

E.A. Fox et al. (Eds.): ICADL 2005, LNCS 3815, pp. 214 – 223, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Word Extraction from Table Regions
in Document Images

Chang-Bu Jeong1, Sang-Cheol Park2, Hwa-Jeong Son2, and Soo-Hyung Kim2

1 Department of Internet Software, Honam University,
59-1 Sebong-dong, Gwangsan-gu, Gwangju 506-714, Korea

cbjeong@honam.ac.kr
2 Department of Computer Science, Chonnam National University,

300 YongBong-dong, Buk-Gu, Gwangju 500-757, Korea
{sanchun, sonhj}@iip.chonnam.ac.kr, shkim@chonnam.ac.kr

Abstract. This paper describes a method to extract words from table regions in
document images. The proposed approach consists of two stages: cell detection
and word extraction. In the cell detection module, a table frame is extracted first
by analyzing connected components and then intersection points are detected by
a method using masks in the table frame. We correct false intersections, and de-
tect the location of the cells within the table. In the word extraction module, a
text region in each cell is located by using the connected components informa-
tion that was obtained during the cell extraction module, and segmented into
text lines by using projection profiles. Finally we divide the segmented lines
into words using gap clustering and special symbol detection. The method cor-
rectly included character components touching the table frame with words, so
experimental results show that more than 99% of words were successfully ex-
tracted from table regions.

1 Introduction

With the continuous development of computer technology and the Internet environ-
ment, we can efficiently produce, store, process, and transmit document images.
However, as more and more documents are stored in the image format for full-text
image retrieval services or digital libraries, it is impossible to retrieve information
from document images with text-based search engines that do not recognize text from
images. The retrieval of relevant documents is usually based on indices (e.g. title,
author, keyword, and so on) of pre-catalogued documents in the text format, so that it
becomes necessary for the user to download part of or the entire document images
and confirm the contents when retrieving relevant documents with information not
specified in the indices. Over the past few years, a considerable number of studies
have focused on keyword spotting through automatic indexing of document images to
compensate for this drawback. Such a keyword spotting approach makes it possible to
retrieve relevant word images regardless of the language of the document and charac-
ter segmentation errors because it uses word image features [1-3].

There are a lot of technologies in the document image processing for keyword
spotting, such as skew correction, layout analysis, word extraction, and etc. Jeong et

 Word Extraction from Table Regions in Document Images 215

al. [4] presented a document image preprocessing system for keyword spotting, which
segments and classifies a document image into text regions and non-text regions (ta-
ble, figure, etc) and then performs word extraction to decompose words from the text
regions. Therefore the system is limited in that words in the non-text regions cannot
be extracted. The words in the table regions, however, may be more useful for key-
word spotting than words from other non-text regions because they may contain more
meaningful words. Thus, it is necessary to decompose words from table regions in
this respect.

In this paper, we propose a method to extract words from table regions in docu-
ment images. The proposed approach consists of two stages: cell detection and word
extraction (Fig. 1). In the cell detection module, a table frame is extracted first by
analyzing CCs (connected components), and then intersection points are detected by a
method using masks in the table frame. We correct false intersections using the corre-
lation between neighboring intersections, and use the information of intersections to
extrapolate the location of the cells within the table. In the word extraction module, a
text region in each cell is located by using the CCs information that was obtained
during the cell extraction module, and segmented into text lines by using projection
profiles. Finally we divide the segmented lines into words using gap clustering and
special symbol detection.

Fig. 1. Block diagram of the proposed method

2 Related Works

Previous research on extracting tables from document images can be divided into two
types according to how tables are formed. One method is to analyze or recognize the
table images delimited by line-art boundaries, and the other is to recognize the table
images formed by the vertical alignment of fixed-width fields without line-art
boundaries [5]. The proposed method is related to the former, but most of the
previous research has dealt with form document images. Certainly, both tables and
forms are sometimes used interchangeably, but a clear distinction exists. Tables are
tabular structures, machine-printed for output, and their frame and content are created

216 C.-B. Jeong et al.

simultaneously. But, forms are rectilinear structure, machine- or hand-printed for
input, and their frames are created prior to creating the content. While the aim of the
research on table images is to vectorize the table frame by analyzing the line compo-
nents comprising the table and to extract character components, the existing research
on form images sought to classify unknown input forms by utilizing the extracted
structural information from the forms, querying the input to a form types database,
selecting matching forms, and extracting content from form types that do not match.

Watanabe et al. [6] described tables by using the upper-left corners of cells. Firstly,
the proposed approach detects vertical and horizontal line segments from the bi-
narized document images by using two extraction filters, and then applies two corner
detection filters to the edge-extracted document images for the detection of upper-left
corners. However, it is difficult to detect the intersection errors because it detects only
the upper-left corners and the corner detection filters may not perform well in case
line segments are distorted.

Horizontal and vertical lines can intersect each other to form any of the nine struc-
tures: �� �� �� �� �� �� �� �� �������	�
�� ���� �
����
� ���	��������
�� �
�����
�� ���
detect the intersections. Each template finds one of the basic intersections (�� �� ��
���������
����
��
�
��
����	�
	���	
�������
����to an appropriate way for detecting

the extensions (�� �� �� �� ������

	��!	����
�������"��did not use templates but the
leg length of the basic and extended intersections in the corresponding horizontal and
vertical directions, and defined their relationship through the hierarchical representa-
tion of the nine intersections. This method can reduce the computing complexity spent
on detecting the extension intersections in [7] because it obviates the need to visit all
of the pixels in the templates of [7] and detects intersections by using their relations.

Neves et al. [9] use binary mathematical erosion to locate intersections and the hi-
erarchical representation of [8] to save calculation time. For the detection and correc-
tion of identification errors, it also defines the tenth intersection (virtual intersection),
which is represented by a type 0 intersection that is not a real intersection but a part of
a horizontal or vertical line. To improve the cell extraction, it detects and corrects
identification errors by comparing each neighboring intersection to reference
neighborhoods. These reference neighborhoods are congregated in two manners, the
rejection tables and the acceptance tables.

While the research mentioned above deal with extracting cells from table images,
[4] presents an approach to segment text images into word images. This approach
separates text regions into text lines by a horizontal projection profile analysis, and
then utilizes gaps and special symbols as delimiters between words by a CC analysis
in order to separate a text line into word units. As it combines the top-down approach
(projection profile analysis) and the bottom-up approach (CC analysis), it is more
efficient than other methods using a single approach.

3 Proposed Algorithm

3.1 Cell Detection

In table images, line components, which compose the table frame, and character com-
ponents coexist. The line with the largest width is determined as a table frame by

 Word Extraction from Table Regions in Document Images 217

virtue of the 8-CC analysis. Thus, in order to extract cells from a table image, we deal
with only the table frame while excluding character components. The intersection
extraction module determines the position and the type of intersections on the table
frame.

Fig. 2. Hierarchy of intersections

For extracting intersections, we employ the technique in [8] to reduce the extrac-
tion time. The intersections can be classified into 9 types: four with two legs, four
with three legs, and one with four legs. They can be arranged in a hierarchy as shown
in Fig. 2. Each type of intersection is assigned a number from 1 to 9. The proposed
approach consists of trying to fit the largest possible intersection type in every black
pixel of the table frame and assigning the corresponding label to the pixel. The fit of
an intersection consists of finding runs of consecutive black pixels in the correspond-
ing horizontal and vertical directions with the length equal to the leg length of the
intersection. The process of labeling the pixels is performed in a hierarchical manner:
Corners (�� �� �� ���	
� �	�
����	��#� �����
������
�����
��� ��
���		
�������$� ���
	�
c-
tions (�� �� �� ���	
��	�
��������������%���
��	�����&'����
����	
���
�(
����	�
����
leg in [8], 10 pixels are checked in our work so that the operation of searching for
intersections is performed more efficiently. Although the time to check the length of
the leg checked is reduced by one-third, there need not be any concern about the
number of candidates for intersections amounting to larger than in [8] because charac-
ter components are excluded from the intersection extraction.

When a vertical line and a horizontal line intersect, one intersection is generated.
Two more candidates corresponding to the intersection can be detected according to
the thickness of the lines of the table frame so that it becomes necessary to choose
from among them by analyzing the information of the candidates. The position of the
intersection is located in the center of the candidates, and the type is decided by a
majority vote.

Since a cell is generally composed of four intersections, a representation model for
extracting cells with intersections can be made with regard to the vertical position of
intersections. Fig. 3 shows the representation model, whose elements determine the
intersection type and position within a simple table. For example, "1-(3, 5)" corre-
sponding to the element of (1, 1) in Fig. 3 means the intersection of type 1 (���ocated

218 C.-B. Jeong et al.

in (3, 5) of table image. In general, it is possible to extract cells using this representa-
tion model with nine types of intersections, but it is necessary to modify the represen-
tation model in case two more cells are vertically or horizontally merged into a cell. If
the distance between the horizontal positions of intersecting neighborhoods in a verti-
cal direction is larger than the threshold, we consider that there is a merged cell in the
table and then add a virtual intersection, which is type 0. In Fig. 3, (b) shows the rep-
resentation model modified from (a) to add a virtual intersection.

(a) Before inserting virtual intersections (b) After inserting virtual intersections

Fig. 3. Representation model for a cell

(a) Original image (b) CC of the table frame

Fig. 4. An example that a character CC touches at a table frame

But when certain line intersections do not appear due to the poor quality of the ac-
quisition, binarization problems, or skew correction, etc, it is difficult to correctly
extract intersections with only the method described so far. Since those factors can
distort document images and prevent the detection of real intersections, or even detect
false intersections, it is necessary to detect and correct the error of intersections.
Therefore, we adapt the technique in [9] to detect and correct the error of intersections
by comparing each intersection neighborhood with reference neighborhoods. When a
character component and the table frame touch as shown in Fig. 4, the character com-
ponent is recognized as part of the table frame and false intersections can be detected
around this area. The false intersections must be modified into virtual intersections by
correcting the intersections.

After the intersection correction, each cell is determined with the four adjacent in-
tersections excluding the virtual intersections appropriately chosen from the extracted
intersections. But the meaningless cells formed by double lines must be excluded by
considering the height and width of cells.

 Word Extraction from Table Regions in Document Images 219

3.2 Word Extraction

The analysis of character components within the cells can be conducted faster and
easier than the previous approaches by using the information from the character com-
ponents that were excluded from the line component analysis. This method reduces or
removes the influence of line components that may be located within the cells. Firstly,
text regions within cells are determined by examining whether or not the CCs are
located inside the appropriate cell. Since the character components touching the table
frame are regarded as line components as mentioned above, we use the extracted cell
information to separate these character components from the line components and add
them to character components.

��
��

�� ��

��� ��	
�� �

Fig. 5. Processing method for locating the internal region of the cell when character compo-
nents touch the table frame

�

Fig. 6. Result of locating the internal region of the cell when characters components touch the
table frame

When the false intersections detected in the intersection correction are located in
the table frame, we assume that character components are touching the table frame.
We detect the cell in which this contact occurs by analyzing the position and type of
the false intersections, and then locate the internal region of the cell from the table
frame by using the projection profile of the cell. By comparing with the neighborhood
projection profile in the direction of center from both ends, the internal region of the
cell (x1, x2, y1, y2) is decided if a current value is less than 10% of the previous value
in Fig. 5. We analyze the CCs again for the part of the table frame located in the

220 C.-B. Jeong et al.

internal region of the cell and then add it to the character components of the text re-
gion in the cell. Fig. 6 shows the result for locating the internal region of the cell
when character components touch the table frame.

Basically we employ our algorithm proposed in [4] for separating text regions into
words, and additionally perform a post-process because words are not located in a text
region but a table. The post-processing for the word segmentation is needed when the
characters within a word are segmented into words due to the special spacing of the
cell.

4 Experiment

4.1 Experiment Environment

We used a set of 100 binary images of table to evaluate the performance of the pro-
posed method. The data are constructed manually from document images, which are
pre-processed by the system in [4]. They are digitized in 300 dpi with spatial resolu-
tions from 849×117 to 1500×1770. The document images were provided from the
full-text image retrieval services by the Korean Information Science Society. Table 1
shows the data classified into four types by the cell formation and the boundary of
cell, etc. The experiment was run on a Pentium-4 2.0 GHz PC.

Table 1. Test data

Type of table Number
Normal table 60
Table whose cells are merged 20
Table consisted of a cell 10
Table which all or a part of border lines are missed 10

Total 100

4.2 Experiment Results

The performance results from the proposed method were evaluated in terms of accu-
racy and speed. The results obtained by the proposed cell extraction were 100% accu-
rate for cell extraction (the total number of cells extracted is 2,313 in 100 table im-
ages). There were 7 false intersections in 5 table images due to the contact between
character components and a table frame, but our algorithm corrected them and ex-
tracted all cells correctly.

Table 2. The result of word segmentation

 Result-1 Result-2
of

images
of

words
of

successes
of

failures
of

successes
of

failures

100 4,547
4,301

(94.59%)
246

(5.41%)
4,509

(99.16%)
38

(0.84%)

 Word Extraction from Table Regions in Document Images 221

Table 2 shows the results of word segmentation using the extracted cell informa-
tion: Result-1 was obtained by applying only a gap clustering and Result-2 was
obtained by additionally applying the special symbol detection. In the word segmenta-
tion module, we obtained an accuracy of 94.59% with only the gap clustering, and
improved the performance rate by 4.57% by additionally applying the special symbol
detection. Finally, we achieved an accuracy of 99.16% in the word segmentation. Fig.
7 shows the final result of the proposed method.

Fig. 7. The final result of the proposed method

There are several types of errors in the word segmentation and Fig. 8 shows a few
examples. The first type is because an underline extends over two or more words and
then between-word gaps cannot be computed by using horizontal projection profiles.
So the words connected by an underline is segmented into a word as shown in Fig.
8(a). The second one is due to a split in a character. Some character can be split in
two because of the image degradation or low quality and then classified as special
symbols. Such a split character is used for an additional between-word gap shown in
Fig. 8(b). The other is due to miss-classification of special symbols. When a special
symbol touches neighbor characters as shown in Fig. 8(c) or has a property of the
Italic fonts as shown in Fig. 8(d), our system cannot classifies them into special
symbols.

(a) (b)

(c) (d)

Fig. 8. Examples that the proposed system failed

The average processing time for cell detection and word segmentation was about
1.399 and 0.071 seconds respectively. Since the information of the CCs analyzed in
the cell extraction module was repeatedly used in the word segmentation module, the

222 C.-B. Jeong et al.

processing time for cell detection was significantly longer than the word segmentation
module.

Table 3 shows the result obtained by combining the proposed method into the sys-
tem in [4]. While the accuracy rate of word extraction was 90.84% for 50 Korean
images before the combination, a 2.66% improvement was obtained after the
combination. The performance improvement can be mainly attributed to the fact that
the proposed method is able to extract words from the table regions, whereas the sys-
tem in [4] is unable to achieve. For example, the accuracy rates of the 35th and 47th
images were less than 70% before the table processing, but they were improved by
more than 96% after the table processing.

Table 3. The result of the [4]’s system with the proposed method

of real words # of extracted words Accuracy(%)
NTR NTR

Image
ID TR

Tab. Fig.
All TR

Tab. Fig.
All

Before table
processing

After table
processing

1 474 0 0 474 472 0 0 472 99.58 99.58
2 707 0 0 707 707 0 0 707 100.00 100.00
3 581 0 35 616 581 0 0 581 94.32 94.32
4 570 0 27 597 569 0 0 569 95.31 95.31

… …
35 374 208 0 582 353 208 0 561 60.65 96.39
36 546 74 0 620 537 71 0 608 86.61 98.06
… …
46 432 43 19 494 420 43 0 463 85.02 93.72
47 400 169 0 569 387 169 0 556 68.01 97.72
48 491 0 10 501 486 0 0 486 97.01 97.01
49 477 0 15 492 470 0 0 470 95.53 95.53
50 402 53 45 500 378 53 0 431 75.60 86.20

 90.84 93.50

5 Conclusion

We have proposed a method to extract words from table images and improve the
word extraction system for document images. The proposed method is composed of
cell detection and word extraction. The method correctly included character compo-
nents touching the table frame with words using the cell information, so experimental
results show that more than 99% of words were successfully extracted from table
regions.

The proposed method in this paper can be used as a core technology for keyword
spotting or retrieval systems for digital libraries.

Acknowledgement

This work was supported by grant No. R05-2003-000-10396-0 from the KOSEF.

 Word Extraction from Table Regions in Document Images 223

References

1. Oh, I. S., Choi, Y. S., Yang, J. H., Kim, S. H.: A Keyword Spotting System of Korean
Document Images. Lecture Notes in Computer Science, Vol. 2555. Springer-Verlag, Berlin
Heidelberg New York (2002) 530

2. Marinai, S., Marino, E., Cesarini, F., Soda, G.: A General System for the Retrieval of Docu-
ment Images from Digital Libraries. Proceedings of the First International Workshop on
Document Image Analysis for Libraries (2004) 150-173

3. Lu, Y., Zhang, L., Tan, C. L.: Retrieving Imaged Documents in Digital Libraries Based on
Word Image Coding. Proceedings of the First International Workshop on Document Image
Analysis for Libraries (2004) 174-187

4. Jeong, C. B., Kim, S. H.: A Document Image Preprocessing System for Keyword Spotting.
Lecture Notes in Computer Science, Vol. 3334. Springer-Verlag, Berlin Heidelberg New
York (2004) 440-443

5. Lopresti, D., Nagy, G.: A Tabular Survey of Automated Table Processing. Lecture Notes In
Computer Science, Vol. 1941. Springer-Verlag, Berlin Heidelberg New York (1999) 93-120

6. Watanabe, T., Luo, Q., Sugie, N.: Layout Recognition of Multi-Kinds of Table-Form Docu-
ments. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17. (1995)
432-445

7. Taylor, S., Fritzson, R., Pastor, J.: Extraction of Data from Pre-printed Forms. Machine Vi-
sion and Applications, Vol. 5. No. 3. (1992) 211-222

8. Arias, J. F., Kasturi, R.: Efficient Extraction of Primitives from Line Drawings Composed
of Horizontal and Vertical Lines. Machine Vision and Applications archive, Vol. 10. (1997)
214-221

9. Neves, L. A. P., Facon, J.: Methodology of Automatic Extraction of Table-Form Cells. XIII
Brazilian Symposium on Computer Graphics and Image Processing, (2000) 15-21

	Introduction
	Related Works
	Proposed Algorithm
	Cell Detection
	Word Extraction

	Experiment
	Experiment Environment
	Experiment Results

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

