily life and working spaces [4]. Smart spaces offer active services by inter-
connected embedded devices.

Smart Vehicle Environment (SVE) [5] is an important application of the idea of
Smart spaces, and it turns the vehicle into a smart human-vehicle environment by
advanced technology and equipments to gather, transmit and process the environment
information. Therefore, Smart Vehicle Environment needs the cooperation of many
disparate embedded devices in vehicles.

Smart Vehicle Multi-agent System (SVMAS) is a multi-agent system for SVE,
which we develop to achieve the goal of SVE. In SVMAS, the function modules in
SVE can cooperate with each other in form of agents. In order to implement SVMAS,
we develop kinds of Electronic Control Units (ECUs) to accomplish the lamp control,
window control, and door control in the vehicle. The ECUs are connected by Control-
ler Area Networks (CAN) [6]. We develop the SmartOSEK COM to provide commu-
nication support for the agents run in ECUs, and define ACLcan protocol to fill the
gap between SmartOSEK COM and CAN.

 An OSEK COM Compliant Communication Model for SVE 431

The remainder of this paper is organized as follows. Section 2 introduces the re-
lated work of the field. Section 3 puts forward a framework of multi-agent system in
smart vehicle (SVMAS). Section 4 provides a communication model for SVMAS.
Section 5 presents an implementation for the communication model. Section 6 gives
an example of the communication model for SVMAS which implements a dialogue
between two agents. Finally, we conclude our paper in section 7.

2 Related Work

CAN (Controller Area Network) is a serial bus system, which was originally devel-
oped for automotive applications in the early 1980's. The CAN protocol was interna-
tionally standardized in 1993 as ISO 11898-1. CAN provides the basic services of the
communication for automotive electronics, but users prefer to CAN application proto-
cols to communicate easily. SAE's J1939 [7] standards family is the preferred control-
ler area network (CAN) for equipment used in industries ranging from agriculture,
construction, and fire/rescue to forestry, materials handling, and on- and off-highway.
Although J1939 is a mature protocol for CAN application layer, it does support multi-
agent system for the lacking of the ability of knowledge description.

OSEK/VDX is a joint project of the automotive industry. It aims at an industry
standard for an open-ended architecture for distributed control units in vehicles [8]
and put forward OSEK COM specification to increase the portability of application
software modules by defining common software communication interfaces and be-
haviors for internal communication (communication within an electronic control unit)
and external communication (communication between networked vehicle nodes),
which is independent of the communication protocol used [9].

OSEK COM offers services to exchange data between tasks and/or interrupt service
routines. Different tasks may reside in the same ECU (internal communication) or in
different ECUs (external communication). The aim of the OSEK COM specification is
to support the portability, reusability and interoperability of application software. The
Application Program Interface (API) hides the differences between internal and external
communication as well as different communication protocols, bus systems and net-
works. An OSEK COM implementation can run on many hardware platforms. The
implementation shall require only a minimum of hardware resources, therefore different
levels of functionality (conformance classes) are provided [9].

As OSEK COM specification is brought forward, we can achieve communication
in vehicles easily, and we can integrate Knowledge Query and Manipulation Lan-
guage (KQML) [10] together with OSEK COM into a communication platform to
achieve communication between agents.

Some platforms compliant with OSEK COM specification have been developed
such as OSEKTurbo, OSEKWorks and OSCan, etc, but none of them have been ap-
plied into multi-agent system.

In this paper, we put forward SVMAS by which we apply the multi-agent system
into the field of automotive electronics to achieve the goal of SVE, and describe the
information in smart vehicle environment by agent communication language (ACL)
[11], and we develop a communication software platform according to OSEK COM
to fulfill the communication requirement in automotive electronics.

432 G. Yang et al.

3 The Agent Framework of SVMAS

The paper puts forward SVMAS to assist the driver to finish complex operations.
Using SVMAS, all ECUs in the car can share the information, cooperate with each
other, and can accomplish complex tasks as a whole.

USER

Identifier

Agent

USER

Broker

Steering

Agent

Comfort

Agent

Engine

Agent

AMT

Agent

Air-condition

Agent

Lamp

Agent

Sensitometer

Agent

Fig. 1. Agent framework of SVMAS

As there are differences in processing ability and function among ECUs in SVE,
the abilities of agent in every ECU are different too. We classify agents of SVMAS
into different hierarchies: task agent and function agent. Task agent is used to accom-
plish grand tasks that require the collaborative work of many function units. Function
agent undertakes small tasks that can be done by smaller ECU individually.

Each ECU has a function agent. Tasks agent partition the task into smaller ones
and then hand them over to different function agents. At the mean time task agents are
in charge of the coordination of different function agents. The coordinator of function
agents is dynamic. The goal of coordination is achieved by passing messages and
negotiations.

The agent framework of SVMAS is shown in Fig. 1. There are different types of
agents in the framework. They are interrelated with each other. When a driver enters
SVE, agents are started, and services are provided initiatively. Firstly an USER Bro-
ker is assigned to the user, and then the USER Broker would contact with SVMAS
instead of the user. Identifier Agent would identify the user. If the user has the legal
identity, he can obtain kinds of services provided by SVMAS, such as starting the car,
starting the air conditioner, etc. The service of starting the car is provided by Steering
Agent, which is a task agent. Steering Agent divides the function of starting car into
opening the engine, modulating the state of AMT, and operating the car lamp etc.
Opening the engine is finished by Engine Agent, and operating the car lamp is fin-
ished by Lamp Agent. When the function agent accomplishes the given function, it
needs to communicate with other function agents. For example, Lamp Agent needs
the information of lightness when it accomplishes the lamp operating, and it needs to
communicate with Sensitometer Agent to obtain the information of lightness. For the
method of agent communication, we will give an example of the dialogue between
two agents in section 6.

 An OSEK COM Compliant Communication Model for SVE 433

4 The Communication Model for SVMAS

The communication model for SVMAS is shown in Fig. 2. Communication is the key
for agents to share the information they collected, and to coordinate their actions. In
the communication model for SVMAS, four layers are brought forward as follows:
agent layer, SmartOSEK COM layer, ACLcan layer, and underlying networks layer.
In agent layer, the communication form of SVMAS is dialogue; in SmartOSEK COM
layer, the communication form of SVMAS is message; in ACLcan layer, the commu-
nication form of SVMAS is CAN frame defined by ACLcan; and in underlying net-
works layer, the communication form of SVMAS is electric signal.

The communication between agents is described in KQML, a well known ACL,
and it is in dialogue form. The dialogue could be transformed into messages in Smar-
tOSEK COM. ACLcan protocol processes the messages from SmartOSEK COM, and
transforms them into the CAN frame form, and then sends them out by CAN Bus.

In SVMAS, we describe dialogues between agents in KQML to improve the com-
patibility of the communication model, so each agent should have a parser of KQML.
The parser interprets the performative of KQML, by which the agents can understand
each other.

For SVMAS, we adopt CAN bus as the underlying communication protocol be-
cause CAN is developed specially as a communication bus to in-vehicle networks and
has high performance. Thus, the innovation of our SmartOSEK COM is to integrate
OSEK to CAN bus, and to provide an approach to set the frame ID of CAN. We de-
velop ACLcan protocol as the interface between SmartOSEK COM and CAN bus. In
ACLcan, the frame ID of CAN is set according to the ECUs’ addresses of sender and
receiver and the agent identifiers of sender and receiver. Moreover, the performative
of ACL is also considered in the frame ID of CAN.

Fig. 2. The communication model for SVMAS

5 The Implementation of the Communication Model for SVMAS

To implement the communication model for SVMAS, we develop SmartOSEK COM
which is a specialized communication platform for automobile electronics, and

434 G. Yang et al.

develop ACLcan which is a protocol to convert a message from SmartOSEK COM to
CAN bus frame.

5.1 KQML: The Agent Communication Language for SVMAS

In the multi-agent system field, the exchange of knowledge among disparate com-
puter systems is the most important. Knowledge Interchange Format (KIF) [12] is a
language designed for the exchange of knowledge among disparate computer systems.
It has declarative semantics; it is logically comprehensive; it provides for the repre-
sentation of knowledge about the representation of knowledge, and provides for the
definition of objects, functions, and relations. Recently, research on multi-agent sys-
tem makes great progress. Agents contact with each other by Agent Communication
Language (ACL). KQML, a well known ACL, is a part of the ARPA Knowledge
Sharing Effort and is developed as an agent communication language and protocol for
exchanging information and knowledge. Agents can use KQML to communicate
attitudes about information, such as querying, stating, believing, requiring and sub-
scribing.

As the research of multi-agent system in vehicles is deficient and few works have
been done to apply KQML into automotive electronics field, we adopt KQML to
describe the information to interchange between agents in vehicles, and the descrip-
tion in KQML can be parsed by agent itself and others.

5.2 SmartOSEK COM: The Foundation of Communication for SVMAS

According to OSEK/VDX specifications, we develop the SmartOSEK system. Smar-
tOSEK system includes SmartOSEK OS compliant with the OSEK/VDX Operating
System specification [13] and SmartOSEK COM (compliant with the OSEK/VDX
Communication specification).

SmartOSEK COM is based on messages. A message contains application-specific
data. Messages and message properties are configured statically in the OSEK Imple-
mentation Language (OIL) [14]. The content and usage of messages is not relevant to
SmartOSEK COM.

SmartOSEK COM supports two kinds of communications, internal communication
and external communication. Interaction Layer (IL), an important part of SmartO-
SEK, provides users with the OSEK COM API which contains services for the trans-
fer (send and receive operations) of messages. In the case of internal communication,
the IL makes the message data immediately available to the receiver. In the case of
external communication the IL packs one or more messages into assigned Interaction
Layer Protocol Data Units (I-PDU) and passes them to the underlying layer.

Administration of messages is done in the IL based on message objects. Message
objects exist on the sending side (sending message object) and on the receiving side
(receiving message object). The data communicated between the IL and the underly-
ing layer is organized into I-PDUs which contain one or more messages. The IL offers
an API to handle messages. The API provides services for initialization, data transfer
and communication management. Services transmitting messages over network are
non-blocking. SmartOSEK COM provides notification mechanisms for an application
to determine the status of a transmission or reception [9].

 An OSEK COM Compliant Communication Model for SVE 435

5.3 ACLcan: The Interface Between SmartOSEK COM and CAN Bus

In SVMAS, agents communicate with each other under the message mechanism. The
communication mechanism based on message is provided by SmartOSEK COM. We
transform the message in KQML to message into the message in SmartOSEK COM.
The message in SmartOSEK COM is defined in OIL [15]. Each message in SmartO-
SEK COM is described by a set of attributes and references, and in SVMAS, each
performative in KQML has a corresponding kind of message.

 7 6 5 4 3 2 1 0

Byte1 Frame Format RTR X X DLC

Byte2 ID.28-ID.21(sender’s node address)

Byte3 ID.20-ID.13(receiver’s node address)

Byte4 ID.12-ID.7(performative) ID.6-ID.5(sender)

Byte5 ID.4(sender) ID.3-ID.1(receiver) ID0(Type) X X X

Byte6 Index of Message Content

Byte7

..

Byte13

Message Content

Fig. 3. CAN frame format in ACLcan protocol

ACLcan is the interface between SmartOSEK and CAN Bus. Since we choose
CAN as the network communication bus for SVMAS, the transmission of the mes-
sage between agents in SVMAS will use the CAN BUS. The ID of each CAN frame
is defined in message and each message has a unique CAN ID. We develop ACLcan
to configure the CAN frame’s ID. The configuration mechanism of CAN ID in the
message is shown in Fig. 3. In SVMAS, every transmission of message uses extended
frame. The frame header of the extended frame has 29 bits (ID.28-ID.0) to show the
ID of the CAN extended frame. ID.28-ID.21 is the sender’s node address. We give
each ECU in SVMAS a unique node address. In CAN ID, we use 8 bits to denote the
node address, thus 256 nodes are admitted at most in SVMAS. ID.20-ID.13 is the
receiver’s node address. ID.12-ID.7 is the identifier of KQML performative. Each
performative is accorded with a unique ID. ID.6-ID.4 is the agent identifier of sender.
We identify the agents of each ECU, and agents in different ECU can use the same
agent identifier. ID.3-ID.1 is the agent identifier of receiver. ID.0 shows whether the
message is simple frame or multiple frames. If ID.0 is 1, then the message is multiple
frames. In CAN frame format, the content of Byte6 shows the index of the frame in
the message, or else it shows the content of message.

5.4 Simulation of the SVMAS

We develop Smart Simulator to provide the ability of simulation to evaluate the per-
formance of communication of the multi-agent system by the included sub-simulators.

436 G. Yang et al.

The architecture of Smart Simulator is shown in Fig. 4. The simulator provides Smart
OSEK COM Simulator to simulate the communication compliant with OSEK/VDX,
and SmartOSEK OS Simulator to simulate the scheduling of the tasks. For external
communication between ECUs, the simulator provides CAN Simulator to simulate the
in-vehicle networks. As a real system has inputs and outputs, the simulator also pro-
vides Interrupt Simulator and Actuator Simulator to simulate the signal inputs and
outputs.

Interrupt Sim
ulator

A
ctuator Sim

ulator

Fig. 4. The Architecture of Smart Simulator

In the simulator, the messages are classified into two types, one is internal message
denoted by IMessage and the other is external message denoted by OMessage. The
agents communicate in the same ECU by IMessage, and the communication process
is simulated by SmartOSEK COM Simulator. When an agent communicates with an
agent in other ECUs by OMessage through CAN bus, CAN Simulator would firstly
encapsulate the message into CAN frame and decapsulate it after a delay according to
the baud rate of CAN bus. ACLcan Simulator would encapsulate and decapsulate the
OMessage by the ACLcan protocol. The simulation results are displayed by Smart
Monitor and saved into files which the developers can refer to modify the network
configuration. Smart Simulator simulates the running process of the system, and the
temporal behavior of the system.

6 A Case Study of the Communication Model for SVMAS

In this section, we give an example of communication model for SVMAS. Suppose
there are two agents, one is named Lamp and the other one is Sensitometer, as shown
in Fig. 5. The scenario we assume is that when it becomes dark, the Lamp Agent
needs the information of the lighteness to decide whether it should open the lamp or
not, thus it needs to communicate with Sensitometer Agent to obtain the information
of lightness.

 An OSEK COM Compliant Communication Model for SVE 437

Fig. 5. Communication example of SVMAS

Dialogue (Example)
(evaluate
 :sender Lamp
:receiver Sensitometer
 :language KIF
:ontology LampControl
 :reply-with q1
:content (val (luminance L1))
)
(reply
 :sender Sensitometer
:receiver Lamp
 :language KIF
:ontology LampControl
 :reply-with q1
:content (= (luminance L1) (scalar 880 lumen))
)

Fig. 6. Dialogue Example in KQML

MESSAGE evaluate {
TYPE = EXTERNAL;
 LENGTH=5;
 QUEUED = False;
 TRANSMISSION = DIRECT;
IPDU = lamp_control;
NOTIFICATION = FLAG {
FLAGNAME = "require_luminance";
};
 CANID = Get_Can_ID (evaluate, Lamp, Sensitometer)
};
MESSAGE reply {
TYPE = EXTERNAL;
 LENGTH=5;
 QUEUED = False;
 TRANSMISSION = DIRECT;
IPDU = lamp_control;
NOTIFICATION = FLAG {
FLAGNAME = "respond_luminance";
};
 CANAID = Get_Can_ID (reply, Sensitometer, Lamp)
};

Fig. 7. Messages defined in OIL

Lamp agent and Sensitometer agent process a dialogue for the lighteness of the
current environment, and we use KQML to describe this dialogue as shown in Fig. 6
[16]. Firstly, lamp sends a message to request for the lightness. The format of the

438 G. Yang et al.

message uses KIF, and the request is defined as ql. The message is sent by SmartO-
SEK COM via CAN Bus. The ontology of the dialogue is defined as “LampControl”.
After receiving the message, Sensitometer sends the request result to lamp via another
message. Definitions of these two messages for the dialogue are shown in Fig. 7.

The first message is “evaluate”, and it is an external message which can provide
communication between ECUs. The CAN ID of “evaluate” defines the ID of CAN
frame. When the message is sent, a flag named “require_luminance” would be set.

The agent Lamp could tell agent Sensitometer about its requirement by calling a
SmartOSEK API SendMessage. Then the requirement of Agent Lamp would be trans-
formed into message in predefined format. Subsequently, messages would be split
into CAN frames in order to be transmitted on CAN bus, and ACLcan protocol would
participate in setting the CAN frame’s ID. When the agent Sensitometer receives the
requirement of Lamp, it would decode the CAN frame, and find the requirement of
the agent Lamp.

In the example, the “evaluate” has a CAN ID as “0x01020490”. In the same way
the “reply” has a CAN ID as “0x02010590” by ACLcan.

Fig. 8. Scenario of the Communication Model for SVMAS

To evaluate the performance of the communication model for SVMAS, we meas-
ure the time of the process on CPUs by Smart Simulator. In the simulator, we set the
CAN bus baud rate at 125kbps and configure the CPU as MPC555. Fig. 9 shows the
simulation results. To test the real performance of the model on CAN bus, we ex-
periment the example by the hardware platform MPC555. As shown in Fig.8, in the
experimentation, the sensitometer gets the lighteness of the environment, and sends
the information to the lamp by the communication model we present. When the room
becomes dark, the lamp would be lighted. We set the CAN bus baud rate as the same
with the simulator, and measure three parameters, the encapsulation time and the
decapsulation time by the logic analysis device LA5540 at 50MHz. For each parame-
ter, we have measured ten times and the minimum time, maximum time and average
time are shown in Fig. 9.

 An OSEK COM Compliant Communication Model for SVE 439

As shown in Fig. 9, we find the average time of decapsulation is 53.46us and it is a
little faster than the average time of encapsulation, which is 56.38us because of adopt-
ing speculative arithmetic. As the average times of decapsulation and encapsulation
are about only 8 times than the task switch time in SmartOSEK OS which is 7.6us, we
can draw the conclusion that the communication model for SVMAS we present is
applicative and has high performance, and is suitable to develop automotive electron-
ics software.

Fig. 9. Simulation and experiment results of the communication model for SVMAS

7 Conclusion

In this paper we make a valiant try in smart spaces field, and put forward a communi-
cation model for SVMAS. The innovation is applying agent communication lan-
guage-KQML to SVMAS and adopting CAN bus as the underlying networks for
agent communication. Moreover, we develop ACLcan protocol to provide good sup-
port for the CAN based communication of agents. In the example of the communica-
tion model for SVMAS, we accomplish a dialogue between two agents and get good
results in our simulation and experimentation, thus the cooperation of multiple agents
could be achieved easily by dialogues among agents. The communication platform we
present works well, and is suitable to develop automotive electronics devices.

Acknowledgement

This work is supported by 863 National High Technology Program under Grant No.
2003AA1Z2140 and No. 2004AA1Z2180.

440 G. Yang et al.

References

1. Minde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, Wei Chen: SmartOSEK: A Depend-
able Platform for Automobile Electronics. The First International Conference on Embed-
ded Software and System. (2004), vol. Springer-Verlag GmbH ISSN: 0302-9743, pp. 437.

2. Mark Weiser: The Computer for the 21st Century. Scientific American. (1991) pp. 94-100.
3. Gregory D.Abowd, Elizabeth D. Mynatt: Charting Past, Present, and Future Research in

Ubiquitous Computing. ACM Transactions on Computer-Human Interaction. (2000), vol.
7, No. 1.

4. Michael Coen: Design Principles for Intelligent Environments. Proceedings of The Fif-
teenth National Conference on Artificial Intelligence. (Madison Wisconsin, 1998).

5. Guoqing Yang, Zhaohui Wu, Xiumei Li, Wei Chen: SVE: Embedded Agent Based Smart
Vehicle Environment. The 2003 IEEE International Conference on Intelligent Transporta-
tion Systems. (2003).

6. Cia: CAN. http://www.can-cia.de/can/.
7. Sae: J1939. http://www.sae.org/standardsdev/groundvehicle/j1939.htm.
8. Osek/Vdx: OSEK/VDX Binding Specification Version 1.4.1. (2003). http://www.

osek-vdx.
9. Osek/Vdx: OSEK/VDX Communication Specification Version 3.0.3. (2004).

http://www.osek-vdx.org.
10. T.Finin, J.Weber, G.Wiederhold, M.Genesereth: Specification of the KQML agent com-

munication language. DARPA knowledge sharing initiative external interfaces working
group. (Enterprise Integration Technologies, University of Toronto, 1994).

11. Munindar P.Singh: Agent Communication Languages: Rethinking the Principles. IEEE
Computer. (1998), vol. 31, pp. 40--47.

12. Matt Ginsberg: Knowledge interchange format: The KIF of death. AI Magazine. (1991).
http://logic.stanford.edu/kif/dpans.html.

13. Osek/Vdx: OSEK/VDX Operating System Specification Version 2.2.2. (2004).
http://www.osek-vdx.org.

14. Osek/Vdx: OSEK/VDX OSEK Implementation Language Specification Version 2.4.1.
(2003). http://www.osek-vdx.org.

15. Joseph Lemieux: Programming in the OSEK/VDX Environment. (CMP Books, 2001).
16. Michael Wooldridge: An Introduction to Multiagent systems. (John Wiley&Son, Inc,

2002).

Resource Allocation Based on Traffic Load over
Relayed Wireless Access Networks�

Sung Won Kim1 and Byung-Seo Kim2

1 School of Electrical Engineering and Computer Science, Yeungnam University,
Gyeongsangbuk-do, 712-749, Korea

ksw@ieee.org
2 Motorola Inc., 1301 Algonquin Rd. Schaumburg, IL, 60196 USA

Byungseo.Kim@motorola.com

Abstract. In this paper, we develop a traffic load-based resource allo-
cation scheme, called LOAD, to enhance the capacity of relayed wireless
access networks for asymmetric traffic load such as transmission control
protocol (TCP). In order to estimate the current traffic load status in
relayed wireless access networks, we propose a load estimation method.
A relay gateway estimates the current traffic load status by keeping track
of the sizes of the frames it encounters, and computes accordingly the
current traffic load of the uplink and the downlink. The results are then
used to allocate the system resource between the uplink and the down-
link. The proposed method can be implemented without the modification
of the deployed IEEE 802.11 nodes.

We analyze the throughput ratio between the uplink and the down-
link, and validate the analysis result with a comprehensive simulation
study. The simulation results indicate that the utilization of the pro-
posed method is better than that of IEEE 802.11 Distributed Coordina-
tion Function (DCF).

1 Introduction

Wireless local area networks (WLANs) based on the IEEE 802.11 standard [1] are
becoming increasingly prevalent for offices, public places, and homes. The focus
is now turning to deploying these networks over relayed wireless access networks
(RWANs) [2]–[4]. A RWAN is a network where each node has connection with
a relay gateway (RG) in its radio coverage and the RG has connections with
other RGs. Thus, each node can access wired networks through one or more
wireless hops managed by RGs. One form of RWAN is the complementary use of
so-called hotspots [5]–[7] such as airports, hotels, cafes, and other areas in which
people can have untethered public accesses to the Internet. Low cost and high
speed WLANs can be integrated within the cellular coverage to provide hotspot
coverage for high speed data services. WLAN offers an interesting possibility
for cellular operators to offer additional capacity and higher bandwidth for end
� This work was supported by the 2005 research grants of the Institute of Information

and Communication at Yeungnam University.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 441–451, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

442 S.W. Kim and B.-S. Kim

users without sacrificing the capacity of cellular users, since WLANs operate on
unlicensed frequency bands.

Medium Access Control (MAC) protocol in the IEEE 802.11 standard consists
of two coordination functions: mandatory Distributed Coordination Function
(DCF) and optional Point Coordination Function (PCF). In the DCF, a set of
wireless nodes communicates with each other using a contention-based channel
access method, namely Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). CSMA/CA is known for its inherent fairness between nodes and
robustness. It is quite effective in supporting symmetric traffic loads in ad hoc
networks where the traffic loads between nodes are similar. However, this form of
random access protocol is not recommended for asymmetric traffic loads where
most of the traffic loads converge into RGs. For example, Internet access or
mobile computing uses transmission control protocol (TCP) or user datagram
protocol (UDP) in which the offered traffic load is strongly biased toward the
downlink (from RG to nodes) against the uplink (from nodes to RG) or the
direct link (from nodes to nodes). Thus, these traffic flows for the downlink are
completely blocked due to the CSMA/CA MAC protocol in distributed environ-
ments. We propose an enhanced MAC protocol to overcome such problems. The
proposed algorithm can be implemented without the modification of the IEEE
802.11 standard for nodes.

The remainder of this paper is organized as follows. The next section presents
related works. Section 3 describes the proposed method. In Section 4, we inves-
tigate the enhancement of the proposed method with some numerical results.
Finally, the paper is concluded in Section 5.

2 Preliminaries

2.1 Operations of IEEE 802.11

The DCF achieves automatic medium sharing between compatible nodes through
the use of CSMA/CA. Before initiating a transmission, a node senses the channel
to determine whether or not another node is transmitting. If the medium is
sensed idle for a specified time interval, called the distributed interframe space
(DIFS), the node is allowed to transmit. If the medium is sensed busy, the
transmission is deferred until the ongoing transmission terminates.

If two or more nodes find that the channel is idle at the same time, a collision
occurs. In order to reduce the probability of such collisions, a node has to perform
a backoff procedure before starting a transmission. The duration of this backoff
is determined by the Contention Window (CW) size which is initially set to
CWmin. The CW value is used to randomly choose the number of slot times
in the range of [0, CW − 1], which is used for backoff duration. In case of an
unsuccessful transmission, the CW value is updated to CW ×2 while it does not
exceed CWmax. This will guarantee that in case of a collision, the probability of
another collision at the time of next transmission attempt is further decreased.

A transmitter and receiver pair exchanges short RTS (Request-To-Send) and
CTS (Clear-To-Send) control frames prior to the actual data transmission to

Resource Allocation Based on Traffic Load 443

avoid the collision of data frames. An acknowledgement (ACK) frame will be
sent by the receiver upon successful reception of a data frame. It is only after
receiving an ACK frame correctly that the transmitter assumes successful de-
livery of the corresponding data frame. Short InterFrame Space (SIFS), which
is smaller than DIFS, is a time interval between RTS, CTS, data frame, and
ACK frame. Using this small gap between transmissions within the frame ex-
change sequence prevents other nodes from attempting to use the medium. As
a consequence, it gives priority to completion of the ongoing frame exchange
sequence.

2.2 Related Works

The authors in [8]–[10] propose to scale the contention window, vary the inter-
frame spacings, and change the backoff period according to the priority level of
the traffic flow. Kim and Hou [11] propose a frame scheduling method based
on the IEEE 802.11 fluid model to improve the capacity for UDP/TCP traffic.
The proposed model assumes that the frame size and the transmission rate are
constant. Because all these studies are focused on the fairness or priority among
nodes in a WLAN, the unfair sharing of bandwidth between the uplink and the
downlink still remains.

The works for resource allocation between the uplink and the downlink are
proposed in [12]–[14]. In [12], the authors observe a significant unfairness between
the uplink and the downlink flows when the DCF is employed in a WLAN. Since
the DCF protocol allows equal access to the media for all hosts, the RG and
the nodes have equal utilization to the medium. Thus, when the downlink has
much more offered traffic load than that of the uplink, the downlink becomes
bottleneck of the system capacity and much more RGs should be deployed to
accommodate such nodes. The TCP fairness issues between the uplink and the
downlink in WLANs has been studied in [13]. The authors are interested in a
solution that results in uplink and downlink TCP flows having an equal share of
the wireless bandwidth (utilization ratio of one). Because this solution operates
on the TCP layer, it is not effective when there exist traffic flows other than
TCP. The resource allocation method between the uplink and the downlink is
proposed in [14]. The number of nodes is taken into consideration to decide the
required utilization ratio between the uplink and the downlink. The proposed
method assumes a constant transmission rate and a constant frame length for
the uplink and the downlink traffics. These assumptions are not efficient when
the transmission rates are changed according to the channel fading or the frame
lengths are different between the uplink and the downlink traffics.

3 Proposed Resource Allocation Method

3.1 System Model

In RWAN, each node can communicate with a RG (uplink or downlink) or with
other nodes (direct link). Since we focus on the resource allocation between

444 S.W. Kim and B.-S. Kim

uplink and downlink, we do not consider the direct link throughput in this paper
although it is noted that the throughput sharing between uplink and direct link
is proportional to the ratio of the number of active nodes for the uplink and that
for the direct link.

SIFS

(a)

R
T
S

C
T
S

Frame

SIFS SIFS

A
C
K

DIFS SIFS

R
T
S

C
T
S

Frame

SIFS SIFS

A
C
K

backoff

(b)

Frame

SIFS

A
C
K

PIFS SIFS

A
C
K

Frame

SIFS

R
T
S

C
T
S

Frame

SIFS SIFS

A
C
K

backoff

DCADCF or DCA DCF

���

DIFS

Fig. 1. Timing structure of DCF and DCA. (a) DCF (b) DCA followed by DCF.

Nodes and RG use the DCF mechanism with RTS/CTS handshaking as shown
in Fig. 1(a), where the next channel access should wait for DIFS and backoff win-
dow time after previous ACK frame. A two-way handshaking technique without
RTS/CTS handshaking called basic access mechanism is not considered in this
paper although our proposed method can be easily extended to the basic access
mechanism.

The number of data bits that are transmitted successfully through the uplink
(downlink) is called the uplink (downlink) throughput. The system throughput is
the sum of the downlink throughput and the uplink throughput. We define the
throughput ratio γ such that

γ =
downlink throughput
uplink throughput

. (1)

In DCF, the allocated downlink throughput decreases as the number of nodes
increases because the system throughput is shared equally between nodes. Let
N be the number of active nodes except RG. Then, the throughput ratio γ for
DCF is given as

γDCF =
1
N

, (2)

Resource Allocation Based on Traffic Load 445

where the frame sizes of uplink and downlink are the same. When the frame sizes
of uplink and downlink are different, the throughput ratio for DCF is given as

γDCF =
Pd

NPu
, (3)

where Pu and Pd are the frame sizes of uplink and downlink, respectively. The
γDCF in (2) is a special case of (3). Hereafter, the subscripts u and d in the
notation denote the uplink and the downlink, respectively.

In FAIR [14], system resource is allocated by the number of active connections
and the resulting throughput ratio is given as

γFAIR =
N

N
= 1, (4)

where each active node has a connection with RG.
These methods are not efficient when the traffic load is asymmetric between

the uplink and the downlink such as TCP and UDP. Assume that there are N
TCP connections between RG and each nodes. Note that the offered load to the
downlink and the uplink are αdNdPd and αuNuPu, respectively, where α is a
frame arrival rate. Then, a required throughput ratio Γ based on the offered load
should be

Γ =
αdNdPd

αuNuPu
=

Pd

Pu
, (5)

because αu = αd and Nu = Nd for TCP traffics. For TCP traffics, Pd is larger
than Pu and Γ in (5) is larger than one. However, γ in (3) is smaller than one
and γ in (4) is equal to one which result in reduced throughput and increased
delay for the downlink. Even in the case of symmetric traffic load where Γ is
one, the downlink traffics in DCF get less throughput than that of the uplink
and this causes the increased delay of the downlink traffics.

3.2 Resource Allocation Algorithm

In order to provide the downlink traffic with an appropriate throughput, we
propose a new resource allocation algorithm based on the IEEE 802.11 WLAN
standard. The design goal of the proposed algorithm is to keep the resource
allocation ratio γ to be equal to Γ . However, the required value Γ is changed by
the traffic load conditions and the traffic load is changed dynamically during the
system operation. Thus, to achieve the design goal, RG has to estimate the values
of γ and Γ dynamically. These estimated values of γ and Γ are denoted by γ̂
and Γ̂ , respectively. The estimation method is explained in the next subsection.

When γ̂ becomes less than Γ̂ , there should be some compromise between
the uplink and the downlink throughput. In this case, the RG can transmit
data frames using point interframe space (PIFS) following the previous ACK
frame until it becomes γ̂ ≥ Γ̂ as shown in Fig. 1(b). During this mechanism
called downlink compensation access (DCA), the handshake mechanism of RTS

446 S.W. Kim and B.-S. Kim

and CTS is not necessary and the RG can transmit multiple data frames while
γ̂ < Γ̂ . Note that the RG accesses the wireless channel without collision during
the DCA because it transmits data frame using PIFS which is shorter than DIFS.
Also note that the RG accesses the wireless channel with the DCF when γ̂ ≥ Γ̂ .
In this way, the system throughput ratio is maintained equal to the value of Γ̂ .

In DCF, each node uses random backoff time to transmit frames. Thus, the
frame collision happens when more than two nodes use the same backoff time.
This collision degrades the system throughput. On the contrary, in DCA, RG
accesses the channel without collision and the throughput increases compared
with the DCF. Thus, the system that uses the DCA when γ̂ < Γ̂ can enjoy the
benefit of increased throughput due to the reduced probability of collision. As
the value of Γ̂ increases, more gain in the system throughput is expected.

3.3 Throughput Estimation Algorithm

To keep up with the dynamic changes of traffic load conditions, Γ̂ and γ̂ should be
estimated adaptively. We propose an estimation method for Γ̂ and γ̂ as follows.

Let ρu and ρd denote the time-average of the accumulated offered load on the
uplink and the downlink, respectively. To allocate the network resource according
to the offered load, the value of Γ̂ should be proportional to the offered load,
i.e.,

Γ̂ =
ρd

ρu
. (6)

Under real situations, ρu and ρd can be a long-term average value, measured
for a predefined duration. For example, the duration can be a daytime, a work-
ing hour, or a busy hour, according to the network design criteria. Based on
these measurements, the RG may calculate the value of Γ̂ or network operator
may send the value of Γ̂ to the RG through the control channel. The RG can
accurately measure ρd since the RG transmits the downlink traffic. On the con-
trary, each node has to transmit the load status to the RG through the control
frames for the RG to estimate ρu. To reduce the overhead caused by these control
frames, we propose a simple update method for Γ̂ .

Let φu(t) and φd(t) be the length of the data frame that has been successfully
transmitted through the uplink and the downlink at time t, respectively. The RG
manages an internal memory that records the φu(t) and φd(t) during a sliding
time window W . Let Φu(t) and Φd(t) denote the sum of φu(t) and φd(t) during
W respectively, i.e., Φu(t) =

∑t
i=t−W φu(i) and Φd(t) =

∑t
i=t−W φd(i). The

required throughput ratio at time t is updated by

Γ̂ (t) =
Φd(t)
Φu(t)

=
∑t

i=t−W φd(i)∑t
i=t−W φu(i)

, (7)

where Φu(t) and Φd(t) are the estimated offered load in the uplink and the
downlink from t − W to t, respectively.

Although this estimation does not exactly reflect the offered load, it is easy
to be implemented in the RG and does not require a feedback information from

Resource Allocation Based on Traffic Load 447

nodes. Moreover, the proposed method does not require the modification of the
standard for nodes, which makes it compatible with the deployed nodes.

Instead of estimating γ̂, we propose a system parameter ω(t) that is used for
a decision criterion at time t. The initial value of ω(t) is set to zero, i.e. ω(0) = 0.
The value of ω(t) is updated at every successful frame transmission. Let tn be
the time instant of the nth successful frame transmission. Then ω(t) is update
at every time instants of the successful frame transmission by

ω(tn) = ω(tn−1) + φd(tn) − Γ̂ (tn−1)φu(tn). (8)

Note that ω(t) is a normalized surplus of the downlink throughput and we
use ω(t) as an estimation for γ̂(t)− Γ̂ (t). Thus, the case of ω(t) = 0 corresponds
to γ̂(t) = Γ̂ (t). The case of ω(t) < 0 is the state that requires the DCA. We
propose that the RG adopts ω(t) to decide the access method. When ω(t) < 0
and there is an ACK frame transmitted on the channel, the RG uses the DCA
whenever it has pending frames. Otherwise, the RG uses the DCF. Other nodes
use the DCF for the channel access.

4 Numerical Results

We evaluate the performance of the proposed method by computer simula-
tions. The IEEE 802.11 DCF and FAIR in [14] are compared with the proposed
method, called LOAD, which allocates the system resource based on the offered
traffic load.

Table 1. Parameter values

Parameter Value
CWmin 32
CWmax 1024
SIFS time 10 μs
PIFS time 30 μs
DIFS time 50 μs
slot time 20 μs

MAC header 272 bits
PHY header 48 bits
Preamble 144 μs
ACK time 304 μs
RTS time 352 μs
CTS time 304 μs

W 30 sec

The parameter values used to obtain numerical results for the simulation
runs are summarized in Table 1. The values of these parameters are based on
the IEEE 802.11b direct sequence spread spectrum (DSSS) standard [15].

448 S.W. Kim and B.-S. Kim

To reflect the fact that the surrounding environmental clutter may be signif-
icantly different for each pair of communication nodes with the same distance
separation, we use the log-normal shadowing channel model [16]. The path loss
PL in dB at distance d is given as

PL(d) = PL(d0) + 10n log(d/d0) + Xσ, (9)

where d0 is the close-in reference distance, n is the path loss exponent, and Xσ

is a zero-mean Gaussian distributed random variable with standard deviation σ.
We set n to 2.56 and σ to 7.67 according to the result of measurements for a
wideband microcell model [16]. To estimate PL(d0), we use the Friis free space
equation

Pr(d0) =
PtGtGrλ

2

(4π)2d2
0L

, (10)

where Pt and Pr are the transmit and receive power, Gt and Gr are the antenna
gains of the transmitter and receiver, λ is the carrier wavelength, and L is the
system loss factor which is set to 1 in our simulation. Most of the simulation
parameters are drawn from the data sheet of Cisco 350 client adapter. The
received power is

Pr(d) = Pt − PL(d). (11)

The minimum received power level for the carrier sensing is set to -95 dBm,
which is the noise power level. The long-term signal-to-noise ratio (SNR) is

SNRL = Pt − PL(d) − n + PG, (12)

where n is the noise power set to -95 dBm and PG is the spread spectrum
processing gain given by

PG = 10 log10
C

S
, (13)

where C is the chip rate and S is the symbol rate. Since each symbol is chipped
with an 11-chip pseudonoise code sequence in the IEEE 802.11 standard, PG
is 10.4 dB. The received SNR is varied by the Ricean fading gain δ. Under this
model, the SNR of the received signal is

SNR = 20 log10 δ + SNRL. (14)

For the data rate in the physical layer for each communication link, we as-
sume that the system adapts the data rate by properly choosing one from a set
of modulation scheme according to the channel condition. The set of modula-
tion schemes used in our simulation studies are BPSK, QPSK, 16QAM, 64QAM,
and 256QAM. For simplicity, we ignore other common physical layer components
such as error correction coding. With 1 MHz symbol rate and the above modu-
lation schemes, the achieved data rates are 1, 2, 4, 6, and 8 Mbps, respectively.

Resource Allocation Based on Traffic Load 449

5 10 15 20 25 30
0

4

8

12

16

T
hr

ou
gh

pu
t r

at
io

Uplink frame size (x 64 bytes)

 LOAD
 FAIR
 DCF

Fig. 2. Throughput ratio versus uplink frame size

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

U
til

iz
at

io
n

Uplink frame size (x 64 bytes)

 LOAD
 FAIR
 DCF

Fig. 3. System utilization versus uplink frame size

We assume that all nodes except the RG are uniformly distributed in the
circle area with diameter 150 meters. The RG is located at the center of the
area. In each nodes, frames arrive with the exponential distribution where the
arrival rate is set to 2.5 frames/sec and the destination addresses of the frames
are the RG. In the RG, there are N connections, each for one node, and frames
are generated for each connections with the same exponential distribution as
those in each nodes. The size of the downlink frame is 1024 bytes and N = 25.

The throughput ratio of the proposed method LOAD is compared with DCF
and FAIR in Fig. 2. The simulation results match with the theoretic throughput

450 S.W. Kim and B.-S. Kim

ratios of DCF, FAIR, and LOAD given by (3), (4), and (5), respectively. In TCP
traffics, the uplink frame size is smaller than the downlink frame size and LOAD
provides larger throughput to the downlink traffics.

Fig. 3 shows the system utilization for LOAD, FAIR, and DCF. In this fig-
ure, the utilization is the normalized time that is used for the successful frame
transmission. The overall utilization increases as the uplink frame size increases.
This increase of the utilization comes from the reduced overhead that is used for
each frame transmission. In other words, for the same size of the overhead, the
size of the data frame transmission increases as the uplink frame size increases.
When the uplink frame size is small, the utilization of LOAD is larger than those
of other methods. This is because LOAD uses DCA more frequently compared
with other methods and DCA reduces the probability of frame collisions. Thus,
LOAD is an efficient method for an asymmetric traffic load such as TCP or UDP
which has small uplink frame size.

5 Conclusion

We have proposed an easy implementation method to control the throughput
ratio of uplink and downlink and to enhance the system utilization of the IEEE
802.11 DCF. The proposed method can be implemented without the modification
of the IEEE 802.11 standard for nodes that are widely deployed. The throughput
sharing between the uplink and the downlink can be controlled by the network
operator or by the offered traffic load.

The efficiency of the proposed system has been demonstrated by computer
simulation. The results show that the proposed method enhances the system
utilization used for the successful data frame transmission for asymmetric traffic
load. The proposed method distributes the throughput between the uplink and
the downlink according to the offered load. This, in turn, drastically reduces the
blocking probability of multimedia data frames in the proposed systems com-
pared with that in the IEEE 802.11 DCF where most of bandwidth is occupied
by the uplink. Thus, the proposed system can be a good candidate for relayed
wireless access networks, which aim for Internet services.

References

1. ANSI/IEEE Std 802.11: 1999(E): Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. (1999)

2. Zhao, D., Todd, T.D.: Real-time traffic support in relayed wireless access networks
using IEEE 802.11. IEEE Trans. Wireless Commun. (2004) 32–39

3. Wei, H.Y., Gitlin, R.D.: Two-hop-relay architecture for next-generation
WWAN/WLAN integration. IEEE Trans. Wireless Commun. (2004) 24–30

4. Fitzek, F.H.P., Angelini, D., Mazzini, G., Zorzi, M.: Design and performance of
an enhanced IEEE 802.11 MAC protocol for multihop coverage extension. IEEE
Trans. Wireless Commun. (2003) 30–39

5. Honkasalo, H., Pehkonen, K., Niemi, M.T., Leino, A.T.: WCDMA and WLAN for
3G and beyond. IEEE Wireless Commun. Mag. (2002) 14–18

Resource Allocation Based on Traffic Load 451

6. Doufexi, A., Tameh, E., Nix, A., Armour, S.: Hotspot wireless LAN to enhance
the performance of 3G and beyond cellular networks. IEEE Commun. Mag. (2003)
58–65

7. Kishore, S., Greenstein, L.J., Poor, H.V., Schwartz, S.C.: Uplink user capacity
in a CDMA macrocell with a hotspot microcell: Exact and approximate analyses.
IEEE Trans. Wireless Commun. 2 (2003) 364–374

8. Deng, D.J., Chang, R.S.: A priority scheme for IEEE 802.11 DCF access method.
IEICE Trans. Commu. E82-B (1999) 96–102

9. Barry, M., Campbell, A.T., Veres, A.: Distributed control algorithms for service
differentiation in wireless packet networks. In: Proc. IEEE Infocom’01, Anchorage,
AK, USA (2001)

10. Aad, I., Castelluccia, C.: Differentiation mechanisms for IEEE 802.11. In: Proc.
IEEE Infocom’01, Anchorage, AK, USA (2001)

11. Kim, H., Hou, J.C.: Improving protocol capacity for UDP/TCP traffic with model-
based frame scheduling in IEEE 802.11-operated WLANs. IEEE J. Select. Areas
Commun. 22 (2004) 1987–2003

12. Grilo, A., Nunes, M.: Performance evaluation of IEEE 802.11e. In: Proc. IEEE
PIMRC’02, Lisboa, Portugal (2002)

13. Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., Sinha, P.: Understanding TCP fairness
over wireless LAN. In: Proc. IEEE Infocom’03, San Francisco, CA, USA (2003)

14. Kim, S.W., Kim, B., Fang, Y.: Downlink and uplink resource allocation in IEEE
802.11 wireless LANs. IEEE Trans. Veh. Technol. 54 (2005) 320–327

15. IEEE Std 802.11b-1999: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4
GHz Band. (1999)

16. T. S. Rappaport: Wireless communications: principles and practices. Prentice Hall
(1996)

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 452 – 461, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Cross Layer Unequal Protection Method for
Video Transmission over

Wireless Communication Channels*

Jinbo Qiu1, Guangxi Zhu1, and Tao Jiang2

1 Department of Electronics and Information Engineering,
Huazhong University of Science and Technology,

Wuhan, China 430074
jbqiu@263.net, gxzhu@mail.hust.edu.cn

2 Electronic and Computer Engineering, School of Engineering and Design,
Brunel University,

Uxbridge, UB8 3PH, U.K.
Unique_jt@yahoo.co.uk

Abstract. In this paper, a new scheme, called Adaptive Cross Layer Unequal
Protection (ACLUEP), has been proposed for video transmission over wireless
channels. The proposed scheme performs joint optimization across application
layer, link layer and physical layer to provide unequal protection ability for video
bit-streams with different priority levels. Analysis and simulation results show an
extraordinary improvement in Peak Signal-to-Noise Ratio (PSNR) of the
proposed method over a variety of channel conditions.

1 Introduction

With increasing demands for supporting real-time multimedia services over wireless
communication channels in the next generation of wireless networks, the traditional
layered approaches come with static and layer independent protocol stacks, which have
not adapted to cope with the addition challenges presented by mobile radio channel, for
example time-varying channel conditions. So the layered strategy suffers from
performance degradation and does not always result in an optimal overall performance
in the wireless environment. Therefore a protocol architecture that considers cross layer
interaction is required to optimize the operation of different layers. A cross layer
scheme can provide higher spectral and power efficiency and satisfy Quality of Service
(QoS) requirements for different applications.

High quality video delivery over wireless communication channels is very
challenging. Each network layer addressed these challenges by providing its own
optimized adaptation and protection mechanisms, respectively. Joint Source and
Channel Coding (JSCC), which regards the channel as a “black box”, performs joint
rate control for source coding and channel coding at the application layer in the

* This work is supported by the National Science Foundation of China under Grant No.

60496315.

 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 453

presence of a time-varying wireless channel [1]. In order to obtain maximum spectral
efficiency and to satisfy stringent QoS demand, a cross layer design combined adaptive
modulation and coding at the physical layer with a truncated Automatic Repeat reQuest
(ARQ) protocol at the data link layer has been proposed in [2]. A cross layer protection
scheme has also been proposed, which combines Media Access Control (MAC)
retransmission strategy, application-layer forward error correction, and
bandwidth-adaptive compression using scalable coding and adaptive packetization
strategies, to provide robust and efficient transmission of video over WLANs [3]. A
cross layer ARQ method has been proposed, which combined the application level
information about the perceptual and temporal importance of each packet drives packet
selection at each retransmission opportunity, and provide unequal protection for
packets having different priority [4].

In this paper, a new cross-layer scheme, named Adaptive Cross Layer Unequal
Protection (ACLUEP), has been proposed to provide high quality video transmission
over wireless communication channels. ACLUEP combines the physical layer, the link
layer and the application layer with a joint optimization to achieve the best video
transmission quality. The analysis and simulations have also proven that it can offer
good performance in terms of PSNR for adaptive OFDM systems.

The rest of this paper is organized as follows. In Section II, we introduce the system
model, and analyze the distortion model for Fine Granular Scalability (FGS) video
coding and the transmission performance. In Section III, the procedure of new cross
layer scheme, namely ACLUEP, is proposed and analyzed. In Section IV, the
performance of ACLUEP is studied through computer simulations, followed by the
conclusions in Section V.

2 System Model and ACLUEP Scheme

Due to the heterogeneity of radio access network, the traditional layered network
protocol cannot satisfy the QoS requirements of video transmission over time-varying
wireless channels. Here we develop an adaptive cross layer unequal protection method
for video transmission. The system model is shown in Fig. 1.

Fig. 1. System Model

454 J. Qiu, G. Zhu, and T. Jiang

The FGS video encoder at the application layer generates scalable bit-streams to suit
the variation of the wireless channel. It does making use of the different combinations
of the bit-rate for the base layer and the enhancement layer and so provide different
error resilient abilities. At the link layer, a selective repeat ARQ protocol is
implemented. With retransmission of the error packet, the packet loss rate for the
application layer will be decreased at a cost in throughput and delay. Adaptive OFDM
(AOFDM) chooses an appropriate modulation mode for each sub-carrier at the physical
layer and can provide higher spectrum efficiency. The flexibility of AOFDM can
satisfy various performances by different constraints.

It is clear that the overall quality of the transmitted video depends on the parameters
of each layer. It is very important to improve the quality by jointly optimizing the
parameters across these layers. In this paper, we propose a new cross layer design
scheme, which named ACLUEP, to improve the quality of video transmission. With
the variation of the wireless channel, an optimized parameter combination at different
layers can be chosen by ACLUEP to provide unequal protection for different parts of
FGS video stream having different priority.

At first, ACLUEP collects the information for each layer, including the channel state
information, the allocation of sub-carriers in the AOFDM system, the packet loss rate at
the link layer, the priority for different video streams, etc. Then, ACLUEP choose the
optimal parameter combination for each layer to maximize the estimated quality for
decoded video according to the FGS Rate Distortion (R-D) model and the QoS
constraints. These parameters include the allocation of sub-carrier at the physical layer
in AOFDM system, the retransmission strategy for different packets with different
priority level at the link layer and the bit-rate allocation for the base layer and the
enhancement layer at the application level.

2.1 Analysis of R-D Model for FGS

FGS is a part of MPEG-4 video coding standard, and it has the structure shown in Fig.2.

Fig. 2. Structure of FGS

Base layer encoder of FGS is the same as that performed by a traditional motion
compensated video encoder. It compresses the input video signal into the base layer
bit-stream, which has a bit-rate is close to the minimum channel capacity. The base
layer bit-stream contains the most important and lower quality video information. The

 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 455

enhancement layer encoder compresses the difference between the original video and
the reconstructed video at the base layer to obtain an embedded enhancement layer
bit-stream, which can be truncated at arbitrary position.

The scalability of the enhancement layer bit-stream can be adjusted to suit the
variation of the wireless channel. The refinement of the enhancement layer bit-stream
depends on the decoded base layer video, which makes the base layer bitstream a
higher priority than the enhancement layer bit-stream.

FGS is especially suitable for video transmission over wireless channels. Firstly,
FGS provide an easy mechanism for adaptation to bandwidth variations. Secondly,
FGS can improve the resilience to errors because the enhancement layer bitstream does
not depend on last frame that has been decoded. The loss of enhancement packets does
not give noise to error propagation in the next frame. Lastly, the layered bit-stream has
different priority level, so we can utilize this characteristic to employ unequal
protection during video transmission.

There is no motion estimation and compensation in the enhancement layer encoder,
so we can make use of a linear model to describe the relationship between the quality of
reconstructed video and the bit-rate

()b b e bQ R R Q R Qθ θ= − + = + (1)

Where Q is the total PSNR, Qb is the PSNR of base layer, R is the total bit-rate, Rb is the
base layer bit-rate, Re is the enhancement layer bit-rate and is the rate distortion
parameter that depends upon the characteristics of the video sequence. Fig.3 shows that
the R-D line model is very accurate for various video sequences.

The rate distortion analysis of base layer can be found in [1]. One single packet loss
within the enhancement layer can render the remainder packets associated with that

Fig. 3. Rate-Distortion for FGS video encoder

456 J. Qiu, G. Zhu, and T. Jiang

frame useless. Denoting the packet length for the enhancement layer bit-stream L, the
number of packets N, and the frame rate of the video sequence f, the bit-rate of the
enhancement layer at the encoder is Re = L·N·F. The effective bit-rate Re

' of the
enhancement layer at the decoder can be defined as following

-1
'

1

[(1-) (1-)]
N

n N
e e e e

n

R n p p N p L f
=

= + ⋅ ⋅ (2)

where pe denotes the packet loss rate. Combined (1), (2), and the rate distortion model
of the base layer, we can estimate the quality of FGS video coding after transmission.

2.2 Analysis of Re-transmission at the Link Layer

At the link layer, a truncated ARQ is implemented to maintain the delay constraint of
video transmission. A packet will be dropped when it is received incorrectly with a
maximum number of Nmax retransmissions. Suppose that the packet loss rate is p, the
average number of transmissions per packet can be defined

max max

max

max

max

1
max max

1
2

(,) [(1) 2 (1)

(1) (1)] (1)

1
1

1

N N

N
N

N p N p p p

N p p N p

p
p p p

p

+

+

= − + − +⋅⋅⋅

+ + − + +

−= + + + ⋅⋅⋅+ =
−

 (3)

According to the retransmission rule, each packet is equivalently transmitted

max(,)N p N times. Hence the overall average bit-rate for the application layer can be

considered as the function max/ (,)R N p N , supposing that the throughput of

physical layer is R.

2.3 Performance of AOFDM

Each OFDM sub-carrier signal has a different channel state owing to the presence of
frequency selective fading. The AOFDM system can choose an appropriate modulation
and transmit power for each sub-carrier in order to improve the overall performance or
capacity of the system [5]. AOFDM can be classed into one of two types: one is known
as the Constant Throughput AOFDM system (CT-AOFDM), and the other is known as
the Variable Throughput AOFDM system (VT-AOFDM). The target of CT-AOFDM is
to maintain a minimum BER or transmit power with a limited throughput. But the
target of VT-AOFDM is to get maximum spectrum efficiency with a certain average
transmit power or BER constraint. In order to keep the system low complexity, the
modulation is not varied on a sub-carrier by sub-carrier basis, but instead the total
OFDM bandwidth is split into blocks of adjacent sub-carriers, referred to as sub-bands,
and the same modulation mode is employed for all sub-carriers in the same sub-band.

 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 457

In the proposed scheme, we choose the CT-AOFDM at the physical layer. Denote n
the subcarrier index, s=1~5 represents the modulation index “no transmission”, BPSK,
4QAM, 16QAM and 64QAM respectively, en,s the number of bit errors and bn,s the
number of bits can be transmitted by one symbol when s is chosen for subcarrier n. The
index s of each sub-carrier is initialized to the lowest order. So the set of cost values cn,s
can be calculated for each sub-carrier according to

, 1 ,
,

, 1 ,

n s n s
n s

n s n s

e e
c

b b
+

+

−
=

− (4)

Then CT-AOFDM searches for the sub-carrier with the lowest cn,s, and increases its
index from s to s+1 repeatedly until the total number of bits in the OFDM symbol reaches
the target number of bits. We calculate current Bit Error Ratio (BER) according to [6]

0.2exp(-)BER gγ= (5)

where is channel Signal to Noise Ratio (SNR), and g=6/(5M-4) for BPSK, but for
M-QAM g=1.5/(M-1).

Fig. 4. Performance comparison of CT-AOFDM and non-adaptive OFDM

We simulate CT-AOFDM under conditions of various average channel SNR values.
The simulation results are shown in Fig.4. It can be seen that the sub-carrier based
AOFDM has a gain of 5~10 dB compared with the non-adaptive OFDM. The
performance penalty of sub-band based AOFDM is related to the coherence bandwidth.
If the bandwidth of a sub-band is less than the coherence bandwidth, the performance
of subband based AOFDM is similar to sub-carrier based AOFDM.

458 J. Qiu, G. Zhu, and T. Jiang

3 ACLUEP Procedures

The notation used at the various layers is summarized in Table 1.

Table 1. Parameters at different layers

Layer Parameters Symbol

PHY Throughput R

PHY Packet loss rate p

LNK Max retrans. number for base layer Nmaxb

LNK Max retrans. number for enhan. layer Nmaxe

LNK Avg. retrans. number for base layer bN

LNK Avg. retrans. number for enhan. layer eN

APP Packet loss rate for base layer pb

APP Packet loss rate for enhan. layer pe

APP Bitrate for base layer Rb

APP Bitrate for enhan. layer Re

The steps for implementing the ACLUEP method are as following

- Step 1) Based on current channel state and throughput constraint R at the physical

layer, AOFDM choose appropriate modulation mode for each sub-band via (4), and

estimate the corresponding packet lost rate p;

- Step 2) For the estimated p and current Nmaxb, Nmaxe calculate pb, pe,

and max 1bN
bp p += , max 1eN

ep p += ;

- Step 3) Calculate bN and eN via (3);

- Step 4) For the calculated pb, pe, determine an optimized Rb and Re which maximize

(1) to get a best video quality and satisfy the constraint b eb eR R N R N≥ ⋅ + ⋅ ;

- Step 5) For the Rb and Re obtained in step 4), FGS video encoder generates the

bit-stream to be transmitted;

 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 459

- Step 6) Based on current occupancy of the link layer buffer, adjust the Nmaxb and

Nmaxe to avoid buffer overflow or underflow.

The analysis performed in the previous section let it choosing appropriate values for
the various parameters.

4 Simulations and Results

The overall delay for end-to-end video transmission has three component parts: codec
delay, packetization delay and transmission delay. The former two parts are fixed and the
delay jitter is induced by transmission. As an example, consider 3GPP with an MPEG-4
video payload. In this case, the quality of service requires an end-to-end delay of between
150 and 400ms. If the average round trip delay is 100 ms, the maximum number of
retransmissions should be at most 4. Considering the fixed delay by codec and
packetization we limit the number of retransmissions to 2. Consequently ACLUEP
determines an appropriate number of retransmission in the range from 0 to 2. To simplify
the implementation, we use sub-band based CT-AOFDM. In this case, the whole
available bandwidth is split to 16 sub-bands, and each subband has 32 sub-carriers. The
video sequence is “carphone”. Perfect channel estimation is assumed. The channel is
modeled by its time-variant impulse response and additive white Gaussian noise
(AWGN). The impulse response for the experiments was generated on the basis of the
symbol-spaced impulse response shown in Fig.5 by fading each of the impulses obeying
a Rayleigh distribution of a normalized maximal Doppler frequency of fd

'=1.235·10-5,
where the normalization time duration was the length of the OFDM symbol.

Fig. 5. Unfaded symbol spaced impulse response

We implemented the proposed ACLUEP method and compare it to four other
transmission methods. These methods are summarized in Table 2.

460 J. Qiu, G. Zhu, and T. Jiang

Table 2. Transmission methods list

 Physical Layer Link layer Application layer
Method 1 Fixed OFDM No ARQ CBR, No FGS
Method 2 CT-AOFDM No ARQ CBR, No FGS
Method 3 CT-AOFDM No ARQ CBR, FGS
Method 4 CT-AOFDM Nmaxb=Nmaxe=1 VBR, FGS
ACLUEP CT-AOFDM

Adaptive bit load
Nmaxb=0, 1, 2
Nmaxe=0, 1

VBR, FGS

Fig. 6. PSNR versus Channel SNR

Fig.6 shows the average decoded PSNR of the video sequence at the receiver under
various channel SNR. Method 1 has no adaptation and its PSNR performance is the
worst. Method 2 employs CT-AOFDM at the physical layer. CTAOFDM tracks the
variation of the channel and improves the PSNR by 1~7 dB over that of method 2.
Method 3 uses FGS video at the application layer. FGS increase the error resilience
ability of the video bit-stream at the cost of compress efficiency. Under most of the
channel conditions, method 3 is about 1 dB better than method 2. However, for high
SNR values, the PSNR performance of method 3 is degraded rightly owing to the
compression efficiency penalty. Method 4 employs retransmission at the link layer,
which sacrifices the throughput and delay performance to decrease the packet loss rate.
Method 4 improves the PSNR for 5~10 dB over that of method 3. Finally, it can be seen
from the simulation results that the proposed ACLUEP method is the best in terms of
PSNR performance. At low SNR values, the ACLUEP method is 7~10 dB better than
method 4. Moreover, ACLUEP can adjust retransmission strategy and satisfy the delay

 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 461

constraint for video transmission. This is a significantly improvement for video
transmission over wireless channels.

As we assume perfect channel estimation in simulations. If the assumption is not
true, system stability may be affected by the delay and errors of estimation of the
channel status in practical systems. Due to the delay and errors of channel status
information, AOFDM at the physical layer can not chose the most appropriate
modulation and coding mode and result in some degradation of spectrum efficiency.
But this degradation will not affect the adaptation at the application and link layer. The
ACLUEP method still works well than traditional layered approaches.

5 Conclusions

In this paper, an adaptive cross layer unequal protection method (ACLUEP) is
proposed. This method handles the variation of the wireless channel by selecting
optimized parameters combination at various layers and provides unequal protection
for different parts of FGS video stream having different priority levels. Experimental
results show a marked improvement in PSNR performance of the proposed ACLUEP
method over various other fixed and adapting schemes over a range of channel SNRs.

Acknowledgment

The authors are grateful to Dr. Laurence T. Yang, Dr. Dapeng Oliver Wu and Dr. I.J.
Wassell, for their valuable comments and suggestions, which helped to improve the
presentation of the paper.

References

1. Z. He, J. Cai, and C. Chen, “Joint source channel rate-distortion analysis for adaptive mode
selection and rate control in wireless video coding,” IEEE Transactions Circuits and Systems
for Video Technology, vol. 12, pp. 511–523, June 2002.

2. Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combining of adaptive modulation and
coding with truncated arq over wireless links,” IEEE Transactions on Wireless
Communications, vol. 3, pp. 1746–1755, sept. 2004.

3. M. van der Schaar, S. Krishnamachari, S. Choi, and X. Xu, “Adaptive cross-layer protection
strategies for robust scalable video transmission over 802.11 wlans,” IEEE Journal on
Selected Areas in Communication, vol. 21, pp. 1752–1763, Dec. 2003.

4. P.Bucciol, G. Davini, E. Masala, E. Filippi, and J. D. Martin, “Cross-layer perceptual arq for
h.264 video streaming over 802.11 wireless networks,” in Proceeding of the IEEE
GLOBECOM’04, pp. 3027–3031, Nov. 2004.

5. T. Keller and L. Hanzo, “Adaptive multicarrier modulation: A convenient framework for
time-frequency processing in wireless communications,” Proceedings of the IEEE, vol. 88,
pp. 611–642, May 2000.

6. S. Zhou and G. B. Giannakis, “Adaptive modulation for multiantenna transmissions with
channel mean feedback,” IEEE Transactions on Wireless Communications, vol. 3, pp.
1626–1636, Sept. 2004.

Power-Efficient Packet Scheduling Method for
IEEE 802.15.3 WPAN�

Sung Won Kim1 and Byung-Seo Kim2

1 School of Electrical Engineering and Computer Science, Yeungnam University,
Gyeongsangbuk-do, 712-749, Korea

ksw@ieee.org
2 Motorola Inc., 1301 Algonquin Rd. Schaumburg, IL, 60196 USA

Byungseo.Kim@motorola.com

Abstract. Power efficiency is the key issue for mobile devices, which
mainly rely on limited battery power. The IEEE 802.15.3 wireless per-
sonal area network (WPAN) standard adopts a time division multi-
ple access (TDMA) protocol controlled by a central device to support
isochronous traffics. In the TDMA-based wireless packet networks, the
packet scheduling algorithm plays a key role in power efficiency. How-
ever, the standard suffers from long access delay and association delay
which increase the power consumption. In this paper, we propose a packet
scheduling method to improve the power efficiency. Performance evalua-
tions are carried out through simulations and significant performance en-
hancements are observed. Furthermore, the performance of the proposed
scheme remains stable regardless of the variable system parameters such
as the number of devices and superframe size.

1 Introduction

The IEEE 802.15.3 task group (TG) has been chartered to create a high-rate
WPAN (HR-WPAN) standard and has published a final standard [1]. The IEEE
802.15.3 provides short range wireless connectivities among consumer electron-
ics and portable devices. HR-WPAN adopts a time division multiple access
(TDMA)-based medium access control (MAC) protocol. In HR-WPAN, a pair
of devices (DEVs) can communicate through peer-to-peer connectivity without
contention during an allocated time slot called channel time. The data packet
can be transmitted during the channel time and the allocation of channel time
for each DEVs is controlled by a scheduler in a piconet coordinator (PNC). Thus,
the packet scheduling algorithm in the IEEE 802.15.3 standard is expected to
play an essential role in the system performance. However, the standard does
not define how to assign the channel time and leaves this for vendors.

Some efforts to define the packet scheduling method for the HR-WPAN have
been made since the standard is published. Performance enhancement achieved
by informing queue-status to a PNC using MAC header of every packet is pro-
posed in [2]. This scheme adopts a flexible superframe size to handle variable bit
� This research was supported by the Yeungnam University research grants in 2005.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 462–472, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN 463

rate (VBR) traffics. The piggybacked information may be useful when there is a
burst transmission. However, the channel time allocation algorithm for different
traffic types is not considered. An algorithm proposed in [3] focuses on utilizing
wasted or remained channel times. The authors in [4] propose a channel time
allocation scheme for a specific application, MPEG 4 traffic. Since packets gen-
erated from an MPEG 4 encoder are classified into three types and are arranged
by a periodic pattern, a central device can allocate channel time for transmis-
sions of MPEG 4 packets according to the packet pattern. A packet transmission
method without a preamble is introduced in [5] to reduce the preamble overhead
in a high transmission rate. A scheduling method based on the queueing model
is proposed in [6] to reduce the average waiting time.

Power management is an important issue for the battery-powered portable
DEVs and its objective is to assist the DEVs to sleep and reduce the wakeup
time as much as possible. There has been several work on the MAC design for
power management in wireless system. However, most of them are based on the
MAC of IEEE 802.11 WLAN [7]–[9] or IEEE 802.15.4 low-rate WPAN [10][11].
There is little work to address the power efficiency in HR-WPAN [12][13]. In [12],
a power management method for intra-superframe is proposed for HR-WPAN.
The proposed algorithm finds the suboptimal order to reduce the wakeup time by
using graph theory. However, the inter-superframe power management problem
and the VBR traffics are not considered in [12]. The authors in [13] utilize the
network topology and UWB physical layer information to minimize the energy
consumption per bit. This method increases the overhead since it requires power
information, position information, and relay DEVs for its operation.

As far as we know, there is no work to minimize the power consumption in
HR-WPAN combined with the packet scheduling method supporting constant
bit rate (CBR) and VBR traffics. In this paper, we propose a packet scheduling
method for HR-WPAN to efficiently reduce the power consumption. The pro-
posed scheduling concepts apply to wireless packet systems in general. In the
next section, MAC protocol in the IEEE 802.15.3 standard is briefly described.
The proposed scheduling method for HR-WPAN is introduced in Section 3. Sec-
tion 4 describes the simulation environment and evaluates the simulation results.
Finally, the paper is concluded in Section 5.

2 IEEE 802.15.3 (HIGH-RATE WPAN)

2.1 MAC Protocol

In the HR-WPAN standard specifications, DEVs are communicating on a cen-
tralized and connection-oriented ad-hoc network called piconet. One of the par-
ticipating DEVs must be designated as a piconet coordinator (PNC). The PNC
provides basic timing information for the operation of the piconet and manages
the QoS for delay sensitive applications.

The MAC layer in the IEEE 802.15.3 standard employs a time-slotted super-
frame structure. Fig. 1 illustrates the superframe structure in the HR-WPAN
standard. The superframe consists of three major parts: a beacon, an optional

464 S.W. Kim and B.-S. Kim

Contention
access
period

Beacon
#m

Channel time allocation period

MCTA
1

MCTA
2

CTA 1 CTA 2 CTA n-1 CTA n
���

Superframe #m-1 Superframe #m Superframe #m+1

Fig. 1. Superframe structure of IEEE 802.15.3

contention access period (CAP) and a channel time allocation period (CTAP).
The beacon packet is transmitted by the PNC at the beginning of each super-
frame. It allows all DEVs in a piconet to know about the specific information for
controlling a piconet. The CAP is used for transmissions of short and non-QoS
data packets and command/response packets. The remained period in the super-
frame is the CTAP. The CTAP is composed of management channel time allo-
cation (MCTA) and channel time allocation (CTA) periods. The MCTA is used
for sending command packets like CAP using the slotted ALOHA mechanism.

When a DEV needs a CTA on a regular basis, it sends a channel time request
(CTRq) command to the PNC during the CAP or MCTA. Thus the PNC decides
the durations of the superframe, CAP, and CTAP based on the DEVs requests.
During a CTA period, a DEV can transmit several packets to a target DEV with-
out collision. Each packet transmission may be followed by an acknowledgement
(ACK) packet. The specification for the MAC protocol defines three acknowl-
edgement types: no-acknowledgement (No-ACK), immediate-acknowledgement
(Imm-ACK), and delayed-acknowledgement (Dly-ACK). For Imm-ACK, the re-
ceiver issues an ACK packet to the transmitter on every received packet. No-ACK
means no ACK packet is issued. In Dly-ACK, which is a tradeoff between these
two methods, the receiver issues an ACK packet for multiple received packets.

2.2 Association Process

In order to participate in a piconet, a DEV needs to join the piconet using
the association process. Associating with the piconet provides the DEV with a
unique identifier, the DEVID, for that piconet. When a DEV wants to leave the
piconet or if the PNC wants to remove a DEV from the piconet, the disassociation
process is used.

Before a DEV has completed the association process, all frames sent to the
PNC by the DEV shall be exchanged either in the CAP of the superframe or
in an association MCTA. An unassociated DEV initiates the association process
by sending an Association Request command to the PNC. When the PNC re-
ceives an Association Request command, it shall send an Association Response
command, indicating that the DEV has been associated. The PNC starts the
association timeout period (ATP) timer once it has sent the Association Re-
sponse command for the new DEV. The associating DEV needs to send the

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN 465

beacon

DEV PNC

Unassociated

Association Request

Imm-ACK

Association Response

beacon

Association Request

Imm-ACK

beaconAssociated

Superframe
#m+1

Superframe
#m+2

Superframe
#m+3

Superframe
#m

association
request
from
DME

Fig. 2. An example of association delay

second Association Request command before the ATP timer expires. If the PNC
receives the second association request command after the ATP timer expires,
the PNC shall send the Disassociation Request command to the DEV requesting
association to indicate that it has failed the association process. Fig. 2 illustrates
the message flow for a successful association process. The association process is
initiated by a device management entity (DME). Note that the completion of
the association process may be delayed for more than two superframes when the
CAP or the MCTA is not available at appropriate time instant in superframes
m + 1 and m + 2.

2.3 Power Management

An important goal of the 802.15.3 standard is to enable long operation time
for battery-powered DEVs. The best method for extending the battery life is to
enable DEVs to turn off completely or reduce power for long periods of time.
This standard provides three techniques to enable DEVs to turn off for one
or more superframes: device synchronized power save (DSPS) mode, piconet-
synchronized power save (PSPS) mode, and asynchronous power save (APS)
mode. In any given power management mode, a DEV may be in one of two
power states, either AWAKE or SLEEP states. AWAKE state is defined as the
state of the DEV where it is either transmitting or receiving. SLEEP state is
defined as the state in which the DEV is neither transmitting nor receiving.

466 S.W. Kim and B.-S. Kim

PSPS mode allows DEVs to sleep at intervals defined by the PNC. A DEV in
PSPS mode shall listen to all system wake beacon, as announced by PNC and
is required to be in the AWAKE state during system wake superframes. DSPS
mode is designed to enable groups of DEVs to sleep for multiple superframes.
DEVs synchronize their sleep patterns by joining a DSPS set which specifies the
interval between wake periods for the DEVs and the next time the DEVs will
be awake.

The problem of PSPS and DSPS modes is that they are not efficient for
multimedia traffics which have non-periodic inter-arrival time. APS mode is
appropriate for these non-periodic traffics. The only responsibility of a DEV
in APS mode is to communicate with the PNC before the end of its ATP in
order to preserve its membership in the piconet. However, when the required
sleep time is much longer than ATP, this method increases the overhead to
maintain the membership and results in increased power consumption. Besides
power consumption, the use of power management in the standard makes it
difficult for the PNC to determine the interval for sleep period because of burst
traffic arrivals.

3 Proposed Packet Scheduling Method

3.1 Motivation

Due to the TDMA property of IEEE 802.15.3 MAC, one of the key issues for
power consumption is to schedule the order of the multiple CTAs among multiple
DEVs to minimize the total wakeup times. The time duration from the packet
arrival at the MAC layer to the transmission of the packet is called access delay.
Fig. 3 shows an example of access delay caused by the lack of information about
the actual packet arrival instant. Since the information given by a CTRq com-
mand does not inform the optimal time instant of a CTA, the packet arrival and

B M

packet
arrival
packet
trans-
mission

access
delay
of D1

D1

B : Beacon M : MCTA C1 : CTA for D1 C2 : CTA for D2

C1 B M

D1D2 D2

D1 D2

m m+1

C2 B M C1 MB C2 B M C1

access
delay
of D2

D1

… …

Super-
frame

m+2 m+3 m+4

Fig. 3. An example of access delay

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN 467

the CTA are not synchronized. The information delivered by a CTRq command
is insufficient for the PNC to decide the duration and the location of a CTA for
the requesting DEV. Thus, the average access delay increases as the packet inter-
arrival time increases and may maintain until the end of the flow. Furthermore,
it can be longer in heavy load cases since several CTAs overlap. Nevertheless, the
packet scheduling method that considers the power consumption is not proposed
in the standard and previous literatures.

The power management methods presented in the standard can not cope with
the fast traffic changes and may cause incorrect system parameters which leads to
the performance degradation. Moreover, these power management methods are
futile for traffics which have long packet inter-arrival time. The IEEE 802.15.3
TG considers the scenario that DEVs frequently join and leave a piconet as
mentioned in [14]. In this scenario, many system parameters such as a superframe
length and the number of flows change dynamically. Thus, instead of using the
power management method of the standard, we propose that a DEV leaves a
piconet when it is neither transmitting nor receiving. This method is easy to be
implemented and can reduce the overhead caused by the power management. In
addition, we propose the packet scheduling method to reduce the wakeup time
caused by the access delay and the association delay.

3.2 Packet Scheduling Method

A timer τ , which indicates the remained time until the CTA allocation, is used
for the packet scheduling. The PNC selects DEVs whose values of τ are less than
the time duration of a superframe, Ds. The selected DEVs are called a candidate
set. DEV n in the candidate set is allocated Φn CTAs in the current superframe
and Φn is given as

Φn =
⌈Ds − τn

αn

⌉
, (1)

where �x� is the smallest integer value not less than x, α is an average packet
inter-arrival time, and the subscript n in the notation denotes the nth DEV. For
the candidate set, the time duration from the beginning of current superframe
to the beginning of the cth CTA is given as

T c
n = τn + (c − 1) × αn, for 1 ≤ c ≤ Φn. (2)

During the MCTA, a DEV sends the status information to the PNC by using
a status report command packet. We denote the values of queue size, access delay,
and transmission rate in the status report command packet as FQ

n , FD
n , and FR

n ,
respectively. Then the packet transmission time γ is given as

γn =
(Pn

FR
n

+ Doverhead
)
FQ

n + Dguard, (3)

where P is the packet size and Doverhead and Dguard are the time durations for
the overhead and guard time, respectively. Thus, the scheduler assigns a CTA

468 S.W. Kim and B.-S. Kim

at T c
n with γn duration for DEV n. When two or more scheduled CTAs overlap

with each other, the CTA with lower value of T c
n is allocated in advance.

The MCTA allocation method is proposed as follows. If there is time dura-
tion remained between two consecutive CTAs, this duration becomes MCTA for
transmitting command packets. However, if the remained duration is less than
the threshold, it is merged to previous or next CTA. The threshold is a sum of
the slot time and the time duration of a CTRq packet. This threshold ensures
that at least one command packet can be transmitted in an MCTA. The sum of
CTAs and MCTAs durations allocated in a superframe should be less than Ds.
If the duration sum is more than Ds, the CTAs at the tail will be removed until
it becomes less than Ds.

Note that T c
n and Φn are required (ideal) values for CTA allocations. Because

of the aforementioned reasons of CTA overlap and dynamic traffic pattern, it
may happen that the packet scheduler uses smaller values than T c

n and Φn. In
this case, the selected (real) values instead of T c

n and Φn are denoted by tcn and
φn, respectively.

At the start of a new superframe, τn is updated to a new value by

τn ⇐

⎧⎨
⎩

max{0, τn − Ds − FD
n } , for τn ≥ Ds, Φn = 0

max{0, αn − (Ds − tΦn
n) − FD

n }, for τn < Ds, Φn = φn > 0
0 , otherwise.

(4)

The first equation represents a DEV whose CTA is not allocated in the current
superframe and the corresponding τn is subtracted by Ds and FD

n in the next
superframe. The FD

n is an adjusting factor used to synchronize time instants
between the CTA and the packet arrival. The second equation shows a DEV
who belongs to the candidate set and transmits packets as required. In the third
equation, when a DEV in the candidate set does not transmit packets as required,
it gains higher priority in the next superframe.

In our proposed scheme, the transmission of status report commands plays an
important role in allocating CTAs in a superframe. However, the PNC may form
a superframe without any MCTA due to a heavy traffic load or an insufficient
superframe size. To ensure that at least one status report command can be
transmitted in a superframe, the PNC allocates at least one MCTA with the
minimum MCTA time duration. Moreover, the last channel time in a superframe
must be an MCTA, called essential MCTA (E-MCTA). This allows the latest
status information of each DEV to be delivered to the PNC and to be reflected in
the next superframe. The beacon packet in a superframe has information fields
for the locations and durations of all CTAs as described in the IEEE 802.15.3
standard. Thus, the proposed scheme can be implemented with the operational
compatibility to the standard.

The association delay is also expected to be reduced by using the proposed
method. In the HR-WPAN standard, the DEV whose association request arrives
during the CTA period should wait until the MCTA of the next superframe. On
the contrary, in the proposed method, there are multiple MCTAs and E-MCTA
in a superframe and the DEVs can send the association request packet at the
next available MCTA in the same superframe. The disassociation request packet

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN 469

should also be transmitted during the MCTA and the proposed method may
have less disassociation delay than that for the HR-WPAN standard. Because
the DEV turns off the power after the completion of the disassociation process,
the proposed method can reduce more power consumption.

4 Numerical Results

4.1 Simulation Environment

We assume that all DEVs except the PNC are uniformly distributed in the
coverage area of a piconet with diameter 20 meters. The PNC is located at the
center of the area. We consider one piconet in this simulation. The parameters
used in this simulation are based on the IEEE 802.15.3 standards [1].

We study two real-time traffic types, CBR and VBR in the simulation. The
CBR traffic flow is generated at 912 kbps [15]. For the VBR traffic model, actual
MPRG-4 video streams of “Silence of the Lambs” with a mean bit rate of 580
Kbps and a peak rate of 4.4 Mbps, are used [16]. The packet sizes for both traf-
fics are 2048 octets defined in the IEEE 802.15.3 standard. For the simulation
of the association process, the intervals of the association and the disassoci-
ation requests are exponentially distributed with mean value of two seconds.
In this simulation, CAP allocation is not considered since it is optional in the
standard [1].

The scheme proposed in this paper, namely enhanced WPAN (EWPAN), is
compared with the WPAN proposed in [2]. Each scenario is simulated for 10
minutes. We use the log-normal shadowing channel model [17]. We set the path
loss exponent to 3.3 according to the SG3a alternate PHY selection criteria in
[18] and the standard deviation to 7.67 [17]. The transmit power and antenna
gain are set to 0 dBm and 0 dBi, respectively [18]. The received SNR is varied
by the Ricean fading gain, which is generated according to the modified Clarke
and Gans fading model [19]. For the data rate of the physical layer of each
communication link, we assume that the system adapts the data rate by prop-
erly choosing one from a set of modulation schemes according to the channel
condition as described in [20].

4.2 Simulation Results

The simulation results of the power efficiency, i.e. the number of transmitted
packets divided by wakeup time are shown in Fig. 4 where the superframe du-
rations (SF) are set to 65 ms, 45 ms, and 25 ms. The power efficiency of the
proposed method (EWPAN) is better than that of the WPAN standard. This
is because the access delay and the association delay of the proposed method is
less than those of the WPAN standard. Note that the system parameters such
as the duration of the superframe and the number of nodes have less effect on
the performance of the proposed method compared with the WPAN standard.
When the number of devices is 22, the power efficiency of the WPAN for the
25ms superframe duration is much lower than other cases because there is not
enough MCTAs in a superframe.

470 S.W. Kim and B.-S. Kim

8 12 16 20
10

20

30

40

50

60

Pa
ck

et
s/

w
ak

eu
p

tim
e

Number of devices

 WPAN, SF=65ms
 WPAN, SF=45ms
 WPAN, SF=25ms
 EWPAN, SF=65ms
 EWPAN, SF=45ms
 EWPAN, SF=25ms

Fig. 4. Power efficiency for WPAN and EWPAN

8 12 16 20

2000000

4000000

6000000

8000000

T
hr

ou
gh

pu
t

Number of devices

 WPAN, SF=65ms
 WPAN, SF=45ms
 WPAN, SF=25ms
 EWPAN, SF=65ms
 EWPAN, SF=45ms
 EWPAN, SF=25ms

Fig. 5. Throughput for WPAN and EWPAN

The simulation results of the throughput are shown in Fig. 5. The proposed
method has consistent performance while the WPAN has different performance
depending on the system parameters such as the number of devices and the
superframe duration. In WPAN, when the number of DEVs increases or the
superframe duration decreases, the throughput decreases because the access de-
lay and the association delay increases. The more important thing is that the
proposed method shows better throughput than that of WPAN.

5 Conclusion

The access delay and the association delay of the HR-WPAN standard depend
on the superframe duration or the packet inter-arrival time. Thus, the power

Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN 471

consumption is restricted by the system parameters. In this paper, we propose
an enhanced packet scheduling algorithm for the HR-WPAN to alleviate these
design restrictions. The proposed scheme targets on battery-powered portable
DEVs in HR-WPAN. The proposed algorithm synchronizes CTA to the packet
arrival time and allocates sufficient time duration for the transmissions of pend-
ing packets.

We verify the performance enhancement by the simulation. From the simu-
lations, we have shown that the proposed scheme gives significant performance
improvements. We note that the performance of the proposed scheme is less in-
fluenced by the variable factors such as the superframe size and the number of
flows. As a result, the proposed method shows less power consumption and more
throughput than those of the HR-WPAN standard.

References

1. IEEE: Wireless medium access control (MAC) and physical layer (PHY) specifi-
cations for high rate wireless personal area networks (WPANs). (2003)

2. Mangharam, R., Demirhan, M.: Performance and simulation analysis of 802.15.3
QoS. IEEE 802.15-02/297r1 (2002)

3. Torok, A., Vajda, L., Youn, K.J., June, S.D.: Superframe formation algorithms in
802.15.3 networks. In: Proc. IEEE WCNC’04, Atlanta, Georgia (2004) 1008–1013

4. Rhee, S.H., Kim, C.Y., Yoon, W., Chang, K.S.: An applicatoin-aware MAC scheme
for IEEE 802.15.3 high-rate WPAN. In: Proc. IEEE WCNC’04, Atlanta, Georgia
(2004) 1018–1023

5. Brabenac, C.: MAC performance enhancements for Alt-PHY. IEEE 802.15-
02/472r0 (2002)

6. Zeng, R., Kuo, G.S.: A novel scheduling scheme and MAC enhancements for IEEE
802.15.3 high-rate WPAN. In: Proc. IEEE WCNC’05, New Orleans, LA (2005)
2478–2483

7. Chen, J., Sivalingam, K., Agrawal, P., Kishore, S.: A comparison of MAC protocol
for wireless local networks based on battery power consumption. In: Proc. IEEE
Infocom’98. Volume 1. (1998) 150–157

8. Woesner, H., Ebert, J., Schlager, M., Wolisz, A.: Power-saving mechanism in emerg-
ing standards for wireless LANs: the MAC level perspective. IEEE Personal Com-
mun. Mag. 5 (1998) 40–48

9. Stine, J., Vecianna, G.: Improving energy efficiency of centrally controlled wireless
data networks. Wireless Networks 8 (2002) 681–700

10. Liang, Q.: A design methodology for wireless personal area networks with power
efficiency. In: Proc. IEEE WCNC’03, New Orleans, Louisiana (2003) 1475–1480

11. Sikora, A.: Design challenges for short-range wireless networks. IEE Proc.-
Commun. 151 (2004) 473–479

12. Guo, Z., Yao, R., Zhu, W., Wang, X., Ren, Y.: Intra-superframe power management
for IEEE 802.15.3 WPAN. IEEE Commun. Lett. 9 (2005) 228–230

13. Wang, X., Ren, Y., Zhao, J., Guo, Z., Yao, R.: Energy efficient transmission
protocol for UWB WPAN. In: Proc. IEEE VTC2004-Fall, Los Angeles, CA (2004)
5292–5296

14. Gandolfo, P., Allen, J.: 802.15.3 Overview/Update. The WiMEDIA Alliance (2002)
15. http://www.disctronics.co.uk/technology/dvdvideo/dvdid audenc.htm: (DVD-

video audio coding)

472 S.W. Kim and B.-S. Kim

16. http://www-tkn.ee.tu berlin.de/research/trace/trace.html: (MPEG-4 and H.263
video traces for network performance evaluation)

17. Rappaport, T.S.: Wireless communications: principles and practices. Prentice Hall
(1996)

18. Siwiak, K., Ellis, J.: SG3a alternate PHY selection criteria. IEEE 802.15-02/105r20
(2002)

19. Punnoose, R.J., Nikitin, P.V., Stancil, D.D.: Efficient simulation of ricean fading
within a packet simulator. In: Proc. IEEE VTC-Fall’00. Volume 2., Boston, USA
(2000) 764–767

20. Kim, B., Fang, Y., Wong, T.F.: Rate-adaptive MAC protocol in high-rate personal
area networks. In: Proc. IEEE WCNC’04, Atlanta, Georgia (2004)

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 473 – 483, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Two Energy-Efficient, Timesaving Improvement
Mechanisms of Network Reprogramming in Wireless

Sensor Network

Bibo Wang1, Yu Chen2, Hongliang Gu2, Jian Yang1, and Tan Zhao1

1 School of Software, Tsinghua University, Beijing, China
wangbibo@tsinghua.org.cn,

{yang-jian03, zhaot03}@mails.tsinghua.edu.cn
2 Department of Computer Science and Technology, Tsinghua University, Beijing, China
yuchen@mail.tsinghua.edu.cn, ghl02@mails.tsinghua.edu.cn

Abstract. Loading program code to sensor nodes is a basic function of wireless
sensor network. However, it is infeasible to gather all sensor nodes once they
are deployed. Thus, network reprogramming is greatly required. In this paper,
we present two improvement mechanisms to current network reprogramming
approaches: the resident mechanism to reduce the size of binary code to be
disseminated and stored, and the hierarchical full indexing with sliding window
mechanism to record lost code capsules. Both mechanisms can reduce radio
transmission and storage access, which are main consumers of energy and time.
Accordingly, our mechanisms are energy-efficient and timesaving.

1 Introduction

Wireless sensor network (WSN) combines computation, communication with sensing.
Owing to its low cost and sufficient function, WSN has been used in many application
scenes, such as environment monitoring, health application, etc.

Loading program code to sensor nodes is one of the most basic functions of WSN.
Traditionally, program code is developed in a host machine and then loaded to sensor
nodes through directly connected parallel or serial cables one at a time. This is called
In-System-Programming (ISP). After programmed, sensor nodes are usually deployed
to different locations of the environment and become hard to gather. If bugs are found
or new functions are added to the program, new program code needs to be loaded to
all sensor nodes. Requiring physical connection, ISP becomes costly and infeasible.

Network reprogramming is a more flexible approach. In network reprogramming,
program code is loaded to many sensor nodes by radio at one time, without wiring the
host machine. Network reprogramming is also called In-Network-Programming
(INP). TinyOS [1], an operating system designed specifically for WSN, has provided
a simple INP module, Crossbow Network Programming (XNP) [2], for some kinds of
sensor nodes (such as mica2 [3]). Later, many works are presented to improve XNP to
support multi-hop and incremental upgrade. However, these approaches involve two
main drawbacks: enormous energy consumption and lengthy loading time.

In WSN, the most energy-intensive operations are radio usage and static storage
access [4, 5]. Moreover, transmitting some bytes by radio consumes about eight times

474 B. Wang et al.

the amount of energy required for writing the same bytes to storage, and at least
eighty times the amount of energy required for reading these bytes from storage [6].
Radio transmission and storage access are more time-consuming than computation,
too. Thus, our mechanisms primarily aim to reduce radio usage and storage access.

Two mechanisms are presented in this paper. First, instead of transmitting both the
user application and the INP module, resident mechanism is adopted: only binary
code of the user application is disseminated by radio, while the INP application is
resident in sensor nodes. Second, hierarchical full indexing with sliding window
mechanism is used to record serial numbers of packets which are lost during radio
transmission. Both mechanisms reduce radio transmission and storage access, which
makes them to be energy-efficient and expeditious. Our mechanisms are versatile
amendments and can be easily incorporated with many other INP approaches.

The remainder of this paper is organized as follows. In Section 2 of this paper,
related works are reviewed. In Section 3 the implementation of XNP and its flaws are
discussed in detail. Our mechanisms are described and evaluated in Section 4 and
Section 5. Finally, the conclusion and future work are given in Section 6.

2 Related Works

2.1 Crossbow Network Reprogramming

Crossbow Network Reprogramming (XNP) [2] is the INP module in TinyOS 1.1
release version. It only implements basic network reprogramming functions. The
implementation and drawbacks of XNP will be discussed in Section 3 in detail.

2.2 Multi-hop Network Reprogramming

These approaches implement multi-hop network reprogramming functions, which can
load program code to all nodes in WSN with the help of multi-hop routing.

A representative multi-hop approach is called Multihop Over-the-Air Programming
(MOAP) [6]. MOAP can disseminate the program code to a selective number of
nodes without flooding the network. And the receivers are responsible to recording
missed packets and requesting these packets.

Deluge in [7] mainly focus on multi-hop data dissemination protocol for network
programming. It disseminates the program code in an epidemic fashion while
regulating the excess traffic. Unlike MOAP, Deluge represents the data as a set of
fixed-sized pages, which can support spatial multiplexing and incremental upgrades.

Another approach named MNP [8] proposes a sender selection mechanism to
reduce message collision and address the hidden terminal problem. Source nodes
compete with each other based on the number of distinct requests they have received.
Also, pipelining is used to enable fast data propagation.

2.3 Incremental Network Reprogramming

These approaches implement incremental upgrade. They only disseminate the
differences between the new program code and the old one.

 Two Energy-Efficient, Timesaving Improvement Mechanisms 475

In the incremental algorithm in [9], the host machine generates an edit script of
commands to describe the differences between the two versions of program codes and
disseminates the edit script by radio. Sensor nodes then can build the new program
code by interpreting the received edit script.

Another incremental approach in [10] does not generate any extra script. For each
block of program code, it is compared with the corresponding block of the previous
version. If they are the same, sensor nodes are told to copy this block from the
previous code. Otherwise, the new block is transmitted and sensor nodes insert this
block to the current code.

2.4 Other Important Works

Maté [11] is different with other INP approaches in many aspects. First, all above
approaches disseminate the program code in binary code, while Maté distributes code
in virtual machine instructions. Second, above approaches transmit both INP module
and the user application, while Maté only transmits the user application. Because
Maté runs only in virtual machine instructions, user application needs to be converted
to virtual machine instructions. Trickle [12] improves Maté by using an epidemic
algorithm to propagate the program code only to nodes that need to be modified.

3 Crossbow Network Reprogramming

XNP [2] is a basic INP implementation. Instead of loading program code to the
program memory directly, XNP first downloads the binary code to the external
storage, and then tells the boot loader to copy the code to program memory (Fig. 1).

Fig. 1. Process of XNP. (1) Host machine divides the binary code to multiple radio packets (2)
Host machine broadcasts code capsules one by one (3) Each sensor node stores received binary
code in the external storage (4) Boot loader copies binary code to program memory.

In the first step, the host machine divides the binary program code as radio packets
and broadcasts these code capsules via a base station. Sensor nodes within single-hop
bidirectional communication range of the base station receive radio packets and store
the binary code in external storages. During the code delivery, some code capsules
may be lost. Sensor nodes request any lost capsules until entire binary code is stored.

In the second step, the XNP module of each node calls the boot loader, a program
resident in the high program memory area. The boot loader is responsible for copying

476 B. Wang et al.

the program code from the external storage to the program memory. Once entire
program code is copied, the boot loader restarts the sensor node with new code.

Four main drawbacks of XNP are listed as follows:
First, XNP does not support multihop mechanism. Only sensor nodes within direct

bidirectional communication range of the base station can be reprogrammed at one
time. MOAP [6], Deluge [7] and MNP [8] have effectively addressed this problem.

Second, loading program code by XNP is much slower than by ISP. Incremental
upgrade mechanisms have been proposed in [9] and [10] to reduce loading time. Our
mechanisms address this problem in different ways.

Third, the huge XNP module occupies nearly one quarter of the overall capacity of
program memory. Our resident mechanism will solve this problem.

Fourth, the huge blocks to be transmitted by radio and vast storage access in XNP
process consume too much energy. Our mechanisms effectively reduce the radio
transmission and storage access, and thus are much more energy-efficient.

4 Resident Mechanism

4.1 Basic Conception

In XNP process, the binary code to be disseminated contains both the user application
and XNP module. Take the TinyOS application Blink for example. To support INP,
Blink has to wire the XNP module to form a combined application XnpBlink. The size
of binary code and the quantity of code capsules of XnpBlink are almost 12 times
larger than those of Blink for mica2 platform (as Table 1 shows).

Table 1. Binary code size and quantity of code capsules of Blink and XnpBlink for mica2

Application Blink XnpBlink
Size of Binary Code 3,974 Byte 48,062 Byte
Quantity of Code Capsules 91 1092

The huge INP module greatly decelerates the reprogramming process, consumes

too much energy, and occupies nearly one quarter of the overall capacity of program
memory. In fact, the XNP module remains same for most time.

Our resident mechanism solves these problems. In our mechanism, only the user
application is transmitted by radio, an independent resident network reprogramming
(ab. RNP) application is resident in sensor nodes since the first-time programming.

Our approach is similar to Maté [11] in that only the user application needs to be
transmitted. However, binary code is disseminated directly in our resident mechanism
without being converted to virtual machine instructions.

4.2 Memory Layout

External storage, which is many times larger than program memory, is used to store
the RNP application in our mechanism. The memory layout of our RNP mechanism is
depicted in Fig. 2. The external storage is divided into four continuous sections. The

 Two Energy-Efficient, Timesaving Improvement Mechanisms 477

first section stores new program code. The next section stores old program code to
support incremental mechanism in [10]. The third section is used to store RNP
application and the fourth is reserved for other purpose. The program memory is
composed of two sections. The highest section is boot loader section as in XNP.
While the other section stores user application in application running process, and
stores RNP application in reprogramming process.

(a) User application running process (b) network reprogramming process

Fig. 2. Memory Layout of resident mechanism in different processes

Because user application and RNP application do not coexist in the program
memory, more space in the program memory is available for user application.

4.3 Design and Usage

To make a sensor node be able to perform resident network reprogramming, some
works should be done in advance. First, the RNP application should be loaded to the
external storage in the first-time programming, which is responsible for downloading
and storing code capsules in the external storage. Second, application that includes
functions of receiving radio messages and calling boot loader is loaded to program
memory. Third, the boot loader should be loaded to the boot loader section of
program memory. Then, resident network reprogramming can start anytime.

Our resident mechanism works in the following steps: at the beginning, the user
application is modified to receive radio messages and call boot loader. Then, the host
machine broadcasts a command indicating the start of reprogramming. In response,
boot loader in each node loads RNP application to program memory. After loading is
finished, sensor nodes start to wait for the code capsules. Then, the host machine
broadcasts code capsules one by one. Sensor nodes store obtained code capsules in
their external storages and maintain indexes to record lost code capsules (using one
bit to record one code capsule). Lost capsules are requested to retransmit in a separate
query phase. Once a sensor node stores the entire binary code, boot loader is called to
copy the binary code to program memory and restart the node.

After the RNP application starts running, if no code capsule is received for a long
time, this application considers itself to be a new version of RNP application, and

478 B. Wang et al.

calls the boot loader to copy this application to RNP application section of the
external storage. This function is used to upgrade the RNP application itself.

4.4 Evaluation

Our resident mechanism is compared with XNP using standard TinyOS application
Blink in Mica2 nodes. Because radio module should be added to Blink, the combined
application RnpBlink is larger than Blink, but it is much smaller than the combined
XNP application XnpBlink (Table 2). Accordingly, code capsules are much less.

Table 2. Comparison of Blink, RnpBlink and XnpBlink. Our implementation adds only a few
codes to receive message, its size is much smaller

Application Blink RnpBlink XnpBlink
Size of Binary Code 3,974 Byte 28,158 Byte 48,062 Byte
Quantity of Code Capsules 91 640 1092

Table 3. Network programming time of XNP and RNP

Case 1 Case 2 Case 3 Timing (sec)
RNP XNP RNP XNP RNP XNP

Download 141.3 240.1 141.4 239.4 141.4 240.2
Query 13.0 19.4 15.4 22.4 17.7 25.2
Reprogram 1.7 1.7 1.7 1.7 1.7 1.7

Total 156.0 261.2 158.5 263.7 160.8 267.1

Fig. 3. Network programming time of XNP and RNP

 Two Energy-Efficient, Timesaving Improvement Mechanisms 479

The time and energy consumptions of reprogramming are in direct ratio to the size
of binary code and the quantity of code capsules. Thus, our resident mechanism is
more energy-efficient and timesaving. Also, without spatial occupation of INP
module, more space is available in program memory for user application.

We run experiments using real Mica2 nodes to test the programming time of the
same application Blink in XNP and RNP mechanism. Three cases using different
number of nodes are performed. For case 1, only one node is reprogrammed by
network; for case 2, two nodes are reprogrammed; and for case 3, four nodes are
reprogrammed. For all cases, we run three times and count the average time.

We timed the INP process for the major three steps: download, query and
reprogram. Table 3 and Fig. 3 show the results. The reprogram step takes almost same
time for all cases either with XNP or our resident mechanism. However, our resident
mechanism is much more timesaving in download and query stages.

5 Hierarchical Full Indexing with Sliding Window Mechanism

5.1 Basic Mechanism

During the code delivery, a mechanism is needed to record whether some capsules are
lost and which they are. However, no such mechanism is used in XNP. Full indexing,
which uses one bit to record one code capsule, is a simple and useful approach.
However, it leads to excessive RAM usage, while RAM is also scarce besides in
RNP. A sliding window mechanism is presented in [6]. Only code capsules within the
sliding window are accepted, others are all discarded. It requires less storage access
and occupies less RAM space, but greatly impairs the effect of radio receiving.

Our mechanism is mainly ground on hierarchical full indexing. Hierarchical full
indexing is similar to full indexing, but indexes are stored in two levels, using both
RAM and static storage (usually internal EEPROM). The bottom level is kept in static
storage. It uses full indexing for a subset of the binary code, which we call a snippet.
The index of entire program is kept in the top level in RAM, using one bit to represent
a snippet. Since a snippet can be relatively large, the RAM usage is small. When a
code capsule is received, if the relevant bit in top-level index indicates an incomplete
snippet, hierarchical full indexing has to read the storage to determine if the capsule is
a duplicate. If the segment has not been stored, both the bottom-level index and this
code capsule need to be written - write storage twice. This is a waste of energy.

To reduce storage access without impairing radio performance, we present
hierarchical full indexing with sliding window mechanism. The sliding window works
as a temporary cache for the bottom level indexes, and helps to reduce the update
operation of bottom level indexes in the static storage. To facilitate discussions below,
we define f(x) to be the least positive integer that is larger than or equal to x.

Providing the size of a snippet is k bits, one bit in the top level indicates whether k
capsules are received. If k capsules are all obtained, the corresponding bit in the top
level index is updated to 1 and other capsules whose indexes are within this snippet
are discarded without any storage access. The sliding window is n times of k in size
(where n is a positive integer), and slides in step of k. The sliding window temporarily
acts as bottom-level indexes of n bits in the top level (Fig. 4).

480 B. Wang et al.

0

1

1

0

1

0 1 0 0

Bottom
Level

1 0 10 1 1 0 1

1

1

1

1 0

...

...

...

...

......

Sliding Window (Temporary Bottom Level)

External Storage

RAM
Top

Level

0 0

0 0 0

0 0 0

0 0 0

Fig. 4. Hierarchical full indexing with sliding window if n=2, k=4. The sliding windowing acts
as temporary bottom-level indexes and updates actual bottom level only when it slides

Assuming the current location of sliding window is from mk+1 to mk+nk, code
capsules within the sliding window are written to the storage directly and the sliding
window in RAM is updated. Instead of reading storage once and writing twice, only
one necessary Write operation is performed. If coming code capsule C is larger than
mk+nk, then the program checks whether all the lowest k bits of the sliding window
are 1. If so, the window slides to contain this capsule; if some of the k bits are equal to
0, these k bits are written to actual bottom-level index in storage and the window
slides. Only if the received code capsule C is smaller than mk+1 and the f(C/k)th bit in
the top-level index equals 0, one Read and two Write operations are needed.

5.2 Snippet Size and Sliding Window Size

Here, we discuss how to choose a reasonable size of a snippet and the sliding window
to minimize RAM usage.

Table 4. The minimum RAM cost to record lost packets when n select from 1 to 4. k is the
closest positive integer of the extraction of 8000/n

n (bit) k (bit) Minimum RAM Cost(bit)
1 89 or 90 179
2 63 or 64 253
3 51 or 52 310
4 44 or 45 358

In Mica2 node, the capacity of program memory is 128KB. If each code capsule
contains 16 byte, the maximum quantity of code capsules is 8000. If size of each
snippet is k bits, f(8000/k) bits are needed in RAM for the top-level index. Providing
the size of the sliding window is n times of k, the total RAM cost (SRAM) in bit is:

 Two Energy-Efficient, Timesaving Improvement Mechanisms 481

n80002k)(8000/k)(n2kn 8000/kkn 8000/k)fSRAM ×=×≥×+≈×+= ((1)

If n is given, SRAM can reach the minimum only when 8000/k equals n×k

n8000k /=
(2)

The minimum RAM cost to record lost packets with different n is listed in Table 4.
The smaller n is, if proper k is chosen, the less RAM is used. However, small n

means short sliding window, and thus received code capsules are more likely to be out
of the window, which may lead to an increase in storage access.

5.3 Evaluation

The storage operations needed to record packets loss in single-hop INP are different
from in multi-hop INP. So they are discussed respectively. For convenience, R is used
to represent reading storage once and W is used to represent writing storage once.

In single-hop INP, code capsules are transmitted one by one with consecutive
serial number and are received by sensor nodes in the same order as the sequence
transmitted. The capsule C+1 can never reach sensor nodes earlier than capsule C.
Code capsules are written to external storage directly without any Read operation.
Only when sliding window is full and some of the lowest k bits are equals to 0, one
snippet needs to be written to storage. Thus, only f(N/k) Write operations are needed
even in the worst case, where N is the actual quantity of code capsules transmitted.

In multi-hop INP, the problem is more complicated. First, code capsules may reach
at any sequence; second, each capsule may reach a sensor node many times. We first
count the storage operations needed to manage all the new capsules (which have not
been received before), then count the operations needed to manage all duplicate
capsules (which are same as capsules that have been stored in the external storage).

Assume all code capsules can be obtained at last, and the time that capsule i is
received for the first time is ti. All the new capsules can be reordered by their reaching
time, for example t1, t5, t7, t2… Define Li to be the amount of capsules that (1)are new
capsules; (2)are received between ti and time of next capsule whose serial number is
larger than i; (3)are smaller than f(i/k) k -n k in serial number, where f(i/k) k is
the ceiling of sliding window and n k is the size of sliding window. For these
capsules, they missed sliding window and thus the program need to read static storage
once and write twice. The storage operation for these capsules is)(W2RL

N

1i i +
=

. If

the serial number of the new capsule is within the sliding window, only one necessary
Write operation is needed. Thus, the overall storage operations needed to manage all
new capsules RXnew meet the following condition:

))(()()()(WRLNW2RNWLNW2RLRX
N

1i i

N

1i i

N

1i inew +−−+=−++=
===

 (3)

Where N(R+2W) is equal to the storage operations needed to manage all the new
capsules in traditional hierarchical full indexing. In most cases,

=
>> N

1i iLN , and

thus RXnew is only a little larger than NW. Even in the worst case, knNL
N

1i i ×−≈
=

,

our approach is still slightly better than traditional hierarchical full indexing.

482 B. Wang et al.

For duplicate capsules, define Di to be the quantity of code capsules (1) that are
duplicates of capsule i; (2) that miss the sliding window; (3) whose relevant bits in the
top-level index are equal to 0. For these capsules, the program has to read static
storage to check whether they are duplicates. The overall storage operations needed to
manage all duplicate capsules RXdup meet the following condition:

RDRX
N

1i idup =
= (4)

In most cases,
=

N

1i iD is much less than the overall received duplicate capsules.

The storage operations needed to receive all the new capsules and all the duplicate
capsules and the RAM occupation of different approaches are compared in Table 5. It
seems as if sliding window in [2] excels for all these attributes. However, sliding
window reduces storage access at the cost of discarding all capsules outer the
window. For instance, if the first capsule reaches very late or is missed, all capsules
whose serial numbers are larger than the ceiling of sliding window are discarded.

Table 5. Static storage operations needed to receive all the new capsules and duplicate capsules
and overall RAM occupation in multi-hop INP. Where R represents reading storage once and W
represents writing storage once. Providing Nmax to be the maximum amount of capsules, N to be
the actual amount of capsules, dN to be the amount of duplicate capsules.

Approach RXnew RXdup RAM (bit)
No indexing N(R+W) dN(R+W) 0
Full indexing NW 0 Nmax
Hierarchical full indexing
(bottom-level is k bits in size)

N(R+2W) dN×R Nmax/k

Sliding window [2] NW 0 window size
Hierarchical full indexing with
sliding window (bottom -level
index is k bits in size)

N(R+2W)-

))((WRLN
N

1i i +−
=

RD

N

1i i=
 Nmax/k+

window size

6 Conclusion and Future Work

By loading binary code to many sensor nodes by radio at one time, INP saves great
efforts. Among all the attributes of INP, energy and time are of the most importance.

Our resident mechanism reduces the size of binary code to be disseminated and
stored. Hierarchical full indexing with sliding window mechanism to record lost
capsules reduces storage access without enlarging RAM consumption. Thus, they are
energy-efficient and timesaving. Moreover, the resident mechanism avoids spatial
occupation of INP module in program memory. Our mechanisms are based on XNP
but can easily be incorporated with many other mechanisms.

Large amount of data are disseminated in network with unpredictable topology in
INP, and all capsules should be obtained by all sensor nodes. Thus, high reliability
and good scalability are greatly required in the data dissemination. So we will try to
adopt the hybrid data dissemination framework [13] to satisfy these requirements.

 Two Energy-Efficient, Timesaving Improvement Mechanisms 483

References

1. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System Architecture Directions for Networked Sensors. In the 9th International
Conference on Architectural Support for Programming Languages and Operating Systems,
Nov. 2000

2. Jaein Jeong, Sukun Kim and Alan Broad. Network Reprogramming. Available in:
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/NetworkReprogramming.pdf

3. Crossbow Technology. Mica2: Wireless Measurement System. Mica2 Datasheet.
Available in:
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf

4. Mark Hempstead, Nikhil Tripathi, Patrick Mauro, Gu-Yeon Wei, David Brooks. An Ultra
Low Power System Architecture for Sensor Network Applications. Proceedings of 32nd
International Symposium on Computer Architecture, Jun. 2005

5. Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, John Anderson.
Wireless Sensor Networks for Habitat Monitoring. First ACM International Workshop on
Wireless Sensor Networks and Applications, Sep. 2002

6. T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism for
wireless sensor networks. Technical report CENS-TR-30, UCLA, Nov. 2003

7. Adam Chlipala, Jonathan Hui and Gilman Toll. Deluge: Data Dissemination in Multi-Hop
Sensor Networks. Project Report CS294-1, UC Berkeley, Dec. 2003

8. Sandeep S. Kulkarni, Limin Wang. MNP: Multihop Network Reprogramming Service for
Sensor Networks. Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, Jun. 2005

9. N. Reijers and K. Langendoen. Effcient code distribution in wireless sensor networks. In
Proceedings of the 2nd ACM international conference on Wireless sensor networks and
applications, Sep. 2003

10. Jeong Jaein, Culler David. Incremental network programming for wireless sensors. First
Annual IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, Oct. 2004

11. Philip Levis and David Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In the
10th International Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002

12. Philip Levis, Neil Patel, Scott Shenker, and David Culler. Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In
Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and
Implementation, Mar. 2004

13. Wei Liu, Yanchao Zhang, Wenjing Lou, Yuguang Fang, and Tan Wong, Scalable and
robust data dissemination in wireless sensor networks. IEEE Global Telecommunications
Conference, Nov. /Dec. 2004

On Location-Free Node Scheduling Scheme for
Random Wireless Sensor Networks

Jie Jiang1, Chong Liu2, Guofu Wu1, and Wenhua Dou1

1 School of Computer, National University of Defense Technology, China
jiangjie@nudt.edu.cn

2 Dept. of Computer Science, University of Victoria, Canada
chongliu@cs.uvic.ca

Abstract. In this paper, we have done thorough mathematical analysis
and extensive simulations on the distributed, lightweight and location-
free node scheduling scheme proposed in [11]. The basic idea of this
scheduling scheme is to organize sensor nodes into disjoint node sets,
which work alternately to extend network lifetime effectively. Distin-
guished from the work in [11], we reevaluate the performance of this
scheduling scheme under different assumption that sensor nodes are
deployed randomly in the target region according to a Poisson point
process, which is a more realistic deployment model in large scale ran-
domly deployed sensor networks. We also analyze the performance in
terms of average event detection latency, which is another straightfor-
ward coverage quality measure. Our analysis results reveal the rela-
tionship among coverage quality, expected network lifetime and node
deployment intensity. Impact of normally distributed time asynchrony
on network coverage quality is also investigated.

1 Introduction

Due to advances in micro-sensors, wireless networking and embedded processing,
wireless sensor networks (WSNs), which consists of a large number of tiny sensor
nodes with limited computation, communication capabilities and constrained
energy resource, are becoming increasingly applicable to civilian and military
applications, such as environmental monitoring, chemical attack detection, and
battlefield surveillance, etc [1, 2].

The lifetime of each individual sensor node is short and limited due to the
following two factors. First, sensor nodes are usually supported by batteries
with limited capacity due to low cost and extremely small dimensions. Second,
it is usually hard to replace or recharge the batteries after deployment, either
because the number of sensor nodes is very large or the deployment environment
is hostile and dangerous (e.g. remote desert or battlefield). But on the other hand,
the sensor networks are usually expected to operate several months or years
once deployed. Therefore reducing energy consumption and extending network
lifetime is one of the most critical challenges in the design of wireless sensor
networks.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 484–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Location-Free Node Scheduling Scheme for Random WSNs 485

Most of existing work [3, 4, 5, 6, 7, 8, 9, 10] on energy efficiency in WSNs relies
on exact location information, which is expensive and difficult to obtain in large
scale wireless sensor networks. Liu [11] proposed a distributed, lightweight and
location-free node scheduling scheme to extend network lifetime.

In this paper, we do thorough mathematical analysis and extensive simulation
on scheme proposed in [11]. Distinguished from the work in [11], we reevaluate
the performance of this scheduling scheme under different assumption that sensor
nodes are deployed randomly in the target region according to a Poisson point
process. This is a more realistic deployment model compared to the network-wide
uniformly random deployment model in [11]. We also analyze the performance
in terms of average event detection latency, which is another straightforward
coverage quality measure. Impacts of normally distributed time asynchrony on
network coverage quality is also investigated.

2 Location-Free Node Scheduling Scheme

The basic idea of the scheme in [11] is simple. Given the parameter k, in the
initial phase each sensor node randomly selects a number between 0 and k − 1
with equal probability of 1/k, and all nodes choosing number i form the i’th
node set. In the following working phase, these k node sets work in a round-
robin manner and there is only one node set working at any time instance.

2.1 Performance Analysis

A. System Model
We consider static sensor networks in a two-dimensional region. And we use
binary sensing model to model sensor node’s sensing capability. In binary sensing
model, sensor can reliably detect events within the circle centered at the sensor
node with radius Rs. We assume that the sensor network is homogenous, i.e., all
sensor nodes have the same sensing radius.

We consider the random sensor network where sensor nodes are randomly
deployed (e.g., dropped form airplane) according to Poisson point process [13].
In Poisson point process, the probability that an region A contains m sensor
nodes is given by

Pr {N (A) = m} =
(λ ‖A‖)m

e−λ‖A‖

m!
(1)

where ‖A‖ denotes the area of A, N (A) denotes the number of nodes in region
A, and λ is the intensity of Poisson point process.

B. Performance Analysis

Definition 1. Coverage Intensity for a Specific Point [11]
For a given point p in the deployed region, the coverage intensity for this point
is Cp = Tc/T , where T is any given long time period and Tc is the total time
during T when point p is covered by at least one active sensor node.

486 J. Jiang et al.

Definition 2. Network Coverage Intensity [11]
The network coverage intensity, Cn, is defined to be the expectation of Cp: Cn =
E (Cp).

Theorem 1. With the proposed scheduling scheme,

Cn = 1 − exp
(
−‖λA‖

k

)
(2)

where k is the given network lifetime requirement, λ is the intensity of the Pois-
son point process, and ‖A‖ = πRs

2 is the area of sensor node’s sensing disk.

Proof. For any given point p in the deployment region, suppose there are to-
tally Np sensor nodes that cover point p . Let Sp denote the set of these Np sen-
sor nodes. Using the proposed scheduling scheme, each node in Sp assigns itself
to one of the k node sets with equal probability 1/k . Let Ai denote the event
that the i (0 ≤ i ≤ k − 1)’th node set NSi does not include any node in Sp,
then Pr {Ai} =

(
1 − 1

k

)Np , and Pr
{
Ai

}
= 1 −

(
1 − 1

k

)Np .
Let’s define an indicator function as follows:

Ii =

{
1 if Ai not holds
0 otherwise

Then I =
k−1∑
j=0

Ij is the total number of the node set that can cover point p.

As E [I] = E

[
k−1∑
j=0

Ij

]
=

k−1∑
j=0

E [Ij] and E [Ij] = 1 −
(
1 − 1

k

)Np , we have E [I] =

k ×
[
1 −

(
1 − 1

k

)Np
]
. Therefore Cp = E[I]×T

k×T = 1−
(
1 − 1

k

)Np . According to the
binary sensing model and the definition of Poisson point process,

Cn = E [Cp] = 1 − E

[(
1 − 1

k

)Np
]

= 1 −
∞∑

Np=0

(
1 − 1

k

)Np

× (λ ‖A‖)Np e−λ‖A‖

Np!

= 1 − exp
(
−λ ‖A‖

k

)

where ||A|| = πR2
s. �

Corollary 1. For a given λ, the possible maximal number k of disjoint node
sets while the network coverage intensity is at least α is given by λ‖A‖

− ln(1−α) .

Corollary 2. For a given k and a required network coverage intensity α, the
lower bound of the intensity of the Poisson point process, λ, is given by −k ln(1−α)

‖A‖ .

These two corollaries, which point out the internal relationship among the
network coverage intensity, the expected network lifetime, and the intensity of
the Poisson point process, can be easily proved by using Cn ≥ α.

On Location-Free Node Scheduling Scheme for Random WSNs 487

3 Analysis on Average Detection Delay

For some event-detection applications in wireless sensor networks, the quick de-
tection of persistent event is desired. Therefore, average detection delay is an
important application layer performance metric and is defined as the average
time elapsed between a persistent event occurrence at a point and its detection
by a nearby sensor node [12]. It evaluates how responsive the network will be
in reacting to the events of interests. Note that average detection delay is a
point-specific metric. Different point has different detection delay due to differ-
ent number of sensor nodes covering it and different working schedules of these
nodes. Given a specific point in the monitored field, which is not covered 100
percent of time by its nearby sensor nodes, the event detection delay depends on
event occurrence time, hence is a random variable. That is why we use average
detection delay to measure it statistically.

Because in this paper, we assume sensor nodes are deployed randomly into
the field, it is possible that there are some points in the field, which are not
within the sensing range of any sensor node, hence can not be covered by any
sensor node. For these blind points, the event detection delay is infinite. The
number of these points can be dramatically decreased and approximate to 0
by deploying more sensor nodes (i.e., increasing the intensity of Poisson point
process).

For any specific point, which is within the sensor range of s(s > 0) sensor
nodes, we can calculate the average detection delay for the events occurring at
that point after utilizing the proposed scheduling scheme. The only assumption
of our analysis is that events arrive uniformly at random in time domain and last
for a duration larger than a scheduling cycle kT . The analysis result is presented
as below.

Theorem 2. With the proposed scheduling scheme, when all sensor nodes are
precisely synchronized with the standard time, the average detection delay dp for
an event occurring at point p, which is covered by s(s > 0) sensor nodes, is
equal to

dp =
T

2

[(
k − 1

k

)s

+ 2
k−1∑
i=2

(
k − i

k

)s
]

(3)

Proof. Suppose an event occurs at time instance t. Not loosing any general-
ity, we number the time slot which contains t as time slot 0. It is followed
by time slot 1, 2, . . . , k − 1. Each time slot i is associated with the working
shift of subset i. Therefore, time slots 0 to k − 1 consist of a scheduling cy-
cle. We let Hi denote the event that subset i doesn’t contain any sensor nodes
that can cover point p and Hi denote the event that subset i contains at least
one sensor node that can cover point p. As all sensor nodes are well synchro-
nized with the standard time, if H0 holds, the average detection delay, dp, is 0.
Therefore, the average detection delay of an event occurring at point p can be
calculated as

488 J. Jiang et al.

dp =
k−1∑
i=1

∫ T

0

1
T

× Pr
(
H0 ∩ H1 ∩ . . .Hi

)
× (i × T − t) dt

=
k−1∑
i=1

∫ T

0

1
T

×
[(

k − i

k

)s

−
(

k − i − 1
k

)s]
× (i × T − t) dt

=
k−1∑
i=1

(2i − 1)T

2

[(
k − i

k

)s

−
(

k − i − 1
k

)s]

=
T

2

[(
k − 1

k

)s

+ 2
k−1∑
i=2

(
k − i

k

)s
]

�

From the expression of the dp given above, we can see that the average event
detection delay for a specific point p is influenced by three factors.

(1) T : the working time duration for each subset in one round. dp increases with
the increase of T . This is because a larger T will lead to a lager waiting
time for the event to be detected by the active sensor nodes of next work-
ing subset, if the event can not be detected instantly by current working
subset.

(2) k: the number of total disjoint subsets. dp increases with the increase of k.
This is because increasing k will potentially increase the probability that a
node subset doesn’t include any sensor node that can cover point p, hence
prolong the event detection delay

(3) s: the number of sensor nodes that can cover point p. dp decreases with
the increase of s. This is because a larger s decreases the probability that a
node subset doesn’t include any sensor node that can cover point p, and the
detection delay is decreased consequently.

4 Network Coverage Intensity with Clock Asynchrony

In this section, we analyze the impact of clock asynchrony on the performance
of the proposed scheduling scheme.

Consider any point p in the deployment region. Assume there are totally Np

sensor nodes that can cover point p initially and Np
i sensor nodes are assigned

to node set NSi. Point p will not be covered during the working shift of node
set NSi only in three situations. First, all Np

i sensor nodes start working ahead
of the starting time of NSi. Then there will be a time interval at the end of
the working shift of NSi when all the Np

i sensor nodes have stopped and p will
not be covered. Second, all Np

i sensor nodes start working behind the starting
time of NSi. In this situation, there will be a time interval at the beginning
of the working shift of NSi when all the Np

i sensor nodes haven’t waken up
and therefore p will not be covered. Third, and finally, a part of Np

i sensor
nodes starts working ahead of the starting time of NSi while the remains are

On Location-Free Node Scheduling Scheme for Random WSNs 489

behind the time, and there is a gap period between them. Therefore in this gap
period p is not covered by any sensor nodes.

We make the following assumptions in our following analysis.

(1) The starting time of each sensor node may not be synchronized precisely
with the standard time, but the internal time ticking frequency is accurate.
So there will be no accumulation of time drift.

(2) Let T denote the working duration of each node set in one round. We as-
sume that the difference between the starting time of each sensor node and
the standard time, Δt, is less than T/2. We assume that Δt ≥ T/2 is an
extremely rare case and could be ignored. This assumption eliminates the
possibility of the third case described above and reduces the complexity of
analysis.

(3) The time difference, Δt, is a random variable which is normally distributed
with parameters 0 and σ, i.e, Δt ∼ N (0, σ).

We are interested in the expectation of the length of time when point p is
not covered by any of these Np

i sensor nodes during the working shift of node
set NSi. Let Euc

i denote this expectation. Obviously, Ei
uc = T if Np

i = 0.
When Np

i > 0,

Ei
uc =

∫ ∞

0
xf1 (x)dx +

∫ 0

−∞
−yf2 (y)dy (4)

where x = min
{
Δtj , 0 ≤ j ≤ N i

p − 1
}

, y = max
{
Δtj , 0 ≤ j ≤ N i

p − 1
}

and
Δtj denotes the difference between node j’s starting time and the standard
time, f1 (x) and f2 (y) are the p.d.f of x and y respectively. The first and the
second item in equation (4) correspond respectively with the time interval when
point p is not covered due to the first and the second reasons described previously.
Since Δt1, Δt2, . . . , Δtj are independently random variables normally distributed
with parameters 0 and σ, we can get [11]

Ei
uc = 2

∫ ∞

0
xf1 (x)dx = 2

∫ ∞

0
N i

pxφ (x) [1 − Φ (x)]N
i
p−1

dx

≤ 2
∫ ∞

0
N i

pxφ (x)
(

1
2

)Ni
p−1

dx = N i
p

(
1
2

)Ni
p−2

σ√
2π

Note that the number of sensor nodes that can cover point p in set NSi, N i
p,

is a random variable varying from 0 to Np. And with our proposed scheduling
scheme,

Pr
{
N i

p = j
}

=
(

Np

j

)(
1
k

)j (
1 − 1

k

)Np−j

490 J. Jiang et al.

Therefore we can further calculate the expectation of Ei
uc:

Euc =
Np∑
j=0

Ei
uc × Pr

{
N i

p = j
}

= T ×
(

1 − 1
k

)Np

+
Np∑
j=1

Ei
uc × Pr

{
N i

p = j
}

≤ T ×
(

1 − 1
k

)Np

+
Np∑
j=1

j

(
1
2

)j−2
σ√
2π

(
Np

j

)(
1
k

)j (
1 − 1

k

)Np−j

= T ×
(

1 − 1
k

)Np

+
2σNp

k
√

2π

(
1 − 1

2k

)Np−1

Note that the second item in the above equation given in [11] is wrong and
should be corrected as given here.

By now, for any point p which is initially covered by Np sensor nodes, we
can calculate the expectation of the time interval when p is covered during the
working shift of any node set,

Ec = T − Euc ≥ T − T ×
(

1 − 1
k

)Np

− 2σNp

k
√

2π

(
1 − 1

2k

)Np−1

According to the Poisson point process, point p is covered by Np sensor nodes
is equal to that there are Np sensor nodes in the circle centered at point p with
radius Rs.

Therefore, the expectation of Ec, which is the expected time interval that p
is covered in the working shift of any node set, is given by:

E (Ec) ≥ T −
∞∑

Np=0

T ×
(

1 − 1
k

)Np

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

−
∞∑

Np=0

2σNp

k
√

2π

(
1 − 1

2k

)Np−1

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

= T − T × exp (−λ ‖A‖) × exp
(

λ ‖A‖ ×
(

1 − 1
k

))

−2σλ ‖A‖
k
√

2π
× exp (−λ ‖A‖) × exp

(
λ ‖A‖ ×

(
1 − 1

2k

))

= T − T × exp
(
−λ ‖A‖

k

)
− 2σλ ‖A‖

k
√

2π
exp

(
−λ ‖A‖

2k

)

For any point p, by symmetry, each node set NSi has the same value E (Ec),
so the network coverage intensity Cn

′ with normally distributed time asynchrony
can be calculated as

On Location-Free Node Scheduling Scheme for Random WSNs 491

Cn
′ =

k × E (Ec)
k × T

≥
T − T × exp

(
−λ‖A‖

k

)
− 2σλ‖A‖

k
√

2π
exp

(
−λ‖A‖

2k

)
T

= 1 − exp
(
−λ ‖A‖

k

)
− 2σλ ‖A‖

kT
√

2π
exp

(
−λ ‖A‖

2k

)

Compared to equation (2), we have

Cn
′ ≥ Cn − Δ (5)

where Δ =
2σλ ‖A‖
kT

√
2π

exp
(
−λ‖A‖

2k

)
.

Note Cn is the network coverage intensity when all sensor nodes are precisely
synchronized. The above equation gives the lower bound of the network coverage
intensity with normally distributed time asynchrony. The item Δ approximately
indicates the impact of the time asynchrony on the network coverage intensity.

5 Simulation

5.1 Simulation Setup

In our simulation, we use the binary sensing model describe in section 2. Based
on the information from [14], we set the sensing radius to be 6. This is consistent
with other current sensor types, such as Smart Dust (U.C.Berkeley) and WINS
(Rockwell) [15]. And the target region is a square of 50 × 50. Sensor nodes
are randomly distributed in the target region according to the Poisson point
process with intensity λ. All simulations are conducted using MATLAB. For
each simulation scenario, ten runs with different random node distributions are
conducted and only the average is presented.

5.2 Simulation Results

Fig.1 shows how the network coverage intensity varies with the intensity of Pois-
son point process when the value of k equals to 3, 6, 9, and 12 respectively. From
this figure, we see that the simulation results are very close to the theoretical re-
sults. We observe that the network coverage intensity increases with the increase
of the intensity of Poisson point process when given a fixed k. Larger deployment
intensity will deploy more sensor nodes in the network and each node set will
include more sensor nodes when k is fixed. Therefore the network coverage in-
tensity of each node set is improved. But the network coverage intensity becomes
saturated at some node intensity. For example, the network coverage intensity is
larger than 99.9% when λ = 0.5 and k = 6. This means that larger node intensity
will not benefit the network coverage intensity remarkably, but increase the de-
ployment cost hugely. We also observe that when λ is fixed, smaller k will lead to

492 J. Jiang et al.

better network coverage intensity. This is because when the node number is fixed,
smaller k means fewer node sets and each node will include more sensor nodes.

Fig.2 shows how the network coverage intensity varies with the intensity of
Poisson point process when sensor nodes are not precisely synchronized and
the time difference is normally distributed. In this simulation, we set σ = T/6.
According to the “3σ” rule of normal distribution, the probability of Δt ≥ T/2 is
smaller than 0.01, thus can be ignored. The simulation values are always larger
than the values of Cn − Δ, which demonstrate the correctness of our analysis.
And we note that even when k = 12 and σ = T/6, the network coverage intensity
is still above 0.9 when λ = 0.3. And Fig.3 shows the value of Δ/Cn when k and
λ varies. Even when k = 12 and λ = 0.2, the value of Δ/Cn is less than 0.06.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

C
n

k=3 simulation
k=3 analysis
k=6 simulation
k=6 analysis
k=9 simulation
k=9 analysis
k=12 simulation
k=12 analysis

Fig. 1. Cn vs. λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

C
n

w
ith

 ti
m

e
as

yc
hr

on
y

(N
or

m
al

)

k=3 simulation
k=3 analysis
k=6 simulation
k=6 analysis
k=9 simulation
k=9 analysis
k=12 simulation
k=12 analysis

Fig. 2. Cn
′ vs. λ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

λ

Δ/
C

n
(N

or
m

al
)

k=3
k=6
k=9
k=12

Fig. 3. Δ/Cn vs. λ

6 Conclusions

In this paper, we have done thorough mathematical analysis and extensive sim-
ulation on the distributed, lightweight and location-free node scheduling scheme

On Location-Free Node Scheduling Scheme for Random WSNs 493

proposed in [11]. Distinguished from the work in [11], we reevaluate the perfor-
mance of this scheduling scheme under different assumption that sensor nodes
are deployed randomly in the target region according to a Poisson point process.
We also analyze the performance in terms of average event detection latency,
which is another straightforward coverage quality measure. Impact of normally
distributed time asynchrony is also investigated.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor
Networks: A Survey. Computer Networks (Elsevier) Journal,pp.393-422, 2004.

2. J. Elson and D. Estrin. Sensor Networks: A Bridge to the Physical World. Wireless
Sensor Networks, Kluwer, 2004.

3. S. Slijepcevic and M. Potkonjak. Power Efficient Organization of Wireless Sensor
Networks. In Proc. of IEEE ICC’01, Helsinki, Finland, 2001.

4. Z. Abrams, A. Goel, and S. Plotkin. Set K-Cover Algorithms for Energy Efficient
Monitoring in Wireless Sensor Networks. in Proc. of IPSN’04, Berkeley, California,
USA, 2004.

5. D.Tian and N.D.Georganas. A Coverage-Preserving Node Scheduling Scheme for
Large Wireless Sensor Networt. In Proc. of WSNA’02, Atlanta, Geogia, USA, 2002.

6. H. Chen, H. Wu, and N. Tzeng. Grid-Based Approach for Working Node Selection
in Wireless Sensor Networks. In Proc. of IEEE ICC’04, Paris, France, 2004.

7. B. Carbunar, A. Grama, J. Vitek, and O. Carbunar. Coverage Preserving Redun-
dancy Elimination in Sensor Networks. In Proc. of SECON’04, Santa Clara, CA,
USA, 2004.

8. T. Yan, T. He, and J. Stankovic. Differentiated Surveillance Service for Sensor
Networks. In Proc. of SenSys’03, Los Angels, CA, USA, 2003.

9. X. Wang, G. Xing et al. Integrated Coverage and Connectivity Configuration in
Wireless Sensor Networks. In Proc. of SenSys’03, Los Angeles, CA, 2003.

10. H. Gupta, S. R. Das, and Q. Gu. Connected Sensor Cover: Self-Organization of
Sensor Networks for Efficient Query Execution. In Proc. of MobiHoc’03, Annapolis,
Maryland, USA, 2003.

11. C. Liu, K. Wu, and V. King. Randomized Coverage-Preserving Scheduling Schemes
for Wireless Sensor Networks. in Proc. of IFIP Networking 2005, Waterloo Ontario,
Canada, 2005.

12. Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards Optimal Sleep Scheduling
in Sensor Networks for Rare Event Detection. in Proc. of IPSN’05,Los Angeles,
2005.

13. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts
and Applications of Voronoi Diagram. John Wiley & Sons, New York, 1999.

14. http://www-bsac.eecs.berkeley.edu/shollar
15. http://wins.rsc.rockwell.com

Leading Causes of TCP Performance Degradation
over Wireless Links

Chunlei Liu

Department of Mathematics and Computer Science,
Valdosta State University, Valdosta, GA 31698, USA

cliu@valdosta.edu

Abstract. TCP is known to have performance degradation over wireless links
but causes of the performance degradation have not been well studied. In or-
der to understand the causes and to gain insight for future enhancements, we
design a series of simulations to collect performance data and use stepwise mul-
tiple regression to find the leading causes. Our analysis indicates that timeout is
the dominant cause of wireless TCP performance degradation. Simulations show
current enhancements fail to improve the timeout behavior and thus have limited
improvement. Based on these findings, we propose a new enhancement that uses
ECN to deliver congestion signals and utilizes the coherence among congestion
signals to distinguish wireless losses from congestion losses. Simulation results
demonstrate that this enhancement thoroughly changes TCP’s timeout behavior
and improves the overall performance to a new level.

Keywords: TCP, wireless networks, performance analysis, explicit congestion
notification, congestion coherence.

1 Introduction

Transmission Control Protocol (TCP) was designed mainly for wired networks, where
transmission errors are rare and the majority of packet losses are caused by congestion.
An underlying assumption of TCP algorithm is that packet losses and the resulting time-
out at the source are indications of network congestion and the source should reduce its
transmission upon timeout [12]. When TCP is deployed over wireless networks, packet
losses due to transmission errors may be regarded as congestion signals and thus lead
to severe performance degradation.

Many enhancements have been proposed to enhance TCP over wireless links. These
enhancements can be classified into four categories.

1. Local link layer retransmissions use Forward Error Correction and Automatic
Retransmission Request to build a reliable link layer so that upper layers are less
affected by the lossy characteristic of the wireless link. Example enhancements are
[23, 8, 11, 13, 15, 14]. In reality, retransmission mechanisms in multiple layers may
respond to the same loss event and cause undesirable interaction. Although some
studies show that a reliable link layer through retransmissions can achieve good
TCP performance, they also pointed out that these enhancements are designed for

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 494–505, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Leading Causes of TCP Performance Degradation over Wireless Links 495

the characteristics of specific TCP connections and transmission error conditions.
When error condition and connection characteristics change, undesirable interac-
tions and performance degradation may happen.

2. Split connection enhancements divide the entire transmission path into two con-
nections (a wired one and a wireless one) and run TCP separately on both connec-
tions. I-TCP [4] is a representative of this category. These enhancements violate
TCP’s end-to-end semantic and may result in unrecoverable data loss. Thus they
are a deviation from the original purpose of TCP as a reliable transport protocol.

3. Sender-side enhancements modify TCP code at the sender to estimate the avail-
able bandwidth, experienced delay or other congestion signal and change the con-
gestion control accordingly. Examples include Wireless TCP [18], TCP Santa Cruz
[16], TCP Peach [1], TCP Peach+ [2], TCP Westwood [10] and TCP Jersey [22].
Their major problem is the location of needed changes. Instead of making changes
local to the wireless link and host, they require changing computers that the wire-
less host communicates with. In a typical scenario where a wireless user browses
the Internet, these enhancements would require virtually all the computers on the
Internet to change their TCP code. Obviously, these are not practical solutions.

4. Wireless-side enhancements modify the behavior of base station or mobile host.
Examples are the Snoop protocol [5, 6] and the Delayed Duplicate Acknowledg-
ments (DDA) [21]. Since the changes are local to the wireless hosts and links,
these enhancements are considered to be more practical.

Some enhancements, such as Multiple Acknowledgments [9] and Control Connec-
tion [7], require changes at multiple locations. They may fall into multiple categories
and are less desirable.

Although many enhancements have been proposed, not much research work has been
done to analyze the causes of the performance degradation. In order to understand the
nature of the performance degradation, we design a series of simulations to collect TCP
performance data under different loss scenarios, and use stepwise multiple regression
to analyze the leading causes of TCP performance degradation. Our purpose is not to
find an exact formula for calculating degradation in general cases, nor to analyze the
degradation in all configurations, but instead, is to gain insight for future enhancements.
Based on the conclusion of this study, we propose a new enhancement that thoroughly
changes TCP’s timeout behavior and improves the overall performance to a new level.

2 Causes of TCP Performance Degradation

Our analysis of TCP’s congestion control mechanisms [3] indicates that TCP perfor-
mance can be affected by three causes: end-to-end retransmission, unnecessary slow-
down and timeout.

End-to-end retransmission happens in three occasions: when a packet is lost because
of congestion, when a packet is lost due to wireless transmission error but not locally
retransmitted, or when timeout occurs.

The unnecessary slowdown is a direct result of TCP’s false assumption about packet
losses. When a packet is lost because of wireless transmission error, TCP treats the

496 C. Liu

packet loss as an indication of congestion and slows down the transmission. Such slow-
down is unnecessary and causes big performance degradation, because every unneces-
sary slowdown reduces the effective transmission rate to half. If wireless transmission
errors happen frequently, the wireless connection can become a trickle.

Timeout can also degrade TCP performance dramatically. TCP Tahoe and TCP Reno
can recover only one packet loss in a window using fast retransmit. Two or more packet
losses (congestion or wireless) in the same window usually result in timeout. When
timeout occurs, it takes many round trip times to bring the transmission rate to the pre-
vious level. On wireless networks, the combination of wireless losses with congestion
losses dramatically increases the chance of timeout.

3 Simulation Design and Data Collection

To collect performance data, we design a series of simulations using the ns simulator
[20]. We choose a simple network model as shown in Figure 1, where s1, s2 are the
sources and d1, d2 are the destinations. The purpose of choosing this simplest network
model is to show the failure of existing enhancements even in such a simple model. The
numbers beside each link represent its rate and delay. The link between intermediate
routers r1 and r2 is the bottleneck link. The link between r2 and d1 is a wireless link.

The experiment traffic is an FTP session from s1 to d1 using TCP Reno as the trans-
port protocol. The background traffic is a UDP flow from s2 to d2 generated by an
exponential on-off model. The mean burst period and the mean silence period are both
100 ms. The burst data rate is 500 kbps. Both TCP and UDP packet sizes are 1000
bytes, and TCP acknowledgments are 40 bytes long.

Link layer retransmission is implemented on the wireless link. Packets sent but not
acknowledged at the link level within 40 ms are resent. Retransmitted packets are also
subject to wireless errors at the same rate. The packet error rate of the wireless link is
varied to test the performance of various enhancements under different loss scenarios.

The simulations are 500 seconds long to smooth out random fluctuations. In each
simulation, we collect the following measurements.

RETRANS: the number of end-to-end retransmissions, including congestion losses,
wireless losses that are retransmitted end-to-end, and packets retransmitted during
timeout periods.

s1 d1

d2s2

r1 r2

10Mb, 1ms 1.5Mb, 1ms

10Mb, 1ms 10Mb, 1ms

1.5Mb, 20ms

Fig. 1. Simulation model

Leading Causes of TCP Performance Degradation over Wireless Links 497

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1

re
tr

an
sm

is
si

on
s

(p
ac

ke
ts

)

packet error rate

Reno
DDA
ECN

Snoop

(a) Retransmission

400

500

600

700

800

900

1000

1100

1200

1300

0.001 0.01 0.1

sl
ow

do
w

ns
 (

tim
es

)

packet error rate

Reno
DDA
ECN

Snoop

(b) Slowdown

0

100

200

300

400

500

600

0.001 0.01 0.1

tim
eo

ut
s

(t
im

es
)

packet error rate

Reno
DDA
ECN

Snoop

(c) Timeout

10000

20000

30000

40000

50000

60000

70000

80000

0.001 0.01 0.1

go
od

pu
t (

pa
ck

et
s)

packet error rate

Reno
DDA
ECN

Snoop

(d) Goodput

Fig. 2. Collected data for TCP Reno, ECN, DDA and Snoop

SLOWDOWN: the number of slowdown actions taken at the source. The slowdown
actions can be triggered by duplicate acknowledgments or by ECN-Echo’s when
ECN is used.

TIMEOUT: the number of timeout actions at the source.
GOODPUT: the number of packets successfully received and acknowledged.

The methods we simulate include TCP Reno, Snoop, DDA and Explicit Congestion
Notification (ECN). ECN is not an enhancement for wireless network, but it improves
TCP performance in certain cases by avoiding congestion losses. We have not sim-
ulated pure local link layer retransmission enhancements, I-TCP, Multiple Acknowl-
edgements, Control Connection and other sender-side enhancements because of their
practicality problems. For each method, we collect performance data for 51 packet er-
ror rates equally spaced on the log scale from 0.001 to 0.1. The collected data are
summarized in Figure 2.

4 Regression Methodology and Analysis Results

The goal of our regression analysis is to find a set of variables {X1, X2, . . . , Xm} from
RETRANS, SLOWDOWN and TIMEOUT to form a good regression for goodput:

goodput = b0 + b1X1 + b2X2 + · · · + bnXm. (1)

498 C. Liu

By studying the regression model, we hope to find the leading causes of TCP perfor-
mance degradation.

The difficulty in this regression comes from the intercorrelation among variables.
The three variables — RETRANS, SLOWDOWN and TIMEOUT — affect each other.
Adding or removing a variable from the model can significantly affect the coefficients.
Stepwise variable selection is a frequently used procedure to select the minimal set of
variables to constitute a satisfactory regression, especially when the candidate variables
have strong correlations among them [19].

In each step of the stepwise selection, a variable is added to or removed from the
regression model (1). The first variable entered at step 1 is the one with the strongest
positive (or negative) simple correlation with GOODPUT. At step 2 (and at each subse-
quent step), the variable with the strongest partial correlation is entered. At each step,
the hypothesis that the coefficient of the entered variable is 0 is tested using its F statis-
tic. Stepping stops when an established criterion for the F no longer holds.

The entire selection procedure is carried out using the SPSS software. The results
are presented in Tables 1 through 6.

Table 1 characterizes the mean, standard deviation of the variables, which are defined
respectively as

x̄ =
1
n

n∑
i=1

xi and sx =

√∑n
i=1(xi − x̄)2

n − 1
. (2)

Here n = 204 and xi is the observed value in the i-th data entry.

Table 1. Descriptive Statistics

Mean Std. Deviation N
GOODPUT 51340.19 13820.967 204
RETRANS 996.39 316.490 204
SLOWDOWN 744.35 234.828 204
TIMEOUT 167.57 127.428 204

The correlation between two variables x and y is defined as

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)
(n − 1)sxsy

. (3)

The correlation among the collected variables is listed in Table 2. This table reveals
that TIMEOUT has the strongest correlation with GOODPUT, and the correlation level
among these variables is pretty high.

In the stepwise selection, the criterion to enter a variable is that the probability of F
statistic is smaller or equal to 0.05; the criterion to remove a variable from the model
is that the probability of F statistic is greater than or equal to 0.10. Table 3 records the
order that the variables are entered into or removed from the model.

Table 4 summarizes the goodness of each regression model fitting the observed data.
R, the coefficient of multiple regression, is the correlation between the observed and

Leading Causes of TCP Performance Degradation over Wireless Links 499

Table 2. Correlation

GOODPUT RETRANS SLOWDOWN TIMEOUT
GOODPUT 1.000 -.710 -.504 -.952
RETRANS -.710 1.000 .317 .680

SLOWDOWN -.504 .317 1.000 .469
TIMEOUT -.952 .680 .469 1.000

Table 3. Variable Entered/Removed

Model Variables Entered Variables Removed
1 TIMEOUT —
2 RETRANS —
3 SLOWDOWN —

predicted values of the dependent variable. R2 is often interpreted as the proportion
of the total variation in the dependent variable accounted for by the regression model
(1). R2 ranges from 0 to 1. If there is no linear relation between the dependent and
independent variables, R2 is 0 or very small. If all the observations fall on the regression
line, R2 is 1. This measure of the goodness of fit of a linear model is also called the
coefficient of determination. R2

a, the adjusted R2, is designed to compensate for the
optimistic bias of R2. It is a function of R2 adjusted by the number of variables in the
model and the sample size.

R2
a = R2 − p(1 − R2)

N − p − 1
, (4)

where p is the number of independent variables in the equation. The last column in
Table 4, standard error of the estimate, is the square root of the residual mean square
in the ANOVA table below. It measures the spread of the residuals (or errors) about the
fitted line using the regression model (1).

A noticeable point in Table 4 is that R2, the goodness of fitting, has a very high
value starting from the first model. It indicates that 90% of the variation of goodput can
be explained solely by timeout. Adding SLOWDOWN and RETRANS into the model
increases the coefficient of determination, but the increase is small.

Table 5 is the analysis of variance or ANOVA table. Denote yi as the i-th observed
value of the dependent variable, ȳ as their mean, and ŷi as the i-th predicted value. The
sums of squares for regression, for residual and for total are defined as

Table 4. Model Summary

Std Error of
Model Predictors R R2 R2

a the Estimate
1 (Constant), TIMEOUT .952 .907 .906 4235.416
2 (Constant), TIMEOUT, RETRANS .956 .914 .913 4077.532
3 (Constant), TIMEOUT, RETRANS, SLOWDOWN .958 .918 .917 3985.823

500 C. Liu

SS Reg. =
n∑

i=1

(ŷi − ȳ)2, SS Res. =
n∑

i=1

(yi − ŷi)2, SS Total =
n∑

i=1

(y2
i − ȳ)2. (5)

The degrees of freedom are listed in the third column. Mean squares are the sums
of squares divided by their respective degree of freedom. The F statistic is the ratio of
mean square of regression to the mean square of residual. It is used to test the hypothesis
that all regression coefficients are zero:

b1 = b2 = · · · = bn = 0, (6)

i.e., no linear relation exists between the dependent variable and the independent vari-
ables. F is large when the independent variables help to explain the variation in the
dependent variable. Here the linear relation is highly significant (in all three models,
the p value for the F is less than 0.0005).

Table 5. ANOVA

Model Sum of Squares df Mean Square F Sig.
1 Regression 35153253390.678 1 35153253390.678 1959.627 .000

Residual 3623627402.866 202 17938749.519
Total 38776880793.544 203

2 Regression 35435001755.524 2 17717500877.762 1065.633 .000
Residual 3341879038.020 201 16626263.871
Total 38776880793.544 203

3 Regression 35599524396.335 3 11866508132.112 746.942 .000
Residual 3177356397.209 200 15886781.986
Total 38776880793.544 203

The second column of Table 6 lists the estimate of coefficients in the regression
model (1) to compute the predicted values for the dependent variable. The standard
error of the coefficients is listed in the third column. When all variables are transformed
into z-score,

U =
Y − Ȳ

sY
, Zi =

Xi − X̄i

sXi

, (7)

model (1) can be written as

U = β1Z1 + β2Z2 + · · · + βnZn, (8)

with

βi =
SXi

SY
bi, i = 1, . . . , n. (9)

where SXi and SY are the standard deviation of Xi and Y . The β’s are called stan-
dardized coefficients. They are an attempt to make the regression coefficients more
comparable. The t statistic in the next column provides some clue regarding the relative
importance of each variable in the model. They are obtained by dividing the coefficients
by their standard error. Clearly TIMEOUT is much more important than RETRANS and

Leading Causes of TCP Performance Degradation over Wireless Links 501

Table 6. Coefficients

Unstandardized Standardized
Coefficients Coefficients

Model B Std Error Beta t Sig.
1 (Constant) 68645.314 1490.666 139.902 .000

TIMEOUT -103.269 2.333 -.952 -44.268 .000
2 (Constant) 72267.513 998.691 72.362 .000

TIMEOUT -94.690 3.064 -.873 -30.906 .000
RETRANS -5.078 1.234 -.116 -4.117 .000

3 (Constant) 74879.746 1269.624 58.978 .000
TIMEOUT -90.912 3.217 -.838 -28.262 .000
RETRANS -5.092 1.206 -.117 -4.223 .000
SLOWDOWN -4.341 1.349 -.074 -3.218 .002

SLOWDOWN. The last column is the significance level calculated from the percentile
of the t distribution.

Based on the model consisting of all three variables, performance degradation of
each method is broken down according to the three causes. Figure 3 shows the rela-
tive size of the degradation by the three causes. The projected total degradation and the
actual degradation are also shown. The actual degradation is computed from a hypo-

0

10000

20000

30000

40000

50000

60000

70000

0.001 0.01 0.1

D
eg

ra
da

tio
n

of
 T

C
P

 R
en

o
(p

ac
ke

ts
)

packet error rate

by timeout
by retrans

by slowdown
projected total

actual

(a) TCP Reno

0

10000

20000

30000

40000

50000

60000

70000

0.001 0.01 0.1

D
eg

ra
da

tio
n

of
 E

C
N

 (
pa

ck
et

s)

packet error rate

by timeout
by retrans

by slowdown
projected total

actual

(b) ECN

0

5000

10000

15000

20000

25000

30000

35000

0.001 0.01 0.1

D
eg

ra
da

tio
n

of
 D

D
A

 (
pa

ck
et

s)

packet error rate

by timeout
by retrans

by slowdown
projected total

actual

(c) DDA

0

5000

10000

15000

20000

25000

30000

35000

0.001 0.01 0.1

D
eg

ra
da

tio
n

of
 S

no
op

 (
pa

ck
et

s)

packet error rate

by timeout
by retrans

by slowdown
projected total

actual

(d) Snoop

Fig. 3. Breakdown of performance degradation

502 C. Liu

thetical goodput based on the projection with no retransmission, no slowdown and no
timeout. Obviously timeout makes up the main part of the degradation. Retransmission
is the second leading cause. Slowdown contributes the least to the degradation.

From Figure 2(c)(d) and Figure 3(c)(d), we can clearly see that Snoop and DDA
have poorer performance than TCP Reno when the packet error rate is not very high,
mainly due to their failure to improve TCP’s timeout behavior.

5 A New Enhancement: Congestion Coherence

Analysis results in the previous section suggest that a thorough enhancement must
change TCP’s timeout behavior. We can achieve this by stopping using packet losses as
the mechanism for delivering congestion signals. Based on these findings, we propose
an enhancement called Congestion Coherence. We assume that TCP connections use
ECN [17] to deliver congestion signals, and the wireless link performs local link layer
retransmission for corrupted packets.

– The TCP destination follows existing algorithm for sending new acknowledgments,
first and second duplicate acknowledgments.

– When the third duplicate acknowledgment is to be sent, TCP destination checks
whether the coherence context is marked. If yes, the acknowledgment is sent right
away. Otherwise, it is deferred for w ms, which is predetermined according to the time
to complete a local link layer retransmission. A timer of w ms is started.

– If the expected packet arrives during the w ms, a new acknowledgment is generated
and the timer is cleared.

– If the timer expires, all deferred duplicate acknowledgments are released.

Fig. 4. Congestion Coherence Destination Algorithm

– The TCP source follows existing algorithm for sending packets and updating the con-
gestion window upon receiving new acknowledgments, and first and second duplicate
acknowledgments.

– When the third duplicate acknowledgment arrives, the source checks whether any
acknowledgment in the coherence context is an ECN-Echo. If yes, the packet cor-
responding to the duplicate acknowledgments is sent right away and the congestion
window is reduced to half if a reduction has not been done in the previous RTT. Other-
wise, the source ignores the duplicate acknowledgment and a timer of w ms is started.

– If a new acknowledgment arrives during the w ms, the timer is cleared and new packets
are sent as if the duplicate acknowledgments did not happen.

– If the timer expires, the packet corresponding to the duplicate acknowledgments is sent
and the congestion window is reduced to half if a reduction has not been done in the
previous RTT.

Fig. 5. Congestion Coherence Source Algorithm

Leading Causes of TCP Performance Degradation over Wireless Links 503

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1

re
tr

an
sm

is
si

on
s

(p
ac

ke
ts

)

packet error rate

Reno
DDA
ECN

Snoop
CC

(a) Retransmission

400

500

600

700

800

900

1000

1100

1200

1300

0.001 0.01 0.1

sl
ow

do
w

ns
 (

tim
es

)

packet error rate

Reno
DDA
ECN

Snoop
CC

(b) Slowdown

0

100

200

300

400

500

600

0.001 0.01 0.1

tim
eo

ut
s

(t
im

es
)

packet error rate

Reno
DDA
ECN

Snoop
CC

(c) Timeout

10000

20000

30000

40000

50000

60000

70000

80000

0.001 0.01 0.1

go
od

pu
t (

pa
ck

et
s)

packet error rate

Reno
DDA
ECN

Snoop
CC

(d) Goodput

Fig. 6. Performance of Congestion Coherence compared with current enhancements

The scheme to determine the cause of packet losses is based on the observation that
congestion neither happens nor disappears suddenly. Before congestion becomes so se-
vere that a packet has to be dropped, some packets must be marked as “Congestion
Experienced” by ECN. Similarly, after a packet is dropped, congestion does not disap-
pear immediately. The queue size falls gradually and some packets are marked. As a
result, congestion losses are normally preceded and followed by marked packets. We
call this phenomenon the congestion coherence of ECN marking.

In contrast to the congestion loss situation, if none of the neighbors of a lost packet
is marked, the lost packet is most likely lost due to a wireless error. In such cases, the
wireless host holds the duplicate acknowledgments until the packet is successfully re-
ceived through retransmissions on the local link layer. There are cases where a wireless
loss happens during congestion and the Congestion Coherence algorithm may make a
mistake in determining the cause of packet loss. But the congestion control actions are
needed because of the on-going congestion.

Figures 4 and 5 show the modified destination and source algorithms. It should be
noticed that the modifications to the receiving and sending algorithms are made on the
same end. The Congestion Coherence algorithm at the wireless end hides the lossy
characteristic from the other end. So no change is needed in the fixed end, intermediate
routers or the base station.

504 C. Liu

The performance of Congestion Coherence and its comparison with other methods
are summarized in Figure 6. Clearly the timeout and retransmission behaviors have
been thoroughly improved and the overall performance of Congestion Coherence is
much better than Snoop, DDA and other methods.

6 Conclusion

Through simulation results, stepwise multiple regression and breakdown of perfor-
mance degradation, we have demonstrated that timeout is the dominant cause of TCP’s
performance degradation over wireless links. Future wireless TCP enhancements must
change TCP’s timeout behavior. Simulations indicate that our new enhancement thor-
oughly changes TCP’s timeout behavior and has much better improvement than existing
enhancements.

References

[1] I. F. Akyildiz, G. Morabito and S. Palazzo, TCP-Peach: A new congestion control scheme
for satellite IP networks, IEEE/ACM Trans. Networking, vol. 9, pp. 307–321, June 2001.

[2] I. F. Akyildiz, X. Zhang and J. Fang, TCP-Peach+: Enhancement of TCP-Peach for satellite
IP networks, IEEE Commun. Lett., vol. 6, pp. 303–305, July 2002.

[3] M. Allman, V. Paxson and W. Stevens, TCP congestion control, RFC 2581, April 1999.
[4] A. Bakre, B. R. Badrinath, I-TCP: indirect TCP for mobile hosts, Proceedings - Interna-

tional Conference on Distributed Computing Systems, Vancouver, Canada, pp. 136–146,
1995.

[5] H. Balakrishnan, S. Seshan and R. H. Katz; Improving reliable transport and handoff per-
formance in cellular wireless networks; Wireless Networks, 1, 4, pp. 469 – 481, February
1995.

[6] H. Balakrishnan and R. H. Katz; Explicit loss notification and wireless web performance,
in Proceedings of IEEE Globecom 1998, Sydney, Australia, November, 1998.

[7] S. Banerjee and J. Goteti, Extending TCP for wireless networks, University of Maryland,
College Park, www.cs.umd.edu/users/suman/docs/711s97/ 711s97.html.

[8] P. Bhagwat, P. Bhattacharya, A. Krishna, S. K. Tripathi, Using channel state dependent
packet scheduling to improve TCP throughput over wireless LANs, ACM/Baltzer Wireless
Networks Journal, Vol. 3, No. 1, January 1997.

[9] S. Biaz, N. Vaidya et al, TCP over wireless networks using multiple acknowledg-
ment, Texas A&M University, Technical Report 97-001, www.cs.tamu.edu/faculty/vaidya/
papers/mobile-computing/97-001.ps, January 1997.

[10] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi and R. Wang, TCP Westwood: Bandwidth
estimation for enhanced transport over wireless links, ACM Mobicom, pp. 287–297, July
2001.

[11] D. A. Eckhardt, P. Steenkiste, Improving wireless LAN performance via adaptive local
error control, Proceedings of IEEE ICNP 98, 1998.

[12] R. Jain, A timeout-based congestion control scheme for window flow-controlled networks,
IEEE Journal on Selected Areas in Communications, Vol. SAC-4, No. 7, pp. 1162-1167,
October 1986.

[13] R. Ludwig, A. Konrad, A. D. Joseph, Optimizing the end-to-end performance of reliable
flows over wireless links, pp. 113-119, Proceedings of ACM/ IEEE MOBICOM 99.

Leading Causes of TCP Performance Degradation over Wireless Links 505

[14] R. Ludwig, R. H. Katz, The Eifel algorithm: making TCP robust against spurious retrans-
missions, ACM Computer Communication Review, Vol. 30, No. 1, January 2000.

[15] M. Meyer, TCP Performance over GPRS, Proceedings of IEEE WCNC 99.
[16] C. Parsa and J.J.Garcia-Luna-Aceves, Improving TCP congestion control over internets

with heterogeneous transmission media, in Proc. of the Seventh Annual International Con-
ference on Network Protocols, Toronto, Canada, Nov. 1999.

[17] K. Ramakrishnan and S. Floyd, A proposal to add explicit congestion notification (ECN)
to IP, RFC 2481, January 1999.

[18] P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bharghavan, WTCP: A Reliable Transport
Protocol for Wireless Wide-Area Networks, in ACM Mobicom 99, Seattle, Washington,
Aug. 1999.

[19] SPSS: SPSS Base 11.0 User’s Guide, SPSS Inc, Chicago, IL, 2001.
[20] UCB/LBNL/VINT Network Simulator - ns, http://www-mash.CS.Berkeley.EDU/ns/.
[21] N. H. Vaidya, M. Mehta, C. Perkins, G. Montenegro, Delayed duplicate acknowledgments:

a TCP-unaware approach to improve performance of TCP over wireless, Technical Report
99-003, Computer Science Dept., Texas A&M University, February 1999.

[22] K. Xu, Y. Tian and N. Ansari, TCP-Jersey for Wireless IP Communications, IEEE Journal
on Selected Area in Comm, vol. 22, no. 4, May 2004.

[23] G. Xylomenos, Multi Service Link Layers: An approach to enhancing Internet performance
over wireless links, PhD dissertation at University of California, San Diego, 1999.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 506 – 511, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Study and Implementation of Wireless Network
Router NPU-1

Yi’an Zhu

School of Computer, Northwestern Polytechnical University,
Xi’an, China 710072

zhuya@nwpu.edu.cn

Abstract. Wireless network has been used widely because its convenience,
agility and no cable. But we can find the critical problems for wireless LAN are
communication bandwidth, reliability and security. This paper will introduce
our wireless network router NPU-1. It has not only generic route functions, but
it also has some special functions for wireless network such as access point,
wireless bonding, PPPoW etc. Specially, in order to solve the wireless network
problems of bandwidth limit and unstableness, we have put forward a self-
adaptive bonding method which can solve above problems well. The key issues
for this technology are bundling multiple wireless connection to improve the
bandwidth and selecting better channel automatically based on monitoring the
signal strength and communication quality to improve the bandwidth and sta-
bleness. This router can support wireless connection automatic recovery, auto-
matic fail-over and it can support to connect wireless and wired LAN easily and
seamlessly.

1 Introduction

If you are integrating a network which combines wireless and wired LAN, You will
find although wireless LAN has been used widely and its technology develops
quickly[1, 3], it still has some critical problems such as communication bandwidth,
reliability and security[1-7]. Supposing you want to connect two or more buildings or
parts or sub-campus of a university or a company, you can not use wired network
because some results. It is evident that using wireless LAN is the best solution. You
know, for wired Ethernet, its speed is usual 100Mbps or 1000Mbps. By now, wireless
Ethernet can only achieve the speed of 11Mbps or 54Mbps. Moreover these speeds
are only ideal value. In real application, it can only get about 60%-70% of their ideal
values. So, this is too slow comparing with wired LAN. If we can not find the way to
improve the wireless bandwidth, this will be a bottleneck of communication in this
kind of applications. Second, because the air interfering, the communication quality
for each channel is variable. Some time it is good and some time it becomes bad. So
we need to monitor the performance of communication, to select better channel to
use. This paper will introduce our wireless router NPU-1 which can effectively solve
these problems and it can also support wireless and wired LAN connection easily and
seamlessly.

 The Study and Implementation of Wireless Network Router NPU-1 507

2 Hardware Architecture

Figure 1 shows the system hardware Architecture of NPU-1. It consists of an AMD
ELAN SCS520 CPU, 64 M bytes memory, two 100 base TX Ethernet devices, two
PC card slots which are used to put wireless cards in, two serial ports which are for
connecting modem or serial console. In this system, it also has a 64M bytes flash
memory which is for storing embedded operating system kernel and all applications.
We use two Z-COM wireless cards whose speeds are 11Mbps (802.11b). Of course,
54Mbps D-link wireless card is also supported by this system. This is only version
1.0. Now it can only support two wireless cards. Version2.0 will support 4 wireless
Ethernet devices. We use PC card is because it can support plug and play and we can
control its power on/off easily. We find some time power off and then power on is
very effective for recovering wireless Ethernet device. Otherwise we find lots of ap-
plications are located in remote and rural areas and there is no high speed internet
service. Besides to select wireless connection, users can use modem to get internet or
intranet service. If one modem’s bandwidth is not enough, we can use two or more
modems’ bonding to provide higher speed connection. Also you can select wireless
connection as primary connection and modem connection as backup connection.
NPU-1 has two power supplies. One is AC power. Another one is a DC power. Nor-
mally AC power will work. When AC power supply has some problem, the system
will switch to DC power supply automatically and will inform system administrator at
same time.

 Fig. 1. Hardware Architecture

3 Software Architecture

For this system, its software architecture has four layers. The bottom is all device
drivers such as wireless Ethernet device driver, Ethernet device driver, modem device
driver, serial port driver and so on. The next layer is embedded operating system
kernel which provides process management, file system management, network

64 M bytes
Flash Memory

64 M bytes
Memory

AMD ELAN
520 CPU

PC card slot 0

PC card slot 1

Ethernet Device 0

Serial Port 0

Ethernet Device 1

Serial Port 1

Wireless Device 0

Wireless Device 1

Modem 0

Modem 1

508 Y. Zhu

management and I/O management. Third layer from the bottom consists of all appli-
cations. NPU-1 has very abundant applications. Here we only list small part. The top
layer is user interface which we call it as command line. Users can easy configure this
system through using the command line. By the way, we call whole software system
as NPUOS. This is a convergence gateway operating system designed specifically for
internet or intranet applications. Figure 2 shows the system software architecture.

 Fig. 2. Software Architecture

 NPUOS’s feature set includes:

• Routing Engine - This system supports generic route functions such as RIP, BGP
and OSPF etc.

• Firewall - This system supports two level firewalls.
• SVPN – This system supports PPTP, L2TP and IPSEC.
• Quality-of-Service
• Wireless IP
• PPPoW
• Accounting, Management, and Authentication.
• Bonding
• VLAN
• Security tunnel

 Using PPPoW (Point to Point Protocol over Wireless) in wireless is one of character-
istic of our system. PPPoW comes from PPPoE. PPPoE is the short for Point to Point
Protocol over Ethernet. PPPoE is mainly used at ADSL networks. Through analyzing,
we find ADSL is actually a large public network where the ADSL concentrator acts like
a regular Hub; the possibilities for abuse are there. For example one might hook up an
ADSL modem and just use any IP address within the valid range he wants. In fact, for a
wireless network, it is as same as ADSL in this point. Wireless networks are actually
bridged networks where every node or client is attached to each other, the possibility of
abuse are also present. By using PPPoE we can maintain and keep the wireless network
safer. Briefly say the benefit of using PPPoE in wireless LAN includes:

Command Line

Device drivers

Embedded Operating System Kernel

VPN

PPP

Route

Bonding

PPPoW

Wireless

AP

QoS

Fire-
wall

 The Study and Implementation of Wireless Network Router NPU-1 509

• Using user authentication by user name and password, we can avoid some inter-
lopers come in.

• Using Radius as auth server, we can manage all users centrally. This will be good
for wireless network security and this will make system management easily and
effectively also.

 Besides this, we have added some new functions such as automatic recovery and
automatic change channel etc. based on the problems of wireless network. We call
this new composite function (PPPoE plus some Add-ons functions) as PPPoW.

4 Self-adaptive Bonding Method

Bonding [3, 6] is kind of technology which can combine two or more communication
links into one virtual link which has more bandwidth. Ideally this bandwidth will
equal the sum of all real links’ bandwidth. During application, it will split all TCP/IP
sessions and distribute their data packets over separate links at same time, across
multiple connections, and then recombines them in the correct sequence at the service
provider for delivery on to the internet or intranet. Each and every TCP/IP session
will gain the combined throughput of all the multiple internet connections. This is
transparent to users and applications. Besides, this service will decrease your down-
time by utilizing multiple connections and will enhance system reliability by redun-
dant links.
 For our bonding, it has following features:

 High Availability
The combination of multiple Connections will ensure that your network communica-
tion will not be subject to any connection related access failure. This method can
reduce downtime.
• Connection Redundancy
Automatically detects downed Connections and fails-over to the remaining connec-
tion(s).
• Automatic Recovery
Automatically detect the recovery of the connection and immediately re-combines the
connection back into the bonding session. Instantaneously it gains back the bandwidth
throughput of that connection.
• Automatic Fail-Over
Automatically fails down to any available Connections. This means that in the event
of a catastrophic service failure, the customer network will fail-over back to regular
Internet access.
• Automatic Select Channel
Automatically select channel when the signal strength and communication quality is
not good for the channel being used.
• Automatic Reset Wireless Ethernet Device
Automatically reset wireless Ethernet device when the system finds this device can
not come back within a given time. This is implemented by power off and power on
this wireless device.

510 Y. Zhu

 Fig. 3. Bonding process flow chart

• Self-adaptive Feature
The system can adjust itself automatically based on application environment. Figure 3
shows this bonding process flow chart.

 This system has two ways to select the new channel. One is negotiating through a
good connection. This needs a no wireless backup link or there is one good wireless
connection. Another way is using the double wheel algorithm. For the double wheel
algorithm, both sides have same possible channel set, one side uses each channel in
the possible channel set to try communication with its peer in an increase sequence

Check all wireless devices, for good devices,
put them into a good device set. For not good
devices, put them into a bad device set

Get the given parameters such as device
name, possible channels, IP, Gateway etc.

For all good devices, select channel from
possible channel set, try to test the communi-

cation quality and signal strength. If not
good, put it back into the bad device set

Check if the bonding exists?

Yes, check if it has used all devices in the
good device set

No, create a virtual device, bonding
all devices in good device set

Set bonding IP

Create current channel set

Exist?

Yes/no?

No, put all good devices into this bonding

Select better channel

Adjust parameter such multi-link algorithm

Add new link to bonding

Wait a given time

Running monitor process which
monitors the communication status

Yes, check all devices in bad device

Device comes back?

Yes, put this device into good device
t

No, Check if trying times over

Yes/no?

Yes, try to power off it

Wait a given time

Try to power on it

For each wireless link, to test the
communication quality and signal

strength

If find some link become bad,
Wait a while, to test again. After
testing several times, it still is so
bad, put this device into the bad

device set

Modify the bonding parameter

Monitor process
Y

Y

Y

Y
N

N

N

N

 The Study and Implementation of Wireless Network Router NPU-1 511

and another side will use the decrease sequence to do same thing. But the intervals
between changing the test channel are different. One side is fast and another side is
slow. This interval depends on the channel number in the possible channel set. This
algorithm is just like there are two wheels. Each side has one. One wheel rotates
clockwise. Another wheel rotates anti-clockwise. One is fast and one is slow. The
difference of two speeds equals the channel number in the possible channel set. It is
evident we can select a better channel through monitoring the signal strength and
communication quality. Using two different speeds is for avoiding two sides can not
synchronize. For the bonding, it has two algorithms to transmit data. One is round-
robin. Another one is trying best algorithm. Based on our test, the bonding bandwidth
of two wireless connections can achieve to the 1.95 times of the bandwidth of one.

5 Conclusion and Future Work

This paper presented a simple, useful, effective wireless network router. It not only
has generic route functions, but also has some special functions for wireless network.
In order to improve wireless network bandwidth and reliability, we have put forward
a self-adaptive bonding technology. In order to improve the wireless network security,
we have provided many methods to solve this problem such as PPPoW, VPN, security
tunnel and so on. We can summarize the strongpoint of this system here.

• Specially designed for wireless network applications
• Support wireless and wired LAN connection seamlessly
• Increased bandwidth and decreased downtime
• Reduced costs and high availability
• Automatic fail-over and connection redundancy
• Managed solution
• Support VPN, PPPoE, VLAN
• Firewall , IP-QoS

 Next step, we will add some new functions based on mobile computing demand
[2, 3, 5], and make it to support Ad Hoc network and so on.

References

1. MattBishop: Introduction to Computer Security, 2005, printed by Addison-Wesley
2. Charles E. Perkins: Mobile Networking Through mobile IP, IEEE Internet Computing,

(January. February 1998) 58-69
3. Paolo Bellvista, Antonio Corradi and Rebecca Montanari: Dynamic Binding in Mobile Ap-

plications, IEEE Internet Computing, (March • April 2003) 34-42
4. Kris Read and Frank Maurer: Developing Mobile Wireless Application, IEEE Internet

Computing, (January • February 2003) 81-86
5. Taejoon Park and Kang G. Shin: Optimal Tradeoffs for Location-Based Routing in Large-

Scale Ad Hoc Networks, IEEE/ACM Transactions on Networking, Vol. 13, No. 2, (April
2005)398-411

6. Gregor Gaertner and Vinny Cahill: Understanding Link Quality in 802.11 Mobile Ad Hoc
Networks, IEEE Internet Computing, (January • February 2004) 56-60

7. Prithwirh Basu and Jason Redi: Movement Control Algorithms for Realization of Fault-
Tolerant Ad Hoc Robot Networks, lEEE Network, (July. August 2004) 36-44 9

Performance Evaluation of Air Indexing Schemes
for Multi-attribute Data Broadcast�

Qing Gao1,2, Shanping Li1, and Jianliang Xu2

1 College of Computer Science, Zhejiang University, Hangzhou, China
2 Hong Kong Baptist University, Kowloon Tong, Hong Kong

shan@cs.zju.edu.cn
{qgao, xujl}@comp.hkbu.edu.hk

Abstract. In this paper, we study power conservation techniques for
multi-attribute queries in a wireless data broadcast environment. Most
existing indexing techniques are based on a centralized tree structure and
thus are inefficient for sequential-access wireless broadcast media. To con-
serve energy for mobile devices while maintaining acceptable data access
latency, we extend the exponential index for single-attribute queries to
multi-attribute queries. By maintaining a distributed structure and mak-
ing full use of indexing space, the exponential index can reduce the energy
consumption considerably. We conduct experiments to evaluate the per-
formance of the extended exponential index against the well-known dis-
tributed tree index. The results show that the exponential index achieves
a better performance than the index tree method.

1 Introduction

Recent advances in wireless networks and mobile computing have attracted an
increasing interest in wireless devices among both industrial and academic com-
munities. Point-to-point and periodic broadcast are two fundamental delivery
methods for wireless data services [7]. Compared with point-to-point data access,
wireless data broadcast is an attractive and important service for data dissemina-
tion in mobile environments [1][10]. It allows simultaneous access by an arbitrary
number of mobile clients, and thus makes use of the limited wireless bandwidth
efficiently. Moreover, by monitoring the broadcast channels mobile clients need
not send requests to the server, which can conserve battery power. Many studies
have been carried out to develop data dissemination schemes [1][2][3][14].

In the literature, access latency and tuning time are two main performance
metrics that are used to measure access efficiency and power conservation, re-
spectively [8][11]:

� Shanping Li’s work was supported by National Nature Science Foundation of China
(No. 60473052). Jianliang Xu’s work was partially supported by grants from the
Research Grants Council of the Hong Kong SAR, China (Project Nos. HKBU
2115/05E, HKBU FRG/04-05/I-17, and HKBU FRG/04-05/II-26).

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 512–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Performance Evaluation of Air Indexing Schemes 513

• Access Latency: The time elapsed from the moment a query is issued to the
moment the requested data is responded.

• Tuning time: The amount of time a mobile client stays active to obtain the
requested data.

To facilitate power conservation, a mobile client needs to support switching
between the active mode and the doze mode. For instance, a typical wireless
PC card, ORINOCO, consumes 60 mW during the doze mode and 805-1,400
mW during the active mode [15]. Mobile client switches to the active mode to
retrieve the indexing information, predicts the arrival of desired data. It then
stays in the doze mode until when the desired data arrives. Different indexing
techniques achieve different trade-offs between access latency and tuning time.
A distributed tree indexing scheme was proposed in [10]. And in [16], Xu et al.
studied a tunable distributed indexing scheme namely exponential index.

Most existing studies focus on indexing techniques for queries with single at-
tributes. However, the application data items usually contain multiple attributes.
Thus, it’s important to develop power conserving indexing techniques for multi-
attribute queries. In this paper, we extend the previously proposed exponential
index to multi-attribute queries. For data items with multiple attributes, we
make one attribute clustered and other attributes non-clustered. In the expo-
nential method, we construct the index for each attribute separately. For the
clustered major attribute, the exponential index will index the whole broadcast
cycle. For a non-clustered attribute, the exponential method will index index
data space up to a proper data item within the next meta-segment. We compare
the exponential index with existing distributed tree index for multi-attribute
data queries. A performance analysis of both techniques in terms of the access
latency and initial probing time are provided. Experiment results show that the
exponential index gives superior performance to the tree index.

The rest of the paper is organized as follows. Section 2 gives the background
for indexing data and reviews related work. In Section 3, we introduce the pro-
posed exponential index and access methods for multi-attribute data access.
Section 4 evaluates the indexing techniques and analyzes the evaluation results.
Finally, we conclude the paper in Section 5.

2 Background

2.1 Preliminaries

Consider a data dissemination system that periodically broadcasts a collection of
data items with multiple attributes (e.g. stock quotes) to mobile clients through
the broadcast channel. Each data item is a tuple of attribute values, and can be
identified by a set of key values. Similar to [8][11], the logic unit of information
broadcast on the air is referred to as a bucket, which physically consists of a fixed
number of packets which are the physical unit of broadcast. The buckets that
hold the index and possibly some data are called index buckets, and the buckets
that hold only the data are called data buckets. A complete broadcast of index
buckets and data buckets is called a broadcast cycle.

514 Q. Gao, S. Li, and J. Xu

Broadcast can be classified as flat broadcast and skew broadcast [1][2]. Flat
broadcast broadcasts each bucket once in a broadcast cycle. And a bucket may
appear more than once in skew broadcast schedule, called broadcast disk. Broad-
cast disk is useful for reducing the average access latency for non-uniform data
access. However, it increases the length of broadcast cycle and the tuning time
of the clients. For multi-attribute data items, a cycle can be organized in broad-
cast disk based on one of the attributes [8][9]. Thus broadcast disks are not
suitable for data items with multiple attributes. In contrast, flat broadcast is
simple and achieves a good performance for queries requesting multiple items
[13]. Therefore, in this paper, we assume that flat broadcast is used.

Clustered broadcast and non-clustered broadcast are two basic data organiza-
tions with respect to an attribute within a broadcast cycle. For the clustered
data organization, clients can retrieve all data items with the same value of
the desired attribute value consecutively; otherwise, they are non-clustered. A
broadcast cycle can only be clustered based on one attribute. For data items
with multiple attributes, we can make one attribute clustered and the other at-
tributes non-clustered. For non-clustered attributes broadcast cycle can be par-
titioned into a number of segments called meta-segment, each of which holds a
sequence of items with non-descending (or non-ascending) values of the attribute
[8][10]. Thus, when we look at each individual meta-segment, the data items are
clustered on that attribute and the indexing techniques developed for clustered
broadcast can still be applied to a meta-segment. To facilitate our study, the
scatter factor of an attribute is defined as the number of meta-segments for the
attribute in the broadcast cycle. Thus we assume that the data items within
a broadcast cycle are partitioned into meta-segments based on the multiple at-
tributes in turn.

2.2 Related Work

Several indexing techniques have been proposed to solve air indexing. Imielinski
et al. applied the B+ index tree [10]. The distributed indexing technique was
proposed to efficiently replicate and distribute the index tree in a broadcast
cycle. Chen et al. proposed unbalanced tree structures to minimize the average
search cost to conserve the energy for non-uniform data access [5]. Xu et al.
proposed exponential index [16] enhances the flexible index in at least three
aspects: 1) exponential index allows indexing spaces to be partitioned at any
base value; 2) intelligently exploits the available bucket space for indexing; 3)
allows the current broadcast cycle to index into the next cycle to complete an
efficient search.

Hu et al. investigated the index tree and signature index for multiple at-
tributes queries for consideration of power conservation [8][9]. Moreover, they
developed a hybrid indexing scheme that takes the advances of both the tree
index and signature index. Other related work include: Data scheduling in the
papers [6][13][14], which focus on efficient data disseminations. Broadcast of
location-dependant data [17], which studies different aspects of broadcast. They
try to improve the reliability of data transmission.

Performance Evaluation of Air Indexing Schemes 515

3 Exponential Index for Multiple Attributes

In this section, we investigate the application of the exponential index technique
to broadcast data with multiple attributes. The comparisons between the expo-
nential index and the tree index in terms of access time and probing time are
presented in the next section.

We first describe the system parameters used in our study before we discuss
the multi-attribute exponential indexing technique. We assume that there are n
common attributes in each data item. We sort the attributes based on their access
frequency. Let the ordered attributes be a1, a2, . . . , am, and their corresponding
query probabilities be p1, p2, . . . , pm, where pi ≥ pi+1 (1 ≤ i < m). a1 called the
major attribute, is the most frequently accessed attribute and all other attributes
are called minor attributes. Table 1 summarizes the parameters that we used.

Table 1. Summary of Parameters

Notation Description

N Number of data items
M Attribute number in a data item
Q Attribute number in a query (1 ≤ q ≤ m)
Si Percentage of data items with required attribute

A multi-attribute query generally contains more than one attribute and con-
sists of many combinations of Boolean operators, such as conjunction (∧) and
disjunction (∨). For simplicity, we only consider the query with either all con-
junction or all disjunction operators.

We use Q{a1 ∧ . . . ∧ am} to denote a q-attribute conjunction query, and
Q{a1 ∨ . . . ∨ am} to denote a q-attribute disjunction query.

For a multi-attribute data set, we can construct exponential index for each
attribute separately. The selectivity and access probability are two main factors
that influence the index efficiency. We have to determine the order of attribute
to be indexed, thus to get a trade-off between the access probability and the
attribute selectivity. Based on research result in [10], data access is more effi-
cient for clustered attribute than for non-clustered attribute. Since data items
can be clustered on one attribute, we cluster data items based on the major
attribute (i.e., a1). Therefore, other attributes are non-clustered. The broadcast
cycle is partitioned separately by m attributes of the data items, and we can
denote the scattering factor as Mi . Mi increases with the footnote i. The value
of Mj depends on Si and inter-relation between ai and aj , where i < j. For
simplicity, we assume that the attributes are random and independent. Based
on this assumption, we can get a simple estimation on Mi:

Mi =
1

i−1∏
j=1

Sj

(1)

M1 = 1.

516 Q. Gao, S. Li, and J. Xu

We also assume that, each attribute has a pointer, which point to the sub-
sequential data item with the same attribute value. Based on this assumption, we
can retrieve all the data items with the desired attribute once we find just one.

3.1 A Simple Example

Assume a server broadcasts stock information with three attributes periodically
(e.g., stock ticks, prices, trading volumes, etc). Suppose the server maintains 16
stock items that are arranged in a broadcast cycle in ascending order based on
their identifiers. The other two attributes are also clustered separately within
the meta-segment partitioned by the former attributes.

A

1

a

A

2

b

A

4

c

B

3

a

B

4

c

B

5

b

C

2

a

C

3

a

C

4

b

...
F

1

a

A

1

c

Bucket

 1

Bucket

2

Bucket

3

Bucket

4

Bucket

5

Bucket

6

Bucket

7

Bucket

8

Bucket

 9

Bucket

 16

(distInt) maxKey

1-1 bucket A

2-3 buckets A

4-7 buckets C

8-15 buckets F

(distInt) maxKey

1-1 bucket 2

2-3 buckets 4
(distInt) maxKey

... ...

(distInt) maxKey

1-1 bucket B

2-3 buckets C

4-7 buckets D

8-15 buckets A

(distInt) maxKey

1-1 bucket 4

2-3 buckets 2
(distInt) maxKey

... ...

Data Item

Index

Fig. 1. A Simple Exponential Index for Multi-attribute Index

For simplicity, each bucket holds only one data item and the index informa-
tion. As shown in Figure 1, each bucket contains a data part and three index
tables. The index table for the major attribute identifier consists of four entries.
Each entry indexes a segment of buckets in the form of a tuple {distInt, maxKey},
where distInt specifies the distance range of the bucket from the current bucket
(measured in the unit of buckets), and maxKey is the maximum identifier value of
these buckets. The sizes of the indexed space grow exponentially. The first entry
describes a single bucket segment (i.e., the next bucket), and for each i > 1, the
ith entry indexes the segment of buckets that are 2i−1 to 2i − 1 away (i.e., 2i−1

buckets). The index table for the second attribute consists of two entries. Each

Performance Evaluation of Air Indexing Schemes 517

entry indexes a segment of buckets within the meta-segment. However, instead
of indexing a whole broadcast cycle, the index table for the second attribute
describes the buckets up to the farthest one in the next meta-segment whose
second attribute value is less than that of the current bucket. In the case that
there is no bucket whose second attribute is less than the current bucket’s, the
index table will index up to the last bucket in the current meta-segment. As
shown in Figure 1, the index table for second attribute in bucket 1 indexes up
to bucket 3, since in the next meta-segment there is no bucket whose second
attribute is less than that of bucket 1. And the index table in bucket 4 indexes
up to bucket 8, because bucket 8 is the farthest one whose second attribute is less
than that of bucket 4 in the next meta-segment. The index table for the third
attribute indexes the buckets within the meta-segment partitioned by the major
attribute and the second attribute.

Suppose that a client issues a query Q{B, 5, b} right before bucket 1 is broad-
cast. The client tunes into the broadcast channel and retrieves the index table
in bucket 1. Since ”B” falls between the second index entry and the third index
entry, the target item must lie in the buckets that are 2 to 3 slots away. The
client stays in the doze mode until bucket 3 is broadcast and then checks the
index table. Since ”B” matches the first index key, the target item must be lo-
cated in the following buckets. Once the bucket 4 is broadcast, the client checks
the major attribute, and it matches. Moreover, the client checks the index table
for the second attribute, the client then finds that target item must lie in the
buckets that are 2 to 3 slots away. Switches to doze mode, and tunes into the
broadcast channel when bucket 5 is broadcast. It then retrieves the desired item

in next bucket. The worst tuning time is bounded by
3∑

i=1
O(Milog2N).

3.2 Implementation

Table 2 summarizes the notations used in the following descriptions. Let B
denote the number of data items that a bucket without an index can hold. Let
B′ denote the number of data items with an index. The value of B′ is a function
of the parameters of I and r. The value of r is difficult to determine because the

Table 2. Summary of Notations

Notation Description

N Number of data items
B capacity of a data bucket without an index
B′ capacity of a data bucket with an index
so size of a data item
se size of a index entry
I Chunk size
r Index base
C Number of chunks in a broadcast cycle

518 Q. Gao, S. Li, and J. Xu

bucket number in a meta-segment varies greatly. To simplify our experiment, we
set the value of r as 2 and the value of I as 1. Based on the analysis in [9], we
can get the chunks number of ith attribute in a broadcast cycle:

Ci ≤ 2nci (2)

where Ci = N/Mi

We get the formula which shows how many data items a bucket can hold:

B′ ≤ B −
se ×

m∑
i=1

nci

so
(3)

Therefore, the maximum value of B′ can be obtained by numerically solving
the following inequality:

B′ ≤ B −
se ×

m∑
i=1

log2
N
Mi

so
(4)

The general access method for Q{a1 ∧ . . . ∧ am} is:

Algorithm 1. Multi-attribute Index Search for the Exponential Index
1: wait until the first bucket of next chunk is broadcast
2: for each data item in the bucket do
3: if it is the requested data item then
4: stop the search and retrieve the desired items
5: end if
6: end for
7: initial probe the exponential index built on ai within the segment

qualified for ai−1
8: search the exponential index based on ai , follows a list of pointers

to find out the arrival time of the desired data item

The general access method for Q{a1 ∨ . . . ∨ am} is:

Algorithm 2. Multi-attribute Index Search for the Exponential Index
1: wait until the first bucket of next chunk is broadcast
2: for each data item in the bucket do
3: if it is the requested data item then
4: stop the search and retrieve the desired items
5: end if
6: end for
7: client search for any exponential index built on a1, . . . , aq, simultane-

ously, determines when the next item with index are broadcast
8: search the exponential index built on a1, . . . , aq, follows a list of point-

ers to find out the arrival time of the desired data item

Performance Evaluation of Air Indexing Schemes 519

4 Performance Evaluation

This section evaluates the performance of the proposed multi-attribute exponen-
tial index. We develop a simulator based on ns-2 to simulate the GPRS wireless
network with reliability classes 2 and 3 [4][12]. We compare our proposed expo-
nential index with the multi-attribute tree index proposed in [8][9]. The study
addresses two kinds of Boolean query expressions: conjunction and disjunction.

Table 3. Parameters Settings

Parameter Setting Parameter Setting
N 10000-1000000 B 3
so 400 bytes se 8 bytes
S 0.01 m 3

Table 3 lists the parameters settings used in the comparisons. We assume that
a data item contains three attributes. Flat broadcast is used for data broadcast.
To simplify the evaluation, the selectivity of all the attributes is set to the same
value (i.e., 0.01). A bucket consists of three data items and a data item contains
400 bytes. The index entry size is 8 bytes. We compare the indexing schemes
in terms of the tuning time and access latency, both of which are measured in
the unit of bucket. And we normalize the experiment results by the latency of a
non-index scheme, i.e., � N

2B �.

4.1 Comparison of Conjunction Queries

In this set of experiments, we use the queries with three attributes a1, a2, and a3.
Figures 2 and 3 illustrate the access latency and the tuning time for Q{a1∧a2∧
a3} when the broadcast cycle is varied. As Figure 2 shows, the access latency of
the index tree is longer than that of the exponential index, because the tree index
needs to use a whole bucket to hold the index tables and to replicate some of
the buckets. This makes the overhead of the index tree too large, thus the access
latency is worse than that of the exponential index. As expected, the tuning time
performance of the exponential tree is better than that of the tree index. The
exponential index has a linear yet distributed structure. Hence it enables an index
search from the next bucket immediately, there by saving the access latency.

4.2 Comparison of Disjunction Queries

This section compares the access latency and tuning time performance of disjunc-
tion queries. In Figures 4 and Figures 5, the experiment results for Q{a1∨a2∨a3}
are shown. The performance of the exponential index is much better than that
of the index tree method. The disjunction queries tuning time of index tree in-
creases rapidly with the increasing database size. This is due to the increasing
number of buckets that hold the index table in each meta-segment. For the ex-
ponential index, the searching space can be extended to the next meta-segment,
which uses the index resource more efficiently.

520 Q. Gao, S. Li, and J. Xu

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

10000 30000 100000 300000 500000 1000000

N
or

m
al

iz
ed

 A
cc

es
s

L
at

en
cy

Database Size (# Items)

Dist-Tree
Exponential

Fig. 2. Access Latency for Conjunction

 12

 14

 16

 18

 20

 22

 24

10000 30000 100000 300000 500000 1000000

A
ve

ra
ge

 T
un

in
g

T
im

e
(#

 B
uc

ke
ts

)

Database Size (# Items)

Dist Tree
Exponential

Fig. 3. Tuning Time for Conjunction

 1

 2

 3

 4

 5

 6

 7

10000 30000 100000 300000 500000 1000000

N
or

m
al

iz
ed

 A
cc

es
s

L
at

en
cy

Average Tuning Time (# Buckets)

Dist-Tree
Exponential

Fig. 4. Access Latency for Disjunction

1

2

3

5

10

10000 30000 100000 300000 500000 1000000

A
ve

ra
ge

 T
un

in
g

T
im

e
(#

 1
0e

3
B

uc
ke

ts
)

Database Size (# Items)

Dist Tree
Exponential

Fig. 5. Tuning Time for Disjunction

5 Conclusion and Future Work

In this paper, we have extended the exponential index to answer multi-attribute
queries. Simulation experiments have been conducted to evaluate the perfor-
mance of the extended exponential index against the existing distributed tree
index. The results show that the exponential index outperforms the tree index in
terms of access latency and tuning time. This is because the exponential index
can exploit the available space and naturally facilitate the index replication by
sharing link in different trees, thus minimizing the storage overhead and con-
serving the client energy.

In this paper, we only compared two indexing schemes with simple query
conditions (i.e., conjunction, disjunction). In the future, we will investigate more
complicated queries and develop corresponding cost models to estimate the per-
formance of multi-attribute indexing techniques.

References

1. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data manage-
ment for asymmetric communications environments. In Proceedings of ACM SIG-
MOD Conference on Management of Data, pages 199-210, San Jose, CA, May 1995.

Performance Evaluation of Air Indexing Schemes 521

2. S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcast: New metrics
and algorithms. In Proceedings of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom’98), pages 43-54,
Dallas, TX, October 1998.

3. D. Aksoy and M. Franklin. Scheduling for large-scale on-demand data broadcast-
ing. In Proceedings of IEEE INFOCOM’98, pages 651–659, San Francisco, CA,
March 1998.

4. C. Bettstetter, H.J. Vogel, and J. Eberspacher. GSM phase 2+ general packet radio
service GPRS: Architecture, protocols, and air interface. IEEE Communications
Surveys, 2(3), 1999.

5. M.-S. Chen, K.-L. Wu, and P. S. Yu. Optimizing index allocation for sequential
data broadcasting in wireless mobile computing. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 15(1):161-173, January/February 2003.

6. C.-L. Hu and M.-S. Chen. Dynamic data broadcasting with traffic awareness. In
Proceedings of IEEE International Conference on Distributed Computing Systems
(ICDCS’02), pages 112-119, Vienna, Austria, July 2002.

7. Q. L. Hu, D. L. Lee, and W.-C. Lee. Performance evaluation of a wireless
hierarchical data dissemination system. In Proceedings of the 5th Annual ACM
International Conference on Mobile Computing and Networking (MobiCom’99),
pages 163-173, Seattle, WA, August 1999.

8. Q. L. Hu, W.C. Lee, and D. L. Lee. Power conservative multi-attribute queries
on data broadcast. In Proceedings of the 16th International Conference on Data
Engineering (ICDE’00), pages 157-166, San Diego, CA, February 2000.

9. Q. L. Hu, W.C. Lee, and D. L. Lee. A hybrid index technique for power efficient data
broadcast. Distributed and Parallel Databases (DPDB), 9(2): 151-177, March 2001.

10. T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on air - Organization
and access. IEEE Transactions on Knowledge and Data Engineering (TKDE),
9(3): 353-372, May/June 1997.

11. T. Imielinski, S. Viswanathan, and B. R. Badrinath. Power efficient filtering of
data on air. In Proceedings of the 4th International Conference on Extending
Database Technology (EDBT’94), pages 245-258, Cambridge, UK, March 1994.

12. R. Jain. GPRS simulations using ns - network simulator. Mater Thesis, Dept. of
Electrical Engineering, India Institute of Technology - Bombay, June 2001. Source
code available at http://www.isi.edu/nsnam/ns/ns-contributed.html

13. V. Liberatore. Multicast scheduling for list requests. In Proceedings of IEEE
INFOCOM’02, pages 1129-1137, New York, NY, June 2002.

14. C. Su and L. Tassiulas. Broadcast scheduling for information distribution. In
Proceedings of IEEE INFOCOM’97, Kobe, Japan, April 1997.

15. M. A. Viredaz, L. S. Brakmo, and W. R. Hamburgen. Energy management on
handheld devices. ACM Queue, 1(7):44-52, October 2003.

16. J. Xu, W.C. Lee, and X. Tang. Exponential Index: A Parameterized Distributed
Indexing Scheme for Data on Air. In Proceedings of the 2nd ACM/USENIX
International Conference on Mobile Systems, Applications, and Services (MobiSys
’04), pages 153 - 164, Boston, MA, June 2004.

17. J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy efficient index for querying
location- dependent data in mobile broadcast environments. In Proceedings of
the 19th IEEE International Conference on Data Engineering (ICDE’03), pages
239-250, Bangalore, India, March 2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 522 – 532, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Route Optimization in Mobile Network and
Performance Evaluation*

Keecheon Kim1,**, Dongkeun Lee1, Jae Young Ahn2, and Hyeong Ho Lee2

1 Department of Computer Science & Engineering, Konkuk University,
Seoul, Korea

{kckim, dklee}@konkuk.ac.kr
2 ETRI PEC, 161 Gajeong-Dong, Yuseong-gu, Daejeon 305-700, Korea

{ahnjy, holee}@etri.re.kr

Abstract. With a current basic Network Mobility (NEMO) Support, all the
communications to and from a node in a mobile network must be able to go
through the bi-directional tunnel established between the Mobile Router and its
Home Agent when the mobile network is away from the home. One of the is-
sues in designing mobile network with MR-HA bi-directional tunnel is to solve
the route optimization problem in the nested mobile networks. Since the aggre-
gated hierarchy of mobile networks becomes a single nested mobile network, in
order to forward packets to the nested mobile network nodes, multiple levels of
bi-directional nested tunnels are required. We propose a hierarchical mecha-
nism that allows direct packet tunneling between HA and MR and allows local-
ized mobility management for MR.

1 Introduction

A mobile network is an entire network, moving as a unit, which dynamically changes
its point of attachment to the Internet and its reachability in the topology[1]. A mobile
network is connected to the global Internet via one or more Mobile Routers (MRs).
With a current basic Network Mobility (NEMO) Support[3], all the communications
to and from a node in a mobile network must go through the bi-directional tunnel
established between the Mobile Router and its Home Agent(HA) when the mobile
network is away from the home. Basic support protocol for mobile network is based
on mobile IPv6[4]. When the MR moves away from the home link and attaches to a
new access router, it acquires a CoA(Care-of Address) and immediately sends a
Binding Update(BU) to its HA as described in [3]. And the MR may also include

* This research was supported by the ETRI, Korea, under the research support program. This

research was also partially supported by Konkuk University under the sabbatical year re-
search support program and the MIC(Ministry of Information and Communication), Korea,
under the ITRC(Information Technology Research Center) support program supervised by
the IITA(Institute of Information Technology Assessment).

** Corresponding author.

 Hierarchical Route Optimization in Mobile Network and Performance Evaluation 523

information about the mobile network prefix in BU, so that the HA can forward the
packets destined for nodes in the mobile network to MR.

When a packet is sent by a correspondent node(CN) to a node in the mobile net-
work, it gets routed to the HA of the MR. And the HA tunnels the packet to the MR.
The MR decapsulates the packet and forwards it to the node. On the other hand, if the
node in the mobile network sends a packet to the CN, the MR tunnels the packet to
the HA. In this way, mobile network nodes don't change their own points of attach-
ment as a result of the movement of mobile network.

However, a mobile network may be nested. Using the proposed protocol by [3] on
the nested mobile network, it builds a tunnel within a tunnel overhead limit. In order
to avoid this overhead, it is required to optimize the routing path from the MR in the
nested mobile network to the HA of the MR.

In this paper, we propose the route optimization based on the hierarchical algo-
rithm for nested mobile network, it can reduce the amount of signaling between MR
and HA. Nested mobile network has an aggregated hierarchy of mobile networks, so
the hierarchical mobility management is well applicable. Our proposal can give local-
ized mobility management functions as well as route optimization for the nested mo-
bile networks.

This paper is organized as follows. Section 2 shows the routing problems in a
nested mobile network. In section 3, we explain the other proposals as related works.
In section 4, we present how our solution operates. Performance evaluation of the
proposed solution is followed in section 5. Finally, in section 6, we present some
concluding remarks.

2 Routing Problem of Nested Mobile Network

Nested mobile network is considered[2] since it is one of the requirements of mobile
network. By allowing other mobile nodes to join a mobile network, it is possible to
form an arbitrary level of nested mobile networks. Fig. 1 represents an example of
nested mobile network. using NEMO Basic Support, the flow of packets between a
Local Fixed Node, LFN, and a Correspondent Node, CN, would need to go through
three separate tunnels, illustrated in Figure 2.
With such nesting, this leads to the following problems[10]:

• Sub-optimal routing : Both inbound and outbound packets will flow via the
HAs of all the MRs on their paths within the mobile network, with an in-
creased latency, less resilience and more bandwidth usage.

• Increased Packet Size : An extra IPv6 header is added per level of nesting to
all the packets.

In particular, with NEMO basic support, each Mobile Router is attached to another
Mobile Network by a single interface, and if loops are avoided, the graph will be a
tree[3].

524 K. Kim et al.

Fig. 1. An example of nested Mobile Network

Fig. 2. Nesting of bi-directional tunnels

3 Related Work

Route optimization with RRH(Reverse Routing Header)[5] allows the building of a
nested mobile network avoiding the nested tunnel overhead. It uses a new routing
header, called the RRH, to provide an optimized path for the single tunnel. RRH re-
cords the route out of the nested mobile network and can be converted into a routing

 Hierarchical Route Optimization in Mobile Network and Performance Evaluation 525

header for packets destined to the mobile network. In Fig. 1, when LFN(Local Fixed
node) sends a packet to CN, the first MR on the path(MR3), tunnels the packet to its
HA(MR3_HA), adding RRH with N = 3 in pre-allocated slots. The second router on
the path, MR2, overwrites the source address of the packet with its own CoA, putting
the old source address in the first free slot of RRH. The process followed by the sec-
ond router is repeated by all the routers on the path, including the top level MR. When
the packet leaves MR1, the source address is MR1’s CoA and the RRH is MR2_CoA |
MR3_CoA | MR3_HAddr(Home Address). When the MR3_HA receives the packet,
it looks at the bottom entry, MR3_HAddr. This entry is used as an index into the
binding cache. MR3_HA stores two items in the bind cache entry associated with
MR3. One is the address entry from RRH, to be used to build the extended type 2
routing header. And the other is a packet source address MR1_CoA, to be used as the
first hop. The routing header is built out of the previous RRH.

In [5], type 2 routing header(RH2) that is defined in [4] is extended to contain
more than one address. Processing the extended RH2 inherits from the RH type 0
described in [6]. The last address of extended RH 2 must be the home address of the
MR. Using RH2, the path from CN to LFN is CN -> MR3_HA -> MR1 -> MR2 ->
MR3 -> LFN.

Binding updates are still used for home registration and de-registration, but only
when the MR registers for the first time with HA. The full path to the MR is con-
tained in every packet from MR to HA, and HA must maintain the list of reverse
routing headers for each mobile router. This is more expensive to maintain than bind-
ing cache. The extended RH2 is also introduced in [9], but it is not standard. Thus
extended RH2 must be used more carefully.

4 Hierarchical Route Optimization in Nested Mobile Network

In fig.1, if a CN sends a packet to MN using the proposed solution in this paper, the
path from CN to LFN will be: CN-->MR3_ HA -->MR1-->MR2-->MR3-->LFN.

Our solution extends HMIPv6[7] slightly to support the nested mobile network. In
our solution, MAP(Mobility Anchor Point), which is newly introduced in HMIPv6,
can be pre-located in a gateway to the Internet. A root-MR can act as a MAP as well.

4.1 Binding Updates

In fig. 1, MR1(root-MR) becomes a MAP and entire nested mobile network becomes
a local MAP domain. All MRs and MNs in the nested mobile network (i.e. MR2,
MR3, MR4 and MN) configure RCoA(Regional CoA) based on the mobile network
prefix of the root-MR(MR1) and configure LCoA(On-link CoA) based on the mobile
network prefix of its access router(MR or fixed router) as described in [7]. For exam-
ple, MR3 configures LCoA based on the prefix of MR2. Thus, MR2’s LCoA is iden-
tical with its RCoA.

The MR1’s MAP option must be included in router advertisements(RAs) of all
routers in the nested mobile network. In addition to the basic MAP option of
HMIPv6, current CoA of MAP(MR1) is included in RA. The MAP’s CoA must also
be included in RAs of all routers in the nested mobile network as the MAP option.

526 K. Kim et al.

In order to simply explain our solution, we focus on MR3 in fig. 1. When MR3
moves into MAP-MR1 domain, it receives RA with the MAP option containing
MR1’s home address and MR1’s current CoA. After forming the RCoA and LCoA,
MR3 sends a BU to MR1 as described in [7]. However this BU message contains
mobile network prefix option[3] in order to inform the MAP(MR1) of the prefix in-
formation for the mobile network. The mobile network prefix is used for route opti-
mization. When MN sends a local BU to MR1, it just operates as described in [7].
Table 1 represents a subset of binding cache table stored in MR1 as a result of local
BUs of all sub-MRs and MN.

Table 1. Subset of MR1’s binding cache

Node RCoA LCoA Network Prefix
MR2 MR2_RCoA MR2_LCoA Mobile Network Prefix of MR2
MR3 MR3_RCoA MR3_LCoA Mobile Network Prefix of MR3
MR4 MR4_RCoA MR4_LCoA Mobile Network Prefix of MR4
MN MN_RCoA MN_LCoA -

After receiving a binding acknowledgement from the MAP(MR1), MR3 sends BU

to MR3_HA as described in [3]. Thus, the RCoA of MR3 is used as the CoA of MR3.
And this BU message contains a new option to inform the MR3_HA of the
MR1(MAP)’s current CoA. MR3_HA records this CoA together with the binding
update entry in its binding cache. And this MR1’s CoA will be used as the destination
address of all packets being forwarded to MR3.

4.2 Hierarchical Route Optimization

Every MR(including root-MR) in the nested mobile network must not encapsulate the
packet, if the source or the destination address of packet is RCoA. Instead, the MR
forwards the packet to its egress interface. Now, consider the case where a LFN sends
a packet to CN. When LFN sends a packet to CN, MR3 will encapsulate the packet to
be sent through the reverse tunnel with its HA(MR3_HA). When MR3 encapsulate
the packet, it must use its RCoA as a source address of tunneled packet and forward it
to MR2. Because MR2 knows the prefix of MR1’s home address, it will know that the
source address of the packet is RCoA of one of nodes which belongs to the same
MAP domain of MR2. And MR2 forwards the packet to MR1 without encapsulation.
Receiving an outbound packet, MAP-MR1 must check if the source address of the
packet is stored in its binding cache. If so, MR1 sends the packet to the destination
directly. Otherwise, the packet is tunneled to MR1_HA. Thus, the path from LFN to
CN is LFN->MR3->MR2->MR1->MR3_HA->CN.

When CN sends a packet to LFN, MR3_HA intercepts and encapsulates the packet.
The encapsulated packet will have the source address set to the address of MR3_HA,
and the destination address set to the address of MAP(MR1)’s CoA stored in the bind-
ing cache entry, and an type 0 routing header with one address entries, care-of address
of MR3. According to the destination address, the packet will be transferred to MR1.
In order to send the packet to MR3 correctly, MR1 tunnels the packet to MR3’s
LCoA using type 0 routing header.

 Hierarchical Route Optimization in Mobile Network and Performance Evaluation 527

If MR1 receives a packet, it acts as a MAP encapsulation point and sends the
packet to the final destination. First of all, MR1 processes the routing header and
checks whether it has a binding cache entry of the new destination address. If so,
MR1 encapsulates the packet and forwards it to the new destination. In order to send
the packet to the destination, MR1 uses type 0 routing header(RH 0). If MR1 has no
binding cache entry, it uses normal routing process. In order to construct a routing
header of the outer packet, MR1 uses the pseudo algorithm depicted below.

empty a stack;
set finished = false;
find an entry in binding cache with RCoA field == des-
tination address of original packet(i.e. destination
MR’s RcoA)

if (no binding cache entry is found) {
 use normal routing process;
} else {
 If (RCoA of entry is identical with its LCoA) {
 use normal routing process;
 }
 while (not finished) {
 push LCoA of entry to stack;
 get prefix of LCoA;
 find an entry in binding cache with
 prefix field == prefix of LCoA;
 if (no binding cache entry is found) {
 finished = true;
 }
 }

set source address field = HAddr of root-MR(MR1);
pop top of stack to destination address field;
prepare a type 0 routing header(RH 0);

 set Hdr Ext Len field of RH = (size of stack-1)x 2;
 set Segment Left filed of RH = size of stack -1;
 for i=1 to Segment Left filed of RH 0{
 pop top of stack to Address[i] of RH 0;
 }
 prepare a type 2 routing header (RH 2);
 set Address of RH 2 = RCoA of destination MR(MR3)
}

According to the above algorithm, MR1 find an entry in a binding cache with

RCoA of MR3. And then, MR1 gets prefix of MR3’s LCoA. Has been configured
MR3’s LCoA based on the network prefix of MR2, MR1 can find an entry of MR2.

When each sub-MR receives a packet, it processes the routing header and forwards
it to the new destination. Using the proposed route optimization, the path from CN to
LFN is CN -> MR3_HA -> MR1 -> MR2 -> MR3 -> LFN.

Fig.3 represents the packet encapsulation and processing of the message delivered
from MR3_HA to MR3.

528 K. Kim et al.

Fig. 3. Packet encapsulation

If we assume that MR3 is a Mobile Node, it is obvious that our route optimization
mechanism is applicable to a Mobile IPv6 Node.

4.3 Localized Mobility Management

Our solution allows local mobility. Considering the case where MR2 moves into MR4
with its sub-network (fig.4), the only thing MR2 has to do is sending a BU to MR1.

If MR1 receives a BU from MR2, it modifies the entry of MR2 in the binding
cache. There is no need to send BU to MR2_HA. The RCoA and the LCoA of
MR(MR3) are not affected by the movement of its upper MR(MR2). Thus, as a result
of local BU of MR2, the reachability of nodes behind MR2 is preserved. In this way,
any change in the nested network topology is immediately reflected by a local BU. On
the other hand, if MR2 moves alone into another MR’s link without sub-NEMO, MR3
will receive a new router advertisement from MR1(or other MRs) and it will perform
local BU to MR1 as it moves into another MR’s link.

When MR moves into other nested mobile network, in other words, the MR re-
ceives RA containing a new MAP option, it must configure a new RCoA and a new

 Hierarchical Route Optimization in Mobile Network and Performance Evaluation 529

Fig. 4. Movement of MR in the nested mobile network

LCoA. And then the MR must update the bindings with the new MAP and the HA. If
the MR does not change its point of attachment and receives a new MAP option, it is
not necessary to configure a new LCoA.

5 Performance Evaluation

In this section we analyze the performance of our proposal. Among several mobility
factors, three are particularly important[8]: the scalability property, the routing per-
formance and the transition performance.

5.1 Routing and Transition Performance

In our proposal, there is only one MR-HA bi-directional tunnel regardless of the num-
ber of MRs. Thus, we can avoid the tunnel within a tunnel overhead of the basic
NEMO support protocol. And our proposal support localized mobility management,
thus local handoffs are managed within the MAP domain. If we ignore the processing
delays of each MR and HA, the binding update delay of moving MR is defined as:

dHqHBU RMdelay ××+×=)(2

HM : hop count between MR and root-MR
HR : hop count between HA_MR and root-MR
q: the probability of the non-local mobility
d: one way transmission delay of one hope

(1)

Thus, as the probability of the local mobility becomes greater, the gain of our pro-
posal from binding update delay is more increased. The average gain of our approach
over basic NEMO approach is defined as equation(2). Fig. 5 shows the results.

)/(/)1(intintint abNNGGGG raerraAVG ×−=×=×+×= αβα (2)

erGint = 0; raGint = { (a + b) – a } / a = b / a; = (N-1)/N; = 1/N

N: the average number of different points of attachment of a MR within a nested
NEMO.

530 K. Kim et al.

Gintra: the gain when the MR is moving within a nested NEMO

Ginter: the gain when the MR is moving from one nested NEMO to another.
a: the delay from MR to root-MR
b: the delay from root-MR to HA_MR

Fig. 5. The gain over basic NEMO from binding update delay

In RRH approach[5], binding updates are used only when the MR registers for the
first time with the HA. When the MR becomes aware of a topology change in the
nested network or in the absence of traffic(detected by a timeout) to the HA, it must
send a RRH Heartbeat to the HA. Thus, from the localized mobility prospect, our
proposal is more efficient than RRH approach.

5.2 Scalability Performance

In this section, we compare the transmission load introduced by basic NEMO ap-
proach and our approach. The transmission load, T, is defined as:

counthopsizepacketT __ ×=

packet_size and hop_count are functions of N (N : level of nested NEMO)

(3)

In our proposal, MR do not use routing header when it forwards a packet to the HA.
However, our proposal uses additional tunnel in nested mobile network. In order to
calculate the both directional transmission load between MR and MR_HA, TBasic for
basic approach and THier for our proposal are defined as follows.

)()(
1

11
size

n

i
size

n

i
Basic HiHiT ×+×=

−

==

 . (4)

 Hierarchical Route Optimization in Mobile Network and Performance Evaluation 531

})1(2{)1()(sizesizesizesizeHier AnHnAHT ×−+××−++= (5)

Hsize : IPv6 header size + MIPv6 RH2 size; Asize : IPv6 RH 0 size
n : level of nested NEMO

We assume that there is no IPv6 extension header except routing header and we do
not consider a payload(i.e. original packet). According to equation (4) and (5), we
evaluated the gain achieved by our proposal. We note GBasic the gain over basic ap-
proach.

HierHierBasicBasic TTTG /)(−= (6)

Fig. 6 shows the gain over basic NEMO from transmission load. As the level of
nested NEMO is more increased, the gain of our proposal is more increased. RRH
and our proposal allow only one HA-MR bi-directional tunnel. In addition, they use
routing header to forward packet. In our proposal, MR do not use routing header
when it forwards a packet to the HA. Thus the packet size of our proposal is less than
the packet size of RRH and, comparing with RRH, our proposal can acquire more
benefit.

Our proposal does not propagate the local routing information of nested mobile
network to the external domains, so it is more secure.

Fig. 6. The gain over basic NEMO from transmission load

532 K. Kim et al.

6 Conclusion

In this paper, we described route optimization based on a hierarchical algorithm. Our
proposal is more secure in terms of security. It does not propagate the local routing
information of nested mobile network to the external domains. Adapting our solution
to nested mobile networks, we may expect better throughput and more efficient net-
work bandwidth usage.

In an aircraft, a ship, or a train, root MR of the nested mobile networks may get
connected to the Internet through a geostationary satellite. In this scenario, handoffs
of root MR do not occur very often. On the contrary, local handoffs of sub-MRs will
occur frequently. For that reasons, hierarchical mobility management in the nested
mobile networks is required for fast handoff. Our proposal can give hierarchical mo-
bility management functions as well as route optimization for the nested mobile net-
works.

However, smooth handoff in nested mobile network will be the subject of the fu-
ture research. In mobile networks, movement of MR means many packets must be re-
transmitted to a new address of the destination node. For a very fast moving mobile
network, this remains as a future research.

References

1. T. Ernst, and H. Lach : Network Mobility Support Terminology, IETF internet draft, draft-
ietf-nemo-terminology-03.txt (work in progress), Feb. 2005.

2. T. Ernst : Network Mobility Support Goals and Requirements, IETF internet draft , draft-
ietf-nemo-requirements-04.txt (work in progress), Feb. 2005.

3. V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert : Network Mobility (NEMO)
Basic Support Protocol, IETF RFC 3963, Jan. 2005.

4. C. Perkins, D. Johnson, and J. Arkko : Mobility Support in IPv6, IETF RFC 3775, June
2004.

5. P. Thubert, and M. Molteni : IPv6 Reverse Routing Header and its application to Mobile
Networks, IETF internet draft, draft-thubert-nemo-reverse-routing-header-05 (work in pro-
gress), June 2004

6. S. Deering, and R. Hinden : Internet Protocol, Version 6 (IPv6) Specification, RFC 2460,
IETF, December 1998.

7. H. Soliman, C. Castelluccia, K. El-Malki, and L. Bellier : Hierarchical Mobile IPv6 Mo-
bility Management (HMIPv6), IETF internet draft, draft-ietf-mipshop-hmipv6-04.txt
(work in progress), Dec. 2004.

8. A. Myles and D. Skellen : Comparing Four IP Based Mobile node Protocols, In proceed-
ings of the 4th joint European Networking Conference, 1993, pp.191-196

9. C. W. Ng and T. Tanaka : Securing Nested Tunnels Optimization with Access Router Op-
tion, IETF internet draft, draft-ng-nemo-access-router-option-01.txt , July 2004.

10. C. Ng, P. Thubert, M. Watari and F. Zhao: Network Mobility Route Optimization Problem
Statement, IETF internet draft, draft-ietf-nemo-ro-problem-statement-00(work in pro-
gress), July 2005

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 533 – 541, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Swarm Based Sensor Deployment Optimization in
Ad Hoc Sensor Networks

Wu Xiaoling, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho, and Sungyoung Lee*

Department of Computer Engineering, Kyung Hee University, Korea
{xiaoling, sl8132, yangjie, xuhui, sylee}@oslab.khu.ac.kr

chojs@khu.ac.kr

Abstract. In ad hoc sensor networks, sensor nodes have very limited energy re-
sources, thus energy consuming operations such as data collection, transmission
and reception must be kept at a minimum. This paper applies particle swarm
optimization (PSO) approach to optimize the coverage in ad hoc sensor net-
works deployment and to reduce cost by clustering method based on a well-
known energy model. Sensor nodes are assumed to be mobile, and during the
coverage optimization process, they move to form a uniformly distributed to-
pology according to the execution of algorithm at base station. The simulation
results show that PSO algorithm has faster convergence rate than genetic
algorithm based method while demonstrating good performance.

1 Introduction

Recent military operations have limitations of surveillance missions performed by
high-altitude platforms (UAV, U2, satellite) even when equipped with state of the art
sensors. Most of the limitations are inherent to long-distance surveillance and cannot
be resolved by any improvement in the onboard-sensor technology [1].

In order to get a clear understanding of the situation on the ground, it is important to
observe from close range, using remote sensing device placed in the region of interest
(ROI) to form a sensor network. Ad hoc sensor networks that employ ad hoc network-
ing have become an area of intense research activity. In most cases, a large number of
wireless sensor devices can be deployed in hostile areas without human involved, e.g.
by air-dropping from an aircraft for remote monitoring and surveillance purposes. Such
airdropped networks are called ad hoc sensor networks to distinguish them from other
types of sensor networks where nodes are laid out in some fixed predetermined pattern.
Due to their attractive characteristics, ad hoc sensor networks have been applied to
many military and civil applications such as target tracking, surveillance, and environ-
mental control. Usually, once the sensors are deployed on the ground, their data are
transmitted back to the base station to provide the necessary situational information.

The limited energy storage and memory of the deployed sensors prevent them from
relaying data directly to the base station. It is therefore necessary to form a cluster
based topology, and the cluster heads (CHs) provide the transmission relay to base
station such as a satellite. And the aircraft carrying the sensors has a limited payload,

* Corresponding author.

534 X. Wu et al.

so it is impossible to randomly drop thousands of sensors over the ROI, hoping the
communication connectivity would arise by chance; thus, the mission must be per-
formed with a fixed maximum number of sensors. In addition, the airdrop deployment
may introduce uncertainty in the final sensor positions. Though many scenarios adopt
random deployment for practical reasons such as deployment cost and time, random
deployment may not provide a uniform sensor distribution over the ROI, which is
considered to be a desirable distribution in sensor networks. These limitations moti-
vate the establishment of a planning system that optimizes the sensor reorganization
process after initial random airdrop deployment assuming sensor node mobility,
which results in the maximum possible utilization of the available sensors.

There exist a lot of research work [2], [3], [4] related to the placement of sensor
nodes in network topology design. Most of them focused on optimizing the location
of the sensors in order to maximize their collective coverage. However only a single
objective was considered in most of the research papers, other considerations such as
energy consumption minimization are also of vital practical importance in the choice
of the network deployment. Self-deployment methods using mobile nodes [4�9] have
been proposed to enhance network coverage and to extend the system lifetime via
configuration of uniformly distributed node topologies from random node distribu-
tions. In [4], the authors present the virtual force algorithm (VFA) as a new approach
for sensor deployment to improve the sensor field coverage after an initial random
placement of sensor nodes. The cluster head executes the VFA algorithm to find new
locations for sensors to enhance the overall coverage. They also considered unavoid-
able uncertainty existing in the precomputed sensor node locations. This uncertainty-
aware deployment algorithm provides high coverage with a minimum number of
sensor nodes. However they assumed that global information regarding other nodes is
available. In [1], the authors examined the optimization of wireless sensor network
layouts using a multi-objective genetic algorithm (GA) in which two competing ob-
jectives are considered, total sensor coverage and the lifetime of the network. How-
ever the computation of this method is not inexpensive.

In this paper, we attempt to solve the coverage problem while considering energy ef-
ficiency using particle swarm optimization (PSO) algorithm, which can lead to compu-
tational faster convergence than genetic algorithm used to solve the deployment optimi-
zation problem in [1]. Sensor nodes are assumed to have mobility, and during the cover-
age optimization process, they move to form a uniformly distributed topology according
to the execution of algorithm at the base station. To the best of our knowledge, this is
the first paper to solve deployment optimization problem by PSO algorithm.

In the next section, the PSO algorithm is introduced and compared with GA. Mod-
eling of sensor network and the deployment algorithm is presented in section 3, fol-
lowed by simulation results in section 4. Some concluding remarks and future work
are provided in section 5.

2 Particle Swarm Optimization

PSO, originally proposed by Eberhart and Kennedy [5] in 1995, and inspired by social
behavior of bird flocking, has come to be widely used as a problem solving method in
engineering and computer science.

 Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor Networks 535

The individuals, called, particles, are flown through the multidimensional search
space with each particle representing a possible solution to the multidimensional
problem. All of particles have fitness values, which are evaluated by the fitness func-
tion to be optimized, and have velocities, which direct the flying of the particles. PSO
is initialized with a group of random solutions and then searches for optima by updat-
ing generations. In every iteration, each particle is updated by following two "best"
factors. The first one, called pbest, is the best fitness it has achieved so far and it is
also stored in memory. Another "best" value obtained so far by any particle in the
population, is a global best and called gbest. When a particle takes part of the popula-
tion as its topological neighbors, the best value is a local best and is called lbest. After
each iteration, the pbest and gbest (or lbest) are updated if a more dominating solution
is found by the particle and population, respectively.

The PSO formulae define each particle in the D-dimensional space as Xi = (xi1, xi2,
xi3,……,xiD) where i represents the particle number, and d is the dimension. The mem-
ory of the previous best position is represented as Pi = (pi1, pi2, pi3……piD), and a ve-
locity along each dimension as Vi = (vi1, vi2, vi3……viD). The updating equation [6] is
as follows,

)(())(() 21 idgdidididid xprandcxprandcvv −××+−××+×=ϖ (1)

ididid vxx += (2)

where ϖ is the inertia weight, and c1 and c2 are acceleration coefficients.
The role of the inertia weight ϖ is considered to be crucial for the PSO’ s conver-

gence. The inertia weight is employed to control the impact of the previous history of
velocities on the current velocity of each particle. Thus, the parameter ϖ regulates
the trade-off between global and local exploration ability of the swarm. A large inertia
weight facilitates global exploration, while a small one tends to facilitate local explo-
ration, i.e. fine-tuning the current search area. A suitable value for the inertia weight
ϖ balances the global and local exploration ability and, consequently, reduces the
number of iterations required to locate the optimum solution. Generally, it is better to
initially set the inertia to a large value, in order to make better global exploration of
the search space, and gradually decrease it to get more refined solutions. Thus, a
time-decreasing inertia weight value is used. The initial swarm can be generated ran-
domly [7].

PSO shares many similarities with GA. Both algorithms start with a group of a
randomly generated population, have fitness values to evaluate the population, update
the population and search for the optimum with random techniques. However, PSO
does not have genetic operators like crossover and mutation. Particles update them-
selves with the internal velocity. They also have memory, which is important to the
algorithm [8].

Compared with GA, PSO is easy to implement, has few parameters to adjust, and
requires only primitive mathematical operators, computationally inexpensive in terms
of both memory requirements and speed while comprehensible. It usually results in
faster convergence rates than GA. This feature suggests that PSO is a potential algo-
rithm to optimize deployment in a sensor network.

536 X. Wu et al.

3 The Proposed Algorithm

First of all, we present the model of wireless sensor network. We assume that each
node knows its position in the problem space, all sensor members in a cluster are
homogeneous and cluster heads are more powerful than sensor members. Sensing
coverage and communication coverage of each node are assumed to have a circular
shape without any irregularity. The design variables are 2D coordinates of the sensor
nodes, {(x1, y1), (x2, y2), ……}. And the sensor nodes are assumed to be mobile. Many
research efforts into the sensor deployment problem in wireless sensor network [4, 9]
make this sensor mobility assumption reasonable.

3.1 Optimization of Coverage

We consider coverage as the first optimization objective. It is one of the measurement
criteria of QOS of a sensor network.

Fig. 1. Sensor coverage models (a) Binary sensor and (b) stochastic sensor models

The coverage of each sensor can be defined either by a binary sensor model or a
stochastic sensor model as shown in Fig. 1 [9]. In the binary sensor model, the detec-
tion probability of the event of interest is 1 within the sensing range, otherwise, the
probability is 0. In the stochastic sensor model, the probability of detection of the
event of interest follows a decaying function of distance from the sensor. In this pa-
per, the binary sensor model is employed and coverage is defined as the ratio of the
union of areas covered by each node and the area of the entire ROI, as shown in Eq
(3). Here, the covered area of each node is defined as the circular area within its sens-
ing radius [9].

A

A
C iNi ,...,1== (3)

where
Ai is the area covered by the ith node;
N is the total number of nodes;
A stands for the area of the ROI.

In order to prevent recalculating the overlapped area, the coverage here is calcu-

lated using Monte Carlo method by meshing the network space, i.e., by creating a

 Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor Networks 537

uniform grid in the ROI. All the grid points being located in the sensing area are
labeled 1 otherwise 0, depending on whether the Euclidean distance between each
grid point and the sensor node is longer or shorter than sensing radius, as shown in
Fig 2. Then the coverage can be approximated by the ratio of the summation of ones
to the total number of the grid points.

If a node is located well inside the ROI, its complete coverage area will lie within
the ROI. In this case, the full area of that circle is included in the covered region. If a
node is located near the boundary of the ROI, then only the part of the ROI covered
by that node is included in the computation.

Fig. 2. Sensing coverage calculation (dashed circle indicating the sensing area boundary)

3.2 Optimization of Energy Consumption

After optimization of coverage, all the deployed sensor nodes move to their own posi-
tions. Now we can disregard the assumption of sensor mobility since our goal is to
minimize energy usage in a cluster based sensor network topology by finding the
optimal cluster head (CH) positions. For this purpose, we assume a power consump-
tion model [10] for the radio hardware energy dissipation where the transmitter dissi-
pates energy to run the radio electronics and the power amplifier, and the receiver
dissipates energy to run the radio electronics. This is one of the most widely used
models in sensor network simulation analysis. For our approach, both the free space
(distance2 power loss) and the multi-path fading (distance 4 power loss) channel mod-
els were used. Assume that the sensor nodes inside a cluster have short distance dis to
cluster head but each cluster head has long distance Dis to the base station. Thus for
each sensor node inside a cluster, to transmit an l-bit message a distance dis to cluster
head, the radio expends

2),(disllEdislE fselecTS ε+= (4)

For cluster head, however, to transmit an l-bit message a distance Dis to base sta-
tion, the radio expends

538 X. Wu et al.

4),(DisllEDislE mpelecTH ε+= (5)

 In both cases, to receive the message, the radio expends:

elecR lElE =)((6)

The electronics energy, Eelec, depends on factors such as the digital coding, modu-
lation, filtering, and spreading of the signal, here we set as Eelec=50nJ/bit, whereas the

amplifier constant, is taken as fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2.

So the energy loss of a sensor member in a cluster is

)01.0100(),(2disldislEs += (7)

The energy loss of a CH is

)103.1100(),(46 DislDislECH ××+= − (8)

 Since the energy consumption for computation is much less than that for commu-
nication, we neglect computation energy consumption here.

Assume m clusters with nj sensor members in the jth cluster Cj. The total energy
loss Etotal is the summation of the energy used by all sensor members and all the m
cluster heads:

=

−

=

×
+++=

jn

i j

j

j
ij

m

j
total n

Dis

n
dislE

1

46
2

1

)
103.1100

01.0100((9)

 Because only 2 terms are related to distance, we can just set the fitness function
as:

=

−

=

×
+=

jn

i j

j
ij

m

j n

Dis
disf

1

46
2

1

)
103.1

01.0((10)

4 Performance Evaluation

The PSO starts with a “swarm” of sensors randomly generated. As shown in Fig. 3 is a
randomly deployed sensor network with coverage value 0.4484 calculated using Eq. (3).
A linear decreasing inertia weight value from 0.95 to 0.4 is used, decided according to
[6]. Acceleration coefficients c1 and c2 both are set to 2 as proposed in [6]. For optimiz-
ing coverage, we have used 20 particles, which are denoted by all sensor nodes coordi-
nates, for our experiment in a 50×50 square sensor network, and the maximum number
of generations we are running is 500. The maximum velocity of the particle is set to be
50. The sensing range of each sensor is set to be 5 units. An upper bound on the cover-
age is given by the ratio of the sum of the circle areas (corresponding to sensors) to the
total area of the sensor field. In this simulation, the upper bound evaluates to be 0.628,
which is calculated from the perfect uniform distribution case without any overlapped
area. The coverage is calculated as a fitness value in each generation.

 Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor Networks 539

After optimizing the coverage, all sensors move to their final locations. Now the
coordinates of potential cluster heads are set as particles in this static sensor network.
The communication range of each sensor node is 15 units with a fixed remote base
station at (25, 80). We start with a minimum number of clusters acceptable in the
problem space to be 4. The node, which will become a cluster head will not have any
restriction on the transmission range. The nodes are organized into clusters by the
base station. Each particle will have a fitness value, which will be evaluated by the
fitness function (10) in each generation. Our purpose is to find the optimal location of
cluster heads. Once the position of the cluster head is identified, if there is no node in
that position then a potential cluster head nearest to the cluster head location will
become a cluster head.

We also optimized the placement of cluster head in the 2-D space using GA. We
used a simple GA algorithm with single-point crossover and selection based on a
roulette-wheel process. The coordinates of the cluster head are the chromosomes in
the population. For our experiment we are using 10 chromosomes in the population.
The maximum number of generations allowed is 500. In each evolution we update the

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 3. Randomly deployed sensor network (Coverage value=0.4484)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of runs

C
ov

er
ag

e

Fig. 4. Optimal coverage results for 6 runs

540 X. Wu et al.

number of nodes included in the clusters. The criterion to find the best solution is that
the total fitness value should be minimal.

Fig. 4 is the coverage optimization results after 6 runs. Compared with the upper
bound 0.628, the difference between them is small. Fig. 5 shows the convergence rate
of PSO and GA. We ran the algorithm for both approaches several times and in every
run PSO converges faster than GA, which was used in [1] for coverage and lifetime
optimization. The main reason for the fast convergence of PSO is due to the velocity
factor of the particle.

Fig. 6 shows the final cluster topology in the sensor network space after coverage and
energy consumption optimization when the number of clusters in the sensor space is 4.
We can see from the figure that nodes are uniformly distributed among the clusters
compared with the random deployment as shown in Fig 3. The four stars denote cluster
heads, the small circles are sensor members, and the dashed circles are communication
range of sensor nodes. The energy saved is the difference between the initial fitness
value and the final minimized fitness value. In this experiment, it is approximately 16.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
PSO
GA

No. of iterations

F
itn

es
s

va
lu

e

Fig. 5. Comparison of convergence rate between PSO and GA based on Eq. (10)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 6. Energy efficient cluster formation using PSO

 Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor Networks 541

5 Conclusions and Future Work

The application of PSO algorithm to optimize the coverage in ad hoc sensor network
deployment and energy consumption in cluster-based topology is discussed. We have
used coverage as the first optimization objective to place the sensors with mobility,
and a distance based energy model to reduce cost based on clustering method. The
simulation results show that PSO algorithm has faster convergence rate than GA
based layout optimization method while demonstrating good performance.

In the future work, we will take the uncertainty in the position of the sensors due to
the initial random deployment into account. Moreover, other objectives, such as time
and distance for sensor moving will be further studied.

Acknowledgement

This work was supported by grant No. R01-2005-000-10267-0 from Korea Science
and Engineering Foundation in Ministry of Science and Technology.

References

1. Damien B. Jourdan, Olivier L. de Weck: Layout optimization for a wireless sensor net-
work using a multi-objective genetic algorithm. IEEE 59th Vehicular Technology Confer-
ence (VTC 2004-Spring), Vol.5 (2004) 2466-2470

2. K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho: Grid coverage for surveillance and target
location in distributed sensor networks. IEEE transactions on computers, Vol.51 (2002)
1448-1453

3. A. Howard, M.J. Mataric and G. S. Sukhatme: Mobile sensor network deployment using
potential fields: a distributed, scalable solution to the area coverage problem. Proc. Int.
Conf. on distributed Autonomous Robotic Systems (2002) 299-308

4. Y. Zou and K. Chakrabarty: Sensor deployment and target localization based on virtual
forces. Proc. IEEE Infocom Conference, Vol. 2 (2003) 1293-1303

5. Kennedy and R. C. Eberhart: Particle Swarm Optimization. Proceedings of IEEE Interna-
tional Conference on Neural Networks, Perth, Australia (1995) 1942-1948

6. Yuhui Shi, Russell C. Eberhart: Empirical study of Particle Swarm Optimization. Proceed-
ings of the 1999 Congress on Evolutionary Computation, Vol. 3 (1999) 1948-1950

7. K.E. Parsopoulos, M.N. Vrahatis. Particle Swarm Optimization Method in Multiobjective
Problems. Proceedings of the 2002 ACM symposium on Applied computing, Madrid,
Spain (2002): 603- 607

8. http://www.swarmintelligence.org/tutorials.php
9. Nojeong Heo and Pramod K. Varshney: Energy-Efficient Deployment of Intelligent Mo-

bile Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems And Humans, Vol. 35, No. 1 (2005): 78 - 92

10. Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An Application-
Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on
Wireless Communications, Vol. 1, No. 4 (2002): 660 - 670

Weighted Localized Clustering:
A Coverage-Aware Reader Collision Arbitration

Protocol in RFID Networks�

Joongheon Kim1, Wonjun Lee1,��, Jaewon Jung1, Jihoon Choi1, Eunkyo Kim2,
and Joonmo Kim3

1 Department of Computer Science and Engineering, Korea University, Seoul, Korea
wlee@korea.ac.kr

2 LG Electronics Institute of Technology, LG Electronics Co., Seoul, Korea
3 School of Electrical, Electronics, and Computer Engineering,

Dankook University, Seoul, Korea

Abstract. This paper addresses a weighted localized scheme and its
application to the hierarchical clustering architecture, which results in
reduced overlapping areas of clusters. Our previous proposed scheme,
Low-Energy Localized Clustering (LLC), dynamically regulates the ra-
dius of each cluster for minimizing energy consumption of cluster heads
(CHs) while the entire network field is still being covered by each cluster
in sensor networks. We present weighted Low-Energy Localized Clustering
(w-LLC), which has better efficiency than LLC by assigning weight func-
tions to each CH. Drew on the w -LLC scheme, weighted Localized Clus-
tering for RFID networks (w-LCR) addresses a coverage-aware reader
collision arbitration protocol as an application. w -LCR is a protocol that
minimizes collisions by minimizing overlapping areas of clusters.

Keywords: RFID networks, reader collision arbitration, clustering.

1 Introduction

In wireless networking environment, because the mobile devices are generally
energy-constraint, the power management of mobile devices is an important is-
sue. Due to the limited power source of mobile devices, energy consumption has
been considered as the most critical factor in designing network protocols. Facing
these challenges, several approaches to prolong network lifetime, including clus-
tering schemes and structured schemes with a two-tiered hierarchy, have been
investigated [1–4]. The clustering technology facilitates the distribution of con-
trol over the network and enables locality of communications [2]. The two-tiered
hierarchical structuring method is an energy-efficient scheme for wireless net-
working [5]. It consists of the upper tier for communicating among cluster heads

� This work was in part funded by SK Telecom under Contract Number KU-R0405721
to Korea University and by KOSEF (Grant No. R01-2005-000-10267-0).

�� Corresponding author.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 542–553, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Weighted Localized Clustering 543

(CHs) and the lower tier for acquired events and transmitting them to CHs.
However, in clustering scheme and two-tiered hierarchical structuring scheme,
if the cluster range is larger than optimal one, a CH consumes more energy
than required. On the other hand, a smaller-than-necessary range results in the
shortage of covering the entire network field. Based on these reasons, we pro-
posed a novel clustering-based algorithm which aims to minimize the energy
consumption of CHs under the hierarchical structure [6]. Our proposed clus-
tering scheme, Low-Energy Localized Clustering (LLC), is able to regulate the
cluster radius by communicating with CHs for energy savings. We extend our
basic scheme to weighted Low-Energy Localized Clustering (w-LLC) to cope with
the case that events occur more frequently in a certain area of the sensor network
field. Also when the CHs have different computing power each other, we need
to assign weight factors to each CH. In these cases, w -LLC, therefore, is better
than LLC in practical environment to apply the algorithm. The major applica-
tion areas of w -LLC are ’wireless sensor networks (WSN)’ and ’RFID networks’.
In WSN, sensors are deployed over the network sensing fields, and perform the
specific tasks with the processing, sensing, and communicating capacities [7] [8].
Because of the limited power source of sensors, energy consumption has been
concerned as the most critical factor in designing WSN protocols. To achieve
energy-efficiency, the clustering schemes and hierarchically structured schemes
are proposed [1–5]. RFID networks, also, has two-tiered hierarchical structure.
In the upper tier, there are RFID readers to receive the signals from the RFID
tags. In the lower tier, there are RFID tags. In the hierarchical clustering-based
two-tiered network architecture, the larger overlapping areas of clusters that
RFID readers form, the higher collision probability among the readers. We pro-
pose weighted localized clustering for RFID networks (w-LCR) as an application
area of w -LLC that minimizes the overlapping areas among clusters by regulat-
ing a RFID reader’s cluster radius dynamically to minimize the RFID reader
collisions. The remainder of this paper is organized as follows. In Section 2,
we investigate previous work in WSN and RFID networks. Section 3 propose
w -LLC, a weighted dynamic localized scheme. We evaluate the effectiveness of
w -LLC with simulations in Section 4. In Section 5, we apply w -LLC to RFID
reader collision arbitration algorithm and, in Section 6, show the performance
evaluation. Section 7 concludes this paper and presents future work.

2 Related Work

Numerous clustering schemes and hierarchical schemes are developed in WSN.
LEACH (Low Energy Adaptive Clustering Hierarchy) [3], a protocol architecture
for WSN that combines the ideas of energy-efficient cluster-based routing with
application-specific data aggregation to achieve a good performance. It preserves
limited amount of energy by selecting a CH at random among sensors. By doing
this way, LEACH must have the energy constraint in each CH, whereas w -LLC
has less energy constraint than LEACH. In [4], Gupta et al. proposed a two-
tiered hierarchical clustering scheme in which a CH with less energy constraint

544 J. Kim et al.

is selected among sensors. However, a CH is selected among the sensors under
restricted assumptions as assumed in [3]. Similar to LEACH, the CH of proposed
scheme in [4] has more energy constraint than the CH of w -LLC, because the CH
in [4] is a sensor with low energy and computing power while the CH of w -LLC
has more computing power than regular sensors. The clustering-based topology
control scheme [5] consists of two tiers; (1) upper tier for communicating between
CHs and (2) lower tier for sensing, processing, and transmitting by sensors.
It has similarity on hierarchical structuring concept like w -LLC. However, the
performance depends on the radius of each cluster; as a cluster is increased
covering the whole WSN, the energy consumption can be increased. On the
other hand, w -LLC can regulate the radius of each cluster to minimize the
energy consumption of each CH and consider the local properties of the region by
assigning weight functions to each CH. As for another example, RFID network
also has the two-tiered clustering-based hierarchical architecture. RFID systems
consist of RFID readers as an upper layer and RFID tags as a lower layer in
a clustering-based logical hierarchical model. After clustering tags in the lower
layer, RFID readers recognize RFID tags in the cluster of RFID reader and send
the information stored or delivered in RFID tags to a server. RFID tags have
one-hop communication with RFID readers, which allows us to exploit general
clustering schemes. Therefore the RFID system has the similar architecture to
the hierarchical clustering-based two-tiered WSN architecture proposed in [5].

3 w-LLC: Weighted Low-Energy Localized Clustering

w -LLC aims to minimize overlapping areas of clusters by regulating the cluster
range of each cluster. If the cluster range is larger than optimal one, a CH
consumes more energy than required. On the other hand, a smaller cluster range
than optimal one results in the entire wireless network field of lower tier not
being covered. In w -LLC, the whole wireless network area of low tier is totally
being covered by CHs and the CHs in network field of upper tier consider their
weights assigned by ’weight functions’. For achieving more energy efficiency, a
server computes equations presented below. Energy-efficient radii for each cluster
are calculated based on the objective functions given by w -LLC. w -LLC consists
of two phases and one policy. Followings are what we assume in w -LLC.

– The proposed architecture has two-tiered hierarchical structure.
– A server knows the position of each CH.

3.1 Initial Phase

In initial phase, the CHs deployed at random construct a triangle to determine
a Cluster Radius Decision Point (CRDP) that is able to minimize overlapping
areas of clusters. The distance between CRDP and each point can be estimated
as the radius of each cluster. Delaunay triangulation [9] [10], which guarantees
the construction of an approximate equilateral triangle, is used for constructing a
triangle. The construction of equilateral triangles leads to load-balanced energy

Weighted Localized Clustering 545

consumption of each CH. By the concept of load-balancing, the prolonging of
network lifetime can be achieved [11].

3.2 Weighted Localized Clustering Phase

The cluster radius of three points including the construction of a triangle can
be dynamically controlled by using a CRDP as a pivot. In LLC, our previous
work [6], the goal is to determine the CDRPs which minimize the overlapping
areas of clusters by finding optimal cluster radii. However, in some cases where
a subset of CHs are assigned to specific tasks or in some cases of the computing
power of each CH are not same each other, they need to assign weight factors
to each CH. Therefore, we suggest an extended algorithm of LLC, w-LLC, by
assigning priorities to the CHs using weight functions.

Fig. 1. Notations for NLP-based
approach for w -LLC

Fig. 2. Notations for VC-based
approach for w -LLC

NLP-Based Approach for w-LLC. In LLC, by using NLP-based approach, a
CRDP is determined by an energy-constrained objective function as the Eq. (1).

minimize: f(r1, r2, r3, θ1, θ2, θ3, E1, E2, E3)

=
1
2

3∑
k=1

θk · r2
k · Ek

1
3

∑3
j=1 Ej

− Striangle (1)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

In Eq. (1), θk denotes the angle value of CHk, rk means the distance between
CRDP and CHk, and Ek denotes the energy state of CHk. Also Striangle is the
triangle area by Delaunay triangulation. Fig. 1 shows the conceptual diagram
for Eq. (1). The purpose of Eq. (1) is to minimize the overlapped cluster cov-
erage by considering the residual energy of each CH. If the overlapping area is
getting to be larger, CHs may consume their energy more and more. Therefore,
maintaining the minimized overlapping area can save the energy of each CH a
lot. To compute the position of a CRDP which can minimize the overlapping
areas, we obtain the areas of three sectors which have the angles of CHs and the
area of Striangle. For the purpose of computing the area of Striangle, ’Heron’s

546 J. Kim et al.

formula’ is used. A server calculates the area of Strinagle using this formula. As
for an NLP method to solve Eq. (1), we use a ’L-BFGS method’ [12, 13], one of
the most efficient NLP methods for solving unconstraint optimization problem.
In [12], the theoretical concept of non-linear programming is presented. In [13],
the L-BFGS algorithm is presented. The other values except the angular values
can be transmitted to the server; however, all the CHs should be aware of these
values. Taking communication overheads into account, it is desirable to compute
these at the server rather than CHs since a server is less energy constrained than
CHs or mobile devices. The server eventually obtains the energy state and the
positions of each CH. Each angular value is computed by the second law of cosine
in the server. As shown in the Eq. (1), the CH of NLP-based approach has the
same priorities. However in certain cases, we need to assign a different weight to
each CH. If the CH in certain area is more important than the other CHs, we
need to assign higher priority to the CH. Also if events occur in some endemic
specific area, the CH in that area must be assigned with a higher priority. By
these necessaries, the consideration of weight functions is necessary. Finally, in
the case of the CHs have different computing power each other, the different
weight factors must be considered. If one CH has more computing power than
the other CHs, the CH needs to enlarge its cluster range to preserve the energy
of the neighbor CHs to achieve load-balancing effect. Therefore we also need to
assign the weight functions to each CH in the aspect of computing power of each
CH. We can consider ’penalty functions’ and ’reward functions’ for the weight
functions. If the penalty function of a CH has a large value, the CH must reduce
its cluster radius. If the reward function of a CH has a large value, the CH must
enlarge its cluster radius. In other word, a smaller penalty function value means
a higher priority for a CH, while a smaller reward function value indicates a lower
priority. Eq. (2) shows the objective function of NLP-based approach for w -LLC.

minimize: f(r1, r2, r3, θ1, θ2, θ3, φ1,1(−→x), . . . , φm,3(−→x), ψ1,1(−→x), . . . , ψn,3(−→x))

=
1
2

3∑
k=1

θk · r2
k ·

m∏
l=1

φl,k(−→x)
1
3

∑3
l=1 φl,i(−→x)

·
n∏

g=1

1
ψg,k(−→x)

1
3

∑3
i=1

1
ψg,i(

−→x)

− Striangle (2)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

The notations of Eq. (2) are the same as the notations of Fig. 1 and Eq. (1).
In Eq. (2), w -LLC assigns a weight function to each CH where φl,k(−→x) and
ψl,k(−→x) represents a penalty function and a reward function, respectively. This
objective function, Eq. (2), has m penalty functions and n reward functions.
The example of penalty function and reward function is ’residual energy’ and
’priority’, respectively. If residual energy is quite small in a CH, the CH must
preserve its residual energy. In this case, the CH becomes more important than
the other CHs in the aspect of energy conservation. The CH needs to reduce its
cluster radius for preserving its energy for load-balancing. Therefore, the smaller
residual energy of a CH, the higher weight of the CH. Therefore the ’residual
energy’ is considered as the example of ’penalty function’. If the priority of a CH

Weighted Localized Clustering 547

is higher, the importance of CH also becomes higher. Therefore, the priorities
can be an example of reward functions.

VC-Based Approach for w-LLC. In NLP-based approach, it may generate
computation overheads due to an iterative NLP method. We thus consider an-
other method to reduce the computation overheads. The notations of VC-based
approach is depicted in Fig. 2. It initially executes an NLP computation at first.
Any weight factors do not need to be considered in the initial NLP-computation.
The basic notations and the objective function for obtaining minimized energy
consumption in VC-based method are the same as those in NLP-based method,
except that the former does not considers any energy constraints and weight fac-
tors. The equation to obtain the initial position of a CDRP is described as Eq. (3)

minimize: f(r1, r2, r3, θ1, θ2, θ3) =
1
2

3∑
k=1

θk · r2
k − Striangle (3)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

As time goes, however, the objective function may move a CRDP towards the
CH that has consumed the most amount of energy. In the objective function
of VC-based approach, we do not consider the energy factor. In the iterative
procedure, we need to consider the energy factor. Therefore, the next position
of CRDP is determined by Eq. (4) under the iteration policy.

CRDPi+1 = CRDPi −
3∑

k=1

Ek

1
3

∑3
j=1 Ej

· vk

‖vk‖
(4)

s.t. CRDPk = (xCRDPk
, yCRDPk

)

Eq. (3), the objective function of ’VC-based approach’, does not consider the en-
ergy state of each CH when it determines the position of CRDP. Therefore by
using Eq. (4), we can consider the energy state of each CH. By Eq. (4), the CH
which has more energy consumption is assigned with higher priority whereas
the CH which has less energy consumption is assigned lower priority. By this
operation, we can obtain load-balanced energy consumption and optimal posi-
tion of a CRDP. Using this VC-based approach, we can preserve the energy of
CHs as much as the NLP-based approach so that we can reduce computation
overheads. In VC-based approach, we have to update the coordination of CRDP
given in previous step. In NLP-based approach, however, re-computation to find
the optimal solution to the objective function using NLP method can be over-
burden. Therefore, the repeated vector computation is much simpler than the
NLP-based computation in the aspect of algorithm complexity. To apply the
concept of assigning the weight factors in CHs, we can update Eq. (4) as

CRDPi+1 = CRDPi −
3∑

k=1

m∏
l=1

φl,k(−→x)
1
3

∑3
l=1 φl,i(−→x)

n∏
g=1

1
ψg,k(−→x)

1
3

∑3
i=1

1
ψg,i(−→x)

· vk

‖vk‖
(5)

s.t. CRDPk = (xCRDPk
, yCRDPk

)

548 J. Kim et al.

by assigning weight functions. The notations of Eq. (5) are the same as Eq. (2)
and Eq. (4). By re-modeling Eq. (4) as Eq. (5), we can consider the many weight
factors. As shown in Eq. (5), we can consider m penalty functions and n reward
functions for the purpose of finding the coordination of CRDP. The coordination
of CRDP can provide minimized energy consumption in each CH.

3.3 Iterative Policy

When events occur most frequently in some specific areas where a certain CH
consumes its energy a lot. In this situation, the CHs in the target region will
consume more energy and the operation will be relatively more important than
the other CHs in the other area of the network of lower tier. Then a server has
to change the radius of clusters to balance energy consumption of each CH and
to preserve the energy of the CH which has higher priority than the other CH.
Moreover, since the server has an iteration timer, if no events occur until the
timer is expired, the server requests energy information to all the CHs and starts
the w -LLC algorithm. The server collects data including energy information of
CHs and executes w -LLC periodically.

4 Effectiveness of w-LLC

In this section, we evaluate and analyze the performance of w -LLC through
simulation-based performance evaluation. As a simulation environment, we con-
sider the WSN environment. To consider the WSN environment with the net-
work architecture proposed in this paper, the wireless network system consists
of the upper tier for communicating among CHs and the lower tier for sensing
events and transmitting them to CHs. There are ’clustering scheme with fixed
radius (FR)’ and LLC for the comparison studies with w -LLC. Fig. 3 presents
the average lifetime and variance of the five CHs evaluated by FR, LLC, and
w -LLC. We generate the events in some specific areas, and assign weight func-
tions to the CH. In the case of FR where cluster radii are fixed, the variance
is constant. w -LLC shows less variance than LLC, which denotes the fairness
of energy consumption. As shown in Fig. 4, FR shows the worst performance
among others in terms of the average lifetime of five CHs. When events occur
in certain specific areas more frequently, w -LLC shows better performance than
LLC. We also consider two different scenarios, (1) sensing events occur around in

Fig. 3. Comparison of FR, LLC, and w -LLC

Weighted Localized Clustering 549

Fig. 4. Comparison of the residual
energy

Fig. 5. Percentage of overlapped area
(events intensively occur in certain area)

Fig. 6. Comparison of LLC and w -LLC in the aspect of load-balancing on CHs

certain hot spots, named focused sensing; and (2) events occur evenly across the
sensor network, named fair sensing. As shown in Fig. 4, residual energies in FR
are further quickly consumed than LLC and w-LLC. FR shows a longer lifetime
in fair sensing than focused sensing. The CHs in the hot spots of focused sens-
ing exhaust their own energies rapidly. In focused sensing, w-LLC is the most
energy efficient, since it uses weight functions that reflect territorial character-
istics. We evaluate the performance of a scenario that sensing events intensively
occur in a certain area. In the environment, the weight factors of w -LLC can
deal with the situation very well. As shown in Fig. 5, w -LLC outperforms the
earlier version, LLC. The range of overlapping area per total area of LLC is
between 0.30 and 0.34. However the range of overlapping area per total area of
w -LLC is between 0.26 and 0.31. Therefore w -LLC is more energy efficient than
LLC.

If the CHs in the system achieve load-balancing, the system lifetime can
increase [11]. As shown in Fig. 6, the standard deviation of CHs in LLC is
3.171049598 and the average lifetime of CHs in LLC is 18.5 minutes. The other
side, the standard deviation of CHs in w -LLC is 2.67498702 and the average
lifetime of CHs in w -LLC is 20.6 minutes. By the result of this simulation, we
shows that w -LLC is more energy-efficient than LLC in the aspect of lifetime of
CHs.

550 J. Kim et al.

5 Adaptability for RFID Reader Collision Arbitration

Radio Frequency IDentification (RFID) is the next generation wireless commu-
nication technology applicable to various fields such as distribution, circulation,
transportation, etc. RFID is a non-contact technology that identifies objects at-
tached with tags. Tags consist of a microchip and antenna. RFID readers obtain
the information of objects and surroundings through communication with tag
antennas [14]. Minimizing collisions among RFID reader and tag signals has a
substantial effect on performance because tag recognition rate effectively deter-
mines RFID system performance. However, the RFID reader and tag collision
problem has not received much attention. Therefore, as one of the promising
application areas of w -LLC, RFID networks can be considered to develop an
RFID reader collision arbitration protocol. RFID systems consist of RFID read-
ers which are fixed a priori, as an upper layer and RFID tags as a lower layer in
a two-tiered logical hierarchical model. After clustering tags in the lower layer,
RFID readers recognize tags in the cluster and send information stored in tags
to a server by using multi-hop routing among RFID readers. RFID tags have
one-hop communication with RFID readers, which allows us to exploit general
clustering schemes. In other words, this RFID system has the similar architec-
ture to the w -LLC. Based on the w -LLC like system architecture, we can reduce
overlapping area of RFID reader clusters. By reducing the overlapping area, we
can reduce the collision of signals from RFID readers.

5.1 Classification on RFID Reader Collision Arbitration

Research efforts for the RFID collision arbitration problem [14] can be classified
into two groups: RFID reader collision arbitration protocols [15] and RFID tag
collision arbitration protocols [16]. The main focus of this paper will be behind a
motivation to develop a RFID reader collision arbitration protocol based on w -
LLC. The approaches to RFID reader collision arbitration protocols are further
divided into scheduling-based approach which prevents RFID readers from si-
multaneously transmitting signal to a RFID tag, and coverage-based approach.
A widely known scheduling-based protocol is the Colorwave proposed in [15].
The Colorwave performs scheduling instructed by RFID readers using Distrib-
uted Color Selection (DCS) or enhanced DCS, Variable-Maximum Distributed
Color Selection (VDCS), after it divides medium into time slot. The other reader
collision arbitration approach is the coverage-based approach, which minimizes
collision possibility by optimizing the overlapping areas of clusters which RFID
readers have to cover up. Under the concept of a coverage-aware RFID reader
collision arbitration mechanism to minimize the overlapping area of the cluster,
we can apply w -LLC, to overcome reader collision problems occurring among
RFID readers which have different computing power.

5.2 Coverage-Aware RFID Reader Collision Arbitration: w-LCR

In the hierarchical clustering-based two-tiered network architecture, the larger
overlapping the areas of clusters that RFID readers form, the higher the col-

Weighted Localized Clustering 551

lision probability among the readers. We propose an algorithm that minimizes
the overlapping areas among clusters by regulating RFID readers cluster radii
dynamically to minimize the reader collisions. Our initial version of the dynamic
cluster coverage algorithm, named as LLC, is presented in [6]. Also, each RFID
reader in the RFID networks has different computing power. Therefore it is
hard to apply LLC to the RFID networks directly. By this constraint, we can
use w -LLC for considering the different computing power of each RFID reader.
The w -LLC is to minimize the energy consumption of each CH by dynamically
adjusting cluster radius. Based on it, this paper proposes weighted localized clus-
tering for RFID networks (w-LCR) scheme to minimize the overlapping areas
and then minimizes RFID reader collisions.

6 Performance Evaluation of w-LCR

A simulation study is conducted to evaluate the performance of w -LCR. RFID
tags were randomly deployed and RFID reader was placed according to each
simulation metric. Our simulations were designed to evaluate the effect of (1)
probability of RFID reader collision and (2) energy consumption. We compare
w -LCR against the method that has a fixed cluster radius.

6.1 Possibility of RFID Reader Collision

Fig. 7 shows the possibility of collision in FR and w -LCR in RFID networks. w -
LCR have much lower possibility of collision than FR method because w -LCR
algorithm regulates cluster radius dynamically and minimizes the overlapping
areas. As shown in Fig. 7, the possibility of collision of w -LCR is between 0.09
and 0.11. However the possibility of collision of FR is between 0.25 and 0.35.
Therefore w -LCR has better performance than FR almost three times. Further-
more, as shown the shape of graph, the FR has more variance than the w -LCR.
The variance of FR is 0.1 and the one of w -LCR is 0.02. FR has more vari-
ance than w -LCR almost five times. The load-balancing concept based on the
weight functions of w -LCR can make the variance smaller than FR as shown

Fig. 7. Possibility of collision in RFID
networks

Fig. 8. Energy consumption in RFID net-
works

552 J. Kim et al.

the Fig. 7. Also, as shown the shape of FR graph, the possibility of collision
is continuously increasing. On the other side, the w -LCR is not continuously
increasing. This situation occurred on the effect of load-balancing concept of
weight functions.

6.2 Energy Consumption

w -LCR consider the residual energy state of RFID readers as another important
metric. We compare the performance of proposed schemes in terms of energy
consumption in RFID networks. Fig. 8 shows the results of simulation. As shown
in Fig. 8, the w -LCR can achieve more energy-efficiency than FR. Under the FR
consumes entire energy of all RFID readers at 8.7 minutes. However the w -
LCR consumes entire energy of all RFID readers at 12.6 minutes. Therefore
the w -LCR has more energy efficient than FR 1.45 times. Furthermore, Under
the FR consumes half energy of all RFID readers at 4.1 minutes. However the
w -LCR consumes half energy of all RFID readers at 9.4 minutes. Therefore
the w -LCR has more energy efficient than FR based algorithm 2.29 times. As
shown until now, at the beginning of the operating the protocol, w -LCR has
more energy efficient that the terminal stage. As shown in the shape of w -LCR
graph, the increment of the beginning is smaller. However the time has gone,
the increment of the graph is higher. As time has gone, some RFID readers are
consumes all energy and becomes ’battery-drained RFID reader’ until recharge.
Then the neighbor RFID readers must cover the area controlled by the ’battery-
drained RFID reader’. Therefore time has gone, the increment become higher.
In FR, FR does not control its cluster radius. Therefore RFID reader, which
uses the FR, consumes fixed amount of energy. Hence the shape of FR has linear
form.

7 Conclusions and Future Work

We extended our previous research, LLC, [6] to weighted Low-Energy Localized
Clustering (w-LLC). For improving our previous work, we apply the concept of
weight functions to the LLC. Based on the simulation based performance eval-
uation, we observed that w -LLC achieves better throughput than LLC. As an
application area, we consider the RFID networks to solve RFID reader colli-
sion problem. We developed weighted Localized Clustering for RFID networks
(w-LCR) scheme based on the concept of w -LLC. By reducing the overlap-
ping areas of clusters, we can reduce the possibility of collision of signals. The
proposed RFID reader collision arbitration protocol in this paper is a coverage-
aware reader collision arbitration protocol. As a future research direction, we will
design more efficient RFID reader collision arbitration with the concept of ’hy-
brid RFID reader anti-collision algorithm’ which has the concept of scheduling-
based RFID reader anti-collision algorithm used by the Colorwave, based on
w -LCR.

Weighted Localized Clustering 553

References

1. V. Mhatre and C. Rosenberg, “Design Guidelines for Wireless Sensor Networks:
Communication, Clustering and Aggregation,” Elsevier Ad Hoc Networks, 2(1):45-
63, 2004.

2. O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed Cluster-
ing Approach for Ad Hoc Sensor Networks,” IEEE Trans. on Mobile Computing,
3(1):366-379, 2004.

3. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An Application-
Specific Protocol Architecture for Wireless Microsensor Networks,” IEEE Trans.
on Wireless Comm., 1(4):660-670, 2002.

4. G. Gupta and M. Younis, “Load-Balanced Clustering for Wireless Sensor Net-
works,” in Proc.of IEEE ICC, AK, USA, May 2003.

5. J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen, “Topology Control for Wireless
Sensor Networks,” in Proc. of ACM MobiCom, CA, USA, Sep. 2003.

6. J. Kim, E. Kim, S. Kim, D. Kim, and W. Lee, “Low-Energy Localized Cluster-
ing: An Adaptive Cluster Radius Configuration Scheme for Topology Control in
Wireless Sensor Networks,” in Proc. of IEEE VTC, Stockholm, Sweden, May 2005.

7. I. F. Akyildiz, W. L. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor
Networks: A Survey”, Elsevier Computer Networks, 38(4):393-422, Mar. 2002.

8. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges:
Scalable Coordination in Sensor Networks,” in Proc. of ACM MobiCom, WA, USA,
Aug. 1999.

9. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, 2nd Ed., Springer-Verlag, 2000.

10. F. Aurenhammer, “Voronoi Diagrams - A Survey of a Fundamental Geometric
Data Structure,” ACM Computing Surveys, 23(3):345-405, Sep. 1991.

11. S. Yin and X. Lin, “Adaptive Load Balancing in Mobile Ad Hoc Networks,” in
Proc. of IEEE WCNC, Mar. 2005.

12. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory
and Algorithms, 2nd Ed., Wiley, 1993.

13. D. C. Liu and J. Nocedal, “On the Limited Memory BFGS Method for Large Scale
Optimization,” ACM Mathematical Programming, Dec. 1989.

14. F. Zhou. C. Chen, D. Jin, C. Huang, and H. Min, “Evaluating and Optimizing
Power Consumption of Anti-Collision Protocols for Applications in RFID Sys-
tems,” in Proc. of ACM ISLPED, 2004.

15. J. Waldrop, D. W. Engels, and S. E. Sarma, “Colorwave: An Anticollision Algo-
rithm for the Reader Collision Problem,” in Proc. of IEEE ICC, AK, USA, May
2003.

16. C. Law, K. Lee, and K.-Y. Siu, “Efficient Memoryless Protocol for Tag Identifica-
tion,” in Proc. of ACM DIALM, 2000.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 554 – 563, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Kind of Context-Aware Approach Based on
Fuzzy-Neural for Proactive Service of

Pervasive Computing

Degan Zhang, Guangping Zeng, Xiaojuan Ban, and Yixin Yin

School of Information Engineering,
University of Science and Technology Beijing, Beijing 100083, P.R. China
gandegande@sohu.com, zhangdegan@tsinghua.org.cn

Abstract. The task-oriented proactive seamless migration is one of difficult
problems to be solved in pervasive computing paradigm. Apparently, this func-
tion of seamless mobility is suitable for mobile services, such as mobile Web-
based learning. But when seamless migration for computing task of learning is
realized among PC, laptop, or PDA, there are several difficult problems to be
solved, such as how to supply the proactive/attentive service with uncertainty
for aware context. In order to realize E-learning based on proactive seamless
migration, we design and improve relative fuzzy-neural approach (of course,
besides it, there are other approaches). Generally, the network can be classified
into two. One is that fuzzy logic reasoning is completed by fuzzy weight in neu-
ral system. The other is that the input data must be fuzzified in the first or sec-
ond level, but not weight. We discuss and study the second in this paper. For
proactive decision, fusion method based on fuzzy-neural can make Web-based
learning system keep advantage of fuzzy logic system and remain adaptive op-
timum in proactive/attentive service. The correctness and validity of our new
approach have been tested.

1 Introduction

With the development of mobile communication and Internet, the next great informa-
tion process paradigm shift, to pervasive computing, is already well under way and
will have no less of an impact on industry, government, and daily life than the per-
sonal computing revolution. The proactive/attentive service is fused the technologies
of computing, communication and digital multimedia, which integrates information
space and physical space of human being’s life. This paradigm meets the require-
ments of human being in “5A” that is anybody maybe obtain anything with any de-
vice anywhere and at anytime. There are a bunch of branch research fields under the
banner of it, such as human-centric universal access, instead of traditional machine-
centric. Consequently, technologies that allow the integration of existing and foreseen
heterogeneous and homogenous networks into a single platform will be of major
importance [1-3]. Nowadays, many ambitious projects have been proposed and car-
ried on to welcome the advent of pervasive computing, such as Seamless mobility.
For seamless mobility, the history and context of computing task will be migrated

 A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service 555

with person’s mobility, and the computing device and software resource around this
task will make adaptive change. The chief function requirement of seamless mobility
is on the continuity and adaptability of computing task [4-6]. we are entering a new
age of computing, namely, the era of pervasive computing era, which is studied only
recently computing mode.

Apparently, this function of seamless mobility is suitable for mobile services, such
as mobile Web-based learning. For learner, it is necessary and accessible when he/she
can not complete his/her learning task/courseware, such as video, audio, text, picture,
etc., in one specified scene, he/she can go on learning the uncompleted
task/courseware in other spots by seamless mobility based on the Web. But when
seamless migration for computing task of learning is realized among PC, laptop, or
PDA, there are several difficult problems to be solved, such as how to supply the
proactive/attentive service with uncertainty for aware context [7-10] because it should
fuse relative multi-source information with identity, location and time among differ-
ent computing nodes [9]. As we know, based on fuzzy-neural network, we can reason
and make decisions (of course, besides it, there are other approaches) [11-14], so it
can be used for deciding when supply the proactive/attentive service. In order to real-
ize proactive service of pervasive computing, we will design and improve relative
fuzzy-neural approaches.

The rest of this paper is arranged as follows: Section 2 introduces fuzzy-neural
structure and learning algorithm for context-aware. Section 3 is context-aware com-
puting method based on fuzzy-neural network. Section 4 explains Implemented plat-
form for proactive service. Section 5 shows the test & comparison. Section 6 draws
the conclusion.

2 Fuzzy-Neural Learning Algorithm for Context-Aware

2.1 Fuzzy-Neural Structure

The proposed fuzzy-neural structure is divided into four layers: input layer, fuzzification
layer, reasoning layer, non-fuzzification layer. Suppose M inputs one output, N rules,
that is to say, there will be M input nerve cells in input layer, MN nerve cells in fuzzifi-
cation layer, N nerve cells in reasoning layer, only one nerve cell in non-fuzzification.
So, once the M and N are determined, the fuzzy-neural structure will be decided. Now,
the key problem is to determine the N. We can estimate the value of N by defined fuzzy
curve. In order to introduce conveniently fuzzy-neural model, we first define the basic
nerve cell node model. Classic neural network consists of these nerve cell nodes. The
input of nerve cell is obtained by action of former relative nerve cell output and weight.
The input of basic nerve cell is a sum function f(•), this function can combine and
stimulate information from other nerve cells. The pure input of this nerve cell can be
expressed as f(μ1, μ2 , …, μp , w1, w2, …, wp), the output as a(f(•)), a(•) is stimulating
function. Now, we introduce each layer of the proposed structure.

The first layer: the nerve cell in this layer only transfers input data into the second
layer, then,

f(xi)=xi and a(•)=f(•),

The weight is unit 1.

556 D. Zhang et al.

 The second layer: the fuzzy membership function will form simply in this layer,
fuzzification layer. In this paper, we select

f(•)=(wij1xi+ wij0)
2Lij,

wij0 is weight, the threshold is
μij = a(•)=exp(-f(•)),

 Which is Gaussian-like function. The third layer: reasoning layer, by multiple mul-
tiply reasoning, namely,

f(•)=μij , ∏=∏ •=•
==

M

i
ij

M

i
fa

11
)()(μ .

The last layer:

)))(exp(1/(1)()(
1

•−+=•=•
=

favf
N

j
jjμ .

 In this layer, It is important that a(•) keeps Sigmoid function because it can ensure
the system convergence which is better than reference [4]. After setting up fuzzy-
neural network, each fuzzy rule rlj can be defined according to the condition sentence
as follows:

IF x1 isμ1j and x2 isμ2j and … and xM isμMj THEN Y is vj .
 Noticeable, neural weight V{vj} and { wij1 ,wij0 } decide fuzzy rule basically. Lastly,
the output by non-fuzzifying is:

))exp(1(1)()(),...,,(
1

21 −+=••=
=

N

j
jjM vffxxxo μ

In this model, the number of fuzzy rule only be determined by data itself.

2.2 Fuzzy-Neural Learning Algorithm for Context-Aware

After the number of fuzzy rule N is determined, the fuzzy-neural structure will be
done. The network will go to the second step. The fuzzy membership function and
tuned weight will be obtained by learning optimum. Based on the traditional BP
learning algorithm, the steepest grads go-down, we can obtain the learning algorithm
of this fuzzy-neural network. The purpose of learning is to make E smallest.

−=
=

m

k

kk sooE
1

2)()()(
2

1

 so(k) is ideal output of the k-th sample, o(k) is current output of the k-th sample dur-
ing learning. In order to make E come smallest, a high-speed BP learning algorithm
will be improved to train the fuzzy-neural network and tune the variables

ijijijj landwwv 10 ,, , Under the condition of convergence, we select a small positive

number (close to 0) c>0 or a biggest iterative number H uses as learning end condi-
tion. Until E<c or up to H, learning can be ended. The following equations are for
learning variables, in order to speed the learning process, a moment item has been
added in each equation.

))1()((1)/()()1(1 −−+∂−∂+=+ nvnvttvEcnvnv jjjjj (1)

 A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service 557

))1()((2)/()()1(2 −−+∂−∂+=+ nlnlttlEcnlnl ijijijijij (2)

))1()((3)/()()1(000300 −−+∂−∂+=+ nwnwttwEcnwnw ijijijijij (3)

))1()((4)/()()1(111411 −−+∂−∂+=+ nwnwttwEcnwnw ijijijijij (4)

−−=∂∂−
=

m

k

k
j

kk
j soovE

1

)()()()(/ μ (5)

∏ +×+−−=

∂∂×∂∂×∂∂×∂∂−=∂∂−

= ≠

+m

k ih

l
ij

k
iij

l
ij

k
iij

k
hjj

kk

ij
k

ij
k

ij
k

j
k

j
kk

ij

ijij wxwwxwvsoo

looElE

1

0.22
0

)(
1

2
0

)(
1

)()()(

)()()()()()(

)())(exp()(

)/()/()/()/(/

μ

μμμμ

(6)

∏ +×+−−=

∂∂×∂∂×∂∂×∂∂−=∂∂−

= ≠

−m

k ih

k
i

l
ij

k
iij

l
ij

k
iij

k
hjj

kk

ij
k

ij
k

ij
k

j
k

j
kk

ij

xwxlwxwvsoo

wooEwE

ijij

1

)(0.12
0

)(2
0

)(
1

)()()(

0
)()()()()()(

0

)(0.2))(exp()(

)/()/()/()/(/

μ

μμμμ

(7)

∏ +×+−−=

∂∂×∂∂×∂∂×∂∂−=∂∂−

= ≠

−m

k ih

k
i

l
ij

k
iij

l
ij

k
iij

k
hjj

kk

ij
k

ij
k

ij
k

j
k

j
kk

ij

xwxlwxwvsoo

wooEwE

ijij

1

)(0.12
0

)(2
0

)(
1

)()()(

1
)()()()()()(

1

)(0.2))(exp()(

)/()/()/()/(/

μ

μμμμ
 (8)

Eq.(1)~(8) is improved high-speed BP learning algorithm for fuzzy-neural net-
work, according to initial method of reference [5], by input and output data, the opti-
mal network model can be obtained. For example, after training, if the performance is
not ideal, you can add the number of fuzzy rule, on the contrary, if the performance is
very good, in order to decrease model complexity, you can reduce the rule number.
During learning, if the fuzzy membership function is always close to a certain value in
whole discussed range, you can cut off the rule and no necessary nerve cells or stop
training and learning. Generally, based on the fuzzy data curve , the network structure
is close to optimum.

 2.3 Fuzzy Data Curve for Network Structure

In order to express conveniently, we consider a multi-input and multi-output system
with input and output data. Two things can be done on fuzzy data curve: I) evaluate
the influence to output by input variable. II) determine the rule number N primarily. xi

(i=1,2,…,n) expresses input variable data, and o expresses output. Suppose m training
sample points, xik (i=1,2,…,n,k=1,2,…,m) is sample point of the k-th sample connect-
ing the i-th input variable. For each input variable xi, the define of variable fuzzy
membership degree function is:

),...,2,1()))/((exp(0.1)(0.4 mkxxaxy iikiik =−−−= (9)

Where yik is membership degree function of input xi to sample point k. a is about
5% of least gap of xi. Each pair (yik ,o

(k)) has the relative fuzzy rule for xi, that is to
say, IF xi is yik (xi), THEN o is o(k). For each input variable xi, with the following equa-
tion, we can obtain a fuzzy data curve ri:

558 D. Zhang et al.

)(

)(
)(

1

1

)(

=

=

=
m

k
iik

m

k

k
iik

ii
xy

oxy
xr (10)

3 Method of Context-Aware Computing Based on Fuzzy-Neural

The proposed fusion architecture based on fuzzy-neural is as follow. Firstly, through a
data assignment network, the input data from each sensor are allotted to every fusion
sub-node, the sub-node will preprocess, filter according to fusion proposition, after
selecting, sub-node can do data fusion. Each sub-node is fuzzy-neural network.
 The three steps can be completed data fusion [15-17] by fuzzy-neural network. At
first, the fuzzy rule must be initialized from experience information. Then, the fuzzy-
neural network must be trained according to classic prior obtained data so that it can
fit sample data. At last, It can fuse input data based on trained fuzzy-neural network
and it can tune slightly under the fusion belief degree.
 In order to apply to different environment better, the fuzzy-neural network must be
adaptive. Because the change speed of environment and input signal data is slow,
slight tune can be do with online training in fuzzy-neural network. As we know, the
change speed of fusion result is faster and more than the input signal variable or data,
so according to the change of input data as input can be designed a function, a expec-
tation can be got by fusion result and this function, and the expectation can be used as
training sample to do online slight tuning. Suppose the belief degree of input data is

nμμμ ,...,, 21 , the constructed function may select as follow:

0)1()(,01.0

0)1()(,01.0
),...,,(

11

11
21

≤−−−

−−+
=

==

==
n

i
i

n

i
i

n

i
i

n

i
i

n

kk

kk

f
μμ

μμ
μμμ

 (11)

Where)(kiμ ,)1(−kiμ is the k-th and the (k-1)-th belief degree of i-th input signal

data, respectively. The expectation value of slight tuning is y+f during each fusion, y
is fusion result.

4 Implemented Platform for Proactive Service

In the implemented platform, our key idea is adopted fuzzy-neural network theory to
make decision for proactive seamless transfer. The function of fuzzy-neural network
is encapsulated based on agent during proactive seamless migration. Our implemented
platform can work in Client/Server, Browse/Server and Peer-to-Peer paradigm.

Fig.1 is supported structure of the platform for proactive service. This is a kind of
structure with multi-agent. The structure can be divided into multiple levels. Multiple
agents are collaborated for proactive seamless services, such as Web-based learning.
Each agent has its special function. Fig.2 is the structure of seamless migration em-
bedded in this implemented platform, which includes four layers: SM-link layer,

 A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service 559

SM-path layer, SM-connection layer and SM-session layer. In Fig.2, “T” stands for
“Task”, ”A” stands for “Agent”, “MA” stands for “Mobile Agent” and “C” stands for
“Container”, which is a daemon threads component installed in each relative mobile
devices. Their working principle has mentioned above.
 This fusion agent is the most important computing agent with fuzzy-neural net-
work. The dataset from database is processed in fuzzy technology, such as clustering.
The sensors of neural network may modify the weight of training. The mass belief
function has timely tracked dynamic process of learner. The membership function has
measured correlative degree of evidences based on their correlative degrees.
 Because the migrating mode based on agent for learning task is distributed, peer-to-
peer / end-to-end, we have designed several relative communication primaries and
class for migrating, such as,

BeginToListen(UINT nPort,ACCEPT_CALLBACK callback);
Void (CAgent::* ACCEPT_CALLBACK) (UINT& Connection_ID)

BeginToRequest(UINT &nConnection_ID, CString IP,UINT nPort);
Migrate (UINT nConnection_ID, CString strMsg, CDate time_stamp)
 PrepareForRecv(UINT nConnection_ID, RECEIVE_CALLBACK callback);

Void (CAgent::* RECEIVE_CALLBACK) (CString &strMsg, UINT&
ConnectionID), …

class CAgent {

public:
 CAgent();
 virtual ~CAgent();
 BOOL Register();
 BOOL Quit();

BOOL Subscribe(CString strGrpName, NOTIFY_CALLBACK callback,
CString strTemplate="");

 UINT GetSharedFile(LPCTSTR url,LPCTSTR lpszTagInfo=NULL);
 virtual void OnConnect();

virtual void OnDisconnect(); ...};

class Ccontainer {public:

 CContainer();
 virtual ~CContainer();
 BOOL LaunchAgentByName(CString strAgtName);
 BOOL LaunchAgentByPath(CString strPath);
 void ProcessDSCmd(CDSMsg & msg);

typedef struct _MINIHTTP_REQUEST {
 SOCKET socket;
 char* http_data;
 unsigned long http_data_size;
 MINIHTTP_FIRST_LINE* first_line;

} MINIHTTP_REQUEST;
typedef struct _MINIHTTP_RESPONSE {

 unsigned int range_begin;

560 D. Zhang et al.

 unsigned int range_end;
 unsigned long http_data_size;

 int http_response_code;
} MINIHTTP_RESPONSE; ... }

OS/Network

Ethernet/WLAN

IrDA Bluetooth

Proxy Agent

Control link with Asynchronous
message handle

Message
Sys

Service
Stream Bulk

Application/Agent

Smart Platform API/XML

XML/TCP TCP
RTP/UDP

IP Multicast

System API

Environment
Discovery Module

Fig. 1. Supported structure for proactive service on the platform

ND

OS

Physical layer

Link layer

TCP/IP layer

SM-link layer

SM-path layer

SM-
connection

 layer

SM-session
layer

Wired Lan Wireless Lan WAN

MAC Address

IP Address

T TA AMA
C C

TA AMA

TA AMA

T

T

SM-path SM-path

SM-connection

SM-session

SM-link SM-link(IP,IP)

Fig. 2. Structure of seamless migration embedded in the platform

 A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service 561

5 Test and Comparison

In our test of mobile services based on context-aware approaches of fuzzy-neural
network mentioned above during proactive seamless migration, we have adopted the
following dataset [7-10] and gotten the following results.

Table 1. One part of dataset for test

No
Number of

learning
task

Number of
joined

persons

Hit rate of
specified
learner

Output of
fuzzy-neural

network

Output of
Classic
model

1 15 57 47 53.1 62
2 16 67 53 62.9 73.5
3 15 75 62 71.5 79.8
4 24 78 72 76.5 80.1
5 25 73 68 76.9 78.2
6 25 62 56 65.5 73.1
7 26 77 67 74.6 72.9
8 26 78 57 80.6 74.4

 … …

The average error is as follows:

85.2
10

5.28

10

1 10

1
==−×=

=i
iiz ZYM

The comparison error is as follows:

%93.3%100
5.72

85.2
1%100)

10

1
1(

10

1

=×−=×
×

−

=i
i

z

Y

M

The result comparison between FNF and NNF [18-19] is as Table 2 and Table 3.

Table 2. Result comparison between FNF and NNF

Name
Number
 of task

 Sample
dataset

Number of
joined learners

Cluster
Trained
number

Belief de-
gree (%)

NNF 30 2000KB 200 4500 85.1
FNF 30 2000KB 200 14 4500 91.8

Table 3. Comparison of used memory, time and belief degree between FNF and NNF

Name
Number
 of task

Sample
dataset

Number of
joined

learners
Cluster

Trained
number

Used
space

time
Belief
degree

NNF 30 2000KB 200 4500 93KB 132s 85.1
FNF 30 2000KB 200 14 4500 95KB 120s 91.8

562 D. Zhang et al.

 After finishing the steps of learning (training), forecasting, analyzing, we can judge
where the fault forecast result is consistent with the field practice or not. If it is, that is to
say, the fusion belief degree is high, close to 1. According to the introduced method, the
relative comparisons’ result shows the change of belief degree with fusion result. By
online slight tuning, the time of fusion process is shorten, and the belief degree of fusion
result is improved. The curve figures of comparison are dismissed.

6 Conclusion

In order to solve the task-oriented seamless proactive migration for Web-based learn-
ing under the banner of pervasive computing, we have designed and improved relative
fuzzy-neural approaches. In this paper, we have improved the method of fuzzy-neural
network modeling and have proposed a kind of fusion architecture of fuzzy-neural
network based on input and output signal data or variable. From the input data, we
can obtain fuzzy data curve, through the curve, the fuzzy rule number of the network
may be known, and the influence to system is evaluated. A proposed high-speed
learning algorithm is used to initialize the net weight and train the network. From the
fuzzy membership function, the net structure can be optimized. The proposed fusion
architecture base on fuzzy-neural network can make the input signal data or variable
to fuse better, by online slight tuning, the fusion processing can be sped, and the fu-
sion belief degree can be improved. The validity of our approach for proac-
tive/attentive service with uncertainty, such as web-based mobile learning, has been
tested and evaluated by the implemented demo.

References

1. Garlan D, Siewiorek D P. Project aura: toward distraction-free pervasive computing [M].
IEEE Pervasive Computing, 2002, vol1, April–June: 22-31.

2. R. Bagrodia, W. Chu, L. Kleinrock and G. Popek, Vision, Issues, and Architecture for
Nomadic Computing, in IEEE Personal Communications, Pages 14-27, December 1995.

3. Satyanarayanan M. Pervasive computing: vision and challenge. IEEE Personal Communi-
cations, 2001, vol. 8, August: 10-17.

4. Paul C. Managing context data for smart spaces [J]. IEEE Personal Communications,
2000, 10: 44-46.

5. Xu Guangyou, Shi Yuanchun, Xie Weikai. Pervasive computing [J]. Chinese Journal of
Computer, 2003,26(9): 1042-1050(in Chinese)

6. Yuanchun Shi, Weikai Xie, Guangyou Xu. Smart Classroom: Merging Technologies for
Seamless Teleducation, IEEE Pervasive Computing Magazine, April-June 2003,2, No. 2.

7. Degan Zhang, Guangyou Xu, Yuanchun Shi. Moblie agents with intrusion detection during
sealess transfer[C]. The 2nd Internation Conference of Pervasive Computing, April 18,2004.

8. Degan Zhang, Yuanchun Shi, Guangyou Xu. A Kind of Smart Space for Remote Interac-
tive Access Based on Pervasive Computing [C]. The 2nd International Conference on
Web-based Learning (ICWL 2003). Springer-Verlag, LNCS, Sydney, Australia, 2004.

9. Degan Zhang, Yuanchun Shi, Guangyou Xu. Learning by Seamless Migration---A Kind of
Mobile Working Paradigm. In Proceedings of the 3nd International Conference on Web-
based Learning (ICWL2004), Springer-Verlag, LNCS, Beijing, China, 2004.

 A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service 563

10. Degan Zhang, Yuanchun Shi Guangyou Xu. Context-aware Computing during Seamless
Transfer Based on Random Set Theory for Active Space, The 2004 Internation Comfer-
ence on Eembedded and Ubiquitous Computing (EUC2004), Springer-Verlag, LNCS,
Aizu, Japan, 2004.

11. Kang Yao-hong. Data Fusion Theory and Applicaiton. Xi’an Electrical Technology Uni-
versity Press, 1998.

12. Harney RC. Practical Issues Multisensors Target Recongnition. SPIE,Sensor Fusion,
1990,1306.

13. Xu Ling-yu, Zhao Hai, Applicaion of Neural Fusion to Accident Forecast in Hydropower
station, Proceedings of The Second International Conference on Information Fusion, Vol
2, 1999.

14. Du Qing-dong, Zhao Hai, D-S Evidence Theory Applied to Fault Diagnosis of Generator
Based on Embedded Sensors, Proceedings of The Third International Conference on In-
formation Fusion, Vol 1,2000.

15. Tan Zhu-xun. Usual Process of Information Fusion and Application in Fault Diagnosis.
Detection Technology, 1995,(3):15-17.

16. Zhang Yan-duo, Jiang Xingwei. Multisensor Information Fusion and Application in Intel-
ligent Fault Diagnosis. Sensor Technology. 1999,18(2),18-22.

17. Hall D. Mathmatical Techniques in Multisensor Data Fusion. Artech House Inc, 1992
18. Ishibuchi H, Tanaka H. Fuzzy neural networks with fuzzy weights and fuzzy bias .in Proc

ICNN’93,1993, 1650-1655.
19. Lin Y H, George A. A new approach to fuzzy-neural system modeling. IEEE Trans. Fuzzy

System, 1995,3(2): 190-197.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 564 – 575, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Novel Block-Based Motion Estimation Algorithm and
VLSI Architecture Based on Cluster Parallelism

Tie-jun Li and Si-kun Li

Office 621, School of Computer Science, National University of Defense Technology,
410073 ChangSha, China
tj_li@sohu.com

Abstract. This paper proposes a novel block-based motion estimation
algorithm and the corresponding architecture based on cluster parallelism. In
this algorithm, up to 18 predictors are employed to improve the encoding
quality while the computation time is not increased compared with PMVFAST.
Experiment results verify the superiority of the proposed algorithm and
architecture. The PSNR improvement effect on PMVFAST is 8.14 times higher
than that of existing enhanced algorithm EPZS. In particular, they greatly
improve the encoding quality of video sequence with large or irregular motion.
Designed and synthesized on SMIC 0.18um technology, the architecture works
on the frequency of 200MHz. Its throughput is about 15 times higher than the
well-known FS architecture with 16 PEs while it consumes only 9.1% memory
bandwidth of the FS architecture.

1 Introduction

BMA (Block Matching Algorithm) is regarded as an efficient method to get high
compression ratio by reducing the redundancy among video sequences. BMA is an
essential part of several video-coding standards, such as MPEG-1/2/4 and ITU
H.261/263/264. Full Search (FS) is a brute force algorithm and its computation
complexity is so high that it is usually regarded as the test benchmark. Because of its
regular structure and simple control, FS is suitable for algorithm-specific architectures
[1][2][3]. However, the inherently high computation complexity of FS limits the real
time performance and leads to high power dissipation of its architectures.

Many fast BMAs, such as the Three-Step Search (TSS) [4], 2-D log Search [5] and
Diamond Search (DS) [6], reduce the computation complexity at the cost of a
significant loss of visual quality. Several new algorithms, such as PMVFAST
(Predictive Motion Vector Field Adaptive Search Technique)[7] and EPZS (Enhanced
Predictive Zonal Search)[10], have been developed to explore the spatial and
temporal correlation among video sequences. PMVFAST and EPZS improve the
performance and encoding quality greatly and have been adopted by MPEG-4 [8] and
applied to H.264/AVC [9]. To further accelerate PMVFAST and EPZS, we have
proposed an efficient VLSI architecture in previous work [11].

Although PMVFAST and EPZS have developed some MV (Motion Vector)
predictors successfully, their accuracy to the video sequences with large or irregular
motion is not sufficient. Besides, the serial evaluations of MV predictors limit

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 565

computation performance and the number of predictors. Based on the analysis of
PMVFAST and hardware/software co-design method, this paper proposes a parallel
algorithm to evaluate predictors and a VLSI architecture to support this algorithm.
Because of the parallel algorithm, although the number of MV predictors is increased
from 6 in PMVFAST to 18, the encoding quality is improved and the computation
time decreases. Compared with existing PMVFAST architecture [11], the new
architecture employs more configurable VDUs(Variable Delay Units) and two more
PEs (Processing Elements). It can support much more flexible cluster to compute in
parallel while consuming a little more VLSI area and memory bandwidth.

The paper is organized as follows: PMVFAST algorithm is introduced and
analyzed in Sec. 2. Sec. 3 shows the efficiency to improve encoding quality by multi-
predictors. To overcome the disadvantage of multi-predictors, Sec. 4 introduces the
definition of cluster and discusses the utilization of it to reuse data. The new VLSI
parallel array architecture is proposed in Sec. 5 to support cluster parallelism. Sec. 6
proposes the new BMA based on cluster parallelism. Sec.7 implements the new
algorithm and architecture and compares them with the existing ones. Finally, a
conclusion is given in Sec. 8.

2 Analysis of PMVFAST

PMVFAST mainly utilizes spatial and temporal correlation to improve the
performance and encoding quality of BMA[7]. Their efficiency comes from three
aspects: MV (Motion Vector) predicting, adaptive early termination and prediction
refinement. MV predicting checks a set of potentially similar predictors, such as the
MVs of spatial adjacent and temporal correlative MBs (Macro Blocks), and then
selects the best one. The adaptive early termination allows terminating the search at
given stages of the estimation if some rules are satisfied. The prediction refinement
employs a search pattern around the best predictor to essentially improve the final
prediction.

According to [7], PMVFAST is roughly 4.5, 4.8, and 4 times faster whereas its
PSNR (Peak Signal to Noise Ratio) is approximately 0.87dB, 0.81dB, and 0.73dB
higher than TSS, NTSS, and DS, respectively. PMVFAST is about 654 times for SA
32 while having an average PSNR loss of only 0.06dB versus FS. EPZS [8] improves
PMVFAST by increasing the number of MV predictors from 6 to 11 and a new
predicting method of SAD(Sum of Absolute Differences). Although it improves
encoding quality by about 0.01 dB on average, EPZS consumes about 8 % more
computation time than PMVFAST.

With the algorithm PMVFAST, six typical video sequences (CIF format, 300
frames) are encoded: Foreman, Stefan, Coast, Flowers, News, and Mobile. There is
much large or irregular motion in Foreman and Stefan, while the motion in News and
Mobile is small and regular. Other experiment condition includes: half pixel search,
NMB=16, the search area of FS is 16.

Shown in Fig. 1, the encoding quality on the video sequences with large or
irregular motion is not yet sufficient. For example, compared with FS, the PSNRs on
‘Foreman’ and ‘Stefan’ decrease by 0.2195dB and 0.1805dB respectively, which are
much larger than other video sequences with small motion. Besides, the probabilities

566 T.-j. Li and S.-k. Li

to terminate early on these two sequences are much smaller than those on other
sequences. The fact implies that the accuracy of MV prediction on these sequences
decreases.

Fig. 1. Comparison of encoding qualities on different video sequences

In PMVFAST and EPZS, all predictors are evaluated one by one to select the best
one. The computation time increases linearly with the number of predictors. To
reduce the computation time, the predictors could be evaluated in parallel.

Above all, this paper proposes the idea of increasing the number of predictors to
improve encoding quality, a parallel algorithm to evaluate predictors cluster and a
new VLSI architecture to support this algorithm.

3 Multi-predictors ME

3.1 Acceleration Prediction

In order to achieve more accurate prediction, EPZS [10] suggests the accelerator
motion vector (TACCMVx,y), which takes into account both the motion vector of the
corresponding reference frame MB and its acceleration. The computation formula is
as follows:

TACCx,y
t-1=(MVx,y

t-1-MVx,y
t-2)

TACCMVx,y=MVx,y
t-1+ TACCx,y

t-1

where TACCx,y
t-1 is the acceleration of the MB positioned at (x,y), computed

according to motion information of the t-1frame (the reference frame) and the t-2
frame. As to the video sequences with irregular motion, e.g. Forman, the acceleration
of video objects varies acutely. The prediction will not be accurate if producing the
prediction velocity using the reference frame’s acceleration.
 Much information of the video objects has spatial correlation, including the motion
vector, the adjacent info, the acceleration, etc. Among them, the spatial correlation of
the motion vector has been widely used in motion vector prediction, whereas this
paper utilizes the spatial correlation of the acceleration to perform acceleration
prediction, likewise leading to good results.

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 567

 The acceleration prediction predicts the current block’s acceleration using the
computed accelerations of the adjacent blocks. For instance, it can compute the linear
or nonlinear combination of the three spatial adjacent MBs’ acceleration as the
acceleration of the current block. This paper considers the median value as the
prediction acceleration, as follows:

SACCx,y
t=Median(ACCx-1,y

t, ACCx,y-1
t, ACCx+1,y-1

t)

where ACCx-1,y
t, ACCx,y-1

t and ACCx+1,y-1
t is the three available spatial adjacent MB’s

acceleration of the current frame respectively. Then the current block’s prediction
MV STACCMVx,y is computed according to the prediction acceleration and the
velocity of the reference frame’s interrelated block, using the following formula:

STACCMVx,y=MVx,y
t-1 SACCx,y

t

3.2 Multi-predictor ME

Valid predictors are added to improve the prediction accuracy, so as to obtain better
encoding performance. In this way, the process of checking the predictors is to verify
which point has the least difference with the current MB, in which the metric is
generally the SAD (Sum of Absolute Differences).
 Some predictors of the temporal and spatial correlation are depicted in Fig. 2,
where the motion information of the MBs with the white color filled is known and not
for the gray filled MBs. The position indicated by the grid is that of the current MB
for motion estimation. The dots in the figure denote that the motion vectors are
known, which can be used in the prediction thanks to the strong correlation with the
current MB temporally and spatially.

Reference frame Current frame

Fig. 2. Spatial and temporal correlative predictors of current MB

 Besides that listed in Fig. 2, the predictors used in this paper also include (0,0),
MedianMV, TACCMV, STACCMV and the accelerator motion vectors of the four
adjacent MBs in the reference frame(TACCMV x-1,y, TACCMV x,y-1, TACCMV x+1,y,
and TACCMV x,y+1), totally eighteen. In order to analyze how the predictors affect
the encoding quality, we verify the change trend of the encoding quality by adding the
predictor gradually with Foreman, Stefan, Coast (CIF format, 300 frames) as the test
sequences. Fig. 3 gives the experiment result, from which we can see that the
encoding quality of the Stefan with large motion and the Foreman with irregular

568 T.-j. Li and S.-k. Li

motion is enhanced by the addition of predictors. Note that, it can be observed from
the figure that the improvement curve tends to mildness when the number of the
predictors is added to eighteen, which means it is hard to increase the encoding
quality by adding more predictors.

Fig. 3. Change of encoding quality as the number of predictors is increasing

4 Predictors Cluster

Although more predictors are added to improve encoding quality, the computation
time increases linearly with their number. To solve this contradiction, the predictors
should be calculated in parallel. Parallelism is limited by memory bandwidth in
hardware implementation, so it is required that the loaded data be reused in maximum
extent. To reuse data and to compute in parallel, some concepts are introduced in this
section firstly.

1) Scan: Loading of the pixel data in current frames or reference frames.
2) RD(i,j) (Reference frame scan Distance): The time interval to scan from one

checked point ‘i’ to another ’j’ in reference frame.
3) CD(i,j) (Current frame scan Distance): The time interval to scan from one

checked point ‘i’ to another ’j’ in current frame.
4) CLUSTER: A set of predictors in reference frame which can reuse loaded data

well.
5) NUM(CLUSTER): The number of predictors in CLUSTER.

 To reuse data and compute the predictors in parallel, CLUSTER must satisfy the
following constraint.

Constraint 1: NPE(cluster dimension constraint). The number of predictors in
CLUSTER to be computed in parallel is limited by NPE (the number of processing
elements in hardware).

NUM(CLUSTER) NPE

Constraint 2: RDC (Reference frame scan Distance Constraint). To reuse scanned
data in reference frame, the checked points in a cluster should distribute in a small
area and the reference frame scan distance should be limited by a distance constraint.

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 569

RD(i,i+1) RDC

Constraint 3: CDC (Current frame scan Distance Constraint). When computing a
predictor, the pixel data of current frame and reference frame must reach the
corresponding PE(Processing Element) at the same time. To reuse data, the loaded
data of current frame for the previous PE should be buffered until it can be used for
the next PE. CDC is determined by the depth of buffers between PEs in the hardware
implementation.

CD(i,i+1) CDC

Fig. 4. Clusters

 From the condition: NMB is 16, the max buffer depth is 30 and the number of PEs is
11, we can deduce the following cluster constraints : NPE 11, RDC=256, and
CDC=30. Fig. 4 gives an example of clusters based on above constraints. All the
predictors in Fig. 4 satisfy RDC. However, they cannot be included in a single cluster
because that CD(3,4)=90, which is against CDC. Thus, all the predictors are divided
into two different clusters: A and B. For cluster A as an example, it satisfies NPE that
the number of predictors is 5. In addition, the current frame scan distance between 5
and 6 is the max among all adjacent predictors and their CD(5,6) is 29, which satisfies
CDC.
 Note that small diamond, large diamond and square search patterns all satisfy
above constraints, and they are the specific examples of cluster.

5 Motion Estimation Architecture for Cluster Parallelism

5.1 Top Level Architecture

Fig.5 depicts the top level of the motion estimation architecture for cluster parallel
computation. This architecture is a hardware/software co-design structure including two
parts: CPU and CPAME (Configurable Parallel Array Motion estimation Engine). CPU
is responsible for the tasks with complicated controls, such as loading and selecting
predictors, partitioning and mapping clusters, and determining early termination.
CPAME is the core engine of the architecture. It contains a datapath with 11 PEs, AGU

570 T.-j. Li and S.-k. Li

(Address Generator Unit), FSM (Finite State Machine) and several configurable
registers. CPAME is responsible for the tasks with density data, search patterns
refinement and cluster computation. Since each part except the datapath in CPAME is
similar to PMVFAST engine [11], this paper only describes the design of the datapath.

Fig. 5. Top level architecture of motion estimation

5.2 CPAME Architecture

Fig. 6 shows the parallel PEs array architecture of CPAME. The ‘PE’ is responsible
for the computation of a search point SAD (Sum of Absolute Differences). ‘D’
denotes VDU (Variable Delay Unit). ‘C’ is the data port of the current frame. ‘P0’
and ‘P1’ are the data ports of the reference frame. The data of the current frame is
transmitted to every PE one by one through the VDUs and the data of the reference
frame is broadcasted to every PE. In CPAME, the data of the current frame and the
reference frame is loaded only once through the above mechanism. The parallelism is
maximized and the memory access bandwidth is minimized. The SAD results of PEs
are compared by ‘MIN’ in different cycles and the minimal SAD is achieved at the
end of computation.

Fig. 6. Architecture of CPAME

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 571

 There are two important differences between CPAME engine and PMVFAST
engine [11]:

1) PMVFAST engine employs three types of VDUs and supports only three types of
search patterns. A single type of VDU is used in CPAME, and it can be
configured to arbitrary delay from 1 to 15. This change enables that the checked
points can distribute more freely. Setting NMB=16, we can deduce the constraints:
CDC 15, RDC 256.

2) PMVFAST engine employs 9 PEs, which are corresponding to the 9 checked
points in diamond search pattern or square search pattern. Here, the number of
PEs in CPAME becomes 11. There are two reasons for this improvement. The
first is that 11 PEs can fit most clusters nicely. Since many of the 18 predictors
introduced in Sec. 3.2 are the same, there are only 8.7 different predictors on
average in every ME search. 11 PEs are enough for most cluster computation.
Secondly, there should be some additional PEs to relax scan distance constraint.
When CD is greater than 15, two additional VDUs could be merged to support the
delay from 1 to 30 and then CDC constraint could be relaxed to 30. The PE
between merged VDUs would not be used any longer, so the NPE become 10. We
can further relax CDC constraint if more adjacent VDUs are merged.

 CPAME can be configured to support diamond pattern and square pattern, so
PMVFAST and EPZS are also supported by this engine.

6 Fast BMA Based on Cluster Parallelism

6.1 Cluster Parallel Algorithm

To increase predictors without increasing computing time, we propose a cluster
parallel algorithm. The idea of cluster parallel algorithm is that: first we divide the
predictors into clusters; then each predictor and scan distance in the cluster are
mapped to corresponding PE and VDU in CPAME engine; at last the evaluating
computation of the predictors is completed in parallel by different PEs. The algorithm
consists of two main steps: cluster partition and cluster mapping.

6.1.1 Cluster Partition
The goal of cluster partition is to find the cluster with the largest number of
predictors. Considering all the predictors introduced in Sec.3.2, since their total
number is small, we can use a window(NMB×NMB square) to glide along with the
predictors and count the predictors under cluster constraints in the window. If the
number of predictors is less than NPE, the relaxed constraint discussed in Sec. 3.2
would be used to increase the number of predictors in the cluster. A partition by the
above method will not complete until the largest cluster is found. The process of
cluster partition will be continued for the remained predictors until all the predictors
have been partitioned into clusters. The algorithm of cluster partition is as follows.

572 T.-j. Li and S.-k. Li

Fig. 7. Cluster partition algorithm

6.1.2 Cluster Mapping
Cluster mapping consists of two parts: mapping the predictors in cluster to PEs, and
mapping the scan distance CDs of current frame to VDUs. If a CD is greater than 15,
we must merge two VDUs together as the delay of this CD, since VDU can only
support 15 cycles delay. We can turn off the invalid PE between the merged VDUs to
save energy.

Table 1 and Table 2 show the cluster mapping from cluster B in Fig. 4 to CPAME
engine in Fig. 5. We can see that both CD(5,6) and CD(6,7) are larger than 15, so as
shown in Table 1, we merge D2 with D3 and D4 with D5 to support these two scan
distance delays. As shown in Table 2, PE2 and PE4 between the merged VDUs can’t
participate in computation at this configuration, so we turn them off to save energy.

Table 1. Mapping from CDs to VDUs

Table 2. Mapping from predictors to PEs

6.2 Fast BMA Based on Cluster Parallelism

Based on the above discussions, Fig. 8 gives the flow of PCMEFast(Parellel Cluster
Motion Estimation Fast algorithm). The algorithm inherits some ideas of
PMVFAST[7] and takes the new idea of increasing predictors to improve the
accuracy of ME and cluster parallel computation. In addition, the algorithm abandons
large diamond and small diamond search patterns and uses only square search pattern
to refine prediction. The parameters’ definitions in the algorithm are the same as
Cluster Partition.

Problem: Given predictors: AllPoints={(xi , yi) | i=0,1,..,N} and the cluster constraints: NMB(corresponding to RDC), CDC and

NPE , find the cluster with the max number of predictors .

Algorithm:

Step1: Sort the predictors in AllPoints by ascend along with vertical direction firstlyand then with horizontal direction.

Step2: For each predictor (a, b) AllPoints, draw two lines: x=a and y=b. Supposed all these lines intersect on M points,

name them as CrossPoints={(x j,yj)|j=0,1,..,M}.

Step3: For each point (xj,yj) CrossPoints, j=0,1,..,M, get the dimension of cluster starting from the point. Count all

predictors which satisfy cluster constraints or relaxed cluster constraints discussed in Sec. 5.2, and name Nj as its number.

Step4: Find max predictors number: max(Nj), j=0,1,..,M , and return the cluster with max(Nj).

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 573

Fig. 8. PCMEFast algorithm

7 Implementation and Comparison

PCMEFast algorithm is simulated and compared with PMVFAST[7] and EPZS[10].
The video sequence and the settings of parameters are same as that of Sec. 2. Fig. 9
shows the result of simulation and comparison. The result shows that the PSNR of
PCMEFast is approximately 0.0697dB higher than PMVFAST, while EPZS’s PSNR
is only about 0.00763dB higher than PMVFAST. Apparently, the improvement effect
of PCMEFast is 8.14 times higher than that of EPZS. The improvement is obvious in
the video sequence with irregular and large motion. For example, its PSNR improves
0.1433dB in Forman with irregular motion and 0.1193dB in Stefan with large motion.
Above all, PCMEFast improves encoding quality efficiently and makes it close to that
of FS.

Fig. 9. Comparison of three algorithms

 The proposed architecture CPAME is designed and simulated in Verilog HDL. The
logic is synthesized by Synopsys’ DC with SIMIC 0.18um 1P5M process. Table 3
lists the result of implementation and comparison with two existing ones.

574 T.-j. Li and S.-k. Li

Table 3. Comparison of three ME architectures

Architectures FS[-16,15] PMVFAST PAME

Number of PEs 16 9 11

Process(um) 0.25 0.18 0.18

Area(K gates) 22.3 17.5 20.48

Processing Power 100MHz 200MHz 200MHz

Algorithm FS PMVFAST EPZS PCMEFast

Clock Cycles/MB 16,399 1,042 1,122 1,021

Bandwidth(Bytes) 31,744 2,674 3,314 2,886

Reference [2] [11] This paper

 The result of simulation shows that it takes 1,021 clock cycles and 2,986 bytes
memory bandwidth to run PCMEFast once on CPAME. Although the predictors of
PCMEFast are 12 more than that of PMVFAST(6 predictors), PCMEFast takes 2%
execution cycles less than that of PMVFAST because of cluster parallelism. Besides,
PCMEFast on CPAME works 9% faster and consumes 12.9% less bandwidth than
EPZS does. Note that the results of PMVFAST and EPZS are all got from the
experiments accelerated by PMVFAST hardware engine.
 The results of synthesis with Design Compiler show that CPAME engine consumes
2,980 gates more than PMVFAST engine, which are consumed on the added PEs and
VDUs. We can see also that the throughput of CPAME engine is about 16 times more
than that of the FS ME engine with 16 PEs. The CPAME engine takes only 9.1%
memory bandwidth of that of FS engine and 91.8% logical area of that of FS engine.

8 Conclusion

Based on the analysis of PMVFAST and the method of hardware/software co-design,
this paper proposes a parallel algorithm to evaluate predictors cluster and a VLSI
parallel architecture. The proposed algorithm and architecture improve encoding
quality efficiently without increasing computation time. They can find applications in
video fields, e. g. video meeting, video surveillance and wireless video transmission.

References

1. Yen-Kuang Chen, S. Y. Kung, A Systolic Design Methodology with Application to Full-
Search Block-Matching Architectures, [J]. Journal of VLSI Signal Processing Systems,
May 1998, 19(1): 51-77

2. P. Kuhn, Algorithms Complexity Analysis and VLSI Architectures for MPEG-4 Motion
Estimation. Boston: Kluwer Academic Publishers, 1999

3. Hao-Chieh Chang. Architecture Design for MPEG-4 Video Coding System. [Ph D
dissertation]. Taipei, Depart. of Electrical Engineering at National Taiwan University,
2001

 A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture 575

4. T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. Motion compensated
interframe coding for video conferencing. Nat. Telecommun. Conf. New Orleans, LA,
1981

5. J.R. Jain and A.K. Jain. Displacement measurement and its application in interframe
image coding. [J] IEEE Trans. on Communications,1981,COM-29(12): 1799-1808

6. Zhu S, Ma KK, A new diamond search algorithm for fast block matching motion
estimation [J]. IEEE Trans. on Image Processing, 2000, 9(2): 287-290

7. Alexis. M. Tourapis, O. C. Au, and M. L. Liou. Predictive Motion Vector Field Adaptive
Search Technique (PMVFAST) - Enhancing Block Based Motion Estimation. In:
proceedings of Visual Communications and Image Processing 2001 (VCIP-2001). San
Jose, CA, January 2001

8. “Optimization Model Version 1.0”, ISO/IEC JTC1/SC29/WG11 MPEG2000/N3324,
Noordwijkerhout, Netherlands, March 2000.

9. Hye-Yeon Cheong Tourapis, Alexis Michael Tourapis, FAST MOTION ESTIMATION
WITHIN THE H.264 CODEC, ICME2003, Baltimore, Maryland, 9 July 2003

10. A. M. Tourapis, “Enhanced Predictive Zonal Search for Single and Multiple Frame
Motion Estimation” in proceedings of Visual Communications and Image Processing
2002 (VCIP-2002), San Jose, CA, January 2002.

11. Tiejun Li, Chengdong shen, Sikun Li. A VLSI Architecture for PMVFAST Block-based
Motion Estimation Algorithm. Journal of Computer Research and Development, 2005, 5

.

Software-Based Video Codec for Mobile Devices

Jiajun Bu, Yuanliang Duan, Chun Chen, and Zhi Yang�

College of Computer Science, Zhejiang University,
310027 Hangzhou, P.R. China

{bjj, duanyuanliang, chenc, yangzh}@zju.edu.cn

Abstract. With the rapid development of wireless networks and con-
sumer electronics, various mobile applications have emerged. However,
due to some constraints such as weak computational power, limited mem-
ory and small display screen, traditional video coding applications can
not work well on mobile devices. In this paper, we proposed a software-
based video codec framework and its implementation which is suitable
for real-time video coding applications on mobile devices. Some key op-
timizing techniques, such as fast predictive motion estimation (ME),
zero-coefficients prejudgment and multiplierless integer discrete cosine
transform (DCT), are used in our codec. Experimental results demon-
strate the flexibility of our framework and the good speedup we achieved
while video quality degradation is negligible. The codec is suitable for
scenarios where low-complexity computing is required.

1 Introduction

In recent years, with the rapid development of hardware capability, mobile de-
vices such as mobile phones and pocket PCs become popular in our daily lives.
More and more users are seeking real-time mobile video communication ser-
vices. However, because of some constraints such as weak computational power
and limited memory size, many highly efficient but complex algorithms cannot
be used directly for real-time video coding on mobile devices. How to reduce the
computational requirements as much as possible while achieving good coding
performance becomes a key research issue for video codec [1].

Many efforts have been done in this area. In [2], a practical real-time video
codec is presented for mobile devices. It proposed a codec based on the reference
software of H.263 and did some optimization works on ME and DCT. Experi-
mental results on pocket PC showed its feasibility. However, the codec is based on
H.263 standard only and does not consider the flexibility. An optimized MPEG-
4 video codec is proposed in [3], it presented an optimized encoder focused on
ARM chips. Besides algorithmic optimization, architecture level optimization is
also adopted and showed its great advantage; whereas, the optimization schemes

� The work was supported by National Natural Science Foundation of China
(60203013), 863 Program (2004AA1Z2390) and Key Technologies R&D Program
of Zhejiang Province (2005C23047 & 2004C11052).

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 576–585, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Software-Based Video Codec for Mobile Devices 577

aim at ARM cores without a view to the universality and scalability. Other op-
timization schemes [4][5] only consider some specific algorithms in video codec.

In this paper, we proposed a software-based video codec for mobile devices.
Considering both of the flexibility and scalability, our codec is designed on a
base of component framework. The convenience of the proposed framework will
be shown in the following section. Besides, some key optimizing techniques such
as fast predictive motion estimation, zero-coefficients prejudgment and multipli-
erless integer DCT, etc, are used in our codec to reduce the computational com-
plexity. Experimental results show that our codec can achieve a good speedup
with negligible video quality degradation. Our codec performs well on HP Pocket
PC iPAQ, e.g. for some QCIF sequences (176*144), the encoding speed can reach
20 frames per second (fps). Moreover, the flexible framework of our codec is in-
dependent of video coding standards, such as H.263, MPEG-4, etc.

The paper is organized as follows. In Section 2, we present our flexible frame-
work of video codec design. The key optimizing techniques are proposed in Sec-
tion 3. In Section 4, we show the experimental results and comparative analysis.
The last section gives the conclusions and future works.

2 Flexible Codec Framework for Mobile Devices

Fig.1 shows the flowchart of conventional hybrid DPCM/DCT video encoder
model. Traditional software implementation of the codec is the workflow of the
diagram. Almost all the existed reference software modules are such kind of im-
plementation. However, in our proposed software codec framework, we classify
the different modules into three layers. Fig.2 shows the architecture of the pro-
posed framework. Layer one is basic algorithm layer; it includes the common-used
algorithms such as DCT, Quantization, Colorspace Conversion, Motion Estima-
tion and Compensation, etc, which are also the kernel algorithm modules of the
conventional codec. Common Interface layer is the second layer, which is special
for the convenience. Developers need not care for the implementation and detail
of the algorithms but the interfaces. Specification related layer, which includes

Fig. 1. The flowchart of the encoder

578 J. Bu et al.

Fig. 2. Framework of video codec for mobile devices

the specific encoder and decoder, is classified as the third layer. This layer is
standard related, i.e., we introduce bitstream syntax here.

The main advantage of this framework is the flexibility. All the modules in
basic algorithm layer have fixed interfaces, which are presented in the common
interface layer. A new DCT algorithm is invented, for example, we only need to
replace the new component with the old one, which doesn’t influence up-layers.
We can also add some complex modules into basic algorithm layer as optional
components, such as rate control module and error resilience module, etc.

Another merit of this framework is that we can set up our codec software
to match MPEG-x or H.26x standard on demand, because all the basic algo-
rithms are similar, what’s the difference is the bitstream syntax according to the
different standards.

3 Proposed Optimizing Techniques

We implemented the codec software according to the component framework pro-
posed above. In order to get the distribution of computing time, full search mo-
tion estimation and floating DCT/IDCT are used in our testing. It can be seen
from Fig.3, motion estimation, DCT/IDCT and quantization are three criti-
cal modules which consumes the majority of computing time. Obviously, our
main target is optimization of the three time-consuming modules. Next four
sub-sections will give the proposed optimizing techniques which can significantly
reduce the complexity.

3.1 Fast Predictive Motion Estimation

Motion estimation (ME) is efficient in eliminating temporal redundancy between
adjacent frames. At the same time, motion estimation is considered the most time-
consuming part. There are significant advances in fast motion estimation tech-
niques in recent years for alleviating the heavy computation load, e.g. the diamond
search (DS) [4], the efficient fast ME prediction and early termination strategy [5].

Software-Based Video Codec for Mobile Devices 579

Fig. 3. Test result of foreman sequence at QCIF format, QP = 4

In [5], four prediction methods are proposed, includes median prediction
(MP), uplayer prediction (UP), last frame prediction (LFP) and last reference
frame prediction(LRFP). We introduce two simple prediction methods here. MP
is defined by

MVpred MP = median{MVA, MVB, MVC} (1)

Where MVA/MVB/MVC , is the motion vector (MV) of A/B/C block in
Fig.4(a) respectively. Note that A/B/C may not be in same modes. LFP is
defined by

MVx,y,n = mvx,y,n−1 (2)

Where mvx,y,n−1 is the corresponding MV of the previous frame, Fig.4(b).
In our proposed codec, considering the trade-off between coding efficiency and

computation complexity, we choose MP as the prediction method. After the MV
prediction, a diamond search process (Fig.5) is used in ME.

We compared the fast predictive ME algorithm with the full search ME and
the following Table 1 shows the results. More than 20 speedup on motion esti-
mation is achieved while PSNR degradation is negligible.

Fig. 4. Prediction pattern: (a) Median prediction; (b) Last frame prediction

580 J. Bu et al.

Fig. 5. Diamond search (DS) process

Table 1. Average PSNR degradation and speedup of the ME module comparing to
full search with a search range of 32 pixels, QP=4, QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.05 25.48

Coastguard 0.11 23.43
Foreman 0.16 19.12

3.2 Zero-Coefficient Prejudgment

Discrete cosine transform (DCT) is applied to compress motion compensation
data in the spatial domain, and a special case for the encoder occurs when all
the coefficients from the DCT are quantized to zero. In this situation, instead
of sending multiple zeros to the decoder, the encoder sends a special signal
indicating the ’skip’ state.

The traditional method to detect whether one block is ’skipped’ or not is
rather complex, because it needs the computation of DCT and quantization,
then followed by a check to see if all the coefficients are zero or not. For some
special application, such as video conference or video phone, there are many
stationary blocks, so zero-coefficient prejudgment could significantly reduce the
amount of computation.

In [6], a good zero coefficient prejudgment method is proposed and in [7], an
improved method is presented to enhance the judgment efficiency.

The discrete cosine transform of a discrete function
f(x, y) x, y = 0, 1, .., N − 1, is defined as

F (u, v) =
(

2
N

)
kukv

∑∑
f(x, y) cos

(
(2x + 1)uπ

2N

)
cos

(
(2y + 1)vπ

2N

)
(3)

Software-Based Video Codec for Mobile Devices 581

u, v = 0, 1, .., N − 1 where ku, kv =
{ 1√

2
for u, v = 0

1 for u, v = 1, 2, ..N − 1

In our proposed codec, N = 8, so formula 3 gives

|F (u, v)| =
1
4

7∑
x=0

7∑
y=0

abs(f(x, y)) (4)

The condition for all-zero DCT coefficients is

|F (u, v)| < 2Q (5)

Where u, v = 0, 1, .., 7, and Q denotes the quantization level. Thus

7∑
x=0

7∑
y=0

abs(f(x, y)) < 8Q (6)

The formula 6 gives the condition under which the DCT has all-zero co-
efficients. The left part of formula 4 is the SAD of the motion compensation
block, which can be obtained during the motion estimation. Therefore no addi-
tional computation is needed. The threshold 8Q can be increased or decreased,
according to practical requirement. We adopt this algorithm to our codec and ex-
perimental results show that large parts of zero blocks are prejudged as all-zero.
Table 2 presents the results.

Table 2. Zero-coefficient prejudgment and speedup for the encoder, QCIF format
sequence

Sequence QP All-zero blocks Blocks correctly Speedup
ration in total judged as all-zero

Akiyo 4 75.1% 55.1% 1.13
8 84.4% 71.5%

Coastguard 4 47.9% 31.2% 1.10
8 65.1% 43.5%

Foreman 4 40.6% 29.2% 1.08
8 58.3% 50.8%

3.3 Mutiplierless Integer DCT

The DCT is widely used in DPCM/DCT video coding. However, the conven-
tional floating-point DCT (FloatDCT) contains floating-pointing operations, es-
pecially the multiplications. An integer DCT (IntDCT)[8] method can get great
improvement. One implementation of IntDCT for an 8*8 block needs only 45
additions and 18 shifting operations. There are no multiplications which require
heavy computational power in mobile devices. Therefore, IntDCT is adopted in
our proposed codec. Although there is a little PSNR degradation, it does not
influence the visual quality, especially on mobile devices.

582 J. Bu et al.

In the experiment, the forward IntDCT is used in the encoder followed by the
inverse IntDCT in the decoder. The following Table 3 shows the degradation of
the PSNR and the speedup of DCT/IDCT module.

Table 3. Average PSNR degradation and speedup of DCT/IDCT module, QP=4,
QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.20 3.03

Coastguard 0.24 2.62
Foreman 0.32 2.18

3.4 Other Optimization Techniques

Using Reversible 16-bit-color Transform. One speciality of mobile devices
is the display format and most of them adopt 16-bit-color (RGB555 or RGB565).
Those color systems are actually ubiquitous nowadays as a result of the popular-
ity of hand-on devices from mobile phones to Personal Digital Assistants (PDA).

Traditional color transform method from RGB to YUV is the most widely
used one in digital image and video coding. The linear transform from R’G’B’
to Y’CrCb in Rec.601-1 [1] is

⎡
⎣ Y ′

Cb
Cr

⎤
⎦ =

⎡
⎣ 16

128
128

⎤
⎦+

1
256

⎡
⎣ 65.738 129.057 25.064
−37.945 − 74.494 112.439
112.439 − 94.154 − 18.252

⎤
⎦ •

⎡
⎣R′

G′

B′

⎤
⎦ (7)

Obviously, there are multiplier operations during the procedure, which require
much CPU cycles. In our previous work [9], a new color transform method is
proposed special for 16-bit RGB565 (RGB555 can be handled as a special case
where the right most bit of G is zero). The forward transform matrix is defined as

Yr = R′ + G′ + B′

Cbr = 4B′ − Yr = −R′ − G′ + 3B′

Crr = 4R′ − Yr = 3B′ − G′ − B′
(8)

And the inverse transform is

G′ = (2Yr − Cbr − Crr)//4
R′ = (Yr + Crr)//4
B′ = (Yr + Cbr)//4

(9)

where // denotes rounding to the nearest integer, R’, G’, B’ is of 5, 6, 5 bits
respectively. Compared to formula 7, the new transform method is multiplierless.
It saves a lot of pre-encoding time. We adopt the new proposed transform method
and experimental results show the encoding speedup with tiny PSNR loss.

Software-Based Video Codec for Mobile Devices 583

Table 4. Average PSNR degradation and speedup of colorspace conversion module,
QP=4, QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.02 1.21

Coastguard 0.04 1.18
Foreman 0.05 1.17

Optimization of ABS Function. ABS() function is used frequently in the
encoder, especially SAD calculating module. The ABS(x) macro is always de-
fined by

#define ABS(X) (((X)>0)?(X):-(X))

In this definition, one comp operation and one branch judge operation is
needed at least. We proposed a lookup table to replace the function. For the
max value of the difference between two pixel is 512, we set up a table costs
512*2 bytes = 1k bytes. The initialization of the table is defined by

for(int i=-256; i<256; i++)
table[i] = (i<0) ? -i : i;

All the ABS() function can be replaced by a simple lookup operation. Ex-
perimental results show the advantage of the optimization.

Table 5. Speedup after using the lookup table to replace the ABS() function for
encoder. No PSNR degradation. QP=4, QCIF format sequence.

Sequence Speedup
Akiyo 1.29

Coastguard 1.21
Foreman 1.17

4 Experimental Results

We have implemented an optimized version of our proposed software-based
codec. Based on the codec, we examined the effectiveness of the proposed al-
gorithms on computation time and video quality. The test sequences adopted
includes Akiyo, Coastguard and Foreman with QCIF format. It can be seen

Table 6. PSNR degradation and speedup in our codec, QP=4, QCIF format sequence

Sequence PSNR-Y(loss) PSNR-U(loss) PSNR-V(loss) Speedup
Akiyo 0.36 0.24 0.30 12.85

Coastguard 0.42 0.32 0.31 10.24
Foreman 0.49 0.42 0.40 9.78

584 J. Bu et al.

Table 7. Average encoding frame rates (fps) on HP iPAQ PPC, QP=4, QCIF format
sequence

Sequence Unoptimized Encoder Proposed Encoder
Akiyo 2.42 22.62

Coastguard 2.26 19.36
Foreman 2.05 18.21

that: for ’Akiyo’ sequence with motion limited in the center region, our pro-
posed codec achieves more than 10 speedup compared to unoptimized one; for
’Coastguard’ sequence with global motion and for ’Foreman’ sequence with dis-
ordered motion, we achieves about 10 speedup. The experimental result was
listed in the following Table 6.

We also did experiment on HP Pocket PC iPAQ, which possesses a 400MHz
StrongARM processor and 128MB RAM. We can draw the conclusion from the
results in Table 7 that our proposed software-based codec improves the frame
rate significantly.

5 Conclusions and Future Works

In this paper, we propose a flexible framework of video codec design for mobile
devices, which is composed of three layers: basic algorithm layer, common inter-
face layer and specification related layer. Based on the framework we can easily
construct a special codec through the common interfaces rather than considering
the detailed algorithms.

Meanwhile, we gave some advanced optimization methods in detail. To alle-
viate the constraints of mobile devices, we must take great effort to reduce the
computational load and memory requirement in the proposed solution. There-
fore, we introduced some key optimization techniques, such as fast predictive
ME, zero-coefficient prejudgment and multiplierless integer DCT, etc.

Experimental results show that our proposed framework and software-based
codec achieve significant efficiency and are very suitable for mobile devices.

Future directions include offering adaptive rate control and error resilience
for wireless transportation.

Acknowledgement

The authors thank Linjian Mo, Yongbao Tan and Xu Li for giving some useful
suggestions about the paper.

References

1. Richardson, I.E.G.: Video Codec Design, John Wiley & Sons Ltd, (2002)
2. Yu, K.M., Lv, J.B., Li, J., Li, S.P.: Practical Real-time Video Codec For Mobile

Devices, Multimedia and Expo, ICME, vol.3, (2003), 509-512

Software-Based Video Codec for Mobile Devices 585

3. Prasad, R.S.V., Ramkishor, K.: Efficient Implementation Of MPEG-4 Video En-
coder On Risc Core, ICCE, Digest of Technical Papers, (2002), 278 - 279

4. Zhu, S., Ma, K.K.: A New Diamond Search Algorithm for Fast Block-Matching
Motion Estimation, IEEE Transactions on Image Processing, Vol. 9, (2000),break
287–290

5. Xu, J.F., Chen, Z.B., He, Y.: Efficient Fast ME Prediction and Early-termination
Strategy Based on H.264 Statistical Characters, ICICS-PCM, vol.1, (2003), 218 -
222

6. Zhou, X., Yu, Z.H., Yu, S.Y.: Method for detecting all-zero DCT coefficients ahead
of discrete cosine transformation and quantization, Electronics Letters, Volume 34,
(1998), 1839 - 1840

7. Jun, S., Yu, S.Y.: Efficient method for early detection of all-zero DCT coefficients,
Electronics Letters, Volume 37, (2001), 160 - 161

8. Chen, Y.J., Oraintara, S., Nguyen, T.: Integer Discrete Cosine Transform (IntDCT),
IEEE Trans. Signal Processing, (1999)

9. Li, N., Bu, J.J., Chen, C.: A Reversible Color Transform for 16-bit-color Picture
Coding, ACM Multimedia, (2004)

Real-Time Expression Mapping with Ratio
Image�

Weili Liu, Cheng Jin, Jiajun Bu, and Chun Chen

College of Computer Science, Zhejiang University,
Hangzhou, China, 310027

liuweili@21cn.com
{chengjin, bjj, chenc}@zju.edu.cn

Abstract. Video Conference under low bandwidth condition, such as
conference among hand-held sets (PDAs), requires transmission algo-
rithm to be robust and effective. The real-time issue is always the focus
of research. We propose in this paper a fast algorithm in mapping one’s
facial expression onto another’s face. The algorithm divides workload into
online and offline part and hence speeds up the performance. By using
this, it is possible to transmit small data of facial features to end users
of conference participants. Expressions can be then synthesized at end
user side to produce pseudo-video-sequence of the participants. Thus,
real-time transmission can be achieved.

Keywords: ERI, Real-Time Video Conference, Embedded System.

1 Introduction

Photorealistic facial expression synthesis is applied widely in video, games and
filmmaking industry.

One class of expression synthesis methods is 3D-model-based techniques [1]
and [2]. These methods generate perfect geometry details. With some tracking
techniques [3, 4], they transfer facial expression in video. However, one problem
of these methods is that they are computationally expensive, which makes it
impossible to be used in real-time face synthesis. The other problem is that they
require special device to obtain 3D data of human faces.

Another class of approaches is image-based techniques. They either use image-
morphing techniques [5] to morph one expression to another, or use expres-
sion mapping techniques [6, 7] to warp an input face to given expressions. The
image-morphing method may suffer from the common ghost-effect and is only
applicable providing the sample expressions of the person. The latter one cannot
generate expression details, as we will discuss later.

In this paper, we will discuss a practical real-time facial expression synthesis
method. Our method is based on Expression Ratio Image (ERI), which records
� This paper is supported by National Natural Science Foundation of China

(60203013), Key Technologies R&D Program of Zhejiang Province (2005C23047 &
2004C11052) and HP Labs.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 586–595, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Real-Time Expression Mapping with Ratio Image 587

Fig. 1. Expression mapping of a ”big smile” with details. Left: the neutral face. Middle:
result from geometry warping. Right: result from our method.

illumination changes due to expression change. By recording expressional change
between a neutral face and a face with expression, we could map the expression
to a new face in real time. This mapping can be applied to any person. It is
also possible to implement our method on PDA or some real-time systems. In
addition, our method can handle unexpected noise in labeled sample images.
ERI Computing and filtering are fully automatic. Users only need to provide
labeled images.

The rest of the paper is organized as follows. Three most important facial syn-
thesis methods are discussed in the next section. Necessary background knowl-
edge of expression ratio image are introduced in section 3. In section 4, we discuss
the automatic filtering process in detail. Some results are shown in section 5.
Section 6 gives a discussion on the limitations of our method, a potential usage
of our method and a future research direction.

2 Related Works

Performance-driven facial synthesis technique, proposed by L. Williams et. al.[6],
is an early research on facial expression synthesis. It can be used to animate 2D
images and textured or non-textured 3D face models. Given an image with a
person’s neutral face and an image of the same person with expression, both
of which have feature points located through manual or automatic methods
[8, 9], the feature points of the new face is set according to the difference vector
between the neutral face and the expression face. Then the new expression is
generated through geometry controlled image warping [5, 7]. One disadvantage
of this approach is that it only synthesizes the geometry change but completely
ignoring the detailed expression features such as wrinkles.

Z. Liu et. al.[10] proposed a technique, called Expression Ration Image (ERI),
to record and map one person’s expression to another person’s face. To cre-
ate a new ERI of an expression, it needs a neutral face (reference image) and
an image with the expression of the actor. In other words, it needs a sample

588 W. Liu et al.

for each expression. It is only possible to map the already recorded expression
to a new face. Although recording each expression (offline process) is difficult
and time consuming, mapping an expression (online process) is fast and the
result is photorealistic with creases and wrinkles well preserved as the original
expression.

Q. Zhang et al.[11] used a geometry-driven facial expression synthesis method,
which generates photorealistic expressions with arbitrary feature points. This
method calculates each sub-region on the face and then blends all sub-regions
together. Computing a sub-region is time consuming because it needs to combine
the same sub-regions in all sample faces to generate the new sub-region. Number
of samples is 30-40 for each person in [11]. The author achieved 2-4 frames per
second on a 2GHz PC for 600x800 images.

3 Expression Ratio Image

As described in [10], Expression Ratio Image (ERI) retains the illumination
changes due to expression change. Such changes are vital to an expression that a
human would conceive as ”real”. A similar technique [12] used the color difference
between one reference image and the other with something changed. Under the
Lambertian model, let the initial intensity at point p be I and the intensity after
surface deformation be I ′. The relationship between illumination change of I
and I ′ at point p is

=
I ′

I
or I ′ = I# (1)

Equation (1) shows it possible to form the illumination after deformation by
simply multiplying the illumination before deformation with #, regardless of the
reflectance coefficient of the surface.

When mapping an expression to a neutral face, let the two faces be A and B,
A is the neutral face of A, A′ is the face of A with expression, B is the neural
face of B and B′ is the synthesized face with A’s expression.

We suppose all features of a face are aligned correctly in the above discussion.
In real cases, the features are usually not aligned correctly. We must align cor-
responding feature points in different image. To reduce computational expense,
we divide the algorithm into offline process (record changes between a neutral
face and a face with expression) and online process (mapping an expression
to a new face). Alignment is done through warping in both offline and online
process.

Because the ERI records the illumination changes(equation 1), it is desirable
to compute only the ratio of illumination component of a pixel. However, our
input image are of RGB color. We alter the RGB color space to YUV color space
of input images before both online and offline process and change it back to RGB
color space after each process. In YUV color space, the Y component represents
the luminance [13]. Therefore, only the ratio of the Y component of the input
images is computed.

Real-Time Expression Mapping with Ratio Image 589

3.1 Offline Process

Let Ã be the raw neutral face of A and A′ be A’s raw expressional face. The
above images are not aligned properly. We must align them before computing
ERI. The aligning process goes with the warping process.

Step 1: Find face features of Ã and A′(manually or using some automatic
methods).

Step 2: Move the features of Ã to A′, and warp accordingly. The warped image
is A.

Step 3: Compute the difference vector between A′ and A. The result is pro-
cessed to reflect relative position change.

Step 4: Compute the ratio image #(x, y) = A′
A

Step 5: Filter #. Then store the difference vector, feature positions of A′ and
to an expression file.

3.2 Online Process

After we compute an expression file, we can map this expression to any face. Let
B̃ be the labeled new face.

Step 1: Load the difference vector, feature positions and # of the expression.
Step 2: Move the features of according to the difference vector, and warp B̃

accordingly. The warped image is B̃′.
Step 3: Move the feature of # to B̃′, and warp accordingly. The warped ERI

is #′

Step 4: Set B′ = B̃′# for every pixel.

4 Automatic Filtering

The directly computed ERI is very noisy. The noise comes from various sources:
change of camera aperture and shutter; slight change in the person’s face direc-
tion and pose; misalignment in the warping process. In Figure 2, only the creases
between the eyebrows are our required facial expression details. The noises will
create undesirable artifacts in the eyes, eyebrows and lips(Figure 2(d)).

4.1 Normalized Auto-correlation Method

Z. Liu et al. [10] proposed to use an adaptive Gaussian filter with different
window size. For each pixel, they computed a normalized cross-correlation c
between the neutral face and the expressional face. An adaptive Gaussian filter
is then applied to the ERI. The smaller c is, the larger the window of the filter is.

However, the method in [10] does not fit for our applications for its inherent
defects. Firstly, normalized cross-correlation is very time consuming. For an M×
N image, the computational complexity is O(M × N × S2)(S is the size of the
correlation block). The complexity is still high (O(M × N × SlogS)) even if we
use Fast Fourier Transformation and convolution theorem[13].

590 W. Liu et al.

(a) (b) (c) (d)

Fig. 2. The ERI compute from two images. (a) the ERI. We visualize the ratio for
display purpose. White means large ratio and black means small ratio. (b) the neutral
face. (c) the expression face. (d) mapping (a) to (b). Red circles point out some artifacts.

Second, an adaptive Gaussian filter alone is insufficient for filtering. Gaussian
filters only smooth the image. However, the noise in ERI often gathers at certain
parts of the face, such as eyebrows, eyes and the edges(Figure 2(a)). In such areas,
Gaussian filters merely smooth the noise. Without other filters, the filtered ERI
is still noisy and it will cause artifacts in the mapping process.

Third, the algorithm ideally considers the area with low texture complexity
the area where facial expression details located. Due to noises, a small c may
also mean a noisy area.

4.2 Our Method

After studying what human consider important expression details in different
expressions, we conclude that humans are more likely to sense slight brightness
change in the ”smooth” areas (cheek, forehead, jaw and area between eyes and
eyebrows). We call the map that tells the smoothness of each pixel the smooth-
ness map. The more complex the area is, the less important the detail change of
it is. The darken areas in Figure 4(right) are the areas that contain important
expression details.

For this reason, we need to compute the smoothness map for a given face. A
direct approach is to mark the ”smooth” areas manually on the face. However,
it is inefficient and cannot adapt to new faces. Another choice is to compute
auto-correlation between an area and its neighborhood areas. A large c means a
smooth area and small means the opposite. Nevertheless, it is computationally
expensive. After experiment and comparison between several methods, we pro-
pose to use a statistical method by computing the standard deviation σ of an
T ×T area Sxy centered at (x, y), where T is chosen according to the size of the
face. Figure 4(middle) is the result of our method.

E =
1

T 2

∑
P (x,y)∈Sxy

P (x, y) (2)

Real-Time Expression Mapping with Ratio Image 591

σ(x, y) =
1
T

√ ∑
P (x,y)∈Sxy

(P (x, y) − E)2 (3)

By applying (2) and (3) to each area Sxy centered at point P (x, y), we get
the smoothness map R(x, y) = σ(x, y) for each point. A small R(x, y) means a
smooth area and a large one means the opposite.

After R is obtained, we apply an improved Gaussian filter to it, which we
call Weaken-Gaussian Filter (WGF). From equation 1, we know that a ratio
of 1 means no illumination change in that pixel. In the non-smooth areas, it is
desirable to attenuate or eliminate the ratio variations that we consider noises.
Therefore, we want to make #(x, y) closer to 1 if R(x, y) is large. For each pixel
#(x, y), let #′(x, y) be the filtered ERI, G(x, y) be the weakened ratio, Rmin and
Rmaxbe the minimum and maximum value of R

#′(x, y) = 1 +
T∑

m=0

T∑
n=0

(#(x + m, y + n) − 1)F (m, n)G(x + m, y + n) (4)

G(x, y) =
Rmax − R(x, y)
Rmax − Rmin

(5)

where Rmin = argmin[P |P ∈ R], Rmax = argmax[P |P ∈ R] and F is a adaptive
Gaussian filter with window size of T ×T and σ of F is decided by R(x, y). The
larger R(x, y) is, the larger the σ of F will be.

Fig. 3. Left: result of filtering Figure 2(a) with our method. Right: Mapping the left
ERI to Figure 2(b).

WGF is better than traditional Gaussian filters. It adaptively uses different
Gaussian kernels with different σ according to the smoothness map, which helps
to smooth the noise. It also attenuates the noise by making #(x, y) closer to 1.
And the the weaken ratio G(x, y) is also related to the smoothness map. We can
see the result of our method is good. From Figure 3(left), it is obvious that filter-
ing Figure 2(a) with our method can greatly reduce the noise. In consequence,

592 W. Liu et al.

the result of mapping the filtered ERI to the neutral face(Figure 3(right)) is
more close to the ground truth(Figure 2(c)).

4.3 Comparison of the Methods

Compared with the normalized auto-correlation method, our method has several
advantages.

First, it is fast. We experiment the two methods on a machine with Pentium-
M 1.4G processor and 512MB memory. We test the same input for several times
and calculate the average time. It takes 6.2 seconds to compute a 205 × 275
smoothness map using the normalized auto-correlation method. For the same
input, our method takes only 0.12 seconds.

Second, it is comparatively accurate in computing the smoothness map. From
Figure 4, we find that our method tends to classify some ”smooth” areas as
non-smooth areas. For example, due to the gradual illumination change on the
”slope” areas, statistical method will classify such areas as not-so-smooth area.
However, the correlation tends to do the opposite. It classifies the eyebrows as
smooth areas. Overall, result of our method better matches the idea smooth
area(Figure 4(right)) than the correlation method.

Fig. 4. Left: applying normalized auto-correlation on Figure 2(b). Middle: applying our
statistical method to the same image. Right: areas that contain important expression
details. For each pixel, smoothness is proportional to darkness.

Last but not least, it attenuates the noise while retaining the necessary details.
Comparison between Figure 2(a) and Figure 3(left) shows that the noise in areas
such as eyes, eyebrows, lip, nose and the edge of the face has been reduced or
eliminated. In the meantime, the important detail(wrinkle between the eyebrows)
is well preserved.

Overall, our filtering method is fast and overcomes the shortcomings of the
method in [10]. It is an automatic filtering method that can be transplant to
embedded systems with excellent performance.

Real-Time Expression Mapping with Ratio Image 593

5 Experiments and Results

We implemented our method both on PC and hand-held sets (PDAs). We man-
ually labelled the mark points for each input image. The warping process was
implemented in software by applying Delaunay triangulation to the mark points.
To test our method, we find several expressions from different sources and map
them to different people.

(a) (b)

(c) (d)

(e)

Fig. 5. The sample expressions. For each pair, left column is the neutral face and right
column is the expression. (a) smile; (b) big smile; (c)sad; (d) thinking; (e) “special”
expression.

In Figure 5, we give five sample expressions. The left column is the neutral
face and the right column is the face with certain expression. The expressions
are smile, big smile, sad, thinking and a special expression.

Our first results are mapping the expressions back to the neutral faces of the
person where each expression comes from.

594 W. Liu et al.

(a) (b) (c)

(d) (e)

Fig. 6. Mapping the expression back. (a)smile; (b) big smile; (c) sad;(d) thinking; (e)
”special” expression.

6 Conclusion and Future Works

We have shown that our method is a fast automatic facial expression synthesis
technique. The method in [10] first gave a way of expression synthesis by ERI, but
it didn’t consider the characteristics of the face image. Therefore, we presented
in this paper a faster and better filtering method and finally form our solution.
Our filtering method can process an image in 0.12 second.

We also transplanted our algorithm to embedded systems. In our test, the
offline process takes 0.15 seconds for a 205 × 275 image on a machine with
Pentium-M 1.4G processor and 512MB memory. The online process takes 0.014
for the same image on the same machine. In an HP 5550 PDA (400MHz), it takes
0.4 seconds and 0.02 seconds respectively. The most time consuming process is
the filtering process. If it is implement in hardware, the speed could be greatly
increased. We avoid using non-standard libraries for there may not be such
libraries in embedded systems. We use shifted integers instead of floats because
most embedded systems have better performance for integers than floats. We
also optimize the code so that they can run at real-time.

The synthesized expression looks real with expressive details. However, since
the warping algorithm is quite simple, the mapping result is distorted in some
complex expressions. It could be improved by adopting advanced warping algo-
rithm and carefully selecting the feature points.

In our implementation, we find the facial features manually. A further im-
provement could add some automatic feature-locating algorithm [8, 9]. Although
our current research is based on static images, we could extend our research to

Real-Time Expression Mapping with Ratio Image 595

facial mapping on video. By using some tracking algorithms such as AAM (Ac-
tive Appearance Model)[3] or KLT (Kanade-Lucas-Tomasi)[4], it is possible to
animate an expression on a given person. Combined with the automatic feature-
locating algorithm and video compression techniques, a low-bandwidth real-time
video meeting system can be established.

References

1. Daniel Vlasic, Matthew Brand, H.P., Popovic, J.: Face transfer with multilinear
models. Computer Graphics (2005)

2. Jin-xiang Chai, Jing Xiao, J.H.: Vision-based control of 3d facial animation. Eu-
rographics/SIGGRAPH Symposium on Computer Animation (2003) 193–206

3. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. Lecture
Notes in Computer Science 1407 (1998) 484–??

4. Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical Report
CMU-CS-91-132, Carnegie Mellon University (1991)

5. Beier, T., Neely, S.: Feature-based image metamorphosis. Computer Graphics
(1992) 35–42

6. Williams, L.: Performace-driven facial animation. Computer Graphics (1990) 235–
242

7. Litwinowicz, P., Williams, L.: Animating images with drawings. Computer Graph-
ics (1990) 235–242

8. Hua Gu, Guangda Su, C.D.: Feature points extraction from faces. Image and
Vision Computing New Zealand (2003)

9. Debevec, P.: Hierarchical wavelet networks for facial feature localization. Proceed-
ings of the Fifth IEEE International Conference on Automatic Face and Gesture
Recognition (2002) 118–123

10. Zicheng Liu, Y.S., Zhang, Z.: Expressive expression mapping with ratio images.
Computer Graphics, Annual Conference Series (2001) 271–276

11. Qingshan Zhang, Zicheng Liu, B.G., Shum, H.: Geometry-driven photorealistic
facial expression synthesis. Eurographics/SIGGRAPH Symposium on Computer
Animation (2003)

12. Debevec, P.: Rendering synthetic objects into real scenes: Bridging traditional and
image-based graphics with global illumination and high dynamic range photogra-
phy. Computer Graphics, Annual Conference Series (1998) 189–198

13. Rafael C. Gonzalez, R.E.W.: Digital Image Processing (2nd Edition). Prentice
Hall (2002)

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 596 – 607, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Power Consumption Analysis of Embedded
Multimedia Application*

Juan ChenP, Yong Dong, Huizhan Yi, and Xuejun YangP

School of Computer, National University of Defense Technology,
Changsha 410073, P.R. China

juanchen@nudt.edu.cn, luckpeople@163.com, huizhanyi@nudt.edu.cn

Abstract. In the past few years, the ubiquity of embedded mobile computing
brings about a new challenge for multimedia application. Not only the
performance but also the power consumption is vital to the multimedia
application because mobile clients are powered by battery. In this paper, we
make the detailed power consumption analysis of multimedia applications with
two power reduction techniques—ideal clock gating and ideal power gating.
Experimental results show the power consumptions can be reduced to 35.22%
and 15.68% by ideal clock gating and ideal power gating, respectively. Our
primary contributions lie in evaluating the power characteristics of multimedia
applications using MediaBench benchmark suite, and evaluating the impact of
unideal power reduction techniques on the performance. Such an analysis can
help the multimedia applications developers determine the efficient power
optimization policy besides the performance optimization. Low-power
embedded multimedia applications are promising in the future.

1 Introduction

Power consumption is a vital resource for battery-operated mobile systems or
embedded systems. However, the advances in battery technology and low-power
circuit design cannot keep up with the energy demands of the future embedded mobile
computing. Some energy-efficient methods for the embedded applications have been
proposed [11]. But a main limiting factor is the lack of effective power analysis for
the embedded multimedia applications. The detailed and the effective power analysis
can help mobile computing designers determine power saving policy. Our article
provides the detailed power analysis for the embedded multimedia application by
running MediaBench under PowerImpact [2] simulator environment.

The performance issue is an important issue for the multimedia applications since
the computation needs to be completed in time. Therefore, in our article we also
obtain the impact of unideal power reduction technique on the performance by
changing wake-up time.

Our article refers to three different kinds of power consumption: dynamic power,
short-circuit power and leakage power. The Short-circuit power is the least important

* This work was supported by the National High Technology Development 863 Program of

China under Grant No. 2002AA1Z2101 and No. 2004AA1Z2210.

 Power Consumption Analysis of Embedded Multimedia Application 597

since it is only introduced for a short period of time. Dynamic power generally
dominates the total power consumption. The leakage power is becoming an
increasingly important concern [3]. It has been pointed out that the leakage power can
be up to 40% of the total power for high-performance VLIW processors [4]. In 2002,
Intel’s Grove ever said chips constructed of increasing numbers of transistors could
suffer power leakage of up to 40% [8]. Facts approve the power is largely dissipated
as heat causing the cooling problems for the powerful chips. The power simulator we
use in this paper is PowerImpact, which explores leakage power dissipation.

Our article refers to three power models: power without gating, power with ideal
clock gating, and power with ideal power gating, whose definitions are given in
Section 3. From simulation results, we find two power reduction techniques (ideal
clock gating and ideal power gating) is effective, whose power consumption can be
reduced to 35.22% and 15.68%, respectively. We also identify which component is
the most responsible for power consumption.

In summary, the primary contributions of this paper are the following:

• We present a detailed power consumption analysis for the MediaBench
benchmark suite.

• We identify the component, which is the most responsible for power
consumption.

• We analyze the impact of unideal power reduction technique on the
performance by adjusting wake-up time.

The rest of this paper is organized as follows. Section 2 reviews the previous work.
Section 3 introduces three power models. Section 4 introduces the simulation
methodology and the benchmark. Section 5 gives the experimental results. Section 6
concludes the paper and discusses some future work.

2 Related Work

In this section we review the previous work in mobile multimedia application. Along
with the ubiquity of the Internet and the advent of wireless communication and
mobile computing, the research on mobile multimedia communications for wireless
Internet is more and more comprehensive. MediaBench [9] is a representative of
multimedia and communications applications.

Chunho Lee et al. [6] tested the performance characteristics of MediaBench. Their
work is valuable because at that time the vast majority of ILP research focused on
general-purpose computing (popular benchmark is the integer SPEC benchmark [10]),
and the essential elements of embedded multimedia and communications applications
were not captured well. They tested MediaBench suite performance characteristics
based on some set of metrics using IMPACT tool suite [12]. Their experimental
results shows the obvious performance difference occurs in the following four areas:
achieved instructions-per-clock, instruction cache hit rate, data cache read hit rate, and
memory bus utilization.

Benjamin Bishop et al. [5] presented a detailed analysis of the MediaBench
benchmark suite. They examined MediaBench performance characteristics by running
MediaBench under the SimpleScalar simulation environment [13]. Characteristics

598 J. Chen et al.

such as instruction mix, branch prediction accuracy, and cache hit rates, memory
usage, and integer bit utilization were considered. Our work is different from theirs
because we are concerned about power characteristics besides performance
characteristics.

In order to test power characteristics of MediaBench, we choose PowerImpact
simulator, which includes leakage power models, while other power simulators, such
as Wattch [7], don’t consider the leakage power consumption. More and more
researchers are concerned about the research on leakage power modeling. Weiping
Liao et al. [4] studied the leakage power reduction using power gating in the forms of
the Virtual power/ground Rails Clamp (VRC) and Multi-threshold CMOS (MTCMOS)
techniques. Their experimental results show the leakage power can be over 40% of
the total power consumption for VLIW processors. They also proposed a time-out
scheduling of VRC to reduce power up to 85.65% for L2 cache. Their experimental
benchmarks are partly drawn out from SPECint and SPECfloat. We use MediaBench
as our benchmark and power consumption characteristic of MediaBench are quite
differently from that of SPEC2000. One of our contributions is that we consider the
impact of unideal power reduction technique on the performance. Weiping et al. only
considered ideal clock gating and ideal power gating effectiveness on power
reduction.

3 Power Models

In this paper, three kinds of power models are examined: one is the total power
without gating; another is the total power with ideal clock gating; the third one is the
total power with power gating. In this section, we will describe clock gating technique
and power gating technique in detail.

3.1 Clock Gating and Clock Ramping

Clock gating is effective to reduce the dynamic power consumption of the functional
units, but turning on/off a functional unit in a short time will lead to a large surge
current. To reduce the surge current by these clock gating technologies, M. Pant et al.
[14] first proposed to insert wake up and go to sleep time between the on and off
states to extend the switch on/off time. Since the clock gating need to take several
cycles, Weiping [1] called this case clock ramping to be different from the
conventional clock gating approach. He proposed two kinds of techniques, one is
clock ramping with hardware prescan (CRHP), and the other is clock ramping with
compiler-based prediction (CRCP). This improved CRHP technique for VLIW
architecture has a finer clock ramping granularity, which can achieve more power
reduction compared to superscalar architecture. CRCP is a new compiler optimization
technology, which automatically inserts ramp-up instructions (RUI) based on
hyperblock scheduling to instruct the in-time ramping up of functional units.
Therefore, no extra fetch and decode logic used in the hardware prescan is needed.
The detailed explanation sees to [1]. In our simulation, we use PowerImapct, which
implemented CRHP and CRCP techniques. In the section 5, the effectiveness of clock
gating is shown.

 Power Consumption Analysis of Embedded Multimedia Application 599

3.2 Power Gating

There are three different kinds of power consumption: dynamic power, short-circuit
power and leakage power. Short-circuit power is the least important since short-
circuit current is only introduced for a short period of time. Dynamic power generally
dominates the total power consumption. However, the leakage power is becoming an
increasingly important concern [3]. In 2002, Intel company chairman Andy Grove
told an audience at the international Electron Devices Meeting in San Francisco: one
of the major technical headaches facing chipmaker Intel is the leaking current from
the inactive processors. He said the problem of leakage threatens the future validity of
Moores Law. As chips become more powerful and consume more power
consumption, leakage tends to increase. The industry is used to power leakage rates of
up to fifteen percent, but chips constructed of the increasing numbers of the
transistors can suffer power leakage of up to 40 percent [8].

Fig. 1. Two kinds of power gating technique: (A) MTCMOS (B) VRC. (source figure is
from [4]).

The simulator we use have implemented two power gating techniques: MTCMOS
(Multi-threshold CMOS) and VRC (Virtual power/ground Rails Clamp) which both
reduce the leakage power. The use of power gating exhibits three operating modes:
active mode, standby mode and inactive mode. In active mode, a circuit performs an
operation and dissipates both the dynamic and the static power. In standby mode, it is
active but idle and waiting to execute an operation, which dissipates only the static
leakage power. However in inactive mode, a circuit is deactivated by power gating,
which dissipates a reduced static leakage power.

[4] described MTCMOS and VRC and how they implement power gating to reduce
the leakage power. In this section, we do a summary about them. First, we introduce
MTCMOS: from Figure 1(A), we can see high-Vt sleep transistors are connected to
VDD and GND, among which the logic are implemented by low-Vt transistors. In the
active and standby modes, for which the sleep transistors are turned on, the virtual

600 J. Chen et al.

VDD and GND rails function as the actual rails. In inactive mode, the large leakage
current of the low-Vt logic is greatly reduced by the gating of the power supplies.
VRC places diodes across the sleep transistors for VDD and GND, so it solves the
problem of data retention (Figure 1(B)). In the active and standby modes, virtually all
current flows through the sleep transistors, which are turned on. At the switch to
inactive mode, these transistors are turned off; a small current flows through the
diodes, the virtual VDD level decays from VDD, and the virtual GND level rises from
GND.

MTCMOS and VRC are applied to two circuit types: datapath componets and
memory-based units respectively. MTCMOS scheduling is mainly for float and integer
functional units because either compiler or runtime hardware can predict the behavior
of integer and floating-point units. Our experimental results for MediaBench
benchmark show power reduction up to 94.01% for FPUs at worst. On the other hand,
VRC Scheduling here is mainly for L2 cache because L2 cache consumes much more
power than L1 cache, and L2 cache exposes more chances for throttling. Our
experimental results show that cjpeg power reduction is up to 98.28% for L2 cache.

4 Simulation Methodology and Benchmark

4.1 PowerImpact and System Configuration

In this section, we give some information about our simulation environment. In this
work, in order to obtain power values of each component, we use PowerImapct [2], an
architecture-level, cycle-accurate energy simulator. PowerImpact is an execution-
driven power estimation tool. It is based on the IMPACT [12] toolset. Figure 2
illustrates the overall structure of PowerImpact [1].

Fig. 2. Structure of PowerImpact (source figure is from [1])

PowerImpact includes two kinds of components: memory-based components and
memory-less components. Memory-based components include BTB, L1 instruction
cache, L1 data cache, L2 cache, and register file. Memory-less components include
decoder, integer components, and floating-point components. VRC technique is
applied to the memory-based components and MTCMOS technique is applied to

 Power Consumption Analysis of Embedded Multimedia Application 601

memory-less components. For each component, there are three energy stages: active
(Pa), standby (Ps), and inactive (Pi). The power consumption of one component is
calculated by

overheadiissaa ECPCPCPE +×+×+×= (1)

where Ca, Cs and Ci represent active cycles, standby cycles, and inactive cycles,
respectively. These values are counted by the PowerImpact. Eoverhead represents the
total transition energy when turning on/off components.

We summarize the system configuration used in our experiment in Table 1.

Table 1. System configuration for experiments

Configuration
8-issue width

1024 entries 2-way assoc, two-level predictor, automaton_A3 counter type
64 integer and 64 floating-point registers with 32-bit data width

Page size 4096 bytes, latency 30 cycles
8 bytes/cycle

Component
Decode

BTB
Reg

Memory
Memory Bus

Cache
L1 I-cache
L1 D-cache
L2 cache

PolicyBlock size AssociativitySize
128 KB LRU64 bytes 2

LRU64 bytes 4128 KB
1024 KB LRU256 bytes 1

Table 2. Power-related parameters. The percentage value in the column of Pa is the percentage
of each components contribution to total processor power. We assume a 2 GHz clock frequency
and 0.10um technology.

The system power distribution is given in Table 2. We assume that the clock
frequency is 2 GHz and mμ10.0 technology.

4.2 Benchmark

MediaBench has been proposed as a benchmark set representative of multimedia and
communications applications. The MediaBench argues that many existing
benchmarks, SPEC2000, DSPstone for example, are not representative of multimedia

602 J. Chen et al.

and communications applications. One of this article works is to evaluate the power
consumption characteristics of MediaBench.

Table 3 gives a brief description of the benchmark simulated.

Table 3. Description of benchmarks

5 Experimental Results

5.1 MediaBench Power Consumption Characteristics

In this section, we present the experimental results using the simulation methodology
described above.

For the ideal power gating, it is assumed that we can schedule a power gating event
in time for any idle period longer than the minimum idle time to maximize power
reduction, and a component can be woken up in time to avoid performance loss. Since
the ideal scheduling assumes the unit can be turned on in time when it is required,
cache behavior is not changed. We assume we can schedule a clock gating event in
time for any idle period shorter than the minimum idle time. That means ideal power
gating combines both clock and power gating. We can calculate the power reductions
of ideal power gating by analyzing the trace of usages of each component, providing a
theoretical upper bound of the leakage power reduction without performance loss [4].

In Table 4, we combine the power of different components and compare the total
power of the entire processor. Compared to no power gating, the total power can be
reduced to 35.22% and 15.68% by using ideal clock gating and ideal power gating,
respectively. However, unideal clock gating can cause performance loss than ideal
clock gating because a clock gating probably cannot be scheduled in time in actual
situation. In section 5.2, we will discuss this performance loss.

 Power Consumption Analysis of Embedded Multimedia Application 603

Table 4. Three kinds of the total power comparison

cjpeg

djpeg

mpeg2dec

unepic

No gating Clock gating Power gating

100% 36.81%

33.79%

35.42%

34.85%

16.83%

14.55%

15.33%

16.01%100%

100%

100%

In order to identify the component most responsible for each power modeling, we
give the power consumption proportion of each functional unit in Figure 3. Three
horizontal columns represent the power without gating, power with clock gating and
power with power gating from bottom to top, respectively.

Fig. 3. The total power consumption partitioned by all FUs

In Figure 3, each column takes the total power consumption value as base case
(100%), and power consumption proportion of each unit compared the total power
consumption is given. Here each power percentage is the arithmetic mean of all
MediaBench benchmarks. Due to Figure 3, we can see the power consumption
proportion of each unit is quite different from each other. For example, the power
consumption proportion of FALU is greatly reduced by clock gating or power gating
compared to power without gating. And the power consumption proportion of L2
cache is also greatly reduced by power gating. In addition, clock gating and power
gating can obtain great power reduction in average (power consumption can be
reduced to 35.22%, 15.68%, respectively).

For the space limits, we only show four benchmarks in Figure 4. Fortunately, they
can represent power consumption characteristics of MediaBench. Figure 4 compares
the power consumption of each unit for (1) without gating; (2) clock gating and (3)
power gating. For each component, the total power without gating is the base case
(100%), and the other two cases are normalized to this base case.

604 J. Chen et al.

MediaBench: cjpeg

MediaBench: djpeg

MediaBench: mpeg2dec

MediaBench: unepic

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

%
o

f
No

rm
a

li
ze

d
En

er
gy

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

%
o

f
No

rm
a

li
ze

d
En

er
gy

0.00%

10.00%
20.00%
30.00%

40.00%

50.00%

60.00%
70.00%
80.00%

90.00%

100.00%

%
o

f
No

rm
a

li
ze

d
En

er
gy

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

90.00%

100.00%

%
o

f
No

rm
a

li
ze

d
En

er
gy

without gating
clock gating
power gating

without gating
clock gating
power gating

without gating
clock gating
power gating

B
T

B

without gating
clock gating
power gating

R
eg

IL
1

D
L

1

L
2

L
1

D
T

L
B

L
2

D
T

L
B

de
co

de
r

IA
L

U

F
A

L
U

B
T

B

R
eg IL

1

D
L

1

L
2

L
1

D
T

L
B

L
2

D
T

L
B

de
co

de
r

IA
L

U

F
A

L
U

B
T

B

R
eg IL

1

D
L

1

L
2

L
1

D
T

L
B

L
2

D
T

L
B

de
co

de
r

IA
L

U

F
A

L
U

B
T

B

R
eg IL

1

D
L

1

L
2

L
1

D
T

L
B

L
2

D
T

L
B

de
co

de
r

IA
L

U

FA
L

U

Fig. 4. Power consumption reduction under clock gating and power gating

 Power Consumption Analysis of Embedded Multimedia Application 605

Let us start with the power reduction effects of clock gating. From Figure 4, it is
easy to see that clock gating is effective to reduce power for the BTB, L1 D-cache, L1
DTLB, L2 DTLB, decoder, IALU and FALU. Compared to the no-gating case, above
seven components’ total power consumption can all be reduced to below 50%, among
which FALU obtains the largest power reduction, at the same time L1 D-cache
obtains more power reduction than L2 cache. For memory-less components (decoder,
IALU and FALU), effects of power consumption reduction are all obvious, among
which FALU obtains the largest power reduction.

It is also easy to see that power gating is effective to reduce power for BTB, DL1,
L2, L1 DTLB, L2 DTLB, IALU and FALU. Compared to the no-gating case, above
seven components’ total power consumption can all be reduced to below 30%. L2
DTLB obtains the largest power reduction. Among memory-based components, L2
cache obtains the largest power reduction, which is different from the clock gating
case. Compared to clock gating, power gating is more effective in reducing L2 DTLB
and L2 cache. This in fact validates the impact of VRC scheduling on L2 cache. Also,
we can see L1 I-cache can hardly obtain power reduction from either clock gating or
power gating.

Combining Figure3 and Figure 4, we can conclude that:

• Clock gating and power gating hardly can reduce L1 I-cache power
consumption, so I-cache power consumption proportion to the total power
consumption is increasing by clock gating and power gating;

• Power gating is more effective than clock gating on L2 cache power
consumption reduction;

• Clock gating and power gating are both effective on IALU and FALU power
consumption reduction.

5.2 The Impact of the Unideal Power Reduction on Performance

In multimedia applications the requirements are often on time for complete a
computation, so we cannot ignore the performance issue. In this section, we will
discuss the impact of power optimization techniques on performance. Since we refer
to the ideal clock gating and the ideal power gating in the above, and we assume no
performance loss under ideal clock gating and ideal power gating. The difference
between the ideal power reduction and the unideal power reduction depends on the
overhead especially the wake-up time.

In the ideal power gating, it is assumed that we can wake up a component in time
to avoid performance loss. In order to observe the impact of the longer wake up on
performance, we adjust wake-up time from 1 cycle to 2 cycles and 4 cycles,
respectively. Performance loss of each memory-less component (BTB, Reg, decoder,
IALU, and FALU) is obtained in Figure 5. In Figure 5, we use 1-cycle wake-up time
as our base case, and we obtain the normalized performance loss caused by 2-cycle
and 4-cycle wake-up time. According to Figure 5, we can see the Register file obtains
the most performance loss (up to 10.2%). Here the performance refers to the
execution time consumed on that component.

Besides, we also can change memory-based components correlative settings from
ideal power gating to unideal power gating. This is one of our works in future.

606 J. Chen et al.

Fig. 5. The impact unideal power gating on performance

6 Conclusions and Future Works

Power consumption is a key limiting factor for mobile multimedia application. How
to save more power consumption has been becoming important issue considered by
many mobile computing researchers. However the research about evaluating power
characteristics of embedded multimedia applications is scarce. Detailed and effective
power analysis can help embedded mobile computing designer and application
developments determine the power reduction policy. Our article provides the detailed
power analysis for embedded multimedia application by running MediaBench under
PowerImpact [2] simulator environment. According to detailed power analysis, each
component’s power consumption proportion is obtained, and the component most
responsible for power consumption is identified. For example, the total power
consumption can be reduced to 35.22% and 15.68% by using ideal clock gating and
ideal power gating, respectively. FALU can obtain the largest power consumption
reduction from clock gating, and L2 DTLB can obtain the largest power reduction
from the power gating.

Since we refer to two ideal power reduction techniques (ideal clock gating and
ideal power gating), memory-less components performance loss are avoided and
cache behavior is unchangeable. However, performance issue is an important issue for
multimedia applications since the real time demand. In simulation, we obtain the
impact of unideal power gating on the performance by changing wake-up time.

Our next works include that analyzing the impact of the unideal clock gating and
unideal power gating on power reduction in real applications, not just ideal clock
gating and ideal power gating techniques, and exploring more power reduction
opportunities. Low-power mobile multimedia applications are promising in the future
embedded mobile computing.

Acknowledgements. The authors would like to thank Mr. Weiping Liao at UCLA for
helpful discussions.

References

1. W. Liao and L. He. Power Modeling and Reduction of VLIW Processors. In the
Proceedings of Workshop on Compilers and Operating Systems for Low Power, in
conjunction with International Conference on Parallel Architectures and Compilation
Techniques, 2001.

 Power Consumption Analysis of Embedded Multimedia Application 607

2. http://eda.ee.ucla.edu/PowerImpact/.
3. Hongbo Yang. Ph D. dissertation. Power-Aware Compilation Techniques for High

Performance Processors. The Department of Computer Engineering, the University of
Delware, USA, winter 2004.

4. W. Liao, J. Basile and L. He. Leakage Power Modeling and Reduction with Data
Retention. In the Proceedings of International Conference on Computer Aided Design,
2002.

5. Benjamin Bishop, Thomas P. Kelliher, Mary Jane Irwin. A Detailed Analysis of
MediaBench. In the Proceedings of Workshop on Signal Processing Systems, pp. 448-
455, Taipei, Taiwan, Oct. 1999.

6. Chunho Lee, Miodrag Potkonjak and William H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Systems. In the
Proceedings of 30th Annual International Symposium on Microarchitecture (Micro 97)
December 01-03, 1997 Research Triangle Park, NC. pp.330.

7. D. Brooks, V. Tiwari and M. Martsoni. Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations. In the Proceedings of 27th International Symposium
on Computer Architecture, Jun 2000 (ISCA-00).

8. Interl’s Grove warns of the end of Moore’s Law. http://www.theinquirer.net/?article=6677
9. http://www.trimaran.org/ftp/MEDIA.tgz.

10. http://www.trimaran.org/ftp/SPECint00.tgz.
11. Jason Flinn and M. Satyanarayanan. Energy-Aware Adaptation for Mobile Applications.

In the Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP
99), Kiawah Island Resort, SC, December 1999. pp: 48-63.

12. P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. Hwu. IMPACT: An
Architectural Framework for Multiple-Instruction-Issue Processors. In the Proceedings of
International Symposium on Computer Architecture, May 1991.

13. Doug Burger, Todd M. Austin, Steve Bennett. Evaluating Future Microprocessors: The
SimpleScalar Tool Set. University of Wisconsin-Madison, Technical Report: CS-TR-96-
1308, July 1996.

14. M. Pant, P. Pant, D. Wills, and V. Tiwari. An Architectural Solution for the Inductive
Noise Problem due to Clock-gating. In the Proceedings of International Symposium on
Low Power Electronics and Design. pp. 255-257, 1999.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 608 – 617, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Threshold and Subsection Control TCP
Slow-Start Algorithm

ShiNing Li1,2, JiPing Fang3, Zheng Qin 1, and XingShe Zhou2

1 E-commerce Research Laboratory Xi’an Jiaotong University, Postcode 710049,
Xi’an Shaanxi, China

dtlsn@yahoo.com.cn
2 Northwestern Polytechnic University, Xi’an Shaanxi, China 710072

3 Datang Telecom Technology Co., Ltd. Xi’an Shaanxi, China 710075

Abstract. DSSC, a Dynamic Slow-start threshold and Subsection Control TCP
Slow-start algorithm, is proposed. The key technologies of Vegas and TCP
Westwood are applied to the first slow start process in DSSC, which dynamically
configures TCP Slow-Start threshold and adaptively adjusts the increasing rate of
TCP transmitting windows. DSSC can reach the steady state rapidly because its
configuration of slow-start threshold is based on the bandwidth estimation, thus
the lost packages will be limited and the entrance of congestion avoidance stage
will not be too early. An important phenomenon, the TCP congestion bottleneck
buffer response, is discovered, and the reason of this phenomenon is given. The
result of simulation proves that this algorithm can avoid data packets loss, get to
steady state quickly, and improve TCP throughput on complex network. This
algorithm is robust to bottleneck buffer, adapts to WEB service, and is
compatible with the present TCP protocol. Finally It is simple and practical in
that it only modifies the sender of TCP.

1 Introduction

The TCP first slow-start algorithm gets involved with a lot of disadvantages. At the
period of the first slow-start, because the TCP sets the SSTH to a big default value
improperly due to lack of the information about network bandwidth, a great many
successive packets are lost. Meanwhile, the exponential rate increasing mechanism is
lack of robustness to the bottleneck buffer size[2]. When the size is set too small, the
slow-start phenomenon will happen again and again and severely damage the
performance of the TCP. Many kinds of modified algorithms were proposed, and could
be classified according to their purposes to the 3 following classes:

A: increasing the initial window [3]. Web applications are the main kind of applications
that are built on the TCP protocol recently. When the initial size of window is set to 4,
the performance of the TCP is enhanced dramatically. However, since the increasing
size of the initial window, lots of the packets will be lost and the utilization ratio will be
damaged when the TCP protocol is used in the applications which run in the conditions
with small bottleneck buffer, narrow bandwidth and short delayed link circuit.

 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 609

B: setting the proper SSTH [1] [4]. Sending end will avoid the congestion before the loss
of the packets by setting the SSTH accurately. Article 4 proposed to set the SSTH to an
accurate value in the period of the first slow-start and suggested the value should be the
BDP of link circuit. Article 1 introduces the concept of “equivalent bandwidth”, and
insists on setting the SSTH to the product of equivalent bandwidth and RTT. Because
of the ABCD errors[5], the estimated result will have the biggest error without a good
filter mechanism to filter the sampling results. The bandwidth estimating algorithm
should take the phenomenon of the random packets loss in the wireless circumstance
into account.

C: changing the window increasing granularity dynamically [6]. Article 6 proposed a
linear window increasing mechanism. The experiments show this new algorithm will
decrease the time of the slow-start in the condition of no overload. And its linear
window increasing mechanism is robust to the bottleneck buffer. Unfortunately the
setting of the Wth is lack of the apriority.

2 A New Slow-Start Algorithm (DSSC)

Base on analysis, we could propose the principles that should be considered when
designing the first slow-start algorithm.

1) the algorithm should be robust to the buffer size B, the bottleneck buffer size is the
key factor that affects the performance of the slow-start, and although decreasing
the B could decrease the number of the lost packets, too small B would probably
result in the buffer overflow too early and hurt its performance.

2) Manage the window increasing granularity K properly to increase the average
throughput and network utilization ratio at SS time. Increasing K could enhance
average throughput at SS time, but big K will probably result in the buffer
overflow too early. The K should be set carefully to meet the requirement on the
equilibrium of the two sides.

3) A proper SSTH should be set to decrease the number of the lost packets. Lots of
the packets will be lost at the end of the slow-start, this will hurt the performance
of TCP. Decreasing B and setting a proper SSTH will decrease the lost packets
number.

4) Feasibility in the real network; No modification at the receiving end;
Compatibility to the existed network protocol.

Based on the thoughts of estimating the bandwidth available and the mechanism of
judging the state of the intermediate routers packets queues in Vegas[7], and considering
that the TCP Westwood (TCPW)[8] estimating algorithm takes the random loss in
wireless environment into account and could be used in the field of the wireless relay link
circuit, a new first slow-start DSSC (Dynamic Ssth and Subsection Control) using the
bandwidth estimating algorithm in TCPW is proposed. Since it is supposed that the
packets loss is caused by the congestion in the traditional TCP protocol, the phenomenon
of link random data exists broadly as the development of the wireless communication

610 S. Li et al.

technology. If the random loss is neglected in the algorithm, the performance of the
algorithm will be hurt badly. The detail about the algorithm is as follow:

With the help of the DIFF*BaseRTT in Vegas and the mechanism of developed
bandwidth estimation filtering mBE, the window increasing granularity is controlled in
different phases. The time is divided into four control phases called A phase, B phase, C
phase and D phase.

A Phase: When DIFF*BaseRTT is smaller than 1; the router buffers in the network are
almost empty, and the window could be increased. If the sending window is smaller
than the size of the window that could be permitted by the network bandwidth
available, it means that the bandwidth is not made full use of, and the increasing
granularity should be set to 2(faster than Reno, 1 in Reno). On the contrary, if the
window size is bigger than the permission value, the increasing granularity should be
set to 1. Because of the almost empty buffer at this time, the buffer will not overflow.

B Phase: When DIFF*BaseRTT is between 1 and 2, there are a few data packets in the
bottleneck routers buffer queue in the network and the biggest increasing granularity
could not make the buffer overflow quickly. So if the sending window is smaller than
the window size that the bandwidth available (estimated) allows, the increasing
granularity is set to 1, or it should be 0.5.

C Phase: When DIFF*BaseRTT is between 2 and 3, there are certain number of the
packets stay in the buffer. Too big increasing granularity could result in the quick
overflow in the buffer easily. At this time, if the bandwidth available (estimated again)
is made full use of, the biggest increasing granularity makes no sense and it should be
set to 1/cwnd. On the contrary, if the bandwidth available is not made full use of, the
increasing granularity should be 0.1 in order to enhance the bandwidth utilization ratio
quickly meanwhile prevent the buffer from overflowing quickly.

D Phase: While DIFF*BaseRTT is bigger than 4, there are lots of packets in buffer and
the buffer is close to the overflow state, so the increasing granularity should be
decreased whether the link bandwidth is made full use of or not, otherwise it will cause
the packets loss. The increasing granularity should be set to 1/cwnd.

3 The Performance Analysis Based on Simulation

Here NS2 is what we use to accomplish simulating. The topology structure of the
network is shown in Figure 1, including 6 hosts and 4 routers. The Host S1, S2, S3 and
the router Ra are connected by the 100Mbps Ethernet as same as the host D1, D2, D3
and the router Rb. The router Ra and R1 are connected by the 10Mbps link as same as
Rb and R2, and the time delay is 25ms; the router R1 and R2 are connected by the
3Mbps link, and the time delay is 60ms.

In the simulation, the network parameters relevant to the TCP are the data packet
size that is 800byte, and the receiving announced window size that is 450(packets).
Now, we will try to prove that DSSC will enhance the performance efficiently in the
slow-start phase by comparing the TCPW adopting DSSC (DSSC+TCPW), TCPW
without DSSC and Reno without DSSC.

 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 611

 100Mps 100Mps

 10Mps 3Mps 10Mps

 25ms 60ms 25ms

2ms 2ms

Fig. 1. The topology structure of the network

3.1 The DSSC Robustness Effectiveness Simulation to Bottleneck Buffer and the
Segmentation Control Effectiveness Simulation

At first, we run the DSSC robustness to bottleneck buffer effectiveness simulation, the
NBS (normalized buffer size) is equal to the ratio of BBS(bottleneck buffer size) and
BDP(bandwidth-delay product). This means NBS=BBS/BDP. BDP means maximal
packet (excluding the packets in queue of router buffer) size in the pipe that connects
the sending end and the receiving end on the condition of no congestion. And the
essential of NBS is the ratio of maximal number of the packets in queue of the
bottleneck buffer and the maximal packet size in pipe.

DSSC+TCPW is built between the host S1 and D1 to transfer CBR flow. While the
bottleneck buffer size is changed from 0.1s to 120s, we review the performance of
DSSC+TCPW when NBS is 1, 0.75, 0.5 and 0.25 respectively, then change the
connection type to TCPW and Reno meanwhile keeping the other conditions constant.
Figure 2 includes sub-figure (a), (b), (c), and (d).which represent respectively the TCP
throughput when NBS is 1, 0.75, 0.5 and 0.25. Table 1 represents the time to stable state
of DSSC+TCPW, TCPW and Reno, the total packet lost number and the average
throughput when getting to stable state.

We can tell that the throughput is equal in DSSC+TCPW, TCPW and Reno when
they reach the stable state, whatever the value of NBS is, from the Figure 2. However,
they differ in the time of reaching stable.

First, based on the sub-Figure 2a, here NBS=1, two items could be identified.

• DSSC+TCPW could get to stable state quickly, however, the Reno and the
TCPW could not.

• Comparing the Reno and the TCPW, we could find that the TCPW needs more
time to reach stable than the Reno.

It could be concluded that the main reason is that Reno and the TCPW know nothing
about the link bandwidth available, and increase the congestion buffer exponentially until
lots of packets are lost and slow- start is over. Restoring the lost packets expands (prolongs)
the time to reach stable state. And that could be very different from the DSSC+TCPW.
DSSC+TCPW could set SSTH by estimating the link bandwidth available at the time of

612 S. Li et al.

2c When NBS=0.5 2d When NBS=0.25

Fig. 2. TCP’ throughput in four kinds of NBS environments

Table 1. TCP’ performance parameter comparison at the slow start-up stage

 b=1 b=0.75 TCP

parameter DSSC+TCPW TCPW Reno DSSC+TCPW TCPW Reno

time to stable state 1.96s 67s 6.6s 1.96s 52s 10.1s

packet lost number 1 208 410 1 179 353

average throughput 1.08(Mbps) 0.57(Mbps) 0.94(Mbps) 1.05(Mbps) 0.49(Mbp 1.56(Mbps)

(a) When NBS=1, 0.75

b=0.5 b=0.25 TCP

parameter DSSC+TCPW TCPW Reno DSSC+TCPW TCPW Reno

time to stable state 1.97s 30s 24.1s 47s 30s 26s

packet lost number 1 76 180 3 33 82

average throughput 1.04(Mbps) 0.9(Mbps) 1.59(Mbps) 1.9(Mbps) 1.2(Mbps) 1.43(Mbps)

(b) When NBS=0.5, 0.2

2a When NBS=1 2b When NBS=0.75

 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 613

slow-start, make sure to prevent losing many packets and getting involved in the
congestion-avoiding period. Therefore, DSSC+TCPW could come to be stable quickly.

Comparing the Reno and the TCPW, the same mechanism (window increasing
exponentially) is adopted in both of them, but at the time of restoring the many lost
packets when the slow-start is over, they use different retransmission strategies. The
TCPW uses the single packet retransmission mechanism adopted in the New Reno.
Although the window just decreases once (keeping in a relative big value), a single lost
packet is retransmitted at a RTT time. When lots of lost packets exist, the
retransmission time is prolonged dramatically.We call this IR (Inefficient
Retransmission). Considering the Reno, the loss of lots packets triggers the slow-start
mechanism, the window shorten the retransmission time by increasing exponentially,
so the time to reach stable state in the Reno is shorter than in the TCPW. But since the
SSTH is set too small after detecting the loss of many packets and the Reno gets into the
congestion-avoiding period too early.

Secondly, when NBS decreased continually from 1 to 0.25 with a step of 0.25,
comparing the sub-Figure 2a, 2b, 2c and 2d, we could find that the same TCP
mechanism with different B could perform very differently at the stable state reaching
time. The main reason is that the robustness of DSSC+TCPW, TCPW and Reno to
buffer B varies.

When B decreased gradually and NBS decreased from 1 to 0.25 with a step 0.25, the
time to reaching stable state expands gradually from 6.6s to 26s
(6.6s->10.1s->24.1s->26s). It is obvious that the value of B influences the performance
of the Reno directly, and the robustness of the Reno to B is not satisfactory. And this is
mainly caused by that while B is decreased, the exponential increasing of window
makes the buffer to overflow too early. Reno needs several slow-start procedures to
investigate the bandwidth, and this prolongs the time to stable state accordingly.
Contrary to the Reno, when B decreased gradually, TCPW needs less and less time to
reach the stable state (67s-52s-30s-30s), and the main reason is that TCPW adopts the
single packet retransmission mechanism in New Reno, when B is decreasing, the
packets loss less and less, so TCPW needs less time to retransmit after the first
slow-start is over and shortens the time to the stable state.

As B decreases, NBS drops down from 1 to 0.5 with a step of 0.25, the time to the
stable state almost keeps constant in DSSC+TCPW (1.96s-1.96s-1.97s), and its
performance could not be influenced by the changing of B, so we could figure out that
when B is in this range, DSSC+TCPW is very robust to the B. this is due to the (vary)
rate window increasing mechanism in the DSSC+TCPW, this mechanism could adjust
the window increasing granularity according to the state of the queue in buffer. But
when NBS=0.25, the time to the stable state rockets to 47s in TCPW, so, we could see
that DSSC+TCPW could not eradicate the bad effect to the performance caused by the
too big B. from Figure 2, we could find that although the time to the stable state is
longest in DSSC+TCPW, it keeps a high throughput with 2, in addition, considering the
number of lost packets, the DSSC+TCPW does the best job. So it is found that the new
mechanism could not aggravate the performance of original TCP on the condition of
the very small B. Compared with the TCPW and the Reno, the DSSC+TCPW is better.

614 S. Li et al.

All in all, we identify an important phenomenon that the time to the stable state in
different TCP congestion control mechanism reacts differently to the changes of
transmission link bottleneck buffer B. and we define it as “TCP congestion control
bottleneck buffer reaction”.

3.2 The Simulation Analysis of Transmission Capability in the DSSC

The network topology shown in Figure 1 is still adopted, a DSSC+TCPW is built
between the host S2 and D2 to support FTP flow, NBS=1, we change the FTP file size,
observe the transmission time in DSSC+TCPW, then change the connection type to the
TCPW and the Reno respectively while keeping the other condition unchanged. Table 2
shows the time of transmitting the different size files and the average throughput in the
DSSC+TCPW, the TCPW and the Reno.

As shown in Table 2, the ratio of average throughput in DSSC+TCPW and in TCPW
or Reno changes 3 times along with the change of transmitted file size. When file size
increases from 16K to 1Mbit, the ratio of the throughput decreases gradually; when the
file size enhances from 1Mbit to 5Mbit, the ratio rockets dramatically, then deceases to
0 along with the augment of the file size. In the following section, we will analyze the
whys.

Table 2. The time of transmitting the different size files and the average throughput

Improvement of Ratio of average

throughput

Transmission time(s)/ Average throughput

(Kbps)

TCP

File size
DSSC+TCPW TCPW Reno

DSSC+TCPW

for TCPW

DSSC+TCP

for Reno

16Kbit 0.329 / 48.5 0.525 / 30.5 0.525 / 30.5 59% 59%

32Kbit 0.542 / 58.9 0.741 / 43.2 0.741 / 43.2 36% 36%

100Kbit 0.737 / 135.7 0.935 / 107.0 0.935 / 107.0 27% 27%

1Mbit 1.506 / 665.6 1.787 / 559.6 1.787 / 559.6 19% 19%

5Mbit 3.02 / 1656 38.9 / 628.6 7.71 / 664.6 163% 149%

50Mbit 18.2 / 2771 66.9 / 1750.2 38.1 / 1324 58% 109%

100Mbit 35 / 2883 79.1 / 2282 55 / 1828 26% 57.6%

800Mbit 275 / 2912 282 / 2834 291 / 2729 2.7% 6.7%

At the beginning of the TCP link, because of the empty link, the DSSC+TCPW
window-increasing granularity is 2, twice of that in the TCPW and the Reno, the
average throughput increased dramatically, and this feature is benefit for the small Web
flow applications. When the file size becomes big and big, the transmission time
expands, and the window size increases meanwhile the window increasing granularity
decreases gradually. When the sending rate is equal to the bandwidth available, the
increasing granularity is 1/cwnd, so the throughput increasing scope decreased
gradually. But when the file size is 5Mbit, the ratio of the average throughput in the
DSSC+TCPW and the TCPW or the Reno rockets dramatically, and the main reason is

 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 615

that the rapid increasing of the window in the TCPW and the Reno results in the plenty
of packets being lost. Transmitting the 5Mbit file makes the TCPW and the Reno get
involved in the restoring time between losing of lots of packets and the stable state. We
called this phenomenon as “delay restoring”. after that, along with the increasing of the
file size, both of the TCPW and the Reno are in the stable state, meanwhile the
performance of the DSSC+TCPW, the TCPW and the Reno are equal. The effect of
TCP caused by the performance distinction in the TCP slow-start time is diluted, so the
throughput of the DSSC+TCPW increasing rate is decreased. By this simulation we
could see clearly that the throughput of DSSC+TCPW algorithm is nearly equal to it of
the TCPW and the Reno after entering the congestion-avoiding stage, and TCP
congestion control algorithm works at congestion-avoiding stage in most of the time.
The aim of DSSC+TCPW algorithm is trying to reduce the packet loss number at the
slow start stage, and make the slow startup to stable state as soon as possible. At the
same time, it adopts subsection control principle to improve the throughput of the slow
stage with the premise of reducing the packet lost number. This is mainly to improve
the efficiency of WEB business, because small Web flow applications finish at the slow
start stage generally So this simulation incarnates the improvement of efficiency for
small Web flow applications by DSSC+TCPW algorithm.

3.3 The DSSC Simulation Validity in the Condition of the Different Flux in
Multi-connections

In order to study the adaptability of the DSSC, we run the DSSC+TCPW with different
flows in multi-connection, and compare it with the TCPW and the Reno.

The network topology shown in Figure 1 is adopted again. A UDP connection and a
Reno TCP connection are built between S1 and D1, meanwhile a Reno TCP connection
and a TCPW TCP connection are built between S2 and D2. The CBR flow is loaded on
the two connections mentioned above. On this condition, DSSC+TCPW, TCPW and
Reno are built respectively between S3 and D3 to run FTP flow. FTP starts at 30s and
CBR starts at 2s. The DSSC+TCPW performances on different background flows are
simulated through our controlling the magnitude of the CBR flow. Sub-figure (a), (b) and
(c), composing the Figure 3, represent the TCP throughput with 300kb background flow
(light network load), 1500kb (middle network load) and 3300kb (network congestion).
Figure 2 records the time to stable state of TCP and the number of lost packets.

From Figure 3, we could figure out that when network is on the state of light load
(shown in sub-Figure 3a) and middle load (3b), the performance of the DSSC+TCPW
is better obviously, and time to stable state is much less than TCPW and Reno (shown
in Figure 2). The main reason is that lots of packets is lost during the slow-start time in
TCPW and Reno, on the contrary, the DSSC+TCPW is efficient to prevent a great
number of packets from being lost, and it is shown in Figure 2. When network is in
congestion, compared with the TCPW, the performance advantage is not obvious, just
little better. And the main reason is that the buffer available for new TCP decreases
when the network load is more and more heavy. In the view of new TCPW connections,
that is equal to the decreasing of link B. The number of lost packets is less and the time
to stable state is less at slow-start time in TCPW, so the distinction between TCPW and

616 S. Li et al.

DSSC+TCPW is reduced. Also from Figure 3, we could see that DSSC+TCPW has a
good compatibility to UDP and other types of TCP. Since DSSC+TCPW just modifies
the first slow-start time algorithm meanwhile adopts the original mechanisms at other
TCP periods, it has the same property and a good compatibility compared with TCP
Reno and TCPW when it is stable.

(3a) Background flow with 300Kbps (3b) Background flow with 1500Kbps

(3c) Background flow with 3300Kbps

Fig. 3. TCP’ throughputs under the three kinds of background flow

Table 3. TCP’ performance under the different background flow

Stable time(s)/ packet lost number(Packet) TCP

background flow DSSC+TCPW TCPW Reno

300Kb 32.7 / 3 67.7 / 143 44.1 / 342

1500Kb 36.7 / 4 46.2 / 22 45.1 / 75

3300Kb 37.1 / 6 38 / 7 46.1 / 23

4 Conclusion

Based on the theoretic academic analysis, this article proposes the principles of the TCP
slow-start mechanism. Combining the network bandwidth available estimating, link

 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 617

buffer estimating and bandwidth estimating filter mechanism, adopting the design
principles of dynamic setting slow-start threshold and controlling the window
increasing granularity at different phases, this article proposes a new TCP slow-start
algorithm named DSSC used in heterogeneous network. In order to validate the
efficiency of the DSSC, the detailed simulation is run, the result is analyzed, a
phenomenon called “TCP congestion control bottleneck buffer reaction” is found, and
the substance of this phenomenon is analyzed. DSSC algorithm could be adopted in
different networks to protect the great many packets from being lost at the slow-start
time, to help the network reaching the stable state quickly, and to enhance the
throughput at the slow-start time. In addition, this algorithm has a good robustness to
link bottleneck buffer and a good adaptability to WEB services. DSSC needs simple
protocol upgrading at the sending end, and is compatible to the existed TCP protocol.

References

1. Liyun, Chenqianbin, Longkeping, Wushiqi. A TCP Slow-Start Algorithm Based on
Link Band-Width Estimation. Computer science. 2003. 26(6) : 693–700.

2. Chadi Barakat, Eitan Altman. Analysis of the phenomenon of several slow start phases in
TCP. The ACM SIGMETRICS international conference on Measurement and
modeling of computer, California,2000.

3. Mark Allman. Improving TCP performance over satellite channels. Master of Science
Degree dissertation, Ohio University, 1997.

4. Hoe J C. Improving the Start-up Behavior of a Congestion Control Scheme for TCP. The
ACM SIGCOMM, Stanford, CA,1996.

5. Kevin Lai, Mary Bake . Nettimer:A Tool for Measuring Bottleneck Link Bandwidth. The
USENIX Symposium on Internet Technologies and Systems, California, 2001.

6. Chadi Barakat, Eitan Altman. Performance of short tcp transfers. In Proceedings of
NETWORKING 2000, Paris, France, 2000.

7. Lawrence Brakmo, Sean O'Malley, and Larry Peterson. TCP Vegas: New Techniques for
Congestion Detection and Avoidance. In ACM SIGCOMM [C]. August 1994, 24-35.

8. M. Gerla, M. Sanadidi, R. Wang, A. Zanella, C. Casetti, S. Mascolo. TCP Westwood:
Window Control Using Bandwidth Estimation [R]. IEEE Globecom 2001, Texas,, 2001.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 618 – 628, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improved DRR Packet Scheduling Algorithm Based
on Even Service Sequence

Fan Zhang, Shoumeng Yan, Xingshe Zhou, and Yaping Wang

School of Computer, NorthWestern Polytechnical University,
Xi’an, Shaanxi 710072, China
Zhangfan@nwpu.edu.cn

Abstract. With the emerging of many new kinds of network services, it is critical
for the network to give service differentiation and QoS guarantee. One of the
most important components in existing QoS frameworks is packet scheduler. A
good scheduler should provide QoS guarantee and, at the same time, show low
complexity. However, existing algorithms often fail to provide the two features
at the same time. This paper proposes an improved DRR-like packet scheduling
algorithm based on even service sequence, which combining advantages of DRR
and WF2Q. Our simulation experiments show that this algorithm can provide
good fairness, low scheduling delay and low complexity.

1 Introduction

With development of networking technology, the functions of router have transferred
from forwarding packets with best effort to supporting QoS (quality of service). Packet
loss rate, deadline, delay variance, which are the most important QoS properties, should
be maintained without compromising the processing speed of incoming data streams.

One of the most important components in existing QoS frameworks is packet
scheduler, which is deployed in router to offer different service for input packets which
has different priority. How to schedule the input packets so the packets from different
flows can get processed in proper order and some packets can be dropped to save
computational power or bandwidth for more urgent packets, many scheduling
algorithms have been proposed to solve this problem.

In this paper, we present the even service sequence structure to improve the DRR
packet scheduling algorithm. This structure is shown to be able to combine advantages
of DRR [1] and WF2Q [2]. The algorithm can provides good fairness, low scheduling
delay, low complexity and ease to implement.

The rest of the paper is organized as follows. Section 2 describe the relevant
previous works, section 3 presents the Improved DRR Packet Scheduling Algorithm
Based on Even Service Sequence, section 4 reports the results of the simulation study
of the algorithm. Finally, Section 5 concludes the paper.

2 Related Work

Schedule problem was first studied in General Processor Sharing (GPS) [4] system, but
it’s an unrealistic algorithm for achieving perfect fairness and isolation among all

 An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence 619

flows. GPS algorithm forms a basis for most packet schedulers. Weighted Fair Queuing
(WFQ) [7] and Worst-case Fair Weighted Fair Queuing (WF2Q) [2], closely
approximate the GPS. These schedulers compute a timestamp for each packet by
emulating the progress of a reference GPS server and transmit packets in the increasing
order of their timestamps. Both WFQ and WF2Q have an O(1) GPS-relative delay.
These scheduling algorithms require complex data structures and are not suitable for
hardware implementation.

Another type of scheduling algorithms is based on round-robin scheme [1, 5, 6, 9,
10]. Round-Robin schedulers serve backlogged flows in some kind of round-robin
fashion and have an O(1) per packet processing complexity. The Deficit Round Robin
(DRR) algorithm is the base for many recent improvements. SRR [9] and Aliquem [10]
improve the average packet delay over DRR, but the worst-case single packet delay
bound is proportional to the number of flows in the system. By using a deadline based
scheduling scheme, the single packet delay bound of the Stratified Round Robin [5]
algorithm is related to the guaranteed rate of the flow and is independent of the number
of flows in the system.

GPS based algorithms have good bounded delay and fairness properties, but have
high complexity, O(log N). It’s difficult to implement GPS based algorithms in high
speed networks. Round-robin based algorithm takes O(1) processing work per packet
and ease for implementation, but it can only provide long term fairness in bandwidth
allocation, do not provide good bounded delay and short term fairness properties.

In this paper, we present an improved DRR packet scheduling algorithm based on
even service sequence which combines the advantage of WF2Q and DRR. We want to
achieve good fairness, low scheduling delay, low complexity and ease to implement.

3 ESSDRR Algorithm

Since the ESSDRR algorithm is based on DRR, we will briefly describe DRR.

DRR works in round. Within each round, each backlogged flow has an opportunity to

send packets. Each flow
if is associated with a quantity iquantum and a

variable interdeficitcou . The quantity iquantum , which indicates the share given to

flow i , is assigned based on the guaranteed rate for if and specifies the target amount

of data that if should send in a round. The variable interdeficitcou is introduced to

record the quantum that is not used in a round so the unused quantum can be passed to

the next round. To ensure that each flow can send at least one packet per round, in this

paper, we will assume that iquantum is larger than the maximum packet size, That is,

620 F. Zhang et al.

maxLquantumi ≥ . According to [1], the iQuantum is in direct ratio with the rate of

flow i ,that is, i i

j j

Quantum r

Quantum r
= , and the rate of flow i is in direct radio with the weight

of the flow i , thus we get i i

j j

w r

w r
= , which iw denotes the weight of the flow i and

1iw ≥ . From above, we get i i

j j

Quantum w

Quantum w
= and maxi iQuantum w L= × .More

details can be found in [1].

DRR is an excellent scheduler when the weights of flows are similar. The problem

with DRR is that, for flow i , DRR try to send packets no more than

i iDeficitCounter Quantum+ bits in one time a round, when the weights of the

flows differ significantly, flows with large weights can be significantly affected by the

flows with small weights both in terms of packet delay and short term bandwidth

allocation [3].

ESSDRR, our proposed scheduler, extends DRR QoS properties for any weight

distribution, while maintaining an O (1) complexity. The basic idea of ESSDRR is as

follows. For flow i , DRR algorithm send the max of maxi iQuantum w L= × bits of

packet one time in a round, iw is the weight of the flow i . From another side, we can

think that the DRR scheduler serve flow i iw times continuously, each time the

scheduler send the max of maxL bits of data. In ESSDRR, we want to spread the

services of flow i , which is amount to iw times, distribute evenly in
−=

=

1

0

Ni

i
iw times of

services which is the sum of all flows’ weight. Thus, the challenge of ESSDRR is how

to build a service sequence which length is
−=

=

1

0

Ni

i
iw i iw nodes

among them. The construction of service sequence is the key of ESSDRR, and we call

this service sequence is ESS (Even Service Sequence). After the construction of

sequence, a round is one round-robin iteration over the even service sequence, and

 An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence 621

scheduler just choose node in sequence in order, and transmit packets no more than

maxL bits, which of the flow defined by the node been choose.

Bennett [2] shows that the WF2Q can provides almost identical service to GPS

differing by no more than one maximum size packet and shares both the

bounded-delay and worst-case fairness properties of GPS. Thus, we use WF2Q to

build the ESS. Assume we have N active flows of which packet size in the flow

is maxL , we use WF2Q discipline to serve all the flow
−=

=

1

0

Ni

i
iw times a round, and then

record the sequence of service to each flow into a service list, and this service list is the

ESS. From another point of view, we use WF2Q to allocate the
−=

=

1

0

Ni

i
iw nodes to N

flows, and each node represents one time service to the flow which we allocate to this

node.

Now consider the procedure of
−=

=

1

0

Ni

i
iw nodes allocation with WF2Q algorithm. Let

us denote iTermCount the total number of nodes which have been allocated to flow

i , we define the virtual start time and finish time of packets in flow i as:

0
max /iTermCount

i i i iS S TermCount L r= + ×

0
max max/ (1) /i iTermCount TermCount

i i i i i iF S L r S TermCount L r= + = + + ×

Without losing generality, let 0 0iS = , so we have

max /iTermCount
i i iS TermCount L r= ×

max(1) /iTermCount
i i iF TermCount L r= + ×

When allocate the j th node, while −=
−=

=

1

1,...,2,1,0
Ni

i
iwj , and we let t be the

time at which the j th service begin. According the WF2Q, the procedure of ESS

construction as follows:

622 F. Zhang et al.

1. Construct a flow set E of which elements meets the condition “the start time is early

than time t ”, iTermCount
iS t≤ ;

2. Choose within E a flow k which meets the condition “flow k have a minimal

finishing time”, min { }k iTermCount TermCount
k i E iF F∈= , and allocate the node j to

flow k, and update the 1k kTermCount TermCount= + ;

3. Repeat the upper process until all
−=

=

1

0

Ni

i
iw nodes are allocate to N N flows.

Since max / iL r occur in every formula above, and i i

j j

w r

w r
= and the allocation

process only uses compare operation, so we simplify , ,i iTermCount TermCount
i iS F τ as follows:

' /iTermCount
i i iS TermCount w=
' (1) /iTermCount
i i iF TermCount w= +

−=

=

=
1

0

/'
Ni

i
iwjt

With ' ' ', ,S F t , The ESS is computed using algorithm shown in Fig 1.

calc_servlist(listID)

{

 local variable: iTermCount =0;

 for(j=0;j<
−=

=

1

0

Ni

i
iw ;j++)

 {

 Construct a flow set E of which elements

meets
−=

=

≤
1

0

//
Ni

i
iii wjwTermCount ;

 Choose within E a flow k which

meets (1) / min {(1) / }k k i E i iTermCount w TermCount w∈+ = + ;

Fig. 1. The algorithm for computing ESS

 An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence 623

 1k kTermCount TermCount= + ;

 pTerm =Make_Node(k, kTermCount) //record flow id k and

current kTermCount in a Term of servlist;

 Append(servlist[listID], pTerm);

 }

}

Fig. 1. (Continued)

Let us now examine the algorithm in Figure 1. servlist is a global variables used to
record the ESS, Make_Node function are used to generate a ESS node to record the
flow id, Append function are used to append a new node at the tail of the servlist. After
the construction of ESS, the ESSDRR algorithm becomes simple. The major variables
used in ESSDRR are summarized in Table 1.

Table 1. Major variables used in the essdrr algorithm

Variable Explanation
listID The ID of servlist, used to differentiate the servlist

servlist A list used to record the ESS node.
P A pointer point to current node in servlist.

fdefict

Used to record the unused quantum of flow f after this

time’s service.

maxL

The maximum packet size that can transmit in one time.

fqueue

A FIFO queue which formed by the packets of flow f

fP

The packet at the head of the queue of flow f

fL

The length of fP which sized in Bytes

fw

The weight of flow f

ESSDRR scheduler is composed by three asynchronous actions, Schedule,
AddFlow and DelFlow. Schedule is the main component of the scheduler and the
pseudo-code for schedule function is shown in figure 2. AddFlow is used when the
new flow is added to the system, and the DelFlow is used when the flow is deleted
from the system.

624 F. Zhang et al.

Schedule()
{
 local variable: f; //f denote ID of current flow

listID = 0;
 P = servlist[listID];//initialize P as the head of servlist

 while(in backlogged-period)

{

 f = P->fid;

fdefict =
fdefict +

maxL ;

 if(P->next!=NULL) //check if we have got tail of servlist

 P = P->next; //not tail, go to next node

 else P = servlist; //when we got tail, just go back to list head

 while(
fdefict >0) //service current flow until fdefict is consumed

 {

 if(
fL >

fdefict) break;

 else{

 dequeue(fP); send(fP);

fdefict =

fdefict -
fL ;

 if(
fqueue is empty)

 {

 DelFlow(f); break;

 }

 }

 }//while(fdefict >0)

 } //while(in busy-period)

}// Schedule

Fig. 2. Pseudo-Code of Schedule function for ESSDRR

 An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence 625

ESSDRR maintain two servlist, and backup for each other. One used to schedule and
another used to update the ESS structure. In the running of the algorithm , ESSDRR
serve all the flows in system according to the current servlist, and when flow changed
(add or delete), Schedule use WF2Q compute a new ESS list, and save the list result to
the backup servlist, and then switch the current servlist with backup servlist.

4 Simulation Experiment

We design some experiments to investigate ESSDRR properties and to compare
ESSDRR with other scheduling disciplines, including WF2Q, SRR, FRR and DRR. All
experiments are performed using ns-2[8]. We will only report the results of two
representative experiments, one for end-to-end delay and the other one for
throughput-time distribution characteristic. The network-topology and experiments in
our simulation experiments are the same with which used in FRR. Figure 3 shows the
network-topology and all the links have a bandwidth of 2Mbps and a propagation delay
of 1ms.

Fig. 3. Simulated network topology

4.1 End-to-End Delay Experiment

In the experiment, there are 10 CRB flows between S0 and R1 with average rates of
10Kbps, 20 Kbps, 40 Kbps, 60 Kbps, 80 Kbps, 100 Kbps, 120 Kbps, 160 Kbps, 200
Kbps and 260 Kbps. The packet delay of these 10 CBR flows is measured. In addition
to the 10 observed flows, there are 5 exponential on/off flows from S1 to R1 with rates
10Kbps, 40 Kbps, 80 Kbps, 120 Kbps and 240 Kbps. The on-time and the off time are
500ms. There are five Pareto on/off flows from S2 to R2 with rates 10Kbps, 40 Kbps,
80 Kbps, 120 Kbps and 240 Kbps. The on-time and off-time are 500ms and the
parameter shape of the Pareto flows is 1.5. Two 7.8Kbps FTP flows with infinite traffic
are also in the system, one from S1 to R1 and the other one from S2 to R2. CBR flows
have a fixed packet size of 210 bytes, and all other flows have a fixed packet size
uniformly chosen between 128 bytes and 1024 bytes.

Figure 4 and Figure 5 show the average end-to-end delay and maximal end-to-end
delay for the ten CBR flows. We can see that WF2Q algorithm has the best
characteristics on both average end-to-end delay and maximal end-to-end delay while

626 F. Zhang et al.

Fig. 4. Average end-to-end delay

Fig. 5. Maximal end-to-end delay

DRR algorithm has the worst by contrast. The average and maximal end-to-end delay
characteristics changed less with different rates. Other algorithms’ delay curves tend
towards similar: dropping rapidly when flow’s rate is increasing.

Now we observe three improved algorithms of DRR (ESSDRR, SRR and FRR).
There is a certain distance between the SRR and WF2Q. It indicates that the delay
characteristic of SRR is the worst in these three algorithms. It has the largest average
delay and maximal delay. The time delay of ESSDRR and FRR are very closer to
WF2Q algorithm and the delay of ESSDRR is appreciably under FRR. A very
interesting fact is that ESSDRR is very smooth while FRR has a certain fluctuation by
contrast. This indicates that ESSDRR could strictly guarantee the packet delay which is
proportional to flow rates.

 An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence 627

4.2 Throughput-Time Distribution Characteristic Experiment

This experiment is designed to demonstrate that the ESSDRR algorithm has a good
short-term fairness property. If the flow’s throughput is not far away from the
pre-assigned value in a short-time period, it means the algorithm has a good short-term
fairness property, and it will not cause flow burst. The previous simulation network
topology is used here. There are 52 CBR flows between S0 and R0, two of them have
the transmit rates of 300Kbps and 600bps and the others 10Kbps. The background
flows are the same as the previous experiments.

Figure 6 shows the short-term throughput of the 300kbps flow with different

scheduling schemes. Each point in the figure represents the throughput in an interval of

100ms. As the figure shows, the short term throughputs for DRR exhibit heavy
fluctuations. It is because the one time service quantum of DRR, which is

maxiw L× .

Surprisingly, the short-term throughput of SRR exhibits heavy fluctuation too. We

consider that it is because we have too many flows in this experiment and the rate

difference between these flows is too large. This makes the higher rank of WSS in SRR,

and the short-term fairness of SRR has great relationship with the rank. On the other

hand, ESSDRR, FRR, and WF2Q exhibits stable throughput, the throughputs are

always close to the ideal rate. This shows that ESSDRR has good short term fairness

property while simpler than WF2Q and FRR.

Fig. 6. Short-term throughput

5 Conclusion

In this paper we have proposed ESSDRR, an improved DRR packet scheduling
algorithm based on even service sequence, which combining advantages of DRR and

628 F. Zhang et al.

WF2Q. Our simulation experiments show that this algorithm can provide good fairness,
low scheduling delay and low complexity.

Acknowledgements

This work is supported by the 863 project of China (No. 2003AA1Z2100) and the
Scientific and Technological Innovation Foundation for Youth teachers of NPU (No.
M016213). We gratefully acknowledge the financial and technical support from the
committee of the 863 project. We also wish to thank the anonymous reviewers for their
constructive comments.

References

1. M. Shreedhar, George Varghese. Efficient fair queuing using deficit round-robin.
IEEE/ACM Transactions on Networking, 4(3): 375-385, 1996

2. J. BENNET, H. Zhang. WF2Q: worst case fair weighted fair queuing. In Proceedings of
INFOCOM’96, 1996

3. X. Yuan and Z. Duan. "FRR: a Proportional and Worst-Case Fair Round Robin Scheduler "
IEEE INFOCOM, 2005

4. A. K. Parekh and R. G.. Gallager, A generalized processor sharing approach for flow
control – the single node case. In Proceedings of INFOCOM’92, vol. 2, pp. 915-924, May
1992

5. S. Ramabhadran and J. Pasquale, Stratified Round Robin: A Low Complexity Packet
Scheduler with Bandwidth Fairness and Bounded Delay," in ACM SIGCOMM'03 (2003),
pages 239-249.

6. S.Cheung and C. Pencea, BSFQ: Bin Sort Fair Queuing," in IEEE INFOCOM'02 (2002).
7. A. Demers, S. Keshav, and S. Shenker, Analysis and Simulation of a Fair Queuing

Algorithm," in ACM SIGCOMM'89 (1989).
8. The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns
9. C. Guo, SRR, an O(1) Time Complexity Packet Scheduler for Flows in Multi-Service

Packet Networks," in ACM SIGCOMM'01 (2001).
10. L Lenzini, E. Mingozzi, and G. Stea, Aliquem: a Novel DRR Implementation to Achieve

Better Latency and Fairness at O(1) Complexity," in IWQoS'02 (2002).

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 629 – 637, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improvement on Strong-Password Authentication
Protocols

Ya-Fen Chang2 and Chin-Chen Chang1, 2

1 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, Taiwan 40724, R.O.C.

ccc@cs.ccu.edu.tw
2 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan 621, R.O.C.

cyf@cs.ccu.edu.tw

Abstract. Password authentication schemes can be divided into two types. One
requires the easy-to-remember password, and the other requires the strong pass-
word. In 2000, Sandirigama et al. proposed a simple and secure password authen-
tication protocol (SAS). Then, Lin et al. showed that SAS suffers from two weak-
nesses and proposed an improvement (OSPA) in 2001. However, Chen and Ku
pointed out that both SAS and OSPA are vulnerable to the stolen-verifier attack.
We also find that these two protocols lack the property of mutual authentication.
Hence, we propose an improvement of SAS and OSPA to defend against the sto-
len-verifier attack and provide mutual authentication in this paper.

1 Introduction

Password authentication is considered as the most common and simplest authentica-
tion mechanisms [1, 2, 6, 8, 12]. Existing password authentication schemes can be
divided into two types. One only requires the memorable password and usually results
in heavy computation load to the whole system. The other uses the strong password
and needs a temper-resistant storage token, e.g. a smart card, to store the strong pass-
word. The strong-password authentication scheme needs lighter computation load
than the former type; moreover, its design and implementation is simpler.

Recently, Sandirigama et al. proposed a simple strong-password authentication pro-
tocol (SAS) [13]. SAS is superior to several well-known protocols [5, 10, 14, 15] by
utilizing storage and reducing the processing time and transmission overhead. How-
ever, Lin et al. presented that SAS is vulnerable to two weaknesses and proposed an
improvement (OSPA) [11].

In most password schemes [3, 6-11, 13-17], the verifiers of the user’s passwords
are stored by the server to prevent the user’s password from being compromised. In
[2, 4, 11], the stolen-verifier attack is an attack that the adversary can impersonate the
user after stealing the verifier of the user’s password. It is obvious that the stolen-
verifier attack can be achieved by employing the dictionary attack if weak passwords
are used. In [4], it was mentioned that the approach of employing strong passwords
does not guarantee the resistance to the stolen-verifier attack even though the diction-
ary attack can be prevented. Hence, Chen and Ku [4] pointed out that both SAS and

630 Y.-F. Chang and C.-C. Chang

OSPA suffer from the stolen-verifier attack. With a deep insight into both of the pro-
tocols, we also find that these two protocols do not preserve the property of mutual
authentication such that any malicious user can impersonate the server. As a result,
we propose an improvement of SAS and OSPA to defend against the stolen-verifier
attack and provide mutual authentication in this paper.

The paper is organized as follows. In Section 2, we review SAS and OSPA. Then, we
show the ways to mount the stolen-verifier attacks on the SAS and OPSA and how
malicious user impersonates the server in Section 3. In Section 4, we present the pro-
posed strong-password authentication protocol. Then, some discussions on our proposed
protocol are shown in Section 5. Finally, we draw some conclusions in Section 6.

2 Reviews of SAS and OSPA

First, we describe the notations used throughout this paper in Subsection 2.1. Then,
we review SAS and OPSA in Subsections 2.2 and 2.3, respectively.

2.1 Notations

In this subsection, the notations used throughout this paper are introduced as follows.

A: the user
 S: the server.
 E: the adversary
 IDA/IDS: the identity of A/S
 PA: the strong password of A
 T: a positive integer indicating the number of times the authentication is being

executed
 Nn: a random number used for the n-th authentication
 ⊕: the bitwise XOR operation
 ||: the concatenation symbol
 h: a one-way hash function, where h2(m) denotes m is hashed twice

2.2 A Review of SAS

In this subsection, we are going to show SAS. SAS is divided into two phases: the
registration phase and the authentication phase.

2.2.1 Registration Phase
The registration phase is invoked only once when the user joins the system.

Step 1. A calculates h2(PA||N1), where N1 is an initial random number chosen by A.
Step 2. A sends (IDA, h2(PA|| N1), N1) via a secure channel to S.
Step 3. S stores (IDA, h2(PA|| N1), N1).

2.2.2 Authentication Phase
The authentication phase is invoked whenever the user wants to access the server.
Note that the delivered information is transmitted via a common channel.

 An Improvement on Strong-Password Authentication Protocols 631

For A’s n-th login:

Step 1. A sends IDA and service request to S.
Step 2. S sends Nn to A.
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h2(PA|| Nn), c2=h2(PA|| Nn+1) ⊕

h2(PA|| Nn), and c3=Nn+1.
Step 4. S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h2(PA|| Nn) and y2 =

c2⊕ h2(PA|| Nn). If h(y1) = h2(PA|| Nn) holds, S replaces (IDA, h2(PA|| Nn), Nn)
with (IDA, y2, Nn+1) for A’s (n+1)-th authentication and grants A his/her ser-
vice request.

2.3 A Review of OSPA

In this subsection, the detail of OSPA is shown as follows. As SAS, OSPA is also
divided into two phases: the registration phase and the authentication phase.

2.3.1 Registration Phase
The registration phase is invoked only once when the user joins the system.

Step 1. A calculates h2(PA⊕1).
Step 2. A sends (IDA, h2(PA⊕1)) via a secure channel to S.

Step 3. S stores (IDA, h2(PA⊕1), T=1).

2.3.2 Authentication Phase
The authentication phase is invoked whenever the user wants to access the server.
Note that the delivered information is transmitted via a common channel.

For A’s n-th login:

Step 1. A sends IDA and service request to S.
Step 2. S sends n to A.
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n) ⊕ h2(PA⊕n), c2=h2(PA⊕(n+1)) ⊕

h(PA⊕n), and c3=h3(PA⊕(n+1)).
Step 4. S first checks whether c1≠c2 holds or not. If it holds, S computes y1 = c1 ⊕

h2(PA⊕n) and y2 = c2 ⊕ y1, where h2(PA⊕n) is the stored verifier. Then, S
checks if h(y1) = h2(PA⊕n) and c3 = h(y2). If they hold, S uses y2 to be the new
verifier for the (n+1)-th authentication and grants A his/her service request.

3 The Weakness of SAS and OSPA

In this section, we are going to show the ways to mount the stolen-verifier attacks on
SAS and OPSA and how malicious user impersonates the server in Subsections 3.1
and 3.2, respectively.

3.1 The Stolen-Verifier Attacks

In this subsection, we present the ways, mentioned in [4], to mount the stolen-verifier
attacks on the SAS and OPSA. Although the legal user may discover the attack when
he/she tries to login next time, E can obtain the needed resource before being detected.

632 Y.-F. Chang and C.-C. Chang

3.1.1 Attack Scenario of SAS
Suppose E has stolen A’s verifier h2(PA|| Nn) after A’s (n-1)-th login.

For A’s n-th login:

Step 1. A sends IDA and service request to S.
Step 2. S sends Nn to A.
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h2(PA|| Nn), c2=h2(PA|| Nn+1) ⊕

h2(PA|| Nn), and c3=Nn+1. E intercepts the transmitted data (c1, c2, c3) and
computes c2′=h2(PA′|| N′n+1) ⊕ h2(PA|| Nn), and c3′=N′n+1, where PA′ and N′n+1
are selected by E. Then, E sends (c1, c2′, c3′) to S.

Step 4. S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h2(PA|| Nn) and
h2(PA′|| N′n+1) = c2′⊕ h2(PA|| Nn). h(y1) = h2(PA|| Nn) must hold because c1 is
calculated by A himself/herself. Hence, S will replace (IDA, h2(PA|| Nn), Nn)

with (IDA, h2(PA′|| N′n+1), N′n+1) for A’s (n+1)-th authentication. Because PA′
is chosen by E, E can use PA′ to access the server as A until the attack is
found.

3.1.2 Attack Scenario of OSPA
Suppose E has stolen A’s verifier h2(PA ⊕ n) after A’s (n-1)-th login.

For A’s n-th login:

Step 1. A sends IDA and service request to S.
Step 2. S sends n to A.
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n) ⊕ h2(PA⊕n), c2=h2(PA⊕(n+1)) ⊕

h(PA⊕n), and c3=h3(PA⊕(n+1)). E intercepts the transmitted data (c1, c2, c3)
and computes c2′=h2(PA′⊕(n+1)) ⊕ (c1 ⊕ h2(PA⊕n)), and c3′=h(h2(PA′⊕
(n+1))), where PA′ is selected by E. Then, E sends (c1, c2′, c3′) to S.

Step 4. S first checks whether c1≠c2′ holds or not. If it holds, S computes y1 =c1 ⊕
h2(PA⊕n) and h2(PA′⊕(n+1)) = c2′⊕ y1, where h2(PA⊕n) is the stored verifier.
Then, S checks if h(y1) = h2(PA⊕n) and c3′ = h(h2(PA′⊕(n+1))). It is obvious
that they must hold. As a result, S uses h2(PA′⊕(n+1)) to be the new verifier
for the (n+1)-th authentication and grants E his/her service request. Because
PA′ is chosen by E, E can use PA′ to access the server as A until the attack is
found.

3.2 Impersonation Attacks

In this subsection, we show how malicious user can impersonate the server S when
the legal user A wants to access the server.

3.2.1 Attack Scenario of SAS
Suppose E wants to impersonate S during A’s n-th login.

For A’s n-th login:

Step 1. A sends IDA and the service request to S.

Step 2. E intercepts the data sent by A and sends N′n to A. Note that N′n is not
needed to be equal to Nn since A does not record Nn locally.

 An Improvement on Strong-Password Authentication Protocols 633

Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| N′n) ⊕ h2(PA|| N′n), c2=h2(PA|| Nn+1)
⊕ h2(PA|| N′n), and c3=Nn+1. E just intercepts the transmitted data (c1, c2, c3)
and grants A his/her service request. A cannot authenticate S in SAS such
that E is considered to be S.

In this case, it is probably that A will reveal more personal secrecy since A will use
the resource provided by E.

3.2.2 Attack Scenario of OSPA
Suppose E wants to impersonate S during A’s n-th login.

For A’s n-th login:

Step 1. A sends IDA and service request to S.

Step 2. E intercepts the data sent by A and sends n′ to A. Note that n′ is not needed
to be equal to n since A does not record n locally.

Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n′) ⊕ h2(PA⊕n′), c2=h2(PA⊕(n′+1))
⊕ h(PA⊕n′), and c3=h3(PA⊕(n′+1)). E intercepts the transmitted data (c1, c2,
c3) and grants A his/her service request. As in SAS, A cannot authenticate S
in OPSA such that E is considered to be S.

As mentioned in the previous subsection, it is probably that A will reveal more per-
sonal secrecy since A will use the resource provided by E. Moreover, E can also use
(c1, c2, c3) to impersonate A to access S for A’s n′-th login if n′>n. In this case, A
reveals important and useful information to E because A cannot authenticate S.

4 The Proposed Strong-Password Authentication Protocol

In this section, we are going to introduce our proposed strong-password authentica-
tion protocol, which can defend against the stolen-verifier attack and provides mutual
authentication to prevent malicious users from impersonating S. As SAS and OSPA,
the proposed strong-password authentication is divided into two phases: the registra-
tion phase and the authentication phase. Unlike SAS and OSPA, S has a unique seed
value SEED for the system users in our proposed protocol. As mentioned in Section
1, the user needs a temper-resistant storage token, e.g. a smart card, to store the strong
password. SEED can be also stored in the smart card while the user joins the system.
Moreover, the unique seed value SEED enables the user to set a single secret on sev-
eral servers since the user only needs a strong password. Our proposed protocol is
presented as follows.

4.1 Registration Phase

The registration phase is invoked only once when the user joins the system. Note that
the delivered data is transmitted through a secure channel.

Step 1. A calculates h2(PA||N1), where N1 is an initial random number chosen by A.
Step 2. A sends (IDA, h2(PA|| N1), N1) to S.

Step 3. S stores (IDA, h2(PA|| N1)⊕h(SEED), N1) for A’s first authentication and
stores (IDS, SEED) in A’s smart card.

634 Y.-F. Chang and C.-C. Chang

4.2 Authentication Phase

The authentication phase is invoked whenever the user wants to access the server.
Note that the delivered information is transmitted via a common channel.

For A’s n-th login:

Step 1. A inserts his/her smart card into the card reader and sends IDA and service
request to S.

Step 2. S randomly chooses numbers D and Nn+1, which are not used before, and
sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕ h(Nn), h(D) ⊕ h(Nn+1) to A.

Step 3. A computes r1= (SEED ⊕ D) ⊕ SEED and checks whether h(Nn)= (h(D) ⊕
h(Nn)) ⊕ h(r1) and h(Nn+1)= (h(D) ⊕ h(Nn+1)) ⊕ h(r1). If they hold, A sends
(c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h(h2(PA|| Nn) ||D), c2=h2(PA|| Nn+1) ⊕
h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S.

Step 4. S uses the stored verifier h2(PA|| Nn)= (h2(PA|| Nn)⊕h(SEED)) ⊕h(SEED) to
compute y1 = c1 ⊕ h(h2(PA|| Nn) ||D) and y2 = c2⊕ h(y1||D). If h(y1) = h2(PA||
Nn) and c3=h(y2||D) hold, S replaces (IDA, h2(PA|| Nn) ⊕h(SEED), Nn) with

(IDA, y2⊕h(SEED), Nn+1) for A’s (n+1)-th authentication and grants A
his/her service request.

5 Discussions

In the following, we will show the properties that the proposed protocol achieves to
demonstrate that it is secure, efficient and practical.

Property 1: The protocol provides mutual authentication
As mentioned in Subsection 4.1, the user gets the unique seed value SEED after join-
ing the system. In the authentication phase, S sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕

h(Nn), and h(D) ⊕ h(Nn+1) to the user A in Step 2. Then, A can determine whether Nn
and Nn+1 are sent by S by checking if h(Nn) = h(SEED ⊕ (SEED ⊕ D)) ⊕ (h(D) ⊕
h(Nn)) and h(Nn+1) = h(SEED ⊕ (SEED ⊕ D)) ⊕ (h(D) ⊕ h(Nn+1)) hold or not. Since
SEED is stored in the smart card and all computing operations are done by the smart
card [18], no malicious user can get SEED to cheat the innocent users by impersonat-
ing S.

In Step 3 in the authentication phase, A sends (c1, c2, c3) to S, where c1=h(PA|| Nn)
⊕ h(h2(PA|| Nn)||D), c2=h2(PA|| Nn+1) ⊕ h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S.
Then, S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h(h2(PA|| Nn)||D) and
y2 = c2⊕ h(y1||D). If h(y1) = h2(PA|| Nn) and c3=h(y2||D) hold, it denotes that the re-
questing user must be A since A owns not only the strong password PA but also SEED
in his/her smart card. According to the above analyses, this property is confirmed.

Property 2: The proposed scheme can defend against the stolen-verifier attack
Suppose the scenario that E has stolen A’s verifier h2(PA || Nn) ⊕ h(SEED) after A’s
(n-1)-th login. First of all, since SEED is unknown to E, E cannot retrieve h2(PA || Nn).
That is, A can get neither h2(PA || Nn) nor A’s password.

 An Improvement on Strong-Password Authentication Protocols 635

For A’s n-th login:

Step 1. A inserts his/her smart card into the card reader and sends IDA and service
request to S.

Step 2. S sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕ h(Nn), h(D) ⊕ h(Nn+1) to A,
where D and Nn+1 are random numbers chosen by S. E eavesdrops the data
sent by S.

Step 3. A computes r1= (SEED ⊕ D) ⊕ SEED and checks whether h(Nn)= (h(D) ⊕
h(Nn)) ⊕ h(r1) and h(Nn+1)= (h(D) ⊕ h(Nn+1)) ⊕ h(r1). If they hold, A sends
(c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h(h2(PA|| Nn)||D), c2=h2(PA|| Nn+1) ⊕
h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S. E intercepts the transmitted
data (c1, c2, c3); however, E does not know SEED to get D to reveal h(PA||
Nn) and h2(PA || Nn) for computing c2′and c3′ as shown in Subsection 3.1.

It is obvious that E cannot mount the stolen-verifier attack on our proposed proto-
col successfully even the user’s verifier is stolen.

Property 3: The proposed protocol is secure
As mentioned in Property 1, our proposed protocol confirms mutual authentication
between the user and the server. Hence, it is sure that the proposed protocol is resis-
tant to server spoofing attack and impersonation attack. Because S generates random
numbers D and Nn+1 during the user’s n-th login, S can easily check whether the data
sent by the user in Step 3 in the authentication phase is received before. As a result,
replay attack cannot succeed in our proposed protocol. In Property 2, we have shown
that the proposed protocol can defend against the stolen-verifier attack. As shown in
Step 4 of authentication phase, S uses the stored verifier h2(PA|| Nn)= (h2(PA||
Nn)⊕h(SEED)) ⊕h(SEED) to compute y1 = c1 ⊕ h(h2(PA|| Nn) ||D) and y2 = c2⊕
h(y1||D). If h(y1) = h2(PA|| Nn) and c3=h(y2||D) hold, S replaces (IDA, h2(PA|| Nn) ⊕
h(SEED), Nn) with (IDA, y2 ⊕ h(SEED), Nn+1) for A’s (n+1)-th authentication and
grants A his/her service request. The above approaches ensure both the legality of the
user and the validity of the new verifier. That is, the denial-of-service attack cannot
work in our proposed scheme. As far as the password guessing attacks are concerned,
it is obvious that our proposed method can defend against them. It is because all pa-
rameters transmitted are all concealed with the secret number D, which is used only
once. According to the above analyses, we can sum up that our proposed protocol is
secure.

Property 4: The proposed protocol is efficient and practical
As mentioned in Section 4, either S or A only computes hash operations. No time-
consuming operation, e.g. exponentiation, asymmetric en/decryption, or symmetric
en/decryption, is needed. Moreover, the unique seed value SEED enables the user to
set a single secret on several servers. The user only needs a smart card to store the
strong password and the unique seed values issued by different servers. According to
the above characteristics, it is sure that our proposed protocol is not only efficient but
also practical.

636 Y.-F. Chang and C.-C. Chang

6 Conclusions

Chen and Ku pointed out that both SAS and OSPA are vulnerable to the stolen-
verifier attack. Moreover, we find that mutual authentication is not confirmed in these
two protocols. As a result, we propose an improvement of SAS and OSPA to defend
against the stolen-verifier attack and provide mutual authentication. As mentioned in
the previous section, it is obvious that the proposed protocol is secure, practical, and
efficient.

References

1. Bellovin, S. and Merritt, M., “Encrypted Key Exchange: Password-based Protocols Secure
against Dictionary Attacks,” Proceedings of IEEE Symposium on Research in Security and
Privacy, Oakland, California, May 1992, pp. 72-84.

2. Bellovin, S. and Merritt, M., “Augmented Encrypted Key Exchange: A Password-based
Protocol Secure against Dictionary Attacks and Password-file Compromise,” Proceedings
of 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia,
November 1993, pp. 244-250.

3. Boyko, V., MacKenzie, P., and Patel S., “Provably Secure Password Authentication Key
Exchange Using Diffie-Hellman,” Proceedings of EuroCrypt 2000, May 2000, pp.
156-171.

4. Chen, C.M. and Ku, W.C., “Stolen-verifier Attack on Two New Strong-password Authen-
tication Protocol,” IEICE Transactions on Communications, Vol. E85-B, No. 11, Novem-
ber 2002, pp. 2519-2521.

5. Haller, N., “The S/KEY One-time Password System,” Proceedings of Internet Society
Symposium on Network and Distributed System Security, San Diego, California, February
1994, pp. 151-158.

6. Jablon, D., “Strong Password-only Authenticated Key Exchange,” ACM Computer Com-
munication Review, Vol. 26, No. 5, September 1996, pp. 5-26.

7. Jablon, D., “B-SPEKE,” Integrity Science White Paper, September 1999.
8. Kwon, T., “Ultimate Solution to Authentication via Memorable Password,” A Proposal for

IEEE P13631: Password-based Authentication, May 2000.
9. Kwon, T., “Authentication and Key Agreement via Memorable Password,” Proceedings on

NDSS 2001 Symposium Conference, San Diego, California, February 2001.
10. Lamport, L., “Password Authentication with Insecure Communication,” Communications

of ACM, Vol. 24, No. 11, November 1981, pp. 770-772.
11. Lin, C.L., Sun, H.M., Steiner, M., and Hwang, T., “Attacks and Solutions on Strong-

password Authentication,” IEICE Transactions on Communications, Vol. E84-B, No. 9,
September 2001, pp. 2622-2627.

12. Lomas, M., Gong, L., Saltzer, J., and Needham, R., “Reducing Risks from Poorly Chosen
Key,” Proceedings of the 12th ACM Symposium on Operating Systems Principles, Litch-
field Park, Arizona, December 1989, pp. 14-18.

13. Sandirigama, M., Shimizu, A., and Noda, M.T., “Simple and Secure Password Authentica-
tion Protocol (SAS),” IEICE Transactions on Communications, Vol. E83-B, No. 6, June
2000, pp. 1363-1365.

14. Shimizu, A., “A Dynamic Password Authentication Method by One-way Function,” IEICE
Transactions on Information and Systems, Vol. J73-D-I, No. 7, July 1990, pp. 630-636.

 An Improvement on Strong-Password Authentication Protocols 637

15. Shimizu, A., “A Dynamic Password Authentication Method by One-way Function,” Sys-
tem and Computers in Japan, Vol. 22, No. 7, 1991.

16. Shimizu, A., Horioka, T., and Inagaki, H., “A Password Authentication Method for Con-
tents Communication on the Internet,” IEICE Transactions on Communications, Vol. E81-
B, No. 8, August 1998, pp. 1666-1763.

17. Wu, T., “The Secure Remote Password Protocol,” Proceedings of Internet Society Sympo-
sium on Network and Distributed System Security, San Diego, California, March 1999, pp.
97-111.

18. Yi, X., Tan, C.H., Siew, C.K. and Syed, M.R., “ID-based Key Agreement for Multimedia
Encryption,” IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, May 2002, pp.
298-303.

Two-Step Hierarchical Protocols for Establishing
Session Keys in Wireless Sensor Networks

Kyungsan Cho1, Soo-Young Lee2, and JongEun Kim1

1 Division of Information and Computer Science,
Dankook University, Seoul, Korea
{kscho, semico}@dankook.ac.kr

2 Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849, U.S.A.

leesooy@eng.auburn.edu

Abstract. Secure communication between sensor nodes is required in
most of sensor networks, especially those deployed in a hostile environ-
ment. Due to the limited energy and computational capability on each
sensor node, a public key cryptosystem is not a viable option for a wire-
less sensor network. Hence, the idea of key pre-distribution has been
widely adopted in most of the session key establishment protocols pro-
posed so far. In this paper, 1) several typical session key establishment
protocols are analyzed and compared in terms of common criteria, 2) the
requirements for improving upon the existing protocols are derived, and
3) two advanced protocols which take a two-step hierarchical approach
to satisfying the requirements are proposed. Through the performance
analysis, it has been shown that the proposed protocols improve the
connectivity of a sensor network, uniqueness of session keys and security
over the existing protocols.

1 Introduction

Sensor networks are expected to provide cost-effective solutions in various ap-
plications. A sensor network consists of a large number of sensor nodes deployed
in a certain area and few base nodes. Each sensor node is equipped with a small
size of memory and limited computational capability, and is battery-powered.
Therefore, energy and storage-efficient operation of sensor nodes is essential in
practical sensor networks.

In many applications, it is required to achieve a certain level of security in
exchanging information between sensor nodes, especially when a sensor network
is deployed in a hostile environment as in military applications. Thus, one of the
important issues that need to be addressed in designing a sensor network is its
security [1]-[4].

A sensor node may communicate with other sensor nodes and also base nodes.
Security of communication channel between a sensor node and a base node can
be provided by a public key based protocol since base nodes have sufficient
energy and hardware required for executing such a protocol [2][3]. Alternatively,

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 638–649, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Two-Step Hierarchical Protocols for Establishing Session Keys 639

a secret key may be assigned to each sensor node before deployment, which is
to be shared with the base node. Communication between sensor nodes can be
realized indirectly via a base node in order to utilize the secure channels between
sensor nodes and the base node. While this approach guarantees full connectivity
of sensor nodes, it incurs a longer communication latency and leads to a poor
fault tolerance. Also, the base node becomes a bottleneck which can cause traffic
congestion. Therefore, direct communication is preferred between sensor nodes.

However, the limited resources available on sensor nodes do not allow a pub-
lic key cryptosystem to be employed for direct communication between sensor
nodes. As a result, various schemes where information for establishing session
keys to be shared between communicating sensor nodes is distributed before their
deployment have been proposed [5]-[10]. While each of the protocols achieves a
certain degree of security, there exists significant room for improvement in terms
of security, connectivity, overhead, etc. In this paper, several existing protocols
for establishing session keys between sensor nodes are analyzed and compared in
terms of a set of important security and performance metrics. From the analysis
results, we derive a set of requirements desirable for advanced protocols improved
upon the existing protocols. Then, we propose a couple of two-step hierarchical
protocols satisfying the requirements. Our main objective is to improve the con-
nectivity of a sensor network, uniqueness of sensor keys and security over the
existing protocols by taking the hierarchical approach.

In Section 2, various typical key management protocols are analyzed and
compared. In Section 3, the requirements for improving the existing protocols
are discussed and two new advanced protocols satisfying the requirements are
proposed. In Section 4, the performance of the proposed protocols is analyzed.
In Section 5, a summary is provided.

2 Analysis of Existing Protocols

2.1 BROSK (BROadcast Session Key Negotiation Protocol)

In order to enhance security of the single session-key protocol, the BROSK pro-
tocol employs a common master key which is used by all sensor nodes during the
session key negotiation phase [5]. Each sensor node first broadcasts an introduc-
tion message of its ID, nonce and MAC (Message Authentication Code). Once
a sensor node receives the introduction messages broadcasted by its neighbors,
it can generate a session key for each neighbor through the MAC of two nonces.

This protocol requires lower communication overhead and generates a unique
session key for each pair of sensor nodes. However, if the master key is exposed
to a third party, all session keys of a sensor network may be compromised.

2.2 Random Key Pre-distribution

Eschenhaur and Gligor proposed a random key pre-distribution protocol which
saves the storage space required on each sensor node without sacrificing the
sensor network security significantly [6]. It consists of pre-distribution of random

640 K. Cho, S.-Y. Lee, and J. Kim

keys before deployment and discovery of a common key afterward. A large pool,
P , of keys is defined within the domain of all possible keys that can be used
as session keys. A set of m keys (referred to as key ring) randomly selected
from P and their respective IDs are assigned to each sensor node prior to its
deployment. Once the sensor network is deployed, each sensor node recognizes its
neighbors through broadcasting of node IDs, and then communicates with each
of its neighbors, looking for a common key in their key rings. This key agreement
process can be carried out by exchanging the key IDs or encrypted messages.
In the case of exchanging the key IDs, each sensor node broadcasts the IDs of
keys in its key ring as plain-text. If there is a common ID between two sensor
nodes, the corresponding key becomes the session key for them. In the case of
exchanging the encrypted messages, each sensor node encrypts the challenge α
with a key (ki where i is the key index) in its key ring, and broadcasts the
challenge (α) and encrypted challenge (Eki(α)). If the intended neighbor can
decrypt Eki(α) by one of its keys, which must be identical with ki, and reveal
the challenge, ki is used as the session key between them.

One of the drawbacks in this approach is that the secure channel between
two sensor nodes can be established only when there is a common key between
them. Also, uniqueness of each session key is not guaranteed, and there is no
explicit session key verification process. In addition, a third party may eavesdrop
the plain-text messages of IDs or launch the DoS attack when the encryption is
used for key agreement.

2.3 OKS (Overlap Key Sharing)

The OKS protocol uses a long bit sequence, instead of a large pool of keys,
for deriving session keys [5]. Before deployment, a random segment of the bit
sequence is stored in each sensor node. After deployment, each sensor node
broadcasts its bit segment, and checks if there is any overlap between its bit
segment and the one received from each of its neighbors. When there is an
overlap, the overlapping portion of the bit segment is used to generate a session
key of certain length through hashing for the two sensor nodes.

While, compared to the random key pre-distribution method, the storage and
communication requirements can be reduced, the network connectivity is lower.

2.4 Q-Composite Key

The q-composite key protocol improves security of a sensor network, over the
random key pre-distribution protocol, by enhancing uniqueness of each session
key [7]. Its key pre-distribution step is the same as that of the random key pre-
distribution protocol. In the session key agreement step, each sensor node makes
a puzzle for each of the keys in its key ring and broadcasts the puzzles. When
a sensor node receives a puzzle, it finds a key in its key ring, which gives the
correct answer to the puzzle, if there is one. The answer is then sent to the
neighboring sensor node from which the puzzle was received. If the number of
such common keys is at least q between two sensor nodes, a session key for the

Two-Step Hierarchical Protocols for Establishing Session Keys 641

nodes is generated from the common keys through hashing. This protocol lowers
the probability that two or more pairs of sensor nodes use the same session key,
and is less vulnerable to eavesdropping attacks since the puzzles (instead of the
key IDs) are broadcast. However, the puzzles are to be broadcast individually,
which increases the energy consumption. In addition, the network connectivity
becomes lower.

2.5 Node ID Based Keys

A protocol that is similar to the ABK protocol [11] developed for mobile net-
works was proposed, and it uses node IDs to reduce communication overhead
[8]. Before deployment, each sensor node is assigned with a set of keys whose
IDs are generated from its node ID through a random mapping function. The
mapping function is known to all sensor nodes. Therefore, any sensor node can
compute the IDs of all the keys stored in each of its neighbors once it finds out
the node ID of the neighbor.

The advantages of this protocol are the lower communication overhead re-
quired and the improved security of session keys generated. However, a drawback
is that every sensor node can find out the IDs of keys shared between any two
nodes.

2.6 Blom’s Protocol

The Blom’s protocol exploits a symmetric matrix for generation of session keys,
which guarantees security of a sensor network as long as no more than λ nodes
are compromised [12]. Let N denote the number of nodes in a sensor network.
A (λ + 1) × N matrix G is constructed and is kept public. Also, a random
(λ + 1)× (λ + 1) symmetric matrix D is generated and kept secret. Let’s define
matrix A to be (D ·G)t. Then, it is easy to see that K = A ·G = (A ·G)t. That
is, K is symmetric, i.e., Kij = Kji where Kij is the element in K in the ith row
and the jth column.

Now, before deployment, the ith row of matrix A and the ith column of matrix
G are stored in sensor node i. Note that the ith row of matrix A is known to
sensor node i only. Any two nodes exchange their columns of matrix G, and then
each of them computes the dot product between its row of matrix A and the
column of matrix G received from the other node. The dot product Kij computed
by node i is the same as Kji obtained by node j, which is used as their session
key. Full connectivity of a sensor network is achieved by this protocol.

Du et. al. proposed a modified version of the Blom’s protocol in order to
improve security of a sensor network and lower the storage requirement by em-
ploying multiple key spaces (a key space is a pair of matrices G and D), at the
expense of sacrificed network connectivity [13].

2.7 Comparison of Existing Protocols

In Table 1, the existing protocols reviewed in this section are compared in terms
of several metrics. It is assumed that two neighboring sensor nodes can directly

642 K. Cho, S.-Y. Lee, and J. Kim

communicate with each other. In the table, communication overhead includes
all the transmissions for establishing a session key between two sensor nodes,
and computation overhead is per a pair of sensor nodes. As shown in the table,
all the existing protocols reviewed have one or more limitations. The existing
protocols with the pre-distributed key information (refer to Sections 2.2, 2.4, 2.3,
and 2.5) show weakness in the connectivity, key uniqueness and security. The
other protocols have vulnerability to various attacks.

Table 1. Comparison of the existing protocols where m is the size of key ring

BROSK Random OKS q-composite Node ID Blom
(Encrypt)

Pre-distributed master key m× bit seq. m× mapping func. row/
information (key, ID) (key, ID) column
session key random single overlapping composite composite single
generation shared bit seq. shared shared shared

Connectivity © � � � � ©
key uniqueness © × � � � ©
key verification × × × × © ×
communication 2 2 × m 2 2 × m 2 2

(1)

communication 2 2 2 2 2 2
(2)

computation MAC encrypt/decr comp/hash puzzle/sol/hash keygen/comp product
(3) 6 2m/2m2 2/2 2m/2m/2 2/2m2 2(λ + 1)

DoS attack × × � × � ©
Eavesdropping © © × © � �
Node attack ×/© × © � × �

©: good, �: fair, ×: poor, (1) number of transmissions for setting up session keys ; (2) number of
transmissions for exchanging session keys and verification(we add two transmissions to the protocols
without verification process) ; (3) computation for setting up session keys only(operations and times).

3 Proposed Protocols with Two Step Hierarchy

3.1 Requirements for Advanced Protocols

To improve the existing protocols analyzed in Section 2, the desirable character-
istics for a session key generation protocol are defined on connectivity, unique-
ness of the session key, communication overhead and non-vulnerability to various
attacks.

– Connectivity: For the direct communication between neighboring sensor
nodes, higher connectivity is required. The protocols using the pre-
distributed key information have a limited connectivity. One way to increase
connectivity of a sensor network is to reduce the size of key pool and/or in-
crease that of key ring. However, this makes it more likely that a third party

Two-Step Hierarchical Protocols for Establishing Session Keys 643

may find out most session keys in a sensor network by attacking fewer sen-
sor nodes. Hence, a protocol is to enhance connectivity of a sensor network
without jeopardizing its security.

– Uniqueness of Session Key: In order to minimize the probability that com-
promising some sensor nodes exposes session keys of other nodes, as many
session keys as possible are to be unique. However, session keys generated by
the pre-distributed key information could be duplicated. Thus, uniqueness
should be supported for the pre-distributed key approaches.

– Communication Overhead: Transmission is the most energy consuming
process. In sensor networks, exchanging node IDs of neighboring sensor nodes
and agreement of sensor key between two sensor nodes (transferring session
keys and verifying them) are inevitable. Thus, four transmissions are un-
avoidable. Encrypting messages or employing puzzles for a higher level of
network security causes additional transmissions. A protocol needs to mini-
mize the communication overhead while achieving a required level of security.

– Non-vulnerability to Attacks: Any information transferred in the plain text
is vulnerable to the eavesdropping attacks. A third party may launch the
DoS attack on certain sensor nodes by sending a large number of encrypted
messages or puzzles to them. For enhancing security of a sensor network, it
is desirable to limit the amount or effective period of information that may
be made public, and to make it impossible to derive session keys from such
information.

3.2 Proposed Protocols

In this section, we propose two hierarchical protocols for session key establish-
ment to satisfy the above requirements. They are referred to as Protocol I and
Protocol II. The common feature of the proposed protocols is that they all take a
two-step approach to establishing session keys after deployment of sensor nodes.
In the first step, a secret initial key is generated by each pair of neighboring
nodes, which is used for the agreement of a session key in the second step and
then discarded. The second step allows two neighboring sensor nodes to decide
on their session key through random generation, which makes session keys unique
and, thus, a high level of network security is achieved.

This two-step approach has the following advantages. Since the initial key
generated in the first step is used only once, its required security level doesn’t
have to be as high as that for a session key, which enhances connectivity of the
sensor network. Each sensor node can filter out those encrypted session keys,
which do not need to be decrypted, by examining the IDs of senders. Hence,
both of the proposed protocols are not vulnerable to DoS attacks.

3.3 Protocol I

In the first step, the node ID based approach is employed in generation of the
initial keys, followed by session key establishment in the second step. The ran-
dom key pre-distribution of the node ID based protocol is carried out before

644 K. Cho, S.-Y. Lee, and J. Kim

sensor node deployment. The overall operation of Protocol I may be described
as follows:

1. Each sensor node broadcasts its node ID.
2. Each sensor node computes the IDs of keys stored in each of the neighboring

nodes. If the sensor node finds one or more key IDs common to its and
neighbor’s key rings, it generates an initial key by hashing the common keys
in its key ring.

3. Each pair of neighboring sensor nodes generates a session key for their secure
communication. One of the two nodes (sender), which may be determined
by their node IDs, e.g., whichever node with a smaller ID when the sum of
the two IDs is odd, creates a random key to be used as their session key
and encrypts it with the initial key. The encrypted session key is sent to the
other node (receiver).

4. The receiver node extracts the session key from the encrypted session key
through decrypting and, for verification purpose, sends the session key en-
crypted by the session key back to the sender.

Protocol I has the following characteristics:

– The size of key ring on each sensor node and the size of key pool can be
selected to enhance the network connectivity without affecting security of
session keys negatively since session keys are independent of initial keys.

– Session keys are guaranteed to be unique.
– Communication overhead is minimal (four transmissions) since only the node

IDs and the encrypted session keys are exchanged between sensor nodes.

3.4 Protocol II

One way to achieve full connectivity of a sensor network is to employ the Blom’s
approach in the first step. That is, the first step of Protocol II generates initial
keys by the Blom’s protocol, and the second step creates session keys using the
initial keys as in Protocol I.

The characteristics of Protocol II are:

– Connectivity between any two sensor nodes is guaranteed by the Blom’s
protocol.

– A third party cannot derive the initial keys by eavesdropping alone since the
rows of matrix A are not exchanged between sensor nodes.

– Communication overhead is low (four transmissions) since only the node IDs,
columns of matrix G, and (encryted) session keys are exchanged between
sensor nodes.

– By having the columns of matrix G independent of each other, the initial
keys generated in the first step can be made unique, which prevents other
initial keys (and accordingly session keys) from being compromised due to a
node capture.

Two-Step Hierarchical Protocols for Establishing Session Keys 645

4 Performance Analysis

In this section, the performance of the two proposed protocols is analyzed in
terms of network connectivity, uniqueness of session key, communication and
computation overheads, and storage requirements. We define connectivity to be
the probability that any two sensor nodes share a sufficient number (q) of keys in
their key rings from which a session key can be derived for a secure connection.
Also, interdependency of session keys is defined to be the probability that a
session key between two un-compromised sensor nodes is exposed when some
other nodes are captured by the attacker.

Since connectivity in the existing protocols with the pre-distributed key infor-
mation is determined probabilistically, there is always the chance that neighbor-
ing sensors may not be connected. One way to enhance the network connectivity
is to reduce the size of key pool (P) and/or to increase the size of key ring (m).
However, it substantially sacrifices the uniqueness of session keys and thus the
network security. In addition, as the size of the key ring, m, is increased for high
connectivity, the computational overhead and storage requirement in each sensor
node also increase. However, the first step in the proposed protocols enhances
the connectivity of sensor network greatly and the uniqueness of session keys is
guaranteed by the second step.

4.1 Protocol I

Network Connectivity and Uniqueness of Session Key. In Protocol I,
the initial keys generated in the first step are used only once and, therefore, it
can increase connectivity between neighboring sensor nodes. In the second step
of Protocol I each pair of neighboring sensor nodes derives a session key through
random generation, which guarantees uniqueness of each session key and hence
improves security of a sensor network greatly.

In Figure 1, the network connectivity that can be achieved by Protocol I is
shown with P in the range of 2000 to 10000 and m not greater than 200. As shown
in the figure, one can achieve high connectivity over 0.99, and low computational
and memory requirements, by properly selecting small m and P . Note that such
small m and P would not affect the interdependency of session keys since the
session keys are independent of m and P in the proposed protocols.

Communication Overhead. There are 4 transmissions required between two
neighboring sensor nodes. Each sensor node broadcasts its node ID (n bits where
the number of nodes, N , is not greater than 2n) in the first step. In the second
step, one of them sends the encrypted session key to the other which in turn
sends back the encrypted initial key for session key verification (B bits). Thus,
the communication overhead is minimized.

Computation Overhead. In the first step, each sensor node computes the IDs
of m keys in each of its neighbors, and generates an initial key through hashing.
In the second step, a session key is created, which is encrypted and subsequently

646 K. Cho, S.-Y. Lee, and J. Kim

Fig. 1. Connectivity achieved by Protocol I (equivalent to q=1)

decrypted, and for verification of the session key the initial key is also encrypted
and decrypted later.

Storage Requirement. Each sensor node needs to store its node ID (n bits)
and key ring (m keys: m × B bits, and m key IDs: m × n bits).

The characteristics of Protocol I analyzed above are summarized in Table 2.

Table 2. Characteristics of Protocol I

pre-dist- session key communication computation eaves- node
ribution key uni- connec- verifi- key key key key DoS drop attack

info. gen. queness tivity cation gen. exch. gen. exch.

mapping random 2× session key 2×encrypt
function gen. © © © node ID veri. info. † 2×decrypt � © ©

† : 2m× key ID calculations, 2m2 key ID comparisons, 2× initial key generations, and a session key

generation.

4.2 Protocol II

Network Connectivity and Uniqueness of Session Key. The Blom’s pro-
tocol employed in the first step guarantees full connectivity of a sensor network,
i.e., any two sensor nodes are connected. As in Protocol I, every session key is
unique.

Communication Overhead. In the first step, each sensor node broadcasts its
node ID and one column ((λ + 1)× 1) of matrix G (B(λ + 1) bits) in one trans-
mission. In the second step, the encrypted session key (B bits) and verification
message (B bits) are transmitted between two neighboring sensor nodes. That
is, the total number of transmissions between the two sensor nodes is 4.

Two-Step Hierarchical Protocols for Establishing Session Keys 647

Computation Overhead. In the first step, each sensor node computes the
dot product with a row of matrix A and a column of matrix G, each with λ + 1
elements. In the second step, each pair of neighboring sensor nodes generates a
session key, encrypts the session key and verification information, and decrypts
them.

Storage Requirement. Each sensor node is to store its node ID (n bits), a
column of matrix G (B(λ + 1) bits) and a row of matrix A (B(λ + 1) bits).

Table 3 summarizes the characteristics of Protocol II.

Table 3. Characteristics of Protocol II

pre-dist- session key communication computation eaves node
ribution key uniqu- connec- verifi- key key key key DoS -drop attack

info. gen. eness tivity cation gen. exch. gen. exch.

matrix random 2× session key 2×encryp
row gen. © © © (node ID, veri. info. † 2×decryp � © ©

column column)

† : 2× initial key generation (λ + 1 multiplications) and session key generation.

4.3 Comparison of Communication Overhead

It has been shown that the proposed protocols improve the connectivity of a
sensor network and uniqueness of session keys over the existing protocols. The
existing protocols and the proposed protocols are compared in Table 4, in terms
of transmission overhead. Note that transmission is the most energy-consuming
process. As shown in the table, there must be at least 4 transmissions required
for generating and verifying a session key. Protocol I incurs the minimum com-
munication overhead, and the added communication overhead for Protocol II is
negligible for a small value of λ. Thus, the proposed protocols achieve high/full
connectivity and enhance the security greatly without increasing the communi-
cation overhead.

5 Summary

A sensor network usually consists of a large number of sensor nodes and they
communicate with each other through radio transmission. This makes sensor
networks vulnerable to various attacks by the adversary. In the applications
where a certain level of security is required, it is necessary for each sensor node
to authenticate its neighbor nodes and use session keys for secure communication.
However, since the communication and computation capabilities and the storage
capacity of sensor nodes are very limited, the conventional public key cryptogram
cannot be employed. Various protocols for establishing session keys have been
proposed taking these characteristics into account.

In this paper, several existing protocols for session key derivation are analyzed
and compared in terms of common criteria. We found that the protocols which

648 K. Cho, S.-Y. Lee, and J. Kim

Table 4. Comparison of communication overhead

BROSK Random q-composite Node ID Blom Protocol Protocol
(Encrypt) I II

number of 4 2 × m + 2 2 × m + 2 4 4 4 4
transmission

(ID, Nonce, (ID, a, E(a)) (ID, puzzle) ID (ID, col.) ID (ID, col.)
contents of MAC) ×m × 2 ×m ×2 ×2 ×2 ×2

transmissions† ×2 (ID, sol.)
×m

bits (16+64+64) (16+64+64) (16+64+64) 16 (16+ 16 (16+
64(λ + 1)) 64(λ + 1))

transferred† ×2 ×m × 2 ×m × 2 ×2 ×2 ×2 ×2

†: the contents and bits transferred, which are required in the last two transmissions in all protocols,

are excluded.

derive session keys from the pre-distributed key information have disadvantages
in network connectivity, session key uniqueness, and network security. Based on
the analysis results, some requirements for the advanced protocols are presented.

In addition, we propose new advanced two-step hierarchical protocols to sat-
isfy the requirements. In the first step of our protocols, the initial keys which are
used only once are derived from the pre-distributed information. In the second
step, session keys are randomly generated and verified using the initial keys.
Thus, the proposed protocols enhance the connectivity of the sensor network
while providing the guaranteed uniqueness of session keys. Protocol I achieves
more than 99 % of connectivity and Protocol II guarantees full connectivity of a
sensor network. In addition, they reduce the energy consumption by minimizing
the number of transmissions in the both protocols and the size of messages trans-
mitted in Protocol I. As an extension, the proposed protocols may be applicable
to mobile sensor networks. Each sensor node which moves to a new location can
follow the same two-step procedure in Section 3 to derive session keys with the
new neighbors.

References

1. A. Perrig, J. Stankovic and D. Wagner, ”Security in Wireless Sensor Networks,”
Communications of the ACM, Vol. 47, No. 6, pp53 -57, 2004.

2. N. H, R. Smith, and P. Bradford, ”Security for Fixed Sensor Networks,” Proc. of
ACMSE’04, pp 212-213, 2004.

3. Y. Wang, ”Robust Key Establishment in Sensor Networks,” SIGMOD Record, Vol.
33, No. 1, pp 14-19, 2004.

4. A. Perrig, etc., ”SPINS: Security Protocols for Sensor Networks,” Journal of Wire-
less Nets., Vol 8, No.5, pp 521-534, 2002.

5. B. Lai, etc., ”Reducing Radio Energy Consumption of Key Management Protocols
for Wireless Sensor networks,” Poc. of ISLPED’04, pp 351-356, 2004.

6. L. Eschenhaur and V. Gligor, ”A Key-Management Scheme for Distributed Sensor
Networks,” Proc. of CCS’02, pp 41-47, 2002.

Two-Step Hierarchical Protocols for Establishing Session Keys 649

7. H. Chan, A. Perrig and D. Song, ”Random Key Predistribution Schemes for Sensor
Networks, Proc. of 2003 IEEE Symposium on Security and Privacy(SP’03), pp
197-213, 2003.

8. R. Pietro, L. Mancini and A. Mei, ”Random Key-Assignment for Secure Wireless
Sensor Networks,” Proc. of 1st Workshop Security of Ad Hoc and Sensor Networks,
pp 62-71, 2003.

9. D. Liu and P. Ning, ”Location-based Pairwise Key Establishments for Static Sensor
Networks,” Proc. of 1st Workshop Security of Ad Hoc and Sensor Networks, pp
72-82, 2003.

10. W. Du, etc., ”A Key Management Scheme for Wireless Sensor Networks Using
Deployment Knowledge,” Proc. of the IEEE INFOCOM’04, pp 586-597, 2004.

11. S. Okazaki, A. Desai, C. Gentry and et.el., ”Securing MIPv6 Binding Updates Us-
ing Address Based Keys (ABKs),” IETF, draft-okazaki-mobileip-abk-01.txt, Oct.
2002. Work in progress.

12. R. Blom, ”An Optimal class of symmetric key generation systems,” Proc. of EURO-
CRYPT84, Lecture Notes in Computer Science, Springer-Verlag 209, pp 335-338,
1984.

13. W. Du, etc.,”A Pairwise Key Pre-Distribution Scheme for Wireless,” Proc. of
CCS’03, pp 27-31, 2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 650 – 658, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Revenue-Aware Bandwidth Allocation Model and
Algorithm in IP Networks

Meng Ji1,2 and Shao-hua Yu1,2

1 School of Computer Science, Huazhong University of Science and Technology
2 Wuhan Fiberhome Networks Co. Ltd.,

Wuhan, Hubei Province 430074, P.R. China
{jupiter, shuyu}@fhn.com.cn

Abstract. This paper proposes a generic revenue-aware bandwidth allocation
(RBA) model. This model satisfies diverse QoS requirements of different IP
services with revenue as the optimization criterion. Based on this generic
model, this paper provides Enhanced Greedy Algorithm (EGA) to solve RBA
problems. Unlike other algorithms, the proposed algorithm is deterministic and
can be calculated in polynomial time. The experiments on a switched router
show that EGA is efficient and applicable for embedded systems.

Keywords: Revenue-aware Bandwidth Allocation, Generic RBA model,
Knapsack problem.

1 Introduction

The future IP networks must carry a wide range of different service types being still
able to provide performance guarantees to real-time sessions such as Voice over IP
(VoIP), Video-on-Demand (VoD), or Interactive game. For the future multi-service
Internet, users will have to pay the network operators based on pricing strategies
agreed in their SLA (Service-Level-Agreements). The pricing strategy will specify the
relationship between the price paid by each class of users and the QoS (e.g., delay,
bandwidth) provided by the network operators, which normally states that the net-
work provider will get a revenue when the offered QoS meets the defined perform-
ance requirement. Thus, the diverse service requirements of emerging Internet ser-
vices foster the need for flexible and scalable revenue-aware bandwidth allocation
(RBA) schemes.

In current networks, bandwidth assignment is based on three major service models:
best-effort, integrated services (IntServ [1]) and differentiated services (DiffServ [2]).
In best-effort model, applications could send arbitrary packets in arbitrary time with-
out previous grant. Intermediate routers treat all the packets equally and queue them
by a simple First-In-First-Out way. Best-effort mechanism is designed for time-
extensive applications like E-mail and HTTP. It does not satisfy the strict QoS re-
quirements from time-intensive value-added services (Multi-media, etc.). IntServ,
based on RSVP signaling, requires the whole IP networks to reserve an end-to-end
bandwidth path for each flow. IntServ places a heavy processing load on routers in the
core of the network; and does not scale well in large networks with numerous IntServ

 A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP Networks 651

flows. To eliminate the drawbacks of IntServ, Diffserv was proposed by IETF in
1998. Adopting a two-level service model, Diffserv achieves scalability by imple-
menting complex classification and conditioning functions at network boundary
nodes, while the core nodes only need to fulfill simple Per-Hop Behaviors (PHBs).
Because of its scalability, many present researches, as in [3], [4], [5], focus on how to
fairly allocate bandwidth in DiffServ domains.

With the introducing of new technologies (EPON [6], RPR [7], etc.), bandwidth
allocation needs to be implemented in link layer and/or even physical layer, as in [8],
[9]. Recent proposals in IETF, as in [10], [11], outline that MPLS layer2 encapsula-
tion technologies are used to emulate TDM, Frame Relay and ATM services. To
support such pseudo-wire services, it is necessary to allocate bandwidth effectively in
data-link layer. Moreover, ITU-T [12] mentions one research goal in NGN is how to
ensure high-layer QoS via low-layer mechanism.

From the discussion above, we can find present BA approaches have several limita-
tions: (1) Present schemes are not revenue-oriented and not sufficient to satisfy carri-
ers’ requirements for maximal revenue. (2) Though DiffServ is proved to be an effec-
tive QoS model in IP layer, it could not resolve the BA problem in data-link and
physical layers.

This paper proposes a generic revenue-aware bandwidth allocation model, which
has several unique characteristics. First, the proposed model is a generic one, which is
logically independent from any embodied equipments and underlying technologies. It
can be not only used in layer 3 and above IP applications, but also used in link-layer
applications (Circuit Emulation, etc.) and/or even physical-layer devices (Passive
Optical Network). Second, it is designed for meeting the profit requirements of carri-
ers. It allocates the bandwidth based on maximal revenue goal. According to this
model, we classify RBA problems into SRBA (Strict RBA) and FRBA (Flexible
RBA) problems. We prove that RBA problem is theoretically equal to Knapsack
problem and provide an efficient algorithm to calculate it. This algorithm is fair and
can be calculated in polynomial time. The remainder of this paper is organized in the
following way: Section II illustrates the generic revenue-based bandwidth allocation
model. Section III presents the algorithms for RBA problem. Section IV introduces
our experiments on a 128Gbps switched router and analyzes the while Section V
concludes the paper and proposes some future works.

2 Generic Bandwidth Allocation Model

In IP networks, the entities performing bandwidth allocation are versatile. They could
be routers, switches, Broadband Remote Access Server (BRAS), Optical Line Termi-
nal (OLT) or RPR equipments. And the accessing methods could be xDSL, cable,
Ethernet, Fiber or Circuit Emulation. Thus, a generic model for revenue-aware band-
width allocation should meet the following requirements: It should be logically inde-
pendent from specific devices and underlying technologies. It could be applied into
different application environments.

652 M. Ji and S.-h. Yu

Bandwidth Manager

Bandwidth=b

Client e1

Client ek

Fig. 1. Generic RBA model

Fig. 1 shows a generic RBA model proposed in this paper. In this model, we are

given a set { }ieE = of k clients and a bandwidth of link capacity b . Each client
represents the minimal bandwidth-requesting element with three service parameters:
bandwidth request value ib , class of service (CoS) ic and generating revenue)(iri , in

which CoS is proportional to the revenue density (In this paper, the revenue density is

defined as the revenue to bandwidth ratio- ii br / .) It should be noted that a concrete
user might issue several clients with different CoS simultaneously, because one user
may have different service (TDM, Voice and video, etc.) requests at the same time.

Therefore, RBA problem can be described as follows: Given that clients { }keee ..., 21

of CoS{ }kccc ..., 21 , bandwidth request{ }kbbb ..., 21 and revenue { }krrr ..., 21 are offered
to a link of bandwidthb , can the Bandwidth Manager (BM) select enough clients to
utilize the available bandwidth and generate the maximum possible revenue while the
bandwidth requirements are satisfied for the selected clients? When the BM must
strictly satisfy the bandwidth request of each client, the RBA problem is classified as
Strict RBA or SRBA problem. When the BM can partially satisfy the bandwidth re-
quest of clients, the RBA problem is classified as Flexible RBA or FRBA problem.

BM obtains the service parameters of each client via platform-dependent UNI
(User Network Interface) or authentication protocols (Radius, etc). Since that our
research focuses on the BA model and algorithm, the fetching of service parameters
are out of the scope of this paper. Obviously, the model satisfies the above require-
ments. It is a single node model and has no relationship with physical embodiments.
In this scheme, there is no need to analyze the content of packet (e.g., DSCP in Diff-
Serv). As a result, it could be used in data-link and even physical layer applications.

3 Algorithms for RBA Problems

3.1 RBA Problem Is Equivalent to Knapsack Problem

We initially redefine the RBA problem stated above more precisely.

Problem Instance: Clients { }keee ,..., 21 of CoS { }kccc ,..., 21 , bandwidth request
{ }kbbb ,..., 21 and revenue { }krrr ,..., 21 , link capacity B and a revenue goal R .

Question: Can the bandwidth manager select enough clients with generation revenue
R≥ and total bandwidth requirements B≤ ?

 A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP Networks 653

It is easy to see that SRBA∈NP since a non-deterministic algorithm designed to
solve the problem has to guess a collection of client requests and verify the following
in polynomial time:

1) Check whether the selected clients fit with in the available bandwidth.
2) Check whether the generated revenue is more than R.
3) Check whether the bandwidth request is fully satisfied.

We will give the proof that SBA problem is NP-hard and has no deterministic algo-
rithm to solve it.

Theorem 1: SRBA problem is NP-hard.

Proof: There is a known Theorem: if Q is a NP-complete problem and Q could be
restricted to L in polynomial time. And then L is NP-hard.

Therefore, in order to prove SRBA is NP-hard, we only need to find one well-
known NP-complete problem which could be restricted to SRBA in polynomial time.
From the description of SBA problem, we find that it is very similar to Binary Knap-
sack Problem (BKP) in [13]. The BKP can be described as follows:

Problem Instance: A finite set of objectsU , a weight)(uw for each Uu ∈ , a profit

)(up for each Uu ∈ and positive integers W (Knapsack Capacity) and P (Desired

Profit).

Question: is there a subset UU ∈'
of such that the sum of the profits of the elements

in the subset exceeds the profit goal P without violating knapsack capacityW ?

Now we can show BKP is a special case of SRBA problem. The finite set U de-
fined in Knapsack is the set of clients,)(uw is ib ,)(up is ir , Knapsack size W is b ,

profit goal P is R . This above restriction can be carried out in)1(O time. Theorem 1

is proven.
 Since the SRBA is proven to be NP-hard, there can be no polynomial time deter-

ministic algorithm that solves the problem optimally.
The definition of FRBA is very similar to the one of SRBA. The only distinction is

to change the strict satisfaction to partial satisfaction. So we can deduce that FRBA is
equivalent to continuous Knapsack problem, which is a P problem.

Theorem 2: FRBA problem is a P problem and there can be deterministic algorithms
that solve it optimally in polynomial time.

3.2 Solution to SRBA Problem

BKP is among the widely studied problems of discrete optimization. A number of
computational algorithms, as in [14], [15], have been proposed based on branch and
bound, dynamic programming or heuristics. However, they still require a lot of execu-
tion time and memory space in case that n is a large number, and are not applicable to
the embedded system, which has limited system resources. Therefore, considering
practicability and scalability, we attempt to find approximation algorithms that may
be close to the optimal solution.

654 M. Ji and S.-h. Yu

The Greedy Algorithm (GA) is an obvious approximation algorithm for BKP. The
idea behind GA is to consider the items one-by-one in the order decreasing revenue or
revenue to bandwidth ratio. Each item is inserted into the knapsack if adding it does
not cause the set of current items to exceed the knapsack capacity. Although GA can
be calculated in deterministic time, the simple GA could not do well in the worst case
if we execute the GA only based on revenue or revenue density. For example, con-
sider the case where there are only two clients: the first item has bandwidth request 1
and payoff 3, while the second has bandwidth request B and payoff B . The execution
result of revenue density based GA is the first one, while the optimal solution should
be the second one.

Thus, we propose an Enhanced Greedy Algorithm (EGA) to solve the SRBA prob-
lem. EGA-SRBA picks the better of the solutions provided by revenue density based
GA and the best solution obtained by selecting the client with the largest revenue into
the set. The detailed algorithm is described in the following Fig. 2.

Algorithm EGA -SRBA:

INPUT: link bandwidth b , the item bandwidth request { }kbbb ..., 21 , CoS

{ }kccc ..., 21 and revenue { }krrr ..., 21

OUTPUT: Subset of the items at most revenue
1. Sort the items in non-increasing order of their revenue densities or CoS
(ii br / or ic).

2. Ω←'U
3. for 1=i to k do begin

if ∑ ∈
≤+'Uj ij bbb , then iUU +← ''

4. Ω←''U
5. Find the client me with largest revenue

6. if 'Um∈ then output 'U ; return;
else mUU +← ' '' '

7. for 1=i to k , mi ≠ do begin
if ∑ ∈

≤+'Uj ij bbb , then iUU +← ' '' '

8. Compare the generated revenue from 'U and ''U , output the one with larger
revenue
END

Fig. 2. Enhanced Greedy Algorithm for SRBA

The first step of EGA-SRBA can be implemented by a standard sorting routine and

the best possible complexity of it is)log(NNO . In the following way, both the
revenue density based GA and client selection can be implemented with linear com-

plexity)(NO . Thus, the time complexity of EGA-SRBA is)log(NNO . The maxi-
mal storage space is two arrays with the length of K and then the space complexity of
EGA-SRBA is)(NO .

 A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP Networks 655

3.3 Solution to FRBA Problem

From Theorem 2, we notice that FRBA problem is equal to continuous knapsack
problem and could be solved in polynomial time by revenue density based GA. Con-
sidering fairness for clients with lower CoS, we propose another EGA for FRBA
problems. The EGA-FRBA is implemented in a two-step way:

1) BM assigns minimum bandwidth to all clients for transmission. Configured
guaranteed bandwidth is first supplied per client in Weighted Round Robin
(WRR) manner.

2) The remaining bandwidth is distributed to clients by revenue density based
GA. Considering the fairness among clients with the same revenue density,
the algorithm first merges the clients with the same class and regroups the cli-
ents into new clients, and then executes the GA selection.

The detailed algorithm is depicted in the following Fig. 3.

Algorithm EGA-FRBA:

INPUT: link bandwidth b , the item bandwidth request { }kbbb ..., 21 , CoS

{ }kccc ..., 21 and revenue { }krrr ..., 21

OUTPUT: Subset of the items at most revenue
1. Allocate initial bandwidth of ratio R to each client in WRR ma nner

∑ ∈
××=

Uj jiinit ccRbib)/()(

2. Merge clients with the same revenue densities or CoS (ii br / or ic) into new

set 'U with bandwidth request { }mbbb '
2
'

1
' ,...,, and revenue { }mrrr '

2
'

1
' ,...,,

and CoS { }mccc '
2

'
1
' ...,

3. Sort the items in non-increasing order of their revenue densities or CoS
(ii br '' / or ic') in 'U
4. Ω←''U
5. for 1=i to m do begin /*Greedy Algorithm*/

if ()∑ ∈
−×≤+'' 1''

Uj ij Rbbb , then iUU +← ''''

6. Calculate the assigned bandwidth for each client
for 1=i to k do begin

)()()(ibibib GAinitallocate +=
END

Fig. 3. Enhanced Greedy Algorithm for FRBA

The WRR step can be implemented with linear complexity)(NO . The regrouping
step can be implemented by a standard sorting routine and the best possible complex-
ity of it is)log(NNO . In the final GA step, the time complexity is)(NO . Thus, the

time complexity of EGA-FRBA is)log(NNO . The space complexity of EGA-

FRBA is also)(NO .

656 M. Ji and S.-h. Yu

4 Experiments and Result Analysis

4.1 Experiment Platform

Our testbed is Distributed Extensible sErvices Platform (DEEP), designed for Chinese
National High-Tech Project No.2003AA121110. As described in [16], DEEP consists
of two routing engines and twelve Network Processor Units (NPUs) based line cards.
The routing engine implements control plane functions, while forwarding operations
are performed by the NPUs in the line card. DEEP has a whole switch capacity of
128Gbps and could be configured as high-performance ER (Edge Router) and BRAS
(Broad Remote Access Server). The processor in routing engine is PowerPC 7410
with PowerPC 604 core embedded. This CPU has 1Mbps level-2 cache, with a clock
rate at 450 MHz. The operation system used is Vxworks 5.4 from Windriver Systems
and the complier is GNU C complier with level-2 optimization.

Table 1 summarizes the results of our experiments. We measured the execution
time of EGA-SRBA and EGA-FRBA in DEEP under BRAS and ER configurations.
We measured the client number of 10, 20, 40, 60, 80, 100, 1,000 and 10,000 respec-
tively. All the client request parameters are generated by software randomly. Consid-
ering the real applications, the number of service classes is 32. The requesting band-
width in ER is ranged from 1Mbps to 1024Mbps, while the one in BRAS is ranged
from 1Kbps to 8Mbps.Our code was written in ANSI C and the used sorting routine is
quick sort algorithm. The listed result is the average value of 1,000 times execution.

Table 1. Measurement Results of RBA

 T

N

BRAS-SRBA BRAS-FRBA ER-SRBA ER-FRBA

10 16.0us 14.8us 16.3us 14.8us
20 35.7us 30.7us 35.8us 30.9us
40 76.0us 64.7us 76.0us 64.6us
60 119us 165us 117us 165us
80 165us 140us 166us 142us

100 177us 175us 177us 173us
1,000 2.37ms 2.10ms 2.37ms 2.10ms
10,000 35.67ms 29.83ms 35.05ms 29.83ms

4.2 Result Analysis

From the results above, we analyze three factors that may have an effect on execution
time: type of RBA entities (ER or BRAS), RBA type (SRBA or FRBA) and the num-
ber of clients. From Fig. 4a and Fig. 4b, we can obviously find that this algorithm is
independent from the type of RBA entities, which illustrates that the proposed model
and algorithm are logically independent from physical embodiments and underlying
technologies. Fig. 4c shows that the execution time of SRBA is longer than FRBA.
This is reasonable because that SRBA performs one more GA selection than FRBA.

 A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP Networks 657

Regarding the running time, since we adopt the quick sort algorithm, the time com-

plexity should be)ln(NNO , as shown in Fig. 4d.

0 2000 4000 6000 8000 10000
-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

E
xe

cu
tio

n
T

im
e(

us
)

Client Number

 BRAS-SRBA
 ER-SRBA

0 2000 4000 6000 8000 10000

0

5000

10000

15000

20000

25000

30000

E
xe

cu
tio

n
T

im
e(

us
)

Client Number

 BRAS-FRBA
 ER-FRBA

0 2000 4000 6000 8000 10000
-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

E
xe

cu
tio

n
T

im
e(

us
)

Client Number

 BRAS-SRBA
 ER-SRBA
 ER-FRBA
 BRAS-FRBA

0 20 40 60 80 100 120 140 160 180
-50

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

E
xe

cu
tio

n
T

im
e(

us
)

Client Number

 ER-SRBA
 ER-SRBA
 nln(n)

Fig. 4. Comparison of Execution Time

5 Conclusions and Future Work

This paper investigates the problem of how to allocate bandwidth efficiently to ensure
different QoS requests from different users and maximize the revenue for carriers.
This paper describes a generic revenue-aware bandwidth allocation (RBA) model and
classifies the RBA problems into SRBA (Strict RBA) and FRBA (Flexible RBA)
problems. This paper proves that bandwidth allocation problem is theoretically
equivalent to Knapsack problem. Since traditional BKP algorithms are not applicable
for real-world embedded systems, this paper proposes an Enhanced Greedy Algorithm
(EGA), which can be calculated in)log(NNo time. EGA has been implemented on
our testbed-DEEP. The experiment results show EGA is deterministic and independ-
ent from physical embodiments.

We also note that in rigorous applications when the client number is too large
(000,10≥), the execution time of this algorithm may be unacceptable. Thus, our

Fig. 4a. SRBA

Fig. 4c. SRBA and FRBA Fig. 4d. ER

Fig. 4b. FRBA

658 M. Ji and S.-h. Yu

future plans include implementing EGA on high performance NPUs or ASICs that
may bring nearly an order of magnitude improvement in performance.

References

1. R. Braden, Ed., L. Zhang, S. Berson, S. Herzog and S. Jamin, Resource ReSerVation Pro-
tocol, IETF, RFC2205 (1997).

2. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An Architecture for
Differentiated Service, IETF, RFC2475 (1998) .

3. Seddigh N., Nandy B.and Pieda P, Bandwidth assurance issues for TCP flows in a differ-
entiated services network, IEEE GLOBECOM (1999) 1792-1798.

4. Eun-Chan Park and Chong-Ho Choi, Adpative token bucket algorithm for fair bandwidth
allocation in diffserv networks, IEEE GLOBECOM (2003) 3176-3180.

5. Eun-Chan Park and Chong-Ho Choi, Proportional Bandwidth Allocation in DiffServ Net-
works, IEEE INFOCOM (2004) 2038-2049.

6. G. Kramer, G. Pesavento, Ethernet Passive Optical Network (EPON): Building a Next-
Generation Optical Access Network, IEEE Communications Magazine (2002) 66-73.

7. IEEE 802.17 Resilient packet ring (RPR) access method & physical layer specifications
(2004).

8. Fu-Tai An, Yu-Li Hsueh, Kyeong Soo Kim, Ian M. White, and Leonid G. Kazovsky, A
New Dynamic Bandwidth Allocation Protocol with Quality of Service in Ethernet-based
Passive Optical Networks, WOC (2003) 383-385.

9. Alharbi, F.and Ansari, N., Low complexity distributed bandwidth allocation for resilient
packet ring networks, IEEE HPSR (2004) 277-281.

10. Stewart Byrant and Prayson Pate, PWE3 Architecture, IETF, draft-ietf-pwe3-arch-07.txt
(2003).

11. Luca Martini, Nasser El-Aawar and Giles Heron, Encapsulation Methods for Transport of
Ethernet Frames Over MPLS Networks, IETF, draft-ietf-pwe3-ethernet-encap-09.txt
(2005).

12. ITU-T Workshop on Next Generation Networks: What, When and How?, ITU-T (2003),
http://www.itu.int.

13. Garey MJ and Johnson DS., Computers and Intractability: A Guide to the Theory of NP-
Completeness, San Franscisco: Freeman (1979).

14. Martello S, Pisinger D and Toth P, Dynamic Programming and strong bounds for the 0-1
knapsack problem, Management Science (1999) 414-424.

15. Martello S, Pisinger D and Toth P, New Trends in exact algorithms for the 0-1 knapsack
problem, European Journal of Operational Research (2000) 325-332.

16. Meng Ji, Shao-hua Yu, An innovative packet processing methodology: Policy-based Flow
Switching. SPIE proceedings-Volume 5626, Beijing, P.R.China, pp. 730-737, 2004.

Control Flow Error Checking with ISIS

Francisco Rodŕıguez and Juan José Serrano

Grupo de Sistemas Tolerantes a Fallos - Fault Tolerant Systems Group,
Polytechnical University of Valencia, 46022, Valencia, Spain

{prodrig, jserrano}@disca.upv.es
http://www.disca.upv.es/gstf

Abstract. The Interleaved Signature Instruction Stream (ISIS) is a sig-
nature embedding technique that allows signatures to co-exist with the
main processor instruction stream with a minimal impact on processor
performance, without sacrificing error detection coverage or latency.

While ISIS incorporate some novel error detection mechanisms to as-
sess the integrity of the program executed by the main processor, the
limited number of bits available in the signature control word question
if the detection mechanisms are effective detecting errors in the program
execution flow. Increasing the signature size would negatively impact the
memory requirements, so this option has been rejected. The effectiveness
of such mechanisms is an issue that must be addressed. This paper details
those checking mechanisms included within the ISIS technique that are
responsible of the assessment of the integrity of the processor execution
flow and the experiments carried out to characterize their coverage.

1 Introduction

With the advent of modern technologies in the field of programmable devices and
enormous advances in the software tools used to model, simulate and translate
into hardware almost any complex digital system, the capability to design a
System-On-Chip (SoC) has become a reality even for small companies. With the
widespread use of embedded systems in our everyday life, service availability and
dependability concerns for these systems are increasingly important [1].

A SoC is usually modeled using a Hardware Description Language (HDL) like
VHDL [2]. It allows a hierarchical description of the system and the designed
elements interconnect much the same way as they would in a graphical design
flow, but using an arbitrary abstraction level. It also provides IO facilities to
easily incorporate test vectors, and language assertions to verify the correct
behavior of the model during the simulation.

Efficient error detection is of fundamental importance in dependable comput-
ing systems. As the vast majority of faults are transient, the use of a concurrent
Error Detection Mechanism (EDM) is of utmost interest as high coverage and low
detection latency characteristics are needed to recover the system from the error.
And as experiments demonstrate [3, 4, 5], a high percentage of non-overwritten
errors results in control flow errors.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 659–670, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

660 F. Rodŕıguez and J.J. Serrano

The possibility to modify the original architecture of a processor modeled
using VHDL gives the SoC designer an unprecedented capability to incorporate
EDM’s which were previously available at large design companies only.

Siewiorek states in [6] that ”To succeed in the commodity market, fault-
tolerant techniques need to be sought which will be transparent to end users”.
A fault-tolerant technique can be considered transparent only if results in mini-
mal performance overhead in silicon, memory size or processor speed. Although
redundant systems can achieve the best degree of fault-tolerance, the high over-
heads imposed limit their applicability in everyday computing elements. The
same limitation applies when a software only solution is used, due to perfor-
mance losses. Siewiorek’s statement can be also translated into the SoC world,
to demand fault-tolerant techniques that minimize their impact on performance
(the scarcest resource in such systems) if those techniques are to be used at
all.

The work presented here is structured as follows: The next section is devoted
to a minimal background on concurrent EDMs, specifically those using watchdog
processors. A section of previous work follows, where the ISIS watchdog tech-
nique and its implementation into a SoC is described. The software support for
this system is also outlined in this section.

Next section reports how the EDMs associated with the execution flow guar-
antee it; these are characterized, either theoretically or by means of some exper-
iments. For those requiring experiments, the memory model is described in the
corresponding subsection, along with the results obtained. The paper ends with
the conclusions obtained and some further research opportunities.

2 Background

A minimal set of basic terms taken from [6] is needed to understand the over-
all system. A branch-in instruction is an instruction used as the target address
of a branch or call instruction (for example, the first instruction of a proce-
dure or function). A branch-out instruction is an instruction capable to break
the sequential execution flow, conditionally or unconditionally (for example, a
conditional branch or a procedure call instruction). A basic block is a sequence
of instructions with no branch-in instructions except the very first one and no
branch-out instructions except possibly the last one.

A derived signature is a value assigned to each instruction block to be used
as reference in the checking process at run-time. The term derived means the
signature is not an arbitrarily assigned value but calculated from the block’s
instructions. Derived signatures are usually obtained xor-ing the instruction op-
codes or using the opcodes to feed a Linear Feedback Shift Register (LFSR).
These values are calculated at compile time and used as reference by the EDM
to verify correctness of executed instructions.

If signatures are interspersed or hashed with the processor instructions the
method is generally known as Embedded Signature Monitoring (ESM). A watch-
dog processor is a hardware EDM used to detect Control Flow Errors (CFE)

Control Flow Error Checking with ISIS 661

and/or corruption of the instructions executed by the processor, usually employ-
ing derived signatures and an ESM technique. In this case it performs signature
calculations from the instruction opcodes that are actually executed by the main
processor, checking these run-time values against their references. If any differ-
ence is found the error in the main processor instruction stream is detected and
an Error Recovery Mechanism (ERM) is activated.

The percentage of detected error is the error detection coverage, and the time
from the error being active to the detection is the error detection latency. With
both values any EDM can be characterized.

A branch insertion error is the error produced when the opcode of a non-
branch instruction is corrupted and it is transformed into a branch instruction;
from a watchdog processor perspective, this error is detected as a too early
branch. A branch deletion error is the error produced when the opcode of a
branch instruction gets corrupted and the instruction becomes a non-branch
instruction; the watchdog detects this error condition as a too late branch.

Any error affecting a non-branch instruction other than branch insertion er-
rors, do not affect the execution flow of the program and are not part of the
structural integrity checking mechanisms.

3 Previous Work

In [7] a novel technique to embed signatures into the processor’s instruction
stream is presented. Its main goal is the reduction of the performance impact of
the watchdog processor and it is targeted to processors included into embedded
systems.

Using this technique, called ISIS (Interleaved Signature Instruction Stream),
the watchdog processor signatures are hashed with the application processor’s
instructions in the same memory area. Signatures are interleaved within in-
struction basic blocks, but they are never fetched nor executed by the main
processor.

Signature control words (or simply signatures) are placed at the beginning of
every basic block in the ISIS scheme (see Fig. 1). These references incorporate,
among other checking mechanisms, the opcode signature field: a polynomial CRC
of the block instruction bits to detect the corruption of any instruction (non-
CFE errors and branch insertion and deletion errors as well). Using a polynomial
redundancy check 100% of single bit errors and a large percentage of more
complex error scenarios can be detected.

Besides error detection capabilities obtained from the opcode signature, and
due to the fact that the block reference word includes the block length, branch
insertion and branch deletion errors are detected.

The signature word encoding has been designed in such a way that a main
processor instruction can not be misinterpreted as a watchdog signature instruc-
tion. This provides an additional check when the main processor executes a
branch instruction. This check, called Branch Start, consists in the requirement
to find a signature instruction immediately preceding the first instruction of

662 F. Rodŕıguez and J.J. Serrano

6 bits

Type
Block signature

control word Length
Block

Target Add Opcode Signature

4 bits3 bits 16 bits

Block

Origin Add

3 bits

(b)

(c)

Fall-through

addr i

addr i+1

addr k

addr k+1

Conditional branch

taken

If (condition)
instructions

else
instructions

then
instructions

other
instructions

Unconditional

jump

Block signature

Jump inserted

addr i

addr i+2

addr k

addr k+2

If (condition)
instructions

else
instructions

then
instructions

other
instructions

addr i+1

addr k+1

if (condition) {

…

} else {

…

}

/* other instr. */

(a)

Fig. 1. ISIS signature control word and signature insertion process: (a) high-level lan-
guage snippet, (b) original blocks at assembly stage, and (c) after code is instrumented
with signatures

every block. This also helps to detect a CFE if a branch erroneously targets
a signature instruction, because the encoding will force an illegal instruction
exception to be raised.

Under the assumption of single bit errors, the block length allows the watch-
dog processor to detect all branch insertion and branch deletion errors. Addi-
tional checking mechanisms related with the signature word instruction type and
jump address guard bits are also included.

The Block Address is a check process that uses one of the address check fields
in the signature word (Block Origin Address or Block Target Address) to verify
the correctness of the address of the target instruction when a branch is taken.
The difference between the addresses of the branch instruction and the target
instruction is computed at compile time, and a checksum is calculated and stored
into the signature word. At run-time, when the processor breaks the execution
sequence taking a branch, the actual addresses employed by the processor are
used, inside the watchdog processor and following the same algorithm used by
the compiler, to calculate another checksum. In the absence of errors, both must
match; any mismatch will trigger the watchdog’s error detection procedure.

This two EDMs, Block Start and Block Address, form the basic elements
used by the watchdog processor to guarantee the integrity of the processor’s
execution flow. And the work presented in this paper shows their error coverage
characteristics, using them separately and combined.

Control Flow Error Checking with ISIS 663

AHB Arbiter

AHB Slave

Instruction path

Data
path

Watchdog
signature path

External bus
interface

AMBA AHB bus

External
memory

I-Cache

AHB Master

AHB Master

Watchdog

R3000 Processor

System Control

Coprocessor

TLB

Processor
core

System Architecture

Retired
instructions

Fig. 2. HORUS processor and overall system architecture

To reduce performance overhead the main CPU should not process signatures
in any way. With this objective in mind, the CPU is designed to skip an instruc-
tion per basic block while maintaining the normal instruction sequencing. These
architectural modifications create word gaps in the main processor instruction
stream immediately following branches and calls. A specialized compiler uses
these gaps to store watchdog signatures words.

With this arrangement, two completely independent interleaved instruction
streams coexist in our system: the application instruction stream, which is di-
vided into blocks and executed by the main processor and the signature stream,
used by the watchdog processor.

Isolating the reference signatures from the instructions fed into the processor
pipeline results in a minimal performance overhead in the application program.
More information about this signature embedding technique can be found in [7].

The ISIS technique has been implemented in the HORUS processor [8], a soft-
core clone of the MIPS R3000 [9] RISC processor (see Fig. 2). It is a four stage
pipelined processor with a complete Memory Management Unit and instruction
cache. The external memory and peripherals are accessed through an AMBA
AHB bus [10]. This processor is provided with a Memory Management Unit
(MMU) to perform virtual to physical address mapping, isolating memory areas
of different processes and checking correct alignment of memory references. The
watchdog processor is fed with the instructions from the main processor pipeline
as they are retired.

The original processor architecture has been augmented with an ISIS watch-
dog processor. The instruction cache is modified to include two read ports to
provide simultaneous access to both processors (main and watchdog processors).

The watchdog calculates run-time signatures at the same rate of the processor
pipeline. When a block ends, these values are stored into a FIFO memory to
decouple the checking process. This FIFO allows a large set of instructions to be
retired from the pipeline while the watchdog is waiting for the block reference
signature word. In a similar way, the watchdog can empty the FIFO while the

664 F. Rodŕıguez and J.J. Serrano

main processor pipeline is stalled due to a memory operation. When this FIFO
memory is full, the main processor is forced to wait for the watchdog checking
process to read some data from it.

4 HORUS Compiler Support

The GNU gcc compiler already provides a port to target MIPS processors. As
its source code is freely available it was the natural starting point to provide the
required software support for the HORUS processor. The gas program (GNU As-
sembler) has the responsibility of the assembly stage in the compilation process,
after program optimization passes and before the final linker stage.

The gas program and its supporting libraries have been modified to support
the architecture of HORUS and its use of the ISIS technique via command line
switches. As instructions are assembled,

1. If the current instruction is the target of a branch instruction, a new block
starts and so its signature it is inserted.

2. If the current instruction is a branch, the next instruction will fill the branch
delay slot and end the current block.

With this information and the opcode bits of the program instructions the
assembler can calculate block signatures and insert them at appropriate places.
No provisions are needed to modify the target of a branch or call instruction, as
all instruction addresses are referenced using symbolic names (labels).

The software splits large sequences of instructions to accommodate the gen-
erated blocks to the length field of the signature control word. Reducing the
number of instructions in a block increases the memory requirements, but it
also reduces the latency from the error activation to its detection. While the
length field would allow for blocks of up to 16 instructions, the actual block
length could be smaller due to several reasons, most noticeably:

1. One of the instructions in the sequence is the target of a branch instruction.
In this case, a signature must precede this instruction, so a new block must
be created.

2. The use of variant frags. A variant frag is a combination of two different
sequences of instructions generated by the assembler to solve the same task.
For example, to store the address of a variable into a register, several se-
quences of instructions (and with different lengths) are possible using the
MIPS instruction set, depending on the availability of a register pointer. If
the symbol can not be resolved at assembly time, both sequences are gener-
ated. Obviously, only one of these would remain in the final executable, but
the decision is delayed until the symbol address is resolvable. As the block
size must be determined at the time of instruction generation, the approach
taken has been conservative and the assumption that the larger sequence will
remain is always followed. By the time the symbol is resolved, the blocks are
already formed and their size can not be changed, so if the short sequence
is finally selected the block will be shorter than 16 instructions.

Control Flow Error Checking with ISIS 665

5 Error Detection Coverage of CFEs

The Block Start EDM can be theoretically characterized, and its error coverage
is 100% as stated in proposition 1. The Block Address EDM requires some
experiments to be carried out, as detailed below.

Proposition 1. The Block Start checking mechanism ensures that all CFEs
targeting an instruction other than the first instruction of a block are detected.

Proof. A signature precedes the first instruction of a block. The watchdog proces-
sor uses the block initial address (being correct or not) as a memory reference
to get the block’s signature, retrieving it from the memory location immediately
preceding this initial address. Given the fact that the bit patterns of signature
words are selected not to match any instruction of the main processor, there
are no instructions of the main processor that may be misinterpreted by the
watchdog processor as a block signature.

So, in the case of a CFE targeting an instruction other than the first instruc-
tion of a block, the contents of the immediately preceding memory location is a
processor instruction and not a signature word. Its bit pattern will not match
any signature type in the watchdog processor, and the mismatch will trigger the
error detection. $%

Run-time calculation errors inside the main processor are not CFEs except if
the incorrect value is an instruction address. Taking a branch or returning from
a procedure, where a target instruction address must be calculated or retrieved
from memory, are examples of such calculations. The opcode signature can not
cover those calculations, as the original instruction is not corrupted.

Assessment of the effectiveness of the Block Address checking mechanism
coupled with the Block Start check can only be performed by means of some
kind of experimentation.

5.1 Experiment Setup

To determine the error detection coverage of EDMs applicable to CFEs a sim-
ulation model of the address calculation process has been created. This model
mimics the performed operations of the actual processor at the execution of
branches. Injecting faults into the model an erroneous target address is obtained
and we are able to determine if the EDMs would detect it.

The simulation model consists of a large array of elements representing the
processor’s memory. Each element represents a block of sequential instructions
with start address, length, signature, type of branch instruction, target address,
etc. The type of branch instruction is important, as the address calculation
process in the MIPS architecture is completely different if the instruction is a
conditional branch or an unconditional jump. The former uses a program counter
relative address and the later an absolute address.

Injecting a fault into the address calculation process in this model is as simple
as randomly picking up the origin block, and simulating the effect of a single bit
error at the branch.

666 F. Rodŕıguez and J.J. Serrano

Comparing the new, erroneous target address with the original one the fault
masking probability is determined. A fault is masked if the calculation performed
produces the same result as if there is no fault.

Using the erroneous address to compute the address guard bits and compar-
ing them to those bits stored into the block signature word, the error detection
probability of the Block Address EDM is obtained. The error detection proba-
bility of the Block Start EDM is obtained performing a search over the memory
model to verify if the erroneous address matches the start of a block or not.

To simulate the effect of a single bit error in the address calculation process,
a single bit of one of the operands or a single bit of the result is altered. Which
value and which bit are chosen randomly. If it is an operand what is modified,
the bit is changed before the target address is calculated. If it is the result, it
is modified after the calculation is performed. Thus, a single bit error in the
operands may propagate to adjacent bit positions to simulate the effect of a
single or multiple bit error.

A synthetic workload is created filling the memory with blocks of random
length, following a uniform distribution between 3 and 17 words. While the
shortest block in the original MIPS architecture is 2 instructions long (the branch
and the instruction at the branch delay slot), this block is augmented with the
block signature in HORUS (a signature has the same length of an instruction,
it is a 32-bit word). The ISIS-modified gcc compiler limits the block length to
accommodate it to the length field of the signature word, so no block larger
than 17 words (16 instructions plus the signature) is allowed in our system.
These length values match the mean length of sequential instructions, claimed
to be between 7 and 8 [11].

Once the memory is filled, for each block the type of instruction at its end and
the target block are chosen randomly. With this information, the address guard
bits are calculated using the same algorithm internally used by the compiler and
stored into the block structure for future reference.

This algorithm starts calculating the address difference between the branch
and the target instructions. This 32-bit value is then compressed using a simple
xor tree to obtain the address guard bits. Although the original proposal of ISIS
reserves 3 bits for such guard, the xor tree is easily expandable to accommodate
larger fields if space is available.

Figure 3 shows a representation of the xor tree for a guard fields of bits
(g2g1g0). Xor-ing alternating bits help the watchdog processor to detect multiple
bit errors, where a single bit error into an operand propagates into a sequence
of bit errors at the calculated result. Note that the 32-bit value calculated above
(V31..0) is padded with zeroes where necessary.

5.2 Results

Several fault injection campaigns have been carried out. Each campaign consists
in the injection of 50,000 errors, and the experiments have been repeated a
number of times with different random seeds to obtain their typical deviation, a
statistical dispersion measurement.

Control Flow Error Checking with ISIS 667

V31 V30 V5 V4…0 V3 V2 V1 V0

g2

g1

g0

Fig. 3. XOR tree to obtain checksum bits for a 3-bit address guard

Table 1. Block Start error coverage

Memory size Mean (%) Typ. deviation
64 Kbytes 45.14 0.287
256 Kbytes 50.44 0.339
1 Mbytes 56.53 0.133
2 Mbytes 59.21 0.212

To analyze the impact of the address guard field size, guards from 2 to 6
bits have been used in each experiment. The memory used by the application
program has been changed from 64Kbytes to 2Mbytes. A larger memory size
theoretically increases the possibility of an erroneous branch to target the start
of a block, and the error being undetected by the Block Start check.

Other elements incorporated into the HORUS processor incorporating check-
ing mechanisms to detect CFEs but not explicitly included into the watchdog
processor have not been included into our experiments as they do not charac-
terize the error coverage we’re trying to obtain from the inclusion of the watch-
dog. For example, the Memory Management Unit would trigger an exception
if a branch targets a non-used memory area. Another check used by the main
processor covering the same type of errors is the alignment check; all instructions
fetched from memory must be aligned on a word boundary, or an exception is
triggered. This means the results shown do not corresponds to the system error
detection coverage, but only the coverage of the aforementioned EDMs.

The Table 1 summarizes the error coverage obtained with the Block Start
mechanism alone, for each memory size.

As the results outline, the memory size has the inverse effect of what is the-
oretically expected. A larger memory increases, although moderately, the error
coverage, despite the fact that there are more possibilities to target a block start
erroneously. This can be explained by the fact that, at the same time, a larger
memory means there are more possibilities the erroneous address fall inside the
covered memory area.

The Table 2 shows the error coverage obtained with the Block Address mech-
anism for different address guard bits and memory sizes, and the combined error
coverage is show in Table 3.

Another interesting result from the experiments carried out is the error length
distribution, shown in Table 4. This table shows how a single bit error may prop-

668 F. Rodŕıguez and J.J. Serrano

Table 2. Block Address error coverage

Guard size 2 bits 3 bits 4 bits 5 bits 6 bits
Mean (%) Mean (%) Mean (%) Mean (%) Mean (%)

Memory size Typ. dev Typ. dev Typ. dev Typ. dev Typ. dev
64 Kbytes 96.52 98.31 98.70 99.29 99.37

0.199 0.088 0.094 0.023 0.038
256 Kbytes 96.74 98.42 99.01 99.31 99.37

0.055 0.042 0.042 0.018 0.028
1 Mbytes 96.81 98.48 99.15 99.36 99.40

0.114 0.025 0.056 0.016 0.028
2 Mbytes 96.79 98.49 99.15 99.36 99.40

0.060 0.054 0.020 0.040 0.034

Table 3. Block Start and Block Address combined error coverage

Guard size 2 bits 3 bits 4 bits 5 bits 6 bits
Mean (%) Mean (%) Mean (%) Mean (%) Mean (%)

Memory size Typ. dev Typ. dev Typ. dev Typ. dev Typ. dev
64 Kbytes 97.41 98.70 98.73 99.36 99.37

0.139 0.084 0.092 0.023 0.038
256 Kbytes 97.97 98.68 99.31 99.34 99.37

0.032 0.055 0.018 0.016 0.027
1 Mbytes 97.99 98.75 99.34 99.38 99.40

0.070 0.045 0.044 0.013 0.027
2 Mbytes 98.55 99.27 99.35 99.38 99.94

0.038 0.024 0.026 0.045 0.015

Table 4. Error length distribution

Error length Mean (%) Typ. deviation
0 (masked) 16.45 0.149

1 71.45 0.079
2 5.49 0.075
3 2.73 0.089
4 1.45 0.047
5 0.85 0.022
6 0.50 0.016
7 0.39 0.019
8 0.31 0.022
9 0.30 0.020
10 0.01 0.006

agate into a multiple bit error as the address calculation process takes place.
Although data shown corresponds to one of the experiments only, the other
experiments offer similar results and the data values have been omitted to elim-
inate the redundancy. Error lengths above 10 bits have been also eliminated by
its negligible impact.

Control Flow Error Checking with ISIS 669

As expected, the error length concentrates around single error bits, but per-
centages of masked errors, and multiple bit errors ranging from 2 to 4 bits are
also noticeable.

6 Conclusions

The checking mechanisms to detect CFEs of the ISIS technique have been dis-
cussed, and its implementation on the HORUS processor has been outlined.
This practical implementation has been complemented by a modified version of
the ubiquitous C-language compiler gcc, to automatically insert signatures into
the application program, lightening the programmer of most system reliability
details.

Although the small number of bits reserved to check branch addresses could
have generated some doubts about the effectiveness of the error detection mech-
anisms, this has been proven in contrary by the injection of faults into a model
of the memory subsystem.

The model represents the contents of each block as a sequence of instructions
preceded by the block’s signature, and the address and length of each block is
computed and stored for future reference. Single-bit errors have been injected
into the model, and the Block Start and Block Address EDMs have shown their
effectiveness detecting CFEs.

Error coverage can be improved using an address guard field larger than the
original 3-bit proposal. This requires reducing other checking fields, the opcode
signature being the most promising alternative. Reducing this field could also
reduce the error coverage of the associated mechanism (not described in this
work) so the reduction requires further analysis.

Another interesting result depicted in this paper is the error length distrib-
ution in the address calculation process. Although single-bit errors are injected
into the model, the arithmetic circuitry used in the address calculation process
when a branch is taken helps the error to propagate as a multiple-bit error at
the computed value. The error length distribution can be applied to other archi-
tectures using absolute or program counter relative addressing modes and would
help future researchers to take into account this propagation when designing
error detection mechanisms.

Acknowledgements

This work is supported by the Ministerio de Educación y Ciencia of the Spanish
Government under project TIC2003-08106-C02-01.

References

1. Avresky, D., Grosspietsch, K. E., Johnson, B. W., Lombardi, F.: Embedded fault
tolerant systems. IEEE Micro Magazine, (1998) 18(5):8–11

2. IEEE Std. 1076-1993: VHDL Language Reference Manual. The Institute of Elec-
trical and Electronics Engineers Inc., New York (1995)

670 F. Rodŕıguez and J.J. Serrano

3. Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of Error Detection Schemes Using
Fault Injection by Heavy-ion Radiation. In Proceedings of the 19th Fault Tolerant
Computing Symposium (FTCS-19), Chicago, Illinois (1989) 340–347

4. Czeck, E.W., Siewieorek, D.P.: Effects of Transient Gate-Level Faults on Pro-
gram Behavior. In Proceedings of the 20th Fault Tolerant Computing Symposium
(FTCS-20), NewCastle Upon Tyne, U.K. (1990) 236–243

5. Ohlsson, J., Rimén, M., Gunneflo, U.: A Study of the Effects of Transient Fault
Injection into a 32-bit RISC with Built-in Watchdog. In Proceedings of the 22th
Fault Tolerant Computing Symposium (FTCS-22), Boston, USA (1992) 316–325

6. Siewiorek, D.P.: Niche Sucesses to Ubiquitous Invisibility: Fault-Tolerant Comput-
ing Past, Present, and Future. In Proceedings of the 25th Fault Tolerant Computing
Symposium (FTCS-25), Pasadena, USA (1995) 26–33

7. Rodŕıguez, F., Campelo, J.C., Serrano, J.J.: A Watchdog Processor Architecture
with Minimal Performance Overhead. Lecture Notes in Computer Science (LNCS
Series), Springer-Verlag ed. (2002) vol. 2434, 261–272

8. Rodŕıguez, F., Campelo, J.C., Serrano, J.J.: The HORUS Processor. In Proceedings
of the XVII Conference on Design of Circuits and Integrated Systems (DCIS 2002),
Santander, Spain (2002) 517–522

9. MIPS32 Architecture for Programmers, volume I: Introduction to the MIPS32
Architecture. MIPS Technologies (2001)

10. AMBA Specification rev2.0. ARM Limited (1999)
11. Hennessy, J.L., Patterson, D.A.: Computer Architecture. A Quantitative Approach

(2nd edition). Morgan-Kauffmann Publisher (1996)

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 671 – 682, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Support Industrial Hard Real-Time Traffic
with Switched Ethernet

Alimujiang Yiming and Toshio Eisaka

Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
alm_ym@mer.cs.kitami-it.ac.jp

eisaka@cs.kitami-it.ac.jp

Abstract. This paper presents a simple and efficient switched Ethernet
communication protocol for industrial hard real-time LAN applications. The
network is founded with end nodes and a switch, and hard real-time
communication is handled by software added between the Ethernet protocols and
the TCP/IP suites. We established a virtual link of the source and destination
node by applying admission control based upon the requested QoS, and manages
hard real-time traffic to bypass the TCP/IP stacks. This bypassing considerably
reduces the dwell time in the nodes, and increases the achievable data frame rate.
After the bypassing, hard real-time traffic schedule is executed according to
dynamic-priority EDF algorithm.

The protocol does not need any modifications in the Ethernet hardware and
coexists with TCP/IP suites, therefore, the LAN with the protocol can be
connected to any existing Ethernet networks and support both real-time traffic
and best-effort traffic. Compared to some conventional hard real-time network
protocols, the proposed one has better real-time performances, and meets the
requirements of reliability for hard real-time system applications.

1 Introduction

With the increasingly demand for real-time industrial control systems, the ability of
computer networks to handle deadline guaranteed “hard” real-time communication is
becoming more and more important [1], [2], [3]. High bandwidth and strict deadline
guarantee are the critical necessary conditions for hard real-time applications [4].
Unlike traditional, bus-based CSMA/CD Ethernet, the switched Ethernet is a star-based
topology which can avoid collision since Data terminal equipment (DTE) connected to
a switch communicating in full duplex does not have to use the CSMA/CD access
control [5]. Therefore, end node cooperation is needed only for bandwidth control. In
addition to this, the full-duplex operation theoretically doubles the bandwidth of the
network, and the Ethernet transmission rate and communication reliability have
increased over the years. This together with serious attempts to adapt Ethernet
hardware to industrial environments, make it an interesting alternative for real-time
communication.

Several researches have been done to treat hard real-time communication.
MIL-STD-1533 [6] is an early development of the industrial protocol. It is reliable
standard interface for token ring LAN. However, bandwidth is one of the main limiting

672 A. Yiming and T. Eisaka

factors for MIL-STD-1533. Another protocol, RTCC (Real-Time Communication
Control) [7], is centralized approach that has the disadvantage that failure in the
controller will lead to the entire network useless, unless some sort of recovery protocol
is implemented. Other researches using switched Ethernet for hard real-time
communication is studied in [8], [9], however, these protocols either bring about
complex network structures or need Ethernet hardware modifications to implement.

Recently, new schemes have been proposed based on admission control depending
upon quality of service (QoS) and choice of the packet service discipline. The common
concept of the schemes is establishment of a Real-time Channel: a simplex, virtual
connection between source nodes and destination nodes, with a priori guarantees for
communication performance in switching networks [10], [11], [12].

To support the QoS demands of applications, both the ATM and the IP community
have defined service classes that provided per-flow guarantees to applications [13],
[14]. In order to provide guaranteed services, resources need to be reserved for every
accepted connection. ATM does this at the data-link layer. For every call it reserves a
virtual channel over all links on the route/switch from the source to the destination. At
the network layer, resource reservation can be done using Diffserv [15] or MPLS [16].
Applications at this level are classified as best-effort, rate sensitive or delay sensitive,
therefore, there are no guarantee for strict deadline-sorted real-time communication.
RSVP [17] can be used to do reservation at the IP layer. RSVP makes resource
reservations for both unicast and multicast applications, therefore, it is more
appropriate for multimedia communication in a wide area network such as
videoconferencing. Because RSVP is based on IP, there is no guarantee of deadline in
application service lifetime, and have large runtime overhead, therefore, there are few
applications in industrial control systems.

Based on the knowledge of above-mentioned QoS architectures and protocols, in our
work, we studied the industrial and embedded application demands on hard real-time
communication services, including survey of real-time communication with focus on
LAN-technology and switched communication. Then we developed and analyzed a
protocol to schedule and control the hard real-time traffic based on the industrial and
embedded real-time demands without changing the underlying protocols, while still
supporting existing upper protocols for soft real-time and/or non-real-time traffic. We
also establish a way (virtual link) between source nodes and destination nodes by
applying admission control based upon the requested QoS. However, in our work, a key
strategy to realize hard real-time communication is, the proposed protocol manages
hard real-time traffic to bypass the TCP/IP stacks. This makes considerably reduce the
dwell time in the nodes, and increase the achievable data frame rate by evasion of the
non-deterministic behavior inherent in the TCP and IP stacks. This is the main point of
our work.

An Ethernet LAN using a switch and several end nodes was constructed, and several
experiments have been performed to evaluate the proposed protocol. Comparing with
the conventional hard real-time communication protocols, the proposed Ethernet
protocol has better real-time performances and meets the requirements of reliability for
hard real-time systems.

The rest of the paper is organized as follows. In section 2, outline of the network
architecture is introduced. Section 3 describes the RT channel establishment by
applying the admission control. Section 4 illustrates the management of hard real-time

 Support Industrial Hard Real-Time Traffic with Switched Ethernet 673

traffic and best-effort traffic. We elaborate feasibility analysis for RT channel
establishment and focus on scheduling of real-time frames in section 5. In section 6,
performance evaluation of the proposed protocol is presented. The paper is concluded in
section 7.

2 Network Architecture

We applied a full-duplex switched Ethernet LAN which is connected to existing
Internet. A switched Ethernet provides some key benefits over traditional Ethernet,
such as full duplex and flow control. Therefore, switches enable flexible network
configuration of multiple and simultaneous links between various ports.

In our work, a key strategy to realize hard real-time communication is bypassing of
TCP/IP suites. In order to manage this bypass, both the switch and the end nodes have
software --- real-time layer (RT layer) added between the Ethernet protocols and the
TCP/IP suite in the OSI reference model. All nodes are connected to the switch and
nodes can communicate mutually on the logical real-time channels (RT channel), it is a
virtual connection between two nodes of the system respectively (see Fig. 1).

Fig. 1. Network architecture with RT channels

A node can either be real-time node or non real-time node depending on which level
QoS is required. Non-real-time node (without RT layer added) can coexist in the
network without disturbing the real-time traffic. MAC function, frame buffering and
the concentrated transmission arbitration is included in the switch. Therefore, switch
has the overall responsibility both for set-up of RT channels and for online control of
packets passing through the switch. The RT layer do-nothing to non real-time frames
and makes them go through the ordinary circuit with TCP/IP suites.

3 RT Channel Establishment

Before the real-time traffic is transmitted, the RT channel should be established. The
establishment of RT channel is including request and recognition communication after

RT channels Physical link

 Switch

…

Node 1

Node 2 Node N

674 A. Yiming and T. Eisaka

the source nodes, destination nodes and switch have agreement with channel
establishment. As new real-time requests (channel establishment) are made, they goes
through an admission control module that determines if there is sufficient network
bandwidth available to satisfy the request of the node. Admission control is the problem
of deciding which requests to accept and which to reject based upon the supported QoS,
with the goal of maximizing the total profit accrued by the accepted requests. In other
words, admission control is the problem of finding a feasible solution with maximum
profit.

If the network establishes a transmission request, it first decides on a path from the
sending node to the receiving node of that transmission, through which the transmission
is being routed. Then it allocates the requested amount of bandwidth and/or buffer space
on all links along that path during the time period in which the transmission is active.
The allocated resources are released when the connection is completed.

Fig. 2. Real-Time channel establishment

Fig. 2 describes the establishment of an RT channel. When a node wants to send hard
real-time frames, it directly accesses the RT layer. The RT layer then sends “RT
channel establishment request” to the RT traffic management in the switch. The switch
then evaluates the feasibility of traffic schedule of a path from the sending node to the
receiving node of that transmission, by applying the admission control. If the schedule
is feasible, the switch responses with the network schedule parameters to the sending
node. Otherwise, the switch sends out a set of recommended control parameters to the
sending node. These control parameters are suggested based on the status of switch
queue and the active queue control law.

4 Traffic Management

After RT channel is established, only real-time data traffic from the end node bypasses
the TCP/IP stacks. An RT channel should cross two physical links according to the RT

Node 1 Switch Node n

 . . .

. . .

Best Effort Real Time

TCP/UDP

IP

RT Layer

MAC

Physical layer

Best Effort

Traffic Managing

&

Frame Reorganizing

RT L. RT L.

MAC MAC

Ph. L. Ph. L.

Real Time

TCP/UDP

IP

RT Layer

MAC

Physical layer

 Support Industrial Hard Real-Time Traffic with Switched Ethernet 675

layer: one from the source node to the switch, and the other from the switch to the
destination node (uploads and downloads, respectively). The RT channel is required to
provide real-time guarantees for both the upload and the download.

Besides hard real-time traffic, our Ethernet network protocol should allow for
best-effort traffic which does not affect the transmission of hard real-time packets.
Namely, best-effort traffic (non real-time or soft real-time traffic) come from
best-effort protocols (HTTP, SMTP, FTP, etc.) uses the services of the TCP/IP protocol
suites and put in an FCFS-sorted (First Come First Serve) queue in the RT layer. In
order to achieve this, best-effort traffic is allowed when no hard real-time packets want
to transmit.

When a hard real-time packet becomes ready to transmit again, the RT channel
management immediately interrupts the best-effort traffic, and goes to the
corresponding node so that the hard real-time traffic may start. According to the RT
layer, the last node visited for best-effort traffic should be remembered, so the next
round of best-effort traffic packet can start off at that node.

Because there are two different output queues for each port on the switch, “frame
recognizing” is necessary. On that account, the switch has two MAC addresses: one is
for control traffic (e.g., RT channel request frames); and the other is for hard real-time
traffic over RT channels. And then, the switch will be able to recognize the different
kinds of frames: control frames, real-time data frames and best-effort data frames that
come from TCP/IP stacks.

5 Scheduling of Hard Real-Time Frames

In our star-like network architecture, every end node is connected with a private virtual
link to a switch, so that there is a private traffic link for each direction. But congestion
may occur when one node is suddenly receiving a lot of packets from the other nodes.
Current switches do not provide any guarantees as to which packets will be sent first.
We solved this by providing a switch with bandwidth reservation capabilities inside the
switch, and we used Earliest Deadline First (EDF) scheduling [18] to make decisions as
to which packets are forwarded first. This provides guarantees for both bit rates and
strict delivery deadlines.

First, we check the feasibility of the real-time traffic according to calculate the total
utilization of all frames. RT channel of the i-th task is characterized by {Tpd,i, Ci, Td,i};
where Tpd,i is period of the data, Ci is time required to complete the execution of the task
per the period, Td,i is the relative deadline used for the end-to-end EDF scheduling.

The task period Tpd,i can be described as:

, 1, 2,pd i n i n i ctT T T T= + + , (1)

where Tn1,i and Tn2,i are the deadlines of each real-time frame for upload and download,
respectively; and Tct is the delay introduced by the switch. In a fully switched Ethernet
there is only one equipment (end node) per each switch port. In case that wire-speed
full-duplex switches are used, the end-to-end delay can be minimized by decreasing the
message buffering.

676 A. Yiming and T. Eisaka

According to EDF theory, the total utilization of all frames is then calculated as:

,

i

i pd i

C
U

T
= . (2)

Suppose , ,pd i d iT T≤ for simplicity, it is well known that EDF scheduling is feasible

if and only if 1U ≤ .
If the test for task i succeed and real-time channel is established, hard real-time data

frame bypasses the TCP/IP stacks and put in a deadline-sorted queue scheduled by RT
layer in the switch and end nodes according to the EDF theory.

The processes of hard real-time traffic and best-effort traffic transmission is shown
in Fig. 3, and is summarized as follows:

1. When the switch received a packet from an end-node, it recognizes which
application the packet is come from (real-time or best-effort).

2. If the packet come from the real-time application, then the RT layer interrupt
transmitting best-effort traffic immediately so that the hard real-time traffic may start.
And the information for last transmitted queue of the best-effort traffic should be stored
so that the next round of best-effort traffic can start off at that queue.

3-A. The switch will be able to recognize the different kinds of frames: control
frames (e.g., RT channel request frames) and real-time data frames. If the received
packet is the control frame, then the RT layer must go through an admission control
module that determines if there is sufficient network resource (bandwidth and
guaranteed time limit) available to satisfy the request of the node.

4-A. If a request is admitted, the switch answers to the requesting nodes with a set of
network schedule parameters, and make RT channel virtual connection. And then allocates
the requested amount of bandwidth and/or buffer space on this connection link.

4’-A. Otherwise, the switch sends out a set of recommended control parameters to
the sending node.

5-B. After RT channel is established, hard real-time data is delivered through the
circuit and bypassing the TCP/IP stacks by reading MAC addresses in response
parameter.

6-B. The RT layer makes the switch recalculate the Ethernet cyclic redundancy
check (CRC) of an incoming hard real-time frame before putting it to the correct
deadline-sorted output queue. This will also be useful to increase the reliability of the
hard real-time data frames.

7-B. Real-time data passed the above check is then put in a deadline-sorted queue
scheduled by RT layer in the switch and end-nodes according to the EDF theory, and then,

8-B. Forward the deadline-sorted data to the destination node. The allocated
resources are released when the connection is completed.

3-C. On the other hand, by carrying the final destination MAC address in the
Ethernet header when leaving from the source node, non or soft real-time data is
delivered through the circuit including the TCP/IP stacks in an FCFS-sorted queue, and
transmit the traffics at the idle time of the schedule.

4-C. If a best-effort sender needs to send a large amount of data (for example, a long
packet), it tries to make an additional cycling time reservation and transmit its data

 Support Industrial Hard Real-Time Traffic with Switched Ethernet 677

immediately after reservation. If the time is over and the long packet did not finished
yet, it tries to make a reservation again.

Fig. 3. Processes of traffic transmission

Start

Receive a frame

From best-effort?

Hard Real-Time traffic

Bypass the TCP/IP

CRC recalculation and

dest. MAC address check

Put in a dead-line sorted

queue by EDF theory

Forward the queue

to the Dest. node

RT channel establishment

(Admission Control)

Resource

Sufficient?

Store information of

new RT channel in switch

Send ACCEPTED response to

requesting node

with assigned RT channel ID

Put in an FCFS sorted queue

Transmit best-effort traffic

Finished?

Send

REJECTED

response to

requesting

node with a

set of control

parameters

Request additional reservation

Interrupt best-effort traffic

Store information of last

transmitted traffic

Dest. MAC addr.

= Control traffic?

RT channel virtual connection RT channel release

C: Best-effort traffic

A: RT channel establishment B: Hard-real-time traffic

678 A. Yiming and T. Eisaka

6 Performance Evaluation

In order to evaluate our work, we made a LAN with a full-duplex switched Ethernet and
end-nodes, by using desktop computer with AMD-K7(tm) Processor 700MHz and several
embedded Ethernet development boards which is produced by YDK Technologies Inc. that
provides a hardware platform based on Altera® ACEXTM devices (see Fig. 4).

Fig. 4. LAN with full-duplex switched Ethernet

We use a 5-ports Ethernet switch with full-duplex links at 100Mbps. The size of data
packet is from 64 bytes to 1538 bytes. There are no modifications in the Ethernet
hardware on the NIC (Network Interface Card). Ethernet development board is linked
with PC via the Ethernet switch. In order to establish interaction and communication
with the Ethernet development board, we downloaded the software (RT layer) to Flash
Memory on the board. When download the software to the flash memory, the system
module pins are logically connected to pins on the ACEX device. The external physical
pins on the ACEX device are in turn connected to other hardware components on the
board, allowing the Nios embedded processor to interface with SRAM, FROM, LEDs,
LCDs, buttons and switch.

Below we discuss about the transmission latency of the real-time frame in
worst-case situation. When all RT-channel starts simultaneously, or all the messages
that use all the capability allowances of the RT channel, RT channel equipped with the
longest deadline will be scheduled at last so that it may have the worst-case latency.
Here for all RT channels, the maximum latency is characterized by:

Internet (existing network)

Ethernet

 Switch End node

 . . .

 End node

 End node

Best
effort

Real
Time

TCP/UDP
IP

RT Layer
MAC Layer SR

A
M

 /
FR

O
M

Physical Layer

 Support Industrial Hard Real-Time Traffic with Switched Ethernet 679

10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250

Number of data frames

U
ti

li
za

ti
on

 (
%

)
_ 1, 2 ,

max{ }
m lat n i n i t

i

T T T T= + + , (3)

where Tn1,i is the latency from source nodes to switch, Tn2,i is the latency from switch to
destination nodes, and Tt is the total latency of the switch.

Besides utilization and worst-case latency, another important performance is a
runtime overhead: Ri defined as:

,

,

8 /pd i i

i

pd i

T L B
R

T

− ×
= , (4)

where Li is the length of data in a request frame, Li × 8 is the number of bits in the frame;
Tpd, i represents the period duration from the startup to the end of the frame, and B
represents the Ethernet bandwidth.

Utilization, Data frame transmission latency and the frame runtime overhead can be
obtained by implementing the proposed protocol to the LAN. Fig. 5 illustrates the
utilization on real-time data frame.

Fig. 5. Utilization on real-time data frame

From the figure we can learn that the trend of utilization is increasing while the
traffic increases, until arriving at the peak value that is more than 90%. Sudden
decreases happen on the curve sometimes, which is caused by some short frames
having pad field whose utilization are lower than longer frames. The utilization curve is
always smooth, because we assume the sufficient resources (bandwidth and time
specification) have been obtained in our work, when the RT channel is established.
Under this circumstance, there should be no overload exists in the real-time channel.
The result shows that the deadlines have been met for all data because utilization of all
data frames is less than 100% using EDF scheduling. Dynamic priority scheduling with
the EDF algorithm has a distinct advantage over fixed priority scheduling: the
schedulable bound for EDF is 100% for all task sets [19]. This means that we can fully
utilize the computing power of the CPU. Embedded systems are in general fully loaded,

680 A. Yiming and T. Eisaka

as they attempt to get as close to 100% utilization as possible while still maintaining the
necessary predictability.

To the best of our knowledge, except a few implementations of hard real-time
communication protocols on Ethernet, most of the protocols are generally soft
real-time, which means that there are few protocols provides guarantees for both bit
rate and strict delivery deadlines, so that it is difficult to compare them with the
proposed hard real-time protocol. Therefore, we made performance comparison of the
proposed protocol only with the hard real-time communication protocols:
MIL-STD-1553B protocol and RTCC protocol. Fig. 6 shows the comparison of the
data frame transmission latency of these three kinds of hard real-time communication
protocols.

0

200

400

600

800

1000

1200

1400

1600

64 128 256 512 768 1024 1280 1518 1538
Data frame size (bytes)

T
ra

ns
m

is
si

on
 la

te
nc

y
(μ

s) 1553B
RTCC
Proposed

Fig. 6. Transmission latency of data frame

Even for the Ethernet frames that have the data field maximized (1538 bytes in IEEE
802.3 standard), the latency of the proposed protocol is about 620 microseconds. This
latency is quite short in a LAN with a full-duplex switched Ethernet at 100 Mbps, and
meets the demands of hard real-time communication for industrial distributed control
systems. Runtime overhead of data frames are demonstrated in Fig. 7. The figure shows
that the runtime overhead of the proposed protocol is higher than the other hard real-time
supported protocols at the small-sized data frame. However, as the data frame size
become larger (from about 900 bytes), the proposed protocol has better runtime overhead
than the other protocols. In both experiments, only MIL-STD-1553B protocol used
1Mbps Ethernet because it is the nominal speed of the protocol.

Furthermore, in order to evaluate the time effectiveness of hard real-time bypassing
the TCP/IP stack, we made experiments with ordinary UDP/IP and TCP/IP protocols
comparing with the proposed protocol (see Fig. 8). The result shows that by using the
proposed protocol to bypass the TCP/IP stacks can reduce 32% of the time comparing
with UDP/IP protocol, and more than 50% of the time comparing with TCP/IP
protocol even if the proposed protocol needs RT channel establishment and EDF
scheduling.

 Support Industrial Hard Real-Time Traffic with Switched Ethernet 681

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 768 1024 1280 1518 1538

Data frame size (bytes)

F
ra

m
e

ru
nt

im
e

ov
er

he
ad

1553B
RTCC
Proposed

0

200

400

600

800

1000

1200

1400

64 128 256 512 768 1024 1280 1518 1538

Data frame size (bytes)

T
ra

ns
m

is
si

on
 la

te
nc

y
(μ

s)

TCP/IP
UDP/IP
Proposed

Fig. 7. Runtime overhead of data frame

Fig. 8. Transmission latency comparison

7 Conclusion

In this paper, we have presented a simple and efficient switched Ethernet communication
protocol for industrial hard real-time applications. The network is set up with nodes and a
switch; both switch and end nodes have an RT layer added to support hard real-time
traffic. The proposed protocol establishes a virtual link between source nodes and
destination nodes by applying admission control based upon the requested QoS. Hard
real-time traffic from the end-node bypasses the TCP/IP stacks and thus considerably
speed up real-time communication. Real-time traffic scheduling is performed according
to dynamic-priority EDF algorithm, therefore it is flexible and efficient.

In the proposed work, there are no modifications in the Ethernet hardware on the
NIC. This allows connecting the Ethernet LAN to existing Internet networks. Thus, it
can be adopted in industrial hard real-time applications such as embedded systems,
distributed control systems and robotics.

We have constructed a simple Ethernet LAN with the proposed protocol and
evaluated the protocol. Through the comparison with some conventional hard real-time

682 A. Yiming and T. Eisaka

network protocols, we have shown that the proposed protocol has better real-time
performances, and meets the requirements of reliability for hard real-time systems.

One of our further works is to implement the proposed protocol in the multi-layer,
many switches real-time communication systems.

References

1. G. Buttazzo: Hard Real-time Computing Systems, Predictable Scheduling Algorithms and
Applications - Real-Time Systems Series 2ND Edition, Springer Verlag, (2004)

2. J. Stankovic and K. Ramamritham: Hard Real-Time Systems, IEEE Computer Society
Press, (1988)

3. C. Krishna and K.G. Shin: Real-Time Systems, McGraw-Hill International edition, (1997)
4. M. Joseph: Real-Time Systems, Prentice Hall, (1996)
5. IEEE Std. 802.3, 2000 Edition: IEEE Standard for Information technology --

Telecommunications and information exchange between systems -- Local and metropolitan
area networks -- Common specifications -- Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications.

6. http://www.condoreng.com/support/downloads/tutorials/MIL-STD-1553Tutorial.PDF
7. Z. P. Wang, G. Z. Xiong, J. Luo, M. Z. Lai and W. Zhou: A hard real-time communication

control protocol based on the Ethernet, Proceedings of 7th Australasian Conference on
Parallel and Real-Time Systems (PART 2000), pp.161-170, (2000)

8. J. Loeser and H. Haertig: Low-latency hard real-time communication over switched
Ethernet, Proceedings of 16th Euromicro Conference on Real-Time Systems (ECRTS'04),
pp. 13-22, (2004)

9. S. Ouni and F. Kamoun: Hard and soft real time message scheduling on Ethernet networks,
Proceedings of the 2nd IEEE International Conference on Systems, Man and Cybernetics of
the twenty-first century, 6, (2002)

10. D. Ferrari and D. Verma: A scheme for real-time channel establishment in wade-area
networks, IEEE Jornal of Selected Areas in Communications, vol.8, no.3, pp.368-379, (1990)

11. L. Zhang: Designing a new architecture for packet switching communication networks,
IEEE Communications Magazine, vol. 25, n. 9, pp. 5-12, (1987).

12. G. Agrawal, B. Chen, W. Zhao, and S. Davari: Guaranteeing Synchronous Message
Deadlines with Time Token Medium Access Control Protocol, IEEE Transactions on
Computers, Vol. 43, No. 3, pp 327-339, (1994)

13. A. Leon-Garcia and I. Widjaja: Communication Networks - Fundamental Concepts and
Key Architectures, McGraw-Hill Osborne, (2001)

14. M. Schwartz & T. E. Stern: Routing Protocols, in Computer Network Architectures and
Protocols (Second Ed.), Ed. C.A. Sunshine, Plenum Press, New York / London (1989)

15. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss: An architecture for
differentiated service, RFC 2475, 1998.

16. E. Rosen, A. Viswanathan, and R. Callon: Multiprotocol label switching architecture, RFC
2005, 1997.

17. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala: RSVP: a new resource
reservation protocol, IEEE Network Magazine, 30-9, pp. 8-18, (1993).

18. C. L. Liu and J. W. Layland: Scheduling algorithms for multi-programming in hard
real-time traffic environment, Journal of the Association for Computing Machinery, 20-1,
pp.46-61, (1973)

19. Phillip A. Laptane: Real-Time System Design and Analysis, IEEE Press, third edition,
(2004)

Integer Factorization by a Parallel GNFS Algorithm for
Public Key Cryptosystems�

Laurence Tianruo Yang, Li Xu, and Man Lin

Department of Computer Science, St. Francis Xavier University,
Antigonish, NS, B2G 2W5, Canada

Abstract. RSA is a very popular public key cryptosystem for encryption and
authentication. The security of RSA mainly relies on the difficulty of factoring
large integers. Recent advancement in factoring algorithms have made it possible
to factor integers with 150-digits or more. The General Number Field Sieve al-
gorithm (GNFS) is currently the best known method for factoring large numbers
over 110 digits. Although the GNFS algorithm is efficient, it still takes a long
time to factor a large integer such as an integer with 150-digits or larger. In this
paper, we present a parallel GNFS implementation on a SUN-cluster. It can suc-
cessfully factor integers up to 116 digits very quickly. The experimental results
have demonstrated that the algorithm achieves good speedup and can be used for
further larger integer factorization.

1 Introduction

RSA [11] is a very popular public-key encryption and decryption algorithm. The se-
curity of this algorithm relies on the difficulty of factoring large integers. So far, peo-
ple have developed many good, fast factoring algorithms. Examples are the Quadratic
Sieve (QS) algorithm [4], the Elliptic Curve (ECM) algorithm [9], the Special Num-
ber Field Sieve (SNFS) algorithm [2] and the General Number Field Sieve (GNFS)
algorithm [3].

The General Number Field Sieve (GNFS) algorithm [3, 5, 7] is derived from the
Number Fields Sieve (NFS) algorithm, developed by A. K. Lenstra, H. W. Lenstra, M.
S. Manasse and J. M. Pollard [6]. It is the fastest known algorithm for integer factoriza-
tion. Generally, it is used to factor integer larger than 110 digits.

Sequential GNFS algorithm has been implemented by many researchers. This paper
presents an implementation of parallel GNFS algorithm on a SUN cluster. The imple-
mentation is based on the sequential code developed by C. Monico [3].

This chapter is organized as follows. We will introduce the GNFS algorithm in sec-
tion 2. Then we will introduce the detailed parallel algorithm, followed by running
results in section 3. The performance analysis will be described in section 4 and the
conclusions will be given in section 5.

� The authors’ email are {lyang, x2002uwf, mlin}@stfx.ca. The authors would like to thank
C. Monico for sharing the serial GNFS code and the help for some technical problems. The
authors would also like to thank NSERC for supporting this research.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 683–695, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

684 L.T. Yang, L. Xu, and M. Lin

2 The General Number Field Sieve Algorithm

GNFS is based on the idea of the congruence of squares algorithm [1].
Suppose we are going to factor an integer n (n has two prime factors p and q). As-

sume there are two integers s and r. Both s2 and r2 are perfect squares and satisfy the
constraint s2 ≡ r2 (mod n). Since n = pq, the following conditions hold [7]:

pq|(s2-r2) ⇒pq|(s-r)(s+r)

⇒p|(s-r)(s+r) and q|(s-r)(s+r)

From the number theory we know that, if c|ab and gcd(b,c) = 1, then c|a. So p, q,
r and s must satisfy p|(s-r) or p|(s+r) and q|(s-r) or q|(s+r). Fig. 1 is a well known
table (quoted from [7]) in the area of integer factorization. It shows that there is 2/3
possibilities to factor n by computing the gcd(n, s+r) and gcd(n, s-r).

The question is: how can we find a congruence of squares? Searching directly for a
congruence of squares is certainly inefficient. As many other popular factoring meth-
ods, GNFS utilizes the following scheme. It first sieves for relations involving arbitrary
powers of numbers from sets called ”factor base”. Then after collecting enough such
relations, it finds a relation whose powers are all even by solving equations defined by
a huge matrix. A congruence of squares can then be easily constructed.

There are five major steps (see Fig. 2) in GNFS described in [7].

Step 1: Select Parameters. The theory of GNFS is very sophisticated. The trick is to
express the number being factored as a polynomial with small coefficients.

n = admd+ad−1md−1+......+a0. (1)

In order to do this, we need to set up two parameters: a polynomial f(x):R→R with
integer coefficients and an integer m∈N. These two parameters satisfy the equation f(m)
≡ 0 (mod n).

Before we set up f(x) and m, we can find the degree d of the polynomial. Table 1 give
us some hint of how to choose d [5]. After choosing d, we can choose m to be around
d
√

n.

Fig. 1. Possibilities for p and q dividing s+r and s-r

Integer Factorization by a Parallel GNFS Algorithm 685

Input n output n = p*q

Two parameters m and f(x),
such that f(m)=n

Rational Factor base
R

Algebraic Factor base
A

Quadratic Factor base
Q

(a,b) pairs (relations) such that
a+bm smooth over R, a+b smooth over A Two perfect squares

s2 and r2

gcd(n,x+y) and gcd(n,x-y)
give 2/3 chance to factor n

1: Select Parameters

2: Set up factor bases

4:Build linear System
and Solve the resulted
equations

3:Sieve

5:Compute factors

GNFS

Fig. 2. The 5 major steps of the GNFS algorithm

Table 1. Choosing degree of f(x)

Digits of n < 50 50 - 80 50 - 80 < 110
Degree 2 3 4 5

Step 2: Set Up Factor Bases. After all parameters have been set up, there are three
factor bases to be initialized, namely: rational factor base(R), algebraic factor base(A)
and quadratic character base(Q). It is easy to verify that each pair (r,p) in A satisfies f(r)
≡ 0 (mod p). And each (q, s) in Q satisfies f(s) ≡ 0 (mod q) and q not in A.

Step 3: Sieve. The purpose of sieving is to find pairs (a,b) such that a+bm is R-smooth
and a+bθ is A-smooth [5]. Recall that θ is a root of f(m).

The following shows how the sieving is done.

1. First we set the range of a and b. Let a change from -N and N, b change from -C
and C (N and C are integers). For each b, create two arrays: one is set up for a+bm
and another is set up for a+bθ. Fig. 3 shows the sieve array [7].

2. For each pi ∈ R, pi will divide a+bm if and only if a = -bm + kpi. We check every
a for a certain b, mark each value of a that satisfies a = -bm + kpi and make note
of the factor of a + bm in the sieve array. After we check all as for certain b, we
increase b by 1, then repeat the checking.

3. For each (p,r)∈A, (p,r) divides a+bθ if and only if a ≡ -br (mod p). We check every
a for a certain b, if a+bθ can be divided by (p,r), we will make a note for this pair.

686 L.T. Yang, L. Xu, and M. Lin

−N + bθ

(−N + 1) + θ

.

.

.

(N − 1) + bθ

N + bθ

−N + bm

(−N + 1) + m

.

.

.

(N − 1) + bm

N + bm

Fig. 3. Structure sieve arrays

Step 4: Build Linear System and Find Perfect Squares. Step 3 already results in a
set U: U = {(a,b)|a + bm and a + bθ are smooth over R and A, respectively}. In step 4,
we need to select a subset of these (a, b) pairs to form two perfect squares. That is, we
need to find a set V , such that

s2 =
∏

(a,b)∈V

(a + bm), (2)

and
r2 =

∏
(a,b)∈V

(a + bθ). (3)

Let the rational factor base R be {t1, t2, . . . , tk}. Let the algebraic factor base A be
{r1, p1), (r2, p2), . . . (rl, pl)} and quadratic character base Q be {(s1, q1), (s2, q2), . . . ,-
(su, qu)}. In order to find two perfect squares, we need to verify the following four con-
ditions:

1. a + bm must be positive.
2. For

∏
(a,b)∈V (a+bm) = te1

1 te2
2 . . . tek

k to be a perfect square, ei must be even. That
is ei ≡ 0 (mod 2).

3. For
∏

(a,b)∈V (a + bθ)) = ((r1, p1)f1(r2, p2)f2 . . . (rl, pl)fl to be a perfect square,
fi must be even. That is fi ≡ 0 (mod 2).

4. Furthermore, by Theorem 6 of [7], the following must also hold for
∏

(a,b)∈V (a +

bθ)) to be a perfect square: for any (s, q) ∈ Q,
∏

(a,b)∈V
(a+bs)

q = 1.

We will build a matrix to store the verification information for each pair found in
step 3. Each row vector corresponds to one pair. A row vector has 1+k+l+u entries.
The element of the matrix is either 0 or 1. Next, we describe how to construct the
1+k+l+u entries for a pair (aj , bj).

1. the first entry records the sign of a + bm; (see condition 1).
2. the next k entries record ei mod 2 where ei is the exponent for ti in R; (see condi-

tion 2).
3. the following l entries record fi mod 2 where fi is the exponent for (ri, pi) in A

(see condition 3).
4. the final u entries record

∏
(aj ,bj)∈V

(aj+bjs)
q for each (s, q) ∈ Q (see condition 4).

Integer Factorization by a Parallel GNFS Algorithm 687

After we build up M, we can solve the equation

MT

⎛
⎜⎜⎜⎜⎝

X1
X2
:
:

Xy

⎞
⎟⎟⎟⎟⎠≡ 0 (mod 2), (4)

for [X1, X2,.....,Xy]T. One example of the result could be :

[0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0]T .

0 means not select and 1 means select. All the entries that have value 1 will be selected
to produce perfect squares. Note that this equation has more than one solution because
M has more rows then columns.

Next, we show the vector representation for pair (119,11) in our example.

[0 (sign of a+bm),

0,0,1,0,0,0,0,0,1,0 (exponents on the factors of a+bm),

0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0 (exponents on the factors of a+bθ),

1,1,0,0,0,0 (for use with Q)].

Step 5: Compute Factors. As we said before, we have 2/3 possibilities to factor n if
we get two perfect squares. So (gcd(s+r),n) and (gcd(s-yr),n) will give us the factors
of n.

3 Parallel Implementation Details

3.1 Hardware and Software Programming Environment

Our parallel GNFS program is implemented on a Sun cluster. It consists of 2 dual
processor master nodes (Sun V65) with hyper-threading enabled and 59 dual processor
slaves nodes (Sun V60). Each node in the cluster has 2x 3.0 GHz Intel Xeon processors
and 3 GB registered DDR-266 ECC SDRAM.

The parallel code is based on the serial code developed by C. Monico in [3]. The
program is written in ANSI C and compiled by GNU C compiler (gcc). We adopts MPI
as our parallel programming library because it has s rich set of communication routines
and is suited for applications implemented on massively parallel processors. The foun-
dation of MPI is a group of functions that can be called by program to achieve paral-
lelism. The message passing functions can be used to transmit data between processors.
MPICH1[10] is installed for MPI library. We also use a free library, GMP, for arbitrary
precision arithmetic, operating on signed integers, rational numbers, and floating point
numbers) 4.x is required to compile and run the program [12].

688 L.T. Yang, L. Xu, and M. Lin

Table 2. GNFS integer factorization records

Digits Sieve Relation Block Lanczos Square Root Total Sieve/Total
30 26.5s 3.7s 0.1s 2.0s 32.3s 82%
39 15.0s 3.1s 0.1s 1.5s 19.7s 76.1%
45 184.3s 45.9s 4.1s 15.7 250s 74%
51 222.3s 63.9s 7.3s 18 311.5s 71.4%
61 3620.7s 591.7s 32.6s 57.4s 4320.4s 84%
76 26477.9s 8563.5s 1226.3s 904.2s 37171.9s 71.2%
98 17300.6s 2716.8s 504.6s 268.9s 20790.9s 83.2%

3.2 Timing Analysis of GNFS Steps

Before we start the parallel implementation, we perform a timing analysis of the serial
code. Table 2 gives the timing results for the steps in GNFS for different chosen n.

From the table we can see that, sieving is the most time consuming step of GNFS
algorithm. It takes 70%∼80% of total execution time. The efficiency of the GNFS al-
gorithm will be improved dramatically if we are able to improve sieving part.

3.3 Serial Sieving

Algorithm 1 gives the details of serial sieving. As we can see, the sieving is done in a
two layer for loop. In the outer loop, b ranges from Min b to Max b. In the inner loop,
b is fixed and a changes from -N to N. This process is very time consuming because
the range of a and b are usually very large. Generally speaking, the time complexity
of sieving increases when the digit of n increases. Table 3 gives the sieve time for
some n.

Algorithm 1. Sequential sieving
1: b0 = Min b;
2: b1 = Max b;
3: a1 = −N ;
4: a2 = N ;
5: for (b=b0;b<b1;b++) do
6: for (a=a1;a<a2;a++) do
7: if Smooth R(a,b) and Smooth A(a,b) then
8: save((a,b));
9: end if

10: end for
11: end for

3.4 Parallel Sieving

Since there are no relations between the generations of different (a,b) pairs, the sieving
stage of GNFS is ideally suited for parallel implementation. The parallel sieving algo-

Integer Factorization by a Parallel GNFS Algorithm 689

Table 3. Sieve time for different n

Digits of n Range of b Range of a Time complexity
39 300 400000 O(108)
45 500 200000 O(108)
61 5000 1000000 O(109)
98 10000 2400000 O(1010)

rithm is shown in Algorithm 2. The parallel GNFS program uses one master node and
a number of slave nodes. There are no communications between slaves in this program.
The slave node only communicates with master node. Each slave node has a range
partition for bs and generate relations within this b range.

Algorithm 2. Parallel sieving
1: MPI Init();
2: MPIComm size();
3: MPI Comm rank()();
4: b0 = Min b; b1 = Max b;
5: a1 = −N ; a2 = N ;
6: num of bs = ((b1 − b0)/p)
7: MPI Bcast(num of bs);
8: for (b=(taskid*num of bs+b0);b<(b0+(taskid+1)*num of bs); b++) do
9: for (a=a1;a<a2;a++) do

10: if Smooth R(a, b) and Smooth A(a,b) then
11: if (master) then
12: MPI Recv((a,b));
13: save((a,b));
14: else
15: MPI Send((a,b));
16: end if
17: end if
18: end for
19: end for

4 Performance Evaluation

4.1 Test Cases

We have eight test cases. Each of them uses a different n and runs on different number
of processors. All test cases and number of processors are listed in Table 4. The eight
composite numbers and their factor results can be found in the appendix.

4.2 Timing Results

Table 5 shows the sequential sieve time for each test case. Fig. 4 gives the parallel sieve
time for the test cases using different number of processors. We put these test cases in

690 L.T. Yang, L. Xu, and M. Lin

Table 4. Test cases and number of processors

Test case Number of processes using
tst10030 1, 2, 4, 8, 16, 32

F739 1, 2, 4, 8, 16, 32
tst15045 1, 2, 4, 8, 16, 32
briggs51 1, 2, 4, 8, 16, 32
tst20061 1, 2, 4, 8, 16, 32
tst25076 1, 2, 4, 8, 16, 32
tstS198 1, 2, 4, 8, 16, 32
tstS2116 1, 2, 4, 8, 16, 32

Table 5. Total sieve time for each test case

Test case tst10030 F739 briggs51 tst20061 tst25076 tstS198 tstS2116

Total sieve time 26.5s 184.3s 222.3s 3620.7s 26477.9s 17300.6s 193864.3s

three sub-figures for readability. From these three figures we can see that the total sieve
time for large size of n is much longer than small size of n. Fig. 5 gives the parallel
execution time for the test cases using different number of processors. From the figure
we can see that these curves have the same shape as the curves of parallel sieve time.
This is because sieve time takes most of percentage of total execution time (70%∼80%).

4.3 Speed-Up

Theoretically, suppose we have n bs and n as, and the sieve time complexity for serial
code is O(n2). If we have p processors and each processor takes care of n/p bs, then the
expected sieve time complexity will be O(n2/p). The speedups for the test cases using
different number of processors are presented in Fig. 6.

4.4 Sieving Efficiency

The sieving efficiency is the sieving speed up divided by the number of processors.
Fig. 7 gives the sieving efficiency for each test case.

4.5 Discussions

The parallel GNFS achieves good speedup. However, it is still possible to improve
the algorithm. Next, we analyze the causes accounting for inefficiency for the current
program and possible improvements.

– First, there are many communications between the master nodes and the slaves.
Each slave node need to send the sieving results back to the master node for each
b. The sieving results include three messages. So the total message passes back to
the master node are 3(b1-b0)(p-1)/p. The communications time increases when the
size of n increases.

Integer Factorization by a Parallel GNFS Algorithm 691

0 10 20 30 40
Number of processes

0

100

200

300

T
ot

al
 s

ie
ve

 ti
m

e(
s)

tst100−30
tst150−45
briggs−51

(a) n = 30, 45, 51 digits.

0 10 20 30 40
Number of processes

0

10000

20000

30000

T
ot

al
 s

ie
ve

 ti
m

e(
s)

tst200−61
tst250−76
tstS1−98

(b) n = 61, 76, 98 digits.

0 10 20 30 40
Number of processes

0

50000

1e+05

1.5e+05

2e+05

T
ot

al
 s

ie
ve

 ti
m

e

tstS2−116

(c) n = 116 digits.

Fig. 4. Parallel sieve time

692 L.T. Yang, L. Xu, and M. Lin

0 10 20 30 40
Number of processes

0

100

200

300

400

T
ot

al
 e

xe
cu

tio
n

tim
e(

s)

tst100−30
tst150−45
briggs−51

(a) n = 30, 45, 51 digits.

0 10 20 30 40
Number of processes

0

10000

20000

30000

40000

T
ot

al
 e

xe
cu

tio
n

tim
e(

s)

tst200−61
tst250−76
tstS1−98

(b) n = 61, 76, 98 digits.

0 10 20 30 40
Number of processes

0

50000

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

T
ot

al
 e

xe
cu

tio
n

tim
e(

s)

tstS2−116

(c) n = 116 digits.

Fig. 5. Parallel execution time

Integer Factorization by a Parallel GNFS Algorithm 693

0 10 20 30 40
Number of processes

0

10

20

30

S
ie

ve
 s

pe
ed

 u
p

tst100−30
tst150−45
briggs−51
tst250−76
tstS1−98
tstS2−116
tst200−61

(a) Sieve Speed-up.

0 10 20 30 40
Number of processes

0

5

10

15

S
pe

ed
 u

p

tst100−30
tst150−45
briggs−51
tst200−61
tst250−76
tstS1−98
tstS2−116

(b) Execution Time Speed-up.

Fig. 6. Speed-ups

0 10 20 30 40
Number of processes

0.4

0.6

0.8

1

1.2

1.4

S
ie

vi
ng

 e
ffi

ci
en

cy

tst100−30
tst150−45
briggs−51
tst200−61
tst250−76
tstS1−98
tstS2−116

Fig. 7. Sieving efficiency

– Another cause for inefficiency lies in synchronization. Each processor does siev-
ing for different pairs. The sieving time for each processor might be different. The
master node can not start the next sieving until all the slave nodes finish their siev-
ing. Processor idle time may occur due to this. Further improvements on better load
balance will be investigated in the future work.

Currently, it is difficult to factor integers larger than 116 digits in our cluster. One of
the reasons is the memory requirement. In order to factor larger composite numbers, we
must sieve a large number of relations. Even for numbers less than 116 digits, we may
end up with a linear system whose coefficient matrix has 100,000 entries. To tackle this
problem, we need to select good parameters as the parameter selections greatly affect

694 L.T. Yang, L. Xu, and M. Lin

the efficiency of the GNFS algorithm. One hint for for polynomial selection is to reduce
the size of the coefficients for f(x) as small coefficients tend to give small

∏
(ai+biθ)

[8]. We will explore such possibility in our future work.

References

1. A.K.Lenstra. Integer factoring. Des. Codes Cryptography, 19(2-3):101–128, 2000.
2. M.S.Manasse, A.K.Lenstra, H.W.Lenstra Jr. and J.M.Pollard. The number field sieve. In

ACM Symposium on Theory of Computing, pages 564–572, 1990.
3. C.Monico. General number field sieve documentation. Nov 2004.
4. C.Pomerance. The quadratic sieve factoring algorithm. In Proceeding of the EUROCRYPT 84

Workshop on Advances in Cryptology: Theory and Application of Cryptographic Techniques,
pages 169–182. Springer-Verlag, 1985.

5. J. Dreibelbis. Implementing the general number field sieve. Master of Computer Science,
Rochester Institute of Technology, June 2003.

6. H.W.Lenstra Jr., C. Pomerance, and J. P. Buhler. Factoring integers with the number field
sieve. In The Development of the Number Field Sieve, volume 1554, pages 50–94, New York,
1993. Lecture notes in Mathematics, Springer-Verlag.

7. M.Case. A beginner’s guide to the general number field sieve. pages 1–4, Winter 2003.
8. M.E.Briggs. An introduction to the general number field sieve. Master’s thesis, Virginia

Polytechnic Institute and State University, 1998.
9. N. Koblitz, A. Menezes and S. Vanstone. The state of elliptic curve cryptography. Des.

Codes Cryptography, 19(2-3):173–193, 2000.
10. MPICH1. http://www-unix.mcs.anl.gov/mpi/mpich/.
11. R.L.Rivest, A.Shamir, and L.M.Adelman. A method for obtaining digital signatures and

public-key cryptosystems. Technical Report MIT/LCS/TM-82, 1977.
12. T.Granlund. The GNU Multiple Precision Arithmetic Library. TMG Datakonsult, Boston,

MA, USA, 2.0.2 edition, June 1996.

Integer Factorization by a Parallel GNFS Algorithm 695

Appendix: The Test Cases and the Results

The composite numbers in the eight test cases and their factors are shown in the follow-
ing table.

Test CasesResults
tst100-30 727563736353655223147641208603=

978204944528897•743774339337499
tst150-45 799356282580692644127991443712991753990450969=

32823111293257851893153•24353458617583497303673
briggs-51 556158012756522140970101270050308458769458529626977=

449818591141•1236405128000120870775846228354119184397
tst200-61 1241445153765162090376032461564730757085137334450817128010073=

1127192007137697372923951166979•1101360855918052649813406915187
tst250-76 367504189473903940553325919721154884614311010915232376166537750

5538520830273= 69119855780815625390997974542224894323•
53169119831396634916152282437374262651

tstS1-98 4811267562937276780452421970753006246225115038284348
1915847109420993527839223554575368891438718253=
2255991822360879425583919003791503•
21326617921435191345914805886616773334390107640406173073760517251

tstS2-116 1788054896117921607424946722399582409295035430628227125858
4504325872840689417142416998673880521619866825206286597741=
3020063095859586052734248627690201527294469•
5920587879668110479956486319854404483179939902172304
914828610258288310089

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 696 – 707, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Localized Energy-Aware Broadcast Protocol for Wireless
Networks with Directional Antennas

Hui Xu, Manwoo Jeon, Lei Shu, Wu Xiaoling, Jinsung Cho, and Sungyoung Lee*

Department of Computer Engineering,
Kyung Hee University, Korea

{xuhui, imanoos, sl8132, xiaoling, sylee}@oslab.khu.ac.kr
chojs@khu.ac.kr

Abstract. We consider broadcast protocols in wireless networks that have lim-
ited energy and computation resources. The well-known algorithm, DBIP (Di-
rectional Broadcast Incremental Power), which exploits “Incremental Power”
philosophy for wireless networks with directional antenna to construct broad-
casting tree, provides very good results in terms of energy savings. Unfortu-
nately, its computation is centralized, as the source node needs to know the en-
tire topology of the network. Mobility of nodes or frequent changes in the node
activity status (from “active” to “passive” and vice-versa) may cause global
changes in topology which must be propagated throughout the network for any
centralized solution. This may results in extreme and un-acceptable communi-
cation overhead. In this paper, we propose and evaluate a localized energy-
efficient broadcast protocol, Localized Directional Broadcast Incremental
Power Protocol (LDBIP), which employs distributed location information and
computation to construct broadcast trees. In the proposed method, a source node
sets up spanning tree with its local neighborhood position information and in-
cludes certain hops relay information in packet. Directional antennas are used
for transmitting broadcast packet, and the transmission power is adjusted for
each transmission to the minimal necessary for reaching the particular neighbor.
Relay nodes will consider relay instructions received to compute their own local
neighborhood spanning tree and then rebroadcasts. Experimental results verify
that this new protocol shows similar performance with DBIP in static wireless
networks, and better performance in mobile scenarios.

1 Introduction

In wireless networks which have limited resources such as sensor network, communi-
cation ranges are limited, thus many nodes must participate to the broadcast in order
to have the whole network covered. The most important design criterion is energy and
computation conservation, as nodes have limited resources. All the protocols that
have been proposed for broadcast can be classified into two kinds of solutions: cen-
tralized and localized. Centralized solutions mean that each node should keep global
network information and global topology. There exist several centralized
energy-aware broadcast algorithms for the construction of broadcast trees with

* Corresponding author.

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 697

omni-directional antennas in the literature. In addition, the well-known energy-aware
algorithm of Broadcast Incremental Power (BIP) [1] is “node-based” algorithm and
exploits the “wireless broadcast advantage” property associated with omni-directional
antennas, namely the capability for a node to reach several neighbors by using a
transmission power level sufficient to reach the most distant one. Applying the incre-
mental power philosophy to network with directional antennas, the Directional
Broadcast Incremental Power (DBIP) algorithm [2] has very good performance in
energy saving. The problem of centralized approach is that mobility of nodes or fre-
quent changes in the node activity status (from “active” to “passive” and vice-versa)
may cause global changes in topology which must be propagated throughout the net-
work for any centralized solution. This may results in extreme and un-acceptable
communication overhead for networks. Hence, because of the limited resources of
nodes, it is ideal that each node can decide on its own behavior based only on the
information from nodes within a constant hop distance. Such distributed algorithms
and protocols are called localized [3-7].

In this paper, we propose and implement a localized energy-efficient broadcast
protocol which is based on the “Incremental Power” philosophy for wireless networks
with Directional Antenna, Localized Directional Broadcast Incremental Power Proto-
col (LDBIP). Our localized protocol only uses localized and distributed location in-
formation and computing to construct broadcast tree. The use of directional antennas
can reduce the beam width angle to diffuse the radio transmission to one direction and
thus provides energy savings and interference reduction. In our algorithm, source
node sets up spanning tree with only position information of its neighbors within
certain hops. Directional antennas are used for transmitting broadcast packet, and the
transmission power is adjusted for each transmission to the minimal necessary for
reaching the particular neighbor. Relay node that receives broadcast packet will con-
sider relay instructions included in received packet to compute its own localized
spanning tree and do the same as source node. We compare the performance of our
protocol (LDBIP) to those of BIP, DBIP and LBIP [8]. Experimental results show that
in static wireless networks, this new protocol has better performance compared to BIP
and LBIP, and similar performance to DBIP, and that in mobile wireless networks,
LDBIP has better performance even compared to DBIP.

The remainder of the paper is organized as follows: in Section 2, we introduce our
system model including the impact of the use of directional antennas on energy con-
sumption; Section 3 presents our localized energy-aware algorithm for broadcast tree
construction, which exploits the properties of directional antennas; in Section 4, we
compare the performance of our protocol (LDBIP) to those of BIP, DBIP and LBIP;
in Section 5, we present our conclusions and future work on this research.

2 System Model

2.1 Network Model

We assume a wireless network consists of N nodes, which are randomly distributed
over a specified region. Any node is permitted to initiate broadcast. Broadcast re-
quests are generated randomly at network nodes. In a broadcasting task, a message is

698 H. Xu et al.

to be sent from source node to all the other ones in the network. Some nodes may be
used as relays either to provide connectivity to all members in network or to reduce
overall energy consumption. The set of nodes and the links of nodes support con-
structing a broadcast tree. Here, the links are incidental and their existence depends on
the transmission power of each node. Thus, it is a set of nodes (rather than links) that
are the fundamental units in constructing the tree. The connectivity of the network
depends on the transmission power and antenna pattern. We assume that each node
can choose its RF power level R Fp , such as

m axm in
RFp p p≤ ≤ . The nodes in broad-

cast tree can adjust their power levels for the various transmission in which it partici-
pates.

2.2 Positioning

We assume each node has a low-power Global Position System (GPS [9]) receiver,
which provides the position information of the node itself. In every position based
broadcast protocol, nodes need position information about neighborhood nodes. The
method we used is as following: initially each node emits its position message con-
taining its id, and when a node u receives this kind of special message from a node v,
it adds v to its neighborhood table; in mobile network except initialization each node
sets timer to check its position, and if mobility happens it will emits his position mes-
sage again to let other nodes update neighborhood table.

2.3 Propagation Model

We use two kinds of propagation model, free space model [10] and two-ray ground
reflection model [11]. The free space model considers ideal propagation condition
that there is only one clear line-of-sight path between the transmitter and receiver,
while the two-ray ground model takes reality into consideration and considers both
the direct path and a ground reflection path.

The following equation to calculate the received signal power in free space at dis-
tance d from the transmitter

2

2 2
P

(4)
() t t r

r
P G

d L

G
d

λ
π

=
,

(1)

where tP is the transmitted signal power. tG and rG are the antenna gains of the trans-

mitter and the receiver respectively. L (1)L ≥ is the system loss, and λ is the wave-
length.

The following equation to calculate the received signal power in Two-ray ground
model at distance d

2 2

4
P () t t r t r

r
P G h h

d L

G
d =

,
(2)

where
t

h and
r

h are the heights of transmit and receive antennas respectively. How-

ever, the two-ray model does not give a good result for a short distance due to the
oscillation caused by the constructive and destructive combination of the two rays,
whereas, the free space model is still used when d is small. Therefore, a cross-over

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 699

distance
c

d is calculated. When
c

d d< , Eqn. (1) is used. When _

c
d d> , Eqn.(2) is

used. At the cross-over distance, Eqns. (1) and (2) give the same result. So
c

d can be

calculated as

(4)t rh hπ λ . (3)

When considering omni-directional antennas and uniform propagation conditions, it is

common to select tG and rG as 1.

The use of directional antennas can permit energy savings and reduce interference
by concentrating transmission energy where it is needed. We learn from [12] that
because the amount of RF energy remains the same, but is distributed over less area,
the apparent signal strength is higher. This apparent increase in signal strength is the
antenna gain. We use an idealized model in which we assume that all of the transmit-
ted energy is concentrated uniformly in a beam of widthθ , as shown in Fig. 1, then
the gain of area covered by the beam can be calculated as

2 (1 c o s)
3 6 0

θ−
, (4)

while the gain of the other areas is zero. As a consequence of the “wireless broadcast
advantage” property of omni-directional systems [13], all nodes whose distance from

Node i does not exceed
ij

r will be able to receive the transmission with no further

energy expenditure at Node i.

Fig. 1. Use of directional antenna

While using directional antenna, the advantage property will be diminished, since
only the nodes located within the transmitting node’s antenna beam can receive the
signal. In Fig. 1, only j, l can receive the signal, while k cannot receive the signal.

We assume that the beam width θ is fixed beam width and one node can simultane-
ously support more than one directional antenna. Furthermore, we assume that each
antenna beam can be pointed in any desired direction to provide connectivity to a
subset of nodes that are within communication range. In addition, we use directional
receiving antennas, which have a beneficial impact to avoid background noise and
other user interferences.

2.4 Energy Expenditure

In addition to RF propagation, energy is also expended for transmission (encoding,
modulation, etc.) and reception (demodulation, decoding, etc.). We define

700 H. Xu et al.

• T
p = transmission processing power and

• R
p = reception processing power.

The total power expenditure of a node, when transmitting to a maximum range r
over a sector of widthθ , is

(,)RF T Rp p r p pθ= + + (5)

Where (,)
RF

p r θ is RF propagation energy expenditure and the term R
p is not needed

for the source node. A leaf node, since it does not transmit but only receives, has a

total power expenditure of R
p .

3 Localized Directional Broadcast Incremental Power Protocol

3.1 The Proposed Algorithm

The goal of the localized algorithm is to allow a localized and distributed computation
of broadcast tree. We assume every node knows its local neighbors position
information.

The principle is as follows: the source node S (the one that initiates the broadcast)
computes the broadcast tree with its local neighborhood position information and
sends the broadcast packet to each of its one hop neighbor, while includes N (integer,
N>0) hops computed relay information and the Nth hop relay nodes id in broadcast
packet. For each of other nodes, for example, node U who receives the packet for the
first time, three cases can happen:

• The packet contains both relay instructions for U and U’s id. U will use these
relay instructions to construct its own local broadcast tree. Then, instead of
starting from an empty tree as S did, it extends the broadcasting tree based on
what source S has calculated for it. By this way, the joint neighborhood nodes
of S and U will use the same spanning tree.

• The packet contains only relay instructions for U. U will just follow these relay
instructions to relay the packet.

• There are no relay instructions for U. In this case, node U does nothing.

After the procedure mentioned above, node U will rebroadcast the packet again to
its own one hop neighbor and include N hops computed relay information for its own
relay nodes and the Nth hop relay nodes id, just like what source node has done. The
reason why we use N to refer relay nodes hop number is that the range within which
each node manage positional information on other nodes can be changed according to
requirement, and the optimal changes according to the application demands and the
node’s hardware performance.

In this principle, there may be some nodes which will receive this packet more than
one time, then at this time, node can simple drop the packet and doesn’t rebroadcast
again. In order to reduce overlap, we use the neighbor nodes elimination scheme.
Source node will include its local N hops neighbor nodes in packet, because these
nodes certainly will receive the packet soon. Once the node which is in charge of

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 701

recalculating local spanning tree receives the packet, except recording the relay in-
formation it should also record the nodes which will be covered soon. If the covered
node is not used in relay information and also is a neighbor node of this node, then
this node will delete it from its neighbor list and after deletion calculate its own
broadcast tree. Fig.2 is the pseudo-code of the proposed algorithm.

0. Randomly select source node S
1. For source node S:
2. { /******source node’s locale calculation******/
3. Computes its local broadcast tree;
4. Set up broadcast packet P;
5. Include N hops relay instructions in packet P;
6. Include N hops neighbors' ID in packet P;
7. Include Nth hop relay instructions in packet P;
8. Send packet P to each of its one hop neighbor using directional antenna;
9. }

10. For any node U (except S):
11. if (node U receives packet P){
12. if (the first time){
13. Inspect packet P;
14. if (there is relay instruction for U){
15. if (U’s id exists in Nth hop relay nodes’ id){
16. Search and record all relay instructions for U;
17. /******Neighbor Nodes Elimination Scheme******/
18. Check included covered nodes' ID;
19. While ((ID != U's address)&&(ID∉relay instruction info))
20. if (ID ⊂ U’s local neighbors list)
21. delete this node record from U’s local neighbors list;
22. /******U’s local calculation******/
23. Refer recorded relay instructions;
24. Use U’s modified local neighbors list;
25. Computes U’s local broadcast tree;
26. Act as source node;
27. }else if (U’s id does not exist in Nth hop relay nodes’ id)
28. Only relay received packet as recorded relay instructions;
29. }else if (there is no relay instruction for U)
30. Do nothing;
31. } else
32. Simply drop packet P;
33. }

Fig. 2. Pseudo-code of the proposed algorithm

3.2 Broadcast Tree Calculation

As for how to set up broadcast tree, we have considered two basic approaches with
directional antennas:

702 H. Xu et al.

• Construct the tree by using an algorithm designed for omni-directional anten-
nas; then reduce each antenna beam to our fixed beam width.

• Incorporate directional antenna properties into the tree-construction process.

The first approach can be based on any tree-construction algorithm. The “beam-
reduction” phase is performed after the tree is constructed. The second approach
which takes directional antenna into consideration at each step of the tree construction
process can be used only with algorithms that construct trees by adding one node at a
time. In this section, we describe the later approach applied in our algorithm LDBIP
in detail.

The incremental power philosophy, originally developed for use with omni-
directional antennas, can be applied to tree construction in networks with directional
antennas as well. At each step of the tree-construction process, a single node is added,
whereas variables involved in computing cost (and incremental cost) are not only
transmitter power but beam width θ as well. In our simple system model, we use

fixed beam width
f

θ , that means for adding a new node, we can only have two

choices: set up a new directional antenna to reach a new node; raise the length range
of beam to check whether there is new node covered or not. A pseudo code of the
broadcast tree calculation algorithm can be written as Fig. 3.

Input:

Initialization:

Procedure:

while

do ∈ ×
fθ

ijPΔ

∈ ×
∈

ijPΔ f
i jd

2
α θ

π

ijPΔ f
i jd

2
α θ

π
.

add ∪
set

ijPΔ

Fig. 3. Pseudo code of broadcast tree calculation algorithm

Fig. 4(a) shows a simple example in which the source node has 4 local neighbor
nodes 0, 1, 2, and 3. Node 1 is the closest to 0, so it is added first; in Fig. 4(b), an

antenna with beam width of
f

θ is centered between 0 and Node 1. Then we must

decide which node to add next (Node 2 or Node 3), and which node (that is already in

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 703

the tree) should be its parent. In this example, the beam from 0 to Node 1 can be
extended to include both Node 1 and Node 3, without setting up a new beam. Com-
pared to other choices that setting up a new beam from Node 0 to Node 2, or from
Node 1 to Node 2, this method has minimum incremental power. Therefore, Node 3 is
added next by increasing the communication range of Node 0 and Node 1. In Fig.
4(c), finally, Node 1 must be added to the tree. Three possibilities are respectively to
set up a new beam from Node 0, Node 1, Node 3. Here we assume that Node 3 has
minimum distance. Then in Fig. 4 (d) we set up a new beam from Node 3 to Node 2.

(a) (b) (c) (d)

Fig. 4. Nodes addition in LDBIP

3.3 Examples Constructed by the Various Algorithms

Fig. 5 shows the broadcast tree produced by BIP, DBIP, LBIP and LDBIP for a 12-
node network, where the source node is shown larger than the other nodes. There
broadcast trees are generated in our simulation work, which use the system model
mentioned in section 2.

Because DBIP and LDBIP use directional antenna, therefore in our simulation sys-

tem, according to different
f

θ , we can get different broadcast tree; of course, the ac-

cording energy consumption will also be different. Furthermore, because algorithm
LBIP and our LDBIP is distributed, which means every node only calculates its two
hops neighborhood broadcast tree, the Fig. 5(c) and (d) in fact is the combination of
all local broadcast tree, and the joint parts of those local broadcast trees will not have
too much difference because nodes refer relay information from other nodes and ap-
ply the neighbor nodes elimination scheme.

(a) (b) (c) (d)

Fig. 5. Broadcast Tree. (a) BIP (b) DBIP (
f

θ =30) (c) LBIP (d) LDBIP (
f

θ =30)

704 H. Xu et al.

4 Performance Evaluation

In this section, we present our performance evaluation for our localized algorithm
LDBIP, and also compare it with two centralized algorithm BIP and DBIP which are
very effective centralized protocols in energy consumption and with another localized
algorithm LBIP. Especially for LBIP and LDBIP, we choose the hop number N as 2.
We use ns2 as our simulation tool and assume AT&T's Wave LAN PCMCIA card as
wireless node model which parameters are listed in table 1. As for system model, we
apply the network, propagation, and energy model mentioned in Section 2.

Table 1. Parameters for wireless node model

 AT&T's Wave LAN PCMCIA card
frequency 914MHZ
maximum transmission range 40m
maximum transmit power 8.5872e-4 W
receiving power 0.395 watts
transmitting power 0.660 watts
omni-antenna gain of receiver/transmitter 1db
fixed beam width of directional antennas 30
directional antenna receiver/transmitter gain 58.6955db
MAC protocol 802.11
propagation model free space / two ray ground

The wireless network is always composed of 100 nodes randomly placed in a
square area which size is changed to obtain different network density D defined as the
average number of neighbors per each node. The formula can be written as:

,
*

2

2

r
D N

A

π= (6)

where A represents the edge length of deployment square area, and r is the maximum
transmission range. From Eqn. (6), we can get calculate A by

.

N
A r

D

π= (7)

For each measure, 50 broadcasts are launched and for each broadcast, a new network
is generated.

RAR (Reach Ability Ratio) is the percentage of nodes in the network that received
the message. Ideally, each broadcast can guarantee 100% RAR value. While in sparse
network since the maximum transmission range of nodes is not big enough to guaran-
tee the network connectivity, RAR may be less than 100%.

To compare the different protocols, we observe the total power consumption over
the network when a broadcast has occurred. We compute a ratio named EER, that
represents the energy consumption of the considered protocol compared to the energy
that would have been spent by a Blind Flooding (each node retransmits once with
maximum transmission range). The value of EER is so defined by:

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 705

.1 0 0p r o to c o l

f lo o d in g

E
E E R

E
= ×

(8)

We also observe SRB (Saved Rebroadcast) which is the percentage of nodes in the
network that received the message but did not relay it. A Blind Flooding has a SRB of
0%, since each node has to retransmit once the message.

Our simulation work is based on two steps: first we test the performance of our
protocol in static wireless ad hoc network, and then we take mobile network into
consideration. To compare the performance with those of other protocols, we observe
the total power consumption over the network. In mobile simulation environment, the
energy consumption includes not only the energy consumption for broadcasting mes-
sage, but also that for propagation for mobility.

(a) EER comparison (b) SRB comparison

Fig. 6. Performance comparison in static wireless network

Fig.6 shows EER and SRB comparison for BIP, DBIP, LBIP and LDBIP protocols
in static wireless networks with different network density. As for the RAR value,
since we choose the network density which can guarantee the network connectivity,
so all the RAR results are 100%. From Fig.6 (a) we can find that all the four protocols
have much better energy conservation than flooding. Because of employing direc-
tional antenna, DBIP and LDBIP have much less energy consumption compared to
BIP which uses omni-directional antenna in low network density and similar saving
energy performance in high network density. Also benefiting from directional an-
tenna, compared to another localized algorithm LBIP, our proposal LDBIP has much
better performance in energy conservation. In addition, the energy conservation per-
formance of DBIP and LDBIP is stable despite of network density. Compared to cen-
tralized algorithm DBIP, our localized algorithm LDBIP has a little more energy con-
sumption. That is because our algorithm employs the topology of only local neighbors
whereas DBIP utilizes the total network topology to calculate energy efficient broad-
cast tree. From Fig.6 (b) we can observe localized protocols have less SRB compared
to centralized protocols, since localized protocols only calculate local broadcasting
tree which cause unnecessary relay instructions compared to centralized protocols. In
addition, using omni-directional antenna can save more retransmission, since “wire-
less broadcast advantage” will be decreased by employing directional antenna.

706 H. Xu et al.

Now we take mobility into consideration. In our simulation we use mobile scenar-
ios to simulate the nodes’ mobility in mobile networks. These mobile scenarios are
randomly generated by special tool of ns2, “setdest [14]”. As we mentioned in section
2.2 positioning, in mobile network except initialization each node should set timer to
check whether this node has moved or not. If mobility occurs, node will use its maxi-
mum transmission radius to emit its new location information to let other nodes up-
date their neighborhood table. In centralized solution, this information must be propa-
gated throughout the network, In order to compare between different protocols, we
use the same mobile scenario in certain network density.

Fig. 7. EER comparison in mobile network

Fig.7 shows EER comparison for DBIP and LDBIP protocols in mobile networks
with different network density. Compared to centralized algorithm DBIP in mobile
network, our localized algorithm LDBIP has better energy saving performance. That is
because in centralized solution, e.g. DBIP, mobility of nodes need to be broadcasted
throughout the network, while in our centralized algorithm LDBIP, mobility will be
only propagated to that nodes’ neighborhood. Therefore LDBIP can get better perform-
ance. From this, we can infer that as mobility increases in mobile scenarios, LDBIP can
get much better performance in energy conservation. In addition, as for SRB compari-
son in mobile network, there is little difference with that in static network.

In summary, our localized protocol LDBIP can only use localized location infor-
mation and distributed computation to complete broadcasting task. Our simulation
work verifies that in mobile networks, our localized energy-aware protocol has very
good performance in energy conservation.

5 Conclusions

In this paper, we proposed the new localized energy-aware broadcast protocol for
wireless networks with directional antennas which have limited energy and computa-
tion resources. Our algorithm is based on the localized information and distributed
computation method, which means, rather than source node collects all location in-
formation of network to calculate broadcast tree, every node collects some part of the

 Localized Energy-Aware Broadcast Protocol for Wireless Networks 707

whole network’s nodes location information and participates calculating broadcast
tree. At the cost of a few more information stored in the broadcast packets, our local-
ized algorithm offers better energy saving result than well-known centralized algo-
rithm DBIP in mobile environment. Especially, if mobility of nodes increases in
network, our distributed algorithm can get lesser energy consumption and better
performance than centralized solution.

In future work, we plan to take realistic facts into consideration for energy
consumption and network lifetime.

Acknowledgement

This work was supported by grant No. R01-2005-000-10267-0 from Korea Science
and Engineering Foundation in Ministry of Science and Technology.

References

1. J. E. Wieselthier, G. D. Nguyen, A. Ephremides: On the construction of energy-efficient
broadcast and multicast trees in wireless networks. Proc. IEEE INFOCOM (2000) 585-
594

2. J.E. Wieselthier, G.D. Nguyen, A. Ephremides: Energy-Limited Wireless Networking
with Directional Antennas: The Case of Session-Based Multicasting. Proc. IEEE
INFOCOM (2002) 190-199

3. P. Bose, P. Morin, I. Stojmenovic, J. Urrutia: Routing with guarantee delivery in ad hoc
networks. ACM/Kluwer Wireless Networks (2001) 609-616

4. T. Chu, I. Nikolaidis: Energy efficient broadcast in mobile ad hoc networks. In Proc. Ad-
Hoc Networks and Wireless (ADHOC-NOW), Toronto, Canada (2002) 177-190

5. W. Peng, X. Lu: On the reduction of broadcast redundancy in mobile ad hoc networks. In
Proc. Annual Workshop on Mobile and Ad Hoc Networking and Computing (Mobi-
Hoc'2000), Boston, Massachusetts, USA (2000) 129-130

6. A. Qayyum, L. Viennot, A.Laouiti: Multipoint relaying for flooding broadcast messages
in mobile wireless networks. In Proc. 35th Annual Hawaii International Conference on
System Sciences (HICSS-35), Hawaii, USA (2002)

7. J. Wu, H. Li: A dominating-set-based routing scheme in ad hoc wireless networks. In
Proc. 3rd Int'l Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm (DIALM'99), Seattle, USA (1999) 7-14

8. F.Ingelrest, D.Simplot-Ryl: Localized Broadcast Incremental Power Protocol for Wireless
Ad Hoc Networks. 10th IEEE Symposium on Computers and Communications (ISCC
2005), Cartagena, Spain (2005)

9. E.D. Kaplan: Understanding GPS: Principles and Applications. Artech House (1996)
10. H.T. Friis: A note on a simple transmission formula. Proc. of the IRE, Vol. 41, May

(1946) 254-256
11. H.T. Friis: Introduction to radio and radio antennas. IEEE Spectrum, April (1971) 55-61
12. Joseph J. Carr: Directional or Omni-directional Antenna. Joe Carr's Receiving Antenna

Handbook, Hightext (1993)
13. J.E. Wieselthier, G.D. Nguyen, A. Ephremides: Algorithms for Energy-Efficient Multi-

casting in Static Ad Hoc Wireless Networks. Mobile Networks and Applications
(MONET), vol. 6, no. 3 (2001) 251-263

14. Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 708 – 719, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Optimal Profile-Guided Greedy Dynamic Voltage
Scaling in Real-Time Applications*

Huizhan Yi, Xuejun Yang, and Juan Chen

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R. China

{huizhanyi, xjyang, juanchen}@nudt.edu.cn

Abstract. Compiler-directed dynamic voltage scaling (DVS) is an effective
low-power technique in real-time applications, where compiler inserts voltage
scaling points in a real-time application, and supply voltage and clock
frequency are adjusted to the relationship between the remaining time and the
remaining workload at each voltage scaling point. Greedy dynamic voltage
scaling is one of the voltage adjustment schemes, where the slack time of
current section is completely used to reduce the clock frequency of next section.
In this paper we present the analytical model of the greedy scheme, and by
simulations using the analytical model, we find out that the greedy scheme
obstructs itself from effectively utilizing the slack times. So we propose a
profile-guided greedy voltage adjustment scheme directed by the optimal real-
time voltage scheduling in the most frequent execution case. We show by
simulations that the new voltage adjustment scheme obtains the largest
reduction of energy consumption of all the current representative schemes.

1 Introduction

In the recent years embedded systems for mobile computing, such as hand-held phone
and smart sensor, are developing rapidly, and a crucial parameter of mobile systems is
the continued time of energy supply. Though the performance of ICs has been
steadily growing [1], battery techniques are developed very slowly [2] and it is of
substantial importance for battery-powered systems to make use of more effective
low-power techniques. At the same time, due attention has been paid to the energy
consumption by the facilities from IT industry [3]. Therefore, it is very imperative not
only for mobile systems but also for high-performance desktop systems to develop
effective low-power techniques.

Dynamic voltage scaling (DVS) [4] [5] is one of the low-power techniques, and it
is widely used in embedded systems for mobile computing and desktop systems. In
real-time applications, DVS dynamically reduces supply voltage to the lowest
possible extent that ensures a proper operation when the required performance is
lower than the maximum performance. Since the dynamic energy consumption, the
dominant energy consumption in ICs, is in direct proportion to the square of supply
voltage, it is possible for DVS to significantly reduce energy consumption.

* Supported by the National High Technology Development 863 Program of China under

Grant No. 2004AA1Z2210 and Server OS Kernel under Grant No. 2002AA1Z2101.

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 709

Directed by software, DVS can save more energy. On the one hand, in a multiple-
task real-time environment, real-time operating system (RT-OS) has the global
information of the whole system, and based on workload variation, RT-OS reduces
energy consumption through inter-task voltage scheduling (InterDVS). On the other
hand, there are some practical constrains for InterDVS. Firstly, InterDVS needs OS
modification. In addition, in a single-task environment, there are no other tasks to
utilize the produced slack times. Even, in a multiple-task environment, if the
workload and slack times of one task dominate those of the others, it is impossible for
InterDVS to significantly reduce energy consumption. So it is necessary to utilize
intra-task voltage scheduling at the same time. Intra-task DVS (IntraDVS) assisted by
compiler inserts voltage scaling points in a real-time task and divides the task into
some sections, at each voltage scaling point supply voltage and clock frequency are
adjusted to the relationship between the remaining time and the remaining workload.

There are many real-time voltage adjustment schemes, and each scheme has to
ensure that a task finish before its deadline. Daniel Mosse, et al have summarized
three kinds of representative schemes: DPM-P, DPM-G, and DPM-S [6]. In DPM-P,
every time a section finishes, the system computes the reclaimed time (the slack time)
and allows other sections to slow down proportionally. The large majority of the past
works have utilized DPM-P to adjust supply voltage [7] [8] [9]. DPM-G, called a
greedy scheme, gives the reclaimed time to next section, and allows next section to
utilize the maximum possible amount of the slack, while guaranteeing the feasibility
of the real-time execution. DPM-G has nearly used up all the available slack times,
and there are some works utilizing DPM-G to adjust supply voltage [9] [15]. In DPM-
S, the slack times are distributed to other sections based on the average execution
cycle of real-time applications, and some past works have made use of the average
execution cycle to set clock frequency [10] [11].

In this paper we present the analytical model of the intra-task greedy dynamic
voltage scaling, and then using the analytical model, we investigate the properties of
the greedy scheme. Compared with the past assumption that the slack times are
distributed evenly, we suppose that the slack times are not evenly distributed in real-
time applications, which is much closer to the execution of real-time applications. As
a result, we find out that the greedy scheme can aggressively utilize the slack times,
but often the aggressive utilization of the slack times cannot lead to the largest energy
saving. So we first try to find out an optimal real-time voltage scheduling in the most
frequent execution case (sometimes called hot path), and prove that if each voltage
scaling point only can make use of the slack times appearing before itself, an optimal
voltage scheduling (OPTDVS) minimizes the energy consumption. Then, we present
a profile-guided optimizing voltage adjustment scheme directed by OPTDVS, and the
simulation results show that the new scheme obtains the largest gain of all the
representative schemes. We believe that optimizing the most frequent execution case
will lead to more reduction of energy consumption. The contributions of this work are
as follows:

1. We present and prove an optimal real-time voltage scheduling in the most
frequent execution case (OPTDVS).

2. We propose a new greedy voltage adjustment scheme directed by OPTDVS.
3. The simulations show that the new scheme obtains the largest energy

reduction of all the current representative schemes.

710 H. Yi, X. Yang, and J. Chen

The rest of this paper is organized as follows. In Section 2 we review some related
works of compiler-directed dynamic voltage scaling. In Section 3 we present the
analytical model of the greedy scheme, and investigate the properties of the greedy
scheme. In Section 4 we propose a profile-guided greedy scheme directed by
OPTDVS, and we show by simulations that the new scheme effectively reduces the
energy consumption. Finally, we give the conclusions and the future works.

2 Related Works

Dynamic power consumption, which dominates the total power consumption in ICs,
is proportional to the square of supply voltage, and reducing supply voltage can
significantly reduce dynamic power consumption. Real-time applications have the
dynamic performance requirement, and dynamic voltage scaling is used to exactly
meet the performance requirement with the lowest energy consumption by
dynamically adjusting supply voltage and clock frequency. Nowadays, the DVS-
enabled systems, such as Transmeta Crusoe, Intel Xscale, and AMD K6-IIIE+, are
often operated on some discrete voltage levels, and the switch from one level to
another has energy and time overhead.

OS-directed dynamic voltage scaling has widely investigated in the past years, and
Jacob Rubin Lorch had summarized the OS-based dynamic voltage scaling in
detail [12].

In the recent years a lot of works have been published on compiler-directed
dynamic voltage scaling, and many algorithms, especially real-time algorithms,
have been introduced. Daniel Mosse, et al presented compiler-directed power
management and proposed three kinds of real-time dynamic voltage adjustment
schemes: DPM-P, DPM-G, and DPM-S [6]. On the assumption that the slack times
were evenly distributed in real-time applications, Nevine AbouGhazaleh, et al
investigated the optimal number of voltage scaling points in DPM-P and DPM-G
[13]. H.Saputra, et al presented a compilation strategy based on integer linear
programming, which could accommodate energy/performance constraints [14].
Flavius Gruian employed stochastic data to derive efficient schedules, and took into
account the real behavior of real-time systems, which was often better than the
worst case [10]. Dongkun Shin, et al proposed a profiled-guided IntraDVS, where
they used the average execution cycles to set clock frequency and used the system
maximum clock frequency to ensure the real-time execution [11]. Ana Azevedo, et
al introduced an intra-task DVS technique under compiler control using program
checkpoints [15]. Nevine AbouGhazaleh, et al introduced a collaborative approach
between the compiler and operating system that used fine-grained information about
the execution time of a real-time application to reduce energy consumption [9]. The
idea of Chung-Hsing Hsu, et al was to identify the program regions in which the
CPU was mostly idle due to memory stall and slow them down for energy reduction
[16]. Dongkun Shin, et al proposed an optimization technique for IntraDVS using
data flow information [8].

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 711

3 Models and Analyses of IntraDVS

Real-time applications have the timing constraints; a real-time task must finish before
its deadline (d) and missing the deadline might lead to a catastrophic result. In order
to meet the timing constraints, we need to evaluate the worst-case execution times
(wcet) or the worst-case execution cycles (wcec) in real-time applications, and the
worst-case execution time of an application must be less than or equal to its deadline
[17]. If the wcet of an application is less than its deadline, we can proportionally
reduce supply voltage and clock frequency, and as a result the application can just
finish at its deadline. So we obtain a static voltage scheduling, and the initial clock
frequency is staticf . The static scheduling is the starting point of dynamic voltage

scaling.
IntraDVS assisted by a compiler inserts voltage scaling points in a real-time

application, and the execution cycle of the application is divided into n sections or
subintervals. Suppose that the worst-case execution cycle and the actual execution
cycle of each section are respectively denoted by iwc and iac for ni ,...,1= . At the

beginning of each section, we adjust supply voltage (iV) and clock frequency (if) to

the relationship between the remaining time and the remaining workload.
Using the greedy scheme, we set the clock frequency of each section to

)//(1 staticiiii frwcctdwcf +−−=

where ict denotes current time of the thi voltage scaling point, and
+=+ = n

il li wcrwc
11 .

From the above formula, we conclude that the greedy scheme gives all the reclaimed
slack time of each section to next section.

In order to utilize the models to analyze the greedy scheme, the above formula
becomes

() static

n

il l

i

l lstaticl

n

l lii fwcffacwcwcf ⋅−⋅−=
+=

−

==
))//((

1

1

11
 , (1)

where −

=
= 1

1
/

i

l lli facct . After detailed derivation, the formula (1) becomes

staticii fcff ⋅= , (2)

where icf is equal to

()()))/1(/(
1

1

1∏−

=

−

=
−⋅+= i

l

i

lk kkliii wcacwcwcwccf . (3)

Since the dynamic energy consumption dominates the total energy consumption of
CMOS, we only take into account the dynamic energy consumption. The dynamic
power P of CMOS is defined by

fVCP ⋅⋅⋅= 2α , (4)

where α indicates the average probability of the input node changing on each clock
cycle, C is the total capacitance on the gate output node, and V and f respectively

712 H. Yi, X. Yang, and J. Chen

denote the supply voltage and clock frequency of CMOS. DVS has divided the
execution of an application into multiple sections, and the total energy consumption is

==
⋅⋅⋅⋅=⋅= n

i iii

n

i ii tfVCtPE
1

2

1
α . (5)

The time it of each section is defined by

iii fact /= . (6)

The formula () VVVf T /2−∝ has defined the relationship between the clock

frequency and supply voltage of CMOS, where TV denotes the threshold voltage of

CMOS. Since TV is generally much smaller than supply voltage, we can obtain an

approximate equation between clock frequency and supply voltage

ii Vf ⋅= β , (7)

where β is a constant relating to CMOS technology.
Using the formulae from (5) to (7), we can obtain the energy consumption of the

static voltage scheduling

wcecfCacfCE static

n

i istaticstatic ⋅⋅⋅⋅=⋅⋅⋅=
=

μβαβα 22

1

22)/()/(, (8)

where μ/
11 ==

== n

i i

n

i i acwcwcec , 10 ≤≤ μ .

Using the formulae from (2) to (7), we can compute the energy consumption of the
dynamic voltage scheduling

==
⋅⋅⋅⋅=⋅⋅⋅⋅= n

i iistatic

n

i istatici accffCacfcfCE
1

222

1

222)/()/(βαβα . (9)

Then the ratio of E to staticE is defined by

=
⋅⋅== n

i iistatic wcecaccfEEr
1

2)/()/1(/ μ . (10)

Let iii wcac ⋅= μ for ni ,...,1= , wcecwcwc ii /' = for ni ,...,1= , (10) becomes

=
⋅⋅⋅= n

i iii wccfr
1

'2)()/1(μμ , (11)

and icf is equal to

()()))1(/(
1

1

1''' ∏−

=

−

=
−⋅+= i

l

i

lk kliii wcwcwccf μ , (12)

where 1
1

' =
=

n

i iwc , 0' >iwc for ni ,...,1= , 10 ≤≤ iμ for ni ,...,1= .

If we make use of the fixed-length configuration of voltage scaling points (i.e. all

iwc for ni ,...,1= have same value), (11) becomes

()()∏=

−

=

−

=
⋅−+⋅= n

i i

i

l

i

lk k
eq nr

1

21

1

1
)/())1(1/(1)/1(μμμ , (13)

where 10 ≤≤ iμ for ni ,...,1= , 10 ≤≤ μ .

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 713

Finally, we obtain the analytical models of r and eqr .

......
1 0 1 1 0 1

wcec

Fig. 1. The execution cycles of an
application

10 1 0

wcec

1. if (a>b) [w:100]
2. ...
3. else [w:50]
4. ...
5. end
6. loop: [w:20*10;b:20*5]
7. ...
8. end

(a) (b)

50 50 100 100

Fig. 2. An application (a) and its corresponding
execution pattern (b)

In real-time applications the slack times are often not evenly distributed, as is
shown in Fig. 1. Each section with the tag ‘1’ indicates the actual execution cycle.
Since the actual number of loop iterations or the prediction of condition structures
could be differentiated from that of the worst case in the execution course, each
section with the tag ‘0’ is not executed, i.e. the slack time (cycle). For example,
suppose that an application includes a condition sentence and a loop sentence, as is
shown in Fig. 2(a), where the condition sentence is executed for 100 cycles if the
prediction (a>b) is true, or else 50 cycles. In addition, the worst-case execution cycle
and the best-case execution cycle of the loop sentence are 200 and 100 cycles,
respectively. If in most cases, the prediction is false and the loop is executed for 100
cycles, then the execution pattern in the most frequent case is shown in Fig. 2(b).

Next we numerically simulate DVS with the model defined by (13). In order to
simulate the execution cases that the slack times are not evenly distributed in real-
time applications, we divide the execution interval of a task into λ equal subintervals,
and call λ simulation precision. In each subinterval, there are two possible values: 1
or 0. The subintervals with the value of 1 are the actual execution cycles, and the
subintervals with the value of 0 are not executed. From the knowledge of
combinatorics, we draw the conclusion that the number of the total cases is λ2 . In
each case we can evaluate parameter μ from the number of the subintervals with the

value of 1. For example, there are mC cases of m subintervals with the value of 1,

and the parameter μ of the cases is equal to λ/m , where mC indicates the number of

combinations of m elements among λ . We can compute iμ with the similar method.

Due to space limitation, it is impossible to list all the results, and we just present
the typical case. Let 14=λ , we simulate, for example, the workload pattern like
00010110000000, and the simulation results are shown in Fig. 3, where the horizontal
axis and the vertical axis, respectively, represent the number of voltage scaling
sections and the percentage of energy consumption.

It is clearly seen that the percentage curve has complex variation with the growth of
the number of sections. In the beginning, the percentage has been decreasing with the
increase of the number of sections before it reaches the minimum. Subsequently, the
percentage has an overall ascending tendency but no monotonicity.

714 H. Yi, X. Yang, and J. Chen

Through analyzing the relationship between the frequency and the workload, we
find out the reason for the complex properties. On the one hand, for some
configurations of voltage scaling sections, the application has utilized all the available
slack times and the whole workload is operated on the lowest frequency. On the other
hand, for other configurations of voltage scaling sections, the layout of the frequency
has made the earlier part of the workload operated on much lower frequency and
consumed all the available slack times; the later part, however, has to be executed on
the largest frequency to guarantee the completion before the deadline.

In brief, we come to the conclusion that the greedy scheme cannot effectively
utilize the slack times.

Fig. 3. The percentage of energy
consumption using the greedy
scheme when 14=λ and the pattern:
00010110000000

workload

f wcec

1 2 3 4 5 6 7 8 9 100

wcec

1 2 3 4 5 6 7 8 9 100

(a)

(b)

1

1

0.5

d1

d2

d3

g1 g2
g3 g4 g5

g1 g2
g3 g4 g5

Fig. 4. (a) The most frequent execution case of an
application and its grouping. (b) The corresponding
frequency configuration.

4 A Profile-Guided Greedy Voltage Adjustment Scheme

In the execution course of an application, there are many possible execution paths,
and some paths (called hot paths) are frequently executed. We can obtain the
information of the execution path by profile-guided method, and voltage scheduling
should minimize the energy consumption of the most frequently executed case.
Therefore, we first investigate the optimal real-time voltage scheduling in the most
frequent execution case in order to guide the greedy scheme. Suppose that we have
known the most frequent execution case of an application, as is shown in Fig. 4 (a).
Each section that the workload is 1 represents the executed cycle, and the sections that
the workload is 0 are not executed. We form one ‘0’ section and one succeeding ‘1’
section into a group, and all the groups are denoted by lg for gnl ,...,1= . If the actual

execution cycle and the worst-case execution cycle of each group are denoted by

lgmfc _ and
lgwc respectively, then in the most frequent execution case the execution

ratio of the i groups at the beginning is defined by

==
= i

l g

i

l gi ll
wcmfcmfr

11
/__

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 715

Moreover, we can find the maximum of all the execution ratios

{ }g
i nimfrmfmr ,...,1|_max_ ==

and the corresponding subscript j (If more than one imfr _ are equal to the

maximum, j corresponds to the maximum subscript). As a result, the frequencies of
the j groups at the beginning are set to

staticfmfmrf ⋅= _

If gnj = , the frequency configuration finishes; otherwise, from the th)1(+j group,
we continue to utilize the same method to calculate the frequencies of the remaining
groups till the frequency of the whole execution interval is solved. We call the
produced frequency configuration an optimal real-time dynamic voltage scheduling in
the most frequent case (OPTDVS).

For example, suppose that in an application wcec includes 10 cycles, as is shown in
Fig. 4 (a). We first divide the whole execution interval into 5 groups, and then
calculate all the imfr _ for 5,...,1=i , i.e. { }2/1,9/5,2/1,3/2,1 .

Since 1_ =mfmr and the corresponding subscript is 1, then the frequency of the
first group is set to staticf . For the remaining 4 groups, we continue to compute the

imfr _ for 4,...,1=i , i.e. { }9/4,2/1,5/2,2/1 .

Since 2/1_ =mfmr and its corresponding subscript is 4, then the frequency of the
groups from 2 to 4 is set to 2/staticf . The same method sets the frequency of the fifth

group to 0. The whole frequency configuration is shown in Fig. 4 (b).

Theorem. Consider a feasible voltage scheduling set, where each voltage scaling
point in each voltage scheduling only utilizes the slack times appearing before itself.
If we have known the most frequent execution case of an application, OPTDVS
minimizes the energy consumption of the case among the feasible voltage scheduling
set.

Proof. Due to the space limitation, we don’t include the proof in this paper.

In each real-time voltage scheduling, each voltage scaling point only utilizes the
slack times appearing before itself, then OPTDVS gives the lower limit of all the real-
time voltage scheduling in the most frequent execution case. For each voltage
adjustment scheme, the ideal result is that the energy consumption reaches or is near
the lower limit.

Next we utilize OPTDVS to present a new greedy voltage adjustment scheme. At
each voltage scaling point, we must specify the utilization method of the available
slack times. Our idea is that the voltage scheduling should be in accord with the
OPTDVS in the most frequent execution case as much as possible. After applying
OPTDVS to an application, its whole execution interval is divided into some
subintervals; each subinterval is operated on a single frequency and has its
corresponding deadline. For example, Fig. 4 (b) shows the deadlines of all the
subintervals, i.e. d1, d2, and d3. Each subinterval might include some voltage scaling

716 H. Yi, X. Yang, and J. Chen

points, and we suppose that the thi voltage scaling point belongs to the thm
subinterval. Then the frequency of the thi section approximating to OPTDVS is set to

static

i

l lstaticl

first

l l

first

il l
opt

i fffacwcmfcf
mdmd

⋅⋅−= −

===

≥≥

)))/(/((
1

11

where md denotes the deadline of the thm subinterval,
mdfirst ≥ indicates the

subscript of the first section larger than or equal to md , and lmfc is the actual

execution cycle of the thl voltage scaling sections in the most frequent execution case.

Apparently, opt
if cannot ensure the completion of the real-time application before the

deadline in worst case. On the contrary, the greedy scheme has aggressively utilized
the available slack times. So we utilize the greedy scheme to guarantee the timing
constraints. If g

if denotes the frequency of the greedy scheme, then the final

frequency of the thi section is

{ }g
i

opt
ii fff ,max=

4.1 The Methodology of Realization

We can implement the new scheme like the greedy scheme, except adding some
profile information. For example, the methodology based on the program checkpoints
(similar to voltage scaling points) in COPPER project [15] can be used.

As is shown in Fig. 5(a), we present the source code of a program along with the
execution cycles of the different branches, where mf indicates the cycle of the most
frequent execution case, whereas wc is the cycle of the worst case. Fig. 5(b)
illustrates the source code after checkpoints have been inserted. Notice that a
checkpoint CK(5) controlled by condition structure is added in the while loop, and as
a result CK(4) can utilize the most frequent execution pattern to make voltage
scheduling due to the insertion of CK(5). If the while loop is executed for less than or
equal to 200 cycles (most frequent case), then the voltage scheduling of CK(4) makes
the frequency near to that of OPTDVS. Otherwise, we will reach the CK(5), where
the frequency will be raised up to guarantee the timing constrain. In Fig. 5(c), we give
the control flow graph of the checkpoints, where the dashed line indicates the most
frequent execution path. Finally, Fig. 5(d) shows the execution pattern and its
grouping, where ‘s’ and ‘a’, respectively, indicate the slack cycle and the actual
execution cycle in the most frequent execution case.

If program reaches CK(5), then the application is operated out of the most frequent
execution case, and moreover, CK(5) is located on the boundary of the second
subinterval of OPTDVS. In order to ensure the completion before the deadline, we
utilize the greedy scheme to set clock frequency at CK(5):

)//(1 staticiiii frwcctdwcf +−−=

At each checkpoint except CK(5), we utilize the voltage scaling scheme as follows:

−+−−=
≥

+=+)/()(),//(max
11 i

mfirst

il listaticiiii ctdmfcwcfrwcctdwcf
md

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 717

where md represents the deadline of the subinterval in OPTDVS that includes the

thi checkpoint,
≥

+=

mdfirst

il lmfc
1

 is the most frequent execution cycle from the

th)1(+i checkpoint to md . For example, suppose that the clock frequency is 1, and

then d is 1470 as shown in Fig. 5(d). For CK(1), md and
≥

+=

mdfirst

il lmfc
1

, respectively,

are equal to 460 and 250, and iwc is 100.

If (C1) [10]
 A1 [100]
Else [10]
 B1 [200]
End
D [50]
While(C3) [mf:200;wc:1000]
 E
End
If (C2) [10]
 A2 [200]
Else [10]
 B2 [100]
End

CK(0)
If (C1)
 CK(1)
 A1
Else
 CK(2)
 B1
End
CK(3)
D
CK(4)
X=TRUE
I=0
While(C3)
 If (X)
 If(I>MF)
 CK(5)
 X=false
 Else
 I++
 End
 End
 E
End
CK(6)
If (C2)
 CK(7)
 A2
Else
 CK(8)
 B2
End
CK(9)

CK0

CK1 CK2

CK3

CK4

CK5

CK6

CK7 CK8

CK9

(a)

(b)(c)

s100 a350 s800 a210

wcec=1470

(d)

10 10

100 200

50

200

200

800

10 10

200 100

a10

g1 g2 g3
d1 d2 d3

Fig. 5. An example extracting the most frequent execution pattern with program checkpoints:
(a) source code; (b) source code added checkpoints; (c) control flow graph of checkpoints; (d)
the execution pattern of the most frequent case and the grouping of OPTDVS

To sum up, the methodology has inserted voltage scaling points into the execution
interval as shown in Fig. 6, that is, there must be voltage scaling point for every
switch from ‘1’ intervals to ‘0’ intervals or from ‘0’ to ‘1’. The configuration of
voltage scaling points guarantees that the energy consumption is equal to that of
OPTDVS in most frequent execution case.

......
1 0 1 1 0 1

wcec

Fig. 6. Insertion of voltage scaling points

4.3 Simulations

By simulations, we compare our voltage adjustment scheme (M) with all the current
representative schemes, which include the proportional scheme DPM-P (P) [6] [7], the
simple greedy scheme DPM-G (G) [15], and the speculative scheme DPM-S (S) [11].

718 H. Yi, X. Yang, and J. Chen

Utilizing the method of Section 3, we construct the synthetic applications with
20=λ . In all the cases, our scheme obtains the smallest energy consumption. Due to

space limitation, it is impossible to list all the results, and we randomly select some
execution patterns in order to interpret some typical cases, as is shown in Fig. 7.

First of all, though the proportional scheme (DPM-P) is the most easily realized, it
often cannot effectively utilize the slack times.

Since the simple greedy scheme (DPM-G) can aggressively utilize the slack times,
often it can lead to large energy reduction. But due to lack of the information about
the application characteristic, aggressive utilization of the slack times could lead to
more energy consumption.
Guided by the average execution workload, DPM-S often attains large energy saving.
Our voltage adjustment scheme, however, obtains the largest reduction of energy
consumption.

Fig. 7. The energy consumptions of DPM-P (P), DPM-G (G), DPM-S (S), and our scheme (M).
(p1) 00001000001010000100, (p2) 00001011101010000000, (p3) 00000001100101111101,
(p4) 00101011110010010010, (p5) 00110111110001000101, (p6) 11011101111110110001.

5 Conclusions and Future Works

In this paper we investigate the greedy voltage scheduling, and find out that the
greedy scheme can aggressively make use of the slack times, but the aggressive
scheme often leads to the ineffective utilization of the slack times. Therefore, we
propose a profile-guided greedy voltage adjustment scheme directed by the optimal
real-time voltage scheduling in the most frequent execution case of an application.
Finally, we show by simulations that the optimizing voltage adjustment scheme
obtains the largest gain of all the current representative schemes.

We have given the methodology of the realization about the scheme, and in future,
we will integrate the scheme into a real system based on greedy scheme.

References

1. ITRS. International Technology Roadmap for Semiconductors 2003 Edition. Can get from
http://public.itrs.net

2. Kanishka Lahiri. Battery-Driven System Design: A New Frontier in Low Power Design.
ASP-DAC/VLSI Design 2002, January 07 - 11, 2002, Bangalore, India.

 The Optimal Profile-Guided Greedy DVS in Real-Time Applications 719

3. Trevor Mudge. Power: A First Class Design Constraint for Future Architectures. HiPC
2000: 215-224.

4. T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A Dynamic Voltage Scaled
Microprocess- or System. in Proc. of IEEE International Solid-State Circuits Conference,
2000, pp. 294–295.

5. C.M. Krishna, Yann-Hang Lee. Voltage-Clock-Scaling Adaptive Scheduling Techniques
for Low Power in Hard Real-Time Systems. IEEE TRANSACTIONS ON COMPUTERS,
December 2003 (Vol. 52, No. 12).

6. Daniel Mosse, H. Aydin, B.R. Childers, R. Melhem. Compiler-Assisted Dynamic Power-
Aware Scheduling for Real-Time Applications. Workshop on Compilers and Operating
Systems for Low-Power (COLP'00), Philadelphia, PA, October 2000.

7. Dongkun Shin, Seongsoo Lee, Jihong Kim. Intra-Task Voltage Scheduling for Low-
Energy Hard Real-Time Applications. In IEEE Design & Test of Computers, Mar. 2001.

8. Dongkun Shin and Jihong Kim. Look-ahead Intra-Task Voltage Scheduling Using Data
Flow Information. In Proc. ISOCC, pp. 148-151, Oct. 2004.

9. Nevine AbouGhazaleh, Daniel Mosse, B.R. Childers, R. Melhem, Matthew Craven.
Collaborative Operating System and Compiler Power Management for Real-Time
Applications. in Proc. of The Real-time Technology and Application Symposium, RTAS,
Toronto, Canada (May 2003).

10. Flavius Gruian. Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and
DVS Processors. In Proceedings of the International Symposium on Low-Power
Electronics and Design ISLPED'01 (Huntington Beach, CA, Aug. 2001).

11. Dongkun Shin, Jihong Kim. A Profile-Based Energy-Efficient Intra-Task Voltage
Scheduling Algorithm for Real-Time Applications. In ISLPED’01, August 6-7,
Huntington Beach, California, USA.

12. Jacob Rubin Lorch. Operating Systems Techniques for Reducing Processor Energy
Consumption [Ph.D. thesis]. UNIVERSITY of CALIFORNIA, BERKELEY, Fall 2001.

13. Nevine AbouGhazaleh, Daniel Mosse, B.R. Childers, R. Melhem. Toward the placement
of power management points in real-time applications. Compilers and operating systems
for low power, Pages:37-52, 2003. ISBN: 1-4020-7573-1, Kluwer Academic Publishers
Norwell, MA, USA.

14. H.Saputra, M. Kandemir, N.Vijaykrishnan, M.J.Irwin, J.S. Hu, C-H.Hsu, U.Kremer.
Energy-Conscious Compilation Based on Voltage Scaling. In ACM SIGPLAN Joint
Conference on Languages, Compilers, and Tools for Embedded Systems and Software
and Compilers for Embedded Systems , June 2002.

15. Ana Azevedo, Ilya Issenin, Radu Cornea. Profile-based Dynamic Voltage Scheduling
Using Program Checkpoints. In Proceeding of Design, Automation and Test in Europe
Conference (DATE), March 2002.

16. Chung-Hsing Hsu, Ulrich Kremer. The Design, Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy Reduction. in Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, pp. 38--48, June
2003.

17. Peter Puscher, Alan Burns. A Review of Worst-Case Execution-Time Analysis (Editorial).
Kluwer Academic Pubilishers, September 24, 1999. USA.

18. Tohru ISHIHARA, Hiroto YASUURA. Voltage Scheduling Problem for Dynamically
Variable Voltage Processors. In Proceedings of the 1998 international symposium on Low
power electronics and design, Monterey, California, United States, pp. 197-202, 1998,
ISBN:1-58113-059-7, ACM Press New York, NY.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 720 – 725, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Parallelizing Compiler Approach Based on IXA

Ting Ding and Naiqi Liu

Ting Ding, Naiqi Liu,UESTC-Intel IXA Lab,
Department of Computer Science and Engineering,

University of Electronic Science and Technology of China,
Chengdu, P.R. China 610054

tina_ting915@sina.com, nliu@uestc.edu.cn

Abstract. In this paper, we first analyze the parallel characteristics of both
network processor and network application. Our analysis shows that the
development using the existed two programming interfaces on IXA is
complicated. This suggests that a programming environment which can abstract
away architectural details from the developers and can automatically map
application to resources is on desire. Thus we introduce a parallelizing compiler
developed by Intel called IXP C compiler and analyze its performance on two
different mapping forms by compiling packet_processing_pps of
ipv4_diffserv-1*10G_Ethernet-egress. Finally we discuss the shortcomings of
partition algorithm and also give some suggestions for the future work.

1 Introduction

The architecture of network system has been developed dramatically along with the
increasing of the Internet’s bandwidth and the diversity of the services. Network
processor, in general, is designed to satisfy certain demands to make up the gap
between processing rate and line bandwidth, and to meet the requirement of the
processors’ programmability and flexibility, including efficient parallel processing on
network packet, high programmability and extensibility, quick launching etc.
Currently, developers have to manage many hardware resources and manually maintain
the synchronization, so that it is difficult for them to develop high performance
applications at the same time. This paper analyzes the parallel characteristics of both
network processor and network application, and introduces a parallelizing compiler
based on IXA called IXP C compiler. By analyzing the performance of two different
mapping forms of IXP C compiler, we discuss the shortcomings of its partition
algorithm and also give some suggestions for the future work.

2 Parallelism of Network Processor Architecture

The conventional network processing method based on ASIC (Application Specific
Integrated Circuit) and GPP (General Purpose Processor) is unable to satisfy the
demands of the processing rate and flexibility, resulting in the comprehensive
development of network processor based on ASIP (Application Specified Instruction
Processor). Generally speaking, network processor divides network tasks into control

 A Parallelizing Compiler Approach Based on IXA 721

plane and data plane. Take Intel IXP2800 as an example to conclude the parallelism of
network processor architecture:

 Multi-microengine architecture: IXP2800 has 16 individual RISC engines
in frequency of 1.4G.

 Optimized ALU: The ME (microengine) instruction set provides
network-specialized instructions. ALU and shift operation can be finished
in one cycle.

 Multi-thread supported by hardware: Every ME independently executes
as many as 8 cooperative thread contexts. The swap mechanism is under
the instruction control, other than the interrupt, which hides the memory
access latency to improve the utilization ratio and processor throughput
efficiently.

 Optimized memory management and DMA unit: Memory access is
always the performance bottle neck. IXP2800 introduces optimized
memory controller interface and DMA unit to improve it.

 Efficient communication mechanisms: IXP2800 provides inter-thread
signaling mechanism, atomic shared memory operations and hardware
support for rings and queues.

The features above show that the network processor provides good parallelism on
hardware architecture, which is the basis of developing high efficient network
applications on it.

3 Characteristics of Network Application

Network services are diverse, but as to the given network service, it can be simply
viewed as one application, which processes a continued data units--generally referred
to as packets or cells. The whole process of packet-processing application can be
divided into three logic phases, receiving, processing and transmitting. Fundamental
characteristics of this kind of applications can be concluded as following:

 The logic of packet-processing application can be described using cyclic
data-flow graphs. The process functions on the data-flow graph can be
represented as M-in, N-out data-flow actors. The actor may act differently
for different network services.

 The sequence of functions executed for a packet depends on the packet’s
type and is triggered by packet arrivals, timers, or other hardware events.
Furthermore, most of the functions maintain per-flow state, which is
accessed and updated while packet under processing belongs to the flow.

 Functions in packet-processing application are always not
compute-intensive but memory-intensive unit. Hence, how to hide the
memory access latency is critical to the performance of network application
system.

 In most applications, there is little or no dependence between packets
belonging to different flows. So the application itself exhibits a high-degree
parallelism when processing packets of different flows.

722 T. Ding and N. Liu

It is obvious that packet-processing applications have the probability to get high
performance if mapped to network processor perfectly.

4 Introduction to Existed Programming Interfaces on IXA

Currently, there are two programming interfaces for IXP2800. One is assembly
language, with which the assembly code is directly mapped to RISC instructions.
Another is microC language, which is an explicitly parallel language interface that
provides developers with keywords and extensions to specify multi-thread execution,
sleep/wake signaling, inter-process communication, data placement, and manipulation
of configuration and status registers. Both require developers to explicitly partition
application code onto MEs, and consequently manage threading and synchronization.
It is shown that the developing the above programming interfaces is complicated, and
also the key factor restricting the development of network processor. A programming
environment, which can abstract away architectural details from the developers and can
automatically map application to resources, is on desire. The key factors, which means
abstracting and mapping, push the researches of virtual machine and parallelizing
compiler based on network processor these years.

5 A Parallelizing Compiler Approach Based on IXA

In this section, we will introduce an incoming parallelizing compiler on network
processor developed by Intel as well as the performance analysis and improvement
suggestions.

5.1 Introduction to IXP C Compiler

IXPC compiler uses the similar C language as the programming interface with the
extensions to support IXP architecture. It hides multithreading, multiprocessing, most
of the low-level hardware resources that are unique to IXPs and asynchronous I/O
capabilities of IXPs for developers. And it also parallelizes the sequential logic
applications according to the performance requirement, then finally map them to
hardware resources. Here are some features in detail:

 IXP C compiler abstracts the network application to a series of
function units according to its characteristics mentioned above, which
is called PPS (Packet Processing Stage). A PPS is a logical entity that
performs packet processing functionalities in hardware-independent
sequential C constructs and libraries, and also un-bound to any hardware
resources in IXP. In the whole application system, PPSes which constitute
a program run concurrently.

 In IXP C compiler, the communication channel between PPSes is a
data structure called pipe, which provides an implicit synchronization
contract of PPSes. Three pipes are supported, abstract pipe, NN pipe and
scratch pipe. The compiler is responsible for realizing pipes. As for abstract
pipe, compiler will choose the effective type automatically according to the
performance requirement and resources situation, and SRAM rings can also
be used when scratch or NN rings are not available.

 A Parallelizing Compiler Approach Based on IXA 723

 Developers can use a key word _path to label the critical path of the
program, and set a performance specification for that path. All of these
will guide the compilation because most of the optimization is done for critical
path and compiler will try its best to satisfy the given performance on it.

 In the view of IXP C compiler, the input is c files with PPS, resource
description and performance specification on each critical path, and
the output is ME allocated uc files and some performance report if
needed.

 A PPS can be compiled into one or more MEs. PPSes’ mapping to MEs
take three kinds of forms:

 MTP (multi-threading and multi-processing)
With this form, PPSes will be allocated to all threads of several
MEs to run concurrently. As shown below:

PPS.C
ME0 ME1

PPS PPS
PPS PPS

PPSPPS
PPSPPS

Fig. 1. PPSes in MTP form

 Pasting
In this form, thread will be used as the minimal mapping unit
instead of ME, which means several PPSes will be allocated to
the same ME. This type of compilation is popular in Westport
platform because of the limitation of MEs. As shown below:

ME0

THREAD 7THREAD 3

THREAD 0PPS A

PPS B

PPS C

PPS A

PPS A PPS C

THREAD 4PPS B

Fig. 2. PPSes in Pasting form

 CTX (context pipeline)
In this form, one PPS will be allocated to different MEs to form
a pipeline, and each stage of the pipeline will run in
multi-threading mode. As shown below (PPS A and PPS B are
used as one PPS before partitioning):

OUTPUT PIPE CONNECTOR
PIPE

INPUT PIPE ME0 ME1

PPS A PPS B

Fig. 3. PPSes in CTX form

724 T. Ding and N. Liu

In conclusion, developers using IXP C compiler could just focus on the logic of
application itself without concerning about the details of network processor
architecture. Compiler is responsible to parallelize the sequential logic application and
map them to the hardware resources. How to map the program efficiently is a very
critical issue during the compilation. On IXP2800, the MTP and CTX are the main map
algorithms, with advantages and disadvantages respectively. Here, we will give a brief
analysis on the two algorithms of IXP C compiler.

5.2 Performance Analysis on MTP and CTX

We compiled packet_processing_pps of ipv4_diffserv-1*10G_Ethernet-egress both in
MTP and CTX forms with the allocation of 3 MEs. Performance data are shown as
following:

Table 1. Functional unit utilization-sram

 Sram0(rd) Sram0(wr) Sram1(rd) Sram1(wr) Sram2(rd) Sram2(wr) Sram3(rd) Sram3(wd)

MTP 27.06% 21.56% 27.06% 3.61% 67.59% 18.01% 9.02% 0.00%
CTX 29.95% 16.61% 19.96% 2.77% 26.47% 8.75% 9.98% 0.00%

Table 2. Functional unit utilization-dram, scratch, pci, and cap

 Dram(rw) Dram(rd) Dram(wr) Scratch(rw) Scratch(rd) Scratch(wr) Pci(rw) Cap(rw)

MTP 16.50% 6.89% 9.61% 7.19% 3.60% 3.59% 0.00% 0.45%
CTX 15.03% 7.63% 7.41% 6.75% 3.98% 2.76% 0.00% 0.00%

Table 3. Microengine utilization

 ME2 ME3 ME4

MTP 94.83% 94.89% 94.77%
CTX 88.93% 35.65% 100.00%

From these performance data above, we observed:

 In MTP, every ME read the packet descriptor stored in sram for the arrival
packet and updated the data structure back to sram when processing finished. On
the contrary, in CTX, the packet descriptor was read in when packet arrives and
was updated only when the last stage in the pipeline finished processing. That is
why the sram read and write in MTP are much more than that is in CTX, which
means there is probably much more memory access latency in MTP than that in
CTX.

 In CTX, when one PPS was partitioned to several MEs to form a pipeline, the
communication channel between each sub-PPS on different MEs was pipe. So
the synchronization between MEs was guaranteed by the pipe implementation.
In MTP, on the other hand, the communication between MEs was via cap.

 The microengine utilization in MTP was almost equal and high but in CTX, the
utilization was obviously not in balance. This should be a critical point of
partition algorithm in IXP C compiler and needs to be improved.

 A Parallelizing Compiler Approach Based on IXA 725

5.3 Future Work

As mentioned above, the partition algorithm is not as good as desired. But also note that
different application process has different characteristics and may need specialized
algorithm. How the application’s behavior impact the partition is a hot research.
Furthermore, the parallelizing compiler approach as IXP C compiler allocates hardware
resources statically. Since the network environment changes every minute, so how to
build a dynamic resource allocation environment patched on the compiler will also be
our future research work.

6 Conclusion

By relieving developers from managing multi-threading and low-level hardware
resources, IXP C compiler makes developing network applications on IXA
dramatically easier and faster. It also adds application performance awareness to
compilation process and maximizes code reuse across NPU family members. After
analyzing its performance on two different mapping forms, we can see that its partition
algorithm is not good enough as expected and should be improved based on application
behaviors. Also, how to build a dynamic resource allocation environment patched on
the compiler to fit the diverse of the realistic network needs further research.

References

1. Douglas E. Comer: Network Systems Design Using Network Processor, Prentice Hall, 2003
2. Intel Corporation: IXP 2800 Hardware Reference Manual, November 2003
3. Intel Corporation: Introduction to the Auto-Partitioning Programming Model, October 2003
4. Intel Corporation: IXP2400/2800 Programmer’s Reference Manual, May 2004
5. Eirk J. Johnson and Aaron Kunze: IXP2400/2800 Programming, Intel Press, 2003
6. Uday Naik, Prashant Chandra: IXP2400/2800 Application Design, Intel Press, 2004
7. Bill Carlson: Intel Internet Exchangge Architecture and Applications, Intel Press, 2003
8. B. Hardekopf, T.Riche, J,Mudigonda, M. Dahlin, H.M. Vin, and J. Kaur: Impact of Network

Protocols on Programmable Router Architectures, April 2003

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 726 – 731, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design of Firewall Based on Intel IXP2350 and
Autopartitioning Mode C

Zhang Ke, Liu Naiqi, and Chen Yan

University of Electronic Science and Technology of China, Chengdu 61 00 54, China
Kevin22@126.com,nliu@uestc.edu.cn, carly_chen@126.com

Abstract. This paper introduces a design of firewall based on Intel IXP2350
Network Processor. The functions of this firewall include the packet filtering,
state inspection, VPN, NAT/PT and etc. The development language used is
Auto-partitioning Mode C (IXP-C). Our development process suggests that
IXP-C reduces the development time for the firewall project.

1 Introduction

With the increasing popularization of Internet technology, the global security of net-
work emerges. The technology of firewall separates the private network from the
public network and protects the private information and entities. It has been widely
applied to the interconnected environments of the dedicated network and public net-
work. The products of firewall are a dark horse just during several years and form an
industry soon. The appearance of the firewall restrains the freedom of the data in the
network from flowing effectively and improves the security of the network. This
paper introduces a design of firewall based on Intel Network Processor IXP2350. The
functions of this firewall include the packet filtering, state inspection, VPN, NAT/PT
and etc.

2 Intel IXA and IXP2350 Network Processor

The network processor is the core of high speed network devices. Network processors
have the merits of ASIC and general processors, such as the Intel IXP2350 network
processor, fit network performance requirements and flexibility requirements by
highly parallel, programmable architectures.
 For the development of next generation network application, Intel created a kind of
packet processing architecture based on Intel network processor. Intel calls it IXA
(Internet eXchange Architecture). This architecture conform the programmable ability
of IXP and the powerful packet processing ability for the fast development of the
intelligence network devices. IXA is a kind of network processing architecture and its
core is the programmable network processor. It has three key parts: Micro engine
technology, XScale technology and the IXA portable architecture.
 IXP2350 is the new generation network processor of Intel, which is the base of
Intel IXA. It has high performance of packet processing and is suitable for several
local networks and remote communications devices. IXP2350 includes four RISC

 The Design of Firewall Based on Intel IXP2350 and Autopartitioning Mode C 727

data processors (MEv2), Intel XScale core, SRAM controllers, DRAM controllers,
PCI controller, NPE units and MSF unit, etc. Fig.1 is the diagram of inner structure of
IXP2350.

PCI controller SRAM controllers DRAM controllers

MEv2

MEv2
MEv2

MEv2

NPE0 NPE1SHaC unit XScale
Core

MSF

Fig. 1. Diagram of inner structure of IXP2350

3 The Structure of Firewall Based on IXP2350

The hardware structure of firewall based on IXP2350 consists of the following parts:
IXP2350 network processor, IA processor, SRAM, DRAM, Flash memory and inter-
face controllers, etc. Fig.2. is the hardware structure diagram.

 IA
 Processor

Intel
IXP2350

SRAM

DRAM

Gb/FE
 PHY

FLASH

10/100M Ethernet Management Port

Inbound

Outbound

PCI64bit/66Hz

64bit+ECC

32bit+parity

Fig. 2. Firewall based on IXP2350 hardware structure

IXP2350 is the core of this firewall; its functions consist of the following parts:
forward the data between two GigE ports, packet filtering, dynamic packet filtering,
VPN function and NAT/PT, etc. In IXP2350, the program of hardware interface ini-
tialization, tables initialization, inner communications, management run on the
XScale core, and the program of packet filtering, dynamic packet filtering, NAT/PT
and VPN run on the four MEv2s. And the Network Processor Engine 1 (NPE-1) are

728 K. Zhang, N. Liu, and Y. Chen

dedicated function processors containing hardware coprocessor to support specific
features such as Dual 10/100 Ethernet MAC, DES, 3DES, AES, SHA-1, MD-5, etc.
These features are software-configurable and controllable.

IA processor can manage the IXP2350, run log module, audit module, proxy mod-
ule and SNMP management software. Generally, the IA processor is only used for the
complicated and unexpected situations. DRAM memories are used for the buffer or
store memory of packets. SRAM can be used for the store of some important data
structures, such as access control list, SA table and DST, etc. FLASH can be used for
solidify the firewall program. The 10/100M Ethernet Management port can be used
for the firewall management and configuration, etc.

4 Auto-partitioning Mode C

The Auto-partitioning Mode C language is a subset of ANSI/ISO C with extensions to
support the unique hardware features of the Intel IXP2XXX and to support the Auto-
partitioning Mode programming model.

An Auto partitioning mode program consists of one or more packet processing
stages (PPSes). A PPS is a logical entity expressed using sequential C constructs and
libraries and is not bound specifically by the programmer to one or more resources on
Intel IXA. As a rough estimate, the maximum compiled code size is around 1500
machine instructions per PPS. One mechanism for PPSes to communicate with other
PPSes is called a pipe, which is an abstract, unidirectional channel. Like PPS, a pipe
is also a logical entity and not bound to any specific resource. PPSes can communi-
cate through variables in shared memory too. The expression of packets processing
application as a set of communicating PPSes represents the logical partitioning of the
application into concurrently executing processes. Autopartitioning is the process that
maps the set of logical PPSes and pipes onto the processing and communication re-
sources available on a special Intel IXP network processor. In the Autopartitioning
programming model, the mapping is performed by the Intel C Compiler and is driven
by a performance specification that the programmer provides.

5 The PPSes Run on MEv2

The inbound pipeline of this firewall run on MEv2 consists of the following PPSes:
Packet Receive, IP reassembly, inbound packets Processing, NAT/PT, VPN IPSec
Dencap, Scheduler, Packet Transmit, Range Match, and HMAC-SHA-1. Fig.3. shows
the layout of packet processing stages for the inbound pipeline.

Packet
Receive

HMAC-
SHA-1

Range Match Packet
Transmit

Fig. 3. Inbound Pipeline PPSes Layout

Inbound Packets
Processing

Scheduler NAT/
PT

VPN IPSec
Decap

IP
Reassembly

 The Design of Firewall Based on Intel IXP2350 and Autopartitioning Mode C 729

This firewall outbound pipeline run on MEv2 consists of the following PPSes:
Packet Receive, NAT/PT, Outbound Packets Processing, VPN IPSec Encap, IP
Fragmentation, Scheduler, Packet Transmit, Range Match and HMAC-SHA-1. Fig.4.
shows the lay out of packet processing stages for the outbound pipeline.

. Packet
Receive

NAT/
PT

VPN IPSec
Encap

Outbound Packets
Processing

IP

Range Match HMAC-
SHA-1

Packet
Transmit

Sched-
uler Fragmentation

Fig. 4. Outbound Pipeline PPSes Layout

6 Parts of Firewall Implementation and Data Structures

There are some kinds of memory in IXP2350. DRAM (64bit) memories are used for
the buffer or store memory of packets. SRAM (32bit) can be used for the store of
some important data structures, such as access control list, dialog state table (DST),
SA table and global address pool table, etc. Scratchpad can be used for the store of
module interfaces information. Fig.5. is the DST data structure for UDP example.

Fig. 5. DST data structure for UDP example

SIPA is the source IP address and DIPA is the destination IP address; SIPP is the
source IP port and DIPP is the destination IP port. The Ps field is 16bit, which it is the
number of UDP packets that passed the range match. Timeout is the lifetime of this
virtual link.

After MEv2 of IXP2350 got a UDP packet from the network, the firewall looks up
the DST for related data item. If there isn't any related data item, the packet will be
sent to match the firewall access control list (ACL). If this packet can be forwarded,
the firewall will add a new item into DST and set the SIPA, DIPA, SIPP and DIPP,
and set Ps to1, set Timeout to 50s; If not, it will be dropped. If this item isn’t timeout
and firewall receives a follow packet belong to the same dialog. Firewall will forward
the packet and set Ps to Ps+1, if Ps>=5, firewall will set the Timeout to Timeout+30s.
In this way, the firewall can avoid the waste of SRAM and prevent the DOS attack. If
the Timeout field of one item is 0, then the firewall releases the resource of this item
for other use.

730 K. Zhang, N. Liu, and Y. Chen

NAPT (Network Address Port Translation) is a kind of effective scheme to solve
shortage of network global address and problems of network security, which is a very
important part of a firewall, Fig.6.is the two important data structure of firewall de-
sign example.

Data structure of globe IP address pool

Data structure of NAPT table

Fig. 6. Two data structure of firewall NAT/PT

In globe IP address pool data structure, the Flag is used for the control of the ac-
cess to address pool; AP is a pointer that be pointed to the address of last distribution
and will be added by the next distribution. GIPAN is used for the number of idle IP
addresses in the pool. AGIPN is used for the number of all globe addresses. SIPA is
the base address of globe addresses. BAGIPA is the physical location of globe ad-
dress in SRAM. For the use of these fields, the firewall can distribute globe address
and locate the physic location easily.

The NAPT table has eight fields. Flag is used for marking the item static or dy-
namic. The value of Proc is used for marking TCP or UDP. NATPT is the NAT port,
IPT is the inner port and GPT is the globe port. IIPA is the inner network address, and
GIPA is the globe address. Timeout is used for the item’s life, its default value is 60
(300s), management program run on XScale core check it every 5s. First, if the Flag
is 1and the Timeout = 0, this dialog is over, and the related resources will be released.
Second, if the Timeout > 0, the firewall will set the Timeout = Timeout – 1. If MEv2
access one item, the related Timeout field will be reset as default value.

7 The Life of a Packet in IXP2350 of Firewall

The life of packet begins when it is received by Gb/FE PHY attached to MSF inter-
face; the packet is fragmentized into m-packets in RBUF. Using the information of
THREAD_FREELIST, MSF writes the status words into the thread’s registers and
signals the thread, and then the thread moves the m-packet into DRAM and put a
handle onto a scratchpad ring. MEv2 will check the scratchpad ring and check the
packet. For all the tables in SRAM, the MEv2 can check and modify the tables in
SRAM and packets in DRAM at high speed, and then the handle of packet will be

 The Design of Firewall Based on Intel IXP2350 and Autopartitioning Mode C 731

sending to SRAM for next step. The thread can find the m-packets and move it from
DRAM to MSF directly by TBUF. Finally, once MSF receives the EOP m-packet, the
Gb/FE PHY transmits the packet, and IXP2350 is going to process the next packet.

8 Conclusion

This paper introduces a design of firewall based on Intel IXP2350 and Auto partition-
ing Mode C. The IXP-C maps more directly to packet processing pipeline than tradi-
tion Micro engine C programming. Users don’t have to deal with thread/ME synchro-
nization. So it can reduce the development time for the firewall project. Due to the
paper size limitation, this paper only introduces part of the implementation. Further
works can be done to improve our design. For examples, we can improve the arithme-
tic of security, add more function units, and combine it with other security technolo-
gies, etc.

References

1. Intel Corp.: Intel IXP23XX Product Line Hardware Reference Manual (2004)
2. Intel Corp.: Intel C Compiler for Intel Network Processors Autopartitioning Mode Refer-

ence (2005)
3. Intel Corp.: Intel IXA Software Example Designs for Intel C Compiler Application Note

(2005)
4. Douglas E.Comer.: Internetworking with TCP/IP Vol1: Principles, Protocols, and Architec-

tures (Fourth Edition) (2003)
5. Intel Corp.: Intel IXA Software Building Blocks for Intel C Compiler Developers Manual

(2005)
6. Intel Corp.: Intel IXP23XX Product Line Programmer’s Reference Manual (2004)
7. Intel Corp.: Intel C Compiler for Intel Network Processors Autopartitioning Mode User’s

Guide (2005)
8. Bill Carlson: Intel Internet Exchange Architecture and Applications (2003)
9. Zhang Ke, Liu Naiqi, Chen Yan: A Design Frame of State Inspection Firewall Based on

IXA (2004)

AMT6: End-to-End Active Measurement Tool
for IPv6 Network�

Jahwan Koo1 and Seongjin Ahn2,��

1 School of Information and Communications Engineering, Sungkyunkwan Univ.,
Chunchun-dong 300, Jangan-gu, Suwon, Kyounggi-do, Korea

jhkoo@songgang.skku.ac.kr
2 Department of Computer Education, Sungkyunkwan Univ.,

Myeongnyun-dong 3-ga 53, Jongno-gu, Seoul, Korea
sjahn@comedu.skku.ac.kr

Abstract. Since IPv6 has more benefits over IPv4, the development
and deployment of the IPv6 protocol-based products are currently taking
place and the migration of IPv4 to IPv6 has also been steadily happen. In
these mixed network environment, Network management for both IPv4
and IPv6 is a serious issue. In this paper, we focus on the design and
implementation of an active measurement system which can be used
for evaluating end-to-end performance of the IPv6/IPv4 network such
as end-to-end available bandwidth, one-way delay, and one-way loss. We
also describe the procedure of measurement when using AMT6 and some
of its features. The IPv6/IPv4 users as well as network operators will
be greatly helped to analyze network characteristics using the proposed
architectural framework.

1 Introduction

Internet Protocol Version 6 (IPv6) is a critical technology that will help ensure
that the Internet can support a rapid growing user base, the increasingly large
number of IP-enabled devices such as mobile phones, hand-held devices, and
home entertainment, and IP-based services such as online game and voice over
IP (VoIP) [2]. Since IPv6 has more benefits over IPv4 in terms of address space,
routing infrastructure, security, mobility, and quality of service, the development
and deployment of the IPv6 protocol-based products are currently taking place
and the migration of IPv4 to IPv6 has also been steadily happen by using various
transition mechanisms devised by the Internet Engineering Task Force (IETF).
In other words, transition mechanisms such as dual stack, tunneling techniques,
and translation have been implemented so that nodes can communicate with
each other in IPv6/IPv4 networks. Since it is expected that these mixed network
environment will coexist for a long time, network management for both IPv4 and

� This work was supported by grant No. R01-2004-000-10618-0 from the Basic Re-
search Program of the Korea Science and Engineering Foundation.

�� Corresponding Author.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 732–740, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

AMT6: End-to-End Active Measurement Tool for IPv6 Network 733

IPv6 is a serious issue [1]. This paper focuses on the design and implementation
of an active measurement tool which can be used for evaluating end-to-end
performance of the IPv6 network.

The rest of the paper is organized as follows. Section 2 presents related work.
In section 3, we propose an architecture of active measurement system which can
measure IETF’s IP Performance Metrics (IPPM) [9] such as end-to-end avail-
able bandwidth, one-way delay, and one-way loss in IPv6 network. We named
the proposed system Active Measurement Tool for IPv6 (AMT6). In section 4,
we also describe the procedure of measurement using AMT6 and some of its fea-
tures. With measurement data obtained through AMT6, network management
for IPv6 can be performed effectively. The final section offers some concluding
remarks.

2 Related Work

2.1 Transition Mechanisms

Protocol transitions from IPv4 to IPv6 are not easy because they are typically
deployed by installing and configuring the new protocol on all nodes within
the network and verifying that all node and router operations work successfully.
Many efforts to make rapid protocol transitions on the host have been performed
by system software company such as Microsoft [5] (e.g., Microsoft has supported
IPv6 transition technologies in the operating system such as Windows server
2003 family and XP) and IETF working group [7] which has devised transition
mechanisms as the following categories [8]:

• Dual stack: Both IPv4 and IPv6 protocol stacks are in the nodes. This
mechanism is used by IPv6/IPv4 nodes in order to communicate with either
an IPv4-only node, an IPv6-only node, or another dual stack node.

• Tunneling: IPv6 over IPv4 tunneling is the encapsulation of IPv6 packets
with an IPv4 header so that IPv6 packets can be sent over an IPv4 network.
The IPv4 header contains the IPv4 Protocol field which is set to 41 to in-
dicate an encapsulated IPv6 packet and the Source and Destination fields
which are set to IPv4 addresses of the tunnel endpoints. The tunnel end-
points are either manually configured as part of the tunnel interface or are
automatically derived from the sending interface, the next-hop address of the
matching route, or the source and destination IPv6 addresses in the IPv6
header. While tunneling configurations are manually configured in a config-
ured tunnel, an automatic tunnel does not require manual configuration. The
IPv6 protocol for the Windows operating systems supports the automatic
tunneling technologies such as 6to4, ISATAP, IPv6 automatic tunneling, and
6over4 [6].

• Translation: This is a mechanism that IPv6 packets are converted into IPv4
packets and vice versa. Normally, translation is necessary when the receiver
does not understand IPv6 packet sent from the sender in conditions where
tunneling does not work.

734 J. Koo and S. Ahn

2.2 IPv6 Management Tools

There are many tools to manage and measure IPv6 networks. The 6NET project
group, one of European IPv6 projects, investigated several management tools
that currently can be used in IPv6 networks and classified the management
tools according to the part of the network they best apply to. Specifically, it
recommends Argus, Ethereal, Multicast Beacon, Pchar, Iperf, and Ntop as man-
agement tools for LAN and AS-path-tree, Looking glass, IPflow, Netflow, Mping,
RIPE TT server, Cricket, and MRTG as management tools for WAN (For more
details, refer to [3]).

On the other hand, the various techniques used by network performance mea-
surement tools can be divided in two categories. One is active measurement, the
other is passive measurement. Active measurement means that the tool actively
sends some probe packets into the network and measures various performance
metrics between end-to-end nodes, and passive measurement means that the
tool monitors the packets transmitted over the network for the purpose of fault,
configuration, or accounting management. While most tools reported in [3] were
implemented by passive measurement technique, only a few tools such as Pchar
and Iperf were based on active measurement. Moreover, Iperf [4], only one of
all tools presented above can be used to measure performance metrics on an
end-to-end path of the IPv6 network.

3 Active Measurement Tool for IPv6 (AMT6)

3.1 Architecture

AMT6 consists of two kinds of systems: (a) Management System (MS) and (b)
Agent-based Measurement System (AMS). Figure 1 shows the architecture of
AMT6.

The MS system has three components, a management service module (MSM),
an agent catalog database (ACD), and a central measurement database (CMD).

Tunneling
Gateway

MS

Tunneling
Gateway

MSM

IPv6 Network

AMS

ATSM

DTM

PMM

ACD

LMD

ACM

Tunneling

AMS

ATSM

DTM

PMM

LMD

Tunneling

CMD

ACM

End-to-End Active Measurement

Fig. 1. Architecture of AMT6

AMT6: End-to-End Active Measurement Tool for IPv6 Network 735

The AMS (e.g., sender or receiver in Figure 1) system has five components, an
agent control module (ACM), an automatic transition service module (ATSM),
a performance measurement module (PMM), a local measurement database
(LMD), and a data transmission module (DTM). The functions of modules are
the followings:

• MSM: The MSM module in the MS system receives agent-related infor-
mation such as hostname, IP address, and operational status sent from the
ACM module in the AMS system when the AMS system is installed in a
node, and it stores them in the database ACD. In addition, it receives mea-
surement data come from the ACM module in the AMS system and stores
the data in the database CMD.

• ACM: The ACM module in the AMS system, which is graphical user in-
terface, receives commands (transition-related or measurement-related pa-

Fig. 2. Visualization of system information and IPv6 transition mechanisms

736 J. Koo and S. Ahn

rameters) from the IPv6 user, parses the commands, and then processes the
commands properly. The ACM module also displays the output of result
data come from the PMM module.

• ATSM: The ATSM module in the AMS system automatically enables or
disables protocol transition mechanisms such as 6to4, ISATAP, IPv6 auto-
matic tunneling, and 6over4 on the IPv6 user demands.

• PMM: The PMM module in the AMS system measures performance metrics
such as available TCP and UDP bandwidth, packet loss, and delay between
the sender and the receiver by means of the sender transmitting probe pack-
ets to the receiver. The PMM module has two operating modes, server mode
and client mode. While it runs as a server if set in server mode, it runs as a
client if set in client mode. For example, the sender in client mode generates
certain amount of traffic to be sent to the specified receiver, and the receiver
in server mode receives the traffic and calculates the effective bandwidth

Fig. 3. Graphical user interface for network measurement

AMT6: End-to-End Active Measurement Tool for IPv6 Network 737

between these two nodes. Actually, since the PMM module contains both
operating modes, it works as a peer-to-peer system.

• DTM: The DTM module sends measurement data to the MSM module in
the MS system and stores the data in the local database LMD. The DTM
module also receives agent catalog information from the MSM module and
transfer that information to the ACM module.

3.2 Graphical User Interface and Features of AMT6

AMT6 is active measurement tool for both IPv4 and IPv6 networks that can be
used to measure various aspects of network performance. Similar to Iperf, AMT6
measures performance metrics such as available throughput, packet delay, and
packet loss between two specified nodes by means of active probing. Figure 2
and 3 show the graphical user interface (GUI) for AMT6 which provides network
operator with the measurement method and results.

Major features of AMT6 are the following:

• It can generate different traffic patterns, such as bulk data transfer and
interactive data exchange, in order to measure different characteristics of
network performance.

• It provides the capability to set the size of the TCP window, and to create
multiple TCP data connections in parallel among many different points in
the network.

• It can avoid generating non-negligible load on the network by running for
specified time, rather than a set amount of data to transfer.

• It provides the graphical user interface easy to use coupled with protocol
transition mechanisms directly to active measurement tool.

4 Procedure of Measurement

4.1 Logging into an AMS System

The AMS system of AMT6 provides a graphical user interface called ACM which
interprets the options chosen and carries out the corresponding operations. The
IPv6/IPv4 user must log in to the AMS system before measuring end-to-end
performance as shown in Figure 4. When the user first login to the AMS system,
the common management information such as username, hostname, IP address,
and operational status have been sent to the MS system automatically. These
are stored in the database ACD.

4.2 Measuring End-to-End Performance

The basic steps in measuring a performance metric are as follows:

(1) Setting test parameters. There are many options to set a variety of test
parameters, such as TCP window size, buffer length, destination port num-
ber, maximum segment size, interval time, and so on. TCP window size

738 J. Koo and S. Ahn

AS 1

AS 2

AS 3

AS 4

AMS
3

AMS
4

AMS
2

AMS
1

MS

ACD

1

1
1

1

2

3

2 2 2

User

User User

User

Fig. 4. Logging into an AMS System

AS 1

AS 2

AS 3

AS 4

AMS
1

AMS
4

AMS
2 AMS

3

MS

CMD

LMD

ACD

1

2

3

4

5

6

7

8

9

10

Fig. 5. Measuring end-to-end performance

AMT6: End-to-End Active Measurement Tool for IPv6 Network 739

option means the socket buffer sizes. For TCP, this sets the TCP window
size. For UDP, it is just the buffer which datagrams are received in, and
so limits the largest receivable datagram size. Buffer length option is the
length of buffers to read or write. Default is 8 KB for TCP, 1470 bytes
for UDP. Note for UDP, this is the datagram size and needs to be lowered
when using IPv6 addressing to 1450 or less to avoid fragmentation. Des-
tination port number option is the server port for the receiver in server
mode to listen on and the sender to connect to. Maximum segment size
option means the TCP maximum segment size (MSS). The MSS is usually
the MTU − 40 bytes for the TCP/IP header. For ethernet, the MSS is
1460 bytes. Interval time option is the interval time in seconds between
periodic bandwidth, delay, and loss reports. If non-zero, a report is made
every interval seconds of the bandwidth since the last report. If zero, no
periodic reports are printed.

(2) Connecting AMS1 with MS. The IPv6/IPv4 user who is likely to measure
needs to know the network connection status of the specific receiver node.
Thus, AMS1 will be connected with MS.

(3) Searching the list of the connection-enabled agents in the database ACD.
The ACD database stores agent-related information such as accessible sta-
tus (login or logout), operation mode (client or server), and current running
protocol stack (IPv4 or IPv6).

(4) Sending the list of the connection-enabled agents to AMS1. AMS1 receives
the list and represents it on the screen. The user is able to select only one
(AMT3 in figure 5) which becomes the receiver to measure.

(5) Configuring test parameters. The sender AMS1 transfers the configura-
tion of test parameters to the receiver AMS3. The receiver AMS3 sets the
parameters, otherwise the test will not run properly.

(6) Generating traffic. The sender AMS1 generates certain amount of traffic
according to the configuration of test parameters to be sent to the specified
receiver.

(7) Reporting test results. For TCP, the results contains TCP window size, des-
tination port number, time interval, the amount of transfer packets, and
estimated bandwidth. For UDP, the results contains destination port num-
ber, time interval, the amount of transfer packets, estimated bandwidth,
delay, and loss.

(8) Storing test results into LMD. At completion of the tests, the user is capable
to save the results in the local database LMD. Using the data in this
database, the user will be greatly helped to analyze network characteristics.

(9) Connecting AMS1 with MS. It is necessary to replicate the fragmental test
results saved in the local database LMD into the central database to clarify
more characteristics. Thus, AMS1 will be connected with MS.

(10) Replicating test results into the database CMD. The test results sent from
AMS1 stores in the central database CMD, including with the measurement
date.

740 J. Koo and S. Ahn

5 Conclusion

In this paper, we proposed an architecture of active measurement system which
can measure IETF’s IP Performance Metrics (IPPM) [9] such as end-to-end
available bandwidth, one-way delay, and one-way loss in IPv6 network. WS also
describe the procedure of measurement when using AMT6 and some of its fea-
tures. With measurement data obtained through AMT6, network management
for IPv6 can be performed effectively. AMT6 is expected to be deployed in Korea
Research Environment Open NETwork (KREONET) as the end-to-end active
measurement tool for IPv6.

References

1. I. Astic and O. Festor, “Current status of IPv6 management,” LORIA Techincal
Report, available at http://www.inria.fr/rrrt/rt-0274.html, December 2002.

2. S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6),” RFC 2460, Decem-
ber 1998.

3. B. Gajda and W. Procyk, “Final report on IPv6 management tools, developments
and tests,” 6NET Technical Report, September 2004.

4. A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf Version 2.0.2,”
available at http://dast.nlanr.net/Projects/Iperf/, May 2005.

5. “Microsoft windows IPv6 web site,” available at http://www.microsoft.com/ipv6.
6. Microsoft Corporation, “IPv6 transition technologies,” Windows Server 2003 White

Paper, August 2004.
7. “Next generation transition working group web site,” available at http://www.ietf.

org/html.charters/ngtranscharter.html.
8. R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts and routers,”

RFC 2893, August 2000.
9. V. Paxson, “Framework for IP Performance Metrics,” RFC 2330, May 1998.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 741 – 746, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Semantic Web Based Knowledge Searching System in
Mobile Environment

Dae-Keun Si, Yang-Seung Jeon, Jong-Ok Choi, Young-Sik Jeong,
and Sung-Kook Han

Dept. of Computer Eng. Wonkwang Univ., Korea
{sdk124, skhan}@wonkwang.ac.kr

Abstract. In this paper we propose semantic web-based mobile knowledge
searching systems for display Web pages on mobile terminals. The proposed
system reduces the time of verification when mobile users search for informa-
tion to which they want, and ontology-based browsing is possible and the com-
puter can use these resources in mobile environment.

1 Introduction

As the development of Internet technology, people can access and use a huge amount
of information through the Web browser. As the number of Internet users and the
volume of information increase, users’ requirements are getting more diverse and
complicated. People are flooded with information and, as a result, it is very important
to extract necessary data efficiently, process it, and produce and search accurate and
appropriate information [2, 3]. What is the problem is not what we can do with the
Web but how effectively we use it to satisfy our needs. Recently the rapid develop-
ment of mobility has enabled access to an extensive amount of Web information in
the mobile environment and mobile terminals are embedded with Web browser. Web
access from mobile terminals is not used as much as expected. Of course, because of
the increase in the volume of information, mobile users have trouble finding the in-
formation that they want [7].

This paper proposes a mobile knowledge searching system to reduce the time of
verification when mobile users search for information to which they want.

2 Related Work

Ninety percent of search engines that we use rely on Boolean operations such as AND
and OR [5, 6, 8]. However, there are many other search models other than Boolean
operations. Representative ones include probability search, weighted search, fuzzy set
search and inference search. The performance of Boolean search is high in terms of
speed but is lowest in terms of accuracy. However, because other search models are
difficult to implement due to problems in expressing complicated logical relations,
existing search engines mostly support only Boolean operations. As for the shortcom-
ings of Boolean search, it cannot indicate the relative importance of each concept,
cannot show the order of fitness to queries, and cannot find documents that match the

742 D.-K. Si et al.

keywords partially because it retrieves only those matching the keywords exactly. OR
operation produces results more than expected, and AND operation less than ex-
pected. The fact that it is not easy to query or modify according to user feedback is
another shortcoming of Boolean operation.

The use of Web data through mobile terminals is increasing rapidly, integrated
search on the same level as that of Internet search has many practical difficulties.
Rather than the existing method with URL input and mobile numeric domains, which
has long and complicated connection process, we need a service that can access mo-
bile IP pages just by pressing the number assigned to each service and the mobile IP
key. Furthermore, there are problems such as low data compatibility between mobile
terminal software and Web contents service providers and low efficiency of process
from the production of mobile contents to search service [4, 7, 10].

Mobile searching method is testing mobile search function with mobile communi-
cation subscribers. In general, messages are downloaded or sent in the Internet and
fees are charged to individual users according to various mobile search services. In
the future, there will be no boundary or distinction between platforms in
wired/wireless environment, ubiquitous environment. At present, further research
needs to be made to overcome the small memory and low power of mobile terminals
and to reduce their weight [5].

3 Mobile Knowledge Searching System Based on Semantic Web

The semantic Web is developing standards and technologies for the computer to un-
derstand information on the Web, and supporting semantic search, data integration,
and navigation. The lowest level is composed of Uniform Resource Identifier, which
is an addressing method for indicating resources in Web protocol, and Unicode. The
second level is XML, which can define a certain concept in a modular method, and
Namespace. The third level is Resource Description Framework (RDF) and RDF
schema for describing resources and the fourth level is ontology. The sixth level is
technological elements for rules, logic and verification. The seventh level is proof and
trust, which are contents related to the reliability of semantic Web information.

The mobile knowledge searching system is composed of four modules - viewer
system, Java Web start, ordinary searching engine and knowledge searching system.
The viewer system is a client program for mobile users. The Java Web program is to
distribute and manage the viewer system on the Web. The searching system provides
a table of contents and index service, and the mobile knowledge searching system
provides several meaningful data required for keywords. The structure of the mobile
knowledge searching system is as in Fig. 1.

User interface is designed to accommodate general applications, Web applications
and mobile terminals. Each application is basically based on axis framework, so can
use Web services. It is also based on Cocoon framework, supporting WML, so pro-
vides expression methods suitable not only for PC but also for mobile terminals. It
solves the limits of information expression and information space and differences in
the speed and quantity of data transmission.

 Semantic Web Based Knowledge Searching System in Mobile Environment 743

Fig. 1. Structure of mobile knowledge searching system

Fig. 2. Mobile knowledge searching system process

We utilize axis framework to support the Web service development environment
and Cocoon framework to support mobile environment, and use to pure Java in de-
velopment. The system uses Java 2 API for process ontology, and makes use of
JDOM, DOM and SAX to process basic XML data. The mobile knowledge searching
system has JVM, which can be executed regardless of OS as long as the Internet is
connected.

In the mobile knowledge searching system, knowledge Web service providers pro-
vide index searching service, contents searching service and knowledge searching
service. XML is provided as metadata for contents, and ontology is built for

744 D.-K. Si et al.

Fig. 3. A scenario of mobile knowledge searching service

knowledge service. Each service has input and output parameters. The process of the
mobile knowledge searching system can be expressed as in Fig. 2.

The Web service server provides Web services through the axis engine, and the
knowledge viewer application, which is the end user. He receives the services through
the axis engine. In addition, the knowledge viewer application is distributed and its
version is managed automatically by a separate application server on the Web. Thus,
users are provided with the latest knowledge viewer easily without additional installa-
tion. Fig. 3 shows a scenario of utilizing the semantic Web-based knowledge search
system for mobile environment.

On receiving a search request from the knowledge viewer, the knowledge Web
service server run the inference engine from the corresponding ontology, converts
the result into XML and return it to the knowledge viewer. The mobile user is pro-
vided with the service from the Web service server by clicking the corresponding
item. Finally the mobile user can view the desired contents through the knowledge
viewer.

4 Performance Analysis

Table 1 shows comparison of functional and technological aspects between the con-
ventional system and the proposed system. The conventional searching system works
on the basis of database utilizing stabilized DBMS functions. Its processing speed is
fast but the accuracy of searching results is lower than that of proposed researching
system. Also, proposed searching system is superior in accuracy more than that of the
conventional searching system.

 Semantic Web Based Knowledge Searching System in Mobile Environment 745

Table 1. Comparison of functions

Item Conventional Sys-
tem

Proposed System

Knowledge manage-
ment

• Thesaurus registration
through manager’s

analysis
• Hierarchical structure
• Directory-based sys-

tem

• Ontology-based instance
registration

• Applicable to all applica-
tions

• Visualization

Searching speed
• Fast using DBMS

functions

• Somewhat slow due to the
addition of inference step,
which is a difference from
the current search system

Accuracy
• Low due to simple

keyword matching
search

• High as semantic interpreta-
tion of data is possible

Reusability • Limitedly reusable
• Reusable according to the

international standard of
ontology language

User interface
• HTML-based brows-

ing/search

• Ontology-based brows-
ing/search

• Browsing/search by topic
• Mobile browsing/search

Difficulty in the ap-
plication of inference

technology
• Very difficult

• Easy to apply rule-based
inference search

External resource
• Hyperlink

• Meta data search

• Link based on Web services
• Semantic search based on

Web services

5 Conclusions

In the mobile environment, the proposed searching system used to WSDL which is a
Web service standard for describing Web services. It can support environment that the
computer can understand and process semantically. Our system reduces the time of
verification when users search for information that they want. Also, if the system is
used in semantic search in semantic Web environment, it can reduce inconveniences.
Web service provides environment in which users can use integrated services without
the limit of time, place and equipment and, resultantly, it renders diverse services in
response to users’ demands.

Acknowledgements

This work was supported by the Regional Research Centers Program of the Korean
Ministry of Education & Human Resources Development through the Center for
Healthcare Technology Development.

746 D.-K. Si et al.

References

1. AXIS, http://ws.apache.org/axis/
2. W3C, Simple Object Access Protocol Specification, http://www.w3.org/TR/SOAP
3. UDDI.org, Universal Description, Discovery and Integration 2.0 Data Structure Specifica-

tion, http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf
4. FCC, Annual Report and Analysis of Competitive Market Conditions With Respect to

Commercial Mobile Services; English Report, 2003.
5. Tim Berners-Lee, James Hendler, Ora Lassila, “The Semantic Web”, Scientific American,

2001.5
6. W3C, Web Service Specification, http://www.w3.org/2002/ws
7. Knowledge Management Metrics Development: A Technical Approach, White Paper No.

Ten, http://www.dkms.com/white_papers.htm, June 25, 1998
8. Tim Berners Lee, J. Hendler, and O. Lassilla, “The Semantic Web,” Scientific American,

Vol.284, No.5, May 2001, pp.34-43.
9. "UDDI Technical White Paper," http://uddi.org/pubs/Iru_UDDI_Technical White_Paper.

pdf, UDDI.org, September 2000.
10. W3C Web Services WG, "Web Services Architecture," http://www.w3.org/TR/

2004/NOTE-ws-arch-20040211/ , W3C Working Group Note 11, 2004
11. Tim Berners Lee, J. Hendler, and O. Lassilla, “The Semantic Web,” Scientific American,

Vol.284, No.5, May 2001, pp.34-43.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 747 – 756, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A General-Purpose, Intelligent RAID-Based Object
Storage Device

Fang Wang, Song lv, Dan Feng, and Shunda Zhang

Key Laboratory of Data Storage System, Ministry of Education,
School of Computer, Huazhong University of Science and Technology, Wuhan, China

song8055@163.com, wangfang@mail.hust.edu.cn

Abstract. In this paper we will address the architecture and implementation of an
object-based storage system, and describe the design of the intelligent ob-
ject-based storage device (OSD), which is built on embedded system of RAID.
Our OSD is designed for general purpose according to the T10 standard. It not
only can be easily added to the massive network storage system over TCP/IP to
increase the quantity and quality of the storage system by adding intelligent OSD
to the storage, but also can reduce the TCO (total cost of ownership).Also we
extend the T10 standard by adding the object physical layout information to help
shorten the access latency and to increase the intelligence for our OSD.

1 Introduction

As electronic data is growing continuously and rapidly, the first generation of massive
storage system architectures such as NAS, SAN have exposed some of their own ad-
vantage and drawbacks [10]. Object-based storage as a much higher level of abstraction
for networked storage has combined the advantages of SAN and NAS, thus making the
beginning of the next generation of storage designs.

Object storage was first proposed in CMU as an academic research project [1, 2] and
is still an active area of research in academia. The first standardization effort [3, 4] of an
Object Storage Device specification is embodied in the SCSI protocol and is being
implemented as a new set of SCSI commands. The first T10 draft standard was brought
to SNIA in 1999.Version 1 of the T10 standard was publicly reviewed and approved in
late 2004; the OSD standard has been published as ANSI INCITS 400-2004 [4].

The OSD standard proposes a standard interface of the object-based storage device,
by which devices evolve from being relatively unintelligent and externally managed to
being intelligent, self-managed, aware of the storage applications they serve and of
high compatibility in the object-based storage system. Our RAID-based, object-based
storage subsystem is designed following the standard to make it a more intelligent OSD
with high compatibility.

There are two ways to develop intelligent OSD: embedding the object storage in-
terface into the disk [9](for example, Seagate has designed a prototype disk in this
approach) and fulfill the interface by the subsystem [9].

There are several prototype systems designed to provide object storage interface.
Lustre developed by Cluster file systems, Inc., demonstrates the concept of ob-
ject-based storage systems by providing a cluster file system. But the object storage

748 F. Wang et al.

device is not designed according to the T10 standard [12], but managed by their “object
storage server” as a file device without intelligent self-management [5]. Panasas stor-
age blade is a wonderful object storage device providing object interface according to
the T10 standard. But it is dedicated to its high performance storage cluster with the
blade. It is too expensive to be used for general purpose [11].

Our RAID-based, object-based storage subsystem is an embedded system designed
following the T10 standard version 10 to make it an intelligent OSD with high com-
patibility and low cost to be used in our storage system and for commercial use. It is the
subsystem of our object-based massive network storage system built over the ISCSI
protocol. The OSD is designed based on a RAID system designed by our laboratory,
thus equipping the OSD with much more capacity and very high security, while re-
ducing your TCO.

Attributes of the T10 standard do not define the layout information of object, and the
current object-based storage systems manage the storage of objects via local file sys-
tems, such as XFS used in Lustre [12]. In our OSD subsystem, we add the layout in-
formation to the extended attributes for each object, where object data can be accessed
only through the attributes. This can make OSD more intelligent as a component of
object storage management. We will detail it in Section 3.

The rest of the paper is organized as follows. In Section 2, we will introduce the
architecture of our object storage system. Section 3 describes the design of our
RAID-based OSD and proposes our extended attributes. Section 4 summarizes the
features of our OSD. The paper is concluded in Section 5.

2 Object-Based Storage System Architecture

In OSDs, an object is the basic unit of data stored. An object is a combination of file
data and a set of attributes that define various aspects of the data. T These attributes can
define on a per-file basis the RAID levels, data layouts, and quality of service. The
conventional block storage system must track all of the attributes for each block in the
system, whereas in OSDs each object maintains its own attributes to communicate to
the storage system and manages this particular piece of data. This simplifies the task of
the storage system and increases its flexibility by distributing the task of managing of
the data to the data itself.

There are several types of OSD objects: the user object, the collection object, the
partition object, the root object. A user object is the carrier for a user file, which
contains user data that is referenced by byte offset within the OSD object. Each object
is identified by a unique ID (OBID) [7]. A collection object is a logical set of user
objects that have some common attributes. A partition object is an OSD object used
for creating distinct management domains (e.g., for naming, security, quota man-
agement). There is exactly one root object associate with each OSD logical unit
which is always present whose attributes contain global characteristics for the OSD
logical unit. [7].

Our object-based storage system, shown in Figure 1, consists of Metadata server
cluster, RAID-based OSDs, and clients.

 A General-Purpose, Intelligent RAID-Based Object Storage Device 749

Fig. 1. Object-based, Storage System Architecture

Desirable properties of a storage system include high security, high performance,
high scalability, and platform-independent data-sharing. Our proposed architecture
attempts to follow this guideline incorporating the notion of object-based storage and
following unique characteristics:

1. Complying with the latest T10 standard to provide an object-based storage prototype
model and an object storage interface;

2. A scalable metadata server that can dynamically accommodate the joins and de-
partures of OSDs by registering such OBDs, thus allowing the storage system to
scale.

3. Extensions of attributes to gain more intelligence and higher performance and se-
curity.

4. Both the data path and metadata path are constructed over the TCP/IP network,
making it easier to share data across different platforms.

2.1 Metadata Server Cluster

In this architecture, the metadata server (MDS) implements the user component of file
system with the following functions:

• Authentication –MDS identifies and authenticates Object-based Storage Devices,
provides credentials to new storage system members, and checks/renews those
credentials periodically to assure that they are valid members. When a client wants
access to the storage system, MDS assures its identity and provides authorization for
the access to OSD.

• File interface –MDS provides the client with a virtual file system. When the client
requests to perform an operation on a particular file, MDS examines the permissions
and access controls associated with the file and converts file operations to object
operations on OSDs and provides OSDs’s map and a capability to the requesting
client. The map consists of the list of OSDs, their IP addresses, and the components
of the object in question. The capability is a secure, cryptographic token provided to
the client node, which is examined by the OSD with each transaction.

750 F. Wang et al.

• Capacity management– The MDS must control the balance between the capacity
and utilization of the OSDs in the whole system to make sure that the available disk
resources are optimally utilized.

• Expandability– MDS is in charge of file/directory management (which is ap-
proximately 10% of the workload) [6] and leaves block/sector management (which
is approximately 90% of the workload) to OSDs [6] .Because an OSD is easily
added to the system, MDS also can expand dynamically to the cluster to guarantee
the performance of the system.

As described above, MDS is the bridge between Clients and OSDs and provides a
file management interface to clients while keeping track of all OSDs.

2.2 RAID-Based OSD

OSD as an embedded system is the core of the object-based storage system. It is an
intelligent self-managed device, which provides an object interface for clients to access
data stored in it. Every OSD has its own globally unique ID. The new OSD command
set describes the operations available on Object-based Storage Devices. The result is a
group of intelligent disks (OSDs) attached to a switched network fabric (ISCSI over
Ethernet) providing storage that is directly accessible by the clients. Unlike conven-
tional SAN configurations, the Object Storage Devices can be directly addressed in
parallel, allowing extremely high aggregate data throughput rates.

The RAID-based OSD design provides an object interface to every client according
to the latest T10 standard, the standard interface focusing on integrating low-level
storage, space management, and security functions into OSD from MDS.

Block-based file systems can be roughly divided into two main components namely
the user component and the storage component. The former is responsible for pre-
senting user applications with logical data structures, such as files and directories, and
an interface for accessing these data structures; whereas the latter maps the data
structures to the physical storage. This separation of responsibilities makes it easy to
offload management task to the storage device, which is the intended effect of ob-
ject-based storage. In figure 2, the user component of the file system is unchanged, the
storage management component offloaded (approximately 90% of the workload of
metadata) to the storage device, and the device interface is changed from blocks to
objects.

With the help of MDS, a large file can be divided into more than one object and
mapped to different OSDs. The client can communicate with different OSDs in parallel
to access the file to make good use of the bandwidth and improve the throughput of the
system.

In section 3, we will describe the design of OSD in more details.

2.3 Client Node

The clients work on our FTP-like software to achieve accesses to data stored in our
storage system. There two channels of communication: control path to MDS over
TCP/IP; data path to OSDs over ISCSI. Though the control path, the storage system
provides a virtual system interface to client to hide details of management from the
client. Through the data path, the client conducts transfers of data and 90% of the

 A General-Purpose, Intelligent RAID-Based Object Storage Device 751

metadata to and from OSDs directly and in parallel after it get the authorization and the
OSD’s ID, to significantly reduce the MDS’s workload, thus removing possible bot-
tlenecks, and enhancing the throughput of the whole storage system.

2.4 System Work Flow

In this section we will use a simple three-node configuration to describe our propose
storage system. Each OSO (object Storage Device) is embodied over SCSI, so the
system builds on ISCSI protocol over the TCP/IP network.

Fig. 2. System work flow

As Figure 2 shows, every OSD must register itself and configure on the metadata
server before it can provide service. Metadata server will execute some control ob-
ject-based storage device commands (e.g., Format OSD, create partition, etc.) through
the control channel.

A client request is handled by the system in the following steps, also shown in
Figure 2:

1. The Client sends request to the metadata server, which includes file name, file
command, and its identification, etc.

2. The metadata server verifies that the identification is legal and translates the file
request to corresponding object request on specific OSDs assigned by the metadata
server, and returns the object’s information, the OSDs’s information and access
authorization to the client.

3. The client sends the object access request to the designed OSDs with the information
provided by MDS.

4. Each request OSD verifies the access authorization information to make sure the
object access is legal, then executes the OSD command and begins direct data
transfer with client. After finishing the command, the OSD returns the command
status to the client.

5. After client receives all the status from all designed OSDs, it sends an acknowl-
edgement to the MDS.

752 F. Wang et al.

According to the acknowledgement, the MDS will update the file and the OSDs’s
information stored in MDS.

3 Design of RAID-Based OSD

The RAID-based OSD subsystem is an embedded system built on commodity hardware
at a low cost but with a TERABYTE-lever massive storage to make it more
cost-effective for general users. We add the ISCSI Target control layer and OSD
command interface to the RAID control software to make the EIDE RAID an intelli-
gent OSD. The software is running under the embedded Linux operating system.

3.1 Hardware Architecture

The architecture of the OSD is shown in figure 3. An OSD consists of a processor,
RAM memory, disks and Ethernet interface

Fig. 3. RAID-based OSD architecture

The OSD is built on the EIDE RAID designed by our laboratory [16].With a high
performance, combined with a large quantity IDE disks space, OSD is poised to
achieve a TERABYTE-level massive storage at a low cost. More than 16 disks can be
added to the main board with the help of an extended RAID card (EIDE RAID
CONTROLLER), so an OSD can achieve 1.875TB (16* 120GB/1024=1.875TB) with
120GB each disk.

As an embedded system, OSD has its own CPU and memory to process the control
software itself and executes self-managing functions to become an intelligent device.

 A General-Purpose, Intelligent RAID-Based Object Storage Device 753

With the Gigabyte Ethernet interface OSD can provide high throughput as a network
storage subsystem to process and store data from the network. Future, it’s also very
easy to upgrade to serve the next generation of networks by upgrading the network
protocol.

3.2 Software Architecture

The software is the heart of the subsystem, it is based on the embedded Linux and
consists of server modules including the ISCSI target driver, the OSD command han-
dler, the object storage management, and the RAID control driver. All these compo-
nents are implemented at Linux kernel level.

Fig. 4. software architecture

Generally, the software can be divided into two main parts that provide object in-
terface and block interface, respectively, as illustrated in Figure 4.

Object Interface. OSD receives OSD commands and object data from the ISCSI
channel initiated by clients or MDS to make sure that they access data as objects. The
OSD commands are defined as the extension of the SCSI command in theT10 standard
[7]. The ISCSI target driver receives OSD commands and object data encapsulated in

754 F. Wang et al.

ISCSI PDU, and then unpacks the PDU. The OSD command handler analyzes the
command and makes sure the user is legal and then deals with the object command. The
object storage manager converts object to blocks in RAID. When an object is created, it
is stored in blocks in RAID, and we record the blocks’ addresses in the object’s ex-
tended attribute [7]. The data is not accessible outside the OSD in block format, only
via their object OBIDs.

Block Interface. RAID is based on disks, it stores data in blocks in logical. Buffer
cache is kernel space memory and is the intermediate repeater to accelerate access
blocks in RAID. RAID control driver is in charge of stripping blocks among the disks
according to the RAID level configured by the OSD device, and the data as it is laid out
into standard tracks and sectors.

3.3 Extended Attributes

Associated with each object is a set of attributes, organized as pages with 2**32 at-
tributes per page and 2**32 attribute pages. But just very few of the attributes are
defined, and most of them are in reference to the control information of object. There is
not any attribute about the object data layout in OSD.

Currently, the object-based storage systems have not implemented an object-based
file system [15]manage the storage of objects for their OSDs. As for Lustre, it storages
the file data as object in OST(object storage target), and OSTs are built on existing
Linux file system such EXT3 ,XFS, etc[13][14]. So the objects are managed as files in
the OSTs, and the file access from Client will map the file to object in MDS, then map
object to file in OST. The overhead of accessing an object can superior to the traditional
file system.

We define the extended attributes for object data layout information. Object data is
stored on disk device as blocks which addressed by block number. The extended at-
tributes are defined as <base block number1, length1>, <base block number2,
length2>, …, <base block numbern, lengthn>. Each object will be associated with one
128-bit object id, and the id will map to the attributes for the object. Once the client
want to access the object, the OSD will search the extended attributes of the object.
With the attributes, OSD can access all the blocks for the object with less overhead.
Because the object data cannot be store in all contiguous blocks, we will try to allocate
contiguous blocks for it.

4 Intelligence OSD Device Features

As an intelligent embedded system, the OSD has its own hardware and software, so it is
able to configure and register itself to the storage system, to manage the storage space
as a RAID and all objects in which are in a platform namespace, to handle the OSD
command and manage storage spaces for objects, to do the security job.

Configure and register (self-discovery). When the OSD device initiates, it will con-
figure itself (e.g. decide the RAID level, get information from disk to buffer, etc), then
send a request with its information to the MDS to register itself. When it success, the
OSD is legal member in the storage system and available to all clients.

 A General-Purpose, Intelligent RAID-Based Object Storage Device 755

Self-manage and Extended Attributes. The OSD manage all kinds of objects (root
object, partition object, user object, etc.) by their attributes to manage the objects layout
in the OSD. Especially for the user object, to shorten the latency of access object it is
necessary to buffer the data address. We define the reserved attributes [7], and record
all the block address of the object data. And the recently hot object’s attributes will be
buffered.

Platform Namespace. Objects are on an equal footing with each others, there is not
hierarchy relationship (like traditional file system) for objects. We design a platform
namespace: once you want to access an object, then the OSD will get the object’s
attributes by the OBID directly. With the help of attributes, it is easy to get the address
of the object data to access the object. The platform namespace shorten the access path
and improve the performance.

RAID-Based Device. The RAID configure it RAID level according to the command
from MDS, and then strip object data into the RAID. As disk device RAID can make
object data much safer in block level with failure recovery. And RAID is easy to
enlarge its capacity by adding IDE disks to achieve a TERABYTE-level OSD.

Self-guard. For an intelligent OSD, it is in charge of exchange data between clients
directly, so OSD must do security job itself. Both clients and network are not trust for
OSD. Every request from the client first will get authorization and a digest of the entire
request information (OBID, service_action [7], etc.).And then client will send the
request to the OSD includes the command, the client capability, and a digest of the
entire request. Upon receipt of a new request, the OSD must first validate the client
digest. The OSD will create its own digest of the request and compare this with the
digest sent by the client. If they match, the OSD is guaranteed that neither the capability
nor any of the arguments in the request were modified. Had either of these changed, the
digest generated by the OSD would differ from that sent by the client, and the OSD
would reject the request; all responses sent from the OSD to the client can be protected
using a digest similar to that sent by the client.

5 Conclusion and Future Work

Our object-based storage system implements a prototype of object interface storage
system following the T10 standard. The RAID-based intelligent OSD is an embedded
system. As designed on IDE interface RAID, the OSD reduce your TCO of a
TERABYTE-level OSD with more security and make the PETABYTE-level ob-
ject-based storage system comprised of OSDs more acceptable for commercial use,
then accelerate the object-based storage industry.

Our OSD implements according to the T10 standard but also extends the standard
for its attributes part to make it more intelligent and easier to manage the object data
layout one OSD itself. As an intelligent OSD, our OSD has features as self-discovery,
self-manage, self-guard, self-configure, and provide a platform name space for objects.

We plan to further explore the object-based attributes and methods, to implement
different level security policies for different type of object access, and to define object
methods for different application to make OSD much more intelligent and flexible.

756 F. Wang et al.

Acknowledgements

The authers would like to thank the members of the Key Laboratory of Data Storage
System for their hard work and help. This work was supported in part by the National
Science Foundation of China under grant 60303032 and the 973 Program of China under
Grant No. 2004CB318201.

References

1. G. Gibson, D. Nagle, K. Amiri, F. Chang, E. Feinberg,H. Gobioff, C. Lee, B. Ozceri, E.
Riedel, D. Rochberg, and J. Zelenka. File server scaling with network-attached secure
disks. Proceedings of the ACM International Conference on Measurement and Modelling
of Computer System, Seattle,WA, June 1996.

2. G. Gibson, D. Nagle, K. Amiri, F. Chang, H. Gobioff, E. Riedel, D. Rochberg, and J. Ze-
lenka. Filesystems for network-attached secure disks. Technical Report CMU–CS–97–112,
CMU, 1997.

3. SNIA-Storage Networking Industry Association. OSD: Object Based Storage Devices
Technical Work Group. http://www.snia.org/techactivities/workgroups/osd.

4. R. O. Weber. SCSI Object-Based Storage Device Commands(OSD),Document Number:
ANSI/INCITS 400-2004. InterNational Committee for Information Technology Standards
(formerly NCITS), December 2004. http://www.t10.org/drafts.htm.

5. Peter J. Braam. The Lustre Storage Architecture, Fall 2003. http://www.clustrfs.com
6. Mike Mesnier, Gregory R. Ganger, Erik Riedel. Object-Based Storage IEEE Communica-

tions Magazine. August 2003
7. T10/1355-D Working draft reversion 10 Information technology-SCSI Object-Based

Storage Device Commands (OSD) . 30 July 2004 http://www.t10.org
8. Meth, K.Z., and Satran, J., “Design of the iSCSI Protocol”, IEEE/NASA MSST 2003, Apr.

2003.
9. Erik Riedel Seagate Technology, Object-based storage device (OSD) Basics. April 2005.

10. Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis, Dalit Naor, Noam Ri-
netzky, Ohad Rodeh, Julian Satran, Ami Tavory. Towards an Object Store.20 th IEEE/11 th
NASA Goddard Conference on Mass Storage Systems and Technologies (MSS’03),2003

11. Panasas, WHITE PAPER: Object Storage Architecture: Defining a new generation of
storage systems built on distributed, intelligent storage devices

12. Peter J. Braam Lustre: the Intergalactic File System for the National Labs. June. 2001
http://www.clusterfilesystems.com

13. Peter J. Braam and Rumi Zahir, Lustre, Technical Project Summary – version 2. Cluster
File Systems, Inc. July 29, 2001. http://www.clusterfilesystems.com

14. Peter J. Braam. The Lustre Storage Architecture. Cluster File Systems, Inc.
http://www.clusterfs.com. 08/29/2003, HEAD

15. Feng Wang, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, OBFS: A File System for
Object-based Storage Devices. 21st IEEE / 12th NASA Goddard Conference on
MSST2004. April 2004.

16. Jiangling Zhang, Dang Feng. Massive Information Storage. Science Press China ,Beijing
2003.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 757 – 765, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design and Implement of Remote Mirroring Based
on iSCSI*

Cao Qiang, Guo Tian-jie, and Xie Chang-sheng

Department of Computer, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

caoqiang@mail.hust.edu.cn

Abstract. Remote mirroring has become increasingly important as organiza-
tions and businesses depending more and more on digital information. Balanc-
ing the data availability, access performance and the cost of building and main-
taining is essential goal for designing remote mirroring system. This paper pre-
sents a novel architecture of remote mirroring based on iSCSI and describes the
structure of mirroring log and buffer which can improve performance and keep
availability of date synchronously. The experience results show the maximal
workload of remote mirroring in 100Mbps and gigabit network environment
respectively.

1 Introduction

The majority of today's businesses cannot survive a catastrophic loss of corporate
data. Data is growing at exponential rates, forcing businesses to continually examine
and enhance the availability, security and efficiency of their data environment. Hard-
ware failures, all kinds of software defects, destruction of vicious virus, buildings
fires, electric power broke off and man-made mistake, all of which will lead to the
key data being unavailable, even being lost. Though these incidents would not occur
frequently, but some preparations have to be made to prevent data lose in these acci-
dents, because the data unavailable penalty is very enormous. In 2001 the investiga-
tion showed that 1/4 of the informants estimated that the cost of machine halt was
250,000 dollar per hour, and 8% of them estimate it as to be 1,000,000 dollar per
hour[1]. The cost of data loss is even higher. It has been realized recently that the plan
for recovery and constancy is necessary, and the key method is to construct the reli-
able storage system to protect the usability of the data and the ability of unfailing data
access.

Data mirroring is a classic technique for tolerating failures by keeping two or more
copies of important data. It is widely used inside disk arrays (where it is called
RAID1). These copies are distributed across multiple sites, where it is called remote
mirroring. Figure 1 shows the basic topological structure of remote-mirroring system,
which only includes a single remote-mirroring site, but could naturally expand to
multiple ones actually.

* This paper is supported by both National 973 Great Research Project of P R China under the

Grant NO 2004CB318203 and National Natural Science Foundation of P R China under the
Grant NO 60273073, NO 60303031.

758 Q. Cao, T.-j. Guo, C.-s. Xie

Fig. 1. Classic remote-mirroring system

The design of remote-mirroring systems must have to aim at multiply goals. The
first is keeping the copies as closely synchronized as possible to reduce the data loss
risk when failures occur. The second is delaying foreground writes as little as possible
to reduce the effect on application system. The third is to maintain availability in the
face of as many failure types as possible. Finally occupying as little expensive inter-
site network bandwidth as possible to reduce the total cost of running and mainte-
nance, because renting dedicated network is very expensive[2]. For example, the
rental price of Internet dedicated access bandwidth (the rent per month) for china
Unicom, 512K = 1024 ; 10M 3012 ; 20M 5700 ; 45M 13190 ;
100M 21200 ; 155M 80000.

From a view of implementation, however, these goals contradict with each other
frequently, synchronously updating all copies is the simplest solution, but it has poor
write performance and leads to high total costs in remote-mirroring systems. There-
fore, the trade-off among data loss risk reduction, performance guarantee and less cost
is to be taken into account carefully.

The advent of iSCSI technique offers a practical feasible scheme for high cost-
performance rate design for remote mirroring. The iSCSI protocol is perceived as a
low cost alternative to the FC protocol for remote storage. iSCSI could be transmitted
on common TCP/IP network, and in principle requires no need of dedicated line or
hardware supporting. WAN could be even enough. Likewise, iSCSI is based on op-
erational semantics of data block, so it could be applied to remote block mirroring
expediently.

Compared with dedicated line such as FC, iSCSI protocol has longer transmission
delay. Moreover, if it shares the same network with applications, it would cause trans-
ferring shake and even bandwidth shortage, which heavily influences on performance
of remote-mirroring system. The solution is to design mirroring buffer for both local
system and remote write to keep smooth transmission, improve network efficiency
and enhance performance. But the introduction of data buffer would easily cause data
loss risk if exceptions occur in local system, such as power’s failure or exceptions
happen. A feasible method to reduce these risks is using synchronous write between

 The Design and Implement of Remote Mirroring Based on iSCSI 759

local system and remote system. However it leads to terrible performance. So Design
remote mirroring system based on iSCSI is real challenge.

This paper firstly introduces the design principle and presents the architecture of
Remote Mirroring Based on iSCSI, then further describes the structure of mirroring
LOG and BUFFER, ensuring the availability of data while improving the perform-
ance. Finally, our experience results demonstrate that remote-mirroring system could
undertake maximum load in 100Mbps and gigabit network environment respectively.

2 The Remote Mirroring Architecture

Remote-mirroring module can be performed in four main places, which are in host
OS, HBA (Host Bus Adapter), Fiber Channel switch in SAN, or controller in disk
arrays, each with advantages and disadvantages. The benefit of implementation in
host is to apply data mirroring to specific application which reduces the volume of
data that need be mirrored and support file semantic interface. However, this method
may impact on foreground routine and increase additional workload for host. In the
other three implementation methods are independent of foreground applications. For
large-scale disk array, remote-mirroring function carry out by itself, such as Sym-
metrix Remote Data Facility SRDF [4] of EMC, the price of which is unacceptable
for small and medium enterprises. Remote-mirroring function designed in this paper
is implemented in host, and also could be easily transplanted into switch or disk array.

The system treats Logic Unit (LU) as entrance of mirroring, which is common
used. LU is the basic interface between file system and disk system, and identified as
volume for file system. Each LU could be regarded as linear space consisted of many
data blocks, accessing corresponding data block by corresponding address. An enter-
prise-level disk array could contain thousands of LU, and not all the LU need be mir-
rored. Only mirroring special LU could effectively reduce the needless waste of re-
source such as disk capacity and network bandwidth, moreover allow file system
having different protection level for different data.

Because iSCSI employs TCP/IP network even WAN to connect two sites, the real
available bandwidth of network would wave momentarily. Consequently, it would
result in shaking in mirroring process[5]. Therefore, it is very important to design spe-
cial buffer of mirroring to acquire high and stable performance. Mirroring buffers
would design in two places, one is mirroring module in local hosts; another one is in
remote target. Buffers could smooth network wobble obviously, however it also
brings data loss risk. We classify these risks into two levels, the first level is host
breakdown and could recovery before long, and the second is local storage devices
failover and unavailable in primary site. The former is more frequent than the latter
and only could lose data in memory. The latter conduces permanent local data lose,
however it is infrequent. In other words, data in local disk have much smaller lost
probability than that of failures in host memory. Then, the buffer structure in iSCSI
mirroring must conciliate the two sides.

Therefore, we have designed novel structure as mirroring LOG and BUFFER to
store all the unfinished remote updating data and operations. Local data buffers have
fixed size, and LOG is kept by NVRAM. Local write is absolutely synchronous,
which means no returning acknowledgment to upper applications until data really

760 Q. Cao, T.-j. Guo, C.-s. Xie

writing to local disk. For the first risk, consequently, there isn’t data loss. When there
are lots of burst writes and local BUFFER is full, the local disk address of corre-
sponding data should be recorded in log and none of the real data blocks should be
reserved in BUFFER. Thus the size of BUFFER could be effectually reduced.

Figure 2 shows the architecture of Remote Mirroring Based on iSCSI. The primary
and secondary sites are connected with TCP/IP network. The mirror module is in-
serted into normal I/O routine between generic device driver and disk drivers, and
captures all the write or update requests to forward to remote disk, but is transparent
for all read request. To enhance performance, all update data first are stored in data
buffer and relevant requests are recorded in command log. After acknowledging from
local disk and remote site, data and requests are removed from buffer and log. The
remote iSCSI target also comprises its data buffer and command log to reduce re-
sponse time. Certainly, whether using them is decided by administrator to balance the
performance and lost risk in remote site. The primary site includes iSCSI initiator and
the remote site includes iSCSI target.

Fig. 2. The architecture of Remote Mirroring Based on iSCSI

The Figure 3 shows the work process of Remote Mirroring Based on iSCSI. When
updating data have arrived at the mirroring module, the data flow into two channels,
one’s target is local disk, which write data to local disk like without mirroring, the
other’s is writing remote mirroring disk. Local write would be not given more discus-
sion here. The start point of Write routine is local mirroring log and local data buffer
in memory. The log merely records writing or updating requests in the same order as
FIFO except write coalescing discussed in latter content. The buffer stores updating
data until local disk and remote site acknowledging. When receiving acknowledge-
ment, the buffer removes relevant item and data from the log and buffer. More details
could be denoted as figure 3. From a view of remote mirroring taxonomy, it is semi-
synchronous model.

The object of remote mirroring is data block in LU. Considering that some data
blocks will be updated again before long, write coalescing policy could be adopted for
enhancing performance. If the last operation of writing the same block still reserves in

 The Design and Implement of Remote Mirroring Based on iSCSI 761

buffer and has not been executed, then the two operations could be combined together
as one, which could save both network bandwidth and log space. The primary effect
of write coalescing on fault tolerance is to alter the order in which updates are applied
at the secondary site, moreover it could also be applied at the secondary to reduce the
amount of work needed for an update. However, write coalescing policy may lead to
data inconsistency. To solve this problem, isolated location in mirroring buffer is
defined as batch out of which the function of write coalescing could be non-
permissible. This scheme explicitly delays sending a batch of updates to the remote
site, in the hope that write coalescing will occur, and only one copy need be propa-
gated. Setting accurate isolated locations requires complicated semantic support. To
simplify the definition of isolated location, the size of the batch can be selected in the
number of updates, or the amount of data written.

Fig. 3. The flow chart of Remote Mirroring Based on iSCSI

In the case of host faulting over, it is nearly impossible that data don’t lose abso-
lutely. Remote-mirroring protect could only reduce amount of data loss in large degree
and hardly lose nothing. The data lose is fewer, and its total cost is more. Taking cost,
performance and loss risk into consideration, our system could offer two remote-
mirroring modes: synchronous mode, semi-synchronous mode. Synchronous mode
ensures that all modifications are transferred to the remote site prior to the acknowl-
edgement of each write to the host. Synchronous mirroring guarantees the local copies
are consistent with the copies of the data at the remote site and also that the data at the
remote site are as up-to-date as possible, but which introduces much latency to synchro-
nize local with remote I/O write. In semi-synchronous mirroring, write commands are
propagated to both local and remote storage nodes at the same time, and the application
is notified of a completed I/O only when the local write is completed and don’t wait for
acknowledge from remote site. Our system could support both two modes. The choice
for which mode could be decided by configuration before system running.

On Windows platform, the filter could deal with all IRPs before sending them to a
lower driver. After the driver processes IRP, the filter get control again, it could con-
nect an I/O fulfilled routine to IRP. After driver calls IoCompleteRequest function,

762 Q. Cao, T.-j. Guo, C.-s. Xie

the I/O fulfilled routine is activated. Therefore, mirroring module is designed in filter
layer. On Linux platform, it could be realized at device layer. In both ways, mirroring
module is fully transparent for application.

Remote iSCSI target also need use data buffer to raise access performance and re-
duce total latency of remote write. But it is possible that remote target also may break
down. So NVRAM is applied instead of DRAM memory to prevent data loss in the
first level fault.

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to.
This is to ensure that the end product is as homogeneous as possible.

3 The Design of Remote-Mirroring BUFFER

The design for remote mirroring buffer must consider two aspects: buffer size and
depth of write coalescing. Buffer size could decide the asynchronous degree between
local write and remote write. It is obvious that greater buffer can absorb more delay of
remote write, however make more loss in fault. Although NVRAM can prevent par-
tial data loss in the first fault, but all the data the primary site will lose totally such as
disaster happening. So the size of buffer is directly relative to the amount of lost data
when the host breaks down. Moreover, the size of LOG in the NVRAM could deter-
mine the upper bound of data buffer. Furthermore, since mirroring module is lied in
host, so the buffer size also could issue host performance for foreground applications.
Our system could only provide option for buffer size. Therefore, the buffer size is
finally determined by administrator.

The other important hand is how to update data in primary and secondary site,
which includes a series of problems, for example, the bound of write coalescing in
buffer, choice for asynchronous or semi-synchronous mode, and so on. The bound of
write coalescing can be selected in several ways, such as the elapsed time, the number
of updates, or the amount of data written, or bytes to transfer. Moreover it would be
possible to select the batch size that achieves optimization target data-loss likelihood,
taking the WAN link reliability into account However it is hardly to automatically
controlled by mirroring and need manual configuration. So in our system, the values
of parameters could be adjusted to control running of system.

Write command of SCSI mostly includes five parameters: Operation code, logical
device number SCSI ID and LUN , logic block address(LBA), data length and
control field. The top half of figure 4 is the structure of a log table, in which each row
includes eight fields. CDB is command description block defined distinctly in the
SCSI protocol. LWC shows the state of local write completion and RWC shows the
state of remote write completion, OW shows whether this line could or not implement
write coalescing. Data could be stored in three places, local disk, NVRAM or Mem-
ory. Unfinished local update data are kept in memory or NVRAM. The data which
wait for remote update and have been completed in local disk is always kept in
NVRAM if NVRAM has enough capacity; otherwise they are kept in Local disk.
Data pointer points to the data address in the BUFFER and data length represents data
length for a write command. When the data in the BUFFER exceed threshold defined
as local disk record pointer, the data pointer will point to the LBA address of the disk.

 The Design and Implement of Remote Mirroring Based on iSCSI 763

Fig. 4. The structure of mirroring log

The lower half of figure 4 describes several key pointers in mirror log. The running
state of system could be controlled by adjusting these values. Prw is defined as the
head record of mirroring log, which is waiting for acknowledging from remote site.
When remote write has been completed, this line is removed from log, and Prw will be
pointed to next record. Pt is the pointer of the tail local operation in log, and it repre-
sents the newest I/O request from application. Plw indicates executing local update. If
local writes are absolutely synchronous, Pt equal Plw. Plwc and Puwc are the low and
upper bound of write coalescing respectively, and they defined as range in which
write coalescing could be applied. Pdr is the starting point of disk record data, and it
represents that latter data blocks couldn’t save in memory or NVRAM but local disk.
Actually, the length of log is Plw Prw , and it is the delay between local and remote
disks write. Threshold Drl could be defined to restrict maximal delay between local
and remote write. If Drl equal 0, it is called synchronous mirroring. If the length of
reserve record exceeds the threshold, buffer could be congealed compulsively, and
system would always wait until remote write has been completed. When the value
that Plw subtracts Prw is less than Drl, then write I/O requests could be put into log
again, and local write requests would be sent at the same time. In this way, the size of
buffer would be controlled to reduce the quantity of data loss in host breakdown.

The structure of log and buffer in remote iSCSI target is similar to those of local,
but more simple, write coalescing and disk indexing data policy have no need to be
adopted. You will get the best results and your files will be easiest to handle if you use.

4 Performance Evaluation

The test environment includes two servers and LAN devices. HP Proliant 330 simulates
remote system and HP G380 is local system. Each server comprises two network cards

764 Q. Cao, T.-j. Guo, C.-s. Xie

(network interface card), one is a gigabit fiber NIC as D-Link 550-SX, the other is a
self-adapting NIC of RJ45 interface as Intel Pro 100/1000Mbps. The gigabit fiber NIC
directly connects to the other counterpart through optical fiber by peer to peer, which
forms a gigabit network environment. Two 100Mbps NICs are connected with a CISCO
3524 switch, which makes 100Mbps network environment. Two sets of network envi-
ronment are used to compare the effect in different network bandwidth on remote mir-
roring performance. Each server has installed OS of WINDOWS 2000 Advance Server
version with the iSCSI Target and initiator modules developed by our lab.

Fig. 5. Test result over the Gigabit network environment

As the experiment is to study the limited load of remote-mirroring system, we use
Iometer as our testing tool to produce sequential I/O request, and test three kinds of
writing performance including local disk, iSCSI and iSCSI with remote mirroring in
the means of 100% sequential writing. Figure 5 and 6 indicate the results of the two
sets of network environment respectively. The X-axis indicates the size of I/O re-
quest, from 0.5KB to 8MB increased by a multiple of 2, the Y-axis specifies the net-
work data throughout.

In the test, we don’t configure the local disks as RAID. Therefore, the local write
rate is approximately equal to that of a single disk. Figure 5 indicates that the per-
formance of iSCSI in gigabit network is better than that of the single disk. Since local
write is always synchronous, the performance of mirroring is lower than that of local
write. In the 100Mbps condition, the performance of local write is better than that of
iSCSI when I/O requests are great; When I/O requests are smaller than 64KB, iSCSI
has higher performance, which is due to cache. Consequently, the performance of
mirroring is close to the lower performance of the two write methods.

The test results indicates the performance of iSCSI with remote mirroring is a little
lower than that of pure local disk write and iSCSI write. The experiment only tests the
performance of mirroring system in the ultimate load. In practicable, write requests
take up a smaller part (generally 33% write request and 67% read request in transac-
tion processing) and not all the requests must be mirrored. 100Mbps and even WAN
could be used since iSCSI is not restricted to any specific network. This system would

 The Design and Implement of Remote Mirroring Based on iSCSI 765

satisfy the requirement of remote-mirroring system with reasonable configuration of
LOG parameters combined with practical access pattern.

Fig. 6. Test result over 100Mbps network environment

5 Conclusion

Key data must be dependable: the cost of losing it, or even of losing access to it, is
simply too high. Remote mirroring is more and more necessary to protect these data.
However, its total cost and implement complexity is beyond acceptance of generic
enterprise.

Remote mirroring based on iSCSI could use pervasive TCP/IP network and effec-
tively decrease cost. However, it is essential to design solution to improve stability
and performance. This paper presents architecture of mirroring LOG and BUFFER
to ameliorate system. In the end, our experience shows remote mirroring based on
iSCSI could meet practical requirement.

References

[1] Minwen Ji, Alistair Veitch, John Wilkes. Seneca: remote mirroring done write. 2rd
USENIX Conference on File and Storage technologies (FAST'03). San Francisco, CA.
March-April 2003

[2] Kimberley Keeton, Cipriano Santos. Designing for Disasters. 3rd USENIX Conference on
File and Storage technologies (FAST'04). San Francisco, CA. March-April 2004

[3] XIE Chang-Sheng, FU Xiang-Lin, HAN De-Zhi, REN Jin. The Study and Implementation
of a New iSCSI-based SAN. JOURNAL OF COMPUTER RESEARCH AND
DEVELOPMENT, 2003, Vol 40(5): 746-751

[4] Using EMC SnapView and MirrorView for Remote Backup, Engineering White Paper,
EMC Corporation (April 2002).

[5] CAO Qiang, XIE Chang2Sheng. Study of the I/O Request Response Time in Network
Storage Systems. JOURNAL OF COMPUTER RESEARCH AND DEVELOPMENT,
40(8),2003:1271-1276

Improvement of Space Utilization in NAND
Flash Memory Storages�

Yeonseung Ryu1 and Kangsun Lee2

1 Department of Computer Software, Myongji University,
Nam-dong, Yongin, Gyeonggi-do 449-728, Korea

2 Department of Computer Engineering, Myongji University,
ysryu@mju.ac.kr

Abstract. Flash Translation Layer (FTL) is the device driver software
that makes flash memory device appear to the system like a disk drive.
Since flash memory cannot be written over existing data unless erased in
advance, the FTL usually employs special address mapping algorithms
to avoid having to erase on every data update. In this paper, we propose
a new FTL algorithm which considers the access patterns of data blocks.
Proposed scheme monitors write access patterns of data blocks and in-
telligently manages the address mapping to improve the performance.
Simulation results show that the proposed scheme improves the space
utilization without significant write/update performance degradation.

Keywords: Flash Memory, Flash Translation Layer, Space Utilization.

1 Introduction

Flash memory is becoming important as nonvolatile storages for embedded de-
vices because of its superiority in fast access speeds, low power consumption,
shock resistance, high reliability, small size, and light weight [7, 11, 13, 8, 5, 3].
Because of these attractive features, and the decreasing of price and the in-
creasing of capacity, flash memory will be widely used in consumer electronics,
embedded systems, and mobile computers. Though flash memory has many ad-
vantages, its special hardware characteristics impose design challenges on storage
systems. First, flash memory cannot be written over existing data unless erased
in advance. Second, erase operations can be performed in a larger unit than the
write operation. For an update of even a single byte, an erase operation of a
large amount of data would be required. Besides it takes an order of magnitude
longer than a write operation. Third, the number of times an erasure unit can
be erased is limited (e.g., 10,000 to 1,000,000 times).

To overcome these problems, an software called a Flash Translation Layer
(FTL) has been employed between host system and flash memory [6, 10, 9, 14, 4].

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government(MOEHRD)(R08-2004-000-10391-0).

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 766–775, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improvement of Space Utilization in NAND Flash Memory Storages 767

Figure 1 shows a typical software organization for NAND-type flash memory.
The FTL is usually implemented as the device driver software that works in
conjunction with file system to make flash memory device appear to the system
like a disk drive. Applications use system calls to access files on the flash memory.
The file system then issues read/write commands along with logical block address
and the request size to the FTL. Upon receipt of a command, address, and
the size, the FTL translates them into a sequence of flash memory intrinsic
commands (read/write/erase) and physical addresses.

Applications

File System

FTL

Operating System

Flash Memory

Fig. 1. Software organization for flash memory

In this paper, we study a novel FTL algorithm called Shared Log Block (SLB)
scheme. The SLB scheme manages the space of flash memory as two types of
blocks, data blocks and log blocks. The data blocks hold ordinary data and the
log blocks are used as temporary space for update writes to data blocks. When an
update to a data block is requested, it is performed to the log blocks allocated
for the data block. The SLB classifies data blocks as hot or cold according
to their write access frequencies and intelligently performs log block allocation
to the data block. Previous FTL didn’t consider data access pattern and may
waste the space of flash memory. Proposed SLB scheme can improve the space
utilization by sharing the log blocks among several data blocks that are not
frequently modified. Performance evaluation based on trace-driven simulation
shows that the SLB scheme performs better than previous schemes with respect
to the space utilization. Also, by controlling the number of shared log blocks,
we can control the performance tradeoff between the space utilization and the
write/update operation.

The rest of this paper is organized as follows. In Section 2, we give the
overview of previous works. In Section 3, we present a new FTL algorithm
called share log block scheme. Section 4 presents the simulation results to show
the performance of proposed scheme. The conclusions of this paper are given in
Section 5.

768 Y. Ryu and K. Lee

2 Background

A NAND flash memory is organized in terms of blocks, where each block is of
a fixed number of pages [8, 5]. There are three basic operations, namely, read,
write, and erase. The unit of read and write operations is a page and the size of
a page is fixed from 512B to 2KB depending on the product. The unit of erase
operaion is a block and the size of block is somewhere between 4KB and 128KB
depending on the product. There is a spare area appended to every page, which
is usually used to store ECC code to detect errors while reading and writing.
When the free space on flash memory is written, the space cannot be updated
unless it is erased. For an update of even a single byte in a page, a block that
contains the page should be erased. A block can be typically erased for 1 million
times. A worn-out block could suffer from frequent write errors. Thus, wear
leveling activity is needed to erase blocks on flash memory evenly so that a
longer overall lifetime could be achieved.

Mapping
Table

0

1

2

3

4

.

.

.

Logical
Block #

Physical
Block #

10

15

1

4

2

.

.

.

Flash Memory

Block

Block

Block

Access to
logical

sector #9

LBN: 9/4 = 2
Offset: 1

PBN: 1
Offset: 1

Fig. 2. Block-level mapping

Flash Translation Layer (FTL) is a device driver layer software which per-
forms the address mapping function between the logical address and the physical
address. The FTL usually maintains the address mapping table in order to map
logical address of I/O requests to physical address in flash memory. The address
translation table is indexed by logical block address (LBA), and each entry of
the table contains the physical address of the corresponding LBA. In general,
the FTL uses non-in-place update mechanism to avoid having to erase on every
data update. Under this mechanism, the FTL remaps each update request to

Improvement of Space Utilization in NAND Flash Memory Storages 769

different location (i.e., data updates are written to empty space) and set obsolete
data as garbage, which a software cleaning process later reclaims [3].

The mapping can be maintained either at the page level or at the block level
[1, 2]. In the page-level address mapping, a logical page can be mapped to any
physical page in flash memory. However, this mapping requires a large amount
of space to store the needed mapping table. In the block-level address mapping
(see Fig. 2), the logical address is divided into a logical block address and a
block offset, and only the logical block address is translated into a physical
block address in flash memory. The block address mapping has a restriction
that the block offset in the mapped physical block be the same as that in the
logical block. When there is an update request to a single page in a block, the
physical block that contains the requested page is remapped to a free physical
block, the write operation is performed to the page in the new physical block
with the same block offset, and all the other page in the same block are copied
from the original physical block to the new physical block.

To eliminate expensive copy operation in the basic block scheme, a technique
called log block scheme was proposed [9] (see Fig. 3). When an update to a page
in a data block is requested, a log block is allocated and the update is performed
to the log block incrementally from the first page. Once a log block is allocated
for a data block, update requests to the data block can be performed in the log
block until all the pages in the log block are consumed. When there is no free
page in the log block, merge operation is performed with the corresponding data
block to reclaim the log block.

Mapping
Table

0

1

2

3

4

.

.

.

Logical
Block#

Log
Block#

10

15

1

4

2

.

.

.

Flash Memory

Block

Block

Block

Update to
logical

sector #9

LBN: 9/4 = 2
Offset: 1

Data
Block#

Block 5

.

.

.

50

.

.

.

Fig. 3. Log block scheme

The problem of the log block scheme is that it does not consider the space
utilization of the log blocks. In [12], authors reported that access locations are
highly skewed on disks of an Unix workstation. Roughly one third of all accesses

770 Y. Ryu and K. Lee

go to the ten most frequently accessed disk blocks. Therefore, we can believe
that the access patterns to the flash memory based storages are also likely to be
highly skewed. Then it is possible for the log block scheme to waste the space of
the dedicated log block when update requests in a data block are not frequent.

3 Shared Log Block Scheme

In this section, we propose a new FTL scheme called Shared Log Block scheme.
The SLB scheme is based on the log block scheme. It manages the space of flash
memory as two types of blocks, data blocks and log blocks. The data blocks hold
ordinary data and the log blocks are used to store update writes to data blocks.
We define a log segment as a set of one or more log blocks. It is the allocation
unit of log blocks. The size of a log segment is defined as the number of log
blocks in it and is configurable. The log blocks in a log segment are not required
to be physically consecutive.

Mapping Table

0

1

2

3

4

.

.

.

Logical
Block#

Log
Segment#

10

15

1

4

2

.

.

.

Flash Memory

Block 0

Block 1

Data
Block#

Block 5

.

.

.

18

19

20

20

20

.

.

.

H

H

C

C

C

.

.

.

Hotness

Log Segment
20

.

.

.

Block 5

Block 5

share

Fig. 4. Shared log block scheme

When a new update to a data block arrives, a log segment is allocated to
the data block and the update is performed to the first page of the first log
block in the allocated log segment. The SLB can identify the up-to-date copy by
scanning the log segment backward from the last valid page. The block mapping
table manages the corresponding log segment number for each data block. For a

Improvement of Space Utilization in NAND Flash Memory Storages 771

read request, the requested page is serviced either from the data block or from
the log segment depending on where the up-to-date copy is present.

Each data block is associated with a state indicating the hotness. Initially
all data blocks are defined as the cold block. When a data block is updated
frequently, its state is changed to ‘hot’. Similarly, hot data block becomes ’cold’
block if it is not updated frequently. The degree of hotness of each block is
usually determined by the number of times the block has been updated within the
specified time interval. We do not describe in detail how to determine the hotness
of the data block since there have been many researches about determining the
hot and cold blocks.

Because hot blocks are likely to be updated soon and filled up fast, a log
segment is allocated and dedicated to the hot block. If the log segemnt becomes
full, it is reclaimed by the merge operation. The merge operation allocates a free
data block and then fills each page with the up-to-date page, either from the log
segment if the corresponding page is present, or from the data block otherwise.
After copying all the pages, the new block now becomes the data block, and the
former data block and the log blocks in the log segment are returned to the pool
of free blocks, waiting to be erased by garbage collector.

old
data block 1

new
data block 2

log segment n

valid page

copy

Fig. 5. Merge operation

On the other hand, cold blocks share a log segment. When an update to a
cold block is newly requested, the SLB allocates either a log segment used by
other cold blocks if it exists, or a new log segment from the pool of free blocks
otherwise. By sharing the log segment, it avoids wasting the log block space.
When the log segment becomes full, it is reclaimed by the split operation or
merge operation. If the log segment is shared with two or more data blocks,
the SLB executes split operation. The split operation allocates two log segments
and then distributes the up-to-date pages from the former log segment into the
new two segments. The pages that belong to the same data block are copied to
the same log segment. The log blocks in the former log segment is returned to

772 Y. Ryu and K. Lee

old
log segment n

valid page

new
log segment 1

new
log segment 2

copy

Fig. 6. Split operation

the free blocks, waiting to be erased by garbage collector. In case that the log
segment is used by only one data block, the SLB executes merge operation as
described before. It allocates a new free block and copies up-to-data pages from
the log segment or from the data block depending on where the corresponding
page is present. And then the new block becomes the data block. The former
data block and the log blocks in the log segment is returned to the free blocks,
waiting to be erased by garbage collector.

4 Simulation Studies

To evaluate the proposed scheme, we developed a simulator for the log block
scheme [9] and the shared log block scheme. The goal of our performance test
is to measure the overwrite performance. To do so, the simulator initially writes
data on the entire flash memory space and then overwrites data using one of
three access patterns:

• Uniform : Each page has equal likelihood of being selected for update.
• Hot-and-cold -25 : 60% of the write accesses go to one-eighth of the total

pages and other 40% go to another one-eighth. The other three-fourths of
the pages are left unmodified. This distribution is intended to simulate meta
data write activity on an actual file system. The ratio of writes is bases on
the results reported in [12]

• Hot-and-cold -10 : Pages are divided into two groups. One group consumes
10% of the space. It is selected for update 90% of the time. The other group
consumes 90% of the space but are selected only 10% of the time. The
generated traces have very skewed access patterns.

We also performed trace driven simulation using the traces of a digital cam-
era [9]. The workload of the digital cameras are usual operations of the camera

Improvement of Space Utilization in NAND Flash Memory Storages 773

such as taking, browsing, and erasing pictures. The traces include many sequen-
tial accesses as well as hot spots. Sequential access patterns are usually from
storing user data such as image files, while the hot spots are from updates meta-
data of the file system (Microsoft FAT) due to creation/deletion of files.

We define the number of extra erase operations as the number of erase op-
erations minus the number of erase operations from an ideal scheme. The ideal
scheme is defined as a scheme that performs one erase operation for every n-page
write requests, where n is the number of pages per block. Similarly, the number
of extra write operations is defined as the number of write operations minus the
number of writes requested. Performance metrics are the ratio of the number of
extra erase operations to the number of erase operations from ideal scheme, the
ratio of the number of extra write operations to the number of write requests
and the average space utilization of the segment.

0%

100%

200%

300%

400%

500%

600%

LOG SLB

Uni HC25 HC10 Dica

(a) Erase

0%

1%

2%

3%

4%

LOG SLB

Uni HC25 HC10 Dica

(b) Write

0%

10%

20%

30%

40%

50%

60%

70%

LOG SLB

Uni HC25 HC10 Dica

(c) Average Space Utilization

Fig. 7. SLB-1 vs. log block scheme

In fig. 7, ‘Uni’ denotes Uniform access patterns, ’HC25’ denotes Hot-and-
Cold -25, ’HC10’ denotes Hot-and-Cold -10, and ’Dica’ denotes traces of digital
camera. And n of SLB-n denotes the size of a log segment. The proposed scheme
significantly improves the space utilization of the log blocks. For example, see
fig. 7(c). It increases the average space utilization from 10% to 60% in case of
HC10. However, since the shared log blocks will be used frequently like the log
blocks for the hot blocks, it could incur more reclamation process and increase

774 Y. Ryu and K. Lee

0%

100%

200%

300%

400%

500%

600%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(a) Erase

0%

1%

2%

3%

4%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(b) Write

0%

10%

20%

30%

40%

50%

60%

70%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(c) Average Space Utilization

Fig. 8. SLB-1 vs. SLB-3

the number of erase operations and write(i.e., extra data copy) operations. In
the log block scheme, on the contrary, since a log block is dedicated to only one
data block and a large portion of it remains unused for a long time in case of
the cold blocks, it wastes the space but could need fewer erase operations. Sim-
ulation results show that there is a tradeoff between the number of erase/write
operations and the space utilization.

5 Concluding Remarks

The primary concern in implementing the flash translation layer has been to
improve the write and update performance by minimizing the number of erase
operations and data copy operations. Previous log block scheme exhibits good
performance for the write and the erase operations, but does not consider the
space usage of the log blocks. Our approach is to classify data blocks according
to their write access frequencies and to share the log blocks in order to improve
the space utilization. Simulation results show that the proposed scheme improves
the space utilization and there is a tradeoff between the space utilization and
the number of erase/write operations. For the future works, we plan to study the
garbage collection algorithm used with the proposed shared log block scheme.
We also plan to implement proposed scheme in the real system.

Improvement of Space Utilization in NAND Flash Memory Storages 775

References

1. L. Chang and T. Kuo. An adaptive striping architecture for flash memory storage
systems of embedded systems. In Proceedings of the 8th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2002.

2. L. Chang and T. Kuo. An efficient management scheme for large-scale flash memory
storage systems. In Proceedings of ACM Symposium on Applied Computing, 2004.

3. M. Chiang and R. Chang. Cleaning policies in mobile computers using flash mem-
ory. Journal of Systems and Software, 48(3):213–231, 1999.

4. T. Chung, D. Park, Y. Ryu, and S. Hong. Lstaff: System software for large block
flash memory. Lecture Notes in Computer Science, 3398:704–710, 2005.

5. Intel Corporation. Intel strataflash memory product overview. http://www.intel.
com.

6. Intel Corporation. Understanding the flash translation layer (ftl) specification.
http://developer.intel.com, December 1998.

7. F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. Tauber. Storage al-
ternatives for mobile computers. In Proceedings of the 1st Symposium on Operating
Systems Design and Implementation, 1994.

8. Samsung Electronics. 256m x 8bit / 128m x 16bit nand flash memory. http://www.
samsungelectronics.com.

9. J. Kim, S. Noh, S. Min, and Y. Cho. A space-efficient flash translation layer for
compactflash systems. IEEE Trans. on Consumer Electronics, 48(2):366–375, 2002.

10. M-Systems. Trueffs. http://www.m-systems.com/.
11. B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for mobile

computers. In Proceedings of the 27th Hawaii International Conference on Systems
Sciences, 1994.

12. C. Ruemmler and J. Wilkes. Unix disk access patterns. In Proceedings of 1993
Winter USENIX Conference, pages 405 – 420, 1993.

13. M. Wu and W. Zwanepoel. envy: A non-volatile, main memory storage system.
In Proceedings of the 6th Internation Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1994.

14. K. Yim, H. Bahn, and K. Koh. A flash compression layer for smartmedia card
systems. IEEE Trans. on Consumer Electronics, 50(1):192–197, 2004.

Smart u-Things and Ubiquitous Intelligence

Jianhua Ma

Faculty of Computer and Information Sciences,
Hosei University, Japan
jianhua@k.hosei.ac.jp

Abstract. Smart u-things are real things with attached, embedded or
blended computers, networks, and/or some other devices such as sensors,
actors, e-tags and so on, and they can sense, compute, communicate
and take some adaptive actions/reactions/proactions according to their
goals, situated contexts, users’ needs, etc. It is envisioned that smart
u-thing will be everywhere eventually towards ubiquitous intelligence
and smart world. One of the profound implications of such ubiquitous
smart u-things is that various kinds and levels of intelligence will exist
pervasively in real everyday objects, environments, systems and even
ourselves, and possibly be extended from man-made to natural things.
The ubicomp/percomp can be regarded, in a sense, as the computing
of all these smart/intelligent u-things, which are the basic elements and
components of the smart world. After clarifying the essential features and
three categories of smart u-things, i.e., smart object, smart space and
smart system, the talk is devoted to discuss possible challenges in smart
u-things’ research in terms of real world complexity. The main intentions
are to examine the possible hard issues to suggest some potential research
lines; and to let researchers in this field coolhead and being aware of the
hardness of these challenges in making real things truly smart.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 776, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Author Index

Ahn, Jae Young 522
Ahn, Seongjin 732
Amorim, Leonardo 50
An, Jianfeng 299

Ban, Xiaojuan 554
Barreto, Raimundo 50
Bessa, Arthur 50
Bhalla, Subhash 172
Bian, Jinian 275
Bu, Jiajun 576, 586
Busquets-Mataix, J.V. 150

Cao, HongJia 4
Cao, Qiang 757
Chang, Chin-Chen 629
Chang, Ya-Fen 629
Chen, Chun 107, 576, 586
Chen, Juan 230, 596, 708
Chen, Tian-Zhou 107
Chen, Wenguang 244
Chen, Yan 726
Chen, Yu 473
Cheng, Xu 3
Cho, Jinsung 533, 696
Cho, Kyungsan 638
Choi, Hae-Wook 256, 287
Choi, Jihoon 542
Choi, Jong-Ok 741
Choi, Kwang-sun 141
Choi, Won-Ho 71
Chung, Yon Dohn 420
Courbot, Alexandre 63

Dai, Hong-Jun 107
Deng, Kun 4, 30
Deyuan, Gao 265
Ding, Ting 720
Dong, Yong 230, 596
Dou, Wenhua 484
Duan, Yuanliang 576

Edwards, Stephen A. 129
Eisaka, Toshio 671

Fan, Xiaoya 265, 299
Fang, JiPing 608
Feng, Dan 747

Gao, Deyuan 265, 299
Gao, Qing 512
Gennaro, Fulvio 198
Gentile, Antonio 198
Grimaud, Gilles 63
Gu, Hongliang 473
Gu, Zonghua 186
Guo, Tian-jie 757

Ha, Soonhoi 361
Han, Sung-Kook 741
Han, Youngsun 386
Hasegawa, Masaki 172
Hong, Xianlong 275
Hu, Jian 265
Hu, Ning 220
Hu, Xianghui 117
Hua, Bei 117
Huang, Jiang-Wei 107

Jeon, Manwoo 696
Jeon, Yang-Seung 741
Jeong, Dae-Young 39
Jeong, Hwa-Young 408
Jeong, Young-Sik 741
Ji, Meng 650
Ji, Meng-Luo 160
Jiang, Feiyun 244
Jiang, Jie 484
Jiang, Tao 452
Jin, Cheng 586
Jin, Lingling 373
Jin, Min-Sik 71
Jing, Yunali 265
Jung, Jaewon 542
Jung, Kawng-mo 141
Jung, Min-Soo 71

Kato, Takaaki 346
Kim, Byung-Gil 39
Kim, Byung-Seo 441, 462

778 Author Index

Kim, Cheong-Ghil 39
Kim, Chulwoo 386
Kim, Eunkyo 542
Kim, Hyongsuk 398
Kim, JongEun 638
Kim, Joongheon 542
Kim, Joonmo 542
Kim, Keecheon 522
Kim, Myoung Ho 420
Kim, Seon Wook 386
Kim, Shin-Dug 39
Kim, Sung Won 441, 462
Koo, Jahwan 732
Kwon, Gihwon 361

Lee, Hyeong Ho 522
Lee, Ji Yeon 420
Lee, Kangsun 766
Lee, Dongkeun 522
Lee, Soo-Young 638
Lee, Sungyoung 533, 696
Lee, Wonjun 542
Li, Shanping 210, 512
Li, ShiNing 608
Li, Si-kun 564
Li, Tao 16
Li, Tie-jun 564
Li, Yue 16
Lim, Seung-ok 141
Lim, Yong Hun 420
Lima, Ricardo 50
Lin, Chun-Shin 398
Lin, Man 683
Liu, Chong 484
Liu, Chunlei 494
Liu, Naiqi 720, 726
Liu, Weili 586
Luo, Jun 320
Lv, Song 747

Ma, Jianhua 776
Maciel, Paulo 50
Marquet, Kevin 63
Mart́ı Campoy, A. 150
Mutsuda, Yosuke 346

Ngo, Vu-Duc 256, 287
Nguyen, Huy-Nam 256, 287
Ni, Lionel 1

Oliveira Jr, Meuse 50

Park, Sachoun 361
Park, Young-choong 141

Qi, Zhi-Chang 160
Qin, Huaifeng 96
Qin, Zheng 608
Qiu, Jinbo 452

Rodŕıguez, Francisco 150, 659
Ryu, Yeonseung 766

Sáez, S. 150
Seo, Young-Jun 408
Serrano, Juan José 659
Shin, Dongil 141
Shu, Lei 533, 696
Si, Dae-Keun 741
Siniscalchi, Sabato M. 198
Skliarova, Iouliia 310
Song, Young-Jae 408
Sorbello, Filippo 198

Tamura, E. 150
Tang, Xinan 117
Tang, YuXing 4, 30
Tavares, Eduardo 50

Vitabile, Salvatore 198

Wang, Bibo 473
Wang, Danghui 299
Wang, Fang 747
Wang, Fubao 220
Wang, Lei 430
Wang, Xin 160
Wang, Yaping 85, 618
Wang, Yunfeng 275
Wu, Guofu 484
Wu, Qiang 275
Wu, Wei 373
Wu, Xiaoling 533, 696
Wu, Zhaohui 430
Wu, Zhendong 210

Xia, Yimin 320
Xie, Chang-sheng 757
Xu, Hui 533, 696
Xu, Jian 210

Author Index 779

Xu, Jianliang 512
Xu, Li 683
Xue, Jingling 2

Yamane, Satoshi 332, 346
Yan, Shoumeng 85, 618
Yang, Guoqing 430
Yang, Jian 473
Yang, Jie 533
Yang, Jun 373
Yang, Laurence Tianruo 172, 683
Yang, Liu 275
Yang, Xuejun 230, 596, 708
Yang, Yoon-Sim 71
Yang, Zhi 576
Yi, Huizhan 230, 596, 708
Yiming, Alimujiang 671
Yin, Yixin 554
Yu, Shao-hua 650

Zeng, Guangping 554
Zeng, Jia 129
Zhang, Chuanjun 373
Zhang, Degan 554
Zhang, Deyun 220
Zhang, Fan 85, 618
Zhang, Ke 726
Zhang, Minxuan 320
Zhang, Peinan 244
Zhang, Shengbing 299
Zhang, Shunda 747
Zhang, Youtao 373
Zhao, Minde 430
Zhao, Tan 473
Zheng, Weimin 244
Zhou, Qiang 275
Zhou, XingMing 4, 30
Zhou, XingShe 85, 96, 608, 618
Zhu, Guangxi 452
Zhu, Yi’an 506

	Frontmatter
	Keynote Speech
	Are Lessons Learnt in Mobile Ad Hoc Networks Useful for Wireless Sensor Networks?
	Compiler-Directed Scratchpad Memory Management
	Heterogeneous Multi-processor SoC: An Emerging Paradigm of Embedded System Design and Its Challenges

	Track 1: Embedded Hardware
	Trace-Based Runtime Instruction Rescheduling for Architecture Extension
	Bioinformatics on Embedded Systems: A Case Study of Computational Biology Applications on VLIW Architecture
	The Design Space of CMP vs. SMT for High Performance Embedded Processor
	Reconfigurable Microarchitecture Based System-Level Dynamic Power Management SoC Platform

	Track 2: Embedded Software
	A Methodology for Software Synthesis of Embedded Real-Time Systems Based on TPN and LSC
	Ahead of Time Deployment in ROM of a Java-OS
	The Research on How to Reduce the Number of EEPROM Writing to Improve Speed of Java Card
	A Packet Property-Based Task Scheduling Policy for Control Plane OS in NP-Based Applications
	RBLS: A Role Based Context Storage Scheme for Sensornet
	CDP: Component Development Platform for Communication Protocols
	TrieC: A High-Speed IPv6 Lookup with Fast Updates Using Network Processor
	Separate Compilation for Synchronous Modules
	Implementation of Hardware and Embedded Software for Stream Gateway Interface Supporting Media Stream Transmissions with Heterogeneous Home Networks

	Track 3: Real-Time Systems
	On Using Locking Caches in Embedded Real-Time Systems
	Trace Acquirement from Real-Time Systems Based on WCET Analysis
	Elimination of Non-deterministic Delays in a Real-Time Database System
	Solving Real-Time Scheduling Problems with Model-Checking
	Efficient FPGA Implementation of a Knowledge-Based Automatic Speech Classifier

	Track 4: Power-Aware Computing
	A Topology Control Method for Multi-path Wireless Sensor Networks
	Dynamic Threshold Scheme Used in Directed Diffusion
	Compiler-Directed Energy-Aware Prefetching Optimization for Embedded Applications
	A Dynamic Energy Conservation Scheme for Clusters in Computing Centers

	Track 5: Hardware/Software Co-design and System-On-Chip
	Realization of Video Object Plane Decoder on On-Chip Network Architecture
	Network on Chip for Parallel DSP Architectures
	A New Methodology of Integrating High Level Synthesis and Floorplan for SoC Design
	Designing On-Chip Network Based on Optimal Latency Criteria

	Track 6: Testing and Verification
	Microprocessor Based Self Schedule and Parallel BIST for System-On-a-Chip
	Self-correction of FPGA-Based Control Units
	Detecting Memory Access Errors with Flow-Sensitive Conditional Range Analysis
	Deductive Probabilistic Verification Methods of Safety, Liveness and Nonzenoness for Distributed Real-Time Systems
	Specification and Verification Techniques of Embedded Systems Using Probabilistic Linear Hybrid Automata
	Formalization of {\itshape f}FSM Model and Its Verification

	Track 7: Reconfigurable Computing
	Dynamic Co-allocation of Level One Caches
	Jaguar: A Compiler Infrastructure for Java Reconfigurable Computing
	CCD Camera-Based Range Sensing with FPGA for Real-Time Processing

	Track 8: Agent and Distributed Computing
	Best Web Service Selection Based on the Decision Making Between QoS Criteria of Service
	Data Storage in Sensor Networks for Multi-dimensional Range Queries
	An OSEK COM Compliant Communication Model for Smart Vehicle Environment

	Track 9: Wireless Communications
	Resource Allocation Based on Traffic Load over Relayed Wireless Access Networks
	An Adaptive Cross Layer Unequal Protection Method for Video Transmission over Wireless Communication Channels
	Power-Efficient Packet Scheduling Method for IEEE 802.15.3 WPAN
	Two Energy-Efficient, Timesaving Improvement Mechanisms of Network Reprogramming in Wireless Sensor Network
	On Location-Free Node Scheduling Scheme for Random Wireless Sensor Networks
	Leading Causes of TCP Performance Degradation over Wireless Links
	The Study and Implementation of Wireless Network Router NPU-1

	Track 10: Mobile Computing
	Performance Evaluation of Air Indexing Schemes for Multi-attribute Data Broadcast
	Hierarchical Route Optimization in Mobile Network and Performance Evaluation

	Track 11: Pervasive/Ubiquitous Computing and Intelligence
	Swarm Based Sensor Deployment Optimization in Ad Hoc Sensor Networks
	Weighted Localized Clustering: A Coverage-Aware Reader Collision Arbitration Protocol in RFID Networks
	A Kind of Context-Aware Approach Based on Fuzzy-Neural for Proactive Service of Pervasive Computing

	Track 12: Multimedia and Human-Computer Interaction
	A Novel Block-Based Motion Estimation Algorithm and VLSI Architecture Based on Cluster Parallelism
	Software-Based Video Codec for Mobile Devices
	Real-Time Expression Mapping with Ratio Image
	Power Consumption Analysis of Embedded Multimedia Application

	Track 13: Network Protocol, Security and Fault-Tolerance
	A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm
	An Improved DRR Packet Scheduling Algorithm Based on Even Service Sequence
	An Improvement on Strong-Password Authentication Protocols
	Two-Step Hierarchical Protocols for Establishing Session Keys in Wireless Sensor Networks
	A Revenue-Aware Bandwidth Allocation Model and Algorithm in IP Networks
	Control Flow Error Checking with ISIS
	Support Industrial Hard Real-Time Traffic with Switched Ethernet
	Integer Factorization by a Parallel GNFS Algorithm for Public Key Cryptosystems
	Localized Energy-Aware Broadcast Protocol for Wireless Networks with Directional Antennas

	Track 14: Workshop Selected Papers
	The Optimal Profile-Guided Greedy Dynamic Voltage Scaling in Real-Time Applications
	A Parallelizing Compiler Approach Based on IXA
	The Design of Firewall Based on Intel IXP2350 and Autopartitioning Mode C
	AMT6: End-to-End Active Measurement Tool for IPv6 Network
	Semantic Web Based Knowledge Searching System in Mobile Environment
	A General-Purpose, Intelligent RAID-Based Object Storage Device
	The Design and Implement of Remote Mirroring Based on iSCSI
	Improvement of Space Utilization in NAND Flash Memory Storages

	Keynote Speech
	Smart u-Things and Ubiquitous Intelligence

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

