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Abstract. In this paper, the constructions of cheating immune secret
sharing and multisecret sharing are studied. Based on the theories of
matrix and linear block codes over finite field, some new methods to
construct cheating immune secret sharing, strictly cheating immune
secret sharing and multisecret sharing immune against cheating are
proposed. Some cryptographic properties of the constructed secret
sharing are analyzed as well.
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1 Introduction

Secret sharing is an indispensable tool in key management, multiparty compu-
tation, group cryptography and distributed cryptography. Unfortunately, many
existing secret sharing systems are easily subjected to cheat by dishonest partic-
ipants in the process of reconstruction. In such secret sharing systems the dis-
honest participants may submit fake shares to the combiner so that the combiner
cannot reconstruct the original shared secret, but the dishonest participants may
find the original shared secret in some way. Tompa and Woll [I]discussed the
problem of cheating prevention in secret sharing in 1988. Since then, a consid-
erable effort has been put into the investigation of cheating prevention in secret
sharing systems. A notable work in this line of study is the research on cheating
immune secret sharing systems initiated by Josef Pipprzyk and Xian Mo Zhang
[4]. They studied the problem of cheating prevention and the construction of
cheating immune secret sharing schemes in [4L[5[617].

Cheating immune secret sharing schemes are divided into two classes, i.e.,
the computational secure schemes and unconditional secure ones. In computa-
tional secure cheating immune secret sharing schemes, the combiner checks the
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validity of the shares submitted by the participants before he reconstructs the
shared secret, so any false shares may probably be found out in this stage and
the cheaters are likely to be detected. One solution for computational secure
cheating immune secret sharing is publicly verifiable secret sharing. M.Stadler
et. al considered this problem in [8[9,[10]. Josef Pieprzyk and Xian-Mo Zhang [4]
pointed out that cheating by dishonest participants can also be prevented with-
out using the method of public key cryptography. The prevention here is meant
that the dishonest participants cannot derive the original shared secret correctly
from the invalid secret computed by the combiner, furthermore, the invalid secret
reveals no information about the original shared secret.

Multisecret sharing was probably first discussed in [2]. The problem of cheat-
ing prevention in this type of secret sharing schemes was also first considered by
Josef Pieprzyk and Xian Mo Zhang [5]. They gave the fundamental concepts
of multisecret sharing immune against cheating and some ideas to construct
multisecret sharing immune against cheating.

In this paper, we further study the problem of cheating prevention in secret
sharing systems. Based on quadratic function over finite field, the cheating im-
mune secret sharing, strictly cheating immune secret sharing and multisecret
sharing immune against cheating are constructed. Some cryptographic proper-
ties of these secret sharing schemes are also analyzed.

2 Secret Sharing System Immune Against Cheating

2.1 Basic Model of Cheating Immune Secret Sharing Scheme [4]

Let GF(p) denote a finite field with p elements, where p is a prime number
or a power of a prime number. We use GF(p)" to denote the vector space of
dimension n over GF(p).

For vectors © = (21,2, -+ ,&y),0 = (61,062, -+ ,0,) in GF(p)", define vectors
zf € GF(p)", x5 € GF(p)" as follows :

. f0,ifé#0
(x‘S)j_{l'j,if(Sj_O

where j =1,2,--- n.

Let 7 = (11,72, ,Tn), 6 = (61,02, , bs) be two vectors in GF(p)™. By the
notation 7 < § we mean that 7; # 0 implies é; # 0, for all ¢ € {1,2,...,n}. We
use 7 < ¢ to denote 7 < ¢ and the Hamming weight HW (7) of 7 (the number
of nonzero coordinates of 7) is less than the Hamming weight HW (6) of 8. If
8/ < 6,and HW(6/) = HW (6), we write §/ =~ 6. For 7,6 € GF(p)",6 # 0,7 < §,
u € GF(p), and a mapping f from GF(p)™ to GF(p), define

Ry(6,7,u) = {z, |f(xg +7) =u}.

We also simply write R(6, T, u) in place of Ry(6, 7, ) if no confusion occurs.
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Now, we consider a secret sharing system. Suppose the secret to be shared
is randomly chosen from GF(p), namely the secret space is GF(p). There are
n participants(or share-holders) Py, P, -, P,, a dealer D and a combiner in
the system. Denote P = {Py, Py, -+, P,}. Two phases are involved in a secret
sharing scheme. One is share distribution, and the other is reconstruction. In the
share distribution phase, the dealer D randomly splits a secret K into n shares
in GF(p), and distributes in secret each participant one share.In reconstruction
phase, all participants submit their shares to the combiner who computes the
shared secret using a function f from GF(p)™ to GF(p). The function f is called
the defining function as it determines the secret sharing.

Let a = (s1,82, " ,8,) € GF(p)" be the share vector, i.e., s; is the share
distributed to participant P; by the dealer, K = f(«) be the shared secret.

Let o + 8 be the vector whose coordinates are shares submitted to the com-
biner by the participants. We call § = (61,62, ,6,) € GF(p)" a cheating
vector, and P; is a cheater if and only if §; # 0. The collection of cheaters is
determined by the vector 6 = (61,02, - ,6,) uniquely.

It is assumed that in pooling phase, dishonest participants always submit
invalid shares, and honest participants always submit their valid shares. We also
suppose the dishonest participants change their shares from time to time, and
there is at least one cheater in the system, this implies ¢ # 0.

Consider the vector o + 6. It is obvious that o +6 = o + 04; + 6, here oy is
submitted by the honest participants (or we can say the nonzero coordinates
of ay are shares submitted to the combiner by the honest participants), and
a}' + 6 by the dishonest ones (the nonzero coordinates of a}' are shares held
by the dishonest participants). In this case, the combiner will output an invalid
secret K* = f(a+ 6).

For the defining function f, share vector « and cheating vector § =
(61,62, ,6,), the number

_H#(R(6,af +6,K*)NR(6,af ,K))
Poe $R(6,0f + 6, K7)
is the probability of successful cheating by dishonest participants with respect
to 6, , where X denotes the number of elements in the set X.

It is obvious that ps. > 0O since the share vector « is always in the set
(R(6, af +6, K*)NR(5, e , K)) and the number of cheaters is equal to HW (6). It
was proved in [4] that maz{ps.la € GF(p)"} > p~! for arbitrary a € (GF(p))"
and nonzero 6§ € GF (p)".

Definition 1. A secret sharing is said to be k-cheating immune if ps o = p~! for
every § € GF(p)" with 1 < HW () < k < n and every a € GF(p)".

Let f be a quadratic function, if f(zy +7+06) — f(x; + 7) is a non-constant
affine function for arbitrary §,7 € GF(p)" with 1 < HW () < k and 7 < 8, we
call f has property B(k).

Let f be the defining function, 6 = (61,02, -+ ,6,) be a nonzero vector, a be
an original vector, the nonzero vector 7, 7 < 6 be an active cheating vector, the
number
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B(R(6, 0 + 7, K*) N R(6, af , K))

Porie = fR(4, aj{ + 7, K*)

expresses the probability of cheaters’ success with respect to 6,7 and «.

Definition 2. A secret sharing is said to be strictly k-cheating immune if ps o =
p~L for every § € GF(p)" with 1 < HW(8) < k < n , every a € GF(p)" and
any nonzero vector 7, 7 < 4.

Next, we will study how to use quadratic functions over finite field to construct
cheating immune secret sharing.

A function f from GF(p)™ to GF(p) is said balanced if
t{a:ae GF(p)", f(a) =b,¥be GF(p)} = p"~ Y

For quadratic functions, the following theorem can be easily proved.

Theorem 1. Let Q(z1,Ta, - ,xy) = Z?,j:mgj ai;Tir; + Yo, a;x; be a
quadratic function over finite field GF(q) with characteristic not equal to 2, then
the function Q(x1,x2, - ,n) is balanced if and only if there exists w € GF(q)"

such that Q(x + w) — Q(z) equals to a constant, and Q(w) # 0.

2.2 A New Construction of Cheating Immune Secret Sharing

Let « = (a1, a2, -+ ,am,) be a nonzero vector over GF(p) with characteristic not
equal to 2, and X1 a; = 0, by, b1, ,by_1 € GF(p), and X7 'b; # 0. Define a
function A, ,, on GF(p)" as:

)\n,m(x(l)y Ty, 7xn—1>

= Zz":_olbzxz + (x0>:fla e axnfl)A(aan)(an Ty, 7xn71)
P— n— . . n— - . . ... .
=X iz + Xz (alx[JH](n) +a2Tj42),,) T F amx[Jer](n))

T

where j = i(y iff j =7 mod n.
A(a,n) is an n x n matrix over GF(p) determined by the vector o =
(a1,a2, -+, am) as follows:

0 a1 as a0 0
0 0 a1 © Am—1 Gm 0
0 0 0 0O O 0 0 O
Ala,n)=| am 0 0 0 O Am—1
am—1 am 0 0 0 am—2
az a3 a4 ------ al
ap ax a3 --- 0 0 --- 0
Theorem 2. 1. A\, . (%o, %1, -, Tn_1)is balanced.

2. If n > km+k+1, then the function Apm(xo,x1, -+ ,Tn—1) satisfies the
property B(k).
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Proof. 1. Because A\, n(1,1,---,1) = Zg‘;olb,- # 0, we have A\, (zo + 1,21 +

1, o1+ 1) = Ay (o, 21, -+, Tn—1) = ZZ‘:Blbi = constant. From theorem
1, Apm(xo, %1, -+, @p—1) is balanced.

2. Let § € GF(p)", with HW(6) < k, and 7 < §. Suppose HW (§) = k,
write § = (0,83, 6iys- 05, ,0) where 0 < iy 49, ,ip < n — 1,

0iy # 0,0, #0,---,06;, #0.If n > km+ k+ 1, then there exists at least one

element k € {0,1,2,--- ,n — 1} such that k belongs to just one of the classes
{{(¢; —1) mod n, (4, —2) mod n, - --,

(i; —m)mod n, (¢; +1) mod n, (¢; +2) mod n, ---,(i; +m) mod n}, 1 < j < k},

thus f(zy +6+7) — f(xg + 7) contains the term axy, a € GF(p), a # 0. This
implies that the function Ay, m (%0, 21,- -+, 2(,,—1)) satisfies the property B(k).

Theorem 3 ([4]). Let k, s be two positive integers satisfying s > (k + 1),
hi be a balanced quadratic function with property B(k) on GF(p)™ for each
i=1,2,--+,s. Set n =n1 +ng+ -+ ns. Defining the function f on GF(p)™
as f(x) = hi(y1) + ha(y2) + - -+ + hs(ys), where x = (y1,y2,- -+ ,ys), hi and h;
have disjoint variables if i # j. Then the secret sharing with defining function f
1s k-cheating immune.

3 The Construction of Multisecret Sharing Immune
Against Cheating

3.1 Basic Model of Multisecret Sharing Immune Against
Cheating [2/5]

The multisecret sharing system is defined by a mapping F': GF (p)" — GF(p)™.
The function F' is equivalent to the following function group :

f1:GF(p)" — GF(p)
f2: GF(p)" — GF(p)

fu: GF(p)" — GF(p)

We denote this function group by [f1, f2,- -+ , fm], and call it the defining function
of the multisecret sharing.
Let § be a nonzero vector in GF(p)", 7 <, and u € GF(p)™, set

Ry(6.7 1) = {5 : flay +7) = ).

We simply denote R¢(6, 7, u) as R(8, 7, 1) if no confusion occurs.
Let u* = f(a+ ), the number

#(R(, a; +6,u*) N R(6, a}', w))

Pbia = ER(6, af + 6, u”)

expresses the probability of successful cheating with respect to 6 and a.
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A multisecret sharing is said to be k-cheating immune if ps o = p~™ hold for
every 6 € GF(p)", with 1 < HW(8) < k, and every a € GF(p)".

We call the nonzero vector 6 = (61,62, ,6,) a cheating vector, nonzero
vector 7 < 6 an active cheating vector, « the original vector, then the value

H(R(6, of +7,u") NR(8,a] ,u))

pﬁ,T,a = ﬁR((S, Oé;_ + T, ’LL*)

expresses the probability of successful cheating with respect to 8, 7, .

A multisecret sharing is said to be strictly k-cheating immune if the the prob-
ability of successful cheating satisfies ps r o = p~™ for every nonzero § € GF(p)"
with 1 < HW(§) < k < n, any a € GF(p)", and any nonzero vector 7 < é.

Definition 3. Let [f1, fa,- - , fm] be the defining function of a multisecret shar-
ing, k a positive integer, and k < n. [f1, fo, -, fm] is said satisfying the prop-
erty B(k) if there exists ai,as, - ,am € GF(p) such that X7 a;[fi(xy + 7 +
0) — fi(zy + 7)] is a non-constant affine function, where (a1, a2, - ,am) #
(0,0,--+,0), 1 < HW(6) < k,7 < 6.

Thus [f1, fa, -+, fm] satisfies the property B(k) iff any nonzero linear com-
bination of fi, fa, -, fm, 1.6, X" a;f; satisfies the property B(k), where ay,
ag, -+ ,am € GF(p), and (a1,a2, -+ ,am) # (0,0,---,0).

3.2 The New Construction of Multisecret Sharing Immune Against
Cheating

Let GF(p) be a finite field whose characteristic is not equal to 2. Set
A={(x1,22,  ,xpm) 2, € GF(p),i =1,2,--- ,m, X" x; = 0},

then A is a linear subspace of dimension m — 1 of vector space GF(p)™.
A set of base of linear subspace A is:

ay = (a11,a12,~-~ 7(11m)7
az = (a1, a22, - ,G2m),
Am—1 = (A(m-1)1,A(m=1)2," " * » A(m—1)m)-
For each i € {1,2,--- ,m — 1}, we construct an n X n matrix
0 a1ag- - am 0 - 0
0 0 ai Qi(m—1) Qim 0
0 0 0 0 0o - Aim
A(ay,n) = aim 0 0 0 0 - Gi(m-1)
Qi(m—1) @Gim 0 0 0 -+ aim-2)
a22 a'LS a24 ... D a'Ll

a1 a2 a3 -0 o - 0
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Let )\(Oéi,n) = (.%'1,3?27' o ,xn)A(ai,n)(xl,x2,~ o 7xn)T7
fll(xlax% v >xn) =z + )\(Oll,n),
f21(x17x27 e 7xn> =x9 + )\(@27”)7f22(x17x27' o 71:”) = 21:2 + )\(a27n>

Jm-v1(x1, 22, -+ .2p) = Tyn—1 + Mam—1,7n),
f(mfl)Z(xla T, 713”) =2Tpm-1 + )\(am—lv n)

From theorem 1, each function constructed above is balanced.
Let (z1, 22, , Tnm) € GF(p)"™, we can write

(.%'1,.’1)2,"' 7xfnn> = (y17y27"' 7y7n>7 Yi S GF(p)n7Z = 1727"' ,
Now we construct the following functions:

fi(x,zo, o ) = fri(yn) + fri(ye) + -+ fi1(ym),
fo(xr, @, xmn) = fo1(y1) + foo(y2) + fa1(ys) + - + fo1(Ym),

Jm—1(x1, 22, Tn) = fim—1)1(W1) + fan-1)1(¥2) + - + fon—1)2(Um—1) +
f(m—l)l(ym)~

Namely, the i'th term of f;(z1, 22, -, Zmn) IS fiz, and the other terms of
filx1, 29, Tpm) are fi1, 1 =2, ,(m—1).

Theorem 4. If n > km+ k+ 1, then the function group:

fl(l’l,l’z,”’ axnm)
f2(x17x27"’ axnm)
an—l(x17x27"' 7xnm)

is a balanced function from GF(p)"™ to GF(p)™ 1, and satisfies the prop-
erty B(k).

Proof. We use the fact that a function group [g1, g2, - , gm—1] is balanced iff

for any nonzero linear combination of g1, g2, * , gm—1, i.e,ZZZ}laigi is balanced,
where a1,a2, -+ ,am-1 € GF(p), and (a1,a9, - ,am-1) # (0,0,---,0). Now,
for the function group [f1, f2, -+, f(m—1)], we have

alfl + a2f2 + -+ am—lfm—l
=[(a1z1 + a2x2 + - + Gm—1Tm—1) + N 2" Ilal (al, ) y
+[(a1xn+1 + 2a29€n+2 + - +am 1Tn+m— 1) +y221 1 az (Oé“ ) ] st
(@12 (m-2)n+1 + Q2T (m—2)n+2 + *** + 20m 1T (m—2)ntm—1)+
Ym—1 207 i, )y 1]
+[(a1.’L‘(m Dnt+l + 2% (m-1)ny2 + -+ am_lx(mfl)n+m71)+
271”1 Laid(ai, n)yL]. B
2 ai Mo, n) = AME] (as0h),n)

Since aj,as, - ,am-1 € GF(p) are not all zero, thus there exists at least a
nonzero element in ay +as+---+am_1,a1+2a2+---+am_1, - ,a1+as+---+
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20,1, hence we know from theorem 1, the function a; f1+asfo+- - -+ am—1fm-1
is balanced. This proves the function group [f1, f2, -, fm—1] is balanced.

For each i € {1,2,---,m — 1}, the function A(a;,n) satisfies the property
B(k), so we know from the theorem 2, A\(X7"] 'a;a;, n) satisfies the property B(k)
when n > mk+ k+ 1 and a1,a2, - ,am-1 € GF(p), with (a1,a2, -+ ,am—1) #
(0,0,---,0). This implies the function group M ey, n),i =1,2,---  m—1 satisfies
the property B(k), namely [f1, fo, -, fm—1] satisfies the property B(k).

The following theorem can be proved using the similar way as in [4].

Theorem 5. Let k, s be two positive integers satisfying s > q(k + 1), h; be
a balanced function with property B(k) from GF(p)™ to GF(p)™ for each i =
1,2,---,s. Set n =ny +n2 + - -+ + ng. Defining the function f from GF(p)"™ to
GF(p)™ as f(x) = hi(y1) + ha(y2) + - + hs(ys), where = (y1,y2,- -+ ,ys), hi
and h; have disjoint variables if i # j, then the multisecret sharing with defining
function f is k-cheating immune.

4 On the Construction of Strictly Cheating Immune
Multisecret Sharing

Theorem 6. Given a multisecret sharing defining function f : GF(p)" —
GF(p)™, the following statements are equivalent:

(1) the multisecret sharing is strictly k— cheating immune,
(2) For any integer | with 1 <1 <k, any 6 € GF(p)™ with HW (6) =1, any
71 < 6,72 <6,0< HW(m), and any p,v € GF(p)™, we have

ﬁ(R(éa T1, V) N R(é, 1+ T2, M)) = p”—l—Qm,
(3) The system of equations:

{f(x5+71+72)zu
fleg +11)=v

has precisely p("~'=2™) solutions on xy, for any 71 < 6,12 < 6,0 < HW(12),
and any p,v € GF(p)™.

The proof is similar to the proof of theorem 3 in [5].

If m = 1, the multisecret sharing with its defining mapping f : GF(p)" —
GF(p)™is a secret sharing. Thus the theorem is also right for ordinary secret
sharing.

Definition 4. The function f of degree two is said to have the strict property
B(k) if for any 6 € GF(p)",1 < HW () < k, any 71 < 6, any 72 < ¢ and
0 < HW (1), f(zf + 71+ 1) — f(zF + 71) is a non-constant affine function.

Similar to theorem 4, the function f of degree two which satisfies the strictly
property B(k) can be used to construct the strictly cheating immune secret
sharing.

In the following, a method to construct strictly cheating immune multisecret
sharing will be given.
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Theorem 7. [J] Given a multisecret sharing with its defined mapping f :
GF(p)™ — GF(p)™, then the multisecret sharing is strictly k— cheating immune
iff for any integer r with 0 < r < k—1, any subset {j1, jo, - ,jr} of {1,2,--- ,n}
and any ai,az,- -+ ,a. € GF(p), the mapping

f(@1, 20, 7$n>|xj1:aj1 jo=aj, s Fir=aj,
is the defining mapping of a (k —r) cheating immune secret sharing.

Let GF(p) be a finite field whose characteristic is not equal to 2. Suppose
C/ is a (n/,k/,d)linear cyclic codes over GF(p) such that for every codeword
a = (a1,a2, -+ ,am) € C/, such that X™ia; = 0, and K >dn/ —k > d.
Let C be (n/ —d,k/ —d,> d) shortened cyclic codes, rewrite the parameter
(n/ —d,k/ —d,>d) as (m, k,> d).

Let a = (a1,a2, -+ ,a,) € C be a nonzero code of the code C, by, b,
by, -+ ,bu_1 € GF(p), such that 27 'b; # 0, Ap.m be a function on GF(p)"
defined by :

)\n,ml(l‘ml‘h t 7xn—1> =
Z:;B bzxz + (1'0,1'1, e axnfl)A(O‘a n)(x()axla T axnfl)T
Theorem 8. 1. A\, (%0, 21, - ,Tn—1) is balanced.

2. Ifn>2m?+m+ 1, the function satisfies strict property B(d).

Proof. 1), From the theorem 1, it is easy to prove that A, (xo,z1, -+, ZTn_1)
is balanced.

Q)aLet h(xh y Ligs ™" ’xinf'r') = )\n,m(xo, Ly, >xn71)‘1j1:a1,“' WL =0r s 0 <
r<d, Ty =Y1,Ti, =Y2, " 3 Tip . = Yn—r-
Consider the function h(y1,ys2, -+ ,yn—r). Recall that for each j, 1 <j <n—r,

x; appears precisely in 2m quadratic terms of
)\n’m(xo, To, -+ ,xnfl) ST 4] ) T [—i] ) i=1,2,--- ,m.

Let 6 € GF(p)"~" be an cheating vector with HW(8) = 1,1 <l <m,7 < ¢
be an active cheating vector. Write § = (61,62, , 6n—r),

J={jl6; #0,1<j<n-—r}, 4J=HW() =1<d—r,if i,j do not belong
to J, the term y;y; does not appear in h(yy +06 +7) — h(y; + 7).
Since n —r > n—m > 2m? + 1, [»7" 1 > 2m+ 1, there exist jo € J and [
such that [; > 2m + 1, we have

[jO +l1](nfr) € J, {[.70 + 1](n7r)7 [.70 +2](nfr)7' B 7[j0 +h - 1](774*7“)} nJ=ga.

Let [jlfl](n_r), [jlfg}(n_r), -+, jo be all elements of J, and [j() +1— 1](n—r) =
[j(l—l)}(n—r)

Because every codeword in C/ has minimum weight not smaller than d, there
exists some element [io](,—r) € {[jo+1](n—r), [Jo+2](n=r)» -, [Jo+M]n—r)} such
that az(,, _,, (a # 0) appears in Zé;éés (@125, 41)Fa22(, 12)F  F AT, 1m))s
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thus az (), (a # 0) appears in h(yé+ +746) — h(yé+ + 7). This proves that
h has the property B(d —r).
Suppose a set of base of the codes C' is

a1 = (a11,a12,~-~ 7(11m)7

Qg = (a217a227 o 7a2m)7

ap = (ag1, ar2, -+, Gkm)-

To construct matrix A(a;,n),i=1,2,--- k.

let )\(@i, n) = (.'1/'17.%'27 e 71:")14(041‘,71)(:1)1,.%'27 e 7x7L>T7

fll(l‘l,l‘z, o ,.’L’n> =z + )\(a17n)7

f21(x17x27 T ,.’L’n> =x9 + )\(O{Q,’I’L), f22(x17x27 e 71:") - 2.’1}2 + )\(a27n)7
Jri(w, 22, 2n) = T + Mo, n), fra(w1, 22, -+, 20) = 228 + Ao, n).

From theorem 1, each function constructed above is balanced.

Let (w1, 22, -+ ,2nk) € GF(p)". Write (z1,%2, -, Tkn) = (Y1, Y2, , Uk)s
yi € GF(p)",i=1,2,- - ,n.

Now, we construct the following functions:

fi(@r, @, xkn) = fra(yr) + fua(yz) + -+ frii(uw),

fa(@r, @2, -+, xkn) = for(yr) + foo(y2) + for(y3) + -+ for(yw),

fr(@y, @, s 2kn) = fei(yr) + fra(y2) + - + fre(yr)-
The 'th term of fi(z1,22, -+ ,Tkn) IS fiz, and the other terms of

fi(zr, 20, xpk) are fin, i =2,--- k.

Theorem 9. If n > 2m? 4+ m + 1, then the function group:

fl(l‘l,l‘Q,"' 7xnk)
f2(x13x2a"' 7xnk)
fk(xlax%"' 7xnk)

is a balanced function form GF(p)*™ to GF(p)¥, and satisfies the strict property
B(d).

The proof is similar to that of the theorem (4) and (8).

Similar to theorem 5, the construction of strictly cheating immune multisecret
sharing can be given easily by the construction above.

5 Conclusions

In this paper, we have presented some methods to construct the cheating immune
secret sharing functions, strictly cheating immune secret sharing and multise-
cret sharing immune against cheating, some cryptographic properties of related
schemes are analyzed as well.
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