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Preface

Welcome to the proceedings of the 2005 International Conference on Embed-
ded Software and Systems (ICESS 2005) held in Xian, China, December 16-18,
2005.

With the advent of VLSI system level integration and system-on-chip, the
center of gravity of the computer industry is now moving from personal com-
puting into embedded computing. Embedded software and systems are increas-
ingly becoming a key technological component of all kinds of complex technical
systems, ranging from vehicles, telephones, aircraft, toys, security systems, to
medical diagnostics, weapons, pacemakers, climate control systems, etc.

The ICESS 2005 conference provided a premier international forum for re-
searchers, developers and providers from academia and industry to address
all resulting profound challenges; to present and discuss their new ideas, re-
search results, applications and experience; to improve international commu-
nication and cooperation; and to promote embedded software and system in-
dustrialization and wide applications on all aspects of embedded software and
systems.

Besides the main conference, we also featured the following four workshops
to extend the spectrum of the main conference:

– Scheduling Techniques for Real-Time Systems
– IXA/IXP Application in Embedded Systems
– The Modeling and Security of Ubiquitous Systems
– Intelligent Storage System and Technology

There was a very large number of paper submissions (360) for the ICESS
2005 main conference, not only from Asia and the Pacific, but also from Eu-
rope, and North and South America. All submissions were reviewed by at least
three program or technical committee members or external reviewers. It was
extremely difficult to select the papers for the conference because there were so
many excellent and interesting submissions. In order to allocate as many papers
as possible and keep the high quality of the conference, we finally accepted 140
papers and 31 papers for the main conference and for the workshops, respectively.
There were 63 main conference papers and 8 workshop papers selected in the
LNCS proceedings. We believe that all of these papers and topics not only pro-
vided novel ideas, new results, work in progress and state-of-the-art techniques
in this field, but also promoted cutting-edge research and future cooperation,
and stimulated future research activities in the area of embedded software and
systems.

The exciting conference program was the result of the hard and excellent work
of program vice-chairs, external reviewers, and program and technical committee
members under a very tight schedule. We were also grateful to the members of the
local organizing committee for supporting us in handling so many organizational
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tasks. Last but not least, we hoped you enjoyed the conference’s technical and
social program, and the natural and historic attractions of the ancient city of
Xian.

October 2005 Laurence T. Yang, Xingshe Zhou, Wei Zhao,
Zhaohui Wu, Yian Zhu and Man Lin
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Workshop on Scheduling Techniques for
Real-Time Systems

Introduction

Welcome to the proceedings of the 2005 International Workshop on Schedul-
ing Techniques for Real-Time Systems (IWSRT 2005) held in conjunction with
ICESS 2005 in Xi’an, China, December 16-18, 2005. Traditionally, scheduling
has been an important aspect of real-time systems in ensuring soft/hard timing
constraints. As real-time computing becomes complicated and has more limita-
tions (e.g., power consumption), the demand for more sophisticated scheduling
techniques becomes increasingly apparent.

The purpose of this workshop was to bring together researchers from both
universities and industry to advance real-time scheduling techniques and its ap-
plications. IWSRT 2005 focused on the current technological challenges of de-
veloping scheduling algorithms:

– Power aware scheduling for real time systems
– Heuristic scheduling for real-time systems
– Parallel real-time scheduling
– Scheduling for distributed real-time systems
– Schedulability test, analysis and verification
– QoS scheduling for multimedia applications

From the many submissions, six papers were included in the workshop pro-
gram. The workshop consisted of short presentations by the authors and en-
couraged discussion among the attendees. We hope that IWSRT 2005 provided
a relaxed forum to present and discuss new ideas and new research directions,
and to review current trends in this area. The success of the workshop was the
result of the hard work of the authors and the program committee members. We
were grateful for everyone’s efforts in making the conference a success. Special
thanks go to the members of the ICESS 2005 organizing committee for their sup-
port and help in many organizational tasks. We hoped you enjoyed the workshop
program and the attractions of the ancient city of Xi’an.

Workshop Chairs

Man Lin, St. Francis Xavier University, Canada
Fan Zhang, Hong Kong University of Science and Technology, China
Dakai Zhu, University of Texas at San Antonio, USA
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Workshop on IXA/IXP Application in
Embedded Systems

Introduction

The 2005 International Workshop on IXA/IXP Application in Embedded Sys-
tems (IWIXA) was held in conjunction with the International Conference on Em-
bedded Software and Systems (ICESS 2005), December 16-18, 2005, at North-
western Polytechnical University, Xi’an, P.R. China. The workshop aimed to
provide a stimulating environment for IXA/IXP researchers and developers to
share their experience in order to promote the understanding of the latest trends
in Network Processors and their application development in embedded systems.
The workshop invited new and original submissions addressing theoretical and
practical topics in the following fields (but not limited to these topics):

– Internet eXchange Architecture (IXA) in embedded systems
– Network Processors and IXP
– The IXA/IXP Network Processors-based applications
– New Network Technology
– IXA/IXP-related training and experiments

The workshop received 21 paper submissions. After careful review, 11 papers
were accepted for the workshop program. The workshop committee was grateful
to all authors for their interesting contributions.

Workshop Chair

Naiqi Liu, University of Electronic Science and Technology, China

Workshop Coordinator

Jeffrey Cao, Intel, China

Program/Technical Committee

Luo Lei University of Electronic Science and Technology,
China

Hang Lei University of Electronic Science and Technology,
China

Guangjun Li University of Electronic Science and Technology,
China



Workshop on the Modeling and Security of
Ubiquitous Systems

Introduction

Rapid progress in computer hardware technology has made computers compact
(e.g. laptop, palmtop), powerful, and more affordable. Furthermore, recent ad-
vances in wireless data communications technology have spawned an increasing
demand for various types of services. As a result, we are witnessing an explosive
growth for research and development efforts in the field of ubiquitous communi-
cation and computing systems.

The global growth of interest in the Internet and in high-quality audio, and
video conferencing and VOD, coupled with a growing high-bandwidth structure,
will lead to a rapidly expanding market for ubiquitous multimedia services. The
popularity of mobile services should eventually affect the market for ubiquitous
networks. For this reason, mobile based technologies, such as mobile synchroniza-
tion, QoS assurance, mobile IP-based multimedia technologies and the security
of mobile information systems, need to be studied and developed for future ser-
vices offered to subscribers in future mobile information systems. This ubiquitous
information technology will allow users to travel within an office building, from
office to home, around the country and the world with a portable computer in
their hands. Disconnection will no longer be a network fault, but a common event
intentionally caused by the user in order to preserve a consequence of mobility.

The workshop on Modeling and Security in Ubiquitous Information Systems
contained a collection of high-quality papers on this subject. In addition to
this, we received a few more papers, as a result of the call-for-papers for this
topic. Each paper went through a rigorous, peer review process as required by
the conference. Based upon the review committee’s decision, four papers were
selected for their original contributions as well as their suitability to the topic
of this workshop.

Many people have contributed to the creation of this workshop. Thanks are
due to the members of Howon University’s Mobile Networks Laboratory and the
members of Kyonggi University’s Security Laboratory for their support. Special
thanks go to the members of the review committee for their excellent coopera-
tion. Their hard work, comments and suggestions really helped to improve the
quality of the papers. We would like to take this opportunity to thank every-
one who made this workshop possible: the authors, the ICESS 2005 organizing
committee and the publisher.

Workshop Chair

Dong Chun Lee, Howon University, Korea
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Workshop on Intelligent Storage Systems and
Technology

Introduction

With the present explosive growth in information, the demand for storage sys-
tems is increasing rapidly. To satisfy such mounting demand, storage systems
are required to be more scalable, reliable, secure and manageable than they are
currently. There is a clear and recent trend in which some intelligence is moved
from host machines to storage devices and implemented in the embedded con-
troller. The 2005 International Workshop on Intelligent Storage Systems and
Technology (ISST 2005) brought together storage systems researchers and prac-
titioners to explore new directions in the design, implementation, evaluation,
and deployment of storage systems. ISST 2005 was one of the workshops held in
conjunction with the 2nd International Conference on Embedded Software and
Systems (ICESS 2005) held in Xian, China, December 16-18, 2005.

We were extremely grateful to the program committee members who worked
under a very tight schedule to complete the rigorous review process for the large
number of submissions received by ISST 2005. Their hard work lead to the
selection of the 10 papers presented at the workshop.

Workshop Chairs
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Are Lessons Learnt in Mobile Ad Hoc Networks
Useful for Wireless Sensor Networks?

Lionel Ni

Department of Computer Science,
Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

Abstract. Many researchers consider wireless sensor networks (WSNs)
as special case of Mobile Ad Hoc Networks (MANETs). Although WSNs
do share some similarities with MANETs, WSNs are very different from
MANETs and have many unique research issues. I argue that lessons
learnt from research in MANETs are of little use when studying WSNs.
This talk will address the major differences between MANETs and
WSNs. The focus of this talk will be on new challenging research is-
sues in WSNs, such as ID management, adaptive route - an exciting
research area.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 1, 2005.
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Compiler-Directed Scratchpad Memory
Management

Jingling Xue

Programming Languages and Compilers Group,
School of Computer Science and Engineering,

University of New South Wales,
Sydney, NSW 2052, Australia

Abstract. On-chip memory, in the form of (hardware-managed) cache,
(software-managed) scratchpad memory (SPM) or some combination of
both, is widely used in embedded systems. Most high-end embedded
systems have both cache and SPM on-chip since each addresses a differ-
ent need. Caches allow easy integration and are often effective but are
unpredictable. SPMs are more energy-efficient than caches since they
do not need complex tag-decoding logic. In addition, SPMs provide ab-
solutely predictable performance but the programmer or compiler must
schedule explicit data/instruction transfers between the SPM and off-
chip main memory in an embedded system. In today’s industry, this
task is largely accomplished manually. The programmer often spends a
lot of time on partitioning data and/or instructions and inserting ex-
plicit data/instruction transfers required between the SPM and main
memory. Such a manual approach is time-consuming and error-prone.
Obtaining satisfactory solutions for large application programs by hand
can be challenging. Furthermore, hand-crafted code is not portable since
it is usually customised for one particular architecture.

This talk introduces a compiler approach, called memory coloring,
that we have recently developed to automatically allocating the arrays
in a program to an SPM. The arrays are frequently used in embedded
applications such as image processing and signal processing. The novelty
of this approach lies in partitioning an SPM into a pseudo register file,
splitting the live ranges of arrays to create potential data transfer state-
ments between the SPM and off-chip main memory, and finally, adapt-
ing an existing graph-colouring algorithm for register allocation to assign
the arrays in the program into the register file. This compiler-directed
approach is efficient due to the practical efficiency of graph-colouring al-
gorithms. We have implemented this work in the SUIF/machSUIF com-
piler framework. Preliminary results over benchmarks show that this
compiler-directed approach represents a promising solution to automatic
SPM management.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Heterogeneous Multi-processor SoC: An
Emerging Paradigm of Embedded System

Design and Its Challenges

Xu Cheng

Department of Computer Science,
Peking University, Beijing, China

Abstract. The recent years have witnessed a variety of new embedded
applications. Typical examples include mobile multimedia gadgets, dig-
ital televisions, high-end cell phones, wireless network applications, etc.
The salient features of these applications include more comprehensive
functionalities, higher performance demand, and low-power consump-
tion. These requirements render the traditional single processor-based
embedded systems no longer an appropriate realization for such appli-
cations. On the other hand, the continual advance of VLSI technologies
enables more and more transistors to be integrated on a single chip.
The International Technology Roadmap for Semiconductors predicts that
chips with a billion transistors are within reach. As a result, the push
(application demands) and pull (VLSI technology) forces together give
birth to the multi-processor system-on-chips (MPSoCs).

Heterogeneous MPSoCs are different from traditional embedded sys-
tems in many aspects and they ask for new design and implementation
methodologies. Heterogeneous MPSoCs are not merely a hardware de-
sign. The complexity and heterogeneity of the system significantly in-
crease the complexity of the HW/SW partitioning problem. Meanwhile,
evaluating the performance and verifying its correctness is much more dif-
ficult compared to traditional single processor-based embedded systems.
Constructing a simulator to simulate the system’s behavior and evaluate
its performance takes more effort compared to conventional embedded
systems. The verification of the system also becomes challenging.

Programming a heterogeneous MPSoC is another challenge to be
faced. This problem arises simply because there are multiple program-
mable processing elements and since they are heterogeneous, software
designer needs to have expertise on all of these processing elements and
needs to take a lot of care on how to make the software running as a
whole.

There are a lot more issues that do not appear or easier to tackle
on traditional embedded systems, trade-offs between performance and
low-power will dominate the design life time. However, the incoming
challenges also brought us many opportunities either to industry and
academic research.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, p. 3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Trace-Based Runtime Instruction Rescheduling for 
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YuXing Tang, Kun Deng, HongJia Cao, and XingMing Zhou 

School of Computer, National University of Defense Technology, China 410073 
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Abstract. The update of embedded processor may introduce new function unit, 
new coprocessor, or even new additional DSP. In many cases, software 
application can’t be fully rebuilt to utilize these new resources. This paper 
describes a novel framework, called Runtime Instruction Rescheduling (RIR), to 
solve this problem. RIR can find hot spots in binary codes, build a large 
instruction window to generate trace, reschedule and optimize instructions in 
traces. Different scheduling policies have been simulated. Shown from detailed 
simulation, RIR helps the old binary codes benefit from new hardware resources. 

1   Introduction 

Advance computer system may change quickly in architecture, especially in high-end 
embedded or mainframe area. Extended instruction-set, new function unit or even a 
new coprocessor may be added in the new and powerful system. For example, TI’s 
new TMS320DM310 has a DSP and an additional imaging accelerator except for the 
arm core [1].  

Researchers have presented link-time instruction scheduling to optimize binary 
codes [2] for new architecture. Rebuilding all applications maybe a good way to take 
the full advantages of system updating. But full rebuilding may not be applicable in 
many cases. Lacking of complete source codes may cause trouble in software 
rebuilding. The widely used binary library will prevent application developer from 
transforming them freely.  

In this paper, we present a novel framework for Runtime Instruction Rescheduling 
(RIR). RIR can detect hot spots during the dynamic execution. Without recompiling 
or recoding, RIR will select suitable instructions for scheduling and inject the results 
into the new executing engine. The scheduling is based on trace [3] and trace cache 
[9], which is suitable for various instruction scheduling and aggressive optimizing 
[3][8][10]. Profile-guided loop unrolling and function inline are the main optimizing 
methods. Detailed simulations demonstrate that RIR is a good choice to accelerate 
already-compiled application during system updating. 

The rest of this paper is organized as follows. Section 2 presents related works. 
Section 3 introduces the framework for runtime instruction rescheduling. Section 4 
describes the details of experiments. Section 5 presents the simulation results, and 
then concludes the paper and discusses future work in Section 6. 
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2   Related Works 

Instruction scheduling is one of the main research topics in compiler and 
microarchitecture design. Early researches focused on static compilation. J.Fisher [3] 
introduced trace compaction for global code optimization.  

Crusoe [5] used software to schedule CISC instructions to be executed in a VLIW 
core. Researchers in UIUC [4][8] presented two runtime frameworks for superscalar 
processor to optimize hot spot in runtime. Also Dynamo [6] exhibits promising result 
for runtime optimization based on software. 

Recent years, many projects of dynamic optimization or binary translation have 
been proposed to scheduling code during architecture migration [2][4][5][6]. Most 
researches use simple threshold of trace-begin and trace-end to control the trace 
selection [6][10] or only use fill unit for optimization [16]. And all available 
optimizing and scheduling will perform in small piece of code. Simple-threshold 
methodology simplifies the trace control logic and keeps the cost low. But unalterable 
scheduling can’t adapt to complex and various runtime situations well. Sometimes the 
optimization has to be conservative [7][11]. RIR uses continuous trace profiling [15] 
and multi-level mechanism to solve this problem. 

Loop unrolling and software pipelining may be the most effective way to exploit 
ILP [12]. Many optimizing algorithms and scheduling methods are focus on loop. But 
it is difficult to select the number of unrolling iterations in runtime. Most of the time, 
unrolling must be conservative to avoid the trace fail [12]. Aggressive strategy needs 
a tiny kernel loop, which is familiar in scientific computing [13]. The method in RIR 
tries to unroll the loop in general application, and implement the SMD scheduling in 
dynamic unrolled loop body. 

3   Runtime Instruction Rescheduling 

3.1   Control Flow of RIR 

The framework of Runtime Instruction Rescheduling (RIR) is designed to solve the 
mismatch problem between hardware and software. As described in fig.1, unchanged 
binary image is injected into the new architecture. In early iterations, these 
instructions won’t take advantages from the new hardware resources added by system 
updating. 

Off the processor datapath, profiling is used to grasp execution behavior [11]. 
Those frequently executed code will form an instruction window for runtime 
scheduling. In following iterations, scheduled code will be executed by the new 
resource. 

Compared with traditional solutions of recompiling source codes, RIR may have 
following advantages. 

• No burden for software developer. Rescheduling is transparent to all 
software application. Software can be accelerated without recompiling source 
code. 
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• Speed up old compiled code. RIR can reschedule old instructions, select 
suitable new instructions as substitution, and use the new function units to 
speed up the execution. 

• Minor changes in architecture. A layer of special software completes most 
work of RIR, introducing only small microarchitecture changes. Meanwhile 
RIR software can perform more aggressive scheduling than hardware. 

• Scheduling according to software’s real behavior. Runtime scheduling will 
be directed by real-time profiling information. Thus scheduling can adapt to 
dynamic behavior of execution. 

 

Fig. 1. Execution flow of RIR (the shaded parts present active executing engine during different 
iterations) 

3.2   Trace-Based RIR 

Trace is the basic scheduling unit in RIR. Guided by dynamic profiling [15], those 
frequently executed sequential codes are formed into hot trace. Scheduling in trace 
will stride over the boundary of branch. If the control exits from the middle of trace, 
compensating code or roll back is need to keep right execution. We call this as trace 
fail, otherwise trace hit. The large instruction window of long hot trace will enable 
aggressive schedule and optimization, but it is easier to fail than small trace. Now 
RIR use checkpoint mechanism. When trace failed, processor state would be 
recovered to the beginning of trace, and lower level trace or even unscheduled code 
would be executed instead. 

As shown in Fig.2a, ABDEG is the hot path. This path will be extracted from 
original Control Flow Graphic (CFG) (Fig.2b). The rescheduled trace will be 
executed more efficiently (Fig.2c). 
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Fig. 3. Main hardware components in RIR 

Fig.3 presents the main hardware components of RIR. An instruction queue is used 
to buffer the committed branches from pipeline. Combined with another queue, these 
two queues are used to detect the dynamic pattern to direct optimization (section 3.3 
for detail). As the profiler in [15], a path stack is used to discover execution path from 
the stream of branches. The Least Frequently Used (LFU) policy serves the purpose 
of keeping frequently executed path in hot path table. Dynamic optimization routines 
must transform the instructions in every hot path into an optimized trace. An index 
function connects the hot paths and optimized RIR traces, as a link between original 
code and transformed code. 

The kernel of RIR is the heuristic algorithm for trace generation, described as 
following: 

1) Dynamic profiling records the information of basic blocks, such as branch 
type, branch bias level, target address, branch taken times. 

2) Detect trace-begin condition. (various thresholds and metrics for different 
control instruction and pattern)  
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3) Collect instruction to form trace. Each basic block is added to trace according 
to its performance potential. This potential is calculated by the block size, 
bias level, and possible optimization. 

4) Detect trace-end condition. Predict possible performance gain from whole 
trace, and the cost of useful global schedule and optimization. 

5) Perform advised trace scheduling and optimizing. 

Distinguish from simple threshold trace method, after a trace has been generated, 
trace profiling will be use to detect the usefulness of every trace. Trace will be 
organized and transformed in predefined levels. The frequently executed and 
successful low-level trace will become the candidate to form a high-level trace. The 
trace in higher level may have more exploited ILP, and apply more aggressive 
optimizing then the trace in lower level. 

3.3   Multi-level Trace Strategy 

RIR use the instruction pattern and execution time to control the generation and level 
changing of trace. Instruction pattern, especially the pattern of branch instruction, is 
useful to select a suitable scheduling and optimizing method. Table 1 gives currently 
concerned instruction Pattern in RIR. 

Table 1. Instruction pattern and possible optimizing choice 

Instruction Pattern Description 
Biased direct conditional branch Biased block may be joined to a large trace 
Backward direct conditional 
branch + backward branch 

Possible internal loop, branch occurs time 
can tell the unrolling times 

Biased indirect branch If the number of branch target is limited and 
biased, it can be treat as an direct branch 

Small function call the size of function and the frequency will 
induce the optimization of inline 

As shown in Fig.4, two branch queues are connected to detect the execution pattern. 
The first is known as buffer queue, because it is also used to buffer the branch for path 
stack (Fig.3). RIR will check the tail of buffer queue for backward branch. For possible 
unrolling loop, the target of backward branch should in the second branch queue. 
Illustrated in fig.4, when the call instruction moves to the tail of pattern queue, RIR 
will search for corresponding return in both queue. The address of branch instruction 
and its target address will help RIR calculate path size (loop size or function size).  

1 buffer queue 2 pattern queue 

Callreturn

Pattern 
detector point

Pattern 
detector point  

Fig. 4. Pattern detect in branch queue 
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Direct unconditional branch will not be treated as the boundary of basic block. 
According the type of end branch, the profiling will record additional information, 
such as block size, continuous branch times or function size. All these information are 
used to select the most suitable scheduling method and predict the gain and cost 
before optimization. 

RIR classifies the optimizing and scheduling into different levels. Low-level 
optimization can be applied to all trace, with low cost and little gain. High-level 
optimization can only applied to peculiar instruction stream. But high-level trace will 
get huge performance improvement, and cost more storage and time. Current RIR has 
three levels: 

1. Copy propagation, constant propagation. Because of the ISA and data 
dependency, such optimization still can be applied in runtime. 

2. Conservative loop unrolling. Instructions in the unrolled loop may be 
scheduled or substituted to use the hardware resources more efficiently and 
effectively. 

3. Aggressive loop unrolling and function inline. The hot loop will be unrolled 
more times than in level-2. 

Actually different embedded system may choose different optimization and 
classification. In order to compare with traditional simple threshold control and 
single-pass optimization, this paper uses loop unrolling and function inline as main 
optimization. 

Similar to PARROT’s gradual optimization [10], all trace in RIR will be in low-
level firstly. Then those hot traces will be recognized after several successful 
executions. Hot traces will be rescheduled and re-optimized into high-level trace. If a 
high-level trace jumps out from the middle and fails frequently, it will be degraded 
into low-level. 

Compared with popular simple trace management, multi-level trace has more 
opportunity to apply different optimization. Trace generation will be quicker and 
earlier than ever, because it is easy to construct a low-level trace. Trace profiling will 
direct the unrolling times, and then help to construct a precise instruction window for 
runtime scheduling. Continuous profiling makes RIR adaptive to changeful and 
complex runtime behavior. The trace length limits in traditional method should be 
loosed. Abutting trace cache lines can be combined to store a long trace, because 
optimizing such as loop unrolling can spill the length limits. 

4   Simulation 

Highly recomposed SimpleScalar toolset v3.0d is used to evaluate the design of RIR. 
The main processor is an embedded RISC core, much like MIPS 4Kp embedded core. 
The baseline architecture parameters are in Table 2. The architectural extensions are 
given in Fig.5. In this simulation, the SIMD unit is selected as the new hardware 
resource added during architectural migration. 

SIMD unit has similar function as AltiVec, MMX or SSE [14]. It can execute 
multiply or add instruction for the packed data. Previously, recompiling is needed to 
take the advantage of SIMD extension. RIR eliminate this rebuilt demand. Old 
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application, which has been built and compiled without the knowledge of new 
extension, will also benefit from SIMD under the framework of RIR. Multiple 
iterations of internal loop may be executed in parallel in SIMD unit. RIR can 
substitute suitable instructions into SIMD instructions. 

Table 2. Baseline architecture overview 

Instruction Mips32 style instruction, quad word memory access 
L1 Icache 8kB, 32 byte lines, 2-way set associative, 1 cycles for hit 
L1 Dcache 8kB, 32 byte lines, 4-way set associative, 1 cycles for hit 
Pipeline 5 stage, 4 issue out-of-order 
RIR Trace cache 1024 internal operation storage 
Fetch width 4 instruction per cycle 
Issue width 4 instruction per cycle 
Mis-prediction 3 cycle for pipeline flush 
Reorder buffer 16 entry and other 8 entry for load/store 
Function Units and 
latency (total/issue) 

4 Int ALU (1/1), 1 Int Mult (2/1) / Div (20/19), 4 memory 
(1/1), 4 FP Add (2/1), 1 FP Mult (4/1) / Div (12/12) / Sqrt 
(24/24) 

 

Fig. 5. Simulated Microarchitecture. Deep shaded parts present the extensions of RIR. Grayish 
parts present the new SIMD function unit added during architectural migration. 

Dynamic profiling monitors instruction-fetch and gathers information from branch 
unit. Those frequently executed codes will trigger trace generation. ROM or flash 
memory is used to store RIR routines. They act just as normal system traps. A special 
memory space named trace cache is used to store the scheduled traces. 

Figure 6 presents a piece of code from one dimension FFT. At the beginning of 
loop, the small variable i will direct internal if to perform the addition of a_rl not 
b_im. The right side of figure 6 is the assembly code of internal loop. Frequent 
instructions are in heavy black. 

Figure 7 gives the level-1(a), level-2(b) and level-3(c) trace in RIR. Actually level-
1 trace equals to the result of popular simple threshold trace control. Several heuristic  
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f o r  ( i  =  0 ;  i < e x ;  i + + ) {  
   l e n b  /= 2 ,  t i m b  =  0 ;  
   f o r  ( j  =  0 ;  j < n u m b ;  j + + ) {  
    w = 0 ;  
    f o r ( k  =  0 ;  k  <  l e n b ;  k + + ) {  
 

     j 1  =  t im b  +  k ;  
     j 2  =  j 1  +  l e n b ;  
     i f  ( i  <  e x /2 )  
      a _ r l [ j 1 ]  =  a _ r l [ j 1 ]  +  a _ r l [ j 2 ] ;  
     e l s e  
      b _ im [ j 1 ]  =  b _ im [ j 1 ]  +  b _ im [ j 2 ] ;  
         
        w  + =  n u m b ;  
    } t im b  + = ( 2 * l e n b ) ;  
   } n u m b  * = 2 ;  
 }  
 

 

L o o p K   s l t     R 2 ,  R 3 ,  R 4  
  b n e   R 2 ,  R 0 ,  L o o p J _ E N D  

  a d d    R 1 1 , R 5 , R 3  
  a d d    R 1 2 , R 4 , R 1 1  
  s r a    R 1 0 ,  R 9 ,  1  
  s l t     R 1 0 ,  R 1 ,  R 1 0  
  b n e   R 1 0 ,  R 0  E L S E 1  
  l w     R 1 6 ,  R 1 1 ( R 7 )  
  l w     R 1 7 ,  R 1 2 ( R 7 )  
  a d d   R 1 6 ,  R 1 6 ,  R 1 7  
  s w    R 1 1 ( R 7 ) ,  R 1 6  
  j       L o o p _ K e n d  
E L S E 1 :   l w     R 1 8 ,  R 1 1 ( R 8 )  
  l w     R 1 9 ,  R 1 2 ( R 8 )  
  a d d  R 1 8 ,  R 1 8 ,  R 1 9  
  s w    R 1 1 ( R 8 ) ,  R 1 1  

L o o p K _ E N D :  a d d   R 6 ,  R 6 ,  R 2 0  
  a d d   R 3 ,  R 3 ,  1  
  j       L o o p K  
L o o p J _ E N D :   

Fig. 6. The example code from FFT 

 LoopK  slt      R2, R3, R4 

   bne    R2, R0, Loo J_END 

   add    R11,R5,R3 

   add    R12,R4,R11 

   lw      R16, R11(R7) 

   lw      R17, R12(R7) 

   add    R16, R16, R17 

   sw      R11(R7), R16 

   j          Loop_Kend 

   add    R6, R6, R30 

LoopK_END: add    R3, R3, 1 

  j          LoopK 

LoopK slt    R2, R3, R4 

  bne   R2, R0, LoopJ_END 

  add   R11,R5,R3     add   R21,R5, R20 

  add   R12,R4,R11     add   R22,R4, R21

  lw    R16, R11(R7)    lw    R26, R21(R7)

  lw    R17, R12(R7)    lw    R27, R22(R7)

  add   R3, R3, 2       add   R20, R3, 1 

  add   R6, R6, R30     add   R6, R6, R30 

  add   R16, R16, R17   add   R26, R26, R27

  sw   R11(R7), R16    sw    R21(R7), R26

  j LoopK 

Loop _END:  

LoopK slt     R2, R3, R4 

  bne    R2, R0, LoopJ_END 

  lwvh   v1, R11(R7)  lwvl v1, R21(R7) 

  lwvh   v2, R12(R7)  lwvl v2, R22(R7) 

  add    R3, R3, 2    add R20, R3, 1 

  add    R11,R5,R3    add R21,R5, R20 

  add    R12,R4,R11   add R22,R4, R21 

  addvE  v1, V1, V2   mulad R6,R6,R30,2 

  swvh   R11(R7), v1  swvh R21(R7), v2 

  j LoopK 

LoopJ_END  

 

 (a) level-1: threshold control to select 

frequent instuctions  
(b) level-2 unroll the loop twice (c) level-3 deep scheduling and SIMD optimization 

 

Fig. 7. Multi-level trace optimized from the code of figure 6 

threshold algorithms may unroll the internal loop conservatively, and then construct 
level-2 trace. Elaborate RIR implements aggressive SIMD scheduling in level-3 trace 
to accelerate trace further. 

Level-1 trace (fig.7a) will be constructed firstly. Level-1 trace contains the frequent 
instructions, but no further scheduling or optimization. Then RIR may unroll the 
internal loop (fig.7b), and perform register renaming and scheduling to execute the 
two iterations in a single level-2 trace. Aggressive SIMD scheduling and instruction 
substitute can be seen in level-3 trace. Level-3 trace benefits from SIMD extension 
much more, because of the special SIMD instructions. 

Four policies of trace generation have be simulated: 

1) Baseline (trace cache but no RIR and optimization). Naive trace generation, 
which under the control of simple threshold. The main performance 
contribution is from code layout of trace, not from dynamic optimization. 

2) RIR+inline. Function inline is another fertile resources to enlarge trace size. 
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3) RIR+unroll. Most dynamic optimizations concentrate on the loops, because 
unrolled loops are easy to be optimized by software pipelining or SIMD 
(Vector) unit. The unrolling times will under the control of RIR framework. 

4) RIR+full optimization. Predict gain and cost during trace generation. A set of 
scheduling and optimizing algorithms, such as constant propagation, remove 
branches, and strength reduction etc, are used as the same way of unroll and 
inline. 

Six benchmarks (gzip, vpr, gcc, parser, bzip2 and art) come from SPEC CPU2000, 
the other 7(jpeg, mpeg, gsm, pgp, mesa and epic) are from MediaBench. All compiled 
with “-finline-functions, -funroll-loops, -O2” flag. 

5   Results 

In fig.8, we try to construct large trace aggressively, but without the guide of RIR. 
Large trace will fail more frequently (lower hit rate) than small one. The optimizing 
and scheduling were done in vain if trace fails. 
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Fig. 8. Hit rates in different trace size 
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Fig. 9. Dynamic unrolling in unrolled benchmar 

As illustrated in fig.9, RIR+unrolling is used to discover the usability of dynamic 
loop unrolling. Note all benchmarks have unrolled the loops statically by compiler. 
Every benchmark can benefit from RIR+unrolling. However, not all benchmarks can 
gain enough from loop unrolling. In the dynamic scheduling of bzip2, 55.172% of 
execution may hit in the dynamic unrolled loop. Gcc and vpr are the worst, less than 
2% execution cycles hit in dynamic unrolled loop. 

Fig.10 presents the hit rates for different trace policies with the same average trace 
size (23 instructions per trace). The results are normalized to baseline (the leftmost 
bar). Because more available optimizations result in the generation of more useful 
large traces, proposed RIR has the highest hit rate. RIR achieve higher performance in 
mediabench than spec2000, because the media applications are easier to be optimized 
by loop unrolling, function-inline and other scheduling methods. 
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In Fig.11, we put those scheduled traces into SIMD unit to check the real 
performance. Speedup rates are normalized to normal execution (no rescheduling for 
SIMD). Although the improvement of hit rate in gcc is low (Fig.10), it still can get 
benefits from SIMD acceleration. Bzip2 gets the largest improvement from high hit 
rate of large trace. 
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Fig. 10. Normalized trace hit rate for different policies 
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Fig. 11. Speedup by SIMD unit executing rescheduled trace 

Proposed RIR is always better than pure unroll and pure inline under multi-level 
trace control. Although current RIR only integrate simple scheduling and optimizing, 
average speedup to none-SIMD execution is 17%. This improvement comes from 
RIR trace generation and scheduling for fast SIMD unit. 

Fig.12 presents the percentage of trace in different level during the simulation of 
fig.11. Normal means the instruction is not fetched from trace cache. As shown in 
fig.12, most of the instructions come from trace cache. (Notes: High-level traces are 
upgraded from low-level trace.) Because we give a strict limit to level-3 optimization, 
level-3 traces in gzip and art are less than 1%. Recalling fig.8, the trace hit rate of 
these two benchmark will decrease quickly if we try to construction large trace 
aggressively but blindly. RIR framework will apply optimization and scheduling more 
precisely. 
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Fig. 12. The rate of trace in different level during dynamic execution 

Path profiler, pattern detector, hot path table and trace storage may consume 
additional hardware resource for advance embedded processor. These silicon areas 
also can be used for larger L1 cache. In Fig.13, baseline architecture use 8KB L1 I 
cache and 8KB L2 D cache. The 4k T-cache means that the trace cache can contain 4k 
internal operations (16KB). RIR use a 3k t-cache to store the optimized trace, the rest 
silicon are used for other RIR hardware in fig.3. Simulation shows that RIR may 
achieve better performance than I cache enlargement or pure trace cache mechanism. 
Scheduling code into additional new hardware resource (SIMD unit) improves the 
execution further more. 

gzip
vpr

gcc
parser

bzip2
art jpeg

mpeg
gsm

pgp
mesa

epic
 

Fig. 13. IPC improvement for large I cache, large T-cache, RIR and RIR+SIMD 

6   Conclusion 

Runtime Instruction Rescheduling can help old compiled code benefit from new 
extension of system architecture. No source code rewriting, object rebuilding or 
binary instrumentation is needed. Future RIR will be enhanced to save power by 
shutting down main processor when trace is executed in accelerating resources. More 
aggressive optimization will be implemented and evaluated. Aggressive optimization 
may need the storage space for intermediate language or SSA code [17]. Code 
expansion and storage cost should be giver further attention. 
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Abstract. Bioinformatics applications represent the increasingly important 
workloads. Their characteristics and implications on the underlying hardware 
design, however, are largely unknown. Currently, biological data processing 
ubiquitously relies on the high-end systems equipped with expensive, general-
purpose processors. The future generation of bioinformatics requires the more 
flexible and cost-effective computing platforms to meet its rapidly growing 
market. The programmable, application-specific embedded systems appear to 
be an attractive solution in terms of easy of programming, design cost, power, 
portability and time-to-market. The first step towards such systems is to 
characterize bioinformatics applications on the target architecture. Such studies 
can help in understanding the design issues and the trade-offs in specializing 
hardware and software systems to meet the needs of bioinformatics market. 
This paper evaluates several representative bioinformatics tools on the VLIW 
based embedded systems. We investigate the basic characteristics of the 
benchmarks, impact of function units, the efficiency of VLIW execution, cache 
behavior and the impact of compiler optimizations. The architectural 
implications observed from this study can be applied to the design 
optimizations. To the best of our knowledge, this is one of the first such studies 
that have ever been attempted. 

1   Introduction 

The study of genetics has remarkably advanced our knowledge of the fundamental of 
life: in 1865, G. Mendel first discovered the phenomena of genetic inheritance, 
whereas now, life sciences have matured to the extent of making cloning of living 
beings a reality. Today, to understand biological processes and, in turn, advances in 
the diagnosis, treatment, and prevention of genetic diseases, researchers rely on the 
advanced laboratory technologies (e.g., electrophoresis and mass spectrometry, micro 
array transcript analysis) [1] to study all the genes as well as their activity levels and 
complex interactions in an organism. 

As genomic science moves forward, having accessible computational tools with 
which to extract and analyze genomic information is essential. The field of 
bioinformatics, defined as the computationally handling and processing of genetic 
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information, has experienced an explosive growth in the last decade. Since the human 
genome [2] has been deciphered, it has become evident that bioinformatics will 
become increasingly important in the future. Today, bioinformatics has become an 
industry and has gained acceptance among number of markets especially in 
pharmaceutical, biotechnology, industrial biotechnology and agricultural 
biotechnology. A number of recent market research reports estimate the size of the 
bioinformatics market is projected to grow to $243 billion by 2010 [3]. 

Clearly, computer systems which provide high-performance, cost-effective genetic 
data processing play a vital role in the future growth of the bioinformatics market. 
Many major IT companies (e.g., IBM, Microsoft, SGI, and Apple) have announced 
products specific to bioinformatics applications [4, 5], while dozens of start-up 
companies devoted to bioinformatics have arisen [6, 7]. Most of these solutions 
continue to address the needs of bioinformatics by developing complex and expensive 
high-end systems equipped with general-purpose processors. Costly and time-
consuming, these approaches can also result in hardware and software architectures 
that are not optimized for the price, power, size and flexibility requirements of the 
future bioinformatics computing. 

As their popularities and market continue to grow, future bioinformatics and 
computational biology are likely to adopt the application-specific processors and 
systems to win the increased competition between manufacturers. It has been widely 
accepted that embedded systems have become powerful enough to meet the 
computational challenge from many application domains [8]. On the other hand, using 
programmable, application-specific processors can provides much more flexible 
solutions than an approach based on ASICs and is much more efficient than using 
general-purpose processors in terms of cost, power, portability and the time-to-
market. 

To achieve high-performance, genetic information processing needs to exploit 
instruction level parallelism (ILP). General-purpose processor architectures, such as 
aggressive, out-of-order execution superscalar, detect parallelisms at runtime using 
highly complex hardware. In contrast, VLIW architectures use the compilers to detect 
parallelisms and reduce hardware implementation cost. Consequently, the VLIW is 
increasingly popular as the architecture paradigms for the programmable, application-
specific embedded processors [9]. 

The first step towards the cost-effective genetic data processing platforms is to 
characterize the representative bioinformatics applications on the target architecture. 
Such studies can help in understanding the design issues of the new generation of 
programmable, application-specific processors to meet the needs of bioinformatics 
market as well as the software/hardware tradeoffs that can be made to fine tune the 
systems. This paper evaluates several representative bioinformatics software on the 
VLIW based embedded systems. The workloads we used include the popular 
DNA/protein sequence analysis, molecular phylogeny inference and protein structure 
prediction tools. We investigate various architectural features, such as the basic 
workload characteristics, impact of function units, the efficiency of VLIW execution, 
cache behavior and the effectiveness of compiler optimizations. The architectural 
implications observed from this study can be applied to the design optimizations. To 
the best of our knowledge, this is one of the first such studies that have ever been 
attempted. 
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The rest of the paper is organized as follows. Section 2 provides brief reviews of 
biology background and bioinformatics study areas. Section 3 describes the 
workloads, the architectures modeled, and the simulation methodology. Section 4 
presents the characterization of bioinformatics benchmarks and the architectural 
implications. Section 5 concludes the paper. 

2   Bioinformatics Background 

This section provides an introductory background for biology and describes the major 
areas of bioinformatics. 

2.1   DNA, Gene and Proteins 

All living organisms use DNA (deoxyribonucleic acid) as their genetic material. The 
DNA is essentially a double chain of simpler molecules called nucleotides, tied 
together in a helical structure famously known as the double helix. There are four 
different kinds of nucleotides: adenine (A), guanine (G), cytosine (C) and thymine 
(T). Adenine (A) always bonds to thymine (T) whereas cytosine (C) always bonds to 
guanine (G), forming base pairs. A DNA can be specified uniquely by listing its 
sequence of nucleotides, or base pairs. In bioinformatics, the DNA is abstracted as a 
long text over a four-letter alphabet, each representing a different nucleotide: A, C, G 
and T. The genome is the complete set of DNA molecules inside any cell of a living 
organism that is passed from one generation to its offspring. 

Proteins are the molecules that accomplish most of the functions of the living cell. 
A protein is a linear sequence of simpler molecules called amino acids. Twenty 
different amino acids are commonly found in proteins, and they are identified by a 
letter of the alphabet or a three-letter code. Like the DNA, proteins are conveniently 
represented as a string of letters expressing its sequence of amino acids. A gene is a 
contiguous stretch of genetic code along the DNA that encodes a protein.  

2.2   Bioinformatics Tasks 

In this subsection, we illustrate the major interests in the bioinformatics, including 
sequence analysis, phylogeny inference, and protein 3D structure prediction. 

2.2.1   Sequence Analysis and Alignments 
Sequence analysis, the study of the relationships between the sequences of biological 
data (e.g., nucleotide and protein), is perhaps the most commonly performed tasks in 
the bioinformatics. Sequence analysis can be defined as the problem of finding which 
parts of the sequences are similar and which parts are different. By comparing their 
sequences, researchers can gain crucial understanding of the biological significance 
and functionality of genes and proteins: high sequence similarity usually implies 
significant functional or structural similarity while sequence differences hold the key 
information of diversity and evolution. 
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Sequence A GAATTCAGT-A 

 |       |        |    |         |   |        | 

Sequence B GGA-TC-GTTA 

Fig. 1. Alignment of two sequences (The aligned sequences match in seven positions)  

The most commonly used sequence analysis technique is sequence alignment. The 
idea of aligning two sequences (of possibly different sizes) is to write one on top of 
the other, and break them into smaller pieces by inserting gaps (“-” ) in one or the 
other so that identical subsequences are eventually aligned in a one-to-one 
correspondence. In the end, the sequences end up with the same size. Figure 1 
illustrates an alignment between the sequences A = “GAATTCAGGTA” and B= 
“GGATCGTTA”. The objective is to match identical subsequences as far as possible. 
In the example, the aligned sequences match in seven positions. 

Sequence A  -AGGTCAGTCTA-GGAC 
Sequence B  --GGACTGA----GGTC 
Sequence C     GAGGACTGGCTACGGAC 

Fig. 2. Multiple DNA sequence alignment  

When using a given sequence to find similar sequences in a database, one very often 
obtains many sequences that are significantly similar to the query sequence. Comparing 
each and every sequence to every other in separate processes may be possible when one 
has just a few sequences, but it quickly becomes impractical as the number of sequences 
increases. Multiple sequence alignment compares all similar sequences in one single 
step: all sequences are aligned on top of each other in a common coordinate system. In 
this coordinate system, each row is the sequence for one DNA or protein, and each 
column is the same position in each sequence. Figure 2 illustrates a multiple alignment 
among the sequences A = “AGGTCAGTCTAGGAC”, B= “GGACTGAGGTC”, and 
C=“GAGGACTGGCTACGGAC”. 

2.2.2   Molecular Phylogeny Analysis 
Biologists estimate that there are about 5 to 100 million species of organisms living 
on earth today. Evidence from morphological, biochemical, and gene sequence data 
suggests that all organisms on earth are genetically related. Molecular phylogeny is 
the inference of lines of ancestry for organisms based on DNA or protein sequences 
of those organisms. The genealogical relationships of living things can be represented 
by an evolutionary tree. In the evolutionary trees, the relationships among the species 
are represented, with the oldest common ancestor as the trunk or “root” of the tree. 
The real problem is that of determining just how close or distant the relationship is. 
Bioinformatics phylogeny analysis tools provide crucial understanding about the 
origins of life and the homology of various species on earth. 
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2.2.3   Protein Structure Prediction 
A protein sequence folds in a defined three-dimensional structure, for which, in a 
small number of cases, the coordinates are known. The determination of the three-
dimensional structures of the proteins is of great significance for many questions in 
biology and medicine. For example, knowing how a protein is arranged in the cell 
membrane helps us to understand how they work and can lead to understanding not 
only the cause, but also eventually to the cure for virus infections, such as the 
common cold. Bioinformatics protein analysis tools translate the chemical 
composition of proteins into their unique three-dimensional native structure. 

3   Experimental Methodology 

This section describes the workloads and the methodology we used in this study. 

3.1   Simulation Framework 

Our experimental framework is based on the Trimaran system designed for research 
in instruction-level parallelism [10]. Trimaran uses the IMPACT compiler [11] as it’s 
front-end. The IMPACT compiler performs C parsing, code profiling, block 
formation and traditional optimizations [12]. It also exploits support for speculation 
and predicated execution using superblock [13] and hyperblock [14] optimizations. 
The Trimaran back-end ELCOR performs instruction selection, register allocation and 
machine dependent code optimizations for the specified machine architecture. The 
Trimaran simulator generator generates the simulator targeted for a parameterized 
VLIW microprocessor architecture. 

3.2   Bioinformatics Workloads 

To characterize the architectural aspects of the representative bioinformatics software, 
we use six popular bioinformatics tools in this study. This subsection provides a brief 
description of the experimented workloads. 

Fasta: Fasta [15] is a collection of popular bioinformatics searching tools for 
biological sequence databases. These tools perform a fast protein comparison or a fast 
nucleotide comparison using a protein or DNA sequence query to a protein or DNA 
sequence library. 

Clustal W: Clustal W [16] is a widely used multiple sequence alignment software for 
nucleotides or amino acids. It produces biologically meaningful multiple sequence 
alignments of divergent sequences. It calculates the best match for the selected 
sequences, and lines them up so that the identities, similarities and differences can be 
seen. 

Hmmer: Hmmer [17] employs hidden Markov models (profile HMMs) for aligning 
multiple sequences. Profile HMMs are statistical models of multiple sequence 
alignments. They capture position-specific information about how conserved each 
column of the alignment is, and which residues are likely. 
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Phylip: Phylip (PHYLogeny Inference Package) [18] is a package of the widely used 
programs for inferring phylogenies (evolutionary trees). Methods that are available in 
the package include parsimony, distance matrix, maximum likelihood, bootstrapping, 
and consensus trees. Data types that can be handled include molecular sequences, 
gene frequencies, restriction sites and fragments, distance matrices, and discrete 
characters. In this study, we use dnapenny, a program that performs branch and bound 
to find all most parsimonious trees for nucleic acid sequence. 

POA: POA [19] is sequence alignment tool. POA uses a graph representation of a 
multiple sequence and can itself be aligned directly by pairwise dynamic 
programming, eliminating the need to reduce the multiple sequence to a profile. This 
enables the algorithm to guarantee that the optimal alignment of each new sequence 
versus each sequence in the multiple sequence alignment will be considered. 

Predator: Predator [20] predicts the secondary structure of a protein sequence or a 
set of sequences based on their amino acid sequences. Based on the amino acid 
sequence and the spatial arrangement of these residues the program can predict 
regions of alpha-helix, beta-sheets and coils. 

Table 1. Benchmark description 

Program Description Input Dataset 

fasta compare a protein/DNA sequence to a 
protein/DNA database 

human LDL receptor precursor protein, 
nr database (the primary database from 
NCBI) 

clustalw progressively align multiple sequences 317 Ureaplasma’s gene sequences from 
the NCBI Bacteria genomes database 

hmmer align multiple proteins using profile 
HMMs 

a profile HMM built from the alignment 
of 50 globin sequences, uniprot_sprot.dat 
from the SWISS-PROT database 

dnapenny find all most parsimonious phylogenies 
for nucleic acid sequences 

ribosomal RNAs from bacteria and 
mitochondria 

poa sequence alignment using Partial Order 
Graph 

317 Ureaplasma’s gene sequences from 
the NCBI Bacteria genomes database 

predator 
predict protein secondary structure 
from a single sequence or a set of 
sequences 

100 Eukaryote protein sequences from 
NCBI genomes database 

Table 1 summarizes the experimented workloads and their input data sets. We use 
the highly popular biological databases, including nr (the primary database from The 
National Center for Biotechnology Information (NCBI) [21]) and SWISS-PROT (an 
annotated biological sequence database from the European Bioinformatics Institute 
(EBI) [22]). The two multiple sequences alignment tools (clustalw and POA) use the 
same input data set: the 317 Ureaplasma’s gene sequences from the NCBI Bacteria 
genomes database [23]. The input for the protein structure prediction tool predator is 
the 100 Eukaryote protein sequences from the NCBI genomes database. 
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3.3   Machine Configuration 

The simulated machine architecture comprises a VLIW microprocessor core and a 
two-level memory hierarchy. The VLIW processor exploits instruction level 
parallelism with the help of compiler to achieve higher instruction throughput with 
minimal hardware. The core of the CPU consists of 64 general purpose registers, 64 
floating point registers, 64 predicate registers, 64 control registers and 16 branch 
registers. There is no support for register renaming like in a superscalar architecture. 
Predicate registers are special 1-bit registers that specify a true or false value. 
Comparison operations use predicate registers as their target register. The core can 
execute up to eight operations every cycle, one each for the eight functional units it 
has. There are 4 integer units, 2 floating point units, 1 memory unit and 1 branch unit. 
The memory unit performs load/store operations. The branch unit performs branch, 
call and comparison operations. The level-one (L1) memory is organized as separate 
instruction and data caches. The processor’s level-two (L2) cache is unified. Table 2 
summarizes the parameters used for the processor and memory subsystems. 

Table 2. Machine configuration  

VLIW Core 
Issue Width 8 
General Purpose Registers  64, 32-bit 
Floating-Point Registers  64, 64-bit 

Predicate Registers 64, 1-bit (used to store the Boolean values of 
instructions using predication) 

Control Registers 64, 32-bit (containing the internal state of the 
processor) 

Branch Target Registers 16, 64-bit (containing target address and static 
predictions of branches) 

Number of Integer Units  4, most integer arithmetic operations: 1 cycle, integer 
multiply 3 cycles, integer divide 8 cycles 

Number of Floating Point Units  2, floating point multiply 3 cycles, floating point 
divide 8 cycles 

Number of Memory Units  1 
Number of Branch Units  1, 1 cycle latency

Memory Hierarchy 

L1 I-Cache 8KB, direct map, 32 byte/line, cache hit 1 cycle 

L1 D-Cache 8KB, 2-way, 32 byte/line, cache hit 1 cycle 

L2 Cache 64KB, 4-way, 64 byte/line, L2 hit 5 cycles, 35 cycles 
external memory latency 

4   Results 

This section presents a detailed characterization of the VLIW processor running the 
bioinformatics software. Unless specified, all the applications are compiled with  
the IMPACT compiler with the maximum –O4 option to produce optimized code  
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for the VLIW processor. All benchmarks are run to the completion of 1 billion 
instructions. We examine benchmark basic characteristics, the efficiency of VLIW 
execution, the impact of function units, cache behavior and the impact of compiler 
optimizations. 

4.1   Benchmark Basic Characteristics 

Figure 3 shows the dynamic operations mix of the examined bioinformatics tools. The 
dynamic operations are broken down into seven categories: branches, loads, stores, 
integer (ialu) and floating point (falu) operations, compare-to-predicate (cmpp) 
operations and prepare-to-branch (pbr) operations. Prepare-to-branch operations are 
used to specify the target address and the static prediction for a branch ahead of the 
branch point, allowing a prefetch of instructions from the target address. Compare-to-
predicate operations are used to compute branch conditions, which are stored in 
predicate registers. Branch operations test predicates and perform the actual transfer 
of control. 
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Fig. 3. Dynamic Operations Mix 

As can be seen, load and integer operations dominate the dynamic operations in the 
studied bioinformatics programs. Overall, loads and integer computations account for 
more than 60% of dynamic operations. Only 5% of operations executed are stores. 
Stores occur only when updating the dynamic data structures such as HMM (e.g. on 
hmmer) and alignment score matrices (e.g. on clustalw, fasta and POA). Branches 
constitute 12% of operations executed. Additionally, there are 11% compare-to-
predicate and 13% of prepare-to-branch operations in the dynamics operations. The 
experimented workloads all contain negligible (less than 0.1%) floating point 
operations, suggesting that floating point units are under-utilized. Therefore, the 
bioinformatics embedded processors may remove the costly and power-hungry 
floating point units and use software emulation for the floating point execution. 

4.2   ILP 

Figure 4 shows the number of dynamic operations completed each cycles on the 
VLIW machine. To quantify the baseline ILP performance, we use the classic 
compiler optimizations and assume the perfect caches. As can be seen, although the 
VLIW machine can support 8 operations every cycle, on the average, only 1.3 
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operations are completed per cycle. The processor baseline OPC (operations per 
cycle) ranges from 1.27 (clustalw) to 1.45 (predator). This indicates that control and 
data dependencies between operations limit the available ILP. Using conventional 
code optimizations and scheduling methods, VLIW processors can not attain the 
targeted ILP performance on the studied bioinformatics software. 
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Fig. 4. Baseline ILP 

4.3   Impact of Function Units 

On the VLIW processors, the number and type of function units affects the available 
resources for the compiler to schedule the operations. The presence of several 
instance of certain function unit allows the compiler to schedule several operations 
using that unit at the same time. Figure 3 shows that the integer and memory 
operations dominate the bioinformatics software execution. We investigate the 
impact of the integer and memory units on the benchmark performance in this 
subsection. 
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Fig. 5. Impact of Integer Units 

We vary the number of integer units from 1 to 4 while keeping other architectural 
parameters at their default values. Figure 5 shows the impact of integer units on the 
ILP performance. As can be seen, increasing the number of integer units provides a 
consistent performance boost on the integer computation intensive benchmarks, since 
it permits greater exploitation of ILP by providing larger schedulable resources. When 
the number of integer units increase from 1 to 4, the processor ILP performance 
increases from 2.4% (hmmer) to 35.5% (predator), with an average of 16%. 
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Fig. 6. Impact of Memory Units 

We also perform experiments varying the number of memory units. Similarly, 
when we vary the memory units, the setting of other machine parameters are fixed. 
Figure 6 shows the impact of the memory units on the performance. We find that 
adding more memory units does not effectively improve performance on the majority 
of workloads. Increasing the memory units from 1 to 2 provides a performance gain 
ranging from 1% (dnapenny) to 19% (hmmer). Further increasing the memory units 
from 2 to 4 yields negligible performance improvement. The traditional compiler 
optimizations lack the capability of scheduling the instructions across the basic block 
boundaries, making the added memory units underutilized. 

4.4   Cache Performance 

This section studies the cache behavior of bioinformatics applications. Figure 7 shows 
the variation in the cache miss rates with cache associativity. We vary the cache 
associativity from 1 to 4, keeping the sizes of the L1 I-cache, L1 D-cache and L2 
cache fixed at their default values. Cache misses are further broken down into 
conflict, capacity and compulsory misses. As can be seen, direct map instruction 
caches yield high miss rates on nearly all of the studied benchmarks. The conflict 
misses due to the lack of associativity dominate the cache misses. The instruction 
cache miss rates drop significantly with the increased associativity: the 4-way set 
associative, 8KB L1 I-cache shows a miss rate of less than 1%. This indicates that 
bioinformatics applications usually have small code footprints. A small, highly 
associative instruction cache can attain good performance on the bioinformatics 
applications. 

Compared with instruction misses, data misses are difficult to absorb, even with 
the high cache associativity. Figure 7 (b) shows that on the 8-way L1 data cache, the 
miss ratios exceed 12% on benchmarks fasta, hmmer and POA. Unlike the 
instruction misses, the data cache misses are dominated by the capacity misses. This 
is because sequence alignment programs normally work on large data sets with little 
data reuse. Figure 7 (c) shows that the L2 misses on five out of six programs are 
dominated by the capacity misses, suggesting that most of the L2 misses are caused 
by data references. Increasing the L2 cache associativity does not seem to be very 
helpful. 
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Fig. 7. Impact of Cache Associativity 
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Fig. 8. Impact of Cache Size 

We also perform experiments varying the size of the caches. When we vary the L1 
instruction cache, the sizes of L1 data cache and L2 cache are fixed. The associativity 
of the L1 I-cache, L1 D-cache and L2 cache are set to be direct-map, 2-way and 4-
way. Figure 8 plots the cache miss rates for a range of varied cache sizes. As can be 
seen, on a direct-map instruction cache, increasing the cache sizes from 8K to 16K 
can nearly eliminates all the cache misses. For data references, a 32K L1 cache can 
achieve good hit ratios across all the benchmarks. The large working sets of fasta, 
hmmer and POA cause substantial traffic to the L2 cache. The entire working sets can 
be captured by a L2 cache with a size of 256K Byte. Larger input data would increase 
the working set requiring larger caches. 

4.5   Compiler Optimizations 

A compiler for VLIW processors must expose sufficient instruction-level parallelism 
(ILP) to effectively utilize the parallel hardware. This subsection examines the impact 
of compiler optimizations on the bioinformatics software execution. 
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We first investigate the impact of basic compiler optimizations on the benchmark 
performance. The IMPACT compiler provides a set of classic optimizations such as 
constant propagation, copy propagation, constant folding, and strength reduction. 
These optimizations do not necessitate any additional microarchitectural support. On 
the IMPACT compiler, level 0 option does not contain any optimization. Level 1 
option contains local optimizations. Level 2 option contains local and global 
optimizations. Level 3 option contains local, global and jump optimizations. Level 4 
option contains local, global, jump and loop optimizations. 
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Fig. 9. Impact of Basic Compiler Optimizations 

Figure 9 shows the effectiveness of using classic compiler optimizations. The 
program execution time (presented in terms of speedup) is normalized to that with no 
compiler optimizations. As can be seen, the basic compiler optimizations provide a 
speedup ranging from 1.0X to 1.15X. The classic compiler optimizations yield limited 
ILP performance improvement. 

More aggressive compiler optimization technique can be used to further exploiting 
ILP. The IMPACT compiler provides two types of such optimizations: superblock 
and hyperblock optimizations. The superblock optimizations [13] form superblocks, 
add loop unrolling and compiler controlled speculation, in addition to the basic block 
optimizations. Compiler controlled speculation allows greater code motion beyond 
basic block boundaries, by moving instructions past conditional branches. Hyperblock 
optimizations [14] add predicated execution (conditional execution/if-conversion) to 
superblock optimizations. Predicated execution can eliminate all non-loop backward 
branches from a program. 

Figure 10 shows the speedups of program execution due to superblock and 
hyperblock optimizations. The data is normalized to that of using the basic 
compiler optimization. Figure 10 shows that compared to the basic block 
optimizations, the superblock optimizations further yield speedups ranging from 
1.1X to 1.8X. The hyperblock optimization results in speedups ranging from 1.1X 
to 2.0X. On the average, superblock and hyperblock optimizations improve 
performance by a factor of 1.3X and 1.5X. These speedups present an opportunity 
for improving the efficiency of VLIW execution on the bioinformatics 
applications. 
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Fig. 10. Impact of Aggressive Compiler Optimizations 

5   Conclusions 

In the near future, bioinformatics and computational biology are expected to become 
one of the most important computing workloads. Bioinformatics applications usually 
run on the high-end systems with general purpose processors like superscalar. The 
rapidly growing market and the increasingly intensive competition between 
manufactures require the cost-effective bioinformatics computing platforms. The 
programmable, application-specific embedded processors and systems appear to be an 
attractive solution in terms of cost, power, size, time-to-market and easy of 
programming. 

In order to design the complexity/cost effective processors and specialize hardware 
and software for the genetic information processing needs, a detailed study of the 
representative bioinformatics workloads on the embedded architecture is needed. This 
paper studies how the VLIW and compiler perform to extract the instruction level 
parallelism on these emerging workloads. The workloads we used include the popular 
DNA/protein sequence analysis, molecular phylogeny inference and protein structure 
prediction tools. Characteristics including operation frequencies, impact of function 
units, cache behavior, and compiler optimizations are examined for the purposes of 
defining the architectural resources necessary for programmable bioinformatics 
processors. 

The major observations are summarized as follows: Loads and integer operations 
dominate bioinformatics applications execution. Floating point unit is underutilized. 
The baseline ILP performance is limited on the studied bioinformatics applications 
due to the data and control dependences in the instruction flow. A small, set-
associative instruction cache can handle instruction footprints of bioinformatics 
applications efficiently, suggesting that bioinformatics applications have good locality 
and small instruction footprints. For the L1 data cache, capacity misses dominate the 
cache miss, suggesting that the bioinformatics applications have poor data locality. 
Therefore, in the L1 data cache design, increasing capacity is more efficient than 
increasing associativity. Classic compiler optimizations provide a factor of 1.0X to 
1.15X performance improvement. More aggressive compiler optimizations such as 
superblock and hyperblock optimizations provide additional 1.1X to 2.0X 
performance enhancement, suggesting that they are important for the VLIW machine 
to sustain the desirable performance on the bioinformatics applications. 

In the future, we plan to explore new architectural and compiler techniques for 
VLIW processors to support bioinformatics workloads. We also plan to expend our 
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study to include other bioinformatics applications such as molecular dynamics, gene 
identification, protein function assignment, and microarray data analysis. 
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Abstract. In embedded world, many researchers have begun to examine 
Simultaneous Multithreading (SMT) and Chip Multiprocessing (CMP) for 
various demands. SMT and CMP both make a chip to achieve greater 
throughput. But the power, chip size and thermal features are also important for 
embedded system. In this paper we compare the design space of both 
architecture. As simulation results shown, although extending wide-issue 
processor into SMT has the advantage of small design changes, high hardware 
resource efficiency and high throughput, CMP presents better scalability in raw 
performance and power metric under heavy multithreaded workload than SMP. 
CMP integrates several similar processor in a single chip, so it can’t uses the 
chip area efficiently like SMT. And the chip area limits will prevent the CMP 
from equipping a large L2 cache, which will hurt the performance of memory-
bound application. The evaluation also points out the design problem and 
possible solution for power, chip size and thermal efficiency in CMP and SMT. 

1   Introduction 

New developments and new standards in embedded processors, such as mobile 
entertainment, high bandwidth network and multimedia application, call for a 
significant increase in raw performance while at the same time the market demands 
low power, small chip size and good thermal feature. Multimedia, mobile and 
communication workloads are inherently multithreaded. Using multithreading 
architecture to improve the whole performance rather than a single program makes 
SMT and CMP attractive for high-end embedded processor. 

In today’s processor design, the execution time of single processor is not the only 
metric. The whole throughput, power, energy, size, security and fault-tolerate become 
emergent metrics. The high IPC of SMT and CMP make them possible to 
compromise for power, chip size and thermal feature. More hardware resources 
promise SMT and CMP a wide design space for different metrics. 

Having been developed for over 10 years, SMT and CMP architecture have many 
new choices. Not limited by D.M.Tullsen’s extension in superscalar [2], there are 
SMT based on VLIW and scalar core. Integrating two or three high-end cores or 
dozens of simple cores, and using homogeneous or heterogeneous core for 
integration, these are still unresolved questions in CMP design. 

In this paper we compare the simulation results of SMT and CMP under different 
hardware and workloads configuration. The main design metrics and targets include 
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raw performance (IPC), power, chip area and temperature. Different metrics may 
correlate with each other. For example, low power often means some sacrifice in 
performance. This paper also discusses some interrelationships among main metrics. 

2   Related Works 

Hardware multithreading (MT) begin to enter the main stream of processor design 
[1][4]. Comparing to MultiScalar or other MT architectures that change programming 
mode or hurt the compatibility, SMT and CMP are the two most popular MT 
architectures in academic and industry. 

2.1   SMT 

D.M. Tullsen proposed to extend a wide-issue superscalar processor into 
multithreading context [2]. The original SMT was designed to improve the utilization 
of superscalar hardware with tiny additional cost. SMT needs to add thread tag in 
single thread (ST) architecture, and maintain a hardware context for every 
simultaneous thread, including general register file, PC register and other state 
registers. 
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Fig. 1. ST superscalar, SMT and CMP architecture overview 

2.2   CMP 

L. Hammond et.al [3] argued that wire delay and complexity would prevent super 
wide-issue (>4) processor to exploit more ILP. Their CMP use relatively simple 
processor cores to exploit only moderate mounts of ILP within a single thread, while 
executing multiple threads in parallel across these cores. Generally, the multiple 
processor cores have their own L1 cache, but share L2 Cache. In early design, the 
processor core in CMP is much simpler than SMT. 

Alpha21364 and Hyper-threading have proved that it is an efficient and effective 
way to implement SMT in existing design. S. Kaxiras et.al present the implementation 
of SMT VLIW core for mobile phone workloads [8]. CMP have been used for many 
years for network processor. Figure.1 presents the architecture different among single 
thread superscalar, SMT and CMP processor. 



32 Y. Tang, K. Deng, and X. Zhou 

Early in 1997, architecture researchers have compared SMT and CMP performance 
for possible billion-transistor architecture. Early researches focused on raw 
performance  (IPC) and execution time [2][3]. In 2001, S. Kaxiras et al [8] studied the 
power consumption of CMP and SMT in DSP design. R. Sasanka et al [5][6] compare 
the energy efficiency of SMT and CMP in multimedia workloads. Yingmin Li et al 
[9] further compare the different thermal feature of SMT and CMP. This paper 
surveys the comparing of SMT vs. CMP in performance, power, chip size and thermal 
under different processor configuration and workloads. 

3   Methodology and Workloads 

SPEC2K is the most frequently used benchmarks for CPU design. For multithreading 
test, several benchmarks will be united to construct a workload. MediaBench is more 
suitable for the validation of embedded processor. In desktop, hand-hold and mobile 
market, there are huge number of multithreaded media processing. For N person’s 
net-meeting, one video/audio encoder and N-1 decoders are needed to run in parallel 
in each terminal. In following experiments, the benchmarks have been classified into 
4 types, according to their IPC in 4-issu out-of-order RISC processor (Table 2.) 
deriving from MIPS 4Kp embedded core. 

Table 1. Benchmarks and workloads classification 

Type Benchmark Remark 
Spec-H 175.vpr, 176.gcc, 252.eon, 256.bzip2  IPC > 1 
Spec-L 164.gzip, 181.mcf, 197.parser IPC < 1 
Media-H GSM, MPEG2-d, jpeg, epic IPC > 2 
Media-L H.263-e, MPEG2-e, G.721 IPC < 2 

Multimedia applications are easier to exploit ILP than SPEC, but H.263 and mpeg2 
encoder has the IPC of 1.6 and 1.5 respectively, far below mpeg2-decoder from 
mediabench (IPC=3.2). The average IPC of gzip , mcf and parser is lower than 1. mcf 
suffers from high L2 cache miss rate, and delivers the worst IPC of 0.38. To 
evaluation SMT and CMP performance in low ILP media applications, we added 
H.263 and mpeg encoder into Media-L, although they are not included in official 
MediaBench. 

Table 2. Baseline single thread architecture 

Issue width 4 instruction per cycle 
Function unit 3-AlU, 2-FPU, 1-branch unit, 2 load/store units 
Branch predictor 4K entry bimod 
Register file 32 GPR, 32 FPR 
L1 Icache/Dcache 8KB, 2-way, 32B blocks, 1-cycle/hit 
L2 Cache 128KB, 4-way, 44B blocks, 8-cycle/hit 
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The benchmarks in these 4 types will mixed together to form multithread 
workloads. Several threads from SPEC-L can test the efficiency of multithread 
architecture when ILP in each thread is difficult to be exploited. The composing of 
workload uses the method in [5][9]. 4 simulation frameworks, SMTSIM, MP-
Simplesim, Wattch and Hotspot, have been used in following simulation. In 
simulation, SMTx means that x threads run simultaneously in 1 processor of SMT 
style; CMPx means that there are x processing core in 1 chip, each core execute 1 
thread. 

4   Compare the Raw Performance 

4.1   Performance Under Same Processor Core 

In the test of figure.2 and figure.3, similar processor core (Table 2) has been used in 
SMT and CMP. SMT has the same total issue width as CMP, as well as L1 and L2 
cache size.  

 

Fig. 2. IPC of SMT vs. CMP in same core under 2-thread workloads 

 

Fig. 3. IPC of SMT vs. CMP in same core under 4-thread workloads 

For better hardware utilization, SMT2 have the same configuration of function 
units as a single processor core in CMP. SMT4 extends the issue bandwidth into 16 
instruction/cycle, and double the function units into SMT2. 

As shown from results, CMP have better performance than SMT when they are 
using the same processor core. Especially for SPEC-H and Media-H, because of the 
low competition in hardware, CMP show better scalability than SMT. 
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4.2   Performance When CMP Use Simple Core 

To control the hardware cost of implementation, CMP may integrate several simpler 
cores than SMT or ST processor. In the evaluation of figure.4 and figure.5, 
CMP2/CMP4 use 2-issue superscalar processor, which has only 1-ALU and 1-FPU. 
But SMT and CMP have the same size of L1 and L2 cache. 

 

Fig. 4. IPC of SMT vs. CMP in different core under 2-thread workloads 

 

Fig. 5. IPC of SMT vs. CMP in different core under 4-thread workloads 

For SPEC2000 benchmarks, the performance of CMP2 is close to SMT4. SMT 
achieves tiny superior in SPEC-H. However, for media benchmarks, CMP is limited 
by its issue bandwidth, and its performance is much lower than SMT. 

4.3   Performance with Limitation in Chip Size 

The results from figure.2 to figure.5 indicate that CMP should integrate several high-
performance cores. But these cores will occupy more chip area. Keeping both the 
CMP and SMT use the same chip size, CMP has to sacrifice its L2 cache size for 
additional core. Section 6 discusses chip area in detail. In figure.6 and figure.7, SMT 
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and CMP use the same high performance core. But SMT2 and SMT4 have 256KB 
and 512KB L2 cache respectively, but CMP2 and CMP4 are 128KB and 245KB 
respectively. 

 

Fig. 6. IPC of SMT vs. CMP in limited chip size under 2-thread workloads 

 

Fig. 7. IPC of SMT vs. CMP in limited chip size under 4-thread workloads 

Except for SPEC-L, small L2 cache has little impact for CMP. This may because 
that most benchmarks are cpu-bound, and have high hit rate in cache. Mcf in SPEC-L 
is memory-bound. CMP suffer from the limited size of l2 cache in SPEC-L. SMT is 
superior for memory-bound application because it has the ability to implement large 
L2 cache. 

5   The Power of CMP and SMT 

Formula 1 has been widely used to calculate the power of processor. The value of 
Power-Rate is to examine whether the throughput increasing brings further power 
dissipation  
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Power = V2 ∗ F ∗ ∗ C  (1) 

Power-Rate = Power / IPC  = V2 ∗ F∗ ∗C / IPC (2) 

V is the supply voltage of processor. F presents the operating frequency.  is the 
active factor of hardware components, which between 0 and 1. C is the load capacity 
of circuit. We derive V, E and C from ITRS data [11]. After the simulation under 
Wattch [10] framework, we get the value of . 

 

Fig. 8. Power Rate of SMT vs. CMP in 2-thread workloads 

 

Fig. 9. Power Rate of SMT vs. CMP in 4-thread workloads 

Figure.8 and Figure.9 illustrate that CMP is better than SMP in low power design. 
The competition in SMT’s register port and result bus makes the active factor  high. 
Furthermore, CMP is more suitable to use DVS (Dynamic Voltage Scalar) 
mechanism for low power, because it has more separated hardware components for 
scheduling than SMT. This means lots for handhold equipments which execute 
multimedia application. They may use DVS to decrease the operating frequency in 
order to increase battery time. The tests in [6] and [8] also indicate that CMP can 
achieve lower voltage and dissipation than SMT by DVS, even under the real-time 
demands of multimedia. 
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6   Chip Size for SMT and CMP 

Certainly CMP needs more chip area than SMT when they use the same processor 
core. The chip size of CMP increases linearly with the number of cores (threads). The 
increased interconnection, such as result bus and shared I/O port, impacts the chip 
size of SMT. In previous research [1], SMT has the same function unit configuration 
as single thread processor for high utilization. Actually, in 4-way and 8-way SMT, 
more function units are needed than 2-way SMT. They will occupy more chip area, 
but this increasing is lower than CMP. 

Based on the method in [8] and the die area date of MIPS R4000, Table 3 shows 
the predicated data of chip area for SMT and CMP. Without the consideration of 
memory system (cache and TLB), SMT need a little more than half of the CMP’s 
silicon area. 

Table 3. The chip area for Multithread architecture 

Component area ST 2-way MT 4-way MT 8-way MT 
Function unit 47% 47% 70% 94% 
Register File 21% 42% 84% 168% 
Fetch-Issue logic 24% 24% 48% 86% 
Reorder buffer 8% 16% 32% 64% 
Further interconnection 0% 7% 14% 56% 
SMT chip size 100% 136% 248% 468% 
CMP chip size 100% 200% 400% 800% 

Although SMT is simple in microarchitecture, it is more complex in layout and 
physical implementation than CMP. The further interconnection part in Table 3 
includes this exponential cost. 

7   Thermal Feature 

With the help of HotSpot and Wattch framework, we can identify the components 
which have the highest competition and deliver most heat. SMT’s temperature 
increases in sharing and competed unit, while CMP’s temperature increases globally 
by heavy workloads. Comparing with ST architecture, the  value of SMT is 78% 
higher in register allocation and decode-issue logic. In reorder buffer, the  value of 
SMT is 89% higher than single thread architecture. The highest temperature of SMT 
component may be 20  higher than average. But for CMP which has the same 
average temperature, it has no outstanding high temperature parts. 

For the high competition in register file, SMT can apply bank structure to limit the 
competition. [9] was proposed to limit the fetch bandwidth or register read/writer 
ability, in order to decrease the utilization of key components. Cluster methodology 
can decrease the competition, but it will increase the delay of pipeline. The read/write 
of cache is also the main reason of high temperature, multi-bank structure will be 
helpful. 
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8   Conclusion 

From the purpose to use existing superscalar design, SMT has the advantage of small 
chip size, high resource utilization and easy-to-implement. But the different thread in 
SMT will compete the shared resources, such as issue logic and function unit. Under 
heavy threaded workloads, CMP is more attractive in power and thermal feature 
limited design. In future advance embedded processor, SMT may become a basic 
design choice like superscalar. Using several SMT cores to construct CMP has been 
proved to be a promising design, as well as integrating heterogeneous cores in CMP. 
The performance, power, chip size and thermal feature of these designs should be 
checked in future works. 
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Abstract. Power-aware design is one of the most important areas to be empha-
sized in multimedia mobile systems, in which data transfers dominate the power 
consumption. In this paper, we propose a new architecture for motion compen-
sation (MC) of H.264/AVC with power reduction by decreasing the data trans-
fers. For this purpose, a reconfigurable microarchitecture based on data type is 
proposed for interpolation and it is mapped onto the dedicated motion compen-
sation IP (intellectual property) effectively without sacrificing the performance 
or the system latency. The original quarter-pel interpolation equation that con-
sists of one or two half-pel interpolations and one averaging operation is de-
signed to have different execution control modes, which result in decreasing 
memory accesses greatly and maintaining the system efficiency. The simulation 
result shows that the proposed method could reduce up to 87% of power caused 
by data transfers over the conventional method in MC module. 

Keyword: H.264/AVC, motion compensation, quarter-pel interpolation, low-
power, memory access, multimedia SoC, system architecture. 

1   Introduction 

The demand of low-power and high-speed computing architecture for mobile systems 
has been increased dramatically due to the dominant popularity of multimedia proc-
essing and video compression. And the system-on-chip (SoC) technology integrating 
many components onto a single chip allows designing embedded systems within a 
short period; furthermore grows into SoC platform technology targeting a class of 
applications [9]. In this era, data and video coding is very important function because 
of small storage of mobile devices and limited bandwidth of wireless internet. 
H.264/AVC [10], the latest video coding standard, is the most remarkable codec at the 
present time since it can make high-quality motion pictures transmitted at low bit 
rates. Therefore, H.264/AVC is used for many multimedia applications, such as tele-
conferencing, mobile video communication, education applications, and digital mul-
timedia broadcasting (DMB). As a key multimedia application, H.264/AVC requires 
complex operations to achieve high-quality and high-density compression compared 
with earlier ones. The primitive operation of H.264/AVC decoder is motion compen-
sation (MC) which requires extensive computations accompanied with heavy memory 
accesses [11].  
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In general, multimedia applications involve data-dominant algorithms which re-
quire large amounts of data and complex arithmetic processing. It means that the data 
transfer and memory organization will have a dominant impact on the power and area 
cost of the realization [1]. In multimedia systems, this is why architectural and algo-
rithmic level approaches for low power could get the biggest result compared with 
other level of abstractions such as technology, layout, circuit, and gate [2]. Therefore, 
an efficient implementation method of the algorithms to reduce power consumption is 
required at the system-level by designing application specific memory organization 
and control flow. The paper [3] recalls the importance of this idea by showing that I/O 
energy can be as high as 80% of the total energy consumption of the chip, and to 
tackle this problem, there have been several methods on low power video and signal 
processing applications [4-7]. 

This research proposes a new computing architecture for motion compensation 
with low-power in H.264/AVC codec. It can achieve large savings in the system 
power of a crucial part of H.264/AVC decoder by decreasing memory accesses with-
out sacrificing the performance or the system latency. For this purpose, we devise two 
techniques; one is merging two different stages, half-pel interpolation and averaging, 
into one; the other is reordering execution sequences of the interpolation. These are 
mapped onto SIMD (single instruction multiple data)-style architecture equipping 
with small intermediate memory, which result in much fewer memory accesses while 
executing interpolation stages. 

In the next section, we describe the motion compensation algorithm in 
H.264/AVC. Section 3 introduces the basic architecture of SoC platform. In Section 
4, the proposed method for quarter-pel interpolation is described. In Section 5, the 
power model and the simulation results are introduced. Finally, the paper ends with 
conclusions in Section 6. 

2   Motion Compensation in H.264/AVC  

Video coding is achieved by removing redundant information from the raw video 
sequence. In general, pixel values are correlated with their neighbors both within the 
same frame and between consecutive frames, which is known as spatial and temporal 
redundancy, respectively. Those redundancies can be reduced by motion estimation 
and compensation which are often based on rectangular blocks (MxN or NxN). A 
16x16 pixel area is the basic data unit for motion compensation in current video cod-
ing standards, which is called as a macroblock. 

2.1   Block-Based ME/MC and H.264/AVC 

H.264 is based on the block-based motion estimation and compensation and similar 
with previous standards; however, it can achieve significant gains in coding efficiency 
over them. This may come from the enhanced key features to motion estimation and 
compensation; (a) variable block-size motion compensation with small block sizes, 
(b) quarter-pel motion estimation accuracy, and (c) multiple reference pictures selec-
tion. However, it is inherently accompanying with increased complexities. Fig. 1 
shows MC kernel which contains nested loops using 6-tab FIR filter. And there are 
several conditional branches at the last loop. 
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Fig. 1. Fractional pixel interpolation in inter motion compensation 

2.2   Half-pel / Quarter-pel Interpolation in H.264/AVC 

In H.264, quarter-pel interpolation is presented for motion estimation accuracy. The 
quarter-pel interpolation that make 1/4 pixels to offer more detail images is made up 
with conventional half-pel interpolations that make 1/2 pixels and averaging operation 
that calculate the average of half pixel and integer pixel. As shown in Fig. 2, the quar-
ter-pel and half-pel interpolations support for a range of block sizes (from 16x16 
down to 4x4) and quarter resolution motion vectors. 

 

Fig. 2. Macroblock partitions 

The motion vector consists of two coordinates, x and y. If the motion vector of cur-
rent macroblock has two half values, half-pel interpolation is needed alone. But, if 
motion vector has one or two quarter values, both half-pel interpolations and averag-
ing are needed. The half-pel interpolation needs six adjacent pixel values which lie on 
a straight line to decide the middle value of two adjacent pixels, as shown in Fig. 3(a). 
Gray rectangles are integer-pels and white rectangles with strips are half-pels. The 
equation of half-pel interpolation is presented as: 

[ ]32/)520205( JIHGFEb +−++−=  (1) 

Several addition, multiply, and shift instructions are required to compute b. Although 
the equation looks like very simple, it has to be repeated many times and requires a lot 
of data transfers. 
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As shown in Fig. 3(b), in averaging stage, the value is calculated with the average 
of integer-pel value and half-pel value which are already computed in half-pel inter-
polation stage. The equation of averaging is presented as: 

2/)( bGa +=  (2) 

 

Fig. 3. Interpolation of half-pel and quarter-pel positions  

From memory access point of view, the system has to bring the referenced macrob-
lock from off-chip memory to local memory while executing each interpolation. More-
over, local memory access is also required since the interim values have to be stored in 
the half of quarter-pel interpolation execution. Table 1 shows the number of repeated 
interpolation executions on each video resolution. The result shows that the number of 
half-pel interpolations is twice as many as that of quarter-pel interpolations. However, 
each quarter-pel interpolation consists of one or two half-pel interpolation stage and 
averaging stage. Therefore, quarter-pel interpolations need more performance than 
half-pel interpolations, and quarter-pel interpolations are most complex parts in motion 
compensation. Table 2 shows how many values are needed from the memory by mac-
roblock sizes. Memory access is generated frequently and there’s no specific locality  
 

Table 1. Interpolation count by resolution 

 

Table 2. The number of memory access by macroblock sizes 
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among memory accesses. Therefore, memory accesses are occurring on each interpola-
tion. This is a significant problem in H.264/AVC decoding scheme since memory 
access not only extends the execution time, but also causes the oligopoly of the internal 
bus that other memory requests from other system parts cannot be accepted. 

3   Basic System Architecture 

As depicted in Fig. 4 the basic architecture is composed of several IP cores dedicated 
for target applications and components at system level. There is a 32-bit RISC-based 
main processor which executes all decoding operations performs interface and trans-
fers data with other modules including DSP, memory subsystem, and on-chip system 
bus. In addition various I/O peripherals can be configured through system bus. All 
memories are independent from each and can be accessed concurrently. 

 

Fig. 4. Overall system architecture 

The target application discussed here is motion compensation of H.264/AVC; the 
shaded module shown in the above figure is MC IP consisting of several processing 
elements (PEs) operating on SIMD mode and small intermediate memory which is 
application specific and shared by all PEs. Therefore, each PE can read the used data 
from local shared memory instead of accessing to large external memory which con-
sumes energy heavily. Each PE can operate in parallel without data waiting cycles 
since operations of them are independent and the data is fed from a shared local mem-
ory through internal 128-bit wide bus at every cycle. 

And memory hierarchy is consisted of off-chip memory and local memory. We as-
sume that off-chip memory has 1M byte capacity and local memory is 1K byte. It is 
sufficient to store 6 frames on off-chip memory and interim values of motion com-
pensation on local memory. Result values of entropy coding that is first decoding 
stage of H.264 are saved in off-chip memory. Motion compensation stage gets these 
values from off-chip memory and use local memory as interim reservoir. If all inter-
polation execution is over, then send results to off-chip memory again. So it is impos-
sible to reduce off-chip memory access unless compensation accuracy is diminished. 
Only possible decrease of memory access is on local memory with reduced interim 
load/store. 
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4   Proposed Methodology of Quarter-pel Interpolation 

The proposed quarter-pel interpolation consists of two techniques resulting in the 
reduction of memory accesses. One is merging two interpolation stages into one for 
the (integer, quarter) interpolation shown in Fig. 5. This figure presents the flow dia-
grams of the conventional and proposed quarter-pel interpolation in conjunction with 
the pixel representation shown in Fig. 3. The other is reordering the execution se-
quences for the (half, quarter) or (quarter, quarter) interpolation as shown in Fig. 6. 
The proposed two methods are internally taking advantage of the temporal locality to 
remove the redundant memory accesses. 

4.1   The (Integer, Quarter) Case 

The quarter-pel interpolation requires half-pel interpolations to be executed for an 
entire macroblock. Then it can go further for either averaging stage directly or averag-
ing stage following one more execution of half-pel interpolations in another direction. 
The decision is made by motion vector value types. In case of the motion vector of 
(integer, quarter), (half, half) values are not necessary (j in Fig. 3), so only one half-
pel interpolation is needed. Otherwise, another half-pel interpolation is required for j 
as the case of (half, quarter) or (quarter, quarter). 

 

Fig. 5. Detailed view of two different interpolations 

The conventional quarter-pel interpolation is composed of two stages executed 
separately. However, in case of motion vector (integer, quarter), two stages are not 
necessarily executed separately. Therefore, we propose a method of merging two 
interpolation processes into one. And the modified equation is obtained as below: 

[ ][ ]2/)32/)520205(( GJIHGFEa ++−++−=  (3) 
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The shaded blocks shown in Fig. 5 are representing the result of the proposed 
modification mapped on the SIMD module. In this way, memory accesses can be 
reduced by removing interim loads/stores with simple controls. The effect will be 
mentioned in detail in Section 5. 

4.2   The (Half, Quarter) / (Quarter, Quarter) Case 

For this stage, we devise a new execution flow by reordering conventional 17 steps as 
shown in Fig. 7(b), and then it is mapped onto the array effectively to reduce local 
memory accesses. In the figure, the left section shows the conventional flow; the right 
section does the proposed one; the arrows signify the reordering positions; at the bot-
tom the counts show the number of reads/writes of each flow. In this Figure, reducing 
method of folded memory access is not contained because mix of two methods is very 
complex, so hard to understand. The reordered executions are summarized as below: 

1. Execute 5 row interpolations to make old half pixels in horizontal direction, 
and store the results. 

2. Execute 1 row interpolation to make new half pixels. 
3. Load the interim results and necessary pixel values, and execute proposed in-

terpolations (Eq.3) in vertical direction with loaded pixels and pixel executed 
on stage 2. 

4. Repeat step 2 and 3. 

 

Fig. 6. Rearrangement of interpolation executions 

Conventional quarter-pel interpolation method is shown in the left of Fig. 6. First, 
all horizontal interpolations are executed to make interim values for vertical interpola-
tions; and then, all vertical interpolations which need the interim values are executed. 
Consequently, there are unnecessary memory accesses that can be reduced. The pro-
posed interpolation method shown in the right of Fig. 6 can minimize unnecessary  
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interim memory accesses by changing the order of interpolation sequence. Stage 1 in 
Fig. 6 is the part that cannot be modified, so this stage is same as the conventional 
interpolation. Stage 2 makes one row half pixels as the interpolation results that are 
going to be needed for vertical half-pel interpolations requiring 6 variables in column. 
These 6 variables in column are interpolated in stage 3. And stage 3 utilizes the merg-
ing method generated in Section 4.1, so can make quarter pixels though there is no 
interim memory access. Because the 5 variables in column are not required to be 
loaded in vertical half-pel interpolation by utilizing temporal locality mentioned in 
Section 4.3, six variables for horizontal half-pel interpolation to make black triangle 
and one variable for quarter-pel interpolation to make black star are loaded for each 
interpolation in stage 4. 

 

Fig. 7. Reordering sequence and memory access counts 

4.3   The Temporal Locality in Interpolation Stages 

The temporal data locality of interpolation stages are utilized to achieve reductions of 
interim loads/stores by keeping variables read in the previous interpolation stages. As 
shown in Fig 8, first interpolation needs pixels starting from A to F; second interpola-
tion from B to G, and so on. In this case, there are needless folded memory accesses 
that may increase power consumption. Those accesses could be removed in this stage, 
which can be realized not by hardware configuration but by code optimization. Fig. 9 
shows the result of code regeneration, in which all conventional interpolation codes 
are merged and folded data loads are removed. This method is utilized in overall in-
terpolation stages. 
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Fig. 8. Folded memory accesses between interpolations 

 

Fig. 9. Difference between conventional method and reuse of register method 

5   Power Model and Performance Evaluation 

To obtain power estimation from high level system description, we used the method-
ology similar with [1], such that we conduct a relative comparison that selects the 
most promising candidates. The application discussed here is H.264/AVC, a data-
intensive application in which power due to memory transfer is dominant, and both 
conventional and proposed algorithms are mapped onto the same target architecture. 
Therefore, we can neglect the power consumption in operators, controls and so on. In 
this way, our emphasis is on the achieved power reduction that comes from decreas-
ing data transfer in another word memory accesses. 

The power of data transfer is a function of the size of the memory, the frequency of 
access, and the technology [1]. Here, the technology can be a memory type which will 
be excluded on the assumption of on-chip, and then the simple power model function 
can be expressed as below: 

Second

Transfers
EP TrTransfers

#×=  

)#,(# bitswordsfE Tr =  

(4) 

(5) 
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In [8] a function f is proposed to estimate the energy per transfer ETr in terms of the 
number of words and with width in bits. Total system power can be considered line-
arly proportional to the numbers of data transfer. Supposing we compare the power 
reduction ratio between two different operational models on the same system, we 
have to know the required energy for one data transfer and the total number of data 
transfers of input video streams for two operation models. Based on the power model 
of [8] the energy for one read to a memory of 256×256 words of eight bit is estimated 
to be 1.17μJ. We selected 4 input video streams; salesman, carphone, container, and 
mthr_dotr. Their fame size is QCIF and 178 frames of each video stream are used.  
For the simulation, an algorithm mapping method was used and programmed the two 
operational models with C++ based on the hardware architecture shown in Fig. 4. 

The result shows that the proposed method can reduce memory accesses greatly by 
changing control flows of quarter-pel interpolation. It did not bring out the perform-
ance degradation and system latency because there is no deleting operation. In all 
input video streams, the proposed method attained up to 87% of reduced local mem-
ory accesses, which resulted in decreasing power consumption at the same ratio. 

As referenced above, these proposed methods are only for local memory access re-
duction. In Fig. 10, because both off-chip and local memory accesses are shown, only 
about 46% of memory accesses are reduced. But, our result shows local memory 
access reduction only. 

 
 

Fig. 10. Simulation results 

6   Conclusion 

We have presented a new architecture for motion estimation of H.264/AVC with 
power reduction by decreasing data transfers. In data intensive applications such as 
H.264/AVC, data transfers dominate the power consumption. For this objective, we 
used a microarchitecture level configurability according to the value of motion vec-
tors, which allow the system to operate on different control flows while executing 
quarter-pel interpolation. As a result, we can achieve power reduction at system-level 
significantly. The simulation result shows that the proposed interpolation method 
could reduce up to 87% of power consumption compared with conventional method 
on the target architecture without scarifying performance. 
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Abstract. This paper shows an approach for software synthesis in embedded
hard real-time systems starting from Live Sequence Charts (LSC) scenarios as
specification language. As the name suggests, LSCs specify liveness, that is,
things that must happen. Therefore allowing the distinction between possible
and necessary behavior as well as the specification of possible anti-scenarios.
Embedded software has become much harder to design due to the diversity of
requirements and high complexity. In such systems, correctness and timeliness
verification is an issue to be concerned. The software synthesis method takes a
specification (in this case composed by LSC scenarios) and automatically gener-
ates a program source code where: (i) functionalities and constraints are satisfied;
and (ii) operational support for task’s execution is provided. This paper adopts a
time Petri net (TPN) formalism for system modeling in order to find feasible pre-
runtime schedules, and for synthesizing predictable and timely scheduled code.
Embedded software synthesis has been receiving much attention. However, few
works deal with software synthesis for hard real-time systems considering arbi-
trary precedence and exclusion relations.

1 Introduction

Due to the increasing complexity and diversity of requirements, embedded software has
become much harder to design. Since several applications demand safety properties,
the correctness and timeliness verification is an important issue to be concerned. The
adoption of formal and/or semi-formal modeling methods in early phases of embedded
system design may significantly contribute for the success of the project, since they
allow verification of properties and validating the system’s requirements.

Message Sequence Chart (MSCs) for long has been adopted by the International
Telecommunication Union [1] and nowadays also adopted in the UML [2] as a language
of sequence diagrams. Sequence charts provide a visual representation of inter relation-
ship between processes, tasks, environments and object instances of a given specifica-
tion. MSCs can be used for testing scenarios that will be further checked against the
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behavior of the final system. Nevertheless, MSCs do not provide means for designers
to represent what may, must and may not happen (anti-scenarios).

Live Sequence Charts (LSCs) [3] is a language based on scenarios, which specify
liveness, that is, things that must happen, as well as anti-scenarios, that is, things that
must not happen during the whole system’s execution.

Software synthesis consists of two main activities [4]: (i) task handling, and (ii) code
generation. Task handling takes into account tasks scheduling, resource management,
and inter-task communication. Code generation is responsible for static generation of
source code for each individual task. The scheduling approach adopted is a pre-runtime
method and it is throughly described in [5], where schedules are computed entirely
off-line. Pre-runtime schedules can reduce context switching, their execution are pre-
dictable, and exclude the need of complex operating systems.

Xu and Parnas [6] present an algorithm that finds an optimal pre-runtime schedule
on a single processor for real-time process segments with release, deadline, and arbi-
trary exclusion and precedence relations, but real-world experimental results are not
presented. Abdelzaher and Shin [7] extended Xu and Parnas’ work in order to deal with
distributed real-time systems. The scheduler synthesis proposed by Altisen et.al. [8]
synthesizes all dynamic on-line scheduling satisfying a given property. However, they
do not directly address the state explosion problem. Sgroi et al. [9] propose a software
synthesis method based on quasi-static scheduling using free-choice Petri nets, which
does not deal with real-time constraints. Hsiung [10] presents a formal software syn-
thesis based on Petri nets, mixing quasi-static scheduling, and dynamic fixed-priority
scheduling. However, it does not show how to add preemption.

2 Proposed Method Overview

This section presents an overview of the proposed synthesis method. The method de-
scribed hereafter, takes into account single processor architecture only. The aim of this
paper is to present an approach for software synthesis in embedded hard real-time sys-
tems starting from LSC scenarios, for specifying constraints and inter-task relations.
After that, the tasks’ modeling is performed by adopting an transition-annotated TPN,
that is, a TPN with code associated with transitions. Afterward, the model is employed
for synthesizing a feasible schedule (one that satisfies all constraints), and generates a
scheduled code in accordance with the found schedule.

Figure 1 depicts a diagram of the phases composing the proposed methodology. In
this figure, the requirement analysis phase should provide the behavioral and constraints
specification. Besides, the hardware infrastructure should also be carefully considered.
The modeling phase deals with the translation from specification into the respective
TPN model. In order to allow portability, the TPN model is expressed in PNML (Petri
Net Markup Language) format [11]. The scheduling synthesis phase uses a pre-runtime
scheduling method. Starting from the TPN model, a schedule is entirely computed dur-
ing design time. The algorithm is based on depth-first search method. The code gen-
eration phase aims to generate the respective scheduled code, considering the previ-
ously computed schedule, constraints and processor architecture. More details about
the methodology are presented in the following sections.
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Fig. 1. Proposed Software Synthesis Methodology Phases

3 Computational Model

Computational model syntax is given by a time Petri net [12], and its semantics by a
timed labeled transition system. A time Petri net (TPN) is a bipartite directed graph
represented by a tuple P= (P, T, F, W, m0, I). P (places) and T (transitions) are non-
empty disjoint sets of nodes. The edges are represented by F ⊆ (P × T ) ∪ (T × P ).
W : F → N represents the weight of the edges. A TPN marking mi is a vector mi ∈
N

|P |, and m0 is the initial marking. I : T → N × N represents the timing constraints,
where I(t) = (EFT (t), LFT (t)) ∀t ∈ T , EFT (t) ≤ LFT (t), EFT (t) is the Earliest
Firing Time, and LFT (t) is the Latest Firing Time.

A code-labeled time Petri net (CTPN) is an extension of the TPN, which is repre-
sented by Pc = (P , C). P is the underlying TPN, and C:T � SC is a partial function
that assigns transitions to behavioral source code, where SC is a set of source codes. It
is worth observing that C is a partial function, therefore, some transitions may have no
associated source code.

A set of enabled transitions is denoted by: ET (mi) = {t ∈ T |mi(pj) ≥ W (pj , t)},
∀pj ∈ P . The time elapsed, since the respective transition enabling, is denoted by
a clock vector ci ∈ N

|ET (mi)|. The dynamic firing interval (ID(t)) is dynamically
modified whenever the respective clock variable c(t) is incremented, and t does not
fire. ID(t) is computed as follows: ID(t) = (DLB(t), DUB(t)), where DLB(t) =
max(0, EFT (t) − c(t)), DUB(t) = LFT (t) − c(t), DLB(t) is the Dynamic Lower
Bound, and DLB(t) is the Dynamic Upper Bound.
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Let P be a TPN, M be the set of reachable markings of P , and C be the set of clock
vectors. The set of states S of P is given by S ⊆ (M × C), that is a state is defined by
a marking, and the respective clock vector.

FT (s) is the set of fireable transitions at state s defined by: FTP (s) = {ti ∈
ET (m) | π(ti) = min (π(tk)) ∧ DLB(ti) ≤ min (DUB(tk)), ∀tk ∈ ET (m)}.
The firing domain for t at state s, is defined by the interval: FDs(t) = [DLB(t),
min (DUB(tk))].

The semantics of a TPN P is defined by associating a timed labeled transition system
(TLTS) LP= (S, Σ,→, s0): (i) S is the set of states of P ; (ii) Σ ⊆ (T × N) is a set of
actions labeled with (t, θ) corresponding to the firing of a firable transition (t) at time
(θ) in the firing interval FDs(t), ∀s ∈ S; (iii) →⊆ S×Σ×S is the transition relation;
(iv) s0 is the initial state of P .

Let LP be a TLTS derived from a TPN P , and si = (mi, ci) a reachable state.
si+1 =fire(si, (t, θ)) denotes that firing a transition t at time θ from the state si, a
new state si+1 = (mi+1, ci+1) is reached, such that: (1) ∀p ∈ P, mi+1(p) = mi(p) −
W (p, t) + W (t, p); (2) ∀tk ∈ ET (mi+1): (i) Ci+1(tk) = 0 (if (tk = t) ∨ (tk ∈
ET (mi+1) − ET (mi))), or (ii) Ci+1(tk) = Ci(tk) + θ, otherwise.

Let LP be a TLTS derived from a TPN P , s0 its initial state, sn = (mn, cn) a final
state, and mn = MF is the desired final marking.

s0
(t1,θ1)−→ s1

(t2,θ2)−→ s2 −− → sn−1
(tn,θn)−→ sn

is defined as a feasible firing schedule, where si = fire(si−1, (ti, θi)), i > 0, if
ti ∈ FT (si−1), and θi ∈ FDsi−1(ti).

The modeling methodology guarantees that the final marking MF is well-known
since it is explicitly modeled.

4 Specification Model

LSC language fills out the gaps of the previous sequence diagram models, distinguish-
ing things that can happen of things that must happen. Sequence of events that can
happen in an execution of the system can be specified using existential chart that works
as a system test case. On the other hand, sequence of events that should happen for all
and any execution of the system should be modeled using universal charts. Each univer-
sal chart possesses a pre-condition (prechart) that, if successfully executed, forces the
execution of the scenario specified in the chart body. If the pre-condition is not satisfied,
a violation occurs.

In LSC language, the system is modeled using object oriented notions and terminolo-
gies. A system is composed by objects that represents class instances. Every object in
the application is associated with a set of properties and a set of methods. Each property
is based on a type, from which its value can be selected.

The specification model is composed by: (i) a set of periodic preemptable tasks with
bounded discrete time constraints; and (ii) inter-task relations, such as precedence and
exclusion relations.

Let T be the set of tasks in a system. A periodic task is defined by τi = (phi, ri, ci,
di, pi), where phi is the initial phase; ri is the release time; ci is the worst case com-
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putation time required for execution of task τi; di is the deadline; and pi is the period.
A sporadic task is defined by τk = (ck, dk, mink), where mink is the minimum pe-
riod between two activations of task τk. A task is classified as sporadic if it can be
randomly activated, but the minimum period between two activations is known. Pre-
runtime scheduling can only schedule periodic tasks. However, Mok [13] has proposed
a translation from sporadic to periodic tasks.

A task τi precedes task τj , if τj can only start executing after τi has finished. A task
τi excludes task τj , if no execution of τj can start while task τi is executing. If it is
considered a single processor, then task τi could not be preempted by task τj .

All timing constraints are expressed in task time units (TTUs), where each TTU has
a correspondence with some multiple of a specific timing unit (millisecond, second,
etc). In this paper, a TTU is the smallest indivisible granule of a task, during which a
task cannot be preempted by any other task. A TTU is also called a preemption point.

In order to provide the specification model, LSC scenarios could be used as an in-
tuitive and user-friendly way for specifying timing constraints and inter-task relations
scenarios. Before modeling scenarios which represent task’s time constraints and inter-
task relations, it is necessary to create data types to represent a task and the processor,
so the following steps should be taken: Create a new class for representing a task, la-
beled “Task”, without properties and methods; Create the desired number of “Task”
instances; Create a new class for representing the processor, labeled “Proc”, which con-
tains a String property, called “task”, with an “execute” prefix and a method, called
“grant”, with one “STRING” parameter; Create one instance of “Proc” class.

After creating data types and the corresponding instances, it must be created a sce-
nario for each task, in which, its time constraints are defined. Individually, these sce-
narios do not specify any inter-task relation, hence tasks can execute concurrently. The
following steps should be taken to specify such scenarios: Create an universal chart for
each task and inserts the “grant” method call in the prechart section. The method pa-
rameter should be a sequence of characters that specifies task’s time constraints. Time
constraints should be separate by comma in the following way: “ph,r,c,d,p”, where ph is
the initial phase, r is the release time, c is the worst time of computation, d is the dead-
line and p is the period; In the chart body section of the created universal chart, inserts
the message “execute task(par)” (self message of Proc instance), where execute is the
property’s prefix, task is the property created above and par is a parameter, which value
is the task name. When this message occurs, it changes the value of “task” property of
“Proc” instance.

Figure 2 depicts two LSC charts, one for task T0 and other for task T1. T0 and T1
are “Task” instances and Proc is an “Proc” instance. If prechart (denoted by a dashed
border line) is successfully executed, then the chart body (denoted by a solid border)
should be satisfied by the system. So, these scenarios say that every time task T0 or T1
requests the processor and the processor grants the permission to these tasks to execute,
these tasks must be executed, and they can execute concurrently, because no relation
between them is specified.

In order to establishes some inter-task relations, additional scenarios must be created
for each kind of relation (precedence and exclusion). A precedence relation establishes
an order in the execution, which could be modeled in the following way: Create an
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Fig. 2. Time constraints scenarios for tasks T0 and T1

universal chart and inserts the message “execute task(t1)” in the prechart section, where
t1 precedes the task specified in the chart body section (next step); In the chart body
section, inserts the “grant” method, which is called from the task that must be executed
after the task specified previous.

Figure 3 depicts a precedence relation between task T0 and T1, where T0 precedes
T1. As described previously, each task has a scenario, in which, its time constraints
are defined. In Figure 2, whenever task T0 requests the processor, the processor should
execute this task. However, in Figure 3 a precedence relation between task T0 and T1
is specified, so when T0 finishes its execution, task T1 must requests the processor (see
Figure 3) and then executes (see Figure 2).

Fig. 3. Precedence relation between tasks T0 and T1

An exclusion relation prohibits the execution of some task while another task is
executing. An exclusion relation could be modeled using anti-scenarios (prohibitive) in
the following way: Create an universal chart and inserts an LSC condition that checks
if the value of “task” property of “Proc” instance is equals to the task that excludes the
other (specified next); After creating the above condition, inserts the “grant” method,
which is called from the task and it is excluded by the task specified previously; In the
chart body section, inserts a hot condition with FALSE value. This condition will never
be evaluated to a true value, so when it executes, a requirement violation occurs and
the chart must be aborted. Figure 4 depicts an anti-scenario modeling, where task T1
excludes task T2. Whenever task T1 is executing and task T2 requests the processor,
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Fig. 4. Exclusion relation between task T1 and task T2

a requirement violation occurs, because the hot condition in the chart body always
evaluates to a false value, forcing the chart to be aborted.

In order to automate software synthesis process, we developed an LSC2SS engine
with the purpose to parse LSC inscriptions and creates the respective Petri Net model.

5 System Model for Scheduling Generation

This section shows how to model the tasks of the system, and inter-task relations, such
as precedence and exclusion relations, starting from LSC scenarios. Due to lack of
space, this section presents just a summary. The interested reader is referred to [5]. Time
Petri net (TPN) is a mathematical formalism that allows modeling of several features
present in most concurrent and real-time systems, such as, precedence and exclusion re-
lations, communication protocols, multiprocessing, synchronization mechanisms, and
shared resources. The proposed modeling applies composition rules on building blocks
models. These blocks are specific for the scheduling policy adopted, that is, pre-runtime
scheduling policy. One of these specific situations is that pre-runtime algorithm sched-
ules tasks considering a schedule period that corresponds to the least common multiple
(called PS) between all periods in the task set. Within this new period, there are sev-
eral tasks instances of the same task, where N (τi) = PS/pi gives the instances of
task τi.

In the proposed modeling, the considered building blocks are (Figure 5): (a) Fork; (b)
Join; (c) Periodic Task Arrival; (d) Deadline Checking; (e) Non-preemptive Task Struc-
ture; (f) Preemptive Task Structure; and (g) Processors. These blocks are summarized
below:

a) Fork Block. The fork block is responsible for starting all tasks in the system.
Therefore, this block models the creation of n concurrent tasks.

b) Join Block. The join block execution states that all tasks in the system have
concluded their execution in the schedule period. It is worth noting that a marking in
place pend represents the desirable final marking (or MF ). In this case, M(pend) = 1
indicates that a feasible firing schedule was found.

c) Periodic Task Arrival Block. This block models the periodic invocation for all
task instances in the schedule period (PS). Transition tphi models the initial phase of the
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Fig. 5. Proposed Building Blocks

task first instance. Similarly, transition tai models the periodic arrival (after the initial
phase) for the remaining instances. It is worth noting the weight (αi = N (τi) − 1) of
the arc (tphi , pwai), where this weight models the invocation of all remaining instances
after the first task instance.

d) Deadline Checking Block. Some works (e.g. [8]) extended the Petri net model
for dealing with deadline checking. The proposed modeling method uses elementary net
structures to capture deadline missing. Obviously, deadline missing is an undesirable
situation when considering hard real-time systems. Therefore, the scheduling algorithm
must eliminate states that represent undesirable situations like this one.

e) Non-preemptive Task Structure Block. Considering a non-preemptive schedul-
ing method, the processor is just released after the entire computation to be finished.
Figure 5(e) shows that time interval of computation transition has bounds equal to the
task computation time (i.e., [ci, ci]).

f) Preemptive Task Structure Block. This scheduling method implies that a task are
implicitly split into all possible subtasks, where the computation time of each subtask is
exactly equal to one task time unit (TTU). This method allows running other conflicting
tasks, in this case, meaning that one task preempts another task. This is modeled by the
time interval of computation transitions ([1,1]), and the entire computation is modeled
through the arc weights.

g) Processor Block. The processor modeling consists of a single place pproci , where
its marking states how many processors are available. If m(pproc) > 1, it is considered
a multiprocessor architecture with unified memory access (UMA).

6 Software Synthesis Approach

This section presents the software synthesis approach. It shows methods for scheduling
synthesis and code generation phases.
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1 scheduling-synthesis(S,MF,TPN)

2 {
3 if (S.M = MF ) return TRUE;

4 tag(S);

5 PT = pruning(firable(S));

6 if (|PT| = 0) return FALSE;

7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ);

9 if (untagged(S’) ∧
10 scheduling-synthesis (S’,MF ,TPN)){
11 add-in-trans-system (S,S’,t,θ);

12 return TRUE;

13 }
14 }
15 return FALSE;

16 }

Fig. 6. Schedule Synthesis Algorithm

6.1 Pre-runtime Scheduling Synthesis

The algorithm proposed (Fig. 6) is a depth-first search method on a TLTS. So, the TLTS
is partially generated on-the-fly. The stop criterion is obtained whenever the desirable
final marking MF is reached. Considering that, (i) the Petri net model is guaranteed to
be bounded, and (ii) the timing constraints are bounded and discrete, this implies that
the TLTS is finite and thus the proposed algorithm always finishes.

The only way the algorithm returns TRUE is when it reaches a desired final marking
(MF ), implying that a feasible schedule was found (line 3). The state space generation
algorithm is modified (line 5) to incorporate the state space pruning. PT is a set of
ordered pairs 〈t, θ〉 representing for each firable transition (post-pruning) all possible
firing time in the firing domain. The tagging scheme (lines 4 and 9) ensures that no state
is visited more than once. The function fire (line 8) returns a new generated state (S′)
due to the firing of transition t at time θ. The feasible schedule is represented by a timed
labeled transition system that is generated by the function add-in-trans-system
(line 11). When the system does not have a feasible schedule, the whole reduced state
space is analyzed.

6.2 Scheduled Code Generation

This section aims to present the approach for C-code generation starting from the
scheduling found. The code is generated by traversing the TLTS (feasible firing sched-
ule), and detecting the time where the tasks are to be executed.

The proposed method for code generation includes not only the code of tasks (im-
plemented by C functions), but also includes a timer interrupt handler, and a small
dispatcher. Such dispatcher is adopted to automate several controls needed to the exe-
cution of tasks. Timer programming, context saving, context restoring, and tasks calling
are examples of such additional controls. The timer interrupt handler always transfers
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the control to the the dispatcher, which will evaluate the need for performing either
context saving or restoring, and calling the specific task.

Figure 7 shows a simplified version of the proposed dispatcher. The data structures
include a table containing the respective information: (i) start time; (ii) a flag indi-
cating if either it is a new task instance or a preemption resuming; (iii) task id; and
(iv) a function pointer. This table is stored in an array of type SchItem (Fig. 8).
There are some shared variables that stores information about the size of the schedule
(SCHEDULE SIZE), information of the task currently executing (struct SchItem
item), a pointer to the task function (taskFunction), and so on.

1 void dispatcher()
2 {
3 struct SchItem item=sch[schIndex];
4 globalClock = item.starttime;
5
6 if(currentTaskPreempted) {
7 // context saving
8 }
9 if(item.isPreemptionReturn) {

10 // context restoring
11 }
12 else {
13 taskFunction=item.functionPointer;
14 }
15 schIndex=((++schIndex)%SCHEDULE_SIZE);
16 progrTimer(sch[schIndex].starttime);
17 activateTimer();
18 }

Fig. 7. Dispatcher

void taskT1() {...}
void taskT2() {...}

#define SCHEDULE_SIZE 7

struct SchItem sch[SCHEDULE_SIZE] =
{

{0, false, 1, (int *)taskT1},
{3, false, 2, (int *)taskT2},
{8, false, 2, (int *)taskT2},
{11,false, 1, (int *)taskT1},
{14,false, 2, (int *)taskT2},
{17,false, 1, (int *)taskT1},
{20,false, 2, (int *)taskT2}

};

Fig. 8. Generated code example

7 Case Study

In order to show the practical fesiability of the proposed methodology, this section
presents a real-world case study, namely, Heated Humidifier. The purpose of this system
is insertion of water vapor in the gaseous mixture used in a sort of electro-medical
systems. For maintaining such vapor, the system must warm up the water in a recipient

Table 1. Heated-Humidifier Specification

Task r c d p
A (temp-sensor-start) 0 1 1,500 10,000
B (temp-sensor-handler) 11 1 1,500 10,000
C (PWM) 0 8 1,500 10,000
D (pulse-generator) 0 4 4 50
E (temp-adjust-part1) 0 1 5,000 10,000
F (temp-adjust-part2) 1501 2 5,000 10,000

Inter-task Relations
A PRECEDES B
B PRECEDES C
E PRECEDES F
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Fig. 9. Tasks’ time constraints scenarios

Fig. 10. Precedence relation scenarios

and maintain the water temperature in a prescribed value. This equipment is very useful
in hospital’s critical care units (CCUs).

Table 1 shows part of the specification model. Considering the 8051-family archi-
tecture, the overhead of the interrupt and dispatcher is equal to 20μs (2 TTUs). The
values are expressed in task time units (TTUs), where each TTU (Section 4) is equal to
10μs. Figure 9 shows timing constraints scenarios for each task specified, and Figure
10 shows the LSC scenarios for the three precedence relation. These LSC scenarios was
modeled according to the rules presented in Section 4. As Figure 10 presents, before re-
questing the processor (chart body), the task with higher priority must be first executed
(prechart). Whenever the “grant” message is executed in these scenarios, the same event
is fired in the corresponding scenario specified in Figure 9, therefore enabling the cur-
rent task to be executed.

In order to avoid the key bouncing, the key reading for temperature adjustment is
divided in two tasks. If task E indicates that a key is pressed, after a specific minimal
time (generally 15ms), the task F must confirm such key pressing. The same solution
is applied for reading the temperature sensor. The first task (task A) is responsible for
starting the A/D conversion. After elapsing a specific time (generally 100μs), the sec-
ond task (task B) may start reading the temperature and updating a shared variable. A
feasible schedule was found in 0.486 seconds, verifying 6022 states, which is the min-
imum number of states to be verified. Figure 11 shows part of the heated-humidifier
generated code.
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void taskT1() {...} void taskT2() {...}
void taskT3() {...} void taskT4() {...}
void taskT5() {...} void taskT6() {...}

#define SCHEDULE_SIZE 505

struct SchItem sch[SCHEDULE_SIZE] =
{

{0, false, 4, (int *)taskT4},
{24, false, 1, (int *)taskT1},
{50, false, 4, (int *)taskT4},
{74, false, 5, (int *)taskT5},
{100,false, 4, (int *)taskT4},
{124,false, 2, (int *)taskT2},
{150,false, 4, (int *)taskT4},
{174,false, 3, (int *)taskT3},
{200,false, 4, (int *)taskT4},.

.

.
}

Fig. 11. Heated-Humidifier Code

8 Conclusions

This paper proposed a method for software synthesis of embedded hard real-time sys-
tems, where the specification of constraints and inter-task relations is based on LSC,
and the proposed scheduling model is based on TPNs.

LSC is a language based on scenarios, more powerful that its predecessors (UML
sequence diagram for instance), since it provides means for describing scenarios, things
that must happen and may happen, as well as anti-scenarios, that is, things that must not
happen during the whole system’s execution.

Predictability is an important concern when considering time-critical systems. Pre-
runtime scheduling approach is used in order to guarantee that all critical tasks meet
their deadlines. Despite the analysis technique (i.e. state space exploration) is not new,
to the best of our present knowledge, there is no similar work that uses formal methods
for modeling time-critical systems, considers arbitrary precedence/exclusion relations,
for finding pre-runtime schedules, and generates timely and predictable scheduled code.

Analysis of properties in large dimension nets is not trivial. Therefore, methods that
allow transforming models while preserving system properties has been largely stud-
ied. Usually, these transformations are reductions that are applied to larger models in
order to obtain smaller ones while preserving properties. This is a further work to be
investigated.

References

[1] ITU-T: Message Sequence Chart (MSC). (Geneva, 1996)
[2] OMG: Unified Modeling Language (UML) documentation. (2005) http://www.omg.org.
[3] Harel, D., Marelly, R.: Come, Lets Play: Scenario-Based Programming Using LSCs and

Play-Engine. (2003)
[4] Cornero, M., Thoen, F., Goossens, G., Curatelli, F.: Software synthesis for real-time infor-

mation processing systems. Code Generation for Embedded Processors (1995) 260–279
[5] Barreto, R., Tavares, E., Maciel, P., Neves, M., Oliveira Jr., M., Amorim, L., Bessa, A.,

Lima, R.: A time petri net-based approach for software synthesis considering dispatcher
overheads, IEEE Computer Society Press. Rio de Janeiro, Brazil (2005)

[6] Xu, J., Parnas, D.: Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. Soft. Engineering 16 (1990) 360–369



62 L. Amorim et al.

[7] Abdelzaher, T., Shin, K.: Combined task and message scheduling in distributed real-time
systems. IEEE Trans. Parallel Distributed Systems 10 (1999) 1179–1191

[8] Altisen, K., Göbler, G., Pnueli, A., Sifakis, J., Tripakis, S., Yovine, S.: A framework for
scheduler synthesis. IEEE Real-Time System Symposium (1999) 154–163

[9] Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of embedded
software using free-choice petri nets. DAC’99 (1999)

[10] Hsiung, P.A.: Formal synthesis and code generation of embedded real-time software. In
CODES (2001)

[11] Weber, M., Kindler, E.: The petri net markup language. Petri net Technology Communica-
tion Systems. Advances in Petri Nets. (2002)

[12] Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans. Comm.
24 (1976) 1036–1043

[13] Mok, A.K.: Fundamental Design Problems of Distributed Systems for the Hard-Real-Time
Environment. PhD Thesis, MIT (1983)



Ahead of Time Deployment in ROM of a
Java-OS

Kevin Marquet, Alexandre Courbot, and Gilles Grimaud

IRCICA/LIFL, University of Lille I, France
INRIA Futurs, POPS research group

{Kevin.Marquet, Alexandre.Courbot, Gilles.Grimaud}@lifl.fr

Abstract. This article shows how it is possible to place a great part of
a Java system in read-only memory in order to fit with the requirements
of tiny devices. Java systems for such devices are commonly deployed
off-board, then embedded on the target device in a ready-to-run form.
Our approach is to go as far as possible in this deployment, in order to
maximize the amount of data placed in read-only memory. Doing so, we
are also able to reduce the overall size of the system.

1 Introduction

Deploying a Java system dedicated to be embedded into a tiny device such as a
sensor involves producing a ready-to-run binary image of it. This binary image is
later burnt into a persistent memory of the device, usually Read-Only Memory
(ROM), to produce the initial state of the system on the device.

In addition to ROM, tiny devices include several types of writable memories
such as RAM, EEPROM, or Flash memory. All these memories have different
access times, physical space requirements, and financial costs. For instance, ROM
is very cheap and takes few physical space on the silicon, which usually makes
it this memory the most significant one in terms of quantity; but it cannot be
erased. Writable memories on the other hand are a rare ressource because of
their cost and physical footprint.

The memory mapping of data into these different memories is computed off-
board, when producing the binary image. A correct placement of the system data
at that time is critical for embedded systems. In a domain where the software
and hardware productions are tightly tied, placing more data in ROM can divide
the final cost of the device and makes the other writable memories available for
run-time computations.

Our approach is to go as far as possible in the off-line deployment of the system
to maximize ROM usage while decreasing the overall size of the system. We
operate at different steps of the deployment process. For each step, we measure
the amount of data that can safely be placed in ROM, as well as the overall size
of the system, thus obtaining an evolution of these two measurements all along
the deployment. Our experiments have been performed on the Java In The Small
(JITS[1]) Java-OS toolkit.
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The remainder of this paper is organized as follows. Section 2 presents some
work related to this paper. Section 3 then introduces the issues related to the
placement in ROM of an embedded Java system. The deployment scheme of a
JITS system is then briefly described in section 4. In particular, we detail the
steps that are important for maximizing ROM placement and reducing the size
of the final system. Section 5 details our results, by showing the amount of data
it is possible to put in ROM and the size of the system for every deployment
step. Finally, we conclude on our results.

2 Related Work

Embedding Java systems into tiny devices while minimizing their size has been
studied using different approaches. Rayside [2] and Tip [3]’s approach is to ex-
tract the minimal necessary subset to run an application from a Java library.
They use abstract interpretation to determine classes, fields and methods that
may be used by the application and discard the rest. JITS uses a similar mecha-
nism to extract the needed parts of the library and core system according to the
threads that are being deployed. Squawk [4] is a CLDC-compliant implemen-
tation of the Java virtual machine targeted at next-generation smart cards. It
uses an indirection table containing the references of all objects. This implies a
run-time performance reduction, and the use of a part of the writable memory to
store this table. Java 2, Micro Edition [5] is a stripped-down specification of the
Java platform for small devices. It includes JavaCodeCompact, a class pre-loader
and pre-linker that allows classes to be linked with the virtual machine.

These works doesn’t take into account the specifics of the physical type of
memory that tiny devices use. In particular, such devices generally include a
high quantity of read-only memory. This important parameter is at the heart of
our deployment approach.

3 Placing Data in ROM

A tiny device of the range of the smart card includes different kinds of memories.
Their respective cost and physical footprint properties lead to the following pro-
portions: about hundreds of kilobytes of ROM, dozens of kilobytes of persistent,
writable memory and kilobyte(s) of RAM. Larger, more expensive devices can
embed more memory - but these proportions are usually respected.

In a traditional Java Virtual Machine (JVM), the loading of applications is
clearly defined: classes must be loaded, linked, and initialized [6]. In the case
of an embedded Java-OS, these phases can be made partly during the off-line
deployment, in order to embed a partially deployed system [7]. This results in a
faster start up of the system, but it is also possible to take advantage of various
steps during the deployment to increase the amount of data placed into ROM,
as well as reducing the size of the system. Indeed, some Java objects involved in
the deployment process reach their definitive form during these steps, and can
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then be considered as immutable. Others are just useful to initialize the system
and can be removed.

As placing objects in ROM prevents any further modifications of them, it is
impossible to place an object that the system needs to change at run-time in
a read-only memory. This leads to the definition of immutability of an object
[8], in relationship to the semantics of the program: an object is immutable if
it is never modified by the code of the program. Our approach is to detect all
immutable objects and to place them in ROM.

Among the objects that are needed at run-time, some are always immutable.
Their immutability does not depend on the deployment process. For instance,
the String objects and their associated character arrays are objects that can
never be modified. Other objects are created during the loading process and are
either not modified or even not used at run-time.

The next section describes the deployment process of JITS. It details how it
is possible, for each step of the deployment process, to increase the number of
objects in ROM and to decrease the size of the overall system.

4 Deploying Embedded Java

Before being embedded into a small device, a Java-OS is deployed off-board. All
the initializations that have not been made during this phase are performed when
the device starts up, in order to place the system in a state where it is ready to
run applications. While these operations are made at run-time in a traditional
JVM (section 4.1), they can also be performed during the offline deployment
of the embedded Java-OS in order to improve the size of the system and the
amount of data in ROM (section 4.2).

4.1 Java Class Loading Process

A Java platform initializes itself before being able to run applications. In par-
ticular, classes must go through different loading states described by the Java
virtual machine specification [6] before being ready to use.

Loading. During this phase, the class structure is read (from a stream on a file
or a network connection for instance) and the internal structures for classes,
methods and fields are created. All the external references are still symbolic.
Classes are marked as LOADED after this step.

Linking. The linking step transforms the external symbolic references into di-
rect ones. This step can either be performed once and for all (all the symbolic
references are resolved, which involves loading the classes that are referenced)
or just-in-time during runtime (each reference is linked when the bytecode in-
terpreter meets it for the first time). During this phase, methods are modified
in order to replace the non-linked bytecodes with linked counterparts.

Initializing. Before being ready to run, the static statements of the classes must
be executed. Once this phase is performed, the class is granted state READY.
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This class loading scheme is tightly linked to the upper-level application de-
ployment process.

4.2 Application Deployment Process

The pre-deployment phase of JITS is able to perform the class loading process.
At each step, useless objects can be removed and some others considered as
immutable. All these steps are performed by a tool called romizer). As the JITS
romizer initializes the system before producing a binary image of it, it differs
from JavaCodeCompact (JCC, [9]), the J2ME deployment tool, which only loads
and links Java classes and lets the initializations be made at run-time.

Loading. After this step, apart from objects that are always immutable such as
strings, very few objects can be placed in ROM. Bytecodes contained in the code
associated to a method are subject to modification during linking. However, if the
code associated to a method does not contain any mutable bytecode, this code
is immutable. In the same way, few objects can be considered useless after this
step. Only the objects used to read the class from the streams can be removed,
as well as all the information that has been extracted from them. The associated
useless classes can be removed as well. A previous study [10] has shown that the
constant pools of the classes can be compacted during this phase.

Linking. After the linking phase, all external references from the bytecode are
resolved, and more parts of the code can thus be considered immutable. All
methods are linked which makes them immutable as well. The LINKED state
also constitutes another important stage regarding the lifetime of classes: at
this state, all objects referenced by classes can be placed in ROM excepted the
static zones which can be modified at run-time. The classes themselves can be
considered immutable if their states is stored outside of them.

Initializing. In addition to the loading and linking phases, the JITS romizer is
able to execute the static statements of the classes. This avoids spending time to
execute the static statements at run-time but also allows to placethe immutable
objects attached to a static field in read-only memory. Although there are few
objects that are concerned by this in the Java libraries, applications are more
subject to use them.

Applications Initialization. Once the static statements are executed, our tool
instantiates the threads that will begin to run when the device starts up. Doing
this during deployment brings one benefit: it is possible to make a static abstract
interpretation [11] of the code in order to detect the parts of the deployed system
that will be used at run-time. Our approach at this level is the same as in [2]
and [12]. We extract a subset of the system containing only the libraries needed
for the system. From the run method of the selected threads, we perform a
depth-through analysis of the code in order to list all the classes, methods and
fields used, discarding the others. Our static analysis makes use of constant value
propagation in order to compute a precise control flow graph and detect more
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unused objects. In addition to the removal of these objects, it is possible to
remove their references in the static zones in order to compress them.

The use of a specific installation process such as Java Card or OSGI would
allow even better results, mainly placing more objects in read-only memory.
Indeed, the installation functions allow to go further in the deployment process.
However, we intend to provide a Java platform that is able to load and execute
traditional Java applications and not only applications in a specific format.

System Projection. In order to transform the off-board deployed system into its
binary image, the romizer builds the dependency graph of all the objects of the
system. All the objects it contains are walked through in order to assign them a
destination memory. This computation is made thanks to the the properties of
objects (such as types and values) that are retrieved from the graph of objects.
This permits for instance to identify all objects whose type is Class and whose
field value state is READY as objects that are immutable. This computation
also provides the relationships between objects. For example, all the objects
attached to the staticZone field of an instance of Class must be described
in the memory mapping as objects that must be placed in writable memory.
Building the graph of objects is also an elegant way to discard useless objects.
Indeed, the references to these objects are broken, thus making them unreachable
and garbage collectable when the graph is built.

All along the loading process, some objects become immutable and others
become useless. Next section shows the evolution of the amount of data in ROM
and the overall size of the system at each step of the deployment.

5 Results

This section measures the benefits of deploying the system off-board. The size of
the system and the amount of data in ROM are measured after each step of the
deployment. The parts of the OS written in native code are not included in our
measurements, although it will eventually be executed from a read-only memory.
Three applications are measured. The first one is a basic Hello World application
which shows the memory footprint of a minimal application. The second one
is Sun’s AllRichards which executes seven versions of the Richard scheduling
algorithm. This application is interesting because it includes a high number of
classes (76). Finally, the well-known Dhrystone benchmark is measured, showing
quite different results because it uses several static data structures.

Details concerning the impact on the run-time features are also discussed.

5.1 Loading

In addition to objects that are immutable as soon as they are instantiated
(strings), the majority of objects become immutable once the classes are loaded.
Excepted objects that are immutable as soon as they are created (as strings), the
majority of objects become immutable once the classes are loaded. All methods
containing a bytecode that will be changed during the linking phase are muta-
ble. However, parts of code that do not contain such bytecodes can be placed in
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ROM after this step; 9% are concerned for AllRichards. The compaction of the
constant pools allows to reduce their initial size by about 160 Kilobytes.

Table 1 gives the size of the system and the size of data it is possible to place
in read-only memory if the system were to be embedded just after this step.

Table 1. System sizes (in Kilobytes) after loading phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 308 181 59%
AllRichards 411 185 45%
Dhrystone 315 170 54%

5.2 Linking

We have seen that the linking phase is important. After this step, all classes (17
Kilobytes for AllRichards) and methods (60 Kilobytes for AllRichards) can be
placed in ROM. As bytecodes are mutated, a greater number of bytecode arrays
become immutable (33 Kilobytes over 87 Kilobytes). In addition, other entries
in the constant pools become useless, allowing to re-compact them. This leads
to the measuqrements given in table 2.

Table 2. System sizes (in Kilobytes) after linking phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 242 181 78%
AllRichards 319 258 81%
Dhrystone 247 194 79%

5.3 Initializing Static Fields

Initializing the static fields turns the classes into state READY. Once the classes
are in this state, all bytecodes can be replaced by their linked counterparts,
leading all fractions of code (87 Kilobytes) to be immutable. The benefits of this
phase also include to avoid these initializations when the device starts up. Table 3
presents the measurements we have done when all the classes are in the state
READY. These results takes account of the sizes of the objects allocated by the

Table 3. System size (in Kilobytes) after initialization phase

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 245 236 96%
AllRichards 323 307 95%
Dhrystone 318 238 75%
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static statements. In particular, the overall size of the system for Dhrystone is
greater than at the previous step because this application allocates 64Kilobytes
of static arrays that will be modified at run-time.

5.4 Threads Deployment

Deploying threads allows to dramatically reduce the size of the system, as pre-
sented in table 4. In particular, only 6440 bytes of classes, 14 Kilobytes bytes of
methods and 18 Kilobytes of code remains for AllRichards.

Table 4. System size (in bytes) after threads creation and analysis

Benchmark Size (KB) in ROM (KB) % in ROM
HelloWorld 11326 9795 86%
AllRichards 74134 68315 92%
Dhrystone 86558 14316 16%

6 Conclusion

This article addresses the issue of placing parts of a Java-OS in ROM, which is
necessary for tiny devices. At each step of the deployment of the system, it is
possible to place a number of objects in ROM in order to decrease the necessary
quantity of modifiable memory. It is also possible to remove objects that have
become useless in order to reduce the overall size of the embedded system.

The mechanisms involved in these optimizations take advantage of the par-
ticular deployment process of a Java-OS. We gave results concerning the size of
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data it is possible to place in ROM and the overall size of the system. Figure 1
summaries the evolution of these two measurements. It shows that the more the
system is initialized off-board, the higher the proportion of objects in ROM is.
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Abstract. Java Card technology enables smart cards and other devices with 
very limited memory to run small applications, called applets. It provides users 
with a secure and interoperable execution platform that can store and update 
multiple applications on a single device. This Java Card technology is now a 
mature and accepted standard smart card standards and SIM technology. How-
ever, the main concern of Java Card is now its low execution speed caused by 
the hardware limitation. In this paper, we propose several ideas about how to 
improve an execution speed of Java Card. The key idea of our approach is that 
an EEPROM writing operation is more expensive than that of RAM. We sug-
gest how to use RAM as much as possible; Transaction_In_RAM(TrIR), Reso-
lution_In_RAM and Java Object-buffer. 

1   Introduction 

Java Card technology [1, 2, 3] enables smart cards and other devices with very limited 
memory to run small applications, called applets, that employ Java technology such as 
a platform independence and a dynamic downloading(post-issuance). For these rea-
sons, Java Card technology is an accepted standard for smart card and SIM technol-
ogy [15]. SIM cards are basically used to authenticate the user and to provide encryp-
tion keys for digital voice transmission. However, when fitted with Java Card tech-
nology, SIM cards can provide transactional services such as remote banking and 
ticketing, and also service a post-issuance function to manage and install applications 
in cards after the cards issued [1, 3, 15]. 

A Java Card is essentially an Integrated Circuit Card(ICC) with an embedded Java 
Card Virtual Machine. The Central Processing Unit(CPU) can access three different 
types of memory: a persistent read-only memory(ROM) which usually contains a 
basic operating system and the greatest part of the Java Card runtime environment, a 
persistent read-write memory(EEPROM) which can be used to store code or data 
even when the card is removed from the reader, and a volatile read-write mem-
ory(RAM) in which applications are executed [4, 7]. 
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The major point of criticism with regard to Java for smart cards is its low execution 
speed. The execution speed of Java bytecode executed by an interpreter is 10 to 20 
times slower than program code written in C. Besides of slow speed in terms of Java 
language, in a traditional Java Card, we first found inefficient parts that are making it 
more slowly. It is related to many EEPROM writing. The speed of EEPROM write 
operation is mainly 10000 times slower than that of RAM write operation. It causes a 
drop in execution speed of Java Card [4].  

The first reason of many EEPROM write operations in Java Card is for processing 
a transaction. Java Card always stores all old values at the referenced location into a 
transaction buffer in EEPROM during a transaction [1, 3]. We finally found that more 
than 80% of the number of total EEPROM write operations occurs to process a trans-
action.  The second reason of many EEPROM write operations is for resolution of 
indirect references during the download of new application called post-issuance. The 
Java Card installer performs the process of these resolutions that changes many indi-
rect references to real physical addresses of API in Java Card [2]. The third reason is 
about a single EEPROM write operation with a page-buffer [14].  

For these reasons, in this paper, we suggest three ideas to improve the speed of 
Java Card; the Transaction_In_RAM(TrIR) that logs new value, not old value in 
RAM, new Java Card Installer with the Resolution_In_RAM technology that re-
solves indirect references into direct reference in RAM during the post-issuance and 
new Object-buffer based on a high locality of Java Card objects that are stored in 
heap area. 

This paper is organized as follows. Section 2 describes about Java Card, Java Card 
memory model, Java Card installer as related works in detail. Section 3 gives a design 
about how to improve an execution speed of Java Card with Transaction_In_RAM 
and Resolution_In_RAM technologies that are introduced in this paper by using com-
paring to those of traditional Java Card.  Section 4 explains about algorithms for the 
implementation of these technologies. Section 5 gives the performance results about 
each technology separately and also the result after integrating both algorithms. Fi-
nally, we present the conclusion and the future work in section 6. 

2   The Java Card Environment 

2.1   Java Card Memory System 

Current and upcoming smart card hardware provides very limited storage capabilities. 
The memory resources typically consist of Read Only Memory (ROM), Random 
Access Memory (RAM) and Electrically Erasable Programmable Read Only Memory 
(EEPROM). EEPROM is used to store long-lived data. In contrast, RAM loses its 
contents after a power loss and is thus only available for temporary storage.  

As illustrated in figure 1, a typical Java Card system places the JCRE code(virtual 
machine, API classes, and other software) in ROM. Applet code can also be stored in 
ROM. RAM is used for temporary storage. The Java Card runtime stack is allocated 
in RAM. Intermediate results, method parameters, and local variables are put on the 
stack. Native methods, such as those performing cryptographic computations, also 
save intermediate results in RAM. Longer-lived data such as downloaded applet 
classes are stored in EEPROM [1, 3, 4, 7]. 
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Fig. 1. Java Card Memory Model that is consisted of three areas and its contents 

The applet instance and associated persistent objects of an application must survive 
a session. Therefore they are placed in the non volatile storage on a card, usually 
EEPROM. EEPROM provides similar read and write access as RAM does. However, 
The difference of both memory is that writing operations to EEPROM are typically 
more than 1,000 times slower than to RAM and the possible number of EEPROM 
writing over the lifetime of a card is physically limited [4]. 

Table 1. Comparison of memory types used in Smart Card microcontrollers [4] 

Type of memory Number of possible 
write/erase cycles 

Write time per 
memory cell 

Typical cell size 

RAM Unlimited 70 ns 1700 μm2 
EEPROM 100,000~1,000,000 3-10 ms 400 μm2 

2.2   Java Card Installer for Post-issuance 

Applet installation refers to the process of loading applet classes in a CAP file, com-
bining them with the execution state of the Java Card runtime environment, and creat-
ing an applet instance to bring the applet into a selectable and execution state [1, 2]. 

Class files 

Converter

CAP file 

Off Card Installa-
tion program 

CAD

Interpreter

On Card Installer

runtime environ-

PC or Workstation

Java Card

 

Fig. 2. Java Card Installer and off-card installation program [3] 
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On the Java Card platform, the loading and installable unit is a CAP file. A CAP 
file consists of classes that make up a Java package. To load an applet, the off-card 
installer takes the CAP file and transforms it into a sequence of APDU commands, 
which carry the CAP file content. By exchanging the APDU commands with the off-
card installation program, the on-card installer writes the CAP file content into the 
card’s persistent memory and links the classes in the CAP file with other classes that 
reside on the card. The installer also creates and initializes any data that are used 
internally by the JCRE to support the applet. As the last step during applet installa-
tion, the installer creates an applet instance an registers the instance with the JCRE. 

3   EEPROM Writing of a Typical Java Card 

3.1   EEPROM Writing Mechanism 

The EEPROM has an internal 128~256 bytes page organization. If the page size is 
128bytes, users can write any size of data from 1 to 128 bytes. However when users 
want to write data that are larger than 128 bytes or overlapped between two pages, 
users should do memory write management. It may need to call write routine twice, 
if it is overlapped between two pages, even its size is not more than 128bytes  
[12, 14]. 

When Java Card first writes a data in the EEPROM address range, the data is in 
fact written into the page-buffer. A typical EEPROM update(erase & write) routine 
will generate the high voltage twice. At that time the data, stored in the page-buffer is 
transferred into the non-volatile EEPROM cells. After the operation, the page buffer 
will be cleared automatically. 

EEPROM 
80000

RAM

page-buffer
(128 bytes) 

1 page 
2 page 80128

80256

30 bytes 

3 bytes

3 page 
4 page 
5 page 

…

27 bytes

 

Fig. 3. Writing operation of EEPROM that is organized by 128 bytes by using the page-buffer 
in RAM 

As illustrated in figure 3, if the system writes consecutive 30 bytes (80100~80129), 
first, The data to be written is transferred to the page-buffer. The data stored in page-
buffer on RAM can be available 1-byte up to 128-byte because EEPROM is organ-
ized 128-byte. For this reason, only 3 bytes first are written into 1 page area. And then 
the remainder in the page-buffer is written into 2 page area in EEPROM. 
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3.2   Basic Java Card Transaction Model Using Old Value Logging 

A transaction is a set of modifications performed atomically, which means that either 
all modifications are performed or none are performed. This is particularly for smart 
cards, because the card reader powers them: when you unexpectedly remove the card 
from the reader (this is called "tearing"), it's possible that you're interrupting a critical 
operation that needed to run to completion. This could put the card in an irrecoverable 
state and make it unusable. 

To prevent this, the Java Card platform offers a transaction mechanism. As soon as 
a transaction is started, the system must keep track of the changes to the persistent 
environment(EEPROM). The Java Card must save old_value of EEPROM address 
that will be written into a particular area(T_Buffer) in EEPROM. In other words, If a 
transactional computation aborts, the Java Card must be able to restore old_value 
from the T_Buffer in EEPROM to its previous position.  

In case of commit, the check_flag byte of the T_Buffer must just be marked invalid 
and the transaction is completed. In case of abort, the saved values in the buffer are 
written back to their former locations when the Java Card is re-inserted to CAD. 

 

Fig. 4. How to store old values in T_Buffer on EEPROM and the inner structure of T_buffer 
has a lot of logs and each log consists of 4 parts; header, length, address and old_value 

As illustrated figure 4, one object is created by new instruction during the execu-
tion. Before this object(20 11 20 04 00 08 87 12) is stored in its address, 0x00087170, 
old value(80 11 20 04 01 02 03 04) of this address should first be stored in T_Buffer 
with three additional fields that is mentioned earlier. Finally, new value is stored at 
the referenced location. In the typical Java Card, all referenced old values are stored 
T_Buffer area during a transaction. If a transaction is committed without any prob-
lems, All old values that T_Buffer has are ignored with a mark as a garbage. How-
ever, if a failure occurs before a transaction, the participating fields in the transaction 
are restored to their original contents from the T_Buffer.  

Table 2. The number of EEPROM writing per each area of whole EEPROM during the 
downloading and executing of each applet 

EMV Applet Wallet Applet 
EEPROM area the number of writing EEPROM area the number of writing 

StaticField 1,681 staticfield 752 
Heap 1,659 Heap 1,121 

T_buffer 10,121 T_buffer 8,478 
Total 13,461 Total 10,351 
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Table 2 below shows the number of EEPROM writing per each area of whole 
EEPROM. T_buffer area writing is about 75 to 80 percent of total number. The rea-
son why the writing number of this area is higher than other areas is a transaction 
mechanism of a traditional Java Card to guarantee an atomicity. In a traditional Java 
Card, this transaction mechanism makes the Java Card more slow and inefficient. 

3.3   Basic Java Card Installer with the Resolution in EEPROM 

The CAP file has a compact and optimized format, so that a Java package can be 
efficiently stored and executed on Java Card. Among several components in the CAP 
file, the constantpool_component and method_component include various types of 
constants including method and field references which are resolved when the program 
is linked or downloaded to the Java Card.  

As mentioned earlier, the constant pool component has lots of constants that must 
be resolved during the downloading of CAP file. Before constants are resolved to real 
addresses, these are consisted of tokens. Namely, the token of each constant is re-
solved to real address of Java Card API. After the resolution of constants, Java Card 
performs the resolution of indirect references into constants that are already resolved 
if bytecodes in methodcomponent have indirect references as an operand. This linking 
operation of the methodcomponent is executed when a referencelocationcomponent is 
finally sent to Java Card. 

constantpool_component 

method_component 

referencelocation_component 

…

…

CAP

CAD

method_component 

constantpool_component 

RAM

EEPROM

referencelocation_component

JavaCard

APDU

 store

 store

send

resolution

linking

 

Fig. 5. The procedure for downloading a CAP file with resolution in EEPROM in a traditional 
Java Card 

Figure 5 above shows the procedure for downloading a CAP file. First, both 
method_component and constantpool_component are saved in heap area in 
EEPROM. Second, the installer performs the resolution for constants of constant-
pool_component that is already downloaded. Next, the referencelocation_component 
is sent to RAM. This component has lists of offsets that must be replaced into con-
stant in constant_poolcomponent among bytecodes in the method_component.  
Finally, the installer replaces bytecodes in method_component into resolved constants 
by using the offset data of referencelocation_component [1, 3]. 
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06 80 03 00 03 80 03 01 01 00 00 00 … 80 38 03 00 80 3A 03 01 80 86 00 00 … 

constantpool_component resolution

01 04 06 … 
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Offset list for linking of  
method component

method_component

8C 00 00 18 8B 00 01 7A 05 30 8F 00 02 3D 18 … 8C 80 38 18 8B 80 3A 7A 05 30 8F 80 86 3D 18 … 

linking

1 1+4 1+4+6

 

Fig. 6. The raw method_component and resolved constantpool_component saved in EEPROM 
and the linking result of method_component from constantpool and referencelocation 

Consequently, the size of referencelocation means the number of bytecodes that 
must be replaced in method_component. While referencelocation_component is 
downloading, Java Card continually changes an operand of bytecodes in 
method_component as the size of referencelocation. It makes Java Card Installer more 
slow. 

3.4   A Traditional Java Card with One Page-Buffer 

As mentioned earlier, a Java Card can write between 1 byte and 128 consecutive bytes 
with this page buffer into EEPROM. For example, If EEPROM addresses of objects 
that will be written by a Java Card are sequentially 0x86005 and 0x86000, although 
both addresses are within 128 bytes, Java Card will first writes one object data in 
0x86005 through the page-buffer, and then, after the page-buffer is clear, another 
object data will be written in 0x86000.  

    

Fig. 7. How to write objects to EEPROM of the traditional Java Card using an inefficient page- 
buffer algorithm 

Above figure 7 shows the page-buffer algorithm of a traditional Java Card. this 
page-buffer is just to write consecutive data to EEPROM. It dose not have the func-
tion for caching.  
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4   Our Changed Java Card with a Reduced EEPROM Writing 

4.1   Our Transaction_In_RAM(TrIR) Technology  

As mentioned in the related works, smart cards including a Java Card support a trans-
action mechanism by saving old_values in EEPROM. The number of EEPROM writ-
ing in order to support the transaction is about 75 to 80 percent of the total number of 
EEPROM writing. EEPROM writing is typically more than 1,000 times slower than 
writing to RAM. It makes also Java Card much more slow and inefficient. 

We suggested new TrIR technology using RAM, not EEPROM in this paper.  If 
such tearing such as power loss happens in the middle of a transaction, all data after 
transaction began should be ignored. If T_Buffer area to save old_values places in 
RAM, in case of power loss, RAM is automatically reset. It means the preservation of 
old_values. 

 

Fig. 8. The algorithm of our TrIR technology that stores new value and old value into T_buffer 
in RAM 

Figure 8 shows the algorithm of our TrIR technology that stores new value and old 
value into T_buffer in RAM. Our T_Buffer stores new value and old value in 
T_Buffer on RAM. The last operation of our algorithms is to move all new values in 
T_Buffer to referenced addresses. If tearing such as power loss happens during this 
operation, new data that are already changed at target addresses are invalid. For this 
reason, our T_Buffer has also old values in addition to new values. As soon as a trans-
action commits, T_Buffer is moved a backup area in EEPROM to prevent this  
situation. 
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Table 3. The comparison of between old value logging and new value logging [17] 

Old value logging(a traditional JCVM) New value logging(our algorithm) 
- fast read accesses a the up-to-date values are 
always stored at the referenced location 
- the original value for a given location must be 
saved in T_Buffer. 
- committing a transaction is cheap as the new 
value are already in place 
- abort a transaction is expensive as the saved 
values have to be written back to the original 
locations. 

- a slow read access as the up-to-date values for a 
location must be searched in the T_Buffer 
- write operations always have to update the 
T_Buffer as any new store operation has to be 
recorded there 
- committing a transaction is expensive as the new 
values have to be written to their target locations. 
- aborting a transaction is cheap as the original 
values are still in place. 

In our algorithm, Read performance lags always behind as T_Buffer must be 
scanned-typically linearly-for a formerly written value. The situation can be better in 
case of the much more expensive write operation. As mentioned earlier, writing costs 
is more expensive than reading costs and EEPROM writing costs also is much more 
expensive than RAM writing costs. The total number of EEPROM writing to support 
a transaction is reduced by 50%. 

Backup Area flag

log #1 log #2 log #3 … log #n log_
count

target
address

new valuelength old value 

EEPROM RAM

 backup 

 

Fig. 9. Backup Area in EEPROM and new structure of T_Buffer that consists of 4 fields: 
length, target address, new value and old value 

4.2   Our Resolution_In_RAM Technology 

Our changed installer is very simple. The key idea of our Installer is to use RAM as 
much as possible by resolving indirect references [5] in RAM, not EEPROM. The 
important difference of both memory types is that writing to RAM is typically more 
than 1000 times faster than that to EEPROM. 

Our changed installer has more flexible than a traditional one. Especially, the size 
of method_component is not always fixed. It means that the size of component can 
exceed the remaining size of RAM. For this reason, when downloading a referencelo-
cation_component, first of all, the installer checks the total size of a method_compo-
nent to calculate proper block-size for resolution. Figure 5 show The resolution and 
linking procedure of our changed installer using a RAM Area. The operation of  to 

 repeats until the end of referencelocation_component. 
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Fig. 10. The resolution and linking procedure of our changed installer using a RAM Area 

4.3   Our Object-Buffer Based on Java Card Objects with a High Locality 

When an applet is executed on Java Card, if the information such as objects and class 
data that the applet writes are close to each other, the total number of EEPROM writ-
ing would be reduced by adding a caching function to the page-buffer. First of all, to 
do this, the writing address of objects and data created by Java Card must have a high 
locality. It causes the number of EEPROM writing to reduce and also makes a hitting 
rate of caching function more high.  

 

Fig. 11.  Heap-buffer that consists of 2 part; the buffer and cache. The data between Min and 
Max can be written to EEPROM at a time. 

In chapter 3, we explained how to write data in EEPROM by using one page buffer 
in a traditional Java Card in the low level. We also discovered that all objects and data 
that the Java Card creates during the execution have a high locality. It means that an 
additional caching function makes the number of EEPROM writing go down. For 
these reasons, we developed new Java Card with two page buffer in RAM; one is the 
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existing page buffer for non-heap area, another (Object-buffer) is for heap area in 
EEPROM. The heap area is where objects created by Java Card are allocated.  

In our changed Java Card, the existing page buffer is the very same that of a tradi-
tional Java Card in terms of a size and a function. The existing page buffer can write 
between 1 byte and up to 128 consecutive bytes to non-heap area at a time. However, 
our Object-buffer is for only heap area in EEPROM. The object-buffer of 256 bytes 
consists of 2 parts; 128 bytes for a buffer, 128 bytes for a cache.  

 

Fig. 12. The Object-buffer algorithm that checks continually the Min and Max points to write 
the object-buffer to EEPROM when Java Card writes data to heap area. (†E2p_addr : the 
EEPROM address that data will be written, ‡ heap_buff(Obj_buff) : our new heap buffer with caching and 
buffering function for just heap area in EEPROM). 

Figure 12 above shows the main algorithm using the Object-buffer and page-buffer 
The writing of non heap-area is performed with the existing page buffer. The writing 
of heap-area is executed with the Object-buffer. When the Java Card writes data re-
lated to Java Card objects into heap area of EEPROM, the first operation is to get 128 
bytes lower than the address that will be written and to copy them to the cache area of 
the Object-buffer. Next, the buffer area(128-byte) of the Object-buffer is cleared. Two 
points, Max and Min have the highest and lowest points that are written after Java 
Card get new 256 bytes to the Object-buffer. the gap between them continually is 
checked in order to write the heap buffer to EEPROM. Max and Min are non-fixed 
points to raise the efficiency of the heap buffer. The reason why the gap between Max 
and Min is 128 bytes is that our target chip, CalmCore16, supports the EEPROM 
writing of 128 bytes at a once. 

5   Evaluation of Our Approach 

The key of our approach is to improve an execution speed of the Java Card by reduc-
ing the number of EEPROM writing. The main idea is also that EEPROM writes are 
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typically more than 1,000 times slower than writes to RAM. One of the analyzed 
results of a traditional Java Card is that Java Card logs old values in T_Buffer area on 
EEPROM during a transaction and has one low-level page-buffer to write data to 
EEPROM regardless of the high locality of Java objects and has an installer using a 
resolution in EEPROM. For this reason, we developed new TrIR technology, new 
heap-buffer and new installer. 

   
JCSystem.begin_transaction(); 
byte a = new byte[5]; 
JCSystem.commit_transaction(); 

JCSystem.begin_transaction(); 
byte a1 = new byte[5]; 
byte a2 = new byte[5]; 
… 
byte a5 = new byte[5] 
JCSystem.commit_transaction(); 

JCSystem.begin_transaction(); 
byte a1 = new byte[5]; 
byte a2 = new byte[5]; 
… 
byte a10 = new byte[5] 
JCSystem.commit_transaction(); 

 
    
Traditional  41.720 ms 150.475 ms 301.295 ms 
Our approach(TrIR) 26.163 ms 83.173 ms 130.278 ms 

Fig. 13. The comparison of an execution speed between a traditional Java Card and our 
changed Java Card with the TrIR technology using the different number of the new operator 

Below Table 4 and Figure 14 below shows the comparison between a traditional 
Java Card and our changed Java Card in regard to the number of EEPROM writing 
and the execution speed. During the dynamic downloading of applets called a post-
issuance, the speed of downloading, installation and execution is also reduced by 
44%. Consequentially, the reduced EEPROM writing caused Java Card to improve an 
execution speed. 

One applet consists of over 11 components that include all information of one app-
let package. We also produced downloading results about each component. Basically, 
when Java Card installer downloads one applet, the component that takes a long time 
is the referencelocation component. The reason is that both are related to the resolu-
tion of indirect references during the downloading. Our approach almost reduced the 
downloading time of the referencelocation by 50%. 

Table 4. The comparison between a traditional Java Card and our changed Java Card with 
regard to an execution speed. (Experiment is made with CalmCore16 MCU [14], SAMSUNG 
MicroController for smart card). 

Applets Reduced Rate 
Channel Demo 76140 35645 53% 
JavaLoyalty 72703 42495 42% 
JavaPurse 232109 123944 47% 
ObjDelDemo 159420 94898 40% 
PackageA 90530 53498 41% 
PackageB 74859 42342 43% 
PackageC 32734 17322 47% 
Photocard 64608 38934 40% 
RMIDemo 57328 33243 42% 
Wallet 57140 32156 44% 
EMV small Applet 61766 35476 43% 
EMV Large Applet 119812 64834 46% 
Average   44% 
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Fig. 14. The comparison between a traditional Java Card and our changed Java Card with 
regard to an execution speed 

  

Fig. 15. The comparison between a traditional Java Card and our changed Java Card in regard 
to Wallet applet’s downloading and execution speed per each component 

6   Conclusion and Future Work 

Java Card technology is already a standard for smart cards and SIM cards [11, 15]. A 
Java language is basically slower than other languages. The card platforms also have 
a heavy hardware limitation. In spite of a Java’s slow speed, the reasons why Java 
Card technology is selected as a standard are a post-issuance and a platform inde-
pendence. When Java Card downloads new application, a post-issuance generally 
spends a lot of time [10, 11]. 

In this paper, we have proposed the method to reduce the number of EEPROM 
writing with new TrIR mechanism, new installer and new Object-buffer based on the 
high locality of Java Card objects. It also makes the downloading time and execution 
time of Java Card more fast. With our approach, the number of EEPROM writing and 
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the downloading speed reduced by 80% and 44% separately. It also enables an appli-
cation to be downloaded more quickly in the case of an application sent to a mobile 
phone via the GSM network (SIM). 
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Abstract. In NP-based networking elements, there are various kinds of packet 
traffic between data plane and control plane, which have different priorities and 
are handled by different tasks running on control plane OS. The critical packets 
need to be processed in time, otherwise the system, even the network, may enter 
some unstable states. Thus, the packets should be processed according to their 
priorities, i.e., packet-processing tasks for more important packets should be 
executed sooner if they are both in ready state. From the perspective of control 
plane OS design, packet-processing tasks should be scheduled based on some 
properties of packets waiting to be processed. This paper proposes a packet 
property-based task scheduling policy to alleviate the problem. The design and 
implementation are described and the performance results are discussed. The 
results show that this scheduling policy can achieve our design goal properly. 

1   Introduction 

Increasing requirements of network rates and sophisticated networking services make 
the traditional networking devices based on GPP or ASIC become a bottleneck of 
networking applications. As a solution, Network Processor (NP), which has high 
processing rate and flexible programming ability, is adopted in the design of 
networking application systems more and more widely. NP generally consists of 
multiple packet processing engines and a general purpose processor. Networking 
elements like routers and switches often involve two cooperating planes: one is used 
for fast packet processing (data plane), and the other is used for exception handling, 
data plane configuration and routing/signaling protocol processing (control plane). As 
for a NP-based solution, works in the two planes are often accomplished by the 
processing engines and general processor individually. There is no operating system 
running on the processing engines because data plane functions are usually less 
complex but more performance critical. However, for its complexity, control plane is 
often equipped with an embedded operating system.  

It is evident that there are various kinds of packet flows between the two planes, 
especially from data plane to control plane, and each of which may have a unique 
priority. Accordingly, on the control plane operating system, there are many different 
handling tasks for these packets respectively, such as routing protocol daemons. 
These tasks usually have a loop logic as “calling receiving system call1 packet 
                                                           
1 Receiving system calls include select, receive, and send etc. 
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handling calling receiving system call”.  In general, control plane tasks can run 
slower than data plane ones. But, it does not mean that the control plane functions are 
not time critical. In some routing protocols [1], for example, if packets for keeping 
alive between neighbors cannot be responded in time, router may be declared down, 
and which cause a network wide recalculation of the topology. For these critical 
packets, we can expect naturally the related handling tasks should start to run as 
soon as possible after packets arrive. Furthermore, if there are multiple packets 
having arrived at the same time, their handling tasks should be executed in a 
suitable order according to priorities of these packets. 

However, commonly used control plane OS, e.g., VxWorks and Linux, are lack of 
capability to guarantee that. Now, we consider what happens in Linux with a packet 
handling task. If the receiving buffer of a task is empty, the receiving system call will 
block the task until some packet arrives and make buffer non-empty. After that, the 
task will enter ready state. However, it does not mean the task will be scheduled to 
run immediately although the scheduling policy in Linux tries to give a higher priority 
to the task that are blocked before being waken up. The reason is that there may exist 
many other packet handling tasks, or even other I/O tasks having been waken up just 
now. As Linux does not differentiate packet handling tasks with ordinary I/O tasks 
and does not distinguish among packet handling tasks, a task for the most critical 
packet may not necessarily be able to acquire CPU and the packet processing may be 
delayed. This delay could be tens of milliseconds (We name this delay as scheduling 
delay.). If other delays in packet journey are also taken into account, we will find 
there maybe a quite long latency since a packet is sent out until the packet is handled. 
In many occasions mentioned above, this delay may be too long to be acceptable. 

To alleviate this condition, we suggest associating task scheduling with packet 
attributes and propose a packet property-based task scheduling policy for control 
plane OS in NP-based devices. The scheduling policy is able to derive a suitable 
priority of the handling tasks according to attributes of the packets they are handling 
currently. Thus, it can make more critical packets get processed sooner and suffer 
shorter delay. From its open source property and its broad application in network 
devices, Linux is chosen as the basis of our study.  

The rest of this paper is organized as follows. Section 2 reports related works. 
Section 3 gives an overview of relevant implementation in Linux. Section 4 proposes 
the design of the packet property-based task scheduling policy and discusses the 
implementation of individual components. In section 5, performance evaluation is 
presented. Section 6 discusses an improved method and section 7 summarizes the paper. 

2   Related Works 

Because commonly used operating systems like Linux are not designed for network 
processing purposely, they are lack of scheduling support for packet processing. 
Previous researches mainly focus on general real-time performance improvement 
techniques such as preemptive kernel [2, 3, 4], high-resolution timer [5, 6], and 
scheduling policies [7] based on task attributes, e.g., period or deadline of task. Works 
in preemptive kernel and high-resolution timer are not in conflict with our packet 
property-based scheduling policy because they are for the same goal but address 
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different aspects of the problem. In fact, they can be good supporting mechanisms for 
our scheduling policy. As for scheduling policies based on task attributes, we think 
they are not suitable for network processing environments. In such environments, it is 
difficult to determine task attributes like period and deadline because packet arrival 
has an asynchronous and even random fashion. Thus, these scheduling policies are 
difficult to be applied in network processing systems. 

AEM [8], an asynchronous event mechanism in Carrier Grade Linux [11], also 
aims at shortening the delay that events suffered. If a packet is viewed as an event, 
AEM can be applied for our goal. However, AEM requires all the tasks are 
programmed with a completely new programming model. Considering the abundance 
of applications currently running on Linux, there will be a huge amount of porting 
work to be done. On the contrary, our scheduling policy does not require any 
modification to existing applications. 

3   An Overview of Relevant Implementation in Linux 

Because our study is based on Linux, we now present an overview of relevant 
implementation in Linux to give readers some related knowledge. The kernel under 
investigation is 2.4.22. 

3.1   Kernel Behavior After Packet Arrival 

When a packet arrives, the protocol stack will firstly determine whether its destination 
is local or remote. If the packet is for a remote host, ip_forward routine is called to 
forward the packet. Otherwise, if the packet is for local delivery, sock_queue_rcv_skb 
routine is called to append the packet to a socket receiving buffer. Then, in 
sock_queue_rcv_skb routine, data_ready, a function pointer to sock_def_readable, is 
called. If the handling task for the packet is sleeping on its socket, it is awakened by 
wake_up_interruptible routine invocated in sock_def_readable. Finally, 
wake_up_interruptible puts the task into the ready list through calling 
try_to_wake_up, which will call reschedule_idle routine next. If reschedule_idle 
routine finds that priority of current process is less than the awakened one, it will set 
need_schedule flag to inform the scheduler to do reschedule. 

3.2   The Scheduler 

In Linux, a scheduling cycle is called an epoch. At the beginning of each epoch, the 
scheduler allocates a time slice, of which default value is about 60ms, to each task 
including the ones in sleeping state. The time slice of current task is decreased at each 
timer interrupt. When the time slice of each ready task becomes zero, current epoch is 
terminated and the scheduler allocates time slice for all the tasks again.  

The scheduling policy is implemented in the schedule routine, which is used to 
determine which task should acquire CPU. The routine is called when the time slice 
of current task is exhausted, when current task returns to user space from system call 
or after interrupt handling, when current task goes to sleep, or when a new task is put 
into the ready list. schedule routine calculates priority or weight of each task via 
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invocation of the goodness routine and selects the task with biggest priority to run. 
The algorithm of goodness() is as follows: 

if counter!=0, weight = 20 + counter− nice; 
else weight = 0. 

Here counter records the remaining number of ticks of task time slice, of which 
initial value is about 6. If a task is occupying CPU, its counter will decrease with 
time. nice can be used by user to improve or reduce the priority of a process, which 
has the following relation with the initial value of counter: initial value of counter = 
(20-nice)/4 + 1. Generally, nice ranges between -20 and 19. Thus, we can infer that 
the initial value of counter should ranges between 1 and 11. Moreover, when nice is -
20, counter gets 11. As we know, the default value of nice is 0, and thus the default 
value of counter is 6. 

If time slice of all the ready tasks is exhausted, schedule will reallocate time slice 
for all the tasks according to the following formula. 

counter = (counter/2) + (20 - nice)/4 + 1  

After the reallocation, all ready tasks have time slice equal to initial value of 
counter. For each sleeping task, the time slice is equal to the summation of initial 
value of counter and half the remaining time slice. Thus, in effect, the weight of 
sleeping tasks is improved to make them more competitive after they are awakened. 
But, the improvement is limited and not beyond two times of (20-nice)/4+1 [9]. When 
nice is equal to -20, counter has maximum value of 22, which is recorded as 
CounterLimit. As we has explained above, this priority improvement for sleeping 
tasks is not enough and can not guarantee that packet handling task is scheduled to 
run right after packet arrives. Thus, we design a packet property-based scheduling 
policy to address the problem. 

4   Task Scheduling Policy Based on Packet Property  

4.1   Concept of the Design 

The proposed scheduling policy will discriminate not only between packet handling 
tasks and other tasks such as IO handling tasks, but also among packet handling tasks 
according to property of packets being processed. The scheduling framework is 
illustrated in Fig. 1 and discussed as follows. 

After a packet arrives, a property table is looked up with packet metadata as input 
to find the priority of the packet.  

If lookup succeeds, i.e., there exists a matched item in the table, priority of the 
handling task for that packet is calculated according to the packet priority. In our 
policy, the calculated priority of handling tasks will be higher than other tasks and the 
higher the priority of its packet, the higher the priority of the handling task. This 
guarantees the handling tasks for more crucial packets can get more advantaged 
position in competition for CPU and thus have a shorter scheduling delay to process 
the packets in time. 

If lookup fails, it means the system does not regard that packet as critical. Hence, 
in our policy, the related handling task is treated as normal task and will be scheduled 
with the original policy of Linux. 
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Fig. 1. Packet Property-based Task Scheduling Framework 

It has to be noted that in general, this policy will not let handling tasks with higher 
priorities to starve ones with lower priorities because packet handling usually takes a 
very short time. However, for fear that some handling tasks enter an abnormal state in 
some conditions, e.g., enters a dead loop due to programming bugs, we design a 
guaranteeing mechanism to detect the ill-behaved tasks and degrade them to normal 
tasks. This mechanism is presented in detail in section 6. 

Our packet property-based task scheduling policy is transparent to applications. 
That means the existing applications need no modification and development of new 
applications can also pay no attention to it. In fact, an application can be not aware of 
the underlying scheduling policy at all, but can benefit from it. 

4.2   Packet Property Table and Packet Priority Determining Algorithm 

Our scheduling framework relies on a packet property table which consists of many 
packet property records. Each record has some packet attribute fields and a priority 
field. The Kernel will look up the table to determine priority of handling task before 
waking it up. In theory, properties of packet can be any combination of its metadata or 
payload. But, for simplicity, we now only consider the metadata of packet. A record 
can have the following format.  

Here, ip_protocol is protocol field in IP header of packet, which need to be set if 
you want to give some protocol certain priority. dst_ip is the destination IP address of 
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packet, which has direct relation to a physical port of certain line card. If you want to 
give a priority to packets from certain data plane physical port, you should set dst_ip 
field. dst_port is the destination port of packet.  src_ip and src_port is source IP 
address and source port of packet respectively. packet_priority is the priority you 
want to give the matched packets, which should be greater than zero.  

Not all the fields of a property record must be set except for packet_priority field. 
Some fields may be simply left as blank, which means these fields can match 
anything. Packet property table is maintained by system administrator with 
configuration tool illustrated in Fig. 1. On the other hand, the table can be set by 
applications using programming API.  

When we have the packet property table, we can determine packet priority by 
looking up the table in appropriate occasion. Obviously, packet priority should be 
decided before it is put into a socket receiving buffer. Thus, according to the 
discussion in section 3.1, we should add the implementation of packet priority 
determining algorithm in sock_queue_rcv_skb routine.  

In essence, packet priority determining algorithm is a process of table lookup, i.e., 
looking up the packet property table with packet metadata and obtaining the 

 field of the matched record. To accelerate the lookup, we design 
two data structure, i.e., a fast cache and a hash table. Thus, the algorithm is a two 
level lookup process as follows. 

(1) After a packet arrives, a fast cache matching process is started through 
comparison between packet metadata and cache content. If succeed, goto (3.) 

(2) If fast cache matching fails, a hash key is calculated based on packet 
metadata and the key is used to search the hash table. When a conflict in 
hash process is encountered, we use a chain to solve the conflict. 

(3) A successful fast cache matching or hash table searching returns the 
packet_priority field of the resulting record. 

(4) If above fast cache matching and hash table searching both fails, we know 
that there is no matched record for the packet. Thus, zero is returned. A zero 
value indicates that the system regard the packet as an unimportant packet 
and the related handling task is treated as a normal Linux task.  

Up to now, priority of packet is determined (We should add a field in Linux 
sk_buff struct to record the result). Then, the packet is to be put into one socket 
receiving buffer (a linked list). The packet is not simply appended at the tail of the list 
but it is inserted at a suitable position to guarantee the list has a descendent order by 
packet_priority from head to tail. Because handling task always take packet from list 
head, the sorted linked list structure in effect can guarantee that at least for the same 
task , the higher the packet priority is, the sooner the packet is served. 

4.3   Task Priority Determining Algorithm 

Now that we have packet priority determined, we can then determine task priority. 
According to the description in section 3.2, we implement the task priority 
determining algorithm in goodness routine. Thus, we have a new goodness routine as 
follows.  
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(1) If packetProFlag is TRUE, goto (2). Otherwise, goto (3). 
(2) weight = 20 + CounterLimit + packet_priority – nice. 
(3) If Counter is not zero, weight = 20 + counter –nice. Otherwise, weight = 0. 

Here, packetProFlag, a new field in task_struct of Linux, indicates whether a task is 
for packet handling or not.  

In the new goodness routine, we can see, packet handling tasks will obtain 
advantageous position compared with common Linux tasks because CounterLimit is 
greater than counter. As for different packet handling tasks, the priorities of them are 
determined by priorities of the packets being processed now. This means handling 
tasks for more critical packets will win the competition for CPU. Thus, it is true for 
many different tasks that the higher the packet priority is, the sooner the packet 
is served. Considering the conclusion in section 4.2, we in fact guarantee that for all 
packets in all socket receiving buffers the higher the packet priority is, the 
sooner the packet is served. 

4.4   Manipulating the Packet Handling Task Flag 

In the new implementation of goodness, we have introduced a packetProFlag 
variable. In this section, we will discuss when and how to set or clear the flag for each 
task. When a packet arrives, there are two cases for its handling task. 

Case 1: Handling task is now being blocked to wait for packet 
According to analysis in section 3.1, the handling task is sleeping on a socket in this 
case. We can set its packetProFlag in sock_def_readable just before kernel wakes up 
it by wake_up_interruptible invocation. The process can be depicted as follows. 
Firstly, packet_priority field in sk_buff structure of packet is copied to the field with 
same name but in task_struct of related task. If packet_priority is greater than zero, 
i.e., there exists matched record for the packet in property table, packetProFlag is set 
to TRUE. Otherwise, it is set to FALSE. Hereafter, goodness will be called by Linux 
kernel to compare the priority of the task that is just awakened with that of current 
task. If the awakened task has higher priority than current task, kernel will set 
need_schedule flag to TRUE. This then triggers a kernel reschedule procedure. We 
can infer that if current task is a common Linux task but not packet handling task, its 
priority will always be lower than the awakened task and thus the awakened packet 
handling task will be scheduled to run in time. 

Case 2: Handling task is now not being blocked to wait for packet 
In this case, the handling task is now processing other packet while a new packet is 
arriving. The new packet will be put into socket receiving buffer by kernel, and when 
the task issues another receiving system call, it will return immediately because it can 
get packet from the buffer. We can modify the implementation of the receiving 
system calls and add codes to manipulate the packetProFlag. In our new receiving 
system call implementations, packet_priority field in sk_buff structure of packet is 
copied to the field with same name but in task_struct of current task. As in case 1, if 
packet_priority is greater than zero, packetProFlag is set to TRUE. If not, it is set to 
FALSE. At the same time, need_schedule is set to TRUE, which triggers the kernel to 
do reschedule. After the reschedule, if current task is still the task with highest 
priority, it keeps to run. Otherwise, it means there must be a task just awakened by a 
packet with higher priority and current task has to be preempted out. 
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4.5   Redesign of ip_forward 

From the analysis in section 3.1, we know that kernel protocol stack will invoke 
ip_forward routine to forward the packets for remote host. In current implementation 
of Linux, this forwarding routine executes in a soft interrupt environment and thus has 
a higher priority than packet handling task. However, in control plane OS for network 
processor, many packets for local delivery have higher priority than packets to be 
forwarded in fact. Thus, forwarding should not always be preferred and the design of 
forwarding process should be retrofitted. Our proposal is to give ip_forward an 
incarnation of Linux kernel thread, which makes it get out of soft interrupt 
environment. Besides, we add a forwarding buffer for the ip_forward kernel thread 
mimicking the socket receiving buffer of packet handling task. The kernel protocol 
stack will put the packet to be forwarded to the forwarding buffer. As a kernel thread, 
ip_forward will loop to check the forwarding buffer. If the buffer is empty, it will be 
blocked. If not, it will read a packet from the buffer and forward it out. Thus, in 
essence, ip_forward thread now has a common structure with packet handling task 
and can be regarded as a packet handling task. That is to say, the packet property-
based scheduling policy can be applied to this thread too. We can set various records 
in the packet property table for different data flows to be forwarded. In this way, 
ip_forward can introduce some flavor of QoS through giving different treatment to 
packets belonging to different data flow, which is obviously better than the original 
FIFO implementation. 

4.6   Packet Property Table Configuration Tool and API 

In addition to modifications to kernel presented above, we also provide system users a 
table configuration tool to manipulate the packet property table. As illustrated in 
Fig. 1, the tool consists of two components: a table interface kernel module and a user 
space tool. The kernel module implements table reading and writing functions and 
provide IOCTL interfaces through a character device to user space applications. The 
user space tool fulfills table manipulating commands from system administrator 
through issuing IOCTL calls to the character device. The system administrator can 
construct suitable table records in system wide based on his knowledge of the system 
using the configuration tool. The IOCTL interfaces can be used as the programming 
API by developers of packet handling application to set task wide records in the 
packet property table. 

If user does not want to give some packets importance any more, he can simply 
remove related records. This make the handling tasks behave as normal Linux tasks 
when such packets arrive. Thus, we can say our proposed scheduling policy is very 
flexible in real application. 

5   Performance Evaluations 

Packet property-based scheduling will make packet handling tasks get higher 
priorities than normal Linux tasks and their priorities are proportional to importance 
of the packets they are handling. As a result, such a scheduling policy should make 
packet handling tasks for more critical packets  experience  shorter  scheduling  delay. 
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Fig. 2. Experiment Platform 

And as for total delay packets experienced, the conclusion should also be true because 
scheduling delay is part of the total delay. Thus, in our experiments, delays that 
packets experienced are measured. 

Our experiment platform is illustrated as Fig. 2. There is an ENP2611 [10] network 
processor board and three Linux/PCs. They are connected through gigabit fiber 
channel. On each PC, there runs a UDP client program which sends a packet of 500 
bytes to ENP2611 board with predefined interval (i.e., 30ms for PC1, 40ms for PC2, 
and 50 ms for PC3). On control plane of ENP2611, i.e., the XScale processor, there 
runs three UDP servers which receive packets from the three UDP clients 
individually and send back the received packets immediately as acknowledgements. 
Besides, there are 20 or 40 background common tasks (bckgrd) which possess a loop 
logic as “computing for 10ms sleeping for 200ms computing for 10ms”.  
According to original scheduling policy of Linux, sleeping periodically will make 
bckgrd tasks get relatively high priority after being awakened. Thus, they are very 
advantageous competitors for CPU in original Linux.  

We give packets from the three UDP clients different priorities individually 
through setting property table, i.e., give low priority to packets with 30ms interval, 
medium priority to packets with 40ms interval, and high priority to packets with 50ms 
interval. We measure the time since UDP clients sent packet out until they received 
the reply for common Linux case and extended Linux case. In each experiment, we let 
each UDP client send out 100,000 packets.  

The results are shown in Table 1. For constraints of paper length, we only 
present in the table the delay data of packets with high priority. As for packets for low 
and medium priority, our results show that they experience a little longer delay than 
packets with high priority, but the bckgrds have no influence on them. This proves 
that packet handling task has advantage over common Linux task. 

From table 1, we can see that on original Linux, packets of high importance was 
still delayed for so large a time span that it is cannot tolerable in some cases 
mentioned in section 1. The long delay is because that original Linux does not 
differentiate among packets and not differentiate between packet handling tasks and 
common I/O processing tasks (In our experiments, bckgrd simulates the behavior of 
I/O processing task.). However, in the extended Linux, the average packet round trip 
time and round trip time of most packets both stay at a very lower level. Also, the 
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results for packets with high priority are not influenced by the number of bckgrd and 
other packets with lower priority. 

Table 1. Experimental Results 

 

Packet 
Number with 

RoundTripTime< 
200us 

Packet Number with 
RoundTripTime>10ms

Average 
RoundTripTime 

Original 
Linux (20 
bckgrd) 

93,578 2,019 178us 

Extended 
Linux (20 
bckgrd) 

99,958 5 89us 

Original 
Linux (40 
bckgrd) 

91,244 3,019 271us 

Extended 
Linux (40 
bckgrd) 

99,957 4 91us 

6   An Improved Algorithm 

In general, our scheduling policy will not let handling tasks with higher priority to 
starve ones with lower priority because packet handling usually takes a very short 
time. However, in some abnormal cases, e.g., a packet handling task enters a dead 
loop due to programming bugs, the task will not go to sleep and thus not relinquish 
the CPU until packet with higher priority arrives. If no packet with higher priority 
arrives for a long period, other tasks will be starved. To attack such a problem, it is 
necessary to have a guaranteeing mechanism to detect the ill-behaved tasks and get it 
out of the abnormal conditions in time. In our design, a variable called 
packetProCounter denoting the maximum time slice a packet handling task can have, 
is introduced for each packet handling task. This variable can have different value 
from counter variable of common task but will be decreased at the same time when 
counter is decreased (Usually, the decrease is done when timer interrupt occurs). 
When the handling task is scheduled to run due to it has the packet with highest 
priority, the packetProCounter variable is initialized. And later, its value is decreased 
when each timer interrupt occurs. Here, we have an expectation that the task should 
go to sleep before the maximum time slice is exhausted. Thus, if the packet handling 
task still runs when packetProCounter becomes zero, the kernel knows that there 
should be something wrong with the task. In this case, the kernel will degrade this 
packet handling task to a common Linux task (The kernel simply sets its 
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packetProFlag to FALSE.). Thus, this ill-behaved task will no longer have advantages 
over other tasks and will not starve other tasks any more.  

With this mechanism integrated, we have an improved algorithm for goodness as 
follows.  

(1) If packetProFlag is TRUE, goto (2). Otherwise, goto (3). 
(2) If packetProCounter is not zero, weight=20+CounterLimit+packet_ 

priority-nice; Otherwise, weight=0 and packetProFlag is set to FALSE. 
(3) If counter is not zero, weight=20+counter-nice; Otherwise, weight=0.  

7   Conclusions 

This paper proposes a packet property-based task scheduling policy for control plane 
operating system of NP-based network elements. This policy determines priority of 
packet handling task based on properties of the packets it in charge of. With this 
scheduling policy, we can make packets get processed in an appropriate order and keep 
the system or even the network away from some related unstable states. The 
experimental results show that the scheduling policy can achieve our design goal 
properly. Because the research is for network processing system purposely, the 
scheduling policy is only for packet handling now. But, with minor extensions, we 
believe the policy can also be used to handle other events. In the future, we will extend 
current work and form a more general event property-based task scheduling policy.  
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Abstract. To addressing the self adaptation problem arises from large scale 
densely deployed sensornet, we argue that integrating the principle of context 
aware with sensornet is feasible. To build such a context aware sensornet, 
proper context describing and storing mechanisms must be provided. In this pa-
per, we propose RBLS, a Role Based Local Storage scheme. RBLS is designed 
simple and energy efficient. Aimed at providing context storage support for 
sensornet, RBLS stores contexts at node’s local space and dynamically allocates 
extra spaces according to the roles a node holding. A “snapshot” is used by 
RBLS to record a neighbor’s private contexts. We evaluate the performance of 
RBLS against a primitive scheme. Simulation results are included in this paper. 

1   Introduction 

Advances in MEMS technology, wireless communications, and digital electronics 
have enabled the development of low-cost, low-power, multifunctional sensor nodes 
that integrating the ability of sensing, computing, and communication[1]. The low per 
node cost will enable the development of densely distributed sensor networks for a 
wide range of applications. While single sensor node can perform signal processing 
and computation, its ability is limited. Nodes in these dense networks will coordinate 
to accomplish sensing task. These large number of wireless connected sensor nodes 
composed a distributed ad hoc network which we call sensornet. Usually, sensornet is 
deployed in remote and hostile environment where manual configuration is not al-
ways possible. To achieve scalable, robust and long-lived goal, nodes of sensornet 
must be self adaptable. Learning the lesson from context aware computing, we pro-
posed the idea of context aware sensornet (CASN) [2]. Nodes of CASN are able to 
adjust their behaviors according to the relevant situation, that is, be context aware. 

One of the challenge arises from CASN is the representation of context. To  
efficiently using context, context aware systems should provide permanent or tempo-
ral context storage schemes. As most of the traditional context aware systems are built 
upon well defined infrastructure, they care little about context storage problem. There 
are many off the shelf database products can be selected by these systems to store 
context. However, the situation of CASN is different. In CASN, there is no mature 
data storage technology can be directly applied. The limited memory size and battery 
energy of sensor node worsen the problem of context storage in CASN. 
                                                           
*  The paper is supported by Doctorate Foundation of Northwestern Polytechnical University 

(No.200348). 
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Different from traditional context aware system, we consider that CASN is node 
centric. That is, the situations of the node and the neighbor but not the situations of 
the human are important to CASN. Limited by the radio range, to communicating 
with other nodes hops away, one node must depend on its neighbors to relay the 
packets. Therefore, node’s neighbors are the immediate objects a node can interact 
with. We believe that the contexts of the neighbors’ have important impact on node’s 
decision of adjusting its behaviors while other peer nodes’ context may have no effect 
on it. Also, there are some global contexts which are meaningful to the node. For 
example, the location of the sink node can contribute to selecting next hop node in a 
context aware routing algorithm. But we argue that accessing global context is not 
frequently happened in CASN. Be node centric, query of context is initiated within 
sensornet by the sensor node but not by the user of the sensornet. Again, this kind of 
query is frequently initiated between pairs of adjacent nodes. Considering the costs of 
communication, storing contexts on a centric point (within or outside the sensornet) is 
inefficient and energy consumptive. Therefore storing node’s context locally is more 
suitable and can results in significant energy savings [3].  

In a summary, context storage problem of CASN exhibit following features: 

• A node can act as both the producer of the context and the consumer of the con-
text. 

• There are global contexts in CASN. 
• Contexts of neighbors have important impact on node’s behavior. 
• Partial query and local storage is the primary query & storage mode of CASN. 

Considering the features above, in this paper, we proposed a role based local stor-
age scheme, which we call RBLS (Role Based Local Storage). RBLS is designed 
simple and energy efficient. It is a distributed storage scheme. There is no single cen-
tric storage point provided in RBLS. Sensornet scale up or adding new context has 
gentle effects on the overhead of RBLS. 

In this paper, we present the motivation and the algorithms of RBLS. The remain-
der of this paper is organized as follows. Section 2 reviews some related research 
work. Section 3 describes our previous. Then in section 4 we present our approach of 
RBLS. Section 5 gives a simulation result and conclusions are in Section 6. 

2   Backgrounds and Related Work 

Computers in traditional context aware systems are designed to adapt its behavior 
according to the context of user. However, be node centric, each node of CASN is 
expected to adjust its behaviors according to the situation of other peer nodes. A node 
can get services from other nodes. It can also provide services to other nodes. How-
ever, sensor node is indistinctive from one to another. This makes it difficult to pro-
gram specific actions for specific node. To distinguish these indistinctive nodes, we 
proposed a sensor society model to modeling sensornet[2]. A sensornet can be mod-
eled as sensoc:  

Sensoc=(SAgent, SCL, SRole, SRule, f) 
• SAgent is a non-empty set of society member. 
• SCL is the communication language of society. 
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• SRole is a non-empty set of society role names. 
• SRule is the sets of social rule all members should obey. 
• f(SAgent T SRole This function indicates that at time t, each member of the 

society should be assigned at least one role. 

Each role is associated with certain services. By modeling sensornet using sensor 
society, each node of sensornet is assigned at least one role. It is assumed that all the 
nodes have the common knowledge of sensor society. Therefore, a node can match 
the required services based on the roles held by its neighbors. Consequently, a pair of 
nodes can act properly according to the roles they are holding. “Role” is an important 
concept in CASN. It is also useful to settle the cooperative relationship between 
nodes.  When considering the enable technologies of CASN, we find that “role” plays 
important role. 

Referring Dey’s definition of context[4], we defined context of CASN as: Context 
of CASN is any information that can be used to characterize the situation of the entity 
that is involved in sensornet actions. Entities of CASN include sensor nodes, sensing 
task and sensing data. This definition is given under the background of sensornet. 
Based on this definition, context of CASN is categorized into node context (including 
role context), task context and sensing data context. To use context effectively, con-
text must be represented properly. However, restricted by node’s limited resource, 
existing context represent technologies such as ontology based method can not be 
applied in CASN. Referring ontology’s concept of knowledge sharing, we proposed a 
Micro Sensornet Ontology (μSONG). μSONG provides simple and flexible way to 
expressing context. It is also helpful when reasoning high level context in 
CASN1.μSONG provides: (1) a set of CASN context vocabulary; (2) formalized con-
text describing method; (3) semi-formalized relationship describing method.  

Another important work of context representation is providing permanent or tem-
poral context storage scheme. While most of the traditional context aware systems 
care little about context storage problem, resource restricted feature of sensornet ex-
trude the problem distinctively. 

Most of the traditional context aware researches apply off the shelf database prod-
ucts to store permanent context. However, those database products are too big to be 
adopted by CASN.  

Data management is one of the hottest research topics of sensornet. Many re-
searches have studied the data storage problems of sensornet, such as[3;5-9], etc. 
However, considering the application backgrounds of sensornet, how to manage data 
streams originated from thousands of sensor nodes in energy efficient manner and 
report the events occurred in target regions to the user timely is crucial to these re-
searches. As boosted by the need of the specific application, technologies derived 
from these researched are usually application specific and need specific supporting 
infrastructure. Queries are usually initiated outside the sensornet by sensornet user. As 
data type, data scale and data accessing modes of these two kinds of schemes are 
different, a special designed light weighted context storage scheme for CASN is  
required. 

                                                           
1  Detailed introduction of μSONG is beyond the scope of this paper. We will discuss it in 

another paper. 



 RBLS: A Role Based Context Storage Scheme for Sensornet 99 

3   Our Approach of Context Storage 

In this section, we first show a primitive way of context storage. Then referring to this 
primitive scheme, we discuss our role based context storage scheme. 

3.1   A Primitive Way 

As discussed before, considering the context accessing mode of CASN, storing con-
text on node is reasonable. A node provides context to its neighbor, but it also gets 
context from its neighbors. A context storage scheme should facilitate the context 
storing and accessing between nodes. 

A primitive context storage scheme is allocating all the required spaces in one 
time. Considering the node be a context provider, the scheme allocates spaces for 
each context listed in μSONG vocabulary. Let’s tag the region allocated as S. Now, 
considering the node be a context consumer, a simple way to get neighbors’ contexts 
is copying their contexts to node’s local space. At the first time, node copies the 
whole S from its neighbor, after that, it only updates neighbor’s changing contexts. 
Therefore, the available contexts a node can get are the collections of contexts its 
neighbors provided. When a node gets global context from one of its neighbor, it 
updates the corresponding context it provided and inform the change to its neighbors. 
Then neighbors of this node also get this global context.  

Let’s use s denoting the size of μSONG vocabulary, use t(i) denoting the space re-
quired by i-th context. Supposing each node has n neighbors. Then using this primi-
tive storage scheme, the spaces required by a node can be expressed as: 

( ) ( )
1

1
s

i

n t i
=

+ ×  (1) 

The advantages of this primitive scheme lie in that it is simple to implement and it 
can ease the localized processing of context. However, its disadvantage is also dis-
tinct. First, the contexts a node can provide are uncertain during life of the node. Al-
locating spaces for all the contexts listed in μSONG vocabulary wastes node’s pre-
cious memory space. Second, as many nodes can provide same global context, copy-
ing all the contexts from a node’s neighbors may result storing redundant contexts. 
Finally, if s and n are large enough, totally spaces required by a node will very big. 
Besides this, required spaces will increase rapidly when sensornet grown bigger or 
new context added in. 

3.2   Node’s Local Contexts 

Obviously, a node does not necessarily providing all the contexts in μSONG vocabu-
lary. To study the minimized contexts set node is required to provide, we decompose 
the contexts residing on the nodes. Fig.1 shows the contexts residing on n nodes. 

Fig.1 divided contexts into two parts. The one is basic context which is used to 
characterize the situation of the node. Some situations or properties of the node are 
common for all the nodes, such as node’s ID and node’s location, etc. Basic context is 
used for these common situations. The knowledge of basic context is sharing among 
nodes. Therefore if node A wants to query the basic context of node B, A needs not to 
ask if B can provide it. A can directly query required context by name. 
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Fig. 1. Node’s local contexts 

Except basic context, other contexts residing on the node are categorized into pri-
vate context. A node has no previous knowledge of its neighbor’s private context. 
Therefore if node A wants to query the private context of node B, the first thing it 
need to do is confirm that B can provide specific context. Private context includes 
global context and extra context. Supposing global context is diffused through the 
sensornet from one node to another, different node may have different global context. 
When node undertakes specific processing, it may get extra contexts and provides 
them consequently. For example, to execute sensing task, a node may get and provide 
task contexts.  

The number of node’s private context is uncertain. Therefore, dealing the uncer-
tainty of node’s private context is important to designing reasonable context storage 
scheme. 

3.3   Role Based Local Storage Scheme 

Based on the analysis above, we proposed a localized context storage scheme - Role 
Based Local Storage (RBLS). The motivation of RBLS is storing minimal contexts on 
node. Therefore, RBLS avoids allocating storage space for all the contexts in one 
time. Also, RBLS does not support totally copy neighbor’s contexts to local space. 

We argue that the difference of nodes’ private context is actually resulted from the 
different roles nodes holding. For example, if the role Sensor is held by the node that 
execute sensing task and the role Router is held by the node that help forwarding sens-
ing data, the contexts required by these tow roles may different. A Sensor node may 
require specific task contexts to decide the types of sensor, the frequency of sampling, 
the duration of sensing task, etc. While a Router node may need the location context of 
target node. These specific required contexts are node’s private contexts. 

In our sensor society model, Post Condition (PoC) of holding role explicitly ex-
presses the extra information required by the node who holding this role. If we use a 
CRD (Context Requirement Descriptor) expressing the extra contexts required by 
holding specific role, then the extra contexts required (and thus provided) by a node is 
determinable at runtime. 

Working process of RBLS can be simply described as below. Initially, RBLS allo-
cates context storage spaces for basic context. Then based on the roles held by node, 
RBLS calculates CRD and allocates extra context storage spaces for the node. When 
the node lost specific role, context spaces that no longer required are freed by RBLS. 

Because RBLS does not support totally copy neighbor’s contexts to local space, 
when a node wants to query context from its neighbors, it must know which neighbor 
can provide required context. To address this problem, RBLS records a “snapshot” of 
neighbors’ private context. RBLS maintains “snapshot” for each of its neighbor. 
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Node’s neighbor table is used to store “snapshot”. Node Id in neighbor table can in-
dex neighbor quickly. Node C in Fig.2 has 3 neighbors (B, C and D). As shown in 
Fig.2, node C maintains a neighbor table which stores the “snapshots” of neighbors’ 
private context. 

 

Fig. 2. Snapshots of neighbors’ 

Supposing the number of node’s basic context is l, and the number of node’s pri-
vate context is k. The space required to store “snapshot” of i-th neighbor is marked 
as ( )'t i . Then using RBLS, the space required by the node which has n neighbors can 

be expressed as: 
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Because l k s+ ≤ , we get: 
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Referring formula (1), we can conclude that if the formula below is valid then 
RBLS is better than previous primitive scheme. Therefore, the method used to record 
private context’s “snapshot” has strong effect on the performance of RBLS.  
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γ
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 (3) 

3.4   Implementation Issues 

In this subsection, we discuss implementation issues related to RBLS. 

 Build CRD 
Removing basic context from μSON vocabulary, we get a set of private context. Let’s 
denote this set as P. P has p members. We use bitmap represent CRD. That is, CRD is 
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a p bits bitmap and each bit of CRD corresponds with a member of P. Setting a bit of 
CRD to 1 indicates that corresponding context in P is required by role and vice versa. 

Bitmap can efficiently reduce the size of CRD. However, if p is large, the size of 
CRD is also big. For example, if p=256, then each role will require 32 bytes to  
declare its extra contexts requirement. To reduce the size of CRD, bitmap must be 
compressed. By repartitioning P, we get 4 subsets, i.e. global context, task context, 
sensing data context and free context. These 4 subsets are marked as PGlobe, PTask, PData 
and PFree and corresponding size are pGlobe, pTask, pData and pFree. Similar to basic con-
text, PTask includes minimal contexts for characterizing sensing task, while PData in-
cludes minimal contexts for characterizing sensing data. All the other contexts that 
can not be included in PGlobe, PTask and PData are categorized into PFree. We argue that 
if a role require task contexts, all the members in PTask are required. Carried the idea 
farther, as sensing data is the product of executing sensing task, we infer that if a role 
require task contexts, members in Task DataP P  are all necessary. Therefore, as shown 

in Fig. 3, a p bits bitmap can be compressed to a  pGlobe+1+pFree. 

pGlobe 1 pFree

PTask PData

Compressed bitmap

Using 1 bit representing 
members of PTask PData  

Fig. 3. Bitmap compression 

Each node maintains a CRD. Each role is assigned a CRD when definition. To 
identify them, role’s CRD is marked as rCRD. CRD is recalculated when node’s hold-
ing roles changed. In a summary there are 3 kind of role changing situation: getting 
new role, getting extra role, and losing role. CRD is recalculated according to one of 
these 3 situations. Shifting role from one to another is seen as the process of losing 
one role first then getting another role. During this process, CRD is calculated twice. 

 Allocating spaces for private context 
A node got new role may require extra contexts and need additional storage spaces. 
While a node lost role may result freeing unnecessary context space. Different from 
calculating CRD, RBLS does not trigger space reallocating action at each point of 
role changing. In fact, RBLS reallocates spaces based on calculated CRD. And this is 
happened when the whole role changing process is finished. 

To handle the spaces allocated, RBLS also maintains a CAB (Context Allocation 
Bitmap) to mark the spaces allocated for. CAB is in fact a copy of CRD.  However, 
after CRD changed, RBLS can compare CAB with CRD to find the contexts that no 
longer require by the node and correctly free corresponding spaces. 

When reallocating spaces for private context, RBLS first frees no longer required 
spaces then allocates spaces for newly added contexts. When freeing spaces, RBLS 
calculates the value of CAB CRD∧ ¬ . The bits that set to “1” in result indicate that 
corresponding contexts are no longer required. Fig. 4(a) shows the process of finding 
contexts that no longer required. To ease illustrating, 8 bits bitmaps are used. Again, 
when allocating additional spaces, RBLS calculates the value of CAB CRD¬ ∧ . The  
 



 RBLS: A Role Based Context Storage Scheme for Sensornet 103 

bits that set to “1” in result indicate that corresponding contexts require allocating 
new spaces. Fig. 4(b) shows the process of finding contexts that require allocating 
new spaces. 

CAB CRD∧ ¬ CAB CRD¬ ∧

 

Fig. 4. Free vs. Allocating 

 About “snapshot” 
One good feature of CRD is that it also records the private context node provided. It 
can be proved that using CRD as snapshot can satisfy the restriction of inequality (3). 
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. Obviously, this inequality is valid.  

A node gets complete CRDs from its neighbors when building neighbor table at 
initialization phase. Later, if neighbor’s CRD changed, “snapshot” of the neighbor 
must be synchronized. To reduce packet size, when synchronizing “snapshot”, CRD 
does not always being sent completely. RBLS adopts a zone based way to update 
“snapshot”. As Fig. 3 shown, there are 3 zones in CRD. If the change of CRD occurs 
only in one of these 3 zones, neighbor can sent only the CRD fragment of that zone to 
the node. This avoids resending whole CRD every time.  

Table 1. CRD zone codes 

00 Updating whole CRD 01 Updating PGlobe zone only 
10 Updating PTask PData zone only 11 Updating PFree zone only 

3.5   Long Term Storage 

Long term storage is provided in CASN. However, it is not “long” enough to store 
history contexts days or months ago. As CASN is node centric, most of the contexts 
are node’s situation related. It is a fact that to adjust node’s the behavior, contexts 
minutes ago is much meaningful than contexts days ago. Therefore, CASN only 
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stores history contexts a short time ago. FIFO queues are used to manage history 
context. Historic contexts belong to same context are queued into same queue. 

4   Simulation Results 

We have coded an implementation of RBLS by adding new library into TinyOS[10]. 
We also evaluate the performance of RBLS using TOSSIM[11].TOSSIM is a simula-
tor for wireless sensor networks. It can capture network behavior at a high fidelity 
while scaling to thousands of nodes. We employ a grid topology which has same 
distance between two nodes. Radio range used in TOSSIM is 50 feet. This means 
each mote transmits its signal in a disc of radius 50 feet. The radio model we used in 
our simulation is “lossy” model. The “lossy” radio model means that a bit transmitted 
by a node has a certain chance of being flipped. The probabilities of bit error between 
pairs of nodes can be generated using LossyBuilder tool which provided with 
TOSSIM. In our simulation, a node sends CRD to its neighbor respectively. If the 
neighbor receives CRD, it echoes a respond. Node will send CRD repeatedly until all 
the neighbor responded or it reaches max retry times. 

There are 37 contexts in our simulation. In these contexts, 15 contexts belong to 
basic contexts; 10 belong to task context; 5 belong to sensing data context; 2 belong 
to global context and 5 belong to free context. Therefore, there are totally 22 contexts 
can be used as private context. These 22 contexts can be described using an 8 bit 
CRD. To simplify the scenario, we assumed that each context occupied 6 bytes space. 
There are 3 roles (R1, R2, and R3) defined in our simulation. The CRD of R1 is zero 
which means that R1 does not require extra contexts. The CRD of R2 is 00101000. The 
CRD of R3 is 10011100. Each node is originally assigned a role R1. Node’s holding 
role can shift from one to another. Role shifting actions happen at least once every 
half-hour. Simulation time is 5 hours after all nodes is initialized. 

In our first test, we measured the spaces required by single node that holds R1 using 
RBLS and primitive scheme respectively. We vary the number of node’s neighbor. 
Fig.5 (Test#1) shows the result. The result shows that when node’s neighbors in-
creased, spaces required by node using primitive scheme increased sharply. However, 
when using RBLS, space augment was not so remarkable. In our second test, we 
measured the spaces required by a node when it holds different roles. In this test, node 
has no neighbor. Fig.5 (Test#2) shows the result. The result reveals that role shifting 
has no effect on the performance of primitive scheme. However, at each point, using 
RBLS consumes fewer spaces than using primitive scheme.  

Our third test measured the max messages transmitted by node using RBLS. Node 
density in this test is 4 nodes/35 feet2. We vary the network size. Fig.5 (Test#3) shows 
the result. As shown in figure, network size has no significant influence on the per-
formance of RBLS. This result coincides with our expectation. As we mentioned 
before, node’s situation is influenced by the nodes in neighborhood. Therefore result 
in Fig.5 (Test#3) is reasonable. 

In our last test, we measured maintaining costs of RBLS and primitive scheme. We 
use a moderate network size (100 nodes) and vary the deploy density of sensornet. 
Fig.5 (Test#4) shows max messages transmitted by node having max neighbors. 
Simulation result shows that max messages transmitted increase sharply when node 
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density is high. We think this can ascribe to our CRD updating mode. Because a node 
sends CRD to its neighbor respectively, when node’s neighbor increased with the 
increase of node density, the node must send more messages. Interesting, when the 
distance between two nodes is close to 50 feet, messages transmitted increased too. 
We believe this is because bit error rate is increased sharply when the deploy distance 
close to 50 feet. As a result, node must always resend messages time and times again. 
Reducing node’s retry times may optimize the performance. Results from Fig.5 
(Test#4) reveal that maintaining costs of RBLS is much lower than that of primitive 
scheme.  

 

Fig. 5. Simulation result of RBLS 

5   Conclusion and Future Work 

This paper presented the design and evaluation of RBLS, a context storage scheme for 
sensornet. Our analysis reveals that dealing the uncertainty of node’s private context 
is important to designing reasonable context storage scheme. We argue that the differ-
ence of nodes’ private context is actually resulted from the different roles they are 
assigned. Extra contexts required (and thus provide) by a node can be determined by 
the roles held by it. RBLS takes advantage of this feature and allocates context stor-
age space dynamically. 
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In a summary, RBLS is a simple and energy efficient context storage scheme. Our 
simulation results show that maintaining costs of RBLS is very small comparing to 
that of primitive scheme. Another good feature of RBLS is that the size of sensornet 
has no significant effects on its performance. The simulation results show that the 
number of messages transmitted increases rapidly when node density increased. How-
ever, when node density increased, redundant nodes are also increased. We believe 
that the performance of RBLS can be improved by dynamically turn some redundant 
nodes off.  

A cache may useful for some frequently queried contexts. Currently, we are work-
ing to enable RBLS support cache. We expect this feature can improve the perform-
ance of RBLS farther. RBLS is one of the enable technologies of CASN. Based on it, 
we are intending to develop a context managing component to providing transparent 
context accessing services to CASN applications and other CASN services. 
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Abstract. Complexity of software systems has significantly grown with social 
dependence on computer system, especially for mobile and internet. So we pre-
sent component-based communication protocol architecture. In this architec-
ture, Component Development Platform (CDP) is the kernel software. CDP is 
one of the rapid communication components’ development tools. It is the col-
lection of views and plug-ins to form a series of tools and it takes much flexibil-
ity and configuration ability. For the customization of component-based com-
munication protocols, code analysis tools make a good abstract from original 
practical source codes to visual structure model too. This becomes the feasible 
guidance and roadmap to develop the components and component-based com-
munication protocols.   

1   Introduction 

Complexity of software systems has significantly grown with social dependence on 
computer system. Especially communications become prevalent with more complex-
ity, such as mobile and internet. To deal with these, software systems model with 
component-based architecture such as COM, CORBA and EJB [7]. Many tools for 
complex systems have widely used to aid programmers such as IDE and CASE tools. 

On the other hand, embedded communication systems have universally used for 
mobile and internet, for example, wireless mobile telephones and internet routers. It is 
different with common applications because of the limitation of processor speed or 
memory capability [2, 3]. This brings different component-based architecture to soft-
ware development, test and maintenance. It is in great need of convenient tools.  

Communications are maintained by communication protocols. The protocols are 
more complex because of the consideration of synchronization, mutex etc [4]. For 
embedded systems, there are many kinds of embedded operating systems (EOS). 
Protocols need transport among various EOS. Furthermore, system support for 
communications may be partial and fixed because of the hardware limitation, so 
protocols may transplant according to device too. The transport equals to protocol 
implementation. 

The utilization of component-based communication protocols is a good solution to 
reduce the repetitive implementation of protocols [6]. This also brings more flexible 
functionality. We present component-based communication protocol architecture 
(CCPA) [1] to develop, test, store, assemble and load the components. In this  
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architecture, component development platform is the kernel software. Good develop-
ment tools can lead to high efficiency.  

CDP is an IDE to develop and test the communication components. The protocols 
for given hardware and EOS are made up with these components. IDE may be not 
necessary for software development. Usually we can use a series of tools in order, 
with a name tool-chain. So developers need to read many documents, which describe 
the developing process from beginning to end. For example, the organization of the 
projects, the usage of cross-platform compilers and build tools, the test and quality 
assurance of the products, the storage of the products [5]. Each step uses the specific 
tool, this makes the development so complex. If CDP exists, we can link all these 
tools together and use them within this IDE. 

For a long time, we have paid much attention to design and implement compo-
nents. Common compilers such as gcc (g++), JDK, and common commercial IDE 
such as Visual C++, Borland C++ Builder, are generally used for the protocol devel-
opment. There is few optimization and customization for the development of commu-
nication protocols. We can find the features of this kind of development. 

There is a strong resemblance among various protocol implementations. The trans-
port is only suitable for hardware or EOS. We can analyze the existing stable source 
codes to abstract the unalterable parts. In CCPA, we rewrite these source codes as 
components, so the analysis should point to the loose coupling points. CDP then pro-
vides a guidance to assemble and describe the components. 

To reduce the complexity of embedded software development, the process to com-
pile and debug is seldom on chip. We use tool chains target to the embedded systems. 
There are so many kinds of tool chains that the parameters may be different. We can 
analyze the common parameters to abstract a list of popular switches. CDP provides a 
uniform interface to programmers suitable for these tool chains. 

The components we get are used to assemble protocols. These need to be more sta-
ble and robust, so the components must test strictly. The tests base on two aspects: 
component itself and assembly global reliability. Not only the quality of components 
but also the usage into protocols should validate. CDP provides the virtual environ-
ments to test components. 

On all accounts, CDP is a customized IDE for component-based communication 
protocol development. The paper first explains CCPA briefly in Part 2, and then in-
troduces the CDP framework as a whole in Part 3. Code analysis abstract is the kernel 
of the paper and it is illuminated in Part 4. Part 5 gives the implementations with 
multiple views, various plug-ins and how to link cross-platform compilers. 

2   CCPA Overview 

CDP is a part of CCPA. CCPA modularizes the implementation of protocols compo-
nent-based. It is the architecture for the development, storage and utilization of par-
ticular components for different EOS. Based on CCPA, We devise multiple light-
weight protocol components that are customized for application requirements and 
device characteristics. We can analyze the existing source codes of the protocols, 
develop and test qualified components target to different EOS. The stable and certi-
fied components store into a library for further reuse. Only necessary components 
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load into devices automatically or manually, keep partly active according to the cur-
rent network and environment status. The protocols in active can be remote controlled 
without the communication shutting down. 

CCPA includes a set of correlative software systems, such as Component Devel-
opment Platform (CDP), Component Library (CL), Component Assembly Platform 
(CAP), and Operating System Support Environment (OSSE). Component Description 
Language (CDL) joins these software systems together and encapsulates the compo-
nents description accurately. A general scenario of the architecture illuminates with 
figure 1.  

 

Fig. 1. CCPA Basic Deployment 

CDP generates the components suitable for EOS. It uses the certain cross platform 
tool-chains customized for target EOS. The built binary components need to check the 
quality and reusability. Only qualified components are regarded as stable and stored 
into CL. CL is not merely a binary data base for component storage. It does much 
quality assurance, exchange and component transfer work. OSSE executes on EOS or 
joins into EOS kernel. It supports the component-based protocols and protocol stacks. 
It can self-adapt with the application requirements and network environment, or can 
manually controlled by CAP remotely. OSSE loads or unloads the components while 
keeps the communication services active. 

3   CDP Framework 

CDP includes many units, which are shown in figure 2. Code editor is an enhanced 
text notepad basically. For convenient programming, code assist tools associate 
tightly to provide the highlight of the reserved words and auto fill-in of source codes 
according to the build-in templates. These templates support C, C++ and Java etc. 
Code analysis tools analyze the invoke methods and relations in source codes. Code 
wizards generate the templates of source codes framework which are universal to 
given programming model. This avoids the iterative boring work to write the change-
less framework codes. 
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Fig. 2. Main units in CDP structure 

Build tools are used to link existing tool-chains to compile and link, through which 
the source codes compile into binary components executable to target EOS. Test tools 
check the quality and reusability of the binary component. It can invoke the compo-
nents on the simulation systems of the target devices and EOS. Press test and integral-
ity test of the component all can finish on these simulation systems. Component de-
scription tools create the CDL files. Sometimes, it is graphic interface which fills in 
the items according to the prompt facilities. This avoids the users to know the details 
of CDL, because CDL is only the basis of the platform information exchange, it can 
be merely understood by software. CL Connector transfers the components and the 
corresponding CDL files to CL. Only the components which have passed the test can 
upload to CL. 

As an IDE, CDP is implemented with Model-View-Control (MVC) patterns. We 
design many views to help the visual programming. For more flexibility of CDP or-
ganization, each unit maintains in figure 2 implements as plug-in. A plug-in may 
encapsulate the data models and views, it provides extern interface with XML file 
descriptions. Each unit has more than one plug-in. We can load useful plug-ins ac-
cording to the project requirements. Only the framework of CDP is unchangeable. 

4   Code Analysis Abstract 

Almost all the common protocols have at least one version of their robust C language 
implementation, because of more efficiency and flexibility. We give the example 
using C description too. These source codes are almost used procedural-based pro-
gramming concept. This means the main structure of the codes is that function calls 
another function or function is invoked by another function. There is always a "main" 
function found as program entry. We present an ideal model of procedural-based 
programming like this: 

There are no global variables, "goto" statements and macros to substitute functions. 
The "main()" function is the unique root of the program. All the functions invoke 
other functions hierarchically. All the variables are also all local variables which only 
exert within the functions. This means no matter how many source codes, the struc-
ture of the program can be abstracted as a tree and be expressed as tree data structure. 
The example codes are shown in program 1 and the tree views are shown in Figure 3. 
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static int udpv6_sendmsg(...) 
{ 
 ... 
 udpv6_destroy_sock(sin6); 
 ... 
 udp_v6_flush_pending_frames(sin6); 
 ... 
 udpv6_close(sk); 
 ... 
 return 0; 
} 
static int udpv6_destroy_sock(...) 
{ 
 lock_sock(sk); 
 udp_v6_flush_pending_frames(sk); 
 release_sock(sk); 
 inet6_destroy_sock(sk); 
 return 0; 
} 
static void udp_v6_flush_pending_frames(...) 
{ 
 ... 
 if (up->pending) { 
  ... 
  ip6_flush_pending_frames(sk); 
        } 
} 
static void udpv6_close(...) 
{ 
 inet_sock_release(sk); 
} 

Program 1. A segment of ideal source codes 

 

Fig. 3. The tree abstract 
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An integral tree can be cut into several small trees according to the explicit hierar-
chy and few associations exist between the small trees. We can separate the program 
tree of above ideal model into several sub-programs too. Each sub-program can com-
pose a component easily. If all the sub-programs are all component-based, the full 
functions of programs can assemble through linking all these components. 

This ideal model has a certain distance to common C program. On the other hand, 
some difference can be found between common C programs and original communica-
tion protocol programs. First, protocols are utilization-oriented that programs nor-
mally divide into many units logistically according to various implementation fo-
cuses. Functions frequently invoke each other inside the unit and seldom invoke the 
functions outside its unit. Second, efficiency is the most important for protocol im-
plementation while programming style becomes the secondary, so there are many 
"goto" statements, global variables and macro definitions in source codes. Although it 
is hard to read, it exists actually. Third, many basic protocols are related to device or 
EOS. They are optimized for special hardware, many assembly language codes appear 
in the function and functions invoke static library directly.  

We find a feasible way to compromise between the ideal model and practical origi-
nal programs. Because the analysis of Code Analysis Tools (CAT) in CDP is only a 
generic computer-aided way and there is no need to be too much precise, it is accept-
able to do abstract work to only get the structure of the programs and relations of 
calling functions. We can even simplify the practical programs before abstract. We 
constitute the following basic rules. 

Global variable is a static entity that acts throughout the program. The lifetime be-
gins as soon as program starts and ends until program terminates. We consider global 
variables as functions because they have the same scope. We even pre-process the 
global variables in programs with function encapsulation: the initializations and value 
assignments are regarded as functions "init(), get(),set()".  

Macros are the most complicated. But they are widely used in C as constants or 
templates. We classify them into two types according to the functionality: simple type 
and complex type. Simple type means macro is only the alias of constant or string, 
such as "#define TCP_TWKILL_QUOTA    100" or "#define INTEGER  int". Other 
macros are defined as complex type. They even may be used as substitution of func-
tions or expression segments. They may be used as templates in C++. We care few 
about simple type macros because they only can be considered as value substitution. 
We can substitute them back during pre-process. In contrast, almost nothing can be 
done with the complex type macros because of too much complexity. We usually 
leave them unchanged or mark them out.  

For procedural-based program, there is a unique starting point which is "main()" 
function or a specific function. From this entry, the running process steps forward 
statement-by-statement. These statements normally are declaration statements, as-
signment statements, branch statements and loop statements. 

Local variables are common in functions. Declaration statements and assignment 
statements mainly act on them. Because we care more about the structure analysis, 
parameters of local variables can be certain ignored. We omit all the local variables 
definitions and value assignments by constants during analysis, because which vari-
ables and which values pass into a function are unconcerned indeed. Concretely, if a 
local variable is assigned by function return value, only function invoke is considered. 
If a global variable is assigned by a local variable, it is regarded as a "set()" function  
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invoke of the global variable. If the local variable is a function pointer, it needs to be 
considered as function invoke too when the pointer is initialized or assigned value. 
All the other types of local pointer variables are all omitted.  

There are two main types of processing statements: branch statement and loop state- 
ment. In the ordinary course, branch statements include "if…else…, switch…case…" 
and loop statements include "for…, do…while…, while…" in C language. These 
statements divide programs into units according to its scope and construct the structure 
of the program.  

Loop statement units often can be marked as a whole in the analysis because the 
loop unit can hardly be separated alone. We may build a component to contain the 
loop unit or abstract a component in the loop units, but the loop is coherent and it is 
no use to only pack the segment process of the loop statements.  

Branch statements are important for our analysis because there often may be loose 
couple point of the program. It may be potential logical division designed by the 
original source code programmers. The logical division sometimes shows the division 
of the utilization-oriented unit which can form a functional component easily. 

There is a special statement: "goto" statement, which is so powerful that the proc-
essing step can jump directly to the specified location. Although the program becomes 
artistic and comprehensible, this leads too much complexity and always destroys the 
procedural structure of the program. The "goto" statement is considered as a kind of 
function invoke from the "goto" statement point to the pointed label. The result of 
goto may be branch structure or loop structure. If it is a kind of branch, the division 
may take place here too.  

After the abstract above, the result approaches the ideal model shown in Figure 3. 
The basic relations of the programs are invoking relations among the functions and 
the branch or loop statements point to the possible associations among the segments. 
This kind of code analysis tools has approximated original programs as the tree 
model, which can be used to guild the division of suitable components. 

5   Implementation Details 

We use CDP for a kind of enterprise router protocol development. The main interface 
is shown in figure 4. We design the entire units of the CDP framework (shown in 
figure 2) as plug-ins and form the entire visible contents with views. 

 

Fig. 4. CDP main interface 
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5.1   CDP Views  

In CDP, we design many views to help the display of the analysis and guild the de-
velopment of the component. Views are all the visible contents of CDP. Each view 
shows the unit function or the analysis result. There are mainly four types of views: 
code management views, code analysis views, task views and component description 
views. These views also have associations with all kinds of plug-ins. 

 

Fig. 5. Code wizard view 

Code management views include code editor view, project management view, and 
code wizard view. As seen in figure 4, code editor view, which is the main body of 
IDE, lies in right-middle and project management view lies in left. Code assist tools 
color the source codes with different highlights and mark all the pairs of brackets back 
and forth. Project management view forms the total source files as a tree and classifies 
with different folders according to the component division and file type. A project can 
build more than one component and each folder has its own source file, head files, 
configuration files. One of code wizard view is shown in figure 5. We can set many 
common options of the compilers by the click of the switches. These settings decide 
the generation and optimization of the build tools for component source codes. 

Code analysis views have two types: accurate analysis views and abstract views. 
Accurate views show the results of lexical analysis and grammar analysis by analysis 
tools. Macros, global variables and functions are the main atoms of the codes and each 
atom has its view to list all of their elements. Some tools even can provide a mecha-
nism to translate all the simple type macros back into actual values automatically. 

 

Fig. 6. Abstract view of Program 1 
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Abstract view is the display of the analysis according to the abstract and simplifi-
cation principles as illustrated in Part 4. This is a tree view and marks Macros (M), 
global variables (G), functions (F), branch statements (B), loop statements (L) for the 
guidance. This view helps us to divide components according to this hierarchy tree. 
We even can easily click and drag the mouse to reform and construct the components 
through visualization. Figure 6 shows the abstract view of Program 1. 

Tasks views mainly include the feedbacks and the results of the build tools. The 
search results of the code editor and the planning tasks made by users, the trace informa-
tion during the build process and the debug state of the running debug tools are shown 
here too. Task views including result views lies in the right-bottom of CDP as shown in 
figure 4. The user also can define own planning tasks and reminders tasks too. 

Component description views are used to generate CDL files. CDL files do not only 
describe the generated component’s characters but also define the communication 
protocols. Because CDL is merely used between software so that it is not necessary to 
be known by CDP users, the component description views are not the text editor of 
CDL but the graphic interface. It provides much convenience that users only fill in the 
blanks according to the prompts. There is auto translation to generate CDL files. 

5.2   CDP Plug-Ins  

Except the framework of CDP, all the other units, even including code editors, are 
plug-ins. This means all the units including code editor are replaceable too. Plug-in is 
not a component but a set of components, it is the basic unit of functional implemen-
tation. There is often more than one plug-in for one function unit. This makes much 
flexibility and configuration ability. All of the plug-ins obey open programming stan-
dards, describe by format-fixed files which are organized by XML. They store in the 
same directory from where the CDP framework can load all of the plug-ins automati-
cally. This is something like the popular open source project, such as Eclipse Project. 

Many plug-ins are visual tools, they control both display contents and functions of 
the views. Some other plug-ins are the link and pipes of other tools, such as test plug-
in is the link of the corresponding simulate systems according to the EOS or hardware 
types of components. Usually plug-ins are partly installed, for examples, build tools 
plug-in has tight association with different tool-chains. For a certain kind of EOS or 
devices, it only loads a series of tool chains. If the program needs compile compo-
nents for Intel XScale architecture with embedded Linux, we only load arm-Linux-
gcc (arm-Linux-g++) tool-chains.  

CDP executes on Windows OS. To use tool-chains on Linux, we have configured 
Cygwin to support the tool-chains. Cygwin environment is built previously. All the 
work has done in advance to form the basic foundation to mask the OS. 

5.3   Cross-Platform Build Tools 

Generally CDP is an IDE used on common PC whose OS is Windows or Linux. The 
source codes are edited and managed on PC, but the generative components are used 
in EOS. The cross-platform compilers must be used to compile the source codes. We 
analyze the most popular compilers and design a uniform graphic interface to switch 
most commonly used compiler options. 
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We can find comparability among different tool-chains. For example, while using 
GCC series cross-platform compilers, GCC has own option switch and corresponding 
patches for different CPU. It has wonderful mechanism to coordinate the used stan-
dard library and the dynamic library in the compiling process. The trace of the build 
process and the debug of the program are the simple link to tools such as GDB for 
target Linux. 

6   Conclusions 

CDP is one of the rapid communication components development tools. It is the col-
lection of views and plug-ins to form a series of tools such as code editor, code wiz-
ards, code analysis tools, code assist tools, build tools, component description tool, 
test tools and CL connector. This takes much flexibility and configuration ability so 
that many existing tools and tool-chains can link into CDP conveniently. Furthermore, 
for the customization of component-based communication protocols, code analysis 
tools make a good abstract from original practical source codes to visual structure 
model. This is the feasible guidance and roadmap to construct the components. As a 
complex development process of communication protocols, CDP does much com-
puter-aided analysis and development work. 
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Abstract. Address lookup is one of the main bottlenecks in Internet backbone 
routers, as it requires the router to perform a longest-prefix-match when 
searching the routing table for a next hop. Ever-increasing Internet bandwidth, 
continuously growing prefix table size and inevitable migration to IPv6 address 
architecture further exacerbate this situation. In recent years, a variety of high-
speed address lookup algorithms have been proposed, however most of them 
are inappropriate to IPv6 lookup. This paper proposes a high-speed IPv6 lookup 
algorithm TrieC, which achieves the goals of high-speed address lookup, fast 
incremental prefix updates, high scalability and reasonable memory 
requirement by taking great advantage of the network processor architecture. 
Performance of TrieC is carefully evaluated with several IPv6 routing tables of 
different sizes and different prefix length distributions on Intel IXP2800 
network processor(NPU). Simulation shows that TrieC can support IPv6 lookup 
at OC-192 line rate. Furthermore, if TrieC is pipelined in hardware, it can 
achieve one IPv6 lookup per memory access. 

Keywords: Network processor, IPv6 lookup, parallel programming, embedded 
system design, routing, prefix expansion. 

1   Introduction 

Due to the rapid growth of the Internet bandwidth and continuously increasing size of 
the routing tables, IP address lookup becomes one of the most challenging tasks in 
backbone routers. By the inevitable migration to the next generation IPv6 128-bit 
address space, IPv6 lookup becomes even more demanding. 

Traditional routers generally use application specific integrated circuits (ASIC), 
FPGA, or general-purpose processor (GPP) as a building block. ASIC provides 
guaranteed high-performance with low power, but lack of flexibility makes it unable 
to keep up with the rapid changes in network protocols. FPGA offers certain 
flexibility but it costs more to build and its power consumption is very high. On the 
other hand, GPPs can meet the requirements of flexibility, short development period 
and low cost, but often fail to meet the performance requirements because they are not 
specially optimized for network processing. For example, the efficiency of the GPP 
cache system relies on data’s temporal locality, which is not a common case in 
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today’s high-speed and aggregated networks. As a consequence, network processor 
unit(NPU) emerges as a promising candidate for networking building block. It retains 
both the high performance of ASIC and flexibility advantage of GPP through parallel 
and programmable architecture. At present, many companies including Intel, 
Freescale, Agrere, AMCC and EZchip have developed programmable NPUs. Many 
system companies including Cisco, Alcatel, HUAWEI, and ZTE use NPUs to build 
switches and routers. 

This paper presents an efficient IPv6 address lookup scheme called TrieC, which 
achieves O(1) search time with fast incremental updates and reasonable memory 
requirement by taking great advantage of the characteristics of NPU, especially of 
Intel IXP network processor. Although our experiment was done on Intel IXP2800, 
the same performance can be achieved on other similar NPUs. The main contributions 
of the paper are as follows: 

• A new IPv6 address lookup algorithm (TrieC) is proposed with the features of high 
speed, fast prefix incremental updates, high scalability and reasonable memory 
requirement. 

• A modified compact prefix expansion (MCPE) technique is designed to use less 
memory for address search and prefix incremental update than traditional prefix 
expansion. 

• An architecture awareness algorithm implementation aiming at IXP2800 NPU is 
elaborated, which: 1) takes advantage of the special instruction set of IXP 2800, 
especially the bit counting and CRC instruction to make the search of the 
compressed tables fast; 2) distributes IPv6 routing table in four SRAM channels to 
support simultaneously data accesses; and 3) partitions the tasks appropriately on 
three IXP2800 Microengines(MEs) to achieve IPv6 lookup at OC-192 line rate. 

The rest of the paper is organized as follows. Section 2 describes issues of existing 
approaches in IP address lookup, especially in the IPv6 circumstances. Section 3 
explains the design and mechanism of TrieC. Section 4 discusses how to implement 
incremental prefix updates efficiently. Section 5 introduces the optimized 
implementation on IXP2800. Section 6 shows simulation results and performance 
analysis. Finally, section 7 concludes. 

2   Related Work 

The most popular data structure for longest prefix match is trie[6-8]. In order to 
reduce memory accesses in trie, various kinds of techniques such as prefix expansion 
and multibit trie[12] have been proposed. Multi-bit trie expands a set of arbitrary 
length prefixes to a predefined set of prefixes by prefix expansion. Its search time is 
linear with the multi-bit tree levels and its update time depends on both prefix length 
and maximum node size. However, its worst-case memory requirement is 
O(2k*N*W/k), where k, N and W are search stride, number of prefixes and maximum 
prefix length respectively. Basic-24-8-DIR[13] is a hardware implementation using 
prefix expansion for IPv4 lookup with maximum two memory accesses, but it needs 
more than 32Mbytes memory and even more memory or dual memory bank for 
routing updates. 
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Waldvogel et al.[9] use binary search on hash table organized by prefix length. The 
scheme requires log2W memory accesses, where W is the maximum prefix length, in 
the worst case. However, it requires very long preprocessing time to compute markers 
noting the existence of longer prefixes, hence the update time is O(N*log2W) and the 
whole routing table must be reconstructed. Multiway range tree [11] reduces search 
time and update time to O(k*logkN) through modifying binary search by prefix 
length, it also analyzes the feasibility for IPv6 address lookup. However, its memory 
requirement is O(k*N*logkN). 

Lapson et al.[10] introduce multicolumn search for IPv6 addresses that avoided the 
multiplicative factor of W/M inherent in basic binary search by doing binary search in 
columns of M bits, and moving between columns using pre-computed information. 
However, in the worst case, it needs approximate 15 memory accesses for IPv6 
address lookup because of O(logk2N+W/M) search time. 

Additionally, TCAM-based, CPU caching[5], reconfigurable fast IP lookup 
engine[14], binary decision diagrams[20] etc. are all hardware-based IP lookup 
schemes. Their advantages are high lookup speed, whereas their disadvantages like 
specific hardware support, high power consumption, complicated prefix update and 
high cost limit their application to a certain degree. 

Obviously, the main problem of existing lookup schemes is that they cannot 
combine high-speed lookup, fast updates and acceptable memory storage for IPv6 
address lookup at the same time.  

This paper presents our solution of an IPv6 lookup scheme-TrieC based on the 
modified compact prefix expansion (MCPE) technique and fixed-level multibit trie 
structure. High performance search is achieved through fixing the levels of TrieC tree, 
and fast incremental update is achieved by storing the unexpanded prefix length in 
MCPE nodes. Moreover, memory requirement is reduced to a reasonable capacity due 
to compressed MCPE technique. 

3   Algorithm Design and Mechanism 

3.1   Basic Idea 

In trie structure, prefix information is stored along the path from the root to the leaf 
node of the tree. To reduce the path length and thus memory access times, prefix 
expansion technique is applied to increase the routing table size in a fixed stride so 
that the resulted expanded table could be visited in the same stride index. The 
proposed scheme is based on the following observations: 

1. 2n-m redundant next-hop information must be stored if an m-bit prefix is expanded 
to 2n n-bit prefixes, where n is equal to or greater than m, using prefix expansion. 

2. Statistics of existing IPv6 routing tables and the IPv6 addresses allocation policies 
indicate that the percentage of the prefixes whose lengths are equal to or greater 
than 48-bit is approximate only 5%. 

3. Only aggregatable global unicast addresses, whose format prefix (FP) field is 
always set to 001, need to be searched in the allocated IPv6 address space. 
Additionally, the lower 64 bits of IPv6 address are allocated to interface ID, so the 
core router can ignore them.[1-3] 
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Therefore, the basic idea of TrieC is to ignore the highest three bits, build a four-level 
compressed multibit trie tree using the stride 21-8-8-8 for the prefixes whose lengths 
are longer than 3bits and shorter than 49bits, then use hash to search the other prefixes 
whose lengths are longer than 48bits and shorter than 65bits. 

3.2   Modified Compact Prefix Expansion 

The modified compact prefix expansion (MCPE) technique is motivated by the fact 
that there is a lot of redundant next-hop information in traditional prefix expansion. 
For example, if the IPv6 prefix (2002:4*::/18,A) and (2002:5*::/20,B) are expanded 
to 24-bit prefixes using the traditional prefix expansion, 64(=224-18) new prefixes are 
formed as shown in Fig.1(a). Obviously, the same next-hop index repeats many times. 
A repeats 48 times totally, and B repeats 16 times. 

Next-Hop24-bit Index

A2002:7F*::/24

…....
....
....
....
....

A2002:71*::/24

A2002:70*::/24

A2002:6F*::/24

…....
....
....
....
....

A2002:61*::/24

A2002:60*::/24

B2002:5F*::/24

…....
....
....
....
....

B2002:51*::/24

B2002:50*::/24

A2002:4F*::/24

…....
....
....
....
....

A2002:41*::/24

A2002:40*::/24

(a) Traditional prefix expansion (b) Modified compact prefix expansion

NHIA

.......................

.......................

.......................

0000 0000
0000 0000
0000 0000
0000 0001
0000 0000
0000 0001
0000 0000
0000 0001

6-bit BAindex

nulABA2002:4*::/18

18-bit Tindex

.......................

 

Fig. 1. Traditional prefix expansion vs. modified compact prefix expansion (MCPE) 

The main idea of MCPE is to store consecutively identical next-hop index only 
once in a next-hop index array (NHIA). The NHIA in Fig.1(b) has three entries (A, B, 
A); the highest 18 bits of 24-bit prefix are used as the index to search a Tindex table 
and the next 6 bits are used as another index to search a bit-vector BitAtlas in a 
BAindex table. The 64-bit BitAtlas is organized as follows: if the next-hop 
information denoted by bit I is the same as that denoted by bit I-1, bit I is set to 0; 
otherwise, bit I is set to 1, indicating that different next-hop information must be 
added into NHIA. In Fig. 2 (b), bit 0 is 1 since it starts a new NHIA entry; bit 16 is 1 
since its NHIA is B that is different from previous entry A; bit 32 is 1 since its NHIA 
is A again which is different from previous entry B. 

Now assume we want to search the next-hop information relating to IPv6 address 
2002:6A*::/24. Firstly, we use the highest 18 bits as Tindex to find out the MCPE 
entry 2002:4*::/18, then we use the next 6 bits ‘101010’ as BAindex to find the bit 
offset in BitAtlas, which is 42. Since total three bits are set in BitAtlas from offset 0 
to offset 42, the third element ‘A’ in NHIA is the lookup result. 

The TrieC table in Fig.1 is called TrieC18/6. Similarly, TrieCm/n is designed to 
represent 2(m+n) uncompressed (m+n)-bit prefixes. Using MCPE technique, the TrieC 
tree eliminates redundant information and preserves the high-speed index access 
characteristic of traditional prefix expansion technique. 
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3.3   Data Structure 

Our stride series for TrieC algorithm is 24-8-8-8-16. The data structures include three 
types of tables: TrieC15/6 table (ignored highest three bits 001), TrieC4/4 table, and 
Hash-16 table. TrieC15/6 table is the first-level table that stores all the prefixes whose 
lengths fall into [1:24]-bit. TrieC4/4 tables are from the second to the fourth level of 
TrieC trees, whose prefix lengths belong to [25:32]-bit, [33:40]-bit, and [41:48]-bit 
respectively. Hash16 table stores all the prefixes whose lengths belong to [49:64]-bit. 

Index into Next Level TrieC1

Prefix LengthNext-Hop ID0

6bits9bits1bit

(a) Next-Hop Index

Next-Hop Index 4Next-Hop Index 3

Next-Hop Index 2Next-Hop Index 1

26BitAtlas

0123

(b) Basic TrieC15/6 entry

Reserved

Index into ExtraNHIA table

26BitAtlas

0123

(c) TrieC15/6 entry with ExtraNHIA

Next-Hop Index 3Next-Hop Index 2

Next-Hop Index 124BitAtlas

0123

(d) Basic TrieC4/4 entry

Index into ExtraNHIA table

Reserved24BitAtlas

0123

(e) TrieC4/4 entry with ExtraNHIA

NHI TotalPosition

NHI TotalPosition-1

………………….

NHI 2

NHI 1

NHI TotalPosition

NHI TotalPosition-1

………………….

NHI 2

NHI 1

 

Fig. 2. Data structures of TrieC scheme 

The next-hop index (NHI) structure, which stores the lookup result including the 
next-hop IP address and the output interface, is shown in Fig. 2(a). The original prefix 
length is stored in NHI due to the requirement of incremental prefix updates. Each 
NHI entry is 2 bytes, with the most significant bit setting to 0 indicating that the 
remaining bits consist of a next-hop ID in NHI[14:6], and an unexpanded prefix 
length in NHI[5:0], while a “1” in this bit indicating that the remaining 15 bits contain 
a pointer to the next level TrieC node. 

The TrieC15/6 table contains 215 entries, which is called TrieC15/6_entry, and has 
two types of structures: Basic and ExtraNHIA. The basic structure supports up to four 
NHIs and ExtraNHIA supports more NHIs, in which: 

1. TrieC15/6_entry [127:64]: stores a 64-bit vector BitAtlas. The least significant bit 
is always set to one because each IP address absolutely matches the default route. 
TotalEntropy that is the total number of bits set in the bit vector represents the size 
of array NHIA or ExtraNHIA. For a bit position P, the number of bits set in 
BitAtlas[P:0] named PositionEntropy[P] gives the NHI index in array NHIA or 
ExtraNHIA. For each P, the equation PositionEntropy[P]<=TotalEntropy always 
holds. 

2. TrieC15/6_entry[63:0]: stores up to 4 NHIs or a pointer to ExtraNHIA array. If 
TotalEntropy of BitAtlas field is no greater than 4, TrieC15/6_entry[63:0] stores 
NHI1, NHI2, NHI3 and NHI4 orderly as shown in Fig. 2(b). Otherwise, 
TrieC15/6_entry[63:32] stores a 32-bit pointer that points to ExtraNHIA array as 
shown in Fig. 2(c). 

Similarly, each TrieC4/4 table has 24 entries and each entry is 8 bytes. The 
structures of basic and ExtraNHIA TrieC4/4 entry are shown in Fig. 2 (d) and (e). The 
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unique difference among all TrieC4/4 tables is that if the flag bit of NHI in the fourth 
level of TrieC tree is set to one, the Hash16 table must be searched. The Hash16 table 
uses cyclic redundancy check (CRC) as a hash function that is known as a semi-
perfect hash function. The structure of a Hash16 entry is (prefix, next-hopID) pair. 

3.4   Lookup Mechanism 

Fig. 3 gives a routing table search algorithm based on compressed TrieC tables. We 
will use an example to show how these tables are searched. 

 

Fig. 3. Pseudo code to search TrieC multi-level tree for IPv6 address 

Assume that the following routes are already in the TrieC table: 
(2002:4C60::/18,A), (2002:4C6F::/28,B). The first route requires an entry in 
TrieC15/6 that corresponds to the 24-bit prefixes from 2002:40*::/24 to 
2002:7F*::/24. The second route further needs a second level TrieC4/4 to be used 
because its length is 28-bits. 

Suppose we are looking up the destination IPv6 Address 2002:4C6A::200C, Fig. 4 
shows the detailed lookup process. Firstly, DstIP[124:110] that is ‘000000000001001’ 
is used as the Tindex to find the entry 2002:4*::/18 in TrieC15/6; then DstIP[109:104] 
that is ‘001100’ is used as the BAindex to find the bit offset that is 12 in BitAtlas; two 
bits set from offset 0 to offset 12 makes PositionEntropy=2, thus the second entry in 
NHIA is located; a ‘1’ in NHI[15] indicates that NHI[14:0] contains a pointer to the 

IPv6_Lookup_TrieC (IN DstIP, OUT Next-HopID) 
{ 
1. Current_Block = TrieC15_6; 
2. Tindex   = DstIP [124:110]; 
3. Bit_Vec  = GetBitVec (Current_Block, Tindex); 
4. BAindex = DstIP [109:104]; 
5. NHI = GetNHI(Bit_vec, BAindex); 
6. if (NHI.flag = 0) return NHI.Next-HopID; 
7. else 
8. {// search TrieC4/4 tables, base[i] is base of (i+1)th-level TrieC tree 
9.       Current_Block = TrieC4/4 at Base[0]+NHI[14:0]; 
10.       for (i=1;i<=3;i++) 
11.       { 
12.             Tindex   = DstIP[103-8*(i-1):100-8*(i-1)]; 
13.             Bit_vec = GetBitVec (Current_Block, Tindex);  
14.             BAindex= DstIP[99-8*(i-1):96-8*(i-1)]; 
15.             NHI = GetNHI (Bit_Vec, BAindex); 
16.             If (NHI.flag = 0) return NHI.Next-HopID; 
17.             else  
18.             { 
19.                 if (i!=3) Current_Block=TrieC4/4 at Base[i]+NHI [14:0]<<4; 
20.                 else break;  //search longer prefix in Hash16 
21.             } 
22.       } 
23.       if (Hash (DstIP [79:64])) return Next-HopID;   
24.       else return Default-Next-HopID; 
25. } 
}// IPv6_Lookup_TrieC 
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next level TrieC4/4, so NHI[14:0]<<4+DstIP[103:100] is used as the Tindex to the 
next level TrieC4/4, and then DstIP[99:96] is used as the BAindex to find out the 
PositionEntropy that is 1, which then locates the desired next-hop ID, which is B. 

00000000000000000000000000000000 0x200C01101010000000000001001001100001

Interface ID

00000 0000 001001

nullA 180Index118A0

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0011 0000
0000 0001

001100

nullnull28B00000 0000
0000 0001

TrieC4/4

0110

NHI[14:0]<<4+DstIP[103:100]

1010

Destination IPv6Address   2002:4C6A::200C

Example Routing Table:

2002:4C60::/18 A

2002:4C6F::/28 B

Next-hop ID=B

PositionEntropy=2

Tindex

Tindex

BAindex BAindex

TrieC15/6

24 bits 8 bits 8 bits 8 bits 16 bits

PositionEntropy=1

 

Fig. 4. IPv6 address lookup example of the TrieC scheme 

4   Routing Updates 

New routing information must be exchanged among routers as network topology 
changes. The frequency of routing updates could be as high as a few hundred times 
per second. Since the routing table cannot be accessed during update, routing updates 
must be executed fast and efficiently. 

The operation of adding a new prefix, NewRoute(new_prefix/new_length, 
new_next-hop), can be classified into two categories according to the value of 
new_length: BitAtlas affected and BitAtlas unaffected. The range of the prefix length 
corresponding to the former is called TableRange[start_length, end_length] and the 
range corresponding to the latter is called BitAtlasRange[start_length, end_length]. 
For instance, the TableRange and BitAtlasRange of TrieC15/6 table are [4,18] and 
[19,24] respectively. 

Consider the updates in a TableRange. Because a NewEntry matches 
2(TableRange.end_length-new_length) TrieC entries and their whole BitAtlas fields, we only need 
update the NHIs of matched entries. If an old NHI satisfies: flag=0, 
PrefixLength<=NewEntry.new_length and Next-HopID ≠ NewEntry.new_next-hop, 
it is replaced by the NewEntry. Otherwise, we need search and update the next level 
of TrieC tree. In the case of BitAtlasRange, NewEntry exactly matches one TrieC 
entry and 2(BitAtlasRange.end_length-new_length) bits in the BitAtlas field of the matched entry. 
For each matched bit, we only need update the bit and its corresponding NHI if 
PrefixLength<=NewEntry.new_length and Next-HopID ≠ NewEntry.new_next-hop. 
Otherwise, we need search and update the next level of TrieC tree. 

The process of adding new prefixes (2002:E7B::/17,C) and (2002:279::/23,D) into 
the example routing table is shown as Fig. 5. The prefix (2002:E7B::/17,C) matches 
two TrieC15/6 entries with the Tindex ‘000000000001000’ and ‘000000000001001’. 
Only the first NHI(null) of the former TrieC15/6 entry is replaced by NHI(0,C,17) 
because the NHI(null) matches the update condition. In Fig. 5(b), the prefix  
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17C

null18A

nullnullnull

0118A0
00000000  00000000
00000000  00000000
00000000  00000000
00110000  00000001

0
00000000  00000000
00000000  00000000
00000000  00000000
00000000  00000001

nullnull28B0
0000 
0000
0000 
0001

TrieC4/4

(a) TrieC tree after (2002:E7B::/17,C) added

Routing Table
2002:4C60::/18    A
2002:4C6F::/28    B
2002:E7B::/17 C
2002:279::/23 D

TrieC15/6

17C23D17C

null18A

null00

0118A0
00000000  00000000
00000000  00000000
00000000  00000000
00110000  00000001

0
00000000  00000000
00000000  00000000
00000000  00000000
00000000  00010101

(b) TrieC tree after (2002:279::/23,D) added

000000000001000

000000000001001

000000000000000

111111111111111

000000000001000

000000000001001

000000000000000

111111111111111

TrieC15/6

6

F

0

nullnull28B0
0000 
0000
0000 
0001

TrieC4/4

6

F

0

 

Fig. 5. Routing updates of the example IPv6 routing table 

(2002:279::/23,D) matches only one TrieC15/16 entry, whose Tindex is 
‘000000000001000’, and two bits in the BitAtlas field of this entry. Because the NHI 
corresponding to these two bits matches the update condition, i.e., NHI.Prefix- 
Length=17<new_length=23 and NHI.Next-HopID=C ≠ new_next-hop=D, both of 
these two bits are set to one and the corresponding NHIs are updated. 

5   Optimization on IXP2800 Network Processor 

Intel IXP2800 NPU is a programmable network processor that comprises a single 
XScale processor, sixteen Microengines(MEs), four SRAM controllers, three 
RDRAM controllers and high-speed bus interfaces. Each ME has eight hardware-
assisted threads of execution. All threads in a particular ME execute the same code 
stored on that ME. Complete descriptions of the hardware architecture and software 
framework are available from the IXP2800 manuals[19]. We implemented TrieC 
algorithm in MicroengineC language and simulated it on Intel Developer 
DevWorkbench 4.1[19], which offers a cycle-accurate simulator of IXP2800 network 
processor.  

Through analysis, we identified the following operations as time-consuming ones: 
calculation of TotalEntropy and PositionEntropy, SRAM memory accesses, and CRC 
hash operation. The efficiency of those operations affects the performance of TrieC 
greatly. We will show how to optimize these operations by taking advantage of the 
characteristics of IXP2800 network processor. 

Firstly, the main workload of entropy calculation in TrieC is to count the number 
of bit set in bit-vector BitAtlas. The naive implementation of checking each bit and 
counting the number of bit set seen so far it is very slow and needs a few hundred 
shift, ALU and branch instructions. Intel IXP2800 network processor has a built-in 
instruction POP_COUNT that can calculate the number of bit set in a 32-bit register 
in three clock cycles. Such tremendous reduction of the number of instructions lays a 
solid foundation for TrieC to achieve line rate. 
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On IXP2800 NPU, each SRAM access takes more than 100 cycles, hiding memory 
latency becomes another important step towards high-performance. We hid the 
memory-access latencies by means of: 

− Parallelized access: IXP2800 NPU contains four independent SRAM controllers 
and each channel supports up to 64Mbytes SRAM. We partitioned the TrieC 
tables, and then distributed them properly into four SRAM channels. TrieC15/6 
table and hash16 table were stored in SRAM channel 0, because their sizes were 
smaller than that of each TrieC4/4. The second, third and fourth level TrieC4/4 
tables were stored in SRAM channel 1, 2 and 3 respectively, so that they could be 
accessed in parallel.  

− Vectoring access: On IXP2800 NPU, adjacent SRAM locations can be fetched in 
one instruction to the array of SRAM transfer registers, which allows for a 
significant reduction in the number of SRAM access. As the maximal length of 
each SRAM access instruction can be up to 64-bytes, we carefully designed the 
data structures of Tries15/6 and TriesC4/4 such that the sizes of TrieC15/6 entry 
and TrieC4/4 entry were less than 64-bytes and thus each table entry could be 
fetched in one SRAM access.   

Finally, each ME has a CRC Unit, which operates in parallel with the execution of 
data path and supports one time CRC operation within the period of each two 
consecutive instructions. By using the CRC unit to perform hash calculation, TrieC 
speeded up the search of hash16 table. 

6   Simulation and Performance Analysis 

Since IPv6 is not yet widely deployed, existing IPv6 tables, which normally have less 
1000 prefixes[16][17], are small and unlikely to reflect future IPv6 network growth. 
Currently, randomly generated tables are often used for IPv6 research and 
development. To reflect the IPv6 address distribution as objectively as possible, we 
used three different ways to generate nine IPv6 routing tables whose prefix length 
distributions are shown in Tab. 1. Group A was generated from the CERNET[17], 
6Bone, 6Net and Telstra BGP IPv6 routing tables[16], reflecting the existing IPv6 
prefix length distribution. Group B was generated from the non-random generator 
IPv6 table proposed by M Wang et. al[18], reflecting the ideal IPv6 routing tables. 
Group C was calculated as the arithmetical average of A and B, reflecting the future 
IPv6 tables. 

Table 1. Prefix length and entries used in simulation 

Prefix Number 
  

N=200000 N=300000 N=400000 
Length A B C A B C A B C 
1-24 8439 110 4274 12660 165 6413 16878 220 8549 
25-32 138821 14806 76814 208231 22209 115220 277641 29612 153627 
33-40 11029 31080 21053 16543 46620 31582 22056 62160 42109 
41-48 29224 142640 85932 43836 213960 128899 58448 285280 171864 
49-64 12487 11360 11923 18731 17040 17886 24975 22720 23847 
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Fig. 6. Memory requirements of nine IPv6 routing tables vs. of DIR-24-8-BASIC(IPv4) 

For each group, we generated three different sizes of tables with 200K, 300K and 
400K entries. All the prefix values are generated randomly. 

Memory requirements of the nine IPv6 tables are shown in Fig. 6. Obviously, 
memory requirements increase along with table sizes. Note that the memory 
requirement of table B-400K is approximate 35Mbytes,which is slightly higher than 
33Mbyes of DIR-24-8-BASIC for IPv4, but is significantly lower than the estimated 
memory requirement of multibit-trie, which is approximately more than 820Mbytes at 
8-bit strides for 400K entries. With such high a compression rate, the entire routing 
tables can be stored in SRAM. 
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Fig. 7. Average memory accesses of nine IPv6 routing tables 

In the worst case, TrieC needs eight memory accesses and one hash operation. It is 
clear from Fig. 7 that there is no any relation between average memory accesses and 
size of IPv6 routing table; the average memory accesses depend only on the prefix 
length distribution of the table. For example, the average memory accesses of the 
three tables belonging to group-B are all close to four, because the percentages of the 
prefixes whose lengths between 41-48 bits in these tables are all higher than 70%. On 
average, the number of memory access of these nine IPv6 tables is far less than eight, 
which indicates that the percentage of the ExtraNHIA nodes is extremely low. 
Simulation results demonstrated it, and found that the percentage was only about 
3.6%. 
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Table 2. Minimal threads number required to meet OC-192 line rate on IXP2800 NPU 

Lookup rate (Mlps.) 
Routing table 

Minimal Threads 
number Single-thread Multi-threads

Group A 9 3.72 23.84 
Group B 17 1.81 21.36 
Group C 11 2.55 21.32 
Worst case 19 1.54 21.18 

Assume that the minimal packet size is 60-bytes, then approximate 20.83Mlps 
lookup rate is required to support OC-192 line rate. Tab. 2 gives the minimal number 
of threads required to reach the line rate speed for each group, in which on average 9, 
17 and 11 threads are needed for group A, B and C respectively. Considering that 
there are 16 MEs on IXP2800, and TrieC just consumed less than three MEs of entire 
ME budget; therefore, there is still enough room for other networking application 
such as classification and traffic management to meet their line rate requirements. 

Finally, we compare the performance of TrieC with some existing outstanding 
schemes in Tab. 3. 

Table 3. Comparison of search, update, space complexities and scalability for IPv6 

Scheme Search time Update time Memory requirement IPv6 
Patricia trie O(W) O(W) O(N*W) N 
Multibit trie O(W/k) O(W/k+2k) O(2k*N*W/k) N 
Binary search  O(log2W) O(N*log2W) O(N*log2W) Y 
Multiway search O(logK2N) O(N) O(N) Y 
DIR-24-8-BASIC O(1) Dual bank memory 33MB@IPv4 N 
TrieC O(1) O(W/k) O(N*W/k) Y 

7   Conclusion 

This paper proposes an IXP2800-based high performance IPv6 lookup algorithm 
(TrieC) that features high-speed address lookup, fast routing table update, high 
scalability, and reasonable memory requirement. A modified compact prefix 
expansion (MCPE) technique that supports faster address search and prefix 
incremental update with less memory requirement than traditional prefix expansion is 
designed to build a four-level TrieC tree for IPv6 address lookup. Techniques such as 
distributed routing table allocation in four SRAM channels, functional pipelining, 
BitAtlas field calculation speedup, parallelized SRAM accesses, consolidating 
adjacent SRAM accesses and hardware CRC hash unit are used to optimize the 
proposed scheme on IXP2800 network processor. These optimizaiton techniques can 
also be applied to other similar NP architectures. Performance of TrieC is evaluated 
with nine IPv6 routing tables of different sizes and different prefix length 
distributions on Intel IXP2800 network processor. Simulation shows that TrieC 
implemented on IXP2800 can support IPv6 lookup at OC-192 line rate. Furthermore 
this algorithm can be easily implemented in a pipelined architecture (ASIC) and 
achieve one IPv6 lookup per SRAM access. 
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Separate Compilation for Synchronous Modules
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Abstract. Synchronous models are useful for designing real-time embedded
systems because they provide timing control and deterministic concurrency.
However, the semantics of such models usually require an entire system to be
compiled at once to analyze the dependencies among modules. The alternative
is to write modules that can respond when the values of some of their inputs are
unknown, a tedious and error-prone process.

We present a compilation technique that allows a programmer to describe syn-
chronous modules without having to consider undefined inputs. Our algorithm
transforms such a description into code that does as much as it can with unde-
fined inputs, allowing modules to be compiled separately and assembled later.

We implemented our technique in a compiler for the Esterel language and
present results that show the technique does not impose a substantial overhead.

1 Introduction

The synchronous model of computation [1] has emerged as a successful, practical way
to assemble models of concurrent embedded systems because of its deterministic con-
currency and its precise control over time. Each process in a synchronous model oper-
ates in lock-step with a global clock, and communication between modules is implicitly
synchronized to this clock. Provided the processes execute fast enough, processes can
precisely control the time (i.e., the clock cycle) when something happens.

In addition to domains including avionics [2] and hardware design [3], the synchro-
nous model has been used for constructing processor simulations [4, 5]. Especially in
this latter setting, heterogeneous synchronous models [6], which can assemble and run
synchronous components with no knowledge about their contents, is preferable because
it allows separate compilation of components (e.g., cache models, branch prediction
units) and even allows them to be written in different programming languages.

In the heterogeneous synchronous model [6], a system is assembled from a collection
of concurrently-running blocks that communicate through instantaneous “wires” each
connected from a single block’s output port to one or more input ports on other blocks.
That the blocks be able to respond when not all their input wires are defined is the main
requirement for being able to run such blocks without knowledge of their contents.
Furthermore, a block must be well-behaved when presented with unknown inputs, e.g.,
if a block decides output o has value v even though input i is undefined, it may not
change its mind, e.g., change the output to w once i becomes defined. But if blocks
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do obey these rules, such a system can adopt a Ptolemy-like philosophy [7] in which
systems can be assembled from black-box components and executed efficiency with
precise, deterministic semantics.

Although it is possible to write such well-behaved synchronous blocks in a general-
purpose language such as C, it is a tedious and error-prone process. The alternative,
which we propose here, is for the programmer to write blocks only taking into account
their behavior when all their inputs are applied and have the compiler interpolate the
correct behavior of the block when only some of the inputs are applied. While it would
be correct to make the blocks strict, i.e., to respond with no information about any
output unless all the inputs are defined, but this is not very helpful.

In this paper, we propose an algorithm that does this interpolation on programs writ-
ten in the synchronous concurrent, imperative language Esterel [8]. Constructs in Es-
terel only explicitly address the behavior when all inputs are known (i.e., the user cannot
control them to respond in a certain way to unknown values), but their semantics are
clear when not all inputs are known.

Our work generates code from Esterel that responds to unknown inputs. The enables
separate compilation and the assembly of modules written in other languages.

2 Related Work

Digital logic simulators often perform a similar two- to three-valued interpolation. In
hardware description languages such as Verilog or VHDL, users often compose sys-
tems out of apparently two-valued logic functions such as AND or OR. The simula-
tor, however, interprets them as three-valued functions and performs the simulation in
the extended domain. It has long been known, however, that this tends to greatly slow
the simulation and attempts have been made to circumvent it where possible (e.g., by
detecting when two-valued-only simulation is possible and doing it when possible).
Overcoming this speed penalty is a primary goal of our work.

Our intermediate representation bears some resemblance to binary decision diagrams
(BDDs—see, e.g., Bryant’s survey [9]), but differ enough to make their manipulation
very different. Compared to the most common type of BDD, the ROBDD (reduced, or-
dered BDD), our programs may test variables in different orders and multiple times
along a path. Although certain styles of BDDs (e.g., free BDDs) relax this restric-
tion, our formalism is even less like most BDDs because it can communicate within
itself, i.e., assign and later test the value of the variable assigned, whereas BDDs typ-
ically only make assignment at their leaves. As a result, most BDD algorithms, which
are able to assume disciplined variable orderings and a single type of node, are in-
applicable for our application. Others, however, have used BDDs to synthesize soft-
ware [10].

Our algorithm is like a partial evaluation of a three-valued simulator on programs
represented as graphs, which resembles many other techniques for generating sequen-
tial code from concurrent models [11]. Our algorithm, as a side-effect, orders the nodes
under forks and generates a purely sequential program. While this is probably undesir-
able for certain systems, more clever techniques, such as Zeng et al. [12] could probably
be woven into ours to more efficiently generate sequential code.
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3 GRC: Graph Code

We represent the programs we are compiling using a variant of the Graph Code (GRC)
format due to Potop-Butucaru [13]. GRC is like a traditional control-flow graph aug-
mented with concurrency and nodes for controlling it. However, loops are prohibited
(cross-cycle loops are allowed). The result is a compact, precise way to represent Esterel
programs [8], which we compile with our technique, although the same representation
could be used for other synchronous, imperative languages.

A GRC program is a rooted directed acyclic graph G = (N,r,c,V,O,S, t) where N is
the set of nodes, r ∈ N is the distinguished root node, c : N → (N∪{null})∗ is a function
that returns the vector of control successors of a node (Successors are ordered, e.g., if
c(n) = (n1,n2,n3), then node n can pass control to its first successor n1, its second
successor n2, or n3). A null successor represents no successor, used, for example, when
there is a then branch from a predicate, but no else branch.

The finite set V denotes variables. O ⊂V are the output variables. V \O are the input
variables. S denotes the set of possible states of the program.

Each node has a type given by the function t : N → {assign-v-to-one, assign-v-to-
zero, predicate-on-v, fork, switch, enter, terminate-at-l, sync }. When executed, an
assign-v-to-one node sets the variable v to 1 (v is a variable in V ). Predicate-on-v tests
variable v and sends control to one of its successors; switch is similar but tests program
state instead of a variable; enter changes the program state. A fork node sends control to
all its successors, which must eventually re-converge at a sync node. All predecessors
of a sync must be terminate-at-l nodes, which indicate the exit level of their respective
threads. A sync node passes control to the successor whose number corresponds to the
highest-numbered terminate node that passed control to it.

The assign-v-to-zero nodes are only added to the graph during our construction.
As its name suggests, an assign-v-to-zero node sets the variable v to 0. In two-valued
execution, a variable’s default value is 0, making such nodes unnecessary. But in the
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Fig. 1. (a) A two-valued GRC. Arcs with bubbles are taken when a variable is 0. (b) Its three-
valued projection produced by our algorithm. Arcs with solid bubbles are taken when a variable’s
value is unknown. Figure 6 shows the construction of the nodes in the dotted region.
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three-valued execution that is the result of our procedure, variables default to the unde-
fined value and therefore require assign-v-to-zero nodes.

Figure 1 depicts such a program graphically. All arcs point downward. The type of
each node is indicated by its shape. Assignments are boxes, predicates are diamonds,
forks are triangles, terminates are octagons, and syncs are upside-down triangles. The
label on a predicate or assignment node indicates the variable tested or set. For predicate
nodes, the first (false-valued) arc is indicated with a bubble at its source. The label on a
terminate indicates the exit level of the corresponding thread. For sync node, each arc
is labeled with a number which matches the exit level. A dashed line denotes a data
dependency (as shown in Figure 6a: 6 → 10, 9 → 10, 10 → 14, 15 → 16).

A two-valued execution of a GRC program (which contains no assign-to-zero nodes
by definition) starts with an initial program state and an assignment of values to input
variables (i.e., either v = 0 or v = 1 for all v ∈ V \O). Then it derives a subset S of
the nodes as follows. S includes the root node; every successor node of each fork, as-
signment, enter, or terminate node in S; and for every predicate node n in S that refers
to variable v, the first (true) successor is in S if v is an input variable with value 1 or
the graph includes an assignment-to-one node for v, and the second (false) successor of
n otherwise. For a sync node, all of its predecessors’ (terminate nodes) exit levels are
checked, and S includes the sync’s successor under the branch whose label is the same
as the highest exit number. The value of each output variable is 1 if the set includes an
assignment-v-to-one node to variable v and 0 otherwise.

Consider executing the graph in Figure 1a using the node numbers from Figure 6a
and with the assignments A=1, B=1, C=0, and D=1. Node 1 is in S since it is the root,
and since A=1, node 2 is also. This adds nodes 3 and 8. Since B=1, node 12 is in S but
node 9 and node 11 are not, and since C=0, node 4 is in S, and since D=1, node 6 and
7 are in S but node 5 is not. Since node 7 and node 12 are included, and node 7’s exit
level (1) is higher than node 12 (0), sync node 13’s branch 1 is executed. That excludes
node 14 and 15 from S. In the end, S = {1,2,3,4,6,7,8,12,13} so E=1 and F=0.

The above procedure requires the value of every input variable to be known when
the program starts; we want to relax this. In particular, if we know the values of only
certain inputs, we would like to conclude whatever we can about as many outputs as
possible provided they are consistent with any future values for the unassigned inputs.

One way to answer this question is to execute the GRC program using three-valued
logic, i.e., adding a third value that represents unknown or undefined (we write it ⊥) to
the usual 0s and 1s. This introduces another set of nodes to the simulation procedure:
those that might run if additional input is provided later. This is a more complicated
procedure that does not reduce to the usual sequential execution behavior of impera-
tive programs, unlike the two-valued simulation of GRC defined above, which can be
transformed into sequential code using a fairly inexpensive procedure [12].

4 Our Construction Algorithm

Our main contribution is the algorithm described here that takes a GRC program and
constructs a fast sequential program that evaluates the graph in the three-valued domain,
i.e., it allows some of the input variables to be undefined. Our algorithm works in four
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procedure Main(G)
Add data dependencies
s = topological sort of the augmented graph
ComputeRelavantVars()
Set val[v] = ⊥ for all variables
Set ctrl[n, i] = ⊥ for all nodes & successors
Set term[n, i] = ⊥ for all sync & exit lvls
Construct(root of G, val, ctrl, term)

procedure ComputeRelavantVars()
for i = 1, . . . ,N do schedule is s1, . . . ,sN

Set relevant arcs[si] = /0
Set relevant vars[si] = /0
for each j = i, . . . ,N do

for each arc sk → s j with k < i do
add sk → s j to relevant arcs[si]

if s j tests or set any variable v then
add v to relevant vars[si]

(a) (b)

Fig. 2. (a) The Main procedure and (b) ComputeRelevantVars

phases (see Figure 2a). Given a GRC program, we add nodes and arcs to represent data
dependencies, compute a topological order of this annotated graph, compute informa-
tion about the subgraph under each node that will tell us what information we can forget
during a simulation of the program, and finally construct a sequential program by per-
forming this simulation. We try to keep the size of the generated program under control;
we do this by allowing as much reconvergence as possible in the generated code, i.e. by
identifying (and reusing) equivalent states during the simulation.

4.1 Adding Data Dependencies

The algorithm starts by adding data dependencies. For each output variable v, this
process adds an assign-v-to-zero node and then adds arcs from each assign-v-to-one
node to this new node, and arcs from this new node to each predicate-on-v node that
tests v. The result is that there is now a path from each assign-v-to-one node for a vari-
able to each node that tests that variable, hence ensuring the topological sort respects
data dependencies. Furthermore, it introduces an assign-v-to-zero node that will appear
in the schedule when it is possible to determine that a particular variable may be zero.
Figure 6a shows the effect of applying this procedure on Figure 1a.

4.2 Summarizing Dependency Information

Keeping the size of the generated graph under control is the main trick in our algorithm.
Although it would be correct to consider the value of each variable and control arc
when considering which subgraphs can be shared during code generation, this would
be very inefficient and always produce an exponentially-large tree as a result. Instead,
we attempt to model the state of a simulation using as little information as possible
because we want to consider a maximum number of states to be identical so code for
them can be shared.

Our insight is this: at a particular point in the schedule, we only care about nodes that
appear later in the schedule since by definition we must have already executed anything
earlier, and only two things matter about them: the variables they test and the state of
control arcs that lead from nodes earlier in the schedule to later nodes.

Consider building a subgraph for the nodes starting at 8 in Figure 6a, and assume the
node numbers correspond to their position in the schedule. At this point, the simulation
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will have established values for variables A, C, and D, but we do not directly care about
any of them since code for them has already been generated and we will not test any
of them later. However, we do care about whether node 10 will be executed, which can
be affected by node 6, and whether node 13 was triggered by its predecessors, since we
will be generating code for nodes 10 and 13 (they appear after 8 in the schedule).

As a result, we consider identical any simulation states that differ only on vari-
ables A, C, or D. We also consider the control flowing in to nodes 8, 10, and 13.

The ComputeRelavantVars procedure (Figure 2b) builds two sets that exactly capture
this notion of which variables and control states we care about during the construction.
By stepping through the nodes of the graph in scheduled order, ComputeRelavantVars
computes relevant arcs[si], the set of all arcs that go from nodes before si in the schedule
s to nodes after si, and relevant vars[si], the set of all variables that are either tested or
set in the nodes after si. Note that because s is a topological order, nodes after si in the
schedule necessarily include the subgraph under si.

In Figure 6a, if s = (1,2,3,4,5,6,7,8,9,10,11), ComputeRelavantVars finds rele-
vant arcs[8] = {2→8, 6→10, 5→13, 7→13}, relevant vars[6] = {B,E,F}. Both rele-
vant vars and relevant arcs are global and are not modified after ComputeRelavantVars.

4.3 Construct

The Construct procedure (Figure 3) simulates the three-valued behavior of the GRC
program and, as a side-effect, constructs our objective: a graph that reproduces its be-
havior. In addition to the node n that is being synthesized, it takes three arrays: val[v] is
the value (0, 1, or ⊥) of each variable; ctrl[n, i], i = 0,1, . . . is the state (again, 0, 1, or ⊥)
of each control arc leaving each node; and term[n, i] is the state of each termination level
i = 0...M reaching each sync node n (M is the maximum possible exit level reaching n).

Construct begins by checking for an end condition: for the last node in the sched-
ule s, the “node following it” is simply null. It then computes two partial functions
(associative arrays): var state, which contains the value of each relevant variable, i.e.,
those set or tested by any node that comes after n in the schedule (computed earlier
by ComputeRelavantVars); and node state, which computes the execution state (1=will
run, 0=will not run, or ⊥=might run) of all the relevant nodes, i.e., predecessors of n
plus all those with incoming arcs that come before n in the schedule (again, computed
earlier by ComputeRelavantVars).

Together, the node itself and the two partial state functions constitute the total state
on which the subgraph to be built for n. The procedure then looks to see whether a
subgraph with identical state has already been built and returns it if it exists.

Otherwise, the real work starts. First, the node following n in the schedule is iden-
tified as m, since it will be recursed on later. The procedure assumes the node n is a
flow-through type (e.g., assign-v-to-one or a fork) and sets all its control successors to
have the same activation condition as the node itself. These assignments will be modi-
fied below when necessary, especially for predicate and switch nodes.

There are two main cases: once the node is known not to run, this information is
propagates as far as possible by the PropagateZeros procedure. Nodes that set each such
variable to zero are created, assembled into a chain. Finally the subgraph that executes
the nodes after n is connected to the end of this chain after a recursive call to Construct.
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1: function Construct(n, val, ctrl, term)
2: if n is null then
3: return null bottom of the program
4: Clear node state partial function on nodes
5: node state[n] = 1 if n is the root node, ⊥ otherwise
6: for each arc p

i→ q in relevant arcs[n] do
7: node state[q] = node state[q] OR ctrl[p, i]
8: var state = val partial function on variables
9: for each v not in relevant vars[n] do

10: var state[v] = DONTCARE
11: if BuiltNode[〈n, var state, node state〉] exists then
12: return BuiltNode[〈n, var state, node state〉]
13: m = node following n in s on which to recurse
14: for each successor ni of n do assume flow-through
15: ctrl[n,ni] = node state[n]
16: if node state[n] = 0 then node known not to run
17: PropagateZeros(n, node state, ctrl, val)
18: Create chain (v1 = 0) → (v2 = 0) → ·· · → (vk = 0) for each variable vi such that

val[vi] = 0
19: Add an arc from (vk = 0) → Construct(m, val, ctrl,term)
20: n′ = the first node in the chain: “(v1 = 0)”
21: else node state[n] is �= 0
22: n′ = NULL
23: case n.type of
24: Assign-v-to-one :
25: if node state[n] = 1 and val[v] = ⊥ then
26: n′ = Copy(n) assign-v-to-one that executes
27: val[v] = 1;
28: Enter :
29: if node state[n] = 1 then
30: n′ = Copy(n) Enter that executes
31: Terminate-at-l :
32: c = SyncMap[n] the sync node related with n
33: term[c][l] = term[c][l] OR node state[n]
34: Sync :
35: BuildSync(n,ctrl,term)
36: Switch or predicate-on-v :
37: n′ = BuildCondition(n,m,val,ctrl,term)
38: goto End
39: n′′ = Construct(m, val, ctrl,term)
40: Link(n′,n′′)
41: End: BuiltNode[〈n,var state,node state〉] = n′

42: return n′

Fig. 3. The Construct Function
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1: function BuildCondition(n,m,val,ctrl,term)
2: if n is predicate-on-v and val[v] is known then
3: ctrl[n,val[v]] = node state[n] active branch
4: ctrl[n,1−val[v]] = 0 inactive branch
5: n′ = Construct(m, val, ctrl,term)
6: else switch or predicate with unknown variable
7: n′ = Copy(n)
8: for each successor ni of n do
9: ctrl[n, i] = node state[n] active branch

10: for each successor n j of n other than ni do
11: ctrl[n, j] = 0 inactive branch
12: if v is not NULL then predicate value is ⊥
13: val[v] = i
14: Add an arc n′ → Construct(m, val, ctrl,term)
15: if n is a predicate then
16: for each successor ni of n do
17: val[v] = ⊥
18: ctrl[n, i] = node state[n] active branches
19: Add an arc n′ → Construct(m, val, ctrl,term)
20: return n′

Fig. 4. The BuildCondition Function

The other case, when the node might or is known to run (node state = ⊥ or 1), is
handled quite differently. Dealing with assign-v-to-one and enter nodes is simple: If it
is known to run, it is simply copied to the new graph. Furthermore, for an assign-v-to-
one node, the value of v is set to 1 so that it will be propagated to later constructions.

Conditional nodes (predicate-on-v and switch) are more complicated. To deal with
them, the BuildCondition function is called (Figure 4). If the processed node n is a
predicate-on-v and v’s value is known, the branches under n are set to active and inactive
depending on the value.

Otherwise, if the node is a switch or a predicate-on-v whose variable v is unknown,
the algorithm constructs an identical conditional node in the generated program and
considers all possibilities: one of the branches—corresponding to a possible
condition—is set active, and the others are made inactive (their control state is set to
zero). For switch, the possible conditions correspond to each of its successors. For a
predicate node, the possible conditions are related to the variable’s value, which can
be true, false, or unknown when the generated program runs. In the last condition, all
branches are set active. For each condition, the variable value is saved appropriately in
val array and then Construct is called on the next node in sequence with the new state.

Terminate and sync nodes deal with exit levels and are handled separately. For every
sync node, its related threads’ exit levels are preserved by the term array. When a
terminate-at-l node is met at the end of a thread, if it is known to be executed, it sets the
term array element of the exit level l to be 1 for the corresponding sync; if its control
value is ⊥ and no other thread exited at the same level, the element in the term array
is set to ⊥. The sync node computes the highest possible exit level(s) by looking at the
term array, then passes its control value to the corresponding branch. This algorithm
simulates the two-valued behavior. BuildSync in Figure 5a simulates sync’s behavior.
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function BuildSync(n,ctrl,term)
unknown ctrl = false
findmax = false
for each i in term[n], max to min do

if term[n][i] is 0 then
ctrl[n][i] = 0;

else
if findmax is false then

findmax = true
if term[n][i] is ⊥ then

unknown ctrl = true
if unknown ctrl is true then

ctrl[n][i] = ⊥
else

ctrl[n][i] = node state[n]
if term[n][i] is 1 then

break
return ctrl

function PropagateZeros(n, node state, ctrl, val)
if n is null then

return
node state′ = node state
for each arc t

i→ n do
node state′[n] = node state′[n] OR ctrl[t, i]

if node state′[n] is 0 then
for each successor ni of n do

ctrl[n, i] = 0
if n.type is Assign-v-to-zero then

val[v] = 0
m = node following n in s
PropagateZeros(m, node state′, ctrl, val)

(a) (b)

Fig. 5. (a) The BuildSync Function and (b) the PropagateZeros function

For all these types, Construct is called on the next node m and saves the root of re-
turned subgraph to n′′. Switches and predicates are exceptional: they have different new
states built to meet all possible conditions, so Construct is called for every condition.

Finally, n′ is the new node as the root of the subgraph constructed on n. To make it
possible to later identify its state, this fact is recorded in BuildNode. n′ is returned to
the caller, which probably adds an arc leading to it.

We use a few simple helper functions (not shown). Link(n,m) connects arcs: if n is
null, it returns m; otherwise, a control arc n → m is added and n is returned. Copy(n)
creates a new node in the generated program with the same type and variable as node n.

4.4 State

The Construct procedure maintains a collection of subgraphs in the generated program,
each corresponding to a particular node in the original program and the state that it
implicitly assumes the original program was in before reaching the subgraph. Such a
state is a triple: 〈n,var state,node state〉. n is the node leading the subgraph constructed,
var state is a partial assignment of values to variables the subgraph cares about, and
node state is an analogous assignment of values to control arcs relevant to the subgraph.
Specifically, those that pass into the subgraph from outside: arcs within the subgraph,
by definition, will be evaluated as part of the subgraph.

4.5 Monotonicity

The code generated by our algorithm is monotonic. When adding data dependencies
(Section 4.1), an assign-v-to-zero node is linked after all assign-v-to-one and before all
predicate-on-v nodes. This ensures assign-to-one nodes appear first in the topological
order, followed by the assign-to-zero node, and finally all predicates that test v.
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A v = 0 assignment is made only when none of the assign-v-to-one nodes could
or did execute (see Figure 3 line 17-18 and Figure 5b), so the code will never change
a variable’s value from 1 to 0. It is also impossible for the generated code to change
v’s value from 0 to 1 because the topological ordering of nodes places assign-to-ones
before assign-to-zeros. The val array records variables’ values throughout the Construct
function. So when a predicate-on-v node is met (see Figure 3 line 36-38 and Figure 4),
val[v] is checked first. If v’s value is known, the only active branch will be set, and the
val[v] will not be touched but just passed to later construction (see Figure 4 line 2-5).

4.6 The Example

Figure 6 illustrates some of the algorithm’s behavior on Figure 1. A, B, C, and D are
input variables; E and F are outputs. Figure 6a was derived from Figure 1 by adding data
dependencies. Figure 6b shows the graph after assuming A=⊥, C=0, D=0, and B=0 and
arriving at node 14. The label on each arc indicates its value in the ctrl array. Figure 6c
is similar, but it assumes A=⊥, C=1 and B=⊥ (predicate-on-D is known not to run in
this configuration, so D’s value is irrelevant). Our algorithm determines that the code
generated for these two states is the same and can be shared.

Specifically, at node 14, variables E and F are relevant (and unknown in both Fig-
ures 6b and 6c) and the state of node 14 is relevant. In both cases, the state of 14 is ⊥,
which is equal to the ctrl value of incoming arc 13→14.
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Fig. 6. (a) After adding data dependence nodes and arcs to Figure 1a. (b), (c), (d) Possible simu-
lation states upon reaching node 14. Cases (b) and (c) are equivalent since the relevant variables
(E and F) and state of node 14 (the one with incoming arc(s) from outside of the subgraph) are
the same. Case (d) is different. Cases (b) and (c) share the node that tests E, whereas case (d)
creates the E=0 node in the dashed box in Figure 1b.
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Table 1. Experimental Results

Example Lines Average cycle times
Esterel V5 SCFG 3-Valued

comexp 88 1.67s 0.61s 0.80s
iwls3 70 1.04s 0.35s 0.26s
3vsim2 48 0.68s 0.32s 0.46s
multi3 120 1.39s 0.45s 0.47s

In these two states, node 10 may still run in the future, so no code is generated to
set E to 0, E is therefore also unknown, so it is tested, and F=0 may later be able to run.
The code generated for these states is the test of E followed by the assignment of F to 0
in the dashed region of Figure 1b. Paths from the test of C (i.e., when C is 0—Figure 6b)
and the test of B (i.e., when B is ⊥—Figure 6c) converge on this subgraph because the
algorithm has identified these states as equivalent.

By contrast, assuming A=⊥, C=0, D=0 and B=1 gives the state in Figure 6d. Here
it is known that node 10 (assign 0 to E) will run because none of its predecessors will
(this is reversed from the usual rule because such nodes are specially designed to detect
when a variable is set to 0). This leads to different code of the other two cases, i.e., the
assignment of 0 to E attached to the true branch under the test of B in Figure 1b.

5 Experimental Results and Conclusions

We compared the speed of the code generated by our algorithm to that from the Es-
terel V5 compiler, which translates the Esterel program into a logic circuit and gener-
ates code to simulate it, and to the code generated by the algorithm described by Zeng
et al. [12], which generates sequential code by adding guard variables. To obtain the
average cycle times in Table 1, we ran the generated C code from all three compilers
(compiled with gcc -O3) for 10 million cycles on a 2.5 GHz Pentium 4 running Linux.

Table 1 shows our results. While the theoretical complexity of our algorithm is ex-
ponential, the experiments we ran show it appears to not be an issue in practice.

The code generated by the other two compilers (V5 and SCFG) only perform two-
valued computation. Because our compiler adds code for three-valued computation, it
generates slower code. However, the experimental results suggest that the slow-down is
fairly mild and in some cases, our compiler actually generates faster code. We suspect it
is because our compiler uses a different technique to sequentialize the concurrent code.

Together, these experiments suggest that our algorithm is practical, at least for
modest-sized programs. There are certainly additional opportunities for optimization.
In particular, we intend to integrate this technique with our earlier technique for pro-
ducing efficient sequential code from (concurrent) program dependence graphs [12].

Although our algorithm was originally designed to generate monotonic three-valued
programs from two-valued ones to work with the heterogeneous synchronous model
of computation, it may have other applications. The general idea of partially simulat-
ing networks and recording the results as a branching program resembles some ap-
proaches for generating efficient simulators for gate-level circuit descriptions [14, 15].
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While these approaches insisted on a BDD-like representation, our technique suggests
the possibility of selectively “forgetting” inputs, which should give an interesting trade-
off between efficiency and code size.
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Abstract. In modern information society, we are confronted by an alteration 
paradigm called the information technology (IT) revolution. Recently, along 
with advances in various computing technologies, new concepts, such as a con-
vergence phenomenon among information devices, have given rise to ubiqui-
tous and pervasive computing around the world. Also, the realization of the 
home network, which is one of the core solutions for future computing, has be-
come an important issue. This paper describes the architecture of the next gen-
eration home network interface hardware, which will support various home 
networks and media services through a media stream transmission in heteroge-
neous home networks. For the transmission of media streams, such as MPEG-2 
TS and DVD, we designed and implemented hardware and embedded software 
for the stream gateway interface which supports media stream transmission 
with heterogeneous home networks. 

1   Introduction 

In the 21st century, we are confronted by an alteration paradigm called the information 
technology (IT) revolution. Recently, along with advances in various computing tech-
nologies, new concepts, such as a convergence phenomenon among information de-
vices, have given rise to ubiquitous and pervasive computing around the world.  
Emerging ubiquitous computing technology aims to “enhance computer use by mak-
ing many computers available throughout the physical environment. Computing 
power and communication capability is embedded in every appliance, including digi-
tal-TVs, air-conditioners, sensors, and so forth, and users can access the ubiquitously 
present appliances anywhere and anytime via home networks like IEEE1394, WLAN, 
PLC, UWB and Zigbee[1]-[4]. 

Many researchers consider a home network to be one of the core infrastructures for 
the realization of ubiquitous computing. In the past decade, there have been numerous 
                                                           
* Corresponding author. 
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research efforts in home networks. The research and development needed for home 
networks has existed for a long time but have not been used because of difficulties in 
market formation from the lack of a killer application, a scramble for the technology, 
and an absence of commercial technology. However, through the development of a 
national communication infrastructure and the spread of an acknowledgement of our 
home life, many researchers have proposed a detailed solution to the interspersed 
problems. Thus, in two or three years, the technology related to a home network will 
be a popular issue in the IT area. 

In this paper, we discuss how we designed, implemented and tested the stream 
gateway interface (SGI) of a home station (HS) for media stream transmission, to 
handle a media stream such as MPEG-2 TS, DVD, or VoD in a heterogeneous home 
network. This interface will be referred to as HS_SGI. Also, we explain the transmis-
sion of the media stream by HS_SGI. 

This paper is organized as follow: in Section 2, we explain several requirements 
and system architectures for the next generation home platform (NGHP) through 
related work on the future home network. In section 3, we describe the HS_SGI archi-
tecture in detail. Sections 4 and 5 present the implementation and test of the HS_SGI, 
respectively. Finally, we conclude with a brief summary and a description of future 
work in Section 6.  

2   Related Work 

In the heterogeneous home network environment, the key element is interoperability 
among the heterogeneous home network devices, multimedia processing for home 
digital services and linking with the ubiquitous computing technology for the coming 
ubiquitous home. There are several research studies that have been done to ensure the 
above key elements.  

Schulzrinne et al. describes the requirements of a globally-scalable ubiquitous 
computing system and is developing such a system based on Session Initiation Proto-
col (SIP), with Bluetooth devices for location sensing and Service Location Protocol 
(SLP) for service discovery. Also they introduce context-aware location information 
to augment device discovery and user communication called the Columbia InterNet 
Extensible Multimedia Architecture (CINEMA) infrastructure for multimedia col-
laboration[1]. 

Moon, et al. presents universal home network middleware (UHNM) architecture, 
which guarantees seamless interoperability among the heterogeneous home network 
middleware for future homes and provides high-level abstraction and zero-
configuration, as well as makes new services available without a great effort. 

Bae, et al proposes a new scheme for the home server platform for providing home 
digital services by connecting a home network and the internet. This scheme is an 
integrated form of a home multimedia server, a home control server and a home in-
formation server and has an interface between access networks and home networks, 
various kinds of wired and wireless home network devices, and multimedia process-
ing modules[3]. 

As shown in the above studies, there are many research studies in the areas of 
home gateways and servers for multimedia transmission in heterogeneous home net-
works. This indicates the development of the NGHP in these environments.  
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The NGHP is taking shape as an integration station that combines the set-top gate-
way and multi-service gateway. It is becoming a digital convergence media gateway 
with the abilities of the set-top, broadband modem, home networking and IP stream-
ing. It also has the set-top box function of providing services such as HDTV, Contents 
Protection, PVR, Web browsing and Interactive TV, along with the transmission of 
data, voice and entertainment. In order to have the aforementioned functions, there are 
several requirements for the NGHP:  

  universal networking platform based on open architecture 
NGHP needs data communication between the heterogeneous network and the 

communication platform for an open architecture supporting many to many com-
munications. 
 multimedia data Switching architecture 

Since various kinds of stream sources, such as audio, video, control, data and 
voice are present in the Internet world, the switching architecture needs features 
such as data-capability, real-time, delay and a mechanism that can switch between 
channels. 
 QoS architecture based on next-generation services 

Since various kinds of multimedia data are present in a home, NGHP should clas-
sify and process the heterogeneous traffic. 
 common connectivity standardization 

NGHP needs the modularization of the gateway internal function and network in-
terface and the common connectivity standardization to be able to connect universally. 

The architecture of the NGHP considering the above proposed features is illustrated 
in Fig. 1. 

Video 
Channel

Common
Bus

PHY
IP

Common
Bus

Common
Bus

PHY
LonWork Common

Bus PHY
UWBCommon

Bus

PHY
1394

Common
Bus

QoS
Any Network Management
Integrated Device Control

Switchin
g

Audio 
Channel

Control 
Channel

Data 
Channel

Video 
Channel
Video 

Channel

Common
Bus

PHY
IP

Common
Bus

Common
Bus

PHY
LonWork Common

Bus PHY
UWBCommon

Bus

PHY
1394

Common
Bus

QoS
Any Network Management
Integrated Device Control

Switchin
g

Audio 
Channel

Control 
Channel

Data 
Channel

Video 
Channel

 

Fig. 1. Architecture of the NGHP 

3   Architecture of the HS_SGI 

In this section, we describe the hardware and software of the SGI module specified 
for the transmission of the media stream in NGHP.  
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Fig. 2 shows the internal architecture of the SGI module. The core hardware archi-
tecture consists of the following sub-modules: the LVDS Prot Interface, SGI field 
programmable gate array (FPGA), CPU Module and Common Bus Interface. The 
LVDS Port Interface is in charge of providing the MPEG-2 TS packets to the process-
ing module by connecting to the MPEG Test System. We have implemented the 
HS_SGI Hardware Module using the internal architecture of the SGI hardware of Fig. 
2 and made the test board based on it as shown in Fig. 3. 
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Fig. 2. Internal Architecture of SGI 
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LVDS Port Interface SGI FPGA
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CPU Board (MPC860)  

Fig. 3. HS SGI Hardware Module 

We have exemplified the SGI Algorithm to operate the module. Fig. 4 shows the 
operation process of the SGI Algorithm. The system initialization process begins by 
booting the SGI module. The SGI Module confirms whether the MPEG-TS packet is 
transferred through the loading of the Polling LVDS module by checking the Rx 
DPSRAM. After it makes sure of the input of the MPEG-2 TS packet from the MPEG 
Test System, the Input data is transmitted to the Common Protocol (CP) header gen-
erator and the BDP(Buffer Description Protocol) for sending the input data to the 
HGI (Home Gateway Interface) Module through the Common Bus.  After it checks the  
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Fig. 4. SGI Algorithm 

Special Purpose Register ( SPR), which is able to check whether the data is sent to the 
Common Bus, Packets are stored in the Tx DPSDRAM and input packets are trans-
mitted to the Common Bus via the TS Transfer Module. Through a repetition of this 
series of steps, input packets are sent to the HGI from the SGI by forwarding the input 
packets to the HGI Module via the Common Bus. 

We are implementing the parts of the bandwidth manager[4] and the TS transfer 
module mentioned above for a one to one test system. After this, we are going to 
complement these modules for the processing of a media stream in a many to many 
test system[6,7]. Until now, we have described the SGI Algorithm for efficiently 
processing a media stream. In section 4 Implementation of the HS_SGI, we delineate 
the detailed operating procedure for transmitting media data using this algorithm[5]. 

4   Implementation and Testing of the HS_SGI 

4.1   Implementation of the HS_SGI 

In this section, we discuss how we embodied the above SGI design in practice and 
tested a module to verify the sending of media data via the data scenario (“SGI-
>HSIP->HGI”). MPEG-2 TS packets produced from the AD953 MPEG Test System 
are transmitted to the SGI Module via the LVDS interface. The embedded SGI FPGA 
in the SGI internal module and a CPU board using an MPC860 manages the process-
ing of Module transmission. 
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Fig. 5. Data Transmission Architecture between SGI and HGI 
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Fig. 6. SGI Data Transfer Flow 

Fig. 6 shows the detailed operating procedure using the SGI module. The data pro-
duced from the MPEG TS generator is encapsulated as CP packets in the application 
software of the MPC 860 dotter board, which is the CPU board of the HS SGI board, 
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and stored in the Rx DPSRAM. Thus it creates a BDP using the address of the Rx 
DPSRAM that is stored in the header information and the data of the CP packet and 
the created BDP is sent to the FPGA of the HS SGI, after setting the RxRDY register 
to ‘1’. When the RxRDY register is set to ‘1’, the HS SGI FPGA sends a Common 
Bus Request (CB_REG) signal to the HSIP’s FPGA. And HSIP’s FPGA sends Com-
mon Bus Grant (CB_GNT) signal, which means the Bus Admission, to the HS SGI. 
In order to get the bus admission into the common bus arbitration method, the HS SGI 
can send the data via the common bus. 

The HS SGI receives the CB_GNT signal from the HSIP’s FPGA when it is sent via 
the common bus. After packet processing, the HSIP’s FPGA sends the Common Bus 
Send (CB_SND) signal and the Common Bus Receive (CB_RCV) signal to the HS 
SGI and the HS HGI respectively. CB_SND means the packet sending signal and 
CB_RCV means the packet receiving signal. The HS SGI transmits the CP packets 
stored in the Rx DPSRAM to the Tx DPSRAM of the HS HGI based on the CB_SND 
and CB_RCV. The HS HGI generates the TXINT signal and transmits the packet in 
the Tx DPSRAM of the HS HGI to the application software of the MPC 860 board. 
After setting the TxRDY register to ‘1’, the HS SGI’s FPGA is able to receive the data. 

4.2   Test of the HS_SGI 

Fig. 7 shows the test-bed for data transmission between the heterogeneous interfaces. 
It shows that packets being sent to the HGI board from the SGI board in our  
 

 

Fig. 7. Data Transmission Test-bed 
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Fig. 8. HS SGI Test Suite 

home station. The MPEG-2 TS packets produced from an MPEG Generator are sent 
to the HGI board, where they are sent to PC#2, which is connected to the HGI inter-
face via Home Station Internal Protocol (HSIP) and HGI. We have implemented the 
core module using VxWorks as an operating system and tested the core module 
with several end-devices using various operating systems, such as Linux and  
Windows.  

Fig. 8 shows the test sight of the home station in our lab. It presents a media stream 
transmission sight through the SGI module of the home station. 

5   Conclusion and Future Work 

In this paper, we have discussed the design and implementation of the SGI module for 
the next-generation HS for the transmission of a media stream like MPEG-2 TS pack-
ets. Also, the operation of transmission of multimedia data over an HS_SGI has been 
explained. Since we developed the prototype related to an HS_SGI, we have the abil-
ity to develop advanced functions related to the SGI module, such as a bandwidth 
manager, multicast, broadcast and so forth. 

In the near future, based on the diffusion of ubiquitous computing technology and 
home network technologies, users will require the ability to ubiquitously access pre-
sent appliances from anywhere and at anytime. Thus, the end-to-end connectivity 
between appliances inside the home is possible where all the information transported 
will be multimedia data.  
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Abstract. Cache memories are crucial to obtain high performance on
contemporary processors. However, they have been traditionally avoided
in embedded real-time systems due to their lack of determinism. Unfor-
tunately, most of the techniques to attain predictability on caches are
complex to apply, precluding their use on real applications. This work
reviews several techniques developed by the authors to use cache memo-
ries in “real” embedded real-time systems, with the ease of use in mind.
Those techniques are based on a locking cache, which offers a very pre-
dictable behaviour. Both static and dynamic use are proposed as well as
the algorithms and methods required to make the schedulability analysis
using two different scheduling policies. Also proposed is a genetic algo-
rithm that finds, within acceptable computational cost, the sub-optimal
set of instructions that must be preloaded in cache. Finally, a set of sta-
tistical analyses compares the locking cache versus a conventional one.

Keywords: Cache memories, embedded real-time systems, genetic al-
gorithms, predictability, schedulability analysis, performance evaluation,
execution time, response time.

1 Introduction

Embedded systems are composed of a combination of hardware and software
components which perform specific functions in host systems, which range from
domestic appliances to space explorers. The vast majority of processing elements
manufactured worldwide are used in such systems. In some cases, embedded
systems need to satisfy stringent timing requirements. Hence, they also may be
Real-Time systems, in which the correctness of the system depends not only
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on the logical result of computations, but also on the time at which the results
are produced.

Embedded Real-Time Systems is a very exciting and expanding field, whose
applications are found in command and control systems, process control, auto-
mated manufacturing. In every case, they typically control the environment in
which they operate and they need to guarantee the response times. To cope with
the increasing complexity, many embedded real-time systems use modern micro-
processors, which provide a higher throughput. Contemporary microprocessors
include cache memories in their memory hierarchy to increase system perfor-
mance. General-purpose systems benefit directly from this architectural improve-
ment, but for embedded real-time systems, their inclusion raises the complexity
when analysing task set schedulability. In fact, using cache memories presents
two problems. The first problem lies in estimating the Worst Case Execution
Time, WCET, due to intra-task or intrinsic interference. Intra-task interference
occurs when a task removes its own instructions from the cache due to conflict
and capacity misses. When the task tries to execute those removed instructions,
cache misses increase the execution time of the task. This way, the delay caused
by the cache memory interference must be included in the WCET calculation.
The second problem is to estimate the task response time due to inter-task or
extrinsic interference. Inter-task interference occurs in preemptive multitask sys-
tems when a task displaces the working set of any other task from the cache.
When the preempted task resumes execution, a burst of cache misses increases
its execution time. This effect, called cache-refill penalty or cache-related pre-
emption delay must be considered in the schedulability analysis, since it situates
task execution time over the precalculated WCET. Modelling cache behaviour
is very complex, like described in several proposals [3], [8], [7], [6], [2]. Thus,
several alternatives to conventional caches have been proposed. One of these
alternatives is the use of locking caches.

2 Locking Cache Basics

Several processors include a cache memory with the ability to lock its contents,
thus precluding its replacement when the processor fetches new instructions. The
use of locking caches in embedded real-time systems offers several advantages:

– Intrinsic interference is eliminated, and extrinsic interference is bounded and
can be estimated in advance. This makes cache behaviour very predictable,
allowing a simple analysis, even when other architecture improvements are
used, since memory access delays are constant. This is an improvement over
other alternatives like SMART [5] and others that do not fully remove in-
terferences and still demand complex analyses.

– Necessary hardware is nowadays present in several commercial processors,
and only minor hardware modifications are mandatory in order to get the
best performance.

– In several cases, the use of locking caches presents about the same or better
performance than that obtained when using a conventional cache.
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– The use of locking cache is transparent to programmers, since he/she does
need to neither include any special instructions nor use additional tools to
write the applications.

The only disadvantage when using locking caches is that system performance
depends on selecting the instructions loaded and locked in cache. This selection
must be carefully accomplished and presents some degree of complexity.

3 Static Use of Locking Caches

The main goal of using statically locking caches is its full predictability and
thus, the simplicity when estimating execution and response times [10]. In this
case, the locking cache is loaded with a well-known set of instructions before the
execution begins, and the cache remains unmodified during system operation.
Although locking caches are present in several processors, some minor modifica-
tions in these architectures are needed in order to get full predictability and the
best possible performance:

– Cache can be totally locked or unlocked. When cache is locked, there are no
new tag allocations.

– Cache can be loaded using a cache-fill instruction, selecting the memory
block to load it.

– There exists a one-cache-line size buffer to temporarily store those instruc-
tions not selected to be loaded into cache, thus improving its sequential
access. The penalty incurred for executing instructions to be loaded in this
buffer is the same as those executing from cache.

The WCET of tasks may be easily estimated using the timing analysis pre-
sented in [13]. The effect introduced by the cache inclusion is then reduced to
know which instructions are loaded and locked in cache and which not. Thus,
since there are no replacements in cache memory and the set of instructions to
be locked is selected by the system designer, the WCET is easily estimated.

Regarding response time of tasks, it can be estimated using Cached Response
Time Analysis, CRTA, [2], an extension to Response Time Analysis, RTA, [1] for
fixed priority, FP, scheduled systems. CRTA is based in an iterative equation (1)
where the cache effect is incorporated in parameter γj . This parameter represents
the time required to refill the cache after each preemption. When a locking cache
is used statically, only the temporal buffer changes during preemptions, so in the
worst case the value of γj is the time needed to reload the temporal buffer, one
cache miss.

wn+1
i = Ci + Bi +

∑
∀ j ∈hp(i)

⌈
wn

i

Tj

⌉
× (Cj + γj) . (1)

When the priority of tasks is dynamically assigned, as it happens with an
Earliest Deadline First, EDF, scheduler, the schedulability analysis is accom-
plished using the Initial Critical Instant, ICI, analysis proposed in [12]. This
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schedulability test does not consider any cache penalty due to preemptions, so
the effect of cache memories must be included in this analysis. Two questions
arise when cache effect wants to be considered: the time needed to reload the
cache; and the number of preemptions a task suffers. The first question has an
easy answer. When a locking cache is statically used, only the temporal buffer
must be reloaded. The second question is more difficult to answer in systems
with dynamic priorities. It is quite easier however to determine the number of
preemptions a task originates when an EDF scheduler is used: these preemptions
can only occur on task arrivals. Therefore, a task generates a preemption when
it arrives or does not generate any preemption at all.

Since the ICI test is not based upon the individual times of tasks but rather
upon the global system utilisation, the cache penalty (reload of temporal buffer)
can be accounted for to the preempting task, instead of incorporating this delay
in the preempted task. Thus, equations (2) and (3) show the resulting ICI test
equations, where the only modification is to add the time needed to reload the
temporal buffer (Tmiss) to the WCET of each task. By making use of functions
G(t) and H(t) it is possible to derive the value of the initial critical instant, R,
by resolving the recurrence formula given in equation (4) until Ri+1 = Ri.

G(t) =
n∑

i=1

(Ci + Tmiss) ×
⌈

t

Pi

⌉
. (2)

H(t) =
n∑

i=1

(Ci + Tmiss) ×
⌊

t + Pi − Di

Pi

⌋
. (3)

Ri+1 = G(Ri), R0 = 0 . (4)

4 Dynamic Use of Locking Caches

Dynamic use of locking cache is proposed with a single objective: getting better
performance than that obtained through the static use, and at the same time,
keeping a high degree of predictability [11]. The operation of dynamic use is
quite similar to the one proposed in the static use: loading and locking in a
cache memory a previously selected set of instructions. However, in dynamic
use, the cache contents change in well known instants of time: every time a task
begins or resumes execution, the cache memory is flushed and reloaded with a
set of instructions belonging to the new scheduled task. Once the instructions are
loaded, the cache is locked until a new task is dispatched for execution. This way,
each task may use all the available cache space in order to improve its execution
time, in clear contrast with static use, where all tasks must share the cache. In
order to operate as desired, hardware and software requirements must be met.
First, the processor must offer instructions to unlock and flush the cache. In
addition, the operating system must store the list of instructions (addresses) to
load in cache for each task; finally, the scheduler must include a small loop to load
the cache every time a new task is scheduled. In this scenario, WCET is estimated
in the same way that when cache is statically used, since intra-task interference
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does not exist. However, the estimation of response time of tasks must consider
the effect of reload cache after preemptions, and computing this effect is not
easy because tasks may suffer two kinds of interference: direct interference or
indirect interference. Direct interference means that a task increases its response
time because it is forced to reload its own instructions that were previously
removed during preemption. Indirect interference means that a task increases
its response time because executing any other higher priority tasks increases its
response time, due to its own extrinsic interference.

The value of direct-extrinsic interference is the time a task needs to load and
lock its instructions in the cache. The value of indirect-extrinsic interference is
the time other higher priority task needs to load and lock its instructions in the
cache. Since response time analysis must consider the worst-case scenario in order
to provide an upper bound of tasks’ response time, the maximum possible incre-
ment of time must be taken into account for each preemption. Equations (5) and
(6) show the cache refill penalty and CRTA equation respectively. time to loadz

is the time a task needs to load its instructions, and γi
j is the cache refill penalty

for a task τi preempted by a task τj .

γi
j = max

j<z≤i
(time to loadz) . (5)

wn+1
i = Ci + Bi +

∑
∀ j ∈hp(i)

⌈
wn

i

Tj

⌉
× (Cj + γi

j) . (6)

When a dynamic scheduler as EDF is used, the sequence in which the tasks
are activated is unknown. This means that a task may be preempted by any
other task in the system, but it also means that the preempting task may be
preempted at the same time by any other task. That is, the number of tasks that
may produce indirect interference has no limit. This way, the value of cache-refill
penalty due to indirect interference may be the time to reload the cache of any
task in the system but the preempted. Thus, the cache refill penalty for any task
will be the maximum from the time to load of all system’s tasks, every time, and
every preemption. Since the time needed to reload the cache may significantly
vary between tasks, considering this scenario will produce a high overestimation
when computing the response time of tasks and the system utilisation. Therefore,
dynamic use of locking cache is not suitable for dynamic schedulers, due to the
impossibility of getting accurate analysis results.

5 Selecting Contents for the Locking Cache

The increase of performance due to the use of cache memories is very significant;
hence, embedded real-time systems must take advantage of it. The architecture
of a locking cache guarantees determinism, but not performance. In order to
achieve both goals, i.e., a fully predictable cache and a performance similar to
that provided by a conventional cache, the instructions to be locked must be
carefully selected. It is not easy however to find an algorithm that select blocks
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to load and lock in cache in a straight way. In preemptive, multitasking systems,
the execution time of tasks depend on the execution time of higher priority
tasks. In addition, indirect interference in dynamic use causes that the response
time of tasks depends on the time needed to reload the cache contents. This
way, cache contents must be selected considering not the isolated tasks, but all
of the tasks interacting in the system. Exhaustive search, including branch and
bound, presents an intractable computational cost, since the number of possible
solutions is huge. In addition, since the problem is not monotonic, algorithms
like hill climbing are not useful. Genetic algorithms, proposed in [4], performing
a randomly directed search, can be used in this problem, finding a sub-optimal
solution within an acceptable computational time. Two versions of a genetic
algorithm [9], one for static and the other for dynamic use, have been developed.
The algorithm evaluates a set of possible solutions using a fitness function to
sort them. New solutions are created by combining the best individuals of the
previous generation, and the process is repeated a fixed number of times. Since
the block is the minimum unit of information that can be transferred from main
memory to cache, the algorithm provides the set of blocks to be locked, rather
than its individual instructions. It also brings an estimation of the WCET of each
task executing in a locked cache with the chosen set of blocks, and the response
time of all tasks considering the estimated WCET using the locking cache as
given by equations (1) and (6). The main disadvantage of the genetic algorithm
is its temporal cost, whose execution takes between four and six hours and it may
take up to twelve hours when solving some problems. But, on the other hand,
it offers an interesting advantage, because several fitness functions may be used
to sort the solutions, thus guiding the algorithm to improve the performance
in the way that the system designer is most interested on: minimising system
utilisation, maximising task slacks, or tuning the response time of tasks.

6 Experimental Results

Predictability and performance of locking cache have been evaluated using a
large set of experiments. Around 30 systems have been used. Each experiment
is composed of a set of tasks, ranging from three to eight tasks. Tasks used in
experiments are artificially created to stress the proposed cache scheme. A simple
tool is used to create tasks. The tool requires the main parameters of every task,
such as the number of loops and nesting level, its size, loops size, the number of
if-then-else structures and their respective sizes. Task period is hand-defined to
make the system schedulable, and the task deadline is equal to its period. The
workload of any task may be a single loop, if-then-else structures, nested loops,
streamlined code, or any mix of these. The code size for a task may be large (up
to 32 Kbytes) or short (lower than 1 Kbyte). More than two hundred experiments
had been accomplished. Each experiment is simulated using direct-mapped, two-
set associative, four-set associative and fully associative caches, with cache sizes
ranging from 1 Kbyte to 64 Kbytes. For all cases, line size is 16 bytes (four
instructions) and in most of the cases, the task set footprint is bigger than the
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cache size; furthermore, in some cases, just one task may require more space
than the cache can provide. Fetching any instruction from main memory takes
10 cycles, while fetching any instruction from cache (or temporal buffer) takes
just 1 cycle. For each experiment, the response time of each task is estimated
using the genetic algorithm, then simulated in a locking cache using the blocks
selected by the genetic algorithm, and finally it is simulated in a conventional
cache to evaluate performance and predictability.

First results concern predictability and accuracy of analysis methods. For a
Fixed Priority Scheduler, FPS, response time of tasks (RTe) as estimated by
the genetic algorithm is compared with the response time of tasks obtained by
simulating its execution with a locking cache (RTsl). For the EDF scheduler,
the system utilisation (Ue) as estimated by the genetic algorithm is compared
with the system utilisation obtained by simulating its execution with a locking
cache (Usl).

Figure 1 show the cumulative frequency polygons of error between the es-
timated and simulated results. For an FPS, the error (or overestimation) is
defined as efps = (RTe/RTsl) − 1; in the case of EDF the following formula is
used: eedf = (Ue/Usl) − 1.

Fig. 1. Cumulative frequency polygon of error between estimated and simulated re-
sponse time

From Figure 1 it can be seen that for static use and FP scheduler, the error is
less than 1% in the whole set of experiments. Furthermore, in more than 90% of
the cases, the error is lower than 0.05% and it is below than 0.01% in around 50% of
the cases. The results obtained when using a statically locked cache with an EDF
scheduler look very similar to those achieved with the FP scheduler. However, it is
possible to observe a slightly greater error; it is 0.01% in around 40% of the cases.
This is due to the excessively conservative assumption that states that every task
causes a preemption when it is activated. Yet, since cache refill penalty is extremely
low, error increases in an almost negligible way. Figure 1 also shows the dynamic



On Using Locking Caches in Embedded Real-Time Systems 157

use of locking cache with an FP scheduler and shows an overestimation, which is
higher than that in the two previous cases since taking into account the worst case
is inherent to indirect preemptions. In 10% of the cases, error fluctuates between
10% and 30% but it falls down to 1% for more than 50% of the cases. Certainly,
there exists a high variability in the error obtained.

Figure 2 illustrate results concerning performance and show the cumulative
frequency polygons of gain/loss of performance, P , when comparing utilisation
using a conventional (simulated) cache, Uc, and the utilisation using a locking
cache as estimated by the genetic algorithm, Ue. Here, P = Uc/Ue. A result less
than one indicates that the utilisation using the locking cache is higher than the
utilisation using the conventional cache, thus losing performance. On the other
hand, results higher than one mean that the use of locking caches offers, not just
determinism, but also a performance gain.

Fig. 2. Cumulative frequency polygon of gain/loss of performance of locking cache in
front of conventional cache

In Figure 2, it is also possible to note that for static use and FP scheduler
in more than 60% of the cases, there are no significant losses in performance
(those in which the ratio is above 0.9). The same conclusions can be drawn from
Figure 2 for static use and EDF scheduler. As can be seen in Figure 2, in the
case of the dynamic use and FP scheduler, about 70% of the experiments do
not demonstrate significant losses in performance; besides that, in 20% of the
cases, there is a significant gain in performance (above 1.2) when dynamic use
is employed.

7 Conclusions and Future Work

The use of locking caches in embedded real-time systems has proved to be
very useful, since it exhibits a highly predictable behaviour, thus facilitating
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the schedulability analysis and, at the same time, offering a performance analo-
gous to that provided by a conventional cache, which on the other hand, is hard
to incorporate into the real-time system analysis.

Moreover, dynamic use of locking cache beats any previous proposal using
cache memory in an embedded real-time system:

– In contrast to alternative proposals to conventional caches, the locking cache
completely removes intrinsic interference while extrinsic interference is
tightly bounded. Other approaches have some level of unpredictability, thus
requiring more complex models and analyses to estimate both the execution
and the response times.

– Even though using locking cache poses performance losses in some cases when
compared to using conventional caches, none of the existing proposals is able
to offer a tightly precise estimation, thus resulting also in a performance loss
in practical terms.

Albeit it might seem that there are no further possibilities in using locking
caches in embedded real-time systems, there still exist some paths to follow. In
all of them, the main goal is to increase the performance of the locking cache.
This can be done as follows:

– By reducing the time required reloading cache contents in dynamic use of
locking cache. This has a twofold effect. First, minimising the time required
to reload cache obviously minimises the execution times. In addition, the
overestimation of the response times is minimised, which in practical terms
is equivalent to a performance increase, since the designer may fine-tune the
system in a better way. This reduction can be accomplished by means of a
memory hierarchy like those proposed in [14] in which the cache memory
can be locked on a per-line basis and include flags to reflect the line lock
status for the blocks pertaining to the current executing task. The memory
hierarchy also needs an extra, dedicated SRAM to store the locking state
information for the whole task set plus some simple, easy to add hardware
for proper operation.

– In addition, since it has been found that the performance of the outcome of
the genetic algorithm can be very dependant on the fitness function used,
the genetic algorithm may provide different fitness functions to satisfy the
system designer needs by allowing him/her to optimise the utilisation, the
slack, or by trying to find a trade-off solution in between.

– Finally, the genetic algorithm is being parallelised to be executed in a Linux
cluster with a message-passing environment by using the homogeneous “is-
land” approach, in which several loosely-related sub-populations are processed
by different processing elements to speed up the calculations.
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Abstract. Embedded real-time systems often operate under strict timing con-
straints. In order to test a real-time system thoroughly, we should instrument the 
system under test with assertions. Thus, the timing behaviors of such a system 
will change more or less. In this paper, we present two methods to weaken or 
even remove the timing related impact of the inserted assertions. Firstly, a new 
monitoring schema is presented which has less time intrusive than software mo-
toring and can test the target system completely. This schema is a mixture of 
hardware monitoring and software monitoring. Secondly, in order to weaken 
the time intrusiveness of assertions as much as possible, we present a WCET 
analysis based time correction method. This method can compute the accurate 
execution time of assertions and corrects the recorded time of interested events. 

1   Introduction 

Embedded real-time systems such as avionics are often complex and safety-critical. 
Their functionality must be thoroughly validated before they are deployed in actual 
environment. So it is a contemporary challenge for testing such safety-critical real-
time systems. 

In order to assure their correctness and safety, timing constraints are specified dur-
ing the design process. In the testing process, test oracles are generated from these 
timing constraints. Test oracle is a method to verify whether the system under test has 
behaved correctly on a particular execution [1]. It can not only automatically check if 
the system under test is acted correctly, but also promotes the efficiency of software 
testing, and relieves programmers from the tedious work of checking testing results. 
Obviously, it is inevitable that the traces of real-time systems must be acquired during 
the process of real-time systems testing. 

The inputs of test oracles are traces of real-time systems. Either the hardware 
monitor or the software monitor is used to acquire the traces of real-time systems. 
While hardware monitors detect and collect the occurrences of the events outside the 
system under test, software monitors insert assertions (set of instructions, also called 
software probes [2]) into the systems under test to detect and collect the occurrences 

                                                           
*  This work was supported by the National Natural Science Foundation of China under Grant 

No. 60303013 and the National Grand Fundamental Research 973 Program of China under 
Grant No.2005CB321804. 



 Trace Acquirement from Real-Time Systems Based on WCET Analysis 161 

of the events inside the systems. Hardware monitors will not change the timing be-
haviors of the systems under test, but they can’t collect all the information needed. 
For example, hardware monitors cannot detect local variables. Contrariwise, the exe-
cution of assertions introduced by a software monitor will disturb the timing behav-
iors of the application tasks in the systems under test. In the research of test oracle, 
most effort is on the issues about how to automatically generate executable oracles 
from real-time specifications, but few of them concerns the acquirement of run-time 
traces from real-time systems. 

In this paper, we discuss the methods of acquiring run-time traces from real-time 
systems, and present a schema, which is a trade-off between hardware monitors and 
software monitors, to thoroughly collect run-time traces and introduce as less timing 
intrusiveness as possible. We quantify the additional time needed to schedule testing 
task and all the application tasks of the system under test. Then, we present a new 
method to calculate the execution time of the assertions by the techniques of Worst 
Case Execution Time (WCET) analysis and correct the timing behaviors recorded by 
assertions. 

The remainder of this paper is organized as follows. Section 2 discusses the advan-
tages and disadvantages of different real-time monitor schema and quantify the time 
of the intrusiveness caused by the software monitor and inserted assertions. In section 
3, we present a method to calculate the execution time of different types of assertions 
and a method to correct the time recorded by the assertions. We discuss the related 
works and present a conclusion in section 4 and section 5. 

2   Test Oracle and Real-Time Monitoring 

2.1   Test Oracle and Monitoring 

Test oracle is used to check whether the system under test has behaved correctly on a 
particular execution based on its specifications. A test oracle consists of two parts; the 
first part is the oracle information (sometimes is called test oracle directly) that speci-
fies what are the correct actions (behaviors) for the system under test, i.e. designates 
properties that the system must be satisfied. The second part is the oracle execution 
process that validates the correctness of the traces acquired from system under test 
according to the oracle information. It is often the case for the real-time systems that 
reactivity and timing relations are very complex, so it is an error-free and efficient way 
to use formal methods and automated techniques during generating test oracles. Fig. 1 
shows the role of test oracles in the software testing. Obviously, the acquirement of 
run-time traces from real-time systems is a premise for the test oracle to work. 

Rearrange
  Timed State
    Sequences
 received from
    Real-Time
      System Test Oracles

Real-Time System

 
Fig. 1. The role of test oracles in software testing 
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The main job of test oracle is to monitor the execution of the system under test, and 
validate whether or not the traces of the system under test satisfy their specifications. 
Jahanian [3] classifies the monitoring into two modes: synchronous and asynchronous. 

In synchronous monitoring, the software probes (assertions) are inserted into the 
program and explicitly check the satisfiability of the constraints at a particular point 
during the execution of the program by directly manipulating the event histories that 
shared by the cooperating tasks. Thus, handling of any violations against the con-
straints is carried out synchronously on the threads of the executing tasks. In this 
mode, the test oracle is executed as a part of the application. Because the execution 
time of test oracle is immense (it is exponential) [3], the timing behaviors of the ap-
plication tasks are changed greatly. 

Alternatively, in asynchronous monitoring, the monitor, which handles the excep-
tions asynchronously, is a separate task. The conformance of the run-time sequences 
of system under test with the specification is checked and handled separately from the 
application tasks. The program that checks the conformance is called monitor soft-
ware, as shown in Fig.2. 

 
Fig. 2. Asynchronous monitoring 

The monitor software is an individual task in the system under test, so it is neces-
sary for a hard real-time system to schedule monitor software as a task with the appli-
cation tasks together. The application will possibly become unavailable because of the 
immense resource consuming of the test oracle. So it is a natural choice to place the 
monitor software out of the system under test. In this manner, in order to flexibly 
control the events, it is better to split the monitor software into two part, the simple 
one is called monitor client which stays in the system under test and is scheduled with 
application tasks, and another one is still called monitor software which runs on a 
individual system and takes the main jobs of the original monitor software. The role 
of monitor client and monitor software is shown in Fig. 3. 

Additionally, monitors can be classified into hardware monitors and assertion 
monitors. Hardware monitors [2] [4] use special hardware (such as specialized co-
processors) to detect and collect event occurrences by snooping and matching bus 
signals of the systems under test. This method allows non-intrusive monitoring, but it 
is not sufficient to monitor all the needed changes of events especially when there 
exist some state changes that are invisible out of the system under test. 

Assertion monitor is a kind of software monitors [5] [6] [7] that insert the asser-
tions (software probes) into the systems under test to detect and collect the event data. 
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Although this kind of monitoring can detect all the event behaviors, the software 
probes will introduce timing intrusiveness to the target system. Timing predictability 
is a fundamental requirement of real-time systems. When assertion monitor is used to 
acquire the system states, the timing intrusiveness introduced by assertions must be 
quantified. 

Based on the above characteristics of monitoring, we present a specification- and 
system character-dependent trace acquirement schema. 

2.2   Specification- and System Character-Dependent Trace Acquirement 
Schema 

Specification- and system character-dependent trace acquirement schema uses differ-
ent ways to get the traces of an event in system under test relying on whether the 
monitored event in specifications is external or internal and whether the event occur-
rence is periodic or sporadic. 

 

Fig. 3. Mixture monitoring of software and hardware monitoring 

As showed in Fig. 3, we adopt a mixture asynchronous monitoring schema, which 
is a mixture of hardware and software monitoring and place the monitor out of the 
system under test.  

In fig.3, the monitor client and the monitor software are as mentioned in previous 
section. Monitor client collects data from the application tasks under test and sends the 
collected data to monitor system. Monitor client is simple and little-resource-
consuming. Monitor input device 1 receives the data from monitor client. Monitor 
input device 2 collects data from the input and output of the system under test. Monitor 
software deals with the collected data from input device 1 and 2, and checks the con-
formance of the run-time sequences of the system under test with the specification. 

In the mixture schema, assertions are only inserted after the statements that may 
change the internal states. When an internal state is changed, its value and occurring 
time will be sent to monitor client and output to the monitor software. When an exter-
nal event value is changed, monitor software will capture its state and occurring time.  
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The advantage of this mixed monitoring include: all the states can be 
monitored; Monitor client spends less time because the function of test oracle is 
moved to software monitor out of the system under test. This schema is suitable for 
hard real-time system. 

2.3   Quantify the Intrusiveness of Asynchronous Monitoring 

No matter how simple the inserted assertions are, the timing behaviors of the system 
under test would be influenced more or less. So when designing the real-time system, 
apart from the time saved for application tasks, we should save enough spare time for 
testing. The quantity of the spare time saved for testing is: 

( ) ( ( ) ( ))Instr Uninstr
i Tasks

TimeForTest WCET MonitorClient WCET i WCET i
∈

= + −  (1) 

where Tasks is the set of application tasks, ( )InstrWCET i and ( )UninstrWCET i  are the 

WCET of i-th task after and before insertion of assertions, respectively, 
WCET(MonitorClient) is the WCET of the monitor client who is mentioned in previ-
ous section. 

Apart from the spare time saved for testing, the timing order of the events in 
original system would be changed by the insertion of assertions. For instance, a 
specification specifies that event B is required to occur before event A within 1ms, 
i.e. (A [0,1] B)→ . If event A occurred at moment 10 and event B occurred at 

moment 11 during the first normal running of the real-time system, the specifica-
tion was satisfied. But event A would occur at moment 13 and event B occur at 
moment 12 during the second running of the real-time system after assertions for 
event A and event B have been inserted, the specification would no longer be sat-
isfied. This is a typical run-time error due to the insertion of assertions. 

To guarantee that the timing order of the real-time system would not be affected by 
the inserted assertions, the offset time caused by the assertions should be removed 
from the time they recorded. The affect of the assertions to the original application 
tasks include two part: one is the execution time of the assertions themselves that 
would prolong the execution time of the application task, another is the different exe-
cution time of the application tasks, which is changed by the existence of the asser-
tions in the system under test, for example, the instruction address of the application 
tasks would be changed due to the insertion of assertions, and as a result, its cache 
behavior would be changed. 

3   Time Analysis and the Correctness of Inserted Assertions 

3.1   WCET Analysis 

In order to guarantee each task to be completed within its deadline, we must analyze 
each task’s Worst-Case Execution Time (WCET). WCET analysis is an important 
area in real-time research area [8], which focuses on computing upper bounds of the 
processor execution time of code segment for a given application. WCET analysis 
must fulfill safety and tightness. Safety means that the WCET estimate must not be 
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under the worst case. Tightness of the computed WCET bounds can save the time that 
must be reserved for each task and, as a result, reduce the cost of the system. 

A WCET analysis process for C program is showed in Fig. 4 and is depicted in de-
tail in [9]. The parser translates a C source code program into an immediate code that 
contains the structure information of the program. Based on the program structure 
information, the program flow analyzer extracts flow information for WCET analysis. 
These flow information contains the call graph of functions, recursive calls, bounds of 
loops, whether the branches of a if statement contain a loop exit statement (e.g. break 
and return statement), and so on. 

 
Fig. 4. WCET analysis process for C source code 

The C compiler translates the C source code into the object code and generates 
mapping information between the source code and the object code. Based on above 
information, the program flow information and the specific machine information, low-
level analysis calculates the execution time of each instruction and/or each basic block 
[10]. The specific machine information includes the configuration of the computer and 
the timing characteristic of each instruction. Time analyzer computes the upper bounds 
of the processor execution time of pieces of code for a given task based on the program 
flow information and the timing behaviors of each basic block that we need. 

3.2   Changed Time Analysis for the System Under Test 

An instrumentation point CS is a place in program where an assertion can be inserted. 
As an assertion is a set of statements, for the syntax correctness, CS must be a place 
before some statement. Suppose an inserted assertion is DS, CS is before 1S , the 

statements after instrumentation would be 1;DS S . 

A checking point JS is a place in program at which we measure the time impact of 
the inserted assertions. Suppose the beginning place of the program is KS (KS is not 
always the first statement of the program, it is the first statement of the application 
task to be scheduled [11]), and the statements after instrumentation is 1;DS S , nor-

mally JS is just before 1S , but in some cases it maybe in or even after 1S . 

For any checking point JS, the difference between the time after instrumentation 
and before the instrumentation is 
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( ) ( ) ( )Instr UninstrTimeChanged JS Time KS JS Time KS JS= → − →  (2) 

where KS JS→ denotes the program path from KS to JS, ( )InstrTime KS JS→ and 

( )UninstrTime KS JS→  denotes the execution time running from KS to JS after and 

before the instrumentation, respectively.  
Because the program after instrumentation is composed of the original program 

and the inserted assertions, so there exists 

( ) ( ) ( )TimeChangedInstr JS DSTime JS ChangedUninstr JS= +  (3) 

where 

( )
i

i

i
DS KS JS
DS DSSet

DSTime JS DS
∈ →
∈

=  
(4) 

( ) ( ( ) ( ))
i

i

Instr i Uninstr i
S KS JS
S DSSet

ChangedUninstr JS Time S Time S
∈ →
∉

= −  
(5) 

denote the execution time of inserted assertions and the changed time of the original 
program due to instrumentation, respectively. And DSSet denotes the set of assertions. 

Equation (3) shows that the difference time ( )TimeChangedInstr JS  of JS is com-

posed of two parts: one is the execution time of inserted assertions and another is the 
difference time of the original program before and after instrumentation, and the latter 
is related to the former. Similarly, the precision of the computation of 

( )TimeChangedInstr JS  is also determined by the two parts mentioned above. 

For simple CISC processors (i.e. the execution time of two instructions is equal to 
the sum of the execution time of each instruction), the inserted assertions have no 
impact on the execution time of the original program statements, so 

( )TimeChangedInstr JS =0. But this is not the case for modern RISC processors. 

According to the timing property, Engblom [12] classifies the characteristics of mod-
ern processor to two classes: global and local. Cache and branch prediction are global 
and pipeline is local, for instance. For the instrumented statements 1;DS S , the pipeline 

information of 1S  is changed due to the insertion of DS [13], so the execution time of 

1S  is changed accordingly. The memory address of 1S  may change due to the insertion 

of DS, so the cache behaviors and the timing behavior of 1S will change at last. 

In this paper, we only concern the timing behaviors of inserted assertions. We sup-
pose here that ( )TimeChanged JS  can always be calculated accurately for checking 

point JS. There are several cases: either the processor is a simple CISC processor, 
or ( )InstrTime KS JS→ and ( )UninstrTime KS JS→  can be calculated accurately by the 

WCET analysis technique for the program structure (e.g. the analysis for cache of 
pipeline by Healy [14] [15]), or although there is an offset of the time analysis, but the 
difference between ( )InstrTime KS JS→ and ( )UninstrTime KS JS→  is accurate because 

they have the same offset. 
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3.3   Construction of Assertion 

Assertions are inserted in the source code of a real-time system. There are two mo-
dalities for the construction of assertions: the initial assignment assertions and the 
normal assertions. Initial assignment assertions assign the initial values to every state 
at the beginning of the program. The initial values are determined by the specifica-
tions. Normal assertions are inserted before the statements that would change the 
internal state (variable) of the system. Altogether, there are four types of assertion: 
conditional assertion, for all assertion, exist assertion and the other, as showed in 
Table 1. 

Table 1. Four types of assertion 

 Conditional For all Exist Other 
Meaning for judging the 

change of state 
for the formulas contains 
more than one variable 

initialize 

Statement 
Structure 

1;...;if ( ) S E  

t1 tn n{ ;...; }...; ;S S S  
1 j1 t t;...;for ( ') {if ( ) { ;...; ;S E E S S  

1 mo nbreak;} ...; }...; ;oS S S  
1 2 n; ;...; ;S S S  

Initial     
Normal     

For example, a constraint [0, 100](∀i∈1..20(A[i] != Emergency)) in a specifica-
tion, whose meaning is that any component of array A can not be in Emergency state 
within 100 unit, is a for all assertion. And a constraint [0, 100](∃i∈1..20(A[i] == 
Emergency)) , which means that there exists a component of array A which will be in 
Emergency state within 100 time unit, is an exist assertion. These two assertions have 
a same statement structure:

1 j1 t t;...;for ( ') {if ( ) { ;...; ;S E E S S
1 mo nbreak;} ...; }...; ;oS S S , where 

S is a program statement, E and E' are the codes of conditional expression. 

3.4   Execution Time Analysis of the Inserted Assertions 

From the point of execution time analysis, the statement shapes showed in Table 1 
can be decomposed into three kinds of statement sequences: sequential statements, 
conditional statement and loop statement. 

Sequential statements 1 2;S S  
For a simple CISC processor, its execution time is 

1 2 1 2( ; ) ( ) ( )Time S S Time S Time S= +  (6) 

For a pipelined processor, its execution time can be analyzed by using the reserved 
table [16][14], i.e. after the concatenation of the reserved table of S1 and S2, the execu-
tion time of S1;S2 is the cycles from the first stage of the first instruction to the last 
stage of the last instruction. 

When there is a cache miss, the penalty time should be added. Healy presented a 
more accurate calculation for pipeline and instruction cache processor [15]. 
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Conditional statement if (E) then S1; else S2; 
The execution time of a conditional statement can be calculated as two sequential 
statements when the evaluation result of conditional expression E is known:  

Time (if (E) then S1; else S2;) :=
( ; 1) if =TRUE  

   
( ; 2) if =FALSE 

Time E S E

Time E S E
 (7) 

where E is the code of conditional expression as mentioned before, Time(E; S1;) is the 
execution time of the conditional expression E and the statement S1. Time(E; S2;) is 
similar. 

Loop statement 
1 jt tfor ( ') {if ( ) { ;...; ;E E S S

1 mobreak;} ...; }oS S  

Suppose the iterations of loop is n>0, then 
Time (

1 jt tfor ( ') {if ( ) { ;...; ;E E S S
1 mobreak;} ...; }oS S )= 

1 m 1 j

1 m

o t t

o

( '; ; ...; ) * ( 1) ( '; ; ...; ) if  evaluated to TRUE once 
 
if  never evaluated to TRUE( '; ; ...; ) * ( ')

o

o

Time E E S S n Time E E S S E

ETime E E S S n Time E

− +

+
 (8) 

Equation (7) shows that the computation needs to know the evaluation result of the 
conditional expression E, and moreover, equation (8) needs to know not only the 
evaluation result of the conditional expression E but also the iterations of the loop. All 
these information can be acquired through monitor. For example, by inserting some 
identification statement at a statement entry, monitor can determine the execution 
path of an inserted assertion. 

3.5   Time Computation and Correction of the System Under Test 

For any checking point JS, ( )TimeChanged JS , which is the changed time after the 

instrumentation, not only rely on the inserted assertion but also the original program. 
In previous section, we suppose that ( )TimeChanged JS  can be calculated accurately. 

For accurate computation of the execution time of a program, loop iterations are the 
first to be known. Here we discuss how to deal with loop structure of a program in the 
system under test, the other structures are discussed in [17] [16] [14]. 

Because of the existence of monitor, the result of ( )TimeChanged JS  is not re-

quired to know in advance. So we can take a more accurate time analysis method than 
the methods presented in WCET analysis literatures such as [18] and [19]. For exam-
ple, we can let monitor extract the loop iterations exactly through inserting loop iden-
tification at the entry of loop. In the following, we suppose that the loop is at i-th 
iteration, where i>0. And for any checking point JS, we use ( )Time KS JS→  to de-

note ( )InstrTime KS JS→  and ( )UninstrTime KS JS→ , where KS is the beginning place 

of the program. 
It is natural to consider that KS is outside of any loops. If not, when JS and KS are 

in the same level of a loop, it is obvious that ( )Time KS JS→ = ( )KS STime P → , where 

KS SP →  denotes the statement sequence from KS to JS. 
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Suppose JS is at a level deeper than KS, i.e. JS is in a loop for ( ) E S , then 

( )iTime KS JS→ = ( ) ( 1)* ( ; ) ( ; )KS WKS WKS JSTime P i Time E S Time E P→ →+ − +  (9) 

where WKS is the beginning location of statement S, KS WKSP →  denotes the statement 

sequence from KS to WKS , and WKS JSP →  denotes the statement sequence from WKS 

to KS. 
Using WCET analysis, the monitor can determine ( )KS WKSTime P → , ( ; )Time E S  and 

( ; )WKS JSTime E P →  by equation (6)(7)(8), according to the values of conditional ex-

pressions of the conditional statements and loop statements and the iterations of loop. 
From equation (9), we also have 

( )iTime KS JS→ = 1( ) ( ; )i WKS JSTime KS JS Time E P− →→ +  (10) 

Other kind of loop statements (such as while and do...while) and multiple level 
loop statements can be handled in the similar way. 

The occurring time of an event would be changed due to the insertion of assertions, 
so the timing order of the events from a real-time system would be changed. Through 
the above computation, we can correct the recorded event time. And as a result, the 
event timing order is corrected. 

Suppose the monitoring time for assertion A is AT , the corrected time 'AT  should be 

' ( )A AT T TimeChanged JS= −  (11) 

4   Related Work 

Hardware monitoring approaches are proposed in [2] [4]. These approaches use spe-
cial hardware (such as specialized co-processor) to detect and collect event occur-
rences by snooping and matching bus signals of the systems under test. These meth-
ods allow for non-intrusive monitoring to the system under test, but are not sufficient 
to monitor all needed events such as local variables changed in program. Software 
monitoring [5] [6] [7] approaches insert software probes into the systems under test 
for event detection and event data collection. Although these methods can detect all 
event activities, but software probes introduce large timing interference for the sys-
tems under test. 

F. Jahanian[20] [3] emphasized the quantification of timing intrusiveness of soft-
ware probes on the behaviors of application tasks and proposed to view monitoring 
activities as time-constrained tasks and to include them in the scheduling analysis of 
the systems under test. 

Peters [21] designed a monitor for real-time systems which combines software 
monitor and hardware monitor. The hardware monitor, who is called system monitor 
in his literature, observes by using specific input devices. Peters’ work was similar to 
ours but does not discuss the problems of timing intrusiveness to the systems under 
test. 
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5   Conclusion 

In this paper we discuss the timing behaviors of different kind of monitor in real-time 
test oracle. We propose an asynchronous monitor schema that is a mixture of hard-
ware monitor and software monitor. The proposed schema has as little intrusiveness 
as possible and can test the target system thoroughly. The only drawback of the 
schema is its complication. 

To test a real-time system completely, the system under test must be instrumented 
with assertions. The inserted assertions will affect the timing behaviors of the target 
system. Based on the WCET analysis tool, we accurately calculate the execution time 
of assertions and correct the event time records.  

While the schema is especially suitable for hard real-time system because of its 
complication, the time corrected method can be applied to both hard and soft real-
time system. 
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Abstract. In a real-time database system, the conventional method of
transaction method can not be used. In these methods, the deadlock
detection is based on (a) use of delay to cause and watch deadlocks,
(b) high overheads of periodic checking (c) Non-deterministic nature of
the delays, and lastly, (d) difficulties to scale up the existing solutions
(centralized). The proposal is based on enhanced local processing and
peer-to-peer (P2P) communication for distributed transaction process.
The earlier procedures incorporate additional steps for handling wait-for
states and deadlocks. This activity is carried out by methods based on
wait-for-graphs or probes. These methods introduce a centralized compu-
tation at source (for each occurrence of a delay). The proposal introduces
asynchronous operations in transaction processing. As a result the de-
tection processes do not wait for occurrences of delays (time-out). These
start the delay elimination process instantaneously. The technique incurs
low overheads and eliminates the possibility of occurrence of waiting.

1 Introduction

The distributed computing paradigm emphasizes the use of distributed resources
in a decentralized manner. However, the distributed systems perform services
such as deadlock detection in a localized (centralized) manner. That is, on each
occurrence of a wait-for state, a probe or effort to make a transaction wait-for
graph (TWFG) is initiated [4, 9, 10, 14, 15, 16]. This leads to high computation
overheads [3, 13].

In the present proposal, a peer-to-peer (P2P) message algorithm attempts to
perform detection of wait-for states, by using a P2P model of message commu-
nication by using local wait-for precedences [13] (Figure 1 and Figure 2).

1.1 Transaction Processing Using Message to Waiting Peer

We consider performance enhancements using the following.

1. Local processing: In a P2P system, it is possible to reduce inter-site com-
munication by considering the available wait-for information in close prox-
imity (next in waiting) of a transaction manager(TM) at its (local) data
manager (DM) [13];

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 172–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2. Asynchronous Processing: Many occurrences of wait-for situations can
be avoided by informing a peer (data manager or transaction manager), in
advance. For example,

Transaction Wait−for Graph (TWFG) in a distributed system

T2

T1

T4

Wait−for states in Peer−to−Peer message model

Site  1 :  ( TM )   T1  −−>  T2

( DM )   T1  −−>  X ;  T2 −−> X ;

Site 2  :  ( TM )   T3 −−>  T4 ; T2  −−>  T3 ;

 ( DM )   T3 −−>  X ;  T4 −−> X  ;

Site  3 :   ( TM )    T4   −−>  T5 ;

DM receives access requests for X from peers at Site 1 and 2.

( DM )   X <−− T5 <−− T4 <−− T3 <−− T2 <−− T1

                 T2  −−>  T3 ; 

               T4 −−> T5 ;

Site  2

Site  1

Site  3
X

T3

T5

Fig. 1. Equivalent Wait-for states in P2P Computing

– at each event when a peer transaction holding locks, enters a wait stage,
it informs the waiting peer transaction of the change in its TWFG.

Most of the earlier research techniques do not consider any co-operation be-
tween a TM and DMs [16, 9, 10]. The following is a summary of the proposal
made by the present study.

– In place of a global activity to form TWFGs the transaction activity focuses
on available information by introducing asynchronous operations, local com-
putations, and parallel computations (see Example 1 and Example 2);
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– Commonly occurring precedences as per the order of arrival of transactions
can be ignored; The other type of precedences in which a later transaction
gets the precedence to execute before older transaction, are termed as ’odd
precedences’. Their presence is essential to form any deadlock. Therefore,
• Deadlock is removed by handling few odd precedences in a P2P man-

ner. Many odd edge precedences can be reversed as soon as these occur
without a need to wait for the occurrence of a deadlock.

• Odd precedence can be substituted by an orderly precedence through an
exchange one pair of messages (with no losses) in all the cases of static
locking. These can be substituted with similar effects in most cases of
dynamic locking.

• Multiple odd precedences within a TWFG can be processed in parallel
to reduce delays; Such local computations can reduce the number of odd
precedences and thus reduce inter-site communication overheads;

– For prevention of repeated roll-backs the time-stamp priority can be assigned
to a transaction.

These possibilities are briefly described in the following sections. The next
section presents details of the mechanism using examples. An analysis of the
automatic detection model is presented in Section 3. Section 4 considers higher
level wait-for conditions such as multi-level deadlocks. In section 5, the remaining
cases that need exchange of a message are examined with the help of a perfor-
mance evaluation study. The section 6 presents a discussion of the results. The
last section presents summary and conclusions.

2 Asynchronous Steps in Transaction Management

2.1 Increased Local Processing Activity in P2P Computing

Deadlock detection is difficult in a distributed environment. Existing algorithms
detect deadlocks by constructing a transaction-wait-for-graph(TWFG - a directed
graph whose nodes represent transactions and arcs represent the wait-for relation-
ships). The performance studies indicate that a major component of cost of run-
ning the detection algorithms is wasteful (occurs in the absence of a deadlock) [15].

The present study proposes an asynchronous detection scheme. It also uses
transaction wait-for information. For example, let us assume that transaction
T1 is executing at a site (site 1). On receiving a denial of request that data
item is locked by T2 (T1 → T2), it attempts to find the deadlock forming edge
(T2 → T1) from local information. If transaction T2 is waiting at site 1 for T1,
it indicates a deadlock (Figure 2). Scheduling can be carried out by using such
partial graphs without use of lock tables [7, 15, 11, 12, 2, 3]. The change permits
increased interaction between a transaction manager(TM) and local and other
data managers DMs. The graphs are referred to as local access graphs (LAGs).
A LAG of Ti at site Sk contains conflicting edges of all transactions Tj such that,
both Ti and Tj have a conflict on some data items resident at Sk (DM5 at Site3
in Figure 1).
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Transaction  T1 Transaction  T2 
( access for data items X, Y )( access for data items X, Y )

 to TM 1

access denied
information −
local

by DM 1

T2 − > T1

access denied
T1 − > T2

local
information −

Site   1

YX

T 1

Site   2

TM  1

TM  2

T 2

x ( y )

( x )

DM  2

y

DM  1

Fig. 2. Deadlock detection process with no inter-site messages

Thus, the possibility of deadlocks is eliminated by local computations. Please
consider the following examples. In static locking, all lock requests are granted
prior to start of transaction execution. In a distributed database system, in some
cases the static locking schemes are preferable to dynamic ones as these allow
concurrent transmission of all lock requests. Also, the execution proceeds with
no delays, after the grant of locks.

Example 1 : Static Locking (no message exchange for deadlock detection)
Consider a distributed system with 2 sites. Assume that two transactions T1
and T2 arrive at the same time (time t) and request data items x and y (Figure
2). Initially, TM at site 1 (TM1) receives the lock for data item ’x’. It sends a
message to DM at site 2 (DM2) for grant of lock for item ’y’ (at time t+1). The
request is denied. TM1 receives the message (at time t+2) (Table 1).

The following tests need to be performed at the local site before sending a
lock request and after receiving a reject message.

1. examination of all pending locking requests at the local DM (find conflicting
transactions, if any).

2. examine the received reject message and search among pending requests at
local DM to detect a deadlock .
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Table 1. Allocation of data accesses in static locking

Site Time t Time t+1 Time t+2
TM1:T1 needs (x,y) DM1: T2 needs (x,y) TM1 receives

Site 1 lock x send reject message reject message
request DM2 for y T2 → T1 T1 → T2

TM2: T2 needs (x,y) DM2:T1 needs (x,y) TM2 receives
Site 2 lock y sends reject message reject message

request DM1 for x T1 → T2 T2 → T1

abort T2

In the given example both sites detect a deadlock during the second test.

Example 2 : Dynamic Locking (no message exchange for deadlock detection)
Assume that two transactions T1, and T2 arrive at the same time and request
data items T1(x) and T2(y). After few steps of execution more requests for data
are generated (T1(y) and T2(x)). Each site performs the above (two) tests locally.

Table 2. Allocation of data accesses in dynamic locking

Site Time t Time t+1 Time t+2
TM1:T1 locks (x) TM1 : receives

Site 1 TM1:T1 needs (y) reject message
request DM2 for y T1 → T2

TM2: T2 locks y DM2 : TM1 needs (x,y) TM2 : T2 also needs (x)
Site 2 DM2 send reject message request causes deadlock

T1 → T2 T2(x, y) → T1(x, y)
unlock y, grant T1(y)

Site 2 (on the basis of test 1) detects a deadlock during time t+2 before issuing
a request for item ’x’. Transaction T2 releases y to remove the conflict at the
local DM (exchange of precedence). The examples 1 and 2 show ideal conditions
(please refer to section on ’Two Site Model’ for an analysis).

3 Automatic Detection of Wait-For Condition

Definition 1: (Odd edge, Even edge): Given that, two transactions Ti and Tj

have a conflict over data item ’x’. Let Ti be an older transaction with Tj >
Ti. If Tj waits and accesses data items after Ti, it forms a naturally occurring
precedence. The event Tj → Ti is termed as an ’even edge’. The occurrence of a
reverse wait-for precedence Ti → Tj is an antagonistic edge, called an ’odd edge’.

Definition 2: A deadlock occurs when a cyclic wait-for graph is formed. It
contains at least one even edge and at least one odd edge.
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Definition 3: If two transactions Ti and Tj form a deadlock (Tj → Ti and Ti →
Tj), it is termed as a ’2-level deadlock’. A deadlock involving ’n’ transactions is
termed as a n-level deadlock.

3.1 One Site Model

In case of one computation site having two transactions, the deadlock can be
detected locally (without inter-site communication). The TM and DM have in-
formation about all the wait-for states. By choosing appropriate data structure
(section 16.1.4, [17]), it is possible to detect the deadlock, as soon as soon as
it occurs. The lock table maintains a list of data items being requested with
a linked list of transactions that seek the data items. The data manager also
maintains an index of transaction identifiers, so that it is possible to determine -

1. set of locks held by a given transaction;
2. set of other items in the intent list (locks not granted, but waiting) of a given

transaction; and
3. set of known transactions in the wait-for graph of a given transactions;

The above index lists are updated as soon as a wait-for condition arises.

3.2 Two Site Model

In a distributed database with 2 sites, if transactions or data items are at the
same site, The TM or DM has all the information to detect deadlock (One Site
Model, as above). When transactions and data items are separated (Figure 2),
messages are needed in some cases. For example, in Example 1 both sites detect
the deadlock.

But, in another case(Figure 3), T1 locks Y(at site2, other site), T2 locks X(at
site1, other site). T1 needs X, and T2 needs Y. Then TM1 receives information
that T1 waits for T2 from DM1. TM2 receives information that T2 waits for T1
from DM2. To detect deadlock, a message is needed in this case (a message from

X

T1

 X

DM1

TM2TM1

T2

DM2

 Y

 Y

 Y
 X

Fig. 3. Two system sites-case 2
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DM1 to its peer (at T2) about the occurrence of an odd precedence. ). Also, if
T2 informs its peer DM2 about occurrence of an odd precedence, DM2 locally
informs TM1. A cyclic wait-for condition (deadlock) is detected. The possibilities
of occurrences of data items X,Y and transactions T1 and T2 at sites 1 and 2
are listed in Table 3.

Table 3. Enumeration of cases of occurrence of Transaction and data items

Case X Y T1 T2
1 1 1 1 1
2 1 1 1 2
3 1 1 2 1
4 1 1 2 2
5 1 2 1 1
6 1 2 1 2
7 1 2 2 1
8 1 2 2 2

In cases 1-5 and 8, the deadlocks are detected by local computations (either,
all transactions are co-located, or all data items are co-located). In cases 6 and 7,
possibilities of occurrence of Example 1 (and Example 2) cover 50 % cases (with
no message exchange). This leaves about 12.5 % chances of occurrences of cases
that need an additional message. (In practice, this number may be less, if at the
time of refusing a grant of lock, the DM1 also informs T2 about the wait-for
condition of T1. However, in this study, we consider exchange of wait-for edges
and not wait-for graphs).

We examine the permutations by which the data or transactions can be at the
same site to support conflict detection (see section 4.2). For a general case, bino-
mial distribution of probability (of message exchange cases) for 2 level deadlocks
is given by Pn, given n sites in equation (1) (Figure 4) [13].

Pn =
n(n − 1)2 + (n − 1)(n − 2)(n − 3)

2n3 (1)

3.3 Multi-site Model

With increase in the number of sites, the number of cases with no message
exchange, are given by equation 1 (above), (Figure 4.). A similar analysis for 3-
level deadlocks, shows the number of cases with no message exchange, as shown
by (Figure 4.).

3.4 Deadlock Detection by Exchange of Messages

The remaining cases of deadlocks, are detected by incorporating minimal ex-
change of messages.
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Remaining 2 Level Deadlocks. Each transaction has an associated set of
DMs that have granted or are considering lock grant requests from the trans-
action’s TM site. As soon as a transaction faces a wait-for condition, its TM
informs its peer group (its DM sites and other waiting TMs) about its wait-for
condition by virtue of a message. Similarly, as soon as a wait-for condition occurs
at a DM, it informs its peers (the transactions that form the wait-for condition),
about the occurrence of a wait-for condition. In contrast, conventional techniques
wait for delays to occur and then start a deadlock detection process. We have
studied the possibilities of message exchanges, and delays, in the Performance
Consideration section.

Theorem 1. If an odd edge occurs at data manager site DMi, then DMi

informs, both transactions Ti and Tj that form the odd edge. A 2-level deadlock
will be detected as soon as it occurs.

Proof. The event Tj → Ti will be detected by either, Tj or Ti. Both transactions
also know about the occurrence of the Ti → Tj . This is a sufficient condition for
deadlock detection.

Remaining 3 Level Deadlocks. If a wait-for edge occurs at data manager site
DMi, DMi informs, both transactions Ti and Tj that form the wait-for edge.

Theorem 2. In case of two participating sites, A 3-level deadlock will be de-
tected as soon as it occurs.
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Proof. In case of two-sites, there are two cases:

Case I: (all three transactions occur at one site) A deadlock will be detected by
local computations of wait-for conditions of Ti, Tj and Tk.

Case II: (Two transactions Ti and Tj occur at one site, and third transaction Tk

occurs at the second site) A deadlock will be detected by local computations of
wait-for conditions at the site with two transactions Ti and Tj, as both transac-
tion have the information about the preceding and successive transaction.

Similarly, in the case of 3 sites, in the worst case, the transactions are sepa-
rated and are at different sites. At least one of the transactions share additional
wait for information with a co-located DM.

4 Remaining Multi-level Deadlocks

4.1 Asynchrony in Processing Steps: Edge Substitution

The sites prepare the wait-for graphs (also called local access graphs (LAGs))
and carry out the following odd edge elimination locally [13]. As a point of
departure from the existing practice, the DM does not serve the TM in the first-
come-first serve order, but according to transaction order. This steps prevents
occurrences of a few wait-for edges and delays due to deadlocks.

Theorem 3: If an odd edge occurs at data manager site DMi, then, there are
two possibilities.

1. The preceding transaction is executing transaction (which will terminate in
finite time). If the preceding transaction enters a wait state, it is aborted.

2. The preceding transaction is a waiting transaction, the odd edge is reversed
and substituted with an even edge.

This prevents occurrence of n-level deadlock.
This is a sufficient condition for deadlock detection and elimination. This

step prevents conflicts by virtue of improved local computations. Thus, by adop-
tion of edge substitution through additional message exchanges many aborts do
not occur.

5 Advance Message Communication

For the detection of a deadlock (multi-level wait-for state), asynchronous opera-
tions are supported, as per the following description. Advanced wait-for informa-
tion messages are sent by a waiting TM to the concerned DMs. Each transaction
has an associated set of DMs that have granted or are considering lock grant
requests from the transaction’s TM site. As soon as a transaction faces a wait-
for condition, its TM informs its peer group (its DM sites and other waiting
TMs) about its wait-for condition by virtue of a message. In contrast, conven-
tional techniques wait for delays to occur and then start a deadlock detection
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process. We have studied the possibilities of message exchanges, and the delays
that are possible. In many cases, it is possible to detect the global occurrence of
a deadlock with no additional messages. The following asynchronous exchanges
of messages have been examined.

1. Odd-Messages : A blocked transaction, checks if the waiting order is proper
( that is, it is waiting for an older transaction). Otherwise, it informs the
its peer sites (waiting TMs, or data access site DMs) about its wait-for
condition.

2. Even-Messages : A blocked transaction, checks if the waiting order is proper
( it is waiting for an older transaction). It informs its peer sites, about its
wait-for condition.

3. All-Messages : A blocked transaction, informs its peer sites, about changes
in its present TWFG.

5.1 Performance Considerations

Simulation Model. A comparison of performance of a similar edge interchange
approach with respect to conventional techniques has been presented in [3]. In-
tuitively, many transactions gain quick response on account of local processing.
Many advanced steps carried out on account of asynchronous computing pre-
vent delays for later transactions. Our simulation study in this report considers
the performance of the following four types of asynchronous messages as sepa-
rate cases.

1. No messages are sent (example 1 and example 2),
2. even message: A site at which an even edge occurs, sends a message to its

peer sites (e.g. when T2 → T1, the site (TM of T2) sends messages to data
sites of T2 and to other waiting TMs),

3. odd message: A site in which an odd edge occurs sends a message to its
peer sites,

4. both messages: A site at which a wait-for state (an even or an odd edge)
occurs sends a message to its peer sites.

Under these conditions, we study the formation of deadlocks and their detec-
tion. We use an independent algorithm which detects all deadlocks. Thus, we
find the number of all deadlocks and the percentage of deadlocks which the algo-
rithm could detect. Table 4 shows parameters of the simulation model. During

Table 4. Data for the simulation model

No. of sites 2-20
Total No. of data items in all sites 10000
Range of transaction size 12 - 30 (data items )
Total No. of transaction 40000
No. of active transaction 5 (range 1 - 10)
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Table 5. Percentage deadlocks detected in first cycle of wait-for messages

Number of Sites 2 3 4 5 6 7 8 9 10
/messages
Even edges 98 97 96 97 94 96 93 93 93
Odd edges 99 98 97 97 95 94 94 95 94
All edges 100 100 100 100 100 100 100 100 100

Table 6. Average number of messages per transaction (MPL level = 5)

Number of Sites 2 3 4 5 6 7 8 9 10
/messages
Even edges 0.9 1.25 1.6 1.85 2.2 2.5 2.7 2.9 3.1
Odd edges 0.8 1.0 1.2 1.35 1.45 1.5 1.65 1.7 1.8
All edges 1.0 1.4 1.9 2.35 2.75 3.2 3.5 3.75 4.0

simulation, the number of messages (NM) of each type and number of deadlocks
(ND) are counted.

The possibility of using asynchronous operations method is demonstrated by
the following tables. These show the percentage of deadlocks detected by local
processing and message communication (one message to a peer (next in waiting)
site for conveying edge information). Table 5 and Table 6 show that odd edge
detection method incurs fewer overheads and detects more deadlocks. However,
detection of all deadlocks, requires sending both types of messages.

Figure 5 shows the proportion of 2 level or 3 level deadlocks within all occur-
rences of wait-for states.

All 2 level deadlocks can be detected. Similarly, 3 or more level deadlocks in
1 or 2 sites can be detected with few or no message communication.

5.2 Related Studies

In conventional systems, the idea to wait for an occurrence of deadlock and sub-
sequent removal leads to large delays due to synchronized transaction processing
activity which causes blocking [6, 8]. Similar delays exist in case of databases with
respect to synchronization activity and point out the need for improvements in
techniques [1, 6, 5]. Currently, there are few proposals in this area of research
[6, 8]. The proposed P2P approach introduces, asynchronous conflict detection.
It enhances local and parallel computations.

A few wait-for edge removal approaches have been proposed earlier. In the
algorithm [15], the deadlocks are eliminated by reordering the lock requests. The
algorithm must also be run regularly to detect deadlocks.

In case of a conventional distributed system, TWFGs can be large and ana-
lyzing these for cycles, each time a transaction has to wait, can be time consum-
ing. Based on this observation there have been earlier studies in time-stamp
based deadlock prevention. These consider aborting the waiting transactions.
Two approaches are commonly followed, namely, the Wait-Die approach and
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Fig. 5. Proportion of multi-level wait-for states with deadlocks

the Wound-Wait approach. Both approaches depend on the occurrence of wait-
for status and do not consider the absence or occurrence of a deadlock to de-
cide about the abort. These approaches are similar to the locking based ap-
proaches with no waiting policy. These reduce waiting delays but incur more
wasted processing on account of many restarts [14].

For implementation of P2P computing, the proposed approach is similar to
the Wound-Wait approach. However, in place of transaction abort, it attempts
to correct the transaction order asynchronously, if it is possible. It considers
confirmation (or reversal) of precedence as soon as an odd precedence occurs.
Similarly, in the case of data items that are sought by many transactions (hot
spots) the wait-for precedences are sorted.

Similar to the wound-wait schemes, older transactions succeed in getting data
access before newer transaction in case of a conflict. A few remaining transac-
tions restart with their old time-stamp. Eventually each transaction becomes the
oldest in the system and is sure to complete (no starvation ).
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6 Summary and Conclusions

The proposal considers enhancements to local processing by considering im-
proved co-operation between peer sites (next in waiting). This mechanism results
in removing wait-for delays caused by earlier synchronization activity. Thus, the
time-out delays are removed. The proposal depends on use of the asynchronous
techniques, such as TM to TM (P2P) computing (edge substitution) and ad-
vancing message communication (instantly informing a known wait-for graph to
next in the waiting peer sites).

For the server side enhancements, the proposal recommends,

– A wait-for edge (partial wait-for graphs) as a unit for message exchange (in
place of a ’wait’ or ’lock grant’ message).

– The TMs and DMs improve sharing of local (and P2P) information and use
improved data structures.

As a result, by asynchronously sending wait-for (even and odd) messages,
the system can detect all deadlocks in 1 cycle considering up to 3 server sites.
In any system, most of the cases of deadlocks are covered by 2 level and 3
level deadlocks. These are eliminated as a result of local processing. Considering
the overheads, the communication of wait-for edges is an asynchronous activity
and causes no synchronization overheads. On the contrary, it removes timeout
delays. The two proposals, the edge substitution and abort of odd precedences,
(as techniques), are P2P activity. These eliminate delays caused by multi-level
deadlocks (more than 3 level deadlocks). The proposal attempts to provide true
distributed computing environment to achieve higher level of performance. The
simulation study confirms the analytical inferences derived for the automatic
detection for the wait-for model.
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Solving Real-Time Scheduling Problems with
Model-Checking
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Abstract. Real-time scheduling is a well-studied field with mature tech-
niques such as Rate Monotonic Analysis. In this paper, we investigate
an alternative approach to solving real-time scheduling problems with
model-checking. We use the modeling formalism Hybrid Automata and
the model-checker HyTech for this purpose, and illustrate advantages
and limitations of this approach as compared to the conventional real-
time scheduling techniques. In particular, we can use model-checking for
analysis of best-case response time of tasks in addition to the worst-case
response time, and we can take advantage of HyTech’s parametric analy-
sis capability to derive task parameters such as the critical scaling factor.

1 Introduction

Real-time scheduling is a well-studied field with mature techniques such as Rate
Monotonic Analysis (RMA)1 [1] that are widely applied in industry. RMA
addresses the class of systems where each task is assigned a fixed priority. A
set of recursive equations are used to calculate the Worst-Case Response Time
(WCRT) of each task, that is, the longest possible time the task takes to finish its
execution, taking into account interference and blocking times caused by higher-
priority tasks and shared variables. If a task’s WCRT is less than its deadline,
then the task is schedulable; if all tasks in the taskset are schedulable, then the
entire taskset is schedulable. There are other scheduling techniques for dynamic-
priority systems, such as the Earliest-Deadline First (EDF) algorithm, but we
focus on fixed-priority systems in this paper, which can be analyzed with the
RMA algorithm.

Model-checking is an automated formal verification technique that relies on
exhaustive state-space exploration to prove or disprove system properties. This
field started with untimed system models and properties, e.g., SMV and Spin,
and was later extended to address real-time and hybrid systems, e.g., Uppaal [2]
and HyTech [3]. RMA is typically used to determine if the system is schedulable,
while model-checking is typically used to verify concurrency properties, as well
as system-level timing properties such as freshness, correlation and separation
constraints.
1 Abbreviations: BCET–Best-Case Execution Time; BCRT–Best-Case Response Time;

HA–Hybrid Automata; RMA–Rate Monotonic Analysis; TA–Timed Automata;
WCET–Worst-Case Execution Time; WCRT–Worst-Case Response Time.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 186–197, 2005.
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In this paper, we use model-checking to address the real-time scheduling
analysis problem. Specifically, we use the Hybrid Automata (HA) formalism as
defined in the model-checker HyTech [3]. There are a number of reasons for
adopting the model-checking approach:

– RMA has certain assumptions and restrictions that make it non-applicable
to certain scheduling problems, for example, certain types of Ada tasking
models [4]. Since model-checking relies on exhaustive state-space exploration
instead of analytical derivation, it can handle arbitrary tasksets.

– RMA analysis focuses almost exclusively on WCRT analysis, while it is also
desirable to analyze the system’s Best-Case Response Time (BCRT) when
task jitter is important, defined as the difference between the WCRT and
BCRT of a task.

– The parametric analysis capability of model-checkers such as HyTech enables
us to perform reverse queries on the system taskset to answer questions such
as: how should we modify the taskset parameters in order to satisfy certain
system-level timing constraints?

This paper is structured as follows: We first discuss the motivation for cal-
culating BCRT in Section 2. We then provide a brief introduction to Hybrid
Automata and the HyTech model-checker in Section 3. We then discuss model-
ing of real-time scheduling with Hybrid Automata in Section 4, and apply our
techniques to an application example in Section 5. We draw conclusions and
discuss future work in Section 6.

2 Motivation for Bast-Case Response Time

There are a number of reasons for needing the BCRT in addition to the more
typical WCRT of a task. First, some systems may have requirements imposed
by the external environment on maximum allowable task jitter. It may not be
enough to guarantee that a task completes before its deadline. The task also has
to complete after a certain time to achieve optimal performance. Second, when
analyzing precedence-constrained task-chains, the upstream task’s jitter is often
a large contributing factor to the downstream task’s response time. Due to lack
of BCRT analysis techniques, the BCRT is typically assumed to be zero in order
to be on the safe side. This results in task jitter that is often much larger than the
actual value. This in turn yields overly pessimistic scheduling results for these
types of systems, causing low system utilization and wasted system resources.

As an example, consider the taskset in Figure 1. Tasks T1, T2 and T4 are
triggered by periodic signals from the outside environment(e1 with period 10,
e2 with period 30, e4 with period 50, respectively), and T3 is triggered by a
message sent by T2 over the network upon its completion. We assume network
delays are negligible compared to task execution times. Within the boxes are
shown the task’s [BCET, WCET] pair and its priority. Even though the external
trigger is strictly periodic, the upstream task T2 has variable response times,
which translates into the release jitters of the downstream task T3. This has
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Fig. 3. The effects of high-priority T3’s release jitter on low-priority T4’s response time

a detrimental effect on a lower-priority task T4. In Figure 2, downward arrows
indicate task release. BCRT of T2 is achieved when it is released at time 7
and executes for its BCET 4. WCRT of T2 is achieved when it is released at
time 0 and executes for its WCET 5. The release jitter of T3 is therefore J3 =
WCRT2−BCRT2 = 19−11 = 8. The top part of Figure 3 shows the case where
J3 = 0. T4 is preempted only once and has a WCRT of 15. The middle part shows
the case where J3 = 19, that is, we consider WCRT2 = 19 and BCRT2 = 0 in
the absence of appropriate BCRT analysis techniques. Here excessive release
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jitter of T3 results in a pessimistic estimate of T4’s WCRT (20). The bottom
part shows the case where J3 = 8, the true release jitter of T3. Here T4 achieves
a WCRT of 15. This example shows the importance of obtaining BCRT for
accurate estimation of release jitters.

This point can be seen clearly from the RMA equations for calculating WCRT
of a task Ti:

wn+1
i = Ci + Bi +

∑
∀j∈hp(i)

�Jj + wn
i

Pj
�Cj (1)

Ri = wi + Ji (2)

Ri WCRT of task Ti.
wi intermediate variable for calculating Ri.
hp(i) set of tasks that can preempt Ti.
Cl WCET of Tl.
Pj period of Tj.
Bj blocking term, i.e., worst-case delay caused by shared-resource synchroniza-

tion with lower-priority tasks.
Jj worst-case jitter for Tj.

The jitter Jj is equal to the maximum variation of the response time of
the task that precedes Tj . Let’s call it Tk with BCRTk and WCRTk. Then
Jj = WCRTk − BCRTk. Without effective techniques for calculating BCRT,
we assume that BCRTk = 0, hence Jj = WCRTk. However, if we can have a
more accurate estimation of BCRTk, then we can have a smaller jitter Jj , and in
turn, a smaller WCRTi for Ti. Using HyTech, we can derive accurate BCRT and
WCRT values for all tasksets that can be modeled with HA. Next, we discuss
the details of our modeling approach.

3 Introduction to Hybrid Automata and HyTech

A hybrid dynamical system has both real-valued and boolean-valued variables.
A system trajectory is a sequence of flows and jumps: during flows, the boolean
part of the state stays constant and the real part of the state evolves over time; at
jumps, the entire state changes instantaneously. We describe hybrid dynamical
systems using Hybrid Automata (HA). A HA annotates the control graph of a
finite automaton with conditions on real-valued variables. Each node of the graph
represents an operating mode of the system, and is annotated with differential
inequalities that prescribe the possible evolutions (flows) of the real variables
while the system remains in the given mode. Each edge of the graph represents
a switch in operating mode, and is annotated with a condition that prescribes
the possible changes (jumps) of the real variables when the system executes the
mode switch. HyTech [3] is a model-checker for Linear Hybrid Automata (LHA),
where the dynamics of the continuous variables are defined by linear differential
inequalities of the form Aẋ ∼ b, where x is the vector of first derivatives of the
variables x. Since the only real-valued variable involved in real-time scheduling
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turn on dx = −x

off

65 <= x <= 68

x = 66

x’ = 68

x’ = 65

65 <= x <= 68

on

dx = −x + 5

turn_off

Fig. 4. The thermostat automaton

is time, which always increases linearly, all real-time scheduling problems can be
encoded with LHA, hence are amenable to analysis using HyTech.

Figure 4 shows the HA model for a thermostat, taken from [3]. It has two
operating modes: the heater is on (mode on), or off (mode off). Initially, the
heater is on and the temperature x is 66 degrees. When the heater is on, the
temperature rises at the rate of −x + 5 degrees per minute; when the heater is
off, the temperature falls at the rate of −x degrees per minute. The heater can
be turned off when the temperature reaches 68 degrees, and it can be turned
on when the temperature falls to 65 degree. This is due to the edge conditions
x = 68 and x = 65, which assert when a mode switch may occur. To force
mode switches, such as forcing the heater to be turned off when the temperature
reaches 68 degrees, we annotate the operating modes with so-called invariant
conditions (in addition to the annotation with differential equations): the system
can remain in a mode only as long as the corresponding invariant condition is
satisfied. Thus, the invariant conditions 65 ≤ x ≤ 68 of both operating modes
prescribe that a mode switch must occur before the temperature leaves the
operating interval of [65, 68] degrees.

Though not shown in the example, events permit the synchronization of jumps
between concurrent hybrid automata. Events has a broadcast synchronization se-
mantics, as opposed to the conventional pairwise synchronization semantics in
processes algebras, with explicit notation of input and output channels like e?
and e!. In HA, event labels do not have input or output direction, but all au-
tomata with the same event label must synchronize and make a transition simul-
taneously. An urgent event is denoted by having asap in front of the event label.
Jumps enabled by urgent events must be taken as soon as possible without delay.

A major strength of HyTech is its ability to perform parametric analysis.
Often a system is described using parameters, and the designer is interested in
knowing which values of the parameters are required for correctness. For exam-
ple, we can set the rate condition in the on state of the Thermostat automaton
to be dx = −x + α, and then determine the necessary range of the parameter
α in order to satisfy the requirement that the heater is active less than 2/3 of
the first 60 minutes. In comparison, UPPAAL [2], a model-checker for Timed
Automata, does not have parametric analysis capabilities, and one must resort
to a trial-and-error approach based on binary search to obtain similar results.

Real-time modeling formalisms can be either discrete-time, where time pro-
gresses in discrete steps, or dense-time, where time is a continuous variable.
Using discrete-time formalisms such as Verus [5], we can easily model preemp-
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tive scheduling, where a higher-priority task can preempt a lower-priority task
during its execution, by explicitly keeping a discrete counter that keeps track of
the lower-priority task’s accumulated execution time. In order to model preemp-
tive scheduling with a dense-time formalism without a stopwatch mechanism,
where a clock can be stopped and restarted, e.g., Timed Automata (TA) [2], we
can simulate discrete-time semantics by only allowing state transitions at dis-
crete, periodic clock-ticks [6]. As we adopt finer clock-tick granularity, modeling
accuracy increases, but the system state space grows exponentially. This severely
limits the smallest clock-tick interval we can adopt. Even though scheduling of
the real system is driven by clock-ticks of the operating system and hardware,
we have to adopt a clock-tick interval in the TA model that is much larger than
that of the operating system and hardware. Therefore, the model built with
this technique is only a coarse approximation of the real system behavior. An-
other shortcoming is that we can only model integer time, so we have to convert
non-integer numbers into integers. For example, a task with execution time 7.3
and period 10.1 can be converted into another task with execution time 73 and
period 101 with a proportional increase in all other system timing parameters,
or as a conservative approximation, a task with execution time 8 and period
10. However, the latter approach breaks down for time intervals, for example,
the set of discrete time values [4, 5, 6] is not a correct abstraction of the con-
tinuous time interval [4.3, 5.8], but the continuous time interval [4.0, 6.0] is.
HA is a dense-time formalism with a stopwatch mechanism, which allows us to
keep track of how long a lower-priority task has been executing before being
preempted by a higher-priority task. This allows us to construct a more accu-
rate model of preemptive scheduling than using discrete-time formalisms. Even
though the stopwatch mechanism makes reachability analysis of HA undecidable
in the general case, some authors[4] have shown that the HA model is actually
decidable for most practical scheduling problems. We did not run into any decid-
ability problems for our application examples. Also, HA has no problem dealing
with fractional numbers as long as they are rational. Therefore, we use HA in
this paper to model and analyze real-time scheduling problems.

4 Task Modeling with Hybrid Automata

Figure 5 shows a periodic task modeled with HA, and Figure 6 shows an au-
tomaton that works together with the task automaton. As shown in Figure 5, A
task initially goes into wait state. When it gets triggered it goes into waitready
state and then immediately goes into ready state after issuing a check_request,
and setting rt_pri = pri, i.e., setting its runtime priority to its nominal pri-
ority. This triggers the auxiliary automaton in Figure 6 to go from waiting to
check_all. This enables the channel check and forces all the task automata
currently in states ready and run into the checking state. Each task checks
to see if it’s the highest priority task. If yes, then it goes to the run state; if
not, it goes to the ready state. runtime is a stopwatch that keeps track of the
task’s execution time by increasing at rate 1 in the run state, and stopping in
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Fig. 5. An automaton modeling a periodic task

check_allwaiting

check_request2

check_request1

checkasap

Fig. 6. An auxiliary automaton used in conjunction with the task automata in Figure 5

the ready state. When the task has been running for [BCET, WCET], it can
choose to finish its execution and go back to the wait state after issuing an-
other check_request, which in turn triggers another round of checking among
all ready tasks.

Figure 7 shows two observer automata used to check the WCRT and BCRT.
HyTech checks for reachability of the violation states in order to detect task
response times falling outside of the range of [BCRT, WCRT]. When a task
is triggered, the task automaton issues event tstart, and forces the observer
automaton to go from idle state to waiting state. At the same time, clk is
reset to 0, a real-time clock variable that always increases at a uniform rate. We
consider the two observer automata separately:

– If the task finishes within a specified upper bound WCRT, then the task
automaton issues event tfin before clk reaches WCRT, and the observer
automaton for WCRT goes back to the idle state. Otherwise, it goes into the
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reset(clk)
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waiting violationidle tstart

idle violationwaitingtstart

tfin
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Fig. 7. Observer automata for checking WCRT and BCRT

violation state, and the model-checker detects a violation of the specified
WCRT (deadline).

– If the task finishes after a specified lower bound BCRT, then the task au-
tomaton issues event tfin after clk reaches WCRT, and the observer au-
tomaton for BCRT goes back to the idle state. Otherwise, it goes into the
violation state, and the model-checker detects a violation of the specified
BCRT.

Note that we will need one pair of observer automata for each task that we
want to check BCRT and WCRT for. Due to the broadcast synchronization
semantics, the pair of observer automata will be both triggered concurrently
with the task automaton under observation, hence the model-checker can report
violations of either BCRT or WCRT within the same model-checking session.

5 Application Examples

Table 1 shows a taskset consisting of two precedence-constrained task-chains:
J11 → J12 → J13 → J14 and J21 → J22 → J23. It took HyTech about 4 hours to

Table 1. A taskset taken from [7]. CS stands for critical section.

Task Name Priority Release Time BCET WCET Longest CS WCRT BCRT
J11 2 0 10 40 0 50 10
J12 4 20 5 10 0 60 25
J13 2 75 20 30 10 130 95
J14 4 130 15 50 0 240 145
J21 3 30 10 10 0 50 40
J22 3 60 5 40 20 110 65
J23 1 120 20 70 60 250 140
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check each WCRT or BCRT parameter. As discussed in [7], when all jobs have
their maximum execution times we may not observe the worst-case completion
times of all the jobs, and vice-versa. So non-trivial extensions to the techniques
discussed in [7] will be needed if we want to obtain the BCRTs analytically.

T1
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and

Read Sensor

Send

Process

and

Shared

Data

Measurement

System

Remote

System

T2

T3

ISR

Servo

Control

Input
from

Sensors

Control

Outputs

Task periodi Ci1 Ci2 Ci3 Di Pi1 Pi2 Pi3 WCRT BCRT
T1 40 1 5 – 40 10 7 – 18 6
T2 100 10 5 5 100 4 8 4 72 20
T3 50 8 12 – 50 5 8 – 31 20

Fig. 8. One example taskset

We use another application example to demonstrate the parametric analysis
capabilities of HyTech. Figure 8 shows a taskset considered by Harbour, Klein
and Lehoczky in [8]. This is a single-processor system. (The original example
in [8] has five tasks, but we reduced it to three for clarity purposes.) Task T1 reads
inputs from the servo sensors and performs the control action. Task T2 reads the
distance sensors, does some preprocessing, writes it to the shared data area. Task
T3 does some further processing and sends the results to a remote system. All
three tasks are periodic. Each task consists of sequentially-executing subtasks of
varying priorities. For example, task T1 is composed of two subtasks, Interrupt
Service Routine (ISR) (priority=10, WCET=1) and Servo Control(priority=7,
WCET=5).

In [8], this taskset was analyzed with extended RMA techniques to obtain the
WCRT of each end-to-end task. However, no general techniques are available for
calculating the BCRT for this task model. Using HyTech and taking advantage
of its parametric analysis capability, we have obtained the BCRT values, as
shown in Figure 8. In this case the BCRT is equal to the WCET, since for each
task it happens to be possible to find a best-case phasing such that it suffers no
preemption, but that is not true in general.

We can query the model-checker for a variety of other timing properties of
the taskset. Suppose T2 writes its outputs at the end of its execution, and T3
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reads its inputs at 0.1ms after it starts execution, then the time interval between
the two events is the possible age of the shared data between T2 and T3, i.e.,
the minimum and maximum length of time that the data stays in the shared
data area before its consumption by T3. We may want to put an upper bound on
this value in order to make sure that T3 does not consume a piece of data that
is too stale. Using HyTech, we can determine the time interval to be [4.1, 18.1],
when the phasing between all 3 tasks is 0, i.e., T1, T2 and T3 all start their first
job at the exact same instant. This information is not readily available from
conventional real-time scheduling analysis techniques.

We can also answer other questions such as:

– If we would like to achieve a WCRT of 68 instead of 72 for T2 by reducing
the WCET of all subtasks by an equal speedup factor fspeedup, what is the
minimum fspeedup? The answer is 1.05, i.e., the WCET of each subtask needs
to be uniformly reduced by a factor of 1.05. To achieve the same goal, if we
can only modify one subtask T32 to reduce its WCET by δt while leaving all
other task parameters unchanged, what is the minimum δt? The answer is
3, i.e., the WCET of T32 has to be reduced from 12 to 9.

– Suppose the taskset is schedulable as given, what is the critical scaling factor
fslowdown for the taskset while still maintaining schedulability? The answer is
1.45, that is, we can afford to increase the WCET of each subtask uniformly
by a factor of 1.45 while still keeping the system schedulable. We may want
to do this in order to move the application to a slower processor.

Without the parametric analysis capability of HyTech, the designer would
have to resort to a trial-and-error approach, i.e., guessing a value and plugging
it into the RMA equations to see if it works, possibly using binary search. Since
the RMA equations are recursive, it is not straightforward to derive an analytical
relationship that can be used to solve for the needed parameters. This is one of
the main advantages of model-checking with HyTech over RMA.

6 Conclusions and Future Work

In this paper, we have considered application of model-checking to solving real-
time scheduling problems. In particular, we have used the Hybrid Automata
formalism and its corresponding model-checker HyTech. To reiterate, our model-
checking approach to real-time scheduling analysis has several advantages over
RMA. First, we can deal with arbitrary tasksets within a uniform modeling
framework. For example, the two tasksets considered in Section 5 have different
characteristics and must be solved with different real-time scheduling techniques,
but we can model and analyze both of them within the HyTech framework.
Second, we can calculate both WCRT and BCRT of a task to obtain a more
accurate estimate of its release jitter, and in turn, obtain less pessimistic WCRT
values for the downstream tasks. Third, we can use parametric analysis to query
the model-checker for a variety of timing properties, which can only be done via
a trial-and-error approach with RMA.
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However, state-space explosion severely limits the utility of the model-
checking approach, especially when continuous time variables are involved as
in Hybrid Automata or Timed Automata. Even the 5-task system in [8] causes
a memory exhaustion error in HyTech. Most model-checkers provide a set of
guidelines for tweaking the models in order to improve scalability, such as re-
ducing the number of clocks, manually composing a set of automata instead of
letting the tool compose them, abstraction techniques to eliminate or minimize
the irrelevant parts of the model, etc. If the designer has followed all of the
guidelines and still cannot check the model successfully, then the only remaining
suggestion is to “use the biggest and fastest machine you can get” (quote from
an online user’s group). Significant progress in model-checking technology will
have to be made before it can be directly applied to realistic-sized systems.

As users of the model-checking technology instead of developers, we do not
plan to address the state-space explosion problem directly. However there are a
number of practical techniques at the application-level that can help with the
scalability issue. One possible approach is to use RMA to obtain the [BCRT,
WCRT] pair of a task, which is in turn used as the transition time intervals for a
system-level Timed Automata model. Then the model can be checked for system-
level timing properties, assuming that the system schedulability is guaranteed
by RMA. Another possibility is to use a model-checker to check for the [BCRT,
WCRT] of an upstream task, and then use the derived jitter value in the RMA
equation for the downstream task. However this approach breaks down if the
task graph has a loop, i.e., the downstream task can in turn affect the upstream
task’s release jitter. In that case we can either model-check the entire end-to-end
task system, or use the holistic schedulability analysis technique [9]. As part of
our future work, we plan to investigate techniques for improving scalability by
combining the use of real-time scheduling theory and model-checking. We also
plan to extend our modeling framework to address dynamic priority systems as
well as mixed systems where some tasks are scheduled with static priorities while
others are scheduled with dynamic priorities.
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Abstract. Speech recognition has become common in many application  
domains, from dictation systems for professional practices to vocal user inter-
faces for people with disabilities or hands-free system control. However, so far 
the performance of Automatic Speech Recognition (ASR) systems are compa-
rable to Human Speech Recognition (HSR) only under very strict working  
conditions, and in general far lower. Incorporating acoustic-phonetic knowledge 
into ASR design has been proven a viable approach to rise ASR accuracy. 
Manner of articulation attributes such as vowel, stop, fricative, approximant, 
nasal, and silence are examples of such knowledge. Neural networks have  
already been used successfully as detectors for manner of articulation attributes 
starting from representations of speech signal frames. In this paper an optimized 
digital Knowledge-based Automatic Speech Classifier for real-time applications 
is implemented on FPGA using six attribute scoring Multi-Layer Perceptrons 
(MLP). Digital MLP key features are a virtual neuron architecture and use of 
sinusoidal activation functions for the hidden layer. Implementation results on 
FPGA show that use of sinusoidal activation functions decrease hardware re-
source usage of more than 50% for slices, FFs, LUTs and more than 35% for 
FPGA RAM blocks when compared with the standard sigmoid-based neuron 
implementation. Furthermore, neuron virtualization allows for a significant  
decrease of concurrent memory access, resulting in improved performance for 
the entire attribute scoring module. 

1   Introduction 

Artificial Neural Networks (ANN) have been proposed as solution for design of medi-
cal expert systems, handwritten character recognition [2], automatic road signs recog-
nizers [3], and so on. An Multi-layer perceptron (MLP) neural network on a SIMD 
architecture was presented in [1]. The implementation exploits the SIMPil processor 
precision giving the same performance of the software implementation. A real-time 
road signs recognition system was designed by means of the same architecture in [3]. 
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In [5], Porrmann at al. propose an artificial neural networks implementation on recon-
figurable hardware accelerator which requires a high resource rate. Operations are 
implemented in fixed point and the internal numerical precision is a trade-off between 
hardware resources, calculation time and approximation quality. In [4], Huelsbergen 
proposes a representation for dynamic graphs in reconfigurable hardware and its ap-
plication to some fundamental graph algorithms. The bottleneck of this approach is 
the high level of required connections. In [7] a standard MLP implementation for 
speech recognition on FPGA is proposed. The paper presents the results of both serial 
and parallel MLP implementation. VHDL and Handel-C languages are then com-
pared. The used hidden activation function is the sigmoid one with 8-bit discretization 
for inputs, for weights, and for post-synaptic values. For the pre-synaptic values a 23 
bits accumulator is used. 

Although there exists plenty of literature about the hardware implementation of an 
ANN, this problem is still an open research issue. In this paper a real-time manner of 
articulation classifier based upon an optimized MLP with sinusoidal activation func-
tion is presented. The manner of articulation attributes are vowel, stop, fricative, ap-
proximant, nasal, and silence. They are speech features that show strong relation to 
human speech production [7], and robustness to speech variations [10] as well. These 
six events are extracted directly by short time MFCCs, and represent the direct input 
to six detectors, which are afterward combined to generate the classification score. 
The manner of articulation system is part of the Automatic Speech Attribute Tran-
scription (ASAT) project [11], and a software neural network-based architecture for 
these manner of articulation attributes was already implemented in [14]. The main 
idea of the ASAT project is that the performance of conventional knowledge-ignorant 
modeling approaches can be improved integrating the knowledge sources available in 
a large body of speech science literature. In [10] it is showed that the idea of a direct 
incorporation of acoustic-phonetic knowledge into ASR design rises its accuracy. 
These “knowledge-based” features (also referred to as speech attributes in the same 
work) are used to augment the front-end module of a conventional ASR system by 
means of a set of feature detectors able to capture the speech attributes.  The idea of 
using ANNs as backbone of the ASAT project is due because neural networks can 
learn a mapping from an input space to an output space realizing a compromise be-
tween recognition speed, recognition rate and hardware resources. The generalization 
capability of neural networks is acquired during the training phase and the generaliza-
tion degree achieved is strictly related to the training set characteristics.  

In addition, a digital Knowledge-based Automatic Speech Classifier for real-time 
applications has been implemented on FPGA using six attribute scoring Multi-Layer 
Perceptrons. Each one of the MLP detector classifies input speech frames into a single 
attribute category. The performance is evaluated on continuous phone recognition 
using the TIMIT database [12]. The MLP design incorporates a virtual neuron archi-
tecture and sinusoidal activation functions for the hidden layer. Neuron virtualization 
allows for a significant decrease of concurrent memory access, whilst use of sinusoi-
dal activation functions optimizes hardware resource employment.  

The rest of the paper is organized as follows. Section 2 describes the general 
framework of the knowledge extraction module. The digital implementation of the six 
MLP detectors is shown in section 3. Section 4 presents the experimental set-up and 
results with comparison to the baseline architecture. Concluding remarks are given in 
the last section of the paper to summarize its main contributions. 
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2   Knowledge Extraction Module 

The Knowledge Extraction (KE) module uses a frame-based approach to provide K 
manner of articulation attributes Ai, where i=1,2, … K, from an input speech signal 
s(t). In this paper the manner classes were chosen as in [5], and are listed in Table 1. 
The KE module, depicted in Figure 1, is composed of two fundamentals blocks: the 
feature extraction module (FE), and the attribute scoring module (SC). The FE mod-
ule consists of a bank of K feature extraction blocks FEi, where i=1,2, … K, and it 
maps a speech waveform into a sequence of speech parameter vectors Yi,  i=1,2, … 
K. Actually, each of the FEi is fed by the same speech waveform s(t,) and for each 
speech-frame it computes a thirteen MFCC feature vector Xi (12 MFCCs + Energy). 
The frame length is of 30 msec overlapped by 20 msec.   Finally, FEi produces as 
output a 117-feature vector Yi combining the actual frame with the eight surrounding 
frames, 4 frames before and after, so that each speech parameter vector represents  
 

Table 1. Manner of articulation attribute definition 

Articulation Manner Class Elements Anti-Class Elements 
Vowel IY, IH, EH, EY, AE, AA, AW, 

AY, AH, AO, OY, OW, UH, UW, 
ER, AX, IX 

 
 
 

JH, CH, S, SH, Z, ZH, 
F, TH, V, DH, B, D, G, 
P, T, K, DX, M, N, NG, 
EN, L, R, W, Y, HH, 
EL, SIL 

Fricative JH, CH, S, SH, Z, ZH, F, 
TH, V, DH 

 
 
 

 
 
 

IY, IH, EH, EY, AE, 
AA, AW, AY, AH, AO, 
OY, OW, UH, UW, ER, 
AX, IX, B, D, G, P, T, 
K, DX, M, N, NG, EN, 
L, R, W, Y, HH, EL, 
SIL 

Stop B, D, G, P, T, K, DX 
 
 
 
 
 
 
 
 

IY, IH, EH, EY, AE, 
AA, AW, AY, AH, AO, 
OY, OW, UH, UW, ER, 
AX, IX, JH, CH, S, SH, 
Z, ZH, F, TH, V, DH, 
M, N, NG, EN, L, R, W, 
Y, HH, EL, SIL 

Nasal M, N, NG, EN 
 
 
 
 
 
 
 
 

IY, IH, EH, EY, AE, 
AA, AW, AY, AH, AO, 
OY, OW, UH, UW, ER, 
AX, IX, JH, CH, S, SH, 
Z, ZH, F, TH, V, DH, 
B, D, G, P, T, K, DX, 
L, R, W, Y, HH, EL, 
SIL 

Silence SIL IY, IH, EH, EY, AE, 
AA, AW, AY, AH, AO, 
OY, OW, UH, UW, ER, 
AX, IX, JH, CH, S, SH, 
Z, ZH, F, TH, V, DH, 
B, D, G, P, T, K, DX, 
M, N, NG, EN, L, R, W, 
Y, HH, EL 
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nine frames. The SC module is composed of six feed-forward neural networks, and its 
goal is to attach a score, referred to as knowledge score (KSi), to each vector Yi.  The 
input of each network is a 9 frames of 12 MFCCs + energy, so that the input layer is 
of 117 nodes. The output layer has two nodes, one for the desired class, and one for 
the anti-class. Actually, the value obtained for the desired class for case i is defined to 
be the KSi. 
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Fig. 1. Knowledge Extraction Module, adapted from [5]. The detectors are based on a MLP 
neural network. 

3   Multi-layer Perceptron Digital Design 

In [15] an efficient MLP digital implementation for road signs recognition and high 
energy physics experiments classification has been proposed. This initial design has 
been adapted and optimized for automatic speech classification and is presented in 
this section.  

A single MLP digital architecture is used to implement each of the detectors de-
scribed in Figure 1. As depicted in Figure 2, this  architectural design aims to satisfy  
 

 

Fig. 2. Functional block diagram of the MLP architecture 
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high design modularity, high density of neurons on device, high recognition rate and 
speed. As a results, (a) data input acts in a serial way; (b) data processing acts in par-
allel among the neurons and serially within each neuron; (c) second layer processing 
is pipelined with first layer processing. The Winners Takes All (WTA) circuit selects, 
among a set of m numbers, the greatest activation level units.  

The basic digital neural network elements, as multipliers and accumulators, are de-
signed following the standard solutions. Single neuron architecture is depicted in 
Figure 4. The output activation function is a linear function, whilst sinusoidal activa-
tion function is employed as activation function of the hidden layer. Fixed point 
arithmetic with two's complement representation is used for the chip implementation 
of the MLP. Principal constrains of this project are the compromise between the neu-
ral network accuracy  and the bit depth for input and weight data, and the compromise 
between the neural network accuracy and the bit depth for the pre-synaptic value and 
the post-synaptic value of the hidden activation function.  

4   The Digitized Sinusoidal Activation Function 

Conventional MLP digital implementations use 8 bits for inputs, weights and post-
synaptic discretization [7], and a bit depth discretization related to the application 
domain. In what follows, some formulas have been developed in order to obtain the 
digitized value from floating point neural network training. These formulas are re-
ferred to input (Idj) and weight (Wdi) digitized values. 

Idj = Ij 
eInput Rang

1- lsInput Leve ,  Wdi = Wi .
 RangeWeights

1-lsInput Leve  (1) 

Concerning the sinusoidal activation function, the number of input level, the input and 
the output range affect the sinusoid period. For the sinusoidal function, considering its 
periodicity in order to obtain a module with a minimum pre-synaptic value, the above 
said influence is expressed by the following formula. 

.
eInput Rang

1 - lsInput Leve

Sin.  RangeWeights

1 -  Sin elsWeight Lev ××=Π πd

 
(2) 

Where  Πd  is the digitized  value shown in the Figure 3. 

 

Fig. 3. The digitized sinusoidal function: Πd  is the digitized  value 
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The relative accumulator dimension (AD), expressed as number of bits, must at 
least represent Πd. This dimension does not depend upon the number of inputs. Figure 
4 gives the neuron architecture used in the hardware approach, with the accumulator 
that is the fundamental used resource. 

 

Fig. 4. The neuron architecture in the hardware approach 

The number of bits used during the floating point to fixed point conversion related 
to network inputs, hidden layer weights, pre-synaptic values, and post synaptic values 
are critical issues during the digitalization phase.  

Following the approach proposed in [7], a digital MLP classifier for speech recogni-
tion has been implemented on a Xilinx VirtexII XC2V3000-4 FPGA. Table 2 lists the 
required resources for a full precision parallel MLP implementation with 117 inputs, 
100 hidden neurons having the standard sigmoid activation function, and 2 output neu-
rons having the linear activation function. Also in this implementation 8-bit bit depth for 
inputs, for weights, and for post-synaptic values were used. For the pre-synaptic values 
a 23 bits accumulator was used. The slight difference between the two implementations 
can be ascribed to the different Xilinx FPGA families used here and in [7]. 

Table 2. FPGA required resources for a 117-100-2 neural network implementation on a Xilinx 
VirtexII XC2V3000-4. The standard sigmoid based implementation uses 8 bits for inputs, 8 bits 
for weights, 23 bits for pre-synaptic values and 8 bits for post-synaptic. The sinus based im-
plementation (ID=B) uses 3 bits for inputs, 5 bits for weights, 5 bits for pre-synaptic values and 
3 bits for post-synaptic valus. 

Hidden Activation function Slices FFs LUTs RAMs 

 
Sigmoid 

5506 
(38%) 

3725 
(12%) 

10058 
(35%) 

94 
(98%) 

 
Sinus 

 (ID=B) 

2539 
(17.5%) 

1533 
(4.9%) 

4112 
(14.3%) 

60 
(62.5%) 
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Table 3. Network configurations using sinusoidal activation functions. Relative result accuracy 
is also given for the case of the nasal detector. 

ID Hidden Activation function Input bits Weight bits Pre-Synaptic 
bits 

Post-Synaptic 
bits 

Accuracy 

A Sinus 3 4 4 3 94% 

B Sinus 3 5 5 3 99,5% 

C Sinus 4 5 5 4 100% 

To evaluate the effectiveness of the sinusoidal hidden activation function, a set of ex-
perimental tests have been performed to obtain the optimum number of bit for inputs, 
weights, pre-synaptic functions, and post-synaptic functions. Some of the tested con-
figurations for the case of the nasal detector are reported in Table 3. These values are 
normalized respect to percentage of accuracy of the software version, which is 88,65%. 

Although it is possible to reach the same level of accuracy of the software imple-
mentation (C case), the sinus based MLP was implemented following B configuration 
to get a trade-off between used resource and accuracy. The used resources of related 
neural network implementation are listed in Table 2. The aforementioned study was 
conducted for the other five detectors. 

The difference between the two implementations can be ascribed to the sinusoidal 
activation function that determines an high FPGA resources saving of above 50% for 
slices, FFs, LUTs and of above 35% for FPGA RAM blocks. Resources saving is 
related to the chosen hidden activation function that needs a lower accumulator di-
mension since it can be optimized with a smaller number of bits. FPGA RAMs block 
saving is related to the smallest number of bits used for weights discretizing. 

5   The Virtual Neuron Architecture 

As pointed out in a real classification tasks require a large number of neurons, conse-
quently a FPGA based neural prototypes use external RAM memory to store neuron 
weights.  

The virtual neuron implementation makes efficient the mapping of a neural net-
work into hardware devices since it leads to a significant decreasing of concurrent 
memory access. Since each neural network is large in size and input data are proc-
essed once, memory subsystem is typically the bottleneck. The virtual neuron based 
implementation allows to exploit a serial-parallel architecture since data input acts in 
a serial way, data processing acts in parallel among the virtual neurons and serially 
within each neuron first layer processing is pipelined with second layer processing. 
The proposed architecture is composed by N hidden neurons, M output neurons, h 
hidden virtual neurons, k output virtual neurons and h FIFO buffers between hidden 
and output layer. In Figure 5 the hardware neural architecture is shown. The approach 
is based on the instantiation of h and k virtual neurons, where h is a sub-multiple of 
the hidden layer neurons and k is a sub-multiple of the output layer neurons. At net-
work start-up, the h virtual entities take the first h input data and their relative weights 
from RAM. 
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Fig. 5. The proposed neural architecture shown two first layer virtual neurons and one second 
layer virtual neuron; in (a) the first processing step is shown; in (b) the second processing step 
is shown 

After the first cycle, the obtained partial results are stored in the shift-register ac-
cumulator of each virtual neuron (on internal FIFO buffer). Successively, the next 
group of h virtual neurons, representing the real neurons of first layer ranging from 
h+1 to 2h, are considered. Therefore, the same processing on input data and relative 
weights is repeated. The process ends when the last block of real neurons of first 
layer, between N-h and N neuron, is processed. Finally, the bias value previous and 
the chosen activation function are applied to the FIFO list. The obtained results are 
stored in h external FIFO lists, one for each virtual neuron. These values represent the 
input data for the second layer. The external FIFO lists are used for pipeline imple-
mentation. In fact, after the pipeline latency time, second layer processing starts while 
the execution of first layer is still running. 

For second layer the same elaboration is performed using the k virtual neurons: 
data stored in the external FIFO buffers are the input values for the output layer. The 
second layer weights are stored in the external RAM, too. 

Finally, the WTA circuit selects, among all output values of the second layer, the 
higher output in 1 clock cycle. With serial inputs the total execution time of hidden 
and output layer is T=ts1+ts2. Considering the pipeline, this time is T=max(ts1, ts2); 
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where ts1 and ts2 are respectively the execution time of hidden layer and output layer 
(including TWTA).  

6   Experiments and Results 

The evaluation of the proposed Manner of Articulation Extraction module was per-
formed on the TIMIT Acoustic-Phonetic Continuous Speech Corpus database [12], 
which is a well-known speech corpus in the speech recognition field. This database is 
composed of a total of 6300 sentences; it has a one-channel, 16-bit linear sampling 
format, and it was sampled at 16000 samples/sec. The MLP detectors were trained on 
3504 randomly selected utterances, and to be consistent with [10] and [9] the four 
phones  “cl”, “vcl”, “epi”, and “sil” were treated as a single class, thus reducing the 
TIMIT phone set to a set of 45 context-independent (CI) phones. The front-end mod-
ule is in the process of being implemented following the guidelines given in [13]. 
Instead the max module is a simple comparator circuit. The MLP module is the focus 
of this work, and a detailed description is given in what follows. 

Each of the six detectors is a three-layer network the input of which is a window of 
nine frames, that is, 117 parameters. The nodes of hidden layers are 100. The output 
layer contains two units, and a simple linear activation function is used. Finally, the 
max module applies a max function to the KSi outputs in order to compute the overall 
confusion matrix.  As previously stated, the detectors work in a frame-based para-
digm, so that their performance was evaluated in term of frame error rate. Each frame  
 

Table 4. Software (Hardware) phoneme percentages accuracies for the manner of articulation 
attributes using sinusoidal activation function 

% Vowel Fricative Stop Nasal App. Silence 

Vow. 91,00 

(89,85) 

1,38 1,53 1,26 4,64 0,19 

Fric. 3,16 88,06 

(87,02) 

5,53 1,02 0,89 1,24 

Stop 6,32 7,41 81,03 

(79,89) 

1,71 1,57 1,96 

Nas. 9,65 2,44 3,25 81,45 

(81,04) 

2,20 0,90 

App. 30,82 2,88 3,26 2,74 59,11 

(58,07) 

1,19 

Sil. 1,10 1,09 1,88 0,61 0,58 94,74 

(94,21) 
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was classified according to the neural network with the largest value. The global con-
fusion matrix for the manner of articulation attributes is given in Table 4. The (p, q)-
th element of the confusion matrix measures the rate of the p-th attribute being classi-
fied into the q-th class.  In addition, the results of the digitalized attribute scoring 
module are given in parenthesis. 

The digital version Knowledge-based Automatic Speech Classifier is implemented 
on Celoxica RC203 board [6] equipped with a Xilinx VirtexII XC2V3000-4 FPGA. 
Neural architectures were described using the VHDL language and were synthesized 
using the Xilinx ISE 6.3 tools. 

In Figure 6, the relations between execution time and hardware resources using  
sinusoidal functions for the configuration B topology are shown. The execution time 
as well as the hardware resources decreases with the hidden layer virtual neurons 
number in inversely proportional way. In addition, the pair (for the configuration B) 
topology has been considered to calculate the used hardware resources for their im-
plementation on FPGA. The execution time is compared with the execution time of 
the related software implementation on a standard Pentium IV, 2Mhz with 1Gbyte of 
RAM. 

 

Fig. 6. The relation between execution time and used resource vs the number of virtual hidden 
neurons  

The number of hidden virtual neurons for each of the MLPs has been fixed to 10, 
representing the best trade-off between execution time and allocated resource. The 
above MLP digital implementation requires 1187 cycles and, consequently, 0,0236ms 
for its execution. 

Table 5 illustrates the synthesis report for a single MLP architecture implementa-
tion using the Xilinx ISE 6.3 tools as well as the allocated resources for the entire 
scoring module. It is easy to see that the chosen configuration for each MLP allows 
the implementation of the 6 detectors in a single FPGA. The same results could not 
have been accomplished if 8 bits for each of the neural network parameters had been 
used. 
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Table 5. Synthesis report for a single MLP architecture as well as for the entire scoring module 
using the sinusoidal activation function 

 Slices FFs LUTs RAMs 
Single MLP 
architecture 

802 
(5.6%) 

654 
(2.3%) 

1359 
(4.7%) 

10 
(10.5%) 

Entire scor-
ing module 

4830 
(33.7%) 

4058 
(14.1%) 

8234      
(28.7%)

60 
(62.5%) 

7   Conclusion 

In this paper a Knowledge-based Automatic Speech Classifier was implemented using 
six attribute scoring Multi-Layer Perceptrons. The entire scoring module was synthe-
sized on a single FPGA chip. Each MLP features a virtual neuron architecture and 
uses sinusoidal activation functions for the hidden layer. Implementation results on 
FPGA show that use of sinusoidal activation functions decrease hardware resource 
usage of more than 50% for slices, FFs, LUTs and of more than 35% for FPGA RAM 
when compared with the standard sigmoid-based neuron implementation. Further-
more, neuron virtualization allows for a significant decrease of concurrent memory 
access, resulting in improved performance for the entire attribute scoring module. The 
obtained scoring module execution time gives ample room to implement a real-time 
speech classifier. 
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Abstract. Future sensor networks will be consisted of large number of 
untethered and unattended sensors. Energy efficiency and load balance will be 
two important design issues for these networks. Some researches [2] [3] have 
found that topology control, which changes the set of neighbors of some nodes in 
the networks, can be used to improve the energy efficiency and load balance. In 
this paper, we take link reliability and multi-path into consideration when 
designing topology control algorithms. Based on an analytical link loss model 
[8], the relationship of energy efficiency, load balance and number of neighbors 
is analyzed. We found that there is a contradiction in improving energy 
efficiency and load balance at the same time. A layered topology control method 
LELBM (Layered Energy-efficient and Load Balance Method) is proposed to 
adjusting network’s topology for increasing energy efficiency and meanwhile 
getting good load balance. Analysis and simulation show that this method can 
significantly improve the network’s performance. 

Keywords: Sensor Networks, Topology Control, Load balance, Energy 
efficiency, Multi-path. 

1   Introduction 

Future sensor networks will be consisted of large number of untethered and unattended 
sensors. Energy efficiency and load balance will be important design considerations for 
these networks [1]. Many topology control algorithms, which assign different transmit 
powers to different nodes to meet a globe topology property, have been proposed to 
increase the energy efficiency [2] [3]. The experiments showed that a good designed 
topology would increase the energy efficiency significantly [2] [3]. But, in 802.11 [4] 
environment, which are widely used in MANET(mobile ad hoc networks), the sensors 
will use a confirmed transmit power. So we need some new topology control 
algorithms that do not change sensors’ transmit powers. 

Recent studies [5] [6] have shown that wireless links in real sensor networks are 
unreliable. This unreliability exposes one of greedy forwarding algorithm’s 
weaknesses, which is the node we chosen may have “poor links” with the current node. 

                                                           
*  This paper is supported by National Natural Science Foundation of China (No. 60473052). 
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The “poor links” may result in a high rate of packet drops and energy wastage. It brings 
us the idea that a good topology should take link reliability into consideration. 

Base on the reliability consideration, we introduce the concept of multi-path into 
sensor network. Multi-path is favorite alternative for both circuit switched and packet 
switched networks, as it provides an easy mechanism to distribute traffic and balance 
network load, as well as considerate fault tolerance. So using multi-path will be a good 
choice for sensor networks due to its limited energy and unreliable links.  

In this paper, we adjust the network’s topology through changing the set of neighbors 
of some nodes at the condition of fixed transmit power. Two strategies are found to 
select the set of neighbors for optimizing energy efficiency, balancing energy load 
respectively. For making two strategies work together, we provide a layered method 
LELBM (Layered Energy-efficient and Load Balance Method). Simulations show that 
using LELBM, we get a good load balance and energy efficiency. 

The rest of the paper is organized as follows. In section 2, we introduce the related 
work. In section 3, we describe the statistical link-loss model and metrics of our work. 
In section 4, we propose two strategies and a method for making them work together. In 
section 5, we introduce the results of our simulations. In section 6, we present our 
conclusions. 

2   Related Works 

We are inspired by previous work in topology control [2] [3], energy-efficient 
forwarding strategy [1] [7], multi-path algorithm [13] [14] [15] [16]. 

Ramanathan R et al [2] and Alaa M et al [3] found that energy efficiency could be 
improved through adjusting the transmit powers of nodes in a multi-hop wireless 
network. These algorithms work well in one type sensor networks that the transmit 
powers of nodes can be adjusted. Then, in 802.11 environment, which uses a confirmed 
transmit power, these algorithms can’t work. 

GEAR [1] selected the lower consumed energy nodes as the next hops. One 
drawback of this algorithm is it has not considered link reliability, so it would not get 
very good performance in real sensor networks because of the unreliable links. Seada et 
al. [7] provided an energy-efficient forwarding strategy. It assumes that the number of 
the neighbors is unchanged and the source-destination path can be described as a chain 
topology. This assumption is a little too ideal. Normally, the number of the neighbors is 
changed from source to destination. Especially in multi-path environment, the number 
of neighbors is more important for correct routing and load balance. We studied the 
relationship of the energy efficiency, load balance and the number of neighbors, and 
give a method to choose neighbors. 

Multi-path algorithms, such as [13] [14] [15] [16], have not taken energy efficiency 
into consideration. 

3   Model and Metrics 

3.1   Model 

To take link reliability into consideration, we need a link loss model. We take 
advantage of link layer model in paper [8] to do our link reliability analysis. From it we 
can derive: 
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Where PRR is the packet reception rate, d is the transmitter-receiver distance, r is the 
signal to noise ratio (SNR),  is the encoding ratio and f is the frame length. Figure 1 
show instances of the link layer model where the different regions can be observed, 
where ‘m’ means meters. It shows the existence of a large “transitional region” where 
the link quality has high variance, including both good and highly unreliable links [8].

 

Fig. 1. Samples from a realistic analytical link loss model 

We can conclude from this model that there is a trade-off between PRR and d. It 
means that higher value of d will result in lower value of PRR in the neighbor node. 
Obviously, lower values of PRR will cause more energy wastage due to more 
retransmissions operation. But high value of PRR does not equal to energy efficiency. 
In condition of fixed transmit-power, lower values of d (higher values of PRR) will also 
result in more energy wastage because of more transmission operations. So, it worths 
studying how to choose neighbor set in different link reliability for better network’s 
energy efficiency. 

In conclusion, our work is based on the following assumptions:

 Nodes know the neighbor’s location, the neighbor’s n (the number of 
neighbors) and the link’s PRR of their neighbors.

(II) Nodes are randomly distributed.  

3.2   Metrics 

In order to evaluate the energy efficiency and the load balance in multi-path, we use the 
following metrics:

• Delivery Rate (r): Percentage of packets sent by the source which reached the 
sink
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• Energy Efficiency (Eeff): The energy spent by the network for sending one 
byte from the source to the sink successfully.

• Mean Energy Consume (Emean): 

    Emean = 
N

spentenergy   theof sum the
        (2)

• Energy Variance (Evar): we use this metric to evaluate the load balance of a 
network. When the value is lower, the load balance is better. If the value is very 
high, it means some nodes will exhaust their energy soon, and result in the 
useful system lifetime decline.  

 Evar = 
N

1
[(E1 - Emean)2+(E2 - Emean)2+…+(EN - Emean)2]          (3) 

  The N is the sum of the nodes.  
We assign Psrc to be the number of packets sent by the source, Etx and Erx the 

amount of energy required by a node to transmit and receive a packet, and Ere the 
energy used to read only the header of the packet. We have: 

 Etotal = Etx + Erx + (n -1) Ere           (4) 

The Etotal is the total amount of energy consumed by the network for each 
transmitted packet. The n is a variant, the number of neighbors.  

Subsequently, Eeff is given by: 
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The L is the length of each packet. For analyzing easily, in our analysis model, we 
require L be a constant (L = 1024 or 512), and it is a reasonable assumption in WLAN. 
The k is the total hops from source to sink. 

According to these metrics, if we want to improve energy efficiency and load balance 
simultaneously, then we should increase Eeff and decrease Evar at the same time.  

4   LELBM: A Topology Control Method for Multi-path 

In this section, we study how to increase Eeff firstly, and then how to decrease Evar 
secondly, and finally how to make them work simultaneously. 

4.1   Increasing Energy Efficiency 

According to equation (5), Eeff =
)(

)(

kEtotal

Lr

⋅
⋅

, Where L is constant. To get better 

energy efficiency, we need increase (r/k) and reduce Etotal. 
In our model, all packets sent by the source would reach the sink, unless the link 

lost the packet. The PRR(d) describes the probability of packet sending in one hop. In 
reality, the nodes are not uniformly distributed. However, they are in the large scale in 
networks, so we can assume the longer and shorter distance will be counteracted. Then 
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we get a reasonable assumption that the nodes are uniformly distributed in the region, 
we can compute the total hops from the source to the sink when the d is confirmed. 

Total hops = (dsrc – dsink) / (d)            (6) 

Then the (r/k) is: 

(r/k) = 
d

dPRR d

/)dsinkdsrc(

)( )/)dsinkdsrc((

−

−

                (7) 

ln(r/k) = (dsrc – dsink)
d

dPRR )(ln
 + lnd - ln(dsrc – dsink)            (8) 

Here, dsrc – dsink is a constant when the source and destination are confirmed. Thus, 

in order to increase (r/k), we need to maximize the value of (dsrc – dsink)
d

dPRR )(ln
 

+ lnd. 
Now, we need reduce Etotal. According to equation (4) and our assumptions, Etx, 

Erx and Ere are constant in one scene. Moreover, in 802.11, the length of packet is 
512byte or 1024byte normally, and the header of the packet is about 50byte. Then (t is a 
constant): 

Erx  (10~20) Ere, Etx = tErx;                                                  (9) 

Etotal  (1+t)Erx + (n-1)Ere  (15(1+t) + n – 1)Ere      (10) 

So a small n is hoped for reducing Etotal. The n is the number of neighbors. Sum up, 
we get: 

Eeff 
Erent
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lnEeff  [lnL -lnEre -ln(dsrc – dsink)] + (dsrc – dsink)
d

dPRR )(ln
 + lnd - 

ln(15t+14+n)                   (12) 

Equation (12) shows the relationship of the energy efficiency and the number of 
neighbors. It can be concluded from the equation (12) that we can improve energy 

efficiency by increasing the value of (dsrc – dsink)
d

dPRR )(ln
 + lnd and decreasing 

the n. 

4.2   Improving Load Balance 

In order to get a good load balance, we need decrease Evar to get a low value. It can be 
deduced from the equation (3) that if all items (Ei) close to Emean, we can get a good 
load balance. In multi-path conditions, according to equation (4), the energy 
consumption of every node that belongs to the same route is Etx and Erx, and for the 
node does not belong to the route is Ere. If there are some nodes to participate many 
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routes transmission simultaneously, the load balance will not be good. Moreover, if 
there are some nodes that consume all Eres of each route, which means that the selected 
paths are too close, the load balance will not be good either. So in multi-path 
conditions, node-disjoint routes and some appropriate distance away from two routes 
are expected for good load balance. Because a larger n can provide more opportunities 
for choosing appropriate nodes satisfy two conditions above, a large n is expected for 
good load balance. 

It is a contradiction to decrease the n for improving energy efficiency while to 
increase n to get good load balance. To deal with this condition, we should find an 
appropriate number of neighbors (n) for energy efficiency and load balance both side. 

The work of K.Chintalapudi et al [11], concerning the relationship of the network’s 
service quality and the number of neighbors, shows that an average degree of 11-12 
nodes within the ranging neighborhood is needed for good network’s service quality. It 
means that for good load balance the n (number of neighbors) need greater than 12 (n  
12), but once the number (n) satisfied this suggestion, it should be the less the better. 

4.3   Working Together 

From above, we can get two strategies for topology control. Next, we will demonstrate 
a specific method LELBM to make them work together. 

LELBM use a layered method to generate a topology for energy efficiency and load 
balance. The mainly benefit to use this layered method is that it can make two strategies 
(one for energy efficiency, one for load balance) work together. In order to avoid nodes 
with weak links, we blacklist a set of neighbors based on a certain criteria, and then 
route in the remaining neighbors. For example, the criteria could like this: the PRR is 
lower 20%, or the number of neighbors is lower 12. Of course, there is a risk that greedy 
routing fails when a node has no neighbors closer to the destination in the remaining 
neighbors. But, in a dense network, this situation will happen scarcely, so this approach 
is reasonable. 

LELBM: 

First, we blacklist a set of neighbors that the PRR is lower one value. We use V1 
denotes the set of the remaining neighbors. 

Second, we choose a set of neighbors that have the highest value of (dsrc – 

dsink)
d

dPRR )(ln
 + lnd in the V1. We use V2 denotes the set we chosen. 

Third, we choose a set of neighbors that (n  12) in the V2. We use V3 denotes the set 
we chosen. 

All nodes with their neighbor set V3 construct a topology for energy efficiency and 
load balance. 

5   Simulations and Comparisons 

LELBM is designed to improve energy efficiency and load balance, so we primarily 
measure the performance of network’s energy efficiency and load balance. Moreover, 
we are interested in how this comparative measure scales with network density. We 
evaluate how LELBM that equipped with multi-path routing algorithm [16] compares 
with GPSR [9] that not used topology control.  
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5.1   Simulation Environment 

We simulated LELBM in ns2 [10], using the wireless extensions developed at Carnegie 
Mellon (CMU). Because the CMU have not realized the link layer model derived in [8], 
we slightly modify the simulation code of CMU (in wireless-phy.cc). At the same time, 
we install our own route agent to ns2. 

In the simulations where we compare LELBM with GPSR, we initialize the Shared 
Media interface with parameters to make it work like the 914MHz Lucent WaveLAN 
DSSS radio interface. Our simulations are for networks of 50 nodes with 802.11 
WaveLAN radios, with a nominal 250-meter range. The nodes are initially placed at 
random in a rectangular region. Through adjusting the size of the region, we get 
different node density. 10 CBR flows in 1k/s are used in our simulation. We present the 
link layer model derived in [8] in a simpler style as Table 1.  

Table 1. A simple link layer model 

d 
(distance) 

0~50 50~100 100~150 150~200 200~250 

PRR(d) 100% 90% 70% 50% 30% 

We evaluate LELBM and GPSR using three metrics: delivery rate, average consumed 
energy (it reflects the energy efficiency of a network), and Energy Variance (Evar).  

5.2   Delivery Rate 

Figure 2 shows the number of packets the source delivers successfully for various 
densities (Neighbors/Range). The delivery rate of “weak links” is very low, so “weak 
links” will deeply affect the delivery rate of whole route. It can be derived from Figure 
2 that GPSR has more “weak links” than LELBM because of the lower delivery rate. 

 

Fig. 2. Delivery rate 
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5.3   Average Consumed Energy 

Figure 3 shows how much energy is consumed for various densities 
(Neighbors/Range). Obviously, LELBM has better energy efficiency than GPSR. In 
simulation, we find that when there are “weak links” in GPSR, LELBM can observably 
improve the link’s performance through choosing “good links”. So, the more “weak 
links” GPSR has, the better performance LELBM has comparing with GPSR. 
However, with increase of node density, there are less “weak links” in GPSR. So when 
the density is 50, the consumed energy of LELBM and GPSR are almost the same. 
What’s more, the number of nodes in our simulation is 50, which equal to the highest 
density we used. If the number of nodes we used is greater than 50, the energy 
consumed of LELBM would still less than GPSR. 

 

Fig. 3. Average Consumed Energy 

 

Fig. 4. Energy Variance (Evar) 
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5.4   Energy Variance 

Figure 4 shows energy variance at different densities. When the density of the network 
is not high (n < 40), the load balance get notably improvement in LELBM. “Weak 
links” causes repeated resending, and result in too much energy consumption. LELBM 
help us replace the “weak links” by “good links”, in which resending is not frequent. 
Moreover multi-path also balances the energy load. So, in all densities we tested, the 
energy variance (Evar) changed smoothly. It’s a very good property. 

6   Conclusions 

We have presented a topology control method LELBM with two energy efficiency and 
load balance concerned strategies for multi-path wireless sensor networks. We have 
studied the relationship of the energy efficiency, load balance and the number of 
neighbors to get LELBM. Our method achieves considerably better energy efficiency 
and load balance than GPSR, which do not used topology control algorithms. In order 
to get better performance, we will try to figure out the tradeoff between the energy 
efficiency and load balance in future work. 
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Abstract. Since sensor nodes are generally constrained in on-board energy 
supply, saving energy is crucial in extending the lifetime of the wireless sensor 
networks. In this paper, we present a dynamic threshold scheme used in the data 
propagation phase of Directed Diffusion, which can decrease the traffic between 
nodes and therefore prolongs the longevity of wireless sensor networks. The 
sensor node sends data to the sink only when the sampling value reaches the hard 
threshold and the difference between the current sample value and the last sent 
value is greater than the soft threshold, which reduces data traffic to conserve 
energy. The soft threshold will be adjusted by using the historical values to make 
the proportion of sending due to timeout equal to the expected value. Whether the 
values of a sensed attribute change drastically or not, the data sent will continue 
at a reasonable rate, which adapts the sensor network to the changeful 
circumstance. Simulation results show that the improved Directed Diffusion 
based on dynamic threshold can prolong the network lifetime about 35% 
compared with the original system and can reacting immediately to drastic 
change in the values of a sensed attribute. 

1   Introduction 

Advances in MEMS-based sensor technologies and low-power communication 
technologies have made it possible to manufacture small sensors with sensing, 
processing, and wireless communication capabilities in a cost effective and low 
energy consumption fashion. These micro sensor nodes scattered in the sensed area 
can be organized as ad hoc network dynamically, witch forms a wireless sensor 
network. They sample independently and send the sampled value to the sink – 
information collected point. The wireless sensor networks have the advantages of 
fault tolerance, easy deployment and accurate sensing, which can be applied in many 
fields, such as battlefield surveillance, environment monitoring and biological 
detection [1][2]. Since sensor networks are based on the dense deployment of 
disposable and low-cost sensor nodes, destruction of some nodes by hostile actions 
does not affect a military operation as much as the destruction of a traditional sensor, 
which makes sensor networks concept a better approach for battlefields. 

The wireless senor networks have been hot research area at recent years, in which 
information aggregation and data routing with low energy consumption become the 
important research area. Since the sensor networks often work in the unattended 
circumstance, which battery replacement is impossible, the nodes must use all kinds of 
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energy-saving methods to decrease the energy consumption and prolong the longevity 
of the sensor network. So energy-saving is a critical problem to be considered first.  

Some routing protocols have been proposed for Ad-Hoc network [10]. But these 
protocols defined for wireless ad hoc networks are not well suited for wireless sensor 
networks because what they take into account firstly is not energy saving, so the 
research results can not be applied to wireless sensor networks directly. Further 
researches have to be done to use energy efficiently. 

The inspiration in this paper is from TEEN [6]. The idea is applying the threshold 
scheme to the data propagation of Directed Diffusion, which can decrease traffic for 
reducing the energy consumption. Data transmission based on threshold is to transmit 
sensed data if the data value exceeds predefined thresholds. Using static thresholds 
would be efficient if the changes in the environment are usual and the threshold values 
are well predicted. Nevertheless, when the thresholds are not appropriate for the 
network, sensor nodes can run out of energy in a short time because of frequent 
transmissions or users can not get enough information about the current status of the 
network because of rare transmissions. So the dynamic threshold generation algorithm 
has been further presented to adjust threshold with the proportion of sending due to 
timeout, which keeps the data traffic a reasonable level. 

2   Related Works 

Researchers have suggested some energy-aware routing protocols from the aspect of 
reducing the data traffic in the wireless sensor networks.  

A data-center routing protocol, SPIN [3], is introduced by Kulik. Nodes running 
SPIN assign a high-level descriptor to completely describe their collected data (called 
meta-data) and perform meta-data negotiations before any data is transmitted. This 
assures that there is no redundant data sent throughout the network. There are three 
phases defined in SPIN to exchange data between nodes. The nodes received data 
firstly broadcast ADV message containing meta-data, and their neighbors being 
interested in this data send REQ message to request the specific data, then the nodes 
owning the data send DATA message that carry the actual data. 

The most well known protocol is Directed Diffusion [4], where a sink queries the 
sensors in an on-demand fashion by disseminating an interest, i.e., a list of 
attribute-value pairs for the desired data, in order to build reverse paths from all 
potential sensing sources to the sink. This reverse path vector is named a “gradient”. As 
the interest is propagated hop-by-hop throughout the network, paths are established 
between sink and sources. Directed Diffusion uses the reinforcement mechanism to 
select a high quality path for the data flow among multiple paths available. Each node 
only forwards a packet to a specific next hop neighbor along the reinforced path, which 
can eliminate redundant transmissions to save energy. 

Clustering is another good idea to save energy by data aggregation. LEACH [5] is 
such a clustering-based protocol, which forms clusters of the sensor nodes based on the 
received signal strength and use local cluster heads as routers to the sink. All the data 
processing such as data fusion and aggregation are local to the cluster and cluster heads 
perform data aggregation in order to save energy. Cluster heads change randomly over 
time in order to balance the energy dissipation of nodes. 
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The threshold scheme is introduced firstly in TEEN [6], which is another 
hierarchical routing protocol. A cluster head sends its members a hard threshold, which 
is the minimum possible value of an attribute to trigger a sensor node to switch on its 
transmitter and transmit to the cluster head and a soft threshold, which further reduces 
the number of transmissions if there is little or no change in the value of sensed 
attribute. APTEEN [7] is a hybrid protocol that uses both periodic and event based data 
gathering. In addition to TEEN, a set of parameters are announced by cluster heads. 
These are Attributes (user interests - physical parameters), Schedule (TDMA schedule - 
a slot for each node) and Count Time. Thresholds are used in the same way with TEEN; 
moreover, when a sensor node does not sense a value exceeding thresholds for a period 
equal to the count time, it transmits the sensed value. This avoids that there is no data to 
be sent in long time. Simulation of TEEN and APTEEN has shown that these two 
protocols outperform LEACH. The main drawbacks of the two approaches are the 
overhead and complexity of forming clusters in multiple levels, implementing 
threshold-based functions and dealing with attribute-based naming of queries. 

Location-based routing scheme can eliminate the number of transmission 
significantly by diffusing query message only to that particular region. GEAR [8] is 
such a protocol that restricts the number of interests in Directed Diffusion by only 
considering a certain region rather than sending the interests to the whole network. It 
forwards the packet to the target region. When the packet has reached the region, it can 
be diffused in that region by either recursive geographic forwarding or restricted 
flooding. 

GAF [9] divides the network area into fixed zones and form a virtual grid. In each 
virtual grid, nodes will select one sensor node to stay awake for a certain period of time 
and then they go to sleep. It can substantially increase the network lifetime as the 
number of nodes increases. 

3   Motivation 

Many works have been done to save energy of the sensor node, but those are not 
enough to achieve our objects of energy consumption. Some trivial information is not 
necessary for kinds of applications. We think that there are also lots of works remain 
to do and many existing protocols can be further improved. We also believe that 
sensor networks should provide the end user with the ability to control the trade-off 
between energy efficiency, accuracy and response times dynamically. Moreover, the 
sensor network system should also react immediately to drastic changes in the value 
of a sensed attribute when the circumstance has changed. So, in our research, we have 
focused on improving a popular data-center routing protocol – Directed Diffusion, 
which can fulfill these requirements. 

4   Improved Directed Diffusion Base on Dynamic Threshold 

Since wireless sensor networks are application-oriented, this paper takes example for 
temperature monitoring to describe the improved Directed Diffusion based on 
dynamic threshold. When the temperature value sampled by sensors of the sensor 
network varies drastically or becomes too high, the wireless sensor network can 
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provide more detail information by sending more data to the sink, by which user can 
get enough information to cope with these abnormal events.  

In this paper, we only introduce the Directed Diffusion routing protocol sketchily. 
You can get the detail description by consulting document [4]. 

4.1   Parameters Related 

There are two thresholds used in our scheme, which is similar to those presented in 
TEEN [6]. We have further proposed an algorithm to adjust the threshold dynamically 
when the circumstance changes. This dynamic threshold adjusting algorithm is simple 
enough to easy implement in sensor nodes and has low overhead, which is very 
suitable to the systems of resource limited. 

Hard Threshold ( TH ): This is a threshold value for the sensed attribute, beyond 

which the data sampled by sensor node can be sent to the sink.  

Soft Threshold ( TS ): This is a small change in the value of the sensed attribute 

which triggers the node to switch on its transmitter and transmit. 

Sending Timeout ( timeoutT ): It is the maximum time period between two successive 

reports sent by a node.  

4.2   Task Description 

Interest is a task description for data matching the attributes. In directed diffusion, 
task descriptions are named by, for example, a list of attribute-value pairs that 
describe a task [4]. The temperature monitoring task might be described as: 

 type = temperature // task type 
 interval = 0.5s // sampling interval 
 startAt = 00:10:00 // start time of the task 
 expiresAt = 01:30:00 // end time of the task 
 hardThreshold = 35  // hard threshold 
 softThreshold = 2  // initial value of the soft threshold 
 timeout = 2.5s // maximal sending interval 
 slideWindow = 5s // size of the set storing historical records 
 alpha = 0.4 // the proportion of sending data due to timeout 

This task description constitutes an interest, which represents following scenes: This 
temperature monitoring task starts after 10 minutes and lasts 80 minutes, samples 
current temperature every 0.5 seconds. The sampled data is sent to the sink only when 
the current sample value is higher than 35  and the difference between this sample 
value and last sent value is greater than the soft threshold (its initial value is equal to 
2  and may adjust dynamically later). To avoid no data transmitted to the sink too long 
time, the sensor node forces to send the current sample value when there is no data to be 
sent beyond 2.5 seconds.  

4.3   Interest Propagation and Gradients Establishment 

The improved Directed Diffusion based on dynamic threshold works the same as the 
original Directed Diffusion does in both interest propagation and gradients 
establishment. Main process about these aspects is described as follows. 
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The sink broadcasts interests through its neighbors. Interest diffuses throughout the 
network hop-by-hop, and is broadcast by each node received it to its neighbors. Each 
node received the interest caches it and builds an interest entry, which contains several 
gradient fields. Each gradient field presents a gradient that is a reply link to a neighbor 
from which the interest was received. So there might be multiple paths to reach the sink 
from this node. A node also might receive data from several neighbors, which makes it 
have a change to do in-network data aggregation. The process of interest propagation 
and gradient establishment continues until gradients are setup from the sources back to 
the sink. The whole gradient field has been established by far.  

The path along which data are received firstly will be reinforced, through which data 
can be transmitted at higher rate. Any node that has data to send selects a path 
according to a local policy to transmit the data to its neighbor. The sink has to resend 
periodically the interest throughout the sensor network to maintain the gradients  

4.4   Data Propagation and Dynamic Threshold Generation 

After the gradients establishment completes, the source can send data to the sink 
along these gradients. The node will send data only when both the following 
conditions are true: 

1. The current value of the sensed attribute is greater than the hard threshold. 
2. The difference between the current value of the sensed attribute and the data value 

last sent is greater than the soft threshold. 

A series of data sent by one sensor node can be regarded as a data stream, which is a 
set that contains infinite elements. Each element can be represented as >< tv, , where 

v  is the sample value and t  is its corresponding transmission time. The recent 
elements constitute a slide window on the data stream, by which the soft threshold is 
calculated to adapt to the drastic changes in the value of a sensed attribute.  

We assume that the data enter the slide window in time sequence. So the data in slide 
window can be represented as 

><><><>< −−++ uuuullll tvtvtvtv ,,,,,,,, 1111  (1) 

where ul <  and Ttt lu =−  at any time. That is to say, only sample value in the 

slide window will be stored in sensor node. 
The elements of which data are sent due to timeout constitute a subset. 

{ }  ,   | , 1
* uilHvorSvvtvS TiTiiii ≤<<<−><= −  (2) 

To decrease the energy consumption, it should try its best to increase the sending 
interval. At the same time, enough data have to be sent when sample values change 
drastically. This can be achieved by controlling the proportion of sending due to 
timeout in the slide window. During interval of T , the proportion of sending due to 
timeout is calculated as follows. 
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Assuming that the proportion of sending due to timeout is set to α  in advance, the 
algorithm of adjusting soft threshold is as follows: 

 (1) If α>*P , then set TT SS *9.0' = ; 

 (2) If α<*P , then set TT SS *1.1' = ; 

 (3) If α=*P , then set TT SS =' . 

Parameter α  in this algorithm used to let user designate an expected value, which is 
the goal value to let the proportion of sending data due to timeout achieve by adjusting 
soft threshold. This gives the user a chance to control the trade-off between energy 
efficiency, accuracy and response times. Choosing α  depends on the statistical 
character of the data generation. 

The algorithm described above means that the soft threshold should be decreased 
when the sending interval is too long, be increased when the sending interval is too 
short, and have no change when the sending interval is equal to the expected value. 

5   Performance Evaluation 

To evaluate the performance of our improved protocol, we have implemented it based 
on Intanagonwiwat’s code on the ns-2 simulator [11]. Our goals in the simulation are 
as follows: 

1. Compare the performance of the improved Directed Diffusion and the original 
Directed Diffusion on the basis of the longevity of the network. 

2. Study how the related parameters, such as the size of the slide window (T ), the 
expected proportion of sending due to timeout (α ), and the characters of the sample 

value of source, effect on the soft threshold ( TS ). 

5.1   Simulation Environment 

The simulation has been performed on a network of 50 nodes, which dispersed in a 
rectangular area with 160x160m. Five sources and one sink have been chosen 
randomly in those nodes. The value of a sensed attribute subjects to normal 
distribution, where EX is equal to 30 and DX is equal to 10. These sources send data 
packet whose size is 64 bytes at the interval of 0.5s. The sink generates interest 
message whose size is 36 bytes at the interval of 5s.  

The ns-2 simulator implements a 1.6 Mb/s 802.11MAC layer. To more closely 
mimic realistic sensor network radios [12], we altered the ns-2 radio energy model such 
that the idle-time power dissipation was about 0.035W, or nearly 10% of its receive 
power dissipation (0.395W) and about 5% of its transmit power dissipation (0.660W). 
Each node has a radio range of 40 m. The initial energy is set to 100J. The simulation 
ends when the energy of all nodes is exhausted. 
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Fig. 1. Data generated by source subjecting to normal distribution (EX=30, X=10) 

Figure 1 show us the data generated by source subjecting to normal distribution, 
where EX is equal to 30 and DX is equal to 10. It impresses on us the values of the 
sensed attribute changing drastically in our given data source. In our study, we will 
generate more smooth data based on it. 

5.2   Results 

We simulate the original Directed Diffusion, the improved Directed Diffusion based 
on hard threshold and the improved Directed Diffusion based on both hard and soft 
threshold at the same simulation scene described above. Other parameters correlating 
with the simulation is set as follows: α  is set to 0.4, the size of slide window is set to 
10 sending periods (5s), hard threshold is set to 35, soft threshold is initially set to 2 
and sending timeout is set to 5 sending periods (2.5s). 
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Fig. 2. Comparison of the number of nodes alive 

Figure 2 shows that the threshold scheme can actually decrease the energy 
consumption and prolong the longevity of the wireless sensor network. The current 
sensed value little differing from the value last sent will not be transmitted, which 
decreases the traffic. So the energy dissipation in a node, especially one belongs to the 
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sharing path from several sources to the sink, is reduced. The longevity of the node first 
died prolongs 35% compared with that in the original system. 
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Fig. 3. Effect of window size upon node longevity 

Since adjusting soft threshold depends on sending history recorded in the slide 
window, whose size will effect on the node longevity. Figure 3 shows that the more 
large the window size, the more short the node longevity. This because large window is 
not sensitive to little change of sensed value and soft threshold is not adjusted in time 
with changing in the value of the sensed attribute. 

Simulation also shows that the energy consumption changes little with different α  
if the statistical character of the data generation has no change. 
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Fig. 4. Effect of data character upon node longevity ( 0=α ) 
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Fig. 5. Effect of data character upon node longevity ( 4.0=α ) 

The sampling value little differing from last sent data will not be sent when soft 
threshold scheme has been introduced. Data character - the difference between adjacent 
sampling values, will have an effect on actual sending rate of a node, which affects the 
node longevity. Figure 4 shows the effect of data character upon the node longevity 
under the condition of timeout sending is not allowed (here the soft threshold will 
become very little). The three curves in figure 4 separately represent different data 
characters - sampling value subjects to normal distribution (EX=30, DX=10), and two 
other sources in which the difference of adjacent sampling values is no more than 1 or 5 
(they are generated based on that normal distribution and inserted values to make the 
change more smooth). Simulation result shows the more smooth data changes, the more 
node longevity is long. Small variety in sampling value results in few data value 
reaching soft/hard threshold, which decreases the energy consumption for transmitting 
or receiving. 

Figure 5 shows how the data characters affect the node longevity when α  is set to 
0.4. Since 40% data being allowed to transmit due to timeout, part of the data changing 
smoothly will also be sent to sink. The soft threshold can be adjusted dynamically with 
the change of the data character, so the data sending rates of three sources are quite 
similar, which results in node longevity of these sources being close to each other. This 
can be proved by our simulation. 

6   Conclusions 

This paper introduces soft/hard threshold scheme into data propagation phase of 
Directed Diffusion, which prolongs the node longevity through reducing the traffic 
between potential sources and the sink. Hard threshold can filter out unimportant data 
sampled by sensor and soft threshold farther discards the trivial data, which decreases 
the energy consumption of the sensor node. The ability of adapting to the drastic 
change in the source character is introduced by dynamic soft threshold. Whether the 
values of a sensed attribute change drastically or not, the data sent will continue at a 
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reasonable rate, which adapts the sensor network to the changeful circumstance. 
Simulation results show that the improved Directed Diffusion based on dynamic 
threshold can prolong the lifetime of the wireless sensor networks. 
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Abstract. High energy consumption has become a limiting factor for battery-
operated embedded systems. Most low-power compiler optimization techniques 
take the approach of minimizing the energy consumption while meeting small 
performance loss. In addition, it is possible that the available energy budget is not 
sufficient to meet the optimal performance objective. In such situation, energy-
constrained optimization is more significant. In this paper, we explore two kinds 
of energy-aware prefetching optimizations: prefetching optimization with 
minimizing energy consumption and energy-constrained prefetching optimization. 
We exploit energy saving opportunities through reducing memory stalls and CPU 
stalls caused by too early or too late prefetching. We build models for these two 
kinds of energy-aware prefetching optimization approaches and use a group of 
array-dominated applications to validate our approach. 

1   Introduction 

High energy consumption has become a limiting factor to develop designs for battery-
operated embedded systems due to exorbitant cooling, packing and power costs. 
Dynamic Voltage Scaling (DVS) is a major low-power technique 
[1][2][3][4][5][10][11][12]. In this article, we consider two kinds of energy-aware 
prefetching optimizations: the first is minimizing energy consumption within small 
performance loss; the second one is optimizing performance within the available 
energy budget ( budgetE ). Assume energy required to meet the optimal performance 

without energy constraint is boundE . In scarce-energy settings where boundbudget EE < , 

energy-constrained optimization may cause some performance loss. 
Software prefetching improves performance by effectively hiding memory access 

latency through overlapping memory access with computation [6]. However, software 
prefetching does not always implement perfect data prefetching because it requires 
prefetch instructions are inserted at the right places. Prefetching too early or too late 
may cause memory or CPU stalls. By reducing memory frequency or CPU frequency 
or both, we can save energy consumption. 

There usually exist two imperfect prefetch optimization cases: CPU-bound case 
and memory-bound case. In CPU-bound case, prefetching operation is too early or 
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memory access latency is too short so that the prefetched data is provided before 
actually being used. Although memory access latency is completely hidden, 
prefetching too early makes memory access completes ahead of the actual data access. 
We refer to this time interval as memory stalls. The second case is memory-bound 
case, where memory access dominates the whole time and CPU stalls cannot be 
avoided due to prefetching too late or too long memory access latency. Figure 1 
illustrates the behavior of prefetching. 

With DVS, we utilize CPU stalls and memory stalls to reduce memory frequency 
or CPU frequency or both so as to minimize energy consumption or meet scarce 
energy budget. In CPU-bound case, the major method is to adjust memory frequency 
to eliminate memory stalls combined with small CPU frequency scaling. In memory-
bound case, the major method is to reduce CPU frequency to eliminate CPU stalls 
while adjusting small memory frequency. Furthermore, it is necessary to adjust both 
of their frequencies instead of one of them for energy savings. 

In this research effort, we introduce the notion time to characterize the performance 
benefits from prefetching—time denotes the program execution time with software 
prefetching optimization. In energy-constrained prefetching optimization, time is 
minimized. In energy optimization problem, performance (time) loss is limited within 
some degree. 

 
Time

A B
P2 P3 P4

T1 T2 T3

M1
(a) Perfect Prefetching

(b) CPU-bound (Complete Overlap)

P2 P3 P4

T1 T2 T3

M1

(c) Memory-bound (Incomplete Overlap)

P2 P3

T1

P4

T2 T3

P5

T4

M1

CPU stalls

Computation overhead
Prefetch instruction overhead

CPU stalls
Memory access overhead

memory stalls

Memory stalls

C D E

Prefetching loop regions before
frequency scaling

Achieve the optimization problem
parameters

Acquire the optimal CPU frequency
and memory frequency for minimal

energy consumption

Prefetching loop regions with new
CPU frequency and memory

frequency

Profiling Phase

Solution Phase

Code Generation Phase

Original program

Instrumentation Phase

 

Fig.  2.  Compilation     Framework 

 

Fig. 1. Prefetching Optimization. P2, P3, P4, P5  
represent prefetchinstrution overhead for the second,  
third, fourth and fifth iteration, respectively. M1 
represents memory access overhead caused 
byprefetching. T1, T2, T3 and T4 represent 
computation overhead in thefirst, second, third and 
fourth iteration. Note: here iteration denotes 
theoutmost iteration. 
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The prototype implementation consists of four phases. It starts by instrumenting 
the original program at selected program locations (instrumentation phase). The 
instrumented code is then simulated, drawing out some profiled data (profiling phase). 
Once the profiling is done, all the parameters of this optimization problem are 
determined. The next work is to obtain the optimal CPU and memory frequencies 
through solving the above optimization problem (solution phase). Finally, the 
frequency-setting calls are inserted at the appropriate situations so that the selected 
region is executed at the appropriate frequency and the rest of the program be 
executed at the highest frequency (code generation phase). The first three phases have 
been implemented and we are working for code generation phase. The whole 
compilation framework is shown in Figure 2. 

In this article, we evaluate the impact of different parameters on optimization 
results and draw some conclusions. Finally, we use a group of array-dominated 
applications to validate our conclusions. 

For the research on software prefetching techniques [6][7][8], Todd [6] provided a 
comprehensive analysis on software prefetching. Ricardo Bianchini et al. [9] presented 
analytical models of the performance benefits of multithreading and prefetching. Xiaobo 
Fan et al. [5] believed the best voltage/frequency for minimizing power consumption 
should be obtained by including memory power in the decision. We exploited memory 
stalls and CPU stalls existing in imperfect prefetching to reduce CPU or memory 
voltage/frequency for energy savings. We have done some initial research on energy-
constrained prefetching optimization [15]. In this article, we present a comprehensive 
analysis on energy-aware prefetching optimization from two different perspectives. 

The remainder of this paper is organized as follows. In section 2, we build energy-
aware prefetching optimization model. Section 3 provides experimental results and 
analysis. Section 4 gives the conclusions and Future Works. 

2   Energy-Aware Prefetching Optimization 

2.1   Overview 

The prototypical loop that we optimize with prefetching looks like: 

for ( i = 0 ; i < N ; i ++)  Compute ( i ) ;  
After software prefetching optimization, the above loop is changed into: 

// iteration 0, prefetch b blocks
prefetch ( 0, b );
for ( i = 0 ; i < N - step ; i += step ) {
     // prefetch b blocks for iterations i+step to i+2*step-1
     prefetch  ( i + step , b);
     // compute iterations i to i + step - 1
     for ( j = 0 ; j < step ; j ++ )  Compute ( i * step + j );
}
for ( j = 0 ; j < step ; j++ )  Compute ( i * step + j ) ;  

In the above prefetching loop, several prefetch instructions are inserted. The major 
parameters involved in modeling the energy behavior of the above prefetching loop 
are the number of the cache blocks prefetched for each prefetching instruction, b; the 
number of prefetching instructions per iteration, Nb; the energy overhead of each 
prefetched cache block, Eb; the time overhead of each prefetched cache block, Cp; the 
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total latency of cache misses per iteration, Cm; and the computation between two 
consecutive prefetch instructions, Cc. Table 1 summarizes these parameters. 

Prefetching allows greater flexibility when trying to overlap memory access and 
computation, since the compiler or user can schedule the prefetches according to the 
memory access latency and the amount of work per iteration of each loop in the 
program. This intelligent scheduling of prefetches adjusts b and the iteration step size 
appropriately as the above code segment shows. 

The optimal number of blocks to prefetch at a time depends on the available cache 
space; blocks prefetched into the cache may be replaced before being used. Another 
limitation is the number of prefetched blocks that can fit in a prefetch/transaction 
buffer. With these constraints, the amount of useful work that can be overlapped with 
memory access may be insufficient to hide memory latency completely. To analyze 
this problem, we simplify it as Figure 1 shows. 

Figure 1 illustrates the behavior of the prefetching loop. The execution alternates 
between prefetch instruction and computation intervals. Each prefetch accessing 
cache blocks are to be used one computation block ahead. While it is possible to have 
loops that prefetch more than one computation block ahead, we can always transform 
such loops into an equivalent loop that prefetches a single computation block ahead. 

In Figure 1(a), P2 denotes prefetch instruction operation, where calculates the data 
address to be prefetched (b, Nb, Eb are involved). M1 executes memory access 
operations caused by prefetch instruction (Cm, fm are involved). T2 accesses the 
prefetched data at point B (Cc, fc are involved). Figure 1(a) shows perfect prefetching 
behavior. Memory accesses caused by prefetch are fully overlapped with computation, 
where no CPU stall or memory stall exists. If prefetech instructions cannot be inserted at 
the right places, two kinds of imperfect prefetchings occur as shown in Figure 1(b) and 
Figure 1(c). In terms of CPU-bound or memory-bound case, we adjust memory 
frequency fm and CPU frequency fc to save energy consumption. In this article, we 
present two energy-aware prefetching optimization problems as follows. 

Problem 1: given a loop L optimized with software prefetching and a DVS-enabled 
CPU and memory system, find optimal CPU frequency fc and memory frequency fm, 
then minimize energy consumption while permitting small performance loss. 

Problem 2: given a loop L optimized with software prefetching and a DVS-enabled 
CPU and memory system, find optimal CPU frequency fc and memory frequency fm, 
then the performance objective is optimal while meeting a given energy budget. 

2.2   Energy and Performance Analytical Models 

2.2.1   Energy Model 
The total energy consumption mcptotal EEEE ++= , where Ep represents the energy 

consumption of prefetching instructions. We assume the number of prefetched cache 
block per iteration is B, which is the product of b and Nb. Thus the energy 
consumption for N loop iterations NNbEE bbp ⋅⋅⋅=  

Ec represents the energy consumption of CPU computation. Due to continuously 
variable CPU frequency, Pc(fc) is denoted the CPU power dissipation for CPU 
frequency of fc. cc fC /  represents CPU computation time. Then CPU energy 

consumption during N loop iterations NfCfPE ccccc ⋅⋅= /)( . 
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Em represents memory energy consumption. Due to continuously variable memory 
frequency, Pm(fm) represents the memory power dissipation for memory frequency of 
fm. mm fC / represents memory access time. Then the memory access energy 

consumption for N iterations NfCfPE mmmmm ⋅⋅= /)(  

Thus, we can get NfCfPNfCfPNNbEE mmmmccccbbtotal ⋅⋅+⋅⋅+⋅⋅⋅= /)(/)( . 

In CMOS systems, dynamic power dissipation varies linearly with frequency and 

quadratically with supply voltage as given by the equation fCVP 2α∝ , where α  is 

the switching activity factor, C is the load capacitance, V is the supply voltage and 
f is the clock frequency. The relationship between supply voltage V and frequency f 

is VVVf th /)( β−∝ , where thV  represents threshold voltage, and β is a proportional 

factor between 1 and 2. It is reasonable to assume frequency f is linearly proportion 
with voltage V so as to draw the following formula: 

3fCP ⋅⋅= α   (1) 

In terms of formula (1), 3
11)( ccc fCfP ⋅⋅= α  and 3

22)( mmm fCfP ⋅⋅= α . So we can get: 

NCfkNCfkNNbEE mmccbbtotal ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= 2
2

2
1   (2) 

where 111 Ck ⋅= α  and 222 Ck ⋅= α . 

2.2.2   Performance Model 
In the previous section, we have defined performance objective—time. Time calculates 
the execution time for prefetching loop. To calculate this value, two cases need to be 
considered. In CPU-bound case (Figure 1(b)), the total execution time of prefetching 
loop is calculated by prefetching instruction and CPU computation as follows. 
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In memory-bound case, CPU stall occurs every other prefetching operation as 
Figure 1(c) shows. The time interval from C to D and the time interval from D to E 
are identical. We can conclude that the total execution cycles are N/2 times as many 
as the execution cycles during C to D. Since the execution cycles during C to D are 
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where cond1 and cond2 represent CPU-bound case and memory-bound case, 
respectively. That is, 
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where 0
cf and 0

mf  represent initial CPU and memory frequencies, respectively. We can 

easily judge which case one application belongs to in terms of profiled data and initial 
frequency value. Then, the total execution time is calculated in terms of the individual 
case as follows. 
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Replace cf and mf  with 0
cf and 0

mf  in equation (3), the initial time 0
totalT is easily 

calculated. 

2.3   Energy-Aware Prefetching Optimization 

For energy optimization problem, β  of performance loss is satisfied. Inequality (5-1) 

and (5-2) show two performance constraints under CPU-bound case and memory-
bound case, respectively. Inequality (6-1) and (6-2) guarantee CPU-bound case 
(memory-bound case) still belongs to CPU-bound case (memory-bound case) during 
voltage/frequency scaling. For energy-constrained optimization problem, performance 
objectives have the different presentations under two cases due to equation (3). The 
meanings of all the parameters and variables are listed in Table 1. 
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3   Experiments 

We assume CPU and memory frequency vary continuously and satisfy 
3)2772.7( cc feP ⋅−= and 3)2409.1( mm feP ⋅−=  in terms of equation (1). Parameter 1k and 

2k are estimated according to Transmeta’s Crusoe TM5900 processor parameters 

[13]. The power specifications for TM5900 CPU and DDR are shown in Table 2. 

We use SimpleScalar tool set [14] to profile some necessary parameters such as 

cC and mC . Modified SimpleScalar tool set [14] models a 1 GHz 4-way issue 

dynamically-scheduled processor. This simulator models all aspects of the processor 
including the instruction fetch unit, the branch predictor, register renaming, the 
functional unit pipelines, and the reorder buffer. This modified SimpleScalar tool set 
enables software prefetching through adding a prefetch instruction to the ISA of the 
processor model. In addition, our simulator also models the memory system in detail. 
A split 8-Kbyte direct-mapped L1 cache with 32-byte cache blocks, and a unified 
256-Kbyte 4-way set-associative L2 cache with 64-byte cache blocks are assumed. 
Such cache configuration can meet our input data sets. 

As Table 1 shows, there are 11 system parameters and 6 program parameters. In 
this section, we analyze the impact of four program parameters on two kinds of 
optimization problems. The parameter analysis is divided into two groups: cC and 

mC ; β  and budgetE . 

CPU Fre (MHz) CVDD (V)
1000 1.25
900 1.20
800 1.10
667 1.00
567 0.90
433 0.80

(a) The relationship between CPU frequency and voltage

CPU Fre (MHz) CVDD (V) Power (W)
1000 1.25 6.50

433 0.80 0.35

433 0.80 0.30

State
Normal

Auto Halt
(ACPI C1)
Quick Start
(ACPI C2)
Deep Sleep
(ACPI C3) - 0.80 0.15-0.40

DSX - 0.625 0.10-0.25

(b) The relationship between CPU frequency, voltage and power
Current (A) Power (W)

1 2.5
0.5 1.25
0.2 0.5

0.048 0.12
(c) The relationship between DDR current and power.

DDR frequency is 83MHz-133MHz.

System
Paramter Meaning Value

Energy consumption by a cache block prefetched 10 pJ

b The number of cache block prefetched by a
prefetching instruction 4

A prefetched cache block computation time 1 cycles

Initial CPU frequency 1000 MHz
Initial memory frequency 133 MHz

The lower bound of continous CPU frequency 433 MHz
The upper bound of continuous CPU frequency 1000 MHz

The lower bound of continuous memory frequency 83 MHz
The upper bound of continuous memory frequency 133 MHz

Program
Parmeter Meaning Value

Prefetching loop iteration counts Program
specified

Computation time in once iteration (cycles) Profiled
Memory access time in once iteration (cycles) Profiled

Nb
The number of prefetching instructions in one

iteration
Optimization

specified

k2           The coefficient for 1.09e-24
k1           The coefficient for 7.72e-27

Ebudget Energy budget specified

Performance loss degeree (100%) User
specified

bE

pC

0
cf
0

mf
'

cf
"
cf
'

mf
"

mf

N

cC
mC

3
1 cc fkP

3
2 mm fkP

Table 1. System parameters and program 
parameters for our optimization problems 

Table 2. Clock frequency, supply voltage, 
and power dissipation for TM5900 CPU and 
DDR. Come from Transmeta Crusoe 
TM5700/5900 Data Book. 
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3.1   cC and mC  

(1)  Problem 1 
For two kinds of energy-aware optimizations, we simulate the impact of cC and 

mC  on these two objectives. In Problem 1, minimizing energy consumption is our 

objective. Assume initial energy consumption before frequency scaling is Eini, and the 
minimum energy consumption after frequency scaling is Emin, the energy saving 
percentage is represented by formula (14). 

%100min ×
−

=
ini

ini

E

EE
savingEnergy   (14) 

Figure 3 gives the energy saving percentages under different cC and mC  values.  

Fig. 3. Energy saving percentage 
as Cc andCm vary 
 

Fig. 4. Optimal CPU and memory frequencies as Cc and  
Cm vary  
 

Focus on the curve where 90=mC , we notice three points (A, B, C) on this curve, 

among which the minimum energy saving is obtained at point B. That is because 
point B is the dividing point for memory-bound case and CPU-bound case: the left 
points of B belong to memory-bound cases; the right points of B belong to CPU-
bound cases. More approach to point B, CPU stalls or memory stalls are smaller so 
that less energy savings can be obtained. On the contrary, farther away from point B, 
CPU stalls or memory stalls are bigger so as to achieve more energy savings. Thus, 
the whole curve looks like a ‘V’ shape and point B lies in the minimum of ‘V’ shape.  

Figure 4 presents the varying curves of CPU and memory frequencies under the 
same conditions. The point A, B and C are the same with those in Figure 3.  
(2)  Problem 2 

In Problem 2, performance optimization is our objective. Figure 5 shows time 
variance as Cc and Cm vary. From point Ai to Bi (i=1, 2, 3, 4), the change trends occur 
an exception. That is because the points before Ai belong to memory-bound cases and 
the points after Bi belong to CPU-bound cases and the calculation formulas for these 
two cases are different. 

Figure 6 gives the optimal CPU and memory frequency settings as cC and mC vary. 

From these two curves, the optimal CPU frequency value is non-decreasing as 

cC increases while the optimal memory frequency value is non-increasing as 

cC increases under a fixed mC value. The cC value and mC value at points Ai and Bi 
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(i=1, 2, 3, 4) are the same with those in Figure 5. Therefore, we can contrast Figure 6 
with Figure 5. 

From the above analyses, we can conclude that: 

 Cc and Cm determine CPU-bound case or memory-bound case. More approach 
to the dividing point, less energy saving is obtained in Problem 1. The 
optimal CPU frequency and memory frequency variances have different 
characteristics; 

 For Problem 2, under fixed Cm value, performance decreases as Cc increases. 
A little exception occurs around the dividing point. 

3.2  β  and budgetE  

(1)  Problem 1 
Interestingly, the objective in Problem 1 is just the constraint in Problem 2; the 
objective in Problem 2 is just the constraint in Problem 1. In the previous section 
5.2.1, we have analyzed two objectives variances as Cc and Cm vary. In this section, 
we will discuss  

1) the impact of β  on energy objective in Problem 1; 

2) the impact of 
budgetE  on performance objective in Problem 2. 

Figure 7 shows energy saving percentage under different β  values. Four curves 

represent 0=β , %5=β , %10=β , %15=β , respectively. Obviously, as β  

increases, more energy saving can be obtained. We also notice that when 0=β , 

different properties for CPU-bound case and memory-bound case are showed: In 
CPU-bound case, energy saving can be achieved without performance loss while in 
memory-bound case, no energy saving can be achieved without performance loss. 
That can be explained by Figure 8. If we adjust CPU frequency through prolonging 
the time of T1 from Figure 8(a) to Figure 8(b), then the time of T2, T3 and T4 are all 
prolonged. So performance penalty cannot be avoided. Later energy-constrained 
parameter analyses also explain this from the other perspective.  
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(2)  Problem 2 
For Problem 2, we only consider scarce-energy settings, where boundbudget EE < . To 

describe the degree of energy scarce, we define α as the ratio of energy budget to 
energy bound as follows. 

boundbudget EE ⋅= α  

As α  increases, energy budget is more approach to energy bound and performance 
is more approach to the optimal value. All of these varying trends are shown in Figure 
9(a) and Figure 10(a), where blue solid lines represent execution time (inverse 
proportion to performance) under different α  values and black dot lines represent the 
optimal performance when energy bound is reached. Performance is approach to the 
optimal performance value as α  increases. 

For CPU-bound case as Figure 9(a) shows, when %1.91=α , performance has 
reached the optimal value instead of %100=α . In contrast, for memory-bound case 
shown in Figure 10(a), performance doesn’t achieve the optimal level until 

%100=α . This shows that in CPU-bound case, the optimal performance can be 
reached under less energy budget (less than energy bound). While in memory-bound 
case, the optimal performance must be reached with energy bound. This conclusion is 
consistent with the conclusion of Problem 1. That is, in CPU-bound case, energy 
saving can be obtained with no performance loss while in memory-bound case, no 
energy saving can be obtained with no performance loss. 

To illustrate the optimal CPU frequency setting and memory frequency setting, we 
also show the optimal CPU and memory frequency under the same conditions in 
Figure 9(b)-(c) and Figure 10(b)-(c). In CPU-bound case (Figure 9(b)-(c)), CPU 
frequency keeps at 1GHz while memory frequency is climbing and it reaches the 
highest point until %100=α . In terms of objective (9-1), the performance value in 
CPU-bound is determined by CPU frequency. Therefore, when CPU frequency 
reaches the highest value, performance reaches the optimal value. After that, memory 
frequency increase only consumes unnecessary energy. That is why the energy saving 
can be obtained with no performance loss for CPU-bound case. 

Fig. 7. Energy saving variance as  varies. 
here Cm=90. 

Fig. 8. No energy saving can be obtained 
without performance penalty in memory-
bound case 
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In contrast, in memory-bound case, performance is determined by both CPU 
frequency and memory frequency in terms of objective (9-2). Only when both of them 
reach the highest values, the performance reaches the optimal. That explains why no 
energy saving can be obtained with no performance loss. 
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From the above analyses on β  and budgetE , we can conclude that: 

 For Problem 1, when CPU-bound case, energy saving can be obtained 
without performance loss while in memory-bound case, no energy saving can 
be achieved with no performance loss; 

 For Problem 2, when CPU-bound case, the optimal performance can be 
reached under less energy budget (less than energy bound). While in memory-
bound case, the optimal performance must be reached with energy bound. 

3.3   Experimental Results 

After the detailed parameter analyses, we choose a set of array-dominated 
applications to validate the effectiveness of our energy optimization approach. They 

Fig. 9. The impact of Ebudget on the optimization results when CPU-bound case.Cc=1000, 
Cm=90 

Fig. 10. The impact of Ebudget on the optimization results when memory-bound case.Cc=1000, 
Cm=150 
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include Matmult, Stencil, Syr2k, Adi, and 2D Jacobi. Matmult represents matrices 
product, Stencil is a stencil computing program for five dots, Syr2k is Rank-2K 
update computation program for solving zonal symmetry matrix from BLAS, Adi 
derives from the core base benchmark of Livermore, and 2D Jacobi performs a 2D 
Jacobi relaxation. These benchmarks description is given in Table 3. 

Table 3. The description of benchmarks  

Benchmarks The number of Array Size
Matmult 3 1024*1024

Adi 6 1024*1024*3
2D Jacobi 2 1024*1024

Stencil 2 1024*1024
Syr2k 3 1024*1024

 

3.3.1   Minimizing Energy Consumption 
Energy saving for each benchmark under different β  values is shown in Figure 11. 
The experimental results accurately reflect our analytical results. Adi and 2D Jacobi, 
which belong to CPU-bound cases, achieve 10.1% and 1.1% energy savings with no 
performance loss, respectively. Other benchmarks all belong to memory-bound cases 
and no energy saving can be achieved without performance loss. Table 4 shows the 
detailed data about CPU frequency, memory frequency and energy savings. 
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3.3.2   Energy-Constrained Optimization Problem 
Assume execution time (inverse proportion to performance) under energy constraint 
is Time and execution time without energy constraint is InitialTime, the degree of 
performance loss can be calculated by formula (15). 

%100
1

11

%)100( ×
−

=

eInitialTim

TimeeInitialTimLossePerformanc                            (15) 

Fig. 11. Energy saving percentage for each 
benchmark 

Fig. 12. The degree of performance loss for 
each benchmark 
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As α  value varies, the performance loss for each benchmark is shown in Figure 
12. Experimental results validate our analytical conclusions. Benchmark Adi reaches 
the optimal performance with 91.1% of energy bound. Table 5 gives the detailed 
experimental data for the optimal CPU and memory frequency settings.  

CPU

frequency

(MHz)

Memory

frequency

(MHz)

Energy

Savings

10% 896 123 18.37%

20% 825 112 31.20%

0 1000 133 0

10% 709 133 24.02%

20% 649 122 36.15%

0 1000 83 10.11%

10% 910 83 24.45%

20% 834 83 35.51%

0 1000 130 1.10%

10% 910 118 18.20%

20% 834 109 31.03%

0 1000 133 0

5% 940 129 10.17%

15% 860 117 25.16%

5% 830 133 15.03%

15% 669 128 30.50%

5% 953 83 17.77%

15% 870 83 30.39%

5% 953 124 10.14%

15% 870 113 25.17%

0 1000 133 0

5% 856 133 14.75%

10% 747 133 24.40%

15% 688 130 31.07%

20% 656 125 36.67%

Benchmarks

Matmult

Stencil

Syr2k

Adi

2D Jacobi

Type

memory-bound

case

CPU-bound

case

Type

memory-bound

case

CPU-bound

case

CPU

frequency

(MHz)

Memory

frequency

(MHz)

Performance

Loss

91.1% 942 127 5.0%

100% 1000 133 0

82.2% 782 133 6.3%

91.1% 898 133 2.7%

100% 1000 133 0

82.2% 942 88.6 5.8%

91.1% 1000 88.6 0

100% 1000 133 0

82.2% 898 122 10.2%

91.1% 942 127 5.8%

100% 1000 133 0

82.2% 898 122 9.3%

86.7% 927 122 7.8%

95.6% 971 127 3.6%

86.7% 840 133 4.4%

95.6% 942 133 1.5%

86.7% 971 88.6 2.9%

95.6% 1000 111 0

86.7% 927 122 7.3%

95.6% 971 127 2.9%

82.2% 811 133 6.4%

86.7% 869 133 4.2%

91.1% 913 133 2.7%

95.6% 956 133 1.3%

100% 1000 133 0

Benchmarks

Matmult

Stencil

Syr2k

Adi

2D Jacobi

 

4   Conclusions and Future Works 

Energy consumption is more and more important for battery-powered embedded 
systems due to the need for longer battery life and portability. Compiler-directed 
optimization techniques are more and more concerned. In our article, we combined 
two kinds of energy-aware prefetching optimization approaches: one is minimizing 
energy consumption within some performance loss; the other is energy-constrained 
optimization approach. We implement these two optimizations mainly through 
simultaneously adjusting CPU and memory frequencies. For CPU-bound case and 
memory-bound case, frequency scaling shows the different characteristics. We 
analyze the impact of several parameters on optimization results and draw some 
conclusions. Finally, a group of array-dominated applications are used to validate our 
analytical conclusions. In the future, we will consider more actual model, i.e. 
Considering N discrete voltage/frequency levels instead of continuous 
voltage/frequency scaling. Thus, more exact and actual model should be built. 

Table 4. Optimal CPU and memory 
frequency settings and energy savings for 
each benchmark with variable  
 

Table 5. Optimal CPU and memory frequency 
settings and performance loss for each 
benchmark with variable  
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A Dynamic Energy Conservation Scheme for
Clusters in Computing Centers�
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2 Intel China Research Center, Beijing, China

Abstract. HPC clusters are widely used to execute parallel tasks. With
the increasing number of nodes and frequency of processors, they con-
sume huge amount of energy. The heat generated by clusters also imposes
very heavy load for cooling infrastructures. The utilization of some clus-
ters is not always high, indicating that there is a huge space to conserve
energy consumption with more intelligent energy management scheme.
Although there has been some energy conservation schemes proposed for
web clusters, they are not applicable to HPC clusters. In this paper we
propose a dynamic energy conservation scheme for HPC clusters. The
scheme is to turn some cluster nodes on and off dynamically according
to the current and historical workload. The goal is to reduce the energy
consumption of clusters with minimal performance loss. We evaluate our
scheme by simulation and show that it can effectively conserve energy
consumption.

Keywords: Energy Conservation, Cluster, Parallel Computing.

1 Introduction

HPC clusters are widely used to execute parallel tasks. Energy consumption is
becoming a key design issue for HPC clusters now. Because off-the-shelf hard-
ware prices constantly decrease, clusters are more affordable to be purchased
than before. However, the operational cost of clusters is even higher than be-
fore. The reasons are: (1)The energy consumed by clusters increases because of
higher processor frequency and larger number of nodes.(2) The heat generated
by clusters also increases greatly. For a cluster with medium to large number of
nodes, it requires significant investment on equipments and energy consumption
of cooling systems.

On the other hand, utilization of some HPC clusters is just 50% or even
lower[1]. Although most modern processors and systems can be put into power
saving mode by voltage-scaling techniques [5], idle nodes in HPC clusters still
consume quite huge amount of energy. Chase et.al. found that conventional
servers used at least 60% of their peak power in idle state[10], which indi-
cates that more energy can be conserved by more intelligent power management
scheme for HPC clusters.
� This project is partially supported by Intel Corp.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 244–255, 2005.
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Some energy conservation schemes have been proposed for web server clusters
[10, 11, 12, 17]. Although web servers clusters and HPC clusters share the com-
mon term cluster, there are substantial difference between them regarding their
workload. A job submitted to HPC clusters normally requires multiple proces-
sors and much more execution time. So the energy conservation scheme designed
for web server clusters could not be applied to HPC clusters trivially.

In this paper we characterize workload logs of several HPC clusters. Then we
propose a simple yet effective scheme to conserve energy consumption for HPC
clusters. In our scheme, not all idle nodes are turned off immediately, some spare
nodes are reserved for future tasks. When the workload becomes heavy, some
nodes will be turned on in advance for future jobs. In this way, we can conserve
energy consumption with minimal performance loss.

This paper is organized as follows. Section 2 describes related work. Section
3 shows the origin of the workloads used in this research, then characterizes the
workload in various aspects. Different energy management schemes are presented
in section 4. Section 5 describes the experimental results and Section 6 closes
the paper with a summary.

2 Related Work

Power-efficient design are receiving increasing attention recently. The research
work on this area can be characterized with three levels: chip level, single system
level and multiple-system level.

Chip level power-efficient design[2, 3] is motivated by the requirement of pro-
viding long battery life time for portable electronic appliances. The design needs
to explore tradeoff between power and conventional design constraints, i.e., per-
formance and area.

Above the chip level, single-system level techniques such as dynamic power
management(DPM)[4] and dynamic voltage scaling(DVS)[5] have been applied
extensively with good results. In computer systems, DRAM is a big source to
consume energy. So memory energy optimization has also been researched[6, 7].
In addition to the hardware only approach, some software/hardware integrated
methods have also been proposed[7, 8, 9].

Some operating systems, such as Microsoft Windows 2000 and Microsoft Win-
dows server 2003 could support the hibernate mode or sleep mode which uses
very little power. However, these features are mainly designed for notebook and
desktop computers, and could not be applied to either HPC clusters or web
server clusters directly. In Microsoft’s document on configuring server clusters,
it is suggested that ”Do not use APM/ACPI Power saving features”[18].

At the multiple-system level, there has been some research work on conserv-
ing energy consumption for server clusters, e.g., data center with many WWW
servers. Node vary-on/vary-off(VOVO) scheme for web server clusters has been
proposed in [10, 11]. In this scheme, CPU demand of servers is monitored. When
it exceeds a certain threshold, e.g. 90%, more nodes will be turned on. When
the CPU demand becomes lower than a certain threshold, some nodes should be
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turned off. Elnozahy et.al evaluates five policies for cluster-wide power manage-
ment in server farms[12]. The policies employ various combinations of dynamic
voltage scaling and node vary-on/vary-off(VOVO). The best results are obtained
by using a coordinated voltage scaling policy in conjunction with VOVO. Ra-
jamani et.al identified the key system and workload factors that impact power
management policies for server clusters. They also proposed two improvement
over the simple threshold policies: spare servers and history-based schemes. The
spare servers scheme was used to deal with the observed spikes in workload[17].

Although the above power management schemes works well for server clusters,
they are essentially variation of utilization threshold -based schemes and could
not be used in HPC clusters trivially.

In HPC clusters, a single job is sufficient to push the CPU utilization to almost
100% in cluster nodes allocated to it. What’s more, memory, I/O and network
bandwidth in allocated cluster nodes are also used heavily with a single job only.
Allocating multiple jobs to the same node would cause resource conflict and
damage the performance seriously. Thus, it is a common practice that different
jobs do not share cluster node in HPC clusters. So the CPU utilization threshold-
based power management scheme could not be applied to HPC clusters trivially.

In this paper, we propose to use spare nodes to conserve energy consumption
of HPC clusters. Although the idea of spare nodes has also been proposed by
Rajamani et.al. [17] for server clusters, it was proposed as an improvement of
threshold based schemes. While in this paper, we use the spare nodes scheme
only in the context of HPC cluster. We propose an algorithm to determine the
number of spare nodes dynamically and verify its effectiveness by simulating
various HPC cluster workloads.

Choi et.al proposed an disk storage power management approach for the server
systems which accesses remote active storage devices instead of turning on local
storage devices[16]. It is another dimension of the problem and was orthogonal
to ours.

3 Collecting Information

Since our key goal is to propose an energy conservation scheme for HPC clusters,
we need information on the workload experienced by production systems. Unfor-
tunately, there is no standard benchmarks for workload in HPC clusters. We got
3 workload logs from supercluster.org[1], which were generated by production
cluster systems with the Maui scheduler[19]. In fact, there are totally 5 work-
loads there, but only 3 of them are downloadable. They are described in Table 1.

Table 1. Workload used in this research

Site/Machine Name Procs jobs Period
CHPC/Icebox 266 20000 Mar. 2000-Mar 2001
OSC/Linux Cluster 178 80000 Jan. 2000-Nov. 2001
MHPCC/Tsunami 224 4100 Mar. 1998-Apr. 1998
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There are many fields in the log files, such as submission time, nodes re-
quested, dispatch time, start time, completion time and wall clock limit etc. In
our research, we just take the following fields into account:

– Submission time tsubmission: The time when job was submitted.
– Nodes of requested prequested: The number of processors requested.
– Start time tstart: The time when job began execution.
– Completion time tcompletion: The time when job completed execution.

These systems have different architectures. For example, the MHPCC/T-
sunami is an IBM SP2 machine, which is indeed a clusters of SMPs, i.e., we
can not turn-off one processor for this machine. The OSC/Linux Clusters is
also a cluster with both quad-processor nodes and dual-processor nodes. In this
paper, however, we will first assume that all nodes are just single processor
nodes for simplicity, so each processor can be turned on or turned off inde-
pendently. The effect of multi-processor nodes will be discussed later in this
paper.

3.1 System Utilization

To identify the potential benefits of energy conservation on these workloads, we
need to know the utilization of each system. Table 2 demonstrates the average
number of active processors in each system, and calculates utilization accord-
ingly.

In all systems, the system utilization is below 50%, which indicates that more
than 50% processors are idle in average. It is obvious that if we can turn the
inactive processors off, we will be able to save a lot of energy.

Table 2. Utilization of Our Reference Systems

Site/Machine Name Average Number of Total Number Utilization
Active Processors of Processors

CHPC/Icebox 102.9 266 38.7%
OSC/Linux Cluster 75.4 178 42.4%
MHPCC/Tsunami 67.9 224 21.5%

3.2 Distribution of Job Size

The job size is the number of processors requested by a job. Both Downey and
Cirne have reported that the uniform-log distribution provides a good fit for the
job size in supercomputer workload[13, 14]. This was the case for our reference
workloads. Table 1 shows the cumulative distribution function of job size of our
reference workloads. It should be noticed that the size of more than 90% jobs
is less than 16. Comparing with around 200 processors in each system, most of
jobs only have very small size.
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3.3 Distribution of Job Execution Time

As noticed by Downey[14], the uniform-log distribution provides a good fit for
the job execution time in our 3 reference workloads. Figure 2 plots the observed
job execution time. It should be noticed that for all of our 3 reference workloads,
more than 30% of tasks are tasks whose execution time is less than 1024 seconds.
For the OSC workload, the ratio is even higher than 50%. Because a normal
system boot up time is about 200 seconds, which is comparable with the ”short”
tasks’ time. The distribution of job execution time indicates that using naive
energy management scheme,which would cost some time to bring idle systems
up, will damage the the system performance considerably.

4 Schemes of Energy Management for Computing
Clusters

In this section, we define some schemes of energy management for computing
clusters. In order to describe them more clearly, we define some notations first.

– nqueue(t) : The number of nodes that required by tasks in queue at time t
– nidle(t) : The number of idle nodes in cluster at time t
– nact(t) : The number of active nodes in cluster at time t.
– noff (t) : The number of nodes which is in the power-off state at time t in

cluster
– nturning off(t) : The number of nodes that are being turning off
– nturning on(t) : The number of nodes that are being turning on
– narvl(t1, t2) : The number of nodes that are required by tasks which arrive

between time t1 and t2
– ncmpl(t1, t2) : The number of nodes that are required by tasks which complete

between time t1 and t2
– toff : Time required to turn off a node
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– ton : Time required to turn on a node
– ncluser : The number of total nodes in the cluster.

It should be noted that at any given time t,

ncluster = nact(t) + nidle(t) + ndown(t) + nturning off (t) + nturning on(t)

4.1 Always-On Scheme

This is the scheme used by current computing clusters. Nodes in cluster are not
turned off and on in normal situations at all. They are always on, which could
be described as

n(t)off = 0 for any time t.

4.2 Naive Scheme

Under this scheme,

n(t)idle = 0 for any time t.

In another word, the nodes in clusters are turned off as soon as they becomes
idle if there is no task in queue. Similarly, a certain number of nodes will be
turned on as soon as there is a coming request for the number of nodes.

4.3 Optimal Scheme

In this scheme, we assume a perfect knowledge of the arrival time of tasks, which
enable us to avoid situations where tasks wait for required nodes to start up.
In this scheme, the total completion time of all tasks is the same as the always-
on scheme, i.e. a node is turned off only if it will not damage the system’s
performance.

Because there’s no way for us to get the perfect knowledge of the arrival times
of tasks in practical, the scheme shows the upper bound of amount of energy
that can be conserved without damaging the performance of parallel clusters .

The scheme includes strategies for completion and arrival of tasks.

– On completion of tasks
At time t, when a task which requires m nodes has just completed, let
t′ = t + toff + ton,
then
ntbt off (t) = m+nidle(t)+ncompl(t, t′)+nturning on(t)−nqueue(t)−narrl(t, t′)
if ntbt off (t) > 0, it is the number of nodes to be turned off at time t.
Otherwise, we do nothing at time t.

– On arrival of tasks
If a task will arrive at time t which requires m nodes, let
t′ = t − toff − ton,
then
ntbt on(t′)=m+nqueue(t′)+narrl(t′, t)−nidle(t′)−ncompl(t′, t)−nturning on(t′)
if ntbt on(t′) > 0, it is the number of nodes to be turned on at time t′.
Otherwise, we do nothing at time t′.
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4.4 N-Redundant Scheme

Since no perfect knowledge of the arrival times of tasks are available in practice,
we need to find a good approach to deal with the dynamic arrival of tasks. We
proposed a simple yet effective scheme n − redundant.

The n−redundant scheme is motivated by the analysis on job size distribution
in section 4.2, which indicates that most jobs are with small sizes. So only a small
number of redundant active nodes would meet the requirement of most jobs.

In general, we use n(t) to denote the maximum number of idle nodes at time t.
The n − redundant scheme is to hold at most n(t) idle nodes whenever pos-

sible, i.e.

nidle(t) ≤ n(t) for any time t.

In n-redundant schemes, the maximum number of idle nodes is n(t), so the
energy that may be consumed by other idle nodes are conserved. On the other
hand, the performance of the system is not damaged greatly by latency intro-
duced by power-on time, since the n(t) idle nodes can be used immediately for
arrival of tasks.

We still use the actions taken on completion and arrival of parallel tasks to
describe the n − redundant scheme.

– On completion of tasks
At time t, when a task which requires m nodes has just completed, first

recompute the value of n(t)(the algorithm to compute n(t) will be discussed
in the next section), then let

ntbt off (t) = m+nidle(t)+nturningon −nqueue(t)−n(t) where n(t) is the
maximum number of

if ntbt off (t) > 0, it is the number of nodes to be turned off at time t.
Otherwise, we do nothing at time t.

– On arrival of tasks
If a task arrives at time t which requires m nodes, then

ntbt on(t) = m + nqueue(t) + n − nidle(t) − nturningon

if ntbt on(t) > 0, it is the number of nodes to be turned on at time t. Other-
wise, we do nothing at time t.

4.5 Determine the Value n(t) for the N-Redundant Scheme

In the n − redundant scheme, it is very important to determine the value of
n(t). Since the redundant nodes are used to obtain better performance for short
tasks, we should use statistics of size of short tasks to determine it. We define the
threshold ts, so that all tasks with execution time less than or equal to ts will
be considered as short tasks, whose performance will be damaged significantly
by the latency of system boot-up.

To calculate the n(t), we maintain a task queue qq which contains the most
recently quitted short tasks. The size of the queue is m, so at most recent m
quitted tasks will be stored in qq. The n(t) remains unchanged unless there is
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a quitted job. When a job quits at time t, we need to update the value of n(t).
We choose the number of redundant nodes n as the minimum integer such that
p% or more short tasks in qq are of size less than or equal to n. The algorithm
is trivial based on the above definition and omitted due to limited space. The
value n is stored in a global variable. The complexity of the algorithm is O(N),
where N is the number of nodes in the HPC cluster.

Table 3 shows the typical value n for the 3 clusters according to the rule
described above. It could be observed that the value is relatively small comparing
with the number of nodes in clusters.

Table 3. Determine the number of redundant nodes for each workloads

Site/Machine Name Number of Short tasks n
CHPC/Icebox 7014 12
OSC/Linux Cluster 43235 16
MHPCC/Tsunami 1744 10

5 Experimental Results

5.1 Performance Metrics

In order to evaluate the system performance for different energy conservation
schemes, we need to define a proper performance metric.

Feitelson et.al. have suggested the ”bounded-slowdown” metric to avoid the
extreme effects introduced by very short tasks[15]. For bounded-slowdown, a
threshold value τ is used to filter the short tasks, its definition is

bounded − slowdown = max{ tc−ts

max{tc−tr,τ} , 1}
It is obvious that the behavior of this metric depends on the choice of τ . In

this paper, we choose 20 seconds for it. The reason for this value is that we
believe that it represents the typical time for a user to submit a very short job
to parallel clusters and get the result. Users will not be very sensitive when the
response time of the job is already less than 20 seconds, no matter how short
the job is.

5.2 Experimental Results

We implemented a simulator to evaluate the performance of our proposed energy
conservation scheme. The simulator uses the traces of maui scheduler as its
input, which is described in Section 3. It implements the FCFS (First Come,
First Serve) scheduler.

We simulated various energy conservation schemes for the 3 selected workloads
by comparing their average bounded-slowdown and consumed energy.

Fig 3 shows the bounded-slowdown of different schemes on systems with
different boot time. We simulated boot time from 25 seconds to 250 seconds.
The typical boot time is around 150s for current Linux servers, yet 250s boot
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time is also observed on some servers. The simulation result shows that the
always−on and opt schemes almost always get the same bounded-slowdown for
all the three workloads and they almost remain constant when the boot time
changes. The naive scheme changes with the boot time sharply and obtains much
worse bounded-slowdown performance than always− on/opt schemes when the
boot time is 150 seconds or larger. Even when the boot time is only 50s, there
is still considerable performance difference between the naive scheme and the
always− on/opt scheme. The n− redundant scheme, however, changes with the
boot time much more mildly, it’s performance is only slightly (5%) worse than
always− on/opt scheme’s when the boot time is less than 150s. The simulation
result encourages the server/OS manufacturers to provide servers/OS with fast
boot time, which could be used by both the n−redundant scheme and the naive
scheme to reduce the performance lost. When the boot time could be reduced
to less than 25 seconds, naive scheme becomes more favorable.

Figure 4 shows the experimental results on energy consumption of differ-
ent schemes. Because the energy consumption of different schemes change only
slightly with the boot time, we just show the data when the boot time is set
to 150 seconds. Since we don’t really experiment on real systems, we use the
aggregate active processor ∗ hour of a cluster as the metric for energy conser-
vation. It could be illustrated that the always − on scheme consumes the most
energy. The naive scheme and the opt scheme performs the best in this metric
because they almost don’t waste any energy. The n− redundant conserves more
than 40% energy than the always − on scheme. The figure also indicates that
the n − redundant scheme can conserve more than 80% of conservable energy
consumption by comparing the n − redundant scheme to the opt scheme.

6 Conclusion and Future Work

In this paper, we proposed an energy conservation scheme n − redundant for
clusters in computing centers which execute parallel tasks. It is compared with
naive schemes and optimal schemes. Experimental results demonstrated that
the n− redundant scheme is efficient in energy conservation while maintain the
performance well: it can reserve 40% energy consumption of with performance
loss around 5%.

The simulation results also shows that if servers could support fast boot time,
the energy conservation scheme could be more efficient. We are investigating the
situations when server supports several level of low power states with different
power consumption and enter/exit time.

We are integrating the n − redundant scheme with the OpenPBS cluster
scheduler now. Then it will be installed in several production clusters to test the
performance of the scheme in real workloads.

Other future work includes: In addition to calculate the number of idle nodes,
we could go one step further to determine which nodes should be turned on and
off wisely by considering the topology of the cluster. This would get two more
potential benefits: 1) By allocating neighbor nodes in clusters to parallel tasks,
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Fig. 4. Energy Consumed with different strategies

communication overhead of the parallel tasks could be reduced. 2) When the
nodes connected by a switch are all in power-off state, the switch itself can also
be turned-off and more energy could be conserved.
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Abstract. System-on-chip (SoC) designs provide integrated solutions
to challenging design problems in the telecommunications, multimedia,
and so on. Present and future SoC are designed using pre-existing com-
ponents which we call cores. Communication between the cores will be-
come a major bottleneck for system performance as standard hardwired
bus-based communication architectures will be inefficient in terms of
throughput, latency and power consumption. To solve this problem, a
packet switched platform that considers the delay and reliability issues
of wires so called Network-on-Chip (NoC) has been proposed. In this
paper, we present interconnected network topologies and analyze their
performances with a particular application under bandwidth constrains.
Then we compare the performances among different ways of mapping
the cores onto a Mesh NoC architecture. The comparison between Mesh
and Fat-Tree topology is also presented. These evaluations are done by
utilizing NS-2, a tool that has been widely used in the computer net-
work design.

1 Introduction

Traditionally, on-chip global communication has been addressed by shared-bus
structures and ad-hoc direct interconnection. These architectures are not scal-
able on large SoC de-signs [1]. Future SoC will contain a multitude of different
intellectual property (IP) blocks. Though sub-micron technology creates good
chances to reduce the gate delays, the global wire delays significantly increase
due to interconnect width and thickness or remain constant by including re-
peaters [2]. This matter leads to high power consumption. In order to support
the communication between these blocks in a structured way, a scalable commu-
nication architecture that supports the trend of SoC integration consists of an
on-chip packet switched network, generally known as Network-on-Chip (NoC)
[3]. By using this design approach, the need of global wire can be omitted. The
wires are now used only as the connections between switches. Also, we do not any
longer worry about global synchronization due to decoupling of the processing
nodes. Hence, Network-on-Chip designs have addressed the distinctive challenges
of providing an efficient, reliable interaction among System-on-chip components.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 256–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The two promising Network-on-Chip topologies are Mesh and Fat-Tree [6], [7].
Their performance evaluation with respect to physical constrains was introduced
by Petrini et al. [4]. The comparison showed clearly that the Fat-Tree topology
[5] has superior performance to that of Mesh topology.

In several application domains, such as multimedia processing, the bandwidth
requirement between the cores in SoCs is increasing. As an example of such a
media processing application, the block diagram of Video Object Plane Decoder
[8] is introduced in Fig. 1. In order to implement this VOP decoder and verify
all above mentions in terms of NoC architecture, we need to carry out the high
level NoC topology in the scenario of on chip network implementation. Choos-
ing simulation tool and defining the physical constraints for it are now at the
beginning stage. Among network simulation tools, NS-2 [9], with its capabilities
of describing network topologies, network protocol, packet scheduling schemes,
routing algorithm, and also traffic generation methods, emerges to be the suit-
able solution.

In [6] and [7], the author proposed the Mesh and Fat-Tree architectures for
NoC design. However, the performances of these architectures are not yet men-
tioned in terms of high level of topology evaluation. The mapping of cores onto
NoC architecture presents new challenges when compared to the mapping in
parallel processing because of the traffic requirements on the links of a NoC are
known for a particular application, thus the bandwidth constrains in the NoC
architecture need to be satisfied by the mapping [10]. The cores onto NoC archi-
tectures mapping problem is addressed in [10], [11]. In [11], a branch-and-bound
algorithm is used to map cores onto a mesh-based architecture satisfying the
bandwidth constraints and minimizing the total energy consumption.
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Fig. 1. Block Diagram of Video Object Plane Decoder (VOPD)

In this paper, we take the advantage of NS-2 to simulate and verify the per-
formance of our proposed interconnection architecture for a particular NoC’s
application. Because of particular application, VOPD with the communication
bandwidth in Fig. 1, we can manually choose the mapping modes and compare
the performances among these architectures and these mapping modes as well
with the relevant bandwidth between cores.
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2 Interconnection Architectures for Realizing VOPD

2.1 Mesh Architecture

The k − ary d− dimensional Mesh architecture is built by its dimension d and
radix k. The total number of switches is kd. The kd switches are organized in an
d−dimensional grid such that there are k switches located in each dimension and
wrap-around connections. Since the number of cores (IPs)that can be connected
to one switch is d−1 so the total number of mounted cores is clearly calculated by

NMesh = kd(d − 1). (1)

Denote b as the unidirectional bandwidth, the total bandwidth of the network
can be obtained by

BMesh = 2kdb. (2)

Mesh architecture offers a simple connection scheme and the number of the
mounted IPs is relatively high compared to the total bandwidth. Therefore the
Shortest Path routing is mostly applied on Mesh but the performance of Mesh
architecture is not high. Fig. 2 shows the example of 4-ary 2-dimensional Mesh
architecture.
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Fig. 2. 4-ary 2-dimensional Mesh topology

2.2 Fat-Tree Architecture

Fat-Tree is an indirect interconnection network based on a complete binary tree
that gets as thicker as it approaches the root. So The bandwidth of the Fat-
Tree increases as it goes closer to the root. A set of processors are located
at the leaves of the Fat-Tree and each edge of the tree corresponds to a bi-
directional channel between parent and child. These above feature make Fat-
Tree sufficiently applicable with advanced routing algorithm as Distance Vector
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instead of Shortest Path routing. The number of cores that can be mounted on
one certain Fat-Tree depends on the depth of the tree. As this depth increases,
the number of mounted cores and therefore the total capacity of the network
raise. This leads Fat-Tree architecture have better performance compared with
Mesh architecture. With k − ary d − dimensional Fat-Tree architecture, which
is shown in Fig.3 (case of k = 4, d = 2), the number of mounted IPs and the
number of switches are respectively calculated as follow

NFat−Tree = kd, (3)

SFat−Tree = kd−1d, (4)

Therefore the total bandwidth is presented by

BFat−Tree = 2kddb. (5)

3 VOPD Implementation Based on NS-2

The network simulator, NS2, with its capabilities of describing network topolo-
gies, network protocols, routing algorithms, packet scheduling schemes, as well
as traffic generation methods, has been broadly using in the field of computer
network design and simulation. Moreover, NS2 provides also the routing strate-
gies and the basic network transmission protocols, such as UDP and TCP. By
using the built-in NS-2, we can work out above mentioned obstacles.

With increased processing speed of cores and the integration of many applica-
tions onto a single device, the bandwidth demands will scale up to much larger
values. In Video Object Plane decoder shown in Fig. 1, each block corresponds to
a core and the edges connecting the cores are labelled with bandwidth demands
of the communication between them. The bandwidth demands are hundreds of
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Table 1. Application of On chip network constraints to NS2

On chip network model Applied NS2 constraints

Connections Rs2Rt and Rt2Rs
Transmission protocols UDP

Packet size 8 bytes
Buffer size 8, 16, 32 (packets)

Queuing schemes FQ or SFQ
Routing strategy Static
Routing schemes Shortest Path
Traffic generator Exponential

Mbytes/s. There are 12 blocks (or 12 cores) need to be considered. Hence, to
implement this decoder, the 16 switches NoC architecture is needed. It is 4x4
Mesh architecture or 4 - ary 2 - dimensional Fat-Tree. In this context, we carry
out the simulation for a random mapping as well as the suboptimal mapping
of the IPs onto the NoC architectures in the sense of data rate constraint. The
communication protocol used by NS-2 is defined in Table 1.

In particular, the VOPD must be implemented as the heterogeneous NoC
architecture. Therefore, the demands of communication bandwidth originated
from each core are different. This leads us to use fair queuing schemes such
as Fair Queuing (FQ) or Stochastic Fair Queuing (SFQ) instead of Drop Tail
queuing despite of their overhead in terms of complexity. This complexity can
be compensated by using UDP protocol and static routing strategy.

4 Simulation Results and Discussion

In this paper, we simulate to compare the performances offer by the two archi-
tectures, Mesh and Fat-Tree, using the similar options of routing, queuing as
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well as buffer sizes to verify the better architecture which is Fat-Tree. With 4x4
Mesh and 4 - ary 2 - dimensional Fat-Tree, data rate of each resource up to
200Mbps, the simulation result is shown in Fig. 4. As we can see, the Fat-Tree
topology with the embedded routing algorithm of Distance Vector and SFQ
queuing algorithm gains highest throughput. In the stable period, this design
achieves approximately 250Mbps higher than that of Mesh architecture using
Shortest Path routing and DropTail queuing schemes [12].

With certain application that is VOPD as mentioned, we use NS-2 with the
communication protocols described in Table. 1 to simulate 12-block VOPD for
the 4x4 Mesh architecture. We compare the performances between random map-
ping and suboptimal mapping with different bisection bandwidths. At first, we
just simply map the 12 VOPD blocks randomly onto 4x4 Mesh architecture
(Fig. 5). The AC/DC prediction block is mapped onto switch 0, ARM block is
mapped onto switch 1, IDCT block is mapped onto switch 2, and so on. The
corresponding data rates (in Mbps)of the connections between each two relative
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blocks were presented in Fig. 1. The simulations are done with different values
of the defined bisection bandwidth and the results indicate that with higher bi-
sectional bandwidth, the number of drop packets is smaller. This means that
aggregated throughput of each IP (block) increase. Particularly, when the 1000
Mbps bisectional bandwidth is applied to the connections between every two
adjacent switches, the throughput of each IP is saturated and is satisfy the
bandwidth requirement.

However, the saturated bisectional bandwidth above is high due to non-
optimal mapping of the IPs onto NoC architecture. This random (or non-optimal)
mapping not only results in high complexity and used area but also increases the
unnecessary usage of switches’ power. Therefore, due to the high requirement of
data transaction, the two IPs which transfer large amount of data to each others
should be allocated next to each others as shown in Fig. 6. This so called subop-
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timal mapping will decrease the load in links between switches so it will decrease
the data conflict as well as packet drop. Fig. 7 shows that with the bisectional
bandwidth of 800 Mbps we can obtain the saturated throughputs. It is signifi-
cantly better than previous non-optimal mapping with saturated bandwidth of
nearly 1 Gbps.

The last experiment is carried out to show the superior performance of Fat-
Tree architecture compare to Mesh architecture when applying them to VOPD
application. Fig. 8 depicts the throughput of the two architectures with bisec-
tional bandwidth of 500 Mbps, 800 Mbps and 1000 Mbps. It is shown that that
the Fat-Tree provides better performance in term of throughput. When the 800
Mbps bisectional bandwidth is applied to connections between every two adja-
cent switches in Fat-Tree case, the throughput of each IP also reach the saturated
point. It is the same as the case of suboptimal Mesh.

5 Conclusion

In this paper, we use NS-2 tool to simulate and carry out the high level simulation
of NoC based on Mesh and Fat-Tree topologies and achieve the best combination
for our design is Fat-Tree topology with the embedded routing algorithm of
Distance Vector and SFQ queuing algorithm. By allocating the Video Object
Plane Decoder’s blocks onto the Mesh NoC architecture and comparing the
performance of the non-optimal mapping and sub-optimal mapping we obtain a
fast mapping mode satisfying the bandwidth constraints of a Mesh NoC. With
the same mapping and the same condition, we reaffirm the superior of Fat-
tree architecture to Mesh architecture. For the time being, we just mention the
performance in term of throughput. Other parameters such as latency or area
are beyond of this paper. We will analyze them in the other works.
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Abstract. Network-on-Chip is a new methodology of System-on-Chip design. 
It can be used to improve communication performance among many computing 
nodes of parallel DSP architectures. Simulations based on the 16-node 2D-mesh 
DragonFly DSP architecture show that the routing distance of 72.9% inter-node 
communication is 1. A fast local router is proposed to improve the performance 
of this communication. Experiments on our simulator show that overall inter-
node communication delay is decreased by 59.4%. 

1   Introduction 

High-end and Large-scale DSP applications need more computing nodes to be inte-
grated into a chip. Advances in semiconductor technology make this trend possible. 
By the end of the decade, SoCs, using 50-nm transistors operating below one volt, 
will grow to 4 billion transistors running at 10 GHz, according to the International 
Technology Roadmap for Semiconductors. The major challenge designers of these 
systems must overcome will be to provide for functionally correct, reliable operation 
of the interacting components. On-chip physical interconnections will present a limit-
ing factor for performance and, possibly, energy consumption [1]. 

As the feature size of process technology continues to shrink, the performance 
of interconnect has not scaled as rapidly as the transistor switching speeds. Criti-
cal paths are becoming dominated by interconnection delays, especially when the 
logic is spread across the chip. 

A scalable communication architecture that supports the trend of SoC integration 
consists of an on-chip packet-switched micro-network of interconnects, generally 
known as Network-on-Chip (NoC) [1][2][3]. The scalable and modular nature of 
NoCs and their support for efficient on-chip communication potentially leads to NoC-
based multiprocessor systems characterized by high structural complexity and func-
tional diversity [4]. 

The DragonFly is a multiprocessor system for DSP applications, based on Net-
work-on-Chip methodology. Its network is delicately designed to achieve low delay 
with high channel utilization. 

2   DragonFly DSP Architecture 

The DragonFly DSP architecture integrates 16 DSP nodes, 8 I/O processing units 
(IOP) and 8 DRAMs (Fig.1.a). These DSP nodes, IOPs and DRAMs are intercon-
nected by two-dimension mesh. 
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Fig. 1. DragonFly DSP architecture (a) and DragonFly DSP node (b) 

Each DSP node contains (Fig. 1b): 

(1) A four-stage, in-order, single-issue, pipelined DSP core with three computing 
units: ALU, MAC, shifter [5]. 

(2) One level-1 instruction memory (L1 IM); Two independent level-1 data memory 
blocks (L1 DM, L1 PM) to support double data accesses simultaneously [5]. 

(3) Two memory controllers (MC) for remote memory access: MC0 for IM and 
PM, MC1 for DM; One system controller (SC) for passing system control mes-
sages, such as synchronization and system interrupt. 

(4) Network interface for packet buffering and translation between packet and origi-
nal message to or from MC and SC. 

(5) One fast local router for only inter-neighbor routing and one slow hybrid router 
for both local and remote routing. 

3   Network-on-Chip Subsystem 

The original DragonFly DSP node contains only a hybrid router for packet routing. 
Statistical results of the simulation that statically maps 6 benchmarks to 16-node 2D-
mesh DragonFly show that average 72.9% inter-node communication is between 
neighbors, that is to say, its routing distance is 1 (Table 1). 

Table 1. Routing distance (h) distribution for benchmarks 

 FIR FFT MM CONV ADPCM SSA 
h=1 56.8% 80% 57% 65.7% 93% 85% 
h>1 43.2% 20% 43% 34.3% 7% 15% 

Based on this communication locality, a double-router network is proposed to im-
prove performance of inter-neighbor routing by a fast local router and the original 
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hybrid router is used for both local and remote routing. Performance analysis below 
will show the improvement by this double-router network. 

3.1   Performance Analysis 

Agarwal’s contention model [6] for buffered, direct networks is used to evaluate per-
formance of our different NoC architectures. This model can estimate average delay 
for k-ary d-cube networks, in which there is no flow control and deadlock. The aver-
age delay of n bytes packet in k-ary d-cube networks is 

( , , , , ) ( ) ( , , , , )ave ave

n
T n k d w h h W n k d w

w
ρ ρ= + ⋅ Δ + ⋅  . (1) 
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Here, w is network bandwidth; aveh  is average routing distance;  is channel utiliza-

tion and  is router delay. 
Suppose there is no flow control and deadlock in two networks and their total 

bandwidth is same. The 16-node 2D-mesh network is a 4-ary 2-cube, that is to say, 
4k = , 2d = . Other parameters for double-router network and single-router network 

is depicted in Table 2. 

Table 2. Parameters for two networks 

Routers Parameters 
Local router (LR) 1aveh = , 1Δ = , Lw w=  

Hybrid router (HR) 4aveh = , 2Δ = , Hw w= , Hρ ρ=  

Single hybrid router (SR) 3aveh = , 2Δ = , H Lw w w= + , 4

3 H
H

w

w
ρ ρ= ⋅ ⋅  

The average delay of n bytes packet in local router (LR), hybrid router (HR) and 

single hybrid router (SR) is LT , HT , ST . 
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Suppose w = 12 bytes, : 1:1, 2 :1,4 :1L Hw w =  and  n = 6,12,24 bytes respec-

tively. According to equations (3)(4)(5), performance comparisons for different 
routers are given in Table 3, Table 4 and Table 5. It can be concluded that 

(1) ST  increases more faster than HT  as  increases and LT  isn’t affected by . 

That is to say, single-router network is more sensitive to channel utilization 
than double-router network. 

(2) ST  increases more faster than HT  and LT  as n increases. That is to say, sin-

gle-router network is more sensitive to packet size than double-router net-
work. 

(3) ST  is greater than HT  after  goes beyond certain point. That is to say, dou-

ble-router network guarantees lower delay under higher channel utilization 
than single-router network. 

Table 3. Packet  average delay under different channel utilization ( ) for three routers. Packet 
size is 6 bytes. 

 
ST  LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1) 

0.1 6.56 2 1.75 1.63 9.04 9.54 10.54 
0.3 6.71 2 1.75 1.63 9.14 9.64 10.63 
0.5 7 2 1.75 1.63 9.26 9.74 10.73 
0.7 7.67 2 1.75 1.63 9.4 9.86 10.83 
0.9 11 2 1.75 1.63 9.57 9.99 10.94 

Table 4. Packet  average delay under different channel utilization ( ) for three routers. Packet 
size is 12 bytes. 

 
ST  LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1) 

0.1 7.11 3 2.5 2.25 10.09 11.09 13.09 
0.3 7.43 3 2.5 2.25 10.29 11.27 13.27 
0.5 8 3 2.5 2.25 10.52 11.48 13.46 
0.7 9.33 3 2.5 2.25 10.80 11.72 13.66 
0.9 16 3 2.5 2.25 11.15 11.98 13.88 

Table 5. Packet  average delay under different channel utilization ( ) for three routers. Packet 
size is 24 bytes. 

 
ST  LT (1:1) LT (2:1) LT (4:1) HT (1:1) HT (2:1) HT (4:1) 

0.1 8.22 5 4 3.5 12.18 14.17 18.17 
0.3 8.86 5 4 3.5 12.57 14.55 18.53 
0.5 10 5 4 3.5 13.04 14.96 18.91 
0.7 12.67 5 4 3.5 13.60 15.47 19.32 
0.9 26 5 4 3.5 14.29 15.96 19.76 
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In Table 2, it is supposed that LR’s  is half of HR’s . In fact, the router delay 
 is dependent on router micro-architecture. Optimized micro-architecture will de-

crease delay of the local router greatly. 

3.2   Hybrid Router Micro-architecture 

The hybrid router adopts the micro-architecture of virtual-channel router proposed by 
Li-Shiuan Peh [7][8] (Fig. 2). There are p input controllers, each with routing logic, 
and virtual channel (vc) state and buffers for the v virtual channels per physical  
channel. The architectures of the global virtual-channel allocator and switch allocator 
vary with pi, po and v. The crossbar switch design is unaffected by v, and varies only 
with pi, po and w. 

Routing logic

Flit in

Switch allocator
(pi,po,v)

pi× po
crossbar switch

(pi,po,w) Flit out

Input controller 1..p

...... ......State 1..v

Buffers 1..v

Virtual channel
allocator
(pi,po,v) Credits

in

....

....
....

....

....

Credits
out

.......

Output controller

 

Fig. 2. Canonical micro-architecture of a virtual-channel router [7] 

The flow of flits through the states of routing, virtual-channel allocation, switch al-
location and switch traversal in a virtual-channel router is depicted in Fig. 3. Here, 
consider a two-flit packet, a head flit followed by a tail flit, flowing through a virtual-
channel router. In the virtual-channel router, there is a separate input queue and a 
separate copy of the channel state (vc state) for each virtual channel. When the head 
flit of this packet arrives at the input controller of the injection channel, its virtual-
channel identifier (VCID) field is decoded and the entire flit buffered in the appropri-
ate flit queue. For instance, the packet in our example is injected into input virtual 
channel 0 (vi=0) of the injection channel, and buffered accordingly into queue 0. At 
this point, virtual channel 0 enters the routing state, and the destination field of the flit 
is sent to the routing logic, which returns the output virtual channels {vo} (not physi-
cal channels) the packet may use. In this example, we assume the routing logic returns 
{vo=e0, e1} for the eastern output port [8]. 
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Fig. 3. Flow of a flit through routing, virtual channel allocation, switch allocation and switch 
traversal in a virtual-channel router [8] 

Upon receipt of the output virtual channels, the state for vi is set to virtual-channel 
allocation. Input virtual channel vi then sends its requests for desired output virtual 
channels to the global virtual-channel allocator, which collects all the requests from 
each virtual channel of the input controllers and returns available output virtual chan-
nels to successful requestors. When vi is allocated an output virtual channel, say, 
output virtual channel 1 (vo=e1) of the eastern port, the head flit consults the buffer 
count for vo and if there is a buffer available to hold the flit, it sends requests for the 
eastern output port to the global switch allocator. Instead of reserving output ports for 
the entire duration of a packet, the switch allocator of a virtual-channel router allo-
cates crossbar passage to flits of different packets on a cycle-by-cycle basis. Once this 
head flit secures passage through to the eastern output port, it leaves for the crossbar 
switch and on to the next hop, with its VCID field overwritten with vo. The buffer 
count for vo is then decremented. At the same time, a credit containing vi is returned 
to the previous hop, prompting the injection channel’s buffer count for virtual channel 
0 to be incremented [8]. 
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When the subsequent tail flit arrives, it is put into the buffer queue of input virtual 
channel 0, as its VCID field is 0. It then inherits the output virtual channel vo reserved 
by its head flit, and submits a request to the global switch allocator for the eastern 
output port if there are buffers available to hold it. Once it is granted crossbar passage, 
it informs the virtual-channel allocator to release the reserved vo, and leaves for the 
next hop, with its VCID field also updated to vo=1 [8]. 

3.3   Local Router Micro-architecture 

The routing delay of hybrid router is high. Its static circuit delay (no load) is at least 4 
cycles - routing, virtual channel allocation, switch allocation and switch traversal - 
and there are three kinds of dynamic contention delay (with load), respectively for 
virtual channel allocation, buffer allocation and switch allocation (Fig.2). Local router 
aims at routing inter-neighbor packets of the DragonFly architecture with stable one-
cycle delay. Its micro-architecture is optimized for this target. 

In local router, there are routing paths only between neighbor ports and local 
port(s), without neighbor-to- neighbor paths. That is to say, the local router is dead-
lock-free because no routing loop can exist; so virtual channel is not necessary any 
more for eliminating deadlock [9]. Suppose it has n neighbor ports and one local port. 
The local router is partitioned into two independent routers: router A for neighbors-to-
local path and router B for local-to-neighbors path (Fig. 4). 
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Fig. 4. Canonical micro-architecture of a local router. (a) Router A for n neighbor ports to 1 
local port; (b) Router B for 1 local port to n neighbor ports. 
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Fig. 5. Flow of a flit through the router A (a) and the router B (b) 

Flow of a flit through the local router is similar to that of the hybrid router. A flit in 
router A goes through output arbitration and multiplexer traversal, without routing and 
virtual channel allocation (Fig. 5a). A flit in router B goes through routing and tri-
state traversal, without switch allocation and virtual channel allocation (Fig.5b). The 
local router becomes faster than the hybrid router by eliminating two static routing 
states and one dynamic contention delay for virtual channel allocation.  

The local router can support more local ports to increase parallelism of local com-
munication and decrease its routing delay further. Suppose it has n m k= ⋅  neighbor 
ports and m local ports. Partition neighbor ports into m clusters and k neighbor ports 
in each cluster share a different local port. If n m= , the local router becomes ex-
tremely parallel and fast, and flits in it just request the available buffers and traverse it 
when granted. 

4   Simulation 

The simulator is our 16-node 2D-mesh DragonFly (Fig. 1). It supports two different 
networks: single-router or double-router. The size of its memory subsystem is config-
urable. The simulator configuration is listed in Table 6. 

Table 6. Simulator configuration 

 Single-router Double-router 
DSP node 16 16 
L1 memory 16K*16 16K*16 
DRAM 2M*8 2M*8 
Channel width 64 bits 32 bits for each router 
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Table 7. Benchmarks Description 

Benchmark Description 
FIR Finite Impulse Response 
FFT Fast Fourier Transform 
MM Matrix Multiple 
CONV 2D Image Convolution 
ADPCM Adaptive Differential PCM Coder/Decoder 
SSA Signal Spectrum Analysis 

Benchmarks include four typical DSP algorithms and two complex DSP appli-
cations (Table 7). The communication locality is greatly affected by how bench-
marks are mapped. Two rules are followed: 

(1) Load balance. The DragonFly architecture aims at maximizing parallelism of 
DSP applications. Load balance among so many nodes is the primary rule for 
mapping. 

(2) Communication minimization. Map those loads with more inter-node com-
munication to closer nodes as possible as it is. 

5   Conclusion and Future Work 

The simulation results (Table.8) show that DRN’s average delay is 40.6% of SRN’s. 
That is to say, the proposed local router decreases original network delay by 59.4%. 
This result is consistent with performance comparisons depicted in Tables.3-5,  
because average 72.9% inter-node communication is transferred through the fast local 
router. 

The DRN is introduced on the basis of 16-node 2D-mesh DragonFly DSP architec-
ture. It can be used to speed up communication in many NoC applications where 
communication locality is high. 

Table 8. Communication delays on 6 benchmarks for single-router network (SRN) and double-
router network (DRN) 

 FIR FFT MM CONV ADPCM SSA 
SRN 7200 36864 34560 8352 5964 97748 
DRN 2800 16096 12840 3628 4491 37619 

Area of DRN ‘s data-path is similar to that of SRN, because their overall  
bandwidth is same. A little more area is needed for DRN ‘s additional control logic. 
Two independent small routers of DRN may consume less power than one large 
router of SRN, especially when dynamic power management (DPM) techniques are 
used. Our future work will focus on area and power analysis of SRN and DRN. 
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Abstract. As silicon CMOS technology is scaled into the nanometer
regime, a whole system can be integrated into one chip. At the same
time, the computer-aided design technology is challenged by two major
features: the ever-increasing design complexity of gigascale integration
and complicated physical effects inherent from the nanoscale technology.
In this paper, a new methodology of integrating High Level Synthesis
and Floorplan together is presented. The whole design flow is divided
into two phases: a fast searching space scan procedure and a detailed
solution optimize procedure. The searching space of integrating HLS and
Floorplan is first “smoothed” by a “Behavior Information based Cluster
Algorithm”, and then a fast scan of this smoothed searching space is
proceeded. The result of the first phrase will be used as the start point
of the detailed optimize procedure. The experimental result show that
the methodology is efficient.

1 Introduction

As silicon CMOS technology is scaled into the nanometer regime, a whole system
can be integrated into one chip. Also, the computer-aided design technology is
challenged by two major features: the ever-increasing design complexity of gi-
gascale integration and complicated physical effects inherent from the nanoscale
technology.

It has been presented that, for a 50M-gates design (available on CMOS tech-
nology), more than 7M lines VHDL codes are needed at RT Level [9]. This will
be a big challenge for manual design. A higher level abstraction of circuit model,
such as high level synthesis, is needed to manage this huge functional complexity.
It has been presented that High Level Synthesis can ten times reduce the number
of lines of source codes [11] [10]. High Level Synthesis, will greatly enhance the
design efficiency.
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At the same time, with the proceed of manufacture technology, the feature size
of integrated circuits has been proceed into deep sub-macron level. As CMOS
technology scales down deeply, designing of devices and chips will encounter
the fundamental electrical and material limits[8]. Emerging physical problems
for design quality in nanometer technology is needed. In the nanometer regime,
interconnects has demonstrates over 70% of the total delay of a circuit, are un-
doubtedly a major factor in determining the chip performance. A manufacture-
aware design phases of EDA flow is needed to manage this deep sub-macron
physical effects.

In traditional design flow of integrated circuits, high-level synthesis does
scheduling and allocation, and then Floorplan determines the actual positions
of modules in a physical design. Since Floorplan is separated from high level
synthesis, no interconnect information can be supplied to synthesis process, and
no behavior information is left in Floorplan procedure. This communication-
less flow will cause serious problems. Because these two phases of design flow
are based on different delay estimation model, the result of high-level synthesis
may be totally wrong for floor-planning, especially in timing aspect. An effi-
cient and physically-based methodology to represent closer coupling between a
process technology and circuit/system design must be devised. The relentless
pursuit of cost reduction per function has made the interaction inevitable. Thus,
traditional assumptions for weak coupling and so called “divide and conquer”
approach no longer holds in searching for a self-consistent design solutions based
on nanometer technology[1]. To solve this problem, a co-operation between the
two phases is necessary

Several researchers has addressed the problem of integrating HLS and Floor-
plan together. J. P. Weng presented 3D algorithm in [2], which was known as the
one of the earliest research of this problem. P.Prabhakaran presented a simul-
taneous scheduling, allocation and floorplan algorithm in [7]. Recently, an algo-
rithm for unifying HLS and physical design is provided by M. Rim [6]. However,
the HLS and Floorplan are still separated in these algorithms, and the “complex-
ity explosion” problem can not be avoid. S. Tarafdar presented a data-centric
HLS and Floorplan algorithm in [4]. But the algorithm in [4] is a constructive
algorithm. As we known, most times, a simulated annealing approach may find
a better result in this kind of problems.

In this paper, a new methodology which combine High Level Synthesis and
Floorplanning together is presented. The main idea of the methodology is to
combine the High Level Synthesis phase and Floorplanning phase into one phase,
which do scheduling, allocation and floorplanning at same time, in order to
provide a self-consistent design solution.

However, because High Level Synthesis and Floorplan are both NP-HARD
problems, the simple combination of this two phrases will cause a “complex-
ity explosion”. To solve this problem, the whole flow of this new methodology is
divided into two phrases: a fast scan of a “smoothed” searching space of integrat-
ing HLS and Floorplan, and a detailed optimization phrase. In the first phrase,
the searching space is first smoothed by a behavior information based cluster
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algorithm, and then a fast scan of this “smoothed” searching space is proceeded.
And then, a rather detailed High Level Synthesis and Floorplan phrase is used
to search an optimized solution on the original searching space.

The paper is organized as following: in section 2, the problem formulation and
the representation of the solution is presented; in section 3, the first phrase of the
methodology is introduced in detail, including the behavior information based
functional units cluster algorithm; in section 4, the detail optimize algorithm is
described; the experimental result and the conclusion is given out in the last
section.

2 Problem Formulation and Representation of the
Solution

2.1 Problem Formulation

The inputs to our approach are a CDFG(Control Data Flow Graph)[5] and
resource constraints. The total delay of the circuit can be calculated by following
equation:

D = d × s (1)

where D is the total delay of the circuit, d is the delay of each control step, s is
the number of control steps. d is calculated as following:

d = max{di}; i = 1, 2, . . . (2)

where di is the delay of the ith control step. di can be calculated as following:

di = max df + dw (3)

where df is the delay of one active functional unit in the ith control step, and
dw is the delay of corresponding interconnect wires. dw can be calculated as
following:

dw =
R · C

2
R = r · l
C = c · l

(4)

where r is the unit-resistance of interconnect wires, and c is the unit-capacitance
of interconnect wires. l is the length of each interconnect wire.

The target of our approach is to optimize D in equation 1 under resource
constraints.

2.2 Representation of the Solution

A two-dimension grid is used to present the result of scheduling and allocation,
as shown in Figure 1, which was first presented in [3]. The rows of the grid
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Fig. 1. Using Two Dimension Grid to Represent the Result of High Level Synthesis

stand for control-steps of scheduling; while the columns stand for the functional
units to be used in the circuit. The result of scheduling and allocation can be
considered as the placement of the two-dimension grid.

As shown as in Figure 1 (a), operation B is placed in row 2 and column 2,
means that operation B is scheduled to control step 2 and allocated to functional
unit 2. When operation B is moved into row 2 and column 1, as shown in figure
1 (b), means the operation B is re-allocated to functional unit 1.

A Corner Block List (CBL) representation is used to represent the result of
Floorplan. CBL use 3 strings (S, L, T) to represent the result of Floorplan. A
typical CBL is shown as Figure 2.

 

e 

c g 

d 

f 

a 

b 

Corner Block List: 
S=(fcegbad) 
L=(001100) 
T=(0 0 10 10 0 10) 

Fig. 2. Use CBL to represent the result of Floorplan

CBL representation is a topology based non-slicing Floorplan representation
method. The detailed information about CBL is presented in [12].

3 Fast Scanning on a Smoothed Searching Space

3.1 Basic Process of the First Phrase

A simulated annealing approach is used in this “fast searching space scan”
phrase. For each iteration of simulated annealing approach, a new solution of
High Level Synthesis is retrieved. And then, a behavior information based func-
tional unit clustering algorithm is used to cluster functional units into several
groups. The functional units which are clustered into one group will be con-
sidered as a single “big” functional unit in Floorplan process. This will highly
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reduce the computational complexity of Floorplan, and the original searching
space is also smoothed by this clustering process. The whole flow of this first
phrase can be illustrated as Figure 3.

Obtain a new HLS solution

Calculate interconnect weight Matrix

Functional Unit Pre-Cluster

Floorplan based on the clustered 
functional units

Solution Evaluatioin

Finished

To Detailed 
Optimization

Fig. 3. Optimization Procedure in the First Phrase

As shown in Figure 3, any time a new HLS solution is obtained, a functional
unit clustering process will be used to cluster functional units before Floorplan.
This functional unit clustering procedure will highly reduce the complexity of
Floorplan. Also, this procedure will reduce the accurateness of interconnect infor-
mation, but it’s not fatal in this phrase. The interconnect information between
clustered functional units is enough for such a fast scan. A detailed optimize
procedure will be proceeded based on the result of this phrase.

In the first phrase of our methodology, the new solution of HLS is retrieved
by following actions:

– Reschedule an operation to a valid control step
– Reallocate an operation to an currently empty functional unit
– Reallocate two operations by exchange their functional units

These actions will be selected randomly to be proceeded in each iteration.

3.2 Behavior Information Based Functional Unit Clustering

The functional unit clustering algorithm is based on the weight of each intercon-
nect wire. In traditional design flow, the behavior information is lost in Floorplan
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phrase. Interconnect optimization in Floorplan can only base on the physical
weight of each interconnect wire. A new algorithm is presented in this section.
This algorithm calculates the weight of interconnect wires based on behavior
information.

An interconnect weight matrix M is used to proceed functional unit clustering.
For convenience, let’s assume that the number of functional units is n, and
assume that the number of operations in CDFG is m.Then, the interconnect
weight matrix will be a n × n matrix, as shown in equation 5.

M = |ai,j |; i ∈ [1, n], j ∈ [1, n] (5)

where ai,j means the interconnect weight between functional unit i and func-
tional unit j. Registers are considered as a special kind of functional unit too.
The value of ai,j can be calculate by equation 6

ai,j =
∑

k

WOk · Wok,i · Wol,j · Wok,ol
; k ∈ [1, m], l ∈ [1, m] (6)

where m is the number of operations in CDFG. Wok,i will be 1 if the kth operation
is allocated to functional unit i, 0 if not. Wol,j will be 1 if the lth operation is
allocated to functional unit j, 0 if not. Wok,ol

will be 1 if there is a direct data
flow between the kth operation and the lth operation (storing variables into
register is considered a special operation), other wise 0. WOk can be calculated
by equation 7.

WOk =
Dcs

Dcs − Do
(7)

In equation 7, Dcs means the delay of a control step, and Do is the functional
unit delay of this operation.

As shown in Figure 4 (a), operation A and operation B are both allocated
to functional unit FU1, and their outputs are both stored in register Reg1. It

Reg

A

B

Reg
1ns

2ns

10ns

11ns

Reg1 Reg2 FU1 FU2

Delay of Operation A on Functional Unit 1 = 0.8ns

Delay of Operation B on Functional Unit 1 = 0.7ns

Delay of Each Control Step = 1ns

WFU1,Reg1 =  1/(1-0.8) + 1/(1-0.7) = 8.33

(a) (b)

Fig. 4. Interconnect Weight between Two Functional Units



A New Methodology of Integrating HLS and Floorplan for SoC Design 281

easy to know that there will be only one group of interconnect wires between
functional unit FU1 and register Reg1 in physical design. The weight of this
interconnect, WFU1,Reg1, will be calculated as Figure 4 (b). This weight not
only represents the density of physical interconnects between two functional
units, but also represents the density of behavior interconnects between two
functional units.

For each time a new HLS solution is obtained, this matrix will be calculated.
The sum of each line of this matrix is calculated also. The functional unit with the
maximum value-sum will be considered the most “heavy traffic” functional unit.
This functional unit and all its neighbor functional units (who has interconnects
with this functional unit) will be clustered together. The weight between these
functional units will be updated to 0, and then another functional unit cluster
is calculated by the same algorithm until there is no functional unit left.

As we described above, for each iteration of the simulated annealing algo-
rithm: 1) a new HLS solution is obtained; 2) the interconnect weight matrix is
calculated, and functional unit clustering is then proceeded; 3) Floorplan based
on clustered functional units. The cost will be evaluated based on this Floorplan
result. When the simulated annealing algorithm is finished, a detailed optimiza-
tion process is proceeded.

4 Detail Optimization

When the first phrase is finished, an initial result of High Level Synthesis and
Floorplan is obtained. This result includes a two-dimension grid described in
section 2.2, and a initial Floorplan. A detail optimization procedure is then
proceeded based on this result. Because the initial Floorplan is based on pre-
clustered functional units, it will be unwrapped firstly. A simulated annealing
approach is used to proceed this detail optimization procedure. For each iter-
ation of simulated annealing algorithm, a new High Level Synthesis result is
firstly retrieved based on the floorplan information, and then a new floorplan
is obtained if necessary. Because the searching space of this phrase has been
constrained in a relative “small” scale, the floorplan according to this new High
Level Synthesis result will not change too much. An incremental Floorplan is
used to retrieve the new floorplan result. The design flow of the second phrase
can be shown as Figure 5.

A heuristic algorithm is used to get a new High Level Synthesis result based
on the floorplan information. The basic idea of this algorithm can be shown as
Figure 6.

The initial result of synthesis is shown as Figure 6 (a), and the result of
floorplan based on this result is shown as Figure 6 (f). From Figure 6 (f), it
is found that operation A is allocated to functional unit f2, which is too far
from reg4 to satisfy the delay constraint. It is also found that f3 is just the
very position for operation A. The following action will be taken to optimize the
solution: 1) The operation allocated to f3 (operation C in this case) will be taken
out of the grid. Then, operation A is re-allocated to f3, as shown in Figure 6 (b).
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Fig. 5. Detailed Optimization
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Fig. 6. High Level Synthesis Optimization Based on Floorplan Information

This action can be repeated several times to find a better solution. 2) Operation
C is allocated to another functional unit. If it is possible to allow operation C
to execute in more control steps, then re-schedule it, as shown in Figure 6 (c).
3) Disturb the grid under constraints by rescheduling some operations under
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constraints, as shown in Figure 6 (d). 4) Repeat these procedures to find a
better solution.

The basic idea and the entire searching procedure has been described above.
In detail, a virtual force-balance algorithm is used to obtain a new High Level
Synthesis result.

For each operation O in the grid, the local path set S of this operation can
be defined as following:

S =< f × R >

R = {r1, r2, . . .}
(8)

where f is the functional unit where operation O is allocated. R is the set of
registers which has direct data flow with operation O, as shown in Figure 7.

A

B

C

r

r

r

f

local path set of 
operation B

Fig. 7. Local Path Set

For each operation O in the grid, assume that the operation is allocated to
functional unit f . A virtual force acted on the operation O is calculated by
following equation:

Fo =
∑

i

Fo,ri (9)

where Fo,ri is the force caused by the ith register in the “local path set” of
operation O.

Fo,ri = Pri − Pf (10)

where Pf is the position of functional unit f , Pri is the position of the ith
register in the local path set of operation O. In this case, the best position for
operation op on a chip is the functional unit where the virtual force acted on O
is minimized.

While the best situation of the circuit is that all its operations are on their
best position or nearly best position. According to the grid representation, the
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For each control step (cstep) in grid {
For each kind of operation begin in this cstep {

Select an operation O of this kind of operation which begin
execute in this cstep randomly.

Set the iterative count to be zero.
Calculate the best column for O in this cstep.
Take O out of the grid.
While ( count is less than max-count and

the best column of O is not empty in this cstep)
if (the best column in this cstep is locked by an operation O′) {

Calculate the next best column for O in this cstep.
} else {

Take O′ out of the grid.
Put O into the best column in this cstep.
Set O = O′.
Calculate the best column of O in this cstep.
count ++

}
}
if ( the best column of O in this cstep is not empty) {

Calculate the best empty column for O in this cstep.
Put O into the best column in this cstep

}
}

Fig. 8. Reallocation/Rescheduling Algorithm based on Floorplan

best column for operation O in a grid is the column represents the best functional
unit for O on the chip. The re-allocation algorithm is described as Figure 8.

The re-allocation procedure was called alternatively to find a good solution. If
a better result is not found in finite iterations, one operation will be re-scheduled,
or an additional functional unit resource will be added. No matter new resources
are added or not, an incremental Floorplan procedure will be called when a new
High Level Synthesis result is retrieved.

As we can see from the description above, this new HLS solution will not
change the original searching space of Floorplan too much. An incremental Floor-
plan will find a stable Floorplan result rapidly.

5 Experimental Result and Conclusion

The methodology is implemented and tested by C++, on Sun Sparc, Solaris.
The value of unit-resistance and unit-capacitance is presented in table 1. Table 2
presents the experimental result under 250nm technology, and Table 3 presents
the experimental result under 160nm technology. Table 2 and Table 3 have a
same structure. column 1 presents the example name, column 2 presents the
final number of control step of each circuit. column 3 gives out the used area
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ratio of the chip. The original delay of each control step and optimized delay of
each control step is presented in column 4 and column 5.

The experimental result shows that the performance of the final circuit can
be optimized 24% at most under 160ns technology.

Table 1. Parameter List

Description Value
r Wire resistance per unit length ( ω/ m) 0.075
c Wire capacitance per unit length (fF/ m) 0.118

Table 2. Experimental Result under 250nm Technology

Sample Name No. of CS Area Ratio Orig. Delay of each CS Opt. Delay of each CS Opt. Ratio
fir11 14 95.63% 3.4 2.7 79.41%
iir7 18 93.75% 2.4 2.0 83.33%

ellipf 17 91.21% 2.7 2.2 81.48%

Table 3. Experimental Result under 160nm Technology

Sample Name No. of CS Area Ratio Orig. Delay of each CS Opt. Delay of each CS Opt. Ratio
fir11 14 95.63% 1.7 1.3 76.47%
iir7 18 94.47% 1.9 1.6 84.21%

ellipf 17 94.62% 2.5 1.9 76%

We can draw a conclusion from the experimental result: in this paper, a new
methodology (including its supporting algorithms) is presented to integrate HLS
and Floorplan together; and the experimental result show that the methodology
is efficient.

The detailed algorithms of functional unit clustering based on behavior infor-
mation and the algorithm of the detailed optimization algorithm is also provided
in this paper, in order to support the methodology. However, the basic idea of
this methodology is the most important contribution of this paper. In traditional
methodology of EDA, the computational complexity is too high to find a good
result by simultaneously optimization of HLS and Floorplan. The motivation of
the first phrase of this methodology is to reduce the complexity of integrating
HLS and Floorplan, and avoid uncomplete search of the solution space. A be-
havior information based functional unit cluster algorithm is used to smooth the
searching space.

The main contributions of this paper are: 1) provides a new methodology
to integrate HLS and Floorplan together; 2) provides a behavior information
based functional unit cluster algorithm; 3) provides a detailed optimization al-
gorithm. The algorithms and the methodology are tested by examples, and the
experimental result show that the methodology is efficient.
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Abstract. A new chip design paradigm, so called Network on Chip, has
been introduced based on the demand of integration of many heteroge-
neous semiconductor intellectual property (IP) blocks. The Network on
Chip design not only requires the good performance but also the min-
imization of several physical constraints such as the network latency,
the used area as well as the power consumption of design. This paper
analyzes the average latency of heterogeneous Network on Chip archi-
tectures in which the shortest path routing algorithm is applied. This
average latency includes the queuing latency and the wire latency, and
is calculated for general cases of allocating IPs onto the fixed generic
switching architectures such as 2-D Mesh and Fat-Tree. With different
allocation schemes of IPs, the network has different average latencies.
Hence, this article presents an optimal search that adopts the Branch
and Bound algorithm to find out the optimal mapping scheme to achieve
the minimal network latency. This algorithm automatically map the de-
sired IPs onto the target Network on Chip architecture with the criteria
of lowest network latency. Some experiments of On Chip Multiprocessor
Network application are simulated. The results show that the network
latency is significantly saved with the optimized allocation scheme for the
several cases of generic architectures of On Chip Multiprocessor Network
application.

1 Introduction

The idea of designing a mass integration of System on Chip (SoC) IPs such
as processors, DSPs, as well as memory array was proposed in [1], so called
Network on Chip (NoC). This new design methodology allows us overcome the
hardest problem of SoC design which is the non-scalable global wires that used
to connect all the IPs. This complex system of wires, the main factor that leads
to the propagation delay exceeding the system’s clock period [5], is replaced
by the packet based switching core and the communication protocols which are
defined on it. The packet based interconnection network allows us flexibly choose
the network architectures, network protocols, etc. Obviously, these merits lead
to the improvement of the system’s performance as well as modularity.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 287–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The NoC, somewhat, resembles the parallel computer network. From the view
point of the parallel computer network, Agrawal [2] analyzed the limit of the in-
terconnection network in terms of the network latency. However, in this context,
the author strictly assumed that the network is homogenous. The work showed
the relation between the network performance and the variation of the required
bandwidth as well as the latency. Recently, the authors in [6, 7, 8] had different
approaches for the NoC design. They proposed the algorithms to automatically
map IPs onto the target NoC architecture so as to optimize the power consump-
tion. These papers used the same energy model for the power consumption, the
energies of one bit data consumed by switches and wires were assumed to be
constant. However, from our knowledge, these mentioned energies depend much
on the processing capability of switch and the flying time on wire [4, 12], re-
spectively. Due to the fact that the NoC architecture is totally heterogeneous in
terms of the differences in switch capabilities and wire connections, the desired
IPs are naturally different from one to the others such as DSP, RAM, USB, and
processor, etc. These lead us to model the latencies on the switches and wires to
calculate the network latency and then to optimize it by the optimal mapping
scheme of IPs onto the target NoC architecture.

For most of the applications, the satisfaction of the latency is one of the most
important factors that need to be strongly considered. In other words, it must
be extremely tight. Recently, an On Chip Multiprocessor Networks (OCMN) is
proposed by Ye et al. [3]. This application is expected to be mostly suitable for
NoC design due to its requirements of high computation and connectivity as
well. In this paper, we do analysis on the issue of NoC latency with different
generic architectures. Because the fact is that the longer the packet is travelling
around network in the single chip the more power is consumed. Consequently, the
fundamental issue that needs to be solved is: Which switching core should each
IP core be mounted to in order to minimize the network latency. To do so, we
first derive the closed form equation of the network latency including queuing
and wire latencies for the case of random mapping of IPs onto a pre-selected
NoC architecture to which the shortest path routing algorithm is applied. The
latencies of these random mappings would be varied due to the following realities:

– The routing table of applied routing algorithm would be changed in accor-
dance with the change of mapping IPs onto pre-selected NoC architecture.

– The queuing and wire latencies would be changed in accordance with the
content of the routing table.

We then utilize the optimal search algorithm, so called the Branch and Bound
algorithm, to automatically map the desired IPs onto the NoC architecture along
with guaranteeing that the network latency is minimized. The novelty of our
work in this paper can be summarized as follows:

– We design the NoC with the minimum network latency criteria with the IPs
being allocated automatically onto a pre-selected architecture as the outcome
of an optimal search

– The generic NoC architecture is considered in our latency derivation as well
as optimization.
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The rest of this article is organized as follows. The model of the NoC architecture
and its queuing as well as wire latency are analyzed in Section 2. The Branch
and Bound algorithm and the optimization of the latency constraint of the On
Chip Multiprocessor Networks application are introduced in Section 3. Finally,
we conclude our contribution and mention about our future work in Section 4.

2 Analysis of the On-Chip Network Latency

The network latency is composed by two components, queuing latency and wire
latency. The queueing latency stands for the latency that occurs inside the net-
work node (a combination of one switch and one mounted IP). While, the wire
latency presents the latency occurs along the wires that connect every two neigh-
bor switches. In this section, we analyze the mentioned latencies one by one.

2.1 Queuing Latency

Let us define the network node to be a combination of one switch and one
mounted IP as illustrated in Fig.1. This subsection derives the queuing latency
of the network. First, let us define the network node as M/M/1 model. The
average number of packets at the simple network node shown by Fig.1, Np, is
presented by

Np =
λ

μ − λ
, (1)

where λ denotes the arrival rate of the packet to the switch, while μ represents
the mean of the processing time of the network node. Applying the Little theorem
for this simple network node, the queuing latency is obtained by

TQueue =
Np

λ
=

1
μ − λ

. (2)

In this context, we consider a real complex network case depicted in the Fig. 2.
Without loosing generality, we can define the set Cj as the set of the incoming

IP Core
Switching

Core Server

Single Network
Node

Buffer

Packets arrive

Fig. 1. Single network node and queuing model
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Fig. 2. Complex network model

routes of the jth network node. For an ith individual route that belongs to Cj, the
average number of packets is N i

p = λiTi. Since the routes are i.i.d, we apply the
Little theorem to calculate the complex network node as the following equation

T j
Queue =

∑
i∈Cj

λiTi∑
i∈Cj

λi
=

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
. (3)

Here we should note that the set Cj includes the jth route which stands for the
route where the data from the jth IP is generated toward the jth switch, the λi is
the corresponding arrival rate of ith routes, and μj is the mean of the processing
time of the jth network node. The route latency is considered as the sum of the
latency of several given nodes that belong to this route.
Thus, the latency of ith route (Ri) is

T Ri

Queue =
∑

j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
× δij , (4)

where

δij =
{

1, ifjthnode ∈ Ri,
0, otherwise.

(5)

For certain mapping scheme of the pre-connected IPs onto a pre-selected NoC
architecture, the routing table will be determined accordingly to the used routing
algorithm (with an given application, the connections between IPs are predeter-
mined). By the known routing table, the network latency in terms of the queuing
latency is simply calculated.

2.2 Wire Latency

The wire latency, so called time-of-flight, basically implies the on-chip intercon-
nection latency. It is calculated based on how electrically it is modelled and
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designed. From [4], the on-chip interconnection can be modelled by RC, or RLC
models. The power dissipation increases analogously with the time-of-flight of
the signal. Among these mentioned models, the most popular one that we apply
in this article is RLC described by Fig.3. The wire latency of RLC model, or the
time of flight of signal through the interconnection, is represented by

loadC

x

Wx 0W
Driver

Fig. 3. General tapped RLC line model

TWire =
√

LlineCline, (6)

where Lline and Cline are the interconnection inductance and capacitance, re-
spectively. However, the values of interconnection inductance and capacitance
are depended on the physical shape of the designed interconnection. In terms of
the interconnection width, they are calculated as follow

Lline =
L0

W (x)
; Cline = C0W (x) + Cf , (7)

where L0 is the wire inductance per area unit, C0 is the wire capacitance per
area unit, Cf is the fringing capacitance per unit of length, and W (x) denotes
the line width as the function of x. For a given shape function W (x), the wire
latency of an interconnection that used to connect the two neighbor switches
finally is

TWire =

√∫ l

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx, (8)

where l is the wire’s length. Hence, it is clearly seen that the different lengths of
wires result in different values of wire latencies.
To find out the optimum shape function W (x) that minimize the wire delay
with the given value of l, we differentiate the right hand side of (8) and set the
differentiated equation to be 0 then solve it. The relation of W (x) with the other
parameters consequently is obtained as follows

W (x) = W0e
2L0C0

c x, (9)
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where c= 2Cf L0l
W0

. Therefore, we can conclude that the optimum shape function
of the RLC interconnection model must follow the general exponential function.
The above discussion shows how to calculate the wire latency of signal flying over
one hop (one hop is defined as the interconnection that connects two neighbor
switches). The route latency in terms of wire latency is calculated as the sum
the wire latencies over all the hops that belong to the mentioned route.

Thus,

T Ri

Wire =
∑

j

√∫ lj

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δij (10)

where T Ri

Wire is the ith route latency, and

δij =
{

1, ifjthwire ∈ Ri,
0, otherwise.

(11)

Consequently, the wire latency of the entire network is the sum of the wire
latencies of all the routes that belong to the routing table.

2.3 Network Latency

This subsection finalizes the equations that are used to calculate the network
latency. In the previous subsections, we already obtained individually the closed
form formulas of the queuing latency and the wire latency for one given route.

Based on the the predetermined connection between IPs and the shortest
path routing table of a certain mapping scheme of IPs onto the NoC architecture
considered in this article, the network latency in terms of the wire and queuing
latencies is calculated by

TNet =
m∑

i=1

[
T Ri

Wire + T Ri

Queue

]
, (12)

where m is the fixed number of routes belonging to the routing table.
Finally,

TNet =
m∑

k=1

[∑
j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
δkj

]
+

m∑
k=1[∑

n

√∫ ln

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δkn

]
, (13)

where the δkj and δkn are equal to 1 if the jth node and the nth wire belong
to the kth route, respectively, otherwise they are equal to 0. Straightforwardly,
TNet is the function of mapping IPs onto NoC architecture due to the fact
that the mapping scheme changes the given route between the 2 certain IPs
changes accordingly. It follows that the network nodes and the wires belonging
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to this route are different compared to those of the other mapping schemes.
Finding the minimum value of the cost function TNet returns the NP − hard
problem. To solve it, this article utilizes the Branch and Bound algorithm for
the latency metric. This algorithm automatically maps the IPs onto the target
NoC architecture to obtain the minimum latency.

3 Optimal Mapping Based on Minimum Latency Criteria

As discussed in the previous sections, the latency of the NoC depends very
much on how the mapping scheme of the IPs onto the fixed NoC architecture
is established. Simply described, for certain application, we identify that onto
which switch should IP be mapped so that the of network latency is minimized
under the assumption of the shortest routing algorithm is applied. To do so, we
have some definitions as follows:

Definition 1. An IPs Implementation Graph (IIG) G = G(V, λ) is a directed
graph where

– Each vertex vi represents a certain IP.
– Each directed arc λij represents the arrival rate of the data packets generated

from the ith IP toward jth IP.

Definition 2. An Switching Architecture Graph (SAG) G′ = G(U, R) is a di-
rected graph where

– Each vertex ui presents a certain switch core, the corresponding μj denotes
its switch’s mean of processing time.

– Each directed arc rij represents the route from ui to uj in the routing table.

Now we can state our mapping problem as follows:
Given an IIP and a SAG graphs that satisfy

Size(IIG) ≤ Size(SAG), (14)

and after mapping, the arc T (rij), as the cost function, denotes the route latency
that calculated by the summation of the RHS of the equations (4) and (10). The
Size() function denotes the number of vertexes on the graph. The shortest path
routing is applied in this context and the cost function of found path is the
accumulated latency after every hop.

Find a mapping scheme map() from IIP onto ASG which:

min
{
TNet =

∑
rij∈RT

T (rij)
}
, (15)

where RT denotes the routing table, or

min

{
TNet =

m∑
k=1

[∑
j

∑
i∈Cj

λi
1

μj−λi∑
i∈Cj

λi
δkj

]
+

m∑
k=1[∑

n

√∫ ln

0

L0

W (x)

∫ x

0

[
C0W (y) + Cf

]
dydx × δkn

]}
, (16)
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such that: ⎧⎨
⎩

map(vi) = uj ,
∀vi ∈ V, ∃uj ∈ U,
∀vi �= vj , map(vi) �= map(vj).

(17)

Without loosing generality, we assume that Size(IIG) = p ≤ Size(SAG) = q.
The example of mapping of 11 IPs onto the 4× 4 Mesh architecture is shown in
Fig. 4.
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the minimum latency  ?

Mapping result: An
example

Fig. 4. A mapping example

Since the number of ways of choosing p switches among q switches of the
target NoC architecture for p IPs is Cp

q , and also we can have p! permutational
cases of p given IPs. It follows that if we apply the simple Min-Max algorithm to
find out the minimum network latency accordingly with the optimum mapping
scheme, the complexity can be measured by

Complexity = O
(
p! × Cp

q

)
. (18)

This order of complexity returns the NP-hard search. In order to reduce the
complexity while working out the automatically optimal mapping as well as the
minimum network latency, we apply the wellknown search algorithm, so called
Branch and Bound (BnB) [10]. The adding, removing and sorting path opera-
tions of BnB algorithm for figuring out the optimal path (equivalent to finding
out the optimal mapping) of this mentioned case are based on the accumulated
latency at each network node. The BnB algorithm is shortly presented by the
piece of random code depicted in Fig. 5. The Optimum mapping cost is the min-
imum latency metric and the new path’s cost is the accumulated latency of one
route. This route must belong to the shortest path routing table. The optimal
mapping’s latencies of Mesh and Fat-Tree architectures of OCMN in terms of
topology sizes are respectively depicted in Fig. 6 and Fig. 7.
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Sort the IPs by their arrival rates
Optimum_mapping_cost = + infinity
1. QUEUE  <--  path only containing the root_node;

2. WHILE     (QUEUE is not empty
AND first path does not reach goal

(Optimum_mapping_cost)) {
      For each unoccupied switche node {

create new_path (to a children node);

allocate routing paths (with respect to shortest
path routing table);

calculate the accumulated cost as the
accumulation of network node latency;
if (new path's cost < Optimum_mapping_cost){

Optimum_mapping_cost = new_path's
cost;

Optimum_mapping = new-path; }
          add the new_path to the QUEUE;
     }

3. IF Optimum_mapping_cost reached
THEN  success;
ELSE  failure;

Fig. 5. The BnB algorithm
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Fig. 6. Optimal network latency of Mesh architecture
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Fig. 7. Optimal network latency of Fat-Tree architecture

Table 1. Mesh architecture of OCMN

Architecture RM Latency BnB latency Latency saved

3 × 3 Mesh 374μs 237.5μs 36.5%
4 × 4 Mesh 627μs 374μs 40.3%
5 × 5 Mesh 836μs 588μs 29.6%

Table 2. Fat-Tree architecture of OCMN

Architecture RM Latency BnB latency Latency saved

8 Fat-Tree 258μs 174μs 32.4%
16 Fat-Tree 516μs 338μs 25.6%
32 Fat-Tree 924μs 714μs 22.7%

As can be seen in this figure, the bigger size or the higher number of mounted
IPs and switches is, the more latency occurs. The number of mounted IPs and
also the number of switches of Mesh architecture are 9, 16, and 25, respectively.
For the Fat-Tree architecture, we simulate three topologies with number of IP
are 8, 16, and 32, respectively. The simulation results of this work in terms of
latency savings for the Mesh and Fat-Tree architectures of OCMN are depicted
in Table 1 and Table 2. As we can see in these table, the most latency saving in
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case of Mesh architecture is 40.3% compared to Random Mapping (RM) scheme
corresponding to 4 × 4 Mesh, and the most latency saving in case of Fat-Tree
architecture is 32.4% compared to RM scheme corresponding to 8 Fat-Tree. We
denote the RM schemes are the mapping schemes that IPs are mounted onto
switches randomly. Hence, the network latency metrics are randomly achieved.
In these experiments, we apply the 0.18μm technology for the RLC wire model
and Markovian models for IPs and switches.

4 Conclusion and Future Work

In this paper, we analyzed the heterogenous NoC network latency in terms of the
queuing and wire latencies. We also applied the Branch and Bound algorithm
to automatically map the desired IPs onto the pre-selected NoC architecture in
order to obtain the minimum latency. We carried out the experiments for generic
Mesh and Fat-Tree architectures of OCMN application. The results showed that
the optimal network latencies corresponding to optimal mapping of IPs onto
NoC architecture are significantly saved in comparison with the random map-
ping latency. In the future, we have plan to figure out the relationship between
the latency and the power in the sense of both analytical analysis as well as
simulation for the RTL level of IPs and NoC architectures.
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Abstract. The purpose of this paper is to develop a flexible test method with 
high efficiency for core-based system-on-a-chip (SOC). The novel feature of 
the approach is the use of an embedded microprocessor/memory pair to test the 
remaining components of SOCs. The characteristics are: (1) Several IP cores 
can be tested in parallel; (2) The order of test tasks need not to be queued 
during test integration, but scheduled by test program. It is called 
microprocessor based self schedule and parallel BIST for SOC (MBSSP-BIST). 
By analyzing the bandwidth of test data, the feasibility of MBSSP-BIST is 
proved. Finally, several SOCs in ITC’02 benchmark are used to verify the 
approach and the results show that MBSSP-BIST can improve test efficiency 
significantly.  

1   Introduction 

Recent development in semiconductor technology have made it possible to design an 
entire system onto a single chip, commonly known as the System-On-a-Chip 
(SOC)[1]. A related practice which is evolving is the use of predefined logic called 
Cores or Macros[2]. A Core is a highly complex logic block which is fully defined in 
terms of its behavior, also predictable and reusable[2]. System designers can purchase 
cores from core-vendors and integrate them with their own user-defined 
logic(UDL)[3] to implement SOCs. It is referred to these designs as core-based 
systems. 

Core-based SOCs have significant advantages. Because most of system is on the 
same chip, SOCs can operate faster with less power. SOCs reduce the number of 
discrete components used, thereby reducing the total size and cost of the end-product. 
Furthermore, using embedded cores in SOCs has the potential of greatly reducing the 
time-to-market because of the design re-use involved. 

Testing core-based systems is a major challenge. The major factor is that the 
accessibility of the cores and blocks is greatly reduced. Furthermore, the system 
designer might have a restricted knowledge of the core internals due to the protection 
of Intellectual Property(IP) of the cores.  

Unlike the way smaller designs are tested, SOCs cannot be tested as a single unit 
because such a test solution would give a poor fault-coverage and the overall test 
generation is impractical, and often impossible. A better way to test SOCs is testing 
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each of the cores separately, with other tests to determine whether the system 
functions as a whole.  

Researchers have focused on several aspects of the SOC testing, such as Test 
Access Mechanism(TAM)[4][5][6], Test Wrapper design[7][8][9], Test Scheduling 
and optimization[10][11][12][13], etc. All these researches are based on the testing 
method that uses the Automation Test Equipment(ATE) directly. According to 
ITRS01, the ATE performance is improving at a much slower rate than the speed of 
the device. This implies an increasing yield loss due to external testing since ground-
banding  to cover tester errors results in a loss of more and more otherwise good 
chips. Furthermore, high-speed testers are very costly and might not be available for 
some high performance chips. 

Built-in self-test(BIST) and design-for-testability(DFT) have been regarded as 
possible solutions. BIST solutions eliminate the need for high speed testers and offer 
the ability to apply and analyze at-speed test signals on chip with greater accuracy 
than that of the tester. However, the addition of DFT hardware incurs non-trivial area, 
performance, and design time overhead, and thus slowing down the time-to-market. 
In addition, existing structural BIST techniques cause abnormal power consumption 
due to the high-switching random patterns applied in the test mode. Therefore, new 
BIST techniques have to be developed.  

2   Related Works 

In IP core based SOCs, examples of IPs are microprocessors, DSPs, PCI, MPEG and 
JPEG cores. In addition, memory cells such as RAM/ROM may be embedded in 
SOC. User defined logic(UDL) consists of all other logic entities added by the user to 
customize the circuit. The embedded microprocessors or DSPs can realize complicate 
functions, and can be used to test other parts of the SOCs. 

Kwang Ting Chen et al proposed an “embedded software-based self-test for SOC 
design”[14]. They constructed an SOC based on PCI bus. The SOC contains a 
microprocessor. Test program can be downloaded into the embedded memory first, 
then microprocessor runs in functional mode and executes the test program. The test 
program contains test pattern generation, test pattern application and test response 
analysis. In this method, IP testing and connection testing can be done with the 
microprocessor on the SOC, and this can eliminate the requirement of the high-speed, 
high accuracy ATE. 

Like Kwang Ting Chen, Papachristou et al also uses a microprocessor as test 
controller. In this research, IP core vendor is responsible for test pattern generation. IP 
testing is divided into three steps: (1)Download phase, the compressed test data are 
organized into frame format and downloaded into the embedded memory through 
DMA interface. (2) Test pattern application, the embedded microprocessor reads test 
data from memory, decompresses them and then applies the decompressed data on the 
IP under test. Once an IP testing begins, the IP occupies the microprocessor and 
memory until its testing is over. (3) Test response analysis, when a test pattern is 
applied on the IP core, test controller reads the response and compares it with the 
anticipated response to see if there are errors in the circuit. 
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Compared to the conventional structural BIST, the above two methods improve 
test efficiency, and have the following characteristics: (1)Resource reuse; (2) Test 
costs reduction; (3) Test accuracy improvement; (4) Functional test and at-speed test. 

In the methods, all the IPs in an SOC are tested serially. When an IP test task 
occupies the test controller, embedded memory and data bus, it will not release these 
resources until its test task is finished, even if these resources are idle during its test 
procedure. This obviously reduces the usage efficiency of these test resources. 

In the methods, the order of all the test tasks are queued in the test integration 
procedure. But the different test order can result in different test time[15], so test 
integration engineers have to schedule the test order elaborately, and this is an aspect 
of test schedule, and is also an NP complete problem which can be solved by all kinds 
of heuristic algorithms. These algorithms have high complexity and long computation 
time, which reduce the test development efficiency and prolong the test development. 

This paper proposes a test method named “Microprocessor Based Self Schedule 
and Parallel BIST” for SOC, which does not need to order the test tasks manually and 
can test different IPs in parallel. 

3   Basic Method 

In order to improve the usage of the microprocessor, memory and system bus, 
different steps of IP test can be overlapped, this method results in parallel testing of 
different IPs.  

Because of the programmability of the embedded microprocessor, if a test task 
(IP1) does not need shared test resources for a period of time before its test procedure 
finishes, these test resources can be assigned to other test tasks. In this period, IP1 
tests itself under the control of its local test resources, such as scan chain controller or 
BIST controller etc. This can overlap the test steps of different test tasks as fig.1. 

 

Fig. 1. Parallel Test 

In Fig.1, during period 0~T1, microprocessor is used to schedule for IP1, data bus 
is used to transfer test data for IP1 during period T1~T3, the local DFT circuit of IP1 
is working and applying test data during period T3~T7. In the same way, IP2 is 
scheduling during T1~T2, transferring test data during T3~T5, and applying test data 
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during T5~T9. From the figure, it can be seen that during period T5~T6, IP1 and IP2 
are tested in parallel, and IP1, IP2 and IP3 are tested in parallel during T6~T7. 

Because there exist many memories in SOCs, the test state of every IP core can be 
stored in memories. Software which runs on the microprocessor can record the 
execution of every test task and every test resource, and can decide which test task 
will be served in the next period.  This test schedule is controlled by the test program 
which is stored in the embedded memories, rather than controlled by the test 
integration engineers during test integration period. This method has the characteristic 
of self schedule. 

In fig.2, at the T7 moment, IP1 cannot execute its test procedure because there is 
either no test data to consume or no space to store test response, IP1 has to send a 
request to test controller. But at this moment, test controller is serving for IP2, IP1 has 
to send the request repeatedly. IP3 sends a request at T8 moment. At T9 moment, 
IP2’s request has been finished and the test controller becomes idle,  IP1 and IP3 are 
both sending request at this moment. The arbiter program in the test program selects 
one of the IPs of IP1 and IP3 according to their request types and the states of the 
shared resources. In fig.2, IP3 is selected at the T9. At the T12 moment, the test task 
of IP2 is finished, the test controller selects IP4 from waiting queue and actives it. 

 

Fig. 2. Self Schedule 

The test method is called “Microprocessor Based Self Schedule and Parallel Built-
in-Self-Test” (MBSSP-BIST). 

The conceptual architecture of MBSSP-BIST is shown in fig.3. Test program and 
test data are stored in External Tester, which can be a cheap, low-speed ATE or a 
computer system. When the test procedure begins, test data and test program are 
downloaded into embedded memories through Memory/IO Interface. Microprocessor 
is working in functional mode, fetching instructions and executing test program. At 
the appropriate moment, microprocessor transfers test data from memories to the 
wrapper of IP through system bus. The IP under test is tested by the control circuit 
located in wrapper, and the test response is stored into the buffer in the wrapper. 
Microprocessor reads test response from buffer and analyzes it at the appropriate 
moment. 
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From fig.3, it can be seen that there are several buffers on the path from external 
tester to IP under test. These buffers can act as pipeline buffers and support parallel 
test. In this architecture, the required hardware almost exists in the architecture of 
SOC test which uses ATE directly. As a path that transfers data in/out of SOCs, 
Memory/IO interface is a dedicated unit for all SOCs, memory and microprocessor(or 
DSP) almost exist in all SOCs. System bus can be reused in test mode. IP wrapper 
must be added in structural test. So in MBSSP-BIST, little hardware has to be added. 

 

Fig. 3. Conceptual Architecture 

Because there are memories used as data buffers, the real test speed can be higher 
than that of the External Tester. 

4   Feasibility Analysis 

When testing an SOC with ATE directly, test data transfer from external tester to 
circuit under test (CUT) through TAM, the bandwidth of tester is equal to the 
bandwidth of the CUT consuming, so the test speed is under restriction of the tester’s 
speed and the TAM width. 

Assuming the frequency of the memory/IO interface is 
IOMemf /

, the width of the 

data is 
IOMemW /

, the speed of test data transferring from external tester to SOCs is 

IOMemIOMemIOMem WfV /// ×= . In the same way, test data consumption speed is 

ernalernalernal WfV intintint ×= , where 
ernalfint

 is the test frequency of IP, and ernalWint  is 

the test data consumed in one cycle. 
In order to describe the problem, 2 conceptions are defined: 

Definition 1:  Test Data Flux on Interface is the amount of test data transferred 
through Memory/IO interface to SOC under test, and is identified as 

IOMemM /
. 
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Definition 2: Equality Test Data Flux is the real amount of test data applied on the 
circuit under test, and is identified as 

equalityM . It determines the time that test data can 

be consumed. For scanned circuits, 
equalityM  equals to the amount of test data 

transferred through Scan-in and Scan-out port of the scan chains. For BISTed circuits 
which use pseudo-random method, 

equalityM  is the amount of test data that are 

generated by the longest LFSR. 
From these 2 definitions, the test data transfer time 

transferT and the test data 

consumed time 
consumeT  can be defined as follows: 

IOMemIOmemtransfer VMT // /= = )/( /// IOMemIOMemIOMem WfM ×  (1) 

ernalequalityconsume VMT int/= = )/( intint ernalernalequality WfM ×  (2) 

The relationship of these 2 values can be used to prove that the parallel test is 
reasonable. The ratio of the two values is: 

transferconsume TT /  

= )]/(/[)]/([ ///intint IOMemIOMemIOMemernalernalequality WfMWfM ××  

= )/()/()/( /intint// IOMemernalernalIOMemIOMemequality WWffMM ××  

 

 

 

(3) 

For any IP core, 1)/( / ≥IOMemequality MM , when IOMemernal ff /int = , ATE tests the IP 

core directly. 
IOMemW /

 is the data bus width of the SOC, which is generally 32 bits at 

the current manufacturing techniques. 
ernalWint  is the amount of test data consumed by 

the circuit in one cycle, and it equals to the number of scan chains when the DFT 
method of the circuit is scan. From the analysis of the benchmark circuits in ITC’02, 
it can be seen that most of the IP cores have less than four scan chains [16]. For a 
single IP , the speed of the memory/IO interface is fast enough to provide test data, 
and because of 

ernalIOMem WW int/ > , the value of expression (3) is larger than 1, it is 

possible for multiple IP cores to be connected on test bus to realize parallel test, but 
the frequency of the ATE and test are equal. 

When 
IOMemernal ff /int > , 1/ int/ <ernalIOMem ff , because 1/ /int >IOMemernal WW  and 

1/ / ≥IOMemequality MM , the value of expression (3)  is possibly  larger than 1, and 

possibly less than 1. From the analysis result of ITC’02 Benchmark, it can be seen 
that the value of IOMemernal WW /int /  is about 8, so the value of expression (3) will not 

be less than 1 if ernalIOMem ff int/ /  is not less than 1/8, which is reasonable under the 

current technique.  
Furthermore, the value of IOMemequality MM // can be discussed. According to the 

types of DFT and the application method of test patterns, IP cores can be classed into  
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the following types: (1) Cores with decompressed and deterministic test patterns. 
These cores have the characteristic that isiticerequalityisticerIOMem MM mindetmindet/ )()( = . 

(2) Cores with compressed and deterministic test patterns. The compressed ratio is K, 
that is, KMM compressedequalitycompressedIOMem =)/()( /

. (3)Cores with structural BIST. 

When testing these cores, only the BIST circuits need to be activated. When BIST 
finishes, BIST results are read and analyzed. In this case, test data transferring 
through memory/IO interface is only the length of 2 instructions, and the amount of 
test data applied to the CUT is the test data generated by the DFT circuit. 

lengthninstructioM BISTedIOMem _2)( / ×=  bits, where instruction_length is 

generally 32 bits, 64)( / =BISTedIOMemM  bits. In BISTed circuit, it is the most popular 

to generate test patterns with LFSR, an n bits  LFSR can generate nn ×− )12(  bits test 

data. Because all the LFSRs in a IP can work in parallel, 

nM n
BISTedequality ×−= )12()(  bits where ),max( iln =  and il is the length  

of ith LFSR. (4)Cores with pseudo-random test pattern generated by software.  
In this case, software simulates LFSR to generate test  
patterns, lengthninstructionubmerninstructioM BISTedPIOMem __)( _/ ×=  bits, 

nM n
BISTedPequality ×−= )12()( _

 bits. In any microprocessor, a software program which 

simulates LFSR has instructions less than several hundred.  
Suppose in an SOC, the number of cores of these 4 types are 
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The amount of test data applied on the CUT is : 
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So, we have expressions (6) (on the next page).  In expressions (6), the two parts of 

the denominator 
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 is much small 

compared to test data applied to the CUT, so they can be ignored approximately. In 
this way, expression (6) changes to expression (7). 
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expression (7) is as follows: 
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For cores with compressed and deterministic test patterns, it is assumed that the 
compressed ratio for ith core is iK . For cores with decompressed and deterministic 

test patterns, their compressed ratio can  be considered 1, so expression (7) changes as 
follows: 
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Because 1≤iK , expression (9) can be deduced (On the next page): 

From 1)/()/( /intint/ >× IOMemernalernalIOMem WWff , by replacing the appropriate 

parts in expression (3), the following result can be obtained: 1/ >transferconsume TT . 

In order to eliminate the inaccuracy of ATE, more and more IP cores take BIST or 
pseudo-BIST as their DFTs, and this results in the last part of the numerator in 
expression (8) larger and larger, the denominator smaller and smaller, and the value of 

IOMemequality MM //  larger and larger , which causes transferconsume TT /  to become larger 

and larger. 
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For certain number of IP cores, several test tasks can run parallel if 
1/ >transferconsume TT . If the value of transferconsume TT /  is larger than the number of IP 

cores under test, all the cores can be tested at-speed. If the value of transferconsume TT / is 

less, some of IP cores under test can be  tested at-speed, and this is valuable if some 
IPs must detect delay faults. 

5   Experiment Results 

An experiment environment is constructed to verify the MBSSP-BIST according 
fig.3. In the experiment, a microprocessor based on Intel 486DX4 is used as test 
controller, the circuits in ITC’02 are used as IP cores. They are connected through a 
32-bit data bus. The width of data bus is also extended to 64 bits.  Some logic that is 
only for test purpose is added to the processor and a kind of IP test wrapper is 
designed. A test control program is designed to control the test procedure according to 
the basic method of MBSSP-BIST in section 3. 

The test time of every SOC is shown in Table1.  

Table 1.  Experiment for ITC’02 

SOC TAM Width [17]1 [17]2 [17]3 M-BIST4 
32 87400 67680 49927 40841 D695 
64 38006 27804 24688 20699 
32 657574 590661 518722 422453 

P22810 
64 630646 319212 270676 211385 

32 1923386 1468967 121589
6 

992425 
P34392 

64 1278277 633937 610760 534613 
32 3905079 2575413 1974419 1667646 

P93791 
64 1532709 1127242 1076828 947649 

Notes: 1. Only one Scan Enable Pin. 
 2. A Scan Enable Pin per TAM. 
 3. Pin-Constrained TR-Architect. 
 4. MBSSP-BIST. 

In this case, test control signals[17] are considered. The test time is given in test 
clock cycles. From the experiment, it can be deduced that MBSSP-BIST also 
improves the efficiency of TAM bandwidth. The improved ratio is shown as  
Table 2. 
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Table 2. The Improved Ratio of ITC’02 

SOC TAM Width [17]1 [17]2 [17]3 
32 53.68% 40.19% 18.92% D695 
64 45.54% 25.55% 16.16% 
32 35.76% 28.48% 18.56% 

P22810 
64 66.48% 33.78% 21.90% 
32 48.40% 24.44% 18.38% 

P34392 
64 58.18% 15.67% 12.47% 
32 57.30% 35.25% 15.54% 

P93791 
64 38.17% 15.93% 12.00% 

From Table 2, it can be seen that MBSSP-BIST improves by about 
12.00%~21.90% compared to other methods when the test frequency equals to that of 
external tester. In MBSSP-BIST, because the test frequency can be higher than that of 
external tester, the test efficiency will be improved more notably. 

6   Conclusion 

In this paper, a test method named MBSSP-BIST is proposed. Based on the 
microprocessor and memories embedded on SOCs, every test task of IP cores can be 
done as software program of microprocessor. Using this test method, test integration 
engineers need not schedule the IP test order, this work is done by the test program 
during test procedure. This can greatly reduce the work of test integration engineers 
and improve test development efficiency. Since the test procedure is divided into 
several phases and can be overlapped, and since the SOC test speed is not limited to 
the tester’s speed, the overall testing time is reduced. 
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Abstract. This paper presents a self-correcting control unit design using 
Hamming codes for finite state machine (FSM) state encoding. The adopted 
technique can correct single-bit errors and detect two-bit errors in the FSM 
register within the same clock cycle. The main contribution is the development 
of a parameterizable VHDL package and the respective error-correcting 
modules, which can easily be added to an FSM specification using any state 
assignment strategy and having any number of inputs, outputs and states. 
Besides of application to FSM error correction, the developed tools can easily 
be adapted to other applications where error detection and correction is 
required. 

Keywords: Self-correcting finite state machines, Hamming codes, specification 
in VHDL. 

1   Introduction 

Concurrent error detection and correction is very important in many high-reliability 
applications. Nowadays, FPGA are increasingly being used for such applications, 
working in hazardous operating environments. In such circumstances, radiation or 
overheating can cause either a temporary or a permanent fault in a system prohibiting 
that it functions correctly.  

A control part of the system is the most critical part since it plays the central role in 
correct functioning of the whole system. Therefore, providing the control units with 
the properties of self-checking and self-correction is very important.  

A number of synthesis techniques have been proposed aimed at design of control 
units with concurrent error detection [1-3]. These techniques permit a circuit to be 
synthesized that is capable of providing the identification of an erroneous behavior as 
soon as it is observable. In this paper, we propose using error-correcting codes that 
allow for changing the illegal system state to the correct state.  

For such purposes, a VHDL package has been developed that includes functions 
required for generating error-correcting codes and a number of VHDL modules have 
been designed that make use of these functions and can be employed for constructing  
a self-correcting control circuit. Besides of specifying self-correcting control units, 
the developed tools can directly be used for providing error correction and detection 
properties in other application domains, such as communication systems (data 
networks, memory caches, etc.). 
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This paper is organized in 5 sections. Section 2 that follows this introduction is 
devoted to an overview of the adopted error-correcting codes. Section 3 proposes a 
general structure of self-correcting control unit and includes the detailed description 
of the developed VHDL functions and modules. The results of experiments are 
reported in section 4. Finally, concluding remarks are given in section 5. 

2   Error Correction 

The control units are usually modeled with the aid of Finite State Machines (FSMs). 
An FSM can be defined as a 6-tuple M = (S, X, Y, ϕ, ψ, s0), where S={s0,...,sM-1} is a 
finite set of states, X={x0,...,xL-1} is a finite set of inputs, Y={y0,...,yN-1} is a finite set 
of outputs, ϕ: S × X → S is the next state function, ψ: S × X → Y is the output 
function, and s0∈S is the initial state. 

The hardware model of FSM is shown in fig. 1. The FSM consists of a 
combinational circuit (that produces the primary outputs and calculates the next state 
based on the input values and the present state) and a register (a number of flip-flops or 
latches) that stores the present FSM state. If the FSM register experiences a fault, it 
could place the FSM in either a legal (but not correct) state or an illegal state. To allow 
for recovering from such erroneous state transitions, Hamming codes [4] can be used 
for state encoding. Hamming codes have a minimum distance of 3 (between different 
code words) and can therefore be employed for correcting any single-bit fault. 

combinational circuit

register

clk rst

inputs outputs

present
state

next
state

 

Fig. 1. Hardware model of FSM 

Hamming codes can easily be constructed for any FSM encoding scheme, such as 
one-hot, Gray, etc. For d data bits, the Hamming method requires adding p parity bits, 
such that d ≤ 2p–1–p, thus yielding (d+p)-bit codes. The bit positions in a Hamming 
code can be numbered from 1 through d+p. In this case, those bit positions whose 
number is a power of 2 are parity bits, and the remaining positions are data bits.  

Fig. 2 illustrates how a 10-bit state code can be augmented with parity bits. Each 
parity bit is grouped with a subset of those data bits whose numbers have a 1 in the 
same bit when expressed in binary. For instance, parity bit p0 with position 110 (00012) 
is grouped with data bits with positions 3 (00112), 5(01012), 7(01112),  9(10012), 
11(10112),  and 13 (11012) as illustrated by dashed arrows in the upper part of fig. 2. 
Then, such a value is assigned to each parity bit as to guarantee that the respective 
group produces even parity (has an even number of 1s). 
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Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Data/parity bit p4 d9 d8 d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0

 

 

Fig. 2. Hamming code data and parity bits 

A distance-3 Hamming code can easily be modified to obtain a distance-4 code by 
adding one more parity bit (overall parity bit p4 in fig. 2) chosen so that the parity of 
all the bits including the new one is even. This new code can detect double errors that 
are not correctable. 

For error correction, all the parity groups are checked. The possible error types and 
the respective actions to take are summarized in table 1. If one or more parity groups 
have odd parity and the overall parity bit is 0, then a double-bit error has occurred, 
which is not correctable. If all the parity groups have even parity then the state code is 
assumed to be correct. Otherwise, if one or more groups have odd parity and the 
overall parity bit is 1, then a single-bit error is supposed to have occurred. In this case, 
a syndrome (the pattern of groups that have odd parity) is created indicating the bit 
position whose value is assumed to be wrong and consequently has to be 
complemented. The syndrome can be calculated by XOR-ing the parity bits read out 
of the FSM register with the new parity bits generated from the data stored in the 
register. For example, if the FSM register outputs the code 000000000000100, then 
the new parity bits p0 (with position 1) and p1 (with position 2) will have odd parity 
corresponding to the position 3 (00012 ⊕ 00102 = 00112) whose value has to be 
complemented producing the correct state code 000000000000000. 

Table 1. Error detection and correction 

Syndrome Overall parity bit Error type and actions to take 

= 0 0 no error 

= 0 1 
overall parity bit error; no problem for correct 
FSM operation 

≠ 0 0 double-bit error; not correctable 

≠ 0 1 
single-bit error; correctable by calculating the 
syndrome and inverting the respective bit position 

3   Self-correcting FSM 

3.1   Hardware Model 

The hardware model of self-correcting FSM is presented in fig. 3. The Parity Encoder 
block creates the parity bits to store with the FSM state bits in the FSM register. The 
parity bits can trivially be calculated by XOR-ing the relevant FSM state bits. 
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The Code Corrector block receives the present state from the FSM register and 
corrects it if required. For such purposes the syndrome is generated by calculating the 
new parity bits and XOR-ing them with the parity bits read out of the register. Then, a 
correction mask is produced based on the result of the syndrome.  

combinational circuit

register

parity encoder
code corrector

error inserter

clk rst

inputs outputs

state next state

 

Fig. 3. Hardware model of self-correcting FSM 

When either no error is detected or a double error is detected, all the bits of the 
mask are set to 0. Otherwise the mask is generated so as to conceal all the state bits 
except for the erroneous bit. Finally, the mask is XOR-ed with the data read out of the 
FSM register. As a result, when no single-bit errors are detected, the FSM state passes 
through the Code Corrector without any changes, whereas when a single-bit error is 
detected the corrupted bit is inverted to the correct value. It is important that error 
correction is performed within the same clock cycle. 

To allow for diagnosis, Error Inserter block is used to introduce single or multiple 
bit errors to the FSM state (see fig. 3). 

3.2   Specification in VHDL  

To facilitate the VHDL description of the blocks introduced in section 3.1, a package 
parity_types was developed, which includes the following functions: 

� Function calculate_parity (constant state : in std_logic_vector; 
constant n : in natural) return std_logic – this function receives two 
parameters: an FSM state and a number of a parity group, and calculates the required 
parity bit value for this parity group; 

� Function calculate_mask (constant syndrome : in std_logic_vector ; 

constant n : in natural) return std_logic_vector – this function  
receives a syndrome and the number of bits used for FSM state encoding and 
generates the mask used for correcting single-bit errors; 

These functions are described in VHDL as indicated in fig. 4 for FSMs using at 
most 11 bits for state encoding and consequently requiring at most 4 parity bits (not 
counting the overall parity bit). This restriction is due to the space limitations. In 
order to support more bits for state encoding only two constant arrays parity_table 
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and mask_table (and the respective data types) have to be modified; the functions 
themselves do not require any changes to be introduced. 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_UNSIGNED.all;  
 
package parity_types is 
 
  type PAR is array (natural range 0 to 3) of std_logic_vector(10 downto 0); 
  type MASK is array (natural range 0 to 15) of std_logic_vector(10 downto 0); 
               
   constant parity_table : PAR := (0 => "10101011011",  1 => "11001101101", 
        2 => "11110001110",  3 => "11111110000"); 
 
   constant mask_table   : MASK := ( 0 => "00000000000",   1 => "00000000000", 
         2 => "00000000000",   3 => "00000000001", 
         4 => "00000000000",   5 => "00000000010", 
         6 => "00000000100",   7 => "00000001000", 
         8 => "00000000000",   9 => "00000010000", 
        10 => "00000100000",  11 => "00001000000", 
        12 => "00010000000",  13 => "00100000000", 
        14 => "01000000000",  15 => "10000000000"); 
  
  function calculate_parity (constant state : in std_logic_vector;  

  constant n : in natural) return std_logic; 
  function calculate_mask   (constant syndrome : in std_logic_vector;  

  constant n : in natural) return std_logic_vector; 
end parity_types; 
 
 
package body parity_types is 
 
function calculate_parity (constant state : in std_logic_vector;  

constant n : in natural) return std_logic is 
    variable masked : std_logic_vector(state'high downto 0); 
    variable result : std_logic; 
  begin 
 masked := state and parity_table(n)(state'high downto 0);  
 result := '0'; 
 
 for i in masked'range loop 
  result := result xor (masked(i)); 
 end loop; 
 
 return result;  
  end function calculate_parity; 
  
 
function calculate_mask (constant syndrome : in std_logic_vector;  

     constant n : in natural) return std_logic_vector is 
    variable mask : std_logic_vector(n downto 0); 
    variable address : natural range mask_table'range; 
  begin    
   address := conv_integer(syndrome); 
   mask := mask_table(address)(n downto 0);   
 return mask;  
  end function calculate_mask; 
 
end parity_types; 

 

Fig. 4. VHDL package defining functions and data types required for parity calculation and 
error correction 
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In the developed package two data types are declared. The first data type PAR is an 
array of four 11-bit standard logic vectors. A constant parity_table of type PAR, 
for every parity group (from 0 to 3), marks by 1s the FSM state bits that have to be 
used for calculating the parity of the group. For example, in order to calculate the 
parity bit p0 state bits 0, 1, 3, 4, 6, 8, and 10 have to be analyzed, resulting in a vector 
10101011011. The remaining FSM state bits, denoted by 0s in the constant 
parity_table, are not relevant for the considered parity groups. The function 
calculate_parity firstly masks out with the aid of the constant parity_table 
not relevant state bits and stores the result in the variable masked. Then, in a loop 
statement, all the relevant state bits are XOR-ed together calculating in such a way a 
value to be assigned to the respective parity bit. This value is kept in a variable 
result and is returned from the function. Note that the number of state bits to be 
analyzed is not fixed and is selected with the attribute high applied to the FSM state. 
Consequently, the function can be used for calculating the parity bit values for FSM 
states encoded with an arbitrary number of bits. 

The second data type MASK is an array of sixteen 11-bit standard logic vectors. A 
constant mask_table of type MASK stores for each possible syndrome to be 
calculated in the Code Corrector block, the relevant mask that has to be applied to the 
FSM state in order to correct possible errors. For example, if the generated syndrome 
is equal to 00112, the mask 00000000001 indicates that state bit 0 is in error and has 
to be complemented. The function calculate_mask firstly converts a received 
syndrome from standard logic vector to a natural value with the aid of function 
conv_integer (defined in package std_logic_unsigned of ieee library). Then, 
the calculated value is used for accessing one of the vectors declared in the constant 
mask_table, which is subsequently returned from the function. 

With the aid of the developed package, the Parity Encoder and the Code Corrector 
block can de described in VHDL as shown in the code below.  

The Parity Encoder block is parameterizable with the aid of two generic constants 
(n and m) which indicate respectively the number of bits used for FSM state encoding 
and the number of the required parity bits. Inside the block, the value to be assigned 
to each parity bit is calculated with the aid of a generate statement which permits the 
function calculate_parity to be invoked the required number (m) of times. The 
resulting parity bit values are written to the output parity vector. 

The Code Corrector block is similarly parameterizable with the aid of two generic 
constants (n and m) which indicate the number of bits used for FSM state encoding 
and the number of the required parity bits, respectively. Inside the block, first of all 
the new parity bits are calculated with the aid a generate statement invoking the 
calculate_parity function m times. After that a syndrome is generated by XOR-
ing the previously calculated parity vector (read out of the FSM register) with the 
newly calculated parity vector. Based on the syndrome, a mask is produced with the 
aid of the function calculate_mask. Finally, the mask is applied to the FSM state 
read from the FSM register allowing a possible error to be corrected. 

It is very important that the developed functions and modules are parameterizable 
(with the aid of attributes  and generic constants [5]) and can therefore be used for 
providing error correction ability for any number of data bits (currently at most 120 
data bits are supported). Consequently, the proposed modules can directly be 
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employed for any FSM with any number of states and using any state encoding 
technique (as far as the number of state bits does not exceed the currently imposed 
120-bit limitation) and also for other applications. 

library IEEE;        use IEEE.STD_LOGIC_1164.ALL; 
library corr_codes;  use corr_codes.parity_types.all; 
 
entity encoder is 
    generic(n : natural := 11; m : natural := 3); 
    port ( state : in std_logic_vector(n downto 0); 
           parity : out std_logic_vector(m downto 0)); 
end encoder; 
 
architecture Behavioral of encoder is 
begin 
 calc_parity: for i in 0 to m generate 
  parity(i) <= calculate_parity(state, i);  
 end generate; 
end Behavioral; 
 
------------------------------------- 
 
library IEEE;        use IEEE.STD_LOGIC_1164.ALL; 
library corr_codes;  use corr_codes.parity_types.all; 
 
entity corrector is 
    generic (n : natural := 11; m : natural := 3); 
    port ( state : in std_logic_vector(n downto 0); 
      in_parity : in std_logic_vector(m downto 0); 
      corr_state : out std_logic_vector(n downto 0)); 
end corrector; 
 
architecture Behavioral of corrector is 
 signal new_parity : std_logic_vector(m downto 0); 
 signal syndrome : std_logic_vector(m downto 0); 
 signal mask : std_logic_vector(n downto 0); 
begin 
 calc_parity: for i in 0 to m generate 
  new_parity(i) <= calculate_parity(state, i);  
 end generate; 
  
 syndrome <= in_parity xor new_parity; 
 mask <= calculate_mask(syndrome, state'high);  
 corr_state <= mask xor state; 
end Behavioral; 

The complete self-checking FSM can be constructed from the designed modules as 
shown in fig. 5 for a simple sequence detector having one input, one output, and 5 
states and using Gray state encoding technique. The respective state diagram and 
state/output table are shown in fig. 6. The developed parameterizable modules and the 
parity_types package were put in a library corr_codes. 
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library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
entity sec1_gray is 
    Port ( clk, reset : in std_logic; 
      X : in std_logic;      

Y : out std_logic); 
end sec1_gray; 
 
architecture mixed of sec1_gray is  
 signal state, next_state, corr_state : std_logic_vector(2 downto 0); 
 signal parity, next_parity : std_logic_vector(2 downto 0); 
begin 
 
FSM_register: process(clk, reset) 
begin 
      if reset = '0' then    
         state <= (others => '0');  parity <= (others => '0');      
      elsif rising_edge(clk) then 
         state <= next_state;   

    parity <= next_parity; 
      end if; 
end process FSM_register; 
 
--error inserter, not shown here for the sake of clarity 
 
par_encoder: entity corr_codes.encoder(behavioral) 
 generic map (n => state'high, m => parity'high) 
 port map(state => next_state, parity => next_parity); 
 
corrector: entity corr_codes.corrector(behavioral) 
 generic map (n => state'high, m => parity'high) 
 port map(state => state, in_parity => parity, corr_state => corr_state); 
 
combinational_circuit: process (corr_state, X) 
begin       
   case corr_state is        
 when "000" => --S0 
  Y <= '0';   
  if (X = '0') then next_state <= "000"; --S0          
  else next_state <= "001"; end if;      --S1 
 when "001" => --S1 
  Y <= '0';  
  if (X = '0') then next_state <= "000"; --S0 
  else next_state <= "011"; end if;      --S2  
 when "011" => --S2 
  Y <= '0';  
  if (X = '0') then next_state <= "010"; --S3  
  else next_state <= "011"; end if;      --S2 
 when "010" => --S3 
  Y <= '0';  
  if (X = '1') then next_state <= "110"; --S4  
  else next_state <= "000"; end if;      --S0        
 when "110" => --S4 
  Y <= '1'; 
  if (X = '1') then next_state <= "011"; --S2 
  else next_state <= "000"; end if;      --S0 
 when others => next_state <= "000";           --S0 
       Y <= '0';  
   end case;  
end process combinational_circuit; 
 
end mixed; 

 

Fig. 5. VHDL code describing a Moore self-correcting FSM with the aid of the developed 
modules 
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S0
[0]

S1
[0]

x=0
reset

S2
[0]

S3
[0]

S4
[1]

x=1 x=1 x=0 x=1

x=0 x=1

x=0

x=0

x=1

next state 
present state 

x = 0 x = 1 
y 

000 (S0) 000 001 0 

001 (S1) 000 011 0 

011 (S2) 010 011 0 

010 (S3) 000 110 0 

110 (S4) 000 011 1  

Fig. 6. State diagram and state/output table of a simple 4-bit sequence detector 

4   Experiments 

Obviously, the introduced error correction facility leads to area overhead and overall 
performance degradation. To estimate the influence of the added modules on the 
required FSM resources and the resulting clock frequency, two FSMs (sec1 and sec2) 
have been selected.  

Each FSM was synthesized using the Xilinx Synthesis Technology (XST) tool [6] 
targeted to Spartan-IIE xc2s300e –6 speed grade FPGA. For each FSM three types of 
state encoding have been examined (one-hot, binary, and Gray). After that each FSM 
was modified so as to provide for single-bit error correction as described in section 3, 
and the resulting VHDL descriptions were also synthesized. The obtained results 
expressed in terms of the required FPGA slices and the maximum attainable clock 
frequency, are presented in table 2. The synthesis process for both cases (i.e. for 
FSMs with and without error correction facilities) was optimized for speed. 

Table 2. The results of experiments 

without error correction with error correction
FSM inputs outputs states state

encoding FPGA slices performance FPGA slices performance

binary 2 285 MHz 7 133 MHz 

Gray 2 270 MHz 10 97 MHzsec1 1 1 5

one-hot 4 245 MHz 20 83 MHz 

binary 18 123 MHz 39 65 MHz 

Gray 17 142 MHz 30 65 MHz sec2 4 3 17

one-hot 16 183 MHz 112 45 MHz 
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The worst results, in terms of both the increase in the number of FPGA slices and 
the performance degradation, were received for one-hot state encoding technique. 
This can be explained by the fact that one-hot state encoding technique requires more 
bits to represent FSM states and therefore always obligates more parity bits to be 
introduced than in the case of compact binary or Gray state encoding techniques. For 
example, sec1 FSM has 5 states, which can be encoded with 3 bits (binary or Gray 
codes) supplemented by 3 parity bits (not counting the overall parity bit), whereas in 
the case of one-hot state encoding, 5 data bits and 4 parity bits are required. 
Augmenting the total number of bits from 6 (3+3) to 9 (5+4) leads obviously to 
increasing the complexity of both Parity Encoder and Code Corrector blocks and 
consequently increments the latency and the resource consumption of the whole 
control circuit. 

From table 2 we can also see that as the FSM complexity increases, the error 
correction logic overhead becomes less noticeable and can be tolerated for high-
reliability applications. 

5   Conclusion 

This paper proposed a design methodology for implementation of self-correcting 
control circuits derived from a VHDL specification. The entire approach has been 
presented, focusing the attention on the developed parameterizable VHDL package 
and the error-correcting modules, which can easily augment any VHDL FSM 
description with a single-bit error correction facility. The results obtained for a 
number of control circuits have been presented, which show that the inevitable area 
and performance overhead can be tolerated for high-reliability applications. 
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Abstract. Accessing an out-of-bounds memory address can lead to nondeter-
ministic behaviors or elusive crashes. Static analysis can detect memory access 
errors from program source codes without runtime overhead, but existing tech-
niques are either very imprecise or exponential cost. This paper proposes a pre-
cise and effective method to detect memory access errors. Firstly, it generates a 
state for each statement with a flow-sensitive, inter-procedural algorithm. A 
state includes not only range constraints like the traditional range analysis, but 
also occurrence conditions of the range constraints. Secondly, it solves states of 
memory access statement to evaluate the sizes of accessed memory bounds. The 
costs of state generation and state resolution are polynomial. We have imple-
mented a prototype of the analysis method. Applied to 7 popular programs, the 
prototype found 40 memory access errors with a high precision of 80%. 

1   Introduction 

Memory corruption errors can lead to serious consequence. Type unsafe languages, 
such as C and C++, do not check memory accesses at runtime, and such errors will 
lead to software’s nondeterministic behaviors or elusive crashes. Type safe languages, 
such as Java, check memory accesses at runtime and raise an exception when it de-
tects a memory access error. If one of these exceptions is unhandled by the program-
mer, the program will be aborted. In 1996, the explosion of Ariane 501 shortly after 
launch was due to an overflow in an arithmetic conversion. This failure cost over 
$500 millions to the European space program. CERT advisories show that almost 
50% of security attacks on computer systems were related to buffer overruns[1, 2]. 
Classical verification techniques based on development process, code reviewing and 
testing were unable to detect that defect. 

In recent years, static analysis techniques have been used to detect memory access 
errors from source codes. Previous works have focused on path-sensitive analysis[2, 3] 
and flow-insensitive analysis[4, 5]. Path-sensitive analysis is accurate but expensive. It 
tracks every branch in the control-flow of a program in which the execution state 
differs along the two branch paths may result in an exponential complexity. The flow-
insensitive analysis is rapid but its result is very imprecise because it does not con-
sider statement orders and branch conditions. 

In this paper, we propose a conditional, symbolic range analysis to detect memory 
access errors. Range analysis computes the potential bound of each access that may 
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be attained for any program input. Traditional range analysis[8, 9] only considers con-
straints between value ranges of variables, which lead to too conservative analysis and 
imprecise results. However, conditional range analysis considers occurrence condi-
tions of range constraints, which can improve the precisions of range resolution evi-
dently.  

The major contributions of this paper can be summarized in the following: 

1. A fundamental, new insight for range analysis. Except generating range con-
straints from assignment statements, we also track conditions of range con-
straints from branch statements, assertion statements and assignment statements. 
When we judge whether a memory access would be out-of-bounds, the condi-
tions of range constraints can prevent most false alarms and improve the preci-
sion of range analysis. 

2. A flow-sensitive, inter-procedural algorithm for constraint states generation. The 
algorithm propagates range constraints and condition constraints along the con-
trol flow of a program, and merge constraints at join points. Because all states are 
independent of paths, the algorithm avoids states explosion of full path-sensitive 
analysis, as well as it has better precision than traditional range analysis. 

3. An algorithm for constraint resolution. For the state of a memory access state-
ment, the algorithm first uses a linear programming solver to compute tightest 
ranges of constraint variables, and then solve the inequality group that includes 
tightest ranges of constraint variables, constraint conditions in the state and a 
out-of-bounds condition for the statement. 

4. A prototype of our analysis method. We applied the prototype to 7 popular pro-
grams. The experimental results show it is accurate and effective: it can analyze 
ten thousands lines of code in a minute with the precision of 80%.  

The rest of the paper is organized as follows: In Section 2, an example for our al-
gorithm is given. In Section 3, we present the algorithm for state generation. In Sec-
tion 4, we present the algorithm for state resolution. In Section 5, the experimental 
results are discussed. We discuss related work in Section 6 and conclude at last. 

2   Example 

In this section, we use an example to explain how memory access errors can be de-
tected using conditional range analysis. Consider the simplified snippet of code 
shown in Figure 1 and suppose we are interested in determining the safety of memory 
access argv[optind++] in line 6 and spec_fd[fd] in line 13. We compare 
two range analysis methods as follows.  

Ranges are expressed as lower and upper bounds on program variable. A range 
constraint has the form γ(e1) ⊇ γ(e2), where function γ maps a variable expression to 
its value range, e1 and e2 are variable expressions. Though the following analysis is 
flow-sensitive and context-sensitive that generates a state for each statement, these 
methods can also be path-sensitive or flow-insensitive. 

Traditional range analysis: The traditional range analysis ignores conditions of 
range constraints, so the value range of optind and fd are regarded as [0, +∞]. As a 
result, a false alarm about optind is reported. 
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struct spec_fd_t { 
   int len,pos;  
   unsigned char *buf;  
} spec_fd[3];  
 
int main(argc, argv) { 
  env = add_envopt(&argc, &argv, OPTIONS_VAR);  
  if (env != NULL)  
     args = argv;      
  while (optind < argc) { 
     ifd = open(argv[optind++], O_RDONLY | O_BINARY, 
RW_USER);  
     len = spec_read(ifd, buf, size);  
  } 
… 
} 
 
int spec_read(int fd, unsigned char *buf, int size) { 
  if (fd > 3)  
     return -1;  
  if(spec_fd[fd].pos >= spec_fd[fd].len)  
     return EOF;  
...  
} 

Fig. 1. Running Example 

Conditional range analysis: A state in conditional range analysis is composed by 
range constraints and conditions of the range constraints. The value range of env in 
line 5 is [0, +∞] and its condition is (optind<argc). The condition (opt-
ind<argc) guarantees the safety of memory access argv[optind++] in line 6, 
and avoids a false alarm. The condition of line 13 is (fd ≤ 3), which cannot guaran-
tee that fd is less than 3. But fd is a parameter, we analyze its call statement in line 
7, which has range constraints {γ(env)⊇[0,+∞], γ(ifd)⊇[0,+∞], γ(fd)⊇ γ(ifd)} 
and conditions {optind < argc, fd≤3}. Because the range constraints and its 
condition cannot guarantee that fd is less than 3, and no parameter of main is rela-
tion to the constraints and conditions, an alarm about fd in line 13 is emitted.  

3   State Generation 

In this section, we first give the definition of state, then present the algorithm of state 
generation, and analyze the algorithm at last. 

Since memory addresses are accessed through pointers, a pointer analysis should 
be processed before state generation. Many pointer analysis algorithms, such as 
Steensgaard[20], DAS[21], can used to determine the set of each pointer point-to and the 
alias set of each pointer. 
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Definition 1: Locations  = {v| v is a variable in the program} ∪ {malloci| i is a pro-

gram point where malloc instruction is called} 
For a location l∈ , we have the following constraint variables: 

− l.val represents potential values stored in l, including primitive type (int, long, 
char, etc.) values and locations; 

− l.assize represents the allocation size of l; 
− l.len represents the accessed length by a load or store instruction to l; 
− l.offset represents potential offsets from the base address to the addresses of lo-

cations that are pointed by l.val. 

In this paper, we write V to represent the set of constraint variables, write Ω to rep-
resent the value set of constraint variables, function loc maps the name of a variable 
to its location, and function pt maps the name of a pointer to the location set it points 
to. We also assume that programs are in static single assignment (SSA) form. A pro-
gram is in SSA form when every variable within it has at most one defining state-
ment. 

3.1   State Definition 

A state represents range constraints between constraint variables and value constraints 
between constraint variables, and the latter is the necessary condition for the former 
occurrence. 

Definition 2: , pP=< > is a lattice, where: 

1. 
1

=  Z } { , }
n

i i i i
i

P t t a v +b, a ,b ,v uninit unknown
=

={ | ∈ ∈Ω  is the value set of 

linear expressions of constraint variables, where Z is the set of integer, uninit 
represents the value of uninitialized constraint variables, and unknown repre-
sents the value of non-linear constraint expressions; 

2. 1 2pp p  if p1= uninit, or p2= unknown or p1- p2 ≤ 0; 

3. Unknown is the top element of and uninit is the bottom element of . 

The value of a constraint variable is uninit if either the program variables that it 
correspond to have not been initialized in the source code, or program statements that 
affect the value of the program variables have not been captured by our analyzer. The 
latter case may arise when the constraint generator does not have a model for a library 
function that affects the value of the constraint variable. 

A range can represent the set of potential values that a constraint variable attains at 
runtime. Ranges are symbolically expressed as lower and upper bounds on constraint 
variables. The computing of an range expression can be safely approximated by the 
following equations: 

γ(uninit) = ∅ (1) 

γ(unknown) = [-∞ , +∞] (2) 
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γ(c) = [c , c], where c ∈ Z (3) 

[inf1, sup1] + [inf2, sup2]= [inf1+ inf2, sup1+ sup2] (4) 

[inf1, sup1] - [inf2, sup2]= [inf1- sup2, sup1 - inf2] (5) 

1 1
1

( ( ),..., ( ))   ( , ..., )
( ( , ..., ))

[ , ]
n n

n

x x if x x P
x x

otherwise

σ γ γ σ
γ σ

∈
=

−∞ +∞
 (6) 

Define 3: A state S = [ R, C ], where:  

1. R = { γ(x) ⊇ γ(σ(x1,…,xn)) | x,x1,…,xn∈V } is a set of inclusion relations between 
the value ranges of constraint variables and the value range of constraint vari-
able expressions. 

2. C={ σ(x1,…,xn)↑0 | σ(x1,…,xn)∈P, ↑∈{<, ≤, =, ≥, >} } is a set of condition con-
straints that represent relations between values of constraint variables.  

3.2   Algorithm 

The control flow graph of a procedure is G = N, E, start, exit  with a set of nodes N 
and a set of edges E ⊆ N × N. A node n∈N represents a statement or a predicate in the 
procedure and a edge e = (m, n) ∈ E indicates transfer of control between nodes m, 
n∈N. Respectively, start and exit are the unique start node and the unique exit node in 
the procedure.  

A program is represented by a super graph G* = (N*, E*), where G* consists of a 
collection of control flow graphs G1, G2, … . The other nodes of control flow graphs 
represent the statements and predicates of procedures in the usual way, except that a 
procedure call statement is represented by two nodes, a call node and a return node. 
The sets of all start, exit, call and return nodes in the super graph will be denoted by 
Start, Exit, Call and Return, respectively. In addition to the ordinary intraprocedural 
edges that connect the nodes of the individual flow graphs, for each procedure call 
represented by call node c and return node r, G* has an intraprocedural edge from c 
to r.  

We write S(n) to represent the state of node n, R(S) to represent the range con-
straints of state S, C(S) to represent the condition constraints of state S, and S* to 
represent the set of states associated with statements in a program. Each edge is as-
signed to a transfer function Trans: E* × S* → S*. For a edge e∈E* and a input state 
Sin∈S*, Trans(e, Sin) generates a output state Sout with following rules: 

1. R(Sout) = R(Sin) ∪ {γ(x) ⊇ γ(f(x1,…,xn))} if the source node of edge e has a side ef-

fect of 1 ( ,..., )nx f x x , otherwise R(Sout) = R(Sin). 

2. The condition constraints C(Sout) = C(Sin) ∪ Cond(e), where  
− if the source node of e is a branch statement, such as if and while in language 

C, Cond(e) is the transfer condition of e. 
− if the source node of e is an assertion statement, Cond(e) is the assertion of the 

assertion statement. 
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− if the source node of e has a side effect, Cond(e) is the addition constraint be-
tween constraint variables. For example, the addition constraint of 

  5x y +  is x > y. 

The pseudo code of state generation is presented in Figure 2. This is a worklist al-
gorithm that updates constraints of statements until no further updates are possible.  

 
global  
1. Worklist: 2E* 
2. SS: N* → S* 

 
procedure Propagate(G* = N*, E* ) 
begin 
3. for each m ∈ N* do SS(m) := (∅,∅)  
4. Worklist := E* 

 
5. while Worklist ≠ ∅ do 
6. Remove a node e from Worklist 
7. d = dst(e) 
8. R(SS(d)) = 

, ( ) ( (( , ), ( )))r p pre d R Trans p d SS p∈  

9. C(SS(d)) = 
, ( ) ( (( , ), ( )))c p pre d C Trans p d SS p∈

 

10. switch(d) 
11. case d ∈ Exit: 
12. Worklist := Worklist ∪ retSite(procOf(d)) 
13. case d ∈ Call: 
14. for each actual parameter ap in d and its corresponding formal parameter 

fp do 
15. R(SS(d)) = R(SS(d)) ∪ {γ(fp) ⊇ γ(ap)} 
16. case d ∈ Return: 
17. R(SS(d)) = R(SS(d)) ∪ R(SS(exit(calledProc(d)))) 
18. if SS(m) has changed then Worklist := Worklist ∪ {(d, n) | n∈succ(d)} 

end 
 

Fig. 2. Algorithm for state generation 

The algorithm uses the following functions: 

− calledProc:  maps a call node or a return node to the name of the called proce-
dure. 

− procOf: maps a node to the name of its enclosing procedure. 
− retSite: maps the name of a procedure to return nodes that return from the pro-

cedure. 

The meet operator of range constraints R r R' is set union R ∪ R'. The meet op-

erator of condition constraints C c  C'  is computed as follows: 
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1. Build two variable relation graphs Gv = (Nv, Ev) and Gv' = (Nv', Ev'). The vertices 
of Gv and Gv' are the constraint variables in C and C' respectively. For each condi-
tion constraint x↑y in C (or C'), where ↑∈{<, ≤, = , ≥, >}, we add the labeled 

edge x ↑⎯⎯→y in Gv (or Gv'); 
2. Form a variable relation graph Gv''= (Nv'', Ev''), where Nv'' = Nv ∪ Nv', Ev'' = { 

x
↑⎯⎯→y | x ↑⎯⎯→y ∈ Ev and x ↑⎯⎯→y ∈ Ev' } 

3. Delete redundant edges of Gv'': if there is a path x , *↑⎯⎯→z
↑⎯⎯→y, delete edge 

x
↑⎯⎯→y, where x , *↑⎯⎯→z represents a path from x to z;  

4. Generate the result: C c  C' = C ∪ C' ∪ { x
↑⎯⎯→y | x ↑⎯⎯→y ∈ Ev''}. 

3.3   Algorithm Analysis 

The algorithm guarantees all statements not in the Worklist satisfy equations 

, ( ) , ( )( ) ( ( (( , ), ( ))), ( (( , ), ( )))r p pre s c p pre sSS s R Trans p s SS p C Trans p s SS p∈ ∈= . At the end, 

Worklist is empty, so the algorithm is correct.  
At each iteration, the set of range constraints of a statement is increased and the set 

of condition constraints of a statement is reduced, so the meet operator and transfer 
functions are monotone. We use widening/narrowing operators to ensure termination 
and accelerate convergence [6].  

Let |N| and |E| be the number of nodes and edges in the super graph of a program 
respectively. Assume each statement in a loop can be computed by 
widening/narrowing at most M times, and the maximum depth of loop nests is K, the 
node number to be processed is at most O(MK|E|). Let the time of transfer function be 
J, the time of meet operator of range constraints be H, the time of meet operator of 
condition constraints be Q. The complexity of state generator is O(Mk|E| (J+H+Q)). 

4   State Resolution 

After state generation, each statement is concerned with a set of linear range 
constraints and a set of linear condition constraints. For the state s of a statement st, 
range constraints R(s) defines a constraint system 1 i n iRC≤ ≤  , where each RCi∈R(s). 

The solution of 1 i n iRC≤ ≤  represents possible value ranges of constraint variables. 

Each constraint variable has a solution [-∞, +∞], but it is too conservative and no any 
use. Linear program[7] can provide the minimal ranges of constraint variables for a set 
of range constraints, which is enough precise for our analysis. 

A linear program is an optimization problem that can be expressed as follows: 

Objective function: cx 
Constraint condition: Ax ≥ b 

Where constraint matrix A is an m×n matix, cost coefficient c and right-hand-side 
vector b are vectors of constants, decision variable x is a vector of variables.  
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A linear program is said to be feasible if one can find finite values for all the vari-
ables that satisfy all the constraints. A solution is said to be optimal if it maximizes 
(or minimizes) the value of the objective function. A linear program is said to be 
unbounded if a solution exists, but no solution optimizes the objective function.  

Since the bounds of memory regions are integer, the problem of memory access er-
ror detection is called mixed integer programming that is a NP-complete problem, and 
several approximation of optimal solution can be attained in polynomial time[22]. 

4.1   Constraint Reduce 

Though linear program can solve a set of linear range constraints, it does not attain 
optimal solution for all cases. If there is a uninitialized constraint variable or a 
dependency cycle between constraint variables, the linear program may be unbounded 
or infeasible. 

A constraint variable is uninitialized if either the program variables that it corre-
spond to have not been initialized in the source code, or program statements that af-
fect the value of the program variables have not been captured by the analyzer. To 
remove uninitialized constraint variables from the set of linear range constraints R, we 
search constraint variables whose ranges do not include any constant or any range of 
constraint variable, and remove these constraint variables from R. Repeat this process 
until no constraint variable can be removed. 

To break dependency cycles in the set of range constraints R, we form a 
dependency graph Gd = (Nd, Ed), whose vertices are constraint variables in R. If there 
is a constraint ( ) ( ( ... ))1 nx f x , , xγ γ⊇ ∈R, we add a directed edge xi→x, 1≤ i ≤ n. 

Search strongly connected components (SCCs) in Gd with DFS algorithm, we can find 
dependency cycles in R. We delete incoming edges of the node that has the least 
outcoming edges in a SCC of Gd, and set the node’s range to [-∞, +∞]. At last, we 
transfer Gd to a acyclic graph Gd' and transfer R to a new set of range constraints R'.  

4.2   Algorithm 

For a memory access through pointer p in statement st, the out-of-bounds conditions 
are loc(p).offset < 0 and pt(p).asize - loc(p).offset - pt(p).len < 0. If one of out-of-
bounds conditions is satisfied under state S(st), the dereference of p is said a memory 

access error. The precision of a detection algorithm to a program is | |

| |

W

T
, where |W| 

is the number of real errors, |T| is the number of total warnings. 
The pseudo code of state solution is presented in Figure 3, where ε is an out-of-

bounds condition and S is the state of memory access statement. If any out-of-bounds 
condition is analyzed at most once in a procedure, the algorithm can be terminable. 
Because any nontrivial property about the language recognized by a Turing machine 
is undecidable[23], no one can have a solution of a nontrival property that is both sound 
and complete. To avoid generating too many false positives, our alogirthm ignores 
undecidable solutions that may lose some vulnerabilities. 
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procedure Solve(ε, S) 
begin 

1 Remove uninitialized constraint variables from R(S) to R'(S); 
2 Break dependency cycles in R'(S), to attain a acyclic dependency graph G'd 

and a new set of range constraints R''(S); 
3 VS  {v| v∈ε or there is a path from v to v', where v'∈ε} 
4 Use R'(st) as the constraint condition, and apply linear program to solve 

minimal rangs of constraint variables in VS; 
5 Solve the inequality group, which includes condition constraints C(S), minimal rangs 

of constraint variables in VS and ε: 
5.1 If the inequality group exist a solution, the ε is unsafe and the analyzer re-

ports a warning; 
5.2 If the inequality group exists a solution and there is any parameter of the 

current procedure in VS, the analyzer resolves ε in the state of call 
nodes that call the enclosing procedure of the current statement. 

end 

Fig. 3. Algorithm for state solution 

5   Experiments 

We have designed a static analysis tool, called MOC, to implement our algorithms. 
The architecture of MOC is shown in Figure 4. MOC uses the front-end of LLVM[10] 
to transform C/C++ source programs into static single assignment (SSA) form[11]. 
MOC applies Steensgaard algorithm, a whole program flow-insensitive context-
insensitive pointer analysis algorithm, to analyzing pointer alias.  

 

Fig. 4. The architecture of MOC 

We applied MOC to two group experiments. These experiments were taken on a 
2.2GHz Pentium 4 machine with 512MB of memory running Linux. The first group 
experiments measure some programs in SPEC2000 package, and the result is summa-
rized in Table 1. The column LOC displays the number of source lines in the original 
source, the column FN displays the number of source function. The TW reports the 
number of total warnings, and the FA reports the number of false alarms. 

Programs in SPEC2000 have been developed many years and they are high quality 
systems as benchmarks to measure compilers. MOC reported 43 bugs in 4 applica-
tions of SPEC2000, and had an average precision of 84%. Many bugs in 186.crafty 
can be easily exploited by supplying an especially command line argument to the 
program.  
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Table 1. The experimental results for SPECK2000 

Program LOC FN time (s) TW FA Precision 
164.gzip 17444 40 1.6 3 0 100% 
186.crafty 21182 104 14.6 31 5 84% 
197.parser 11421 299 23.4 4 0 100% 
256.bzip2 4675 61 1.8 5 2 60% 
Total 54722 504 41.4 43 7 84% 

The second group experiments compared MOC with [3]. The latter presents an al-
gorithm that identifies buffer overruns using path and context-sensitive analysis with 
the demand-driven technique. Table 2 is the experimental results, where bold font is 
MOC and italic is [3]. The speeds of MOC are higher clearly. Especially, MOC only 
spends 0.4 second to analyze lhttpd, and [3] spends 99 seconds. It shows our 
analysis is much faster than path-sensitive analysis. 

Table 2. The results of contrast experiment 

Program LOC FN time (s) TW FA Precision 
bftpd 
1.0.11 

2946 47 1.4 2.3 2 1 0 0 50% 100% 

gzip 1.2.4 8162 93 0.9 2.0 1 1 0 0 100% 100% 
lhttpd 0.1 888 21 0.4 99 2 1 1 0 100% 100% 
Total 11996 161 2.7 103.3 5 3 1 0 80% 100% 

6   Relation Work 

Dynamic analysis techniques[13~16] can detect out-of-bounds memory access in run-
time, but fail to eliminate errors from source code. Several static analysis techniques 
have been proposed to detect memory access errors from source code, and thus help 
the developer to eliminate errors before the source code is deployed. 

CSSV[17] and Splint[18] are annotation driven tools. These tools use user-supplied 
annotations, such as pre- and post-conditions of a function, to aid static analysis. 
Since annotations burden users, these tools are limited to existing code bases. 

BOON[4] and [5] model strings as abstract data types and transform the buffer over-
run detection problem into a range analysis problem. With flow-insensitive and con-
text-insensitive analysis, they are efficient, but their false positive rates are very high. 

CGS[19] checks out-of-bounds array accesses in multithreaded C programs. CGS 
analyzes programs using flow-insensitive analysis, except the numerical invariants of 
loops. It also makes context-sensitive analysis for functions that have a pointer in 
their signature, and context-insensitive analysis for others. The false alarm rate of 
CGS is low for multithreaded C programs, but unknown for others. CGS depends 
specializing algorithms to analyze loops in different software, which limits its impact 
in the software industry. 
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ARCHER[2] and Xie et. al.[3] make path-sensitivity analysis to detect memory er-
rors. Since path-sensitive analysis follows the actual program paths, the false alarm 
rates of these tools are very low. However, the exponential cost limits their scale to 
large code bases. 

7   Conclusion 

In this paper, we propose a conditional symbolic range analysis to detect memory 
access errors statically. First, we use a flow-sensitive, inter-procedural algorithm to 
generate a state for each statement in a program, and a state includes a set of range 
constraints and a set of conditions. Then, we solve states of memory access statements 
to evaluate the sizes of accessed memory bounds with linear program, and determi-
nate access errors in a program with inequality group resolutions. We implement a 
prototype. The experimental results show that it is precise and effective.  
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Abstract. Recently, model-checking and probabilistic timed simulation
verification methods of probabilistic timed automata have been devel-
oped. In this paper, we propose probabilistic timed transition systems
by generalizing probabilistic timed automata, and propose deductive ver-
ification rules of probabilistic real-time linear temporal logic over prob-
abilistic timed transition systems. As our proposed probabilistic timed
transition system is a general computational model, we have developed
general verification methods.

1 Introduction
Distributed real-time systems are of vital economic importance and are liter-
ally becoming ubiquitous. They have already become an integral component of
safety critical systems involving aviation, telecommunications, and process con-
trol applications. Today, timed automaton [1] is the standard tool for specifying
and verifying real-time systems by model-checking methods [2]. On the other
hand, in order to express the relative likelihood of the system exhibiting cer-
tain behavior, M. Kwiatkowska has developed probabilistic timed automata and
their model-checking method [3]. Moreover, the verification method of proba-
bilistic timed simulation of probabilistic timed automata has been developed
[4]. In this paper, we develop probabilistic timed transition systems by gener-
alizing probabilistic timed automata, and develop deductive verification rules
over probabilistic timed transition systems. Our probabilistic timed transition
system is a general computational model with discrete probability distributions.
By probabilistic timed transition systems, we can construct general verification
methods. Here we mention related works about temporal verifications of both
probabilistic and real-time systems as follows:

1. In 1982, A. Pnueli has developed a proof principle for liveness properties
based on the general idea of well-founded descent [5]. But the work [5] consti-
tutes only a partial solution to the general problem of verifying probabilistic
concurrent programs, since it only presents an isolated proof principle for
liveness properties. Several subsequent works have tried to extend it into

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 332–345, 2005.
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more comprehensive proof systems [6, 7, 8] as follows: (1)First, M. Sharir has
developed the system based on generalization of branching time temporal
logic [6]. (2)Next, D. Lehmann has developed the system [7]. Lehmann’s
system is essentially a linear time system which follows a linear history but
may refer to untaken alternatives [7]. (3)Moreover, an alternative approach
based on the standard linear temporal logic is presented by A. Pnueli [8].
In 1986, A. Pnueli has adopted the linear approach suggested in the work
[8] and extended it to multiprocess concurrent programs, i.e., to programs
for n processes for n processes for unspecified but n ≥ 2. A. Pnueli’s proof
system is first applied to the free philosophers algorithm. But A. Pnueli has
not considered real-time aspects.

2. In 1991, H.A. Hansson has developed bisimulation verification of discrete
time probabilistic process algebra, and model-checking of discrete time prob-
abilistic temporal logic [10]. Namely, H.A. Hansson has extended classical
process algebra with discrete time and probability. But H.A. Hansson has
not considered dense time models.

3. A notable contribution to the area of the verification of probabilistic systems
operating in dense time was offered by R. Alur, C. Courcoubetis and D.L. Dill
[11, 12], who provided a model checking technique for a variant of Generalized
Semi-Markov Processes against timed properties in 1991. But they have not
developed deductive verification systems.

4. N. Lynch and F. Vaandrager have developed several kinds of timed simula-
tion proof methods their timed automata [13] in 1991. Their timed automata
[13] can serve as a semantic model, and their proposed proof methods are con-
structed on this semantic model. Our proposed model includes their timed
automata. Moreover, we consider probabilistic behaviors, but they have not
considered probabilistic behaviors.

5. R. Segala has developed the model of probabilistic timed automata, which
is a dense time model, but is used in the context of manual simulation
and bisimulation verification techniques in 1995 [14]. But R. Segala has not
developed deductive temporal verification systems.

6. In 1996, Y. Kesten, Z. Manna and A. Pnueli have developed clocked transi-
tion systems by generalizing timed automata, and verification rules of real-
time temporal logic [15]. But they have not considered probabilistic behav-
iors.

7. In 1999, M. Kwiatkowska has developed probabilistic timed automata with
discrete probability distributions, and their model-checking method [3]. After
that, S. Yamane has developed some simple timed simulation verification of
probabilistic timed automata [4]. Moreover, M. Kwiatkowska has applied
probabilistic timed automata into specification of IEEE 1394 FireWire Root
Contention Protocol [16]. But they have not developed deductive verification
systems.

In this paper, we develop probabilistic timed transition systems by gener-
alizing probabilistic timed automata, and deductive verification rules such as
safety and liveness properties, nonzenoness of probabilistic real-time temporal
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logic. The verification of liveness properties requires adjustments of the proof
rules developed for untimed systems [17, 18], reflecting the fact that progress in
the real time systems is ensured by the progress of time and not by fairness.
By our proposed method, we can construct a general computational model and
verification methods. Our proposed method does not refer to the region graph.
In general, deductive verification method is completely general but typically re-
quires significant human guidance, whereas model checking though restricted to
a limited range of properties of small finite state systems, is largely automatic.
Recently, in LICS2003 [19], M. Kwiatkowska mentions that the proof system
of probabilistic timed automata is an important open problem. To the best of
our knowledge, deductive verification systems of probabilistic real-time tempo-
ral logic over probabilistic timed transition systems have never been developed
before now.

2 Real-Time Systems with Discrete Probabilities

In this section, we propose probabilistic timed transition systems by generalizing
probabilistic timed automata [3].

2.1 Probabilistic Timed Transition Systems

First, we define discrete probability distributions as follows:

Definition 1. (Discrete probability distribution)
We denote the set of discrete probability distributions over a finite set Q by μ(Q).
Therefore, each p ∈ μ(Q) is a function p : Q → [0, 1] such that

∑
q∈Q p(q) = 1.

Supp(p) denotes the support of p, i.e. the set of elements q∈ Q with p(q)> 0.

Next, we define probabilistic timed transition systems as follows:
First, we consider a finite set of system variables. System variables are typed,

where the type of a variable, such as boolean, integer, etc., indicates the domain
over which the variables ranges. We define a state s to be a type-consistent
interpretation, assigning to each variable u a value s[u] over its domain. We
denote by Σ the set of all states.

Definition 2. (Probabilistic timed transition system)
A probabilistic timed transition system PTS = (V, Θ, prob, Π) consists of :

1. V : A finite set of system variables.
The set V = L ∪ D ∪ C is partitioned into L = {l1, . . . , lo} the set of

location variables, D = {u1, . . . , un} the set of discrete variables, and C =
{t1, . . . , tm} the set of clocks. Clocks always have the type real. The discrete
variables can be of any type. The location variable has the location value.
We introduce a special clock T ∈ C, representing the master clock, as one of
the system variables. We define sL∪D to be a type-consistent interpretation,
assigning to each variable u ∈ L∪D a value sL∪D[u] over its domain. Each
variable u ∈ L ∪ D is time-invariant. We denote by ΣL∪D the set of all



Deductive Probabilistic Verification Methods 335

type-consistent interpretations of location and discrete variables. Moreover,
we define sC to be a type-consistent interpretation, assigning to each variable
ci ∈ C a value sC [ci] over its domain. Each variable ci ∈ C is time-variant.
We denote by ΣC the set of all clock values.

2. Θ : The initial condition. A satisfiable assertion characterizing the initial
states. It is required that

Θ → t1 = . . . = tm = T = 0,

i.e., the clocks are reset to zero at all initial states.
3. Π FThe time-progress condition.

An assertion over V . The assertion is used to specify a global restriction
over the progress of time.

4. prob : A finite set of transitions.

Fig. 1. A transition of Probabilistic timed transition system

(a) Each transition τp(s′L∪D) ∈ T is a function

prob : ΣL∪D → 2TICK×μ(ΣL∪D),

mapping each sL∪D ∈ ΣL∪D into both a set of TCIK and a set of
discrete probability distributions μ(ΣL∪D) as shown in figure 1. If we
consider sL∪D ∈ ΣL∪D and (tick, p) ∈ prob(sL∪D), a probabilistic tran-
sition from a state s to a state s′ with probability p(s′L∪D) occurs, where
tick ∈ TICK, p ∈ μ(ΣL∪D) and sL∪D ∈ ΣL∪D.

(b) Now we define a set of TCIK as follows:
Transition tick ∈ TICK is a special transition intended to represent the
passage of time. Its transition relation is given by:

ρtick : ∃� > 0.Ω(�) ∧ L′ = L ∧ D′ = D ∧ C′ = C + �

where Ω(�) is given by

Ω(�) : � > 0 ∧ ∀t ∈ [0,�).Π(L, D, C + t).

Let L={l1, . . . , lo}be the set of location variables of PTS, D={u1, . . . , um}
be the set of discrete variables of PTS and C = {t1, . . . , tk, T } be the set
of its clocks. Then, the expression C′ = C + � is an abbreviation for

t1′ = t1 + �∧ . . . ∧ tk′ = tk + �∧ T ′ = T + �
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and Π(L, D, C + t) is an abbreviation for

Π(l1, . . . , lo, u1, . . . , um, t1 + t, . . . , tk + t, T + t).

(c) The function associated with a transition τp(s′L∪D) is represented by an
assertion ρτp(s′L∪D)(V, V ′), called the transition relation, which relates
a state s ∈ Σ to its τp(s′L∪D)-successor s′ ∈ τp(s′L∪D)(s) by referring to
both unprimed and primed versions of the system variables. An unprimed
version of a system variable refers its value in s, while a primed version
of the same variable refers to its value in s′.

Next, we define a path of a probabilistic timed transition system as follows:

Definition 3. (Path)
Paths in a probabilistic timed transition system arise by resolving both the nonde-
terministic and probabilistic choices. A path of the probabilistic timed transition
system is a non-empty finite or infinite sequence:

ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,P2−→ s3

tick3,p3−→ s4 . . . . . .

where si ∈ Σ, si ∈ τpi−1(siL∪D)(si−1) or Ci = Ci−1 + �i−1. Here Ci denotes C
at si and Ci−1 denotes C at si−1. ω(k) denotes the k-th state of ω. The location
and discrete values of the last state of ω is denoted by last(ω). Pathfin is the set
of finite paths, and Pathfin(s) is the set of paths in Pathfin such that ω(0) = s.
Pathful is the set of infinite paths and Pathful(s) is the set of paths in Pathful

such that ω(0) = s. Also, Pathfin(sL∪D) is the set of paths in Pathfin such
that ω(0) = s. Moreover, Pathful(sL∪D) is the set of paths in Pathful such that
ω(0) = s.

A path ω of PTS is a finite or infinite sequence of states satisfying:

1. Initiation: s0 |= Θ
2. Consecution:

(1) Case of probabilistic transitions: si ∈ τpi−1(siL∪D)(si−1).
(2) Case of tick transition: Ci = Ci−1 + �i−1, where Ci denotes C at si

and Ci−1 denotes C at si−1.

Moreover, in some case, a path ω of PTS is an infinite sequence of states
satisfying:

3. Time Divergence: The sequence s0[T ],s1[T ],. . .,si[T ],. . . grows beyond any
bound. That is, as i increases, the value si[T ] of T at si increases beyond
any bound.

2.2 Adversary

We now introduce adversaries of probabilistic timed transition systems as func-
tions which resolve all the nondeterministic choices of the system [3]. The concept
of adversaries has been proposed by A. Pnueli [5] and M. Vardi [20]. Moreover,
M. Kwiatkowska has applied it into probabilistic timed automata with discrete
probability distributions [3]. In this paper, we use M. Kwiatkowska’s definitions.
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Definition 4. (Adversary of a probabilistic timed transition system)
An adversary of a probabilistic timed transition system PTS = (V, Θ, prob, Π) is
a function A mapping every finite path ω of PTS to (tick, p) ∈ prob(sL∪D) such
that A(ω) ∈ prob(last(ω)), where last(ω) denotes the last location and discrete
values of ω, sL∪D ∈ ΣL∪D, tick ∈ TICK, p ∈ μ(sL∪D).

For an adversary A of a probabilistic timed transition system
PTS = (V, Θ, prob, Π), we define PathA

fin to be the set of finite paths. With
each adversary A we associate a sequential Markov chain, which can be viewed
as a set of paths in PTS. Formally, if A is an adversary of the probabilistic timed
transition system PTS, then MCA=(PathA

fin,PA) is a Markov chain where:

PA(ω, ω′) =

{
p(sL∪D) if A(ω) = (tick, p) and ω′ = ω

tick,p−→ s
0 otherwise.

For any probabilistic timed transition system and adversary A, let Fpath
A be

the smallest σ-algebra on Pathful
A which contains the sets:

{ω|ω ∈ Pathful
A and ω′ is a prefix of ω } for all ω′ ∈ Pathful

A.

We now define a measure ProbA on the σ-algebra Fpath
A, by first defining

the following function on the set of finite paths Pathful
A.

Definition 5. (Probfin
A)

Let A be an adversary of the probabilistic timed transition system PTS. Let
Probfin

A : PathA
fin → [0, 1] be the mapping inductively defined on the length of

paths in Pathfin
A as follows:

1. If |ω| = 0, then Probfin
A(ω) = 1.0.

2. If |ω| �= 0, then if ω = ω′ tick,p−→ s for some ω′ ∈ Pathfin
A, then ProbA

fin(ω) =
ProbA

fin(ω′) ·PA(ω′, ω), where PA(ω′, ω) = p(sL∪D).

Definition 6. (ProbA)
The measure ProbA on Fpath

A is the unique measure such that:
ProbA({ω|ω ∈ pathA

ful and ω′ is a prefix of ω }) = Probfin
A(ω′).

A common restriction imposed in the study of real-time systems is that of
nonzenoness. A probabilistic timed transition system is defined to be nonzeno
if every finite path can be extended into an infinite path. Here a state is called
accessible if it appears in a path of a probabilistic timed transition system.
Nonzenoness requires that a state s is accessible iff it appears in some path of a
probabilistic timed transition system.

3 Probabilistic Real-Time Linear Temporal Logic

In this section, we introduce probabilistic real-time linear temporal logic. To
specify properties of probabilistic timed transition systems, we use the language
of temporal logic, as presented in the book [17].
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First, we define syntax of probabilistic real-time linear temporal logic. Here
we only use the following:

Definition 7. (Syntax of probabilistic real-time linear temporal logic)
Syntax of probabilistic real-time linear temporal logic is inductively defined as
follows:

1. q is any first-order formula.
2. [�q]�λ, where q is any first-order formula, and λ ∈ [0, 1], � is ≥ or >.

[�q]�λ means that q always holds true satisfying � λ.
3. [�(q → ♦r)]�λ, where q and r are any first-order formula.

[�(q → ♦r)]�λ means that q entails eventually r satisfying � λ.

Next, we define semantics of probabilistic real-time linear temporal logic as
follows:

Definition 8. (Semantics of probabilistic real-time linear temporal
logic)
Given a probabilistic timed transition system PTS and a set A of adversaries,
then for any state s of PTS, probabilistic real-time linear temporal logic formula
φ, the satisfaction relation s|=Aφ is defined inductively as follows:

1. s|=Aq
⇐⇒ s |= q, where s |= q means that an assertion q holds true on state s.

2. s|=A[�q]�λ

⇐⇒ ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }) � λ for all

A ∈ A.
3. s|=A[�(q → ♦r)]�λ

⇐⇒ ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and for some j ≥ i

ω(j) |=A r for every i }) � λ for all A ∈ A.

Next, we define concepts of q-state, state valid and valid as follows: (1)Given
a probabilistic timed transition system PTS, a set A of adversaries, an assertion
q, a state s of PTS, if q holds on s, then s is a q-state. (2)Given a probabilistic
timed transition system PTS, a set A of adversaries, an assertion q, if it holds
over all accessible states for every A ∈ A, then an assertion q is called state
valid. In this paper, we say that a state s is accessible if it appears in some
path of PTS. (3)Given a probabilistic timed transition system PTS, a set A of
adversaries, a temporal formula φ, if it holds over all the paths of PTS for every
A ∈ A, then a temporal formula φ is called valid.

4 Verifying Safety Property

In this section, we present methods for verifying safety property ( [�q]�λ ) of
probabilistic timed transition systems. We construct methods for verifying safety
property of probabilistic timed transition systems by extending Z. Manna’s and
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A. Pnueli’s verification methods of reactive systems [17] and real-time
systems [15].

First, we define the deductive verification rule of safety property.
For every adversary A of PTS = (V, Θ, prob, Π), a path of the probabilistic

timed transition system is a non-empty finite or infinite sequence:

ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,p2−→ s3

tick3,p3−→ s4
tick4,p4−→ s5 . . . . . .

where si ∈ Σ, si ∈ τpi−1(sL∪Di)(si−1) or Ci = Ci−1 + �i−1. The transition
relation ρticki is given by :

ρticki : ∃�i > 0.Ω(�i) ∧ L′ = L ∧ D′ = D ∧ C′ = C + �i,

where Ω(�i) is given by

Ω(�i) : �i > 0 ∧ ∀t ∈ [0,�i).Π(L, D, C + t).

Let A be an adversary of the probabilistic timed transition system PTS. Let
Probfin

A : PathA
fin → [0, 1] be the mapping inductively defined on the length

of paths in Pathfin
A as follows:

1. If |ω| = 0, then Probfin
A(ω) = 1.

2. If |ω| �= 0, then if ω = ω′ ticki,pi−→ s for some ω′ ∈ Pathfin
A, then we let

ProbA
fin(ω) = ProbA

fin(ω′) ·PA(ω′, ω) , where let PA(ω′, ω) be pi(sL∪D).

In general, we can define ProbA
fin(ωn) = PA(ω0, ω1) ·PA(ω1, ω2) ·PA(ω2, ω3) ·

. . . . . . ·PA(ωn−1, ωn) where ωn = s0
tick0,p0−→ s1

tick1,p1−→ s2 . . . . . .
tickn−1,pn−1−→ sn.

We verify whether ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }) � λ

for all A ∈ A are satisfiable or not, where ω = s0
tick0,p0−→ s1

tick1,p1−→ s2
tick2,p2−→

s3
tick3,p3−→ s4 . . . . . . . . ..
We must compute the minimal probability of ProbA({ω|ω ∈ Pathful

A(s),
and, ω(i) |=A q for ∀i }) for all A ∈ A.

Lemma 1. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. We can define the minimal probability of ProbA as follows:

pmin(ω) = infA∈A ProbA({ω|ω ∈ Pathful
A, and, ω(i) |=A q for ∀i }).

Then, pmin is the least fixed point of the operator

F : (Pathful → [0, 1]) → (Pathful → [0, 1])

that is defined as follows:

F (f)(ω) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick, p ∈

μ(last(ω))}
where sL∪D = last(ω) and C′ = C + �.

Here C′ denotes the set C at si and C denotes the set C at s.
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Theorem 1. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. We can define the minimal probability of ProbA as follows:

pmin(s) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q for ∀i }).

We can also denote the minimal probability of ProbA as follows:

pmin(sL∪D) = infA∈A ProbA({ω|ω ∈ Pathful
A(sL∪D), and, ω(i) |=A q for

∀i }).

Then, pmin is the least fixed point of the operator

F : (ΣL∪D → [0, 1]) → (ΣL∪D → [0, 1])

that is defined as follows:

F (f)(sL∪D)=min{ s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · f(s′L∪D) |ρtick, p ∈ μ(sL∪D)}.

Proposition 1. (Computing the minimal probability)
Theorem 1 yields that the value pmin can be approximated with the following
iterative method.

For sL∪D ∈ ΣL∪D and n = 0, 1, 2, . . . . . .,
pmin

n+1(sL∪D) = min{
∑

s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin
n(sL∪D) |ρtick,

p ∈ μ(sL∪D)}.

Finally, we define verification rule of safety property as follows:

Definition 9. (Verification rule of safety property)
For every adversary A of PTS = (V, Θ, prob, Π), and assertions ϕ and q, we
define the verification rule as follows:

1. Θ → ϕ
2. ϕ → q
3. For every τ ∈ TH , ρτ ∧ ϕ → ϕ′
4. For every initial state s, which satisfies Θ,

pmin
n+1(sL∪D) = min{

∑
s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin

n(sL∪D) |ρtick,

p ∈ μ(sL∪D)} � λ
5. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6. [�q]�λ

This rule is a verification rule of safety property. If premises 1,2,3 and 4 are
satisfied, [�q]�λ can be verified.

Next, we present the soundness of the rule as follows:

Theorem 2. (The soundness of the rule for verifying the safety
property)
If all the premises of the rule are state valid, [�q]�λ is valid.
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5 Verifying Liveness Property

In this section, we present methods for verifying liveness property ( [�(q →
♦r)]�λ ) of probabilistic timed transition systems. We construct methods for
verifying liveness property of probabilistic timed transition systems by extending
Z.Manna’s and A.Pnueli’s verification methods of reactive systems [18] and real-
time systems [15].

First, we define the deductive verification rule of liveness property.
The rule uses auxiliary assertions ϕ1, . . . , ϕm and refers to assertion r also

as ϕ0. With each assertion ϕi we associate one of the clocks ti ∈ C, to which
we refer as the clock, and a real-valued upper bound bi. The intention is that
while remaining in states satisfying ϕi, the clock ti is bounded by bi and never
reset. Since time in a computation grows beyond any bound, this will imply that
we cannot continually stay at a ϕi for too long. Moreover, for all i, ϕi entails
eventually ϕj satisfying � λ, where j ≤ i.

Next, we define the deductive verification rule of liveness property. We can
compute the minimal probability of ProbA({ω|ω ∈ Pathful

A(s), and, ω(i) |=A q
and for some j ≥ i ω(j) |=A r for every i }) � λ.

Lemma 2. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. Let ω(k) ∈ Σ1, k = i, i + 1, . . . , j − 1, and ω(j) ∈ Σ2. We can
define the minimal probability of ProbA as follows:

pmin(ω) = infA∈A ProbA({ω|ω ∈ Pathful
A, and, ω(i) |=A q and for some

j ≥ i ω(j) |=A r for every i }).

Then, pmin is the least fixed point of the operator

F : (Pathful → [0, 1]) → (Pathful → [0, 1])

that is defined as follows:

If s ∈ Σ2 then F (f)(ω) = 1.
If s ∈ Σ \ (Σ1 ∪ Σ2) then F (f)(ω) = 0.
If s ∈ Σ1 \ Σ2 then

F (f)(ω) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick, p ∈

μ(sL∪D)}
where sL∪D = last(ω) and C′ = C +�. Here C′ denotes C at si and C denotes
C at s.

Theorem 3. (Minimal probability)
Let PTS = (V, Θ, prob, Π) be a probabilistic timed transition system and an
adversary A ∈ A. Let ω(k) ∈ Σ1, k = i, i + 1, . . . , j − 1, and ω(j) ∈ Σ2. We can
define the minimal probability of ProbA as follows:

pmin(s) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and for

some j ≥ i ω(j) |=A r for every i }).
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We can also denote the minimal probability of ProbA as follows:

pmin(sL∪D) = infA∈A ProbA({ω|ω ∈ Pathful
A(s), and, ω(i) |=A q and

for j ≥ i ω(j) |=A r for all i }).

Then, pmin is the least fixed point of the operator

F : (ΣL∪D → [0, 1]) → (ΣL∪D → [0, 1])
that is defined as follows:
If s ∈ Σ2 then F (f)(sL∪D) = 1.
If s ∈ Σ \ (Σ1 ∪ Σ2) then F (f)(sL∪D) = 0.
If s ∈ Σ1 \ Σ2 then

F (f)(sL∪D) = min{
∑

s′∈Supp(p(s′L∪D))∧�>0 p(s′L∪D) · f(ω
tick,p−→ s′) |ρtick,

p ∈ μ(sL∪D)}

where sL ∪ D = last(ω) and C′ = C+�. Here C′ denotes C at si and C denotes
C at s.

Proposition 2. (Computing the minimal probability)
Theorem 1 yields that the value pmin can be approximated with the following
iterative method.

We put pn(sL∪D) = 1.0 if s ∈ Σ2 and pn(sL∪D) = 0 if s ∈ S \ (Σ1 ∪ Σ2),
n = 0, 1, . . ..

For s ∈ Σ1 \ Σ2, n = 0, 1, 2, . . . . . .,

pmin
n+1(sL∪D) = min{

∑
s′L∪D∈ΣL∪D∧�>0 p(s′L∪D) · pmin

n(sL∪D) |ρtick,
p ∈ μ(sL∪D)}.

Definition 10. (Verification rule of liveness property)
For every Adversary A of PTS = (V, Θ, prob, Π), and assertions q, r, ϕ0 =
r,ϕ1,. . ., ϕm, clocks t1,. . .,tm ∈ C, and real constants b1,. . .,bm ∈ R, we define
the verification rule as follows:

1. q →
∨m

j=0 ϕj

2. For i = 1, . . . , m:
1. For every τ ∈ T , ρτ ∧ ϕi → (ϕi′ ∧ ti′ ≥ ti) ∨

∨
j<i ϕj ′

2. For every τ ∈ T ,
pmin

n+1(sL∪D) = min{
∑

s′L∪D∈ΣL∧�>0 p(s′L∪D) · pmin
n(sL∪D)

|ρtick, p ∈ μ(sL∪D)} � λ
3. ϕi → ti ≤ bi

4. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5. [�(q → ♦r)]�λ

This rule is a verification rule of liveness property. If premises 1 and 2 are
satisfied, [�(q → ♦r)]�λ can be verified.

We simply explain the premises as follows:

1. The premise 1. requires that every q-state satisfies one of ϕ0 = r, ϕ1,. . .,ϕm.
2. For i = 1, . . . , m, three following premises hold true :
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1. The premise 2.1. requires that every τ-successor (∀τ ∈ T ) of a ϕi-state
s is a ϕj-state for some j ≤ i. In this case that the τ-successor state
satisfies ϕi, it is required that the transition does not decrease the value
of ti.

2. The premise 2.2. requires that the minimal measure satisfies � λ.
3. The premise 2.3. requires that assertion ϕi implies that ti is bounded by

the constant bi.

Next, we present the soundness of the rule as follows:

Theorem 4. (The soundness of the rule)
If all the premises of the rule are state valid, [�(q → ♦r)]�λ is valid.

6 Verifying Nonzenoness

It is a widely accepted notion that the only interesting real-time systems are
those which obey the nonzeno restriction [21]. In the view of the significance of
the nonzeno restriction, it is important to be able to verify that an arbitrary
given probabilistic timed transition system is nonzeno.

The general strategy we propose for proving that a given probabilistic timed
transition system PTS is nonzeno in the following rule. We construct the fol-
lowing rule by combing A. Pnueli’s verification rule of nonzenoness [15] with
M. Kwiatkowska’s divergent adversaries [3]. But both A. Pnueli
and M. Kwiatkowska have not proposed the proof rule of nonzenoness for prob-
abilistic timed systems. We can compute the minimal probability ProbA({ω|ω ∈
Pathful

A(s)}) in the same way as the verification rule of safty property.

Definition 11. (Verification rule of nonzenoness)
For every divergent adversary Adiv of PTS = (V, Θ, prob, Π), and assertions ϕ,
we define the verification rule as follows:

1. PTS ‖= ϕ
2. PTS |= AG(ϕ ∧ Ta = 0 → EF (Ta ≥ 1))
3.

∑
A∈Adiv

{ pmin
n+1(sL∪D) = min{

∑
s′L∪D inΣL∪D∧�>0 p(s′L∪D)·

pmin
n(sL∪D) |ρtick, p ∈ μ(sL∪D)} } = 1

4. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5. PTS is nonzeno

This rule is a verification rule of nonzenoness. If premises 1,2 and 3 are
satisfied, PTS is nonzeno can be verified.

We have already defined the premise 3, but have not defined premises 1 and
2. Now we will define them as follows:

1. premise 1 :
The premise 1 is a rule that establishes the state validity of an assertion ϕ.
We define the rule as follows:
For every divergent adversary Adiv of PTS = (V, Θ, prob, Π), and assertions
ϕ and q,
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1. q → ϕ
2. Θ → q
3. For every τ ∈ T , ρτ ∧ q → q′
4. −−−−−−−−−−−−−−−−−−−−−−−−
5. PTS ‖= ϕ

This rule have been firstly defined by A. Pnueli [15]. This rule follows that ϕ
holds on every accessible state of PTS for every divergent adversary Adiv,
and therefore, an assertion ϕ is state valid.

2. premise 2 :
The premise 2 belongs to the realm of branching-time temporal logic [15],
which is different from the linear-time temporal framework we have been
consistently using this paper. We use the branching-time temporal logic CTL
[22] for formulating the required property, as in the premise 2. The premise
2 states that, from every ϕ-state s, it is possible to trace a path segment in
which time increases by at least 1 from its value at s. We use the constant
a to represent the global time at s. The proof rule of the premise 2 has been
propoesed by A. Pnueli [15]. The proof rule is omitted in this paper because
of lack of spaces.

Next, we present the soundness of the rule as follows:

Theorem 5. (The soundness of the rule for verifying nonzenoness)
If all the premises of the rule are state valid, PTS’s nonzenoness is valid.

7 Conclusions

In this paper, we have developed probabilistic timed transition systems by gen-
eralizing probabilistic timed automata, and verification rules of probabilistic
real-time temporal logic. By our proposed methods, we could construct a gen-
eral computational model and verification method. We have omitted the proofs
of completeness of rules because of lack of spaces. We are now planning to apply
our proposed methods into real distributed real-time systems. Moreover, we will
support deductive verification jobs by mechanical theorem provers. Moreover,
we will reduce deductive verification jobs into model-checking by transforming a
probabilistic timed transition system into a finite probabilistic timed automaton
based on abstract interpretation.
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Abstract. We can model embedded systems as hybrid systems. More-
over, they are distributed and real-time systems. Therefore, it is impor-
tant to specify and verify randomness and soft real-time properties. For
the purpose of system verification, we formally define probabilistic linear
hybrid automaton and its symbolic reachability analysis method. It can
describe uncertainties and soft real-time characteristics. Our proposal
method is the first attempt to symbolically verify probabilistic linear
hybrid automata.

1 Introduction

As ubiquitous computing has progressed, systems are embedded in widespread
environments. Then it is important to guarantee their formal correctness, for in-
stance, safety, reliability, dependability, randomization, and soft real-time prop-
erties. In this paper, we propose the formal verification of probabilistic hybrid
systems. Probabilistic hybrid systems are digital real-time systems that embed-
ded in analog environment and exhibit probabilistic characteristics.

There have been several formal verification methods based on automaton
models as follows: 1. Symbolic model-checking procedure and its implementa-
tion HyTech for linear hybrid automata have been developed using manipulat-
ing and simplifying (R,≤, +)-formulae [1]. 2. For probabilistic timed automata
[5], zone-based symbolic model checking algorithms and tool Prism have been
presented [4]. 3. Reachability for probabilistic rectangular automata has been
mentioned in [6], but the verification methods for general class of probabilistic
hybrid automata have not been developed.

We consider probabilistic linear hybrid automata, an extension of linear hy-
brid automata [1] with discrete probability distributions or probabilistic timed
automata [4] with continuous dynamics. This model contains probabilistic rec-
tangular automata [6], moreover, our reachability analysis method differs from
[6] on the point that J. Sproston [6] generates a finite-state reachability graph,
but our approach uses symbolic computation of logical formulae without graph
construction. To verify probabilistic hybrid systems, we define the polyhedron
labeled by probability as the data structure. And we collectively compute state

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 346–360, 2005.
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transitions by the symbolic operations. Probabilistic linear hybrid automata can
model uncertain behaviors such as statistical estimates regarding the environ-
ment in which a system is embedded. And its verification and performance eval-
uation allow for soft real-time quantitative properties.

This paper is organized as follows: In section 2, we define probabilistic linear
hybrid automata and some preliminary concepts and notations. Section 3 defines
the reachability problem of probabilistic linear hybrid automata. The symbolic
reachability analysis method and trial examples are presented in section 4, and
case study of industrial application is section 5 using prototype tool. Finally, in
section 6, we conclude this paper.

2 Probabilistic Linear Hybrid Automata

Probabilistic linear hybrid automata are defined in this section as our model
for probabilistic-nondeterministic real-time and hybrid systems. This system de-
scription language is an extended linear hybrid automaton [1] by discrete prob-
ability distributions.

2.1 Preliminaries

In preparation, we define basic concepts as follows:

Linear Constraints. Let u be a vector of real-valued variables. A linear term
over u is a linear combination of variables from u with integer coefficients. A
linear inequality over u is an inequality between linear terms over u. A convex
linear formula over u is a finite conjunction of linear inequalities over u. A linear
formula over u is a finite boolean combination of linear inequalities over u. Let
clf(u) and lf(u) be the set of convex linear formulae over u and the set of
linear formulae over u, respectively.

Distributions. A discrete probability distribution over a finite set Q is a func-
tion p : Q → [0, 1] such that

∑
q∈Q p(q) = 1. Let support(p) be the subset of Q

such that support(p) = {q | p(q) > 0}. For a possibly uncountable set Q′, let
Dist(Q′) be the set of distributions over finite subsets of Q′.

2.2 Syntax

First, we define the syntax of probabilistic linear hybrid automata.

Definition 1. A probabilistic linear hybrid automaton
PLHA = 〈x, L, init, inv, dif , prob, (grdl)l∈L, E〉 consists of the following components:

Data Variables. Let x be the finite vector (x1, x2, . . . , xn) called real-valued
data variables. A point s = (s1, . . . , sn) ∈ R

n is referred to as a data state, or,
equivalently, a valuation of data variables. The convex linear formula f ∈ clf(x)
defines the convex polyhedron [[f ]] ⊆ R

n, where [[f ]] = {s | f [x := s] is true.}. A
polyhedron is a finite union of convex polyhedra. For each data variable xi, we
use the dotted variable ẋi to denote the first derivative of xi. For data variables
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x, we use the primed variable x′ to denote the new value of x after a transition.
Let updated variables X be the subset of x, similarly, X ′ ⊆ x′.

Control Locations. L is a finite set of control locations. A state (l, s) of the
automaton PLHA consists of a control location l ∈ L and a valuation s ∈ R

n. Sl

is the set of data states at location l. A region R =
⋃

l∈L{(l, Sl)} is a collection
of polyhedron Sl ⊆ R

n with respect to each control location l ∈ L. A predicate
π =

⋃
l∈L{(l, fl)} is a collection of linear formula fl ∈ clf(x). The predicate π

defines the region [[π]] =
⋃

l∈L{(l, [[fl]])}.
Initial State. init = (l0, s0) is an initial state of the probabilistic linear hybrid
automaton, l0 ∈ L is an initial node, a single point s0 ∈ R

n is an initial value.

Locations Invariants. The function inv : L → clf(x) assigns invariant con-
dition to each location. The control of the automaton PLHA may reside in the
location l only as long as the invariant inv(l) is true (s ∈ [[inv(l)]]).

Continuous Flows. dif : L → clf(ẋ) is a labeling function assigning flows
to locations. The flows constrain the rates at which the values of data variables
change: while the automaton control resides in the location l, the values of first
derivatives of all data variables stay within the differential inclusion ṡ ∈ [[dif (l)]].
The probabilistic linear hybrid automaton PLHA is time-nondeterministic if there
exists a location l ∈ L such that [[dif (l)]] is not a single point.

Discrete Probability Distributions. The function prob :
L → 2Dist(2

x×clf(xX′)×L)
fn assigning to each location a finite, non-empty set

of discrete probability distributions prob(l) = {p1
l , . . . , p

|prob(l)|
l } ⊆ Dist(2x ×

clf(x � X ′) × L).

Enabling Conditions. The family of functions (grdl)l∈L, where for any l ∈
L, grdl : prob(l) → clf(x) assigns an enabling condition (or guard) to each
pi

l ∈ prob(l) at l ∈ L. It may happen that the intersection of multiple guards is
not empty. In such a case, nondeterminism on selecting probability distributions
arises, i.e. there are a number of possibilities. We solve this by the adversary.
We will explain the concept of the adversary in § 2.3.

Probabilistic Edges. For each l ∈ L, pi
l = p ∈ prob(l), grdl(p) = g, we define

the probabilistic edges e = (l, g, p, X, updt, l′) by discrete probability distribu-
tions, where X ⊆ x, updt ∈ clf(x�X ′), l′ ∈ L. Let E be the finite set of proba-
bilistic edges such that E = {e | p(X, updt, l′) > 0}. An update is a convex linear
formula updt over the set x�X ′. The action of the update updt is the convex lin-
ear formula over the set x�x′, act = updt∧(

∧
xi∈x\X(x′

i = xi)), all data variables
that are not updated remain unchanged. In other words, the update updt defines
a function act : R

n → clf(x′) from valuations to convex linear formulae over
x′. For all valuations s, s′ ∈ R

n, let s′ ∈ [[act(s)]] iff act[x, x′ := s, s′] is true.

Examples. We will show some simple example as follows:
We consider probabilistic linear hybrid automaton as shown in Figure 1 and

its formal description is below. Guard is assigned to the distribution, and both
update formula and the probability are assigned to the edge.
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x = {x, y}, L = {l1, l2}, inv(l1) = (1 ≤ y ≤ 2), inv(l2) = (y ≥ 0), dif (l1) =
(1 ≤ ẋ ≤ 2∧ 1 ≤ ẏ ≤ 2), dif (l2) = (ẋ = 1∧ ẏ = 2), prob(l1) = {pl1}, prob(l2) =
{pl2}, grdl(pl1) = (x ≤ 3), pl1({x, y}, x′ ≥ 1 ∧ y′ = x, l2) = 0.6, pl1(∅, -, l1) =
0.4, pl2(∅, -, l2) = 1.

In Figure 1, the initial state init is (l1, x = 0 ∧ y = 1). First, time passes in
location 1 or the location changes. If time passes, the values of data variables
change at the rate (1 ≤ ẋ ≤ 2 ∧ 1 ≤ ẏ ≤ 2). Location might change if the guard
(x ≤ 3) of the distribution is satisfied. If the location changes, the variables are
updated according to the action formula of the edge. For example, the transi-
tion to location 2 with the probability 0.6 updates the values of data variables
according to (x′ ≥ 1 ∧ y′ = x).

We verify whether the automaton reaches the target from the initial state or
not by tracing transitions. For example, if the target is (l2, 1 ≤ x ≤ 2∧2 ≤ y ≤ 3),
it is possible to reach the target from the initial state init = (l1, x = 0 ∧ y = 1)
with probability 0.6 as follows:

(l1, x = 0 ∧ y = 1) passage of one time unit under (ẋ = 2 ∧ ẏ = 2)
→ (l1, x = 2 ∧ y = 2) transition to l2 under (x′ = 2 ∧ y′ = 2) with probability 0.6
→ (l2, x = 2 ∧ y = 2)

We can specify probabilistic hybrid systems, which are reactive systems that
intermix discrete and continues components with randomization, using proba-
bilistic linear hybrid automata. Typical examples are digital controllers that in-
teract with continuously changing physical environments, the steam boiler shown
in § 5 is the one. Because probabilistic linear hybrid automata can describe the
probability, statistical information such as the reliability of the switch can be
described, too. Moreover, reset of the values can be described by update formula.

2.3 Semantics

Concurrent Probabilistic Systems. Next, we define concurrent probabilistic
systems as a semantic model.

Definition 2. A concurrent probabilistic system is a tuple CPS = 〈Q,Σ, Steps〉 :

– Q is a set of states;
– Σ is a set of events;
– Steps : Q → 2Σ×Dist(Q) is a function which assigns to each state a non-

empty set Steps(q) of pairs (σ, μ) ∈ Σ × Dist(Q) comprising an event and
a distribution on Q.

A probabilistic transition q
σ,μ−→ q′ is made from a state q by nondeterministi-

cally selecting an event-distribution pair (σ, μ) ∈ Steps(q), and then making a
probabilistic choice of target state q′ according to μ, such that μ(q′) > 0. An
execution of a concurrent probabilistic system is represented by a path ω, that
is, a non-empty sequence of transitions ω = q0

σ0,μ0−→ q1
σ1,μ1−→ q2

σ2,μ2−→ · · ·. We
denote by ω(i) the ith state of a path ω, step(ω, i) the ith transition of ω, |ω|
the length of ω and if ω is finite, the last state by last(ω). We say that a finite
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path ω(k) of length k (≤ |ω|) is a prefix of ω if ω(k)(i) = ω(i) for all 0 ≤ i ≤ k,
and step(ω(k), i) = step(ω, i) for all 0 ≤ i ≤ k − 1. Pathfin is the set of all finite
paths. Event-distribution pair (σ, μ) ∈ Steps(q), is nondeterministically chosen.
According to the general technique [9, 10, 11], we represent concurrency by the
nondeterministic choice.

We now introduce adversaries of concurrent probabilistic system as functions
which resolve all of the nondeterministic choices of the model.

Definition 3 (Adversaries). A deterministic adversary (or scheduler) of
concurrent probabilistic system is a function A : Pathfin → Σ × Dist(Q) which
assigns to each finite path ω ∈ Pathfin an event-distribution pair (σ, μ) deter-
ministically such that A(ω) ∈ Steps(last(ω)).

For an adversary A, we define PathA
fin to be the set of finite paths such

that step(ω, k) = A(ω(k)) for all 0 ≤ k < |ω|. PathA
fin means the one (de-

terministic) computation tree labeled by probabilities. Let Adv be the set of
adversaries. An adversary decides the nondeterministically selecting performed
event-distribution pairs in concurrent probabilistic system. Therefore, given an
adversary, the nondeterministic model under the adversary can be described by
a deterministic model.

With each adversary, we associate a sequential markov chain, which can be
regarded as a set of paths in concurrent probabilistic system. Formally, if A is
an adversary, then MCA is a markov chain.

Definition 4 (Markov Chains). An infinite-state Markov chain which corre-
sponds to A is MCA = 〈PathA

fin ,PA〉, where:

– A set of states of MCA is PathA
fin .

– PA : PathA
fin ×PathA

fin → [0, 1] is a transition probability matrix, such that:

PA(ω,ω′) = {μ(q) if A(ω) = (σ, μ) and ω′ = ω
σ,μ−→ q

0 otherwise.

Definition 5 (Probabilities over Paths). Let PA be the mapping inductively
defined on the length of paths in PathA

fin as follows. If |ω| = 0, then PA(ω′)
= 1. If |ω| > 0 and ω′ = ω

σ,μ−→ q for some ω ∈ PathA
fin , then we let :

PA(ω′) = PA(ω) ·PA(ω, ω′).

Semantics of Probabilistic Linear Hybrid Automata. The following no-
tation ([6]) is used to reason about the next states of the probabilistic edges of
PLHA. For the distribution p, if support(p) = {(X1, updt1, l′1), (X2, updt2, l′2), . . . ,
(Xm, updtm, l′m)}, then we let the tuple of actions extract(p)=(act1, act2,. . ., actm)
and generate the tuple of valuations 〈v〉 = (v1, v2, . . . ,vm) in the following way:
for each 1 ≤ j ≤ m, we choose a valuation vj ∈ R

n such that vj ∈ [[act(s)j ]]. Ob-
serve that, for any 1 ≤ i, j ≤ m such that i �= j, it may be the case that [[act(s)i]]
and [[act(s)j ]] have non-empty intersection, and therefore it is possible that vi =
vj , where vi ∈ [[act(s)i]] and vj ∈ [[act(s)j ]]. Let Combinations(s, extract(p))
be the set of all such tuples 〈v〉 for a given state (l, s) and the distribution p.
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Definition 6. The concurrent probabilistic system CPSPLHA = 〈QPLHA,
ΣPLHA, StepsPLHA〉 of probabilistic linear hybrid automaton PLHA is defined as fol-
lowing infinite-state transition system:

– QPLHA ⊆ L × R
n is the set of states, defined such that (l, s) ∈ QPLHA if s ∈

[[inv(l)]];
– ΣPLHA = R≥0 is the set of events. CPSPLHA is not event-driven system using

the alphabet but a time-driven system that uses time as a trigger. Therefore,
time becomes an event;

– For each state (l, s) ∈ QPLHA, let StepsPLHA((l, s)) = Cont(l, s)∪Disc(l, s) be
the smallest set of event-distribution pairs such that:
• Time transition for each duration δ ∈ R≥0, there exists (δ, μ(l,s′)) ∈

Cont(l, s) such that μ(l,s′)(l, s′) = 1 if and only if either
1. δ = 0 and s′ = s, or
2. δ > 0 and s′−s

δ ∈ [[dif (l)]];
• Discrete transition

Disc(l, s)=
⋃

p∈prob(l)Disc(l, s, p), where for each distributionp ∈prob(l),
if s ∈ [[grdl(p)]], then, for each 〈v〉 ∈ Combinations(s, extract(p)),
there exists the pair (0, μp,〈v〉) ∈ Disc(l, s, p) such that

μp,〈v〉(l′, s′) =
∑

i∈{1,...,m=|support(p)|}&l′=l′j&s′=vj

p(Xj, updtj , l′j). (1)

Expression (1) resolves the case of probabilities summation as the same way
[4][6].

An adversary chooses the event-distribution pair (σ, μ) ∈ StepsPLHA((l, s)) =
Cont(l, s) ∪ Disc(l, s) that can be performed in CPSPLHA. In other words, it
chooses one from various possibilities as follows. At any time, if the system
is in a location, then the system can either remain in its current location and
let time advance, or make a discrete transition if there exists a distribution.
Discrete transitions are instantaneous and consist of the two steps performed in
succession: firstly, the system makes a nondeterministic choice between the set
of distributions. Secondly, supposing that the distribution is chosen, the system
then makes a probabilistic transition according to the distribution. In this non-
deterministic choice between the set of event-distribution pairs, if we define an
adversary, the nondeterministic model under the adversary can be described by
a deterministic model.

3 Reachability Problem

We now formally define our reachability problem.

Definition 7 (Probabilistic Reachability Problem). Given a probabilistic
linear hybrid automaton PLHA = 〈x, L, init, inv, dif , prob, (grdl)l∈L, E〉, let T be
a predicate called the target, let �∈ {≥, >}, and let λ ∈ [0, 1] be the target
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probability. Then probabilistic reachability problem for PLHA can be defined as
the tuple (T,�, λ), the answer to this problem is “Yes, reachable” if and only
if there exists an adversary A ∈ Adv of CPSPLHA (or, equivalently, a series of
nondeterministic choices) and a path ω ∈ PathA

fin starting in an initial state of
PLHA init = (l0, s0) such that last(ω) in (l, [[fl]]) ∈ [[T]] with probability (over
path) � λ, and “No” otherwise.

We now review two subclasses of reachability properties: time bounded reach-
ability and invariance which are particularly relevant for the verification and
the performance evaluation of probabilistic real-time and hybrid systems [5][6].
About the former, PLHA has certain time deadlines. On the other hand, about the
latter, PLHA is required that does not leave an invariant region [[I]] ⊆ QPLHA, or,
equivalently, always satisfies some properties. (e.g. [[I]] as desirable or expected
region for safety property).

4 Verification: Symbolic Reachability Analysis

The following extended expression is used to express the probabilities of the
transitions of CPSPLHA.

Definition 8 (Polyhedra labeled by Probabilities). For a linear formula
f ∈ lf(x) and a corresponding polyhedron [[f ]], we define the probabilistic poly-
hedron ([[f ]], P ) to be the pair comprising a polyhedron [[f ]] ⊆ R

n and its proba-
bility P ∈ (0, 1]. The function plf : L → 2lf(x)×(0,1] assigning to each location
a set of probabilistic linear formulae, where a probabilistic linear formula is the
pair of a linear formula f and its probability P such as (f, P ) ∈ lf(x) × (0, 1].
Let [[plf(l)]] ⊆ 2R

n × (0, 1] be the finite set of probabilistic polyhedra in the lo-
cation l such that [[plf(l)]] = {([[fl]], P ) | for some [[fl]], P > 0}. Note that,
for any ([[fl

a]], P a), ([[fl
b]], P b) ∈ [[plf(l)]] such that [[fl

a]] = [[fl
b]], it is the case

that P a �= P b. In the sequel, we use R =
⋃

l∈L{(l, [[plf(l)]])} as a region, and
a predicate π corresponding to the region R is π =

⋃
l∈L{(l, plf(l))}, where

[[π]] =
⋃

l∈L{(l, [[plf(l)]])}.
We introduce extra edge relations to deal with summing up probabilities with

respect to the same next state (cf. § 2.3 and expression (1)).

Definition 9 (Extra edge relations). For a set E, let E be the set of extra
probabilistic edges such that:

E =
⋃

l∈L,p∈prob(l),Act∈2extract(p)
ne

{e = (l, g, pr, act, l′) | condition};

condition ≡ ∀actj ∈ Act such that |Act| ≥ 2, l′ = l′j and (
⋂

actj∈Act

[[act(s)j ]]) 
= ∅,

where pr =
∑

actj∈Act

p(Xj , updtj , l′
j), act =

∧
actj∈Act

actj .

All the cases of duplication of act or all the nondeterministic combination in
addition of probability is treated by 2extract(p)

ne , where notation ne means non-
empty set.
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We define the following precondition operators to calculate the state transition
relation in probabilistic linear hybrid automata symbolically and collectively.

4.1 Precondition Operators

We define the time-precondition operator and the discrete-precondition oper-
ator based on the non-probabilistic precedent of [1]. Non-probabilistic hybrid
automata case was showed in [1]. So, emphasis is placed on probabilities and
the definition of precondition operators follows from probabilistic transition of
CPSPLHA, we can define the following precondition operators according to Defini-
tion 6. Because we use the backward algorithm later, the operations are inverse
image computations defined as follows.

Definition 10 (Time Precondition). We write tpre(plf(l)) for the prob-
abilistic linear formula such that from any state in the corresponding region
(l, [[tpre(plf(l)]]) a state in (l, [[plf(l)]]) can be reached in a single time
transition.

tpre(plf(l)) =⋃
(fl,P )∈plf(l)

{(inv(l) ∧ (∃δ ≥ 0.∃c.(((δ ·dif (l))[ẋ := c] ∧ (fl ∧ inv(l))[x := x + c])), P·1)}.

Definition 11 (Discrete Precondition). We write dpre(l′, plf(l′)) and
expre(l′, plf(l′)) for the predicate, the corresponding region of states from which
a state in (l′, [[plf(l′)]]) can be reached in a single discrete transition according
to probabilistic edges E and extra edges E, respectively.

dpre(l′, plf(l′)) =
⋃

e=(l,g,p,X,updt,l′)∈E

{(l,
⋃

(fl′ ,P )∈plf(l′)

{(inv(l) ∧

∃x′.(g ∧ act ∧ (fl′ ∧ inv(l′))[x := x′] ), P · p(X,updt, l′))})}.

expre(l′, plf(l′)) =
⋃

e=(l,g,pr,act,l′)∈E
{(l,

⋃
(fl′ ,P )∈plf(l′)

{(inv(l) ∧ ∃x′.(g ∧ act ∧ (fl′ ∧ inv(l′))[x := x′] ), P · pr)})}.

Definition 11 enables us to calculate the state transitions that follows the same
probability distribution symbolically and collectively. By one calculation, the
length of path increases by one, (refer to Definition 5). Since calculation of
probability is multiplication, we can calculate it reversely.

Finally, we define precondition operator pre consisting of time and discrete
precondition operator. For a predicate π, any state in the corresponding region
[[pre(π)]] can reach to some states in the region [[π]] with single probabilistic
transitions.

Definition 12 (Precondition Operators).

pre(π) = Tpre(π) ∪ Dpre(π), where

Tpre(π) =
⋃
l∈L

{(l, tpre(plf(l)))}, Dpre(π) =
⋃

l′∈L

(dpre(l′, plf(l′)) ∪ expre(l′, plf(l′))).
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It is well known [1, 2, 3] that we can solve the reachability problem by repeat-
ing inverse image computations and calculating all the states where it can follow
from the target. We use the backward algorithm, because it is said that the
backward algorithm is more efficient than the forward algorithm. We can trace
all the operation of probabilistic linear hybrid automaton by using precondition
operator pre previously defined when we perform inverse image computations.

4.2 Symbolic Backward Reachability Analysis Procedure

We propose the symbolic backward reachability analysis procedure as below:

Procedure SRA:
Input: a probabilistic linear hybrid automaton PLHA;
an initial state init = (l0, s0);
a target predicate and a probabilistic requirement (T, �, λ).
Output: YES, reachable / NO;
(a region [[Qi]] which can reach [[T]].)
Y := T /∗ Q0 ∗/
Z := T
repeat
/∗ computation of a region [[Qi]] which can reach [[T]]. ∗/
Z := pre(Z) \ Y /∗ prei \ Qi−1 ∗/
Y := Y ∪ Z /∗ Qi ∗/
/∗ judgment of reachability every time i, Z is the form of⋃

l∈L{(l, plf(l))} =
⋃

l∈L{(l,⋃(fl,P )∈plf(l){(fl, P )})}. ∗/
for each z = (l, plf(l)) ∈ Z wrt l ∈ L

if l == l0
for each (fl, P ) ∈ plf(l)
if s0 ∈ [[fl]]
if P � λ
return YES, reachable.
halt SRA

end if
end if
end for each
end if
end for each
until Z == ∅
return NO.

In general, the convergence of the least fixed point, and thus the termination of
this reachability analysis procedure is not guaranteed, as already the reachability
problem for constant-slope hybrid systems is undecidable [2][1].

Afterwards, we transform predicates into logical formulae with the aim of
implementing the above procedure by symbolic computation of logical formulae.
Let lc and Pc be control variables that ranges over the set of locations L and
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Fig. 1. Probabilistic linear hybrid automaton Fig. 2. Time Pre-
condition

Fig. 3. Discrete
Precondition

the set of real numbers R, respectively. The predicate π =
⋃

l∈L{(l, plf(l))} =⋃
l∈L{(l,

⋃
(fl,P )∈plf(l){(fl, P )})} defines the logical formula φ in the following

manner:

φ ≡
∨
l∈L

(lc = l ∧ plf(l)) =
∨
l∈L

(lc = l ∧ (
∨

(fl,P )∈plf(l)
(fl ∧ Pc = P )))

In precondition operators, union operators
⋃

and ∪ are replaced by disjunctions∨
and ∨, respectively.

4.3 Examples

We will show some simple example as follows:

Probabilistic reachability problem (T,≥, 0.35).
Probabilistic linear hybrid automaton Figure 1, init = (lc = l1 ∧ x = 0∧ y = 1),
T = (lc = l2 ∧ 1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1).

Predecessor calculation using quantifier elimination [12][1].
tpre(1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1)

= (y≥0 ∧ (∃δ≥0.∃cx, cy.(cx =δ ∧ cy =2·δ ∧ 1≤x+cx ≤2 ∧ 2≤y+cy ≤3 ∧ y+cy ≥0))

∧ Pc = 1 · 1)
= (y ≥ 0 ∧ (∃δ ≥ 0.( 1 ≤ x + δ ≤ 2 ∧ 2 ≤ y + 2δ ≤ 3 )) ∧ Pc = 1)

= (x ≤ 2 ∧ 0 ≤ y ≤ 3 ∧ −2 ≤ y − 2x ≤ 1 ∧ Pc = 1). see Figure 2

dpre(lc = l2 ∧ 1 ≤ x ≤ 2 ∧ 2 ≤ y ≤ 3 ∧ Pc = 1)

= (lc = l1 ∧
(1 ≤ y ≤ 2 ∧ ∃x′.∃y′.(x ≤ 3 ∧ x′ ≥ 1 ∧ y′ = x ∧ 1 ≤ x′ ≤ 2 ∧ 2 ≤ y′ ≤ 3 ∧ y′ ≥ 0))

∧ Pc = 1 · 0.6)

= (lc = l1 ∧ (1≤y≤2 ∧ ∃x′.(x≤3 ∧ 1≤x′ ≤2 ∧ 2≤x≤3)) ∧ Pc =0.6)

= (lc = l1 ∧ 2 ≤ x ≤ 3 ∧ 1 ≤ y ≤ 2 ∧ Pc = 0.6) = φ1. see Figure 3

pre(T) = Tpre(T) ∨ Dpre(T)

= (lc = l2 ∧ x≤2 ∧ 0≤y≤3 ∧ −2≤y − 2x≤1 ∧ Pc =1) ∨ φ1∨ T

= φ1 ∨ φ2 ∨ T.
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Reachability Determination
For pre2 = pre(pre(T) \ T) = pre(φ1 ∨ φ2) = pre(φ1) ∨ pre(φ2), cpre(φ1) = (lc =
l1 ∧x ≤ 3∧1 ≤ y ≤ 2∧2x−y ≤ 5∧2y−x ≤ 2∧Pc = 0.6) and init have a non-empty
intersection. Then probabilistic requirement is satisfied (Pc = 0.6 ≥ 0.35), and
therefore we conclude this reachability problem with “Yes”.

The example of operation shown in § 2.2 is correctly calculated in Figure 2
and 3 that uses the procedure described in § 4.2. This calculation is symbolically
performed. We have implemented a prototype of verifier based on Mathemat-
ica.

5 Case Study

5.1 Probabilistic Steam Boiler

We now consider the problem of modelling an industrial application [13][14],
namely that of a steam boiler (Fig. 5), using probabilistic linear hybrid automata.
The system consists of a number of physical units, namely a vessel containing
an amount of water, a water pump, a series of sensors, and a message trans-
mission system. The vessel is continuously heated in order to produce steam.
The constant L denotes the minimal limit level of water, with U denoting the
corresponding maximal limit level. When the water level remains within the nor-
mal operating interval of [N1, N2], the controller need not intervene. However,
if the water level falls below N1, then the pump is switched on, and if the wa-
ter level rises above N1, the pump is switched off. There is the possibility of a
failure in the water level sensor [15][6]. Given the occurrence of such a failure,
the controller uses an approximate guess of the actual water level when deciding
whether to switch the pump on or off. Periodically, there is the possibility of the
water level sensor being repaired.

5.2 Modelling

Probabilistic linear hybrid automaton to model the steam boiler system de-
scribed above is given in Figure 4. We ease the graphical notation by enclosing
the locations in the dotted boxes, and draw a single edge from each box to the
location. The variable w denotes the water level, t and cl are clocks, gl repre-
sents the lower bound on the current guess on the water level, gu represents the
corresponding upper bound.

Location Off and On. When control resides in these two locations, the value of
the water level is affected by the steam. We express the rate of change of the steam
emission volume as 0 ≤ ṡ ≤ e for some positive integer constant e. In the location
On the pump being on. The pump water the vessel at any rate between 0 and p
litres per time units. Both location have the invariant condition t ≤ Δ; therefore,
control must leave either of these locations if the value of the clock t is equal to Δ.

Location Urgent Off and Urgent On. The purpose of the two locations
is to ease the graphical notation of probabilistic linear hybrid automaton. In
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Fig. 4. Probabilistic linear hybrid automaton for probabilistic steam boiler

these locations no time is permitted to elapse. They correspond to the controller
making estimates of the water level. All of the distributions available in these
locations reset the guess variables, gl and gu.

Location Off/Failure and On/Failure. Naturally, these two locations corre-
spond to the case in which the water level sensor has failed. As the controller
is now maintaining an estimate of the water level, the flow conditions of the
variables representing the bounds on the guess of the water level, gl and gu, are
altered to take into account the fact that the real water level may change as time
elapses.

Location Emergency Stop and Shutdown. If the real water level falls
below the lower limit L or exceed the upper limit U , then control can pass to
the terminal location Emergency stop. If the lower bound on the estimate of
the water level is below the lower normal water level at the same time as the
upper bound on the estimate is above the upper normal level, then control can
pass to a terminal location Shutdown.
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Fig. 5. Steam boiler Fig. 6. An example run of the probabilistic
steam boiler

An example run of the probabilistic steam boiler control is shown in Figure 6.
We assume that the system constants are such that L < N1 < G1 < G2 < N2 <
U , and that the initial water level of the boiler, denoted by w0, is some point
in the interval (G1, G2). When the system commences operation, the pump is
switched off.

5.3 Analysis

Property Description. In this paper, the property that we wish to check is
whether or not the system can reach the terminal location (Emergency stop,
Shutdown) in 10 time units have elapsed. However, it is possible to ignore the
location Emergency stop by doing a little arithmetic as follows; if the amount of
the steam emission volume s during Δ time units is not more than N1 minus L
at the same time as the amount of water absorption a during Δ time units is not
more than U minus N2, then the system never reaches the location Emergency
stop. Therefore, we consider only the location Shutdown the terminal location.
We note states T for which it is possible to make a single transition in order
to reach Shutdown; we omit the actual target states (Shutdown) for simplicity.
Finally, the probabilistic reachability property that requires that the system
reach the location Shutdown within 10 time units, with the probability strictly
greater than 0, can be expressed as the tuple (T, >, 0).

Our first task is to specify the probabilities of the discrete transitions of the
steam boiler control. For convenience, we select very simple distributions. We de-
cide that the possibility of a failure in the water level sensor is 0.1, otherwise 0.9.

Implementation and Results. The results are as follows. “ The system can
reach the states for which it is possible to make a single transition in order to
reach Shutdown within 10 time units, with probability 0.1 at 4th transition”.
This automatic analysis took about 14 minutes and up to 100MB memory. (In-
tel Pentium 4 CPU 3.00GHz with 2.00GB RAM under MS Windows XP OS on
Mathematica 5.0). Mathematica can execute the commands such as quan-
tifier elimination,QE [12]. We can transform the formula into another formula
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that is equivalent to the former, and does not contain ∃ by using QE. We use this
QE when we compute the tpre(), dpre(), and expre(). This is fully automated
in analysis.

Here, we refer to the symbolic run (set of paths) that has reached Shutdown,
as follows.

(lc = Off ∧ 0 ≤ cl < 1 ∧ 0 ≤ t ≤ 5 ∧ 0 ≤ w < 35 − 3t

∨ 1 ≤ cl < 6 ∧ −1 + cl < t ≤ 5 ∧ 0 ≤ w < 35 − 3t)

→ (lc = Off ∧ 0 ≤ w < 20 ∧ 0 ≤ cl < 6 ∧ t = 5)

→ (lc = Urgent on ∧ 0 ≤ w < 30 ∧ 0 ≤ cl < 6 ∧ t = 0)

→ (lc = On/failure ∧ 0 ≤ t ≤ 5 ∧
(0≤cl≤5+t ∧ gu >25+5t ∧ gl <35−3t ∨ 5+t<cl≤10 ∧ gu >5cl ∧ gl <50−3cl))

→ (lc = On/failure ∧ gl < N1 ∧ gu > N2 ∧ 0 ≤ t ≤ Δ = 5 ∧ 0 ≤ cl ≤ 10)

The probability of these paths is 0.1. Note that the first region contains the sys-
tem commences operation init = (lc = Off ∧ w = 0 ∧ t = 0 ∧ cl = 0), and the
last region is contained the target T.

In this paper, we regarded the states for which it is possible to make a sin-
gle transition in order to reach Shutdown as the target region. Generally, it is
undesirable that the system can enter Shutdown. So, we should remodel the de-
sign parameter of the steam boiler control to avoid the above case. Now, we
change the parameter (initial water level w0 and guard G1) and analyze again.
Then the system do not enter the undesirable target within 10 time units in four
times transition.

6 Conclusions

In this paper, we have defined the probabilistic linear hybrid automata as system
modelling language, and presented its symbolic reachability analysis method.
Our proposal method is the first attempt to symbolically verify probabilistic
linear hybrid automata. By our method, we will be able to handle many sys-
tems such as distributed control systems, timed randomized protocols and so
on. We have implemented an experimental verification system using Mathe-
matica, and demonstrated that our method can help the system designer to
choose critical system parameters, via case study. We are now working for an
abstraction/approximation method of probabilistic linear hybrid automata to
handle complicated realistic problems.

References

1. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embed-
ded systems. IEEE Transactions on Software Engineering, 22(3):181-201, 1996.

2. R. Alur, C. Coucoubetis, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J.
Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3-34, 1995.



360 Y. Mutsuda, T. Kato, and S. Yamane

3. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193-244, 1994.

4. M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic model checking for proba-
bilistic timed automata. Technical Report CSR-03-10, School of Computer Science,
University of Birmingham, 2003.

5. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101-150, 2002.

6. J. Sproston. Model checking for probabilistic timed and hybrid systems. PhD thesis,
Technical Report CSR-01-04, School of Computer Science, University of Birming-
ham, 2001.

7. J. Sproston. Analyzing subclasses of probabilistic hybrid automata. Technical Re-
port CSR-99-8, School of Computer Science, University of Birmingham, 1999.

8. J. Sproston. Decidable model checking of probabilistic hybrid automata. Lecture
Notes in Computer Science 1926, pp 31-45, Springer-Verlag, 2000.

9. S. Hart, M. Sharir, and A. Pnueli. Termination of Probabilistic concurrent program.
ACM Transactions on Programming Languages and Systems (TOPLAS), 5(3): 356-
380, 1983.

10. E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science
(vol. B): formal models and semantics, Pages 995-1072, MIT Press, 1991.

11. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM (JACM), 42(4):857-907, 1995.

12. A. Tarski. A decision method for elementary algebra and geometry. University of
California Press, Berkeley and Los Angeles, California, 2nd ed., 1951.

13. J.R. Abrial, E. Borger, and H. Langmaack, editors. Formal methods for industrial
applications: specifying and programming the steam boiler control. volume 1165
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

14. T.A. Henzinger and H. Wong-Toi. Using HYTECH to synthesize control parame-
ters for a steam boiler. in [13], pp. 265–282.

15. A. McIver, C. Morgan, and E. Troubitsyna. The probabilistic steam boiler: a case
study in probabilistic data refinement. In Proc. of IRW/FMP’98, Australia, 1998.

16. E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press, 1999.



L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 361 – 372, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Formalization of fFSM Model and Its Verification 

Sachoun Park1, Gihwon Kwon1, and Soonhoi Ha2 

1 Department of Computer Science, Kyonggi University, 
San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea 

{sachem, khkwon}@kyonggi.ac.kr 
2 Department of Computer Engineering, Seoul National University, 

Seoul, Korea 151-742 
sha@iris.snu.ac.kr 

Abstract. PeaCE(Ptolemy extension as a Codesign Environment) was developed 
for the hardware and software codesign framework which allows us to express 
both data flow and control flow. The fFSM is a model for describing the control 
flow aspects in PeaCE, but it has difficulties in verifying their specifications due 
to lack of their formality. Thus we propose the formal semantics of the model 
based on its execution steps. To verify an fFSM model, it is translated into SMV 
input language with properties to be checked, automatically. As a result, some 
important bugs such as race condition, ambiguous transition, and circular 
transition can be formally detected in the model.  

Keywords: Finite state machine, Step semantics, Formal verification, Model 
checking. 

1   Introduction* 

To make narrow the gap between design complexity and productivity of embedded 
systems, hardware/software codesign has been focused as a new design methodology. 
Various codesign procedures have been proposed, and formal models of computation 
for system specification by using "correct by construction" principle make ease design 
validation. The PeaCE[1] is the codesign environment to support complex embedded 
systems. The specification uses synchronous dataflow (SDF) model for computation 
tasks, extended finite state machine (FSM) model for control tasks and task-level 
specification model for system level coordination of internal models (SDF and FSM). 
It gives automatic synthesis framework from the proposed specification with good 
results compared with hand-optimized code, and the automatic SW/HW synthesis 
from extended FSM model, called fFSM(flexible FSM), and automatic SW synthesis 
from task-model is developed. The synthesis framework generates architecture 
independent code which can be used for functional simulation, design space 
exploration, synthesis and verification steps by varying the definitions of APIs.  

The fFSM is another variant of Harel’s Statecharts, which supports concurrency, 
hierarchy and internal event as Statecharts does. Also it includes global variables as 

                                                           
*  This work was supported in part by IT Leading R&D Support Project funded by Ministry of 

Information and Communication, Republic of Korea. 
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memories in a system. This model is influenced from STATEMATE of i-Logix inc.[2] 
and the Ptolemy[3] approaches. But the formal semantics for internal models is not 
defined explicitly. Especially, in the case of fFSM(flexible FSM), the absence of 
formal semantics causes problems such as confidence for simulation, correctness of 
code generation, and validation of a system specification. Since no formal semantics 
exit, unexpected behavior may occur after system built and also it dilute original 
purpose of codesign to produce complex embedded system cost-effectively 

In this paper, we define the step semantics for fFSM model, which becomes 
foundation about reliable code generation and formal verification. Step semantics or 
operational semantics of an fFSM defines how the model changes state from one 
configuration to another on the reception of some events, while it at the same time 
executes actions consisting of emitting output and internal events and updating of 
global variables. In this field, many works have proposed, but among these formal 
semantics, we turned our attention to Erich Mikk’s hierarchical automata[4] and Lind-
Nielsen’s hierarchical state/event model[6].  

Hierarchical automata semantics was defined to formally express the STATEMATE 
semantics of Statecharts described by Harel and Naamad in 1996[5]. After he defined 
pure hierarchal automata which have no inter-level transition, he described EHA 
(extended hierarchical automata) to handle the inter-level transition. As the semantics 
of EHA was presented in the Kripke structure, three rules at EHA were applied to: 
progress rule, stuttering rule, and composition rule. If any enabled transition is 
activated, sequential automaton takes progress rule. If an active sequential automaton 
does not have an enabled transition and the active state is a basic state then the 
automaton stutters and consumes events. And each automaton delegates its step to its 
sub-automata with respect to the composition rule. But it wasn’t dealt with the delta-
delay and variables. 

HSEM(Hierarchical State/Event Model), the variant of Statecharts in IAR 
visualSTATE[7], is based on the Unified Modeling Language(UML) state diagram, 
where again the UML is based on Harel’s Statecharts. Although HSEM has its origin 
in Statecharts, its semantics is distinguishable. The behavior of the model described N 
flat parallel machines, where the N is the number of Or-states: serial and history states. 
Thus a configuration of HSEM consists of exactly one state per each Or-sate, so it 
may include inactive states. This method is able to perform compositional model 
checking which one of solution for state explosion problem. However, in the HSEM 
semantics, there is only use of state reference to express guarding condition, without 
event occurring. 

Firstly, we define the step semantics with concept of the delta-delay, variables and 
event. And then verifying some system properties, we automatically translate the 
model to SMV input language with these properties. This translation is based on the 
proposed step semantics and synchrony hypothesis.  

In this paper, the semantics of the fFSM model in PeaCE approach is defined by 
borrowing from EHA and HSEM semantics. In the next section, N flat parallel 
machine of fFSM, pFSM, is defined with its example. The definition of step 
semantics of pFMS is presented in section 3, our efforts for debugging a model is 
described at section 4 and then we conclude the paper in section 5.  



  Formalization of fFSM Model and Its Verification 363 

2   Formal Definition of pFSM 

2.1   Reflex Game: The Example of fFSM Model 

This version of reflex game is used for describing formal model of fFSM. The set of 
input events to the system are coin, ready, stop, and time. All but the last are user 
inputs, while the last generated by system simply counts off time. The game scenario 
is as follows: after a coin is inserted, ready signal becomes on after a randomly 
distributed latency. When the ready signal is one, the player should put down the stop 
button as quickly as possible. Then the output is produced to indicate the time 
duration between the ready signal and the stopping action. To compute the time 
duration, we use “remain” and “randn” as variable states. The resultant fFSM graph is 
concurrent and hierarchical. 
 

 

Fig. 1. fFSM example of reflex game 

Initially, each atomic fFSM is triggered by input events and makes a transition 
when its guard condition is satisfied. If the transition produces internal events, 
transitions triggered by the internal events are made iteratively until there is no more 
internal event. After every delta-delay, it clears all existing events and sets newly 
produced internal events at the previous delta-delay. Briefly, an execution of an 
atomic fFSM consists of a transition triggered by an input event and subsequent 
transitions triggered by internal events produced by the previous transition. And 
variable state and output events keep their values to make them persistent. 

2.2   Syntax of pFSM  

In this section, we introduce definitions about pFSM which is based on the thesis[8]. 
To define the step semantics of fFSM, we propose N flat parallel machine of fFSM, 
pFSM. Like an fFSM, there exit events, global variables, states, and transition.  
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I, O, and IT are sets of input events, output events, and internal events, respectively. 
Unlike previous definition of the event of fFSM, these sets disjoint each other. Each 

event ie  in }...,,{ 1 neeITOI =∪∪ is composed of its domain iD and initial value id , 

and )( ieval  denotes current value of the event. Simple FSM is defined by 4-tuples 

),,,( 0 scrTsS , where S is a set of states, s0 is the initial state, and T is set of transition 

relations. In the PeaCE approach, dataflow models are controlled by external signals 
generated by fFSM, which can be labeled at a proper state as a set of atomic 
proposition. We call the labels scripts, and Script represents the set of all scripts 
occurring in the fFSM. Thus, ScriptSscr 2: →  is the label function to map a set of 
scripts into a state. 

fFSM has two types of composition like other variants of Harel’s Statecharts: 
concurrent and hierarchical compositions. HSEM used N flat parallel machines for 
describing its operational semantics, because BDD(Binary Decision Diagram) could 
be easily represented and the compositional model checking applied. In this paper, we 
refer to HSEM semantics to define the fFSM semantics. 

Definition 1 (pFSM). Now, formal semantics of fFSM is defined as N flat parallel 
machines pFSM. ),,,,,( VMITOIpFSM γ= , where I, O, IT are set of events above, V 

is a set of global variables, jv ∈( jD , jd ) , and },...,{ 1 nmmM =  is the set of simple 

FSM. Let 
n

i
iS

1=

=  be the set of all states in M, hierarchical relation γ maps a state to 

the set of machines which belong to the state: .2: M→γ   

The hierarchical function γ has three properties: there exist a unique root machine, 
every non-root machine has exactly one ancestor state, and the composition function 
contains no cycles. Let ,2: →sub  and }')(|'{)( ii SssMsssub ∈∧∈= γ  is another 

function to relate between a super state and its sub states. sub+ denotes the transitive 
closure of sub and sub* denotes the reflexive transitive closure of sub.  

Definition 2 (Simple FSM). ),,,( 0
iiiii scrTsSm =  

i. }...,,,{ 10 n
iiii sssS = is the finite set of states of mi,  

ii. 0
is  is a initial state, 

iii. 
iT  is the set of transition of mi, and a transition )',,,( sAgsTt i =∈ is composed 

of source and target states s, s′∈Si, guarding condition g which is Boolean 
expression, and set of actions A, 

iv. Script
ii Sscr 2: →  is a function to map a set of script into a state. 

Guards that include variables and events have the following minimal grammar.  

ExpvExpvExpeExpeGGGtrueG =<=<∧¬= ||||||:: 21
 

21||:: ExpExpvnExp •= ,  

where n is an integer constant, Vv ∈ is a global variable, •∈{+, −, ×, / } represents a 
set of binary operators. To select some facts of a transition )',,,( sAgst = , following 

projection functions are useful: source(t) = s, target(t) = s′, guard(t) = g, action(t) = A.  
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Also, in a set of actions A, each action element a∈A consists of variable assignment 
or event emission:  

a ::= v:=Exp | e:=Exp.  

For an action element, following three projection functions are used, because an 
action set is composed of updating variables, emitting some output events, and 
producing internal events. 

}):.(|:{)( AExpvVvExpvAupdate ∈=∈∃==  

}):.(|:{)( AExpeOeExpeAoutput ∈=∈∃==  

}):.(|:{)( AExpeITeExpeAsignal ∈=∈∃==  

Figure 2 shows pFSM corresponding to figure 1, and the below example presents the 
definition of figure 2. 

I = {coin, ready, stop, time}, O = {game_on, waitGo, waitStop, ringBell, tilt, game_over} 
IT = {timeset, timeout, error, exit}, V = {randn, remain} 
M = {m

1
, m

2
, m

3
, m

4
}, γ(m

1
) = {m

3
, m

4
}, γ(m

2
) = γ(m

3
) = γ(m

4
) = ∅,  

),,,( 11
0
111 scrTsSm = , S1 = {GameOff, GameOn}, 0

1s = GameOff, 

T1 = {(GameOff, coin = 1, {game_on = 1, timeset = 1000}, GameOn), 
          (GameOn, exit = 1, {game_over = 1, ringBell = 1}, GameOff),  

(GameOn, error = 1, {game_over = 1, tilt = 1}, GameOff)}, scr1 = ∅ 
… 

 

Fig. 2. Flatten machine pFSM 

3    Semantics of pFSM 

Step semantics or operational semantics of an fFSM defines how the model changes 
state from one configuration to another on the reception of some events, while it at the 
same time executes actions consisting of emitting output and internal events and 
updating of global variables. 

Definition 3 (Configuration). Δ represents the whole configurations of pFSM model, 
for each mi of pFSM, its formal definition is }0,|},...,{{ 1 niSsss iin ≤<∈∃=Δ . 

Δ∈0δ , },,{ 00
10 nss=δ  is an initial configuration.  

Erich’s definition of a configuration is a set of active states, so the size of the set is 
not fixed. But the size of a configuration δ is the same of the set of machines M, so we 
need to define which state is active. 
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Definition 4 (Active state). It can be defined that a state s is active in configuration δ 
as follow: 

s=|δ  iff  δ∈∈∈∀ ')'(.' * sssubss . 

Definition 5 (Satisfiability). To decide which transition is enabled, given the set of 
events ITIE 22 ∪⊆  and the current configuration δ, configuration δ and events E 

satisfies a guard g, )(|, tguardE =δ , is defined inductively. 

trueifftrueE =|,δ  

GEnotiffGE =¬= |,|, δδ  

2121 |,|,|, GEandGEiffGGE ==∧= δδδ  

)()(|, ExpvalevalandEeiffExpeE <∈<=δ  

)()(|, ExpvalevalandEeiffExpeE =∈==δ  

)()(|, ExpvalvvaliffExpvE <<=δ  

)()(|, ExpvalvvaliffExpvE ===δ , 

where nnval =)( , )(eval  denotes the current value of event e, and )(vval  denotes 

the current value of variable v. )()()( 2121 ExpvalExpvalExpExpval •=• . 

Definition 6 (Enabled transition). Through the definitions of active states and 
satisfiability relation, we define a set of enable transitions for each active state.  

)}(|)(|,}.,...,1{|{ tsourcetguardETtnitET i =∧=∧∈∈∀= δδ  

Definition 7 (Executable transition). The set of executable transitions are non-
conflicting set of transitions and every simple FSM must contribute at most one 
transition. As fFSM model has no inter-level transition, the conflict only occurs 
between two transitions which have different and comparable priorities.  

))}'(()(.'|{ tsourcesubtsourceETtETtXT +∈∈¬∃∈= , 

1||. ≤∩∈∀ ii TXTMm  

Definition 8 (LKS). Step semantics of pFSM is defined by LKS(Labeled Kripke 
Structure). ),,,( 0 LRqQLKS =  is defined: 

},...,{ 0 nqqQ = is the finite set of states in LKS, 

),,( 000 cq ∅= δ is an initial state,  

QQR Act ××⊆ 2  is the set of transitions with label as the set of actions, 
ScriptQL 2: →  is label function such that 

δ|
)()(

=∀

=
s

i sscrqL . 

The step could be explained both micro step and macro step. The micro step stands 
for one step triggered by input or internal events, and macro step is a finite sequence 
of micro steps each of which is triggered by one input event or consequent internal 
events until the produced internal event won’t exit any more. 
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Definition 9 (Micro step). ),,(),,( cEcE Act ′′′⎯→⎯ δδ  

Given the current configuration δ and the set of events E, the next configuration δ′ is 
defined as follow: 

)}))(((

))())(((

))()(.(.|{

* sstsourcesubs

sresetstsourcesubs

tgettarstsourcesXTtss

=′∉∨
=′∈∨

=′=∈∃∈∀′=′
+

δδ
 ,  

where 
iii Sssmssubsssreset ∈∧′′∈∧′′∈= )()(,)( 0 γ  

XTt

tactionsignalE
∈∀

=′ ))(( ,  

and )(qLc ′=′ , 

XTtXTt

tactionupdatetactionoutputAct
∈∀∈∀

∪= ))(())((  

Definition 10 (Macro step). Step semantics of pFSM is represented by qq Exe ′⎯→⎯ , 

called an execution, which is triggered by input event and produces cascaded input 
events. Thus one input event and consequent internal events make transitions until 
any internal event cannot be produced. After each micro step, all previous events are 
consumed by delta-delay. In the following definition, k > 1 is the first k which makes 
Ei,k to ∅, and 

kj
ji ActExe

<<∀

=
0

 is a set of all actions during macro step. 

),,(),,( 11 ++ ∅⎯⎯ →⎯ ii
Exe

iii ccE i δδ  iff ),,(),,( ,,1,1,1,
11

kiki
ActAct

iii ccE k ∅⎯⎯ →⎯⎯⎯→⎯ − δδ . 

 

Fig. 3. Example of micro step(a) and macro step(b) 

When input event “coin” occurs, control of the system is moved from the initial 
configuration {GameOff, TimeInit, Ready, Rand} to {GameOn, wait, Ready, Rand}. 
For error detection, we define three kinds of error: Race Condition(There can be 
multiple writers for an output event or a variable state during an execution of fFSM 
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model), Ambiguous transition(Multiple transitions from one state can be enabled 
simultaneously), and Circular transition(There can be exist circular transitions by 
cascaded transitions).  

For example, if a snapshot of the system contains a configuration {GameOn, Wait, 
Ready, Rand}, occurring event set is consist of user event “ready” and system event 
“time”, and variable remain is zero, although it is a rare case, it breaks the output 
constraint that output value must be persistent during one execution, since remain 
have multiple assignments. Table 1 presents it. 

Table 1. Violation of Race Condition for a variable “remain” 

events Configuration  Actions 
{time, ready} {GameOn, Wait, Ready, Rand} {waitGo:=1, remain:=0} 

{timeset, timeout} {GameOn, TimeInit, Go, Rand} {waitStop:=1, remain:=randn*128} 

{timeset} {GameOn, Wait, Stop, Rand} { remain:=1000} 

∅ {GameOn, Wait, Stop, Rand} − 

4   Debugging  fFSM Model 

4.1   Stepper: Simulation Tool for fFSM Model 

To debug a model, simulating a system model is widely used. In the PeaCE approach, 
integrated simulation is provided. But it could not simulate control model only. Thus, 
we develop a simulation tool for fFSM model with respect to our step semantics. 
Figure 4 shows the framework of the Stepper. 

Stepper receives textual description of fFSM model written by design tool in the 
PeaCE framework. Then, it presents a model like a tree structure and input event 
generator. Input events generated by a user execute one macro step. The Stepper, 
then, shows all micro steps during one execution. Also it provides translation from 
fFSM to SMV, with some important properties to be checked automatically. In figure 
5, as you can see, after “time” and “ready” events occur, the variable remain is 
updated in twice 999, 384 at the macro step, STEP[2].  
 

 

Fig. 4. Framework of the Stepper 
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Fig. 5. Detecting a race condition violation via simulation in Stepper 

4.2   Model Checking  fFSM Model 

Simulation is very useful tool to present an error in a model, tracing an execution path 
step by step. But by simulation, it is apt to spend much time or in some cases may be 
impossible to detect an error. So more efficient debugging, automatic and formal 
technique is required. Our tool provides formal verification which is implemented by 
translating fFSM into SMV. Figure 6 shows the result of detecting a race condition 
violation via model checking and the result is the same of simulator’s. 

 

 

Fig. 6. Detecting a race condition violation via model checking 

4.3   Translation  fFSM Model to SMV 

Our translation rules are based on Chan[10] and Clarke[11]. Following translation 
rules are based on the step semantics defined in the previous section. 

Rule 1 (Machine and states). For each machine, ),,,( 0
iiiii scrTsSm = , machine and 

its states are encoded as ;)(;: 0
iiii sminitASSIGNSmVAR = . 
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Rule 2 (Transitions). Transition relations can be expressed in SMV through the 
definition 6. For ),,,( 0

iiiii scrTsSm = and
iTt ∈ , each transition t in mi is encoded as 

);(&))((:_ * tguardtsourceuptmDEFINE i = , where })'(|'{)( ii SssMssup ∈∧∈= γ  is 

the function to return a super-state of s and up* is transitive reflexive closure of up. 
 
DEFINE 
  Machine1_t1 := Machine1 = GameOn & error=1;
  
VAR 
  Machine1 : {GameOff, GameOn}; 
ASSIGN 
  init(Machine1) := GameOff; 
  next(Machine1) := 
 case 
   Machine1_t1 : GameOff; 
    
   1 : Machine1; 

 esac;  

Rule 3 (Synchrony hypothesis). To express synchrony hypothesis in SMV, we 
define a particular variable stable, which means that a system stays in stable state 
where any events does not occur. stable is also used in formulating circular transition 
and race condition. When sets of internal events, input events and variables are 
respectively {internal1, …, internall}, {input1, …, inputm} and {variable1, …, 
variablen}, the translation rule is: 
 
VAR 
  stable : boolean; 
ASSIGN 
  init(stable) := 1; 
  next(stable) :=  
 case 
   !(valued1 = next(valued1)) : 0; 
   

!(valuedn = next(valuedn)) : 0; 
   next(input1) | … | next(inputm) : 0;
   (internal1=0) & … & (internall=0) : 1; 
   1 : 0; 
 esac  

Rule 4 (Input event). Every input event e whose initial value is d and domain D is 
[min, …, max] can be translated as follow:  

 
VAR 
  e : min .. max; 
ASSIGN 
  init( e ) := d ; 
  next( e) :=  
 case 
   stable : min .. max; 
   1 : 0; 
 esac;
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Rule 5 (Output event and internal event). For a transition )',,,( sAgst =  and each 

output or internal event e whose initial value is d, through a set of transitions {t1, …, 
tn}, a set of expressions {exp1, …, expn} and }):.(|:{ AExpeITOeExpe ∈=∪∈∃= , 
the translation rule can be expressed as follow: 

 
VAR 
  e : min .. max; 
ASSIGN 
  init(e ) := d ; 
  next(e ) :=  
 case 
   t1 : 1Exp ; 
        
   tn : nExp ; 
   1 : 0; 
 esac;  

Rule 6 (Variable). While default value of event e is 0 because of delta-delay, each 
variable v stores its previous value. This rule of variable is similar with Rule 5. 

 
VAR 
  v : min .. max; 
ASSIGN 
  init(v ) := d ; 
  next(v ) :=  
 case 
   t1 : 1Exp ; 
        
   tn : nExp ; 
   1 : v ; 
 esac;  

Table 2 shows CTL templates for some important properties which can be 
automatically generated for user’s convenience. The first three are trivial, but the rest 
are more complex. 

Table 2. Built-in properties and its CTL formulae 

Properties  CTL formulae 
No unused 

components EF component1 ∧ ... ∧ EF componentn 

No unreachable 
guard EF (si ∧ EX sj), source(t) = si and target(t) = sj 

No unambiguous 
transitions 

AG ¬((t1 ∧ t2) ∨ (t2 ∧ t3) ∨ (t1 ∧ t3)),  
where {t1, t2, t3} is a set of outgoing transition from the same state. 

No deadlocks 
¬EF AG Deadlock(fT),  

where Deadlock(fT) = ¬ t∈fT tn 
No divergent 

behavior AG(¬stable  A[¬ stable U stable]) 

Race condition 
violation 

AG ((update(v) ∧ ¬stable)  AX A[¬update(v) U stable]) 
AG ((emit(o) ∧ ¬stable)  AX A[¬emit(o) U stable]) 
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In below table, components might be all states, events and variables. Checking 
about a guard is replaced with whether the transition labeled by the guard is enabled 
or not. Ambiguous transitions must be checked in all states with their possible 
transitions. In the formula encoding the deadlock, fT denotes a set of all transitions of 
a model. The formula to detect circular transition, “AG(¬stable  A[¬ stable U 
stable])”, means “whenever the system is in an unstable state, eventually it must reach 
a stable state.” To formulate the race condition, the additional functions update and 
emit are introduced. Encoding update or emit for each output event or variable could 
be implemented by a new Boolean variable. Thus, user can select some properties or 
type in CTL properties. 

5   Conclusions 

fFSM is a model for describing the control flow aspects in PeaCE, but due to lack of 
their formality, it has difficulties in verifying the specification. In this paper, for 
lifting the reliability for code generation in the codesign framework and enabling 
formal verification of the control model, we defined the step semantics for the fFSM 
model. And we implemented tool to simulate and verify an fFSM model. As a result, 
some important bugs such as race condition, ambiguous transition, and circular 
transition can be formally detected in the model. Especially, to obtain the convenience 
of user to check properties, we constructed some templates for automatic generation 
of specifications. Now we are developing a specific model checker for fFSM and 
researching an effective abstraction technique to be applied in the new model checker. 
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Abstract. The effectiveness of level one (L1) caches is of great impor-
tance to the processor performance. We have observed that programs
exhibit varying demands in the L1 instruction cache (I-cache) and data
cache (D-cache) during execution, and such demands are notably dif-
ferent across programs. We propose to co-allocate the cache ways be-
tween the I- and D-cache in responses to the program’s need on-the-fly.
Resources are re-allocated based on the potential performance benefit.
Using this scheme, a 32KB co-allocation L1 can gain 10% performance
improvement on average, which is comparable to a 64KB traditional L1.

1 Introduction

Many applications have transitory high or low demands on instructions or data
at different running stages [4, 10]. We observed that even if a program has a ten-
dency of favoring one cache over the other, this tendency is drastically different
across different programs. Using a “one-size-fits-all” cache for different stages
of a program or different programs puts a limit on the attainable performance.
Previous reconfigurable cache memories are mostly for one cache [9, 14]. In this
paper, we demonstrate an additional source of performance benefits through re-
configuring between the I-cache and D-cache in response to the varying needs of
programs.

We present a technique for set associative caches where some cache ways can
be used in either the I-cache or the D-cache, depending on which setting yields
a better performance. Essentially, we treat I-cache and D-cache as a global L1
cache resource and allocate ways to two caches with the goal of maximizing the
program performance. We choose to allocate in unit of cache ways instead of
subarrays so that the modifications in hardware are trivial. The allocation is
performed periodically and hence the I- and D-cache have different set associa-
tivities at different time, but the total L1 cache size remains the same. When
deciding whether to “move” one way from one cache to the other, we compute
the changes in the average memory access time in both choices and select the
configuration with larger positive impact on performance. Such a criteria proves
to be much more accurate than using the cache miss rates alone in traditional
performance tuning algorithms.

� Authors are supported in part by NSF grants CCF-0429986 and CCF-0430021.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 373–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



374 L. Jin et al.

Using our co-allocation technique, we can utilize moderate-sized L1 caches
more efficiently. On a set of 15 SPEC2K benchmarks experimented, the perfor-
mance improvement can reach as high as 36% with 10% on average. Moreover,
our technique can perform equally well with contemporary L1/L2 optimization
techniques, demonstrating its effectiveness in achieving better L1 resource uti-
lization.

This remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 shows the programs’ varying requirements on I-cache
and D-cache. Section 4 and 5 describes our co-allocation design in details. Ex-
perimental results are in Section 6 We conclude this paper in section 7.

2 Related Work

There has been plenty of research on improving cache performance. We will
discuss only those that are closely related to ours.

Providing flexibility in utilizing the cache spaces has been investigated previ-
ously in several different ways. In a technique developed by Balasubramonian et
al., the L1 D-cache and the L2 cache, or the L2 and L3, are combined so that the
boundary between them can drift [2]. The variations include set associativities
and number of sets which result in variable L1 and L2 sizes. In such a design, it
is possible that a cache block is mapped to a wrong position since the number of
sets is not always the same among different configurations. Our design exploits
the boundary between the L1 I-cache and D-cache and a mis-map would incur
a second access to the cache. Such a situation is not favored in L1 and it could
happen quite frequently especially for instruction reads. Therefore, we choose to
configure at a larger granularity, i.e. the cache ways, due to the structure sym-
metry between the I-cache and D-cache and the simplicity in the modifications
in the cache circuitry.

Ranganathan et al. has proposed to use a portion of cache for another function
such as instruction reuse, hardware prefetching, or compiler controlled memory
[9]. This design is suitable for multimedia applications where the cache is inef-
fective for stream data or large working sets with poor locality. We target at the
general purpose architectures where a wide range of applications are considered.
Therefore, we study the efficiency of L1 space utilization to better capture the
program locality rather than refunctioning them for different purposes. Drach et
al. proposed a technique where one of the L1 caches can be used as a backup for
the other [5]. In effect, this design treats I-cache and D-cache as both L1 and L1.5
(accessed after L1 but before L2)unified caches, resembling a pseudo-associative
unified cache. This design is limited to direct-mapped caches and did not take
into account the port contention of instruction and data accesses in L1.5.

Many recent work have been carried for improving the L2 cache performance
through compression [1, 13], prefetching [8], and novel indexing [7]. Our co-
allocation technique reduces total accesses to the L2 cache, and performs equally
well when L2 hit rate is greatly improved by those techniques.

The programs’ dynamically changing demands in the L1 cache represent one
kind of program characteristic at a finer granularity than the notion of working
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set [4] or program phases[10]. In our technique, the change of a cache config-
uration may comply with a change of a program phase, but may also happen
within a single phase. Moreover, since our technique has a specific target, i.e.,
the L1 caches, our hardware detection mechanism can be implemented in a much
lightweight manner. Therefore, we do not need to use the substantial hardware
to first detect phases and then change the cache configuration.

3 Program’s Varying Demands on L1

To understand the programs’ varying demands on the I-cache and D-cache, we
performed measurements on the SPEC CPU2K benchmarks with different cache
configurations which are statically defined. Without the loss of generality, we used
a 4-way set associative L1. The cache sizes were set to 16KB I-cache and 16KB D-
cache akin to the PIII [16] or a Celeron processor [17]. The associativity of a cache
can vary from 2-way to 6-way, i.e., we leave minimum of 2 cache ways for each, and
set 4 ways as configurable between the I-cache and D-cache. The programs were
fast forwarded for one billion and executed for another one billion instructions.
We collected the IPCs on every ten million instruction interval basis.

We found four main categories of programs: (1) those that favor larger I-cache
throughout; (2) those that favor larger D-cache throughout; (3) those that have
alternating transitory demands on larger I-cache and D-cache; and (4) those that
have huge demands on one (usually data cache) constantly and little demands
on the other but giving more resources to the former does not help. For the
first type, the programs typically have larger code sizes and using larger I-cache
clearly benefits. The second type happens when the data set is relatively large
and preserves good locality. Increasing the data portion in the L1 has positive
impact. The third type is most interesting: programs have changing preferences
to the L1. These programs have changing sizes of working sets and code re-
gions. Lastly, there are some programs that are extremely biased to one type
of resource, typically the data cache. Moreover, the working data sets present
poor locality, and increasing data caches does no good. For these programs, the
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bottlenecks typically lie in other components such as L2. Re-allocation of L1
will work well in joint with other optimization techniques for L2 cache. Fig. 1
shows a sample benchmark apsi that belongs to type 3 described above (Due
to the space limitation, we do not include graphs for other categories). Legend
“DxIy” denotes x-way D-cache and y-way I-cache. As we can see that the IPC
is improved when the cache configuration adapts to the program’s need.

4 Cache Design

4.1 Modifications to the Circuit

The cache circuitry needs to be adjusted so that some of its ways can be used
for both instruction and data accesses. This means that these shared ways can
take either the instruction address or the data address, and output to either
the instruction bus or the data bus, but not both at the same time. Thus, we
need to add a multiplexer in front of the cache decoders to select between two
addresses. Similarly, the output of the shared ways now can reach both buses
depending on the current way configuration. These changes are depicted in Fig.
2 using colored lines.
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Fig. 2. Cache circuit designs

We use a 4-way set associative cache as an illustrative example. Each large
rectangle represents a cache way, including its decoder, tag array, and data array.
Way number 1 to 4 belong to original D-cache and way 5 to 8 belong to I-cache.
We assume that way 3 to 6 can be used as shared ways. The muxes between
the address lines and the cache ways are added as explained above. The output
wires are extended to another output bus with a tri-state driver in parallel with
the original ones. At any time, only one of them is turned on. The control of the
new tri-state drivers are determined by ‘IO6’, ‘IO5’, ‘DO5’, and ‘DO6’ which
are generated by the control flags F1 ∼ F4. These flags indicate whether the
corresponding way has been configured for the other cache, with ‘1’ meaning
yes and ‘0’ meaning no. The flags are set by the dynamic cache co-allocation
algorithm explained later.

Take way number 3 in Fig. 2 as an example (other ways are similar). When it
is accessed as an I-cache way, F1 will be ‘1’ so that instruction address (cache set
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index indeed) will flow through the mux on the top. Next the tag comparison
should be carried with the instruction address’s tag, as selected by the mux
near the comparator controlled by F1. Finally, if the selection logic selects the
output from way 3 (not shown in the figure), its output wires to the instruction
bus should be turned on at the tri-state driver by ‘IO6’. The ‘IO6’ is generated
by F1 as illustrated in Fig. 3. The ‘IO6’ should be asserted if both F1 and DH3
are ‘1’, and that the tri-state buffer is selected by the line offset from the address.
Meanwhile, ‘DO3’ should be low since it is to the data bus. As shown in Fig. 3,
‘DO3’ is turned off if F1 is 1.
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4.2 Timing Analysis

We have added extra hardware along the critical path of the shared ways from
the address input to the data output. The overall overhead amounts to two levels
of gate delays plus wire delays from the lengthened buses. The first level of gate
delay is from the added mux, and the second level comes from the ANDing of
F1 and DH3 before the OR gate in Fig. 3. The extra gates will increase the
cache access time but not necessarily in terms of the number of clock cycles. To
verify this claim, we simulated a cache in HSPICE using IBM 0.18μ and 0.13μ
technology files from MOSIS. The cache delays, gate delays, and the proper clock
frequencies are shown in Fig. 4.

Technology Tbase mux AND Tnew Frequency cycles
0.18μ 1.28ns 0.06ns 0.11ns 1.45ns 1GHz 2
0.13μ 1.07ns 0.05ns 0.056ns 1.176ns 2GHz 3

Fig. 4. Timing analysis of the new cache of 16K-byte using HSPICE

Take the 0.13μ technology as an example. The absolute access time to this
16KB cache is 1.07ns while the number of clock cycles allocated to this cache is
3 (since 2 would not be enough at 2GHz clock frequency). We illustrate the time
distribution of a cache access in each clock cycle in Fig. 5. The activities and
their required time are indicated in shaded slots. As we can see, every cycle has
some slack in the end. When we insert extra timing due to mux and the AND
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Fig. 5. Cache access time breakdown (0.13μ). The extra time are pointed by arrows.

gate before the address decoding (AD) and before the output driving (output),
the overall time requirements still fit in each clock cycle. The same observation is
made for the 0.18μ technology as well. Therefore, we conclude that even though
the cache access time is increased, the number of cycles needed by this cache
remains the same.

Let us still assume that way 3 is configured to the I-cache. If ‘IO6’ is ‘1’,
meaning that this is an I-cache hit, we generate an “Icache late hit” signal. This
hit comes a little bit later than those hits from way 5 to 8 since the instructions
sent on the bus need to be sent over a longer wire. The wire delay will become
a major concern in future smaller technology size. And thus, we conservatively
charge several clock cycles due to the wire delay. In the evaluation section, we will
vary the number of cycles on the wires and show its impact on the performance.

Other design issues. Our design will be easy to implement if the I-cache and
D-cache are of a symmetric structure, e.g, same size and associativity such as
the AMD Opteron 64-bit core [15]. For different sized caches, especially different
sized ways of I- and D-cache, extra handling to the cache indexing must be
present, similar to that in [2]. Our technique does not favor specialized caches,
e.g., trace caches since the architecture of a trace cache and a conventional D-
cache are significantly different. Adding complex control for reconfigurability
may be an overkill. We do not consider the case where I-cache and D-cache have
different number of ports. This is because additional control logic must be added
and the cache access time will be prolonged. On the other hand, some processors
provide virtually different number of ports for I-cache and D-cache. Internally,
an interleaved banking technique is used and the physical ports per cache way
is the same between I-cache and D-cache [15]. In those cases, our technique can
still be applied.

5 Dynamic Co-allocation Algorithm

In this section, we explain our dynamic cache way co-allocation algorithm in
details. We keep track of several statistics counters in the cache hardware. Peri-
odically, we examine those counters and judge whether the current cache config-
uration should be changed. If there could be an increase in performance, we set
proper flag bits F1 ∼ F4 in Fig. 2. Otherwise, the cache configuration stays the
same. The statistics counters are then reset to reflect new cache performance in
the next time interval.

When it is decided that an I-cache way should be moved to D-cache, the
invalid bits of that array are all reset so that the D-cache can use it as a clean
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way. Reversely, when a D-cache way is moved to the I-cache, the dirty entries
in that way should be written back to the L2 first. We modeled this overhead
by stalling the CPU while flushing all dirty lines. Since our monitoring period is
quite long (10 million instruction), the overhead due to dirty write backs are not
noticeable. Both caches’ MSHRs may be non-empty when the reconfiguration
takes place. This is not of much a concern since we simply block the updating
of the new line to the reallocated ways. The new instruction/data can still be
forwarded to the CPU.

5.1 Analyzing the Changes in Performance

The most important part in the dynamic co-allocation algorithm is to calculate
whether there is a gain or a loss in the performance by adding or removing a way
from a cache. Since this is a co-allocation scheme, adding a way to a cache means
removing it from another. Therefore, the net change in the memory performance
is the gain by adding a way to one minus the loss by removing a way from the
other. We calculate the net change for I-cache, denoted as ΔI, and the net change
for D-cache, denoted as ΔD. If ΔI > ΔD > ε, one cache way is moved from the
D-cache to the I-cache. We require that they be greater than a small positive
value since both Δ’s can be negative which means moving one way from another
cache over will hurt performance. Similarly, one way is moved from I-cache to
D-cache if ΔD > ΔI > ε.

Take the I-cache as an example. To obtain ΔI, we must calculate the per-
formance gain, GI , when a new way is added, and the performance loss, LD,
when this way is removed from the D-cache. That is, ΔI = GI − LD. Assume
components other than the L1 caches are not affected by the reconfiguration,
and so the performance change from them is not considered. Therefore, GI is the
reduction in the memory access time contributed by the I-cache. This reduction
is due to the additional I-cache hits brought in by the new way. Ignoring the cold
start of this new way, the increase in the I-cache hits is the difference between
the hits of an n + 1 way cache (Ihitn+1) and an n way cache (Ihitn) where n is
the current set associativity of I-cache. Let Ihit ↑= Ihitn+1 − Ihitn. Therefore,

GI = [Ihitn × TI$ + (1 − Ihitn) × (TL2 + ML2 × TM )

A

]

−[Ihitn+1 × TI$ + (1 − Ihitn+1) × A]
= Ihit ↑ ×(A − TI−$) = Ihit ↑ ×(TL2 + ML2 × TM − TI$) (1)

where TI$/L2/M stands for I-cache/L2/memory access time, and ML2 means L2
miss rates. By replacing the I with D above and considering the D-cache is now
reduced by one way, we can obtain LD as follows:

LD = [Dhitn−1 × TD$ + (1 − Dhitn−1) × A] − [Dhitn × TD$ + (1 − Dhitn) × A]
= Dhit ↓ ×(TL2 + ML2 × TM − TD$) (2)
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where Dhit ↓= Dhitn−Dhitn−1. Combining the GI and LD into ΔI and assume
TI$ = TD$ = TL1 we obtain

ΔI = GI − LD = (Ihit ↑ −Dhit ↓) × (TL2 + ML2 × TM − TL1) (3)

Using the same derivation, we can obtain ΔD as:

ΔD = GD − LI = (Dhit ↑ −Ihit ↓) × (TL2 + ML2 × TM − TL1) (4)

The most naive way of making a reconfiguration decision seems to be using the
cache miss rates for two caches and comparing them to predefined thresholds.
From equation (3), we can see that there are three variables that determine
the value of ΔI: Ihit ↑= Ihitn+1 − Ihitn = IMissn − IMissn+1, Dhit ↓=
Dhitn − Dhitn−1 = DMissn−1 − DMissn, and L2 miss rates. Clearly, using
IMissn and DMissn instead of ΔI is overly rough since other three terms
are neglected even though they contribute equally to the performance. In fact,
we experienced that dropping terms in (Ihit ↑ −Dhit ↓) results in inferior
performance and using IMissn and DMissn in place of ΔI sometimes gives
mis-configured L1 that could hurt the performance. The Ihit ↑ and Dhit ↓ can
be found in a similar way as in previous techniques [12, 1]. The cost of finding
them is an extra tag array for both caches. We will show the effect of narrowing
such tags to reduce the area overhead in the experiment section.

Note that we have been using the memory access latency in our analysis as the
indication to the performance. In out-of-order execution processors, some of the
memory latency are overlapped with the CPU execution, and therefore do not
contribute to the overall performance. We do not account for the overlapping
part for the following two reasons. First, measuring it at runtime is complex
and may not be very beneficial since it is a secondary factor to the performance
as analyzed by Karkhanis et. al. [6]. Second, reducing the total memory access
latency means the memory hierarchy can respond more quickly to the CPU
making it proceed to the dependent instructions sooner. Consequently, more
overlapping between the CPU and the memory time is likely, further reducing
the non-overlapping portion and improving the performance.

5.2 Overhead

The overhead of calculating ΔI and ΔD is merely four multiplications and four
additions (TL2 − TL1 can be pre-computed). We need four counters for the hits,
which will be explained next, and a couple of temporary registers. Since we per-
form such an analysis on every 10 million executed instructions, such an overhead
is negligible. Nevertheless, we still conservatively charge 200 clock cycles for this
overhead.

Our algorithm currently considers of moving only one cache way at a time. It is
not necessary to have this restriction. In fact, we can find a best configuration by
attempting to add more ways. That is, we can iterate our algorithm several times
to find the best number of ways that should be moved at once, forming a greedy
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algorithm. Of course, the time spent on such an algorithm will increase and the
hardware counters required also increase since now we need to consider beyond
the second least recently used access numbers. If the maximum number of cache
ways allowable to move is N , N ≤ cache associativity. The maximum number
of iterations is N , and the maximum number of hardware counters is N × 2. We
will compare the performance differences between a single-step algorithm and
the greedy algorithm in our experiments.

6 Evaluations

We performed experiments using the SimpleScalar Tool Set [3]. The benchmarks
we used are 15 programs from SPEC CPU2K compiled into Alpha binaries. All
the programs were fast forwarded for one billion and executed for one billion
instructions. The processor configurations are shown in Fig. 6.

Parameter Value Parameter Value Parameter Value
Fetch queue entry 8 Branch miss penalty 3 RUU size 128
Issue width 8 L1 I/D-cache 16KB 4way L2 latency 15 cycles
Integer ALU/Multiplier 4/4 L1 latency 2 cycles LSQ entry 32
FP ALU/Multiplier 4/4 L2 512K Memory latency 100 cycles

Fig. 6. Architectural parameters

6.1 Performance Improvements

In this section, we show the performance improvements four aforementioned
algorithms: 1) Single-step. This refers to our basic co-allocation scheme which
moves only one cache way at a time; 2) Greedy. This refers to the greedy algo-
rithm which intends to find the configuration that can maximize the performance
by iterating the Single-step algorithm multiple times; 3) Reduced-tag. This refers
to the Single-step algorithm but with a narrower width for the extra tags that
we maintain for both I-cache and D-cache. We used only a 4-bit array record-
ing only the least significant portion of a regular tag; 4) Using the miss rates.
This refers to the Single-step algorithm that does not use Ihit ↑ −Dhit ↓, and
Dhit ↑ −Ihit ↓ in equation (3) and (4) respectively. Instead, the I-cache and
D-cache miss counts during current monitoring interval were used as discussed
in Section 5.1.

The percentages of IPC improvements are plotted in Fig. 7. We can see that
the Single-step scheme achieves significant speedups — up to 36% for crafty
and 10% on average. The greedy algorithm generally equals Single-step or does
slightly better but the differences are very small. Only in one benchmark twolf
did the greedy algorithm perform worse than the Single-step. This is because
our co-allocation decision is based on the performance in the last monitoring
interval. This is beneficial when the program does not have dramatic changes
from interval to interval. Otherwise, a wrong decision, as in case of twolf, might
be made. Here we can see the advantage of the Single-step algorithm: it makes
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Fig. 7. Speedups for single-threaded workloads

only “one step” away from the current configuration. If it was wrong, it is not
too late to correct it back in the next interval. Whereas in the greedy algorithm,
it tries to make “multiple steps” aggressively. This is good if the decision is
correct, but damaging otherwise.

Using a narrower tag array (‘Reduced’ bar in the chart) achieves very good
approximation to using a full-width tag array. A narrow tag array may generate
some false positive hits, i.e., the 4 bits match with the address but it is not a hit.
Such a situation affects only one benchmark appluwhere we observed 20% of hits
are false positive in the extra tag array for the D-cache. This resulted in a very
high hit count that increases the ΔD which then generates more configurations
favoring the D-cache. The last algorithm uses the miss rates in equation (3) and
(4). The only advantage is to remove the extra tag that helps in collecting the
cache hit changes. However, using the miss information greatly degrades our
performance gains, and sometimes even slows down the programs (parser, bzip
and art). This is due to the inaccuracy of using miss rates only to characterize
program performances.

6.2 Sensitivity to L2 and L1 Optimizations

There has been abundant research on improving the L2 cache performance.
Examples are content compression, prefetching, using novel indexing schemes,
etc. We would like to see the potential of our L1 cache co-allocation scheme
with the presence of those L2-based techniques in this section. Since most of
those techniques aim at reducing the L2 miss rates, we increased the L2 size
(effectively decreasing its miss rates) to mimic those techniques in a uniform
way. The results are presented in Fig. 8.

On average, our L1 co-allocation scheme performs even better than before.
This is mainly because when a major bottleneck in L2 has been removed, the
next important component is likely to be the L1 caches. Hence, any improve-
ment in the L1 will be very sensitive to the overall performance. Of course,
a slight decision mistake may introduce negative impact on the performance
as in parser. Nevertheless, this experiment also demonstrates that our L1 co-
allocation scheme is not only not diminished by, but also additive to existing
L2-based optimization schemes.

It is also of great interest to see similar effects to existing L1 optimization
techniques. The well known L1 cache performance improvements include line
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buffer for I-cache, victim buffer for D-cache, prefetching for D-cache, pseudo-set
associative I- or D-cache etc. We will compare the former two since prefetching
into L1 has the risk of polluting the cache and is thus more suitable for L2, and
pseudo-set associative L1 cache is more applicable to direct-mapped caches.

In Fig. 9, we show the results of the following three techniques: 1) add a single-
entry line buffer to the I-cache; 2) on top of 1), add an 8-entry victim buffer to
D-cache; and 3) on top of 2), add our co-allocation technique. The purpose
of this experiment is to see if the performance gain we showed earlier cannot
be achieved by simply a line buffer, a victim buffer or both. The conclusion is
quite clear from the results. For programs such as appsi, crafty, fma3d etc,
the IPC increase from case 2) to case 3) is 14%, 20%, and 19% respectively.
On average, a single line buffer improves IPC by 6.7%. With victim buffer, the
IPC is further improved by 3%. Finally, with our co-allocation technique, the
IPC is increased further by 5.3%. The reason the co-allocation technique being
constantly effective is that it exploits a dynamic program execution demand that
is distinct from those phenomena exploited by line buffer or a victim buffer.

6.3 Using a Larger L1

Another interesting result we want to show is that using 32KB L1 cache (16KB
each) with our cache co-allocation scheme can achieve comparable performance
to a 64KB baseline L1 (32KB each). This is shown in Fig. 10. As we can see
that except for a few programs, e.g. crafty and apsi, our claim is true for most
other programs. Thus, we can reduce the area cost of L1 yet still achieve the
performance of a larger L1. This is a beneficial feature to embedded type of
processors where area is of a big concern.

6.4 Sensitivity to Wire Delays

With the trend in technology size shrinking, wire delays will become evident in
future processors. To accommodate locations of I-cache and D-cache in different
floorplans of different processor models, we vary the number of cycles that might
be taken when data/instruction comes from the opposite cache ways. However,
when significant wire delays are taken into account, our analytical models for
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Fig. 11. Performance sensitivity to wire
delays

performance gain and loss in section 5.1 should be revised to accommodate the
delays. We measured IPC increases when 1, 2, or 3 additional cycles are added
to the wires in Fig. 11.

We can see that our scheme is quite resistant to the impact from wire delays.
This is because when co-allocation algorithm calculates that moving ways does
not yield benefit, it simply keeps the original configuration. We observed that the
worst case happens only in bzip when 3 extra cycles are added to the wires. The
slowdown is 1.58%. On average, there are still 7.8% (6.3%) IPC improvements
when 2 (3) extra cycles are added on the wires.

7 Conclusion

We have presented a simple and accurate technique of dynamically co-allocating
cache ways between L1 I-cache and D-cache according to the programs’ varying
demands. Our cache co-allocation algorithm can accurately capture the changing
demands on L1 caches. It works even better when combined with other L1 or
L2-cache optimization techniques. For many programs we tested, a 16KB I-cache
and a 16KB D-cache can achieve the same or better performances of L1 caches
doubling the size. On average, our cache co-allocation scheme can yield 10%
speedup for the benchmarks we tested.
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Abstract. In this paper, we present our compiler infrastructure,
called Jaguar for Java reconfigurable computing. The Jaguar compiler
translates compiled Java methods, i.e. sequence of bytecodes into Verilog
synthesizable code modules with exploiting the maximum operational
parallelism within applications. Our compiler infrastructure consists
of two major components. One is a compiler to generate synthesizable
Verilog codes from Java applications, which performs full compilation
passes, such as bytecode parsing, intermediate representation (IR)
construction, program analysis, optimization, and code emission. The
other component is the Java Virtual Machine (JVM) which provides
Java execution environment to the generated Verilog modules. The
JVM closely interacts with hardware during the execution through
an interrupt method. We discuss the performance issues and code
transformation techniques to reduce the interaction overhead in our
Java reconfigurable computing environment.

Keywords: Reconfigurable computing, compiler, Java, Verilog, FPGA.

1 Introduction

The applications written in Java can be compiled into location-independent
codes moving on the Internet and running on every platform. Java’s portabil-
ity is achieved by compiling its classes into a distribution format, called a class
file. The class file contains information about class fields and methods, and each
method is represented as architecturally-neutral representation, i.e., a sequence
of bytecodes. The class files are interpreted and executed on any computer sup-
porting the Java Virtual Machine (JVM). Java’s code portability, therefore, de-
pends on both platform-independent class files and the implicit assumption that
the full featured JVM is supported on every client machine. However, despite of
the distinguished advantages over other programming languages, performance
limitation due to interpretation in software-manner is a serious shortcoming to
prevent from using Java on small devices like mobile phones and PDAs.
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Nowadays according to fast development of semiconductor technologies, the
speed of FPGAs (Field Programmable Gate Arrays) has been dramatically im-
proved as much as that of microprocessors. Several approaches to accelerate
execution of Java applications using a reconfigurable hardware have been pro-
posed. There are three closely related works in area of reconfigurable hardware
generation using high-level languages such as C/C++ and Java.

NENYA [1] compiler was developed to generate VHDL hierarchical RTL de-
scriptions from user-specified regions of a Java program. The intermediate repre-
sentations of NENYA is best-tailored to performance-driven hardware synthesis
described in terms of interconnections between macro-cells in hardware libraries.
And a C to HDL compiler [2] is designed to generate high speed pipeline cir-
cuits for loop and recursive parts written in C language, which consumes the
most execution time of many applications. The compiler aims at extracting the
most exhaustive parts of a C program, such as loop and recursive function,
that can be accelerated by FPGAs and achieving the co-computation by mi-
croprocessor and FPGAs. But, full functions are not supported by the compiler
yet. Finally, the Streams-C compiler [3] synthesizes hardware circuits for recon-
figurable FPGA-based computers from parallel programs written in Streams-C
language, including a small number of native libraries added to a synthesizable
subset of C, and supporting a communicating process programming model. The
Streams-C language and compiler make it easy to develop reconfigurable com-
puting applications with high level expressibility.

In contrast of JOP [4] (full-featured hardware JVM), these researches are
commonly based on a concept for reconfigurable computing which is supported
by automatic code translation from high level languages such as C and Java into
synthesizable hardware descriptions. There are large number of related work
to reconfigurable computing, such as hardware/software co-design [5], software
compilation [6], and high-level synthesis (HLS) [7].

In this paper we present code translation and optimization techniques for
Java reconfigurable computing. For this purpose, we have developed a compiler
infrastructure, called the Jaguar compiler which translates compiled Java meth-
ods, i.e. sequence of bytecodes into Verilog synthesizable code modules with ex-
ploiting the maximum operational parallelism within applications. Our compiler
infrastructure consists of two major components. One is a compiler to generate
synthesizable Verilog codes from Java applications. The compiler performs full
compilation passes, such as bytecode parsing, intermediate representation (IR)
construction, program analysis, optimization, and code emission. The compiler
emits Verilog codes by using macro-cell libraries, which is a set of Verilog codes
to represent semantics of a bytecode. The other component is Java Virtual Ma-
chine (JVM) which provides Java execution environment to the generated Verilog
modules. The JVM closely interacts with hardware during execution through an
interrupt method. We discuss the performance issues and code transformation
techniques to reduce the interaction overhead in our Java reconfigurable comput-
ing environment. Differently from [1, 2] our infrastructure is a complete compiler
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solution for Java reconfigurable computing, i.e. there is no limitation in use to
generate synthesizable Verilog codes from Java bytecodes.

The paper is organized as follows: In Section 2 we present the execution model
for our Java reconfigurable computing and the structure of our Jaguar compiler
infrastructure, and in Section 3 we analyze the performance of our execution
platform using SciMark 2.0 benchmark [8]. Finally in Section 4 the conclusion
is made.

2 Jaguar Compiler Infrastructure

2.1 Execution Model

Figure 1 shows an architecture of the Jaguar system for Java reconfigurable
computing. The Jaguar execution consists of software-only and hardware-only
execution, and their interactions. The software execution is done by Java Virtual
Machine (JVM) running on the ARM processor, and the hardware execution is
done by a set of synthesizable Verilog method blocks (MBs), i.e. Jaguar Hardware
(Java Hardware), called J-Hardware on FPGA. The J-Hardware is connected to
ARM through the AMBA protocol as a passive slave. We use the Altera Excal-
ibur FPGA to support our execution model. We need an interaction between
JVM and J-Hardware to control hardware-implemented method blocks on the
FPGA, and to maintain program and data consistency. For this purpose, we
use an interrupt method, and the JVM has been modified to handle interrupt
requests from J-Hardware.

Fig. 1. Jaguar execution model for Java reconfigurable computing

Figure 2 shows the Jaguar execution flow, which is very similar to Just-In-
Time (JIT) compiler execution. When JVM interprets bytecodes for a method
invocation, the JVM checks whether the invoked method block is available in
J-Hardware or not. If the desired method block exists in hardware, the JVM
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enables the J-Hardware to execute. Otherwise, the JVM executes bytecodes in
software manner. After enabling J-Hardware, the JVM waits for interrupt signals
from the J-Hardware. The J-Hardware interacts with the JVM when the J-
Hardware needs 1) to access heaps inside the JVM, 2) to determine a method
invocation at runtime, and 3) to handle exception handling. The J-Hardware is
waiting in a wait state, while the JVM services the interrupt requests except
for return, i.e. a termination state. The JVM also contains other components in
order to execute Java applications, such as a class loader, an execution engine,
a memory manager, and so on, which are the basic functionalities of the Java
virtual machine.

Fig. 2. Jaguar execution flow diagram

2.2 Compiler Structure

The Jaguar compiler is designed to translate the most time consuming and arith-
metic intensive Java methods into Verilog synthesizable modules with exploiting
the maximum operational parallelism. The whole compilation flow of our Jaguar
compiler appears in Figure 3.

First, the Java decoder decodes a class file, and the Java analyzer analyzes
bytecode sequences of an application and builds the application’s intermedi-
ate representation, called Java IR. The Java IR includes basic information for
code analysis and generation, such as a control flow and a data flow. The con-
trol dependence between basic blocks is resolved by control bytecodes, such as
1) general control jump bytecodes, 2) switch-type bytecodes that select one of
multiple outgoing edges based on an operand value, and 3) exception handling
bytecodes such as athrow, jsr and ret. The data dependence between bytecodes
inside a basic block, except for bytecodes to need to interact with JVM such as
getfield, invokevirtual and so on, is resolved by simulating Java operand stacks
and local variable arrays. Additionally, we have integrated our compiler with the
Jikes compiler [9] to get dependence information between bytecodes accessing
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Fig. 3. Jaguar compilation flow for Java reconfigurable computing

the heap inside JVM. The Java IR for a basic block is scheduled and optimized
to exploit maximum operational parallelism by using dependence information.

The Java-to-Verilog IR translator translates Java IR into High-Level Verilog
IR. And the translator generates J-Hardware description to contain hardware-
implemented method block information, such as a list of method names and
interactions. The JVM reads the J-Hardware description when starting JVM
execution. When the JVM interprets bytecodes for a method invocation, the
JVM uses the J-Hardware description to know which method blocks are avail-
able into J-Hardware. And each entry for an interaction list has three fields: an
interrupt index, a bytecode number and a program counter (PC). During exe-
cution, the entry is hashed by the interrupt index as a hash key and a value of
the entry consists of a pair of the bytecode number and the PC. The interrupt
information is used to know what kind of interrupts are requested and how they
should be handled by the JVM.

The Java-to-Verilog IR translation generates three hardware components for
a method block module, such as a basic block, and connection between basic
blocks, and a method block controller to handle interrupts from basic block
modules. Figure 4 shows an architectural organization for a method block mod-
ule. Two interrupt masks are used to check interrupts from basic block modules
and to support control speculation between basic block modules for future re-
search. But the current version is to use only one interrupt mask at one time.
When an interrupt mask is set by interrupts, an interrupt checker enables an
operand fetcher to get operands from an operand table. The operand table in-
cludes a start index of operands for each interrupt. The operand fetcher enqueues
the fetched operands into an operand queue, which is dequeued by JVM for an
interrupt service.

Each basic block in the Java IR is translated into Verilog as shown in Fig-
ure 5. The Verilog code for a basic block consists of a basic block controller to
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Fig. 4. Architectural organization of a method block

Fig. 5. Architectural organization of a basic block

handle a system clock for itself and a set of bytecode modules. If an interrupt is
generated by getfield bytecode module, the interrupt checker inside a basic block
disables the system clock. When an acknowledge signal from the method block
controller is received, the system clock is enabled again. And the bytecode mod-
ules are connected to each other by using data flow information, and scheduled
synchronously by using D FFs.
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We connect basic blocks by considering control and data flow information. The
control flow is represented as an enable signal to start execution of successor basic
blocks. Similarly data flow is represented as wires and tri-state buffers controlled
by the enable signal.

Finally, High-Level Verilog IR is emitted and linked with macro-cell libraries
to generate synthesizable Verilog codes. Figure 6 shows iadd macro-cell written
in Verilog as an example.

module Bc_iadd(data_out, data_op1, data_op2);
parameter WIDTH = 32;
output [WIDTH-1:0] data_out;
input [WIDTH-1:0] data_op1, data_op2;

assign data_out = data_op1 + data_op2;
endmodule

Fig. 6. Example of a macro-cell for iadd bytecode

2.3 Interaction Between JVM and J-Hardware

For interaction between JVM and J-Hardware, Figure 7 shows an interrupt se-
quence diagram, whose mechanism consists of the following three steps: (i) When
J-Hardware needs an interaction with JVM for a heap access, a method invo-
cation, and an exception handling, it sends an interrupt request signal to JVM.
When J-Hardware receives an acknowledgment (ACK) signal from the JVM, J-
Hardware inactivates itself and waits for completion of the interrupt service. (ii)
In order that JVM provides an interrupt service, the JVM needs operands from
J-Hardware. The JVM reads all 32 bit operands which are generated by simulta-
neously occurring interrupts. The operands are provided by the operand queue
in Figure 4 from the J-Hardware (read an operand). (iii) In the last step, the

Fig. 7. An interrupt sequence diagram
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JVM executes an interrupt handling routine and returns a service completion
signal to J-Hardware one by one.

2.4 Code Optimization

In performance evaluation of our infrastructure, we have found that the per-
formance of the Jaguar system highly depends on the number of interactions
between JVM and J-Hardware through an interrupt mechanism. The interac-
tion is required for heap accesses, method invocations, and exception handling.
In this subsection, we discuss code optimization issues in heap accesses, since
interactions due to method invocations can be reduced only by control spec-
ulation and aggressive inlining. In order to alleviate the overhead, we applied
the following three code optimization techniques as shown in Figures 8 and 9:
an interrupt scheduling, a common subexpression elimination (CSE) and a loop
unrolling.

Fig. 8. Jaguar code optimization. The shaded nodes in DFG are the target of each
optimization. (a) Bytecode sequence. (b) DFG. (c) DFG after interrupt scheduling. (d)
DFG after CSE.
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Fig. 9. Loop unrolling optimization in Jaguar. The shaded nodes in DFG are the target
of each optimization. (a) Bytecode sequence. (b) DFG. (c) Bytecode sequence after loop
unrolling. (d) DFG after loop unrolling.

Interrupt Scheduling. Some interrupt requests from J-Hardware can be gen-
erated at the same time. For example, if there is no data dependence between
heap accesses, the related bytecodes can be scheduled to ask interrupt services
simultaneously to JVM, as shown in Figure 8 (c). The method block controller
in Figure 4 is designed to manipulate several interrupts at the same time. The
interrupt scheduling technique reduces the overhead (i) described in Section 2.3.

Common Subexpression Elimination (CSE). If there exists only input
dependence, we can apply a common subexpression elimination technique to
heap access bytecodes. This technique reduces overhead (ii) and (iii) described
in Section 2.3. If the heap access bytecodes access the same data space, we can
remove all the bytecodes except for an input dependence source. The example
is shown in Figure 8 (d).

Loop Unrolling. For more aggressive interrupt schedule, we apply a loop un-
rolling if there is no cross-iteration dependence. In the applications which include
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loop intensive codes like SparseMM, our Jaguar compiler can reduce interaction
occurrences significantly. The example is shown in Figure 9. The bytecode se-
quence in Figure 9 (a) is unrolled by two, and heap accesses in loop unrolled two
iterations (Figure 9 (d)) can ask an interrupt service at the same time.

3 Performance Analysis

The performance of the Jaguar compiler has been tested using three Java
SciMark 2.0 benchmarks, FFT, SOR and SparseMM [8] on Altera Excalibur
Device [10]. The JVM runs on the 50 MHz ARM processor and Embedded

Fig. 10. Speedup of code optimizations. Ische: Interrupt scheduling. CSE: Common
expression elimination. Unroll: Loop unrolling by 4.

Table 1. Reduction of interrupt occurrences by code optimization. Ische: Interrupt
scheduling. CSE: Common expression elimination.

Benchmark Optimization No. of interrupt No. of interrupts Reduction
occurrences in codes (%)

FFT Basic 122936 204900 40.0
Ische 61496 204900 70.0

Ische + CSE 61496 163940 62.5
SOR Basic 38615 57922 33.3

Ische 19407 57922 66.5
Ische + CSE 19407 57922 66.5

SparseMM Basic 22992 32987 30.3
Ische 21992 32987 33.3

Ische + CSE 21922 32987 33.3
Ische + Loop unrolling by 4 8799 32987 73.3
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Linux. And J-Hardware executes at 25 MHz, being connected to AMBA as a
slave. There is difference in clock speeds between the JVM and the J-Hardware
due to the Excalibur chip. The Excalibur enables the PLD circuits like J-
Hardware to be connected only to the secondary bridge as a slave of the main
bridge.

Figure 10 shows the speedup with respect to execution without any code opti-
mization. The performance gain comes from reducing the number of interactions
between JVM and J-Hardware, and it is shown in Table 1.

Table 1 shows that our code optimization schemes reduce the interrupt oc-
currences by up to 73%, and all schemes are very effective.

4 Conclusion

Several approaches to facilitate the hardware development have been studied.
Especially, demands for researches on the hardware description using high-level
languages like C and Java is dramatically increasing as the size of hardware
system is getting larger and hardware complexity becomes larger.

In this paper, we presented the Jaguar compiler infrastructure which trans-
lates compiled Java applications to hardware, written in synthesizable Ver-
ilogHDL, without any modification of source bytecodes. Also we evaluated the
performance on Excalibur device, where JVM executes on the ARM processor
and our hardware executes on the FPGA. The heap accesses and method invo-
cations from Java hardware need to interact with JVM through interrupts. The
interactions incur huge overhead in time, so we applied three compiler optimiza-
tion techniques to code generation.

For our ongoing research, we have integrated our Jaguar infrastructure with
a hardware-based Java processor. On this architecture, the interaction overhead
can be significantly reduced because the reconfigurable Java hardware can di-
rectly accesses the heap area.
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Abstract. A depth measurement system that consists of a single camera, a laser 
light source and a rotating mirror is investigated. The camera and the light 
source are fixed at position and face a rotating mirror.  The laser light is 
reflected by the mirror and projected to the scene for depth measurement.  The 
camera detects the laser light location on object surfaces through the same 
mirror.  The scan over the measured area is done by mirror rotation.  FPGA is 
used to quickly process the collected images to generate a range image.  A 136 
× 240 range image can be generated in 2.3 seconds.  This speed is 4 times faster 
than that of a PC with a 2.8GHz clock.  If the frame rate can be increased to 300 
per second, the speed improvement will be about 15 times.  The technology, on 
the other hand, offers a solution for embedded implementation. 

1   Introduction 

Depth images have applications in environment modeling and understanding, and 
robot navigation.  An efficient method for depth measurement is the active lighting 
with structured patterns [1][2]. The active lighting-based technique has one camera of 
a stereo vision system replaced by a light source [3-5].  Projecting multiple striped 
[6][7] or rectangular grid patterns of lights [9] on objects makes depth measurement 
easier and results more reliable.  However, potential ambiguities in matching stripe 
segments resulting from object surfaces at different depths remain [10].  Though such 
ambiguity can be avoided by employing the encoded striped lighting technique [3][8] 
or color lighting [1][5], their spatial resolution is relatively low. One alternative to 
achieve a higher resolution is to use a single light stripe and have it swept over the 
scene [11][12] by rotating the light projector.  One drawback of this method is that the 
image of projected light gets blurred easily due to the movement of the projected light 
during each frame of acquisition period.  

In this study, a CCD camera based depth image system is investigated.  The system 
is composed of a single camera, a laser light projector and a rotating mirror. The 
striped laser light is projected toward the rotational axis of the mirror, and reflected to 
the surface to be measured.  The camera detects the striped light on object surfaces 
through the same mirror.  One special characteristic of this new system is that the 
light projected to any point (at any direction) at the same horizontal level with the 
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same distance to the mirror axis always forms an image at the same pixel on the 
camera.  Consequently, there exists a unique association of pixel location to object 
depth.   This association can be stored in a lookup table for direct pixel to depth 
mapping.  From each video frame, only the depth on the laser light projection plane is 
collected.  With the light scanning over an area, a sequence of depth data can be 
collected from a sequence of images.  For real-time response, FPGA is used for 
processing.  The WildCard-II from Annapolis Micro Systems Inc. has an embedded 
analog to digital converter, which can be used to convert analog video signal into 
digital values.  A logic system that detects synchronization signals, captures frames, 
detects the laser light on each line, converts the light locations into depth data, and 
transfers the range image back to the host has been designed.  The real-time 
processing finishes 136 frames in 2.3 seconds to derive a range image.   

In this paper, the new system is presented in Section 2.  Equations for depth 
calculation are derived.  The calibration procedure for two system parameters is 
introduced in Section 3.  In Section 4, realization of the real-time processing using FPGA 
is introduced with experimental results provided.  Conclusions are given in Section 5. 

2   The New Depth Measurement System with Striped Lighting 

The new depth measurement system has the single vertical laser light stripe projected 
to the rotating mirror, and reflected to the scene.  The image formed by the same 
mirror is acquired by the CCD camera.  Fig. 1 shows the picture of the developed 
measurement device and the triangulation geometry for the single point projection.  
Without losing the generality, we focus on the image formation of a single light point.  
Fig. 1(b) shows that the light is reflected by the mirror and projected to an object 
surface.  Note that the mirror can be rotated.  

Let the angle between the vertical line and the light source be ζ , and the angle of 

the mirror from the horizontal axis be θ .  Also, let the distance between the camera 
 

             

M

Mirror 

Light source 

C
S

Camera 

 

Fig. 1. Depth measurement with light projection and mirror reflection. (a) The measurement 
device. (b) Triangulation geometry for a single point projection. 
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axis and the rotating axis of the mirror be oδ , the distance between the focal point of 

the camera and the horizontal axis be md , and the focal distance of the camera be f .  
The laser light is reflected onto the object at point T with the mirrored image at T’.  

When the mirror angle is θ, ∠SOT, which is the angle between the projected light and 
the reflected light, equals 2(θ-ζ) and the angle ∠TOM equals (90o-θ+ζ).  Since T’ is 
the mirrored image of T, we have ∠T’OM   = ∠TOM = 90o-θ+ζ.  Consequently, 
∠SOT’ = 2(θ-ζ) + (90o-θ+ζ) + (90o-θ+ζ) = 180o.  This shows that T’ will always be 
on the line along the laser beam, at a distance R from the point O.  This characteristic 
makes it possible to use a lookup table for converting the light position to depth. 

To derive equations for projection in 3-dimensional space, let’s use the cylindrical 
coordinate system with the mirror axis as the Z-axis.  Assume that the light point T 
with coordinates (R, φ, Z) has its image on the CCD sensor at p = (px, pz) in the 
coordinates of image plan. Fig. 1(b) shows the projection of a point on x-y plane.  In 
this figure, px is the distance from P to the camera optical axis.  Using the property of 
similar triangles, one obtains 

   ': :Txp f Dδ= , where D = dm + dT’      (1) 

or ' ' .( )m T Txp d d f δ+ =          (2) 

T ' ' ' 'Note that  = cos , and sin .  ThusT O T Td R l l Rζ δ δ ζ= − =   

 ( cos ) ( sin ).m Oxp d R f Rζ δ ζ+ = −         (3) 

Solving the above equation for R gives  

.
sin cos

O x m

x

f p d
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f p

δ
ζ ζ

−
=

+
        (4)

The angle for the observed point T is φ, which is defined as the angle measured 
clockwise from the vertical axis to the line OT.  This angle is determined by the laser 
light direction and the mirror angle as 

φ = 2(θ-ζ) + ζ = 2θ - ζ.           (5) 

For the value Z, the triangular similarity will give  

    : :zp f Z D= , or      (6) 

  ' .( )m Tzp d d fZ+ =       (7) 

Dividing (7) by (2), one obtains 

'/ /z x Tp p Z δ=  0/( sin ).Z Rδ ζ= −         (8) 

Solving the above equation for Z gives  
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As a summary, R, φ, and Z can be computed by 
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φ = 2θ - ζ, and         (5) 

0( sin )
.z

x

p R
Z

p

δ ζ−
=         (9) 

Note that the mirror angle is not involved in equation (4) for depth computation.  
Only the fixed angle ζ is included and needs to be carefully calibrated.  Conceptually, 
one can consider the 3-D measurement problem as one to determine the position of 
T’, which is the intersection of lines SO and PC (see Fig. 1(b)); an error arises when 
either of those two lines is inaccurately determined.  In this setup, the error from 
inaccurate SO can be minimized by calibrating the angle ζ.  Note that for a setup with 
its laser projector rotated, a measurement error of the projection angle is harder to 
prevent; so is the depth error.  The error from inaccurate PC is caused by inaccurate 
position of P.  Since P is the pixel position of the light point, a sharper image tends to 
provide a more precise and reliable result.  The characteristic of sharp image 
illustrated in Fig. 2 helps minimize the error from this factor.   

Although equations for R, φ, and Z have been provided, in this study, we are more 
interested in the depth R, which will be the focus in the following sections. 

3   Calibration and Depth Computation  

To use equations (4) to determine the range R, system parameters must be either 
measured or calibrated.  In our experiments, δ0 and dm are measured and known 
parameters.  Other parameters needed include f, inter-cell distance cellδ  on the CCD 

sensor and the angle ζ.  Since the measurement precision is very sensitive to the error 
of ζ, it is impractical to measure ζ directly.  This parameter must be determined 
through careful calibration.  Precise values of internal parameters of camera such as 
the inter-cell distance on the CCD plane and the focal length f may not be available 
and need to be obtained through calibration too.   

It is noted that equation (4) can be rewritten such that only the ratio k=f/δcell needs 
to be calibrated.  Let the integer xn  be the pixel number corresponding to xp , which 

is the distance from the center of image plane to P.   Then xp  can be expressed as  

xp  = cellδ xn          (10) 

Plugging (10) into (4) gives 
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Replacing 
cell

f

δ
by k in (11) results in 
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3.1   Calibration of the Internal Parameter k =
cell

f

δ
 

The camera and the projector can be set up in parallel, i.e., with ζ = 0.  This is 
achieved by adjusting the laser light source orientation so that the distance between 
the laser beam and the camera optical axis at a long distance (e.g., longer than 5 
meters) equals δ0.  Upon having ζ set to 0, experiments can be performed to obtain 
nx’s for different known ranges of R.  The collected pairs of R and nx can be plugged 
into (12) to obtain the estimated values of parameter k; the average of these estimated 
values is used. This parameter needs to be calibrated only once.  

3.2   Calibration of the External Parameter ζ 

For a system with unknown ζ, equation (12) can be used for calibration.  One can 
set up the system to measure a known distance R.  The value nx can be obtained 
from image.  Values of Oδ  and md  are known and k has been calibrated.  As a 

result, the only unknown in (12) is ζ, which can be solved.  Since the value of depth 
is sensitive to the error of angle ζ, recalibration is recommended if the angle is 
possibly changed. 

3.3   Experimental Results on Depth Measurement 

Performance was evaluated for objects at different distances. Fig. 2 shows the results 
for calculations with ζ = 3.869o and ζ = 4o.  The result for ζ = 4o is provided to show 
the sensitivity of the precision to ζ and the importance of good calibration.  The 
mirror angle for this experiment was set to 40o.  

 

Fig. 2.  Results with and without having ζ calibrated 
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4   FPGA Realization of the Design 

For real-time processing, FPGA is used for the implementation.  The WildCard-II 
from Annapolis Micro Systems Inc. was selected for the experiment.  This device has 
an embedded analog to digital converter that samples analog signal at a rate of 
64MHz.  In our design, one out of five sampled data is used.   Fig. 3 shows an 
example of captured signal.  The signal near the sample numbers 7000-9800 is the 
vertical  synchronization signal.  At two ends, there are segments of signals for about 
9 horizontal lines.   

sampled at 16MHz

-1000

-500

0

500

1000

1500

1 1105 2209 3313 4417 5521 6625 7729 8833 9937 11041 12145 13249 14353 15457 16561 17665 18769 19873 20977 22081 23185 24289 25393 26497 27601 28705 29809 30913

 

Fig. 3. Video signal from our camera (consisting of a vertical synchronization pulse) 

The A/D converter converts the analog video signal into digital values.  Our signal 
analyzer implemented on FPGA chip at first finds the vertical synchronization and 
then starts to process the video signal line by line.  It finds the brightest point in each 
line and converts the pixel position into a range value.  Each frame consists of 240 
horizontal lines.  The 240 locations for the 240 lines from the nth frame give the depth 
information for the nth column of the range image.  In our experiments, 136 frames 
were collected in nearly 2.3 seconds (60 frames per second).  With the FPGA for real-
time processing, a range image of 136 × 240 pixels can be generated in 2.3 seconds.  
Due to the use of brightest points, one restriction is that the surrounding light must be 
dimmed and controlled in order to clearly see the laser light and obtain a good range 
image.   

The state machine (SM) chart for the major process to locate the brightest pixel is 
given in Fig. 4.  The SM chart, which is a different form of the state transition 
diagram, gives details for developing VHDL models.  The three different shapes - 
rectangle, diamond and oval - represent the state, decision box, and list of conditional 
outputs, respectively.  Notation for the control actions and conditions in the SM chart 
is described below: 

 



404 C.-S. Lin and H. Kim 

 

Actions/Control Signals of the State Machine: 

• global_reset:  reset all values to default.  State <= “11”, most other variables set 
to zero 

• found_pul:  signal that a pulse has been located.   
• clr_line_no:  set the line number to zero (at the beginning of each frame) 
• clr_line_loc:  set the current line location to zero (at the beginning of each line). 
• clr_max:  clear the max A/D reading value and clear the location of the max 

value (same time as clr_line_loc) 
• clr_pw:  set the pulse width to zero (reset for the next time we need to count). 
• inc_line_no:  increment the line number to keep track of the position within the 

frame. 
• inc_pw:  increment the count for the duration of the current pulse. 
• save_max:  record the current (max) reading and line location of said reading. 
• write_line:  signal that we have reached the end of the line and may record the 

data if desired.  This signal is only part of the global write_enable signal.  
Another condition is that the line number must be within a specified range. 

global_reset

S3:STARTUP

NEG_P S0: PULSE LOW

NO_ P

found_pul
clr_pw

SH_P
inc_line_no
clr_line_loc

clr_max

S1: LINE SAMPLE HSYNC
found_pul
write_line

inc_line_loc

MAX

inc_pw

S2: VERT SYNCH

POS_P

found_pul
clr_pw

SH_P2

clr_line_no
clr_line_loc

clr_max
save_max

 

Fig. 4. SM Chart for the process that detects lines and locates the brightest pixel in each line 
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Conditions: 

• NEG_P:  a negative pulse has been located (large negative derivative). 
• POS_P:  a positive pulse has been located (large positive derivative). 
• NO_P:  the opposite of POS_P. 
• SH_P:  the pulse width is shorter than the width of a vertical synch pulse. 
• SH_P2:  the pulse width is shorter than the width of a line. 
• HSYNC:  the line location is close to its end and a negative pulse is detected. 
• MAX:  the current reading is larger than the saved maximum reading. 

Fig. 5 gives two range images generated by our design.  The scene for Fig. 5(a) 
includes part of a monitor at the right with an electrical cable (0.6m away) and three 
boxes stacked together on a 4-leg stool (1.5m away).  A shelf on the back is about 5-7 
meters away.  The scene for Fig. 5(b) includes the back of a chair (with a hollow 
portion on it) at the right (1 meter away), A small corner of a table can be seen to its 
right.  A tripod at a distance of 2.5 meters is to the left of the chair with a bookshelf 
behind it.  Another chair is at the left.  A tiny part of a third chair appears at the left 
(dark stripe).  All the pixel positions outside of the reasonable range are set to infinity 
(white). The white shadow in Fig. 5(a) illustrates the portion where the camera cannot 
see the projected light because the displacement between the camera and projector.  
Shadow is larger when object is at a closer distance. 
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(a) Range image 1 
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(b) Range image 2 

Fig. 5. Two range image examples 
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A C++ program for finding the light stripe in the same way used by the FPGA has 
been tested on a PC with a CPU clock of 2.8GHz.  The processing time for the same 
size of image (189696 pixels) is 51 ms.  The major runtimes will then be 51 ms + tFC, 
where tFC is the time for frame capture.  If tFC is 16.67ms, it will take at least 9.2 
seconds (from 136*(51ms+16.67ms)) to generate a range image and the technique 
using the FPGA will take only 2.3 seconds (a speedup of 4 times).  It is noted that 
with the use of FPGA, the actual processing time is much shorter than that for typical 
frame capture.   If the design uses the full speed of the A/D converter, the frame rate 
that can be handled will be 300 frames/second.  At this frame rate, tFC will be 3.33ms 
and the processing time to generate a range image using FPGA will be reduced to 460 
ms (2.3s/5) while the time for PC will be 7.4 seconds (from 136*(51ms+3.33ms)).       

5   Conclusions 

A new depth measurement system that consists of a single camera, a laser light stripe 
projector and a rotating mirror has been investigated.  Error analysis provides an idea 
on the magnitude of expected measurement error.  For the distance 400-500cm, a 
20cm depth error is expected to be from one-pixel error.  Experimental results show a 
similar magnitude.  This arrangement makes it possible to use a lookup table to 
determine the depth directly from pixel location.  Real-time processing is 
implemented on an FPGA card with an A/D converter.  It is capable of processing 
136 frames in 2.3 seconds to obtain a 136 x 240 range image.  Compared to the use of 
a PC with a clock rate of 2.8GHz, the speed of the design is 4 times faster and could 
be 15 times faster if the frame capture rate is increased to the limit of the A/D 
converter (64MHz). 
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Abstract. Recently, extensive studies have been carried out on web
service standards because of the necessity of developing large-scale ap-
plications in open environments. In particular, they enable services to
be dynamically bound. However, current techniques fail to address the
critical problem of selecting the right service instances. Service selec-
tion should be determined based on customer preferences and service
level. We propose a best web service selection method which helps to
find a service provider providing the optimal quality. Web service se-
lection process was described with multi-criteria decision making ap-
proach(e.g. PROMETHEE) on the basis of evaluated values of qualities
and the defined service level. The PROMETHEE method has advan-
tages in comparison with the others(e.g. MAUT, AHP) as follows. First,
the PROMETHEE method classifies alternatives which is difficult to be
compared because of a trade-off relation of evaluation standards as non-
comparable alternatives. Second, the PROMETHEE method is different
from the AHP method in that there’s no need to perform a pair-wise
comparison again when comparative alternatives are added or deleted.
Therefore, this method is a suitable approach in the web service se-
lection problem. Because the problem has a lot of quality parameters
which are measured and evaluated at the same time and frequently in-
duces a drop of another quality parameter by the improvement of one
quality attribute. Consequently, our approach enables applications to be
dynamically configured at runtime in a manner that continually adapts
to the preferences of the customers. We verify our approach through case
study.

1 Introduction

Recently, there has been increasing interest in web service because of the follow-
ing advantages: platform independent, interoperability and service availability.
IDC estimated that the amount of sales of software related to web service is
about 3 billion dollars in the year 2004 which are just 1.6% of 188 billion dollars,
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the whole software market. But it is expected to grow by 58% per year for next
5 years and will be 11 billion dollars in the year 2008[1].

Web service is a component-based distributed computing service independent
of a platform and an implementation language in the wired/wireless web and
consists of three operations, i.e. publish-find-bind. Each operation means a ser-
vice provider which develops a web service and publishes in UDDI registry, the
UDDI registry which helps service consumers to find the web service they need
and a service consumer which binds to the web service and uses the function of
the web service actually.

In a current web service model, the UDDI registry includes not an evaluation
for the web service but an explanation and has defects that 48% of the UDDI
registry have a link which contains information that are lost or broken or incor-
rect[2]. When a service consumer chooses one among a lot of similar web services,
he generally gets to need information about the service quality(QoS) of the web
service. Although UDDI was not designed to provide service quality information,
UDDI registries tend to include this information to give convenience to service
consumers.

This paper suggests the best web service selection method which helps to find
a service provider providing the optimum quality that the consumer needs in
a position of service consumer. In this paper, we considered the multi-criteria
of QoS(Quality of Service) and CoS(Cost of Service) in the evaluation process
to solve the problem of existing researches[3,4] related to the web service selec-
tion and used PROMETHEE as an evaluation method which is most suitable
for the web service selection among MCDM approaches. The PROMETHEE
method has advantages in comparison with the others(e.g. MAUT, AHP) as
follows[5]. First, the PROMETHEE method classifies alternatives which is dif-
ficult to be compared because of a trade-off relation of evaluation standards
as non-comparable alternatives. Second, the PROMETHEE method is different
from the AHP method in that there’s no need to perform a pair-wise compar-
ison again when comparative alternatives are added or deleted. Therefore, this
method is a suitable approach in the web service selection problem. Because the
problem has a lot of quality parameters which are measured and evaluated at
the same time and frequently induces a drop of another quality parameter by
the improvement of one quality attribute[6].

This paper was organized as follows. We introduced the research trend about
the web service selection and the theoretical background about the multi-criteria
decision making approach in chapter 2 and suggested the quality evaluation
criteria and the selection method used in the best web service selection process
in chapter 3. In chapter 4, the selection method was verified through a case study
and lastly conclusions and future works were described in chapter 5.

2 Related Work

In this chapter, we reviewed existing researches related to the web service selec-
tion and representative approaches about the multi-criteria decision making.
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2.1 Research Trends of Web Service Selection

Patrick’s[3] research proposed the combination that could increase the whole
value between two issues(QoS and CoS) by trading more preferred issue for
less preferred issue between two parties. In this model, QoS is related to the
performance-oriented capability(distance and time), CoS is related to resources
(ca-pital, hardware, software, network bandwidth) which are required to ensure
QoS and a token-based approach was suggested to quantify the two-issue. In the
proposed token-based approach, Resource is measured by the unit of QoS-token
and Dollar is measured by the unit of CoS-token. If QoS and CoS are measured
by token, the token trading between two parties is possible. As a result, the
efficient allocation of resources can be caused. But, since this model considered
just two issue groups except the other sub-issues included in QoS and CoS, there
are defects that it can not handle a multi-issue and a multi-party.

Julian[4]’s research adopted a semantic model based on RDF and OWL to
model the interaction between the client and the web service and proposed a rea-
soning engine constructed with JESS(Java Expert Systems Shell) to allow the
client to reason what can provide the best web service among many web services
that have the same sentences. This proposed research adopted the client-side
augmentation approach to gain the experience information that is shared. The
experience related to the generic QoS parameter is availability, reliability and
execution time and is stored in the QoS forum that can be accessed in common.
The QoS forum returns vectors of semantic models and the reasoning engine ex-
tracts the experience information from them. Through the evaluation equation
that is the set of extracted experience information and weights, the service with
the highest weighted sum is selected as the best one. But, in Julian’s research,
the web service selection problem was handled only as the past-experience stand-
point and, since the cost was not considered, the negotiation strategies were not
used.

2.2 Multi-criteria Decision Making Approach

MAUT(Multi-Attribute Utility Theory)[7] is a commonly used method to pro-
vide analytical support to the decision-making process. Utility theory allows
decision makers to give formalized preference to a space defined by the alterna-
tives and criteria. For example, in one method, each alternative/criteria pair is
given a score reflecting how well the alternative meets the criteria. The scores
for each alternative are combined with measures of each criterion’s importance
(i.e. weight) to give a total utility for the alternative. Utility is a measure of
preference for one alternative relative to another.

AHP(Analytic Hierarchy Process)[8] proposed by Thomas Saaty is the ap-
proach on the basis of following three main principles: the principle of con-
structing hierarchies, the principle of establishing priorities, and the principle of
logical consistency. The use of hierarchies helps to itemize the alternatives and
attributes. Establishing priorities is based on pair-wise comparisons between the
alternatives, one criterion at a time. Thus a problem with 5 alternatives and
4 criteria requires 40 comparisons. He then reduces this data using a weighted
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Table 1. MCDM approaches[10]

Partial and complete ranking 
order

Relative preference orderRelative preference orderResult

NoSaaty’s Eigenvector approachTrade-off Swing Direct-ratio 
Eigenvector approach

Approaches to 
determine criteria 
weights

Pair-wise Comparison by 
means of Preference Function

Pair-wise Comparison matrix 
by means of 9 point scale

Utility Function additive modelBasis

Outranking ApproachSaaty’s Eigenvector ApproachClassical MCDM ApproachFoundation

PROMETHEEAHPMAUT

average to find the ranking of the alternatives. The method allows for checking
consistency, the third principal.

PROMETHEE(Preference Ranking Organization METHod for Enrichment
Evaluations)[9] have been proposed for the outranking analysis. PROMETHEE
is based on the positive(out-) and negative(in-) preference flows for each alter-
native in the valued outranking relation to derive the ranking. The positive flow
is expressing how much an alternative is dominating the other ones. And the
negative flow how much it is dominated by the other ones. Based on the pref-
erence flows, PROMETHEE I provides a partial preorder. PROMETHEE II is
also introduced to obtain a complete preorder by using a net flow, though, it
loses much information of preference relations.

Table 1 gives an overview on the basic characteristics of the mentioned MCDM
approaches[10].

3 Web Service Selection Method Using PROMETHEE
Approach

3.1 Selection Process

Web service selection process consists of QoS Identification, QoS Selection, QoS
Evaluation, Decision Making and Service Selection steps as illustrated in
Figure 1[11]. QoS Identification step finds all quality characteristics related to
the web service. QoS Selection step chooses the characteristics which can be mea-
sured among all quality characteristics that are found in previous step. In QoS
Evaluation step, the service level[12] for selected quality characteristics should
be defined by service provider or consumer and according to the measurement
criteria, measured values are calculated. Decision Making step calculates the
outranking relation of web services provided by service providers by applying
PROMETHEE approach on the basis of measured result values. Finally, Service
Selection step compares net flows of web service providers on the priority(partial
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QoS Identification

QoS Selection

QoS Evaluation

Decision Making

Service SelectionBest Web Service

Performance, Safety, Cost and Interoperability,
Transaction Support, Security

Response time, Throughput,
Availability, Reliability, Cost

PROMETHEE, MAUT, AHP

Web Service Level Agreement

Fig. 1. Web Service Selection Process

ranking) and decides the web service having the largest net flow as the best web
service.

3.2 Quality Evaluation Criteria

Since there is no the international web service quality standards model, in this
paper, we classified qualities from five different views roughly[13,14]. Perfor-
mance and safety quality mean that the provided web service is how perfor-
mance is outstanding and provides services stably. Transaction support quality
means the quality that can ensure the integrity when one web service transac-
tion interacts with another web service transaction. Cost and Interoperability
quality mean the service cost and the quality level that can be operated with
several web services just like one system. Security quality means the web service
quality that provides confidentiality and non-repudiation by providing authen-
tication, message encryption and authorization of parties concerned in the web
service.

From the web service characteristics, since the quality at the point of time
when a customer use the web service acts as an important decision factor, we
considered just performance and safety quality and cost in this paper. Table 3
shows the list of qualities except for unmeasurable cases among selected qualities
and each quality is measured by given measurement method through web service
stress tool periodically. At present, there are two type servers providing web
services and these are divided into QoS server and legacy server according to
supporting QoS or not[15].

In case of QoS server, service provider can provide the web service according
to various service level like gold, silver and bronze and each service level are
differentiated by each different quality parameter[12]. But at present most web
service provider is a legacy server without the service quality level concept.
Therefore, in this paper subjected to the legacy server, we considered the service
level in Table 3 according to the level criteria of qualities requested by service
consumers.
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Table 2. Web Service QoS Criteria

A principal cannot deny requesting a 
service or data after the fact

Non-Repudiation

Method that the service encrypt dataData encryption

Only authorized principals can access 
data or treat data to modify

Confidentiality

Authorization allowance for only 
parties concerned to accessing the 
protected services

Authorization

Authentication of principals for the 
accessibility to service and data

AuthenticationSecurity

Guarantee of integrity when the web 
service transaction interacts with another 
web service transaction

IntegrityTransaction 
Support

Compatibility with another web 
services

Compatibility

Service compliance with standardStandardization 

The cost involved in requesting the 
service

CostCost and 
Interoperability

Reliability degree for serviceReliability

Whether a service exists and is 
available instantly

AvailabilitySafety

Ratio of service request completed in 
unit time

Throughput

Time form sending Request to 
receiving response

Response timePerformance

DefinitionSubcharacteristicCharacteristic

Table 3. Selected Web Service QoS Criteria to be measured

€
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3.3 Web Service Selection Method

In order to select the best web service with result values calculated by 5 quality
criteria, this paper adopted PROMETHEE approach and five steps are neces-
sary[5]. The algorithm can be summarized as follows:

Step 1: Define criteria
PROMETHEE is built on the basic notation, with as set A of N alternatives

that must be ranked, and K criteria that must be optimised:

A := a1, ..., aN : Set of discrete alternatives at(t=1...N)
F := f1, ..., aK : Set of criteria relevant for the decision fk(k=1...K)

First step requires the definition of attributes concerning criteria. Relevant
aspects of this input procedure are shown next.

5. Linear Criterion

P0

1

d

4. Level Criterion

P0

1

d Q

1/2

Q

1. Usual Criterion

0

1

d

2. U-shape Criterion

0

1

d

3. V-shape Criterion

0 dQ P

1

6. Gaussian Criterion

0

1

dσ

Ecology, dramatic impact Discrete resource,
manpower Operational criteria

Financial long term,
maintenance cost, life

cycle cost

Financial short term,
acquisition cost,

construction cost

Quality, Security,
Aesthetics

Fig. 2. The ranking obtained using the PROMETHEE method

In Min/Max, Max means an index which gives more positive influence to
the relevant web service selection as the evaluation criteria value increases and
Min means an opposite case. Weight is decided by experiences of the past and
opinions of service consumers. Preference function is defined with 6 kinds as
illustrated in Figure 2 and each function is selected by the type of criteria. Here,
P and Q and σ mean preference, indifferent and Gaussian threshold that are
needed to decide the concrete form of the preference function per evaluation
criteria.

In this paper, we considered multi-party and multi-issue negotiation which
contains service requester, several service providers and attributes, and focused
on the method which finds the optimal compromise suggestion between both
sides and decides the service provider offering the maximum gains.

Step 2: Define a vector containing the weigths
Define a vector containing the weights, which are a measure for the relative

importance of each criterion, wN = [w1, ..., wK ]. If all the criteria are of the
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same importance in the opinion of the decision maker, all weights can be taken
as being equal.

Step 3: Define for all the alternatives WSPi, WSPj ∈ WSP the
Outranking-Relation Π:

First, the preference function value per quality criteria should be calculated
and the preference function value pk(WSPi, WSPj) of the basis k means
pk(fk(WSPi), fk(WSPj)) which is the difference between WSPi and WSPj .
The preference index Π(WSPi, WSPj) is a measure for the intensity of the
service consumer’s preference for an alternative WSPi in comparison with an
alternative WSPj for the simultaneous consideration of all quality criteria. It is
basically a weighted average of the preference functions pk(WSPi, WSPj).

Π(WSPi, WSPj) =
K∑

k=1

Wk · pk(WSPi, WSPj) (1)

Step 4: As a measure for the strength(weakness) of the alternatives
WSPi ∈ WSP, the outranking flow is calculated:

The outranking relation of alternatives is calculated by figuring out leaving
flow(φ+), entering flow(φ−) and net flow(φ) like equation 2 with preference index
Π(WSPi, WSPj).

φ+(WSPi) =
1
N

N∑
n=1
n�=i

Π(WSPi, WSPn) (2)

φ−(WSPi) =
1
N

N∑
n=1
n�=i

Π(WSPi, WSPn)

φnet(WSPi) = φ+(WSPi) − φ−(WSPi)

Step 5: Graphical evaluation of the outranking relation:
The higher the leaving flow and the lower the entering flow, the better the

alternative. In case a complete pre-order is requested, PROMETHEE II yields
the so-called net flows. As the net flow φnet(WSP ) of preference is higher, the
relevant WSP means the more superior alternative.

4 Case Study

In order to exemplify concretely the application process of PROMETHEE in
this chapter, we evaluated web services provided by five different web service
providers and selected the most suitable web service considering QoS among
them.
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4.1 Decision of Weight, Preference Function and Threshold by
Evaluation Criteria

Table 5 gives the QoS parameters for the five criteria considered to have the
same importance for the web service consumer, therefore all the weights are
equal to 0.2. The Response time can become lower in case of failure than in
case of accessing the reliable service. On this account, the default weight of the
response time tends to be lower than that of the availability or the reliability[4].
But, for the convenience of analysis, we endowed the same weight as another
criteria.

Table 5. Decision Table for the Criteria

€

As illustrated in Figure 2, the preference function of COST criterion was es-
tablished as a linear type. The others were established as a Gaussian type. Web
service consumer must endow a threshold to decide the concrete form of the pref-
erence function per evaluation criteria and for this we referred to service level of
previous Table 3 in this paper. This paper supposed that the web service con-
sumer require bronze level as COST criterion and more than silver level as other
criteria. If the web service consumer is indifferent from 0.01 to 0.02(indifference
threshold=0.01) and increases the preference from 0.02 to 0.04(preference thresh-
old=0.03), the consumer definitely chooses the cheapest web service. Gaussian
thresholds of other criteria were fixed at the middle value between the lowest
limit of the gold level in which the preference increases and the lowest limit of
the silver level which was set up as a default.

4.2 Calculation for Leaving Flow, Entering Flow and Net Flow of
Preference

Table 6 shows the calculation result for the preference function value per the
evaluation criteria. For example in Table 6, by the preference function between
WSPi and WSP2 in case of the response time(RESP), each preference func-
tion value(pj(WSP1, WSP2)=0.9889, pj(WSP2, WSP1)=0.0000) is calculated
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Table 6. Preference Function Value per Evaluation Criteria

)2,1( WSPWSPp j )3,1( WSPWSPp j )4,1( WSPWSPp j )5,1( WSPWSPp j )1,2( WSPWSPp j )3,2( WSPWSPp j )4,2( WSPWSPp j )5,2( WSPWSPp j )1,3( WSPWSPp j )2,3( WSPWSPp j )4,3( WSPWSPp j )5,3( WSPWSPp j )1,4( WSPWSPp j )2,4( WSPWSPp j )3,4( WSPWSPp j )5,4( WSPWSPp j )1,5( WSPWSPp j )2,5( WSPWSPp j )3,5( WSPWSPp j )4,5( WSPWSPp j

)2,1( WSPWSPp j

)3,1( WSPWSPp j

)4,1( WSPWSPp j

)5,1( WSPWSPp j

)1,2( WSPWSPp j

)3,2( WSPWSPp j

)4,2( WSPWSPp j

)5,2( WSPWSPp j

)1,3( WSPWSPp j

)2,3( WSPWSPp j

)4,3( WSPWSPp j

)5,3( WSPWSPp j

)1,4( WSPWSPp j

)2,4( WSPWSPp j

)3,4( WSPWSPp j

)5,4( WSPWSPp j

)1,5( WSPWSPp j

)2,5( WSPWSPp j

)3,5( WSPWSPp j

)4,5( WSPWSPp j

Table 7. Preference index per evaluation criteria and leaving, entering and net flow

+φ −+ −= φφφ −φ +φ −+ −= φφφ

−φ

like followings. Since RESP criterion has a more positive effect on the web ser-
vice selection as it is smaller, in case that x, the difference of evaluation scores
between two WSP, is negative, we calculated the selected preference function,
Gaussian type func-tion, by substituting (x = 0.8 − 0.2) for the difference of
evaluation scores and (σ = 0.2) for Gaussian threshold. Reversely, in case that
x is positive, it was calculated at 0.0000 since it is not preferred. The preference
index can be calculated by summing up preference function values per evaluation
criteria and then by multiplying them by the weight. For example, the preference
index between WSP1 and WSP2 can be calculated by summing up preference
function values per evaluation criteria shown at each row of Table 6 and then
by multiplying them by weight(0.2) like equation (3).

Π(WSP1, WSP2) =
1
5
(0.9889 + 0 + 0.9961 + 0.9961 + 0) = 0.5962 (3)

Π(WSP2, WSP1) =
1
5
(0 + 0.9439 + 0 + 0 + 0.5) = 0.2888

Table 7 represents calculation results for the preference index per evaluation
criteria, the leaving flow, the entering flow and net flow by applying above cal-
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culation procedures to all pairs of (WSPi, WSPj). The leaving flow and the
entering flow of each WSPi are the average values for the summation of all pref-
erence indexes in each ith row and column in table 7 and the net flow is the
difference between them.

4.3 Graphical Evaluation of the Outranking Relation

Figure 3 presents the graphical ranking of the investigated alternatives for best
web service selection resulting from the outranking method PROMETHEE. Ac-
cording to this evaluation, the web service provided by 5th Web Service Provider
(WSP5) is the best choice, followed by the 1st Web Service Provider(WSP1),
while the use of 2nd Web Service Provider(WSP2) comes offer as the worst alter-
native. Since no incomparibilities occur, both PROMETHEE I and the complete
ranking in PROMETHEE II give the same order of investigated alternatives.

1
WSP5

0.23

3
WSP3

-0.02φ

5
WSP2

-0.28φφ

2

WSP1

0.21φ

4

WSP4

-0.14φ

Fig. 3. The ranking obtained using the PROMETHEE II method

5 Conclusion

In this paper, we have presented the web service selection method that can help
service consumers to find the service provider who provides the most optimal
quality. Our approach allows the dynamic selection of Web services depending on
various QoS values and defined service level. The results show that the proposed
approach effectively selects high quality web service (i.e., web service which have
higher overall QoS). From what has been discussed above, we can conclude that
the proposed web service selection approach can be used as a solution for the
complexity and reliability problem.

In future work, we will include the support for exception handling during ser-
vice binding. For example, after a best web service has been decided and while it is
being bounden, an exception may occur (e.g., unavailability of a web service). An-
other interesting issue is to extend our framework with support for mobile clients.
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Abstract. In data-centric sensor networks, various data items, such as tempera-
ture, humidity, pressure and so on, are sensed and stored in sensor nodes. As 
these attributes are mostly scalar values and inter-related, multi-dimensional 
range queries are very useful. However, the previous work on range query 
processing in sensor networks did not consider overall network lifetime. To 
prolong network lifetime and support multi-dimensional range queries, we pro-
pose a dynamic data placement method for multi-dimensional data, where data 
space is divided into equal-sized regions and placed over sensor nodes in a dy-
namic way. Through experiments, we show the efficiency of the proposed 
method compared with the previous work. 

Keywords: Sensor network, data-centric storage, multi-dimensional range  
queries, data placement and distribution. 

1   Introduction 

A sensor network consists of widely distributed sensors, where each sensor node is a 
small device with some limited computing, storage and wireless communication ca-
pacity [1, 2, 4, 5, 8]. The applications of sensor networks have been widely expanded 
into areas of military, environment, health, and so on. For example, in an environ-
mental monitoring application, sensor nodes which are widely and randomly deployed 
over deserts or volcanic areas periodically sense environmental parameters such as the 
temperature, humidity, and air pressure. The sensor data can be stored locally into 
sensor nodes or delivered to other sensor nodes/outer gateways. The sensor network 
where measured data are stored within sensor nodes is called data-centric, which is 
the target environment of this paper. The stored data are analyzed or processed 
through various queries including point queries, range queries, aggregation queries, 
and so on. 
                                                           
* Corresponding author. 
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Sensor network has some unique properties compared with the conventional wire-
less network [2, 4, 5, 7, 8]. First, the capacity or resource of a sensor such as comput-
ing power, storage, and energy is very restricted. Especially, since sensor nodes use 
batteries for their energy source and the batteries cannot be re-charged or replaced, 
efficient control of energy consumption in sensor nodes is very important. Second, 
sensor nodes are randomly (i.e., not-controlled) deployed over a target area, and 
hence they are not informed of the overall network configuration. (That is, a sensor 
node is aware of only its neighbor nodes within its radio scope.) Third, the sensor 
node is not gathered and reused, so it is important to fully use the deployed sensors by 
prolonging their lifetimes. Since the lifetime of a sensor network is determined by that 
of the shortest-life sensor node, we have to elaborate on the energy consumption of 
sensor network not to be concentrated on some hot-spot nodes. 

In data-centric sensor networks [5, 7, 8], data are stored in sensor nodes based on 
their values, not stored in the collector node or delivered to external storage (or a 
predefined processor). In this approach, each sensor node has a predefined region of 
data domain it will store. This prevents the cases that the sensor nodes which are 
located near to external storage or collect more data than the others become hot-spot 
(i.e., consuming much more energy than the others). In this paper, in order to balance 
the energy-consumption of sensor nodes, we propose a dynamic data placement 
method, where we initially assign each sensor node a range of data domain, and dy-
namically adjust the ranges of sensor nodes based on their workload. For region as-
signment, we linearize the multi-dimensional data space by using Hilbert space-filling 
curves, and make a linear address space by zigzag traversing of sensor nodes. 

The rest of the paper is organized as follows. In Chapter 2, we describe some re-
lated work on data-centric sensor networks. In Chapter 3, we propose a dynamic data 
placement method for multi-dimensional queries on sensor networks. In Chapter 4, 
we show the performance of the proposed method through experimental results. In 
Chapter 5, we conclude the paper with some remarks on future work. 

2   Related Work 

In data-centric sensor networks, addressing scheme which determines sensor node to 
store data is needed. The address (also called the ‘index’) denotes the logical position 
of data storage, which is used for routing data or queries to target sensors. A popular 
addressing scheme in the conventional data-centric sensor networks is GHT (Geo-
graphic Hash Table) [8]. In the GHT method, data are stored sensor nodes which are 
determined based on their geographic locations. Although this method is so effective 
for exact-match queries and prefix queries, it is not efficient for range queries. It is 
because data objects of similar values are stored into geographically dispersed sensor 
nodes, and hence partial queries should be transmitted over many sensor nodes in the 
network for range-query processing. 

In the DIM (Distributed Index for Multi-dimensional data) approach [5], the geo-
graphic area of sensor networks are iteratively divided by X-dimension and Y-
dimension in an alternative way until there remains one sensor node for a region. 
Then, the data space is partitioned and assigned into the geographic regions of sensor 
nodes. Differently from GHT, DIM assigns data objects of similar values into geo-
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graphically near sensor nodes. This improves energy-efficiency for range-query proc-
essing because the number of communications between sensor nodes is reduced com-
pared with GHT. However, since the sensor nodes are deployed in a not-controlled 
manner, the data region assignments of sensor nodes cannot be guaranteed to be bal-
anced. (In Figure 1(b), you can observe that the data allocation for each sensor node is 
not equal.) Because the energy-consumption of sensor nodes for query processing is 
in proportion to the amount of data it stores, non-uniform data assignment to sensor 
nodes will cause non-uniform energy-consumption between sensor nodes, which 
results in shortening the lifetime of the sensor networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Data Distribution in GHT and DIM Methods 

3   The Proposed Method  

Our solution for dynamic distribution of sensor data consists of the following steps: 
(1) We construct a single dimensional address space of sensor nodes (i.e., lineariza-
tion of sensor nodes) through a zigzag traversing such that geographically near nodes 
are located near in the linear address space. (2) We transform the multi-dimensional 
data space into a single dimensional data space (i.e., linearization of data space) using 
Hilbert space-filling curves. (3) Initially, the data regions on the one dimensional data 
space are uniformly assigned into one dimensional address space of sensor nodes. 
Then, during the lifetime of the sensor networks, parts of data regions initially allo-
cated to sensor nodes are dynamically migrated to near sensor nodes based on the 
workload of sensor nodes. 

3.1   Construction of One Dimensional Address Space of Sensor Nodes 

If we assign data regions into sensor nodes based on geographic positions as in DIM, 
the amount of data allocated to sensor nodes may be unbalanced. This causes the 
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energy-consumption of some nodes that covers relatively large data regions to be 
more than the others, which leads to shortening the lifetime of entire sensor networks. 

For addressing sensor nodes without geographic position information, we construct 
a linear address space of sensor nodes through zigzag traversing. The zigzag travers-
ing allows sensor nodes which are deployed geographically near to be assigned near 
addresses in the linear address space.  

The procedure for zigzag traversing is shown in Figure 2. All nodes are initially as-
signed level numbers through constructing a spanning tree via flooding (See Figure 
3(a)). A level number denotes the number of hops needed for reaching the node from 
an outer point. After complete level numbering, we traverse the sensor nodes in a 
zigzag way. The sequence of traverse becomes the one dimensional address space of 
sensor nodes, where the start node is numbered as ‘1’. Figure 3(b) shows an example 
of zigzag traversing. In the figure, sensor node ‘a’ has three same-level neighbors 
(node ‘b’, ‘c’ and ‘d’). According to Step 1.A of Figure 2, node ‘b’ is selected. 

 
1. Choose a sensor node in the lowest level among ne
ighboring sensor nodes. 

A. When there are multiple candidates (i.e., the
 same level), choose a sensor the number of neig
hbors of which is minimal. (This is a heuristic 
for selecting outlier nodes first.) 

i. When there are still multiple candidates 
(i.e., the same level and the same number of
 neighbors), choose the nearest one 

2. When no more neighbor node exists, we backtrack o
n the traversed path and checked if there are still 
not-chosen neighboring sensor nodes. If any, we proc
eed to the above Step1 from that node. 

3. When we backtrack to the start node (i.e., number
 ‘1’ node), the traversal is terminated. 

Fig. 2. The Algorithm of Zigzag Traversing 

 

 

 

 

 

 

 

Fig. 3. Generation of Linear Address Space by Zigzag Traversing of Sensor Networks 
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3.2   Transforming Multi-dimensional Data Space into One Dimensional Data  
        Space 

In this paper, we consider multi-attribute sensor data (e.g., temperature, humidity, air 
pressure, lightness and so on) on which multi-dimensional range queries are proc-
essed. In order to store multi-dimensional data into sensor nodes, we transform the 
multi-dimensional data space into one dimensional one. For this purpose, we use a 
popular space-filling curve, called the Hilbert curve. It is known that the Hilbert curve 
has the best locality-preserving characteristic among many space-filling curves such 
as Z-ordering, Peano curve, etc [3, 6]. 

Since the Hilbert curve method assumes a normalized data space, we have to nor-
malize the sensor data. In this paper we assume that sensor nodes are aware of all 
domains of sensor data space, and compute the normalized values as aN = (a – aMIN) / 
(aMAX – aMIN), where a is the measured data , aN is normalized data value of a, aMIN is 
the minimum value of the attribute, and aMAX is the maximum value. 

3.3   Data Allocation and Dynamic Adjustment 

After generating linear address space of sensor nodes via zigzag traversing and linear 
data space via Hilbert curve, we map the data regions evenly into sensor nodes as in 
Figure 4. Since both the zigzag traversing and Hilbert space-filling curve tend to pre-
serve the locality property, this data placement on sensor nodes also has good cluster-
ing effects on range queries. For example, in Figure 4, data regions 31~34 which are 
adjacent with each other in the original multi-dimensional data space are actually 
allocated in neighboring sensor nodes 4 and 5. This entails low cost when a range 
query includes data regions 31~34 is processed, since partial queries need not be 
delivered to other far-away nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Allocation of Data Regions to Sensor Nodes 
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The above allocation of data is fair when the workload on every data regions is 
uniform, since the amount of data space allocated to each sensor node is equal. How-
ever, according to specific characteristics of attributes, some data regions will be 
highly accessed than other regions. Query patterns are also dynamically changed 
during the lifetime of sensor networks. If the workload of sensor nodes is not uniform, 
the energy-consumption could be skewed. For the purpose of balancing the workload 
of sensor nodes, which is the goal of our proposed method, we dynamically adjust the 
data regions allocated to sensor nodes based on the current workload of sensor nodes. 

Region Adjustment for Overloaded Sensor Nodes 
For balancing the workload, we have to measure the amount of load of a sensor node 
in a quantitative way. Based on the assumption that the amount of energy consump-
tion of a sensor node primarily depends on the amount of data it has stored and the 
frequency of queries it has processed, we define the load of a sensor node as follows: 

Definition 1. The load(Li) of sensor node i is defined as =
j

jji qeL , where j are 

the data regions allocated to sensor node i, ej  is the amount of data region j, and qj is 
the frequency of queries for j.                  

In the paper, we use the following two terms, ‘neighboring sensor’ and ‘adjacent 
sensor’. The neighboring sensor denotes the sensor which is connected directly i.e., 
located in a single hop communication range. The adjacent node denotes the sensor 
node whose data region is adjacent. Usually, the adjacent node of a sensor node is 
chosen among its neighboring nodes. When a node is overloaded, its two adjacent 
nodes will take parts of data of the overloaded node for load balancing. 

The state of ‘overloaded’ means the sensor has been consuming relatively more 
energy than the other sensors. In the proposed method, dynamic adjustment of data 
regions between sensor nodes is activated by detection of any overloaded sensor 
nodes. In this paper, we define the criteria of being overloaded as follows: “Compared 
with the initial amount of energy in the battery and the amount of storage space, when 
the amount of currently remained energy or the amount of currently available free 
storage space are below the half of initial ones, we call those sensor nodes are over-
loaded.” (The criteria can be modified according to target environments and  
applications.) 

When adjusting data regions of sensor nodes, parts of data regions of overloaded 
sensor nodes are distributed into their adjacent nodes. Here, the amount of data for 
migration is determined according to the relative loads of overloaded node and its 
adjacent nodes.  

Definition 2. The amount of data space ( pq) to be transferred from sensor node p to 
sensor node q is as follows:  (Here, pmax and pmin are the max/min addresses (on the 1-
dimensional address space) for sensor node p, Lp and Lq are the amount of load of 
sensor nodes p and q, respectively. 

p

qp
pq L

LLpp −
×

−
=Δ

2
minmax                                          
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When data transfer is performed on two (i.e., left and right) adjacent nodes, these 
nodes might be overloaded due to the transferred data. Then, those nodes can also 
transfer parts of their data to their adjacent nodes progressively. For example, in Fig-
ure 5, some data are transferred from n3 (initially overloaded sensor node) to node n2 
and n4, then n2 and n4 can send parts of their data to n1 and n5, respectively. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Data Transfer for Overloaded Sensor Nodes 

4   Performance Experiments 

We have conducted simulation experiments for evaluating the performance of our 
approach compared with the previous one. We set the size of area for deploying 300 
sensor nodes as 800m x 800m, where a sensor node has 14 neighbor nodes (in aver-
age) within its radio coverage 100m. A data record in a sensor consists of 5 attributes, 
and a sensor node contains 100 data records at the beginning. We have conducted the 
experiment until a failure of sensor node is occurred. We have generated multi-
dimensional range queries which cover 5%, 10% and 20% of data space in a normal-
ized way and in randomly chosen sensor nodes. The amount of energy consumption is 
determined by the number of message hops multiplied by the number of bytes for 
each message. In this experiment, the energy consumption for data storage is ignored 
for convenience. 

Energy Consumption  
In DIM, when two sensor nodes are located very closely, one sensor is assigned a 
very big region of data space while the other is assigned a small one. Observed 
through experiments, the size of maximum region assignment is 5 times bigger than 
that of the average one. This unbalanced region assignment leads to the increase of 
differences of energy consumption between sensor nodes, which results in shortening 
the lifetime of overall networks. 

Figure 6 shows the comparison result of energy consumption of our method and 
the DIM, where the data records are uniformly generated over the entire data space, 
and range queries access the data space uniformly. The results indicate energy con-
sumption ratios of sensor nodes at the time when a sensor node has failed due to ex-

32 3421 32 3421
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haustion of its energy. The DIM method has many highly consumed nodes compared 
with our method. 

We have tested a non-uniform setting, where data generation follows a normal dis-
tribution with the mean value of 0.5 and the standard deviation of 0.1, and also the 
query generation is based on the normal distribution of 0 and 0.1. Figure 7 shows the 
result of experiment, where we have measured the energy consumption ratios of sen-
sor nodes at the time when 10% of the sensor nodes in our method are failed. (Here, 
we sort the id’s of sensor nodes for readers convenience.) In the result we can see that 
more than half of the sensor nodes in DIM have consumed most of their energy at the 
time of 10% node failure whereas our sensor nodes consume relatively little energy.  

 
Fig. 6. Energy Consumption Ratios under Uniform Data and Queries 
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Fig. 7. Energy Consumption Ratios under Non-uniform Data and Queries 

Network Lifetime 
Figure 8 shows the network lifetime (in terms of unit time) comparison result of our 
method and DIM. As you can see in the figure, the lifetime until one node failure of 
DIM is very short compared with ours. This indicates that DIM is not appropriate for 
mission-critical applications where a single node failure would not be admitted. By 
the time of 15% node failure, our method survives longer (about 150%) than DIM. 
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Fig. 8. Network Lifetime according to Node Failure Ratios 

5   Conclusion 

In data-centric sensor networks, the lifetime significantly depends on data placement 
(or distribution). The use of hash functions is effective for load balancing since it 
distributes (i.e., de-cluster) data over the entire network. However, it is inefficient for 
range queries since many sensor nodes must be involved for the query processing. In 
other aspects, the previous approach DIM for range query processing did not consider 
load balancing on sensor nodes, which results in differences of energy consumption 
between sensor nodes and thus short network lifetime. 

In this paper we have proposed a new data storage method which balances work-
loads of sensor nodes, and thus improves overall network life time. We have con-
structed the address space of sensor nodes by using zigzag traversing, and assigned 
the linearly transformed (via Hilbert curves) data space on it. Since this approach 
assigns adjacent addresses onto neighboring sensor nodes, (multi-dimensional) range 
queries can be efficiently processed. In addition, the dynamic and progressive update 
of address assignments effectively copes with the changes of workloads and balances 
energy consumption ratios of sensor nodes. Through simulation experiments, we have 
shown that the proposed approach efficiently balances the energy-consumption of 
sensor nodes and improve the lifetime of sensor networks. 

We in the paper considered that the data are stored on sensor nodes in a non-
replicated way. For future work, we will investigate on data replication in sensor 
networks and query processing over replicated data. If some replication of data be-
tween sensor nodes is allowable, the performance of query processing and the avail-
ability of sensor database will be significantly improved. 

Acknowledgement 

This work was done as a part of Information & Communication Fundamental Tech-
nology Research Program, supported by Ministry of Information & Communication 
in Republic of Korea. 



 Data Storage in Sensor Networks for Multi-dimensional Range Queries 429 

 

References 

[1] Bhardwaj, M.. and Chandrakasan, A. P. Bounding the Lifetime of Sensor Networks Via  
Optimal Role Assignments, IEEE INFOCOM 2002. 

[2] Greenstein, B. et. al. DIFS: A Distributed Index for Features in Sensor Networks, Elsevier 
Journal of Ad Hoc Networks,  2003. 

[3] Jagadish, H. V., Linear clustering of objects with multiple attributes, International Confer-
ence on Management of Data, Proceedings of the ACM SIGMOD 1990. 

[4] Karp, B. and Kung, H. Greedy Perimeter Stateless Routing In Proceedings of the Sixth 
Annual ACM/IEEE International Conference on Mobile Computing, pp. 243~254, 2000. 

[5] Li, X. et. al.  Multi-dimensional Range Queries in Sensor Networks, Proceedings of the 1st 
international conference on Embedded networked sensor systems, pp. 63~75, 2003. 

[6] Moon, B. et. al. Analysis of the clustering properties of Hilbert space-filling curve. IEEE 
Trans. on Knowledge and Data Engineering, pp 124~141, 1996. 

[7] Newsome, J. and Song, D. GEM: Graph EMbedding for Routing and Data-Centric  
Storage in Sensor Networks without Geographic Information. SenSys 2003. 

[8] Ratnasamy, S. et. al. Data-Centric Storage in Sensornets with GHT, a Geographic Hash 
Table, Mobile Networks and Applications, 8, pp. 427-442, 2003. 



L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 430 – 440, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An OSEK COM Compliant Communication Model for 
Smart Vehicle Environment 

Guoqing Yang, Minde Zhao, Lei Wang, and Zhaohui Wu 

College of Computer Science, Zhejiang University, 
Hangzhou, Zhejiang, China 310027 

{ygq78, zmdd48, alwaysbeing, wzh}@zju.edu.cn 

Abstract. Smart Vehicle Environment (SVE) is an important application of the 
idea of smart spaces. This paper presents Smart Vehicle Multi-Agent System 
(SVMAS) to achieve the goal of SVE and put forwards a commutation model 
for SVMAS based on SmartOSEK COM [1] to support data exchange. The pa-
per also presents an approach to encapsulate the message to transport by CAN 
bus, and bring forward a simulator model for SVMAS. Finally the paper gives 
an example of the communication model which implements a dialogue between 
two agents and analyzes the performance. The contribution of our work is three-
fold. First, we adopt Knowledge Query and Manipulation Language (KQML) to 
describe the communication in vehicles. Second, we develop SmartOSEK COM 
to implement communication in vehicles. Third, we define the ACLcan proto-
col to transform the message from SmartOSEK COM to CAN frame. 

1   Introduction 

Weiser introduced the field of Ubiquitous Computing [2] and presented a vision of 
people and environments augmented with computational resources that provide in-
formation and services when and where desired [3]. Smart spaces adopt the concept 
of ubiquitous computing, and embed computation resource and perceptive equipment 
into our daily life and working spaces [4]. Smart spaces offer active services by inter-
connected embedded devices.  

Smart Vehicle Environment (SVE) [5] is an important application of the idea of 
Smart spaces, and it turns the vehicle into a smart human-vehicle environment by 
advanced technology and equipments to gather, transmit and process the environment 
information. Therefore, Smart Vehicle Environment needs the cooperation of many 
disparate embedded devices in vehicles.  

Smart Vehicle Multi-agent System (SVMAS) is a multi-agent system for SVE, 
which we develop to achieve the goal of SVE. In SVMAS, the function modules in 
SVE can cooperate with each other in form of agents. In order to implement SVMAS, 
we develop kinds of Electronic Control Units (ECUs) to accomplish the lamp control, 
window control, and door control in the vehicle. The ECUs are connected by Control-
ler Area Networks (CAN) [6]. We develop the SmartOSEK COM to provide commu-
nication support for the agents run in ECUs, and define ACLcan protocol to fill the 
gap between SmartOSEK COM and CAN.  
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The remainder of this paper is organized as follows. Section 2 introduces the re-
lated work of the field. Section 3 puts forward a framework of multi-agent system in 
smart vehicle (SVMAS). Section 4 provides a communication model for SVMAS. 
Section 5 presents an implementation for the communication model. Section 6 gives 
an example of the communication model for SVMAS which implements a dialogue 
between two agents. Finally, we conclude our paper in section 7. 

2   Related Work 

CAN (Controller Area Network) is a serial bus system, which was originally devel-
oped for automotive applications in the early 1980's. The CAN protocol was interna-
tionally standardized in 1993 as ISO 11898-1. CAN provides the basic services of the 
communication for automotive electronics, but users prefer to CAN application proto-
cols to communicate easily. SAE's J1939 [7] standards family is the preferred control-
ler area network (CAN) for equipment used in industries ranging from agriculture, 
construction, and fire/rescue to forestry, materials handling, and on- and off-highway. 
Although J1939 is a mature protocol for CAN application layer, it does support multi-
agent system for the lacking of the ability of knowledge description. 

OSEK/VDX is a joint project of the automotive industry. It aims at an industry 
standard for an open-ended architecture for distributed control units in vehicles [8] 
and put forward OSEK COM specification to increase the portability of application 
software modules by defining common software communication interfaces and be-
haviors for internal communication (communication within an electronic control unit) 
and external communication (communication between networked vehicle nodes), 
which is independent of the communication protocol used [9].  

OSEK COM offers services to exchange data between tasks and/or interrupt service 
routines. Different tasks may reside in the same ECU (internal communication) or in 
different ECUs (external communication). The aim of the OSEK COM specification is 
to support the portability, reusability and interoperability of application software. The 
Application Program Interface (API) hides the differences between internal and external 
communication as well as different communication protocols, bus systems and net-
works. An OSEK COM implementation can run on many hardware platforms. The 
implementation shall require only a minimum of hardware resources, therefore different 
levels of functionality (conformance classes) are provided [9].  

As OSEK COM specification is brought forward, we can achieve communication 
in vehicles easily, and we can integrate Knowledge Query and Manipulation Lan-
guage (KQML) [10] together with OSEK COM into a communication platform to 
achieve communication between agents. 

Some platforms compliant with OSEK COM specification have been developed 
such as OSEKTurbo, OSEKWorks and OSCan, etc, but none of them have been ap-
plied into multi-agent system. 

In this paper, we put forward SVMAS by which we apply the multi-agent system 
into the field of automotive electronics to achieve the goal of SVE, and describe the 
information in smart vehicle environment by agent communication language (ACL) 
[11], and we develop a communication software platform according to OSEK COM 
to fulfill the communication requirement in automotive electronics. 
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3   The Agent Framework of SVMAS 

The paper puts forward SVMAS to assist the driver to finish complex operations. 
Using SVMAS, all ECUs in the car can share the information, cooperate with each 
other, and can accomplish complex tasks as a whole. 
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Fig. 1. Agent framework of SVMAS 

As there are differences in processing ability and function among ECUs in SVE, 
the abilities of agent in every ECU are different too. We classify agents of SVMAS 
into different hierarchies: task agent and function agent. Task agent is used to accom-
plish grand tasks that require the collaborative work of many function units. Function 
agent undertakes small tasks that can be done by smaller ECU individually.  

Each ECU has a function agent. Tasks agent partition the task into smaller ones 
and then hand them over to different function agents. At the mean time task agents are 
in charge of the coordination of different function agents. The coordinator of function 
agents is dynamic. The goal of coordination is achieved by passing messages and 
negotiations. 

The agent framework of SVMAS is shown in Fig. 1. There are different types of 
agents in the framework. They are interrelated with each other. When a driver enters 
SVE, agents are started, and services are provided initiatively. Firstly an USER Bro-
ker is assigned to the user, and then the USER Broker would contact with SVMAS 
instead of the user. Identifier Agent would identify the user. If the user has the legal 
identity, he can obtain kinds of services provided by SVMAS, such as starting the car, 
starting the air conditioner, etc. The service of starting the car is provided by Steering 
Agent, which is a task agent. Steering Agent divides the function of starting car into 
opening the engine, modulating the state of AMT, and operating the car lamp etc. 
Opening the engine is finished by Engine Agent, and operating the car lamp is fin-
ished by Lamp Agent. When the function agent accomplishes the given function, it 
needs to communicate with other function agents. For example, Lamp Agent needs 
the information of lightness when it accomplishes the lamp operating, and it needs to 
communicate with Sensitometer Agent to obtain the information of lightness. For the 
method of agent communication, we will give an example of the dialogue between 
two agents in section 6. 
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4   The Communication Model for SVMAS 

The communication model for SVMAS is shown in Fig. 2. Communication is the key 
for agents to share the information they collected, and to coordinate their actions. In 
the communication model for SVMAS, four layers are brought forward as follows: 
agent layer, SmartOSEK COM layer, ACLcan layer, and underlying networks layer. 
In agent layer, the communication form of SVMAS is dialogue; in SmartOSEK COM 
layer, the communication form of SVMAS is message; in ACLcan layer, the commu-
nication form of SVMAS is CAN frame defined by ACLcan; and in underlying net-
works layer, the communication form of SVMAS is electric signal. 

The communication between agents is described in KQML, a well known ACL, 
and it is in dialogue form. The dialogue could be transformed into messages in Smar-
tOSEK COM. ACLcan protocol processes the messages from SmartOSEK COM, and 
transforms them into the CAN frame form, and then sends them out by CAN Bus. 

In SVMAS, we describe dialogues between agents in KQML to improve the com-
patibility of the communication model, so each agent should have a parser of KQML. 
The parser interprets the performative of KQML, by which the agents can understand 
each other. 

For SVMAS, we adopt CAN bus as the underlying communication protocol be-
cause CAN is developed specially as a communication bus to in-vehicle networks and 
has high performance. Thus, the innovation of our SmartOSEK COM is to integrate 
OSEK to CAN bus, and to provide an approach to set the frame ID of CAN. We de-
velop ACLcan protocol as the interface between SmartOSEK COM and CAN bus. In 
ACLcan, the frame ID of CAN is set according to the ECUs’ addresses of sender and 
receiver and the agent identifiers of sender and receiver. Moreover, the performative 
of ACL is also considered in the frame ID of CAN. 

 

Fig. 2. The communication model for SVMAS 

5   The Implementation of the Communication Model for SVMAS 

To implement the communication model for SVMAS, we develop SmartOSEK COM 
which is a specialized communication platform for automobile electronics, and  
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develop ACLcan which is a protocol to convert a message from SmartOSEK COM to 
CAN bus frame. 

5.1   KQML: The Agent Communication Language for SVMAS  

In the multi-agent system field, the exchange of knowledge among disparate com-
puter systems is the most important. Knowledge Interchange Format (KIF) [12] is a 
language designed for the exchange of knowledge among disparate computer systems. 
It has declarative semantics; it is logically comprehensive; it provides for the repre-
sentation of knowledge about the representation of knowledge, and provides for the 
definition of objects, functions, and relations. Recently, research on multi-agent sys-
tem makes great progress. Agents contact with each other by Agent Communication 
Language (ACL). KQML, a well known ACL, is a part of the ARPA Knowledge 
Sharing Effort and is developed as an agent communication language and protocol for 
exchanging information and knowledge. Agents can use KQML to communicate 
attitudes about information, such as querying, stating, believing, requiring and sub-
scribing.  

As the research of multi-agent system in vehicles is deficient and few works have 
been done to apply KQML into automotive electronics field, we adopt KQML to 
describe the information to interchange between agents in vehicles, and the descrip-
tion in KQML can be parsed by agent itself and others.  

5.2   SmartOSEK COM: The Foundation of Communication for SVMAS 

According to OSEK/VDX specifications, we develop the SmartOSEK system. Smar-
tOSEK system includes SmartOSEK OS compliant with the OSEK/VDX Operating 
System specification [13] and SmartOSEK COM (compliant with the OSEK/VDX 
Communication specification).  

SmartOSEK COM is based on messages. A message contains application-specific 
data. Messages and message properties are configured statically in the OSEK Imple-
mentation Language (OIL) [14]. The content and usage of messages is not relevant to 
SmartOSEK COM.  

SmartOSEK COM supports two kinds of communications, internal communication 
and external communication. Interaction Layer (IL), an important part of SmartO-
SEK, provides users with the OSEK COM API which contains services for the trans-
fer (send and receive operations) of messages. In the case of internal communication, 
the IL makes the message data immediately available to the receiver. In the case of 
external communication the IL packs one or more messages into assigned Interaction 
Layer Protocol Data Units (I-PDU) and passes them to the underlying layer.  

Administration of messages is done in the IL based on message objects. Message 
objects exist on the sending side (sending message object) and on the receiving side 
(receiving message object). The data communicated between the IL and the underly-
ing layer is organized into I-PDUs which contain one or more messages. The IL offers 
an API to handle messages. The API provides services for initialization, data transfer 
and communication management. Services transmitting messages over network are 
non-blocking. SmartOSEK COM provides notification mechanisms for an application 
to determine the status of a transmission or reception [9]. 
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5.3   ACLcan: The Interface Between SmartOSEK COM and CAN Bus 

In SVMAS, agents communicate with each other under the message mechanism. The 
communication mechanism based on message is provided by SmartOSEK COM. We 
transform the message in KQML to message into the message in SmartOSEK COM. 
The message in SmartOSEK COM is defined in OIL [15]. Each message in SmartO-
SEK COM is described by a set of attributes and references, and in SVMAS, each 
performative in KQML has a corresponding kind of message.   

 7 6 5 4 3 2 1 0 

Byte1 Frame Format RTR X X DLC 

Byte2 ID.28-ID.21(sender’s node address) 

Byte3 ID.20-ID.13(receiver’s node address) 

Byte4 ID.12-ID.7(performative) ID.6-ID.5(sender) 

Byte5 ID.4(sender) ID.3-ID.1(receiver) ID0(Type) X X X 

Byte6 Index of Message Content 

Byte7 

.. 

Byte13 

Message Content 

 

Fig. 3. CAN frame format in ACLcan protocol 

ACLcan is the interface between SmartOSEK and CAN Bus. Since we choose 
CAN as the network communication bus for SVMAS, the transmission of the mes-
sage between agents in SVMAS will use the CAN BUS. The ID of each CAN frame 
is defined in message and each message has a unique CAN ID. We develop ACLcan 
to configure the CAN frame’s ID. The configuration mechanism of CAN ID in the 
message is shown in Fig. 3. In SVMAS, every transmission of message uses extended 
frame. The frame header of the extended frame has 29 bits (ID.28-ID.0) to show the 
ID of the CAN extended frame. ID.28-ID.21 is the sender’s node address. We give 
each ECU in SVMAS a unique node address. In CAN ID, we use 8 bits to denote the 
node address, thus 256 nodes are admitted at most in SVMAS. ID.20-ID.13 is the 
receiver’s node address. ID.12-ID.7 is the identifier of KQML performative. Each 
performative is accorded with a unique ID. ID.6-ID.4 is the agent identifier of sender. 
We identify the agents of each ECU, and agents in different ECU can use the same 
agent identifier. ID.3-ID.1 is the agent identifier of receiver. ID.0 shows whether the 
message is simple frame or multiple frames. If ID.0 is 1, then the message is multiple 
frames. In CAN frame format, the content of Byte6 shows the index of the frame in 
the message, or else it shows the content of message.  

5.4   Simulation of the SVMAS 

We develop Smart Simulator to provide the ability of simulation to evaluate the per-
formance of communication of the multi-agent system by the included sub-simulators. 
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The architecture of Smart Simulator is shown in Fig. 4. The simulator provides Smart 
OSEK COM Simulator to simulate the communication compliant with OSEK/VDX, 
and SmartOSEK OS Simulator to simulate the scheduling of the tasks. For external 
communication between ECUs, the simulator provides CAN Simulator to simulate the 
in-vehicle networks. As a real system has inputs and outputs, the simulator also pro-
vides Interrupt Simulator and Actuator Simulator to simulate the signal inputs and 
outputs. 

 

Interrupt Sim
ulator

A
ctuator Sim

ulator

 

Fig. 4. The Architecture of Smart Simulator 

In the simulator, the messages are classified into two types, one is internal message 
denoted by IMessage and the other is external message denoted by OMessage. The 
agents communicate in the same ECU by IMessage, and the communication process 
is simulated by SmartOSEK COM Simulator. When an agent communicates with an 
agent in other ECUs by OMessage through CAN bus, CAN Simulator would firstly 
encapsulate the message into CAN frame and decapsulate it after a delay according to 
the baud rate of CAN bus. ACLcan Simulator would encapsulate and decapsulate the 
OMessage by the ACLcan protocol. The simulation results are displayed by Smart 
Monitor and saved into files which the developers can refer to modify the network 
configuration. Smart Simulator simulates the running process of the system, and the 
temporal behavior of the system. 

6   A Case Study of the Communication Model for SVMAS 

In this section, we give an example of communication model for SVMAS. Suppose 
there are two agents, one is named Lamp and the other one is Sensitometer, as shown 
in Fig. 5.  The scenario we assume is that when it becomes dark, the Lamp Agent 
needs the information of the lighteness to decide whether it should open the lamp or 
not, thus it needs to communicate with Sensitometer Agent to obtain the information 
of lightness. 
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Fig. 5. Communication example of SVMAS 

Dialogue ( Example ) 
(evaluate 
 :sender  Lamp  
:receiver   Sensitometer 
 :language  KIF  
:ontology  LampControl 
 :reply-with  q1  
:content  ( val  ( luminance L1 ) ) 
) 
(reply 
 :sender  Sensitometer 
:receiver  Lamp  
 :language  KIF  
:ontology  LampControl 
 :reply-with  q1  
:content   ( =  (luminance L1 ) (scalar 880 lumen) ) 
) 

Fig. 6. Dialogue Example in KQML 

MESSAGE evaluate {  
TYPE = EXTERNAL;  
 LENGTH=5; 
 QUEUED = False; 
 TRANSMISSION = DIRECT; 
IPDU = lamp_control;  
NOTIFICATION = FLAG {  
FLAGNAME = "require_luminance";  
}; 
 CANID = Get_Can_ID (evaluate, Lamp, Sensitometer) 
}; 
MESSAGE reply {  
TYPE = EXTERNAL;  
 LENGTH=5; 
 QUEUED = False; 
 TRANSMISSION = DIRECT; 
IPDU = lamp_control;  
NOTIFICATION = FLAG {  
FLAGNAME = "respond_luminance";  
}; 
 CANAID = Get_Can_ID (reply, Sensitometer, Lamp) 
}; 

Fig. 7. Messages defined in OIL 

Lamp agent and Sensitometer agent process a dialogue for the lighteness of the 
current environment, and we use KQML to describe this dialogue as shown in Fig. 6 
[16]. Firstly, lamp sends a message to request for the lightness. The format of the 
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message uses KIF, and the request is defined as ql.  The message is sent by SmartO-
SEK COM via CAN Bus. The ontology of the dialogue is defined as “LampControl”. 
After receiving the message, Sensitometer sends the request result to lamp via another 
message. Definitions of these two messages for the dialogue are shown in Fig. 7. 

The first message is “evaluate”, and it is an external message which can provide 
communication between ECUs. The CAN ID of “evaluate” defines the ID of CAN 
frame. When the message is sent, a flag named “require_luminance” would be set.  

The agent Lamp could tell agent Sensitometer about its requirement by calling a 
SmartOSEK API SendMessage. Then the requirement of Agent Lamp would be trans-
formed into message in predefined format. Subsequently, messages would be split 
into CAN frames in order to be transmitted on CAN bus, and ACLcan protocol would 
participate in setting the CAN frame’s ID. When the agent Sensitometer receives the 
requirement of Lamp, it would decode the CAN frame, and find the requirement of 
the agent Lamp. 

In the example, the “evaluate” has a CAN ID as “0x01020490”. In the same way 
the “reply” has a CAN ID as “0x02010590” by ACLcan. 

 

 

 

 

 

 

Fig. 8. Scenario of the Communication Model for SVMAS 

To evaluate the performance of the communication model for SVMAS, we meas-
ure the time of the process on CPUs by Smart Simulator. In the simulator, we set the 
CAN bus baud rate at 125kbps and configure the CPU as MPC555. Fig. 9 shows the 
simulation results. To test the real performance of the model on CAN bus, we ex-
periment the example by the hardware platform MPC555. As shown in Fig.8, in the 
experimentation, the sensitometer gets the lighteness of the environment, and sends 
the information to the lamp by the communication model we present. When the room 
becomes dark, the lamp would be lighted. We set the CAN bus baud rate as the same 
with the simulator, and measure three parameters, the encapsulation time and the 
decapsulation time by the logic analysis device LA5540 at 50MHz. For each parame-
ter, we have measured ten times and the minimum time, maximum time and average 
time are shown in Fig. 9.  
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As shown in Fig. 9, we find the average time of decapsulation is 53.46us and it is a 
little faster than the average time of encapsulation, which is 56.38us because of adopt-
ing speculative arithmetic. As the average times of decapsulation and encapsulation 
are about only 8 times than the task switch time in SmartOSEK OS which is 7.6us, we 
can draw the conclusion that the communication model for SVMAS we present is 
applicative and has high performance, and is suitable to develop automotive electron-
ics software. 

 

Fig. 9. Simulation and experiment results of the communication model for SVMAS 

7   Conclusion 

In this paper we make a valiant try in smart spaces field, and put forward a communi-
cation model for SVMAS. The innovation is applying agent communication lan-
guage-KQML to SVMAS and adopting CAN bus as the underlying networks for 
agent communication. Moreover, we develop ACLcan protocol to provide good sup-
port for the CAN based communication of agents. In the example of the communica-
tion model for SVMAS, we accomplish a dialogue between two agents and get good 
results in our simulation and experimentation, thus the cooperation of multiple agents 
could be achieved easily by dialogues among agents. The communication platform we 
present works well, and is suitable to develop automotive electronics devices. 
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Abstract. In this paper, we develop a traffic load-based resource allo-
cation scheme, called LOAD, to enhance the capacity of relayed wireless
access networks for asymmetric traffic load such as transmission control
protocol (TCP). In order to estimate the current traffic load status in
relayed wireless access networks, we propose a load estimation method.
A relay gateway estimates the current traffic load status by keeping track
of the sizes of the frames it encounters, and computes accordingly the
current traffic load of the uplink and the downlink. The results are then
used to allocate the system resource between the uplink and the down-
link. The proposed method can be implemented without the modification
of the deployed IEEE 802.11 nodes.

We analyze the throughput ratio between the uplink and the down-
link, and validate the analysis result with a comprehensive simulation
study. The simulation results indicate that the utilization of the pro-
posed method is better than that of IEEE 802.11 Distributed Coordina-
tion Function (DCF).

1 Introduction

Wireless local area networks (WLANs) based on the IEEE 802.11 standard [1] are
becoming increasingly prevalent for offices, public places, and homes. The focus
is now turning to deploying these networks over relayed wireless access networks
(RWANs) [2]–[4]. A RWAN is a network where each node has connection with
a relay gateway (RG) in its radio coverage and the RG has connections with
other RGs. Thus, each node can access wired networks through one or more
wireless hops managed by RGs. One form of RWAN is the complementary use of
so-called hotspots [5]–[7] such as airports, hotels, cafes, and other areas in which
people can have untethered public accesses to the Internet. Low cost and high
speed WLANs can be integrated within the cellular coverage to provide hotspot
coverage for high speed data services. WLAN offers an interesting possibility
for cellular operators to offer additional capacity and higher bandwidth for end
� This work was supported by the 2005 research grants of the Institute of Information
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users without sacrificing the capacity of cellular users, since WLANs operate on
unlicensed frequency bands.

Medium Access Control (MAC) protocol in the IEEE 802.11 standard consists
of two coordination functions: mandatory Distributed Coordination Function
(DCF) and optional Point Coordination Function (PCF). In the DCF, a set of
wireless nodes communicates with each other using a contention-based channel
access method, namely Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). CSMA/CA is known for its inherent fairness between nodes and
robustness. It is quite effective in supporting symmetric traffic loads in ad hoc
networks where the traffic loads between nodes are similar. However, this form of
random access protocol is not recommended for asymmetric traffic loads where
most of the traffic loads converge into RGs. For example, Internet access or
mobile computing uses transmission control protocol (TCP) or user datagram
protocol (UDP) in which the offered traffic load is strongly biased toward the
downlink (from RG to nodes) against the uplink (from nodes to RG) or the
direct link (from nodes to nodes). Thus, these traffic flows for the downlink are
completely blocked due to the CSMA/CA MAC protocol in distributed environ-
ments. We propose an enhanced MAC protocol to overcome such problems. The
proposed algorithm can be implemented without the modification of the IEEE
802.11 standard for nodes.

The remainder of this paper is organized as follows. The next section presents
related works. Section 3 describes the proposed method. In Section 4, we inves-
tigate the enhancement of the proposed method with some numerical results.
Finally, the paper is concluded in Section 5.

2 Preliminaries

2.1 Operations of IEEE 802.11

The DCF achieves automatic medium sharing between compatible nodes through
the use of CSMA/CA. Before initiating a transmission, a node senses the channel
to determine whether or not another node is transmitting. If the medium is
sensed idle for a specified time interval, called the distributed interframe space
(DIFS), the node is allowed to transmit. If the medium is sensed busy, the
transmission is deferred until the ongoing transmission terminates.

If two or more nodes find that the channel is idle at the same time, a collision
occurs. In order to reduce the probability of such collisions, a node has to perform
a backoff procedure before starting a transmission. The duration of this backoff
is determined by the Contention Window (CW ) size which is initially set to
CWmin. The CW value is used to randomly choose the number of slot times
in the range of [0, CW − 1], which is used for backoff duration. In case of an
unsuccessful transmission, the CW value is updated to CW ×2 while it does not
exceed CWmax. This will guarantee that in case of a collision, the probability of
another collision at the time of next transmission attempt is further decreased.

A transmitter and receiver pair exchanges short RTS (Request-To-Send) and
CTS (Clear-To-Send) control frames prior to the actual data transmission to
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avoid the collision of data frames. An acknowledgement (ACK) frame will be
sent by the receiver upon successful reception of a data frame. It is only after
receiving an ACK frame correctly that the transmitter assumes successful de-
livery of the corresponding data frame. Short InterFrame Space (SIFS), which
is smaller than DIFS, is a time interval between RTS, CTS, data frame, and
ACK frame. Using this small gap between transmissions within the frame ex-
change sequence prevents other nodes from attempting to use the medium. As
a consequence, it gives priority to completion of the ongoing frame exchange
sequence.

2.2 Related Works

The authors in [8]–[10] propose to scale the contention window, vary the inter-
frame spacings, and change the backoff period according to the priority level of
the traffic flow. Kim and Hou [11] propose a frame scheduling method based
on the IEEE 802.11 fluid model to improve the capacity for UDP/TCP traffic.
The proposed model assumes that the frame size and the transmission rate are
constant. Because all these studies are focused on the fairness or priority among
nodes in a WLAN, the unfair sharing of bandwidth between the uplink and the
downlink still remains.

The works for resource allocation between the uplink and the downlink are
proposed in [12]–[14]. In [12], the authors observe a significant unfairness between
the uplink and the downlink flows when the DCF is employed in a WLAN. Since
the DCF protocol allows equal access to the media for all hosts, the RG and
the nodes have equal utilization to the medium. Thus, when the downlink has
much more offered traffic load than that of the uplink, the downlink becomes
bottleneck of the system capacity and much more RGs should be deployed to
accommodate such nodes. The TCP fairness issues between the uplink and the
downlink in WLANs has been studied in [13]. The authors are interested in a
solution that results in uplink and downlink TCP flows having an equal share of
the wireless bandwidth (utilization ratio of one). Because this solution operates
on the TCP layer, it is not effective when there exist traffic flows other than
TCP. The resource allocation method between the uplink and the downlink is
proposed in [14]. The number of nodes is taken into consideration to decide the
required utilization ratio between the uplink and the downlink. The proposed
method assumes a constant transmission rate and a constant frame length for
the uplink and the downlink traffics. These assumptions are not efficient when
the transmission rates are changed according to the channel fading or the frame
lengths are different between the uplink and the downlink traffics.

3 Proposed Resource Allocation Method

3.1 System Model

In RWAN, each node can communicate with a RG (uplink or downlink) or with
other nodes (direct link). Since we focus on the resource allocation between
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uplink and downlink, we do not consider the direct link throughput in this paper
although it is noted that the throughput sharing between uplink and direct link
is proportional to the ratio of the number of active nodes for the uplink and that
for the direct link.
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Fig. 1. Timing structure of DCF and DCA. (a) DCF (b) DCA followed by DCF.

Nodes and RG use the DCF mechanism with RTS/CTS handshaking as shown
in Fig. 1(a), where the next channel access should wait for DIFS and backoff win-
dow time after previous ACK frame. A two-way handshaking technique without
RTS/CTS handshaking called basic access mechanism is not considered in this
paper although our proposed method can be easily extended to the basic access
mechanism.

The number of data bits that are transmitted successfully through the uplink
(downlink) is called the uplink (downlink) throughput. The system throughput is
the sum of the downlink throughput and the uplink throughput. We define the
throughput ratio γ such that

γ =
downlink throughput
uplink throughput

. (1)

In DCF, the allocated downlink throughput decreases as the number of nodes
increases because the system throughput is shared equally between nodes. Let
N be the number of active nodes except RG. Then, the throughput ratio γ for
DCF is given as

γDCF =
1
N

, (2)
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where the frame sizes of uplink and downlink are the same. When the frame sizes
of uplink and downlink are different, the throughput ratio for DCF is given as

γDCF =
Pd

NPu
, (3)

where Pu and Pd are the frame sizes of uplink and downlink, respectively. The
γDCF in (2) is a special case of (3). Hereafter, the subscripts u and d in the
notation denote the uplink and the downlink, respectively.

In FAIR [14], system resource is allocated by the number of active connections
and the resulting throughput ratio is given as

γFAIR =
N

N
= 1, (4)

where each active node has a connection with RG.
These methods are not efficient when the traffic load is asymmetric between

the uplink and the downlink such as TCP and UDP. Assume that there are N
TCP connections between RG and each nodes. Note that the offered load to the
downlink and the uplink are αdNdPd and αuNuPu, respectively, where α is a
frame arrival rate. Then, a required throughput ratio Γ based on the offered load
should be

Γ =
αdNdPd

αuNuPu
=

Pd

Pu
, (5)

because αu = αd and Nu = Nd for TCP traffics. For TCP traffics, Pd is larger
than Pu and Γ in (5) is larger than one. However, γ in (3) is smaller than one
and γ in (4) is equal to one which result in reduced throughput and increased
delay for the downlink. Even in the case of symmetric traffic load where Γ is
one, the downlink traffics in DCF get less throughput than that of the uplink
and this causes the increased delay of the downlink traffics.

3.2 Resource Allocation Algorithm

In order to provide the downlink traffic with an appropriate throughput, we
propose a new resource allocation algorithm based on the IEEE 802.11 WLAN
standard. The design goal of the proposed algorithm is to keep the resource
allocation ratio γ to be equal to Γ . However, the required value Γ is changed by
the traffic load conditions and the traffic load is changed dynamically during the
system operation. Thus, to achieve the design goal, RG has to estimate the values
of γ and Γ dynamically. These estimated values of γ and Γ are denoted by γ̂
and Γ̂ , respectively. The estimation method is explained in the next subsection.

When γ̂ becomes less than Γ̂ , there should be some compromise between
the uplink and the downlink throughput. In this case, the RG can transmit
data frames using point interframe space (PIFS) following the previous ACK
frame until it becomes γ̂ ≥ Γ̂ as shown in Fig. 1(b). During this mechanism
called downlink compensation access (DCA), the handshake mechanism of RTS
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and CTS is not necessary and the RG can transmit multiple data frames while
γ̂ < Γ̂ . Note that the RG accesses the wireless channel without collision during
the DCA because it transmits data frame using PIFS which is shorter than DIFS.
Also note that the RG accesses the wireless channel with the DCF when γ̂ ≥ Γ̂ .
In this way, the system throughput ratio is maintained equal to the value of Γ̂ .

In DCF, each node uses random backoff time to transmit frames. Thus, the
frame collision happens when more than two nodes use the same backoff time.
This collision degrades the system throughput. On the contrary, in DCA, RG
accesses the channel without collision and the throughput increases compared
with the DCF. Thus, the system that uses the DCA when γ̂ < Γ̂ can enjoy the
benefit of increased throughput due to the reduced probability of collision. As
the value of Γ̂ increases, more gain in the system throughput is expected.

3.3 Throughput Estimation Algorithm

To keep up with the dynamic changes of traffic load conditions, Γ̂ and γ̂ should be
estimated adaptively. We propose an estimation method for Γ̂ and γ̂ as follows.

Let ρu and ρd denote the time-average of the accumulated offered load on the
uplink and the downlink, respectively. To allocate the network resource according
to the offered load, the value of Γ̂ should be proportional to the offered load,
i.e.,

Γ̂ =
ρd

ρu
. (6)

Under real situations, ρu and ρd can be a long-term average value, measured
for a predefined duration. For example, the duration can be a daytime, a work-
ing hour, or a busy hour, according to the network design criteria. Based on
these measurements, the RG may calculate the value of Γ̂ or network operator
may send the value of Γ̂ to the RG through the control channel. The RG can
accurately measure ρd since the RG transmits the downlink traffic. On the con-
trary, each node has to transmit the load status to the RG through the control
frames for the RG to estimate ρu. To reduce the overhead caused by these control
frames, we propose a simple update method for Γ̂ .

Let φu(t) and φd(t) be the length of the data frame that has been successfully
transmitted through the uplink and the downlink at time t, respectively. The RG
manages an internal memory that records the φu(t) and φd(t) during a sliding
time window W . Let Φu(t) and Φd(t) denote the sum of φu(t) and φd(t) during
W respectively, i.e., Φu(t) =

∑t
i=t−W φu(i) and Φd(t) =

∑t
i=t−W φd(i). The

required throughput ratio at time t is updated by

Γ̂ (t) =
Φd(t)
Φu(t)

=
∑t

i=t−W φd(i)∑t
i=t−W φu(i)

, (7)

where Φu(t) and Φd(t) are the estimated offered load in the uplink and the
downlink from t − W to t, respectively.

Although this estimation does not exactly reflect the offered load, it is easy
to be implemented in the RG and does not require a feedback information from
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nodes. Moreover, the proposed method does not require the modification of the
standard for nodes, which makes it compatible with the deployed nodes.

Instead of estimating γ̂, we propose a system parameter ω(t) that is used for
a decision criterion at time t. The initial value of ω(t) is set to zero, i.e. ω(0) = 0.
The value of ω(t) is updated at every successful frame transmission. Let tn be
the time instant of the nth successful frame transmission. Then ω(t) is update
at every time instants of the successful frame transmission by

ω(tn) = ω(tn−1) + φd(tn) − Γ̂ (tn−1)φu(tn). (8)

Note that ω(t) is a normalized surplus of the downlink throughput and we
use ω(t) as an estimation for γ̂(t)− Γ̂ (t). Thus, the case of ω(t) = 0 corresponds
to γ̂(t) = Γ̂ (t). The case of ω(t) < 0 is the state that requires the DCA. We
propose that the RG adopts ω(t) to decide the access method. When ω(t) < 0
and there is an ACK frame transmitted on the channel, the RG uses the DCA
whenever it has pending frames. Otherwise, the RG uses the DCF. Other nodes
use the DCF for the channel access.

4 Numerical Results

We evaluate the performance of the proposed method by computer simula-
tions. The IEEE 802.11 DCF and FAIR in [14] are compared with the proposed
method, called LOAD, which allocates the system resource based on the offered
traffic load.

Table 1. Parameter values

Parameter Value
CWmin 32
CWmax 1024
SIFS time 10 μs
PIFS time 30 μs
DIFS time 50 μs
slot time 20 μs

MAC header 272 bits
PHY header 48 bits
Preamble 144 μs
ACK time 304 μs
RTS time 352 μs
CTS time 304 μs

W 30 sec

The parameter values used to obtain numerical results for the simulation
runs are summarized in Table 1. The values of these parameters are based on
the IEEE 802.11b direct sequence spread spectrum (DSSS) standard [15].
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To reflect the fact that the surrounding environmental clutter may be signif-
icantly different for each pair of communication nodes with the same distance
separation, we use the log-normal shadowing channel model [16]. The path loss
PL in dB at distance d is given as

PL(d) = PL(d0) + 10n log(d/d0) + Xσ, (9)

where d0 is the close-in reference distance, n is the path loss exponent, and Xσ

is a zero-mean Gaussian distributed random variable with standard deviation σ.
We set n to 2.56 and σ to 7.67 according to the result of measurements for a
wideband microcell model [16]. To estimate PL(d0), we use the Friis free space
equation

Pr(d0) =
PtGtGrλ

2

(4π)2d2
0L

, (10)

where Pt and Pr are the transmit and receive power, Gt and Gr are the antenna
gains of the transmitter and receiver, λ is the carrier wavelength, and L is the
system loss factor which is set to 1 in our simulation. Most of the simulation
parameters are drawn from the data sheet of Cisco 350 client adapter. The
received power is

Pr(d) = Pt − PL(d). (11)

The minimum received power level for the carrier sensing is set to -95 dBm,
which is the noise power level. The long-term signal-to-noise ratio (SNR) is

SNRL = Pt − PL(d) − n + PG, (12)

where n is the noise power set to -95 dBm and PG is the spread spectrum
processing gain given by

PG = 10 log10
C

S
, (13)

where C is the chip rate and S is the symbol rate. Since each symbol is chipped
with an 11-chip pseudonoise code sequence in the IEEE 802.11 standard, PG
is 10.4 dB. The received SNR is varied by the Ricean fading gain δ. Under this
model, the SNR of the received signal is

SNR = 20 log10 δ + SNRL. (14)

For the data rate in the physical layer for each communication link, we as-
sume that the system adapts the data rate by properly choosing one from a set
of modulation scheme according to the channel condition. The set of modula-
tion schemes used in our simulation studies are BPSK, QPSK, 16QAM, 64QAM,
and 256QAM. For simplicity, we ignore other common physical layer components
such as error correction coding. With 1 MHz symbol rate and the above modu-
lation schemes, the achieved data rates are 1, 2, 4, 6, and 8 Mbps, respectively.
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Fig. 2. Throughput ratio versus uplink frame size
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Fig. 3. System utilization versus uplink frame size

We assume that all nodes except the RG are uniformly distributed in the
circle area with diameter 150 meters. The RG is located at the center of the
area. In each nodes, frames arrive with the exponential distribution where the
arrival rate is set to 2.5 frames/sec and the destination addresses of the frames
are the RG. In the RG, there are N connections, each for one node, and frames
are generated for each connections with the same exponential distribution as
those in each nodes. The size of the downlink frame is 1024 bytes and N = 25.

The throughput ratio of the proposed method LOAD is compared with DCF
and FAIR in Fig. 2. The simulation results match with the theoretic throughput
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ratios of DCF, FAIR, and LOAD given by (3), (4), and (5), respectively. In TCP
traffics, the uplink frame size is smaller than the downlink frame size and LOAD
provides larger throughput to the downlink traffics.

Fig. 3 shows the system utilization for LOAD, FAIR, and DCF. In this fig-
ure, the utilization is the normalized time that is used for the successful frame
transmission. The overall utilization increases as the uplink frame size increases.
This increase of the utilization comes from the reduced overhead that is used for
each frame transmission. In other words, for the same size of the overhead, the
size of the data frame transmission increases as the uplink frame size increases.
When the uplink frame size is small, the utilization of LOAD is larger than those
of other methods. This is because LOAD uses DCA more frequently compared
with other methods and DCA reduces the probability of frame collisions. Thus,
LOAD is an efficient method for an asymmetric traffic load such as TCP or UDP
which has small uplink frame size.

5 Conclusion

We have proposed an easy implementation method to control the throughput
ratio of uplink and downlink and to enhance the system utilization of the IEEE
802.11 DCF. The proposed method can be implemented without the modification
of the IEEE 802.11 standard for nodes that are widely deployed. The throughput
sharing between the uplink and the downlink can be controlled by the network
operator or by the offered traffic load.

The efficiency of the proposed system has been demonstrated by computer
simulation. The results show that the proposed method enhances the system
utilization used for the successful data frame transmission for asymmetric traffic
load. The proposed method distributes the throughput between the uplink and
the downlink according to the offered load. This, in turn, drastically reduces the
blocking probability of multimedia data frames in the proposed systems com-
pared with that in the IEEE 802.11 DCF where most of bandwidth is occupied
by the uplink. Thus, the proposed system can be a good candidate for relayed
wireless access networks, which aim for Internet services.
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Abstract. In this paper, a new scheme, called Adaptive Cross Layer Unequal 
Protection (ACLUEP), has been proposed for video transmission over wireless 
channels. The proposed scheme performs joint optimization across application 
layer, link layer and physical layer to provide unequal protection ability for video 
bit-streams with different priority levels. Analysis and simulation results show an 
extraordinary improvement in Peak Signal-to-Noise Ratio (PSNR) of the 
proposed method over a variety of channel conditions. 

1   Introduction 

With increasing demands for supporting real-time multimedia services over wireless 
communication channels in the next generation of wireless networks, the traditional 
layered approaches come with static and layer independent protocol stacks, which have 
not adapted to cope with the addition challenges presented by mobile radio channel, for 
example time-varying channel conditions. So the layered strategy suffers from 
performance degradation and does not always result in an optimal overall performance 
in the wireless environment. Therefore a protocol architecture that considers cross layer 
interaction is required to optimize the operation of different layers. A cross layer 
scheme can provide higher spectral and power efficiency and satisfy Quality of Service 
(QoS) requirements for different applications. 

High quality video delivery over wireless communication channels is very 
challenging. Each network layer addressed these challenges by providing its own 
optimized adaptation and protection mechanisms, respectively. Joint Source and 
Channel Coding (JSCC), which regards the channel as a “black box”, performs joint 
rate control for source coding and channel coding at the application layer in the 

                                                           
*  This work is supported by the National Science Foundation of China under Grant No. 

60496315. 



 An Adaptive Cross Layer Unequal Protection Method for Video Transmission 453 

presence of a time-varying wireless channel [1]. In order to obtain maximum spectral 
efficiency and to satisfy stringent QoS demand, a cross layer design combined adaptive 
modulation and coding at the physical layer with a truncated Automatic Repeat reQuest 
(ARQ) protocol at the data link layer has been proposed in [2]. A cross layer protection 
scheme has also been proposed, which combines Media Access Control (MAC) 
retransmission strategy, application-layer forward error correction, and 
bandwidth-adaptive compression using scalable coding and adaptive packetization 
strategies, to provide robust and efficient transmission of video over WLANs [3]. A 
cross layer ARQ method has been proposed, which combined the application level 
information about the perceptual and temporal importance of each packet drives packet 
selection at each retransmission opportunity, and provide unequal protection for 
packets having different priority [4]. 

In this paper, a new cross-layer scheme, named Adaptive Cross Layer Unequal 
Protection (ACLUEP), has been proposed to provide high quality video transmission 
over wireless communication channels. ACLUEP combines the physical layer, the link 
layer and the application layer with a joint optimization to achieve the best video 
transmission quality. The analysis and simulations have also proven that it can offer 
good performance in terms of PSNR for adaptive OFDM systems.  

The rest of this paper is organized as follows. In Section II, we introduce the system 
model, and analyze the distortion model for Fine Granular Scalability (FGS) video 
coding and the transmission performance. In Section III, the procedure of new cross 
layer scheme, namely ACLUEP, is proposed and analyzed. In Section IV, the 
performance of ACLUEP is studied through computer simulations, followed by the 
conclusions in Section V. 

2   System Model and ACLUEP Scheme 

Due to the heterogeneity of radio access network, the traditional layered network 
protocol cannot satisfy the QoS requirements of video transmission over time-varying 
wireless channels. Here we develop an adaptive cross layer unequal protection method 
for video transmission. The system model is shown in Fig. 1. 

 

Fig. 1. System Model 
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The FGS video encoder at the application layer generates scalable bit-streams to suit 
the variation of the wireless channel. It does making use of the different combinations 
of the bit-rate for the base layer and the enhancement layer and so provide different 
error resilient abilities. At the link layer, a selective repeat ARQ protocol is 
implemented. With retransmission of the error packet, the packet loss rate for the 
application layer will be decreased at a cost in throughput and delay. Adaptive OFDM 
(AOFDM) chooses an appropriate modulation mode for each sub-carrier at the physical 
layer and can provide higher spectrum efficiency. The flexibility of AOFDM can 
satisfy various performances by different constraints. 

It is clear that the overall quality of the transmitted video depends on the parameters 
of each layer. It is very important to improve the quality by jointly optimizing the 
parameters across these layers. In this paper, we propose a new cross layer design 
scheme, which named ACLUEP, to improve the quality of video transmission. With 
the variation of the wireless channel, an optimized parameter combination at different 
layers can be chosen by ACLUEP to provide unequal protection for different parts of 
FGS video stream having different priority. 

At first, ACLUEP collects the information for each layer, including the channel state 
information, the allocation of sub-carriers in the AOFDM system, the packet loss rate at 
the link layer, the priority for different video streams, etc. Then, ACLUEP choose the 
optimal parameter combination for each layer to maximize the estimated quality for 
decoded video according to the FGS Rate Distortion (R-D) model and the QoS 
constraints. These parameters include the allocation of sub-carrier at the physical layer 
in AOFDM system, the retransmission strategy for different packets with different 
priority level at the link layer and the bit-rate allocation for the base layer and the 
enhancement layer at the application level. 

2.1   Analysis of R-D Model for FGS 

FGS is a part of MPEG-4 video coding standard, and it has the structure shown in Fig.2. 

 

Fig. 2. Structure of FGS 

Base layer encoder of FGS is the same as that performed by a traditional motion 
compensated video encoder. It compresses the input video signal into the base layer 
bit-stream, which has a bit-rate is close to the minimum channel capacity. The base 
layer bit-stream contains the most important and lower quality video information. The 
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enhancement layer encoder compresses the difference between the original video and 
the reconstructed video at the base layer to obtain an embedded enhancement layer 
bit-stream, which can be truncated at arbitrary position. 

The scalability of the enhancement layer bit-stream can be adjusted to suit the 
variation of the wireless channel. The refinement of the enhancement layer bit-stream 
depends on the decoded base layer video, which makes the base layer bitstream a 
higher priority than the enhancement layer bit-stream. 

FGS is especially suitable for video transmission over wireless channels. Firstly, 
FGS provide an easy mechanism for adaptation to bandwidth variations. Secondly, 
FGS can improve the resilience to errors because the enhancement layer bitstream does 
not depend on last frame that has been decoded. The loss of enhancement packets does 
not give noise to error propagation in the next frame. Lastly, the layered bit-stream has 
different priority level, so we can utilize this characteristic to employ unequal 
protection during video transmission. 

There is no motion estimation and compensation in the enhancement layer encoder, 
so we can make use of a linear model to describe the relationship between the quality of 
reconstructed video and the bit-rate 

( )b b e bQ R R Q R Qθ θ= − + = +  (1) 

Where Q is the total PSNR, Qb is the PSNR of base layer, R is the total bit-rate, Rb is the 
base layer bit-rate, Re is the enhancement layer bit-rate and  is the rate distortion 
parameter that depends upon the characteristics of the video sequence. Fig.3 shows that 
the R-D line model is very accurate for various video sequences. 

The rate distortion analysis of base layer can be found in [1]. One single packet loss 
within the enhancement layer can render the remainder packets associated with that 
 

 

Fig. 3. Rate-Distortion for FGS video encoder 
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frame useless. Denoting the packet length for the enhancement layer bit-stream L, the 
number of packets N, and the frame rate of the video sequence f, the bit-rate of the 
enhancement layer at the encoder is Re = L·N·F. The effective bit-rate Re

' of the 
enhancement layer at the decoder can be defined as following  
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where pe denotes the packet loss rate. Combined (1), (2), and the rate distortion model 
of the base layer, we can estimate the quality of FGS video coding after transmission. 

2.2   Analysis of Re-transmission at the Link Layer 

At the link layer, a truncated ARQ is implemented to maintain the delay constraint of 
video transmission. A packet will be dropped when it is received incorrectly with a 
maximum number of Nmax retransmissions. Suppose that the packet loss rate is p, the 
average number of transmissions per packet can be defined 
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According to the retransmission rule, each packet is equivalently transmitted 

max( , )N p N  times. Hence the overall average bit-rate for the application layer can be 

considered as the function max/ ( , )R N p N , supposing that the throughput of 

physical layer is R. 

2.3   Performance of AOFDM 

Each OFDM sub-carrier signal has a different channel state owing to the presence of 
frequency selective fading. The AOFDM system can choose an appropriate modulation 
and transmit power for each sub-carrier in order to improve the overall performance or 
capacity of the system [5]. AOFDM can be classed into one of two types: one is known 
as the Constant Throughput AOFDM system (CT-AOFDM), and the other is known as 
the Variable Throughput AOFDM system (VT-AOFDM). The target of CT-AOFDM is 
to maintain a minimum BER or transmit power with a limited throughput. But the 
target of VT-AOFDM is to get maximum spectrum efficiency with a certain average 
transmit power or BER constraint. In order to keep the system low complexity, the 
modulation is not varied on a sub-carrier by sub-carrier basis, but instead the total 
OFDM bandwidth is split into blocks of adjacent sub-carriers, referred to as sub-bands, 
and the same modulation mode is employed for all sub-carriers in the same sub-band. 
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In the proposed scheme, we choose the CT-AOFDM at the physical layer. Denote n 
the subcarrier index, s=1~5 represents the modulation index “no transmission”, BPSK, 
4QAM, 16QAM and 64QAM respectively, en,s the number of bit errors and bn,s the 
number of bits can be transmitted by one symbol when s is chosen for subcarrier n. The 
index s of each sub-carrier is initialized to the lowest order. So the set of cost values cn,s 
can be calculated for each sub-carrier according to 
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, 1 ,

n s n s
n s

n s n s

e e
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b b
+

+

−
=

−  (4) 

Then CT-AOFDM searches for the sub-carrier with the lowest cn,s, and increases its 
index from s to s+1 repeatedly until the total number of bits in the OFDM symbol reaches 
the target number of bits. We calculate current Bit Error Ratio (BER) according to [6] 

0.2exp(- )BER gγ=  (5) 

where  is channel Signal to Noise Ratio (SNR), and g=6/(5M-4) for BPSK, but for 
M-QAM g=1.5/(M-1). 

 

Fig. 4. Performance comparison of CT-AOFDM and non-adaptive OFDM 

We simulate CT-AOFDM under conditions of various average channel SNR values. 
The simulation results are shown in Fig.4. It can be seen that the sub-carrier based 
AOFDM has a gain of 5~10 dB compared with the non-adaptive OFDM. The 
performance penalty of sub-band based AOFDM is related to the coherence bandwidth. 
If the bandwidth of a sub-band is less than the coherence bandwidth, the performance 
of subband based AOFDM is similar to sub-carrier based AOFDM. 
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3   ACLUEP Procedures 

The notation used at the various layers is summarized in Table 1. 

Table 1. Parameters at different layers 

Layer Parameters Symbol 

PHY Throughput R 

PHY Packet loss rate p 

LNK Max retrans. number for base layer Nmaxb 

LNK Max retrans. number for enhan. layer Nmaxe 

LNK Avg. retrans. number for base layer bN  

LNK Avg. retrans. number for enhan. layer eN  

APP Packet loss rate for base layer pb 

APP Packet loss rate for enhan. layer pe 

APP Bitrate for base layer Rb 

APP Bitrate for enhan. layer Re 

The steps for implementing the ACLUEP method are as following  

- Step 1) Based on current channel state and throughput constraint R at the physical 

layer, AOFDM choose appropriate modulation mode for each sub-band via (4), and 

estimate the corresponding packet lost rate p; 

- Step 2) For the estimated p and current Nmaxb, Nmaxe calculate pb, pe, 

and max 1bN
bp p += , max 1eN

ep p += ;  

- Step 3) Calculate bN and eN  via (3); 

- Step 4) For the calculated pb, pe, determine an optimized Rb and Re which maximize 

(1) to get a best video quality and satisfy the constraint b eb eR R N R N≥ ⋅ + ⋅ ; 

- Step 5) For the Rb and Re obtained in step 4), FGS video encoder generates the 

bit-stream to be transmitted; 
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- Step 6) Based on current occupancy of the link layer buffer, adjust the Nmaxb and 

Nmaxe to avoid buffer overflow or underflow. 

The analysis performed in the previous section let it choosing appropriate values for 
the various parameters. 

4   Simulations and Results 

The overall delay for end-to-end video transmission has three component parts: codec 
delay, packetization delay and transmission delay. The former two parts are fixed and the 
delay jitter is induced by transmission. As an example, consider 3GPP with an MPEG-4 
video payload. In this case, the quality of service requires an end-to-end delay of between 
150 and 400ms. If the average round trip delay is 100 ms, the maximum number of 
retransmissions should be at most 4. Considering the fixed delay by codec and 
packetization we limit the number of retransmissions to 2. Consequently ACLUEP 
determines an appropriate number of retransmission in the range from 0 to 2. To simplify 
the implementation, we use sub-band based CT-AOFDM. In this case, the whole 
available bandwidth is split to 16 sub-bands, and each subband has 32 sub-carriers. The 
video sequence is “carphone”. Perfect channel estimation is assumed. The channel is 
modeled by its time-variant impulse response and additive white Gaussian noise 
(AWGN). The impulse response for the experiments was generated on the basis of the 
symbol-spaced impulse response shown in Fig.5 by fading each of the impulses obeying 
a Rayleigh distribution of a normalized maximal Doppler frequency of  fd

'=1.235·10-5, 
where the normalization time duration was the length of the OFDM symbol. 

 

Fig. 5. Unfaded symbol spaced impulse response 

We implemented the proposed ACLUEP method and compare it to four other 
transmission methods. These methods are summarized in Table 2. 
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Table 2. Transmission methods list 

   Physical Layer Link layer Application layer 
Method 1 Fixed OFDM No ARQ CBR, No FGS 
Method 2 CT-AOFDM No ARQ CBR, No FGS 
Method 3 CT-AOFDM No ARQ CBR, FGS 
Method 4 CT-AOFDM Nmaxb=Nmaxe=1 VBR, FGS 
ACLUEP CT-AOFDM 

Adaptive bit load 
Nmaxb=0, 1, 2 
Nmaxe=0, 1 

VBR, FGS 

 

Fig. 6. PSNR versus Channel SNR 

Fig.6 shows the average decoded PSNR of the video sequence at the receiver under 
various channel SNR. Method 1 has no adaptation and its PSNR performance is the 
worst. Method 2 employs CT-AOFDM at the physical layer. CTAOFDM tracks the 
variation of the channel and improves the PSNR by 1~7 dB over that of method 2. 
Method 3 uses FGS video at the application layer. FGS increase the error resilience 
ability of the video bit-stream at the cost of compress efficiency. Under most of the 
channel conditions, method 3 is about 1 dB better than method 2. However, for high 
SNR values, the PSNR performance of method 3 is degraded rightly owing to the 
compression efficiency penalty. Method 4 employs retransmission at the link layer, 
which sacrifices the throughput and delay performance to decrease the packet loss rate. 
Method 4 improves the PSNR for 5~10 dB over that of method 3. Finally, it can be seen 
from the simulation results that the proposed ACLUEP method is the best in terms of 
PSNR performance. At low SNR values, the ACLUEP method is 7~10 dB better than 
method 4. Moreover, ACLUEP can adjust retransmission strategy and satisfy the delay 
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constraint for video transmission. This is a significantly improvement for video 
transmission over wireless channels. 

As we assume perfect channel estimation in simulations. If the assumption is not 
true, system stability may be affected by the delay and errors of estimation of the 
channel status in practical systems. Due to the delay and errors of channel status 
information, AOFDM at the physical layer can not chose the most appropriate 
modulation and coding mode and result in some degradation of spectrum efficiency. 
But this degradation will not affect the adaptation at the application and link layer. The 
ACLUEP method still works well than traditional layered approaches. 

5   Conclusions 

In this paper, an adaptive cross layer unequal protection method (ACLUEP) is 
proposed. This method handles the variation of the wireless channel by selecting 
optimized parameters combination at various layers and provides unequal protection 
for different parts of FGS video stream having different priority levels. Experimental 
results show a marked improvement in PSNR performance of the proposed ACLUEP 
method over various other fixed and adapting schemes over a range of channel SNRs. 
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Abstract. Power efficiency is the key issue for mobile devices, which
mainly rely on limited battery power. The IEEE 802.15.3 wireless per-
sonal area network (WPAN) standard adopts a time division multi-
ple access (TDMA) protocol controlled by a central device to support
isochronous traffics. In the TDMA-based wireless packet networks, the
packet scheduling algorithm plays a key role in power efficiency. How-
ever, the standard suffers from long access delay and association delay
which increase the power consumption. In this paper, we propose a packet
scheduling method to improve the power efficiency. Performance evalua-
tions are carried out through simulations and significant performance en-
hancements are observed. Furthermore, the performance of the proposed
scheme remains stable regardless of the variable system parameters such
as the number of devices and superframe size.

1 Introduction

The IEEE 802.15.3 task group (TG) has been chartered to create a high-rate
WPAN (HR-WPAN) standard and has published a final standard [1]. The IEEE
802.15.3 provides short range wireless connectivities among consumer electron-
ics and portable devices. HR-WPAN adopts a time division multiple access
(TDMA)-based medium access control (MAC) protocol. In HR-WPAN, a pair
of devices (DEVs) can communicate through peer-to-peer connectivity without
contention during an allocated time slot called channel time. The data packet
can be transmitted during the channel time and the allocation of channel time
for each DEVs is controlled by a scheduler in a piconet coordinator (PNC). Thus,
the packet scheduling algorithm in the IEEE 802.15.3 standard is expected to
play an essential role in the system performance. However, the standard does
not define how to assign the channel time and leaves this for vendors.

Some efforts to define the packet scheduling method for the HR-WPAN have
been made since the standard is published. Performance enhancement achieved
by informing queue-status to a PNC using MAC header of every packet is pro-
posed in [2]. This scheme adopts a flexible superframe size to handle variable bit
� This research was supported by the Yeungnam University research grants in 2005.
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rate (VBR) traffics. The piggybacked information may be useful when there is a
burst transmission. However, the channel time allocation algorithm for different
traffic types is not considered. An algorithm proposed in [3] focuses on utilizing
wasted or remained channel times. The authors in [4] propose a channel time
allocation scheme for a specific application, MPEG 4 traffic. Since packets gen-
erated from an MPEG 4 encoder are classified into three types and are arranged
by a periodic pattern, a central device can allocate channel time for transmis-
sions of MPEG 4 packets according to the packet pattern. A packet transmission
method without a preamble is introduced in [5] to reduce the preamble overhead
in a high transmission rate. A scheduling method based on the queueing model
is proposed in [6] to reduce the average waiting time.

Power management is an important issue for the battery-powered portable
DEVs and its objective is to assist the DEVs to sleep and reduce the wakeup
time as much as possible. There has been several work on the MAC design for
power management in wireless system. However, most of them are based on the
MAC of IEEE 802.11 WLAN [7]–[9] or IEEE 802.15.4 low-rate WPAN [10][11].
There is little work to address the power efficiency in HR-WPAN [12][13]. In [12],
a power management method for intra-superframe is proposed for HR-WPAN.
The proposed algorithm finds the suboptimal order to reduce the wakeup time by
using graph theory. However, the inter-superframe power management problem
and the VBR traffics are not considered in [12]. The authors in [13] utilize the
network topology and UWB physical layer information to minimize the energy
consumption per bit. This method increases the overhead since it requires power
information, position information, and relay DEVs for its operation.

As far as we know, there is no work to minimize the power consumption in
HR-WPAN combined with the packet scheduling method supporting constant
bit rate (CBR) and VBR traffics. In this paper, we propose a packet scheduling
method for HR-WPAN to efficiently reduce the power consumption. The pro-
posed scheduling concepts apply to wireless packet systems in general. In the
next section, MAC protocol in the IEEE 802.15.3 standard is briefly described.
The proposed scheduling method for HR-WPAN is introduced in Section 3. Sec-
tion 4 describes the simulation environment and evaluates the simulation results.
Finally, the paper is concluded in Section 5.

2 IEEE 802.15.3 (HIGH-RATE WPAN)

2.1 MAC Protocol

In the HR-WPAN standard specifications, DEVs are communicating on a cen-
tralized and connection-oriented ad-hoc network called piconet. One of the par-
ticipating DEVs must be designated as a piconet coordinator (PNC). The PNC
provides basic timing information for the operation of the piconet and manages
the QoS for delay sensitive applications.

The MAC layer in the IEEE 802.15.3 standard employs a time-slotted super-
frame structure. Fig. 1 illustrates the superframe structure in the HR-WPAN
standard. The superframe consists of three major parts: a beacon, an optional
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Fig. 1. Superframe structure of IEEE 802.15.3

contention access period (CAP) and a channel time allocation period (CTAP).
The beacon packet is transmitted by the PNC at the beginning of each super-
frame. It allows all DEVs in a piconet to know about the specific information for
controlling a piconet. The CAP is used for transmissions of short and non-QoS
data packets and command/response packets. The remained period in the super-
frame is the CTAP. The CTAP is composed of management channel time allo-
cation (MCTA) and channel time allocation (CTA) periods. The MCTA is used
for sending command packets like CAP using the slotted ALOHA mechanism.

When a DEV needs a CTA on a regular basis, it sends a channel time request
(CTRq) command to the PNC during the CAP or MCTA. Thus the PNC decides
the durations of the superframe, CAP, and CTAP based on the DEVs requests.
During a CTA period, a DEV can transmit several packets to a target DEV with-
out collision. Each packet transmission may be followed by an acknowledgement
(ACK) packet. The specification for the MAC protocol defines three acknowl-
edgement types: no-acknowledgement (No-ACK), immediate-acknowledgement
(Imm-ACK), and delayed-acknowledgement (Dly-ACK). For Imm-ACK, the re-
ceiver issues an ACK packet to the transmitter on every received packet. No-ACK
means no ACK packet is issued. In Dly-ACK, which is a tradeoff between these
two methods, the receiver issues an ACK packet for multiple received packets.

2.2 Association Process

In order to participate in a piconet, a DEV needs to join the piconet using
the association process. Associating with the piconet provides the DEV with a
unique identifier, the DEVID, for that piconet. When a DEV wants to leave the
piconet or if the PNC wants to remove a DEV from the piconet, the disassociation
process is used.

Before a DEV has completed the association process, all frames sent to the
PNC by the DEV shall be exchanged either in the CAP of the superframe or
in an association MCTA. An unassociated DEV initiates the association process
by sending an Association Request command to the PNC. When the PNC re-
ceives an Association Request command, it shall send an Association Response
command, indicating that the DEV has been associated. The PNC starts the
association timeout period (ATP) timer once it has sent the Association Re-
sponse command for the new DEV. The associating DEV needs to send the
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Fig. 2. An example of association delay

second Association Request command before the ATP timer expires. If the PNC
receives the second association request command after the ATP timer expires,
the PNC shall send the Disassociation Request command to the DEV requesting
association to indicate that it has failed the association process. Fig. 2 illustrates
the message flow for a successful association process. The association process is
initiated by a device management entity (DME). Note that the completion of
the association process may be delayed for more than two superframes when the
CAP or the MCTA is not available at appropriate time instant in superframes
m + 1 and m + 2.

2.3 Power Management

An important goal of the 802.15.3 standard is to enable long operation time
for battery-powered DEVs. The best method for extending the battery life is to
enable DEVs to turn off completely or reduce power for long periods of time.
This standard provides three techniques to enable DEVs to turn off for one
or more superframes: device synchronized power save (DSPS) mode, piconet-
synchronized power save (PSPS) mode, and asynchronous power save (APS)
mode. In any given power management mode, a DEV may be in one of two
power states, either AWAKE or SLEEP states. AWAKE state is defined as the
state of the DEV where it is either transmitting or receiving. SLEEP state is
defined as the state in which the DEV is neither transmitting nor receiving.
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PSPS mode allows DEVs to sleep at intervals defined by the PNC. A DEV in
PSPS mode shall listen to all system wake beacon, as announced by PNC and
is required to be in the AWAKE state during system wake superframes. DSPS
mode is designed to enable groups of DEVs to sleep for multiple superframes.
DEVs synchronize their sleep patterns by joining a DSPS set which specifies the
interval between wake periods for the DEVs and the next time the DEVs will
be awake.

The problem of PSPS and DSPS modes is that they are not efficient for
multimedia traffics which have non-periodic inter-arrival time. APS mode is
appropriate for these non-periodic traffics. The only responsibility of a DEV
in APS mode is to communicate with the PNC before the end of its ATP in
order to preserve its membership in the piconet. However, when the required
sleep time is much longer than ATP, this method increases the overhead to
maintain the membership and results in increased power consumption. Besides
power consumption, the use of power management in the standard makes it
difficult for the PNC to determine the interval for sleep period because of burst
traffic arrivals.

3 Proposed Packet Scheduling Method

3.1 Motivation

Due to the TDMA property of IEEE 802.15.3 MAC, one of the key issues for
power consumption is to schedule the order of the multiple CTAs among multiple
DEVs to minimize the total wakeup times. The time duration from the packet
arrival at the MAC layer to the transmission of the packet is called access delay.
Fig. 3 shows an example of access delay caused by the lack of information about
the actual packet arrival instant. Since the information given by a CTRq com-
mand does not inform the optimal time instant of a CTA, the packet arrival and

B M
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Fig. 3. An example of access delay
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the CTA are not synchronized. The information delivered by a CTRq command
is insufficient for the PNC to decide the duration and the location of a CTA for
the requesting DEV. Thus, the average access delay increases as the packet inter-
arrival time increases and may maintain until the end of the flow. Furthermore,
it can be longer in heavy load cases since several CTAs overlap. Nevertheless, the
packet scheduling method that considers the power consumption is not proposed
in the standard and previous literatures.

The power management methods presented in the standard can not cope with
the fast traffic changes and may cause incorrect system parameters which leads to
the performance degradation. Moreover, these power management methods are
futile for traffics which have long packet inter-arrival time. The IEEE 802.15.3
TG considers the scenario that DEVs frequently join and leave a piconet as
mentioned in [14]. In this scenario, many system parameters such as a superframe
length and the number of flows change dynamically. Thus, instead of using the
power management method of the standard, we propose that a DEV leaves a
piconet when it is neither transmitting nor receiving. This method is easy to be
implemented and can reduce the overhead caused by the power management. In
addition, we propose the packet scheduling method to reduce the wakeup time
caused by the access delay and the association delay.

3.2 Packet Scheduling Method

A timer τ , which indicates the remained time until the CTA allocation, is used
for the packet scheduling. The PNC selects DEVs whose values of τ are less than
the time duration of a superframe, Ds. The selected DEVs are called a candidate
set. DEV n in the candidate set is allocated Φn CTAs in the current superframe
and Φn is given as

Φn =
⌈Ds − τn

αn

⌉
, (1)

where �x� is the smallest integer value not less than x, α is an average packet
inter-arrival time, and the subscript n in the notation denotes the nth DEV. For
the candidate set, the time duration from the beginning of current superframe
to the beginning of the cth CTA is given as

T c
n = τn + (c − 1) × αn, for 1 ≤ c ≤ Φn. (2)

During the MCTA, a DEV sends the status information to the PNC by using
a status report command packet. We denote the values of queue size, access delay,
and transmission rate in the status report command packet as FQ

n , FD
n , and FR

n ,
respectively. Then the packet transmission time γ is given as

γn =
( Pn

FR
n

+ Doverhead
)
FQ

n + Dguard, (3)

where P is the packet size and Doverhead and Dguard are the time durations for
the overhead and guard time, respectively. Thus, the scheduler assigns a CTA
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at T c
n with γn duration for DEV n. When two or more scheduled CTAs overlap

with each other, the CTA with lower value of T c
n is allocated in advance.

The MCTA allocation method is proposed as follows. If there is time dura-
tion remained between two consecutive CTAs, this duration becomes MCTA for
transmitting command packets. However, if the remained duration is less than
the threshold, it is merged to previous or next CTA. The threshold is a sum of
the slot time and the time duration of a CTRq packet. This threshold ensures
that at least one command packet can be transmitted in an MCTA. The sum of
CTAs and MCTAs durations allocated in a superframe should be less than Ds.
If the duration sum is more than Ds, the CTAs at the tail will be removed until
it becomes less than Ds.

Note that T c
n and Φn are required (ideal) values for CTA allocations. Because

of the aforementioned reasons of CTA overlap and dynamic traffic pattern, it
may happen that the packet scheduler uses smaller values than T c

n and Φn. In
this case, the selected (real) values instead of T c

n and Φn are denoted by tcn and
φn, respectively.

At the start of a new superframe, τn is updated to a new value by

τn ⇐

⎧⎨
⎩

max{0, τn − Ds − FD
n } , for τn ≥ Ds, Φn = 0

max{0, αn − (Ds − tΦn
n ) − FD

n }, for τn < Ds, Φn = φn > 0
0 , otherwise.

(4)

The first equation represents a DEV whose CTA is not allocated in the current
superframe and the corresponding τn is subtracted by Ds and FD

n in the next
superframe. The FD

n is an adjusting factor used to synchronize time instants
between the CTA and the packet arrival. The second equation shows a DEV
who belongs to the candidate set and transmits packets as required. In the third
equation, when a DEV in the candidate set does not transmit packets as required,
it gains higher priority in the next superframe.

In our proposed scheme, the transmission of status report commands plays an
important role in allocating CTAs in a superframe. However, the PNC may form
a superframe without any MCTA due to a heavy traffic load or an insufficient
superframe size. To ensure that at least one status report command can be
transmitted in a superframe, the PNC allocates at least one MCTA with the
minimum MCTA time duration. Moreover, the last channel time in a superframe
must be an MCTA, called essential MCTA (E-MCTA). This allows the latest
status information of each DEV to be delivered to the PNC and to be reflected in
the next superframe. The beacon packet in a superframe has information fields
for the locations and durations of all CTAs as described in the IEEE 802.15.3
standard. Thus, the proposed scheme can be implemented with the operational
compatibility to the standard.

The association delay is also expected to be reduced by using the proposed
method. In the HR-WPAN standard, the DEV whose association request arrives
during the CTA period should wait until the MCTA of the next superframe. On
the contrary, in the proposed method, there are multiple MCTAs and E-MCTA
in a superframe and the DEVs can send the association request packet at the
next available MCTA in the same superframe. The disassociation request packet
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should also be transmitted during the MCTA and the proposed method may
have less disassociation delay than that for the HR-WPAN standard. Because
the DEV turns off the power after the completion of the disassociation process,
the proposed method can reduce more power consumption.

4 Numerical Results

4.1 Simulation Environment

We assume that all DEVs except the PNC are uniformly distributed in the
coverage area of a piconet with diameter 20 meters. The PNC is located at the
center of the area. We consider one piconet in this simulation. The parameters
used in this simulation are based on the IEEE 802.15.3 standards [1].

We study two real-time traffic types, CBR and VBR in the simulation. The
CBR traffic flow is generated at 912 kbps [15]. For the VBR traffic model, actual
MPRG-4 video streams of “Silence of the Lambs” with a mean bit rate of 580
Kbps and a peak rate of 4.4 Mbps, are used [16]. The packet sizes for both traf-
fics are 2048 octets defined in the IEEE 802.15.3 standard. For the simulation
of the association process, the intervals of the association and the disassoci-
ation requests are exponentially distributed with mean value of two seconds.
In this simulation, CAP allocation is not considered since it is optional in the
standard [1].

The scheme proposed in this paper, namely enhanced WPAN (EWPAN), is
compared with the WPAN proposed in [2]. Each scenario is simulated for 10
minutes. We use the log-normal shadowing channel model [17]. We set the path
loss exponent to 3.3 according to the SG3a alternate PHY selection criteria in
[18] and the standard deviation to 7.67 [17]. The transmit power and antenna
gain are set to 0 dBm and 0 dBi, respectively [18]. The received SNR is varied
by the Ricean fading gain, which is generated according to the modified Clarke
and Gans fading model [19]. For the data rate of the physical layer of each
communication link, we assume that the system adapts the data rate by prop-
erly choosing one from a set of modulation schemes according to the channel
condition as described in [20].

4.2 Simulation Results

The simulation results of the power efficiency, i.e. the number of transmitted
packets divided by wakeup time are shown in Fig. 4 where the superframe du-
rations (SF) are set to 65 ms, 45 ms, and 25 ms. The power efficiency of the
proposed method (EWPAN) is better than that of the WPAN standard. This
is because the access delay and the association delay of the proposed method is
less than those of the WPAN standard. Note that the system parameters such
as the duration of the superframe and the number of nodes have less effect on
the performance of the proposed method compared with the WPAN standard.
When the number of devices is 22, the power efficiency of the WPAN for the
25ms superframe duration is much lower than other cases because there is not
enough MCTAs in a superframe.
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The simulation results of the throughput are shown in Fig. 5. The proposed
method has consistent performance while the WPAN has different performance
depending on the system parameters such as the number of devices and the
superframe duration. In WPAN, when the number of DEVs increases or the
superframe duration decreases, the throughput decreases because the access de-
lay and the association delay increases. The more important thing is that the
proposed method shows better throughput than that of WPAN.

5 Conclusion

The access delay and the association delay of the HR-WPAN standard depend
on the superframe duration or the packet inter-arrival time. Thus, the power
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consumption is restricted by the system parameters. In this paper, we propose
an enhanced packet scheduling algorithm for the HR-WPAN to alleviate these
design restrictions. The proposed scheme targets on battery-powered portable
DEVs in HR-WPAN. The proposed algorithm synchronizes CTA to the packet
arrival time and allocates sufficient time duration for the transmissions of pend-
ing packets.

We verify the performance enhancement by the simulation. From the simu-
lations, we have shown that the proposed scheme gives significant performance
improvements. We note that the performance of the proposed scheme is less in-
fluenced by the variable factors such as the superframe size and the number of
flows. As a result, the proposed method shows less power consumption and more
throughput than those of the HR-WPAN standard.
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Abstract. Loading program code to sensor nodes is a basic function of wireless 
sensor network. However, it is infeasible to gather all sensor nodes once they 
are deployed. Thus, network reprogramming is greatly required. In this paper, 
we present two improvement mechanisms to current network reprogramming 
approaches: the resident mechanism to reduce the size of binary code to be 
disseminated and stored, and the hierarchical full indexing with sliding window 
mechanism to record lost code capsules. Both mechanisms can reduce radio 
transmission and storage access, which are main consumers of energy and time. 
Accordingly, our mechanisms are energy-efficient and timesaving. 

1   Introduction 

Wireless sensor network (WSN) combines computation, communication with sensing. 
Owing to its low cost and sufficient function, WSN has been used in many application 
scenes, such as environment monitoring, health application, etc.  

Loading program code to sensor nodes is one of the most basic functions of WSN. 
Traditionally, program code is developed in a host machine and then loaded to sensor 
nodes through directly connected parallel or serial cables one at a time. This is called 
In-System-Programming (ISP). After programmed, sensor nodes are usually deployed 
to different locations of the environment and become hard to gather. If bugs are found 
or new functions are added to the program, new program code needs to be loaded to 
all sensor nodes. Requiring physical connection, ISP becomes costly and infeasible. 

Network reprogramming is a more flexible approach. In network reprogramming, 
program code is loaded to many sensor nodes by radio at one time, without wiring the 
host machine. Network reprogramming is also called In-Network-Programming 
(INP). TinyOS [1], an operating system designed specifically for WSN, has provided 
a simple INP module, Crossbow Network Programming (XNP) [2], for some kinds of 
sensor nodes (such as mica2 [3]). Later, many works are presented to improve XNP to 
support multi-hop and incremental upgrade. However, these approaches involve two 
main drawbacks: enormous energy consumption and lengthy loading time. 

In WSN, the most energy-intensive operations are radio usage and static storage 
access [4, 5]. Moreover, transmitting some bytes by radio consumes about eight times 
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the amount of energy required for writing the same bytes to storage, and at least 
eighty times the amount of energy required for reading these bytes from storage [6]. 
Radio transmission and storage access are more time-consuming than computation, 
too. Thus, our mechanisms primarily aim to reduce radio usage and storage access. 

Two mechanisms are presented in this paper. First, instead of transmitting both the 
user application and the INP module, resident mechanism is adopted: only binary 
code of the user application is disseminated by radio, while the INP application is 
resident in sensor nodes. Second, hierarchical full indexing with sliding window 
mechanism is used to record serial numbers of packets which are lost during radio 
transmission. Both mechanisms reduce radio transmission and storage access, which 
makes them to be energy-efficient and expeditious. Our mechanisms are versatile 
amendments and can be easily incorporated with many other INP approaches. 

The remainder of this paper is organized as follows. In Section 2 of this paper, 
related works are reviewed. In Section 3 the implementation of XNP and its flaws are 
discussed in detail. Our mechanisms are described and evaluated in Section 4 and 
Section 5. Finally, the conclusion and future work are given in Section 6. 

2   Related Works 

2.1   Crossbow Network Reprogramming 

Crossbow Network Reprogramming (XNP) [2] is the INP module in TinyOS 1.1 
release version. It only implements basic network reprogramming functions. The 
implementation and drawbacks of XNP will be discussed in Section 3 in detail. 

2.2   Multi-hop Network Reprogramming 

These approaches implement multi-hop network reprogramming functions, which can 
load program code to all nodes in WSN with the help of multi-hop routing. 

A representative multi-hop approach is called Multihop Over-the-Air Programming 
(MOAP) [6]. MOAP can disseminate the program code to a selective number of 
nodes without flooding the network. And the receivers are responsible to recording 
missed packets and requesting these packets.  

Deluge in [7] mainly focus on multi-hop data dissemination protocol for network 
programming. It disseminates the program code in an epidemic fashion while 
regulating the excess traffic. Unlike MOAP, Deluge represents the data as a set of 
fixed-sized pages, which can support spatial multiplexing and incremental upgrades. 

Another approach named MNP [8] proposes a sender selection mechanism to 
reduce message collision and address the hidden terminal problem. Source nodes 
compete with each other based on the number of distinct requests they have received. 
Also, pipelining is used to enable fast data propagation. 

2.3   Incremental Network Reprogramming 

These approaches implement incremental upgrade. They only disseminate the 
differences between the new program code and the old one. 
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In the incremental algorithm in [9], the host machine generates an edit script of 
commands to describe the differences between the two versions of program codes and 
disseminates the edit script by radio. Sensor nodes then can build the new program 
code by interpreting the received edit script.  

Another incremental approach in [10] does not generate any extra script. For each 
block of program code, it is compared with the corresponding block of the previous 
version. If they are the same, sensor nodes are told to copy this block from the 
previous code. Otherwise, the new block is transmitted and sensor nodes insert this 
block to the current code. 

2.4   Other Important Works 

Maté [11] is different with other INP approaches in many aspects. First, all above 
approaches disseminate the program code in binary code, while Maté distributes code 
in virtual machine instructions. Second, above approaches transmit both INP module 
and the user application, while Maté only transmits the user application. Because 
Maté runs only in virtual machine instructions, user application needs to be converted 
to virtual machine instructions. Trickle [12] improves Maté by using an epidemic 
algorithm to propagate the program code only to nodes that need to be modified. 

3   Crossbow Network Reprogramming 

XNP [2] is a basic INP implementation. Instead of loading program code to the 
program memory directly, XNP first downloads the binary code to the external 
storage, and then tells the boot loader to copy the code to program memory (Fig. 1). 

 

 

Fig. 1. Process of XNP. (1) Host machine divides the binary code to multiple radio packets (2) 
Host machine broadcasts code capsules one by one (3) Each sensor node stores received binary 
code in the external storage (4) Boot loader copies binary code to program memory. 

In the first step, the host machine divides the binary program code as radio packets 
and broadcasts these code capsules via a base station. Sensor nodes within single-hop 
bidirectional communication range of the base station receive radio packets and store 
the binary code in external storages. During the code delivery, some code capsules 
may be lost. Sensor nodes request any lost capsules until entire binary code is stored.  

In the second step, the XNP module of each node calls the boot loader, a program 
resident in the high program memory area. The boot loader is responsible for copying 
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the program code from the external storage to the program memory. Once entire 
program code is copied, the boot loader restarts the sensor node with new code. 

Four main drawbacks of XNP are listed as follows: 
First, XNP does not support multihop mechanism. Only sensor nodes within direct 

bidirectional communication range of the base station can be reprogrammed at one 
time. MOAP [6], Deluge [7] and MNP [8] have effectively addressed this problem. 

Second, loading program code by XNP is much slower than by ISP. Incremental 
upgrade mechanisms have been proposed in [9] and [10] to reduce loading time. Our 
mechanisms address this problem in different ways. 

Third, the huge XNP module occupies nearly one quarter of the overall capacity of 
program memory. Our resident mechanism will solve this problem. 

Fourth, the huge blocks to be transmitted by radio and vast storage access in XNP 
process consume too much energy. Our mechanisms effectively reduce the radio 
transmission and storage access, and thus are much more energy-efficient. 

4   Resident Mechanism 

4.1   Basic Conception 

In XNP process, the binary code to be disseminated contains both the user application 
and XNP module. Take the TinyOS application Blink for example. To support INP, 
Blink has to wire the XNP module to form a combined application XnpBlink. The size 
of binary code and the quantity of code capsules of XnpBlink are almost 12 times 
larger than those of Blink for mica2 platform (as Table 1 shows).  

Table 1. Binary code size and quantity of code capsules of Blink and XnpBlink for mica2 

Application Blink XnpBlink 
Size of Binary Code 3,974 Byte 48,062 Byte 
Quantity of Code Capsules 91 1092 

 
The huge INP module greatly decelerates the reprogramming process, consumes 

too much energy, and occupies nearly one quarter of the overall capacity of program 
memory. In fact, the XNP module remains same for most time.  

Our resident mechanism solves these problems. In our mechanism, only the user 
application is transmitted by radio, an independent resident network reprogramming 
(ab. RNP) application is resident in sensor nodes since the first-time programming.  

Our approach is similar to Maté [11] in that only the user application needs to be 
transmitted. However, binary code is disseminated directly in our resident mechanism 
without being converted to virtual machine instructions. 

4.2   Memory Layout 

External storage, which is many times larger than program memory, is used to store 
the RNP application in our mechanism. The memory layout of our RNP mechanism is 
depicted in Fig. 2. The external storage is divided into four continuous sections. The 
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first section stores new program code. The next section stores old program code to 
support incremental mechanism in [10]. The third section is used to store RNP 
application and the fourth is reserved for other purpose. The program memory is 
composed of two sections. The highest section is boot loader section as in XNP. 
While the other section stores user application in application running process, and 
stores RNP application in reprogramming process. 

 

(a) User application running process                           (b) network reprogramming process 

Fig. 2. Memory Layout of resident mechanism in different processes 

Because user application and RNP application do not coexist in the program 
memory, more space in the program memory is available for user application. 

4.3   Design and Usage 

To make a sensor node be able to perform resident network reprogramming, some 
works should be done in advance. First, the RNP application should be loaded to the 
external storage in the first-time programming, which is responsible for downloading 
and storing code capsules in the external storage. Second, application that includes 
functions of receiving radio messages and calling boot loader is loaded to program 
memory. Third, the boot loader should be loaded to the boot loader section of 
program memory. Then, resident network reprogramming can start anytime. 

Our resident mechanism works in the following steps: at the beginning, the user 
application is modified to receive radio messages and call boot loader. Then, the host 
machine broadcasts a command indicating the start of reprogramming. In response, 
boot loader in each node loads RNP application to program memory. After loading is 
finished, sensor nodes start to wait for the code capsules. Then, the host machine 
broadcasts code capsules one by one. Sensor nodes store obtained code capsules in 
their external storages and maintain indexes to record lost code capsules (using one 
bit to record one code capsule). Lost capsules are requested to retransmit in a separate 
query phase. Once a sensor node stores the entire binary code, boot loader is called to 
copy the binary code to program memory and restart the node. 

After the RNP application starts running, if no code capsule is received for a long 
time, this application considers itself to be a new version of RNP application, and 
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calls the boot loader to copy this application to RNP application section of the 
external storage. This function is used to upgrade the RNP application itself. 

4.4   Evaluation 

Our resident mechanism is compared with XNP using standard TinyOS application 
Blink in Mica2 nodes. Because radio module should be added to Blink, the combined 
application RnpBlink is larger than Blink, but it is much smaller than the combined 
XNP application XnpBlink (Table 2). Accordingly, code capsules are much less. 

Table 2. Comparison of Blink, RnpBlink and XnpBlink. Our implementation adds only a few 
codes to receive message, its size is much smaller 

Application Blink RnpBlink XnpBlink 
Size of Binary Code 3,974 Byte 28,158 Byte 48,062 Byte 
Quantity of Code Capsules 91 640 1092 

Table 3. Network programming time of XNP and RNP 

Case 1 Case 2 Case 3 Timing (sec) 
RNP XNP RNP XNP RNP XNP 

Download 141.3 240.1 141.4 239.4 141.4 240.2 
Query 13.0 19.4 15.4 22.4 17.7 25.2 
Reprogram 1.7 1.7 1.7 1.7 1.7 1.7 
 

Total 156.0 261.2 158.5 263.7 160.8 267.1 
 

 

Fig. 3. Network programming time of XNP and RNP 
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The time and energy consumptions of reprogramming are in direct ratio to the size 
of binary code and the quantity of code capsules. Thus, our resident mechanism is 
more energy-efficient and timesaving. Also, without spatial occupation of INP 
module, more space is available in program memory for user application. 

We run experiments using real Mica2 nodes to test the programming time of the 
same application Blink in XNP and RNP mechanism. Three cases using different 
number of nodes are performed. For case 1, only one node is reprogrammed by 
network; for case 2, two nodes are reprogrammed; and for case 3, four nodes are 
reprogrammed. For all cases, we run three times and count the average time. 

We timed the INP process for the major three steps: download, query and 
reprogram. Table 3 and Fig. 3 show the results. The reprogram step takes almost same 
time for all cases either with XNP or our resident mechanism. However, our resident 
mechanism is much more timesaving in download and query stages. 

5   Hierarchical Full Indexing with Sliding Window Mechanism 

5.1   Basic Mechanism 

During the code delivery, a mechanism is needed to record whether some capsules are 
lost and which they are. However, no such mechanism is used in XNP. Full indexing, 
which uses one bit to record one code capsule, is a simple and useful approach. 
However, it leads to excessive RAM usage, while RAM is also scarce besides in 
RNP. A sliding window mechanism is presented in [6]. Only code capsules within the 
sliding window are accepted, others are all discarded. It requires less storage access 
and occupies less RAM space, but greatly impairs the effect of radio receiving.  

Our mechanism is mainly ground on hierarchical full indexing. Hierarchical full 
indexing is similar to full indexing, but indexes are stored in two levels, using both 
RAM and static storage (usually internal EEPROM). The bottom level is kept in static 
storage. It uses full indexing for a subset of the binary code, which we call a snippet. 
The index of entire program is kept in the top level in RAM, using one bit to represent 
a snippet. Since a snippet can be relatively large, the RAM usage is small. When a 
code capsule is received, if the relevant bit in top-level index indicates an incomplete 
snippet, hierarchical full indexing has to read the storage to determine if the capsule is 
a duplicate. If the segment has not been stored, both the bottom-level index and this 
code capsule need to be written - write storage twice. This is a waste of energy. 

To reduce storage access without impairing radio performance, we present 
hierarchical full indexing with sliding window mechanism. The sliding window works 
as a temporary cache for the bottom level indexes, and helps to reduce the update 
operation of bottom level indexes in the static storage. To facilitate discussions below, 
we define f(x) to be the least positive integer that is larger than or equal to x. 

Providing the size of a snippet is k bits, one bit in the top level indicates whether k 
capsules are received. If k capsules are all obtained, the corresponding bit in the top 
level index is updated to 1 and other capsules whose indexes are within this snippet 
are discarded without any storage access. The sliding window is n times of k in size 
(where n is a positive integer), and slides in step of k. The sliding window temporarily 
acts as bottom-level indexes of n bits in the top level (Fig. 4).  
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Fig. 4. Hierarchical full indexing with sliding window if n=2, k=4. The sliding windowing acts 
as temporary bottom-level indexes and updates actual bottom level only when it slides 

Assuming the current location of sliding window is from mk+1 to mk+nk, code 
capsules within the sliding window are written to the storage directly and the sliding 
window in RAM is updated. Instead of reading storage once and writing twice, only 
one necessary Write operation is performed. If coming code capsule C is larger than 
mk+nk, then the program checks whether all the lowest k bits of the sliding window 
are 1. If so, the window slides to contain this capsule; if some of the k bits are equal to 
0, these k bits are written to actual bottom-level index in storage and the window 
slides. Only if the received code capsule C is smaller than mk+1 and the f(C/k)th bit in 
the top-level index equals 0, one Read and two Write operations are needed. 

5.2   Snippet Size and Sliding Window Size 

Here, we discuss how to choose a reasonable size of a snippet and the sliding window 
to minimize RAM usage. 

Table 4. The minimum RAM cost to record lost packets when n select from 1 to 4. k is the 
closest positive integer of the extraction of 8000/n 

n (bit) k (bit) Minimum RAM Cost(bit) 
1 89 or 90 179 
2 63 or 64 253 
3 51 or 52 310 
4 44 or 45 358 

In Mica2 node, the capacity of program memory is 128KB. If each code capsule 
contains 16 byte, the maximum quantity of code capsules is 8000. If size of each 
snippet is k bits, f(8000/k) bits are needed in RAM for the top-level index. Providing 
the size of the sliding window is n times of k, the total RAM cost (SRAM) in bit is:  
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n80002k)(8000/k)(n2kn  8000/kkn  8000/k)fSRAM ×=×≥×+≈×+= (  (1) 

If n is given, SRAM can reach the minimum only when 8000/k equals n×k

n8000k /=  
(2) 

The minimum RAM cost to record lost packets with different n is listed in Table 4. 
The smaller n is, if proper k is chosen, the less RAM is used. However, small n 

means short sliding window, and thus received code capsules are more likely to be out 
of the window, which may lead to an increase in storage access.  

5.3   Evaluation 

The storage operations needed to record packets loss in single-hop INP are different 
from in multi-hop INP. So they are discussed respectively. For convenience, R is used 
to represent reading storage once and W is used to represent writing storage once. 

In single-hop INP, code capsules are transmitted one by one with consecutive 
serial number and are received by sensor nodes in the same order as the sequence 
transmitted. The capsule C+1 can never reach sensor nodes earlier than capsule C. 
Code capsules are written to external storage directly without any Read operation. 
Only when sliding window is full and some of the lowest k bits are equals to 0, one 
snippet needs to be written to storage. Thus, only f(N/k) Write operations are needed 
even in the worst case, where N is the actual quantity of code capsules transmitted. 

In multi-hop INP, the problem is more complicated. First, code capsules may reach 
at any sequence; second, each capsule may reach a sensor node many times. We first 
count the storage operations needed to manage all the new capsules (which have not 
been received before), then count the operations needed to manage all duplicate 
capsules (which are same as capsules that have been stored in the external storage). 

Assume all code capsules can be obtained at last, and the time that capsule i is 
received for the first time is ti. All the new capsules can be reordered by their reaching 
time, for example t1, t5, t7, t2… Define Li to be the amount of capsules that (1)are new 
capsules; (2)are received between ti and time of next capsule whose serial number is 
larger than i; (3)are smaller than f(i/k) k -n k in serial number, where f(i/k) k is 
the ceiling of sliding window and n k is the size of sliding window. For these 
capsules, they missed sliding window and thus the program need to read static storage 
once and write twice. The storage operation for these capsules is )( W2RL

N

1i i +
=

. If 

the serial number of the new capsule is within the sliding window, only one necessary 
Write operation is needed. Thus, the overall storage operations needed to manage all 
new capsules RXnew meet the following condition:  

))(()()()( WRLNW2RNWLNW2RLRX
N

1i i

N

1i i

N

1i inew +−−+=−++=
===

 (3) 

Where N(R+2W) is equal to the storage operations needed to manage all the new 
capsules in traditional hierarchical full indexing. In most cases, 

=
>> N

1i iLN , and 

thus RXnew is only a little larger than NW. Even in the worst case, knNL
N

1i i ×−≈
=

, 

our approach is still slightly better than traditional hierarchical full indexing.  
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For duplicate capsules, define Di to be the quantity of code capsules (1) that are 
duplicates of capsule i; (2) that miss the sliding window; (3) whose relevant bits in the 
top-level index are equal to 0. For these capsules, the program has to read static 
storage to check whether they are duplicates. The overall storage operations needed to 
manage all duplicate capsules RXdup meet the following condition:  

RDRX
N

1i idup =
=  (4) 

In most cases, 
=

N

1i iD is much less than the overall received duplicate capsules. 

The storage operations needed to receive all the new capsules and all the duplicate 
capsules and the RAM occupation of different approaches are compared in Table 5. It 
seems as if sliding window in [2] excels for all these attributes. However, sliding 
window reduces storage access at the cost of discarding all capsules outer the 
window. For instance, if the first capsule reaches very late or is missed, all capsules 
whose serial numbers are larger than the ceiling of sliding window are discarded. 

Table 5. Static storage operations needed to receive all the new capsules and duplicate capsules 
and overall RAM occupation in multi-hop INP. Where R represents reading storage once and W 
represents writing storage once. Providing Nmax to be the maximum amount of capsules, N to be 
the actual amount of capsules, dN to be the amount of duplicate capsules. 

Approach RXnew RXdup RAM (bit) 
No indexing N(R+W) dN(R+W) 0 
Full indexing NW 0 Nmax 
Hierarchical full indexing 
(bottom-level is k bits in size) 

N(R+2W) dN×R Nmax/k 

Sliding window [2] NW 0 window size 
Hierarchical full indexing with 
sliding window (bottom -level 
index is k bits in size) 

N(R+2W)- 

))(( WRLN
N

1i i +−
=

 
RD

N

1i i=
 Nmax/k+ 

window size 

6   Conclusion and Future Work 

By loading binary code to many sensor nodes by radio at one time, INP saves great 
efforts. Among all the attributes of INP, energy and time are of the most importance. 

Our resident mechanism reduces the size of binary code to be disseminated and 
stored. Hierarchical full indexing with sliding window mechanism to record lost 
capsules reduces storage access without enlarging RAM consumption. Thus, they are 
energy-efficient and timesaving. Moreover, the resident mechanism avoids spatial 
occupation of INP module in program memory. Our mechanisms are based on XNP 
but can easily be incorporated with many other mechanisms.  

Large amount of data are disseminated in network with unpredictable topology in 
INP, and all capsules should be obtained by all sensor nodes. Thus, high reliability 
and good scalability are greatly required in the data dissemination. So we will try to 
adopt the hybrid data dissemination framework [13] to satisfy these requirements.  
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Abstract. In this paper, we have done thorough mathematical analysis
and extensive simulations on the distributed, lightweight and location-
free node scheduling scheme proposed in [11]. The basic idea of this
scheduling scheme is to organize sensor nodes into disjoint node sets,
which work alternately to extend network lifetime effectively. Distin-
guished from the work in [11], we reevaluate the performance of this
scheduling scheme under different assumption that sensor nodes are
deployed randomly in the target region according to a Poisson point
process, which is a more realistic deployment model in large scale ran-
domly deployed sensor networks. We also analyze the performance in
terms of average event detection latency, which is another straightfor-
ward coverage quality measure. Our analysis results reveal the rela-
tionship among coverage quality, expected network lifetime and node
deployment intensity. Impact of normally distributed time asynchrony
on network coverage quality is also investigated.

1 Introduction

Due to advances in micro-sensors, wireless networking and embedded processing,
wireless sensor networks (WSNs), which consists of a large number of tiny sensor
nodes with limited computation, communication capabilities and constrained
energy resource, are becoming increasingly applicable to civilian and military
applications, such as environmental monitoring, chemical attack detection, and
battlefield surveillance, etc [1, 2].

The lifetime of each individual sensor node is short and limited due to the
following two factors. First, sensor nodes are usually supported by batteries
with limited capacity due to low cost and extremely small dimensions. Second,
it is usually hard to replace or recharge the batteries after deployment, either
because the number of sensor nodes is very large or the deployment environment
is hostile and dangerous (e.g. remote desert or battlefield). But on the other hand,
the sensor networks are usually expected to operate several months or years
once deployed. Therefore reducing energy consumption and extending network
lifetime is one of the most critical challenges in the design of wireless sensor
networks.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 484–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Most of existing work [3, 4, 5, 6, 7, 8, 9, 10] on energy efficiency in WSNs relies
on exact location information, which is expensive and difficult to obtain in large
scale wireless sensor networks. Liu [11] proposed a distributed, lightweight and
location-free node scheduling scheme to extend network lifetime.

In this paper, we do thorough mathematical analysis and extensive simulation
on scheme proposed in [11]. Distinguished from the work in [11], we reevaluate
the performance of this scheduling scheme under different assumption that sensor
nodes are deployed randomly in the target region according to a Poisson point
process. This is a more realistic deployment model compared to the network-wide
uniformly random deployment model in [11]. We also analyze the performance
in terms of average event detection latency, which is another straightforward
coverage quality measure. Impacts of normally distributed time asynchrony on
network coverage quality is also investigated.

2 Location-Free Node Scheduling Scheme

The basic idea of the scheme in [11] is simple. Given the parameter k, in the
initial phase each sensor node randomly selects a number between 0 and k − 1
with equal probability of 1/k, and all nodes choosing number i form the i’th
node set. In the following working phase, these k node sets work in a round-
robin manner and there is only one node set working at any time instance.

2.1 Performance Analysis

A. System Model
We consider static sensor networks in a two-dimensional region. And we use
binary sensing model to model sensor node’s sensing capability. In binary sensing
model, sensor can reliably detect events within the circle centered at the sensor
node with radius Rs. We assume that the sensor network is homogenous, i.e., all
sensor nodes have the same sensing radius.

We consider the random sensor network where sensor nodes are randomly
deployed (e.g., dropped form airplane) according to Poisson point process [13].
In Poisson point process, the probability that an region A contains m sensor
nodes is given by

Pr {N (A) = m} =
(λ ‖A‖)m

e−λ‖A‖

m!
(1)

where ‖A‖ denotes the area of A, N (A) denotes the number of nodes in region
A, and λ is the intensity of Poisson point process.

B. Performance Analysis

Definition 1. Coverage Intensity for a Specific Point [11]
For a given point p in the deployed region, the coverage intensity for this point
is Cp = Tc/T , where T is any given long time period and Tc is the total time
during T when point p is covered by at least one active sensor node.
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Definition 2. Network Coverage Intensity [11]
The network coverage intensity, Cn, is defined to be the expectation of Cp: Cn =
E (Cp).

Theorem 1. With the proposed scheduling scheme,

Cn = 1 − exp
(
−‖λA‖

k

)
(2)

where k is the given network lifetime requirement, λ is the intensity of the Pois-
son point process, and ‖A‖ = πRs

2 is the area of sensor node’s sensing disk.

Proof. For any given point p in the deployment region, suppose there are to-
tally Np sensor nodes that cover point p . Let Sp denote the set of these Np sen-
sor nodes. Using the proposed scheduling scheme, each node in Sp assigns itself
to one of the k node sets with equal probability 1/k . Let Ai denote the event
that the i (0 ≤ i ≤ k − 1)’th node set NSi does not include any node in Sp,
then Pr {Ai} =

(
1 − 1

k

)Np , and Pr
{
Ai

}
= 1 −

(
1 − 1

k

)Np .
Let’s define an indicator function as follows:

Ii =

{
1 if Ai not holds
0 otherwise

Then I =
k−1∑
j=0

Ij is the total number of the node set that can cover point p.

As E [I] = E

[
k−1∑
j=0

Ij

]
=

k−1∑
j=0

E [Ij ] and E [Ij ] = 1 −
(
1 − 1

k

)Np , we have E [I] =

k ×
[
1 −

(
1 − 1

k

)Np
]
. Therefore Cp = E[I]×T

k×T = 1−
(
1 − 1

k

)Np . According to the
binary sensing model and the definition of Poisson point process,

Cn = E [Cp] = 1 − E

[(
1 − 1

k

)Np
]

= 1 −
∞∑

Np=0

(
1 − 1

k

)Np

× (λ ‖A‖)Np e−λ‖A‖

Np!

= 1 − exp
(
−λ ‖A‖

k

)

where ||A|| = πR2
s. �

Corollary 1. For a given λ, the possible maximal number k of disjoint node
sets while the network coverage intensity is at least α is given by λ‖A‖

− ln(1−α) .

Corollary 2. For a given k and a required network coverage intensity α, the
lower bound of the intensity of the Poisson point process, λ, is given by −k ln(1−α)

‖A‖ .

These two corollaries, which point out the internal relationship among the
network coverage intensity, the expected network lifetime, and the intensity of
the Poisson point process, can be easily proved by using Cn ≥ α.
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3 Analysis on Average Detection Delay

For some event-detection applications in wireless sensor networks, the quick de-
tection of persistent event is desired. Therefore, average detection delay is an
important application layer performance metric and is defined as the average
time elapsed between a persistent event occurrence at a point and its detection
by a nearby sensor node [12]. It evaluates how responsive the network will be
in reacting to the events of interests. Note that average detection delay is a
point-specific metric. Different point has different detection delay due to differ-
ent number of sensor nodes covering it and different working schedules of these
nodes. Given a specific point in the monitored field, which is not covered 100
percent of time by its nearby sensor nodes, the event detection delay depends on
event occurrence time, hence is a random variable. That is why we use average
detection delay to measure it statistically.

Because in this paper, we assume sensor nodes are deployed randomly into
the field, it is possible that there are some points in the field, which are not
within the sensing range of any sensor node, hence can not be covered by any
sensor node. For these blind points, the event detection delay is infinite. The
number of these points can be dramatically decreased and approximate to 0
by deploying more sensor nodes (i.e., increasing the intensity of Poisson point
process).

For any specific point, which is within the sensor range of s(s > 0) sensor
nodes, we can calculate the average detection delay for the events occurring at
that point after utilizing the proposed scheduling scheme. The only assumption
of our analysis is that events arrive uniformly at random in time domain and last
for a duration larger than a scheduling cycle kT . The analysis result is presented
as below.

Theorem 2. With the proposed scheduling scheme, when all sensor nodes are
precisely synchronized with the standard time, the average detection delay dp for
an event occurring at point p, which is covered by s(s > 0) sensor nodes, is
equal to

dp =
T

2

[(
k − 1

k

)s

+ 2
k−1∑
i=2

(
k − i

k

)s
]

(3)

Proof. Suppose an event occurs at time instance t. Not loosing any general-
ity, we number the time slot which contains t as time slot 0. It is followed
by time slot 1, 2, . . . , k − 1. Each time slot i is associated with the working
shift of subset i. Therefore, time slots 0 to k − 1 consist of a scheduling cy-
cle. We let Hi denote the event that subset i doesn’t contain any sensor nodes
that can cover point p and Hi denote the event that subset i contains at least
one sensor node that can cover point p. As all sensor nodes are well synchro-
nized with the standard time, if H0 holds, the average detection delay, dp, is 0.
Therefore, the average detection delay of an event occurring at point p can be
calculated as
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dp =
k−1∑
i=1

∫ T

0

1
T

× Pr
(
H0 ∩ H1 ∩ . . .Hi

)
× (i × T − t) dt

=
k−1∑
i=1

∫ T

0

1
T

×
[(

k − i

k

)s

−
(

k − i − 1
k

)s]
× (i × T − t) dt

=
k−1∑
i=1

(2i − 1)T

2

[(
k − i

k

)s

−
(

k − i − 1
k

)s]

=
T

2

[(
k − 1

k

)s

+ 2
k−1∑
i=2

(
k − i

k

)s
]

�

From the expression of the dp given above, we can see that the average event
detection delay for a specific point p is influenced by three factors.

(1) T : the working time duration for each subset in one round. dp increases with
the increase of T . This is because a larger T will lead to a lager waiting
time for the event to be detected by the active sensor nodes of next work-
ing subset, if the event can not be detected instantly by current working
subset.

(2) k: the number of total disjoint subsets. dp increases with the increase of k.
This is because increasing k will potentially increase the probability that a
node subset doesn’t include any sensor node that can cover point p, hence
prolong the event detection delay

(3) s: the number of sensor nodes that can cover point p. dp decreases with
the increase of s. This is because a larger s decreases the probability that a
node subset doesn’t include any sensor node that can cover point p, and the
detection delay is decreased consequently.

4 Network Coverage Intensity with Clock Asynchrony

In this section, we analyze the impact of clock asynchrony on the performance
of the proposed scheduling scheme.

Consider any point p in the deployment region. Assume there are totally Np

sensor nodes that can cover point p initially and Np
i sensor nodes are assigned

to node set NSi. Point p will not be covered during the working shift of node
set NSi only in three situations. First, all Np

i sensor nodes start working ahead
of the starting time of NSi. Then there will be a time interval at the end of
the working shift of NSi when all the Np

i sensor nodes have stopped and p will
not be covered. Second, all Np

i sensor nodes start working behind the starting
time of NSi. In this situation, there will be a time interval at the beginning
of the working shift of NSi when all the Np

i sensor nodes haven’t waken up
and therefore p will not be covered. Third, and finally, a part of Np

i sensor
nodes starts working ahead of the starting time of NSi while the remains are
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behind the time, and there is a gap period between them. Therefore in this gap
period p is not covered by any sensor nodes.

We make the following assumptions in our following analysis.

(1) The starting time of each sensor node may not be synchronized precisely
with the standard time, but the internal time ticking frequency is accurate.
So there will be no accumulation of time drift.

(2) Let T denote the working duration of each node set in one round. We as-
sume that the difference between the starting time of each sensor node and
the standard time, Δt, is less than T/2. We assume that Δt ≥ T/2 is an
extremely rare case and could be ignored. This assumption eliminates the
possibility of the third case described above and reduces the complexity of
analysis.

(3) The time difference, Δt, is a random variable which is normally distributed
with parameters 0 and σ, i.e, Δt ∼ N (0, σ).

We are interested in the expectation of the length of time when point p is
not covered by any of these Np

i sensor nodes during the working shift of node
set NSi. Let Euc

i denote this expectation. Obviously, Ei
uc = T if Np

i = 0.
When Np

i > 0,

Ei
uc =

∫ ∞

0
xf1 (x)dx +

∫ 0

−∞
−yf2 (y)dy (4)

where x = min
{
Δtj , 0 ≤ j ≤ N i

p − 1
}

, y = max
{
Δtj , 0 ≤ j ≤ N i

p − 1
}

and
Δtj denotes the difference between node j’s starting time and the standard
time, f1 (x) and f2 (y) are the p.d.f of x and y respectively. The first and the
second item in equation (4) correspond respectively with the time interval when
point p is not covered due to the first and the second reasons described previously.
Since Δt1, Δt2, . . . , Δtj are independently random variables normally distributed
with parameters 0 and σ, we can get [11]

Ei
uc = 2

∫ ∞

0
xf1 (x)dx = 2

∫ ∞

0
N i

pxφ (x) [1 − Φ (x)]N
i
p−1

dx

≤ 2
∫ ∞

0
N i

pxφ (x)
(

1
2

)Ni
p−1

dx = N i
p

(
1
2

)Ni
p−2

σ√
2π

Note that the number of sensor nodes that can cover point p in set NSi, N i
p,

is a random variable varying from 0 to Np. And with our proposed scheduling
scheme,

Pr
{
N i

p = j
}

=
(

Np

j

)(
1
k

)j (
1 − 1

k

)Np−j
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Therefore we can further calculate the expectation of Ei
uc:

Euc =
Np∑
j=0

Ei
uc × Pr

{
N i

p = j
}

= T ×
(

1 − 1
k

)Np

+
Np∑
j=1

Ei
uc × Pr

{
N i

p = j
}

≤ T ×
(

1 − 1
k

)Np

+
Np∑
j=1

j

(
1
2

)j−2
σ√
2π

(
Np

j

)(
1
k

)j (
1 − 1

k

)Np−j

= T ×
(

1 − 1
k

)Np

+
2σNp

k
√

2π

(
1 − 1

2k

)Np−1

Note that the second item in the above equation given in [11] is wrong and
should be corrected as given here.

By now, for any point p which is initially covered by Np sensor nodes, we
can calculate the expectation of the time interval when p is covered during the
working shift of any node set,

Ec = T − Euc ≥ T − T ×
(

1 − 1
k

)Np

− 2σNp

k
√

2π

(
1 − 1

2k

)Np−1

According to the Poisson point process, point p is covered by Np sensor nodes
is equal to that there are Np sensor nodes in the circle centered at point p with
radius Rs.

Therefore, the expectation of Ec, which is the expected time interval that p
is covered in the working shift of any node set, is given by:

E (Ec) ≥ T −
∞∑

Np=0

T ×
(

1 − 1
k

)Np

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

−
∞∑

Np=0

2σNp

k
√

2π

(
1 − 1

2k

)Np−1

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

= T − T × exp (−λ ‖A‖) × exp
(

λ ‖A‖ ×
(

1 − 1
k

))

−2σλ ‖A‖
k
√

2π
× exp (−λ ‖A‖) × exp

(
λ ‖A‖ ×

(
1 − 1

2k

))

= T − T × exp
(
−λ ‖A‖

k

)
− 2σλ ‖A‖

k
√

2π
exp

(
−λ ‖A‖

2k

)

For any point p, by symmetry, each node set NSi has the same value E (Ec),
so the network coverage intensity Cn

′ with normally distributed time asynchrony
can be calculated as
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Cn
′ =

k × E (Ec)
k × T

≥
T − T × exp

(
−λ‖A‖

k

)
− 2σλ‖A‖

k
√

2π
exp

(
−λ‖A‖

2k

)
T

= 1 − exp
(
−λ ‖A‖

k

)
− 2σλ ‖A‖

kT
√

2π
exp

(
−λ ‖A‖

2k

)

Compared to equation (2), we have

Cn
′ ≥ Cn − Δ (5)

where Δ =
2σλ ‖A‖
kT

√
2π

exp
(
−λ‖A‖

2k

)
.

Note Cn is the network coverage intensity when all sensor nodes are precisely
synchronized. The above equation gives the lower bound of the network coverage
intensity with normally distributed time asynchrony. The item Δ approximately
indicates the impact of the time asynchrony on the network coverage intensity.

5 Simulation

5.1 Simulation Setup

In our simulation, we use the binary sensing model describe in section 2. Based
on the information from [14], we set the sensing radius to be 6. This is consistent
with other current sensor types, such as Smart Dust (U.C.Berkeley) and WINS
(Rockwell) [15]. And the target region is a square of 50 × 50. Sensor nodes
are randomly distributed in the target region according to the Poisson point
process with intensity λ. All simulations are conducted using MATLAB. For
each simulation scenario, ten runs with different random node distributions are
conducted and only the average is presented.

5.2 Simulation Results

Fig.1 shows how the network coverage intensity varies with the intensity of Pois-
son point process when the value of k equals to 3, 6, 9, and 12 respectively. From
this figure, we see that the simulation results are very close to the theoretical re-
sults. We observe that the network coverage intensity increases with the increase
of the intensity of Poisson point process when given a fixed k. Larger deployment
intensity will deploy more sensor nodes in the network and each node set will
include more sensor nodes when k is fixed. Therefore the network coverage in-
tensity of each node set is improved. But the network coverage intensity becomes
saturated at some node intensity. For example, the network coverage intensity is
larger than 99.9% when λ = 0.5 and k = 6. This means that larger node intensity
will not benefit the network coverage intensity remarkably, but increase the de-
ployment cost hugely. We also observe that when λ is fixed, smaller k will lead to
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better network coverage intensity. This is because when the node number is fixed,
smaller k means fewer node sets and each node will include more sensor nodes.

Fig.2 shows how the network coverage intensity varies with the intensity of
Poisson point process when sensor nodes are not precisely synchronized and
the time difference is normally distributed. In this simulation, we set σ = T/6.
According to the “3σ” rule of normal distribution, the probability of Δt ≥ T/2 is
smaller than 0.01, thus can be ignored. The simulation values are always larger
than the values of Cn − Δ, which demonstrate the correctness of our analysis.
And we note that even when k = 12 and σ = T/6, the network coverage intensity
is still above 0.9 when λ = 0.3. And Fig.3 shows the value of Δ/Cn when k and
λ varies. Even when k = 12 and λ = 0.2, the value of Δ/Cn is less than 0.06.
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6 Conclusions

In this paper, we have done thorough mathematical analysis and extensive sim-
ulation on the distributed, lightweight and location-free node scheduling scheme
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proposed in [11]. Distinguished from the work in [11], we reevaluate the perfor-
mance of this scheduling scheme under different assumption that sensor nodes
are deployed randomly in the target region according to a Poisson point process.
We also analyze the performance in terms of average event detection latency,
which is another straightforward coverage quality measure. Impact of normally
distributed time asynchrony is also investigated.
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Abstract. TCP is known to have performance degradation over wireless links
but causes of the performance degradation have not been well studied. In or-
der to understand the causes and to gain insight for future enhancements, we
design a series of simulations to collect performance data and use stepwise mul-
tiple regression to find the leading causes. Our analysis indicates that timeout is
the dominant cause of wireless TCP performance degradation. Simulations show
current enhancements fail to improve the timeout behavior and thus have limited
improvement. Based on these findings, we propose a new enhancement that uses
ECN to deliver congestion signals and utilizes the coherence among congestion
signals to distinguish wireless losses from congestion losses. Simulation results
demonstrate that this enhancement thoroughly changes TCP’s timeout behavior
and improves the overall performance to a new level.

Keywords: TCP, wireless networks, performance analysis, explicit congestion
notification, congestion coherence.

1 Introduction

Transmission Control Protocol (TCP) was designed mainly for wired networks, where
transmission errors are rare and the majority of packet losses are caused by congestion.
An underlying assumption of TCP algorithm is that packet losses and the resulting time-
out at the source are indications of network congestion and the source should reduce its
transmission upon timeout [12]. When TCP is deployed over wireless networks, packet
losses due to transmission errors may be regarded as congestion signals and thus lead
to severe performance degradation.

Many enhancements have been proposed to enhance TCP over wireless links. These
enhancements can be classified into four categories.

1. Local link layer retransmissions use Forward Error Correction and Automatic
Retransmission Request to build a reliable link layer so that upper layers are less
affected by the lossy characteristic of the wireless link. Example enhancements are
[23, 8, 11, 13, 15, 14]. In reality, retransmission mechanisms in multiple layers may
respond to the same loss event and cause undesirable interaction. Although some
studies show that a reliable link layer through retransmissions can achieve good
TCP performance, they also pointed out that these enhancements are designed for

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 494–505, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the characteristics of specific TCP connections and transmission error conditions.
When error condition and connection characteristics change, undesirable interac-
tions and performance degradation may happen.

2. Split connection enhancements divide the entire transmission path into two con-
nections (a wired one and a wireless one) and run TCP separately on both connec-
tions. I-TCP [4] is a representative of this category. These enhancements violate
TCP’s end-to-end semantic and may result in unrecoverable data loss. Thus they
are a deviation from the original purpose of TCP as a reliable transport protocol.

3. Sender-side enhancements modify TCP code at the sender to estimate the avail-
able bandwidth, experienced delay or other congestion signal and change the con-
gestion control accordingly. Examples include Wireless TCP [18], TCP Santa Cruz
[16], TCP Peach [1], TCP Peach+ [2], TCP Westwood [10] and TCP Jersey [22].
Their major problem is the location of needed changes. Instead of making changes
local to the wireless link and host, they require changing computers that the wire-
less host communicates with. In a typical scenario where a wireless user browses
the Internet, these enhancements would require virtually all the computers on the
Internet to change their TCP code. Obviously, these are not practical solutions.

4. Wireless-side enhancements modify the behavior of base station or mobile host.
Examples are the Snoop protocol [5, 6] and the Delayed Duplicate Acknowledg-
ments (DDA) [21]. Since the changes are local to the wireless hosts and links,
these enhancements are considered to be more practical.

Some enhancements, such as Multiple Acknowledgments [9] and Control Connec-
tion [7], require changes at multiple locations. They may fall into multiple categories
and are less desirable.

Although many enhancements have been proposed, not much research work has been
done to analyze the causes of the performance degradation. In order to understand the
nature of the performance degradation, we design a series of simulations to collect TCP
performance data under different loss scenarios, and use stepwise multiple regression
to analyze the leading causes of TCP performance degradation. Our purpose is not to
find an exact formula for calculating degradation in general cases, nor to analyze the
degradation in all configurations, but instead, is to gain insight for future enhancements.
Based on the conclusion of this study, we propose a new enhancement that thoroughly
changes TCP’s timeout behavior and improves the overall performance to a new level.

2 Causes of TCP Performance Degradation

Our analysis of TCP’s congestion control mechanisms [3] indicates that TCP perfor-
mance can be affected by three causes: end-to-end retransmission, unnecessary slow-
down and timeout.

End-to-end retransmission happens in three occasions: when a packet is lost because
of congestion, when a packet is lost due to wireless transmission error but not locally
retransmitted, or when timeout occurs.

The unnecessary slowdown is a direct result of TCP’s false assumption about packet
losses. When a packet is lost because of wireless transmission error, TCP treats the
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packet loss as an indication of congestion and slows down the transmission. Such slow-
down is unnecessary and causes big performance degradation, because every unneces-
sary slowdown reduces the effective transmission rate to half. If wireless transmission
errors happen frequently, the wireless connection can become a trickle.

Timeout can also degrade TCP performance dramatically. TCP Tahoe and TCP Reno
can recover only one packet loss in a window using fast retransmit. Two or more packet
losses (congestion or wireless) in the same window usually result in timeout. When
timeout occurs, it takes many round trip times to bring the transmission rate to the pre-
vious level. On wireless networks, the combination of wireless losses with congestion
losses dramatically increases the chance of timeout.

3 Simulation Design and Data Collection

To collect performance data, we design a series of simulations using the ns simulator
[20]. We choose a simple network model as shown in Figure 1, where s1, s2 are the
sources and d1, d2 are the destinations. The purpose of choosing this simplest network
model is to show the failure of existing enhancements even in such a simple model. The
numbers beside each link represent its rate and delay. The link between intermediate
routers r1 and r2 is the bottleneck link. The link between r2 and d1 is a wireless link.

The experiment traffic is an FTP session from s1 to d1 using TCP Reno as the trans-
port protocol. The background traffic is a UDP flow from s2 to d2 generated by an
exponential on-off model. The mean burst period and the mean silence period are both
100 ms. The burst data rate is 500 kbps. Both TCP and UDP packet sizes are 1000
bytes, and TCP acknowledgments are 40 bytes long.

Link layer retransmission is implemented on the wireless link. Packets sent but not
acknowledged at the link level within 40 ms are resent. Retransmitted packets are also
subject to wireless errors at the same rate. The packet error rate of the wireless link is
varied to test the performance of various enhancements under different loss scenarios.

The simulations are 500 seconds long to smooth out random fluctuations. In each
simulation, we collect the following measurements.

RETRANS: the number of end-to-end retransmissions, including congestion losses,
wireless losses that are retransmitted end-to-end, and packets retransmitted during
timeout periods.

s1 d1

d2s2

r1 r2

10Mb, 1ms 1.5Mb, 1ms

10Mb, 1ms 10Mb, 1ms

1.5Mb, 20ms

Fig. 1. Simulation model
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Fig. 2. Collected data for TCP Reno, ECN, DDA and Snoop

SLOWDOWN: the number of slowdown actions taken at the source. The slowdown
actions can be triggered by duplicate acknowledgments or by ECN-Echo’s when
ECN is used.

TIMEOUT: the number of timeout actions at the source.
GOODPUT: the number of packets successfully received and acknowledged.

The methods we simulate include TCP Reno, Snoop, DDA and Explicit Congestion
Notification (ECN). ECN is not an enhancement for wireless network, but it improves
TCP performance in certain cases by avoiding congestion losses. We have not sim-
ulated pure local link layer retransmission enhancements, I-TCP, Multiple Acknowl-
edgements, Control Connection and other sender-side enhancements because of their
practicality problems. For each method, we collect performance data for 51 packet er-
ror rates equally spaced on the log scale from 0.001 to 0.1. The collected data are
summarized in Figure 2.

4 Regression Methodology and Analysis Results

The goal of our regression analysis is to find a set of variables {X1, X2, . . . , Xm} from
RETRANS, SLOWDOWN and TIMEOUT to form a good regression for goodput:

goodput = b0 + b1X1 + b2X2 + · · · + bnXm. (1)
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By studying the regression model, we hope to find the leading causes of TCP perfor-
mance degradation.

The difficulty in this regression comes from the intercorrelation among variables.
The three variables — RETRANS, SLOWDOWN and TIMEOUT — affect each other.
Adding or removing a variable from the model can significantly affect the coefficients.
Stepwise variable selection is a frequently used procedure to select the minimal set of
variables to constitute a satisfactory regression, especially when the candidate variables
have strong correlations among them [19].

In each step of the stepwise selection, a variable is added to or removed from the
regression model (1). The first variable entered at step 1 is the one with the strongest
positive (or negative) simple correlation with GOODPUT. At step 2 (and at each subse-
quent step), the variable with the strongest partial correlation is entered. At each step,
the hypothesis that the coefficient of the entered variable is 0 is tested using its F statis-
tic. Stepping stops when an established criterion for the F no longer holds.

The entire selection procedure is carried out using the SPSS software. The results
are presented in Tables 1 through 6.

Table 1 characterizes the mean, standard deviation of the variables, which are defined
respectively as

x̄ =
1
n

n∑
i=1

xi and sx =

√∑n
i=1(xi − x̄)2

n − 1
. (2)

Here n = 204 and xi is the observed value in the i-th data entry.

Table 1. Descriptive Statistics

Mean Std. Deviation N
GOODPUT 51340.19 13820.967 204
RETRANS 996.39 316.490 204
SLOWDOWN 744.35 234.828 204
TIMEOUT 167.57 127.428 204

The correlation between two variables x and y is defined as

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)
(n − 1)sxsy

. (3)

The correlation among the collected variables is listed in Table 2. This table reveals
that TIMEOUT has the strongest correlation with GOODPUT, and the correlation level
among these variables is pretty high.

In the stepwise selection, the criterion to enter a variable is that the probability of F
statistic is smaller or equal to 0.05; the criterion to remove a variable from the model
is that the probability of F statistic is greater than or equal to 0.10. Table 3 records the
order that the variables are entered into or removed from the model.

Table 4 summarizes the goodness of each regression model fitting the observed data.
R, the coefficient of multiple regression, is the correlation between the observed and
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Table 2. Correlation

GOODPUT RETRANS SLOWDOWN TIMEOUT
GOODPUT 1.000 -.710 -.504 -.952
RETRANS -.710 1.000 .317 .680

SLOWDOWN -.504 .317 1.000 .469
TIMEOUT -.952 .680 .469 1.000

Table 3. Variable Entered/Removed

Model Variables Entered Variables Removed
1 TIMEOUT —
2 RETRANS —
3 SLOWDOWN —

predicted values of the dependent variable. R2 is often interpreted as the proportion
of the total variation in the dependent variable accounted for by the regression model
(1). R2 ranges from 0 to 1. If there is no linear relation between the dependent and
independent variables, R2 is 0 or very small. If all the observations fall on the regression
line, R2 is 1. This measure of the goodness of fit of a linear model is also called the
coefficient of determination. R2

a, the adjusted R2, is designed to compensate for the
optimistic bias of R2. It is a function of R2 adjusted by the number of variables in the
model and the sample size.

R2
a = R2 − p(1 − R2)

N − p − 1
, (4)

where p is the number of independent variables in the equation. The last column in
Table 4, standard error of the estimate, is the square root of the residual mean square
in the ANOVA table below. It measures the spread of the residuals (or errors) about the
fitted line using the regression model (1).

A noticeable point in Table 4 is that R2, the goodness of fitting, has a very high
value starting from the first model. It indicates that 90% of the variation of goodput can
be explained solely by timeout. Adding SLOWDOWN and RETRANS into the model
increases the coefficient of determination, but the increase is small.

Table 5 is the analysis of variance or ANOVA table. Denote yi as the i-th observed
value of the dependent variable, ȳ as their mean, and ŷi as the i-th predicted value. The
sums of squares for regression, for residual and for total are defined as

Table 4. Model Summary

Std Error of
Model Predictors R R2 R2

a the Estimate
1 (Constant), TIMEOUT .952 .907 .906 4235.416
2 (Constant), TIMEOUT, RETRANS .956 .914 .913 4077.532
3 (Constant), TIMEOUT, RETRANS, SLOWDOWN .958 .918 .917 3985.823
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SS Reg. =
n∑

i=1

(ŷi − ȳ)2, SS Res. =
n∑

i=1

(yi − ŷi)2, SS Total =
n∑

i=1

(y2
i − ȳ)2. (5)

The degrees of freedom are listed in the third column. Mean squares are the sums
of squares divided by their respective degree of freedom. The F statistic is the ratio of
mean square of regression to the mean square of residual. It is used to test the hypothesis
that all regression coefficients are zero:

b1 = b2 = · · · = bn = 0, (6)

i.e., no linear relation exists between the dependent variable and the independent vari-
ables. F is large when the independent variables help to explain the variation in the
dependent variable. Here the linear relation is highly significant (in all three models,
the p value for the F is less than 0.0005).

Table 5. ANOVA

Model Sum of Squares df Mean Square F Sig.
1 Regression 35153253390.678 1 35153253390.678 1959.627 .000

Residual 3623627402.866 202 17938749.519
Total 38776880793.544 203

2 Regression 35435001755.524 2 17717500877.762 1065.633 .000
Residual 3341879038.020 201 16626263.871
Total 38776880793.544 203

3 Regression 35599524396.335 3 11866508132.112 746.942 .000
Residual 3177356397.209 200 15886781.986
Total 38776880793.544 203

The second column of Table 6 lists the estimate of coefficients in the regression
model (1) to compute the predicted values for the dependent variable. The standard
error of the coefficients is listed in the third column. When all variables are transformed
into z-score,

U =
Y − Ȳ

sY
, Zi =

Xi − X̄i

sXi

, (7)

model (1) can be written as

U = β1Z1 + β2Z2 + · · · + βnZn, (8)

with

βi =
SXi

SY
bi, i = 1, . . . , n. (9)

where SXi and SY are the standard deviation of Xi and Y . The β’s are called stan-
dardized coefficients. They are an attempt to make the regression coefficients more
comparable. The t statistic in the next column provides some clue regarding the relative
importance of each variable in the model. They are obtained by dividing the coefficients
by their standard error. Clearly TIMEOUT is much more important than RETRANS and
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Table 6. Coefficients

Unstandardized Standardized
Coefficients Coefficients

Model B Std Error Beta t Sig.
1 (Constant) 68645.314 1490.666 139.902 .000

TIMEOUT -103.269 2.333 -.952 -44.268 .000
2 (Constant) 72267.513 998.691 72.362 .000

TIMEOUT -94.690 3.064 -.873 -30.906 .000
RETRANS -5.078 1.234 -.116 -4.117 .000

3 (Constant) 74879.746 1269.624 58.978 .000
TIMEOUT -90.912 3.217 -.838 -28.262 .000
RETRANS -5.092 1.206 -.117 -4.223 .000
SLOWDOWN -4.341 1.349 -.074 -3.218 .002

SLOWDOWN. The last column is the significance level calculated from the percentile
of the t distribution.

Based on the model consisting of all three variables, performance degradation of
each method is broken down according to the three causes. Figure 3 shows the rela-
tive size of the degradation by the three causes. The projected total degradation and the
actual degradation are also shown. The actual degradation is computed from a hypo-
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Fig. 3. Breakdown of performance degradation
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thetical goodput based on the projection with no retransmission, no slowdown and no
timeout. Obviously timeout makes up the main part of the degradation. Retransmission
is the second leading cause. Slowdown contributes the least to the degradation.

From Figure 2(c)(d) and Figure 3(c)(d), we can clearly see that Snoop and DDA
have poorer performance than TCP Reno when the packet error rate is not very high,
mainly due to their failure to improve TCP’s timeout behavior.

5 A New Enhancement: Congestion Coherence

Analysis results in the previous section suggest that a thorough enhancement must
change TCP’s timeout behavior. We can achieve this by stopping using packet losses as
the mechanism for delivering congestion signals. Based on these findings, we propose
an enhancement called Congestion Coherence. We assume that TCP connections use
ECN [17] to deliver congestion signals, and the wireless link performs local link layer
retransmission for corrupted packets.

– The TCP destination follows existing algorithm for sending new acknowledgments,
first and second duplicate acknowledgments.

– When the third duplicate acknowledgment is to be sent, TCP destination checks
whether the coherence context is marked. If yes, the acknowledgment is sent right
away. Otherwise, it is deferred for w ms, which is predetermined according to the time
to complete a local link layer retransmission. A timer of w ms is started.

– If the expected packet arrives during the w ms, a new acknowledgment is generated
and the timer is cleared.

– If the timer expires, all deferred duplicate acknowledgments are released.

Fig. 4. Congestion Coherence Destination Algorithm

– The TCP source follows existing algorithm for sending packets and updating the con-
gestion window upon receiving new acknowledgments, and first and second duplicate
acknowledgments.

– When the third duplicate acknowledgment arrives, the source checks whether any
acknowledgment in the coherence context is an ECN-Echo. If yes, the packet cor-
responding to the duplicate acknowledgments is sent right away and the congestion
window is reduced to half if a reduction has not been done in the previous RTT. Other-
wise, the source ignores the duplicate acknowledgment and a timer of w ms is started.

– If a new acknowledgment arrives during the w ms, the timer is cleared and new packets
are sent as if the duplicate acknowledgments did not happen.

– If the timer expires, the packet corresponding to the duplicate acknowledgments is sent
and the congestion window is reduced to half if a reduction has not been done in the
previous RTT.

Fig. 5. Congestion Coherence Source Algorithm
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Fig. 6. Performance of Congestion Coherence compared with current enhancements

The scheme to determine the cause of packet losses is based on the observation that
congestion neither happens nor disappears suddenly. Before congestion becomes so se-
vere that a packet has to be dropped, some packets must be marked as “Congestion
Experienced” by ECN. Similarly, after a packet is dropped, congestion does not disap-
pear immediately. The queue size falls gradually and some packets are marked. As a
result, congestion losses are normally preceded and followed by marked packets. We
call this phenomenon the congestion coherence of ECN marking.

In contrast to the congestion loss situation, if none of the neighbors of a lost packet
is marked, the lost packet is most likely lost due to a wireless error. In such cases, the
wireless host holds the duplicate acknowledgments until the packet is successfully re-
ceived through retransmissions on the local link layer. There are cases where a wireless
loss happens during congestion and the Congestion Coherence algorithm may make a
mistake in determining the cause of packet loss. But the congestion control actions are
needed because of the on-going congestion.

Figures 4 and 5 show the modified destination and source algorithms. It should be
noticed that the modifications to the receiving and sending algorithms are made on the
same end. The Congestion Coherence algorithm at the wireless end hides the lossy
characteristic from the other end. So no change is needed in the fixed end, intermediate
routers or the base station.
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The performance of Congestion Coherence and its comparison with other methods
are summarized in Figure 6. Clearly the timeout and retransmission behaviors have
been thoroughly improved and the overall performance of Congestion Coherence is
much better than Snoop, DDA and other methods.

6 Conclusion

Through simulation results, stepwise multiple regression and breakdown of perfor-
mance degradation, we have demonstrated that timeout is the dominant cause of TCP’s
performance degradation over wireless links. Future wireless TCP enhancements must
change TCP’s timeout behavior. Simulations indicate that our new enhancement thor-
oughly changes TCP’s timeout behavior and has much better improvement than existing
enhancements.
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Abstract. Wireless network has been used widely because its convenience, 
agility and no cable. But we can find the critical problems for wireless LAN are 
communication bandwidth, reliability and security. This paper will introduce 
our wireless network router NPU-1. It has not only generic route functions, but 
it also has some special functions for wireless network such as access point, 
wireless bonding, PPPoW etc. Specially, in order to solve the wireless network 
problems of bandwidth limit and unstableness, we have put forward a self-
adaptive bonding method which can solve above problems well. The key issues 
for this technology are bundling multiple wireless connection to improve the 
bandwidth and selecting better channel automatically based on monitoring the 
signal strength and communication quality to improve the bandwidth and sta-
bleness. This router can support wireless connection automatic recovery, auto-
matic fail-over and it can support to connect wireless and wired LAN easily and 
seamlessly. 

1   Introduction 

If you are integrating a network which combines wireless and wired LAN, You will 
find although wireless LAN has been used widely and its technology develops 
quickly[1, 3], it still has some critical problems such as communication bandwidth, 
reliability and security[1-7].  Supposing you want to connect two or more buildings or 
parts or sub-campus of a university or a company, you can not use wired network 
because some results. It is evident that using wireless LAN is the best solution. You 
know, for wired Ethernet, its speed is usual 100Mbps or 1000Mbps. By now, wireless 
Ethernet can only achieve the speed of 11Mbps or 54Mbps. Moreover these speeds 
are only ideal value. In real application, it can only get about 60%-70% of their ideal 
values. So, this is too slow comparing with wired LAN. If we can not find the way to 
improve the wireless bandwidth, this will be a bottleneck of communication in this 
kind of applications. Second, because the air interfering, the communication quality 
for each channel is variable. Some time it is good and some time it becomes bad. So 
we need to monitor the performance of communication, to select better channel to 
use. This paper will introduce our wireless router NPU-1 which can effectively solve 
these problems and it can also support wireless and wired LAN connection easily and 
seamlessly. 
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2   Hardware Architecture 

Figure 1 shows the system hardware Architecture of NPU-1. It consists of an AMD 
ELAN SCS520 CPU, 64 M bytes memory, two 100 base TX Ethernet devices, two 
PC card slots which are used to put wireless cards in, two serial ports which are for 
connecting modem or serial console. In this system, it also has a 64M bytes flash 
memory which is for storing embedded operating system kernel and all applications. 
We use two Z-COM wireless cards whose speeds are 11Mbps (802.11b).  Of course, 
54Mbps D-link wireless card is also supported by this system. This is only version 
1.0. Now it can only support two wireless cards. Version2.0 will support 4 wireless 
Ethernet devices. We use PC card is because it can support plug and play and we can 
control its power on/off easily. We find some time power off and then power on is 
very effective for recovering wireless Ethernet device. Otherwise we find lots of ap-
plications are located in remote and rural areas and there is no high speed internet 
service. Besides to select wireless connection, users can use modem to get internet or 
intranet service. If one modem’s bandwidth is not enough, we can use two or more 
modems’ bonding to provide higher speed connection.  Also you can select wireless 
connection as primary connection and modem connection as backup connection.  
NPU-1 has two power supplies. One is AC power. Another one is a DC power. Nor-
mally AC power will work. When AC power supply has some problem, the system 
will switch to DC power supply automatically and will inform system administrator at 
same time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Fig. 1. Hardware Architecture 

3   Software Architecture 

For this system, its software architecture has four layers. The bottom is all device 
drivers such as wireless Ethernet device driver, Ethernet device driver, modem device 
driver, serial port driver and so on. The next layer is embedded operating system 
kernel which provides process management, file system management, network  
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management and I/O management. Third layer from the bottom consists of all appli-
cations.  NPU-1 has very abundant applications. Here we only list small part. The top 
layer is user interface which we call it as command line. Users can easy configure this 
system through using the command line.  By the way, we call whole software system 
as NPUOS. This is a convergence gateway operating system designed specifically for 
internet or intranet applications. Figure 2 shows the system software architecture.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                       Fig. 2. Software Architecture 

    NPUOS’s feature set includes: 

• Routing Engine - This system supports generic route functions such as RIP, BGP 
and OSPF etc. 

• Firewall - This system supports two level firewalls.   
• SVPN – This system supports PPTP, L2TP and IPSEC. 
• Quality-of-Service 
• Wireless IP 
• PPPoW 
• Accounting, Management, and Authentication. 
• Bonding 
• VLAN 
• Security tunnel 

    Using PPPoW (Point to Point Protocol over Wireless) in wireless is one of character-
istic of our system. PPPoW comes from PPPoE. PPPoE is the short for Point to Point 
Protocol over Ethernet. PPPoE is mainly used at ADSL networks. Through analyzing, 
we find ADSL is actually a large public network where the ADSL concentrator acts like 
a regular Hub; the possibilities for abuse are there. For example one might hook up an 
ADSL modem and just use any IP address within the valid range he wants. In fact, for a 
wireless network, it is as same as ADSL in this point. Wireless networks are actually 
bridged networks where every node or client is attached to each other, the possibility of 
abuse are also present. By using PPPoE we can maintain and keep the wireless network 
safer.  Briefly say the benefit of using PPPoE in wireless LAN includes: 

Command Line 

Device drivers 

Embedded Operating System Kernel 

 
VPN 

 
PPP 

 
Route 

 
Bonding 

 
PPPoW 

 
Wireless   

AP 

 
QoS 

 
Fire-
wall 



 The Study and Implementation of Wireless Network Router NPU-1 509 

• Using user authentication by user name and password, we can avoid some inter-
lopers come in. 

• Using Radius as auth server, we can manage all users centrally. This will be good 
for wireless network security and this will make system management easily and 
effectively also. 

    Besides this, we have added some new functions such as automatic recovery and 
automatic change channel etc. based on the problems of wireless network. We call 
this new composite function (PPPoE plus some Add-ons functions) as PPPoW. 

4   Self-adaptive Bonding Method 

Bonding [3, 6] is kind of technology which can combine two or more communication 
links into one virtual link which has more bandwidth. Ideally this bandwidth will 
equal the sum of all real links’ bandwidth. During application, it will split all TCP/IP 
sessions and distribute their data packets over separate links at same time, across 
multiple connections, and then recombines them in the correct sequence at the service 
provider for delivery on to the internet or intranet. Each and every TCP/IP session 
will gain the combined throughput of all the multiple internet connections. This is 
transparent to users and applications. Besides, this service will decrease your down-
time by utilizing multiple connections and will enhance system reliability by redun-
dant links. 
    For our bonding, it has following features: 

 High Availability  
The combination of multiple Connections will ensure that your network communica-
tion will not be subject to any connection related access failure. This method can 
reduce downtime. 
• Connection Redundancy 
Automatically detects downed Connections and fails-over to the remaining connec-
tion(s). 
• Automatic Recovery 
Automatically detect the recovery of the connection and immediately re-combines the 
connection back into the bonding session. Instantaneously it gains back the bandwidth 
throughput of that connection. 
• Automatic Fail-Over 
Automatically fails down to any available Connections. This means that in the event 
of a catastrophic service failure, the customer network will fail-over back to regular 
Internet access. 
• Automatic Select Channel 
Automatically select channel when the signal strength and communication quality is 
not good for the channel being used. 
• Automatic Reset Wireless Ethernet Device 
Automatically reset wireless Ethernet device when the system finds this device can 
not come back within a given time. This is implemented by power off and power on 
this wireless device. 
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                  Fig. 3. Bonding process flow chart 

 
• Self-adaptive Feature 
The system can adjust itself automatically based on application environment. Figure 3 
shows this bonding process flow chart. 
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and another side will use the decrease sequence to do same thing. But the intervals 
between changing the test channel are different. One side is fast and another side is 
slow. This interval depends on the channel number in the possible channel set. This 
algorithm is just like there are two wheels. Each side has one. One wheel rotates 
clockwise. Another wheel rotates anti-clockwise. One is fast and one is slow. The 
difference of two speeds equals the channel number in the possible channel set. It is 
evident we can select a better channel through monitoring the signal strength and 
communication quality. Using two different speeds is for avoiding two sides can not 
synchronize. For the bonding, it has two algorithms to transmit data. One is round-
robin. Another one is trying best algorithm. Based on our test, the bonding bandwidth 
of two wireless connections can achieve to the 1.95 times of the bandwidth of one. 

5   Conclusion and Future Work  

This paper presented a simple, useful, effective wireless network router. It not only 
has generic route functions, but also has some special functions for wireless network. 
In order to improve wireless network bandwidth and reliability, we have put forward 
a self-adaptive bonding technology. In order to improve the wireless network security, 
we have provided many methods to solve this problem such as PPPoW, VPN, security 
tunnel and so on.  We can summarize the strongpoint of this system here.  

• Specially designed for wireless network applications 
• Support wireless and wired LAN connection seamlessly 
• Increased bandwidth  and decreased downtime  
• Reduced costs  and high availability  
• Automatic fail-over and  connection redundancy  
• Managed solution 
• Support VPN, PPPoE, VLAN 
• Firewall , IP-QoS 

    Next step, we will add some new functions based on mobile computing demand  
[2, 3, 5], and make it to support Ad Hoc network and so on.  
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Abstract. In this paper, we study power conservation techniques for
multi-attribute queries in a wireless data broadcast environment. Most
existing indexing techniques are based on a centralized tree structure and
thus are inefficient for sequential-access wireless broadcast media. To con-
serve energy for mobile devices while maintaining acceptable data access
latency, we extend the exponential index for single-attribute queries to
multi-attribute queries. By maintaining a distributed structure and mak-
ing full use of indexing space, the exponential index can reduce the energy
consumption considerably. We conduct experiments to evaluate the per-
formance of the extended exponential index against the well-known dis-
tributed tree index. The results show that the exponential index achieves
a better performance than the index tree method.

1 Introduction

Recent advances in wireless networks and mobile computing have attracted an
increasing interest in wireless devices among both industrial and academic com-
munities. Point-to-point and periodic broadcast are two fundamental delivery
methods for wireless data services [7]. Compared with point-to-point data access,
wireless data broadcast is an attractive and important service for data dissemina-
tion in mobile environments [1][10]. It allows simultaneous access by an arbitrary
number of mobile clients, and thus makes use of the limited wireless bandwidth
efficiently. Moreover, by monitoring the broadcast channels mobile clients need
not send requests to the server, which can conserve battery power. Many studies
have been carried out to develop data dissemination schemes [1][2][3][14].

In the literature, access latency and tuning time are two main performance
metrics that are used to measure access efficiency and power conservation, re-
spectively [8][11]:
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• Access Latency: The time elapsed from the moment a query is issued to the
moment the requested data is responded.

• Tuning time: The amount of time a mobile client stays active to obtain the
requested data.

To facilitate power conservation, a mobile client needs to support switching
between the active mode and the doze mode. For instance, a typical wireless
PC card, ORINOCO, consumes 60 mW during the doze mode and 805-1,400
mW during the active mode [15]. Mobile client switches to the active mode to
retrieve the indexing information, predicts the arrival of desired data. It then
stays in the doze mode until when the desired data arrives. Different indexing
techniques achieve different trade-offs between access latency and tuning time.
A distributed tree indexing scheme was proposed in [10]. And in [16], Xu et al.
studied a tunable distributed indexing scheme namely exponential index.

Most existing studies focus on indexing techniques for queries with single at-
tributes. However, the application data items usually contain multiple attributes.
Thus, it’s important to develop power conserving indexing techniques for multi-
attribute queries. In this paper, we extend the previously proposed exponential
index to multi-attribute queries. For data items with multiple attributes, we
make one attribute clustered and other attributes non-clustered. In the expo-
nential method, we construct the index for each attribute separately. For the
clustered major attribute, the exponential index will index the whole broadcast
cycle. For a non-clustered attribute, the exponential method will index index
data space up to a proper data item within the next meta-segment. We compare
the exponential index with existing distributed tree index for multi-attribute
data queries. A performance analysis of both techniques in terms of the access
latency and initial probing time are provided. Experiment results show that the
exponential index gives superior performance to the tree index.

The rest of the paper is organized as follows. Section 2 gives the background
for indexing data and reviews related work. In Section 3, we introduce the pro-
posed exponential index and access methods for multi-attribute data access.
Section 4 evaluates the indexing techniques and analyzes the evaluation results.
Finally, we conclude the paper in Section 5.

2 Background

2.1 Preliminaries

Consider a data dissemination system that periodically broadcasts a collection of
data items with multiple attributes (e.g. stock quotes) to mobile clients through
the broadcast channel. Each data item is a tuple of attribute values, and can be
identified by a set of key values. Similar to [8][11], the logic unit of information
broadcast on the air is referred to as a bucket, which physically consists of a fixed
number of packets which are the physical unit of broadcast. The buckets that
hold the index and possibly some data are called index buckets, and the buckets
that hold only the data are called data buckets. A complete broadcast of index
buckets and data buckets is called a broadcast cycle.
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Broadcast can be classified as flat broadcast and skew broadcast [1][2]. Flat
broadcast broadcasts each bucket once in a broadcast cycle. And a bucket may
appear more than once in skew broadcast schedule, called broadcast disk. Broad-
cast disk is useful for reducing the average access latency for non-uniform data
access. However, it increases the length of broadcast cycle and the tuning time
of the clients. For multi-attribute data items, a cycle can be organized in broad-
cast disk based on one of the attributes [8][9]. Thus broadcast disks are not
suitable for data items with multiple attributes. In contrast, flat broadcast is
simple and achieves a good performance for queries requesting multiple items
[13]. Therefore, in this paper, we assume that flat broadcast is used.

Clustered broadcast and non-clustered broadcast are two basic data organiza-
tions with respect to an attribute within a broadcast cycle. For the clustered
data organization, clients can retrieve all data items with the same value of
the desired attribute value consecutively; otherwise, they are non-clustered. A
broadcast cycle can only be clustered based on one attribute. For data items
with multiple attributes, we can make one attribute clustered and the other at-
tributes non-clustered. For non-clustered attributes broadcast cycle can be par-
titioned into a number of segments called meta-segment, each of which holds a
sequence of items with non-descending (or non-ascending) values of the attribute
[8][10]. Thus, when we look at each individual meta-segment, the data items are
clustered on that attribute and the indexing techniques developed for clustered
broadcast can still be applied to a meta-segment. To facilitate our study, the
scatter factor of an attribute is defined as the number of meta-segments for the
attribute in the broadcast cycle. Thus we assume that the data items within
a broadcast cycle are partitioned into meta-segments based on the multiple at-
tributes in turn.

2.2 Related Work

Several indexing techniques have been proposed to solve air indexing. Imielinski
et al. applied the B+ index tree [10]. The distributed indexing technique was
proposed to efficiently replicate and distribute the index tree in a broadcast
cycle. Chen et al. proposed unbalanced tree structures to minimize the average
search cost to conserve the energy for non-uniform data access [5]. Xu et al.
proposed exponential index [16] enhances the flexible index in at least three
aspects: 1) exponential index allows indexing spaces to be partitioned at any
base value; 2) intelligently exploits the available bucket space for indexing; 3)
allows the current broadcast cycle to index into the next cycle to complete an
efficient search.

Hu et al. investigated the index tree and signature index for multiple at-
tributes queries for consideration of power conservation [8][9]. Moreover, they
developed a hybrid indexing scheme that takes the advances of both the tree
index and signature index. Other related work include: Data scheduling in the
papers [6][13][14], which focus on efficient data disseminations. Broadcast of
location-dependant data [17], which studies different aspects of broadcast. They
try to improve the reliability of data transmission.
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3 Exponential Index for Multiple Attributes

In this section, we investigate the application of the exponential index technique
to broadcast data with multiple attributes. The comparisons between the expo-
nential index and the tree index in terms of access time and probing time are
presented in the next section.

We first describe the system parameters used in our study before we discuss
the multi-attribute exponential indexing technique. We assume that there are n
common attributes in each data item. We sort the attributes based on their access
frequency. Let the ordered attributes be a1, a2, . . . , am, and their corresponding
query probabilities be p1, p2, . . . , pm, where pi ≥ pi+1 (1 ≤ i < m). a1 called the
major attribute, is the most frequently accessed attribute and all other attributes
are called minor attributes. Table 1 summarizes the parameters that we used.

Table 1. Summary of Parameters

Notation Description

N Number of data items
M Attribute number in a data item
Q Attribute number in a query (1 ≤ q ≤ m)
Si Percentage of data items with required attribute

A multi-attribute query generally contains more than one attribute and con-
sists of many combinations of Boolean operators, such as conjunction (∧) and
disjunction (∨). For simplicity, we only consider the query with either all con-
junction or all disjunction operators.

We use Q{a1 ∧ . . . ∧ am} to denote a q-attribute conjunction query, and
Q{a1 ∨ . . . ∨ am} to denote a q-attribute disjunction query.

For a multi-attribute data set, we can construct exponential index for each
attribute separately. The selectivity and access probability are two main factors
that influence the index efficiency. We have to determine the order of attribute
to be indexed, thus to get a trade-off between the access probability and the
attribute selectivity. Based on research result in [10], data access is more effi-
cient for clustered attribute than for non-clustered attribute. Since data items
can be clustered on one attribute, we cluster data items based on the major
attribute (i.e., a1). Therefore, other attributes are non-clustered. The broadcast
cycle is partitioned separately by m attributes of the data items, and we can
denote the scattering factor as Mi . Mi increases with the footnote i. The value
of Mj depends on Si and inter-relation between ai and aj , where i < j. For
simplicity, we assume that the attributes are random and independent. Based
on this assumption, we can get a simple estimation on Mi:

Mi =
1

i−1∏
j=1

Sj

(1)

M1 = 1.
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We also assume that, each attribute has a pointer, which point to the sub-
sequential data item with the same attribute value. Based on this assumption, we
can retrieve all the data items with the desired attribute once we find just one.

3.1 A Simple Example

Assume a server broadcasts stock information with three attributes periodically
(e.g., stock ticks, prices, trading volumes, etc). Suppose the server maintains 16
stock items that are arranged in a broadcast cycle in ascending order based on
their identifiers. The other two attributes are also clustered separately within
the meta-segment partitioned by the former attributes.
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Fig. 1. A Simple Exponential Index for Multi-attribute Index

For simplicity, each bucket holds only one data item and the index informa-
tion. As shown in Figure 1, each bucket contains a data part and three index
tables. The index table for the major attribute identifier consists of four entries.
Each entry indexes a segment of buckets in the form of a tuple {distInt, maxKey},
where distInt specifies the distance range of the bucket from the current bucket
(measured in the unit of buckets), and maxKey is the maximum identifier value of
these buckets. The sizes of the indexed space grow exponentially. The first entry
describes a single bucket segment (i.e., the next bucket), and for each i > 1, the
ith entry indexes the segment of buckets that are 2i−1 to 2i − 1 away (i.e., 2i−1

buckets). The index table for the second attribute consists of two entries. Each
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entry indexes a segment of buckets within the meta-segment. However, instead
of indexing a whole broadcast cycle, the index table for the second attribute
describes the buckets up to the farthest one in the next meta-segment whose
second attribute value is less than that of the current bucket. In the case that
there is no bucket whose second attribute is less than the current bucket’s, the
index table will index up to the last bucket in the current meta-segment. As
shown in Figure 1, the index table for second attribute in bucket 1 indexes up
to bucket 3, since in the next meta-segment there is no bucket whose second
attribute is less than that of bucket 1. And the index table in bucket 4 indexes
up to bucket 8, because bucket 8 is the farthest one whose second attribute is less
than that of bucket 4 in the next meta-segment. The index table for the third
attribute indexes the buckets within the meta-segment partitioned by the major
attribute and the second attribute.

Suppose that a client issues a query Q{B, 5, b} right before bucket 1 is broad-
cast. The client tunes into the broadcast channel and retrieves the index table
in bucket 1. Since ”B” falls between the second index entry and the third index
entry, the target item must lie in the buckets that are 2 to 3 slots away. The
client stays in the doze mode until bucket 3 is broadcast and then checks the
index table. Since ”B” matches the first index key, the target item must be lo-
cated in the following buckets. Once the bucket 4 is broadcast, the client checks
the major attribute, and it matches. Moreover, the client checks the index table
for the second attribute, the client then finds that target item must lie in the
buckets that are 2 to 3 slots away. Switches to doze mode, and tunes into the
broadcast channel when bucket 5 is broadcast. It then retrieves the desired item

in next bucket. The worst tuning time is bounded by
3∑

i=1
O(Milog2N).

3.2 Implementation

Table 2 summarizes the notations used in the following descriptions. Let B
denote the number of data items that a bucket without an index can hold. Let
B′ denote the number of data items with an index. The value of B′ is a function
of the parameters of I and r. The value of r is difficult to determine because the

Table 2. Summary of Notations

Notation Description

N Number of data items
B capacity of a data bucket without an index
B′ capacity of a data bucket with an index
so size of a data item
se size of a index entry
I Chunk size
r Index base
C Number of chunks in a broadcast cycle
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bucket number in a meta-segment varies greatly. To simplify our experiment, we
set the value of r as 2 and the value of I as 1. Based on the analysis in [9], we
can get the chunks number of ith attribute in a broadcast cycle:

Ci ≤ 2nci (2)

where Ci = N/Mi

We get the formula which shows how many data items a bucket can hold:

B′ ≤ B −
se ×

m∑
i=1

nci

so
(3)

Therefore, the maximum value of B′ can be obtained by numerically solving
the following inequality:

B′ ≤ B −
se ×

m∑
i=1

log2
N
Mi

so
(4)

The general access method for Q{a1 ∧ . . . ∧ am} is:

Algorithm 1. Multi-attribute Index Search for the Exponential Index
1: wait until the first bucket of next chunk is broadcast
2: for each data item in the bucket do
3: if it is the requested data item then
4: stop the search and retrieve the desired items
5: end if
6: end for
7: initial probe the exponential index built on ai within the segment

qualified for ai−1
8: search the exponential index based on ai , follows a list of pointers

to find out the arrival time of the desired data item

The general access method for Q{a1 ∨ . . . ∨ am} is:

Algorithm 2. Multi-attribute Index Search for the Exponential Index
1: wait until the first bucket of next chunk is broadcast
2: for each data item in the bucket do
3: if it is the requested data item then
4: stop the search and retrieve the desired items
5: end if
6: end for
7: client search for any exponential index built on a1, . . . , aq, simultane-

ously, determines when the next item with index are broadcast
8: search the exponential index built on a1, . . . , aq, follows a list of point-

ers to find out the arrival time of the desired data item
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4 Performance Evaluation

This section evaluates the performance of the proposed multi-attribute exponen-
tial index. We develop a simulator based on ns-2 to simulate the GPRS wireless
network with reliability classes 2 and 3 [4][12]. We compare our proposed expo-
nential index with the multi-attribute tree index proposed in [8][9]. The study
addresses two kinds of Boolean query expressions: conjunction and disjunction.

Table 3. Parameters Settings

Parameter Setting Parameter Setting
N 10000-1000000 B 3
so 400 bytes se 8 bytes
S 0.01 m 3

Table 3 lists the parameters settings used in the comparisons. We assume that
a data item contains three attributes. Flat broadcast is used for data broadcast.
To simplify the evaluation, the selectivity of all the attributes is set to the same
value (i.e., 0.01). A bucket consists of three data items and a data item contains
400 bytes. The index entry size is 8 bytes. We compare the indexing schemes
in terms of the tuning time and access latency, both of which are measured in
the unit of bucket. And we normalize the experiment results by the latency of a
non-index scheme, i.e., � N

2B �.

4.1 Comparison of Conjunction Queries

In this set of experiments, we use the queries with three attributes a1, a2, and a3.
Figures 2 and 3 illustrate the access latency and the tuning time for Q{a1∧a2∧
a3} when the broadcast cycle is varied. As Figure 2 shows, the access latency of
the index tree is longer than that of the exponential index, because the tree index
needs to use a whole bucket to hold the index tables and to replicate some of
the buckets. This makes the overhead of the index tree too large, thus the access
latency is worse than that of the exponential index. As expected, the tuning time
performance of the exponential tree is better than that of the tree index. The
exponential index has a linear yet distributed structure. Hence it enables an index
search from the next bucket immediately, there by saving the access latency.

4.2 Comparison of Disjunction Queries

This section compares the access latency and tuning time performance of disjunc-
tion queries. In Figures 4 and Figures 5, the experiment results for Q{a1∨a2∨a3}
are shown. The performance of the exponential index is much better than that
of the index tree method. The disjunction queries tuning time of index tree in-
creases rapidly with the increasing database size. This is due to the increasing
number of buckets that hold the index table in each meta-segment. For the ex-
ponential index, the searching space can be extended to the next meta-segment,
which uses the index resource more efficiently.
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5 Conclusion and Future Work

In this paper, we have extended the exponential index to answer multi-attribute
queries. Simulation experiments have been conducted to evaluate the perfor-
mance of the extended exponential index against the existing distributed tree
index. The results show that the exponential index outperforms the tree index in
terms of access latency and tuning time. This is because the exponential index
can exploit the available space and naturally facilitate the index replication by
sharing link in different trees, thus minimizing the storage overhead and con-
serving the client energy.

In this paper, we only compared two indexing schemes with simple query
conditions (i.e., conjunction, disjunction). In the future, we will investigate more
complicated queries and develop corresponding cost models to estimate the per-
formance of multi-attribute indexing techniques.
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Abstract. With a current basic Network Mobility (NEMO) Support, all the 
communications to and from a node in a mobile network must be able to go 
through the bi-directional tunnel established between the Mobile Router and its 
Home Agent when the mobile network is away from the home. One of the is-
sues in designing mobile network with MR-HA bi-directional tunnel is to solve 
the route optimization problem in the nested mobile networks. Since the aggre-
gated hierarchy of mobile networks becomes a single nested mobile network, in 
order to forward packets to the nested mobile network nodes, multiple levels of 
bi-directional nested tunnels are required. We propose a hierarchical mecha-
nism that allows direct packet tunneling between HA and MR and allows local-
ized mobility management for MR. 

1   Introduction 

A mobile network is an entire network, moving as a unit, which dynamically changes 
its point of attachment to the Internet and its reachability in the topology[1]. A mobile 
network is connected to the global Internet via one or more Mobile Routers (MRs). 
With a current basic Network Mobility (NEMO) Support[3], all the communications 
to and from a node in a mobile network must go through the bi-directional tunnel 
established between the Mobile Router and its Home Agent(HA) when the mobile 
network is away from the home. Basic support protocol for mobile network is based 
on mobile IPv6[4]. When the MR moves away from the home link and attaches to a 
new access router, it acquires a CoA(Care-of Address) and immediately sends a  
Binding Update(BU) to its HA as described in [3]. And the MR may also include 
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information about the mobile network prefix in BU, so that the HA can forward the 
packets destined for nodes in the mobile network to MR. 

When a packet is sent by a correspondent node(CN) to a node in the mobile net-
work, it gets routed to the HA of the MR. And the HA tunnels the packet to the MR. 
The MR decapsulates the packet and forwards it to the node. On the other hand, if the 
node in the mobile network sends a packet to the CN, the MR tunnels the packet to 
the HA. In this way, mobile network nodes don't change their own points of attach-
ment as a result of the movement of mobile network.  

However, a mobile network may be nested. Using the proposed protocol by [3] on 
the nested mobile network, it builds a tunnel within a tunnel overhead limit. In order 
to avoid this overhead, it is required to optimize the routing path from the MR in the 
nested mobile network to the HA of the MR.  

In this paper, we propose the route optimization based on the hierarchical algo-
rithm for nested mobile network, it can reduce the amount of signaling between MR 
and HA. Nested mobile network has an aggregated hierarchy of mobile networks, so 
the hierarchical mobility management is well applicable. Our proposal can give local-
ized mobility management functions as well as route optimization for the nested mo-
bile networks. 

This paper is organized as follows. Section 2 shows the routing problems in a 
nested mobile network. In section 3, we explain the other proposals as related works. 
In section 4, we present how our solution operates. Performance evaluation of the 
proposed solution is followed in section 5. Finally, in section 6, we present some 
concluding remarks. 

2   Routing Problem of Nested Mobile Network  

Nested mobile network is considered[2] since it is one of the requirements of mobile 
network. By allowing other mobile nodes to join a mobile network, it is possible to 
form an arbitrary level of nested mobile networks. Fig. 1 represents an example of 
nested mobile network. using NEMO Basic Support, the flow of packets between a 
Local Fixed Node, LFN, and a Correspondent Node, CN, would need to go through 
three separate tunnels, illustrated in Figure 2. 
With such nesting, this leads to the following problems[10]: 

• Sub-optimal routing : Both inbound and outbound packets will flow via the 
HAs of all the MRs on their paths within the mobile network, with an in-
creased latency, less resilience and more bandwidth usage. 

• Increased Packet Size : An extra IPv6 header is added per level of nesting to 
all the packets. 

In particular, with NEMO basic support, each Mobile Router is attached to another 
Mobile Network by a single interface, and if loops are avoided, the graph will be a 
tree[3].  
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Fig. 1. An example of nested Mobile Network 

 

Fig. 2. Nesting of bi-directional tunnels 

3   Related Work 

Route optimization with RRH(Reverse Routing Header)[5] allows the building of a 
nested mobile network avoiding the nested tunnel overhead. It uses a new routing 
header, called the RRH, to provide an optimized path for the single tunnel. RRH re-
cords the route out of the nested mobile network and can be converted into a routing 
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header for packets destined to the mobile network. In Fig. 1, when LFN(Local Fixed 
node) sends a packet to CN, the first MR on the path(MR3), tunnels the packet to its 
HA(MR3_HA), adding RRH with N = 3 in pre-allocated slots. The second router on 
the path, MR2, overwrites the source address of the packet with its own CoA, putting 
the old source address in the first free slot of RRH. The process followed by the sec-
ond router is repeated by all the routers on the path, including the top level MR. When 
the packet leaves MR1, the source address is MR1’s CoA and the RRH is MR2_CoA | 
MR3_CoA | MR3_HAddr(Home Address). When the MR3_HA receives the packet, 
it looks at the bottom entry, MR3_HAddr. This entry is used as an index into the 
binding cache. MR3_HA stores two items in the bind cache entry associated with 
MR3. One is the address entry from RRH, to be used to build the extended type 2 
routing header. And the other is a packet source address MR1_CoA, to be used as the 
first hop. The routing header is built out of the previous RRH.  

In [5], type 2 routing header(RH2) that is defined in [4] is extended to contain 
more than one address. Processing the extended RH2 inherits from the RH type 0 
described in [6]. The last address of extended RH 2 must be the home address of the 
MR. Using RH2, the path from CN to LFN is CN -> MR3_HA -> MR1 -> MR2 -> 
MR3 -> LFN. 

Binding updates are still used for home registration and de-registration, but only 
when the MR registers for the first time with HA. The full path to the MR is con-
tained in every packet from MR to HA, and HA must maintain the list of reverse 
routing headers for each mobile router. This is more expensive to maintain than bind-
ing cache. The extended RH2 is also introduced in [9], but it is not standard. Thus 
extended RH2 must be used more carefully. 

4   Hierarchical Route Optimization in Nested Mobile Network 

In fig.1, if a CN sends a packet to MN using the proposed solution in this paper, the 
path from CN to LFN will be: CN-->MR3_ HA -->MR1-->MR2-->MR3-->LFN. 

Our solution extends HMIPv6[7] slightly to support the nested mobile network. In 
our solution, MAP(Mobility Anchor Point), which is newly introduced in HMIPv6, 
can be pre-located in a gateway to the Internet. A root-MR can act as a MAP as well.  

4.1   Binding Updates 

In fig. 1, MR1(root-MR) becomes a MAP and entire nested mobile network becomes 
a local MAP domain. All MRs and MNs in the nested mobile network (i.e. MR2, 
MR3, MR4 and MN) configure RCoA(Regional CoA) based on the mobile network 
prefix of the root-MR(MR1) and configure LCoA(On-link CoA) based on the mobile 
network prefix of its access router(MR or fixed router) as described in [7]. For exam-
ple, MR3 configures LCoA based on the prefix of MR2. Thus, MR2’s LCoA is iden-
tical with its RCoA.  

The MR1’s MAP option must be included in router advertisements(RAs) of all 
routers in the nested mobile network. In addition to the basic MAP option of 
HMIPv6, current CoA of MAP(MR1) is included in RA. The MAP’s CoA must also 
be included in RAs of all routers in the nested mobile network as the MAP option. 
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In order to simply explain our solution, we focus on MR3 in fig. 1. When MR3 
moves into MAP-MR1 domain, it receives RA with the MAP option containing 
MR1’s home address and MR1’s current CoA. After forming the RCoA and LCoA, 
MR3 sends a BU to MR1 as described in [7]. However this BU message contains 
mobile network prefix option[3] in order to inform the MAP(MR1) of the prefix in-
formation for the mobile network. The mobile network prefix is used for route opti-
mization. When MN sends a local BU to MR1, it just operates as described in [7]. 
Table 1 represents a subset of binding cache table stored in MR1 as a result of local 
BUs of all sub-MRs and MN.  

Table 1. Subset of MR1’s binding cache 

Node RCoA LCoA Network Prefix 
MR2 MR2_RCoA MR2_LCoA Mobile Network Prefix of MR2 
MR3 MR3_RCoA MR3_LCoA Mobile Network Prefix of MR3 
MR4 MR4_RCoA MR4_LCoA Mobile Network Prefix of MR4 
MN MN_RCoA MN_LCoA - 

 
After receiving a binding acknowledgement from the MAP(MR1), MR3 sends BU 

to MR3_HA as described in [3]. Thus, the RCoA of MR3 is used as the CoA of MR3. 
And this BU message contains a new option to inform the MR3_HA of the 
MR1(MAP)’s current CoA. MR3_HA records this CoA together with the binding 
update entry in its binding cache. And this MR1’s CoA will be used as the destination 
address of all packets being forwarded to MR3. 

4.2   Hierarchical Route Optimization  

Every MR(including root-MR) in the nested mobile network must not encapsulate the 
packet, if the source or the destination address of packet is RCoA. Instead, the MR 
forwards the packet to its egress interface. Now, consider the case where a LFN sends 
a packet to CN. When LFN sends a packet to CN, MR3 will encapsulate the packet to 
be sent through the reverse tunnel with its HA(MR3_HA). When MR3 encapsulate 
the packet, it must use its RCoA as a source address of tunneled packet and forward it 
to MR2. Because MR2 knows the prefix of MR1’s home address, it will know that the 
source address of the packet is RCoA of one of nodes which belongs to the same 
MAP domain of MR2. And MR2 forwards the packet to MR1 without encapsulation. 
Receiving an outbound packet, MAP-MR1 must check if the source address of the 
packet is stored in its binding cache. If so, MR1 sends the packet to the destination 
directly. Otherwise, the packet is tunneled to MR1_HA. Thus, the path from LFN to 
CN is LFN->MR3->MR2->MR1->MR3_HA->CN. 

When CN sends a packet to LFN, MR3_HA intercepts and encapsulates the packet. 
The encapsulated packet will have the source address set to the address of MR3_HA, 
and the destination address set to the address of MAP(MR1)’s CoA stored in the bind-
ing cache entry, and an type 0 routing header with one address entries, care-of address 
of MR3. According to the destination address, the packet will be transferred to MR1. 
In order to send the packet to MR3 correctly, MR1 tunnels the packet to MR3’s 
LCoA using type 0 routing header. 
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If MR1 receives a packet, it acts as a MAP encapsulation point and sends the 
packet to the final destination. First of all, MR1 processes the routing header and 
checks whether it has a binding cache entry of the new destination address. If so, 
MR1 encapsulates the packet and forwards it to the new destination. In order to send 
the packet to the destination, MR1 uses type 0 routing header(RH 0). If MR1 has no 
binding cache entry, it uses normal routing process. In order to construct a routing 
header of the outer packet, MR1 uses the pseudo algorithm depicted below.  

 
empty a stack; 
set finished = false; 
find an entry in binding cache with RCoA field == des-
tination address of original packet(i.e. destination 
MR’s RcoA) 
 
if (no binding cache entry is found) { 
    use normal routing process; 
} else { 
    If (RCoA of entry is identical with its LCoA) { 
 use normal routing process; 
    } 
 while (not finished) { 
 push LCoA of entry to stack; 
  get prefix of LCoA;  
           find an entry in binding cache with  
 prefix field == prefix of LCoA; 
  if (no binding cache entry is found) { 
              finished = true; 
           }         
 }    

set source address field = HAddr of root-MR(MR1); 
pop top of stack to destination address field; 
prepare a type 0 routing header(RH 0); 

    set Hdr Ext Len field of RH = (size of stack-1)x 2; 
    set Segment Left filed of RH = size of stack -1; 
    for i=1 to Segment Left filed of RH 0{ 
         pop top of stack to Address[i] of RH 0; 
    } 
    prepare a type 2 routing header (RH 2); 
    set Address of RH 2 = RCoA of destination MR(MR3) 
}  
 
According to the above algorithm, MR1 find an entry in a binding cache with 

RCoA of MR3. And then, MR1 gets prefix of MR3’s LCoA. Has been configured 
MR3’s LCoA based on the network prefix of MR2, MR1 can find an entry of MR2.  

When each sub-MR receives a packet, it processes the routing header and forwards 
it to the new destination. Using the proposed route optimization, the path from CN to 
LFN is CN -> MR3_HA -> MR1 -> MR2 -> MR3 -> LFN.  

Fig.3 represents the packet encapsulation and processing of the message delivered  
from MR3_HA to MR3. 
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Fig. 3. Packet encapsulation 

If we assume that MR3 is a Mobile Node, it is obvious that our route optimization 
mechanism is applicable to a Mobile IPv6 Node.  

4.3   Localized Mobility Management  

Our solution allows local mobility. Considering the case where MR2 moves into MR4 
with its sub-network (fig.4), the only thing MR2 has to do is sending a BU to MR1. 

If MR1 receives a BU from MR2, it modifies the entry of MR2 in the binding 
cache. There is no need to send BU to MR2_HA. The RCoA and the LCoA of 
MR(MR3) are not affected by the movement of its upper MR(MR2). Thus, as a result 
of local BU of MR2, the reachability of nodes behind MR2 is preserved. In this way, 
any change in the nested network topology is immediately reflected by a local BU. On 
the other hand, if MR2 moves alone into another MR’s link without sub-NEMO, MR3 
will receive a new router advertisement from MR1(or other MRs) and it will perform 
local BU to MR1 as it  moves into another MR’s link. 

When MR moves into other nested mobile network, in other words, the MR re-
ceives RA containing a new MAP option, it must configure a new RCoA and a new  
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Fig. 4.  Movement of MR in the nested mobile network 

LCoA. And then the MR must update the bindings with the new MAP and the HA. If 
the MR does not change its point of attachment and receives a new MAP option, it is 
not necessary to configure a new LCoA. 

5   Performance Evaluation 

In this section we analyze the performance of our proposal. Among several mobility 
factors, three are particularly important[8]: the scalability property, the routing per-
formance and the transition performance.  

5.1   Routing and Transition Performance 

In our proposal, there is only one MR-HA bi-directional tunnel regardless of the num-
ber of MRs. Thus, we can avoid the tunnel within a tunnel overhead of the basic 
NEMO support protocol. And our proposal support localized mobility management, 
thus local handoffs are managed within the MAP domain. If we ignore the processing 
delays of each MR and HA, the binding update delay of moving MR is defined as: 

dHqHBU RMdelay ××+×= )(2  

HM : hop count between MR and root-MR 
HR : hop count between HA_MR and root-MR 
q: the probability of the non-local mobility 
d: one way transmission delay of one hope  

(1) 

Thus, as the probability of the local mobility becomes greater, the gain of our pro-
posal from binding update delay is more increased. The average gain of our approach 
over basic NEMO approach is defined as equation(2). Fig. 5 shows the results. 

)/(/)1(intintint abNNGGGG raerraAVG ×−=×=×+×= αβα  (2) 

erGint = 0; raGint  = { (a + b) – a } / a = b / a;  = (N-1)/N;     = 1/N 

N: the average number of different points of attachment of a MR within a nested 
NEMO. 
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Gintra: the gain when the MR is moving within a nested NEMO 

Ginter: the gain when the MR is moving from one nested NEMO to another. 
a: the delay from MR to root-MR 
b: the delay from root-MR to HA_MR 

 

Fig. 5. The gain over basic NEMO from binding update delay  

In RRH approach[5], binding updates are used only when the MR registers for the 
first time with the HA. When the MR becomes aware of a topology change in the 
nested network or in the absence of traffic(detected by a timeout) to the HA, it must 
send a RRH Heartbeat to the HA. Thus, from the localized mobility prospect, our 
proposal is more efficient than RRH approach.  

5.2   Scalability Performance 

In this section, we compare the transmission load introduced by basic NEMO ap-
proach and our approach. The transmission load, T, is defined as:

counthopsizepacketT __ ×=    

packet_size and hop_count are functions of  N  (N : level of nested NEMO) 

(3) 

In our proposal, MR do not use routing header when it forwards a packet to the HA. 
However, our proposal uses additional tunnel in nested mobile network. In order to 
calculate the both directional transmission load between MR and MR_HA, TBasic for 
basic approach and THier for our proposal are defined as follows. 

)()(
1
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size

n

i
Basic HiHiT ×+×=

−

==

 . (4) 
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})1(2{)1()( sizesizesizesizeHier AnHnAHT ×−+××−++=  (5) 

Hsize : IPv6 header size + MIPv6 RH2 size; Asize : IPv6 RH 0 size 
n : level of nested NEMO 

We assume that there is no IPv6 extension header except routing header and we do 
not consider a payload(i.e. original packet). According to equation (4) and (5), we 
evaluated the gain achieved by our proposal. We note GBasic the gain over basic ap-
proach.  

HierHierBasicBasic TTTG /)( −=  (6) 

Fig. 6 shows the gain over basic NEMO from transmission load. As the level of 
nested NEMO is more increased, the gain of our proposal is more increased.  RRH 
and our proposal allow only one HA-MR bi-directional tunnel. In addition, they use 
routing header to forward packet. In our proposal, MR do not use routing header 
when it forwards a packet to the HA. Thus the packet size of our proposal is less than 
the packet size of RRH and, comparing with RRH, our proposal can acquire more 
benefit.  

Our proposal does not propagate the local routing information of nested mobile 
network to the external domains, so it is more secure. 

 

Fig. 6. The gain over basic NEMO from transmission load 
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6   Conclusion 

In this paper, we described route optimization based on a hierarchical algorithm. Our 
proposal is more secure in terms of security. It does not propagate the local routing 
information of nested mobile network to the external domains. Adapting our solution 
to nested mobile networks, we may expect better throughput and more efficient net-
work bandwidth usage.  

In an aircraft, a ship, or a train, root MR of the nested mobile networks may get 
connected to the Internet through a geostationary satellite. In this scenario, handoffs 
of root MR do not occur very often. On the contrary, local handoffs of sub-MRs will 
occur frequently. For that reasons, hierarchical mobility management in the nested 
mobile networks is required for fast handoff. Our proposal can give hierarchical mo-
bility management functions as well as route optimization for the nested mobile net-
works. 

However, smooth handoff in nested mobile network will be the subject of the fu-
ture research. In mobile networks, movement of MR means many packets must be re-
transmitted to a new address of the destination node. For a very fast moving mobile 
network, this remains as a future research. 
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Abstract. In ad hoc sensor networks, sensor nodes have very limited energy re-
sources, thus energy consuming operations such as data collection, transmission 
and reception must be kept at a minimum. This paper applies particle swarm 
optimization (PSO) approach to optimize the coverage in ad hoc sensor net-
works deployment and to reduce cost by clustering method based on a well-
known energy model. Sensor nodes are assumed to be mobile, and during the 
coverage optimization process, they move to form a uniformly distributed to-
pology according to the execution of algorithm at base station. The simulation 
results show that PSO algorithm has faster convergence rate than genetic  
algorithm based method while demonstrating good performance. 

1   Introduction 

Recent military operations have limitations of surveillance missions performed by 
high-altitude platforms (UAV, U2, satellite) even when equipped with state of the art 
sensors. Most of the limitations are inherent to long-distance surveillance and cannot 
be resolved by any improvement in the onboard-sensor technology [1].  

In order to get a clear understanding of the situation on the ground, it is important to 
observe from close range, using remote sensing device placed in the region of interest 
(ROI) to form a sensor network. Ad hoc sensor networks that employ ad hoc network-
ing have become an area of intense research activity. In most cases, a large number of 
wireless sensor devices can be deployed in hostile areas without human involved, e.g. 
by air-dropping from an aircraft for remote monitoring and surveillance purposes. Such 
airdropped networks are called ad hoc sensor networks to distinguish them from other 
types of sensor networks where nodes are laid out in some fixed predetermined pattern. 
Due to their attractive characteristics, ad hoc sensor networks have been applied to 
many military and civil applications such as target tracking, surveillance, and environ-
mental control. Usually, once the sensors are deployed on the ground, their data are 
transmitted back to the base station to provide the necessary situational information. 

The limited energy storage and memory of the deployed sensors prevent them from 
relaying data directly to the base station. It is therefore necessary to form a cluster 
based topology, and the cluster heads (CHs) provide the transmission relay to base 
station such as a satellite. And the aircraft carrying the sensors has a limited payload, 
                                                           
*  Corresponding author. 



534 X. Wu et al. 

 

so it is impossible to randomly drop thousands of sensors over the ROI, hoping the 
communication connectivity would arise by chance; thus, the mission must be per-
formed with a fixed maximum number of sensors. In addition, the airdrop deployment 
may introduce uncertainty in the final sensor positions. Though many scenarios adopt 
random deployment for practical reasons such as deployment cost and time, random 
deployment may not provide a uniform sensor distribution over the ROI, which is 
considered to be a desirable distribution in sensor networks. These limitations moti-
vate the establishment of a planning system that optimizes the sensor reorganization 
process after initial random airdrop deployment assuming sensor node mobility, 
which results in the maximum possible utilization of the available sensors. 

There exist a lot of research work [2], [3], [4] related to the placement of sensor 
nodes in network topology design. Most of them focused on optimizing the location 
of the sensors in order to maximize their collective coverage. However only a single 
objective was considered in most of the research papers, other considerations such as 
energy consumption minimization are also of vital practical importance in the choice 
of the network deployment. Self-deployment methods using mobile nodes [4�9] have 
been proposed to enhance network coverage and to extend the system lifetime via 
configuration of uniformly distributed node topologies from random node distribu-
tions. In [4], the authors present the virtual force algorithm (VFA) as a new approach 
for sensor deployment to improve the sensor field coverage after an initial random 
placement of sensor nodes. The cluster head executes the VFA algorithm to find new 
locations for sensors to enhance the overall coverage. They also considered unavoid-
able uncertainty existing in the precomputed sensor node locations. This uncertainty-
aware deployment algorithm provides high coverage with a minimum number of 
sensor nodes. However they assumed that global information regarding other nodes is 
available. In [1], the authors examined the optimization of wireless sensor network 
layouts using a multi-objective genetic algorithm (GA) in which two competing ob-
jectives are considered, total sensor coverage and the lifetime of the network. How-
ever the computation of this method is not inexpensive. 

In this paper, we attempt to solve the coverage problem while considering energy ef-
ficiency using particle swarm optimization (PSO) algorithm, which can lead to compu-
tational faster convergence than genetic algorithm used to solve the deployment optimi-
zation problem in [1]. Sensor nodes are assumed to have mobility, and during the cover-
age optimization process, they move to form a uniformly distributed topology according 
to the execution of algorithm at the base station. To the best of our knowledge, this is 
the first paper to solve deployment optimization problem by PSO algorithm. 

In the next section, the PSO algorithm is introduced and compared with GA. Mod-
eling of sensor network and the deployment algorithm is presented in section 3, fol-
lowed by simulation results in section 4. Some concluding remarks and future work 
are provided in section 5. 

2   Particle Swarm Optimization 

PSO, originally proposed by Eberhart and Kennedy [5] in 1995, and inspired by social 
behavior of bird flocking, has come to be widely used as a problem solving method in 
engineering and computer science.  
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The individuals, called, particles, are flown through the multidimensional search 
space with each particle representing a possible solution to the multidimensional 
problem. All of particles have fitness values, which are evaluated by the fitness func-
tion to be optimized, and have velocities, which direct the flying of the particles. PSO 
is initialized with a group of random solutions and then searches for optima by updat-
ing generations. In every iteration, each particle is updated by following two "best" 
factors. The first one, called pbest, is the best fitness it has achieved so far and it is 
also stored in memory. Another "best" value obtained so far by any particle in the 
population, is a global best and called gbest. When a particle takes part of the popula-
tion as its topological neighbors, the best value is a local best and is called lbest. After 
each iteration, the pbest and gbest (or lbest) are updated if a more dominating solution 
is found by the particle and population, respectively. 

The PSO formulae define each particle in the D-dimensional space as Xi = (xi1, xi2, 
xi3,……,xiD) where i represents the particle number, and d is the dimension. The mem-
ory of the previous best position is represented as Pi = (pi1, pi2, pi3……piD), and a ve-
locity along each dimension as Vi = (vi1, vi2, vi3……viD). The updating equation [6] is 
as follows,  

)(())(() 21 idgdidididid xprandcxprandcvv −××+−××+×=ϖ   (1) 

ididid vxx +=  (2) 

where ϖ  is the inertia weight, and c1 and c2  are acceleration coefficients. 
The role of the inertia weight ϖ  is considered to be crucial for the PSO’ s conver-

gence. The inertia weight is employed to control the impact of the previous history of 
velocities on the current velocity of each particle. Thus, the parameter ϖ  regulates 
the trade-off between global and local exploration ability of the swarm. A large inertia 
weight facilitates global exploration, while a small one tends to facilitate local explo-
ration, i.e. fine-tuning the current search area. A suitable value for the inertia weight 
ϖ  balances the global and local exploration ability and, consequently, reduces the 
number of iterations required to locate the optimum solution. Generally, it is better to 
initially set the inertia to a large value, in order to make better global exploration of 
the search space, and gradually decrease it to get more refined solutions. Thus, a  
time-decreasing inertia weight value is used. The initial swarm can be generated ran-
domly [7]. 

PSO shares many similarities with GA. Both algorithms start with a group of a 
randomly generated population, have fitness values to evaluate the population, update 
the population and search for the optimum with random techniques. However, PSO 
does not have genetic operators like crossover and mutation. Particles update them-
selves with the internal velocity. They also have memory, which is important to the 
algorithm [8].  

Compared with GA, PSO is easy to implement, has few parameters to adjust, and 
requires only primitive mathematical operators, computationally inexpensive in terms 
of both memory requirements and speed while comprehensible. It usually results in 
faster convergence rates than GA. This feature suggests that PSO is a potential algo-
rithm to optimize deployment in a sensor network.  
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3   The Proposed Algorithm 

First of all, we present the model of wireless sensor network. We assume that each 
node knows its position in the problem space, all sensor members in a cluster are 
homogeneous and cluster heads are more powerful than sensor members. Sensing 
coverage and communication coverage of each node are assumed to have a circular 
shape without any irregularity. The design variables are 2D coordinates of the sensor 
nodes, {(x1, y1), (x2, y2), ……}. And the sensor nodes are assumed to be mobile. Many 
research efforts into the sensor deployment problem in wireless sensor network [4, 9] 
make this sensor mobility assumption reasonable. 

3.1   Optimization of Coverage 

We consider coverage as the first optimization objective. It is one of the measurement 
criteria of QOS of a sensor network.  

 

Fig. 1. Sensor coverage models (a) Binary sensor and (b) stochastic sensor models 

The coverage of each sensor can be defined either by a binary sensor model or a 
stochastic sensor model as shown in Fig. 1 [9]. In the binary sensor model, the detec-
tion probability of the event of interest is 1 within the sensing range, otherwise, the 
probability is 0. In the stochastic sensor model, the probability of detection of the 
event of interest follows a decaying function of distance from the sensor. In this pa-
per, the binary sensor model is employed and coverage is defined as the ratio of the 
union of areas covered by each node and the area of the entire ROI, as shown in Eq 
(3). Here, the covered area of each node is defined as the circular area within its sens-
ing radius [9]. 

A

A
C iNi ,...,1==  (3) 

where 
Ai       is the area covered by the ith node;  
N     is the total number of nodes;  
A     stands for the area of the ROI. 

 
In order to prevent recalculating the overlapped area, the coverage here is calcu-

lated using Monte Carlo method by meshing the network space, i.e., by creating a 
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uniform grid in the ROI. All the grid points being located in the sensing area are  
labeled 1 otherwise 0, depending on whether the Euclidean distance between each 
grid point and the sensor node is longer or shorter than sensing radius, as shown in 
Fig 2. Then the coverage can be approximated by the ratio of the summation of ones 
to the total number of the grid points. 

If a node is located well inside the ROI, its complete coverage area will lie within 
the ROI. In this case, the full area of that circle is included in the covered region. If a 
node is located near the boundary of the ROI, then only the part of the ROI covered 
by that node is included in the computation. 

 

Fig. 2. Sensing coverage calculation (dashed circle indicating the sensing area boundary) 

3.2   Optimization of Energy Consumption 

After optimization of coverage, all the deployed sensor nodes move to their own posi-
tions. Now we can disregard the assumption of sensor mobility since our goal is to 
minimize energy usage in a cluster based sensor network topology by finding the 
optimal cluster head (CH) positions. For this purpose, we assume a power consump-
tion model [10] for the radio hardware energy dissipation where the transmitter dissi-
pates energy to run the radio electronics and the power amplifier, and the receiver 
dissipates energy to run the radio electronics. This is one of the most widely used 
models in sensor network simulation analysis. For our approach, both the free space 
(distance2 power loss) and the multi-path fading (distance 4 power loss) channel mod-
els were used. Assume that the sensor nodes inside a cluster have short distance dis to 
cluster head but each cluster head has long distance Dis to the base station. Thus for 
each sensor node inside a cluster, to transmit an l-bit message a distance dis to cluster 
head, the radio expends 

2),( disllEdislE fselecTS ε+=  (4) 

For cluster head, however, to transmit an l-bit message a distance Dis to base sta-
tion, the radio expends 



538 X. Wu et al. 

 

4),( DisllEDislE mpelecTH ε+=  (5) 

    In both cases, to receive the message, the radio expends: 

elecR lElE =)(  (6) 

The electronics energy, Eelec, depends on factors such as the digital coding, modu-
lation, filtering, and spreading of the signal, here we set as Eelec=50nJ/bit, whereas the 

amplifier constant, is taken as fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2.  

So the energy loss of a sensor member in a cluster is 

)01.0100(),( 2disldislEs +=  (7) 

The energy loss of a CH is  

)103.1100(),( 46 DislDislECH ××+= −  (8) 

 Since the energy consumption for computation is much less than that for commu-
nication, we neglect computation energy consumption here.  

Assume m clusters with nj sensor members in the jth cluster Cj. The total energy 
loss Etotal is the summation of the energy used by all sensor members and all the m 
cluster heads:  
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   Because only 2 terms are related to distance, we can just set the fitness function 
as: 
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4   Performance Evaluation 

The PSO starts with a “swarm” of sensors randomly generated. As shown in Fig. 3 is a 
randomly deployed sensor network with coverage value 0.4484 calculated using Eq. (3). 
A linear decreasing inertia weight value from 0.95 to 0.4 is used, decided according to 
[6]. Acceleration coefficients c1 and c2 both are set to 2 as proposed in [6]. For optimiz-
ing coverage, we have used 20 particles, which are denoted by all sensor nodes coordi-
nates, for our experiment in a 50×50 square sensor network, and the maximum number 
of generations we are running is 500. The maximum velocity of the particle is set to be 
50. The sensing range of each sensor is set to be 5 units. An upper bound on the cover-
age is given by the ratio of the sum of the circle areas (corresponding to sensors) to the 
total area of the sensor field. In this simulation, the upper bound evaluates to be 0.628, 
which is calculated from the perfect uniform distribution case without any overlapped 
area. The coverage is calculated as a fitness value in each generation. 
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After optimizing the coverage, all sensors move to their final locations. Now the 
coordinates of potential cluster heads are set as particles in this static sensor network. 
The communication range of each sensor node is 15 units with a fixed remote base 
station at (25, 80). We start with a minimum number of clusters acceptable in the 
problem space to be 4. The node, which will become a cluster head will not have any 
restriction on the transmission range. The nodes are organized into clusters by the 
base station. Each particle will have a fitness value, which will be evaluated by the 
fitness function (10) in each generation. Our purpose is to find the optimal location of 
cluster heads. Once the position of the cluster head is identified, if there is no node in 
that position then a potential cluster head nearest to the cluster head location will 
become a cluster head. 

We also optimized the placement of cluster head in the 2-D space using GA. We 
used a simple GA algorithm with single-point crossover and selection based on a 
roulette-wheel process. The coordinates of the cluster head are the chromosomes in 
the population. For our experiment we are using 10 chromosomes in the population. 
The maximum number of generations allowed is 500. In each evolution we update the  
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Fig. 3. Randomly deployed sensor network (Coverage value=0.4484) 
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Fig. 4. Optimal coverage results for 6 runs 
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number of nodes included in the clusters. The criterion to find the best solution is that 
the total fitness value should be minimal. 

Fig. 4 is the coverage optimization results after 6 runs. Compared with the upper 
bound 0.628, the difference between them is small. Fig. 5 shows the convergence rate 
of PSO and GA. We ran the algorithm for both approaches several times and in every 
run PSO converges faster than GA, which was used in [1] for coverage and lifetime 
optimization. The main reason for the fast convergence of PSO is due to the velocity 
factor of the particle.  

Fig. 6 shows the final cluster topology in the sensor network space after coverage and 
energy consumption optimization when the number of clusters in the sensor space is 4. 
We can see from the figure that nodes are uniformly distributed among the clusters 
compared with the random deployment as shown in Fig 3. The four stars denote cluster 
heads, the small circles are sensor members, and the dashed circles are communication 
range of sensor nodes. The energy saved is the difference between the initial fitness 
value and the final minimized fitness value. In this experiment, it is approximately 16. 
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Fig. 5. Comparison of convergence rate between PSO and GA based on Eq. (10) 
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Fig. 6.  Energy efficient cluster formation using PSO 
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5   Conclusions and Future Work 

The application of PSO algorithm to optimize the coverage in ad hoc sensor network 
deployment and energy consumption in cluster-based topology is discussed.  We have 
used coverage as the first optimization objective to place the sensors with mobility, 
and a distance based energy model to reduce cost based on clustering method. The 
simulation results show that PSO algorithm has faster convergence rate than GA 
based layout optimization method while demonstrating good performance. 

In the future work, we will take the uncertainty in the position of the sensors due to 
the initial random deployment into account. Moreover, other objectives, such as time 
and distance for sensor moving will be further studied.  
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Abstract. This paper addresses a weighted localized scheme and its
application to the hierarchical clustering architecture, which results in
reduced overlapping areas of clusters. Our previous proposed scheme,
Low-Energy Localized Clustering (LLC), dynamically regulates the ra-
dius of each cluster for minimizing energy consumption of cluster heads
(CHs) while the entire network field is still being covered by each cluster
in sensor networks. We present weighted Low-Energy Localized Clustering
(w-LLC), which has better efficiency than LLC by assigning weight func-
tions to each CH. Drew on the w -LLC scheme, weighted Localized Clus-
tering for RFID networks (w-LCR) addresses a coverage-aware reader
collision arbitration protocol as an application. w -LCR is a protocol that
minimizes collisions by minimizing overlapping areas of clusters.

Keywords: RFID networks, reader collision arbitration, clustering.

1 Introduction

In wireless networking environment, because the mobile devices are generally
energy-constraint, the power management of mobile devices is an important is-
sue. Due to the limited power source of mobile devices, energy consumption has
been considered as the most critical factor in designing network protocols. Facing
these challenges, several approaches to prolong network lifetime, including clus-
tering schemes and structured schemes with a two-tiered hierarchy, have been
investigated [1–4]. The clustering technology facilitates the distribution of con-
trol over the network and enables locality of communications [2]. The two-tiered
hierarchical structuring method is an energy-efficient scheme for wireless net-
working [5]. It consists of the upper tier for communicating among cluster heads
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(CHs) and the lower tier for acquired events and transmitting them to CHs.
However, in clustering scheme and two-tiered hierarchical structuring scheme,
if the cluster range is larger than optimal one, a CH consumes more energy
than required. On the other hand, a smaller-than-necessary range results in the
shortage of covering the entire network field. Based on these reasons, we pro-
posed a novel clustering-based algorithm which aims to minimize the energy
consumption of CHs under the hierarchical structure [6]. Our proposed clus-
tering scheme, Low-Energy Localized Clustering (LLC), is able to regulate the
cluster radius by communicating with CHs for energy savings. We extend our
basic scheme to weighted Low-Energy Localized Clustering (w-LLC) to cope with
the case that events occur more frequently in a certain area of the sensor network
field. Also when the CHs have different computing power each other, we need
to assign weight factors to each CH. In these cases, w -LLC, therefore, is better
than LLC in practical environment to apply the algorithm. The major applica-
tion areas of w -LLC are ’wireless sensor networks (WSN)’ and ’RFID networks’.
In WSN, sensors are deployed over the network sensing fields, and perform the
specific tasks with the processing, sensing, and communicating capacities [7] [8].
Because of the limited power source of sensors, energy consumption has been
concerned as the most critical factor in designing WSN protocols. To achieve
energy-efficiency, the clustering schemes and hierarchically structured schemes
are proposed [1–5]. RFID networks, also, has two-tiered hierarchical structure.
In the upper tier, there are RFID readers to receive the signals from the RFID
tags. In the lower tier, there are RFID tags. In the hierarchical clustering-based
two-tiered network architecture, the larger overlapping areas of clusters that
RFID readers form, the higher collision probability among the readers. We pro-
pose weighted localized clustering for RFID networks (w-LCR) as an application
area of w -LLC that minimizes the overlapping areas among clusters by regulat-
ing a RFID reader’s cluster radius dynamically to minimize the RFID reader
collisions. The remainder of this paper is organized as follows. In Section 2,
we investigate previous work in WSN and RFID networks. Section 3 propose
w -LLC, a weighted dynamic localized scheme. We evaluate the effectiveness of
w -LLC with simulations in Section 4. In Section 5, we apply w -LLC to RFID
reader collision arbitration algorithm and, in Section 6, show the performance
evaluation. Section 7 concludes this paper and presents future work.

2 Related Work

Numerous clustering schemes and hierarchical schemes are developed in WSN.
LEACH (Low Energy Adaptive Clustering Hierarchy) [3], a protocol architecture
for WSN that combines the ideas of energy-efficient cluster-based routing with
application-specific data aggregation to achieve a good performance. It preserves
limited amount of energy by selecting a CH at random among sensors. By doing
this way, LEACH must have the energy constraint in each CH, whereas w -LLC
has less energy constraint than LEACH. In [4], Gupta et al. proposed a two-
tiered hierarchical clustering scheme in which a CH with less energy constraint
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is selected among sensors. However, a CH is selected among the sensors under
restricted assumptions as assumed in [3]. Similar to LEACH, the CH of proposed
scheme in [4] has more energy constraint than the CH of w -LLC, because the CH
in [4] is a sensor with low energy and computing power while the CH of w -LLC
has more computing power than regular sensors. The clustering-based topology
control scheme [5] consists of two tiers; (1) upper tier for communicating between
CHs and (2) lower tier for sensing, processing, and transmitting by sensors.
It has similarity on hierarchical structuring concept like w -LLC. However, the
performance depends on the radius of each cluster; as a cluster is increased
covering the whole WSN, the energy consumption can be increased. On the
other hand, w -LLC can regulate the radius of each cluster to minimize the
energy consumption of each CH and consider the local properties of the region by
assigning weight functions to each CH. As for another example, RFID network
also has the two-tiered clustering-based hierarchical architecture. RFID systems
consist of RFID readers as an upper layer and RFID tags as a lower layer in
a clustering-based logical hierarchical model. After clustering tags in the lower
layer, RFID readers recognize RFID tags in the cluster of RFID reader and send
the information stored or delivered in RFID tags to a server. RFID tags have
one-hop communication with RFID readers, which allows us to exploit general
clustering schemes. Therefore the RFID system has the similar architecture to
the hierarchical clustering-based two-tiered WSN architecture proposed in [5].

3 w-LLC: Weighted Low-Energy Localized Clustering

w -LLC aims to minimize overlapping areas of clusters by regulating the cluster
range of each cluster. If the cluster range is larger than optimal one, a CH
consumes more energy than required. On the other hand, a smaller cluster range
than optimal one results in the entire wireless network field of lower tier not
being covered. In w -LLC, the whole wireless network area of low tier is totally
being covered by CHs and the CHs in network field of upper tier consider their
weights assigned by ’weight functions’. For achieving more energy efficiency, a
server computes equations presented below. Energy-efficient radii for each cluster
are calculated based on the objective functions given by w -LLC. w -LLC consists
of two phases and one policy. Followings are what we assume in w -LLC.

– The proposed architecture has two-tiered hierarchical structure.
– A server knows the position of each CH.

3.1 Initial Phase

In initial phase, the CHs deployed at random construct a triangle to determine
a Cluster Radius Decision Point (CRDP) that is able to minimize overlapping
areas of clusters. The distance between CRDP and each point can be estimated
as the radius of each cluster. Delaunay triangulation [9] [10], which guarantees
the construction of an approximate equilateral triangle, is used for constructing a
triangle. The construction of equilateral triangles leads to load-balanced energy
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consumption of each CH. By the concept of load-balancing, the prolonging of
network lifetime can be achieved [11].

3.2 Weighted Localized Clustering Phase

The cluster radius of three points including the construction of a triangle can
be dynamically controlled by using a CRDP as a pivot. In LLC, our previous
work [6], the goal is to determine the CDRPs which minimize the overlapping
areas of clusters by finding optimal cluster radii. However, in some cases where
a subset of CHs are assigned to specific tasks or in some cases of the computing
power of each CH are not same each other, they need to assign weight factors
to each CH. Therefore, we suggest an extended algorithm of LLC, w-LLC, by
assigning priorities to the CHs using weight functions.

Fig. 1. Notations for NLP-based
approach for w -LLC

Fig. 2. Notations for VC-based
approach for w -LLC

NLP-Based Approach for w-LLC. In LLC, by using NLP-based approach, a
CRDP is determined by an energy-constrained objective function as the Eq. (1).

minimize: f(r1, r2, r3, θ1, θ2, θ3, E1, E2, E3)

=
1
2

3∑
k=1

θk · r2
k · Ek

1
3

∑3
j=1 Ej

− Striangle (1)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

In Eq. (1), θk denotes the angle value of CHk, rk means the distance between
CRDP and CHk, and Ek denotes the energy state of CHk. Also Striangle is the
triangle area by Delaunay triangulation. Fig. 1 shows the conceptual diagram
for Eq. (1). The purpose of Eq. (1) is to minimize the overlapped cluster cov-
erage by considering the residual energy of each CH. If the overlapping area is
getting to be larger, CHs may consume their energy more and more. Therefore,
maintaining the minimized overlapping area can save the energy of each CH a
lot. To compute the position of a CRDP which can minimize the overlapping
areas, we obtain the areas of three sectors which have the angles of CHs and the
area of Striangle. For the purpose of computing the area of Striangle, ’Heron’s
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formula’ is used. A server calculates the area of Strinagle using this formula. As
for an NLP method to solve Eq. (1), we use a ’L-BFGS method’ [12, 13], one of
the most efficient NLP methods for solving unconstraint optimization problem.
In [12], the theoretical concept of non-linear programming is presented. In [13],
the L-BFGS algorithm is presented. The other values except the angular values
can be transmitted to the server; however, all the CHs should be aware of these
values. Taking communication overheads into account, it is desirable to compute
these at the server rather than CHs since a server is less energy constrained than
CHs or mobile devices. The server eventually obtains the energy state and the
positions of each CH. Each angular value is computed by the second law of cosine
in the server. As shown in the Eq. (1), the CH of NLP-based approach has the
same priorities. However in certain cases, we need to assign a different weight to
each CH. If the CH in certain area is more important than the other CHs, we
need to assign higher priority to the CH. Also if events occur in some endemic
specific area, the CH in that area must be assigned with a higher priority. By
these necessaries, the consideration of weight functions is necessary. Finally, in
the case of the CHs have different computing power each other, the different
weight factors must be considered. If one CH has more computing power than
the other CHs, the CH needs to enlarge its cluster range to preserve the energy
of the neighbor CHs to achieve load-balancing effect. Therefore we also need to
assign the weight functions to each CH in the aspect of computing power of each
CH. We can consider ’penalty functions’ and ’reward functions’ for the weight
functions. If the penalty function of a CH has a large value, the CH must reduce
its cluster radius. If the reward function of a CH has a large value, the CH must
enlarge its cluster radius. In other word, a smaller penalty function value means
a higher priority for a CH, while a smaller reward function value indicates a lower
priority. Eq. (2) shows the objective function of NLP-based approach for w -LLC.

minimize: f(r1, r2, r3, θ1, θ2, θ3, φ1,1(−→x ), . . . , φm,3(−→x ), ψ1,1(−→x ), . . . , ψn,3(−→x ))

=
1
2

3∑
k=1

θk · r2
k ·

m∏
l=1

φl,k(−→x )
1
3

∑3
l=1 φl,i(−→x )

·
n∏

g=1

1
ψg,k(−→x )

1
3

∑3
i=1

1
ψg,i(

−→x )

− Striangle (2)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

The notations of Eq. (2) are the same as the notations of Fig. 1 and Eq. (1).
In Eq. (2), w -LLC assigns a weight function to each CH where φl,k(−→x ) and
ψl,k(−→x ) represents a penalty function and a reward function, respectively. This
objective function, Eq. (2), has m penalty functions and n reward functions.
The example of penalty function and reward function is ’residual energy’ and
’priority’, respectively. If residual energy is quite small in a CH, the CH must
preserve its residual energy. In this case, the CH becomes more important than
the other CHs in the aspect of energy conservation. The CH needs to reduce its
cluster radius for preserving its energy for load-balancing. Therefore, the smaller
residual energy of a CH, the higher weight of the CH. Therefore the ’residual
energy’ is considered as the example of ’penalty function’. If the priority of a CH
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is higher, the importance of CH also becomes higher. Therefore, the priorities
can be an example of reward functions.

VC-Based Approach for w-LLC. In NLP-based approach, it may generate
computation overheads due to an iterative NLP method. We thus consider an-
other method to reduce the computation overheads. The notations of VC-based
approach is depicted in Fig. 2. It initially executes an NLP computation at first.
Any weight factors do not need to be considered in the initial NLP-computation.
The basic notations and the objective function for obtaining minimized energy
consumption in VC-based method are the same as those in NLP-based method,
except that the former does not considers any energy constraints and weight fac-
tors. The equation to obtain the initial position of a CDRP is described as Eq. (3)

minimize: f(r1, r2, r3, θ1, θ2, θ3) =
1
2

3∑
k=1

θk · r2
k − Striangle (3)

s.t. r2
i = (xCRDP − xi)2 + (yCRDP − yi)2

As time goes, however, the objective function may move a CRDP towards the
CH that has consumed the most amount of energy. In the objective function
of VC-based approach, we do not consider the energy factor. In the iterative
procedure, we need to consider the energy factor. Therefore, the next position
of CRDP is determined by Eq. (4) under the iteration policy.

CRDPi+1 = CRDPi −
3∑

k=1

Ek

1
3

∑3
j=1 Ej

· vk

‖vk‖
(4)

s.t. CRDPk = (xCRDPk
, yCRDPk

)

Eq. (3), the objective function of ’VC-based approach’, does not consider the en-
ergy state of each CH when it determines the position of CRDP. Therefore by
using Eq. (4), we can consider the energy state of each CH. By Eq. (4), the CH
which has more energy consumption is assigned with higher priority whereas
the CH which has less energy consumption is assigned lower priority. By this
operation, we can obtain load-balanced energy consumption and optimal posi-
tion of a CRDP. Using this VC-based approach, we can preserve the energy of
CHs as much as the NLP-based approach so that we can reduce computation
overheads. In VC-based approach, we have to update the coordination of CRDP
given in previous step. In NLP-based approach, however, re-computation to find
the optimal solution to the objective function using NLP method can be over-
burden. Therefore, the repeated vector computation is much simpler than the
NLP-based computation in the aspect of algorithm complexity. To apply the
concept of assigning the weight factors in CHs, we can update Eq. (4) as

CRDPi+1 = CRDPi −
3∑

k=1

m∏
l=1

φl,k(−→x )
1
3

∑3
l=1 φl,i(−→x )

n∏
g=1

1
ψg,k(−→x )

1
3

∑3
i=1

1
ψg,i(−→x )

· vk

‖vk‖
(5)

s.t. CRDPk = (xCRDPk
, yCRDPk

)
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by assigning weight functions. The notations of Eq. (5) are the same as Eq. (2)
and Eq. (4). By re-modeling Eq. (4) as Eq. (5), we can consider the many weight
factors. As shown in Eq. (5), we can consider m penalty functions and n reward
functions for the purpose of finding the coordination of CRDP. The coordination
of CRDP can provide minimized energy consumption in each CH.

3.3 Iterative Policy

When events occur most frequently in some specific areas where a certain CH
consumes its energy a lot. In this situation, the CHs in the target region will
consume more energy and the operation will be relatively more important than
the other CHs in the other area of the network of lower tier. Then a server has
to change the radius of clusters to balance energy consumption of each CH and
to preserve the energy of the CH which has higher priority than the other CH.
Moreover, since the server has an iteration timer, if no events occur until the
timer is expired, the server requests energy information to all the CHs and starts
the w -LLC algorithm. The server collects data including energy information of
CHs and executes w -LLC periodically.

4 Effectiveness of w-LLC

In this section, we evaluate and analyze the performance of w -LLC through
simulation-based performance evaluation. As a simulation environment, we con-
sider the WSN environment. To consider the WSN environment with the net-
work architecture proposed in this paper, the wireless network system consists
of the upper tier for communicating among CHs and the lower tier for sensing
events and transmitting them to CHs. There are ’clustering scheme with fixed
radius (FR)’ and LLC for the comparison studies with w -LLC. Fig. 3 presents
the average lifetime and variance of the five CHs evaluated by FR, LLC, and
w -LLC. We generate the events in some specific areas, and assign weight func-
tions to the CH. In the case of FR where cluster radii are fixed, the variance
is constant. w -LLC shows less variance than LLC, which denotes the fairness
of energy consumption. As shown in Fig. 4, FR shows the worst performance
among others in terms of the average lifetime of five CHs. When events occur
in certain specific areas more frequently, w -LLC shows better performance than
LLC. We also consider two different scenarios, (1) sensing events occur around in

Fig. 3. Comparison of FR, LLC, and w -LLC
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Fig. 4. Comparison of the residual
energy

Fig. 5. Percentage of overlapped area
(events intensively occur in certain area)

Fig. 6. Comparison of LLC and w -LLC in the aspect of load-balancing on CHs

certain hot spots, named focused sensing; and (2) events occur evenly across the
sensor network, named fair sensing. As shown in Fig. 4, residual energies in FR
are further quickly consumed than LLC and w-LLC. FR shows a longer lifetime
in fair sensing than focused sensing. The CHs in the hot spots of focused sens-
ing exhaust their own energies rapidly. In focused sensing, w-LLC is the most
energy efficient, since it uses weight functions that reflect territorial character-
istics. We evaluate the performance of a scenario that sensing events intensively
occur in a certain area. In the environment, the weight factors of w -LLC can
deal with the situation very well. As shown in Fig. 5, w -LLC outperforms the
earlier version, LLC. The range of overlapping area per total area of LLC is
between 0.30 and 0.34. However the range of overlapping area per total area of
w -LLC is between 0.26 and 0.31. Therefore w -LLC is more energy efficient than
LLC.

If the CHs in the system achieve load-balancing, the system lifetime can
increase [11]. As shown in Fig. 6, the standard deviation of CHs in LLC is
3.171049598 and the average lifetime of CHs in LLC is 18.5 minutes. The other
side, the standard deviation of CHs in w -LLC is 2.67498702 and the average
lifetime of CHs in w -LLC is 20.6 minutes. By the result of this simulation, we
shows that w -LLC is more energy-efficient than LLC in the aspect of lifetime of
CHs.
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5 Adaptability for RFID Reader Collision Arbitration

Radio Frequency IDentification (RFID) is the next generation wireless commu-
nication technology applicable to various fields such as distribution, circulation,
transportation, etc. RFID is a non-contact technology that identifies objects at-
tached with tags. Tags consist of a microchip and antenna. RFID readers obtain
the information of objects and surroundings through communication with tag
antennas [14]. Minimizing collisions among RFID reader and tag signals has a
substantial effect on performance because tag recognition rate effectively deter-
mines RFID system performance. However, the RFID reader and tag collision
problem has not received much attention. Therefore, as one of the promising
application areas of w -LLC, RFID networks can be considered to develop an
RFID reader collision arbitration protocol. RFID systems consist of RFID read-
ers which are fixed a priori, as an upper layer and RFID tags as a lower layer in
a two-tiered logical hierarchical model. After clustering tags in the lower layer,
RFID readers recognize tags in the cluster and send information stored in tags
to a server by using multi-hop routing among RFID readers. RFID tags have
one-hop communication with RFID readers, which allows us to exploit general
clustering schemes. In other words, this RFID system has the similar architec-
ture to the w -LLC. Based on the w -LLC like system architecture, we can reduce
overlapping area of RFID reader clusters. By reducing the overlapping area, we
can reduce the collision of signals from RFID readers.

5.1 Classification on RFID Reader Collision Arbitration

Research efforts for the RFID collision arbitration problem [14] can be classified
into two groups: RFID reader collision arbitration protocols [15] and RFID tag
collision arbitration protocols [16]. The main focus of this paper will be behind a
motivation to develop a RFID reader collision arbitration protocol based on w -
LLC. The approaches to RFID reader collision arbitration protocols are further
divided into scheduling-based approach which prevents RFID readers from si-
multaneously transmitting signal to a RFID tag, and coverage-based approach.
A widely known scheduling-based protocol is the Colorwave proposed in [15].
The Colorwave performs scheduling instructed by RFID readers using Distrib-
uted Color Selection (DCS) or enhanced DCS, Variable-Maximum Distributed
Color Selection (VDCS), after it divides medium into time slot. The other reader
collision arbitration approach is the coverage-based approach, which minimizes
collision possibility by optimizing the overlapping areas of clusters which RFID
readers have to cover up. Under the concept of a coverage-aware RFID reader
collision arbitration mechanism to minimize the overlapping area of the cluster,
we can apply w -LLC, to overcome reader collision problems occurring among
RFID readers which have different computing power.

5.2 Coverage-Aware RFID Reader Collision Arbitration: w-LCR

In the hierarchical clustering-based two-tiered network architecture, the larger
overlapping the areas of clusters that RFID readers form, the higher the col-
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lision probability among the readers. We propose an algorithm that minimizes
the overlapping areas among clusters by regulating RFID readers cluster radii
dynamically to minimize the reader collisions. Our initial version of the dynamic
cluster coverage algorithm, named as LLC, is presented in [6]. Also, each RFID
reader in the RFID networks has different computing power. Therefore it is
hard to apply LLC to the RFID networks directly. By this constraint, we can
use w -LLC for considering the different computing power of each RFID reader.
The w -LLC is to minimize the energy consumption of each CH by dynamically
adjusting cluster radius. Based on it, this paper proposes weighted localized clus-
tering for RFID networks (w-LCR) scheme to minimize the overlapping areas
and then minimizes RFID reader collisions.

6 Performance Evaluation of w-LCR

A simulation study is conducted to evaluate the performance of w -LCR. RFID
tags were randomly deployed and RFID reader was placed according to each
simulation metric. Our simulations were designed to evaluate the effect of (1)
probability of RFID reader collision and (2) energy consumption. We compare
w -LCR against the method that has a fixed cluster radius.

6.1 Possibility of RFID Reader Collision

Fig. 7 shows the possibility of collision in FR and w -LCR in RFID networks. w -
LCR have much lower possibility of collision than FR method because w -LCR
algorithm regulates cluster radius dynamically and minimizes the overlapping
areas. As shown in Fig. 7, the possibility of collision of w -LCR is between 0.09
and 0.11. However the possibility of collision of FR is between 0.25 and 0.35.
Therefore w -LCR has better performance than FR almost three times. Further-
more, as shown the shape of graph, the FR has more variance than the w -LCR.
The variance of FR is 0.1 and the one of w -LCR is 0.02. FR has more vari-
ance than w -LCR almost five times. The load-balancing concept based on the
weight functions of w -LCR can make the variance smaller than FR as shown

Fig. 7. Possibility of collision in RFID
networks

Fig. 8. Energy consumption in RFID net-
works
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the Fig. 7. Also, as shown the shape of FR graph, the possibility of collision
is continuously increasing. On the other side, the w -LCR is not continuously
increasing. This situation occurred on the effect of load-balancing concept of
weight functions.

6.2 Energy Consumption

w -LCR consider the residual energy state of RFID readers as another important
metric. We compare the performance of proposed schemes in terms of energy
consumption in RFID networks. Fig. 8 shows the results of simulation. As shown
in Fig. 8, the w -LCR can achieve more energy-efficiency than FR. Under the FR
consumes entire energy of all RFID readers at 8.7 minutes. However the w -
LCR consumes entire energy of all RFID readers at 12.6 minutes. Therefore
the w -LCR has more energy efficient than FR 1.45 times. Furthermore, Under
the FR consumes half energy of all RFID readers at 4.1 minutes. However the
w -LCR consumes half energy of all RFID readers at 9.4 minutes. Therefore
the w -LCR has more energy efficient than FR based algorithm 2.29 times. As
shown until now, at the beginning of the operating the protocol, w -LCR has
more energy efficient that the terminal stage. As shown in the shape of w -LCR
graph, the increment of the beginning is smaller. However the time has gone,
the increment of the graph is higher. As time has gone, some RFID readers are
consumes all energy and becomes ’battery-drained RFID reader’ until recharge.
Then the neighbor RFID readers must cover the area controlled by the ’battery-
drained RFID reader’. Therefore time has gone, the increment become higher.
In FR, FR does not control its cluster radius. Therefore RFID reader, which
uses the FR, consumes fixed amount of energy. Hence the shape of FR has linear
form.

7 Conclusions and Future Work

We extended our previous research, LLC, [6] to weighted Low-Energy Localized
Clustering (w-LLC). For improving our previous work, we apply the concept of
weight functions to the LLC. Based on the simulation based performance eval-
uation, we observed that w -LLC achieves better throughput than LLC. As an
application area, we consider the RFID networks to solve RFID reader colli-
sion problem. We developed weighted Localized Clustering for RFID networks
(w-LCR) scheme based on the concept of w -LLC. By reducing the overlap-
ping areas of clusters, we can reduce the possibility of collision of signals. The
proposed RFID reader collision arbitration protocol in this paper is a coverage-
aware reader collision arbitration protocol. As a future research direction, we will
design more efficient RFID reader collision arbitration with the concept of ’hy-
brid RFID reader anti-collision algorithm’ which has the concept of scheduling-
based RFID reader anti-collision algorithm used by the Colorwave, based on
w -LCR.
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Abstract. The task-oriented proactive seamless migration is one of difficult 
problems to be solved in pervasive computing paradigm. Apparently, this func-
tion of seamless mobility is suitable for mobile services, such as mobile Web-
based learning. But when seamless migration for computing task of learning is 
realized among PC, laptop, or PDA, there are several difficult problems to be 
solved, such as how to supply the proactive/attentive service with uncertainty 
for aware context. In order to realize E-learning based on proactive seamless 
migration, we design and improve relative fuzzy-neural approach (of course, 
besides it, there are other approaches). Generally, the network can be classified 
into two. One is that fuzzy logic reasoning is completed by fuzzy weight in neu-
ral system. The other is that the input data must be fuzzified in the first or sec-
ond level, but not weight. We discuss and study the second in this paper. For 
proactive decision, fusion method based on fuzzy-neural can make Web-based 
learning system keep advantage of fuzzy logic system and remain adaptive op-
timum in proactive/attentive service. The correctness and validity of our new 
approach have been tested. 

1   Introduction 

With the development of mobile communication and Internet, the next great informa-
tion process paradigm shift, to pervasive computing, is already well under way and 
will have no less of an impact on industry, government, and daily life than the per-
sonal computing revolution. The proactive/attentive service is fused the technologies 
of computing, communication and digital multimedia, which integrates information 
space and physical space of human being’s life. This paradigm meets the require-
ments of human being in “5A” that is anybody maybe obtain anything with any de-
vice anywhere and at anytime. There are a bunch of branch research fields under the 
banner of it, such as human-centric universal access, instead of traditional machine-
centric. Consequently, technologies that allow the integration of existing and foreseen 
heterogeneous and homogenous networks into a single platform will be of major 
importance [1-3]. Nowadays, many ambitious projects have been proposed and car-
ried on to welcome the advent of pervasive computing, such as Seamless mobility. 
For seamless mobility, the history and context of computing task will be migrated 
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with person’s mobility, and the computing device and software resource around this 
task will make adaptive change. The chief function requirement of seamless mobility 
is on the continuity and adaptability of computing task [4-6]. we are entering a new 
age of computing, namely, the era of pervasive computing era, which is studied only 
recently computing mode.  

Apparently, this function of seamless mobility is suitable for mobile services, such 
as mobile Web-based learning. For learner, it is necessary and accessible when he/she 
can not complete his/her learning task/courseware, such as video, audio, text, picture, 
etc., in one specified scene, he/she can go on learning the uncompleted 
task/courseware in other spots by seamless mobility based on the Web. But when 
seamless migration for computing task of learning is realized among PC, laptop, or 
PDA, there are several difficult problems to be solved, such as how to supply the 
proactive/attentive service with uncertainty for aware context [7-10] because it should 
fuse relative multi-source information with identity, location and time among differ-
ent computing nodes [9]. As we know, based on fuzzy-neural network, we can reason 
and make decisions (of course, besides it, there are other approaches) [11-14], so it 
can be used for deciding when supply the proactive/attentive service. In order to real-
ize proactive service of pervasive computing, we will design and improve relative 
fuzzy-neural approaches.   

The rest of this paper is arranged as follows: Section 2 introduces fuzzy-neural 
structure and learning algorithm for context-aware. Section 3 is context-aware com-
puting method based on fuzzy-neural network. Section 4 explains Implemented plat-
form for proactive service. Section 5 shows the test & comparison. Section 6 draws 
the conclusion. 

2   Fuzzy-Neural Learning Algorithm for Context-Aware 

2.1   Fuzzy-Neural Structure 

The proposed fuzzy-neural structure is divided into four layers: input layer, fuzzification 
layer, reasoning layer, non-fuzzification layer. Suppose M inputs one output, N rules, 
that is to say, there will be M input nerve cells in input layer, MN nerve cells in fuzzifi-
cation layer, N nerve cells in reasoning layer, only one nerve cell in non-fuzzification. 
So, once the M and N are determined, the fuzzy-neural structure will be decided. Now, 
the key problem is to determine the N. We can estimate the value of N by defined fuzzy 
curve. In order to introduce conveniently fuzzy-neural model, we first define the basic 
nerve cell node model. Classic neural network consists of these nerve cell nodes. The 
input of nerve cell is obtained by action of former relative nerve cell output and weight. 
The input of basic nerve cell is a sum function f(•), this function can combine and 
stimulate information from other nerve cells. The pure input of this nerve cell can be 
expressed as f(μ1, μ2 , …, μp , w1, w2, …, wp ), the output as a(f(•)), a(•) is stimulating 
function. Now, we introduce each layer of the proposed structure.  

The first layer: the nerve cell in this layer only transfers input data into the second 
layer, then,  

f(xi)=xi and a(•)=f(•), 

The weight is unit 1.  
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    The second layer: the fuzzy membership function will form simply in this layer, 
fuzzification layer. In this paper, we select 

f(•)=(wij1xi+ wij0)
2Lij, 

wij0 is weight, the threshold is  
μij = a(•)=exp(-f(•)), 

    Which is Gaussian-like function. The third layer: reasoning layer, by multiple mul-
tiply reasoning, namely,  

f(•)=μij , ∏=∏ •=•
==

M

i
ij

M
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The last layer:  
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    In this layer, It is important that a(•) keeps Sigmoid function because it can ensure 
the system convergence which is better than reference [4]. After setting up fuzzy-
neural network, each fuzzy rule rlj can be defined according to the condition sentence 
as follows:  

IF x1 isμ1j and x2 isμ2j and … and xM isμMj THEN Y is vj . 
    Noticeable, neural weight V{vj} and { wij1 ,wij0 } decide fuzzy rule basically. Lastly, 
the output by non-fuzzifying is: 
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In this model, the number of fuzzy rule only be determined by data itself. 

2.2   Fuzzy-Neural Learning Algorithm for Context-Aware 

After the number of fuzzy rule N is determined, the fuzzy-neural structure will be 
done. The network will go to the second step. The fuzzy membership function and 
tuned weight will be obtained by learning optimum. Based on the traditional BP 
learning algorithm, the steepest grads go-down, we can obtain the learning algorithm 
of this fuzzy-neural network. The purpose of learning is to make E smallest.  

−=
=

m

k

kk sooE
1

2)()( )(
2

1
 

    so(k) is ideal output of the k-th sample, o(k) is current output of the k-th sample dur-
ing learning. In order to make E come smallest, a high-speed BP learning algorithm 
will be improved to train the fuzzy-neural network and tune the variables 

ijijijj landwwv 10 ,, , Under the condition of convergence, we select a small positive 

number (close to 0) c>0 or a biggest iterative number H uses as learning end condi-
tion. Until E<c or up to H, learning can be ended. The following equations are for 
learning variables, in order to speed the learning process, a moment item has been 
added in each equation.  

))1()((1)/()()1( 1 −−+∂−∂+=+ nvnvttvEcnvnv jjjjj  (1) 
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Eq.(1)~(8) is improved high-speed BP learning algorithm for fuzzy-neural net-
work, according to initial method of reference [5], by input and output data, the opti-
mal network model can be obtained. For example, after training, if the performance is 
not ideal, you can add the number of fuzzy rule, on the contrary, if the performance is 
very good, in order to decrease model complexity, you can reduce the rule number. 
During learning, if the fuzzy membership function is always close to a certain value in 
whole discussed range, you can cut off the rule and no necessary nerve cells or stop 
training and learning. Generally, based on the fuzzy data curve , the network structure 
is close to optimum. 

 2.3   Fuzzy Data Curve for Network Structure 

In order to express conveniently, we consider a multi-input and multi-output system 
with input and output data. Two things can be done on fuzzy data curve: I) evaluate 
the influence to output by input variable. II) determine the rule number N primarily. xi 

(i=1,2,…,n) expresses input variable data, and o expresses output. Suppose m training 
sample points, xik (i=1,2,…,n,k=1,2,…,m ) is sample point of the k-th sample connect-
ing the i-th input variable. For each input variable xi, the define of variable fuzzy 
membership degree function is:  

),...,2,1()))/((exp(0.1)( 0.4 mkxxaxy iikiik =−−−=                            (9) 

Where yik is membership degree function of input xi to sample point k. a is about 
5% of least gap of xi. Each pair (yik ,o

(k)) has the relative fuzzy rule for xi, that is to 
say, IF xi is yik (xi), THEN o is o(k). For each input variable xi, with the following equa-
tion, we can obtain a fuzzy data curve ri:  
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3   Method of Context-Aware Computing Based on Fuzzy-Neural 

The proposed fusion architecture based on fuzzy-neural is as follow. Firstly, through a 
data assignment network, the input data from each sensor are allotted to every fusion 
sub-node, the sub-node will preprocess, filter according to fusion proposition, after 
selecting, sub-node can do data fusion. Each sub-node is fuzzy-neural network.   
    The three steps can be completed data fusion [15-17] by fuzzy-neural network. At 
first, the fuzzy rule must be initialized from experience information. Then, the fuzzy-
neural network must be trained according to classic prior obtained data so that it can 
fit sample data. At last, It can fuse input data based on trained fuzzy-neural network 
and it can tune slightly under the fusion belief degree.   
    In order to apply to different environment better, the fuzzy-neural network must be 
adaptive. Because the change speed of environment and input signal data is slow, 
slight tune can be do with online training in fuzzy-neural network. As we know, the 
change speed of fusion result is faster and more than the input signal variable or data, 
so according to the change of input data as input can be designed a function, a expec-
tation can be got by fusion result and this function, and the expectation can be used as 
training sample to do online slight tuning. Suppose the belief degree of input data is 

nμμμ ,...,, 21 , the constructed function may select as follow: 
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Where )(kiμ , )1( −kiμ is the k-th and the (k-1)-th belief degree of i-th input signal 

data, respectively. The expectation value of slight tuning is y+f during each fusion, y 
is fusion result. 

4   Implemented Platform for Proactive Service 

In the implemented platform, our key idea is adopted fuzzy-neural network theory to 
make decision for proactive seamless transfer. The function of fuzzy-neural network 
is encapsulated based on agent during proactive seamless migration. Our implemented 
platform can work in Client/Server, Browse/Server and Peer-to-Peer paradigm. 

Fig.1 is supported structure of the platform for proactive service. This is a kind of 
structure with multi-agent. The structure can be divided into multiple levels. Multiple 
agents are collaborated for proactive seamless services, such as Web-based learning. 
Each agent has its special function. Fig.2 is the structure of seamless migration em-
bedded in this implemented platform, which includes four layers: SM-link layer,  
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SM-path layer, SM-connection layer and SM-session layer. In Fig.2, “T” stands for 
“Task”, ”A” stands for “Agent”, “MA” stands for “Mobile Agent” and “C” stands for 
“Container”, which is a daemon threads component installed in each relative mobile 
devices. Their working principle has mentioned above. 
    This fusion agent is the most important computing agent with fuzzy-neural net-
work. The dataset from database is processed in fuzzy technology, such as clustering. 
The sensors of neural network may modify the weight of training. The mass belief 
function has timely tracked dynamic process of learner. The membership function has 
measured correlative degree of evidences based on their correlative degrees.      
    Because the migrating mode based on agent for learning task is distributed, peer-to-
peer / end-to-end, we have designed several relative communication primaries and 
class for migrating, such as, 

BeginToListen(UINT nPort,ACCEPT_CALLBACK callback); 
Void (CAgent::* ACCEPT_CALLBACK) (UINT& Connection_ID) 

BeginToRequest(UINT &nConnection_ID, CString IP,UINT nPort); 
Migrate (UINT nConnection_ID, CString strMsg, CDate time_stamp) 
 PrepareForRecv(UINT nConnection_ID, RECEIVE_CALLBACK callback); 

Void (CAgent::* RECEIVE_CALLBACK) (CString &strMsg, UINT& 
ConnectionID), … 

class CAgent  { 

public:   
  CAgent(); 
  virtual ~CAgent(); 
  BOOL Register(); 
  BOOL Quit(); 

BOOL Subscribe(CString strGrpName, NOTIFY_CALLBACK callback, 
CString strTemplate=""); 

  UINT GetSharedFile(LPCTSTR url,LPCTSTR lpszTagInfo=NULL); 
  virtual void OnConnect();  

virtual void OnDisconnect(); ...}; 

class Ccontainer {public: 

 CContainer(); 
 virtual ~CContainer(); 
 BOOL LaunchAgentByName(CString strAgtName); 
 BOOL LaunchAgentByPath(CString strPath); 
 void ProcessDSCmd(CDSMsg & msg); 

typedef struct _MINIHTTP_REQUEST { 
 SOCKET            socket; 
 char*                http_data; 
 unsigned long         http_data_size; 
 MINIHTTP_FIRST_LINE*  first_line; 

} MINIHTTP_REQUEST; 
typedef struct _MINIHTTP_RESPONSE { 

 unsigned int          range_begin; 



560 D. Zhang et al. 

 

 unsigned int          range_end; 
 unsigned long         http_data_size; 

 int                  http_response_code; 
} MINIHTTP_RESPONSE; ... } 
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Fig. 1. Supported structure for proactive service on the platform 

ND

OS

Physical layer

Link layer

TCP/IP layer

SM-link layer

SM-path layer

SM-
connection

 layer

SM-session
layer

Wired Lan Wireless Lan WAN

MAC Address

IP Address

T TA AMA
C C

TA AMA

TA AMA

T

T

SM-path SM-path

SM-connection

SM-session

SM-link SM-link(IP,IP)

 

Fig. 2. Structure of seamless migration embedded in the platform 
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5   Test and Comparison 

In our test of mobile services based on context-aware approaches of fuzzy-neural 
network mentioned above during proactive seamless migration, we have adopted the 
following dataset [7-10] and gotten the following results. 

Table 1. One part of dataset for test 

No 
Number of 

learning 
task 

Number of 
joined 

persons 

Hit rate of  
specified 
learner 

Output of 
fuzzy-neural 

network 

Output of 
Classic 
model 

1 15 57 47 53.1 62 
2 16 67 53 62.9 73.5 
3 15 75 62 71.5 79.8 
4 24 78 72 76.5 80.1 
5 25 73 68 76.9 78.2 
6 25 62 56 65.5 73.1 
7 26 77 67 74.6 72.9 
8 26 78 57 80.6 74.4 

 …  … 

The average error is as follows: 
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The result comparison between FNF and NNF [18-19] is as Table 2 and Table 3. 

Table 2. Result comparison between FNF and NNF 

Name 
Number 
 of task 

 Sample 
dataset 

Number of 
joined learners 

Cluster 
Trained 
number 

Belief de-
gree (%) 

NNF 30 2000KB 200 4500 85.1 
FNF 30 2000KB 200 14 4500 91.8 

Table 3. Comparison of used memory, time and belief degree between FNF and NNF 

Name 
Number 
 of  task 

Sample 
dataset 

Number of 
joined 

learners 
Cluster 

Trained 
number 

Used 
space 

time 
Belief 
degree 

 
NNF 30 2000KB 200 4500 93KB 132s 85.1 
FNF 30 2000KB 200 14 4500 95KB 120s 91.8 
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    After finishing the steps of learning (training), forecasting, analyzing, we can judge 
where the fault forecast result is consistent with the field practice or not. If it is, that is to 
say, the fusion belief degree is high, close to 1. According to the introduced method, the 
relative comparisons’ result shows the change of belief degree with fusion result. By 
online slight tuning, the time of fusion process is shorten, and the belief degree of fusion 
result is improved. The curve figures of comparison are dismissed. 

6   Conclusion 

In order to solve the task-oriented seamless proactive migration for Web-based learn-
ing under the banner of pervasive computing, we have designed and improved relative 
fuzzy-neural approaches. In this paper, we have improved the method of fuzzy-neural 
network modeling and have proposed a kind of fusion architecture of fuzzy-neural 
network based on input and output signal data or variable. From the input data, we 
can obtain fuzzy data curve, through the curve, the fuzzy rule number of the network 
may be known, and the influence to system is evaluated. A proposed high-speed 
learning algorithm is used to initialize the net weight and train the network. From the 
fuzzy membership function, the net structure can be optimized. The proposed fusion 
architecture base on fuzzy-neural network can make the input signal data or variable 
to fuse better, by online slight tuning, the fusion processing can be sped, and the fu-
sion belief degree can be improved. The validity of our approach for proac-
tive/attentive service with uncertainty, such as web-based mobile learning, has been 
tested and evaluated by the implemented demo. 
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Abstract. This paper proposes a novel block-based motion estimation 
algorithm and the corresponding architecture based on cluster parallelism. In 
this algorithm, up to 18 predictors are employed to improve the encoding 
quality while the computation time is not increased compared with PMVFAST. 
Experiment results verify the superiority of the proposed algorithm and 
architecture. The PSNR improvement effect on PMVFAST is 8.14 times higher 
than that of existing enhanced algorithm EPZS. In particular, they greatly 
improve the encoding quality of video sequence with large or irregular motion. 
Designed and synthesized on SMIC 0.18um technology, the architecture works 
on the frequency of 200MHz. Its throughput is about 15 times higher than the 
well-known FS architecture with 16 PEs while it consumes only 9.1% memory 
bandwidth of the FS architecture. 

1   Introduction 

BMA (Block Matching Algorithm) is regarded as an efficient method to get high 
compression ratio by reducing the redundancy among video sequences. BMA is an 
essential part of several video-coding standards, such as MPEG-1/2/4 and ITU 
H.261/263/264. Full Search (FS) is a brute force algorithm and its computation 
complexity is so high that it is usually regarded as the test benchmark. Because of its 
regular structure and simple control, FS is suitable for algorithm-specific architectures 
[1][2][3]. However, the inherently high computation complexity of FS limits the real 
time performance and leads to high power dissipation of its architectures. 

Many fast BMAs, such as the Three-Step Search (TSS) [4], 2-D log Search [5] and 
Diamond Search (DS) [6], reduce the computation complexity at the cost of a 
significant loss of visual quality. Several new algorithms, such as PMVFAST 
(Predictive Motion Vector Field Adaptive Search Technique)[7] and EPZS (Enhanced 
Predictive Zonal Search)[10], have been developed to explore the spatial and 
temporal correlation among video sequences. PMVFAST and EPZS improve the 
performance and encoding quality greatly and have been adopted by MPEG-4 [8] and 
applied to H.264/AVC [9]. To further accelerate PMVFAST and EPZS, we have 
proposed an efficient VLSI architecture in previous work [11].  

Although PMVFAST and EPZS have developed some MV (Motion Vector) 
predictors successfully, their accuracy to the video sequences with large or irregular 
motion is not sufficient. Besides, the serial evaluations of MV predictors limit 
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computation performance and the number of predictors. Based on the analysis of 
PMVFAST and hardware/software co-design method, this paper proposes a parallel 
algorithm to evaluate predictors and a VLSI architecture to support this algorithm. 
Because of the parallel algorithm, although the number of MV predictors is increased 
from 6 in PMVFAST to 18, the encoding quality is improved and the computation 
time decreases. Compared with existing PMVFAST architecture [11], the new 
architecture employs more configurable VDUs(Variable Delay Units) and two more 
PEs (Processing Elements). It can support much more flexible cluster to compute in 
parallel while consuming a little more VLSI area and memory bandwidth. 

The paper is organized as follows: PMVFAST algorithm is introduced and 
analyzed in Sec. 2. Sec. 3 shows the efficiency to improve encoding quality by multi-
predictors. To overcome the disadvantage of multi-predictors, Sec. 4 introduces the 
definition of cluster and discusses the utilization of it to reuse data. The new VLSI 
parallel array architecture is proposed in Sec. 5 to support cluster parallelism. Sec. 6 
proposes the new BMA based on cluster parallelism. Sec.7 implements the new 
algorithm and architecture and compares them with the existing ones. Finally, a 
conclusion is given in Sec. 8. 

2   Analysis of PMVFAST 

PMVFAST mainly utilizes spatial and temporal correlation to improve the 
performance and encoding quality of BMA[7]. Their efficiency comes from three 
aspects: MV (Motion Vector) predicting, adaptive early termination and prediction 
refinement. MV predicting checks a set of potentially similar predictors, such as the 
MVs of spatial adjacent and temporal correlative MBs (Macro Blocks), and then 
selects the best one. The adaptive early termination allows terminating the search at 
given stages of the estimation if some rules are satisfied. The prediction refinement 
employs a search pattern around the best predictor to essentially improve the final 
prediction.  

According to [7], PMVFAST is roughly 4.5, 4.8, and 4 times faster whereas its 
PSNR (Peak Signal to Noise Ratio) is approximately 0.87dB, 0.81dB, and 0.73dB 
higher than TSS, NTSS, and DS, respectively. PMVFAST is about 654 times for SA 
32 while having an average PSNR loss of only 0.06dB versus FS. EPZS [8] improves 
PMVFAST by increasing the number of MV predictors from 6 to 11 and a new 
predicting method of SAD(Sum of Absolute Differences). Although it improves 
encoding quality by about 0.01 dB on average, EPZS consumes about 8 % more 
computation time than PMVFAST.  

With the algorithm PMVFAST, six typical video sequences (CIF format, 300 
frames) are encoded: Foreman, Stefan, Coast, Flowers, News, and Mobile. There is 
much large or irregular motion in Foreman and Stefan, while the motion in News and 
Mobile is small and regular. Other experiment condition includes: half pixel search, 
NMB=16, the search area of FS is 16. 

Shown in Fig. 1, the encoding quality on the video sequences with large or 
irregular motion is not yet sufficient. For example, compared with FS, the PSNRs on 
‘Foreman’ and ‘Stefan’ decrease by 0.2195dB and 0.1805dB respectively, which are 
much larger than other video sequences with small motion. Besides, the probabilities 
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to terminate early on these two sequences are much smaller than those on other 
sequences. The fact implies that the accuracy of MV prediction on these sequences 
decreases. 

 

Fig. 1. Comparison of encoding qualities on different video sequences 

In PMVFAST and EPZS, all predictors are evaluated one by one to select the best 
one. The computation time increases linearly with the number of predictors. To 
reduce the computation time, the predictors could be evaluated in parallel.  

Above all, this paper proposes the idea of increasing the number of predictors to 
improve encoding quality, a parallel algorithm to evaluate predictors cluster and a 
new VLSI architecture to support this algorithm. 

3   Multi-predictors ME 

3.1   Acceleration Prediction 

In order to achieve more accurate prediction, EPZS [10] suggests the accelerator 
motion vector (TACCMVx,y), which takes into account both the motion vector of the 
corresponding reference frame MB and its acceleration. The computation formula is 
as follows: 

TACCx,y
t-1=(MVx,y

t-1-MVx,y
t-2) 

TACCMVx,y=MVx,y
t-1+ TACCx,y

t-1 

where TACCx,y
t-1 is the acceleration of the MB positioned at (x,y), computed 

according to motion information of the t-1frame ( the reference frame) and the t-2 
frame. As to the video sequences with irregular motion, e.g. Forman, the acceleration 
of video objects varies acutely. The prediction will not be accurate if producing the 
prediction velocity using the reference frame’s acceleration. 
    Much information of the video objects has spatial correlation, including the motion 
vector, the adjacent info, the acceleration, etc. Among them, the spatial correlation of 
the motion vector has been widely used in motion vector prediction, whereas this 
paper utilizes the spatial correlation of the acceleration to perform acceleration 
prediction, likewise leading to good results.  
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    The acceleration prediction predicts the current block’s acceleration using the 
computed accelerations of the adjacent blocks. For instance, it can compute the linear 
or nonlinear combination of the three spatial adjacent MBs’ acceleration as the 
acceleration of the current block. This paper considers the median value as the 
prediction acceleration, as follows: 

SACCx,y
t=Median(ACCx-1,y

t, ACCx,y-1
t, ACCx+1,y-1

t) 

where ACCx-1,y
t, ACCx,y-1

t and ACCx+1,y-1
t is the three available spatial adjacent MB’s 

acceleration of the current frame respectively. Then the current block’s prediction 
MV STACCMVx,y is computed according to the prediction acceleration and the 
velocity of the reference frame’s interrelated block, using the following formula: 

STACCMVx,y=MVx,y
t-1 SACCx,y

t 

3.2   Multi-predictor ME 

Valid predictors are added to improve the prediction accuracy, so as to obtain better 
encoding performance. In this way, the process of checking the predictors is to verify 
which point has the least difference with the current MB, in which the metric is 
generally the SAD (Sum of Absolute Differences). 
    Some predictors of the temporal and spatial correlation are depicted in Fig. 2, 
where the motion information of the MBs with the white color filled is known and not 
for the gray filled MBs. The position indicated by the grid is that of the current MB 
for motion estimation. The dots in the figure denote that the motion vectors are 
known, which can be used in the prediction thanks to the strong correlation with the 
current MB temporally and spatially. 

  

Reference frame Current frame  

Fig. 2. Spatial and temporal correlative predictors of current MB 

    Besides that listed in Fig. 2, the predictors used in this paper also include (0,0), 
MedianMV, TACCMV, STACCMV and the accelerator motion vectors of the four 
adjacent MBs in the reference frame(TACCMV x-1,y, TACCMV x,y-1, TACCMV x+1,y, 
and TACCMV x,y+1 ), totally eighteen. In order to analyze how the predictors affect 
the encoding quality, we verify the change trend of the encoding quality by adding the 
predictor gradually with Foreman, Stefan, Coast (CIF format, 300 frames) as the test 
sequences. Fig. 3 gives the experiment result, from which we can see that the 
encoding quality of the Stefan with large motion and the Foreman with irregular 
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motion is enhanced by the addition of predictors. Note that, it can be observed from 
the figure that the improvement curve tends to mildness when the number of the 
predictors is added to eighteen, which means it is hard to increase the encoding 
quality by adding more predictors. 

 

Fig. 3. Change of encoding quality as the number of predictors is increasing 

4   Predictors Cluster 

Although more predictors are added to improve encoding quality, the computation 
time increases linearly with their number. To solve this contradiction, the predictors 
should be calculated in parallel. Parallelism is limited by memory bandwidth in 
hardware implementation, so it is required that the loaded data be reused in maximum 
extent. To reuse data and to compute in parallel, some concepts are introduced in this 
section firstly. 

1) Scan: Loading of the pixel data in current frames or reference frames. 
2) RD(i,j) (Reference frame scan Distance): The time interval to scan from one 

checked point ‘i’ to another ’j’ in reference frame. 
3) CD(i,j) (Current frame scan Distance): The time interval to scan from one 

checked point ‘i’ to another ’j’ in current frame. 
4) CLUSTER: A set of predictors in reference frame which can reuse loaded data 

well.  
5) NUM(CLUSTER): The number of predictors in CLUSTER. 

    To reuse data and compute the predictors in parallel, CLUSTER must satisfy the 
following constraint.  

Constraint 1: NPE(cluster dimension constraint). The number of predictors in 
CLUSTER to be computed in parallel is limited by NPE (the number of processing 
elements in hardware). 

NUM(CLUSTER) NPE 

Constraint 2: RDC (Reference frame scan Distance Constraint). To reuse scanned 
data in reference frame, the checked points in a cluster should distribute in a small 
area and the reference frame scan distance should be limited by a distance constraint.   
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RD(i,i+1) RDC 

Constraint 3: CDC (Current frame scan Distance Constraint). When computing a 
predictor, the pixel data of current frame and reference frame must reach the 
corresponding PE(Processing Element) at the same time. To reuse data, the loaded 
data of current frame for the previous PE should be buffered until it can be used for 
the next PE. CDC is determined by the depth of buffers between PEs in the hardware 
implementation. 

CD(i,i+1) CDC 

 

Fig. 4. Clusters 

    From the condition: NMB is 16, the max buffer depth is 30 and the number of PEs is 
11, we can deduce the following cluster constraints : NPE 11, RDC=256, and 
CDC=30. Fig. 4 gives an example of clusters based on above constraints. All the 
predictors in Fig. 4 satisfy RDC. However, they cannot be included in a single cluster 
because that CD(3,4)=90, which is against CDC. Thus, all the predictors are divided 
into two different clusters: A and B. For cluster A as an example, it satisfies NPE that 
the number of predictors is 5. In addition, the current frame scan distance between 5 
and 6 is the max among all adjacent predictors and their CD(5,6) is 29, which satisfies 
CDC.  
    Note that small diamond, large diamond and square search patterns all satisfy 
above constraints, and they are the specific examples of cluster. 

5   Motion Estimation Architecture for Cluster Parallelism 

5.1   Top Level Architecture 

Fig.5 depicts the top level of the motion estimation architecture for cluster parallel 
computation. This architecture is a hardware/software co-design structure including two 
parts: CPU and CPAME (Configurable Parallel Array Motion estimation Engine). CPU 
is responsible for the tasks with complicated controls, such as loading and selecting 
predictors, partitioning and mapping clusters, and determining early termination. 
CPAME is the core engine of the architecture. It contains a datapath with 11 PEs, AGU 
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(Address Generator Unit), FSM (Finite State Machine) and several configurable 
registers. CPAME is responsible for the tasks with density data, search patterns 
refinement and cluster computation. Since each part except the datapath in CPAME is 
similar to PMVFAST engine [11], this paper only describes the design of the datapath. 

 

Fig. 5. Top level architecture of motion estimation 

5.2   CPAME Architecture 

Fig. 6 shows the parallel PEs array architecture of CPAME. The ‘PE’ is responsible 
for the computation of a search point SAD (Sum of Absolute Differences). ‘D’ 
denotes VDU (Variable Delay Unit). ‘C’ is the data port of the current frame. ‘P0’ 
and ‘P1’ are the data ports of the reference frame. The data of the current frame is 
transmitted to every PE one by one through the VDUs and the data of the reference 
frame is broadcasted to every PE. In CPAME, the data of the current frame and the 
reference frame is loaded only once through the above mechanism. The parallelism is 
maximized and the memory access bandwidth is minimized. The SAD results of PEs 
are compared by ‘MIN’ in different cycles and the minimal SAD is achieved at the 
end of computation. 

 

Fig. 6. Architecture of CPAME  
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    There are two important differences between CPAME engine and PMVFAST 
engine [11]: 

1) PMVFAST engine employs three types of VDUs and supports only three types of 
search patterns. A single type of VDU is used in CPAME, and it can be 
configured to arbitrary delay from 1 to 15. This change enables that the checked  
points can distribute more freely. Setting NMB=16, we can deduce the constraints: 
CDC 15, RDC 256.  

2) PMVFAST engine employs 9 PEs, which are corresponding to the 9 checked 
points in diamond search pattern or square search pattern. Here, the number of 
PEs in CPAME becomes 11. There are two reasons for this improvement. The 
first is that 11 PEs can fit most clusters nicely. Since many of the 18 predictors 
introduced in Sec. 3.2 are the same, there are only 8.7 different predictors on 
average in every ME search. 11 PEs are enough for most cluster computation. 
Secondly, there should be some additional PEs to relax scan distance constraint. 
When CD is greater than 15, two additional VDUs could be merged to support the 
delay from 1 to 30 and then CDC constraint could be relaxed to 30. The PE 
between merged VDUs would not be used any longer, so the NPE become 10. We 
can further relax CDC constraint if more adjacent VDUs are merged.  

    CPAME can be configured to support diamond pattern and square pattern, so 
PMVFAST and EPZS are also supported by this engine. 

6   Fast BMA Based on Cluster Parallelism 

6.1   Cluster Parallel Algorithm 

To increase predictors without increasing computing time, we propose a cluster 
parallel algorithm. The idea of cluster parallel algorithm is that: first we divide the 
predictors into clusters; then each predictor and scan distance in the cluster are 
mapped to corresponding PE and VDU in CPAME engine; at last the evaluating 
computation of the predictors is completed in parallel by different PEs. The algorithm 
consists of two main steps: cluster partition and cluster mapping. 

6.1.1   Cluster Partition 
The goal of cluster partition is to find the cluster with the largest number of 
predictors. Considering all the predictors introduced in Sec.3.2, since their total 
number is small, we can use a window(NMB×NMB square) to glide along with the 
predictors and count the predictors under cluster constraints in the window. If the 
number of predictors is less than NPE, the relaxed constraint discussed in Sec. 3.2 
would be used to increase the number of predictors in the cluster. A partition by the 
above method will not complete until the largest cluster is found. The process of 
cluster partition will be continued for the remained predictors until all the predictors 
have been partitioned into clusters. The algorithm of cluster partition is as follows. 
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Fig. 7. Cluster partition algorithm 

6.1.2   Cluster Mapping 
Cluster mapping consists of two parts: mapping the predictors in cluster to PEs, and 
mapping the scan distance CDs of current frame to VDUs. If a CD is greater than 15, 
we must merge two VDUs together as the delay of this CD, since VDU can only 
support 15 cycles delay. We can turn off the invalid PE between the merged VDUs to 
save energy. 

Table 1 and Table 2 show the cluster mapping from cluster B in Fig. 4 to CPAME 
engine in Fig. 5. We can see that both CD(5,6) and CD(6,7) are larger than 15, so as 
shown in Table 1, we merge D2 with D3 and D4 with D5 to support these two scan 
distance delays. As shown in Table 2, PE2 and PE4 between the merged VDUs can’t 
participate in computation at this configuration, so we turn them off to save energy.  

Table 1. Mapping from CDs to VDUs 

 

Table 2. Mapping from predictors to PEs 

 

6.2   Fast BMA Based on Cluster Parallelism 

Based on the above discussions, Fig. 8 gives the flow of PCMEFast(Parellel Cluster 
Motion Estimation Fast algorithm). The algorithm inherits some ideas of 
PMVFAST[7] and takes the new idea of increasing predictors to improve the 
accuracy of ME and cluster parallel computation. In addition, the algorithm abandons 
large diamond and small diamond search patterns and uses only square search pattern 
to refine prediction. The parameters’ definitions in the algorithm are the same as 
Cluster Partition. 

Problem: Given predictors: AllPoints={(xi , yi) | i=0,1,..,N} and the cluster constraints: NMB(corresponding to RDC), CDC and

NPE , find the cluster with the max number of predictors .

Algorithm:

Step1: Sort the predictors in AllPoints by ascend along with vertical direction firstlyand then with horizontal direction.

Step2: For each predictor (a, b) AllPoints, draw two lines: x=a and y=b. Supposed all these lines intersect on M points,

name them as CrossPoints={(x j,yj )|j=0,1,..,M}.

Step3: For each point (xj,yj ) CrossPoints, j=0,1,..,M, get the dimension of cluster starting from the point. Count all

predictors which satisfy cluster constraints or relaxed cluster constraints discussed in Sec. 5.2, and name Nj as its number.

Step4: Find max predictors number: max(Nj ), j=0,1,..,M , and return the cluster with max(Nj).
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Fig. 8. PCMEFast algorithm 

7   Implementation and Comparison 

PCMEFast algorithm is simulated and compared with PMVFAST[7] and EPZS[10]. 
The video sequence and the settings of parameters are same as that of Sec. 2. Fig. 9 
shows the result of simulation and comparison. The result shows that the PSNR of 
PCMEFast is approximately 0.0697dB higher than PMVFAST, while EPZS’s PSNR 
is only about 0.00763dB higher than PMVFAST. Apparently, the improvement effect 
of PCMEFast is 8.14 times higher than that of EPZS. The improvement is obvious in 
the video sequence with irregular and large motion. For example, its PSNR improves 
0.1433dB in Forman with irregular motion and 0.1193dB in Stefan with large motion. 
Above all, PCMEFast improves encoding quality efficiently and makes it close to that 
of FS. 

 

Fig. 9. Comparison of three algorithms 

    The proposed architecture CPAME is designed and simulated in Verilog HDL. The 
logic is synthesized by Synopsys’ DC with SIMIC 0.18um 1P5M process. Table 3 
lists the result of implementation and comparison with two existing ones. 
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Table 3. Comparison of three ME architectures 

Architectures FS[-16,15] PMVFAST PAME 

Number of PEs 16 9 11 

Process(um) 0.25 0.18 0.18 

Area(K gates) 22.3 17.5 20.48 

Processing Power 100MHz 200MHz 200MHz 

Algorithm FS  PMVFAST EPZS PCMEFast 

Clock Cycles/MB 16,399 1,042 1,122 1,021 

Bandwidth(Bytes) 31,744 2,674 3,314 2,886 

Reference [2] [11] This paper 

    The result of simulation shows that it takes 1,021 clock cycles and 2,986 bytes 
memory bandwidth to run PCMEFast once on CPAME. Although the predictors of 
PCMEFast are 12 more than that of PMVFAST(6 predictors), PCMEFast takes 2% 
execution cycles less than that of PMVFAST because of cluster parallelism. Besides, 
PCMEFast on CPAME works 9% faster and consumes 12.9% less bandwidth than 
EPZS does. Note that the results of PMVFAST and EPZS are all got from the 
experiments accelerated by PMVFAST hardware engine. 
    The results of synthesis with Design Compiler show that CPAME engine consumes 
2,980 gates more than PMVFAST engine, which are consumed on the added PEs and 
VDUs. We can see also that the throughput of CPAME engine is about 16 times more 
than that of the FS ME engine with 16 PEs. The CPAME engine takes only 9.1% 
memory bandwidth of that of FS engine and 91.8% logical area of that of FS engine. 

8   Conclusion 

Based on the analysis of PMVFAST and the method of hardware/software co-design, 
this paper proposes a parallel algorithm to evaluate predictors cluster and a VLSI 
parallel architecture. The proposed algorithm and architecture improve encoding 
quality efficiently without increasing computation time. They can find applications in 
video fields, e. g. video meeting, video surveillance and wireless video transmission. 
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Abstract. With the rapid development of wireless networks and con-
sumer electronics, various mobile applications have emerged. However,
due to some constraints such as weak computational power, limited mem-
ory and small display screen, traditional video coding applications can
not work well on mobile devices. In this paper, we proposed a software-
based video codec framework and its implementation which is suitable
for real-time video coding applications on mobile devices. Some key op-
timizing techniques, such as fast predictive motion estimation (ME),
zero-coefficients prejudgment and multiplierless integer discrete cosine
transform (DCT), are used in our codec. Experimental results demon-
strate the flexibility of our framework and the good speedup we achieved
while video quality degradation is negligible. The codec is suitable for
scenarios where low-complexity computing is required.

1 Introduction

In recent years, with the rapid development of hardware capability, mobile de-
vices such as mobile phones and pocket PCs become popular in our daily lives.
More and more users are seeking real-time mobile video communication ser-
vices. However, because of some constraints such as weak computational power
and limited memory size, many highly efficient but complex algorithms cannot
be used directly for real-time video coding on mobile devices. How to reduce the
computational requirements as much as possible while achieving good coding
performance becomes a key research issue for video codec [1].

Many efforts have been done in this area. In [2], a practical real-time video
codec is presented for mobile devices. It proposed a codec based on the reference
software of H.263 and did some optimization works on ME and DCT. Experi-
mental results on pocket PC showed its feasibility. However, the codec is based on
H.263 standard only and does not consider the flexibility. An optimized MPEG-
4 video codec is proposed in [3], it presented an optimized encoder focused on
ARM chips. Besides algorithmic optimization, architecture level optimization is
also adopted and showed its great advantage; whereas, the optimization schemes
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aim at ARM cores without a view to the universality and scalability. Other op-
timization schemes [4][5] only consider some specific algorithms in video codec.

In this paper, we proposed a software-based video codec for mobile devices.
Considering both of the flexibility and scalability, our codec is designed on a
base of component framework. The convenience of the proposed framework will
be shown in the following section. Besides, some key optimizing techniques such
as fast predictive motion estimation, zero-coefficients prejudgment and multipli-
erless integer DCT, etc, are used in our codec to reduce the computational com-
plexity. Experimental results show that our codec can achieve a good speedup
with negligible video quality degradation. Our codec performs well on HP Pocket
PC iPAQ, e.g. for some QCIF sequences (176*144), the encoding speed can reach
20 frames per second (fps). Moreover, the flexible framework of our codec is in-
dependent of video coding standards, such as H.263, MPEG-4, etc.

The paper is organized as follows. In Section 2, we present our flexible frame-
work of video codec design. The key optimizing techniques are proposed in Sec-
tion 3. In Section 4, we show the experimental results and comparative analysis.
The last section gives the conclusions and future works.

2 Flexible Codec Framework for Mobile Devices

Fig.1 shows the flowchart of conventional hybrid DPCM/DCT video encoder
model. Traditional software implementation of the codec is the workflow of the
diagram. Almost all the existed reference software modules are such kind of im-
plementation. However, in our proposed software codec framework, we classify
the different modules into three layers. Fig.2 shows the architecture of the pro-
posed framework. Layer one is basic algorithm layer; it includes the common-used
algorithms such as DCT, Quantization, Colorspace Conversion, Motion Estima-
tion and Compensation, etc, which are also the kernel algorithm modules of the
conventional codec. Common Interface layer is the second layer, which is special
for the convenience. Developers need not care for the implementation and detail
of the algorithms but the interfaces. Specification related layer, which includes

Fig. 1. The flowchart of the encoder
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Fig. 2. Framework of video codec for mobile devices

the specific encoder and decoder, is classified as the third layer. This layer is
standard related, i.e., we introduce bitstream syntax here.

The main advantage of this framework is the flexibility. All the modules in
basic algorithm layer have fixed interfaces, which are presented in the common
interface layer. A new DCT algorithm is invented, for example, we only need to
replace the new component with the old one, which doesn’t influence up-layers.
We can also add some complex modules into basic algorithm layer as optional
components, such as rate control module and error resilience module, etc.

Another merit of this framework is that we can set up our codec software
to match MPEG-x or H.26x standard on demand, because all the basic algo-
rithms are similar, what’s the difference is the bitstream syntax according to the
different standards.

3 Proposed Optimizing Techniques

We implemented the codec software according to the component framework pro-
posed above. In order to get the distribution of computing time, full search mo-
tion estimation and floating DCT/IDCT are used in our testing. It can be seen
from Fig.3, motion estimation, DCT/IDCT and quantization are three criti-
cal modules which consumes the majority of computing time. Obviously, our
main target is optimization of the three time-consuming modules. Next four
sub-sections will give the proposed optimizing techniques which can significantly
reduce the complexity.

3.1 Fast Predictive Motion Estimation

Motion estimation (ME) is efficient in eliminating temporal redundancy between
adjacent frames. At the same time, motion estimation is considered the most time-
consuming part. There are significant advances in fast motion estimation tech-
niques in recent years for alleviating the heavy computation load, e.g. the diamond
search (DS) [4], the efficient fast ME prediction and early termination strategy [5].
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Fig. 3. Test result of foreman sequence at QCIF format, QP = 4

In [5], four prediction methods are proposed, includes median prediction
(MP), uplayer prediction (UP), last frame prediction (LFP) and last reference
frame prediction(LRFP). We introduce two simple prediction methods here. MP
is defined by

MVpred MP = median{MVA, MVB, MVC} (1)

Where MVA/MVB/MVC , is the motion vector (MV) of A/B/C block in
Fig.4(a) respectively. Note that A/B/C may not be in same modes. LFP is
defined by

MVx,y,n = mvx,y,n−1 (2)

Where mvx,y,n−1 is the corresponding MV of the previous frame, Fig.4(b).
In our proposed codec, considering the trade-off between coding efficiency and

computation complexity, we choose MP as the prediction method. After the MV
prediction, a diamond search process (Fig.5) is used in ME.

We compared the fast predictive ME algorithm with the full search ME and
the following Table 1 shows the results. More than 20 speedup on motion esti-
mation is achieved while PSNR degradation is negligible.

Fig. 4. Prediction pattern: (a) Median prediction; (b) Last frame prediction
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Fig. 5. Diamond search (DS) process

Table 1. Average PSNR degradation and speedup of the ME module comparing to
full search with a search range of 32 pixels, QP=4, QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.05 25.48

Coastguard 0.11 23.43
Foreman 0.16 19.12

3.2 Zero-Coefficient Prejudgment

Discrete cosine transform (DCT) is applied to compress motion compensation
data in the spatial domain, and a special case for the encoder occurs when all
the coefficients from the DCT are quantized to zero. In this situation, instead
of sending multiple zeros to the decoder, the encoder sends a special signal
indicating the ’skip’ state.

The traditional method to detect whether one block is ’skipped’ or not is
rather complex, because it needs the computation of DCT and quantization,
then followed by a check to see if all the coefficients are zero or not. For some
special application, such as video conference or video phone, there are many
stationary blocks, so zero-coefficient prejudgment could significantly reduce the
amount of computation.

In [6], a good zero coefficient prejudgment method is proposed and in [7], an
improved method is presented to enhance the judgment efficiency.

The discrete cosine transform of a discrete function
f(x, y) x, y = 0, 1, .., N − 1, is defined as

F (u, v) =
(

2
N

)
kukv

∑∑
f(x, y) cos

(
(2x + 1)uπ

2N

)
cos

(
(2y + 1)vπ

2N

)
(3)
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u, v = 0, 1, .., N − 1 where ku, kv =
{ 1√

2
for u, v = 0

1 for u, v = 1, 2, ..N − 1

In our proposed codec, N = 8, so formula 3 gives

|F (u, v)| =
1
4

7∑
x=0

7∑
y=0

abs(f(x, y)) (4)

The condition for all-zero DCT coefficients is

|F (u, v)| < 2Q (5)

Where u, v = 0, 1, .., 7, and Q denotes the quantization level. Thus

7∑
x=0

7∑
y=0

abs(f(x, y)) < 8Q (6)

The formula 6 gives the condition under which the DCT has all-zero co-
efficients. The left part of formula 4 is the SAD of the motion compensation
block, which can be obtained during the motion estimation. Therefore no addi-
tional computation is needed. The threshold 8Q can be increased or decreased,
according to practical requirement. We adopt this algorithm to our codec and ex-
perimental results show that large parts of zero blocks are prejudged as all-zero.
Table 2 presents the results.

Table 2. Zero-coefficient prejudgment and speedup for the encoder, QCIF format
sequence

Sequence QP All-zero blocks Blocks correctly Speedup
ration in total judged as all-zero

Akiyo 4 75.1% 55.1% 1.13
8 84.4% 71.5%

Coastguard 4 47.9% 31.2% 1.10
8 65.1% 43.5%

Foreman 4 40.6% 29.2% 1.08
8 58.3% 50.8%

3.3 Mutiplierless Integer DCT

The DCT is widely used in DPCM/DCT video coding. However, the conven-
tional floating-point DCT (FloatDCT) contains floating-pointing operations, es-
pecially the multiplications. An integer DCT (IntDCT)[8] method can get great
improvement. One implementation of IntDCT for an 8*8 block needs only 45
additions and 18 shifting operations. There are no multiplications which require
heavy computational power in mobile devices. Therefore, IntDCT is adopted in
our proposed codec. Although there is a little PSNR degradation, it does not
influence the visual quality, especially on mobile devices.
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In the experiment, the forward IntDCT is used in the encoder followed by the
inverse IntDCT in the decoder. The following Table 3 shows the degradation of
the PSNR and the speedup of DCT/IDCT module.

Table 3. Average PSNR degradation and speedup of DCT/IDCT module, QP=4,
QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.20 3.03

Coastguard 0.24 2.62
Foreman 0.32 2.18

3.4 Other Optimization Techniques

Using Reversible 16-bit-color Transform. One speciality of mobile devices
is the display format and most of them adopt 16-bit-color (RGB555 or RGB565).
Those color systems are actually ubiquitous nowadays as a result of the popular-
ity of hand-on devices from mobile phones to Personal Digital Assistants (PDA).

Traditional color transform method from RGB to YUV is the most widely
used one in digital image and video coding. The linear transform from R’G’B’
to Y’CrCb in Rec.601-1 [1] is

⎡
⎣ Y ′

Cb
Cr

⎤
⎦ =

⎡
⎣ 16

128
128

⎤
⎦+

1
256

⎡
⎣ 65.738 129.057 25.064
−37.945 − 74.494 112.439
112.439 − 94.154 − 18.252

⎤
⎦ •

⎡
⎣R′

G′

B′

⎤
⎦ (7)

Obviously, there are multiplier operations during the procedure, which require
much CPU cycles. In our previous work [9], a new color transform method is
proposed special for 16-bit RGB565 (RGB555 can be handled as a special case
where the right most bit of G is zero). The forward transform matrix is defined as

Yr = R′ + G′ + B′

Cbr = 4B′ − Yr = −R′ − G′ + 3B′

Crr = 4R′ − Yr = 3B′ − G′ − B′
(8)

And the inverse transform is

G′ = (2Yr − Cbr − Crr)//4
R′ = (Yr + Crr)//4
B′ = (Yr + Cbr)//4

(9)

where // denotes rounding to the nearest integer, R’, G’, B’ is of 5, 6, 5 bits
respectively. Compared to formula 7, the new transform method is multiplierless.
It saves a lot of pre-encoding time. We adopt the new proposed transform method
and experimental results show the encoding speedup with tiny PSNR loss.
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Table 4. Average PSNR degradation and speedup of colorspace conversion module,
QP=4, QCIF format sequence

Sequence PSNR Loss Speedup
Akiyo 0.02 1.21

Coastguard 0.04 1.18
Foreman 0.05 1.17

Optimization of ABS Function. ABS() function is used frequently in the
encoder, especially SAD calculating module. The ABS(x) macro is always de-
fined by

#define ABS(X) (((X)>0)?(X):-(X))

In this definition, one comp operation and one branch judge operation is
needed at least. We proposed a lookup table to replace the function. For the
max value of the difference between two pixel is 512, we set up a table costs
512*2 bytes = 1k bytes. The initialization of the table is defined by

for(int i=-256; i<256; i++)
table[i] = (i<0) ? -i : i;

All the ABS() function can be replaced by a simple lookup operation. Ex-
perimental results show the advantage of the optimization.

Table 5. Speedup after using the lookup table to replace the ABS() function for
encoder. No PSNR degradation. QP=4, QCIF format sequence.

Sequence Speedup
Akiyo 1.29

Coastguard 1.21
Foreman 1.17

4 Experimental Results

We have implemented an optimized version of our proposed software-based
codec. Based on the codec, we examined the effectiveness of the proposed al-
gorithms on computation time and video quality. The test sequences adopted
includes Akiyo, Coastguard and Foreman with QCIF format. It can be seen

Table 6. PSNR degradation and speedup in our codec, QP=4, QCIF format sequence

Sequence PSNR-Y(loss) PSNR-U(loss) PSNR-V(loss) Speedup
Akiyo 0.36 0.24 0.30 12.85

Coastguard 0.42 0.32 0.31 10.24
Foreman 0.49 0.42 0.40 9.78
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Table 7. Average encoding frame rates (fps) on HP iPAQ PPC, QP=4, QCIF format
sequence

Sequence Unoptimized Encoder Proposed Encoder
Akiyo 2.42 22.62

Coastguard 2.26 19.36
Foreman 2.05 18.21

that: for ’Akiyo’ sequence with motion limited in the center region, our pro-
posed codec achieves more than 10 speedup compared to unoptimized one; for
’Coastguard’ sequence with global motion and for ’Foreman’ sequence with dis-
ordered motion, we achieves about 10 speedup. The experimental result was
listed in the following Table 6.

We also did experiment on HP Pocket PC iPAQ, which possesses a 400MHz
StrongARM processor and 128MB RAM. We can draw the conclusion from the
results in Table 7 that our proposed software-based codec improves the frame
rate significantly.

5 Conclusions and Future Works

In this paper, we propose a flexible framework of video codec design for mobile
devices, which is composed of three layers: basic algorithm layer, common inter-
face layer and specification related layer. Based on the framework we can easily
construct a special codec through the common interfaces rather than considering
the detailed algorithms.

Meanwhile, we gave some advanced optimization methods in detail. To alle-
viate the constraints of mobile devices, we must take great effort to reduce the
computational load and memory requirement in the proposed solution. There-
fore, we introduced some key optimization techniques, such as fast predictive
ME, zero-coefficient prejudgment and multiplierless integer DCT, etc.

Experimental results show that our proposed framework and software-based
codec achieve significant efficiency and are very suitable for mobile devices.

Future directions include offering adaptive rate control and error resilience
for wireless transportation.
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Abstract. Video Conference under low bandwidth condition, such as
conference among hand-held sets (PDAs), requires transmission algo-
rithm to be robust and effective. The real-time issue is always the focus
of research. We propose in this paper a fast algorithm in mapping one’s
facial expression onto another’s face. The algorithm divides workload into
online and offline part and hence speeds up the performance. By using
this, it is possible to transmit small data of facial features to end users
of conference participants. Expressions can be then synthesized at end
user side to produce pseudo-video-sequence of the participants. Thus,
real-time transmission can be achieved.

Keywords: ERI, Real-Time Video Conference, Embedded System.

1 Introduction

Photorealistic facial expression synthesis is applied widely in video, games and
filmmaking industry.

One class of expression synthesis methods is 3D-model-based techniques [1]
and [2]. These methods generate perfect geometry details. With some tracking
techniques [3, 4], they transfer facial expression in video. However, one problem
of these methods is that they are computationally expensive, which makes it
impossible to be used in real-time face synthesis. The other problem is that they
require special device to obtain 3D data of human faces.

Another class of approaches is image-based techniques. They either use image-
morphing techniques [5] to morph one expression to another, or use expres-
sion mapping techniques [6, 7] to warp an input face to given expressions. The
image-morphing method may suffer from the common ghost-effect and is only
applicable providing the sample expressions of the person. The latter one cannot
generate expression details, as we will discuss later.

In this paper, we will discuss a practical real-time facial expression synthesis
method. Our method is based on Expression Ratio Image (ERI), which records
� This paper is supported by National Natural Science Foundation of China
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Fig. 1. Expression mapping of a ”big smile” with details. Left: the neutral face. Middle:
result from geometry warping. Right: result from our method.

illumination changes due to expression change. By recording expressional change
between a neutral face and a face with expression, we could map the expression
to a new face in real time. This mapping can be applied to any person. It is
also possible to implement our method on PDA or some real-time systems. In
addition, our method can handle unexpected noise in labeled sample images.
ERI Computing and filtering are fully automatic. Users only need to provide
labeled images.

The rest of the paper is organized as follows. Three most important facial syn-
thesis methods are discussed in the next section. Necessary background knowl-
edge of expression ratio image are introduced in section 3. In section 4, we discuss
the automatic filtering process in detail. Some results are shown in section 5.
Section 6 gives a discussion on the limitations of our method, a potential usage
of our method and a future research direction.

2 Related Works

Performance-driven facial synthesis technique, proposed by L. Williams et. al.[6],
is an early research on facial expression synthesis. It can be used to animate 2D
images and textured or non-textured 3D face models. Given an image with a
person’s neutral face and an image of the same person with expression, both
of which have feature points located through manual or automatic methods
[8, 9], the feature points of the new face is set according to the difference vector
between the neutral face and the expression face. Then the new expression is
generated through geometry controlled image warping [5, 7]. One disadvantage
of this approach is that it only synthesizes the geometry change but completely
ignoring the detailed expression features such as wrinkles.

Z. Liu et. al.[10] proposed a technique, called Expression Ration Image (ERI),
to record and map one person’s expression to another person’s face. To cre-
ate a new ERI of an expression, it needs a neutral face (reference image) and
an image with the expression of the actor. In other words, it needs a sample
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for each expression. It is only possible to map the already recorded expression
to a new face. Although recording each expression (offline process) is difficult
and time consuming, mapping an expression (online process) is fast and the
result is photorealistic with creases and wrinkles well preserved as the original
expression.

Q. Zhang et al.[11] used a geometry-driven facial expression synthesis method,
which generates photorealistic expressions with arbitrary feature points. This
method calculates each sub-region on the face and then blends all sub-regions
together. Computing a sub-region is time consuming because it needs to combine
the same sub-regions in all sample faces to generate the new sub-region. Number
of samples is 30-40 for each person in [11]. The author achieved 2-4 frames per
second on a 2GHz PC for 600x800 images.

3 Expression Ratio Image

As described in [10], Expression Ratio Image (ERI) retains the illumination
changes due to expression change. Such changes are vital to an expression that a
human would conceive as ”real”. A similar technique [12] used the color difference
between one reference image and the other with something changed. Under the
Lambertian model, let the initial intensity at point p be I and the intensity after
surface deformation be I ′. The relationship between illumination change of I
and I ′ at point p is

# =
I ′

I
or I ′ = I# (1)

Equation (1) shows it possible to form the illumination after deformation by
simply multiplying the illumination before deformation with #, regardless of the
reflectance coefficient of the surface.

When mapping an expression to a neutral face, let the two faces be A and B,
A is the neutral face of A, A′ is the face of A with expression, B is the neural
face of B and B′ is the synthesized face with A’s expression.

We suppose all features of a face are aligned correctly in the above discussion.
In real cases, the features are usually not aligned correctly. We must align cor-
responding feature points in different image. To reduce computational expense,
we divide the algorithm into offline process (record changes between a neutral
face and a face with expression) and online process (mapping an expression
to a new face). Alignment is done through warping in both offline and online
process.

Because the ERI records the illumination changes(equation 1), it is desirable
to compute only the ratio of illumination component of a pixel. However, our
input image are of RGB color. We alter the RGB color space to YUV color space
of input images before both online and offline process and change it back to RGB
color space after each process. In YUV color space, the Y component represents
the luminance [13]. Therefore, only the ratio of the Y component of the input
images is computed.
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3.1 Offline Process

Let Ã be the raw neutral face of A and A′ be A’s raw expressional face. The
above images are not aligned properly. We must align them before computing
ERI. The aligning process goes with the warping process.

Step 1: Find face features of Ã and A′(manually or using some automatic
methods).

Step 2: Move the features of Ã to A′, and warp accordingly. The warped image
is A.

Step 3: Compute the difference vector between A′ and A. The result is pro-
cessed to reflect relative position change.

Step 4: Compute the ratio image #(x, y) = A′
A

Step 5: Filter #. Then store the difference vector, feature positions of A′ and
# to an expression file.

3.2 Online Process

After we compute an expression file, we can map this expression to any face. Let
B̃ be the labeled new face.

Step 1: Load the difference vector, feature positions and # of the expression.
Step 2: Move the features of according to the difference vector, and warp B̃

accordingly. The warped image is B̃′.
Step 3: Move the feature of # to B̃′, and warp accordingly. The warped ERI

is #′

Step 4: Set B′ = B̃′# for every pixel.

4 Automatic Filtering

The directly computed ERI is very noisy. The noise comes from various sources:
change of camera aperture and shutter; slight change in the person’s face direc-
tion and pose; misalignment in the warping process. In Figure 2, only the creases
between the eyebrows are our required facial expression details. The noises will
create undesirable artifacts in the eyes, eyebrows and lips(Figure 2(d)).

4.1 Normalized Auto-correlation Method

Z. Liu et al. [10] proposed to use an adaptive Gaussian filter with different
window size. For each pixel, they computed a normalized cross-correlation c
between the neutral face and the expressional face. An adaptive Gaussian filter
is then applied to the ERI. The smaller c is, the larger the window of the filter is.

However, the method in [10] does not fit for our applications for its inherent
defects. Firstly, normalized cross-correlation is very time consuming. For an M×
N image, the computational complexity is O(M × N × S2)(S is the size of the
correlation block). The complexity is still high (O(M × N × SlogS)) even if we
use Fast Fourier Transformation and convolution theorem[13].
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(a) (b) (c) (d)

Fig. 2. The ERI compute from two images. (a) the ERI. We visualize the ratio for
display purpose. White means large ratio and black means small ratio. (b) the neutral
face. (c) the expression face. (d) mapping (a) to (b). Red circles point out some artifacts.

Second, an adaptive Gaussian filter alone is insufficient for filtering. Gaussian
filters only smooth the image. However, the noise in ERI often gathers at certain
parts of the face, such as eyebrows, eyes and the edges(Figure 2(a)). In such areas,
Gaussian filters merely smooth the noise. Without other filters, the filtered ERI
is still noisy and it will cause artifacts in the mapping process.

Third, the algorithm ideally considers the area with low texture complexity
the area where facial expression details located. Due to noises, a small c may
also mean a noisy area.

4.2 Our Method

After studying what human consider important expression details in different
expressions, we conclude that humans are more likely to sense slight brightness
change in the ”smooth” areas (cheek, forehead, jaw and area between eyes and
eyebrows). We call the map that tells the smoothness of each pixel the smooth-
ness map. The more complex the area is, the less important the detail change of
it is. The darken areas in Figure 4(right) are the areas that contain important
expression details.

For this reason, we need to compute the smoothness map for a given face. A
direct approach is to mark the ”smooth” areas manually on the face. However,
it is inefficient and cannot adapt to new faces. Another choice is to compute
auto-correlation between an area and its neighborhood areas. A large c means a
smooth area and small means the opposite. Nevertheless, it is computationally
expensive. After experiment and comparison between several methods, we pro-
pose to use a statistical method by computing the standard deviation σ of an
T ×T area Sxy centered at (x, y), where T is chosen according to the size of the
face. Figure 4(middle) is the result of our method.

E =
1

T 2

∑
P (x,y)∈Sxy

P (x, y) (2)
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σ(x, y) =
1
T

√ ∑
P (x,y)∈Sxy

(P (x, y) − E)2 (3)

By applying (2) and (3) to each area Sxy centered at point P (x, y), we get
the smoothness map R(x, y) = σ(x, y) for each point. A small R(x, y) means a
smooth area and a large one means the opposite.

After R is obtained, we apply an improved Gaussian filter to it, which we
call Weaken-Gaussian Filter (WGF). From equation 1, we know that a ratio
of 1 means no illumination change in that pixel. In the non-smooth areas, it is
desirable to attenuate or eliminate the ratio variations that we consider noises.
Therefore, we want to make #(x, y) closer to 1 if R(x, y) is large. For each pixel
#(x, y), let #′(x, y) be the filtered ERI, G(x, y) be the weakened ratio, Rmin and
Rmaxbe the minimum and maximum value of R

#′(x, y) = 1 +
T∑

m=0

T∑
n=0

(#(x + m, y + n) − 1)F (m, n)G(x + m, y + n) (4)

G(x, y) =
Rmax − R(x, y)
Rmax − Rmin

(5)

where Rmin = argmin[P |P ∈ R], Rmax = argmax[P |P ∈ R] and F is a adaptive
Gaussian filter with window size of T ×T and σ of F is decided by R(x, y). The
larger R(x, y) is, the larger the σ of F will be.

Fig. 3. Left: result of filtering Figure 2(a) with our method. Right: Mapping the left
ERI to Figure 2(b).

WGF is better than traditional Gaussian filters. It adaptively uses different
Gaussian kernels with different σ according to the smoothness map, which helps
to smooth the noise. It also attenuates the noise by making #(x, y) closer to 1.
And the the weaken ratio G(x, y) is also related to the smoothness map. We can
see the result of our method is good. From Figure 3(left), it is obvious that filter-
ing Figure 2(a) with our method can greatly reduce the noise. In consequence,
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the result of mapping the filtered ERI to the neutral face(Figure 3(right)) is
more close to the ground truth(Figure 2(c)).

4.3 Comparison of the Methods

Compared with the normalized auto-correlation method, our method has several
advantages.

First, it is fast. We experiment the two methods on a machine with Pentium-
M 1.4G processor and 512MB memory. We test the same input for several times
and calculate the average time. It takes 6.2 seconds to compute a 205 × 275
smoothness map using the normalized auto-correlation method. For the same
input, our method takes only 0.12 seconds.

Second, it is comparatively accurate in computing the smoothness map. From
Figure 4, we find that our method tends to classify some ”smooth” areas as
non-smooth areas. For example, due to the gradual illumination change on the
”slope” areas, statistical method will classify such areas as not-so-smooth area.
However, the correlation tends to do the opposite. It classifies the eyebrows as
smooth areas. Overall, result of our method better matches the idea smooth
area(Figure 4(right)) than the correlation method.

Fig. 4. Left: applying normalized auto-correlation on Figure 2(b). Middle: applying our
statistical method to the same image. Right: areas that contain important expression
details. For each pixel, smoothness is proportional to darkness.

Last but not least, it attenuates the noise while retaining the necessary details.
Comparison between Figure 2(a) and Figure 3(left) shows that the noise in areas
such as eyes, eyebrows, lip, nose and the edge of the face has been reduced or
eliminated. In the meantime, the important detail(wrinkle between the eyebrows)
is well preserved.

Overall, our filtering method is fast and overcomes the shortcomings of the
method in [10]. It is an automatic filtering method that can be transplant to
embedded systems with excellent performance.
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5 Experiments and Results

We implemented our method both on PC and hand-held sets (PDAs). We man-
ually labelled the mark points for each input image. The warping process was
implemented in software by applying Delaunay triangulation to the mark points.
To test our method, we find several expressions from different sources and map
them to different people.

(a) (b)

(c) (d)

(e)

Fig. 5. The sample expressions. For each pair, left column is the neutral face and right
column is the expression. (a) smile; (b) big smile; (c)sad; (d) thinking; (e) “special”
expression.

In Figure 5, we give five sample expressions. The left column is the neutral
face and the right column is the face with certain expression. The expressions
are smile, big smile, sad, thinking and a special expression.

Our first results are mapping the expressions back to the neutral faces of the
person where each expression comes from.
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(a) (b) (c)

(d) (e)

Fig. 6. Mapping the expression back. (a)smile; (b) big smile; (c) sad;(d) thinking; (e)
”special” expression.

6 Conclusion and Future Works

We have shown that our method is a fast automatic facial expression synthesis
technique. The method in [10] first gave a way of expression synthesis by ERI, but
it didn’t consider the characteristics of the face image. Therefore, we presented
in this paper a faster and better filtering method and finally form our solution.
Our filtering method can process an image in 0.12 second.

We also transplanted our algorithm to embedded systems. In our test, the
offline process takes 0.15 seconds for a 205 × 275 image on a machine with
Pentium-M 1.4G processor and 512MB memory. The online process takes 0.014
for the same image on the same machine. In an HP 5550 PDA (400MHz), it takes
0.4 seconds and 0.02 seconds respectively. The most time consuming process is
the filtering process. If it is implement in hardware, the speed could be greatly
increased. We avoid using non-standard libraries for there may not be such
libraries in embedded systems. We use shifted integers instead of floats because
most embedded systems have better performance for integers than floats. We
also optimize the code so that they can run at real-time.

The synthesized expression looks real with expressive details. However, since
the warping algorithm is quite simple, the mapping result is distorted in some
complex expressions. It could be improved by adopting advanced warping algo-
rithm and carefully selecting the feature points.

In our implementation, we find the facial features manually. A further im-
provement could add some automatic feature-locating algorithm [8, 9]. Although
our current research is based on static images, we could extend our research to
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facial mapping on video. By using some tracking algorithms such as AAM (Ac-
tive Appearance Model)[3] or KLT (Kanade-Lucas-Tomasi)[4], it is possible to
animate an expression on a given person. Combined with the automatic feature-
locating algorithm and video compression techniques, a low-bandwidth real-time
video meeting system can be established.
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Abstract. In the past few years, the ubiquity of embedded mobile computing 
brings about a new challenge for multimedia application. Not only the 
performance but also the power consumption is vital to the multimedia 
application because mobile clients are powered by battery. In this paper, we 
make the detailed power consumption analysis of multimedia applications with 
two power reduction techniques—ideal clock gating and ideal power gating. 
Experimental results show the power consumptions can be reduced to 35.22% 
and 15.68% by ideal clock gating and ideal power gating, respectively. Our 
primary contributions lie in evaluating the power characteristics of multimedia 
applications using MediaBench benchmark suite, and evaluating the impact of 
unideal power reduction techniques on the performance. Such an analysis can 
help the multimedia applications developers determine the efficient power 
optimization policy besides the performance optimization. Low-power 
embedded multimedia applications are promising in the future. 

1   Introduction 

Power consumption is a vital resource for battery-operated mobile systems or 
embedded systems. However, the advances in battery technology and low-power 
circuit design cannot keep up with the energy demands of the future embedded mobile 
computing. Some energy-efficient methods for the embedded applications have been 
proposed [11]. But a main limiting factor is the lack of effective power analysis for 
the embedded multimedia applications. The detailed and the effective power analysis 
can help mobile computing designers determine power saving policy. Our article 
provides the detailed power analysis for the embedded multimedia application by 
running MediaBench under PowerImpact [2] simulator environment. 

The performance issue is an important issue for the multimedia applications since 
the computation needs to be completed in time. Therefore, in our article we also 
obtain the impact of unideal power reduction technique on the performance by 
changing wake-up time. 

Our article refers to three different kinds of power consumption: dynamic power, 
short-circuit power and leakage power. The Short-circuit power is the least important 
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since it is only introduced for a short period of time. Dynamic power generally 
dominates the total power consumption. The leakage power is becoming an 
increasingly important concern [3]. It has been pointed out that the leakage power can 
be up to 40% of the total power for high-performance VLIW processors [4]. In 2002, 
Intel’s Grove ever said chips constructed of increasing numbers of transistors could 
suffer power leakage of up to 40% [8]. Facts approve the power is largely dissipated 
as heat causing the cooling problems for the powerful chips. The power simulator we 
use in this paper is PowerImpact, which explores leakage power dissipation. 

Our article refers to three power models: power without gating, power with ideal 
clock gating, and power with ideal power gating, whose definitions are given in 
Section 3. From simulation results, we find two power reduction techniques (ideal 
clock gating and ideal power gating) is effective, whose power consumption can be 
reduced to 35.22% and 15.68%, respectively. We also identify which component is 
the most responsible for power consumption. 

In summary, the primary contributions of this paper are the following: 

• We present a detailed power consumption analysis for the MediaBench 
benchmark suite. 

• We identify the component, which is the most responsible for power 
consumption. 

• We analyze the impact of unideal power reduction technique on the 
performance by adjusting wake-up time. 

The rest of this paper is organized as follows. Section 2 reviews the previous work. 
Section 3 introduces three power models. Section 4 introduces the simulation 
methodology and the benchmark. Section 5 gives the experimental results. Section 6 
concludes the paper and discusses some future work. 

2   Related Work 

In this section we review the previous work in mobile multimedia application. Along 
with the ubiquity of the Internet and the advent of wireless communication and 
mobile computing, the research on mobile multimedia communications for wireless 
Internet is more and more comprehensive. MediaBench [9] is a representative of 
multimedia and communications applications. 

Chunho Lee et al. [6] tested the performance characteristics of MediaBench. Their 
work is valuable because at that time the vast majority of ILP research focused on 
general-purpose computing (popular benchmark is the integer SPEC benchmark [10]), 
and the essential elements of embedded multimedia and communications applications 
were not captured well. They tested MediaBench suite performance characteristics 
based on some set of metrics using IMPACT tool suite [12]. Their experimental 
results shows the obvious performance difference occurs in the following four areas: 
achieved instructions-per-clock, instruction cache hit rate, data cache read hit rate, and 
memory bus utilization. 

Benjamin Bishop et al. [5] presented a detailed analysis of the MediaBench 
benchmark suite. They examined MediaBench performance characteristics by running 
MediaBench under the SimpleScalar simulation environment [13]. Characteristics 
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such as instruction mix, branch prediction accuracy, and cache hit rates, memory 
usage, and integer bit utilization were considered. Our work is different from theirs 
because we are concerned about power characteristics besides performance 
characteristics. 

In order to test power characteristics of MediaBench, we choose PowerImpact 
simulator, which includes leakage power models, while other power simulators, such 
as Wattch [7], don’t consider the leakage power consumption. More and more 
researchers are concerned about the research on leakage power modeling. Weiping 
Liao et al. [4] studied the leakage power reduction using power gating in the forms of 
the Virtual power/ground Rails Clamp (VRC) and Multi-threshold CMOS (MTCMOS) 
techniques. Their experimental results show the leakage power can be over 40% of 
the total power consumption for VLIW processors. They also proposed a time-out 
scheduling of VRC to reduce power up to 85.65% for L2 cache. Their experimental 
benchmarks are partly drawn out from SPECint and SPECfloat. We use MediaBench 
as our benchmark and power consumption characteristic of MediaBench are quite 
differently from that of SPEC2000. One of our contributions is that we consider the 
impact of unideal power reduction technique on the performance. Weiping et al. only 
considered ideal clock gating and ideal power gating effectiveness on power 
reduction. 

3   Power Models 

In this paper, three kinds of power models are examined: one is the total power 
without gating; another is the total power with ideal clock gating; the third one is the 
total power with power gating. In this section, we will describe clock gating technique 
and power gating technique in detail. 

3.1   Clock Gating and Clock Ramping 

Clock gating is effective to reduce the dynamic power consumption of the functional 
units, but turning on/off a functional unit in a short time will lead to a large surge 
current. To reduce the surge current by these clock gating technologies, M. Pant et al. 
[14] first proposed to insert wake up and go to sleep time between the on and off 
states to extend the switch on/off time. Since the clock gating need to take several 
cycles, Weiping [1] called this case clock ramping to be different from the 
conventional clock gating approach. He proposed two kinds of techniques, one is 
clock ramping with hardware prescan (CRHP), and the other is clock ramping with 
compiler-based prediction (CRCP). This improved CRHP technique for VLIW 
architecture has a finer clock ramping granularity, which can achieve more power 
reduction compared to superscalar architecture. CRCP is a new compiler optimization 
technology, which automatically inserts ramp-up instructions (RUI) based on 
hyperblock scheduling to instruct the in-time ramping up of functional units. 
Therefore, no extra fetch and decode logic used in the hardware prescan is needed. 
The detailed explanation sees to [1]. In our simulation, we use PowerImapct, which 
implemented CRHP and CRCP techniques. In the section 5, the effectiveness of clock 
gating is shown. 
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3.2   Power Gating 

There are three different kinds of power consumption: dynamic power, short-circuit 
power and leakage power. Short-circuit power is the least important since short-
circuit current is only introduced for a short period of time. Dynamic power generally 
dominates the total power consumption. However, the leakage power is becoming an 
increasingly important concern [3]. In 2002, Intel company chairman Andy Grove 
told an audience at the international Electron Devices Meeting in San Francisco: one 
of the major technical headaches facing chipmaker Intel is the leaking current from 
the inactive processors. He said the problem of leakage threatens the future validity of 
Moores Law. As chips become more powerful and consume more power 
consumption, leakage tends to increase. The industry is used to power leakage rates of 
up to fifteen percent, but chips constructed of the increasing numbers of the 
transistors can suffer power leakage of up to 40 percent [8]. 

 

Fig. 1. Two kinds of power gating technique: (A) MTCMOS (B) VRC. (source figure is  
from [4]). 

The simulator we use have implemented two power gating techniques: MTCMOS 
(Multi-threshold CMOS) and VRC (Virtual power/ground Rails Clamp) which both 
reduce the leakage power. The use of power gating exhibits three operating modes: 
active mode, standby mode and inactive mode. In active mode, a circuit performs an 
operation and dissipates both the dynamic and the static power. In standby mode, it is 
active but idle and waiting to execute an operation, which dissipates only the static 
leakage power. However in inactive mode, a circuit is deactivated by power gating, 
which dissipates a reduced static leakage power. 

[4] described MTCMOS and VRC and how they implement power gating to reduce 
the leakage power. In this section, we do a summary about them. First, we introduce 
MTCMOS: from Figure 1(A), we can see high-Vt sleep transistors are connected to 
VDD and GND, among which the logic are implemented by low-Vt transistors. In the 
active and standby modes, for which the sleep transistors are turned on, the virtual 
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VDD and GND rails function as the actual rails. In inactive mode, the large leakage 
current of the low-Vt logic is greatly reduced by the gating of the power supplies. 
VRC places diodes across the sleep transistors for VDD and GND, so it solves the 
problem of data retention (Figure 1(B)). In the active and standby modes, virtually all 
current flows through the sleep transistors, which are turned on. At the switch to 
inactive mode, these transistors are turned off; a small current flows through the 
diodes, the virtual VDD level decays from VDD, and the virtual GND level rises from 
GND. 

MTCMOS and VRC are applied to two circuit types: datapath componets and 
memory-based units respectively. MTCMOS scheduling is mainly for float and integer 
functional units because either compiler or runtime hardware can predict the behavior 
of integer and floating-point units. Our experimental results for MediaBench 
benchmark show power reduction up to 94.01% for FPUs at worst. On the other hand, 
VRC Scheduling here is mainly for L2 cache because L2 cache consumes much more 
power than L1 cache, and L2 cache exposes more chances for throttling. Our 
experimental results show that cjpeg power reduction is up to 98.28% for L2 cache. 

4    Simulation Methodology and Benchmark 

4.1   PowerImpact and System Configuration 

In this section, we give some information about our simulation environment. In this 
work, in order to obtain power values of each component, we use PowerImapct [2], an 
architecture-level, cycle-accurate energy simulator. PowerImpact is an execution-
driven power estimation tool. It is based on the IMPACT [12] toolset. Figure 2 
illustrates the overall structure of PowerImpact [1].  

 
Fig. 2. Structure of PowerImpact (source figure is from [1]) 

PowerImpact includes two kinds of components: memory-based components and 
memory-less components. Memory-based components include BTB, L1 instruction 
cache, L1 data cache, L2 cache, and register file. Memory-less components include 
decoder, integer components, and floating-point components. VRC technique is 
applied to the memory-based components and MTCMOS technique is applied to 
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memory-less components. For each component, there are three energy stages: active 
(Pa), standby (Ps), and inactive (Pi). The power consumption of one component is 
calculated by  

overheadiissaa ECPCPCPE +×+×+×=                             (1) 

where Ca, Cs and Ci represent active cycles, standby cycles, and inactive cycles, 
respectively. These values are counted by the PowerImpact. Eoverhead represents the 
total transition energy when turning on/off components. 

We summarize the system configuration used in our experiment in Table 1. 
 

Table 1. System configuration for experiments 

Configuration
8-issue width

1024 entries 2-way assoc, two-level predictor, automaton_A3 counter type
64 integer and 64 floating-point registers with 32-bit data width

Page size 4096 bytes, latency 30 cycles
8 bytes/cycle

Component
Decode

BTB
Reg

Memory
Memory Bus

Cache
L1 I-cache
L1 D-cache
L2 cache

PolicyBlock size AssociativitySize
128 KB LRU64 bytes 2

LRU64 bytes 4128 KB
1024 KB LRU256 bytes 1

 

 
Table 2. Power-related parameters. The percentage value in the column of Pa  is the percentage 
of each components contribution to total processor power. We assume a 2 GHz clock frequency 
and 0.10um technology. 

 

The system power distribution is given in Table 2. We assume that the clock 
frequency is 2 GHz and mμ10.0  technology.  

4.2   Benchmark 

MediaBench has been proposed as a benchmark set representative of multimedia and 
communications applications. The MediaBench argues that many existing 
benchmarks, SPEC2000, DSPstone for example, are not representative of multimedia 
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and communications applications. One of this article works is to evaluate the power 
consumption characteristics of MediaBench.  

Table 3 gives a brief description of the benchmark simulated. 
 

Table 3. Description of benchmarks 

 

5   Experimental Results 

5.1   MediaBench Power Consumption Characteristics 

In this section, we present the experimental results using the simulation methodology 
described above.  

For the ideal power gating, it is assumed that we can schedule a power gating event 
in time for any idle period longer than the minimum idle time to maximize power 
reduction, and a component can be woken up in time to avoid performance loss. Since 
the ideal scheduling assumes the unit can be turned on in time when it is required, 
cache behavior is not changed. We assume we can schedule a clock gating event in 
time for any idle period shorter than the minimum idle time. That means ideal power 
gating combines both clock and power gating. We can calculate the power reductions 
of ideal power gating by analyzing the trace of usages of each component, providing a 
theoretical upper bound of the leakage power reduction without performance loss [4]. 

In Table 4, we combine the power of different components and compare the total 
power of the entire processor. Compared to no power gating, the total power can be 
reduced to 35.22% and 15.68% by using ideal clock gating and ideal power gating, 
respectively. However, unideal clock gating can cause performance loss than ideal 
clock gating because a clock gating probably cannot be scheduled in time in actual 
situation. In section 5.2, we will discuss this performance loss. 
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Table 4. Three kinds of the total power comparison 

cjpeg

djpeg

mpeg2dec

unepic

No gating Clock gating Power gating

100% 36.81%

33.79%

35.42%

34.85%

16.83%

14.55%

15.33%

16.01%100%

100%

100%

 

In order to identify the component most responsible for each power modeling, we 
give the power consumption proportion of each functional unit in Figure 3. Three 
horizontal columns represent the power without gating, power with clock gating and 
power with power gating from bottom to top, respectively.  

 

Fig. 3. The total power consumption partitioned by all FUs 

In Figure 3, each column takes the total power consumption value as base case 
(100%), and power consumption proportion of each unit compared the total power 
consumption is given. Here each power percentage is the arithmetic mean of all 
MediaBench benchmarks. Due to Figure 3, we can see the power consumption 
proportion of each unit is quite different from each other. For example, the power 
consumption proportion of FALU is greatly reduced by clock gating or power gating 
compared to power without gating. And the power consumption proportion of L2 
cache is also greatly reduced by power gating. In addition, clock gating and power 
gating can obtain great power reduction in average (power consumption can be 
reduced to 35.22%, 15.68%, respectively).  

For the space limits, we only show four benchmarks in Figure 4. Fortunately, they 
can represent power consumption characteristics of MediaBench. Figure 4 compares 
the power consumption of each unit for (1) without gating; (2) clock gating and (3) 
power gating. For each component, the total power without gating is the base case 
(100%), and the other two cases are normalized to this base case. 
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MediaBench: cjpeg
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Fig. 4. Power consumption reduction under clock gating and power gating 
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Let us start with the power reduction effects of clock gating. From Figure 4, it is 
easy to see that clock gating is effective to reduce power for the BTB, L1 D-cache, L1 
DTLB, L2 DTLB, decoder, IALU and FALU. Compared to the no-gating case, above 
seven components’ total power consumption can all be reduced to below 50%, among 
which FALU obtains the largest power reduction, at the same time L1 D-cache 
obtains more power reduction than L2 cache. For memory-less components (decoder, 
IALU and FALU), effects of power consumption reduction are all obvious, among 
which FALU obtains the largest power reduction. 

It is also easy to see that power gating is effective to reduce power for BTB, DL1, 
L2, L1 DTLB, L2 DTLB, IALU and FALU. Compared to the no-gating case, above 
seven components’ total power consumption can all be reduced to below 30%. L2 
DTLB obtains the largest power reduction. Among memory-based components, L2 
cache obtains the largest power reduction, which is different from the clock gating 
case. Compared to clock gating, power gating is more effective in reducing L2 DTLB 
and L2 cache. This in fact validates the impact of VRC scheduling on L2 cache. Also, 
we can see L1 I-cache can hardly obtain power reduction from either clock gating or 
power gating.  

Combining Figure3 and Figure 4, we can conclude that: 

• Clock gating and power gating hardly can reduce L1 I-cache power 
consumption, so I-cache power consumption proportion to the total power 
consumption is increasing by clock gating and power gating; 

• Power gating is more effective than clock gating on L2 cache power 
consumption reduction; 

• Clock gating and power gating are both effective on IALU and FALU power 
consumption reduction. 

5.2   The Impact of the Unideal Power Reduction on Performance 

In multimedia applications the requirements are often on time for complete a 
computation, so we cannot ignore the performance issue. In this section, we will 
discuss the impact of power optimization techniques on performance. Since we refer 
to the ideal clock gating and the ideal power gating in the above, and we assume no 
performance loss under ideal clock gating and ideal power gating. The difference 
between the ideal power reduction and the unideal power reduction depends on the 
overhead especially the wake-up time.  

In the ideal power gating, it is assumed that we can wake up a component in time 
to avoid performance loss. In order to observe the impact of the longer wake up on 
performance, we adjust wake-up time from 1 cycle to 2 cycles and 4 cycles, 
respectively. Performance loss of each memory-less component (BTB, Reg, decoder, 
IALU, and FALU) is obtained in Figure 5. In Figure 5, we use 1-cycle wake-up time 
as our base case, and we obtain the normalized performance loss caused by 2-cycle 
and 4-cycle wake-up time. According to Figure 5, we can see the Register file obtains 
the most performance loss (up to 10.2%). Here the performance refers to the 
execution time consumed on that component. 

Besides, we also can change memory-based components correlative settings from 
ideal power gating to unideal power gating. This is one of our works in future. 
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Fig. 5. The impact unideal power gating on performance 

6   Conclusions and Future Works 

Power consumption is a key limiting factor for mobile multimedia application. How 
to save more power consumption has been becoming important issue considered by 
many mobile computing researchers. However the research about evaluating power 
characteristics of embedded multimedia applications is scarce. Detailed and effective 
power analysis can help embedded mobile computing designer and application 
developments determine the power reduction policy. Our article provides  the detailed 
power analysis for embedded multimedia application by running MediaBench under 
PowerImpact [2] simulator environment. According to detailed power analysis, each 
component’s power consumption proportion is obtained, and the component most 
responsible for power consumption is identified. For example, the total power 
consumption can be reduced to 35.22% and 15.68% by using ideal clock gating and 
ideal power gating, respectively. FALU can obtain the largest power consumption 
reduction from clock gating, and L2 DTLB can obtain the largest power reduction 
from the power gating. 

Since we refer to two ideal power reduction techniques (ideal clock gating and 
ideal power gating), memory-less components performance loss are avoided and 
cache behavior is unchangeable. However, performance issue is an important issue for 
multimedia applications since the real time demand. In simulation, we obtain the 
impact of unideal power gating on the performance by changing wake-up time. 

Our next works include that analyzing the impact of the unideal clock gating and 
unideal power gating on power reduction in real applications, not just ideal clock 
gating and ideal power gating techniques, and exploring more power reduction 
opportunities. Low-power mobile multimedia applications are promising in the future 
embedded mobile computing. 
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Abstract. DSSC, a Dynamic Slow-start threshold and Subsection Control TCP 
Slow-start algorithm, is proposed. The key technologies of Vegas and TCP 
Westwood are applied to the first slow start process in DSSC, which dynamically 
configures TCP Slow-Start threshold and adaptively adjusts the increasing rate of 
TCP transmitting windows. DSSC can reach the steady state rapidly because its 
configuration of slow-start threshold is based on the bandwidth estimation, thus 
the lost packages will be limited and the entrance of congestion avoidance stage 
will not be too early. An important phenomenon, the TCP congestion bottleneck 
buffer response, is discovered, and the reason of this phenomenon is given. The 
result of simulation proves that this algorithm can avoid data packets loss, get to 
steady state quickly, and improve TCP throughput on complex network. This 
algorithm is robust to bottleneck buffer, adapts to WEB service, and is 
compatible with the present TCP protocol. Finally It is simple and practical in 
that it only modifies the sender of TCP. 

1   Introduction 

The TCP first slow-start algorithm gets involved with a lot of disadvantages. At the 
period of the first slow-start, because the TCP sets the SSTH to a big default value 
improperly due to lack of the information about network bandwidth, a great many 
successive packets are lost. Meanwhile, the exponential rate increasing mechanism is 
lack of robustness to the bottleneck buffer size[2]. When the size is set too small, the 
slow-start phenomenon will happen again and again and severely damage the 
performance of the TCP. Many kinds of modified  algorithms were proposed, and could 
be classified according to their purposes to the 3 following classes: 

A: increasing the initial window [3]. Web applications are the main kind of applications 
that are built on the TCP protocol recently. When the initial size of window is set to 4, 
the performance of the TCP is enhanced dramatically. However, since the increasing 
size of the initial window, lots of the packets will be lost and the utilization ratio will be 
damaged when the TCP protocol is used in the applications which run in the conditions 
with small bottleneck buffer, narrow bandwidth and short delayed link circuit. 
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B: setting the proper SSTH [1] [4].  Sending end will avoid the congestion before the loss 
of the packets by setting the SSTH accurately. Article 4 proposed to set the SSTH to an 
accurate value in the period of the first slow-start and suggested the value should be the 
BDP of link circuit. Article 1 introduces the concept of “equivalent bandwidth”, and 
insists on setting the SSTH to the product of equivalent bandwidth and RTT. Because 
of the ABCD errors[5], the estimated result will have the biggest error without a good 
filter mechanism to filter the sampling results. The bandwidth estimating algorithm 
should take the phenomenon of the random packets loss in the wireless circumstance 
into account. 

C: changing the window increasing granularity dynamically [6]. Article 6 proposed a 
linear window increasing mechanism. The experiments show this new algorithm will 
decrease the time of the slow-start in the condition of no overload. And its linear 
window increasing mechanism is robust to the bottleneck buffer. Unfortunately the 
setting of the Wth is lack of the apriority. 

2   A New Slow-Start Algorithm (DSSC) 

Base on analysis, we could propose the principles that should be considered when 
designing the first slow-start algorithm. 

1) the algorithm should be robust to the buffer size B, the bottleneck buffer size is the 
key factor that affects the performance of the slow-start, and although decreasing 
the B could decrease the number of the lost packets, too small B would probably 
result in the buffer overflow too early and hurt its performance. 

2) Manage the window increasing granularity K properly to increase the average 
throughput and network utilization ratio at SS time. Increasing K could enhance 
average throughput at SS time, but big K will probably result in the buffer 
overflow too early. The K should be set carefully to meet the requirement on the 
equilibrium of the two sides. 

3) A proper SSTH should be set to decrease the number of the lost packets. Lots of 
the packets will be lost at the end of the slow-start, this will hurt the performance 
of TCP. Decreasing B and setting a proper SSTH will decrease the lost packets 
number. 

4) Feasibility in the real network; No modification at the receiving end; 
Compatibility to the existed network protocol. 

Based on the thoughts of estimating the bandwidth available and the mechanism of 
judging the state of the intermediate routers packets queues in Vegas[7], and considering 
that the TCP Westwood (TCPW)[8] estimating algorithm takes the random loss in 
wireless environment into account and could be used in the field of the wireless relay link 
circuit, a new first slow-start DSSC (Dynamic Ssth and Subsection Control) using the 
bandwidth estimating algorithm in TCPW is proposed. Since it is supposed that the 
packets loss is caused by the congestion in the traditional TCP protocol, the phenomenon 
of link random data exists broadly as the development of the wireless communication 
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technology. If the random loss is neglected in the algorithm, the performance of the 
algorithm will be hurt badly. The detail about the algorithm is as follow: 

With the help of the DIFF*BaseRTT in Vegas and the mechanism of developed 
bandwidth estimation filtering mBE, the window increasing granularity is controlled in 
different phases. The time is divided into four control phases called A phase, B phase, C 
phase and D phase. 

A Phase: When DIFF*BaseRTT is smaller than 1; the router buffers in the network are 
almost empty, and the window could be increased. If the sending window is smaller 
than the size of the window that could be permitted by the network bandwidth 
available, it means that the bandwidth is not made full use of, and the increasing 
granularity should be set to 2(faster than Reno, 1 in Reno). On the contrary, if the 
window size is bigger than the permission value, the increasing granularity should be 
set to 1. Because of the almost empty buffer at this time, the buffer will not overflow.  

B Phase: When DIFF*BaseRTT is between 1 and 2, there are a few data packets in the 
bottleneck routers buffer queue in the network and the biggest increasing granularity 
could not make the buffer overflow quickly. So if the sending window is smaller than 
the window size that the bandwidth available (estimated) allows, the increasing 
granularity is set to 1, or it should be 0.5. 

C Phase: When DIFF*BaseRTT is between 2 and 3, there are certain number of the 
packets stay in the buffer. Too big increasing granularity could result in the quick 
overflow in the buffer easily. At this time, if the bandwidth available (estimated again) 
is made full use of, the biggest increasing granularity makes no sense and it should be 
set to 1/cwnd. On the contrary, if the bandwidth available is not made full use of, the 
increasing granularity should be 0.1 in order to enhance the bandwidth utilization ratio 
quickly meanwhile prevent the buffer from overflowing quickly. 

D Phase: While DIFF*BaseRTT is bigger than 4, there are lots of packets in buffer and 
the buffer is close to the overflow state, so the increasing granularity should be 
decreased whether the link bandwidth is made full use of or not, otherwise it will cause 
the packets loss. The increasing granularity should be set to 1/cwnd. 

3   The Performance Analysis Based on Simulation 

Here NS2 is what we use to accomplish simulating. The topology structure of the 
network is shown in Figure 1, including 6 hosts and 4 routers. The Host S1, S2, S3 and 
the router Ra are connected by the 100Mbps Ethernet as same as the host D1, D2, D3 
and the router Rb. The router Ra and R1 are connected by the 10Mbps link as same as 
Rb and R2, and the time delay is 25ms; the router R1 and R2 are connected by the 
3Mbps link, and the time delay is 60ms. 

In the simulation, the network parameters relevant to the TCP are the data packet 
size that is 800byte, and the receiving announced window size that is 450(packets). 
Now, we will try to prove that DSSC will enhance the performance efficiently in the 
slow-start phase by comparing the TCPW adopting DSSC (DSSC+TCPW), TCPW 
without DSSC and Reno without DSSC. 



 A Dynamic Threshold and Subsection Control TCP Slow-Start Algorithm 611 

      100Mps                                   100Mps 

                    10Mps        3Mps        10Mps

                    25ms         60ms        25ms  

2ms                                  2ms          

 

Fig. 1. The topology structure of the network 

3.1   The DSSC Robustness Effectiveness Simulation to Bottleneck Buffer and the 
Segmentation Control Effectiveness Simulation 

At first, we run the DSSC robustness to bottleneck buffer effectiveness simulation, the 
NBS (normalized buffer size) is equal to the ratio of BBS(bottleneck buffer size) and 
BDP(bandwidth-delay product). This means NBS=BBS/BDP. BDP means maximal 
packet (excluding the packets in queue of router buffer) size in the pipe that connects 
the sending end and the receiving end on the condition of no congestion. And the 
essential of NBS is the ratio of maximal number of the packets in queue of the 
bottleneck buffer and the maximal packet size in pipe. 

DSSC+TCPW is built between the host S1 and D1 to transfer CBR flow. While the 
bottleneck buffer size is changed from 0.1s to 120s, we review the performance of 
DSSC+TCPW when NBS is 1, 0.75, 0.5 and 0.25 respectively, then change the 
connection type to TCPW and Reno meanwhile keeping the other conditions constant. 
Figure 2 includes sub-figure (a), (b), (c), and (d).which represent respectively the TCP 
throughput when NBS is 1, 0.75, 0.5 and 0.25. Table 1 represents the time to stable state 
of DSSC+TCPW, TCPW and Reno, the total packet lost number and the average 
throughput when getting to stable state. 

We can tell that the throughput is equal in DSSC+TCPW, TCPW and Reno when 
they reach the stable state, whatever the value of NBS is, from the Figure 2. However, 
they differ in the time of reaching stable. 

First, based on the sub-Figure 2a, here NBS=1, two items could be identified. 

•   DSSC+TCPW could get to stable state quickly, however, the Reno and the 
TCPW could not. 

•   Comparing the Reno and the TCPW, we could find that the TCPW needs more 
time to reach stable than the Reno. 

It could be concluded that the main reason is that Reno and the TCPW know nothing 
about the link bandwidth available, and increase the congestion buffer exponentially until 
lots of packets are lost and slow- start is over. Restoring the lost packets expands (prolongs) 
the time to reach stable state. And that could be very different from the DSSC+TCPW. 
DSSC+TCPW could set SSTH by estimating the link bandwidth available at the time of  
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2c    When NBS=0.5 2d    When NBS=0.25  

Fig. 2. TCP’ throughput in four kinds of NBS environments 

Table 1. TCP’ performance parameter comparison at the slow start-up stage 

           b=1           b=0.75 TCP 

parameter  DSSC+TCPW TCPW Reno DSSC+TCPW TCPW Reno 

time to stable state 1.96s 67s 6.6s 1.96s  52s 10.1s 

packet lost number 1 208 410 1  179 353 

average throughput 1.08(Mbps) 0.57(Mbps) 0.94(Mbps) 1.05(Mbps) 0.49(Mbp 1.56(Mbps) 

(a)  When  NBS=1,  0.75 

 

b=0.5 b=0.25 TCP 

parameter DSSC+TCPW TCPW Reno DSSC+TCPW TCPW Reno 

time to stable state 1.97s 30s 24.1s 47s 30s 26s 

packet lost number 1 76 180 3 33 82 

average throughput 1.04(Mbps) 0.9(Mbps) 1.59(Mbps) 1.9(Mbps) 1.2(Mbps) 1.43(Mbps) 

(b)  When  NBS=0.5,  0.2 

2a    When NBS=1 2b    When NBS=0.75
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slow-start, make sure to prevent losing many packets and getting involved in the 
congestion-avoiding period. Therefore, DSSC+TCPW could come to be stable quickly. 

Comparing the Reno and the TCPW, the same mechanism (window increasing 
exponentially) is adopted in both of them, but at the time of restoring the many lost 
packets when the slow-start is over, they use different retransmission strategies. The 
TCPW uses the single packet retransmission mechanism adopted in the New Reno. 
Although the window just decreases once (keeping in a relative big value), a single lost 
packet is retransmitted at a RTT time. When lots of lost packets exist, the 
retransmission time is prolonged dramatically.We call this IR (Inefficient 
Retransmission). Considering the Reno, the loss of lots packets triggers the slow-start 
mechanism, the window shorten the retransmission time by increasing exponentially, 
so the time to reach stable state in the Reno is shorter than in the TCPW. But since the 
SSTH is set too small after detecting the loss of many packets and the Reno gets into the 
congestion-avoiding period too early.  

Secondly, when NBS decreased continually from 1 to 0.25 with a step of 0.25, 
comparing the sub-Figure 2a, 2b, 2c and 2d, we could find that the same TCP 
mechanism with different B could perform very differently at the stable state reaching 
time. The main reason is that the robustness of DSSC+TCPW, TCPW and Reno to 
buffer B varies. 

When B decreased gradually and NBS decreased from 1 to 0.25 with a step 0.25, the 
time to reaching stable state expands gradually from 6.6s to 26s 
(6.6s->10.1s->24.1s->26s). It is obvious that the value of B influences the performance 
of the Reno directly, and the robustness of the Reno to B is not satisfactory. And this is 
mainly caused by that while B is decreased, the exponential increasing of window 
makes the buffer to overflow too early. Reno needs several slow-start procedures to 
investigate the bandwidth, and this prolongs the time to stable state accordingly. 
Contrary to the Reno, when B decreased gradually, TCPW needs less and less time to 
reach the stable state (67s-52s-30s-30s), and the main reason is that TCPW adopts the 
single packet retransmission mechanism in New Reno, when B is decreasing, the 
packets loss less and less, so TCPW needs less time to retransmit after the first 
slow-start is over and shortens the time to the stable state. 

As B decreases, NBS drops down from 1 to 0.5 with a step of 0.25, the time to the 
stable state almost keeps constant in DSSC+TCPW (1.96s-1.96s-1.97s), and its 
performance could not be influenced by the changing of B, so we could figure out that 
when B is in this range, DSSC+TCPW is very robust to the B. this is due to the (vary) 
rate window increasing mechanism in the DSSC+TCPW, this mechanism could adjust 
the window increasing granularity according to the state of the queue in buffer. But 
when NBS=0.25, the time to the stable state rockets to 47s in TCPW, so, we could see 
that DSSC+TCPW could not eradicate the bad effect to the performance caused by the 
too big B. from Figure 2, we could find that although the time to the stable state is 
longest in DSSC+TCPW, it keeps a high throughput with 2, in addition, considering the 
number of lost packets, the DSSC+TCPW does the best job. So it is found that the new 
mechanism could not aggravate the performance of original TCP on the condition of 
the very small B. Compared with the TCPW and the Reno, the DSSC+TCPW is better. 
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All in all, we identify an important phenomenon that the time to the stable state in 
different TCP congestion control mechanism reacts differently to the changes of 
transmission link bottleneck buffer B. and we define it as “TCP congestion control 
bottleneck buffer reaction”. 

3.2   The Simulation Analysis of Transmission Capability in the DSSC 

The network topology shown in Figure 1 is still adopted, a DSSC+TCPW is built 
between the host S2 and D2 to support FTP flow, NBS=1, we change the FTP file size, 
observe the transmission time in DSSC+TCPW, then change the connection type to the 
TCPW and the Reno respectively while keeping the other condition unchanged. Table 2 
shows the time of transmitting the different size files and the average throughput in the 
DSSC+TCPW, the TCPW and the Reno. 

As shown in Table 2, the ratio of average throughput in DSSC+TCPW and in TCPW 
or Reno changes 3 times along with the change of transmitted file size. When file size 
increases from 16K to 1Mbit, the ratio of the throughput decreases gradually; when the 
file size enhances from 1Mbit to 5Mbit, the ratio rockets dramatically, then deceases to 
0 along with the augment of the file size. In the following section, we will analyze the 
whys. 

Table 2. The time of transmitting the different size files and the average throughput 

Improvement of Ratio of average 

throughput  

Transmission time(s)/ Average throughput 

(Kbps) 

TCP 

 

 

File size 
DSSC+TCPW TCPW Reno 

DSSC+TCPW 

for TCPW 

DSSC+TCP 

for Reno 

16Kbit 0.329 / 48.5 0.525 / 30.5 0.525 / 30.5 59% 59% 

32Kbit 0.542 / 58.9 0.741 / 43.2 0.741 / 43.2 36% 36% 

100Kbit 0.737 / 135.7 0.935 / 107.0 0.935 / 107.0 27% 27% 

1Mbit 1.506 / 665.6 1.787 / 559.6 1.787 / 559.6 19% 19% 

5Mbit 3.02 / 1656 38.9 / 628.6 7.71 / 664.6 163% 149% 

50Mbit 18.2 / 2771 66.9 / 1750.2 38.1 / 1324 58% 109% 

100Mbit 35 / 2883 79.1 / 2282 55 / 1828 26% 57.6% 

800Mbit 275 / 2912 282 / 2834 291 / 2729 2.7% 6.7% 

At the beginning of the TCP link, because of the empty link, the DSSC+TCPW 
window-increasing granularity is 2, twice of that in the TCPW and the Reno, the 
average throughput increased dramatically, and this feature is benefit for the small Web 
flow applications. When the file size becomes big and big, the transmission time 
expands, and the window size increases meanwhile the window increasing granularity 
decreases gradually. When the sending rate is equal to the bandwidth available, the 
increasing granularity is 1/cwnd, so the throughput increasing scope decreased 
gradually. But when the file size is 5Mbit, the ratio of the average throughput in the 
DSSC+TCPW and the TCPW or the Reno rockets dramatically, and the main reason is 
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that the rapid increasing of the window in the TCPW and the Reno results in the plenty 
of packets being lost. Transmitting the 5Mbit file makes the TCPW and the Reno get 
involved in the restoring time between losing of lots of packets and the stable state. We 
called this phenomenon as “delay restoring”. after that, along with the increasing of the 
file size, both of the TCPW and the Reno are in the stable state, meanwhile the 
performance of the DSSC+TCPW, the TCPW and the Reno are equal. The effect of 
TCP caused by the performance distinction in the TCP slow-start time is diluted, so the 
throughput of the DSSC+TCPW increasing rate is decreased. By this simulation we 
could see clearly that the throughput of DSSC+TCPW algorithm is nearly equal to it of 
the TCPW and the Reno after entering the congestion-avoiding stage, and TCP 
congestion control algorithm works at congestion-avoiding stage in most of the time. 
The aim of DSSC+TCPW algorithm is trying to reduce the packet loss number at the 
slow start stage, and make the slow startup to stable state as soon as possible. At the 
same time, it adopts subsection control principle to improve the throughput of the slow 
stage with the premise of reducing the packet lost number. This is mainly to improve 
the efficiency of WEB business, because small Web flow applications finish at the slow 
start stage generally So this simulation incarnates the improvement of efficiency for 
small Web flow applications by DSSC+TCPW algorithm. 

3.3   The DSSC Simulation Validity in the Condition of the Different Flux in 
Multi-connections 

In order to study the adaptability of the DSSC, we run the DSSC+TCPW with different 
flows in multi-connection, and compare it with the TCPW and the Reno. 

The network topology shown in Figure 1 is adopted again. A UDP connection and a 
Reno TCP connection are built between S1 and D1, meanwhile a Reno TCP connection 
and a TCPW TCP connection are built between S2 and D2. The CBR flow is loaded on 
the two connections mentioned above. On this condition, DSSC+TCPW, TCPW and 
Reno are built respectively between S3 and D3 to run FTP flow. FTP starts at 30s and 
CBR starts at 2s. The DSSC+TCPW performances on different background flows are 
simulated through our controlling the magnitude of the CBR flow. Sub-figure (a), (b) and 
(c), composing the Figure 3, represent the TCP throughput with 300kb background flow 
(light network load), 1500kb (middle network load) and 3300kb (network congestion). 
Figure 2 records the time to stable state of TCP and the number of lost packets. 

From Figure 3, we could figure out that when network is on the state of light load 
(shown in sub-Figure 3a) and middle load (3b), the performance of the DSSC+TCPW 
is better obviously, and time to stable state is much less than TCPW and Reno (shown 
in Figure 2). The main reason is that lots of packets is lost during the slow-start time in 
TCPW and Reno, on the contrary, the DSSC+TCPW is efficient to prevent a great 
number of packets from being lost, and it is shown in Figure 2. When network is in 
congestion, compared with the TCPW, the performance advantage is not obvious, just 
little better. And the main reason is that the buffer available for new TCP decreases 
when the network load is more and more heavy. In the view of new TCPW connections, 
that is equal to the decreasing of link B. The number of lost packets is less and the time 
to stable state is less at slow-start time in TCPW, so the distinction between TCPW and 
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DSSC+TCPW is reduced. Also from Figure 3, we could see that DSSC+TCPW has a 
good compatibility to UDP and other types of TCP. Since DSSC+TCPW just modifies 
the first slow-start time algorithm meanwhile adopts the original mechanisms at other 
TCP periods, it has the same property and a good compatibility compared with TCP 
Reno and TCPW when it is stable. 

(3a) Background flow with 300Kbps (3b) Background flow with 1500Kbps

(3c) Background flow with 3300Kbps  

Fig. 3. TCP’ throughputs under the three kinds of background flow 

Table 3.  TCP’ performance under the different background flow 

Stable time(s)/ packet lost number(Packet) TCP 

background flow DSSC+TCPW TCPW Reno 

300Kb 32.7 / 3 67.7 / 143 44.1 / 342 

1500Kb 36.7 / 4 46.2 / 22 45.1 / 75 

3300Kb 37.1 / 6 38 / 7 46.1 / 23 

4   Conclusion 

Based on the theoretic academic analysis, this article proposes the principles of the TCP 
slow-start mechanism. Combining the network bandwidth available estimating, link 
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buffer estimating and bandwidth estimating filter mechanism, adopting the design 
principles of dynamic setting slow-start threshold and controlling the window 
increasing granularity at different phases, this article proposes a new TCP slow-start 
algorithm named DSSC used in heterogeneous network. In order to validate the 
efficiency of the DSSC, the detailed simulation is run, the result is analyzed, a 
phenomenon called “TCP congestion control bottleneck buffer reaction” is found, and 
the substance of this phenomenon is analyzed. DSSC algorithm could be adopted in 
different networks to protect the great many packets from being lost at the slow-start 
time, to help the network reaching the stable state quickly, and to enhance the 
throughput at the slow-start time. In addition, this algorithm has a good robustness to 
link bottleneck buffer and a good adaptability to WEB services. DSSC needs simple 
protocol upgrading at the sending end, and is compatible to the existed TCP protocol.  
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Abstract. With the emerging of many new kinds of network services, it is critical 
for the network to give service differentiation and QoS guarantee. One of the 
most important components in existing QoS frameworks is packet scheduler. A 
good scheduler should provide QoS guarantee and, at the same time, show low 
complexity. However, existing algorithms often fail to provide the two features 
at the same time. This paper proposes an improved DRR-like packet scheduling 
algorithm based on even service sequence, which combining advantages of DRR 
and WF2Q. Our simulation experiments show that this algorithm can provide 
good fairness, low scheduling delay and low complexity. 

1   Introduction 

With development of networking technology, the functions of router have transferred 
from forwarding packets with best effort to supporting QoS (quality of service). Packet 
loss rate, deadline, delay variance, which are the most important QoS properties, should 
be maintained without compromising the processing speed of incoming data streams. 

One of the most important components in existing QoS frameworks is packet 
scheduler, which is deployed in router to offer different service for input packets which 
has different priority. How to schedule the input packets so the packets from different 
flows can get processed in proper order and some packets can be dropped to save 
computational power or bandwidth for more urgent packets, many scheduling 
algorithms have been proposed to solve this problem. 

In this paper, we present the even service sequence structure to improve the DRR 
packet scheduling algorithm. This structure is shown to be able to combine advantages 
of DRR [1] and WF2Q [2]. The algorithm can provides good fairness, low scheduling 
delay, low complexity and ease to implement.  

The rest of the paper is organized as follows. Section 2 describe the relevant 
previous works, section 3 presents the Improved DRR Packet Scheduling Algorithm 
Based on Even Service Sequence, section 4 reports the results of the simulation study 
of the algorithm. Finally, Section 5 concludes the paper. 

2   Related Work 

Schedule problem was first studied in General Processor Sharing (GPS) [4] system, but 
it’s an unrealistic algorithm for achieving perfect fairness and isolation among all 
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flows. GPS algorithm forms a basis for most packet schedulers. Weighted Fair Queuing 
(WFQ) [7] and Worst-case Fair Weighted Fair Queuing (WF2Q) [2], closely 
approximate the GPS. These schedulers compute a timestamp for each packet by 
emulating the progress of a reference GPS server and transmit packets in the increasing 
order of their timestamps. Both WFQ and WF2Q have an O(1) GPS-relative delay. 
These scheduling algorithms require complex data structures and are not suitable for 
hardware implementation.  

Another type of scheduling algorithms is based on round-robin scheme [1, 5, 6, 9, 
10]. Round-Robin schedulers serve backlogged flows in some kind of round-robin 
fashion and have an O(1) per packet processing complexity. The Deficit Round Robin 
(DRR) algorithm is the base for many recent improvements. SRR [9] and Aliquem [10] 
improve the average packet delay over DRR, but the worst-case single packet delay 
bound is proportional to the number of flows in the system. By using a deadline based 
scheduling scheme, the single packet delay bound of the Stratified Round Robin [5] 
algorithm is related to the guaranteed rate of the flow and is independent of the number 
of flows in the system. 

GPS based algorithms have good bounded delay and fairness properties, but have 
high complexity, O(log N). It’s difficult to implement GPS based algorithms in high 
speed networks. Round-robin based algorithm takes O(1) processing work per packet 
and ease for implementation, but it can only provide long term fairness in bandwidth 
allocation, do not provide good bounded delay and short term fairness properties.  

In this paper, we present an improved DRR packet scheduling algorithm based on 
even service sequence which combines the advantage of WF2Q and DRR. We want to 
achieve good fairness, low scheduling delay, low complexity and ease to implement.  

3   ESSDRR Algorithm 

Since the ESSDRR algorithm is based on DRR, we will briefly describe DRR.  

DRR works in round. Within each round, each backlogged flow has an opportunity to 

send packets. Each flow 
if  is associated with a quantity iquantum and a 

variable interdeficitcou . The quantity iquantum , which indicates the share given to 

flow i , is assigned based on the guaranteed rate for if  and specifies the target amount 

of data that if  should send in a round. The variable interdeficitcou  is introduced to 

record the quantum that is not used in a round so the unused quantum can be passed to 

the next round. To ensure that each flow can send at least one packet per round, in this 

paper, we will assume that iquantum  is larger than the maximum packet size, That is, 
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maxLquantumi ≥ . According to [1], the iQuantum is in direct ratio with the rate of 

flow i  ,that is,  i i

j j

Quantum r

Quantum r
= , and the rate of flow i  is in direct radio with the weight 

of the flow i , thus we get i i

j j

w r

w r
= , which iw  denotes the weight of the flow i  and 

1iw ≥ . From above, we get i i

j j

Quantum w

Quantum w
= and maxi iQuantum w L= × .More 

details can be found in [1]. 

DRR is an excellent scheduler when the weights of flows are similar. The problem 

with DRR is that, for flow i , DRR try to send packets no more than 

i iDeficitCounter Quantum+  bits in one time a round, when the weights of the 

flows differ significantly, flows with large weights can be significantly affected by the 

flows with small weights both in terms of packet delay and short term bandwidth 

allocation [3].  

ESSDRR, our proposed scheduler, extends DRR QoS properties for any weight 

distribution, while maintaining an O (1) complexity. The basic idea of ESSDRR is as 

follows. For flow i , DRR algorithm send the max of maxi iQuantum w L= ×  bits of 

packet one time in a round, iw  is the weight of the flow i . From another side, we can 

think that the DRR scheduler serve flow i  iw  times continuously, each time the 

scheduler send the max of maxL  bits of data. In ESSDRR, we want to spread the 

services of flow i , which is amount to iw  times, distribute evenly in 
−=

=

1

0

Ni

i
iw times of 

services which is the sum of all flows’ weight. Thus, the challenge of ESSDRR is how 

to build a service sequence which length is
−=

=

1

0

Ni

i
iw i iw  nodes 

among them. The construction of service sequence is the key of  ESSDRR, and we call 

this service sequence is ESS (Even Service Sequence). After the construction of 

sequence, a round is one round-robin iteration over the even service sequence, and  
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scheduler just choose node in sequence in order, and transmit packets no more than 

maxL  bits, which of the flow defined by the node been choose. 

Bennett [2] shows that the WF2Q can provides almost identical service to GPS 

differing by no more than one maximum size packet and shares both the 

bounded-delay and worst-case fairness properties of GPS. Thus, we use WF2Q to 

build the ESS. Assume we have N active flows of which packet size in the flow 

is maxL , we use WF2Q discipline to serve all the flow 
−=

=

1

0

Ni

i
iw  times a round, and then 

record the sequence of service to each flow into a service list, and this service list is the 

ESS. From another point of view, we use WF2Q to allocate the 
−=

=

1

0

Ni

i
iw  nodes to N  

flows, and each node represents one time service to the flow which we allocate to this 

node. 

Now consider the procedure of 
−=

=

1

0

Ni

i
iw  nodes allocation with WF2Q algorithm. Let 

us denote iTermCount  the total number of nodes which have been allocated to flow 

i , we define the virtual start time and finish time of packets in flow i  as: 

0
max /iTermCount

i i i iS S TermCount L r= + ×  

0
max max/ ( 1) /i iTermCount TermCount

i i i i i iF S L r S TermCount L r= + = + + ×  

Without losing generality, let 0 0iS = , so we have  

max /iTermCount
i i iS TermCount L r= ×  

max( 1) /iTermCount
i i iF TermCount L r= + ×  

When allocate the j th node, while −=
−=

=

1

1,...,2,1,0
Ni

i
iwj , and we let t  be the 

time at which the j th service begin. According the WF2Q, the procedure of ESS 

construction as follows: 
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1. Construct a flow set E of which elements meets the condition “the start time is early 

than time t ”, iTermCount
iS t≤ ; 

2. Choose within E a flow k which meets the condition “flow k have a minimal 

finishing time”, min { }k iTermCount TermCount
k i E iF F∈= , and allocate the node j  to 

flow k, and update the 1k kTermCount TermCount= + ; 

3. Repeat the upper process until all 
−=

=

1

0

Ni

i
iw nodes are allocate to N N flows. 

Since max / iL r  occur in every formula above, and i i

j j

w r

w r
= and the allocation 

process only uses compare operation, so we simplify , ,i iTermCount TermCount
i iS F τ as follows: 

' /iTermCount
i i iS TermCount w=  
' ( 1) /iTermCount
i i iF TermCount w= +  

−=

=

=
1

0

/'
Ni

i
iwjt  

With ' ' ', ,S F t , The ESS is computed using algorithm shown in Fig 1. 

calc_servlist(listID) 

{ 

  local variable: iTermCount =0; 

  for(j=0;j<
−=

=

1

0

Ni

i
iw ;j++) 

  { 

   Construct a flow set E of which elements 

meets
−=

=

≤
1

0

//
Ni

i
iii wjwTermCount ; 

   Choose within E a flow k which 

meets ( 1) / min {( 1) / }k k i E i iTermCount w TermCount w∈+ = + ; 

Fig. 1. The algorithm for computing ESS 
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   1k kTermCount TermCount= + ; 

   pTerm =Make_Node(k, kTermCount ) //record flow id k and 

current kTermCount  in a Term of servlist; 

   Append(servlist[listID], pTerm); 

  } 

}  

Fig. 1. (Continued) 

Let us now examine the algorithm in Figure 1. servlist is a global variables used to 
record the ESS, Make_Node function are used to generate a ESS node to record the 
flow id, Append function are used to append a new node at the tail of the servlist. After 
the construction of ESS, the ESSDRR algorithm becomes simple. The major variables 
used in ESSDRR are summarized in Table 1.  

Table 1. Major variables used in the essdrr algorithm 

Variable Explanation 
listID The ID of servlist, used to differentiate the servlist 

servlist A list used to record the ESS node. 
P A pointer point to current node in servlist.  

fdefict
 

Used to record the unused quantum of flow f after this 

time’s service. 

maxL
 

The maximum packet size that can transmit in one time.  

fqueue
 

A FIFO queue which formed by the packets of flow f  

fP
 

The packet at the head of the queue of flow f   

fL
 

The length of fP  which sized in Bytes 

fw
 

The weight of flow f  

ESSDRR scheduler is composed by three asynchronous actions, Schedule, 
AddFlow and DelFlow. Schedule is the main component of the scheduler and the 
pseudo-code for schedule function is shown in figure 2. AddFlow is used when the 
new flow is added to the system, and the DelFlow is used when the flow is deleted 
from the system.  
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Schedule() 
{ 
  local variable: f; //f denote ID of current flow 

listID = 0; 
  P = servlist[listID];//initialize P as the head of servlist 

  while(in backlogged-period) 

{ 

   f = P->fid; 

fdefict  = 
fdefict +

maxL ; 

   if(P->next!=NULL)  //check if we have got tail of servlist 

   P = P->next;   //not tail, go to next node 

   else P = servlist;  //when we got tail, just go back to list head 

   while(
fdefict >0) //service current flow until fdefict is consumed 

   { 

    if(
fL >

fdefict )  break; 

    else{ 

      dequeue( fP ); send( fP ); 

      
fdefict  = 

fdefict -
fL ; 

      if(
fqueue  is empty) 

      { 

       DelFlow(f); break; 

      } 

    }  

   }//while( fdefict >0) 

  } //while(in busy-period) 

}// Schedule 

Fig. 2. Pseudo-Code of Schedule function for ESSDRR 
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ESSDRR maintain two servlist, and backup for each other. One used to schedule and 
another used to update the ESS structure. In the running of the algorithm , ESSDRR 
serve all the flows in system according to the current servlist, and when flow changed 
(add or delete), Schedule use WF2Q compute a new ESS list, and save the list result to 
the backup servlist, and then switch the current servlist with backup servlist.  

4   Simulation Experiment 

We design some experiments to investigate ESSDRR properties and to compare 
ESSDRR with other scheduling disciplines, including WF2Q, SRR, FRR and DRR. All 
experiments are performed using ns-2[8]. We will only report the results of two 
representative experiments, one for end-to-end delay and the other one for 
throughput-time distribution characteristic. The network-topology and experiments in 
our simulation experiments are the same with which used in FRR. Figure 3 shows the 
network-topology and all the links have a bandwidth of 2Mbps and a propagation delay 
of 1ms. 

 

Fig. 3. Simulated network topology 

4.1   End-to-End Delay Experiment 

In the experiment, there are 10 CRB flows between S0 and R1 with average rates of 
10Kbps, 20 Kbps, 40 Kbps, 60 Kbps, 80 Kbps, 100 Kbps, 120 Kbps, 160 Kbps, 200 
Kbps and 260 Kbps. The packet delay of these 10 CBR flows is measured. In addition 
to the 10 observed flows, there are 5 exponential on/off flows from S1 to R1 with rates 
10Kbps, 40 Kbps, 80 Kbps, 120 Kbps and 240 Kbps. The on-time and the off time are 
500ms. There are five Pareto on/off flows from S2 to R2 with rates 10Kbps, 40 Kbps, 
80 Kbps, 120 Kbps and 240 Kbps. The on-time and off-time are 500ms and the 
parameter shape of the Pareto flows is 1.5. Two 7.8Kbps FTP flows with infinite traffic 
are also in the system, one from S1 to R1 and the other one from S2 to R2. CBR flows 
have a fixed packet size of 210 bytes, and all other flows have a fixed packet size 
uniformly chosen between 128 bytes and 1024 bytes.   

Figure 4 and Figure 5 show the average end-to-end delay and maximal end-to-end 
delay for the ten CBR flows. We can see that WF2Q algorithm has the best 
characteristics on both average end-to-end delay and maximal end-to-end delay while 
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Fig. 4. Average end-to-end delay 

 

Fig. 5. Maximal end-to-end delay 

DRR algorithm has the worst by contrast. The average and maximal end-to-end delay 
characteristics changed less with different rates. Other algorithms’ delay curves tend 
towards similar: dropping rapidly when flow’s rate is increasing. 

Now we observe three improved algorithms of DRR (ESSDRR, SRR and FRR). 
There is a certain distance between the SRR and WF2Q. It indicates that the delay 
characteristic of SRR is the worst in these three algorithms. It has the largest average 
delay and maximal delay. The time delay of ESSDRR and FRR are very closer to 
WF2Q algorithm and the delay of ESSDRR is appreciably under FRR. A very 
interesting fact is that ESSDRR is very smooth while FRR has a certain fluctuation by 
contrast. This indicates that ESSDRR could strictly guarantee the packet delay which is 
proportional to flow rates.  
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4.2   Throughput-Time Distribution Characteristic Experiment 

This experiment is designed to demonstrate that the ESSDRR algorithm has a good 
short-term fairness property. If the flow’s throughput is not far away from the 
pre-assigned value in a short-time period, it means the algorithm has a good short-term 
fairness property, and it will not cause flow burst. The previous simulation network 
topology is used here. There are 52 CBR flows between S0 and R0, two of them have 
the transmit rates of 300Kbps and 600bps and the others 10Kbps. The background 
flows are the same as the previous experiments. 

Figure 6 shows the short-term throughput of the 300kbps flow with different 

scheduling schemes. Each point in the figure represents the throughput in an interval of 

100ms. As the figure shows, the short term throughputs for DRR exhibit heavy 
fluctuations. It is because the one time service quantum of DRR, which is

maxiw L× . 

Surprisingly, the short-term throughput of SRR exhibits heavy fluctuation too. We 

consider that it is because we have too many flows in this experiment and the rate 

difference between these flows is too large. This makes the higher rank of WSS in SRR, 

and the short-term fairness of SRR has great relationship with the rank. On the other 

hand, ESSDRR, FRR, and WF2Q exhibits stable throughput, the throughputs are 

always close to the ideal rate. This shows that ESSDRR has good short term fairness 

property while simpler than WF2Q and FRR.  

 

Fig. 6. Short-term throughput 

5   Conclusion 

In this paper we have proposed ESSDRR, an improved DRR packet scheduling 
algorithm based on even service sequence, which combining advantages of DRR and 
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WF2Q. Our simulation experiments show that this algorithm can provide good fairness, 
low scheduling delay and low complexity. 
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Abstract. Password authentication schemes can be divided into two types. One 
requires the easy-to-remember password, and the other requires the strong pass-
word. In 2000, Sandirigama et al. proposed a simple and secure password authen-
tication protocol (SAS). Then, Lin et al. showed that SAS suffers from two weak-
nesses and proposed an improvement (OSPA) in 2001. However, Chen and Ku 
pointed out that both SAS and OSPA are vulnerable to the stolen-verifier attack. 
We also find that these two protocols lack the property of mutual authentication. 
Hence, we propose an improvement of SAS and OSPA to defend against the sto-
len-verifier attack and provide mutual authentication in this paper. 

1   Introduction 

Password authentication is considered as the most common and simplest authentica-
tion mechanisms [1, 2, 6, 8, 12]. Existing password authentication schemes can be 
divided into two types. One only requires the memorable password and usually results 
in heavy computation load to the whole system. The other uses the strong password 
and needs a temper-resistant storage token, e.g. a smart card, to store the strong pass-
word. The strong-password authentication scheme needs lighter computation load 
than the former type; moreover, its design and implementation is simpler. 

Recently, Sandirigama et al. proposed a simple strong-password authentication pro-
tocol (SAS) [13]. SAS is superior to several well-known protocols [5, 10, 14, 15] by 
utilizing storage and reducing the processing time and transmission overhead. How-
ever, Lin et al. presented that SAS is vulnerable to two weaknesses and proposed an 
improvement (OSPA) [11].  

In most password schemes [3, 6-11, 13-17], the verifiers of the user’s passwords 
are stored by the server to prevent the user’s password from being compromised. In 
[2, 4, 11], the stolen-verifier attack is an attack that the adversary can impersonate the 
user after stealing the verifier of the user’s password. It is obvious that the stolen-
verifier attack can be achieved by employing the dictionary attack if weak passwords 
are used. In [4], it was mentioned that the approach of employing strong passwords 
does not guarantee the resistance to the stolen-verifier attack even though the diction-
ary attack can be prevented. Hence, Chen and Ku [4] pointed out that both SAS and 
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OSPA suffer from the stolen-verifier attack. With a deep insight into both of the pro-
tocols, we also find that these two protocols do not preserve the property of mutual 
authentication such that any malicious user can impersonate the server. As a result, 
we propose an improvement of SAS and OSPA to defend against the stolen-verifier 
attack and provide mutual authentication in this paper. 

The paper is organized as follows. In Section 2, we review SAS and OSPA. Then, we 
show the ways to mount the stolen-verifier attacks on the SAS and OPSA and how 
malicious user impersonates the server in Section 3. In Section 4, we present the pro-
posed strong-password authentication protocol. Then, some discussions on our proposed 
protocol are shown in Section 5. Finally, we draw some conclusions in Section 6. 

2   Reviews of SAS and OSPA 

First, we describe the notations used throughout this paper in Subsection 2.1. Then, 
we review SAS and OPSA in Subsections 2.2 and 2.3, respectively. 

2.1   Notations 

In this subsection, the notations used throughout this paper are introduced as follows. 

A: the user 
  S: the server. 
  E: the adversary 
  IDA/IDS: the identity of A/S 
  PA: the strong password of A 
  T: a positive integer indicating the number of times the authentication is being  

executed 
  Nn: a random number used for the n-th authentication 
  ⊕: the bitwise XOR operation 
  ||: the concatenation symbol 
  h: a one-way hash function, where h2(m) denotes m is hashed twice 

2.2   A Review of SAS 

In this subsection, we are going to show SAS. SAS is divided into two phases: the 
registration phase and the authentication phase. 

2.2.1   Registration Phase 
The registration phase is invoked only once when the user joins the system. 

Step 1. A calculates h2(PA||N1), where N1 is an initial random number chosen by A. 
Step 2. A sends (IDA, h2(PA|| N1), N1) via a secure channel to S. 
Step 3. S stores (IDA, h2(PA|| N1), N1). 

2.2.2   Authentication Phase 
The authentication phase is invoked whenever the user wants to access the server. 
Note that the delivered information is transmitted via a common channel. 
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For A’s n-th login: 

Step 1. A sends IDA and service request to S. 
Step 2. S sends Nn to A. 
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h2(PA|| Nn), c2=h2(PA|| Nn+1) ⊕ 

h2(PA|| Nn), and c3=Nn+1. 
Step 4. S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h2(PA|| Nn) and y2 = 

c2⊕ h2(PA|| Nn). If h(y1) = h2(PA|| Nn) holds, S replaces (IDA, h2(PA|| Nn), Nn) 
with (IDA, y2, Nn+1) for A’s (n+1)-th authentication and grants A his/her ser-
vice request. 

2.3   A Review of OSPA 

In this subsection, the detail of OSPA is shown as follows. As SAS, OSPA is also 
divided into two phases: the registration phase and the authentication phase. 

2.3.1   Registration Phase 
The registration phase is invoked only once when the user joins the system. 

Step 1. A calculates h2(PA⊕1). 
Step 2. A sends (IDA, h2(PA⊕1)) via a secure channel to S. 

Step 3. S stores (IDA, h2(PA⊕1), T=1). 

2.3.2   Authentication Phase 
The authentication phase is invoked whenever the user wants to access the server. 
Note that the delivered information is transmitted via a common channel. 

For A’s n-th login: 

Step 1. A sends IDA and service request to S. 
Step 2. S sends n to A. 
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n) ⊕ h2(PA⊕n), c2=h2(PA⊕(n+1)) ⊕ 

h(PA⊕n), and c3=h3(PA⊕(n+1)). 
Step 4. S first checks whether c1≠c2 holds or not. If it holds, S computes y1 = c1 ⊕ 

h2(PA⊕n) and y2 = c2 ⊕ y1, where h2(PA⊕n) is the stored verifier. Then, S 
checks if h(y1) = h2(PA⊕n) and c3 = h(y2). If they hold, S uses y2 to be the new 
verifier for the (n+1)-th authentication and grants A his/her service request. 

3   The Weakness of SAS and OSPA 

In this section, we are going to show the ways to mount the stolen-verifier attacks on 
SAS and OPSA and how malicious user impersonates the server in Subsections 3.1 
and 3.2, respectively. 

3.1   The Stolen-Verifier Attacks 

In this subsection, we present the ways, mentioned in [4], to mount the stolen-verifier 
attacks on the SAS and OPSA. Although the legal user may discover the attack when 
he/she tries to login next time, E can obtain the needed resource before being detected.  
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3.1.1    Attack Scenario of SAS 
Suppose E has stolen A’s verifier h2(PA|| Nn) after A’s (n-1)-th login.  

For A’s n-th login: 

Step 1. A sends IDA and service request to S. 
Step 2. S sends Nn to A. 
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h2(PA|| Nn), c2=h2(PA|| Nn+1) ⊕ 

h2(PA|| Nn), and c3=Nn+1. E intercepts the transmitted data (c1, c2, c3) and 
computes c2′=h2(PA′|| N′n+1) ⊕ h2(PA|| Nn), and c3′=N′n+1, where PA′ and N′n+1 
are selected by E. Then, E sends (c1, c2′, c3′) to S. 

Step 4. S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h2(PA|| Nn) and 
h2(PA′|| N′n+1) = c2′⊕ h2(PA|| Nn). h(y1) = h2(PA|| Nn) must hold because c1 is 
calculated by A himself/herself. Hence, S will replace (IDA, h2(PA|| Nn), Nn) 

with (IDA, h2(PA′|| N′n+1), N′n+1) for A’s (n+1)-th authentication. Because PA′ 
is chosen by E, E can use PA′ to access the server as A until the attack is 
found. 

3.1.2   Attack Scenario of OSPA 
Suppose E has stolen A’s verifier h2(PA ⊕ n) after A’s (n-1)-th login.  

For A’s n-th login: 

Step 1. A sends IDA and service request to S. 
Step 2. S sends n to A. 
Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n) ⊕ h2(PA⊕n), c2=h2(PA⊕(n+1)) ⊕ 

h(PA⊕n), and c3=h3(PA⊕(n+1)). E intercepts the transmitted data (c1, c2, c3) 
and computes c2′=h2(PA′⊕(n+1)) ⊕ (c1 ⊕ h2(PA⊕n)), and c3′=h(h2(PA′⊕ 
(n+1))), where PA′ is selected by E. Then, E sends (c1, c2′, c3′) to S. 

Step 4. S first checks whether c1≠c2′ holds or not. If it holds, S computes y1 =c1 ⊕ 
h2(PA⊕n) and h2(PA′⊕(n+1)) = c2′⊕ y1, where h2(PA⊕n) is the stored verifier. 
Then, S checks if h(y1) = h2(PA⊕n) and c3′ = h(h2(PA′⊕(n+1))). It is obvious 
that they must hold. As a result, S uses h2(PA′⊕(n+1)) to be the new verifier 
for the (n+1)-th authentication and grants E his/her service request. Because 
PA′ is chosen by E, E can use PA′ to access the server as A until the attack is 
found. 

3.2   Impersonation Attacks 

In this subsection, we show how malicious user can impersonate the server S when 
the legal user A wants to access the server. 

3.2.1   Attack Scenario of SAS 
Suppose E wants to impersonate S during A’s n-th login.  

For A’s n-th login: 

Step 1. A sends IDA and the service request to S.  

Step 2. E intercepts the data sent by A and sends N′n to A. Note that N′n is not 
needed to be equal to Nn since A does not record Nn locally. 
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Step 3. A sends (c1, c2, c3) to S, where c1=h(PA|| N′n) ⊕ h2(PA|| N′n), c2=h2(PA|| Nn+1) 
⊕ h2(PA|| N′n), and c3=Nn+1. E just intercepts the transmitted data (c1, c2, c3) 
and grants A his/her service request. A cannot authenticate S in SAS such 
that E is considered to be S.  

In this case, it is probably that A will reveal more personal secrecy since A will use 
the resource provided by E. 

3.2.2    Attack Scenario of OSPA 
Suppose E wants to impersonate S during A’s n-th login. 

For A’s n-th login: 

Step 1. A sends IDA and service request to S. 

Step 2. E intercepts the data sent by A and sends n′ to A. Note that n′ is not needed 
to be equal to n since A does not record n locally. 

Step 3. A sends (c1, c2, c3) to S, where c1=h(PA⊕n′) ⊕ h2(PA⊕n′), c2=h2(PA⊕(n′+1)) 
⊕ h(PA⊕n′), and c3=h3(PA⊕(n′+1)). E intercepts the transmitted data (c1, c2, 
c3) and grants A his/her service request. As in SAS, A cannot authenticate S 
in OPSA such that E is considered to be S.  

As mentioned in the previous subsection, it is probably that A will reveal more per-
sonal secrecy since A will use the resource provided by E. Moreover, E can also use 
(c1, c2, c3) to impersonate A to access S for A’s n′-th login if n′>n. In this case, A 
reveals important and useful information to E because A cannot authenticate S. 

4   The Proposed Strong-Password Authentication Protocol 

In this section, we are going to introduce our proposed strong-password authentica-
tion protocol, which can defend against the stolen-verifier attack and provides mutual 
authentication to prevent malicious users from impersonating S. As SAS and OSPA, 
the proposed strong-password authentication is divided into two phases: the registra-
tion phase and the authentication phase. Unlike SAS and OSPA, S has a unique seed 
value SEED for the system users in our proposed protocol. As mentioned in Section 
1, the user needs a temper-resistant storage token, e.g. a smart card, to store the strong 
password. SEED can be also stored in the smart card while the user joins the system. 
Moreover, the unique seed value SEED enables the user to set a single secret on sev-
eral servers since the user only needs a strong password. Our proposed protocol is 
presented as follows. 

4.1   Registration Phase 

The registration phase is invoked only once when the user joins the system. Note that 
the delivered data is transmitted through a secure channel. 

Step 1. A calculates h2(PA||N1), where N1 is an initial random number chosen by A. 
Step 2. A sends (IDA, h2(PA|| N1), N1) to S. 

Step 3. S stores (IDA, h2(PA|| N1)⊕h(SEED), N1) for A’s first authentication and 
stores (IDS, SEED) in A’s smart card. 
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4.2   Authentication Phase 

The authentication phase is invoked whenever the user wants to access the server. 
Note that the delivered information is transmitted via a common channel. 

For A’s n-th login: 

Step 1. A inserts his/her smart card into the card reader and sends IDA and service 
request to S. 

Step 2. S randomly chooses numbers D and Nn+1, which are not used before, and 
sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕ h(Nn), h(D) ⊕ h(Nn+1) to A. 

Step 3. A computes r1= (SEED ⊕ D) ⊕ SEED and checks whether h(Nn)= (h(D) ⊕ 
h(Nn)) ⊕ h(r1) and h(Nn+1)= (h(D) ⊕ h(Nn+1)) ⊕ h(r1). If they hold, A sends 
(c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h(h2(PA|| Nn) ||D), c2=h2(PA|| Nn+1) ⊕ 
h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S. 

Step 4. S uses the stored verifier h2(PA|| Nn)= (h2(PA|| Nn)⊕h(SEED)) ⊕h(SEED) to 
compute y1 = c1 ⊕ h(h2(PA|| Nn) ||D) and y2 = c2⊕ h(y1||D). If h(y1) = h2(PA|| 
Nn) and c3=h(y2||D) hold, S replaces (IDA, h2(PA|| Nn) ⊕h(SEED), Nn) with 

(IDA, y2⊕h(SEED), Nn+1) for A’s (n+1)-th authentication and grants A 
his/her service request. 

5   Discussions 

In the following, we will show the properties that the proposed protocol achieves to 
demonstrate that it is secure, efficient and practical. 

Property 1: The protocol provides mutual authentication 
As mentioned in Subsection 4.1, the user gets the unique seed value SEED after join-
ing the system. In the authentication phase, S sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕ 

h(Nn), and h(D) ⊕ h(Nn+1) to the user A in Step 2. Then, A can determine whether Nn 
and Nn+1 are sent by S by checking if h(Nn) = h(SEED ⊕ (SEED ⊕ D)) ⊕ (h(D) ⊕ 
h(Nn)) and h(Nn+1) = h(SEED ⊕ (SEED ⊕ D)) ⊕ (h(D) ⊕ h(Nn+1)) hold or not.  Since 
SEED is stored in the smart card and all computing operations are done by the smart 
card [18], no malicious user can get SEED to cheat the innocent users by impersonat-
ing S. 

In Step 3 in the authentication phase, A sends (c1, c2, c3) to S, where c1=h(PA|| Nn) 
⊕ h(h2(PA|| Nn)||D), c2=h2(PA|| Nn+1) ⊕ h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S. 
Then, S uses the stored verifier h2(PA|| Nn) to compute y1 = c1 ⊕ h(h2(PA|| Nn)||D) and 
y2 = c2⊕ h(y1||D). If h(y1) = h2(PA|| Nn) and c3=h(y2||D) hold, it denotes that the re-
questing user must be A since A owns not only the strong password PA but also SEED 
in his/her smart card. According to the above analyses, this property is confirmed. 

Property 2: The proposed scheme can defend against the stolen-verifier attack 
Suppose the scenario that E has stolen A’s verifier h2(PA || Nn) ⊕ h(SEED) after A’s 
(n-1)-th login. First of all, since SEED is unknown to E, E cannot retrieve h2(PA || Nn). 
That is, A can get neither h2(PA || Nn) nor A’s password.  
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For A’s n-th login: 

Step 1. A inserts his/her smart card into the card reader and sends IDA and service 
request to S. 

Step 2. S sends Nn, Nn+1, IDS, SEED ⊕ D, h(D) ⊕ h(Nn), h(D) ⊕ h(Nn+1) to A, 
where D and Nn+1 are random numbers chosen by S. E eavesdrops the data 
sent by S.  

Step 3. A computes r1= (SEED ⊕ D) ⊕ SEED and checks whether h(Nn)= (h(D) ⊕ 
h(Nn)) ⊕ h(r1) and h(Nn+1)= (h(D) ⊕ h(Nn+1)) ⊕ h(r1). If they hold, A sends 
(c1, c2, c3) to S, where c1=h(PA|| Nn) ⊕ h(h2(PA|| Nn)||D), c2=h2(PA|| Nn+1) ⊕ 
h(h(PA|| Nn)||D), and c3=h(h2(PA|| Nn+1)||D) to S. E intercepts the transmitted 
data (c1, c2, c3); however, E does not know SEED to get D to reveal h(PA|| 
Nn) and h2(PA || Nn) for computing c2′and c3′ as shown in Subsection 3.1. 

It is obvious that E cannot mount the stolen-verifier attack on our proposed proto-
col successfully even the user’s verifier is stolen.  

Property 3: The proposed protocol is secure 
As mentioned in Property 1, our proposed protocol confirms mutual authentication 
between the user and the server. Hence, it is sure that the proposed protocol is resis-
tant to server spoofing attack and impersonation attack. Because S generates random 
numbers D and Nn+1 during the user’s n-th login, S can easily check whether the data 
sent by the user in Step 3 in the authentication phase is received before. As a result, 
replay attack cannot succeed in our proposed protocol. In Property 2, we have shown 
that the proposed protocol can defend against the stolen-verifier attack. As shown in 
Step 4 of authentication phase, S uses the stored verifier h2(PA|| Nn)= (h2(PA|| 
Nn)⊕h(SEED)) ⊕h(SEED) to compute y1 = c1 ⊕ h(h2(PA|| Nn) ||D) and y2 = c2⊕ 
h(y1||D). If h(y1) = h2(PA|| Nn) and c3=h(y2||D) hold, S replaces (IDA, h2(PA|| Nn) ⊕ 
h(SEED), Nn) with (IDA, y2 ⊕ h(SEED), Nn+1) for A’s (n+1)-th authentication and 
grants A his/her service request. The above approaches ensure both the legality of the 
user and the validity of the new verifier. That is, the denial-of-service attack cannot 
work in our proposed scheme. As far as the password guessing attacks are concerned, 
it is obvious that our proposed method can defend against them. It is because all pa-
rameters transmitted are all concealed with the secret number D, which is used only 
once. According to the above analyses, we can sum up that our proposed protocol is 
secure. 

Property 4: The proposed protocol is efficient and practical 
As mentioned in Section 4, either S or A only computes hash operations. No time-
consuming operation, e.g. exponentiation, asymmetric en/decryption, or symmetric 
en/decryption, is needed. Moreover, the unique seed value SEED enables the user to 
set a single secret on several servers. The user only needs a smart card to store the 
strong password and the unique seed values issued by different servers. According to 
the above characteristics, it is sure that our proposed protocol is not only efficient but 
also practical. 
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6   Conclusions 

Chen and Ku pointed out that both SAS and OSPA are vulnerable to the stolen-
verifier attack. Moreover, we find that mutual authentication is not confirmed in these 
two protocols. As a result, we propose an improvement of SAS and OSPA to defend 
against the stolen-verifier attack and provide mutual authentication. As mentioned in 
the previous section, it is obvious that the proposed protocol is secure, practical, and 
efficient. 
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Abstract. Secure communication between sensor nodes is required in
most of sensor networks, especially those deployed in a hostile environ-
ment. Due to the limited energy and computational capability on each
sensor node, a public key cryptosystem is not a viable option for a wire-
less sensor network. Hence, the idea of key pre-distribution has been
widely adopted in most of the session key establishment protocols pro-
posed so far. In this paper, 1) several typical session key establishment
protocols are analyzed and compared in terms of common criteria, 2) the
requirements for improving upon the existing protocols are derived, and
3) two advanced protocols which take a two-step hierarchical approach
to satisfying the requirements are proposed. Through the performance
analysis, it has been shown that the proposed protocols improve the
connectivity of a sensor network, uniqueness of session keys and security
over the existing protocols.

1 Introduction

Sensor networks are expected to provide cost-effective solutions in various ap-
plications. A sensor network consists of a large number of sensor nodes deployed
in a certain area and few base nodes. Each sensor node is equipped with a small
size of memory and limited computational capability, and is battery-powered.
Therefore, energy and storage-efficient operation of sensor nodes is essential in
practical sensor networks.

In many applications, it is required to achieve a certain level of security in
exchanging information between sensor nodes, especially when a sensor network
is deployed in a hostile environment as in military applications. Thus, one of the
important issues that need to be addressed in designing a sensor network is its
security [1]-[4].

A sensor node may communicate with other sensor nodes and also base nodes.
Security of communication channel between a sensor node and a base node can
be provided by a public key based protocol since base nodes have sufficient
energy and hardware required for executing such a protocol [2][3]. Alternatively,
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a secret key may be assigned to each sensor node before deployment, which is
to be shared with the base node. Communication between sensor nodes can be
realized indirectly via a base node in order to utilize the secure channels between
sensor nodes and the base node. While this approach guarantees full connectivity
of sensor nodes, it incurs a longer communication latency and leads to a poor
fault tolerance. Also, the base node becomes a bottleneck which can cause traffic
congestion. Therefore, direct communication is preferred between sensor nodes.

However, the limited resources available on sensor nodes do not allow a pub-
lic key cryptosystem to be employed for direct communication between sensor
nodes. As a result, various schemes where information for establishing session
keys to be shared between communicating sensor nodes is distributed before their
deployment have been proposed [5]-[10]. While each of the protocols achieves a
certain degree of security, there exists significant room for improvement in terms
of security, connectivity, overhead, etc. In this paper, several existing protocols
for establishing session keys between sensor nodes are analyzed and compared in
terms of a set of important security and performance metrics. From the analysis
results, we derive a set of requirements desirable for advanced protocols improved
upon the existing protocols. Then, we propose a couple of two-step hierarchical
protocols satisfying the requirements. Our main objective is to improve the con-
nectivity of a sensor network, uniqueness of sensor keys and security over the
existing protocols by taking the hierarchical approach.

In Section 2, various typical key management protocols are analyzed and
compared. In Section 3, the requirements for improving the existing protocols
are discussed and two new advanced protocols satisfying the requirements are
proposed. In Section 4, the performance of the proposed protocols is analyzed.
In Section 5, a summary is provided.

2 Analysis of Existing Protocols

2.1 BROSK (BROadcast Session Key Negotiation Protocol)

In order to enhance security of the single session-key protocol, the BROSK pro-
tocol employs a common master key which is used by all sensor nodes during the
session key negotiation phase [5]. Each sensor node first broadcasts an introduc-
tion message of its ID, nonce and MAC (Message Authentication Code). Once
a sensor node receives the introduction messages broadcasted by its neighbors,
it can generate a session key for each neighbor through the MAC of two nonces.

This protocol requires lower communication overhead and generates a unique
session key for each pair of sensor nodes. However, if the master key is exposed
to a third party, all session keys of a sensor network may be compromised.

2.2 Random Key Pre-distribution

Eschenhaur and Gligor proposed a random key pre-distribution protocol which
saves the storage space required on each sensor node without sacrificing the
sensor network security significantly [6]. It consists of pre-distribution of random
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keys before deployment and discovery of a common key afterward. A large pool,
P , of keys is defined within the domain of all possible keys that can be used
as session keys. A set of m keys (referred to as key ring) randomly selected
from P and their respective IDs are assigned to each sensor node prior to its
deployment. Once the sensor network is deployed, each sensor node recognizes its
neighbors through broadcasting of node IDs, and then communicates with each
of its neighbors, looking for a common key in their key rings. This key agreement
process can be carried out by exchanging the key IDs or encrypted messages.
In the case of exchanging the key IDs, each sensor node broadcasts the IDs of
keys in its key ring as plain-text. If there is a common ID between two sensor
nodes, the corresponding key becomes the session key for them. In the case of
exchanging the encrypted messages, each sensor node encrypts the challenge α
with a key (ki where i is the key index) in its key ring, and broadcasts the
challenge (α) and encrypted challenge (Eki(α)). If the intended neighbor can
decrypt Eki(α) by one of its keys, which must be identical with ki, and reveal
the challenge, ki is used as the session key between them.

One of the drawbacks in this approach is that the secure channel between
two sensor nodes can be established only when there is a common key between
them. Also, uniqueness of each session key is not guaranteed, and there is no
explicit session key verification process. In addition, a third party may eavesdrop
the plain-text messages of IDs or launch the DoS attack when the encryption is
used for key agreement.

2.3 OKS (Overlap Key Sharing)

The OKS protocol uses a long bit sequence, instead of a large pool of keys,
for deriving session keys [5]. Before deployment, a random segment of the bit
sequence is stored in each sensor node. After deployment, each sensor node
broadcasts its bit segment, and checks if there is any overlap between its bit
segment and the one received from each of its neighbors. When there is an
overlap, the overlapping portion of the bit segment is used to generate a session
key of certain length through hashing for the two sensor nodes.

While, compared to the random key pre-distribution method, the storage and
communication requirements can be reduced, the network connectivity is lower.

2.4 Q-Composite Key

The q-composite key protocol improves security of a sensor network, over the
random key pre-distribution protocol, by enhancing uniqueness of each session
key [7]. Its key pre-distribution step is the same as that of the random key pre-
distribution protocol. In the session key agreement step, each sensor node makes
a puzzle for each of the keys in its key ring and broadcasts the puzzles. When
a sensor node receives a puzzle, it finds a key in its key ring, which gives the
correct answer to the puzzle, if there is one. The answer is then sent to the
neighboring sensor node from which the puzzle was received. If the number of
such common keys is at least q between two sensor nodes, a session key for the
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nodes is generated from the common keys through hashing. This protocol lowers
the probability that two or more pairs of sensor nodes use the same session key,
and is less vulnerable to eavesdropping attacks since the puzzles (instead of the
key IDs) are broadcast. However, the puzzles are to be broadcast individually,
which increases the energy consumption. In addition, the network connectivity
becomes lower.

2.5 Node ID Based Keys

A protocol that is similar to the ABK protocol [11] developed for mobile net-
works was proposed, and it uses node IDs to reduce communication overhead
[8]. Before deployment, each sensor node is assigned with a set of keys whose
IDs are generated from its node ID through a random mapping function. The
mapping function is known to all sensor nodes. Therefore, any sensor node can
compute the IDs of all the keys stored in each of its neighbors once it finds out
the node ID of the neighbor.

The advantages of this protocol are the lower communication overhead re-
quired and the improved security of session keys generated. However, a drawback
is that every sensor node can find out the IDs of keys shared between any two
nodes.

2.6 Blom’s Protocol

The Blom’s protocol exploits a symmetric matrix for generation of session keys,
which guarantees security of a sensor network as long as no more than λ nodes
are compromised [12]. Let N denote the number of nodes in a sensor network.
A (λ + 1) × N matrix G is constructed and is kept public. Also, a random
(λ + 1)× (λ + 1) symmetric matrix D is generated and kept secret. Let’s define
matrix A to be (D ·G)t. Then, it is easy to see that K = A ·G = (A ·G)t. That
is, K is symmetric, i.e., Kij = Kji where Kij is the element in K in the ith row
and the jth column.

Now, before deployment, the ith row of matrix A and the ith column of matrix
G are stored in sensor node i. Note that the ith row of matrix A is known to
sensor node i only. Any two nodes exchange their columns of matrix G, and then
each of them computes the dot product between its row of matrix A and the
column of matrix G received from the other node. The dot product Kij computed
by node i is the same as Kji obtained by node j, which is used as their session
key. Full connectivity of a sensor network is achieved by this protocol.

Du et. al. proposed a modified version of the Blom’s protocol in order to
improve security of a sensor network and lower the storage requirement by em-
ploying multiple key spaces (a key space is a pair of matrices G and D), at the
expense of sacrificed network connectivity [13].

2.7 Comparison of Existing Protocols

In Table 1, the existing protocols reviewed in this section are compared in terms
of several metrics. It is assumed that two neighboring sensor nodes can directly
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communicate with each other. In the table, communication overhead includes
all the transmissions for establishing a session key between two sensor nodes,
and computation overhead is per a pair of sensor nodes. As shown in the table,
all the existing protocols reviewed have one or more limitations. The existing
protocols with the pre-distributed key information (refer to Sections 2.2, 2.4, 2.3,
and 2.5) show weakness in the connectivity, key uniqueness and security. The
other protocols have vulnerability to various attacks.

Table 1. Comparison of the existing protocols where m is the size of key ring

BROSK Random OKS q-composite Node ID Blom
(Encrypt)

Pre-distributed master key m× bit seq. m× mapping func. row/
information (key, ID) (key, ID) column
session key random single overlapping composite composite single
generation shared bit seq. shared shared shared

Connectivity © � � � � ©
key uniqueness © × � � � ©
key verification × × × × © ×
communication 2 2 × m 2 2 × m 2 2

(1)

communication 2 2 2 2 2 2
(2)

computation MAC encrypt/decr comp/hash puzzle/sol/hash keygen/comp product
(3) 6 2m/2m2 2/2 2m/2m/2 2/2m2 2(λ + 1)

DoS attack × × � × � ©
Eavesdropping © © × © � �
Node attack ×/© × © � × �

©: good, �: fair, ×: poor, (1) number of transmissions for setting up session keys ; (2) number of
transmissions for exchanging session keys and verification(we add two transmissions to the protocols
without verification process) ; (3) computation for setting up session keys only(operations and times).

3 Proposed Protocols with Two Step Hierarchy

3.1 Requirements for Advanced Protocols

To improve the existing protocols analyzed in Section 2, the desirable character-
istics for a session key generation protocol are defined on connectivity, unique-
ness of the session key, communication overhead and non-vulnerability to various
attacks.

– Connectivity: For the direct communication between neighboring sensor
nodes, higher connectivity is required. The protocols using the pre-
distributed key information have a limited connectivity. One way to increase
connectivity of a sensor network is to reduce the size of key pool and/or in-
crease that of key ring. However, this makes it more likely that a third party
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may find out most session keys in a sensor network by attacking fewer sen-
sor nodes. Hence, a protocol is to enhance connectivity of a sensor network
without jeopardizing its security.

– Uniqueness of Session Key: In order to minimize the probability that com-
promising some sensor nodes exposes session keys of other nodes, as many
session keys as possible are to be unique. However, session keys generated by
the pre-distributed key information could be duplicated. Thus, uniqueness
should be supported for the pre-distributed key approaches.

– Communication Overhead: Transmission is the most energy consuming
process. In sensor networks, exchanging node IDs of neighboring sensor nodes
and agreement of sensor key between two sensor nodes (transferring session
keys and verifying them) are inevitable. Thus, four transmissions are un-
avoidable. Encrypting messages or employing puzzles for a higher level of
network security causes additional transmissions. A protocol needs to mini-
mize the communication overhead while achieving a required level of security.

– Non-vulnerability to Attacks: Any information transferred in the plain text
is vulnerable to the eavesdropping attacks. A third party may launch the
DoS attack on certain sensor nodes by sending a large number of encrypted
messages or puzzles to them. For enhancing security of a sensor network, it
is desirable to limit the amount or effective period of information that may
be made public, and to make it impossible to derive session keys from such
information.

3.2 Proposed Protocols

In this section, we propose two hierarchical protocols for session key establish-
ment to satisfy the above requirements. They are referred to as Protocol I and
Protocol II. The common feature of the proposed protocols is that they all take a
two-step approach to establishing session keys after deployment of sensor nodes.
In the first step, a secret initial key is generated by each pair of neighboring
nodes, which is used for the agreement of a session key in the second step and
then discarded. The second step allows two neighboring sensor nodes to decide
on their session key through random generation, which makes session keys unique
and, thus, a high level of network security is achieved.

This two-step approach has the following advantages. Since the initial key
generated in the first step is used only once, its required security level doesn’t
have to be as high as that for a session key, which enhances connectivity of the
sensor network. Each sensor node can filter out those encrypted session keys,
which do not need to be decrypted, by examining the IDs of senders. Hence,
both of the proposed protocols are not vulnerable to DoS attacks.

3.3 Protocol I

In the first step, the node ID based approach is employed in generation of the
initial keys, followed by session key establishment in the second step. The ran-
dom key pre-distribution of the node ID based protocol is carried out before
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sensor node deployment. The overall operation of Protocol I may be described
as follows:

1. Each sensor node broadcasts its node ID.
2. Each sensor node computes the IDs of keys stored in each of the neighboring

nodes. If the sensor node finds one or more key IDs common to its and
neighbor’s key rings, it generates an initial key by hashing the common keys
in its key ring.

3. Each pair of neighboring sensor nodes generates a session key for their secure
communication. One of the two nodes (sender), which may be determined
by their node IDs, e.g., whichever node with a smaller ID when the sum of
the two IDs is odd, creates a random key to be used as their session key
and encrypts it with the initial key. The encrypted session key is sent to the
other node (receiver).

4. The receiver node extracts the session key from the encrypted session key
through decrypting and, for verification purpose, sends the session key en-
crypted by the session key back to the sender.

Protocol I has the following characteristics:

– The size of key ring on each sensor node and the size of key pool can be
selected to enhance the network connectivity without affecting security of
session keys negatively since session keys are independent of initial keys.

– Session keys are guaranteed to be unique.
– Communication overhead is minimal (four transmissions) since only the node

IDs and the encrypted session keys are exchanged between sensor nodes.

3.4 Protocol II

One way to achieve full connectivity of a sensor network is to employ the Blom’s
approach in the first step. That is, the first step of Protocol II generates initial
keys by the Blom’s protocol, and the second step creates session keys using the
initial keys as in Protocol I.

The characteristics of Protocol II are:

– Connectivity between any two sensor nodes is guaranteed by the Blom’s
protocol.

– A third party cannot derive the initial keys by eavesdropping alone since the
rows of matrix A are not exchanged between sensor nodes.

– Communication overhead is low (four transmissions) since only the node IDs,
columns of matrix G, and (encryted) session keys are exchanged between
sensor nodes.

– By having the columns of matrix G independent of each other, the initial
keys generated in the first step can be made unique, which prevents other
initial keys (and accordingly session keys) from being compromised due to a
node capture.
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4 Performance Analysis

In this section, the performance of the two proposed protocols is analyzed in
terms of network connectivity, uniqueness of session key, communication and
computation overheads, and storage requirements. We define connectivity to be
the probability that any two sensor nodes share a sufficient number (q) of keys in
their key rings from which a session key can be derived for a secure connection.
Also, interdependency of session keys is defined to be the probability that a
session key between two un-compromised sensor nodes is exposed when some
other nodes are captured by the attacker.

Since connectivity in the existing protocols with the pre-distributed key infor-
mation is determined probabilistically, there is always the chance that neighbor-
ing sensors may not be connected. One way to enhance the network connectivity
is to reduce the size of key pool (P ) and/or to increase the size of key ring (m).
However, it substantially sacrifices the uniqueness of session keys and thus the
network security. In addition, as the size of the key ring, m, is increased for high
connectivity, the computational overhead and storage requirement in each sensor
node also increase. However, the first step in the proposed protocols enhances
the connectivity of sensor network greatly and the uniqueness of session keys is
guaranteed by the second step.

4.1 Protocol I

Network Connectivity and Uniqueness of Session Key. In Protocol I,
the initial keys generated in the first step are used only once and, therefore, it
can increase connectivity between neighboring sensor nodes. In the second step
of Protocol I each pair of neighboring sensor nodes derives a session key through
random generation, which guarantees uniqueness of each session key and hence
improves security of a sensor network greatly.

In Figure 1, the network connectivity that can be achieved by Protocol I is
shown with P in the range of 2000 to 10000 and m not greater than 200. As shown
in the figure, one can achieve high connectivity over 0.99, and low computational
and memory requirements, by properly selecting small m and P . Note that such
small m and P would not affect the interdependency of session keys since the
session keys are independent of m and P in the proposed protocols.

Communication Overhead. There are 4 transmissions required between two
neighboring sensor nodes. Each sensor node broadcasts its node ID (n bits where
the number of nodes, N , is not greater than 2n) in the first step. In the second
step, one of them sends the encrypted session key to the other which in turn
sends back the encrypted initial key for session key verification (B bits). Thus,
the communication overhead is minimized.

Computation Overhead. In the first step, each sensor node computes the IDs
of m keys in each of its neighbors, and generates an initial key through hashing.
In the second step, a session key is created, which is encrypted and subsequently
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Fig. 1. Connectivity achieved by Protocol I (equivalent to q=1)

decrypted, and for verification of the session key the initial key is also encrypted
and decrypted later.

Storage Requirement. Each sensor node needs to store its node ID (n bits)
and key ring (m keys: m × B bits, and m key IDs: m × n bits).

The characteristics of Protocol I analyzed above are summarized in Table 2.

Table 2. Characteristics of Protocol I

pre-dist- session key communication computation eaves- node
ribution key uni- connec- verifi- key key key key DoS drop attack

info. gen. queness tivity cation gen. exch. gen. exch.

mapping random 2× session key 2×encrypt
function gen. © © © node ID veri. info. † 2×decrypt � © ©

† : 2m× key ID calculations, 2m2 key ID comparisons, 2× initial key generations, and a session key

generation.

4.2 Protocol II

Network Connectivity and Uniqueness of Session Key. The Blom’s pro-
tocol employed in the first step guarantees full connectivity of a sensor network,
i.e., any two sensor nodes are connected. As in Protocol I, every session key is
unique.

Communication Overhead. In the first step, each sensor node broadcasts its
node ID and one column ((λ + 1)× 1) of matrix G (B(λ + 1) bits) in one trans-
mission. In the second step, the encrypted session key (B bits) and verification
message (B bits) are transmitted between two neighboring sensor nodes. That
is, the total number of transmissions between the two sensor nodes is 4.
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Computation Overhead. In the first step, each sensor node computes the
dot product with a row of matrix A and a column of matrix G, each with λ + 1
elements. In the second step, each pair of neighboring sensor nodes generates a
session key, encrypts the session key and verification information, and decrypts
them.

Storage Requirement. Each sensor node is to store its node ID (n bits), a
column of matrix G (B(λ + 1) bits) and a row of matrix A (B(λ + 1) bits).

Table 3 summarizes the characteristics of Protocol II.

Table 3. Characteristics of Protocol II

pre-dist- session key communication computation eaves node
ribution key uniqu- connec- verifi- key key key key DoS -drop attack

info. gen. eness tivity cation gen. exch. gen. exch.

matrix random 2× session key 2×encryp
row gen. © © © (node ID, veri. info. † 2×decryp � © ©

column column)

† : 2× initial key generation (λ + 1 multiplications) and session key generation.

4.3 Comparison of Communication Overhead

It has been shown that the proposed protocols improve the connectivity of a
sensor network and uniqueness of session keys over the existing protocols. The
existing protocols and the proposed protocols are compared in Table 4, in terms
of transmission overhead. Note that transmission is the most energy-consuming
process. As shown in the table, there must be at least 4 transmissions required
for generating and verifying a session key. Protocol I incurs the minimum com-
munication overhead, and the added communication overhead for Protocol II is
negligible for a small value of λ. Thus, the proposed protocols achieve high/full
connectivity and enhance the security greatly without increasing the communi-
cation overhead.

5 Summary

A sensor network usually consists of a large number of sensor nodes and they
communicate with each other through radio transmission. This makes sensor
networks vulnerable to various attacks by the adversary. In the applications
where a certain level of security is required, it is necessary for each sensor node
to authenticate its neighbor nodes and use session keys for secure communication.
However, since the communication and computation capabilities and the storage
capacity of sensor nodes are very limited, the conventional public key cryptogram
cannot be employed. Various protocols for establishing session keys have been
proposed taking these characteristics into account.

In this paper, several existing protocols for session key derivation are analyzed
and compared in terms of common criteria. We found that the protocols which
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Table 4. Comparison of communication overhead

BROSK Random q-composite Node ID Blom Protocol Protocol
(Encrypt) I II

number of 4 2 × m + 2 2 × m + 2 4 4 4 4
transmission

(ID, Nonce, (ID, a, E(a)) (ID, puzzle) ID (ID, col.) ID (ID, col.)
contents of MAC) ×m × 2 ×m ×2 ×2 ×2 ×2

transmissions† ×2 (ID, sol.)
×m

bits (16+64+64) (16+64+64) (16+64+64) 16 (16+ 16 (16+
64(λ + 1)) 64(λ + 1))

transferred† ×2 ×m × 2 ×m × 2 ×2 ×2 ×2 ×2

†: the contents and bits transferred, which are required in the last two transmissions in all protocols,

are excluded.

derive session keys from the pre-distributed key information have disadvantages
in network connectivity, session key uniqueness, and network security. Based on
the analysis results, some requirements for the advanced protocols are presented.

In addition, we propose new advanced two-step hierarchical protocols to sat-
isfy the requirements. In the first step of our protocols, the initial keys which are
used only once are derived from the pre-distributed information. In the second
step, session keys are randomly generated and verified using the initial keys.
Thus, the proposed protocols enhance the connectivity of the sensor network
while providing the guaranteed uniqueness of session keys. Protocol I achieves
more than 99 % of connectivity and Protocol II guarantees full connectivity of a
sensor network. In addition, they reduce the energy consumption by minimizing
the number of transmissions in the both protocols and the size of messages trans-
mitted in Protocol I. As an extension, the proposed protocols may be applicable
to mobile sensor networks. Each sensor node which moves to a new location can
follow the same two-step procedure in Section 3 to derive session keys with the
new neighbors.
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Abstract. This paper proposes a generic revenue-aware bandwidth allocation 
(RBA) model. This model satisfies diverse QoS requirements of different IP 
services with revenue as the optimization criterion. Based on this generic 
model, this paper provides Enhanced Greedy Algorithm (EGA) to solve RBA 
problems. Unlike other algorithms, the proposed algorithm is deterministic and 
can be calculated in polynomial time. The experiments on a switched router 
show that EGA is efficient and applicable for embedded systems. 

Keywords: Revenue-aware Bandwidth Allocation, Generic RBA model,  
Knapsack problem. 

1   Introduction 

The future IP networks must carry a wide range of different service types being still 
able to provide performance guarantees to real-time sessions such as Voice over IP 
(VoIP), Video-on-Demand (VoD), or Interactive game. For the future multi-service 
Internet, users will have to pay the network operators based on pricing strategies 
agreed in their SLA (Service-Level-Agreements). The pricing strategy will specify the 
relationship between the price paid by each class of users and the QoS (e.g., delay, 
bandwidth) provided by the network operators, which normally states that the net-
work provider will get a revenue when the offered QoS meets the defined perform-
ance requirement. Thus, the diverse service requirements of emerging Internet ser-
vices foster the need for flexible and scalable revenue-aware bandwidth allocation 
(RBA) schemes. 

In current networks, bandwidth assignment is based on three major service models: 
best-effort, integrated services (IntServ [1]) and differentiated services (DiffServ [2]). 
In best-effort model, applications could send arbitrary packets in arbitrary time with-
out previous grant. Intermediate routers treat all the packets equally and queue them 
by a simple First-In-First-Out way. Best-effort mechanism is designed for time-
extensive applications like E-mail and HTTP. It does not satisfy the strict QoS re-
quirements from time-intensive value-added services (Multi-media, etc.). IntServ, 
based on RSVP signaling, requires the whole IP networks to reserve an end-to-end 
bandwidth path for each flow. IntServ places a heavy processing load on routers in the 
core of the network; and does not scale well in large networks with numerous IntServ 
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flows. To eliminate the drawbacks of IntServ, Diffserv was proposed by IETF in 
1998. Adopting a two-level service model, Diffserv achieves scalability by imple-
menting complex classification and conditioning functions at network boundary 
nodes, while the core nodes only need to fulfill simple Per-Hop Behaviors (PHBs). 
Because of its scalability, many present researches, as in [3], [4], [5], focus on how to 
fairly allocate bandwidth in DiffServ domains. 

With the introducing of new technologies (EPON [6], RPR [7], etc.), bandwidth  
allocation needs to be implemented in link layer and/or even physical layer, as in [8], 
[9]. Recent proposals in IETF, as in [10], [11], outline that MPLS layer2 encapsula-
tion technologies are used to emulate TDM, Frame Relay and ATM services. To  
support such pseudo-wire services, it is necessary to allocate bandwidth effectively in 
data-link layer. Moreover, ITU-T [12] mentions one research goal in NGN is how to 
ensure high-layer QoS via low-layer mechanism. 

From the discussion above, we can find present BA approaches have several limita-
tions: (1) Present schemes are not revenue-oriented and not sufficient to satisfy carri-
ers’ requirements for maximal revenue. (2) Though DiffServ is proved to be an effec-
tive QoS model in IP layer, it could not resolve the BA problem in data-link and 
physical layers. 

This paper proposes a generic revenue-aware bandwidth allocation model, which 
has several unique characteristics. First, the proposed model is a generic one, which is 
logically independent from any embodied equipments and underlying technologies. It 
can be not only used in layer 3 and above IP applications, but also used in link-layer 
applications (Circuit Emulation, etc.) and/or even physical-layer devices (Passive 
Optical Network). Second, it is designed for meeting the profit requirements of carri-
ers. It allocates the bandwidth based on maximal revenue goal. According to this 
model, we classify RBA problems into SRBA (Strict RBA) and FRBA (Flexible 
RBA) problems. We prove that RBA problem is theoretically equal to Knapsack 
problem and provide an efficient algorithm to calculate it. This algorithm is fair and 
can be calculated in polynomial time. The remainder of this paper is organized in the 
following way: Section II illustrates the generic revenue-based bandwidth allocation 
model. Section III presents the algorithms for RBA problem. Section IV introduces 
our experiments on a 128Gbps switched router and analyzes the while Section V 
concludes the paper and proposes some future works. 

2   Generic Bandwidth Allocation Model 

In IP networks, the entities performing bandwidth allocation are versatile. They could 
be routers, switches, Broadband Remote Access Server (BRAS), Optical Line Termi-
nal (OLT) or RPR equipments. And the accessing methods could be xDSL, cable, 
Ethernet, Fiber or Circuit Emulation. Thus, a generic model for revenue-aware band-
width allocation should meet the following requirements: It should be logically inde-
pendent from specific devices and underlying technologies. It could be applied into 
different application environments.  
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Fig. 1. Generic RBA model 

Fig. 1 shows a generic RBA model proposed in this paper. In this model, we are 

given a set { }ieE = of k clients and a bandwidth of link capacity b . Each client 
represents the minimal bandwidth-requesting element with three service parameters: 
bandwidth request value ib , class of service (CoS) ic  and generating revenue )(iri , in 

which CoS is proportional to the revenue density (In this paper, the revenue density is 

defined as the revenue to bandwidth ratio- ii br / .) It should be noted that a concrete 
user might issue several clients with different CoS simultaneously, because one user 
may have different service (TDM, Voice and video, etc.) requests at the same time. 

Therefore, RBA problem can be described as follows: Given that clients { }keee ..., 21  

of CoS{ }kccc ..., 21 , bandwidth request{ }kbbb ..., 21 and revenue { }krrr ..., 21  are offered 
to a link of bandwidthb , can the Bandwidth Manager (BM) select enough clients to 
utilize the available bandwidth and generate the maximum possible revenue while the 
bandwidth requirements are satisfied for the selected clients? When the BM must 
strictly satisfy the bandwidth request of each client, the RBA problem is classified as 
Strict RBA or SRBA problem. When the BM can partially satisfy the bandwidth re-
quest of clients, the RBA problem is classified as Flexible RBA or FRBA problem. 

BM obtains the service parameters of each client via platform-dependent UNI 
(User Network Interface) or authentication protocols (Radius, etc). Since that our 
research focuses on the BA model and algorithm, the fetching of service parameters 
are out of the scope of this paper. Obviously, the model satisfies the above require-
ments. It is a single node model and has no relationship with physical embodiments. 
In this scheme, there is no need to analyze the content of packet (e.g., DSCP in Diff-
Serv). As a result, it could be used in data-link and even physical layer applications.  

3   Algorithms for RBA Problems 

3.1   RBA Problem Is Equivalent to Knapsack Problem  

We initially redefine the RBA problem stated above more precisely. 

Problem Instance: Clients { }keee ,..., 21  of CoS { }kccc ,..., 21 , bandwidth request 
{ }kbbb ,..., 21  and revenue { }krrr ,..., 21 , link capacity B  and a revenue goal R . 

Question: Can the bandwidth manager select enough clients with generation revenue 
R≥  and total bandwidth requirements B≤ ? 
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It is easy to see that SRBA∈NP since a non-deterministic algorithm designed to 
solve the problem has to guess a collection of client requests and verify the following 
in polynomial time: 

1) Check whether the selected clients fit with in the available bandwidth. 
2) Check whether the generated revenue is more than R. 
3) Check whether the bandwidth request is fully satisfied. 

We will give the proof that SBA problem is NP-hard and has no deterministic algo-
rithm to solve it. 

Theorem 1: SRBA problem is NP-hard.  

Proof:  There is a known Theorem: if Q is a NP-complete problem and Q could be 
restricted to L in polynomial time. And then L is NP-hard. 

Therefore, in order to prove SRBA is NP-hard, we only need to find one well-
known NP-complete problem which could be restricted to SRBA in polynomial time. 
From the description of SBA problem, we find that it is very similar to Binary Knap-
sack Problem (BKP) in [13]. The BKP can be described as follows:  

Problem Instance: A finite set of objectsU , a weight )(uw for each Uu ∈ , a profit 

)(up  for each Uu ∈  and positive integers W (Knapsack Capacity) and P  (Desired 

Profit). 

Question: is there a subset UU ∈'
of such that the sum of the profits of the elements 

in the subset exceeds the profit goal P without violating knapsack capacityW ? 

Now we can show BKP is a special case of SRBA problem. The finite set U de-
fined in Knapsack is the set of clients, )(uw is ib , )(up  is ir , Knapsack size W is b , 

profit goal P  is R . This above restriction can be carried out in )1(O  time. Theorem 1 

is proven. 
 Since the SRBA is proven to be NP-hard, there can be no polynomial time deter-

ministic algorithm that solves the problem optimally. 
The definition of FRBA is very similar to the one of SRBA. The only distinction is 

to change the strict satisfaction to partial satisfaction. So we can deduce that FRBA is 
equivalent to continuous Knapsack problem, which is a P problem. 

Theorem 2: FRBA problem is a P problem and there can be deterministic algorithms 
that solve it optimally in polynomial time. 

3.2   Solution to SRBA Problem 

BKP is among the widely studied problems of discrete optimization. A number of 
computational algorithms, as in [14], [15], have been proposed based on branch and 
bound, dynamic programming or heuristics. However, they still require a lot of execu-
tion time and memory space in case that n is a large number, and are not applicable to 
the embedded system, which has limited system resources. Therefore, considering 
practicability and scalability, we attempt to find approximation algorithms that may 
be close to the optimal solution. 
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The Greedy Algorithm (GA) is an obvious approximation algorithm for BKP. The 
idea behind GA is to consider the items one-by-one in the order decreasing revenue or 
revenue to bandwidth ratio. Each item is inserted into the knapsack if adding it does 
not cause the set of current items to exceed the knapsack capacity. Although GA can 
be calculated in deterministic time, the simple GA could not do well in the worst case 
if we execute the GA only based on revenue or revenue density. For example, con-
sider the case where there are only two clients: the first item has bandwidth request 1 
and payoff 3, while the second has bandwidth request B and payoff B . The execution 
result of revenue density based GA is the first one, while the optimal solution should 
be the second one. 

Thus, we propose an Enhanced Greedy Algorithm (EGA) to solve the SRBA prob-
lem. EGA-SRBA picks the better of the solutions provided by revenue density based 
GA and the best solution obtained by selecting the client with the largest revenue into 
the set. The detailed algorithm is described in the following Fig. 2. 

Algorithm EGA -SRBA:

INPUT: link bandwidth b , the item bandwidth request { }kbbb ..., 21 , CoS

{ }kccc ..., 21 and revenue { }krrr ..., 21

OUTPUT: Subset of the items at most revenue
1. Sort the items in non-increasing order of their revenue densities or CoS 
( ii br / or ic ).

2. Ω←'U
3. for 1=i  to k do begin 

if ∑ ∈
≤+'Uj ij bbb , then iUU +← ''

4. Ω←''U
5. Find the client me with largest revenue

6. if 'Um∈ then output 'U ; return; 
else mUU +← ' '' '

7. for 1=i to k , mi ≠ do begin
if ∑ ∈

≤+'Uj ij bbb , then iUU +← ' '' '

8. Compare the generated revenue from 'U and ''U , output the one with larger 
revenue
END

 

Fig. 2. Enhanced Greedy Algorithm for SRBA 

The first step of EGA-SRBA can be implemented by a standard sorting routine and 

the best possible complexity of it is )log( NNO . In the following way, both the 
revenue density based GA and client selection can be implemented with linear com-

plexity )(NO . Thus, the time complexity of EGA-SRBA is )log( NNO . The maxi-
mal storage space is two arrays with the length of K and then the space complexity of 
EGA-SRBA is )(NO . 
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3.3   Solution to FRBA Problem 

From Theorem 2, we notice that FRBA problem is equal to continuous knapsack 
problem and could be solved in polynomial time by revenue density based GA. Con-
sidering fairness for clients with lower CoS, we propose another EGA for FRBA 
problems. The EGA-FRBA is implemented in a two-step way:  

1) BM assigns minimum bandwidth to all clients for transmission. Configured 
guaranteed bandwidth is first supplied per client in Weighted Round Robin 
(WRR) manner. 

2)  The remaining bandwidth is distributed to clients by revenue density based 
GA. Considering the fairness among clients with the same revenue density, 
the algorithm first merges the clients with the same class and regroups the cli-
ents into new clients, and then executes the GA selection. 

The detailed algorithm is depicted in the following Fig. 3. 

Algorithm EGA-FRBA:

INPUT: link bandwidth b , the item bandwidth request { }kbbb ..., 21 , CoS 

{ }kccc ..., 21 and revenue { }krrr ..., 21

OUTPUT: Subset of the items at most revenue
1. Allocate initial bandwidth of ratio R  to each client in WRR ma nner

∑ ∈
××=

Uj jiinit ccRbib )/()(

2. Merge clients with the same revenue densities or CoS ( ii br / or ic ) into new 

set 'U  with bandwidth request { }mbbb '
2
'

1
' ,...,,  and revenue { }mrrr '

2
'

1
' ,...,,

and CoS { }mccc '
2

'
1
' ...,

3. Sort the items in non-increasing order of their revenue densities or CoS 
( ii br '' / or ic' ) in 'U
4. Ω←''U
5. for 1=i  to m do begin /*Greedy Algorithm*/

if ( )∑ ∈
−×≤+'' 1''

Uj ij Rbbb , then iUU +← ''''

6. Calculate the assigned bandwidth for each client 
for 1=i  to k do begin

)()()( ibibib GAinitallocate +=
END

 

Fig. 3. Enhanced Greedy Algorithm for FRBA 

The WRR step can be implemented with linear complexity )(NO . The regrouping 
step can be implemented by a standard sorting routine and the best possible complex-
ity of it is )log( NNO . In the final GA step, the time complexity is )(NO . Thus, the 

time complexity of EGA-FRBA is )log( NNO . The space complexity of EGA-

FRBA is also )(NO . 
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4   Experiments and Result Analysis 

4.1   Experiment Platform 

Our testbed is Distributed Extensible sErvices Platform (DEEP), designed for Chinese 
National High-Tech Project No.2003AA121110. As described in [16], DEEP consists 
of two routing engines and twelve Network Processor Units (NPUs) based line cards. 
The routing engine implements control plane functions, while forwarding operations 
are performed by the NPUs in the line card. DEEP has a whole switch capacity of 
128Gbps and could be configured as high-performance ER (Edge Router) and BRAS 
(Broad Remote Access Server). The processor in routing engine is PowerPC 7410 
with PowerPC 604 core embedded. This CPU has 1Mbps level-2 cache, with a clock 
rate at 450 MHz. The operation system used is Vxworks 5.4 from Windriver Systems 
and the complier is GNU C complier with level-2 optimization. 

Table 1 summarizes the results of our experiments. We measured the execution 
time of EGA-SRBA and EGA-FRBA in DEEP under BRAS and ER configurations. 
We measured the client number of 10, 20, 40, 60, 80, 100, 1,000 and 10,000 respec-
tively. All the client request parameters are generated by software randomly. Consid-
ering the real applications, the number of service classes is 32. The requesting band-
width in ER is ranged from 1Mbps to 1024Mbps, while the one in BRAS is ranged 
from 1Kbps to 8Mbps.Our code was written in ANSI C and the used sorting routine is 
quick sort algorithm. The listed result is the average value of 1,000 times execution. 

Table 1. Measurement Results of RBA 

        T 

N 

BRAS-SRBA BRAS-FRBA ER-SRBA ER-FRBA 

10 16.0us 14.8us 16.3us 14.8us 
20 35.7us 30.7us 35.8us 30.9us 
40 76.0us 64.7us 76.0us 64.6us 
60 119us 165us 117us 165us 
80 165us 140us 166us 142us 

100 177us 175us 177us 173us 
1,000 2.37ms 2.10ms 2.37ms 2.10ms 
10,000 35.67ms 29.83ms 35.05ms 29.83ms 

4.2   Result Analysis 

From the results above, we analyze three factors that may have an effect on execution 
time: type of RBA entities (ER or BRAS), RBA type (SRBA or FRBA) and the num-
ber of clients. From Fig. 4a and Fig. 4b, we can obviously find that this algorithm is 
independent from the type of RBA entities, which illustrates that the proposed model 
and algorithm are logically independent from physical embodiments and underlying 
technologies. Fig. 4c shows that the execution time of SRBA is longer than FRBA. 
This is reasonable because that SRBA performs one more GA selection than FRBA. 
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Regarding the running time, since we adopt the quick sort algorithm, the time com-

plexity should be )ln( NNO , as shown in Fig. 4d. 
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Fig. 4. Comparison of Execution Time 

5   Conclusions and Future Work 

This paper investigates the problem of how to allocate bandwidth efficiently to ensure 
different QoS requests from different users and maximize the revenue for carriers. 
This paper describes a generic revenue-aware bandwidth allocation (RBA) model and 
classifies the RBA problems into SRBA (Strict RBA) and FRBA (Flexible RBA) 
problems. This paper proves that bandwidth allocation problem is theoretically 
equivalent to Knapsack problem. Since traditional BKP algorithms are not applicable 
for real-world embedded systems, this paper proposes an Enhanced Greedy Algorithm 
(EGA), which can be calculated in )log( NNo  time. EGA has been implemented on 
our testbed-DEEP. The experiment results show EGA is deterministic and independ-
ent from physical embodiments.  

We also note that in rigorous applications when the client number is too large 
( 000,10≥ ), the execution time of this algorithm may be unacceptable. Thus, our 

Fig. 4a. SRBA 

Fig. 4c. SRBA and FRBA Fig. 4d. ER 

Fig. 4b. FRBA 
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future plans include implementing EGA on high performance NPUs or ASICs that 
may bring nearly an order of magnitude improvement in performance. 
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Abstract. The Interleaved Signature Instruction Stream (ISIS) is a sig-
nature embedding technique that allows signatures to co-exist with the
main processor instruction stream with a minimal impact on processor
performance, without sacrificing error detection coverage or latency.

While ISIS incorporate some novel error detection mechanisms to as-
sess the integrity of the program executed by the main processor, the
limited number of bits available in the signature control word question
if the detection mechanisms are effective detecting errors in the program
execution flow. Increasing the signature size would negatively impact the
memory requirements, so this option has been rejected. The effectiveness
of such mechanisms is an issue that must be addressed. This paper details
those checking mechanisms included within the ISIS technique that are
responsible of the assessment of the integrity of the processor execution
flow and the experiments carried out to characterize their coverage.

1 Introduction

With the advent of modern technologies in the field of programmable devices and
enormous advances in the software tools used to model, simulate and translate
into hardware almost any complex digital system, the capability to design a
System-On-Chip (SoC) has become a reality even for small companies. With the
widespread use of embedded systems in our everyday life, service availability and
dependability concerns for these systems are increasingly important [1].

A SoC is usually modeled using a Hardware Description Language (HDL) like
VHDL [2]. It allows a hierarchical description of the system and the designed
elements interconnect much the same way as they would in a graphical design
flow, but using an arbitrary abstraction level. It also provides IO facilities to
easily incorporate test vectors, and language assertions to verify the correct
behavior of the model during the simulation.

Efficient error detection is of fundamental importance in dependable comput-
ing systems. As the vast majority of faults are transient, the use of a concurrent
Error Detection Mechanism (EDM) is of utmost interest as high coverage and low
detection latency characteristics are needed to recover the system from the error.
And as experiments demonstrate [3, 4, 5], a high percentage of non-overwritten
errors results in control flow errors.

L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 659–670, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The possibility to modify the original architecture of a processor modeled
using VHDL gives the SoC designer an unprecedented capability to incorporate
EDM’s which were previously available at large design companies only.

Siewiorek states in [6] that ”To succeed in the commodity market, fault-
tolerant techniques need to be sought which will be transparent to end users”.
A fault-tolerant technique can be considered transparent only if results in mini-
mal performance overhead in silicon, memory size or processor speed. Although
redundant systems can achieve the best degree of fault-tolerance, the high over-
heads imposed limit their applicability in everyday computing elements. The
same limitation applies when a software only solution is used, due to perfor-
mance losses. Siewiorek’s statement can be also translated into the SoC world,
to demand fault-tolerant techniques that minimize their impact on performance
(the scarcest resource in such systems) if those techniques are to be used at
all.

The work presented here is structured as follows: The next section is devoted
to a minimal background on concurrent EDMs, specifically those using watchdog
processors. A section of previous work follows, where the ISIS watchdog tech-
nique and its implementation into a SoC is described. The software support for
this system is also outlined in this section.

Next section reports how the EDMs associated with the execution flow guar-
antee it; these are characterized, either theoretically or by means of some exper-
iments. For those requiring experiments, the memory model is described in the
corresponding subsection, along with the results obtained. The paper ends with
the conclusions obtained and some further research opportunities.

2 Background

A minimal set of basic terms taken from [6] is needed to understand the over-
all system. A branch-in instruction is an instruction used as the target address
of a branch or call instruction (for example, the first instruction of a proce-
dure or function). A branch-out instruction is an instruction capable to break
the sequential execution flow, conditionally or unconditionally (for example, a
conditional branch or a procedure call instruction). A basic block is a sequence
of instructions with no branch-in instructions except the very first one and no
branch-out instructions except possibly the last one.

A derived signature is a value assigned to each instruction block to be used
as reference in the checking process at run-time. The term derived means the
signature is not an arbitrarily assigned value but calculated from the block’s
instructions. Derived signatures are usually obtained xor-ing the instruction op-
codes or using the opcodes to feed a Linear Feedback Shift Register (LFSR).
These values are calculated at compile time and used as reference by the EDM
to verify correctness of executed instructions.

If signatures are interspersed or hashed with the processor instructions the
method is generally known as Embedded Signature Monitoring (ESM). A watch-
dog processor is a hardware EDM used to detect Control Flow Errors (CFE)
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and/or corruption of the instructions executed by the processor, usually employ-
ing derived signatures and an ESM technique. In this case it performs signature
calculations from the instruction opcodes that are actually executed by the main
processor, checking these run-time values against their references. If any differ-
ence is found the error in the main processor instruction stream is detected and
an Error Recovery Mechanism (ERM) is activated.

The percentage of detected error is the error detection coverage, and the time
from the error being active to the detection is the error detection latency. With
both values any EDM can be characterized.

A branch insertion error is the error produced when the opcode of a non-
branch instruction is corrupted and it is transformed into a branch instruction;
from a watchdog processor perspective, this error is detected as a too early
branch. A branch deletion error is the error produced when the opcode of a
branch instruction gets corrupted and the instruction becomes a non-branch
instruction; the watchdog detects this error condition as a too late branch.

Any error affecting a non-branch instruction other than branch insertion er-
rors, do not affect the execution flow of the program and are not part of the
structural integrity checking mechanisms.

3 Previous Work

In [7] a novel technique to embed signatures into the processor’s instruction
stream is presented. Its main goal is the reduction of the performance impact of
the watchdog processor and it is targeted to processors included into embedded
systems.

Using this technique, called ISIS (Interleaved Signature Instruction Stream),
the watchdog processor signatures are hashed with the application processor’s
instructions in the same memory area. Signatures are interleaved within in-
struction basic blocks, but they are never fetched nor executed by the main
processor.

Signature control words (or simply signatures) are placed at the beginning of
every basic block in the ISIS scheme (see Fig. 1). These references incorporate,
among other checking mechanisms, the opcode signature field: a polynomial CRC
of the block instruction bits to detect the corruption of any instruction (non-
CFE errors and branch insertion and deletion errors as well). Using a polynomial
redundancy check 100% of single bit errors and a large percentage of more
complex error scenarios can be detected.

Besides error detection capabilities obtained from the opcode signature, and
due to the fact that the block reference word includes the block length, branch
insertion and branch deletion errors are detected.

The signature word encoding has been designed in such a way that a main
processor instruction can not be misinterpreted as a watchdog signature instruc-
tion. This provides an additional check when the main processor executes a
branch instruction. This check, called Branch Start, consists in the requirement
to find a signature instruction immediately preceding the first instruction of
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Fig. 1. ISIS signature control word and signature insertion process: (a) high-level lan-
guage snippet, (b) original blocks at assembly stage, and (c) after code is instrumented
with signatures

every block. This also helps to detect a CFE if a branch erroneously targets
a signature instruction, because the encoding will force an illegal instruction
exception to be raised.

Under the assumption of single bit errors, the block length allows the watch-
dog processor to detect all branch insertion and branch deletion errors. Addi-
tional checking mechanisms related with the signature word instruction type and
jump address guard bits are also included.

The Block Address is a check process that uses one of the address check fields
in the signature word (Block Origin Address or Block Target Address) to verify
the correctness of the address of the target instruction when a branch is taken.
The difference between the addresses of the branch instruction and the target
instruction is computed at compile time, and a checksum is calculated and stored
into the signature word. At run-time, when the processor breaks the execution
sequence taking a branch, the actual addresses employed by the processor are
used, inside the watchdog processor and following the same algorithm used by
the compiler, to calculate another checksum. In the absence of errors, both must
match; any mismatch will trigger the watchdog’s error detection procedure.

This two EDMs, Block Start and Block Address, form the basic elements
used by the watchdog processor to guarantee the integrity of the processor’s
execution flow. And the work presented in this paper shows their error coverage
characteristics, using them separately and combined.
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Fig. 2. HORUS processor and overall system architecture

To reduce performance overhead the main CPU should not process signatures
in any way. With this objective in mind, the CPU is designed to skip an instruc-
tion per basic block while maintaining the normal instruction sequencing. These
architectural modifications create word gaps in the main processor instruction
stream immediately following branches and calls. A specialized compiler uses
these gaps to store watchdog signatures words.

With this arrangement, two completely independent interleaved instruction
streams coexist in our system: the application instruction stream, which is di-
vided into blocks and executed by the main processor and the signature stream,
used by the watchdog processor.

Isolating the reference signatures from the instructions fed into the processor
pipeline results in a minimal performance overhead in the application program.
More information about this signature embedding technique can be found in [7].

The ISIS technique has been implemented in the HORUS processor [8], a soft-
core clone of the MIPS R3000 [9] RISC processor (see Fig. 2). It is a four stage
pipelined processor with a complete Memory Management Unit and instruction
cache. The external memory and peripherals are accessed through an AMBA
AHB bus [10]. This processor is provided with a Memory Management Unit
(MMU) to perform virtual to physical address mapping, isolating memory areas
of different processes and checking correct alignment of memory references. The
watchdog processor is fed with the instructions from the main processor pipeline
as they are retired.

The original processor architecture has been augmented with an ISIS watch-
dog processor. The instruction cache is modified to include two read ports to
provide simultaneous access to both processors (main and watchdog processors).

The watchdog calculates run-time signatures at the same rate of the processor
pipeline. When a block ends, these values are stored into a FIFO memory to
decouple the checking process. This FIFO allows a large set of instructions to be
retired from the pipeline while the watchdog is waiting for the block reference
signature word. In a similar way, the watchdog can empty the FIFO while the
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main processor pipeline is stalled due to a memory operation. When this FIFO
memory is full, the main processor is forced to wait for the watchdog checking
process to read some data from it.

4 HORUS Compiler Support

The GNU gcc compiler already provides a port to target MIPS processors. As
its source code is freely available it was the natural starting point to provide the
required software support for the HORUS processor. The gas program (GNU As-
sembler) has the responsibility of the assembly stage in the compilation process,
after program optimization passes and before the final linker stage.

The gas program and its supporting libraries have been modified to support
the architecture of HORUS and its use of the ISIS technique via command line
switches. As instructions are assembled,

1. If the current instruction is the target of a branch instruction, a new block
starts and so its signature it is inserted.

2. If the current instruction is a branch, the next instruction will fill the branch
delay slot and end the current block.

With this information and the opcode bits of the program instructions the
assembler can calculate block signatures and insert them at appropriate places.
No provisions are needed to modify the target of a branch or call instruction, as
all instruction addresses are referenced using symbolic names (labels).

The software splits large sequences of instructions to accommodate the gen-
erated blocks to the length field of the signature control word. Reducing the
number of instructions in a block increases the memory requirements, but it
also reduces the latency from the error activation to its detection. While the
length field would allow for blocks of up to 16 instructions, the actual block
length could be smaller due to several reasons, most noticeably:

1. One of the instructions in the sequence is the target of a branch instruction.
In this case, a signature must precede this instruction, so a new block must
be created.

2. The use of variant frags. A variant frag is a combination of two different
sequences of instructions generated by the assembler to solve the same task.
For example, to store the address of a variable into a register, several se-
quences of instructions (and with different lengths) are possible using the
MIPS instruction set, depending on the availability of a register pointer. If
the symbol can not be resolved at assembly time, both sequences are gener-
ated. Obviously, only one of these would remain in the final executable, but
the decision is delayed until the symbol address is resolvable. As the block
size must be determined at the time of instruction generation, the approach
taken has been conservative and the assumption that the larger sequence will
remain is always followed. By the time the symbol is resolved, the blocks are
already formed and their size can not be changed, so if the short sequence
is finally selected the block will be shorter than 16 instructions.
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5 Error Detection Coverage of CFEs

The Block Start EDM can be theoretically characterized, and its error coverage
is 100% as stated in proposition 1. The Block Address EDM requires some
experiments to be carried out, as detailed below.

Proposition 1. The Block Start checking mechanism ensures that all CFEs
targeting an instruction other than the first instruction of a block are detected.

Proof. A signature precedes the first instruction of a block. The watchdog proces-
sor uses the block initial address (being correct or not) as a memory reference
to get the block’s signature, retrieving it from the memory location immediately
preceding this initial address. Given the fact that the bit patterns of signature
words are selected not to match any instruction of the main processor, there
are no instructions of the main processor that may be misinterpreted by the
watchdog processor as a block signature.

So, in the case of a CFE targeting an instruction other than the first instruc-
tion of a block, the contents of the immediately preceding memory location is a
processor instruction and not a signature word. Its bit pattern will not match
any signature type in the watchdog processor, and the mismatch will trigger the
error detection. $%

Run-time calculation errors inside the main processor are not CFEs except if
the incorrect value is an instruction address. Taking a branch or returning from
a procedure, where a target instruction address must be calculated or retrieved
from memory, are examples of such calculations. The opcode signature can not
cover those calculations, as the original instruction is not corrupted.

Assessment of the effectiveness of the Block Address checking mechanism
coupled with the Block Start check can only be performed by means of some
kind of experimentation.

5.1 Experiment Setup

To determine the error detection coverage of EDMs applicable to CFEs a sim-
ulation model of the address calculation process has been created. This model
mimics the performed operations of the actual processor at the execution of
branches. Injecting faults into the model an erroneous target address is obtained
and we are able to determine if the EDMs would detect it.

The simulation model consists of a large array of elements representing the
processor’s memory. Each element represents a block of sequential instructions
with start address, length, signature, type of branch instruction, target address,
etc. The type of branch instruction is important, as the address calculation
process in the MIPS architecture is completely different if the instruction is a
conditional branch or an unconditional jump. The former uses a program counter
relative address and the later an absolute address.

Injecting a fault into the address calculation process in this model is as simple
as randomly picking up the origin block, and simulating the effect of a single bit
error at the branch.
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Comparing the new, erroneous target address with the original one the fault
masking probability is determined. A fault is masked if the calculation performed
produces the same result as if there is no fault.

Using the erroneous address to compute the address guard bits and compar-
ing them to those bits stored into the block signature word, the error detection
probability of the Block Address EDM is obtained. The error detection proba-
bility of the Block Start EDM is obtained performing a search over the memory
model to verify if the erroneous address matches the start of a block or not.

To simulate the effect of a single bit error in the address calculation process,
a single bit of one of the operands or a single bit of the result is altered. Which
value and which bit are chosen randomly. If it is an operand what is modified,
the bit is changed before the target address is calculated. If it is the result, it
is modified after the calculation is performed. Thus, a single bit error in the
operands may propagate to adjacent bit positions to simulate the effect of a
single or multiple bit error.

A synthetic workload is created filling the memory with blocks of random
length, following a uniform distribution between 3 and 17 words. While the
shortest block in the original MIPS architecture is 2 instructions long (the branch
and the instruction at the branch delay slot), this block is augmented with the
block signature in HORUS (a signature has the same length of an instruction,
it is a 32-bit word). The ISIS-modified gcc compiler limits the block length to
accommodate it to the length field of the signature word, so no block larger
than 17 words (16 instructions plus the signature) is allowed in our system.
These length values match the mean length of sequential instructions, claimed
to be between 7 and 8 [11].

Once the memory is filled, for each block the type of instruction at its end and
the target block are chosen randomly. With this information, the address guard
bits are calculated using the same algorithm internally used by the compiler and
stored into the block structure for future reference.

This algorithm starts calculating the address difference between the branch
and the target instructions. This 32-bit value is then compressed using a simple
xor tree to obtain the address guard bits. Although the original proposal of ISIS
reserves 3 bits for such guard, the xor tree is easily expandable to accommodate
larger fields if space is available.

Figure 3 shows a representation of the xor tree for a guard fields of bits
(g2g1g0). Xor-ing alternating bits help the watchdog processor to detect multiple
bit errors, where a single bit error into an operand propagates into a sequence
of bit errors at the calculated result. Note that the 32-bit value calculated above
(V31..0) is padded with zeroes where necessary.

5.2 Results

Several fault injection campaigns have been carried out. Each campaign consists
in the injection of 50,000 errors, and the experiments have been repeated a
number of times with different random seeds to obtain their typical deviation, a
statistical dispersion measurement.
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Fig. 3. XOR tree to obtain checksum bits for a 3-bit address guard

Table 1. Block Start error coverage

Memory size Mean (%) Typ. deviation
64 Kbytes 45.14 0.287
256 Kbytes 50.44 0.339
1 Mbytes 56.53 0.133
2 Mbytes 59.21 0.212

To analyze the impact of the address guard field size, guards from 2 to 6
bits have been used in each experiment. The memory used by the application
program has been changed from 64Kbytes to 2Mbytes. A larger memory size
theoretically increases the possibility of an erroneous branch to target the start
of a block, and the error being undetected by the Block Start check.

Other elements incorporated into the HORUS processor incorporating check-
ing mechanisms to detect CFEs but not explicitly included into the watchdog
processor have not been included into our experiments as they do not charac-
terize the error coverage we’re trying to obtain from the inclusion of the watch-
dog. For example, the Memory Management Unit would trigger an exception
if a branch targets a non-used memory area. Another check used by the main
processor covering the same type of errors is the alignment check; all instructions
fetched from memory must be aligned on a word boundary, or an exception is
triggered. This means the results shown do not corresponds to the system error
detection coverage, but only the coverage of the aforementioned EDMs.

The Table 1 summarizes the error coverage obtained with the Block Start
mechanism alone, for each memory size.

As the results outline, the memory size has the inverse effect of what is the-
oretically expected. A larger memory increases, although moderately, the error
coverage, despite the fact that there are more possibilities to target a block start
erroneously. This can be explained by the fact that, at the same time, a larger
memory means there are more possibilities the erroneous address fall inside the
covered memory area.

The Table 2 shows the error coverage obtained with the Block Address mech-
anism for different address guard bits and memory sizes, and the combined error
coverage is show in Table 3.

Another interesting result from the experiments carried out is the error length
distribution, shown in Table 4. This table shows how a single bit error may prop-



668 F. Rodŕıguez and J.J. Serrano

Table 2. Block Address error coverage

Guard size 2 bits 3 bits 4 bits 5 bits 6 bits
Mean (%) Mean (%) Mean (%) Mean (%) Mean (%)

Memory size Typ. dev Typ. dev Typ. dev Typ. dev Typ. dev
64 Kbytes 96.52 98.31 98.70 99.29 99.37

0.199 0.088 0.094 0.023 0.038
256 Kbytes 96.74 98.42 99.01 99.31 99.37

0.055 0.042 0.042 0.018 0.028
1 Mbytes 96.81 98.48 99.15 99.36 99.40

0.114 0.025 0.056 0.016 0.028
2 Mbytes 96.79 98.49 99.15 99.36 99.40

0.060 0.054 0.020 0.040 0.034

Table 3. Block Start and Block Address combined error coverage

Guard size 2 bits 3 bits 4 bits 5 bits 6 bits
Mean (%) Mean (%) Mean (%) Mean (%) Mean (%)

Memory size Typ. dev Typ. dev Typ. dev Typ. dev Typ. dev
64 Kbytes 97.41 98.70 98.73 99.36 99.37

0.139 0.084 0.092 0.023 0.038
256 Kbytes 97.97 98.68 99.31 99.34 99.37

0.032 0.055 0.018 0.016 0.027
1 Mbytes 97.99 98.75 99.34 99.38 99.40

0.070 0.045 0.044 0.013 0.027
2 Mbytes 98.55 99.27 99.35 99.38 99.94

0.038 0.024 0.026 0.045 0.015

Table 4. Error length distribution

Error length Mean (%) Typ. deviation
0 (masked) 16.45 0.149

1 71.45 0.079
2 5.49 0.075
3 2.73 0.089
4 1.45 0.047
5 0.85 0.022
6 0.50 0.016
7 0.39 0.019
8 0.31 0.022
9 0.30 0.020
10 0.01 0.006

agate into a multiple bit error as the address calculation process takes place.
Although data shown corresponds to one of the experiments only, the other
experiments offer similar results and the data values have been omitted to elim-
inate the redundancy. Error lengths above 10 bits have been also eliminated by
its negligible impact.
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As expected, the error length concentrates around single error bits, but per-
centages of masked errors, and multiple bit errors ranging from 2 to 4 bits are
also noticeable.

6 Conclusions

The checking mechanisms to detect CFEs of the ISIS technique have been dis-
cussed, and its implementation on the HORUS processor has been outlined.
This practical implementation has been complemented by a modified version of
the ubiquitous C-language compiler gcc, to automatically insert signatures into
the application program, lightening the programmer of most system reliability
details.

Although the small number of bits reserved to check branch addresses could
have generated some doubts about the effectiveness of the error detection mech-
anisms, this has been proven in contrary by the injection of faults into a model
of the memory subsystem.

The model represents the contents of each block as a sequence of instructions
preceded by the block’s signature, and the address and length of each block is
computed and stored for future reference. Single-bit errors have been injected
into the model, and the Block Start and Block Address EDMs have shown their
effectiveness detecting CFEs.

Error coverage can be improved using an address guard field larger than the
original 3-bit proposal. This requires reducing other checking fields, the opcode
signature being the most promising alternative. Reducing this field could also
reduce the error coverage of the associated mechanism (not described in this
work) so the reduction requires further analysis.

Another interesting result depicted in this paper is the error length distrib-
ution in the address calculation process. Although single-bit errors are injected
into the model, the arithmetic circuitry used in the address calculation process
when a branch is taken helps the error to propagate as a multiple-bit error at
the computed value. The error length distribution can be applied to other archi-
tectures using absolute or program counter relative addressing modes and would
help future researchers to take into account this propagation when designing
error detection mechanisms.
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Abstract. This paper presents a simple and efficient switched Ethernet 
communication protocol for industrial hard real-time LAN applications. The 
network is founded with end nodes and a switch, and hard real-time 
communication is handled by software added between the Ethernet protocols and 
the TCP/IP suites. We established a virtual link of the source and destination 
node by applying admission control based upon the requested QoS, and manages 
hard real-time traffic to bypass the TCP/IP stacks. This bypassing considerably 
reduces the dwell time in the nodes, and increases the achievable data frame rate. 
After the bypassing, hard real-time traffic schedule is executed according to 
dynamic-priority EDF algorithm.  

The protocol does not need any modifications in the Ethernet hardware and 
coexists with TCP/IP suites, therefore, the LAN with the protocol can be 
connected to any existing Ethernet networks and support both real-time traffic 
and best-effort traffic. Compared to some conventional hard real-time network 
protocols, the proposed one has better real-time performances, and meets the 
requirements of reliability for hard real-time system applications. 

1   Introduction 

With the increasingly demand for real-time industrial control systems, the ability of 
computer networks to handle deadline guaranteed “hard” real-time communication is 
becoming more and more important [1], [2], [3]. High bandwidth and strict deadline 
guarantee are the critical necessary conditions for hard real-time applications [4]. 
Unlike traditional, bus-based CSMA/CD Ethernet, the switched Ethernet is a star-based 
topology which can avoid collision since Data terminal equipment (DTE) connected to 
a switch communicating in full duplex does not have to use the CSMA/CD access 
control [5]. Therefore, end node cooperation is needed only for bandwidth control. In 
addition to this, the full-duplex operation theoretically doubles the bandwidth of the 
network, and the Ethernet transmission rate and communication reliability have 
increased over the years. This together with serious attempts to adapt Ethernet 
hardware to industrial environments, make it an interesting alternative for real-time 
communication. 

Several researches have been done to treat hard real-time communication. 
MIL-STD-1533 [6] is an early development of the industrial protocol. It is reliable 
standard interface for token ring LAN. However, bandwidth is one of the main limiting 
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factors for MIL-STD-1533. Another protocol, RTCC (Real-Time Communication 
Control) [7], is centralized approach that has the disadvantage that failure in the 
controller will lead to the entire network useless, unless some sort of recovery protocol 
is implemented. Other researches using switched Ethernet for hard real-time 
communication is studied in [8], [9], however, these protocols either bring about 
complex network structures or need Ethernet hardware modifications to implement. 

Recently, new schemes have been proposed based on admission control depending 
upon quality of service (QoS) and choice of the packet service discipline. The common 
concept of the schemes is establishment of a Real-time Channel: a simplex, virtual 
connection between source nodes and destination nodes, with a priori guarantees for 
communication performance in switching networks [10], [11], [12].  

To support the QoS demands of applications, both the ATM and the IP community 
have defined service classes that provided per-flow guarantees to applications [13], 
[14]. In order to provide guaranteed services, resources need to be reserved for every 
accepted connection. ATM does this at the data-link layer. For every call it reserves a 
virtual channel over all links on the route/switch from the source to the destination. At 
the network layer, resource reservation can be done using Diffserv [15] or MPLS [16]. 
Applications at this level are classified as best-effort, rate sensitive or delay sensitive, 
therefore, there are no guarantee for strict deadline-sorted real-time communication. 
RSVP [17] can be used to do reservation at the IP layer. RSVP makes resource 
reservations for both unicast and multicast applications, therefore, it is more 
appropriate for multimedia communication in a wide area network such as 
videoconferencing. Because RSVP is based on IP, there is no guarantee of deadline in 
application service lifetime, and have large runtime overhead, therefore, there are few 
applications in industrial control systems. 

Based on the knowledge of above-mentioned QoS architectures and protocols, in our 
work, we studied the industrial and embedded application demands on hard real-time 
communication services, including survey of real-time communication with focus on 
LAN-technology and switched communication. Then we developed and analyzed a 
protocol to schedule and control the hard real-time traffic based on the industrial and 
embedded real-time demands without changing the underlying protocols, while still 
supporting existing upper protocols for soft real-time and/or non-real-time traffic. We 
also establish a way (virtual link) between source nodes and destination nodes by 
applying admission control based upon the requested QoS. However, in our work, a key 
strategy to realize hard real-time communication is, the proposed protocol manages 
hard real-time traffic to bypass the TCP/IP stacks. This makes considerably reduce the 
dwell time in the nodes, and increase the achievable data frame rate by evasion of the 
non-deterministic behavior inherent in the TCP and IP stacks. This is the main point of 
our work. 

An Ethernet LAN using a switch and several end nodes was constructed, and several 
experiments have been performed to evaluate the proposed protocol. Comparing with 
the conventional hard real-time communication protocols, the proposed Ethernet 
protocol has better real-time performances and meets the requirements of reliability for 
hard real-time systems. 

The rest of the paper is organized as follows. In section 2, outline of the network 
architecture is introduced. Section 3 describes the RT channel establishment by 
applying the admission control. Section 4 illustrates the management of hard real-time 
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traffic and best-effort traffic. We elaborate feasibility analysis for RT channel 
establishment and focus on scheduling of real-time frames in section 5. In section 6, 
performance evaluation of the proposed protocol is presented. The paper is concluded in 
section 7. 

2   Network Architecture 

We applied a full-duplex switched Ethernet LAN which is connected to existing 
Internet. A switched Ethernet provides some key benefits over traditional Ethernet, 
such as full duplex and flow control. Therefore, switches enable flexible network 
configuration of multiple and simultaneous links between various ports. 

In our work, a key strategy to realize hard real-time communication is bypassing of 
TCP/IP suites. In order to manage this bypass, both the switch and the end nodes have 
software --- real-time layer (RT layer) added between the Ethernet protocols and the 
TCP/IP suite in the OSI reference model. All nodes are connected to the switch and 
nodes can communicate mutually on the logical real-time channels (RT channel), it is a 
virtual connection between two nodes of the system respectively (see Fig. 1).  

Fig. 1. Network architecture with RT channels 

A node can either be real-time node or non real-time node depending on which level 
QoS is required. Non-real-time node (without RT layer added) can coexist in the 
network without disturbing the real-time traffic. MAC function, frame buffering and 
the concentrated transmission arbitration is included in the switch. Therefore, switch 
has the overall responsibility both for set-up of RT channels and for online control of 
packets passing through the switch. The RT layer do-nothing to non real-time frames 
and makes them go through the ordinary circuit with TCP/IP suites.  

3   RT Channel Establishment  

Before the real-time traffic is transmitted, the RT channel should be established. The 
establishment of RT channel is including request and recognition communication after 
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the source nodes, destination nodes and switch have agreement with channel 
establishment. As new real-time requests (channel establishment) are made, they goes 
through an admission control module that determines if there is sufficient network 
bandwidth available to satisfy the request of the node. Admission control is the problem 
of deciding which requests to accept and which to reject based upon the supported QoS, 
with the goal of maximizing the total profit accrued by the accepted requests. In other 
words, admission control is the problem of finding a feasible solution with maximum 
profit. 

If the network establishes a transmission request, it first decides on a path from the 
sending node to the receiving node of that transmission, through which the transmission 
is being routed. Then it allocates the requested amount of bandwidth and/or buffer space 
on all links along that path during the time period in which the transmission is active. 
The allocated resources are released when the connection is completed. 

Fig. 2. Real-Time channel establishment 

Fig. 2 describes the establishment of an RT channel. When a node wants to send hard 
real-time frames, it directly accesses the RT layer. The RT layer then sends “RT 
channel establishment request” to the RT traffic management in the switch. The switch 
then evaluates the feasibility of traffic schedule of a path from the sending node to the 
receiving node of that transmission, by applying the admission control. If the schedule 
is feasible, the switch responses with the network schedule parameters to the sending 
node. Otherwise, the switch sends out a set of recommended control parameters to the 
sending node. These control parameters are suggested based on the status of switch 
queue and the active queue control law.  

4   Traffic Management 

After RT channel is established, only real-time data traffic from the end node bypasses 
the TCP/IP stacks. An RT channel should cross two physical links according to the RT 
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layer: one from the source node to the switch, and the other from the switch to the 
destination node (uploads and downloads, respectively). The RT channel is required to 
provide real-time guarantees for both the upload and the download. 

Besides hard real-time traffic, our Ethernet network protocol should allow for 
best-effort traffic which does not affect the transmission of hard real-time packets. 
Namely, best-effort traffic (non real-time or soft real-time traffic) come from 
best-effort protocols (HTTP, SMTP, FTP, etc.) uses the services of the TCP/IP protocol 
suites and put in an FCFS-sorted (First Come First Serve) queue in the RT layer. In 
order to achieve this, best-effort traffic is allowed when no hard real-time packets want 
to transmit.  

When a hard real-time packet becomes ready to transmit again, the RT channel 
management immediately interrupts the best-effort traffic, and goes to the 
corresponding node so that the hard real-time traffic may start. According to the RT 
layer, the last node visited for best-effort traffic should be remembered, so the next 
round of best-effort traffic packet can start off at that node. 

Because there are two different output queues for each port on the switch, “frame 
recognizing” is necessary. On that account, the switch has two MAC addresses: one is 
for control traffic (e.g., RT channel request frames); and the other is for hard real-time 
traffic over RT channels. And then, the switch will be able to recognize the different 
kinds of frames: control frames, real-time data frames and best-effort data frames that 
come from TCP/IP stacks.  

5   Scheduling of Hard Real-Time Frames 

In our star-like network architecture, every end node is connected with a private virtual 
link to a switch, so that there is a private traffic link for each direction. But congestion 
may occur when one node is suddenly receiving a lot of packets from the other nodes. 
Current switches do not provide any guarantees as to which packets will be sent first. 
We solved this by providing a switch with bandwidth reservation capabilities inside the 
switch, and we used Earliest Deadline First (EDF) scheduling [18] to make decisions as 
to which packets are forwarded first. This provides guarantees for both bit rates and 
strict delivery deadlines. 

First, we check the feasibility of the real-time traffic according to calculate the total 
utilization of all frames. RT channel of the i-th task is characterized by {Tpd,i, Ci, Td,i}; 
where Tpd,i is period of the data, Ci is time required to complete the execution of the task 
per the period, Td,i is the relative deadline used for the end-to-end EDF scheduling. 

The task period Tpd,i can be described as:   

, 1, 2,pd i n i n i ctT T T T= + + ,                                                       (1) 

where Tn1,i and Tn2,i are the deadlines of each real-time frame for upload and download, 
respectively; and Tct is the delay introduced by the switch. In a fully switched Ethernet 
there is only one equipment (end node) per each switch port. In case that wire-speed 
full-duplex switches are used, the end-to-end delay can be minimized by decreasing the 
message buffering.  
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According to EDF theory, the total utilization of all frames is then calculated as: 

,

i

i pd i

C
U

T
= .    (2) 

Suppose , ,pd i d iT T≤  for simplicity, it is well known that EDF scheduling is feasible 

if and only if 1U ≤ . 
If the test for task i succeed and real-time channel is established, hard real-time data 

frame bypasses the TCP/IP stacks and put in a deadline-sorted queue scheduled by RT 
layer in the switch and end nodes according to the EDF theory.  

The processes of hard real-time traffic and best-effort traffic transmission is shown 
in Fig. 3, and is summarized as follows: 

1. When the switch received a packet from an end-node, it recognizes which 
application the packet is come from (real-time or best-effort).  

2. If the packet come from the real-time application, then the RT layer interrupt 
transmitting best-effort traffic immediately so that the hard real-time traffic may start. 
And the information for last transmitted queue of the best-effort traffic should be stored 
so that the next round of best-effort traffic can start off at that queue. 

3-A. The switch will be able to recognize the different kinds of frames: control 
frames (e.g., RT channel request frames) and real-time data frames. If the received 
packet is the control frame, then the RT layer must go through an admission control 
module that determines if there is sufficient network resource (bandwidth and 
guaranteed time limit) available to satisfy the request of the node. 

4-A. If a request is admitted, the switch answers to the requesting nodes with a set of 
network schedule parameters, and make RT channel virtual connection. And then allocates 
the requested amount of bandwidth and/or buffer space on this connection link.  

4’-A. Otherwise, the switch sends out a set of recommended control parameters to 
the sending node. 

5-B. After RT channel is established, hard real-time data is delivered through the 
circuit and bypassing the TCP/IP stacks by reading MAC addresses in response 
parameter.  

6-B. The RT layer makes the switch recalculate the Ethernet cyclic redundancy 
check (CRC) of an incoming hard real-time frame before putting it to the correct 
deadline-sorted output queue. This will also be useful to increase the reliability of the 
hard real-time data frames.  

7-B. Real-time data passed the above check is then put in a deadline-sorted queue 
scheduled by RT layer in the switch and end-nodes according to the EDF theory, and then,  

8-B. Forward the deadline-sorted data to the destination node. The allocated 
resources are released when the connection is completed. 

3-C. On the other hand, by carrying the final destination MAC address in the 
Ethernet header when leaving from the source node, non or soft real-time data is 
delivered through the circuit including the TCP/IP stacks in an FCFS-sorted queue, and 
transmit the traffics at the idle time of the schedule.  

4-C. If a best-effort sender needs to send a large amount of data (for example, a long 
packet), it tries to make an additional cycling time reservation and transmit its data 
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immediately after reservation. If the time is over and the long packet did not finished 
yet, it tries to make a reservation again. 

Fig. 3. Processes of traffic transmission 
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6   Performance Evaluation 

In order to evaluate our work, we made a LAN with a full-duplex switched Ethernet and 
end-nodes, by using desktop computer with AMD-K7(tm) Processor 700MHz and several 
embedded Ethernet development boards which is produced by YDK Technologies Inc. that 
provides a hardware platform based on Altera® ACEXTM devices (see Fig. 4).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. LAN with full-duplex switched Ethernet 

We use a 5-ports Ethernet switch with full-duplex links at 100Mbps. The size of data 
packet is from 64 bytes to 1538 bytes. There are no modifications in the Ethernet 
hardware on the NIC (Network Interface Card). Ethernet development board is linked 
with PC via the Ethernet switch. In order to establish interaction and communication 
with the Ethernet development board, we downloaded the software (RT layer) to Flash 
Memory on the board. When download the software to the flash memory, the system 
module pins are logically connected to pins on the ACEX device. The external physical 
pins on the ACEX device are in turn connected to other hardware components on the 
board, allowing the Nios embedded processor to interface with SRAM, FROM, LEDs, 
LCDs, buttons and switch. 

Below we discuss about the transmission latency of the real-time frame in 
worst-case situation. When all RT-channel starts simultaneously, or all the messages 
that use all the capability allowances of the RT channel, RT channel equipped with the 
longest deadline will be scheduled at last so that it may have the worst-case latency. 
Here for all RT channels, the maximum latency is characterized by: 
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where Tn1,i is the latency from source nodes to switch, Tn2,i is the latency from switch to 
destination nodes, and Tt is the total latency of the switch. 

Besides utilization and worst-case latency, another important performance is a 
runtime overhead: Ri defined as: 

,

,

8 /pd i i

i

pd i

T L B
R

T

− ×
= ,     (4) 

where Li is the length of data in a request frame, Li × 8 is the number of bits in the frame;  
Tpd, i represents the period duration from the startup to the end of the frame, and B 
represents the Ethernet bandwidth.  

Utilization, Data frame transmission latency and the frame runtime overhead can be 
obtained by implementing the proposed protocol to the LAN. Fig. 5 illustrates the 
utilization on real-time data frame.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Utilization on real-time data frame 

From the figure we can learn that the trend of utilization is increasing while the 
traffic increases, until arriving at the peak value that is more than 90%. Sudden 
decreases happen on the curve sometimes, which is caused by some short frames 
having pad field whose utilization are lower than longer frames. The utilization curve is 
always smooth, because we assume the sufficient resources (bandwidth and time 
specification) have been obtained in our work, when the RT channel is established. 
Under this circumstance, there should be no overload exists in the real-time channel. 
The result shows that the deadlines have been met for all data because utilization of all 
data frames is less than 100% using EDF scheduling. Dynamic priority scheduling with 
the EDF algorithm has a distinct advantage over fixed priority scheduling: the 
schedulable bound for EDF is 100% for all task sets [19]. This means that we can fully 
utilize the computing power of the CPU. Embedded systems are in general fully loaded, 
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as they attempt to get as close to 100% utilization as possible while still maintaining the 
necessary predictability. 

To the best of our knowledge, except a few implementations of hard real-time 
communication protocols on Ethernet, most of the protocols are generally soft 
real-time, which means that there are few protocols provides guarantees for both bit 
rate and strict delivery deadlines, so that it is difficult to compare them with the 
proposed hard real-time protocol. Therefore, we made performance comparison of the 
proposed protocol only with the hard real-time communication protocols: 
MIL-STD-1553B protocol and RTCC protocol. Fig. 6 shows the comparison of the 
data frame transmission latency of these three kinds of hard real-time communication 
protocols.  
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Fig. 6. Transmission latency of data frame 

Even for the Ethernet frames that have the data field maximized (1538 bytes in IEEE 
802.3 standard), the latency of the proposed protocol is about 620 microseconds. This 
latency is quite short in a LAN with a full-duplex switched Ethernet at 100 Mbps, and 
meets the demands of hard real-time communication for industrial distributed control 
systems. Runtime overhead of data frames are demonstrated in Fig. 7. The figure shows 
that the runtime overhead of the proposed protocol is higher than the other hard real-time 
supported protocols at the small-sized data frame. However, as the data frame size 
become larger (from about 900 bytes), the proposed protocol has better runtime overhead 
than the other protocols. In both experiments, only MIL-STD-1553B protocol used 
1Mbps Ethernet because it is the nominal speed of the protocol. 

Furthermore, in order to evaluate the time effectiveness of hard real-time bypassing 
the TCP/IP stack, we made experiments with ordinary UDP/IP and TCP/IP protocols 
comparing with the proposed protocol (see Fig. 8). The result shows that by using the 
proposed protocol to bypass the TCP/IP stacks can reduce 32% of the time comparing 
with UDP/IP protocol, and more than 50% of the time comparing with TCP/IP 
protocol even if the proposed protocol needs RT channel establishment and EDF 
scheduling. 
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Fig. 7. Runtime overhead of data frame 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Transmission latency comparison 

7   Conclusion 

In this paper, we have presented a simple and efficient switched Ethernet communication 
protocol for industrial hard real-time applications. The network is set up with nodes and a 
switch; both switch and end nodes have an RT layer added to support hard real-time 
traffic. The proposed protocol establishes a virtual link between source nodes and 
destination nodes by applying admission control based upon the requested QoS. Hard 
real-time traffic from the end-node bypasses the TCP/IP stacks and thus considerably 
speed up real-time communication. Real-time traffic scheduling is performed according 
to dynamic-priority EDF algorithm, therefore it is flexible and efficient.  

In the proposed work, there are no modifications in the Ethernet hardware on the 
NIC. This allows connecting the Ethernet LAN to existing Internet networks. Thus, it 
can be adopted in industrial hard real-time applications such as embedded systems, 
distributed control systems and robotics. 

We have constructed a simple Ethernet LAN with the proposed protocol and 
evaluated the protocol. Through the comparison with some conventional hard real-time 
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network protocols, we have shown that the proposed protocol has better real-time 
performances, and meets the requirements of reliability for hard real-time systems. 

One of our further works is to implement the proposed protocol in the multi-layer, 
many switches real-time communication systems. 
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Integer Factorization by a Parallel GNFS Algorithm for
Public Key Cryptosystems�
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Abstract. RSA is a very popular public key cryptosystem for encryption and
authentication. The security of RSA mainly relies on the difficulty of factoring
large integers. Recent advancement in factoring algorithms have made it possible
to factor integers with 150-digits or more. The General Number Field Sieve al-
gorithm (GNFS) is currently the best known method for factoring large numbers
over 110 digits. Although the GNFS algorithm is efficient, it still takes a long
time to factor a large integer such as an integer with 150-digits or larger. In this
paper, we present a parallel GNFS implementation on a SUN-cluster. It can suc-
cessfully factor integers up to 116 digits very quickly. The experimental results
have demonstrated that the algorithm achieves good speedup and can be used for
further larger integer factorization.

1 Introduction

RSA [11] is a very popular public-key encryption and decryption algorithm. The se-
curity of this algorithm relies on the difficulty of factoring large integers. So far, peo-
ple have developed many good, fast factoring algorithms. Examples are the Quadratic
Sieve (QS) algorithm [4], the Elliptic Curve (ECM) algorithm [9], the Special Num-
ber Field Sieve (SNFS) algorithm [2] and the General Number Field Sieve (GNFS)
algorithm [3].

The General Number Field Sieve (GNFS) algorithm [3, 5, 7] is derived from the
Number Fields Sieve (NFS) algorithm, developed by A. K. Lenstra, H. W. Lenstra, M.
S. Manasse and J. M. Pollard [6]. It is the fastest known algorithm for integer factoriza-
tion. Generally, it is used to factor integer larger than 110 digits.

Sequential GNFS algorithm has been implemented by many researchers. This paper
presents an implementation of parallel GNFS algorithm on a SUN cluster. The imple-
mentation is based on the sequential code developed by C. Monico [3].

This chapter is organized as follows. We will introduce the GNFS algorithm in sec-
tion 2. Then we will introduce the detailed parallel algorithm, followed by running
results in section 3. The performance analysis will be described in section 4 and the
conclusions will be given in section 5.
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2 The General Number Field Sieve Algorithm

GNFS is based on the idea of the congruence of squares algorithm [1].
Suppose we are going to factor an integer n (n has two prime factors p and q). As-

sume there are two integers s and r. Both s2 and r2 are perfect squares and satisfy the
constraint s2 ≡ r2 (mod n). Since n = pq, the following conditions hold [7]:

pq|(s2-r2) ⇒pq|(s-r)(s+r)

⇒p|(s-r)(s+r) and q|(s-r)(s+r)

From the number theory we know that, if c|ab and gcd(b,c) = 1, then c|a. So p, q,
r and s must satisfy p|(s-r) or p|(s+r) and q|(s-r) or q|(s+r). Fig. 1 is a well known
table (quoted from [7]) in the area of integer factorization. It shows that there is 2/3
possibilities to factor n by computing the gcd(n, s+r) and gcd(n, s-r).

The question is: how can we find a congruence of squares? Searching directly for a
congruence of squares is certainly inefficient. As many other popular factoring meth-
ods, GNFS utilizes the following scheme. It first sieves for relations involving arbitrary
powers of numbers from sets called ”factor base”. Then after collecting enough such
relations, it finds a relation whose powers are all even by solving equations defined by
a huge matrix. A congruence of squares can then be easily constructed.

There are five major steps (see Fig. 2) in GNFS described in [7].

Step 1: Select Parameters. The theory of GNFS is very sophisticated. The trick is to
express the number being factored as a polynomial with small coefficients.

n = admd+ad−1md−1+......+a0. (1)

In order to do this, we need to set up two parameters: a polynomial f(x):R→R with
integer coefficients and an integer m∈N. These two parameters satisfy the equation f(m)
≡ 0 (mod n).

Before we set up f(x) and m, we can find the degree d of the polynomial. Table 1 give
us some hint of how to choose d [5]. After choosing d, we can choose m to be around
d
√

n.

Fig. 1. Possibilities for p and q dividing s+r and s-r
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Input n output n = p*q

Two parameters m and f(x),
such that f(m)=n

Rational Factor base
R

Algebraic Factor base
A

Quadratic Factor base
Q

(a,b) pairs (relations)  such that 
a+bm smooth over R, a+b smooth over A Two perfect squares

s2 and r2

gcd(n,x+y) and gcd(n,x-y)
give 2/3 chance to factor n

1: Select Parameters

2: Set up factor bases

4:Build linear System 
and Solve the resulted
equations

3:Sieve

5:Compute factors

GNFS

Fig. 2. The 5 major steps of the GNFS algorithm

Table 1. Choosing degree of f(x)

Digits of n < 50 50 - 80 50 - 80 < 110
Degree 2 3 4 5

Step 2: Set Up Factor Bases. After all parameters have been set up, there are three
factor bases to be initialized, namely: rational factor base(R), algebraic factor base(A)
and quadratic character base(Q). It is easy to verify that each pair (r,p) in A satisfies f(r)
≡ 0 (mod p). And each (q, s) in Q satisfies f(s) ≡ 0 (mod q) and q not in A.

Step 3: Sieve. The purpose of sieving is to find pairs (a,b) such that a+bm is R-smooth
and a+bθ is A-smooth [5]. Recall that θ is a root of f(m).

The following shows how the sieving is done.

1. First we set the range of a and b. Let a change from -N and N, b change from -C
and C (N and C are integers). For each b, create two arrays: one is set up for a+bm
and another is set up for a+bθ. Fig. 3 shows the sieve array [7].

2. For each pi ∈ R, pi will divide a+bm if and only if a = -bm + kpi. We check every
a for a certain b, mark each value of a that satisfies a = -bm + kpi and make note
of the factor of a + bm in the sieve array. After we check all as for certain b, we
increase b by 1, then repeat the checking.

3. For each (p,r)∈A, (p,r) divides a+bθ if and only if a ≡ -br (mod p). We check every
a for a certain b, if a+bθ can be divided by (p,r), we will make a note for this pair.
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−N + bθ

(−N + 1) + θ

.

.

.

(N − 1) + bθ

N + bθ

−N + bm

(−N + 1) + m

.

.

.

(N − 1) + bm

N + bm

Fig. 3. Structure sieve arrays

Step 4: Build Linear System and Find Perfect Squares. Step 3 already results in a
set U: U = {(a,b)|a + bm and a + bθ are smooth over R and A, respectively}. In step 4,
we need to select a subset of these (a, b) pairs to form two perfect squares. That is, we
need to find a set V , such that

s2 =
∏

(a,b)∈V

(a + bm), (2)

and
r2 =

∏
(a,b)∈V

(a + bθ). (3)

Let the rational factor base R be {t1, t2, . . . , tk}. Let the algebraic factor base A be
{r1, p1), (r2, p2), . . . (rl, pl)} and quadratic character base Q be {(s1, q1), (s2, q2), . . . ,-
(su, qu)}. In order to find two perfect squares, we need to verify the following four con-
ditions:

1. a + bm must be positive.
2. For

∏
(a,b)∈V (a+bm) = te1

1 te2
2 . . . tek

k to be a perfect square, ei must be even. That
is ei ≡ 0 (mod 2).

3. For
∏

(a,b)∈V (a + bθ)) = ((r1, p1)f1(r2, p2)f2 . . . (rl, pl)fl to be a perfect square,
fi must be even. That is fi ≡ 0 (mod 2).

4. Furthermore, by Theorem 6 of [7], the following must also hold for
∏

(a,b)∈V (a +

bθ)) to be a perfect square: for any (s, q) ∈ Q,
∏

(a,b)∈V
(a+bs)

q = 1.

We will build a matrix to store the verification information for each pair found in
step 3. Each row vector corresponds to one pair. A row vector has 1+k+l+u entries.
The element of the matrix is either 0 or 1. Next, we describe how to construct the
1+k+l+u entries for a pair (aj , bj).

1. the first entry records the sign of a + bm; (see condition 1).
2. the next k entries record ei mod 2 where ei is the exponent for ti in R; (see condi-

tion 2).
3. the following l entries record fi mod 2 where fi is the exponent for (ri, pi) in A

(see condition 3).
4. the final u entries record

∏
(aj ,bj)∈V

(aj+bjs)
q for each (s, q) ∈ Q (see condition 4).
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After we build up M, we can solve the equation

MT

⎛
⎜⎜⎜⎜⎝

X1
X2
:
:

Xy

⎞
⎟⎟⎟⎟⎠≡ 0 (mod 2), (4)

for [X1, X2,.....,Xy]T. One example of the result could be :

[ 0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0]T .

0 means not select and 1 means select. All the entries that have value 1 will be selected
to produce perfect squares. Note that this equation has more than one solution because
M has more rows then columns.

Next, we show the vector representation for pair (119,11) in our example.

[0 (sign of a+bm),

0,0,1,0,0,0,0,0,1,0 (exponents on the factors of a+bm),

0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0 (exponents on the factors of a+bθ),

1,1,0,0,0,0 (for use with Q)].

Step 5: Compute Factors. As we said before, we have 2/3 possibilities to factor n if
we get two perfect squares. So (gcd(s+r),n) and (gcd(s-yr),n) will give us the factors
of n.

3 Parallel Implementation Details

3.1 Hardware and Software Programming Environment

Our parallel GNFS program is implemented on a Sun cluster. It consists of 2 dual
processor master nodes (Sun V65) with hyper-threading enabled and 59 dual processor
slaves nodes (Sun V60). Each node in the cluster has 2x 3.0 GHz Intel Xeon processors
and 3 GB registered DDR-266 ECC SDRAM.

The parallel code is based on the serial code developed by C. Monico in [3]. The
program is written in ANSI C and compiled by GNU C compiler (gcc). We adopts MPI
as our parallel programming library because it has s rich set of communication routines
and is suited for applications implemented on massively parallel processors. The foun-
dation of MPI is a group of functions that can be called by program to achieve paral-
lelism. The message passing functions can be used to transmit data between processors.
MPICH1[10] is installed for MPI library. We also use a free library, GMP, for arbitrary
precision arithmetic, operating on signed integers, rational numbers, and floating point
numbers) 4.x is required to compile and run the program [12].
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Table 2. GNFS integer factorization records

Digits Sieve Relation Block Lanczos Square Root Total Sieve/Total
30 26.5s 3.7s 0.1s 2.0s 32.3s 82%
39 15.0s 3.1s 0.1s 1.5s 19.7s 76.1%
45 184.3s 45.9s 4.1s 15.7 250s 74%
51 222.3s 63.9s 7.3s 18 311.5s 71.4%
61 3620.7s 591.7s 32.6s 57.4s 4320.4s 84%
76 26477.9s 8563.5s 1226.3s 904.2s 37171.9s 71.2%
98 17300.6s 2716.8s 504.6s 268.9s 20790.9s 83.2%

3.2 Timing Analysis of GNFS Steps

Before we start the parallel implementation, we perform a timing analysis of the serial
code. Table 2 gives the timing results for the steps in GNFS for different chosen n.

From the table we can see that, sieving is the most time consuming step of GNFS
algorithm. It takes 70%∼80% of total execution time. The efficiency of the GNFS al-
gorithm will be improved dramatically if we are able to improve sieving part.

3.3 Serial Sieving

Algorithm 1 gives the details of serial sieving. As we can see, the sieving is done in a
two layer for loop. In the outer loop, b ranges from Min b to Max b. In the inner loop,
b is fixed and a changes from -N to N. This process is very time consuming because
the range of a and b are usually very large. Generally speaking, the time complexity
of sieving increases when the digit of n increases. Table 3 gives the sieve time for
some n.

Algorithm 1. Sequential sieving
1: b0 = Min b;
2: b1 = Max b;
3: a1 = −N ;
4: a2 = N ;
5: for (b=b0;b<b1;b++) do
6: for (a=a1;a<a2;a++) do
7: if Smooth R(a,b) and Smooth A(a,b) then
8: save((a,b));
9: end if

10: end for
11: end for

3.4 Parallel Sieving

Since there are no relations between the generations of different (a,b) pairs, the sieving
stage of GNFS is ideally suited for parallel implementation. The parallel sieving algo-
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Table 3. Sieve time for different n

Digits of n Range of b Range of a Time complexity
39 300 400000 O(108)
45 500 200000 O(108)
61 5000 1000000 O(109)
98 10000 2400000 O(1010)

rithm is shown in Algorithm 2. The parallel GNFS program uses one master node and
a number of slave nodes. There are no communications between slaves in this program.
The slave node only communicates with master node. Each slave node has a range
partition for bs and generate relations within this b range.

Algorithm 2. Parallel sieving
1: MPI Init();
2: MPIComm size();
3: MPI Comm rank()();
4: b0 = Min b; b1 = Max b;
5: a1 = −N ; a2 = N ;
6: num of bs = ((b1 − b0)/p)
7: MPI Bcast(num of bs);
8: for (b=(taskid*num of bs+b0);b<(b0+(taskid+1)*num of bs); b++) do
9: for (a=a1;a<a2;a++) do

10: if Smooth R(a, b) and Smooth A(a,b) then
11: if (master) then
12: MPI Recv((a,b));
13: save((a,b));
14: else
15: MPI Send((a,b));
16: end if
17: end if
18: end for
19: end for

4 Performance Evaluation

4.1 Test Cases

We have eight test cases. Each of them uses a different n and runs on different number
of processors. All test cases and number of processors are listed in Table 4. The eight
composite numbers and their factor results can be found in the appendix.

4.2 Timing Results

Table 5 shows the sequential sieve time for each test case. Fig. 4 gives the parallel sieve
time for the test cases using different number of processors. We put these test cases in
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Table 4. Test cases and number of processors

Test case Number of processes using
tst10030 1, 2, 4, 8, 16, 32

F739 1, 2, 4, 8, 16, 32
tst15045 1, 2, 4, 8, 16, 32
briggs51 1, 2, 4, 8, 16, 32
tst20061 1, 2, 4, 8, 16, 32
tst25076 1, 2, 4, 8, 16, 32
tstS198 1, 2, 4, 8, 16, 32
tstS2116 1, 2, 4, 8, 16, 32

Table 5. Total sieve time for each test case

Test case tst10030 F739 briggs51 tst20061 tst25076 tstS198 tstS2116

Total sieve time 26.5s 184.3s 222.3s 3620.7s 26477.9s 17300.6s 193864.3s

three sub-figures for readability. From these three figures we can see that the total sieve
time for large size of n is much longer than small size of n. Fig. 5 gives the parallel
execution time for the test cases using different number of processors. From the figure
we can see that these curves have the same shape as the curves of parallel sieve time.
This is because sieve time takes most of percentage of total execution time (70%∼80%).

4.3 Speed-Up

Theoretically, suppose we have n bs and n as, and the sieve time complexity for serial
code is O(n2). If we have p processors and each processor takes care of n/p bs, then the
expected sieve time complexity will be O(n2/p). The speedups for the test cases using
different number of processors are presented in Fig. 6.

4.4 Sieving Efficiency

The sieving efficiency is the sieving speed up divided by the number of processors.
Fig. 7 gives the sieving efficiency for each test case.

4.5 Discussions

The parallel GNFS achieves good speedup. However, it is still possible to improve
the algorithm. Next, we analyze the causes accounting for inefficiency for the current
program and possible improvements.

– First, there are many communications between the master nodes and the slaves.
Each slave node need to send the sieving results back to the master node for each
b. The sieving results include three messages. So the total message passes back to
the master node are 3(b1-b0)(p-1)/p. The communications time increases when the
size of n increases.
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Fig. 4. Parallel sieve time
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Fig. 6. Speed-ups

0 10 20 30 40
Number of processes

0.4

0.6

0.8

1

1.2

1.4

S
ie

vi
ng

 e
ffi

ci
en

cy

tst100−30
tst150−45
briggs−51
tst200−61
tst250−76
tstS1−98
tstS2−116

Fig. 7. Sieving efficiency

– Another cause for inefficiency lies in synchronization. Each processor does siev-
ing for different pairs. The sieving time for each processor might be different. The
master node can not start the next sieving until all the slave nodes finish their siev-
ing. Processor idle time may occur due to this. Further improvements on better load
balance will be investigated in the future work.

Currently, it is difficult to factor integers larger than 116 digits in our cluster. One of
the reasons is the memory requirement. In order to factor larger composite numbers, we
must sieve a large number of relations. Even for numbers less than 116 digits, we may
end up with a linear system whose coefficient matrix has 100,000 entries. To tackle this
problem, we need to select good parameters as the parameter selections greatly affect
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the efficiency of the GNFS algorithm. One hint for for polynomial selection is to reduce
the size of the coefficients for f(x) as small coefficients tend to give small

∏
(ai+biθ)

[8]. We will explore such possibility in our future work.
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Appendix: The Test Cases and the Results

The composite numbers in the eight test cases and their factors are shown in the follow-
ing table.

Test CasesResults
tst100-30 727563736353655223147641208603=

978204944528897•743774339337499
tst150-45 799356282580692644127991443712991753990450969=

32823111293257851893153•24353458617583497303673
briggs-51 556158012756522140970101270050308458769458529626977=

449818591141•1236405128000120870775846228354119184397
tst200-61 1241445153765162090376032461564730757085137334450817128010073=

1127192007137697372923951166979•1101360855918052649813406915187
tst250-76 367504189473903940553325919721154884614311010915232376166537750

5538520830273= 69119855780815625390997974542224894323•
53169119831396634916152282437374262651

tstS1-98 4811267562937276780452421970753006246225115038284348
1915847109420993527839223554575368891438718253=
2255991822360879425583919003791503•
21326617921435191345914805886616773334390107640406173073760517251

tstS2-116 1788054896117921607424946722399582409295035430628227125858
4504325872840689417142416998673880521619866825206286597741=
3020063095859586052734248627690201527294469•
5920587879668110479956486319854404483179939902172304
914828610258288310089
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Abstract. We consider broadcast protocols in wireless networks that have lim-
ited energy and computation resources. The well-known algorithm, DBIP (Di-
rectional Broadcast Incremental Power), which exploits “Incremental Power” 
philosophy for wireless networks with directional antenna to construct broad-
casting tree, provides very good results in terms of energy savings. Unfortu-
nately, its computation is centralized, as the source node needs to know the en-
tire topology of the network. Mobility of nodes or frequent changes in the node 
activity status (from “active” to “passive” and vice-versa) may cause global 
changes in topology which must be propagated throughout the network for any 
centralized solution. This may results in extreme and un-acceptable communi-
cation overhead. In this paper, we propose and evaluate a localized energy-
efficient broadcast protocol, Localized Directional Broadcast Incremental 
Power Protocol (LDBIP), which employs distributed location information and 
computation to construct broadcast trees. In the proposed method, a source node 
sets up spanning tree with its local neighborhood position information and in-
cludes certain hops relay information in packet. Directional antennas are used 
for transmitting broadcast packet, and the transmission power is adjusted for 
each transmission to the minimal necessary for reaching the particular neighbor. 
Relay nodes will consider relay instructions received to compute their own local 
neighborhood spanning tree and then rebroadcasts. Experimental results verify 
that this new protocol shows similar performance with DBIP in static wireless 
networks, and better performance in mobile scenarios. 

1   Introduction 

In wireless networks which have limited resources such as sensor network, communi-
cation ranges are limited, thus many nodes must participate to the broadcast in order 
to have the whole network covered. The most important design criterion is energy and 
computation conservation, as nodes have limited resources. All the protocols that 
have been proposed for broadcast can be classified into two kinds of solutions: cen-
tralized and localized. Centralized solutions mean that each node should keep global 
network information and global topology. There exist several centralized  
energy-aware broadcast algorithms for the construction of broadcast trees with  
                                                           
*  Corresponding author. 
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omni-directional antennas in the literature. In addition, the well-known energy-aware 
algorithm of Broadcast Incremental Power (BIP) [1] is “node-based” algorithm and 
exploits the “wireless broadcast advantage” property associated with omni-directional 
antennas, namely the capability for a node to reach several neighbors by using a 
transmission power level sufficient to reach the most distant one. Applying the incre-
mental power philosophy to network with directional antennas, the Directional 
Broadcast Incremental Power (DBIP) algorithm [2] has very good performance in 
energy saving. The problem of centralized approach is that mobility of nodes or fre-
quent changes in the node activity status (from “active” to “passive” and vice-versa) 
may cause global changes in topology which must be propagated throughout the net-
work for any centralized solution. This may results in extreme and un-acceptable 
communication overhead for networks. Hence, because of the limited resources of 
nodes, it is ideal that each node can decide on its own behavior based only on the 
information from nodes within a constant hop distance. Such distributed algorithms 
and protocols are called localized [3-7].  

In this paper, we propose and implement a localized energy-efficient broadcast 
protocol which is based on the “Incremental Power” philosophy for wireless networks 
with Directional Antenna, Localized Directional Broadcast Incremental Power Proto-
col (LDBIP). Our localized protocol only uses localized and distributed location in-
formation and computing to construct broadcast tree. The use of directional antennas 
can reduce the beam width angle to diffuse the radio transmission to one direction and 
thus provides energy savings and interference reduction. In our algorithm, source 
node sets up spanning tree with only position information of its neighbors within 
certain hops. Directional antennas are used for transmitting broadcast packet, and the 
transmission power is adjusted for each transmission to the minimal necessary for 
reaching the particular neighbor. Relay node that receives broadcast packet will con-
sider relay instructions included in received packet to compute its own localized 
spanning tree and do the same as source node. We compare the performance of our 
protocol (LDBIP) to those of BIP, DBIP and LBIP [8]. Experimental results show that 
in static wireless networks, this new protocol has better performance compared to BIP 
and LBIP, and similar performance to DBIP, and that in mobile wireless networks, 
LDBIP has better performance even compared to DBIP.  

The remainder of the paper is organized as follows: in Section 2, we introduce our 
system model including the impact of the use of directional antennas on energy con-
sumption; Section 3 presents our localized energy-aware algorithm for broadcast tree 
construction, which exploits the properties of directional antennas; in Section 4, we 
compare the performance of our protocol (LDBIP) to those of BIP, DBIP and LBIP; 
in Section 5, we present our conclusions and future work on this research. 

2   System Model 

2.1   Network Model 

We assume a wireless network consists of N nodes, which are randomly distributed 
over a specified region. Any node is permitted to initiate broadcast. Broadcast re-
quests are generated randomly at network nodes. In a broadcasting task, a message is 
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to be sent from source node to all the other ones in the network. Some nodes may be 
used as relays either to provide connectivity to all members in network or to reduce 
overall energy consumption. The set of nodes and the links of nodes support con-
structing a broadcast tree. Here, the links are incidental and their existence depends on 
the transmission power of each node. Thus, it is a set of nodes (rather than links) that 
are the fundamental units in constructing the tree. The connectivity of the network 
depends on the transmission power and antenna pattern. We assume that each node 
can choose its RF power level R Fp , such as

m axm in
RFp p p≤ ≤ . The nodes in broad-

cast tree can adjust their power levels for the various transmission in which it partici-
pates. 

2.2   Positioning 

We assume each node has a low-power Global Position System (GPS [9]) receiver, 
which provides the position information of the node itself. In every position based 
broadcast protocol, nodes need position information about neighborhood nodes. The 
method we used is as following: initially each node emits its position message con-
taining its id, and when a node u receives this kind of special message from a node v, 
it adds v to its neighborhood table; in mobile network except initialization each node 
sets timer to check its position, and if mobility happens it will emits his position mes-
sage again to let other nodes update neighborhood table. 

2.3   Propagation Model 

We use two kinds of propagation model, free space model [10] and two-ray ground 
reflection model [11]. The free space model considers ideal propagation condition 
that there is only one clear line-of-sight path between the transmitter and receiver, 
while the two-ray ground model takes reality into consideration and considers both 
the direct path and a ground reflection path.  

The following equation to calculate the received signal power in free space at dis-
tance d from the transmitter 

2

2 2
P

( 4 )
( ) t t r

r
P G

d L

G
d

λ
π

=
, 

(1) 

where tP is the transmitted signal power. tG and rG are the antenna gains of the trans-

mitter and the receiver respectively. L ( 1)L ≥ is the system loss, and λ  is the wave-
length.  

The following equation to calculate the received signal power in Two-ray ground 
model at distance d 

2 2

4
P ( ) t t r t r

r
P G h h

d L

G
d =

, 
(2) 

where 
t

h and 
r

h are the heights of transmit and receive antennas respectively. How-

ever, the two-ray model does not give a good result for a short distance due to the 
oscillation caused by the constructive and destructive combination of the two rays, 
whereas, the free space model is still used when d is small. Therefore, a cross-over 
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distance 
c

d is calculated. When  
c

d d<  , Eqn. (1) is used. When _

c
d d> , Eqn.(2) is 

used. At the cross-over distance, Eqns. (1) and (2) give the same result. So 
c

d  can be 

calculated as  

( 4 )t rh hπ λ . (3) 

When considering omni-directional antennas and uniform propagation conditions, it is 

common to select tG  and rG as 1. 

The use of directional antennas can permit energy savings and reduce interference 
by concentrating transmission energy where it is needed. We learn from [12] that 
because the amount of RF energy remains the same, but is distributed over less area, 
the apparent signal strength is higher. This apparent increase in signal strength is the 
antenna gain. We use an idealized model in which we assume that all of the transmit-
ted energy is concentrated uniformly in a beam of widthθ , as shown in Fig. 1, then 
the gain of area covered by the beam can be calculated as 

2 ( 1 c o s )
3 6 0

θ−
, (4) 

while the gain of the other areas is zero. As a consequence of the “wireless broadcast 
advantage” property of omni-directional systems [13], all nodes whose distance from 

Node i does not exceed 
ij

r  will be able to receive the transmission with no further 

energy expenditure at Node i.  

 

Fig. 1. Use of directional antenna 

While using directional antenna, the advantage property will be diminished, since 
only the nodes located within the transmitting node’s antenna beam can receive the 
signal. In Fig. 1, only j, l can receive the signal, while k cannot receive the signal. 

We assume that the beam width θ  is fixed beam width and one node can simultane-
ously support more than one directional antenna. Furthermore, we assume that each 
antenna beam can be pointed in any desired direction to provide connectivity to a 
subset of nodes that are within communication range. In addition, we use directional 
receiving antennas, which have a beneficial impact to avoid background noise and 
other user interferences.  

2.4   Energy Expenditure 

In addition to RF propagation, energy is also expended for transmission (encoding, 
modulation, etc.) and reception (demodulation, decoding, etc.). We define 
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• T
p = transmission processing power and 

• R
p = reception processing power. 

The total power expenditure of a node, when transmitting to a maximum range r 
over a sector of widthθ , is 

( , )RF T Rp p r p pθ= + +  (5) 

Where ( , )
RF

p r θ is RF propagation energy expenditure and the term R
p  is not needed 

for the source node. A leaf node, since it does not transmit but only receives, has a 

total power expenditure of R
p .  

3   Localized Directional Broadcast Incremental Power Protocol  

3.1   The Proposed Algorithm 

The goal of the localized algorithm is to allow a localized and distributed computation 
of broadcast tree. We assume every node knows its local neighbors position  
information.  

The principle is as follows: the source node S (the one that initiates the broadcast) 
computes the broadcast tree with its local neighborhood position information and 
sends the broadcast packet to each of its one hop neighbor, while includes N (integer, 
N>0) hops computed relay information and the Nth hop relay nodes id in broadcast 
packet. For each of other nodes, for example, node U who receives the packet for the 
first time, three cases can happen:  

• The packet contains both relay instructions for U and U’s id. U will use these 
relay instructions to construct its own local broadcast tree. Then, instead of 
starting from an empty tree as S did, it extends the broadcasting tree based on 
what source S has calculated for it. By this way, the joint neighborhood nodes 
of S and U will use the same spanning tree. 

• The packet contains only relay instructions for U. U will just follow these relay 
instructions to relay the packet. 

• There are no relay instructions for U. In this case, node U does nothing. 

After the procedure mentioned above, node U will rebroadcast the packet again to 
its own one hop neighbor and include N hops computed relay information for its own 
relay nodes and the Nth hop relay nodes id, just like what source node has done. The 
reason why we use N to refer relay nodes hop number is that the range within which 
each node manage positional information on other nodes can be changed according to 
requirement, and the optimal changes according to the application demands and the 
node’s hardware performance. 

In this principle, there may be some nodes which will receive this packet more than 
one time, then at this time, node can simple drop the packet and doesn’t rebroadcast 
again. In order to reduce overlap, we use the neighbor nodes elimination scheme.  
Source node will include its local N hops neighbor nodes in packet, because these 
nodes certainly will receive the packet soon. Once the node which is in charge of 
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recalculating local spanning tree receives the packet, except recording the relay in-
formation it should also record the nodes which will be covered soon. If the covered 
node is not used in relay information and also is a neighbor node of this node, then 
this node will delete it from its neighbor list and after deletion calculate its own 
broadcast tree. Fig.2 is the pseudo-code of the proposed algorithm. 

0. Randomly select source node S 
1. For source node S: 
2.  {   /******source node’s locale calculation******/ 
3.      Computes its local broadcast tree;  
4.      Set up broadcast packet P; 
5.      Include N hops relay instructions in packet P; 
6.      Include N hops neighbors' ID in packet P; 
7.      Include Nth hop relay instructions in packet P; 
8.      Send packet P to each of its one hop neighbor using directional antenna; 
9.  } 

10.  For any node U (except S): 
11.  if (node U receives packet P){ 
12.      if ( the first time){ 
13.          Inspect packet P; 
14.          if (there is relay instruction for U){  
15.              if (U’s id exists in Nth hop relay nodes’ id){ 
16.                    Search and record all relay instructions for U; 
17.                    /******Neighbor Nodes Elimination Scheme******/ 
18.            Check included covered nodes' ID; 
19.            While ( (ID != U's address)&&( ID∉relay instruction info) ) 
20.                if (ID ⊂ U’s local neighbors list) 
21.                    delete this node record from U’s local neighbors list; 
22.                    /******U’s local calculation******/ 
23.            Refer recorded relay instructions; 
24.                    Use U’s modified local neighbors list; 
25.                    Computes U’s local broadcast tree; 
26.                    Act as source node; 
27.               }else if (U’s id does not exist in Nth hop relay nodes’ id) 
28.                   Only relay received packet as recorded relay instructions; 
29.          }else if (there is no relay instruction for U) 
30.              Do nothing; 
31.      } else  
32.  Simply drop packet P; 
33.  } 

Fig. 2. Pseudo-code of the proposed algorithm 

3.2   Broadcast Tree Calculation 

As for how to set up broadcast tree, we have considered two basic approaches with 
directional antennas: 
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• Construct the tree by using an algorithm designed for omni-directional anten-
nas; then reduce each antenna beam to our fixed beam width.  

• Incorporate directional antenna properties into the tree-construction process. 

The first approach can be based on any tree-construction algorithm. The “beam-
reduction” phase is performed after the tree is constructed. The second approach 
which takes directional antenna into consideration at each step of the tree construction 
process can be used only with algorithms that construct trees by adding one node at a 
time. In this section, we describe the later approach applied in our algorithm LDBIP 
in detail. 

The incremental power philosophy, originally developed for use with omni-
directional antennas, can be applied to tree construction in networks with directional 
antennas as well. At each step of the tree-construction process, a single node is added, 
whereas variables involved in computing cost (and incremental cost) are not only 
transmitter power but beam width θ  as well. In our simple system model, we use 

fixed beam width
f

θ , that means for adding a new node, we can only have  two 

choices: set up a new directional antenna to reach a new node; raise the length range 
of beam to check whether there is new node covered or not. A pseudo code of the 
broadcast tree calculation algorithm can be written as Fig. 3.  

 
Input: 

Initialization: 

Procedure: 

while 

do ∈  ×
fθ  

ijPΔ  

∈ ×
∈

ijPΔ f
i jd

2
α θ

π

ijPΔ f
i jd

2
α θ

π
. 

add ∪
set 

ijPΔ  

Fig. 3. Pseudo code of broadcast tree calculation algorithm 

Fig. 4(a) shows a simple example in which the source node has 4 local neighbor 
nodes 0, 1, 2, and 3. Node 1 is the closest to 0, so it is added first; in Fig. 4(b), an 

antenna with beam width of 
f

θ is centered between 0 and Node 1. Then we must 

decide which node to add next (Node 2 or Node 3), and which node (that is already in  
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the tree) should be its parent. In this example, the beam from 0 to Node 1 can be  
extended to include both Node 1 and Node 3, without setting up a new beam. Com-
pared to other choices that setting up a new beam from Node 0 to Node 2, or from 
Node 1 to Node 2, this method has minimum incremental power. Therefore, Node 3 is 
added next by increasing the communication range of Node 0 and Node 1. In Fig. 
4(c), finally, Node 1 must be added to the tree. Three possibilities are respectively to 
set up a new beam from Node 0, Node 1, Node 3. Here we assume that Node 3 has 
minimum distance. Then in Fig. 4 (d) we set up a new beam from Node 3 to Node 2.  

 

                  
(a)                              (b)                             (c)                              (d) 

Fig. 4. Nodes addition in LDBIP 

3.3   Examples Constructed by the Various Algorithms 

Fig. 5 shows the broadcast tree produced by BIP, DBIP, LBIP and LDBIP for a 12-
node network, where the source node is shown larger than the other nodes. There 
broadcast trees are generated in our simulation work, which use the system model 
mentioned in section 2.  

Because DBIP and LDBIP use directional antenna, therefore in our simulation sys-

tem, according to different
f

θ , we can get different broadcast tree; of course, the ac-

cording energy consumption will also be different. Furthermore, because algorithm 
LBIP and our LDBIP is distributed, which means every node only calculates its two 
hops neighborhood broadcast tree, the Fig. 5(c) and (d) in fact is the combination of 
all local broadcast tree, and the joint parts of those local broadcast trees will not have 
too much difference because nodes refer relay information from other nodes and ap-
ply the neighbor nodes elimination scheme. 

 
(a)                               (b)                            (c)                              (d) 

Fig. 5. Broadcast Tree. (a) BIP (b) DBIP (
f

θ =30) (c) LBIP (d) LDBIP (
f

θ =30) 
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4   Performance Evaluation 

In this section, we present our performance evaluation for our localized algorithm 
LDBIP, and also compare it with two centralized algorithm BIP and DBIP which are 
very effective centralized protocols in energy consumption and with another localized 
algorithm LBIP. Especially for LBIP and LDBIP, we choose the hop number N as 2. 
We use ns2 as our simulation tool and assume AT&T's Wave LAN PCMCIA card as 
wireless node model which parameters are listed in table 1. As for system model, we 
apply the network, propagation, and energy model mentioned in Section 2.  

Table 1. Parameters for wireless node model 

 AT&T's Wave LAN PCMCIA card 
frequency 914MHZ 
maximum transmission range 40m 
maximum transmit power 8.5872e-4 W 
receiving power  0.395 watts 
transmitting power 0.660 watts 
omni-antenna gain of receiver/transmitter   1db 
fixed beam width of directional antennas 30 
directional antenna receiver/transmitter gain 58.6955db 
MAC protocol 802.11 
propagation model  free space / two ray ground 

The wireless network is always composed of 100 nodes randomly placed in a 
square area which size is changed to obtain different network density D defined as the 
average number of neighbors per each node. The formula can be written as:  

,
*

2

2

r
D N

A

π=  (6) 

where A represents the edge length of deployment square area, and r is the maximum 
transmission range. From Eqn. (6), we can get calculate A by  

.

N
A r

D

π=  (7) 

For each measure, 50 broadcasts are launched and for each broadcast, a new network 
is generated. 

RAR (Reach Ability Ratio) is the percentage of nodes in the network that received 
the message. Ideally, each broadcast can guarantee 100% RAR value. While in sparse 
network since the maximum transmission range of nodes is not big enough to guaran-
tee the network connectivity, RAR may be less than 100%. 

To compare the different protocols, we observe the total power consumption over 
the network when a broadcast has occurred. We compute a ratio named EER, that 
represents the energy consumption of the considered protocol compared to the energy 
that would have been spent by a Blind Flooding (each node retransmits once with 
maximum transmission range). The value of EER is so defined by:  
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We also observe SRB (Saved Rebroadcast) which is the percentage of nodes in the 
network that received the message but did not relay it. A Blind Flooding has a SRB of 
0%, since each node has to retransmit once the message.  

Our simulation work is based on two steps: first we test the performance of our 
protocol in static wireless ad hoc network, and then we take mobile network into 
consideration. To compare the performance with those of other protocols, we observe 
the total power consumption over the network. In mobile simulation environment, the 
energy consumption includes not only the energy consumption for broadcasting mes-
sage, but also that for propagation for mobility.  

 
(a) EER comparison                                              (b) SRB comparison 

Fig. 6. Performance comparison in static wireless network 

Fig.6 shows EER and SRB comparison for BIP, DBIP, LBIP and LDBIP protocols 
in static wireless networks with different network density. As for the RAR value, 
since we choose the network density which can guarantee the network connectivity, 
so all the RAR results are 100%. From Fig.6 (a) we can find that all the four protocols 
have much better energy conservation than flooding. Because of employing direc-
tional antenna, DBIP and LDBIP have much less energy consumption compared to 
BIP which uses omni-directional antenna in low network density and similar saving 
energy performance in high network density. Also benefiting from directional an-
tenna, compared to another localized algorithm LBIP, our proposal LDBIP has much 
better performance in energy conservation. In addition, the energy conservation per-
formance of DBIP and LDBIP is stable despite of network density. Compared to cen-
tralized algorithm DBIP, our localized algorithm LDBIP has a little more energy con-
sumption. That is because our algorithm employs the topology of only local neighbors 
whereas DBIP utilizes the total network topology to calculate energy efficient broad-
cast tree. From Fig.6 (b) we can observe localized protocols have less SRB compared 
to centralized protocols, since localized protocols only calculate local broadcasting 
tree which cause unnecessary relay instructions compared to centralized protocols. In 
addition, using omni-directional antenna can save more retransmission, since “wire-
less broadcast advantage” will be decreased by employing directional antenna. 
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Now we take mobility into consideration. In our simulation we use mobile scenar-
ios to simulate the nodes’ mobility in mobile networks. These mobile scenarios are 
randomly generated by special tool of ns2, “setdest [14]”. As we mentioned in section 
2.2 positioning, in mobile network except initialization each node should set timer to 
check whether this node has moved or not. If mobility occurs, node will use its maxi-
mum transmission radius to emit its new location information to let other nodes up-
date their neighborhood table. In centralized solution, this information must be propa-
gated throughout the network, In order to compare between different protocols, we 
use the same mobile scenario in certain network density. 

 

Fig. 7. EER comparison in mobile network 

Fig.7 shows EER comparison for DBIP and LDBIP protocols in mobile networks 
with different network density. Compared to centralized algorithm DBIP in mobile 
network, our localized algorithm LDBIP has better energy saving performance. That is 
because in centralized solution, e.g. DBIP, mobility of nodes need to be broadcasted 
throughout the network, while in our centralized algorithm LDBIP, mobility will be 
only propagated to that nodes’ neighborhood. Therefore LDBIP can get better perform-
ance. From this, we can infer that as mobility increases in mobile scenarios, LDBIP can 
get much better performance in energy conservation. In addition, as for SRB compari-
son in mobile network, there is little difference with that in static network. 

In summary, our localized protocol LDBIP can only use localized location infor-
mation and distributed computation to complete broadcasting task. Our simulation 
work verifies that in mobile networks, our localized energy-aware protocol has very 
good performance in energy conservation.  

5   Conclusions 

In this paper, we proposed the new localized energy-aware broadcast protocol for 
wireless networks with directional antennas which have limited energy and computa-
tion resources. Our algorithm is based on the localized information and distributed 
computation method, which means, rather than source node collects all location in-
formation of network to calculate broadcast tree, every node collects some part of the 
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whole network’s nodes location information and participates calculating broadcast 
tree. At the cost of a few more information stored in the broadcast packets, our local-
ized algorithm offers better energy saving result than well-known centralized algo-
rithm DBIP in mobile environment. Especially, if mobility of nodes increases in  
network, our distributed algorithm can get lesser energy consumption and better  
performance than centralized solution.  

In future work, we plan to take realistic facts into consideration for energy  
consumption and network lifetime. 
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Abstract. Compiler-directed dynamic voltage scaling (DVS) is an effective 
low-power technique in real-time applications, where compiler inserts voltage 
scaling points in a real-time application, and supply voltage and clock 
frequency are adjusted to the relationship between the remaining time and the 
remaining workload at each voltage scaling point. Greedy dynamic voltage 
scaling is one of the voltage adjustment schemes, where the slack time of 
current section is completely used to reduce the clock frequency of next section. 
In this paper we present the analytical model of the greedy scheme, and by 
simulations using the analytical model, we find out that the greedy scheme 
obstructs itself from effectively utilizing the slack times. So we propose a 
profile-guided greedy voltage adjustment scheme directed by the optimal real-
time voltage scheduling in the most frequent execution case. We show by 
simulations that the new voltage adjustment scheme obtains the largest 
reduction of energy consumption of all the current representative schemes. 

1   Introduction 

In the recent years embedded systems for mobile computing, such as hand-held phone 
and smart sensor, are developing rapidly, and a crucial parameter of mobile systems is 
the continued time of energy supply. Though the performance of ICs has been 
steadily growing [1], battery techniques are developed very slowly [2] and it is of 
substantial importance for battery-powered systems to make use of more effective 
low-power techniques. At the same time, due attention has been paid to the energy 
consumption by the facilities from IT industry [3]. Therefore, it is very imperative not 
only for mobile systems but also for high-performance desktop systems to develop 
effective low-power techniques. 

Dynamic voltage scaling (DVS) [4] [5] is one of the low-power techniques, and it 
is widely used in embedded systems for mobile computing and desktop systems. In 
real-time applications, DVS dynamically reduces supply voltage to the lowest 
possible extent that ensures a proper operation when the required performance is 
lower than the maximum performance. Since the dynamic energy consumption, the 
dominant energy consumption in ICs, is in direct proportion to the square of supply 
voltage, it is possible for DVS to significantly reduce energy consumption. 
                                                           
* Supported by the National High Technology Development 863 Program of China under 

Grant No. 2004AA1Z2210 and Server OS Kernel under Grant No. 2002AA1Z2101. 
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Directed by software, DVS can save more energy. On the one hand, in a multiple-
task real-time environment, real-time operating system (RT-OS) has the global 
information of the whole system, and based on workload variation, RT-OS reduces 
energy consumption through inter-task voltage scheduling (InterDVS). On the other 
hand, there are some practical constrains for InterDVS. Firstly, InterDVS needs OS 
modification. In addition, in a single-task environment, there are no other tasks to 
utilize the produced slack times. Even, in a multiple-task environment, if the 
workload and slack times of one task dominate those of the others, it is impossible for 
InterDVS to significantly reduce energy consumption. So it is necessary to utilize 
intra-task voltage scheduling at the same time. Intra-task DVS (IntraDVS) assisted by 
compiler inserts voltage scaling points in a real-time task and divides the task into 
some sections, at each voltage scaling point supply voltage and clock frequency are 
adjusted to the relationship between the remaining time and the remaining workload.  

There are many real-time voltage adjustment schemes, and each scheme has to 
ensure that a task finish before its deadline. Daniel Mosse, et al have summarized 
three kinds of representative schemes: DPM-P, DPM-G, and DPM-S [6]. In DPM-P, 
every time a section finishes, the system computes the reclaimed time (the slack time) 
and allows other sections to slow down proportionally. The large majority of the past 
works have utilized DPM-P to adjust supply voltage [7] [8] [9]. DPM-G, called a 
greedy scheme, gives the reclaimed time to next section, and allows next section to 
utilize the maximum possible amount of the slack, while guaranteeing the feasibility 
of the real-time execution. DPM-G has nearly used up all the available slack times, 
and there are some works utilizing DPM-G to adjust supply voltage [9] [15]. In DPM-
S, the slack times are distributed to other sections based on the average execution 
cycle of real-time applications, and some past works have made use of the average 
execution cycle to set clock frequency [10] [11].  

In this paper we present the analytical model of the intra-task greedy dynamic 
voltage scaling, and then using the analytical model, we investigate the properties of 
the greedy scheme. Compared with the past assumption that the slack times are 
distributed evenly, we suppose that the slack times are not evenly distributed in real-
time applications, which is much closer to the execution of real-time applications. As 
a result, we find out that the greedy scheme can aggressively utilize the slack times, 
but often the aggressive utilization of the slack times cannot lead to the largest energy 
saving. So we first try to find out an optimal real-time voltage scheduling in the most 
frequent execution case (sometimes called hot path), and prove that if each voltage 
scaling point only can make use of the slack times appearing before itself, an optimal 
voltage scheduling (OPTDVS) minimizes the energy consumption. Then, we present 
a profile-guided optimizing voltage adjustment scheme directed by OPTDVS, and the 
simulation results show that the new scheme obtains the largest gain of all the 
representative schemes. We believe that optimizing the most frequent execution case 
will lead to more reduction of energy consumption. The contributions of this work are 
as follows: 

1. We present and prove an optimal real-time voltage scheduling in the most 
frequent execution case (OPTDVS). 

2. We propose a new greedy voltage adjustment scheme directed by OPTDVS. 
3. The simulations show that the new scheme obtains the largest energy 

reduction of all the current representative schemes. 
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The rest of this paper is organized as follows. In Section 2 we review some related 
works of compiler-directed dynamic voltage scaling. In Section 3 we present the 
analytical model of the greedy scheme, and investigate the properties of the greedy 
scheme. In Section 4 we propose a profile-guided greedy scheme directed by 
OPTDVS, and we show by simulations that the new scheme effectively reduces the 
energy consumption. Finally, we give the conclusions and the future works. 

2   Related Works 

Dynamic power consumption, which dominates the total power consumption in ICs, 
is proportional to the square of supply voltage, and reducing supply voltage can 
significantly reduce dynamic power consumption. Real-time applications have the 
dynamic performance requirement, and dynamic voltage scaling is used to exactly 
meet the performance requirement with the lowest energy consumption by 
dynamically adjusting supply voltage and clock frequency. Nowadays, the DVS-
enabled systems, such as Transmeta Crusoe, Intel Xscale, and AMD K6-IIIE+, are 
often operated on some discrete voltage levels, and the switch from one level to 
another has energy and time overhead. 

OS-directed dynamic voltage scaling has widely investigated in the past years, and 
Jacob Rubin Lorch had summarized the OS-based dynamic voltage scaling in  
detail [12].  

In the recent years a lot of works have been published on compiler-directed 
dynamic voltage scaling, and many algorithms, especially real-time algorithms, 
have been introduced. Daniel Mosse, et al presented compiler-directed power 
management and proposed three kinds of real-time dynamic voltage adjustment 
schemes: DPM-P, DPM-G, and DPM-S [6].  On the assumption that the slack times 
were evenly distributed in real-time applications, Nevine AbouGhazaleh, et al 
investigated the optimal number of voltage scaling points in DPM-P and DPM-G 
[13]. H.Saputra, et al presented a compilation strategy based on integer linear 
programming, which could accommodate energy/performance constraints [14]. 
Flavius Gruian employed stochastic data to derive efficient schedules, and took into 
account the real behavior of real-time systems, which was often better than the 
worst case [10]. Dongkun Shin, et al proposed a profiled-guided IntraDVS, where 
they used the average execution cycles to set clock frequency and used the system 
maximum clock frequency to ensure the real-time execution [11]. Ana Azevedo, et 
al introduced an intra-task DVS technique under compiler control using program 
checkpoints [15]. Nevine AbouGhazaleh, et al introduced a collaborative approach 
between the compiler and operating system that used fine-grained information about 
the execution time of a real-time application to reduce energy consumption [9]. The 
idea of Chung-Hsing Hsu, et al was to identify the program regions in which the 
CPU was mostly idle due to memory stall and slow them down for energy reduction 
[16]. Dongkun Shin, et al proposed an optimization technique for IntraDVS using 
data flow information [8]. 
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3   Models and Analyses of IntraDVS 

Real-time applications have the timing constraints; a real-time task must finish before 
its deadline ( d ) and missing the deadline might lead to a catastrophic result. In order 
to meet the timing constraints, we need to evaluate the worst-case execution times 
( wcet ) or the worst-case execution cycles ( wcec ) in real-time applications, and the 
worst-case execution time of an application must be less than or equal to its deadline 
[17]. If the wcet  of an application is less than its deadline, we can proportionally 
reduce supply voltage and clock frequency, and as a result the application can just 
finish at its deadline. So we obtain a static voltage scheduling, and the initial clock 
frequency is staticf . The static scheduling is the starting point of dynamic voltage 

scaling. 
IntraDVS assisted by a compiler inserts voltage scaling points in a real-time 

application, and the execution cycle of the application is divided into n  sections or 
subintervals. Suppose that the worst-case execution cycle and the actual execution 
cycle of each section are respectively denoted by iwc  and iac  for ni ,...,1= . At the 

beginning of each section, we adjust supply voltage ( iV ) and clock frequency ( if ) to 

the relationship between the remaining time and the remaining workload.  
Using the greedy scheme, we set the clock frequency of each section to 

)//( 1 staticiiii frwcctdwcf +−−=  

where ict  denotes current time of the thi voltage scaling point, and 
+=+ = n

il li wcrwc
11 . 

From the above formula, we conclude that the greedy scheme gives all the reclaimed 
slack time of each section to next section.  

In order to utilize the models to analyze the greedy scheme, the above formula 
becomes 
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l lli facct . After detailed derivation, the formula (1) becomes 

staticii fcff ⋅=  , (2) 

where icf  is equal to 

( )( )))/1(/(
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=
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i

lk kkliii wcacwcwcwccf  . (3) 

Since the dynamic energy consumption dominates the total energy consumption of 
CMOS, we only take into account the dynamic energy consumption. The dynamic 
power P  of CMOS is defined by 

fVCP ⋅⋅⋅= 2α  , (4) 

where α  indicates the average probability of the input node changing on each clock 
cycle, C  is the total capacitance on the gate output node, and V  and f  respectively 
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denote the supply voltage and clock frequency of CMOS. DVS has divided the 
execution of an application into multiple sections, and the total energy consumption is 

==
⋅⋅⋅⋅=⋅= n

i iii

n

i ii tfVCtPE
1

2

1
α  . (5) 

The time it  of each section is defined by 

iii fact /=  . (6) 

The formula ( ) VVVf T /2−∝  has defined the relationship between the clock 

frequency and supply voltage of CMOS, where TV  denotes the threshold voltage of 

CMOS. Since TV  is generally much smaller than supply voltage, we can obtain an 

approximate equation between clock frequency and supply voltage 

ii Vf ⋅= β  , (7) 

where β is a constant relating to CMOS technology. 
Using the formulae from (5) to (7), we can obtain the energy consumption of the 

static voltage scheduling 

wcecfCacfCE static

n

i istaticstatic ⋅⋅⋅⋅=⋅⋅⋅=
=

μβαβα 22

1

22 )/()/(  , (8) 

where μ/
11 ==

== n

i i

n

i i acwcwcec , 10 ≤≤ μ . 

Using the formulae from (2) to (7), we can compute the energy consumption of the 
dynamic voltage scheduling 
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Then the ratio of E  to staticE  is defined by 
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1
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Let iii wcac ⋅= μ  for ni ,...,1= , wcecwcwc ii /' =  for ni ,...,1= , (10) becomes 
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and icf  is equal to 
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where 1
1

' =
=

n

i iwc , 0' >iwc  for ni ,...,1= , 10 ≤≤ iμ  for ni ,...,1= . 

If we make use of the fixed-length configuration of voltage scaling points (i.e. all 

iwc  for ni ,...,1=  have same value), (11) becomes 
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where 10 ≤≤ iμ  for ni ,...,1= , 10 ≤≤ μ . 
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Finally, we obtain the analytical models of r  and eqr . 
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Fig. 1. The execution cycles of an 
application 
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1. if (a>b)  [w:100]
2.   ...
3. else        [w:50]
4.   ...
5. end
6. loop: [w:20*10;b:20*5]
7.   ...
8. end

(a) (b)

50 50 100 100

 

Fig. 2. An application (a) and its corresponding 
execution pattern (b) 

In real-time applications the slack times are often not evenly distributed, as is 
shown in Fig. 1. Each section with the tag ‘1’ indicates the actual execution cycle. 
Since the actual number of loop iterations or the prediction of condition structures 
could be differentiated from that of the worst case in the execution course, each 
section with the tag ‘0’ is not executed, i.e. the slack time (cycle). For example, 
suppose that an application includes a condition sentence and a loop sentence, as is 
shown in Fig. 2(a), where the condition sentence is executed for 100 cycles if the 
prediction (a>b) is true, or else 50 cycles. In addition, the worst-case execution cycle 
and the best-case execution cycle of the loop sentence are 200 and 100 cycles, 
respectively. If in most cases, the prediction is false and the loop is executed for 100 
cycles, then the execution pattern in the most frequent case is shown in Fig. 2(b). 

Next we numerically simulate DVS with the model defined by (13). In order to 
simulate the execution cases that the slack times are not evenly distributed in real-
time applications, we divide the execution interval of a task into λ  equal subintervals, 
and call λ  simulation precision. In each subinterval, there are two possible values: 1 
or 0. The subintervals with the value of 1 are the actual execution cycles, and the 
subintervals with the value of 0 are not executed. From the knowledge of 
combinatorics, we draw the conclusion that the number of the total cases is λ2 . In 
each case we can evaluate parameter μ  from the number of the subintervals with the 

value of 1. For example, there are mC  cases of m  subintervals with the value of 1, 

and the parameter μ  of the cases is equal to λ/m , where mC  indicates the number of 

combinations of m  elements among λ . We can compute iμ  with the similar method. 

Due to space limitation, it is impossible to list all the results, and we just present 
the typical case. Let 14=λ , we simulate, for example, the workload pattern like 
00010110000000, and the simulation results are shown in Fig. 3, where the horizontal 
axis and the vertical axis, respectively, represent the number of voltage scaling 
sections and the percentage of energy consumption. 

It is clearly seen that the percentage curve has complex variation with the growth of 
the number of sections. In the beginning, the percentage has been decreasing with the 
increase of the number of sections before it reaches the minimum. Subsequently, the 
percentage has an overall ascending tendency but no monotonicity. 
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Through analyzing the relationship between the frequency and the workload, we 
find out the reason for the complex properties. On the one hand, for some 
configurations of voltage scaling sections, the application has utilized all the available 
slack times and the whole workload is operated on the lowest frequency.  On the other 
hand, for other configurations of voltage scaling sections, the layout of the frequency 
has made the earlier part of the workload operated on much lower frequency and 
consumed all the available slack times; the later part, however, has to be executed on 
the largest frequency to guarantee the completion before the deadline.  

In brief, we come to the conclusion that the greedy scheme cannot effectively 
utilize the slack times. 

 
 
 

 

Fig. 3. The percentage of energy 
consumption using the greedy 
scheme when 14=λ  and the pattern: 
00010110000000 
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Fig. 4. (a) The most frequent execution case of an 
application and its grouping. (b) The corresponding 
frequency configuration. 

4   A Profile-Guided Greedy Voltage Adjustment Scheme 

In the execution course of an application, there are many possible execution paths, 
and some paths (called hot paths) are frequently executed. We can obtain the 
information of the execution path by profile-guided method, and voltage scheduling 
should minimize the energy consumption of the most frequently executed case. 
Therefore, we first investigate the optimal real-time voltage scheduling in the most 
frequent execution case in order to guide the greedy scheme. Suppose that we have 
known the most frequent execution case of an application, as is shown in Fig. 4 (a). 
Each section that the workload is 1 represents the executed cycle, and the sections that 
the workload is 0 are not executed. We form one ‘0’ section and one succeeding ‘1’ 
section into a group, and all the groups are denoted by lg  for gnl ,...,1= .  If the actual 

execution cycle and the worst-case execution cycle of each group are denoted by 

lgmfc _  and 
lgwc  respectively, then in the most frequent execution case the execution 

ratio of the i  groups at the beginning is defined by 

==
= i

l g

i

l gi ll
wcmfcmfr

11
/__  
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Moreover, we can find the maximum of all the execution ratios 

{ }g
i nimfrmfmr ,...,1|_max_ ==  

and the corresponding subscript j (If more than one imfr _  are equal to the 

maximum, j  corresponds to the maximum subscript). As a result, the frequencies of 
the j  groups at the beginning are set to  

staticfmfmrf ⋅= _  

If gnj = , the frequency configuration finishes; otherwise, from the th)1( +j  group, 
we continue to utilize the same method to calculate the frequencies of the remaining 
groups till the frequency of the whole execution interval is solved. We call the 
produced frequency configuration an optimal real-time dynamic voltage scheduling in 
the most frequent case (OPTDVS). 

For example, suppose that in an application wcec  includes 10 cycles, as is shown in 
Fig. 4 (a). We first divide the whole execution interval into 5 groups, and then 
calculate all the imfr _  for 5,...,1=i , i.e. { }2/1,9/5,2/1,3/2,1 . 

Since 1_ =mfmr  and the corresponding subscript is 1, then the frequency of the 
first group is set to staticf .  For the remaining 4 groups, we continue to compute the 

imfr _  for 4,...,1=i , i.e. { }9/4,2/1,5/2,2/1 . 

Since 2/1_ =mfmr  and its corresponding subscript is 4, then the frequency of the 
groups from 2 to 4 is set to 2/staticf . The same method sets the frequency of the fifth 

group to 0. The whole frequency configuration is shown in Fig. 4 (b). 

Theorem. Consider a feasible voltage scheduling set, where each voltage scaling 
point in each voltage scheduling only utilizes the slack times appearing before itself. 
If we have known the most frequent execution case of an application, OPTDVS 
minimizes the energy consumption of the case among the feasible voltage scheduling 
set. 

Proof. Due to the space limitation, we don’t include the proof in this paper. 

In each real-time voltage scheduling, each voltage scaling point only utilizes the 
slack times appearing before itself, then OPTDVS gives the lower limit of all the real-
time voltage scheduling in the most frequent execution case. For each voltage 
adjustment scheme, the ideal result is that the energy consumption reaches or is near 
the lower limit. 

Next we utilize OPTDVS to present a new greedy voltage adjustment scheme. At 
each voltage scaling point, we must specify the utilization method of the available 
slack times. Our idea is that the voltage scheduling should be in accord with the 
OPTDVS in the most frequent execution case as much as possible. After applying 
OPTDVS to an application, its whole execution interval is divided into some 
subintervals; each subinterval is operated on a single frequency and has its 
corresponding deadline. For example, Fig. 4 (b) shows the deadlines of all the 
subintervals, i.e. d1, d2, and d3. Each subinterval might include some voltage scaling 
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points, and we suppose that the thi  voltage scaling point belongs to the thm  
subinterval. Then the frequency of the thi  section approximating to OPTDVS is set to 

static

i

l lstaticl

first

l l

first

il l
opt

i fffacwcmfcf
mdmd

⋅⋅−= −

===

≥≥

)))/(/((
1

11
 

where md  denotes the deadline of the thm  subinterval, 
mdfirst ≥  indicates the 

subscript of the first section larger than or equal to md , and lmfc  is the actual 

execution cycle of the thl voltage scaling sections in the most frequent execution case. 

Apparently, opt
if  cannot ensure the completion of the real-time application before the 

deadline in worst case. On the contrary, the greedy scheme has aggressively utilized 
the available slack times. So we utilize the greedy scheme to guarantee the timing 
constraints. If g

if  denotes the frequency of the greedy scheme, then the final 

frequency of the thi  section is 

{ }g
i

opt
ii fff ,max=  

4.1   The Methodology of Realization 

We can implement the new scheme like the greedy scheme, except adding some 
profile information. For example, the methodology based on the program checkpoints 
(similar to voltage scaling points) in COPPER project [15] can be used. 

As is shown in Fig. 5(a), we present the source code of a program along with the 
execution cycles of the different branches, where mf  indicates the cycle of the most 
frequent execution case, whereas wc  is the cycle of the worst case. Fig. 5(b) 
illustrates the source code after checkpoints have been inserted. Notice that a 
checkpoint CK(5) controlled by condition structure is added in the while loop, and as 
a result CK(4) can utilize the most frequent execution pattern to make voltage 
scheduling due to the insertion of CK(5). If the while loop is executed for less than or 
equal to 200 cycles (most frequent case), then the voltage scheduling of CK(4) makes 
the frequency near to that of OPTDVS. Otherwise, we will reach the CK(5), where 
the frequency will be raised up to guarantee the timing constrain. In Fig. 5(c), we give 
the control flow graph of the checkpoints, where the dashed line indicates the most 
frequent execution path. Finally, Fig. 5(d) shows the execution pattern and its 
grouping, where ‘s’ and ‘a’, respectively, indicate the slack cycle and the actual 
execution cycle in the most frequent execution case. 

If program reaches CK(5), then the application is operated out of the most frequent 
execution case, and moreover, CK(5) is located on the boundary of the second 
subinterval of OPTDVS. In order to ensure the completion before the deadline, we 
utilize the greedy scheme to set clock frequency at CK(5): 

)//( 1 staticiiii frwcctdwcf +−−=  

At each checkpoint except CK(5), we utilize the voltage scaling scheme as follows: 

−+−−=
≥

+=+ )/()(),//(max
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where md  represents the deadline of the subinterval in OPTDVS that includes the 

thi checkpoint, 
≥

+=

mdfirst

il lmfc
1

 is the most frequent execution cycle from the 

th)1( +i checkpoint to md . For example, suppose that the clock frequency is 1, and 

then d  is 1470 as shown in Fig. 5(d). For CK(1), md  and 
≥

+=

mdfirst

il lmfc
1

, respectively, 

are equal to 460 and 250, and iwc  is 100. 

If (C1) [10]
  A1     [100]
Else     [10]
  B1     [200]
End
D         [50]
While(C3) [mf:200;wc:1000]
  E
End
If (C2) [10]
  A2     [200]
Else     [10]
  B2     [100]
End
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If (C1)
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Else
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  B1
End
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While(C3)
  If (X)
    If(I>MF)
       CK(5)
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    Else
       I++
    End
  End
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End
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If (C2)
  CK(7)
  A2
Else
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End
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Fig. 5. An example extracting the most frequent execution pattern with program checkpoints: 
(a) source code; (b) source code added checkpoints; (c) control flow graph of checkpoints; (d) 
the execution pattern of the most frequent case and the grouping of OPTDVS 

To sum up, the methodology has inserted voltage scaling points into the execution 
interval as shown in Fig. 6, that is, there must be voltage scaling point for every 
switch from ‘1’ intervals to ‘0’ intervals or from ‘0’ to ‘1’. The configuration of 
voltage scaling points guarantees that the energy consumption is equal to that of 
OPTDVS in most frequent execution case. 

......
1 0 1 1 0 1

wcec
 

Fig. 6. Insertion of voltage scaling points 

4.3   Simulations 

By simulations, we compare our voltage adjustment scheme (M) with all the current 
representative schemes, which include the proportional scheme DPM-P (P) [6] [7], the 
simple greedy scheme DPM-G (G) [15], and the speculative scheme DPM-S (S) [11]. 
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Utilizing the method of Section 3, we construct the synthetic applications with 
20=λ . In all the cases, our scheme obtains the smallest energy consumption. Due to 

space limitation, it is impossible to list all the results, and we randomly select some 
execution patterns in order to interpret some typical cases, as is shown in Fig. 7. 

First of all, though the proportional scheme (DPM-P) is the most easily realized, it 
often cannot effectively utilize the slack times. 

Since the simple greedy scheme (DPM-G) can aggressively utilize the slack times, 
often it can lead to large energy reduction. But due to lack of the information about 
the application characteristic, aggressive utilization of the slack times could lead to 
more energy consumption. 
Guided by the average execution workload, DPM-S often attains large energy saving. 
Our voltage adjustment scheme, however, obtains the largest reduction of energy 
consumption. 

 
Fig. 7. The energy consumptions of DPM-P (P), DPM-G (G), DPM-S (S), and our scheme (M). 
(p1) 00001000001010000100, (p2) 00001011101010000000, (p3) 00000001100101111101, 
(p4) 00101011110010010010, (p5) 00110111110001000101, (p6) 11011101111110110001. 

5   Conclusions and Future Works 

In this paper we investigate the greedy voltage scheduling, and find out that the 
greedy scheme can aggressively make use of the slack times, but the aggressive 
scheme often leads to the ineffective utilization of the slack times. Therefore, we 
propose a profile-guided greedy voltage adjustment scheme directed by the optimal 
real-time voltage scheduling in the most frequent execution case of an application. 
Finally, we show by simulations that the optimizing voltage adjustment scheme 
obtains the largest gain of all the current representative schemes. 

We have given the methodology of the realization about the scheme, and in future, 
we will integrate the scheme into a real system based on greedy scheme. 
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Abstract. In this paper, we first analyze the parallel characteristics of both 
network processor and network application. Our analysis shows that the 
development using the existed two programming interfaces on IXA is 
complicated. This suggests that a programming environment which can abstract 
away architectural details from the developers and can automatically map 
application to resources is on desire. Thus we introduce a parallelizing compiler 
developed by Intel called IXP C compiler and analyze its performance on two 
different mapping forms by compiling packet_processing_pps of 
ipv4_diffserv-1*10G_Ethernet-egress. Finally we discuss the shortcomings of 
partition algorithm and also give some suggestions for the future work. 

1   Introduction 

The architecture of network system has been developed dramatically along with the 
increasing of the Internet’s bandwidth and the diversity of the services. Network 
processor, in general, is designed to satisfy certain demands to make up the gap 
between processing rate and line bandwidth, and to meet the requirement of the 
processors’ programmability and flexibility, including efficient parallel processing on 
network packet, high programmability and extensibility, quick launching etc. 
Currently, developers have to manage many hardware resources and manually maintain 
the synchronization, so that it is difficult for them to develop high performance 
applications at the same time. This paper analyzes the parallel characteristics of both 
network processor and network application, and introduces a parallelizing compiler 
based on IXA called IXP C compiler. By analyzing the performance of two different 
mapping forms of IXP C compiler, we discuss the shortcomings of its partition 
algorithm and also give some suggestions for the future work. 

2   Parallelism of Network Processor Architecture 

The conventional network processing method based on ASIC (Application Specific 
Integrated Circuit) and GPP (General Purpose Processor) is unable to satisfy the 
demands of the processing rate and flexibility, resulting in the comprehensive 
development of network processor based on ASIP (Application Specified Instruction 
Processor).  Generally speaking, network processor divides network tasks into control 
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plane and data plane. Take Intel IXP2800 as an example to conclude the parallelism of 
network processor architecture: 

 Multi-microengine architecture: IXP2800 has 16 individual RISC engines 
in frequency of 1.4G. 

 Optimized ALU: The ME (microengine) instruction set provides 
network-specialized instructions. ALU and shift operation can be finished 
in one cycle. 

 Multi-thread supported by hardware: Every ME independently executes 
as many as 8 cooperative thread contexts. The swap mechanism is under 
the instruction control, other than the interrupt, which hides the memory 
access latency to improve the utilization ratio and processor throughput 
efficiently. 

 Optimized memory management and DMA unit: Memory access is 
always the performance bottle neck. IXP2800 introduces optimized 
memory controller interface and DMA unit to improve it. 

 Efficient communication mechanisms: IXP2800 provides inter-thread 
signaling mechanism, atomic shared memory operations and hardware 
support for rings and queues. 

The features above show that the network processor provides good parallelism on 
hardware architecture, which is the basis of developing high efficient network 
applications on it. 

3   Characteristics of Network Application 

Network services are diverse, but as to the given network service, it can be simply 
viewed as one application, which processes a continued data units--generally referred 
to as packets or cells. The whole process of packet-processing application can be 
divided into three logic phases, receiving, processing and transmitting. Fundamental 
characteristics of this kind of applications can be concluded as following: 

 The logic of packet-processing application can be described using cyclic 
data-flow graphs. The process functions on the data-flow graph can be 
represented as M-in, N-out data-flow actors. The actor may act differently 
for different network services. 

 The sequence of functions executed for a packet depends on the packet’s 
type and is triggered by packet arrivals, timers, or other hardware events. 
Furthermore, most of the functions maintain per-flow state, which is 
accessed and updated while packet under processing belongs to the flow. 

 Functions in packet-processing application are always not 
compute-intensive but memory-intensive unit. Hence, how to hide the 
memory access latency is critical to the performance of network application 
system. 

 In most applications, there is little or no dependence between packets 
belonging to different flows. So the application itself exhibits a high-degree 
parallelism when processing packets of different flows. 
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It is obvious that packet-processing applications have the probability to get high 
performance if mapped to network processor perfectly.  

4   Introduction to Existed Programming Interfaces on IXA 

Currently, there are two programming interfaces for IXP2800. One is assembly 
language, with which the assembly code is directly mapped to RISC instructions. 
Another is microC language, which is an explicitly parallel language interface that 
provides developers with keywords and extensions to specify multi-thread execution, 
sleep/wake signaling, inter-process communication, data placement, and manipulation 
of configuration and status registers. Both require developers to explicitly partition 
application code onto MEs, and consequently manage threading and synchronization. 
It is shown that the developing the above programming interfaces is complicated, and 
also the key factor restricting the development of network processor. A programming 
environment, which can abstract away architectural details from the developers and can 
automatically map application to resources, is on desire. The key factors, which means 
abstracting and mapping, push the researches of virtual machine and parallelizing 
compiler based on network processor these years. 

5   A Parallelizing Compiler Approach Based on IXA 

In this section, we will introduce an incoming parallelizing compiler on network 
processor developed by Intel as well as the performance analysis and improvement 
suggestions. 

5.1   Introduction to IXP C Compiler 

IXPC compiler uses the similar C language as the programming interface with the 
extensions to support IXP architecture. It hides multithreading, multiprocessing, most 
of the low-level hardware resources that are unique to IXPs and asynchronous I/O 
capabilities of IXPs for developers. And it also parallelizes the sequential logic 
applications according to the performance requirement, then finally map them to 
hardware resources. Here are some features in detail: 

 IXP C compiler abstracts the network application to a series of 
function units according to its characteristics mentioned above, which 
is called PPS (Packet Processing Stage). A PPS is a logical entity that 
performs packet processing functionalities in hardware-independent 
sequential C constructs and libraries, and also un-bound to any hardware 
resources in IXP. In the whole application system, PPSes which constitute 
a program run concurrently. 

 In IXP C compiler, the communication channel between PPSes is a 
data structure called pipe, which provides an implicit synchronization 
contract of PPSes. Three pipes are supported, abstract pipe, NN pipe and 
scratch pipe. The compiler is responsible for realizing pipes. As for abstract 
pipe, compiler will choose the effective type automatically according to the 
performance requirement and resources situation, and SRAM rings can also 
be used when scratch or NN rings are not available. 
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 Developers can use a key word _path to label the critical path of the 
program, and set a performance specification for that path. All of these 
will guide the compilation because most of the optimization is done for critical 
path and compiler will try its best to satisfy the given performance on it. 

 In the view of IXP C compiler, the input is c files with PPS, resource 
description and performance specification on each critical path, and 
the output is ME allocated uc files and some performance report if 
needed. 

 A PPS can be compiled into one or more MEs. PPSes’ mapping to MEs 
take three kinds of forms: 

 MTP (multi-threading and multi-processing) 
With this form, PPSes will be allocated to all threads of several 
MEs to run concurrently. As shown below: 

PPS.C 
ME0 ME1

PPS PPS
PPS PPS

PPSPPS
PPSPPS

 

Fig. 1. PPSes in MTP form 

 Pasting 
In this form, thread will be used as the minimal mapping unit 
instead of ME, which means several PPSes will be allocated to 
the same ME. This type of compilation is popular in Westport 
platform because of the limitation of MEs. As shown below: 

ME0

THREAD 7THREAD 3

THREAD 0PPS A 

PPS B 

PPS C 

PPS A 

PPS A PPS C 

THREAD 4PPS B 

 

Fig. 2. PPSes in Pasting form 

 CTX (context pipeline) 
In this form, one PPS will be allocated to different MEs to form 
a pipeline, and each stage of the pipeline will run in 
multi-threading mode. As shown below (PPS A and PPS B are 
used as one PPS before partitioning): 

OUTPUT PIPE CONNECTOR 
PIPE

INPUT PIPE ME0 ME1

PPS A PPS B

 

Fig. 3. PPSes in CTX form 
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In conclusion, developers using IXP C compiler could just focus on the logic of 
application itself without concerning about the details of network processor 
architecture. Compiler is responsible to parallelize the sequential logic application and 
map them to the hardware resources. How to map the program efficiently is a very 
critical issue during the compilation. On IXP2800, the MTP and CTX are the main map 
algorithms, with advantages and disadvantages respectively. Here, we will give a brief 
analysis on the two algorithms of IXP C compiler. 

5.2   Performance Analysis on MTP and CTX 

We compiled packet_processing_pps of ipv4_diffserv-1*10G_Ethernet-egress both in 
MTP and CTX forms with the allocation of 3 MEs. Performance data are shown as 
following: 

Table 1. Functional unit utilization-sram 

 Sram0(rd) Sram0(wr) Sram1(rd) Sram1(wr) Sram2(rd) Sram2(wr) Sram3(rd) Sram3(wd) 

MTP 27.06% 21.56% 27.06% 3.61% 67.59% 18.01% 9.02% 0.00% 
CTX 29.95% 16.61% 19.96% 2.77% 26.47% 8.75% 9.98% 0.00% 

Table 2. Functional unit utilization-dram, scratch, pci, and cap 

 Dram(rw) Dram(rd) Dram(wr) Scratch(rw) Scratch(rd) Scratch(wr) Pci(rw) Cap(rw) 

MTP 16.50% 6.89% 9.61% 7.19% 3.60% 3.59% 0.00% 0.45% 
CTX 15.03% 7.63% 7.41% 6.75% 3.98% 2.76% 0.00% 0.00% 

Table 3. Microengine utilization 

 ME2 ME3 ME4 

MTP 94.83% 94.89% 94.77% 
CTX 88.93% 35.65% 100.00% 

From these performance data above, we observed: 

 In MTP, every ME read the packet descriptor stored in sram for the arrival 
packet and updated the data structure back to sram when processing finished. On 
the contrary, in CTX, the packet descriptor was read in when packet arrives and 
was updated only when the last stage in the pipeline finished processing. That is 
why the sram read and write in MTP are much more than that is in CTX, which 
means there is probably much more memory access latency in MTP than that in 
CTX. 

 In CTX, when one PPS was partitioned to several MEs to form a pipeline, the 
communication channel between each sub-PPS on different MEs was pipe. So 
the synchronization between MEs was guaranteed by the pipe implementation. 
In MTP, on the other hand, the communication between MEs was via cap. 

 The microengine utilization in MTP was almost equal and high but in CTX, the 
utilization was obviously not in balance. This should be a critical point of 
partition algorithm in IXP C compiler and needs to be improved. 
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5.3   Future Work 

As mentioned above, the partition algorithm is not as good as desired. But also note that 
different application process has different characteristics and may need specialized 
algorithm. How the application’s behavior impact the partition is a hot research. 
Furthermore, the parallelizing compiler approach as IXP C compiler allocates hardware 
resources statically. Since the network environment changes every minute, so how to 
build a dynamic resource allocation environment patched on the compiler will also be 
our future research work. 

6   Conclusion 

By relieving developers from managing multi-threading and low-level hardware 
resources, IXP C compiler makes developing network applications on IXA 
dramatically easier and faster. It also adds application performance awareness to 
compilation process and maximizes code reuse across NPU family members. After 
analyzing its performance on two different mapping forms, we can see that its partition 
algorithm is not good enough as expected and should be improved based on application 
behaviors. Also, how to build a dynamic resource allocation environment patched on 
the compiler to fit the diverse of the realistic network needs further research. 
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Abstract. This paper introduces a design of firewall based on Intel IXP2350 
Network Processor. The functions of this firewall include the packet filtering, 
state inspection, VPN, NAT/PT and etc. The development language used is 
Auto-partitioning Mode C (IXP-C). Our development process suggests that 
IXP-C reduces the development time for the firewall project.  

1   Introduction 

With the increasing popularization of Internet technology, the global security of net-
work emerges. The technology of firewall separates the private network from the 
public network and protects the private information and entities. It has been widely 
applied to the interconnected environments of the dedicated network and public net-
work. The products of firewall are a dark horse just during several years and form an 
industry soon. The appearance of the firewall restrains the freedom of the data in the 
network from flowing effectively and improves the security of the network. This 
paper introduces a design of firewall based on Intel Network Processor IXP2350. The 
functions of this firewall include the packet filtering, state inspection, VPN, NAT/PT 
and etc.  

2   Intel IXA and IXP2350 Network Processor 

The network processor is the core of high speed network devices. Network processors 
have the merits of ASIC and general processors, such as the Intel IXP2350 network 
processor, fit network performance requirements and flexibility requirements by 
highly parallel, programmable architectures.  
    For the development of next generation network application, Intel created a kind of 
packet processing architecture based on Intel network processor. Intel calls it IXA 
(Internet eXchange Architecture). This architecture conform the programmable ability 
of IXP and the powerful packet processing ability for the fast development of the 
intelligence network devices. IXA is a kind of network processing architecture and its 
core is the programmable network processor. It has three key parts: Micro engine 
technology, XScale technology and the IXA portable architecture. 
    IXP2350 is the new generation network processor of Intel, which is the base of 
Intel IXA. It has high performance of packet processing and is suitable for several 
local networks and remote communications devices. IXP2350 includes four RISC 
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data processors (MEv2), Intel XScale core, SRAM controllers, DRAM controllers, 
PCI controller, NPE units and MSF unit, etc. Fig.1 is the diagram of inner structure of 
IXP2350. 

PCI controller SRAM controllers DRAM controllers 

MEv2

MEv2
MEv2

MEv2

NPE0 NPE1SHaC unit XScale
Core

MSF

 

Fig. 1. Diagram of inner structure of IXP2350 

3    The Structure of Firewall Based on IXP2350 

The hardware structure of firewall based on IXP2350 consists of the following parts: 
IXP2350 network processor, IA processor, SRAM, DRAM, Flash memory and inter-
face controllers, etc. Fig.2. is the hardware structure diagram. 
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10/100M Ethernet Management Port 

Inbound 

Outbound

PCI64bit/66Hz 

64bit+ECC 
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Fig. 2. Firewall based on IXP2350 hardware structure 

IXP2350 is the core of this firewall; its functions consist of the following parts: 
forward the data between two GigE ports, packet filtering, dynamic packet filtering, 
VPN function and NAT/PT, etc. In IXP2350, the program of hardware interface ini-
tialization, tables initialization, inner communications, management run on the 
XScale core, and the program of packet filtering, dynamic packet filtering, NAT/PT 
and VPN run on the four MEv2s. And the Network Processor Engine 1 (NPE-1) are 
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dedicated function processors containing hardware coprocessor to support specific 
features such as Dual 10/100 Ethernet MAC, DES, 3DES, AES, SHA-1, MD-5, etc. 
These features are software-configurable and controllable. 

IA processor can manage the IXP2350, run log module, audit module, proxy mod-
ule and SNMP management software. Generally, the IA processor is only used for the 
complicated and unexpected situations. DRAM memories are used for the buffer or 
store memory of packets. SRAM can be used for the store of some important data 
structures, such as access control list, SA table and DST, etc. FLASH can be used for 
solidify the firewall program. The 10/100M Ethernet Management port can be used 
for the firewall management and configuration, etc. 

4   Auto-partitioning Mode C 

The Auto-partitioning Mode C language is a subset of ANSI/ISO C with extensions to 
support the unique hardware features of the Intel IXP2XXX and to support the Auto-
partitioning Mode programming model. 

An Auto partitioning mode program consists of one or more packet processing 
stages (PPSes). A PPS is a logical entity expressed using sequential C constructs and 
libraries and is not bound specifically by the programmer to one or more resources on 
Intel IXA. As a rough estimate, the maximum compiled code size is around 1500 
machine instructions per PPS. One mechanism for PPSes to communicate with other 
PPSes is called a pipe, which is an abstract, unidirectional channel. Like PPS, a pipe 
is also a logical entity and not bound to any specific resource. PPSes can communi-
cate through variables in shared memory too. The expression of packets processing 
application as a set of communicating PPSes represents the logical partitioning of the 
application into concurrently executing processes. Autopartitioning is the process that 
maps the set of logical PPSes and pipes onto the processing and communication re-
sources available on a special Intel IXP network processor. In the Autopartitioning 
programming model, the mapping is performed by the Intel C Compiler and is driven 
by a performance specification that the programmer provides. 

5    The PPSes Run on MEv2 

The inbound pipeline of this firewall run on MEv2 consists of the following PPSes: 
Packet Receive, IP reassembly, inbound packets Processing, NAT/PT, VPN IPSec 
Dencap, Scheduler, Packet Transmit, Range Match, and HMAC-SHA-1. Fig.3. shows 
the layout of packet processing stages for the inbound pipeline. 
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Fig. 3. Inbound Pipeline PPSes Layout 
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This firewall outbound pipeline run on MEv2 consists of the following PPSes: 
Packet Receive, NAT/PT, Outbound Packets Processing, VPN IPSec Encap, IP 
Fragmentation, Scheduler, Packet Transmit, Range Match and HMAC-SHA-1. Fig.4. 
shows the lay out of packet processing stages for the outbound pipeline. 

. Packet
Receive

NAT/
PT

VPN IPSec 
Encap

Outbound Packets 
Processing 

IP

Range Match HMAC-
SHA-1

Packet
Transmit 

Sched-
uler Fragmentation

 

Fig. 4. Outbound Pipeline PPSes Layout 

6    Parts of Firewall Implementation and Data Structures 

There are some kinds of memory in IXP2350. DRAM (64bit) memories are used for 
the buffer or store memory of packets. SRAM (32bit) can be used for the store of 
some important data structures, such as access control list, dialog state table (DST), 
SA table and global address pool table, etc. Scratchpad can be used for the store of 
module interfaces information. Fig.5. is the DST data structure for UDP example. 

Fig. 5. DST data structure for UDP example 

SIPA is the source IP address and DIPA is the destination IP address; SIPP is the 
source IP port and DIPP is the destination IP port. The Ps field is 16bit, which it is the 
number of UDP packets that passed the range match. Timeout is the lifetime of this 
virtual link. 

After MEv2 of IXP2350 got a UDP packet from the network, the firewall looks up 
the DST for related data item. If there isn't any related data item, the packet will be 
sent to match the firewall access control list (ACL). If this packet can be forwarded, 
the firewall will add a new item into DST and set the SIPA, DIPA, SIPP and DIPP, 
and set Ps to1, set Timeout to 50s; If not, it will be dropped. If this item isn’t timeout 
and firewall receives a follow packet belong to the same dialog. Firewall will forward 
the packet and set Ps to Ps+1, if Ps>=5, firewall will set the Timeout to Timeout+30s.  
In this way, the firewall can avoid the waste of SRAM and prevent the DOS attack. If 
the Timeout field of one item is 0, then the firewall releases the resource of this item 
for other use. 
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NAPT (Network Address Port Translation) is a kind of effective scheme to solve 
shortage of network global address and problems of network security, which is a very 
important part of a firewall, Fig.6.is the two important data structure of firewall de-
sign example. 

Data structure of globe IP address pool  

Data structure of NAPT table  

Fig. 6. Two data structure of firewall NAT/PT 

In globe IP address pool data structure, the Flag is used for the control of the ac-
cess to address pool; AP is a pointer that be pointed to the address of last distribution 
and will be added by the next distribution. GIPAN is used for the number of idle IP 
addresses in the pool. AGIPN is used for the number of all globe addresses. SIPA is 
the base address of globe addresses. BAGIPA is the physical location of globe ad-
dress in SRAM. For the use of these fields, the firewall can distribute globe address 
and locate the physic location easily. 

The NAPT table has eight fields. Flag is used for marking the item static or dy-
namic. The value of Proc is used for marking TCP or UDP. NATPT is the NAT port, 
IPT is the inner port and GPT is the globe port. IIPA is the inner network address, and 
GIPA is the globe address. Timeout is used for the item’s life, its default value is 60 
(300s), management program run on XScale core check it every 5s. First, if the Flag 
is 1and the Timeout = 0, this dialog is over, and the related resources will be released. 
Second, if the Timeout > 0, the firewall will set the Timeout = Timeout – 1. If MEv2 
access one item, the related Timeout field will be reset as default value.  

7   The Life of a Packet in IXP2350 of Firewall 

The life of packet begins when it is received by Gb/FE PHY attached to MSF inter-
face; the packet is fragmentized into m-packets in RBUF. Using the information of 
THREAD_FREELIST, MSF writes the status words into the thread’s registers and 
signals the thread, and then the thread moves the m-packet into DRAM and put a 
handle onto a scratchpad ring. MEv2 will check the scratchpad ring and check the 
packet. For all the tables in SRAM, the MEv2 can check and modify the tables in  
SRAM and packets in DRAM at high speed, and then the handle of packet will be 
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sending to SRAM for next step. The thread can find the m-packets and move it from 
DRAM to MSF directly by TBUF. Finally, once MSF receives the EOP m-packet, the 
Gb/FE PHY transmits the packet, and IXP2350 is going to process the next packet. 

8    Conclusion 

This paper introduces a design of firewall based on Intel IXP2350 and Auto partition-
ing Mode C. The IXP-C maps more directly to packet processing pipeline than tradi-
tion Micro engine C programming. Users don’t have to deal with thread/ME synchro-
nization. So it can reduce the development time for the firewall project. Due to the 
paper size limitation, this paper only introduces part of the implementation. Further 
works can be done to improve our design. For examples, we can improve the arithme-
tic of security, add more function units, and combine it with other security technolo-
gies, etc. 
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Abstract. Since IPv6 has more benefits over IPv4, the development
and deployment of the IPv6 protocol-based products are currently taking
place and the migration of IPv4 to IPv6 has also been steadily happen. In
these mixed network environment, Network management for both IPv4
and IPv6 is a serious issue. In this paper, we focus on the design and
implementation of an active measurement system which can be used
for evaluating end-to-end performance of the IPv6/IPv4 network such
as end-to-end available bandwidth, one-way delay, and one-way loss. We
also describe the procedure of measurement when using AMT6 and some
of its features. The IPv6/IPv4 users as well as network operators will
be greatly helped to analyze network characteristics using the proposed
architectural framework.

1 Introduction

Internet Protocol Version 6 (IPv6) is a critical technology that will help ensure
that the Internet can support a rapid growing user base, the increasingly large
number of IP-enabled devices such as mobile phones, hand-held devices, and
home entertainment, and IP-based services such as online game and voice over
IP (VoIP) [2]. Since IPv6 has more benefits over IPv4 in terms of address space,
routing infrastructure, security, mobility, and quality of service, the development
and deployment of the IPv6 protocol-based products are currently taking place
and the migration of IPv4 to IPv6 has also been steadily happen by using various
transition mechanisms devised by the Internet Engineering Task Force (IETF).
In other words, transition mechanisms such as dual stack, tunneling techniques,
and translation have been implemented so that nodes can communicate with
each other in IPv6/IPv4 networks. Since it is expected that these mixed network
environment will coexist for a long time, network management for both IPv4 and
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IPv6 is a serious issue [1]. This paper focuses on the design and implementation
of an active measurement tool which can be used for evaluating end-to-end
performance of the IPv6 network.

The rest of the paper is organized as follows. Section 2 presents related work.
In section 3, we propose an architecture of active measurement system which can
measure IETF’s IP Performance Metrics (IPPM) [9] such as end-to-end avail-
able bandwidth, one-way delay, and one-way loss in IPv6 network. We named
the proposed system Active Measurement Tool for IPv6 (AMT6). In section 4,
we also describe the procedure of measurement using AMT6 and some of its fea-
tures. With measurement data obtained through AMT6, network management
for IPv6 can be performed effectively. The final section offers some concluding
remarks.

2 Related Work

2.1 Transition Mechanisms

Protocol transitions from IPv4 to IPv6 are not easy because they are typically
deployed by installing and configuring the new protocol on all nodes within
the network and verifying that all node and router operations work successfully.
Many efforts to make rapid protocol transitions on the host have been performed
by system software company such as Microsoft [5] (e.g., Microsoft has supported
IPv6 transition technologies in the operating system such as Windows server
2003 family and XP) and IETF working group [7] which has devised transition
mechanisms as the following categories [8]:

• Dual stack: Both IPv4 and IPv6 protocol stacks are in the nodes. This
mechanism is used by IPv6/IPv4 nodes in order to communicate with either
an IPv4-only node, an IPv6-only node, or another dual stack node.

• Tunneling: IPv6 over IPv4 tunneling is the encapsulation of IPv6 packets
with an IPv4 header so that IPv6 packets can be sent over an IPv4 network.
The IPv4 header contains the IPv4 Protocol field which is set to 41 to in-
dicate an encapsulated IPv6 packet and the Source and Destination fields
which are set to IPv4 addresses of the tunnel endpoints. The tunnel end-
points are either manually configured as part of the tunnel interface or are
automatically derived from the sending interface, the next-hop address of the
matching route, or the source and destination IPv6 addresses in the IPv6
header. While tunneling configurations are manually configured in a config-
ured tunnel, an automatic tunnel does not require manual configuration. The
IPv6 protocol for the Windows operating systems supports the automatic
tunneling technologies such as 6to4, ISATAP, IPv6 automatic tunneling, and
6over4 [6].

• Translation: This is a mechanism that IPv6 packets are converted into IPv4
packets and vice versa. Normally, translation is necessary when the receiver
does not understand IPv6 packet sent from the sender in conditions where
tunneling does not work.
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2.2 IPv6 Management Tools

There are many tools to manage and measure IPv6 networks. The 6NET project
group, one of European IPv6 projects, investigated several management tools
that currently can be used in IPv6 networks and classified the management
tools according to the part of the network they best apply to. Specifically, it
recommends Argus, Ethereal, Multicast Beacon, Pchar, Iperf, and Ntop as man-
agement tools for LAN and AS-path-tree, Looking glass, IPflow, Netflow, Mping,
RIPE TT server, Cricket, and MRTG as management tools for WAN (For more
details, refer to [3]).

On the other hand, the various techniques used by network performance mea-
surement tools can be divided in two categories. One is active measurement, the
other is passive measurement. Active measurement means that the tool actively
sends some probe packets into the network and measures various performance
metrics between end-to-end nodes, and passive measurement means that the
tool monitors the packets transmitted over the network for the purpose of fault,
configuration, or accounting management. While most tools reported in [3] were
implemented by passive measurement technique, only a few tools such as Pchar
and Iperf were based on active measurement. Moreover, Iperf [4], only one of
all tools presented above can be used to measure performance metrics on an
end-to-end path of the IPv6 network.

3 Active Measurement Tool for IPv6 (AMT6)

3.1 Architecture

AMT6 consists of two kinds of systems: (a) Management System (MS) and (b)
Agent-based Measurement System (AMS). Figure 1 shows the architecture of
AMT6.

The MS system has three components, a management service module (MSM),
an agent catalog database (ACD), and a central measurement database (CMD).

Tunneling
Gateway

MS

Tunneling
Gateway

MSM

IPv6 Network

AMS

ATSM

DTM

PMM

ACD

LMD

ACM

Tunneling

AMS

ATSM

DTM

PMM

LMD

Tunneling

CMD

ACM

End-to-End Active Measurement

Fig. 1. Architecture of AMT6
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The AMS (e.g., sender or receiver in Figure 1) system has five components, an
agent control module (ACM), an automatic transition service module (ATSM),
a performance measurement module (PMM), a local measurement database
(LMD), and a data transmission module (DTM). The functions of modules are
the followings:

• MSM: The MSM module in the MS system receives agent-related infor-
mation such as hostname, IP address, and operational status sent from the
ACM module in the AMS system when the AMS system is installed in a
node, and it stores them in the database ACD. In addition, it receives mea-
surement data come from the ACM module in the AMS system and stores
the data in the database CMD.

• ACM: The ACM module in the AMS system, which is graphical user in-
terface, receives commands (transition-related or measurement-related pa-

Fig. 2. Visualization of system information and IPv6 transition mechanisms
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rameters) from the IPv6 user, parses the commands, and then processes the
commands properly. The ACM module also displays the output of result
data come from the PMM module.

• ATSM: The ATSM module in the AMS system automatically enables or
disables protocol transition mechanisms such as 6to4, ISATAP, IPv6 auto-
matic tunneling, and 6over4 on the IPv6 user demands.

• PMM: The PMM module in the AMS system measures performance metrics
such as available TCP and UDP bandwidth, packet loss, and delay between
the sender and the receiver by means of the sender transmitting probe pack-
ets to the receiver. The PMM module has two operating modes, server mode
and client mode. While it runs as a server if set in server mode, it runs as a
client if set in client mode. For example, the sender in client mode generates
certain amount of traffic to be sent to the specified receiver, and the receiver
in server mode receives the traffic and calculates the effective bandwidth

Fig. 3. Graphical user interface for network measurement
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between these two nodes. Actually, since the PMM module contains both
operating modes, it works as a peer-to-peer system.

• DTM: The DTM module sends measurement data to the MSM module in
the MS system and stores the data in the local database LMD. The DTM
module also receives agent catalog information from the MSM module and
transfer that information to the ACM module.

3.2 Graphical User Interface and Features of AMT6

AMT6 is active measurement tool for both IPv4 and IPv6 networks that can be
used to measure various aspects of network performance. Similar to Iperf, AMT6
measures performance metrics such as available throughput, packet delay, and
packet loss between two specified nodes by means of active probing. Figure 2
and 3 show the graphical user interface (GUI) for AMT6 which provides network
operator with the measurement method and results.

Major features of AMT6 are the following:

• It can generate different traffic patterns, such as bulk data transfer and
interactive data exchange, in order to measure different characteristics of
network performance.

• It provides the capability to set the size of the TCP window, and to create
multiple TCP data connections in parallel among many different points in
the network.

• It can avoid generating non-negligible load on the network by running for
specified time, rather than a set amount of data to transfer.

• It provides the graphical user interface easy to use coupled with protocol
transition mechanisms directly to active measurement tool.

4 Procedure of Measurement

4.1 Logging into an AMS System

The AMS system of AMT6 provides a graphical user interface called ACM which
interprets the options chosen and carries out the corresponding operations. The
IPv6/IPv4 user must log in to the AMS system before measuring end-to-end
performance as shown in Figure 4. When the user first login to the AMS system,
the common management information such as username, hostname, IP address,
and operational status have been sent to the MS system automatically. These
are stored in the database ACD.

4.2 Measuring End-to-End Performance

The basic steps in measuring a performance metric are as follows:

(1) Setting test parameters. There are many options to set a variety of test
parameters, such as TCP window size, buffer length, destination port num-
ber, maximum segment size, interval time, and so on. TCP window size
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option means the socket buffer sizes. For TCP, this sets the TCP window
size. For UDP, it is just the buffer which datagrams are received in, and
so limits the largest receivable datagram size. Buffer length option is the
length of buffers to read or write. Default is 8 KB for TCP, 1470 bytes
for UDP. Note for UDP, this is the datagram size and needs to be lowered
when using IPv6 addressing to 1450 or less to avoid fragmentation. Des-
tination port number option is the server port for the receiver in server
mode to listen on and the sender to connect to. Maximum segment size
option means the TCP maximum segment size (MSS). The MSS is usually
the MTU − 40 bytes for the TCP/IP header. For ethernet, the MSS is
1460 bytes. Interval time option is the interval time in seconds between
periodic bandwidth, delay, and loss reports. If non-zero, a report is made
every interval seconds of the bandwidth since the last report. If zero, no
periodic reports are printed.

(2) Connecting AMS1 with MS. The IPv6/IPv4 user who is likely to measure
needs to know the network connection status of the specific receiver node.
Thus, AMS1 will be connected with MS.

(3) Searching the list of the connection-enabled agents in the database ACD.
The ACD database stores agent-related information such as accessible sta-
tus (login or logout), operation mode (client or server), and current running
protocol stack (IPv4 or IPv6).

(4) Sending the list of the connection-enabled agents to AMS1. AMS1 receives
the list and represents it on the screen. The user is able to select only one
(AMT3 in figure 5) which becomes the receiver to measure.

(5) Configuring test parameters. The sender AMS1 transfers the configura-
tion of test parameters to the receiver AMS3. The receiver AMS3 sets the
parameters, otherwise the test will not run properly.

(6) Generating traffic. The sender AMS1 generates certain amount of traffic
according to the configuration of test parameters to be sent to the specified
receiver.

(7) Reporting test results. For TCP, the results contains TCP window size, des-
tination port number, time interval, the amount of transfer packets, and
estimated bandwidth. For UDP, the results contains destination port num-
ber, time interval, the amount of transfer packets, estimated bandwidth,
delay, and loss.

(8) Storing test results into LMD. At completion of the tests, the user is capable
to save the results in the local database LMD. Using the data in this
database, the user will be greatly helped to analyze network characteristics.

(9) Connecting AMS1 with MS. It is necessary to replicate the fragmental test
results saved in the local database LMD into the central database to clarify
more characteristics. Thus, AMS1 will be connected with MS.

(10) Replicating test results into the database CMD. The test results sent from
AMS1 stores in the central database CMD, including with the measurement
date.
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5 Conclusion

In this paper, we proposed an architecture of active measurement system which
can measure IETF’s IP Performance Metrics (IPPM) [9] such as end-to-end
available bandwidth, one-way delay, and one-way loss in IPv6 network. WS also
describe the procedure of measurement when using AMT6 and some of its fea-
tures. With measurement data obtained through AMT6, network management
for IPv6 can be performed effectively. AMT6 is expected to be deployed in Korea
Research Environment Open NETwork (KREONET) as the end-to-end active
measurement tool for IPv6.
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Abstract. In this paper we propose semantic web-based mobile knowledge 
searching systems for display Web pages on mobile terminals. The proposed 
system reduces the time of verification when mobile users search for informa-
tion to which they want, and ontology-based browsing is possible and the com-
puter can use these resources in mobile environment. 

1   Introduction 

As the development of Internet technology, people can access and use a huge amount 
of information through the Web browser. As the number of Internet users and the 
volume of information increase, users’ requirements are getting more diverse and 
complicated. People are flooded with information and, as a result, it is very important 
to extract necessary data efficiently, process it, and produce and search accurate and 
appropriate information [2, 3]. What is the problem is not what we can do with the 
Web but how effectively we use it to satisfy our needs. Recently the rapid develop-
ment of mobility has enabled access to an extensive amount of Web information in 
the mobile environment and mobile terminals are embedded with Web browser. Web 
access from mobile terminals is not used as much as expected. Of course, because of 
the increase in the volume of information, mobile users have trouble finding the in-
formation that they want [7]. 

This paper proposes a mobile knowledge searching system to reduce the time of 
verification when mobile users search for information to which they want.  

2   Related Work 

Ninety percent of search engines that we use rely on Boolean operations such as AND 
and OR [5, 6, 8]. However, there are many other search models other than Boolean 
operations. Representative ones include probability search, weighted search, fuzzy set 
search and inference search. The performance of Boolean search is high in terms of 
speed but is lowest in terms of accuracy. However, because other search models are 
difficult to implement due to problems in expressing complicated logical relations, 
existing search engines mostly support only Boolean operations. As for the shortcom-
ings of Boolean search, it cannot indicate the relative importance of each concept, 
cannot show the order of fitness to queries, and cannot find documents that match the 
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keywords partially because it retrieves only those matching the keywords exactly. OR 
operation produces results more than expected, and AND operation less than ex-
pected. The fact that it is not easy to query or modify according to user feedback is 
another shortcoming of Boolean operation. 

The use of Web data through mobile terminals is increasing rapidly, integrated 
search on the same level as that of Internet search has many practical difficulties. 
Rather than the existing method with URL input and mobile numeric domains, which 
has long and complicated connection process, we need a service that can access mo-
bile IP pages just by pressing the number assigned to each service and the mobile IP 
key. Furthermore, there are problems such as low data compatibility between mobile 
terminal software and Web contents service providers and low efficiency of process 
from the production of mobile contents to search service [4, 7, 10]. 

Mobile searching method is testing mobile search function with mobile communi-
cation subscribers. In general, messages are downloaded or sent in the Internet and 
fees are charged to individual users according to various mobile search services. In 
the future, there will be no boundary or distinction between platforms in 
wired/wireless environment, ubiquitous environment. At present, further research 
needs to be made to overcome the small memory and low power of mobile terminals 
and to reduce their weight [5]. 

3   Mobile Knowledge Searching System Based on Semantic Web  

The semantic Web is developing standards and technologies for the computer to un-
derstand information on the Web, and supporting semantic search, data integration, 
and navigation. The lowest level is composed of Uniform Resource Identifier, which 
is an addressing method for indicating resources in Web protocol, and Unicode. The 
second level is XML, which can define a certain concept in a modular method, and 
Namespace. The third level is Resource Description Framework (RDF) and RDF 
schema for describing resources and the fourth level is ontology. The sixth level is 
technological elements for rules, logic and verification. The seventh level is proof and 
trust, which are contents related to the reliability of semantic Web information. 

The mobile knowledge searching system is composed of four modules - viewer 
system, Java Web start, ordinary searching engine and knowledge searching system. 
The viewer system is a client program for mobile users. The Java Web program is to 
distribute and manage the viewer system on the Web. The searching system provides 
a table of contents and index service, and the mobile knowledge searching system 
provides several meaningful data required for keywords. The structure of the mobile 
knowledge searching system is as in Fig. 1.  

User interface is designed to accommodate general applications, Web applications 
and mobile terminals. Each application is basically based on axis framework, so can 
use Web services. It is also based on Cocoon framework, supporting WML, so pro-
vides expression methods suitable not only for PC but also for mobile terminals. It 
solves the limits of information expression and information space and differences in 
the speed and quantity of data transmission. 
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Fig. 1. Structure of mobile knowledge searching system 

 

Fig. 2. Mobile knowledge searching system process 

We utilize axis framework to support the Web service development environment 
and Cocoon framework to support mobile environment, and use to pure Java in de-
velopment. The system uses Java 2 API for process ontology, and makes use of 
JDOM, DOM and SAX to process basic XML data. The mobile knowledge searching 
system has JVM, which can be executed regardless of OS as long as the Internet is 
connected. 

In the mobile knowledge searching system, knowledge Web service providers pro-
vide index searching service, contents searching service and knowledge searching 
service. XML is provided as metadata for contents, and ontology is built for  
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Fig. 3. A scenario of mobile knowledge searching service 

knowledge service. Each service has input and output parameters. The process of the 
mobile knowledge searching system can be expressed as in Fig. 2. 

The Web service server provides Web services through the axis engine, and the 
knowledge viewer application, which is the end user. He receives the services through 
the axis engine. In addition, the knowledge viewer application is distributed and its 
version is managed automatically by a separate application server on the Web. Thus, 
users are provided with the latest knowledge viewer easily without additional installa-
tion. Fig. 3 shows a scenario of utilizing the semantic Web-based knowledge search 
system for mobile environment. 

On receiving a search request from the knowledge viewer, the knowledge Web 
service server run the inference engine from the corresponding ontology, converts 
the result into XML and return it to the knowledge viewer. The mobile user is pro-
vided with the service from the Web service server by clicking the corresponding 
item. Finally the mobile user can view the desired contents through the knowledge 
viewer. 

4   Performance Analysis 

Table 1 shows comparison of functional and technological aspects between the con-
ventional system and the proposed system. The conventional searching system works 
on the basis of database utilizing stabilized DBMS functions. Its processing speed is 
fast but the accuracy of searching results is lower than that of proposed researching 
system. Also, proposed searching system is superior in accuracy more than that of the 
conventional searching system.  
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Table 1. Comparison of functions  

Item Conventional Sys-
tem 

Proposed System 

Knowledge manage-
ment 

• Thesaurus registration 
through manager’s 

analysis 
• Hierarchical structure 
• Directory-based sys-

tem 

• Ontology-based instance 
registration 

• Applicable to all applica-
tions 

• Visualization 

Searching speed 
• Fast using DBMS 

functions 

• Somewhat slow due to the 
addition of inference step, 
which is a difference from 
the current search system 

Accuracy 
• Low due to simple 

keyword matching 
search 

• High as semantic interpreta-
tion of data is possible 

Reusability • Limitedly reusable 
• Reusable according to the 

international standard of 
ontology language 

User interface 
• HTML-based brows-

ing/search 

• Ontology-based brows-
ing/search 

• Browsing/search by topic 
• Mobile browsing/search 

Difficulty in the ap-
plication of inference 

technology 
• Very difficult 

• Easy to apply rule-based 
inference search 

External resource 
• Hyperlink 

• Meta data search 

• Link based on Web services 
• Semantic search based on 

Web services 

5   Conclusions 

In the mobile environment, the proposed searching system used to WSDL which is a 
Web service standard for describing Web services. It can support environment that the 
computer can understand and process semantically. Our system reduces the time of 
verification when users search for information that they want. Also, if the system is 
used in semantic search in semantic Web environment, it can reduce inconveniences. 
Web service provides environment in which users can use integrated services without 
the limit of time, place and equipment and, resultantly, it renders diverse services in 
response to users’ demands. 
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Abstract. In this paper we will address the architecture and implementation of an 
object-based storage system, and describe the design of the intelligent ob-
ject-based storage device (OSD), which is built on embedded system of RAID. 
Our OSD is designed for general purpose according to the T10 standard. It not 
only can be easily added to the massive network storage system over TCP/IP to 
increase the quantity and quality of the storage system by adding intelligent OSD 
to the storage, but also can reduce the TCO (total cost of ownership).Also we 
extend the T10 standard by adding the object physical layout information to help 
shorten the access latency and to increase the intelligence for our OSD. 

1   Introduction 

As electronic data is growing continuously and rapidly, the first generation of massive 
storage system architectures such as NAS, SAN have exposed some of their own ad-
vantage and drawbacks [10]. Object-based storage as a much higher level of abstraction 
for networked storage has combined the advantages of SAN and NAS, thus making the 
beginning of the next generation of storage designs. 

Object storage was first proposed in CMU as an academic research project [1, 2] and 
is still an active area of research in academia. The first standardization effort [3, 4] of an 
Object Storage Device specification is embodied in the SCSI protocol and is being 
implemented as a new set of SCSI commands. The first T10 draft standard was brought 
to SNIA in 1999.Version 1 of the T10 standard was publicly reviewed and approved in 
late 2004; the OSD standard has been published as ANSI INCITS 400-2004 [4]. 

The OSD standard proposes a standard interface of the object-based storage device, 
by which devices evolve from being relatively unintelligent and externally managed to 
being intelligent, self-managed, aware of the storage applications they serve and of 
high compatibility in the object-based storage system. Our RAID-based, object-based 
storage subsystem is designed following the standard to make it a more intelligent OSD 
with high compatibility. 

There are two ways to develop intelligent OSD: embedding the object storage in-
terface into the disk [9](for example, Seagate has designed a prototype disk in this 
approach ) and fulfill the interface by the subsystem [9].  

There are several prototype systems designed to provide object storage interface. 
Lustre developed by Cluster file systems, Inc., demonstrates the concept of ob-
ject-based storage systems by providing a cluster file system. But the object storage 
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device is not designed according to the T10 standard [12], but managed by their “object 
storage server” as a file device without intelligent self-management [5]. Panasas stor-
age blade is a wonderful object storage device providing object interface according to 
the T10 standard. But it is dedicated to its high performance storage cluster with the 
blade. It is too expensive to be used for general purpose [11].  

Our RAID-based, object-based storage subsystem is an embedded system designed 
following the T10 standard version 10 to make it an intelligent OSD with high com-
patibility and low cost to be used in our storage system and for commercial use. It is the 
subsystem of our object-based massive network storage system built over the ISCSI 
protocol. The OSD is designed based on a RAID system designed by our laboratory, 
thus equipping the OSD with much more capacity and very high security, while re-
ducing your TCO.  

Attributes of the T10 standard do not define the layout information of object, and the 
current object-based storage systems manage the storage of objects via local file sys-
tems, such as XFS used in Lustre [12]. In our OSD subsystem, we add the layout in-
formation to the extended attributes for each object, where object data can be accessed 
only through the attributes. This can make OSD more intelligent as a component of 
object storage management. We will detail it in Section 3.    

The rest of the paper is organized as follows. In Section 2, we will introduce the 
architecture of our object storage system. Section 3 describes the design of our 
RAID-based OSD and proposes our extended attributes. Section 4 summarizes the 
features of our OSD. The paper is concluded in Section 5. 

2   Object-Based Storage System Architecture 

In OSDs, an object is the basic unit of data stored. An object is a combination of file 
data and a set of attributes that define various aspects of the data. T These attributes can 
define on a per-file basis the RAID levels, data layouts, and quality of service. The 
conventional block storage system must track all of the attributes for each block in the 
system, whereas in OSDs each object maintains its own attributes to communicate to 
the storage system and manages this particular piece of data. This simplifies the task of 
the storage system and increases its flexibility by distributing the task of managing of 
the data to the data itself. 

There are several types of OSD objects: the user object, the collection object, the 
partition object, the root object. A user object is the carrier for a user file, which 
contains user data that is referenced by byte offset within the OSD object. Each object 
is identified by a unique ID (OBID) [7]. A collection object is a logical set of user 
objects that have some common attributes. A partition object is an OSD object used 
for creating distinct management domains (e.g., for naming, security, quota man-
agement). There is exactly one root object associate with each OSD logical unit 
which is always present whose attributes contain global characteristics for the OSD 
logical unit. [7]. 

Our object-based storage system, shown in Figure 1, consists of Metadata server 
cluster, RAID-based OSDs, and clients. 
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Fig. 1. Object-based, Storage System Architecture 

Desirable properties of a storage system include high security, high performance, 
high scalability, and platform-independent data-sharing. Our proposed architecture 
attempts to follow this guideline incorporating the notion of object-based storage and 
following unique characteristics: 

1. Complying with the latest T10 standard to provide an object-based storage prototype 
model and an object storage interface; 

2. A scalable metadata server that can dynamically accommodate the joins and de-
partures of OSDs by registering such OBDs, thus allowing the storage system to 
scale. 

3. Extensions of attributes to gain more intelligence and higher performance and se-
curity.  

4. Both the data path and metadata path are constructed over the TCP/IP network, 
making it easier to share data across different platforms. 

2.1   Metadata Server Cluster 

In this architecture, the metadata server (MDS) implements the user component of file 
system with the following functions: 

• Authentication –MDS identifies and authenticates Object-based Storage Devices, 
provides credentials to new storage system members, and checks/renews those 
credentials periodically to assure that they are valid members. When a client wants 
access to the storage system, MDS assures its identity and provides authorization for 
the access to OSD.  

• File interface –MDS provides the client with a virtual file system. When the client 
requests to perform an operation on a particular file, MDS examines the permissions 
and access controls associated with the file and converts file operations to object 
operations on OSDs and provides OSDs’s map and a capability to the requesting 
client. The map consists of the list of OSDs, their IP addresses, and the components 
of the object in question. The capability is a secure, cryptographic token provided to 
the client node, which is examined by the OSD with each transaction.  
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• Capacity management– The MDS must control the balance between the capacity 
and utilization of the OSDs in the whole system to make sure that the available disk 
resources are optimally utilized. 

•  Expandability– MDS is in charge of file/directory management (which is ap-
proximately 10% of the workload) [6] and leaves block/sector management (which 
is approximately 90% of the workload) to OSDs [6] .Because an OSD is easily 
added to the system, MDS also can expand dynamically to the cluster to guarantee 
the performance of the system. 

As described above, MDS is the bridge between Clients and OSDs and provides a 
file management interface to clients while keeping track of all OSDs. 

2.2   RAID-Based OSD 

OSD as an embedded system is the core of the object-based storage system. It is an 
intelligent self-managed device, which provides an object interface for clients to access 
data stored in it. Every OSD has its own globally unique ID. The new OSD command 
set describes the operations available on Object-based Storage Devices. The result is a 
group of intelligent disks (OSDs) attached to a switched network fabric (ISCSI over 
Ethernet) providing storage that is directly accessible by the clients. Unlike conven-
tional SAN configurations, the Object Storage Devices can be directly addressed in 
parallel, allowing extremely high aggregate data throughput rates.  

The RAID-based OSD design provides an object interface to every client according 
to the latest T10 standard, the standard interface focusing on integrating low-level 
storage, space management, and security functions into OSD from MDS.  

Block-based file systems can be roughly divided into two main components namely 
the user component and the storage component. The former is responsible for pre-
senting user applications with logical data structures, such as files and directories, and 
an interface for accessing these data structures; whereas the latter maps the data 
structures to the physical storage. This separation of responsibilities makes it easy to 
offload management task to the storage device, which is the intended effect of ob-
ject-based storage. In figure 2, the user component of the file system is unchanged, the 
storage management component offloaded (approximately 90% of the workload of 
metadata) to the storage device, and the device interface is changed from blocks to 
objects. 

With the help of MDS, a large file can be divided into more than one object and 
mapped to different OSDs. The client can communicate with different OSDs in parallel 
to access the file to make good use of the bandwidth and improve the throughput of the 
system. 

In section 3, we will describe the design of OSD in more details. 

2.3   Client Node 

The clients work on our FTP-like software to achieve accesses to data stored in our 
storage system. There two channels of communication: control path to MDS over 
TCP/IP; data path to OSDs over ISCSI. Though the control path, the storage system 
provides a virtual system interface to client to hide details of management from the 
client. Through the data path, the client conducts transfers of data and 90% of the 
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metadata to and from OSDs directly and in parallel after it get the authorization and the 
OSD’s ID, to significantly reduce the MDS’s workload, thus removing possible bot-
tlenecks, and enhancing the throughput of the whole storage system. 

2.4   System Work Flow 

In this section we will use a simple three-node configuration to describe our propose 
storage system. Each OSO (object Storage Device) is embodied over SCSI, so the 
system builds on ISCSI protocol over the TCP/IP network. 

 

Fig. 2. System work flow 

As Figure 2 shows, every OSD must register itself and configure on the metadata 
server before it can provide service. Metadata server will execute some control ob-
ject-based storage device commands (e.g., Format OSD, create partition, etc.) through 
the control channel. 

A client request is handled by the system in the following steps, also shown in 
Figure 2: 

1. The Client sends request to the metadata server, which includes file name, file 
command, and its identification, etc. 

2. The metadata server verifies that the identification is legal and translates the file 
request to corresponding object request on specific OSDs assigned by the metadata 
server, and returns the object’s information, the OSDs’s information and access 
authorization to the client. 

3. The client sends the object access request to the designed OSDs with the information 
provided by MDS. 

4. Each request OSD verifies the access authorization information to make sure the 
object access is legal, then executes the OSD command and begins direct data 
transfer with client. After finishing the command, the OSD returns the command 
status to the client. 

5. After client receives all the status from all designed OSDs, it sends an acknowl-
edgement to the MDS. 
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According to the acknowledgement, the MDS will update the file and the OSDs’s 
information stored in MDS.       

3   Design of RAID-Based OSD 

The RAID-based OSD subsystem is an embedded system built on commodity hardware 
at a low cost but with a TERABYTE-lever massive storage to make it more 
cost-effective for general users. We add the ISCSI Target control layer and OSD 
command interface to the RAID control software to make the EIDE RAID an intelli-
gent OSD. The software is running under the embedded Linux operating system.  

3.1   Hardware Architecture 

The architecture of the OSD is shown in figure 3. An OSD consists of a processor, 
RAM memory, disks and Ethernet interface 

 

Fig. 3. RAID-based OSD architecture 

The OSD is built on the EIDE RAID designed by our laboratory [16].With a high 
performance, combined with a large quantity IDE disks space, OSD is poised to 
achieve a TERABYTE-level massive storage at a low cost. More than 16 disks can be 
added to the main board with the help of an extended RAID card (EIDE RAID 
CONTROLLER), so an OSD can achieve 1.875TB (16* 120GB/1024=1.875TB) with 
120GB each disk. 

As an embedded system, OSD has its own CPU and memory to process the control 
software itself and executes self-managing functions to become an intelligent device. 
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With the Gigabyte Ethernet interface OSD can provide high throughput as a network 
storage subsystem to process and store data from the network. Future, it’s also very 
easy to upgrade to serve the next generation of networks by upgrading the network 
protocol. 

3.2   Software Architecture 

The software is the heart of the subsystem, it is based on the embedded Linux and 
consists of server modules including the ISCSI target driver, the OSD command han-
dler, the object storage management, and the RAID control driver. All these compo-
nents are implemented at Linux kernel level. 

 

Fig. 4. software architecture 

Generally, the software can be divided into two main parts that provide object in-
terface and block interface, respectively, as illustrated in Figure 4. 

Object Interface. OSD receives OSD commands and object data from the ISCSI 
channel initiated by clients or MDS to make sure that they access data as objects. The 
OSD commands are defined as the extension of the SCSI command in theT10 standard 
[7]. The ISCSI target driver receives OSD commands and object data encapsulated in 
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ISCSI PDU, and then unpacks the PDU. The OSD command handler analyzes the 
command and makes sure the user is legal and then deals with the object command. The 
object storage manager converts object to blocks in RAID. When an object is created, it 
is stored in blocks in RAID, and we record the blocks’ addresses in the object’s ex-
tended attribute [7]. The data is not accessible outside the OSD in block format, only 
via their object OBIDs. 

Block Interface. RAID is based on disks, it stores data in blocks in logical. Buffer 
cache is kernel space memory and is the intermediate repeater to accelerate access 
blocks in RAID. RAID control driver is in charge of stripping blocks among the disks 
according to the RAID level configured by the OSD device, and the data as it is laid out 
into standard tracks and sectors.  

3.3   Extended Attributes  

Associated with each object is a set of attributes, organized as pages with 2**32 at-
tributes per page and 2**32 attribute pages. But just very few of the attributes are 
defined, and most of them are in reference to the control information of object. There is 
not any attribute about the object data layout in OSD.  

Currently, the object-based storage systems have not implemented an object-based 
file system [15]manage the storage of objects for their OSDs. As for Lustre, it storages 
the file data as object in OST(object storage target), and OSTs are built on existing 
Linux file system such EXT3 ,XFS, etc[13][14]. So the objects are managed as files in 
the OSTs, and the file access from Client will map the file to object in MDS, then map 
object to file in OST. The overhead of accessing an object can superior to the traditional 
file system.  

We define the extended attributes for object data layout information. Object data is 
stored on disk device as blocks which addressed by block number. The extended at-
tributes are defined as <base block number1, length1>, <base block number2, 
length2>, …, <base block numbern, lengthn>. Each  object will be associated with one 
128-bit object id, and the id will map to the attributes for the object. Once the client 
want to access the object, the OSD will search the extended attributes of the object. 
With the attributes, OSD can access all the blocks for the object with less overhead. 
Because the object data cannot be store in all contiguous blocks, we will try to allocate 
contiguous blocks for it. 

4   Intelligence OSD Device Features 

As an intelligent embedded system, the OSD has its own hardware and software, so it is 
able to configure and register itself to the storage system, to manage the storage space 
as a RAID and all objects in which are in a platform namespace, to handle the OSD 
command and manage storage spaces for objects, to do the security job. 

Configure and register (self-discovery). When the OSD device initiates, it will con-
figure itself (e.g. decide the RAID level, get information from disk to buffer, etc), then 
send a request with its information to the MDS to register itself. When it success, the 
OSD is legal member in the storage system and available to all clients. 
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Self-manage and Extended Attributes. The OSD manage all kinds of objects (root 
object, partition object, user object, etc.) by their attributes to manage the objects layout 
in the OSD. Especially for the user object, to shorten the latency of access object it is 
necessary to buffer the data address. We define the reserved attributes [7], and record 
all the block address of the object data. And the recently hot object’s attributes will be 
buffered. 

Platform Namespace. Objects are on an equal footing with each others, there is not 
hierarchy relationship (like traditional file system) for objects. We design a platform 
namespace: once you want to access an object, then the OSD will get the object’s 
attributes by the OBID directly. With the help of attributes, it is easy to get the address 
of the object data to access the object. The platform namespace shorten the access path 
and improve the performance. 

RAID-Based Device. The RAID configure it RAID level according to the command 
from MDS, and then strip object data into the RAID. As disk device RAID can make 
object data much safer in block level with failure recovery. And RAID is easy to 
enlarge its capacity by adding IDE disks to achieve a TERABYTE-level OSD. 

Self-guard. For an intelligent OSD, it is in charge of exchange data between clients 
directly, so OSD must do security job itself. Both clients and network are not trust for 
OSD. Every request from the client first will get authorization and a digest of the entire 
request information (OBID, service_action [7], etc.).And then client will send the 
request to the OSD includes the command, the client capability, and a digest of the 
entire request. Upon receipt of a new request, the OSD must first validate the client 
digest. The OSD will create its own digest of the request and compare this with the 
digest sent by the client. If they match, the OSD is guaranteed that neither the capability 
nor any of the arguments in the request were modified. Had either of these changed, the 
digest generated by the OSD would differ from that sent by the client, and the OSD 
would reject the request; all responses sent from the OSD to the client can be protected 
using a digest similar to that sent by the client. 

5   Conclusion and Future Work 

Our object-based storage system implements a prototype of object interface storage 
system following the T10 standard. The RAID-based intelligent OSD is an embedded 
system. As designed on IDE interface RAID, the OSD reduce your TCO of a 
TERABYTE-level OSD with more security and make the PETABYTE-level ob-
ject-based storage system comprised of OSDs more acceptable for commercial use, 
then accelerate the object-based storage industry. 

Our OSD implements according to the T10 standard but also extends the standard 
for its attributes part to make it more intelligent and easier to manage the object data 
layout one OSD itself. As an intelligent OSD, our OSD has features as self-discovery, 
self-manage, self-guard, self-configure, and provide a platform name space for objects. 

We plan to further explore the object-based attributes and methods, to implement 
different level security policies for different type of object access, and to define object 
methods for different application to make OSD much more intelligent and flexible. 
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Abstract. Remote mirroring has become increasingly important as organiza-
tions and businesses depending more and more on digital information. Balanc-
ing the data availability, access performance and the cost of building and main-
taining is essential goal for designing remote mirroring system. This paper pre-
sents a novel architecture of remote mirroring based on iSCSI and describes the 
structure of mirroring log and buffer which can improve performance and keep 
availability of date synchronously. The experience results show the maximal 
workload of remote mirroring in 100Mbps and gigabit network environment  
respectively. 

1   Introduction 

The majority of today's businesses cannot survive a catastrophic loss of corporate 
data. Data is growing at exponential rates, forcing businesses to continually examine 
and enhance the availability, security and efficiency of their data environment. Hard-
ware failures, all kinds of software defects, destruction of vicious virus, buildings 
fires, electric power broke off and man-made mistake, all of which will lead to the 
key data being unavailable, even being lost. Though these incidents would not occur 
frequently, but some preparations have to be made to prevent data lose in these acci-
dents, because the data unavailable penalty is very enormous. In 2001 the investiga-
tion showed that 1/4 of the informants estimated that the cost of machine halt was 
250,000 dollar per hour, and 8% of them estimate it as to be 1,000,000 dollar per 
hour[1]. The cost of data loss is even higher. It has been realized recently that the plan 
for recovery and constancy is necessary, and the key method is to construct the reli-
able storage system to protect the usability of the data and the ability of unfailing data 
access. 

Data mirroring is a classic technique for tolerating failures by keeping two or more 
copies of important data. It is widely used inside disk arrays (where it is called 
RAID1). These copies are distributed across multiple sites, where it is called remote 
mirroring. Figure 1 shows the basic topological structure of remote-mirroring system, 
which only includes a single remote-mirroring site, but could naturally expand to 
multiple ones actually. 
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Grant NO 2004CB318203 and National Natural Science Foundation of P R China under the 
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Fig. 1. Classic remote-mirroring system 

The design of remote-mirroring systems must have to aim at multiply goals. The 
first is keeping the copies as closely synchronized as possible to reduce the data loss 
risk when failures occur. The second is delaying foreground writes as little as possible 
to reduce the effect on application system.  The third is to maintain availability in the 
face of as many failure types as possible. Finally occupying as little expensive inter-
site network bandwidth as possible to reduce the total cost of running and mainte-
nance, because renting dedicated network is very expensive[2]. For example, the 
rental price of Internet dedicated access bandwidth (the rent per month) for china 
Unicom, 512K = 1024 ; 10M  3012 ; 20M  5700 ; 45M  13190 ; 
100M  21200 ; 155M  80000. 

From a view of implementation, however, these goals contradict with each other 
frequently, synchronously updating all copies is the simplest solution, but it has poor 
write performance and leads to high total costs in remote-mirroring systems. There-
fore, the trade-off among data loss risk reduction, performance guarantee and less cost 
is to be taken into account carefully. 

The advent of iSCSI technique offers a practical feasible scheme for high cost-
performance rate design for remote mirroring. The iSCSI protocol is perceived as a 
low cost alternative to the FC protocol for remote storage. iSCSI could be transmitted 
on common TCP/IP network, and in principle requires no need of dedicated line or 
hardware supporting. WAN could be even enough. Likewise, iSCSI is based on op-
erational semantics of data block, so it could be applied to remote block mirroring 
expediently.  

Compared with dedicated line such as FC, iSCSI protocol has longer transmission 
delay. Moreover, if it shares the same network with applications, it would cause trans-
ferring shake and even bandwidth shortage, which heavily influences on performance 
of remote-mirroring system. The solution is to design mirroring buffer for both local 
system and remote write to keep smooth transmission, improve network efficiency 
and enhance performance. But the introduction of data buffer would easily cause data 
loss risk if exceptions occur in local system, such as power’s failure or exceptions 
happen. A feasible method to reduce these risks is using synchronous write between 
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local system and remote system. However it leads to terrible performance. So Design 
remote mirroring system based on iSCSI is real challenge.  

This paper firstly introduces the design principle and presents the architecture of 
Remote Mirroring Based on iSCSI, then further describes the structure of mirroring 
LOG and BUFFER, ensuring the availability of data while improving the perform-
ance. Finally, our experience results demonstrate that remote-mirroring system could 
undertake maximum load in 100Mbps and gigabit network environment respectively. 

2   The Remote Mirroring Architecture 

Remote-mirroring module can be performed in four main places, which are in host 
OS, HBA (Host Bus Adapter), Fiber Channel switch in SAN, or controller in disk 
arrays, each with advantages and disadvantages. The benefit of implementation in 
host is to apply data mirroring to specific application which reduces the volume of 
data that need be mirrored and support file semantic interface. However, this method 
may impact on foreground routine and increase additional workload for host. In the 
other three implementation methods are independent of foreground applications. For 
large-scale disk array, remote-mirroring function carry out by itself, such as Sym-
metrix Remote Data Facility SRDF [4] of EMC, the price of which is unacceptable 
for small and medium enterprises. Remote-mirroring function designed in this paper 
is implemented in host, and also could be easily transplanted into switch or disk array. 

The system treats Logic Unit (LU) as entrance of mirroring, which is common 
used. LU is the basic interface between file system and disk system, and identified as 
volume for file system. Each LU could be regarded as linear space consisted of many 
data blocks, accessing corresponding data block by corresponding address. An enter-
prise-level disk array could contain thousands of LU, and not all the LU need be mir-
rored. Only mirroring special LU could effectively reduce the needless waste of re-
source such as disk capacity and network bandwidth, moreover allow file system 
having different protection level for different data. 

Because iSCSI employs TCP/IP network even WAN to connect two sites, the real 
available bandwidth of network would wave momentarily. Consequently, it would 
result in shaking in mirroring process[5]. Therefore, it is very important to design spe-
cial buffer of mirroring to acquire high and stable performance. Mirroring buffers 
would design in two places, one is mirroring module in local hosts; another one is in 
remote target. Buffers could smooth network wobble obviously, however it also 
brings data loss risk. We classify these risks into two levels, the first level is host 
breakdown and could recovery before long, and the second is local storage devices 
failover and unavailable in primary site. The former is more frequent than the latter 
and only could lose data in memory. The latter conduces permanent local data lose, 
however it is infrequent. In other words, data in local disk have much smaller lost 
probability than that of failures in host memory. Then, the buffer structure in iSCSI 
mirroring must conciliate the two sides. 

Therefore, we have designed novel structure as mirroring LOG and BUFFER to 
store all the unfinished remote updating data and operations. Local data buffers have 
fixed size, and LOG is kept by NVRAM. Local write is absolutely synchronous, 
which means no returning acknowledgment to upper applications until data really 
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writing to local disk. For the first risk, consequently, there isn’t data loss. When there 
are lots of burst writes and local BUFFER is full,  the local disk address of corre-
sponding data should be recorded in log and none of the real data blocks should be 
reserved in BUFFER. Thus the size of BUFFER could be effectually reduced. 

Figure 2 shows the architecture of Remote Mirroring Based on iSCSI. The primary 
and secondary sites are connected with TCP/IP network. The mirror module is in-
serted into normal I/O routine between generic device driver and disk drivers, and 
captures all the write or update requests to forward to remote disk, but is transparent 
for all read request. To enhance performance, all update data first are stored in data 
buffer and relevant requests are recorded in command log. After acknowledging from 
local disk and remote site, data and requests are removed from buffer and log. The 
remote iSCSI target also comprises its data buffer and command log to reduce re-
sponse time. Certainly, whether using them is decided by administrator to balance the 
performance and lost risk in remote site. The primary site includes iSCSI initiator and 
the remote site includes iSCSI target. 

 

Fig. 2. The architecture of Remote Mirroring Based on iSCSI 

The Figure 3 shows the work process of Remote Mirroring Based on iSCSI. When 
updating data have arrived at the mirroring module, the data flow into two channels, 
one’s target is local disk, which write data to local disk like without mirroring, the 
other’s is writing remote mirroring disk. Local write would be not given more discus-
sion here. The start point of Write routine is local mirroring log and local data buffer 
in memory. The log merely records writing or updating requests in the same order as 
FIFO except write coalescing discussed in latter content. The buffer stores updating 
data until local disk and remote site acknowledging. When receiving acknowledge-
ment, the buffer removes relevant item and data from the log and buffer. More details 
could be denoted as figure 3. From a view of remote mirroring taxonomy, it is semi-
synchronous model. 

The object of remote mirroring is data block in LU. Considering that some data 
blocks will be updated again before long, write coalescing policy could be adopted for 
enhancing performance. If the last operation of writing the same block still reserves in 
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buffer and has not been executed, then the two operations could be combined together 
as one, which could save both network bandwidth and log space. The primary effect 
of write coalescing on fault tolerance is to alter the order in which updates are applied 
at the secondary site, moreover it could also be applied at the secondary to reduce the 
amount of work needed for an update. However, write coalescing policy may lead to 
data inconsistency. To solve this problem, isolated location in mirroring buffer is 
defined as batch out of which the function of write coalescing could be non-
permissible. This scheme explicitly delays sending a batch of updates to the remote 
site, in the hope that write coalescing will occur, and only one copy need be propa-
gated. Setting accurate isolated locations requires complicated semantic support. To 
simplify the definition of isolated location, the size of the batch can be selected in the 
number of updates, or the amount of data written.   

 

Fig. 3. The flow chart of Remote Mirroring Based on iSCSI 

In the case of host faulting over, it is nearly impossible that data don’t lose abso-
lutely. Remote-mirroring protect could only reduce amount of data loss in large degree 
and hardly lose nothing. The data lose is fewer, and its total cost is more. Taking cost, 
performance and loss risk into consideration, our system could offer two remote-
mirroring modes: synchronous mode, semi-synchronous mode. Synchronous mode 
ensures that all modifications are transferred to the remote site prior to the acknowl-
edgement of each write to the host. Synchronous mirroring guarantees the local copies 
are consistent with the copies of the data at the remote site and also that the data at the 
remote site are as up-to-date as possible, but which introduces much latency to synchro-
nize local with remote I/O write. In semi-synchronous mirroring, write commands are 
propagated to both local and remote storage nodes at the same time, and the application 
is notified of a completed I/O only when the local write is completed and don’t wait for 
acknowledge from remote site. Our system could support both two modes. The choice 
for which mode could be decided by configuration before system running. 

On Windows platform, the filter could deal with all IRPs before sending them to a 
lower driver. After the driver processes IRP, the filter get control again, it could con-
nect an I/O fulfilled routine to IRP. After driver calls IoCompleteRequest function, 
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the I/O fulfilled routine is activated. Therefore, mirroring module is designed in filter 
layer. On Linux platform, it could be realized at device layer. In both ways, mirroring 
module is fully transparent for application. 

Remote iSCSI target also need use data buffer to raise access performance and re-
duce total latency of remote write. But it is possible that remote target also may break 
down. So NVRAM is applied instead of DRAM memory to prevent data loss in the 
first level fault. 

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to. 
This is to ensure that the end product is as homogeneous as possible. 

3   The Design of Remote-Mirroring BUFFER 

The design for remote mirroring buffer must consider two aspects: buffer size and 
depth of write coalescing. Buffer size could decide the asynchronous degree between 
local write and remote write. It is obvious that greater buffer can absorb more delay of 
remote write, however make more loss in fault. Although NVRAM can prevent par-
tial data loss in the first fault, but all the data the primary site will lose totally such as 
disaster happening. So the size of buffer is directly relative to the amount of lost data 
when the host breaks down. Moreover, the size of LOG in the NVRAM could deter-
mine the upper bound of data buffer. Furthermore, since mirroring module is lied in 
host, so the buffer size also could issue host performance for foreground applications. 
Our system could only provide option for buffer size. Therefore, the buffer size is 
finally determined by administrator.  

The other important hand is how to update data in primary and secondary site, 
which includes a series of problems, for example, the bound of write coalescing in 
buffer, choice for asynchronous or semi-synchronous mode, and so on. The bound of 
write coalescing can be selected in several ways, such as the elapsed time, the number 
of updates, or the amount of data written, or bytes to transfer. Moreover it would be 
possible to select the batch size that achieves optimization target data-loss likelihood, 
taking the WAN link reliability into account However it is hardly to automatically 
controlled by mirroring and need manual configuration. So in our system, the values 
of parameters could be adjusted to control running of system. 

Write command of SCSI mostly includes five parameters: Operation code, logical 
device number SCSI ID and LUN , logic block address(LBA), data length and 
control field. The top half of figure 4 is the structure of a log table, in which each row 
includes eight fields. CDB is command description block defined distinctly in the 
SCSI protocol. LWC shows the state of local write completion and RWC shows the 
state of remote write completion, OW shows whether this line could or not implement 
write coalescing. Data could be stored in three places, local disk, NVRAM or Mem-
ory. Unfinished local update data are kept in memory or NVRAM. The data which 
wait for remote update and have been completed in local disk is always kept in 
NVRAM if NVRAM has enough capacity; otherwise they are kept in Local disk. 
Data pointer points to the data address in the BUFFER and data length represents data 
length for a write command. When the data in the BUFFER exceed threshold defined 
as local disk record pointer, the data pointer will point to the LBA address of the disk. 
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Fig. 4.  The structure of mirroring log 

The lower half of figure 4 describes several key pointers in mirror log. The running 
state of system could be controlled by adjusting these values. Prw is defined as the 
head record of mirroring log, which is waiting for acknowledging from remote site. 
When remote write has been completed, this line is removed from log, and Prw will be 
pointed to next record. Pt is the pointer of the tail local operation in log, and it repre-
sents the newest I/O request from application. Plw indicates executing local update. If 
local writes are absolutely synchronous, Pt equal Plw. Plwc and Puwc are the low and 
upper bound of write coalescing respectively, and they defined as range in which 
write coalescing could be applied. Pdr is the starting point of disk record data, and it 
represents that latter data blocks couldn’t save in memory or NVRAM but local disk. 
Actually, the length of log is Plw Prw , and it is the delay between local and remote 
disks write. Threshold Drl could be defined to restrict maximal delay between local 
and remote write. If Drl equal 0, it is called synchronous mirroring. If the length of 
reserve record exceeds the threshold, buffer could be congealed compulsively, and 
system would always wait until remote write has been completed. When the value 
that Plw  subtracts Prw is less than Drl, then write I/O requests could be put into log 
again, and local write requests would be sent at the same time. In this way, the size of 
buffer would be controlled to reduce the quantity of data loss in host breakdown. 

The structure of log and buffer in remote iSCSI target is similar to those of local, 
but more simple, write coalescing and disk indexing data policy have no need to be 
adopted. You will get the best results and your files will be easiest to handle if you use. 

4   Performance Evaluation 

The test environment includes two servers and LAN devices. HP Proliant 330 simulates 
remote system and HP G380 is local system. Each server comprises two network cards 



764 Q. Cao, T.-j. Guo, C.-s. Xie 

(network interface card), one is a gigabit fiber NIC as D-Link 550-SX, the other is a 
self-adapting NIC of RJ45 interface as Intel Pro 100/1000Mbps. The gigabit fiber NIC 
directly connects to the other counterpart through optical fiber by peer to peer, which 
forms a gigabit network environment. Two 100Mbps NICs are connected with a CISCO 
3524 switch, which makes 100Mbps network environment. Two sets of network envi-
ronment are used to compare the effect in different network bandwidth on remote mir-
roring performance.  Each server has installed OS of WINDOWS 2000 Advance Server 
version with the iSCSI Target and initiator modules developed by our lab. 

 

Fig. 5. Test result over the Gigabit network environment 

As the experiment is to study the limited load of remote-mirroring system, we use 
Iometer as our testing tool to produce sequential I/O request, and test three kinds of 
writing performance including local disk, iSCSI and iSCSI with remote mirroring in 
the means of 100% sequential writing. Figure 5 and 6 indicate the results of the two 
sets of network environment respectively. The X-axis indicates the size of I/O re-
quest, from 0.5KB to 8MB increased by a multiple of 2, the Y-axis specifies the net-
work data throughout. 

In the test, we don’t configure the local disks as RAID. Therefore, the local write 
rate is approximately equal to that of a single disk. Figure 5 indicates that the per-
formance of iSCSI in gigabit network is better than that of the single disk. Since local 
write is always synchronous, the performance of mirroring is lower than that of local 
write. In the 100Mbps condition, the performance of local write is better than that of 
iSCSI when I/O requests are great; When I/O requests are smaller than 64KB, iSCSI 
has higher performance, which is due to cache. Consequently, the performance of 
mirroring is close to the lower performance of the two write methods. 

The test results indicates the performance of iSCSI with remote mirroring is a little 
lower than that of pure local disk write and iSCSI write. The experiment only tests the 
performance of mirroring system in the ultimate load. In practicable, write requests 
take up a smaller part (generally 33% write request and 67% read request in transac-
tion processing) and not all the requests must be mirrored. 100Mbps and even WAN 
could be used since iSCSI is not restricted to any specific network. This system would 
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satisfy the requirement of remote-mirroring system with reasonable configuration of 
LOG parameters combined with practical access pattern. 

 

Fig. 6. Test result over 100Mbps network environment 

5   Conclusion 

Key data must be dependable: the cost of losing it, or even of losing access to it, is 
simply too high. Remote mirroring is more and more necessary to protect these data. 
However, its total cost and implement complexity is beyond acceptance of generic 
enterprise.  

Remote mirroring based on iSCSI could use pervasive TCP/IP network and effec-
tively decrease cost. However, it is essential to design solution to improve stability 
and performance. This paper   presents architecture of mirroring LOG and BUFFER 
to ameliorate system. In the end, our experience shows remote mirroring based on 
iSCSI could meet practical requirement. 
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Abstract. Flash Translation Layer (FTL) is the device driver software
that makes flash memory device appear to the system like a disk drive.
Since flash memory cannot be written over existing data unless erased in
advance, the FTL usually employs special address mapping algorithms
to avoid having to erase on every data update. In this paper, we propose
a new FTL algorithm which considers the access patterns of data blocks.
Proposed scheme monitors write access patterns of data blocks and in-
telligently manages the address mapping to improve the performance.
Simulation results show that the proposed scheme improves the space
utilization without significant write/update performance degradation.

Keywords: Flash Memory, Flash Translation Layer, Space Utilization.

1 Introduction

Flash memory is becoming important as nonvolatile storages for embedded de-
vices because of its superiority in fast access speeds, low power consumption,
shock resistance, high reliability, small size, and light weight [7, 11, 13, 8, 5, 3].
Because of these attractive features, and the decreasing of price and the in-
creasing of capacity, flash memory will be widely used in consumer electronics,
embedded systems, and mobile computers. Though flash memory has many ad-
vantages, its special hardware characteristics impose design challenges on storage
systems. First, flash memory cannot be written over existing data unless erased
in advance. Second, erase operations can be performed in a larger unit than the
write operation. For an update of even a single byte, an erase operation of a
large amount of data would be required. Besides it takes an order of magnitude
longer than a write operation. Third, the number of times an erasure unit can
be erased is limited (e.g., 10,000 to 1,000,000 times).

To overcome these problems, an software called a Flash Translation Layer
(FTL) has been employed between host system and flash memory [6, 10, 9, 14, 4].
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Figure 1 shows a typical software organization for NAND-type flash memory.
The FTL is usually implemented as the device driver software that works in
conjunction with file system to make flash memory device appear to the system
like a disk drive. Applications use system calls to access files on the flash memory.
The file system then issues read/write commands along with logical block address
and the request size to the FTL. Upon receipt of a command, address, and
the size, the FTL translates them into a sequence of flash memory intrinsic
commands (read/write/erase) and physical addresses.

Applications

File System

FTL

Operating System

Flash Memory

Fig. 1. Software organization for flash memory

In this paper, we study a novel FTL algorithm called Shared Log Block (SLB)
scheme. The SLB scheme manages the space of flash memory as two types of
blocks, data blocks and log blocks. The data blocks hold ordinary data and the
log blocks are used as temporary space for update writes to data blocks. When an
update to a data block is requested, it is performed to the log blocks allocated
for the data block. The SLB classifies data blocks as hot or cold according
to their write access frequencies and intelligently performs log block allocation
to the data block. Previous FTL didn’t consider data access pattern and may
waste the space of flash memory. Proposed SLB scheme can improve the space
utilization by sharing the log blocks among several data blocks that are not
frequently modified. Performance evaluation based on trace-driven simulation
shows that the SLB scheme performs better than previous schemes with respect
to the space utilization. Also, by controlling the number of shared log blocks,
we can control the performance tradeoff between the space utilization and the
write/update operation.

The rest of this paper is organized as follows. In Section 2, we give the
overview of previous works. In Section 3, we present a new FTL algorithm
called share log block scheme. Section 4 presents the simulation results to show
the performance of proposed scheme. The conclusions of this paper are given in
Section 5.
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2 Background

A NAND flash memory is organized in terms of blocks, where each block is of
a fixed number of pages [8, 5]. There are three basic operations, namely, read,
write, and erase. The unit of read and write operations is a page and the size of
a page is fixed from 512B to 2KB depending on the product. The unit of erase
operaion is a block and the size of block is somewhere between 4KB and 128KB
depending on the product. There is a spare area appended to every page, which
is usually used to store ECC code to detect errors while reading and writing.
When the free space on flash memory is written, the space cannot be updated
unless it is erased. For an update of even a single byte in a page, a block that
contains the page should be erased. A block can be typically erased for 1 million
times. A worn-out block could suffer from frequent write errors. Thus, wear
leveling activity is needed to erase blocks on flash memory evenly so that a
longer overall lifetime could be achieved.
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Fig. 2. Block-level mapping

Flash Translation Layer (FTL) is a device driver layer software which per-
forms the address mapping function between the logical address and the physical
address. The FTL usually maintains the address mapping table in order to map
logical address of I/O requests to physical address in flash memory. The address
translation table is indexed by logical block address (LBA), and each entry of
the table contains the physical address of the corresponding LBA. In general,
the FTL uses non-in-place update mechanism to avoid having to erase on every
data update. Under this mechanism, the FTL remaps each update request to
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different location (i.e., data updates are written to empty space) and set obsolete
data as garbage, which a software cleaning process later reclaims [3].

The mapping can be maintained either at the page level or at the block level
[1, 2]. In the page-level address mapping, a logical page can be mapped to any
physical page in flash memory. However, this mapping requires a large amount
of space to store the needed mapping table. In the block-level address mapping
(see Fig. 2), the logical address is divided into a logical block address and a
block offset, and only the logical block address is translated into a physical
block address in flash memory. The block address mapping has a restriction
that the block offset in the mapped physical block be the same as that in the
logical block. When there is an update request to a single page in a block, the
physical block that contains the requested page is remapped to a free physical
block, the write operation is performed to the page in the new physical block
with the same block offset, and all the other page in the same block are copied
from the original physical block to the new physical block.

To eliminate expensive copy operation in the basic block scheme, a technique
called log block scheme was proposed [9] (see Fig. 3). When an update to a page
in a data block is requested, a log block is allocated and the update is performed
to the log block incrementally from the first page. Once a log block is allocated
for a data block, update requests to the data block can be performed in the log
block until all the pages in the log block are consumed. When there is no free
page in the log block, merge operation is performed with the corresponding data
block to reclaim the log block.
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Fig. 3. Log block scheme

The problem of the log block scheme is that it does not consider the space
utilization of the log blocks. In [12], authors reported that access locations are
highly skewed on disks of an Unix workstation. Roughly one third of all accesses
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go to the ten most frequently accessed disk blocks. Therefore, we can believe
that the access patterns to the flash memory based storages are also likely to be
highly skewed. Then it is possible for the log block scheme to waste the space of
the dedicated log block when update requests in a data block are not frequent.

3 Shared Log Block Scheme

In this section, we propose a new FTL scheme called Shared Log Block scheme.
The SLB scheme is based on the log block scheme. It manages the space of flash
memory as two types of blocks, data blocks and log blocks. The data blocks hold
ordinary data and the log blocks are used to store update writes to data blocks.
We define a log segment as a set of one or more log blocks. It is the allocation
unit of log blocks. The size of a log segment is defined as the number of log
blocks in it and is configurable. The log blocks in a log segment are not required
to be physically consecutive.

Mapping Table

0

1

2

3

4

.

.

.

Logical
Block#

Log
Segment#

10

15

1

4

2

.

.

.

Flash Memory

Block 0

Block 1

Data
Block#

Block 5

.

.

.

18

19

20

20

20

.

.

.

H

H

C

C

C

.

.

.

Hotness

Log Segment
20

.

.

.

Block 5

Block 5

share
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When a new update to a data block arrives, a log segment is allocated to
the data block and the update is performed to the first page of the first log
block in the allocated log segment. The SLB can identify the up-to-date copy by
scanning the log segment backward from the last valid page. The block mapping
table manages the corresponding log segment number for each data block. For a
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read request, the requested page is serviced either from the data block or from
the log segment depending on where the up-to-date copy is present.

Each data block is associated with a state indicating the hotness. Initially
all data blocks are defined as the cold block. When a data block is updated
frequently, its state is changed to ‘hot’. Similarly, hot data block becomes ’cold’
block if it is not updated frequently. The degree of hotness of each block is
usually determined by the number of times the block has been updated within the
specified time interval. We do not describe in detail how to determine the hotness
of the data block since there have been many researches about determining the
hot and cold blocks.

Because hot blocks are likely to be updated soon and filled up fast, a log
segment is allocated and dedicated to the hot block. If the log segemnt becomes
full, it is reclaimed by the merge operation. The merge operation allocates a free
data block and then fills each page with the up-to-date page, either from the log
segment if the corresponding page is present, or from the data block otherwise.
After copying all the pages, the new block now becomes the data block, and the
former data block and the log blocks in the log segment are returned to the pool
of free blocks, waiting to be erased by garbage collector.

old
data block 1

new
data block 2

log segment n

valid page

copy

Fig. 5. Merge operation

On the other hand, cold blocks share a log segment. When an update to a
cold block is newly requested, the SLB allocates either a log segment used by
other cold blocks if it exists, or a new log segment from the pool of free blocks
otherwise. By sharing the log segment, it avoids wasting the log block space.
When the log segment becomes full, it is reclaimed by the split operation or
merge operation. If the log segment is shared with two or more data blocks,
the SLB executes split operation. The split operation allocates two log segments
and then distributes the up-to-date pages from the former log segment into the
new two segments. The pages that belong to the same data block are copied to
the same log segment. The log blocks in the former log segment is returned to
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copy

Fig. 6. Split operation

the free blocks, waiting to be erased by garbage collector. In case that the log
segment is used by only one data block, the SLB executes merge operation as
described before. It allocates a new free block and copies up-to-data pages from
the log segment or from the data block depending on where the corresponding
page is present. And then the new block becomes the data block. The former
data block and the log blocks in the log segment is returned to the free blocks,
waiting to be erased by garbage collector.

4 Simulation Studies

To evaluate the proposed scheme, we developed a simulator for the log block
scheme [9] and the shared log block scheme. The goal of our performance test
is to measure the overwrite performance. To do so, the simulator initially writes
data on the entire flash memory space and then overwrites data using one of
three access patterns:

• Uniform : Each page has equal likelihood of being selected for update.
• Hot-and-cold -25 : 60% of the write accesses go to one-eighth of the total

pages and other 40% go to another one-eighth. The other three-fourths of
the pages are left unmodified. This distribution is intended to simulate meta
data write activity on an actual file system. The ratio of writes is bases on
the results reported in [12]

• Hot-and-cold -10 : Pages are divided into two groups. One group consumes
10% of the space. It is selected for update 90% of the time. The other group
consumes 90% of the space but are selected only 10% of the time. The
generated traces have very skewed access patterns.

We also performed trace driven simulation using the traces of a digital cam-
era [9]. The workload of the digital cameras are usual operations of the camera
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such as taking, browsing, and erasing pictures. The traces include many sequen-
tial accesses as well as hot spots. Sequential access patterns are usually from
storing user data such as image files, while the hot spots are from updates meta-
data of the file system (Microsoft FAT) due to creation/deletion of files.

We define the number of extra erase operations as the number of erase op-
erations minus the number of erase operations from an ideal scheme. The ideal
scheme is defined as a scheme that performs one erase operation for every n-page
write requests, where n is the number of pages per block. Similarly, the number
of extra write operations is defined as the number of write operations minus the
number of writes requested. Performance metrics are the ratio of the number of
extra erase operations to the number of erase operations from ideal scheme, the
ratio of the number of extra write operations to the number of write requests
and the average space utilization of the segment.
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Fig. 7. SLB-1 vs. log block scheme

In fig. 7, ‘Uni’ denotes Uniform access patterns, ’HC25’ denotes Hot-and-
Cold -25, ’HC10’ denotes Hot-and-Cold -10, and ’Dica’ denotes traces of digital
camera. And n of SLB-n denotes the size of a log segment. The proposed scheme
significantly improves the space utilization of the log blocks. For example, see
fig. 7(c). It increases the average space utilization from 10% to 60% in case of
HC10. However, since the shared log blocks will be used frequently like the log
blocks for the hot blocks, it could incur more reclamation process and increase



774 Y. Ryu and K. Lee

0%

100%

200%

300%

400%

500%

600%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(a) Erase

0%

1%

2%

3%

4%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(b) Write

0%

10%

20%

30%

40%

50%

60%

70%

SLB-1 SLB-3

Uni HC25 HC10 Dica

(c) Average Space Utilization

Fig. 8. SLB-1 vs. SLB-3

the number of erase operations and write(i.e., extra data copy) operations. In
the log block scheme, on the contrary, since a log block is dedicated to only one
data block and a large portion of it remains unused for a long time in case of
the cold blocks, it wastes the space but could need fewer erase operations. Sim-
ulation results show that there is a tradeoff between the number of erase/write
operations and the space utilization.

5 Concluding Remarks

The primary concern in implementing the flash translation layer has been to
improve the write and update performance by minimizing the number of erase
operations and data copy operations. Previous log block scheme exhibits good
performance for the write and the erase operations, but does not consider the
space usage of the log blocks. Our approach is to classify data blocks according
to their write access frequencies and to share the log blocks in order to improve
the space utilization. Simulation results show that the proposed scheme improves
the space utilization and there is a tradeoff between the space utilization and
the number of erase/write operations. For the future works, we plan to study the
garbage collection algorithm used with the proposed shared log block scheme.
We also plan to implement proposed scheme in the real system.
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Abstract. Smart u-things are real things with attached, embedded or
blended computers, networks, and/or some other devices such as sensors,
actors, e-tags and so on, and they can sense, compute, communicate
and take some adaptive actions/reactions/proactions according to their
goals, situated contexts, users’ needs, etc. It is envisioned that smart
u-thing will be everywhere eventually towards ubiquitous intelligence
and smart world. One of the profound implications of such ubiquitous
smart u-things is that various kinds and levels of intelligence will exist
pervasively in real everyday objects, environments, systems and even
ourselves, and possibly be extended from man-made to natural things.
The ubicomp/percomp can be regarded, in a sense, as the computing
of all these smart/intelligent u-things, which are the basic elements and
components of the smart world. After clarifying the essential features and
three categories of smart u-things, i.e., smart object, smart space and
smart system, the talk is devoted to discuss possible challenges in smart
u-things’ research in terms of real world complexity. The main intentions
are to examine the possible hard issues to suggest some potential research
lines; and to let researchers in this field coolhead and being aware of the
hardness of these challenges in making real things truly smart.
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