
E.A. Fox et al. (Eds.): ICADL 2005, LNCS 3815, pp. 224 – 231, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Where the Speed Matters…
Zero-Response-Time Search Engine for

Small Collections

Ruwan Gamage

School of Information Management, Wuhan University, China
and

Library, University of Moratuwa, Sri Lanka
ruwan@lib.mrt.ac.lk

Abstract. Users with slow internet connections experience slow retrieval
of results in web catalogues. JavaScript search engines can be used to enable
client side search, reducing the load on the server, and increasing the response
time. However, it is not a popular method until now, because of various reasons
including limitation of number of data objects and lengthier response time for
the first search. Here the author suggests negotiating the issue of response
delay with the user. This would enable high speed basic search in small
catalogues, usually with less than 300 data objects. Larger catalogues can be
divided into smaller ones. Special or rare collections, multimedia artifacts and
subject (web) directories are prospective candidates for this type of search
systems. A prototype catalogue of ‘Sri Lankan Web Sites’ was tested in
www.srilankasupersearch.com. Users’ behavior and response to the system is
yet to be studied.

Keywords: JavaScript; search engines; response time; negotiation; OPAC;
models.

1 Introduction

Web based digital libraries and web catalogues offer search tools for users to mine
information from databases. Most of these databases offer server side handling of
search queries. In this type of systems, users experience a delay in retrieval of results.
This delay is termed as response time, latency or lag time. Technically, response time
refers to the amount of time it takes for input from a keyboard to reach the application
and a response returned.

Length of ‘response times’ depends on various factors. Response time in a network
is usually proportional to the number of users currently using the network, the
location of the network components, and the complexity of the network.

Higher the response time, it is more embarrassing for the user. Previous research
suggests that user productivity is dramatically reduced when response time is
significantly longer. Sterbenz [1] states that further productivity gains are realized

 Where the Speed Matters…Zero-Response-Time Search Engine 225

when the response time decreases to the range of 100 ms. According to him, human
factors studies have also indicated that consistent response time is better for users than
response with a significant variance, since users alter their behavior based on response
time at a relatively slow rate.

Nielsen [2] confirms that 0.1 second (100 ms) threshold is suitable while 1.0
second limit is acceptable. Within this limit users’ flow of thought will be
uninterrupted. Ten seconds is the limit the user can focus his attention.

These observations were used to create a model for enabling high speed client side
search for a very small data set.

1.1 Client Side Processing

In contrast to client-server systems, client side search strategies mainly depend on the
performance of the client computer and browser. Therefore it is quite fast to handle a
search request, rather than transforming the load on to the server.

JavaScripts use this strategy efficiently. A JavaScript search engine can be used to
imitate OPACs with comparatively smaller collections. Data objects for search can be
arranged in an array within the JavaScript. The JavaScript then creates cookies on
client machine. However the time needed to create cookies depend on the number of
elements in the array. If the number of elements in the array is more, the JavaScript
becomes heavy, taking a lot of time to create cookies on the client machine. A
suggestion for negotiating this time lag with user is described here.

1.2 Other Attempts to Increase Response Time or Negotiating with the User

Most of the other attempts described here are meant for large databases. Though these
can not be compared with this model, it will give an idea on the quest for reducing
response time.

Chan and Ueda [3] focused on using cached objects with enough information to
connect back to the server to request more information. However, such solutions
require resources to be held open on the server, waiting for client responses. Long [4]
introduces a query slicing technique which would display data in sets, not as a whole.

One other approach for searches is to build web agents. Web agents will search for
information on behalf of the user, according to his preferences. Such preferences are
stored in a user profile database. It has a learning function and can learn the users’
likes and dislikes when the user searches the web with keyword searching thus
reducing the response time for the next search [5].

Sterbenz [1] advices the programmer to display the reason for the delay, which the
user can read while he waits for the result/expected page. He further proposes on
running the more complex operation in a new window. That leaves the user the
original page for working with, until he gets the search result.

1.3 Overview of the Search Engine

While JavaScript search engines are easy to write, and there are many predefined ones
openly available on the web, the author used JSE Search, an open source Java
Script [6].

226 R. Gamage

JSE is platform independent and doesn’t require .NET, ASP, CGI or any other
technologies on host. JSE circumvents HMTL’s inability to pass a value from one
page to another by using a session or non-persistent cookie. The cookie expires when
the user’s session ends.

JSE consists of two scripts (see Appendix). The first writes a cookie containing the
search words and then loads the results page. The second script does all the work;
reading the cookie, defining the matches and generating the search results. Results set
is a single page numbered list with links to detailed pages if available. For users,
searching is similar to Google. A preceding minus character excludes a word, while
phrases are supported within double-quotes.

The cookie is stored in browser’s memory. Therefore subsequent searches
experience virtually zero response time compared to the first search.

1.4 Data Array

Data is held as a JavaScript array, within the search.js JavaScript file. Within the
array, each line consists of a data object and its description, URL, etc. If the number
of data objects is high, size of file becomes larger. This will cause a delay in creating
cookies on browser. That results in a delay in the response time of the first search of
the session.

2 Search Model

As explained above, using a JavaScript for searching means there is a delay between
the first search request and displaying of the first result. Though the delay in the first
search is high, the response times of subsequent searches become virtually zero.
Therefore there should be a method to negotiate with the user until the first search is
carried out. The strategy used here for this is first allowing the user to do a
configuration before doing the actual search. This configuration is actually a pseudo
search (See fig.1).

Fig. 1. Existing model for JSE Search

In order to achieve the pseudo search, one layer of action (2 files) was added to the
existing model (See fig. 2, 3 & 4).

form.html
(search
form)

JSE_form.js
(defines the
results page –
results.html)

JSE_search.js
(keeps data in an
array. Writes cookies
on browser)

results.html
(displays
results)

 Where the Speed Matters…Zero-Response-Time Search Engine 227

Fig. 2. Proposed model for negotiating with user to stay until cookies are created on browser

Fig. 3. Home page of www.srilankasupersearch.com requesting the user to configure the
system before search

When the pseudo search finishes its function, the following page appears where the

user can carry out his own search.

index.html (with pseudo
search button)

JSE_form_f.js (This is the false form. It
writes cookies, but directs the user to the
pseudo results page, form.html)

form.html
(search
form)

JSE_form.js
(defines the
results page –
results.html)

JSE_search.js
(keeps data in an
array. Writes cookies
on browser)

results.html
(displays
results)

228 R. Gamage

Fig. 4. Actual search page

3 Results

Response times were measured for different sized search.js files. All measures were
taken using an Intel Celeron (900 MHz) machine within a half an hour time period to
avoid differences in web traffic during different times of day. The results are as
follows.

Table 1. Change of response time with size of the JavaScript

Number of data
elements in the
JavaScript array

Size of JavaScript
file (kb)

Initial Response
time - server side
search (seconds)

Subsequent
response times -
client side search

1025 350 177 *
500 165 140 *
400 129 103 *
300 105 40 *
* Virtually zero

As this is a negotiated task, an empirical threshold of 40 seconds; 4 times than the
limitation of keeping attention stated by Neilson [2], was considered to be acceptable.

 Where the Speed Matters…Zero-Response-Time Search Engine 229

Therefore only 300 data objects were considered for the web search. In other words,
the service is for searching within a sample of 300 items.

4 Limitations, Improvements, and Uses

4.1 Limitations

Security threats, limitation of size of the file, requirement of expertise and labor to
write the JavaScript are shortcomings in the present model. Also, this model can be
used only with browsers which support cookies. Also, if the user has disabled script
activities, the interface will simply ignore the request of the user.

Also, it should be noted that the above response times can not be standardized
because these may change in other situations dependent on various factors including
processor speed, internet connection, etc. which are beyond the scope of this article.

There are many disadvantages of the display method and display screen. Inability
to prioritize results is a major draw back. However, already there are JavaScript
search engines with many advanced features as the one given by Bradenbaugh [7]. He
also claims that the JavaScript search engine he presents has carried nearly 10000 data
elements without much problem.

OPAC data should be ones which can be made publicly available, because
outsiders can easily download the whole JavaScript file with data, from the server.
However, linked full text or other source files can be housed in the sever using ASP
or other technologies, giving more security.

4.2 Improvements

Whether the user accepts this model or not is yet to be decided based on user behavior
studies. If the user agrees to wait for a long time, the number of data objects can be
further increased. This will also be based on the importance of the set of data objects
for the user.

Writing Javascripts appears troublesome. However this can be automatically
written using open source software like WinISIS, one which is familiar to library
professionals. Header and footer be the same, while it is only the data objects (array)
which is added to the script. It is a matter of creating a good ’print format’.

4.3 Advantages and General Use

One of the benefits against a server side search engine is, this can be tested even on a
stand alone computer as it is. Debugging is easy. The same JavaScripts, along with
search form and results page can be housed in a real server. Therefore even school
and small public libraries can house their OPACs on web. Because higher
technologies such as .Net, ASP or CGI are not needed, even a free web server can be
used to host the OPAC.

Because the server is made free after the first search of each session
(configuration), the server can accommodate more requests from first time users. The
server-side traffic is lower than server side search engines.

230 R. Gamage

If the database is so large, it can be separated into well defined categories. Search
can be enabled within these categories.

The categories themselves can be identified as data objects. Therefore, an optional
primary search can be made available to identify which categories have results related
to the user’s information need.

5 Conclusion

Using JavaScript search engines for imitating OPACs for very small collections can
improve the customer satisfaction by giving speed access to search results.
Demanding the user to search in several search spheres is apparently a backward
option, but it is worthwhile compared with virtually zero response time in subsequent
searches. This would enable catalogues already on web to improve their search
options. Also, this model will be helpful to immediately host web OPACs for those
who have not yet done so.

This would enable high speed basic search in a very small catalogue, usually with
less than 300 data objects. Rare books, dissertations, multimedia artifacts and other
special collections are prospective candidates for this type of search systems.

One should not always assume that using a JavaScript search engine means some
amount of delay. If the number of data objects is very low, the system may retrieve
even the first results set, very quickly.

References

1. Sterbenz, James P. G.: High-Speed Networking: A Systematic Approach to High-
Bandwidth Low-Latency Communication. John Wiley & Sons, Incorporated, New York
(2001) 441-442.

2. Nielsen, J.: The need for speed at http://www.useit.com/alertbox/9703a.html. 1997.
Retrieved June 2005.

3. Chan E. and Ueda K.: Efficient Query Result Retrieval Over the Web. In Proceedings
International Conference on Parallel and Distributed Systems. IEEE Computer Society
(2000).

4. Long, B. A: Design Pattern for Efficient Retrieval of Large Data Sets from Remote Data
Sources in on the Move to Meaningful Internet Systems, LNCS 2519 (2002) 650–660.

5. Quah, Jon T. S., Chen, Y. M., Leow, Winnie C. H.: in Chapter XVIII Networking E-
Learning Hosts Using Mobile Agents Leow, Intelligent Agents for Data Mining and
Information Retrieval. Idea Group Inc., Hershey (2004). 263-293.

6. JSE Documentation. Downloaded from
http://www.JavaScriptkit.com/script/script2/jse/jse10a.zip on 30.05.2005.

7. Bradenbaugh, Jerry. JavaScript Cookbook. 1st Edition October 1999 (est.) O’Reilly.

 Where the Speed Matters…Zero-Response-Time Search Engine 231

Appendix: Form.js and Search.js (part) JavaScript Files

form.js

// ---------- script properties ----------
var results_location = "results.html";
// ---------- end of script properties ----------
function search_form(jse_Form) {
 if (jse_Form.d.value.length > 0) {
 document.cookie = "d=" + escape(jse_Form.d.value);
 window.location = results_location;
 }
}

search.js

// ---------- script properties ----------
var include_num = 1;
var bold = 0;
// ---------- sites ----------

var s = new Array();

s[0] =

"Autosrilanka.com^http://www.autosrilanka.com/^<blockquote>ht
tp://www.autosrilanka.com/ >>> Free advertisements
(vehicles)</blockquote>^Autosrilanka Advertising free
advertisements promotion vehicles auto cars vans
automobilespublicity promotions marketing sales";

s[1] =
"EeZee2.com^http://www.eezee2.com/^<blockquote>http://www.eez
ee2.com/ >>> Free Classified
Advertisements.</blockquote>^EeZee2.com Advertisingpublicity
promotions marketing sales";

// ---------- sites continue within this array----------

// ---------- end of script properties and sites ----------

var cookies = document.cookie;
var p = cookies.indexOf("d=");

// ---------- script continues ----------

end.

	Introduction
	Client Side Processing
	Other Attempts to Increase Response Time or Negotiating with the User
	Overview of the Search Engine
	Data Array

	Search Model
	Results
	Limitations, Improvements, and Uses
	Limitations
	Improvements
	Advantages and General Use

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

