
Flexing Digital Library Systems

Hussein Suleman, Kevin Feng, Siyabonga Mhlongo, and Muammar Omar

Department of Computer Science, University of Cape Town,
Private Bag, Rondebosch, 7701, South Africa

{hussein, ffeng, smhlongo, momar}@cs.uct.ac.za

Abstract. Digital library systems with monolithic architectures are
rapidly facing extinction as the discipline adopts new practices in soft-
ware engineering, such as component-based architectures and Web Ser-
vices. Past projects have attempted to demonstrate and justify the use
of components through the construction of systems such as NCSTRL
and ScholNet. This paper describes current work to push the boundaries
of digital library research and investigate a range of projects made fea-
sible by the availability of suitable components. These projects include:
the ability to assemble component-based digital libraries using a visual
interface; the design of customisable user interfaces and workflows; the
packaging and installation of systems based on formal descriptions; and
the shift to a component farm for cluster-like scalability. Each of these
sub-projects makes a potential individual contribution to research in ar-
chitectures, while sharing a common underlying framework. Together,
all of these projects support the hypothesis that a consistent component
architecture and suite of components can provide the basis for advanced
research into flexible digital library architectures.

1 Introduction

It is fast becoming recognised that current models in software engineering need
to be integrated and applied to digital libraries. Most important among these
models are the pivotal role of simplicity of design and the construction of larger
systems from components [5, 3].

Some component frameworks have emerged in recent years to attempt to
model systems as networks of loosely connected components instead of the tradi-
tional monolithic model. The Open Digital Library project (ODL) [7] generalised
the well-understood syntax and semantics of the OAI-PMH to support general
inter-component communication. This generalisation was then used as the basis
for designing a suite of simple protocols to support search engines, category-
based browsing, recommendation systems, annotation engines and other typical
services expected by users of a digital library. Components, corresponding to each
of these protocols, were created and connected together to test the performance
of such systems and the ability of the model to elaborate various different types
of digital library systems. The results of such tests [8] showed that the model
has much promise. At the same time, feedback from users and developers has in-
dicated that while simplicity of the individual components is useful, much work

E.A. Fox et al. (Eds.): ICADL 2005, LNCS 3815, pp. 33–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 H. Suleman et al.

still needs to be done in order to simplify the process of going from a set of
components to a fully-fledged and seamless digital library.

Concurrent with the development of the ODL model, similar efforts were
underway on the OpenDLib project [2]. The aims of both projects are similar, but
the approach differs in that OpenDLib uses a transport layer that is composed
of custom protocols layered over SOAP. Lessons learnt from both projects can
ultimately lead to the creation of a standardised component model.

These models were proposed to support flexible digital libraries, and sim-
plicity of components has proven to be popular. The natural next step is to
investigate higher level techniques to support the creation of complete digital
libraries from components in a simple and flexible manner. This paper thus pro-
vides an overview of a series of experiments conducted with components in the
ODL family, to demonstrate higher level functionality in creating systems, while
discovering some of the requirements for component frameworks in order to sup-
port such higher level functionality. Details of the ODL framework are omitted
for brevity but can be found in referenced publications [7, 8].

2 Experiments

The main aim of these experiments was to investigate techniques, models and
tools for constructing flexible digital libraries based on simple components ar-
ranged into a network of services. To this end, a number of questions were asked
and tackled relatively independently:

– How do we create visual interfaces to compose components into complete
systems and how do we specify the connections between components?

– How can the user interface and workflow be designed and specified to create
a customisable front-end to back-end components?

– How can systems made up of components be packaged for use at remote
sites, maintaining flexibility while promoting rapid deployment?

– Since these components are largely independent of one another, can they be
run on a cluster of computers instead of a single system, thereby gaining the
advantages of robustness and scalability?

2.1 Visual Component Composition

The BLOX system [4] was developed to demonstrate that a digital library
could be constructed using a visual IDE, similar to those used in conjunction
with popular programming languages. A suite of services corresponding to the
abstract model of a digital library could be created and clicking on a “Pub-
lish” button instantly created and configured all component instances on a live
server!

Extensive testing was conducted on the usability and utility of BLOX as
compared to older methods of manually installing and configuring digital li-
brary components. The overwhelming results of the evaluation indicate that
users would far rather prefer a graphical interface because of the familiarity and

Flexing Digital Library Systems 35

flexibility that it affords. This is not atypical but confirms that digital library
systems and Web-based information management systems in general need to
move towards simpler and more customisable configuration procedures.

A major contribution of this study was the development of a simple descrip-
tive language (similar to the 5SL project [6], but simpler and more specific to
ODL) for specifying the interconnections among components, and a standardised
interface for the remote management of components and component instances
(creating, listing, editing, listing types, etc.).

2.2 Interface Customisation

In addition to customising the collection of component instances, it is also nec-
essary to build different user interfaces for varying system configurations and
user requirements. In a typical Web design environment, this would correspond
to the design of individual pages and their sequencing or workflow management,
with the additional complication that the pages are dynamically-generated by
the back-end of a digital library system.

Fig. 1. User interface workflow editing

Figure 1 illustrates one view of the prototype system that was developed to
design user interfaces for flexible digital libraries. In this prototype, the designer
can lay out page elements as well as specify which services are to be incorpo-
rated and how the workflow among the pages of the interface will be effected, all
through a Web-based interface. Formative evaluations were conducted through
a series of participatory design sessions with stakeholders from different commu-
nities (e.g., digital library students, librarians).

36 H. Suleman et al.

2.3 Flexible Component Packaging

As a final step in the process of making components appear as a cohesive whole,
it should be possible to package a set of components, along with a description of
their interconnections and a specification of the user interface(s) and workflows,
into a single redistributable package.

A prototype packager and installer were developed to bundle a suite of com-
ponents into a package for subsequent installation at a remote location. The
packaging process allows a system designer to load a specification file, as output
by the BLOX system, and then enter parameters and default values particular
to the installation process.

Formal pilot studies have been conducted on the packaging and installing
system and the feedback indicates that the system is preferable to one where
individual components are installed and configured in isolation. Minor improve-
ments have been made to the tools and further evaluation is planned for the
near future. Like the first experiment, this study reinforces the need for com-
ponents/instances to have a well-defined and standardised machine interface for
configuration from an external source.

3 Conclusions

It is now widely accepted in the DL and Web Services communities that sys-
tems should be built as collections of loosely-connected communicating compo-
nents. Much effort has already been expended on demonstration projects where
components are used in innovative ways to build systems with different base
requirements. It is time to move on to a higher level of design.

This paper reports on various studies that have built on earlier work in com-
ponent technologies for digital libraries. These studies have all demonstrated the
utility of and need for high level tools for the construction of digital libraries. In
addition, they have uncovered the need for standard machine interfaces for the
configuration and maintenance of components/instances.

In general, these experiments support the basic notion that components are
an enabling technology to expand the boundaries of what is possible with infor-
mation management and digital library systems.

4 Future Work

A study on scalability based on component farms is in its design phase and will
test whether or not components provide an effective choice in granularity. There
are still many unanswered questions and it is anticipated that much research
will need to be done on how the component interfaces/protocols need to evolve
and how services must be cast to get maximal benefit from cluster computing.

Existing production DL projects are, at the same time, gradually adopting
component technologies and service-oriented architectures. The next version of
Greenstone (v3) is being designed and developed according to a service-oriented

Flexing Digital Library Systems 37

architecture for increased extensibility [1]. Similarly, DSpace is considering a far
more modularised approach for its next generation [9].

Eventually, it is hoped that the higher level experiments with components
discussed in this paper will contribute to an understanding of the pertinent issues
in developing component frameworks so that production frameworks, such as the
ones mentioned above, will be more robust and support a broad range of possible
use cases.

5 Acknowledgements

This project was made possible by funding from UCT, NRF (Grant number:
2054030), NRF-THRIP, Telkom and Siemens.

References

1. Bainbridge, David, Katherine J. Don, George R. Buchanan, Ian H. Witten, Steve
Jones, Matt Jones and Malcolm I. Barr (2004), “Dynamic Digital Library Con-
struction and Configuration”, in Heery, R., and L. Lyon (eds), Research and Ad-
vanced Technology for Digital Libraries: 8th European Conference (ECDL2004),
12-17 September, Bath, UK, LNCS 3232, Springer.

2. Castelli, Donatella, and Pasquale Pagano (2002), “OpenDLib: A Digital Library
Service System”, in Research and Advanced Technology for Digital Libraries, Pro-
ceedings of the 6th European Conference, ECDL 2002, Rome, Italy, September 2002,
pp. 292-308.

3. DELOS (2001) Digital Libraries: Future Directions for a European Research Pro-
gramme, San Cassiano, Alta Badia, Italy, 13-15 June 2001. Available http://delos-
noe.iei.pi.cnr.it/activities/researchforum/Brainstorming/brainstorming-report.pdf

4. Eyambe, Linda K., and Hussein Suleman (2004), A Digital Library Component
Assembly Environment. Proceedings of SAICSIT 2004, Stellenbosch, South Africa,
pp.15-22.

5. Gladney, H., Z. Ahmed, R. Ashany, N. J. Belkin, E. A. Fox and M. Zemankova
(1994), “Digital Library: Gross Structure and Requirements”, Workshop on On-line
Access to Digital Libraries, June 1994.

6. Kelapure, Rohit, Marcos André Gonçalves, Edward A. Fox (2003), Scenario-Based
“Generation of Digital Library Services”, in Proceedings of 7th European Conference
on Digital Libraries (ECDL 2003), 17-22 August, Trondheim, Norway, Springer-
Verlag GmbH, Lecture Notes in Computer Science, vol. 2769, pp. 263-275.

7. Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open
Digital Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available
http://www.dlib.org/dlib/december01/suleman/12suleman.html

8. Suleman, H. (2002), Open Digital Libraries, Ph.D. dissertation, Virginia Tech. Avail-
able http://scholar.lib.vt.edu/theses/available/etd-11222002-155624/

9. Tansley, Rob (2004), DSpace 2.0 Design Proposal, presented at DSpace User
Group Meeting, 10-11 March, Cambridge, USA. Available http://wiki.dspace.org/
DspaceTwo

	Introduction
	Experiments
	Visual Component Composition
	Interface Customisation
	Flexible Component Packaging

	Conclusions
	Future Work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

