
A New Unsupervised Anomaly Detection
Framework for Detecting Network Attacks in

Real-Time

Wei Lu and Issa Traore

Department of Electrical and Computer Engineering, University of Victoria,
PO Box 3055 STN CSC, Victoria, B.C., Canada

{wlu, itraore}@ece.uvic.ca

Abstract. In this paper, we propose a new unsupervised anomaly detec-
tion framework for detecting network intrusions online. The framework
consists of new anomalousness metrics named IP Weight and an out-
lier detection algorithm based on Gaussian mixture model (GMM). IP
Weights convert the features of IP packets into a four-dimensional numer-
ical feature space, in which the outlier detection takes place. Intrusion
decisions are made based on the outcome of outlier detections. Two sets
of experiments are conducted to evaluate our framework. In the first ex-
periment, we conduct an offline evaluation based on the 1998 DARPA
intrusion detection dataset, which detects 16 types of attacks out of a
total of 19 network attack types. In the second experiment, an online
evaluation is performed in a live networking environment. The evalua-
tion result not only confirms the detection effectiveness with DARPA
dataset, but also shows a strong runtime efficiency, with response times
falling within seconds.

1 Introduction

Intrusion detection has been extensively studied since the seminal report written
by Anderson [1]. Traditionally, intrusion detection techniques are classified into
two categories: misuse detection and anomaly detection. Misuse detection is
based on the assumption that most attacks leave a set of signatures in the
stream of network packets or in audit trails, and thus attacks are detectable if
these signatures can be identified by analyzing the audit trails or network traffic
behaviors. However, misuse detection approaches are strictly limited to the latest
known attacks. How to detect new attacks or variants of known attacks is one
of the biggest challenges faced by misuse detection.

To address the weakness of misuse detection, the concept of anomaly de-
tection was formalized in the seminal report of Denning [4]. Denning assumed
that security violations could be detected by inspecting abnormal system usage
patterns from the audit data. As a result, most anomaly detection techniques
attempt to establish normal activity profiles by computing various metrics, and
an intrusion is detected when the actual system behavior deviates from the nor-
mal profiles. According to Axelsson, “the early anomaly detection systems were

Y.G. Desmedt et al. (Eds.): CANS 2005, LNCS 3810, pp. 96–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Unsupervised Anomaly Detection Framework 97

self-learning, that is, they automatically formed an opinion of what the subject’s
normal behavior was” [2]. Self-learning techniques combine the early statistical
model based anomaly detection approaches [10][12][17], and the AI based ap-
proaches [8] or the biological models based approaches [9], and thus they are
still applied for current anomaly detection schemes. According to whether they
are based on supervised or unsupervised learning techniques, anomaly detection
schemes can be classified into two categories: unsupervised anomaly detection
and supervised anomaly detection [14].

Supervised anomaly detection establishes the normal profiles of systems or
networks through training based on labeled datasets. In contrast, unsupervised
anomaly detection attempts to detect intrusions without using any prior knowl-
edge of attacks or normal instances. The main drawback of supervised anomaly
detection is the need of labeling the training data, which makes the process
error-prone, costly and time consuming. Unsupervised anomaly detection ad-
dresses these issues by allowing training based on unlabelled datasets and thus
facilitating online learning and improving detection accuracy.

Clustering algorithm is one of the most widely used unsupervised learning
techniques. Some examples of using clustering algorithms for intrusion detection
were suggested in literature [5], [6] and [14]. Although clustering techniques have
showed their capability for intrusion detection, labeling clusters is still a difficult
problem faced by this kind of approach. In order to label the clusters, the ap-
proach usually makes two assumptions: (1) data instances always belong to two
categories: normal clusters and intrusive clusters; (2) the number of normal data
instances largely outnumbers the number of intrusions. However, these assump-
tions are not always the case in practice. The number of clusters is not supposed
to be determined in advance. When data instances include only normal behav-
ioral data, the assumptions will lead a high false alert rate. In order to obtain
an efficient and effective detection, we propose in this paper a new unsupervised
anomaly detection framework based on outlier detection techniques. The pro-
posed detection scheme consists of a feature extraction technique based on new
anomalousness metrics, named IP Weight and an outlier detection algorithm
based on Gaussian mixture model (GMM).

Fig. 1. General architecture

Fig. 1 illustrates the general architecture of our framework, which consists
of three components, namely feature analysis, outlier detection and intrusion
decision. During feature analysis, IP Weights are generated from standard IP
packet flows. This allows extracting salient and useful domain knowledge and
reducing significantly the dimensionality of the feature space. Then, noisy data

98 W. Lu and I. Traore

of IP Weights are detected in outlier detection phase. Intrusion decision is made
based on the outcome of outlier detections.

We discuss each of these phases in the rest of the paper. Specifically, Section
2 outlines empirical observations based on network traffic, and derives the IP
Weight metrics based on these observations. Section 3 presents the outlier de-
tection algorithm and the corresponding intrusion decision strategy. Section 4
presents the experimental evaluation of our approach and discusses the obtained
results. Section 5 makes some concluding remarks and discusses future work.

2 Feature Analysis

Feature analysis consists of feature selection and extraction. In this paper we pri-
marily focus on the detection of network attacks, and thus the main data source
for our approach consists of network packets. Through empirical observations to
network traffic behaviors, we derive a collection of empirical utility functions.
We name these utility functions IP Weight metrics. IP Weight metrics measure
the degree of anomalousness of IP packet flows. In the remainder of this section,
we define the feature space, summarize these empirical observations, which are
the basis of our feature selection process, and then derive the IP Weight metrics.

2.1 Feature Selection

Feature Space. Based on the standard characteristics of IP packets on net-
works, we define a set of features to describe a single IP packet. Let us denote by
P the set of IP packets. A packet p ∈ P can be represented as a 13-dimensional
feature vector < t, dip, dp, sip, sp, ihl, pktl, ident, fragoff, pro, thl, seq, ack>; t is
the time stamp corresponding to the appearing time of the packet in a certain
time window; dip is the destination IP address and it usually corresponds to
the address of a host we want to protect; dp stands for the destination port; sip
stands for the source IP address; sp means source port; ihl refers to the length of
IP header for the IP packet; pktl is the packet length including header and data;
ident is an integer that identifies the current data in a packet, which can be used
to piece together data fragments; fragoff is the offset of the IP packet indicating
the position of the fragment’s data relative to the beginning of the fragment
data in the original data; pro stands for the upper-layer program receiving the
incoming IP packets after IP processing is complete; thl is the length of TCP
header; seq is the data location of the TCP segment; ack is the number of data
received by the destination host.

We define a packet flow as group of packets flowing to a specified destination
during a specified observation period. Let us denoted by F the set of all packet
flows. A packet flow f ∈ F is defined as a 6-dimensional vector f =< g,t,δt,dip,
nop,nodpmax >; where g ∈ ℘(P) is the set of packets observed and ℘(P) denotes
the power set of P ; t is the starting time of the observation; δt is the observation
time window; dip refers to the destination IP address that we want to protect;
nop stands for the total number of packets in the flow; nodpmax means the
maximum number of packets over all destination ports in the packet flow.

A New Unsupervised Anomaly Detection Framework 99

Empirical Observations. The goal for the feature selection is not to pro-
vide a full description about anomalous activities; instead, we are interested in
identifying a limited number of facts that can allow achieving an effective and
efficient detection. Specifically, the work is based on the following four intuitive
observations:

1. Network traffic involving a high frequency of packets flowing to the same des-
tination address within a very short time period, or network traffic involving
a high frequency of packets flowing to the same destination address with
same destination port during a very short time period, is likely anomalous.

2. During the normal network usage, for those network traffic flowing to the same
destination over a given time period, the likelihood of their corresponding des-
tination ports to be randomly distributed is low. The same observation applies
for their corresponding source IP addresses and source ports.

3. Network traffic containing one or several packets that violate basic structural
rules of packets is likely anomalous.

4. For a normal host, its incoming traffic and (matching) outgoing traffic are
most likely similar.

Observation 3 simply derives from the TCP/IP protocol specification. To
confirm other three observations, we conducted a pilot study, in which network
data are collected over three weeks: two weeks for normal network usage and one
week for anomalous network usage including some known attacks. The destina-
tion server was deployed behind the firewall. We ensured that the traffic over
two weeks’ normal usage was normal by auditing the after-event logs of the fire-
wall. During the anomalous network usage over one week, the server operated
as a honey pot. Several utilities including known vulnerabilities were purposely
installed on the server and exposed to the public.

Fig. 2-a to Fig. 7-b illustrate the analysis made from the collected data. In
these figures, we denote the IP address of the server by dip and the size of the

(a) (b)

Fig. 2. (a) Frequency of normal packets flowing to same dip over δt. (b) Frequency of
anomalous packets flowing to same dip over δt.

100 W. Lu and I. Traore

(a) (b)

Fig. 3. (a) Maximum frequency of normal packets flowing to same dip with same dp
over δt. (b) Maximum frequency of anomalous packets flowing to same dip with same
dp over δt.

(a) (b)

Fig. 4. (a) Randomness of dp for normal packets flowing to same dip over δt. (b)
Randomness of dp for anomalous packets flowing to same dip over δt.

observation time window by δt. The frequency of IP packets flowing to the same
dip during δt in two weeks normal network usage and one week anomalous net-
work usage are plotted in Fig. 2-a and 2-b respectively. Fig. 3-a and Fig. 3-b
plot the maximum frequency of packets flowing to same dip with same destina-
tion port during δt, respectively. In these figures, the frequency of normal packet
flows follow a regular pattern, while the frequency of anomalous packet flows is
persistently high. These confirm observation 1.

The randomness of destination ports in packet flows with same destination
port during δt over two weeks’ normal network usage and one week’s anomalous
network usage are plotted in Fig. 4-a and Fig. 4-b, respectively. Similarly, Fig.
5-a and Fig. 5-b plot the randomness of source ports in corresponding packet
flows. Fig. 6-a and Fig. 6-b plot the randomness of source IP addresses. In these

A New Unsupervised Anomaly Detection Framework 101

(a) (b)

Fig. 5. (a) Randomness of sp for normal packets flowing to same dip over δt. (b)
Randomness of sp for anomalous packets flowing to same dip over δt.

(a) (b)

Fig. 6. (a) Randomness of sip for normal packets flowing to same dip over δt. (b)
Randomness of sip for anomalous packets flowing to same dip over δt.

graphs, the randomness of destination ports, source IP addresses and source
ports of anomalous packet flows is more often higher than those of normal packet
flows, which supports observation 2.

For the server we protect, Fig. 7-a and Fig. 7-b plot the load ratio of its
corresponding incoming traffic to outgoing traffic over two weeks normal network
usage and one week anomalous network usage. Both the incoming traffic and
outgoing traffic correspond to the same destination IP address. The load ratio
for the specified destination IP address of anomalous traffic is much higher than
those of normal traffic, which confirms the observation 4.

Exceptions for these observations may occur in some special cases. For in-
stance, a normal web sever working on high traffic load will violate the first
observation. However, this kind of violations has a slight impact on the final
intrusion decisions according to later experimental evaluations. This is because
the outlier detection technique eliminates empirical observation errors. We con-

102 W. Lu and I. Traore

(a) (b)

Fig. 7. (a) Load ratio for normal packets with same dip over δt. (b) Load ratio for
anomalous packets with same dip over δt.

sider only the most generic cases when we derive empirical utility functions of
network traffic.

2.2 Feature Extraction

In order to achieve efficient and effective detection, we extract a limited fea-
ture set consisting of four dimensions by applying some transformations on the
feature set denoted by F . Specifically, four ordinal utility functions are defined
to characterize the degree of anomalousness of network activities, and each of
them maps several features in F into a single numerical feature [16]. We name
the four utility functions IP Weight. Each of the functions measures empiri-
cally the anomalousness along one of four dimensions, namely frequency, ran-
domness, structure and load. We denote by ipwfreq:F → R, ipwran:F → R,
ipwstr :F → R, and ipw load:F → R respectively the frequency, randomness,
structure and load component of IP Weight, where R is the set of real numbers.
An empirical assumption behind IP Weight metrics is that the greater the value
of IP Weight, the more anomalous a packet flow f∈F is. All four components of
IP weight metrics must satisfy this empirical assumption, and as a result, the
underlying logic to derive the corresponding four utility functions is that the
greater the value of utility functions, the more anomalous a packet flow f∈F is.

Frequency-Based Feature Extraction. Given a packet flowf ∈ F with same
dip during δt, we denote by x1 and x2 the appearing frequency of IP packets dur-
ing δt and the maximum appearing frequency of IP packets over all destination
ports during δt, respectively. Thus, we have:

x1 = nop
δt

and x2 = nodpmax
δt

Empirical observations show that the greater the value of x1 and x2, the more
likely the corresponding network packet flow is anomalous. Both x1 and x2 con-
tribute to some extent the anomalousness of network traffic. As a result, we define
ipwfreq by adopting a polynomial representation, which is expressed as follows:

A New Unsupervised Anomaly Detection Framework 103

ipwfreq(f) = (x1f1(x1, x2) + x2f2(x1, x2))g(x1, x2). (1)

Where f1: R×R→[0,1] and f2: R×R→[0,1] are two numerical functions that
represent the contributions of x1 and x2 respectively; g : R × R → R is a
numerical function adjusting the value of ipwfreq , which is selected as x2/x1.
Given x1 and x2, the constraints x2 ≤ x1 and f1(x1,x2) + f2(x1,x2) = 1 are
always satisfied, and thus by selecting f2 as x2/x1, we can derive the expression
of f1. By substituting f1, f2 and g in equation (1), we can express the empirical
utility function ipwfreq as follows:

ipwfreq(f) =
(
x1 − x2 + x−1

1 x2
2
) x2

x1
. (2)

Randomness-Based Feature Extraction. The entropy is selected to measure
the randomness of variables according to information theory. Given a packet
flowf ∈ F with same dip during δt, the randomness of their corresponding source
IP addresses, ports, and destination ports is denoted by Hsip, Hsp and Hdp,
respectively; p(sip) refers to the appearing probability associated with source IP
addresses sip, which is computed by taking the ratio of number of packets with
specified source IP address sip by the total number of packets observed in the
flow f. Using the same approach, we can compute the p(sp) and p(dp), which
refer to the probabilities associated with source port sp and destination port dp,
respectively.

Since each of these features has the same contribution to the anomalousness
of network traffic, we combine them into a single feature by selecting their max-
imum value in order to satisfy the empirical assumption of IP weight metrics.
Consequently, the utility function ipwran is defined as follows:

ipwran(f) = max(Hsip(f), Hsp(f), Hdp(f)) (3)

Load-Based Feature Extraction. For a normal target host dip, the mag-
nitudes of its incoming and (matching) outgoing traffic are most likely similar.
However, when denial of service (DoS) attacks are used to compromise this host,
its outgoing traffic is usually low compared to its incoming traffic. Empirical ob-
servations made earlier confirm this.

Given a packet flowf ∈ F , we extract two new features trafficin and trafficout

to represent the appearing frequency of packets flowing to dip over δt and the
appearing frequency of packets outgoing from dip over δt. The ratio between
trafficin and trafficout describes the load balance of the host we want to protect.
Thus the utility function ipw load is defined as follows:

ipwload(f) =
trafficin

trafficout
(4)

Load-Based Feature Extraction. Normal IP packets must satisfy some basic
structural rules. In most cases, TCP/IP implementation will help to check the
structures of packets. However, in some cases, the structure violation is difficult

104 W. Lu and I. Traore

to be found by TCP/IP stack implementation. According to our domain knowl-
edge on the structure of IP packets, we define a limited number of rules, which
are usually satisfied by any pair of packets belonging to the same TCP/UDP con-
nection. Fig. 8 describes the rule base for these rules. Given a packet flowf ∈ F
with same dip during δt and a pair of packets p1,p2 ∈ g observed during δt, the
utility function ipwstr is defined as follows:

ipwstr(f) =
1

nop(nop − 1)

∑

p∈g

∑

q ∈ g,
p �= q

εpqe
−|ident(p)−ident(q)| (5)

Fig. 8. Rule-base for packets in the same connection

Where |ident(p)-ident(q)| stands for the absolute value of the difference be-
tween identification fields of packets p and q; Coefficient nop(nop-1) is a normal-
izing factor, and nop stands for the total number of packets in the flow f . εpq is
a positive integer, which takes the following values: εpq=1 if packets p and q be-
long to the same TCP/UDP connection and violate the rule base simultaneously;
εpq=0 otherwise.

|ident(p)-ident(q)| is used to measure the uncertainty of two packets belong-
ing to the same connection. It is difficult to establish that two packets belong
to the same connection with full certainty although the notion of connection-
similarity has defined a precondition that IP packets belonging to the same
TCP/UDP connection must have the same source IP addresses and ports, the
same destination IP addresses and ports, and the same protocol types. The stan-
dard specification and empirical observation show that given two packets p and
q which satisfy the connection-similarity precondition, the smaller the differ-
ence value |ident(p)-ident(q)|, the higher the probability of two packets p and q
belonging to the same connection.

3 Outlier Detection and Intrusion Decision

We use Gaussian mixture model (GMM) to detect the outlier from a given
dataset. In pattern recognition, it was established that Gaussian mixture distri-
bution could approximate any distribution up to arbitrary accuracy, as long as
a sufficient number of components are used [15], and thus the unknown prob-
ability density function can be expressed as a weighted finite sum of Gaussian

A New Unsupervised Anomaly Detection Framework 105

with different parameters and mixing proportions [18]. Given a random variable
x, its probability density function p(x) can be represented as a weighted sum of
components:

p(x) =
k∑

i=1
aifi(x; ui, vi)

Where k is the number of mixture components; ai (1≤ i ≤ k) stand for the
mixing proportions, whose sum is always equal to 1. fi(x;ui,vi) refers to the
component density function, in which ui stands for the mean of variable x and
vi is the variance of x,. The density function can be a multivariate Gaussian or
a univariate Gaussian.

Table 1. Proposed outlier detection algorithm

Function: GMM Outlier Detection (dataset and k) returns outlier data set
Inputs: dataset X ∼ {xn|n = 1, 2, ..., N}, and the estimated number of components k
Output: Outlier Data Set
Initialization:
Outlier Data Set = φ; j←0 ;
Initial parameters {αj

i , µ
j
i , ν

j
i }, 1 ≤ i ≤ k, are randomly generated;

Calculate the initial log-likelihood Lj ;
Repeat:
For 1 ≤ i ≤ k, 1 ≤ n ≤ N

If (αj
i ≥ outlierthres) then compute posterior probability pj(i|xn);

Else pj(i|xn) = 0;
j ← j + 1;
Re-estimate {αj

i , µ
j
i , ν

j
i } by using pj−1(i|xn), 1 ≤ i ≤ k, 1 ≤ n ≤ N ;

Calculate the current log-likelihood Lj ;
Until: |Lj − Lj−1| < th1orj > th2

For 1 ≤ i ≤ k, 1 ≤ n ≤ N
If (pj−1(i|xn) = 0), assign xn to Outlier Data Set
Return Outlier Data Set;

Expectation-Maximization (EM) algorithm has been suggested as an effective
algorithm to estimate the parameters of GMM [3]. In the E-step, the posterior
probability p(i|xn) is calculated for each data X ∼ {xn|n=1,2,. . . ,N} and each
mixture component i(1≤ i ≤ k). In M-step, the set of parameters {ai, ui, vi} are
re-estimated based on posterior probabilities p(i|xn), which maximize the like-
lihood function. The EM algorithm starts with some initial random parameters
and then repeatedly applies the E-step and M-step to generate better parameter
estimates until the algorithm converges to a local maximum.

Our outlier detection algorithm is based on the posterior probability gener-
ated by EM algorithm. The posterior probability describes the likelihood that
the data pattern approximates to a specified Gaussian component. The greater
the posterior probability for a data pattern belonging to a specified Gaussian
component, the higher the approximation is. As a result, data are assigned to the

106 W. Lu and I. Traore

corresponding Gaussian components according to their posterior probabilities.
However, in some cases there are some data patterns whose posterior probability
of belonging to any component of GMM is very low or close to zero. These data
are naturally seen as the outliers or noisy data. We illustrate the detailed outlier
detection algorithm in Table 1.

Thresholds th1 and th2 correspond to the termination conditions associated
with the outlier detection algorithm: th1 measures of the absolute precision re-
quired by the algorithm and th2 is the maximum number of iterations of our al-
gorithm. Threshold outlier thres refers to the minimum mixing proportion. Once
the mixing proportion corresponding to one specified Gaussian component is be-
low outlier thres, the posterior probability of the data pattern belonging to this
Gaussian component will be set to 0.

The intrusion decision strategy is based on the outcome of outlier detection:
if no outlier data are detected, the network packet flows is normal; otherwise, the
packet flows represented by this outlier is reported as the intrusion. This strategy
is reasonable based on the empirical assumption that the greater the value of IP
Weight metrics, the more anomalous the network packet flows.

4 Evaluation

4.1 Offline Evaluation

The 1998 DARPA intrusion detection dataset is the first standard corpus used
for evaluating intrusion detection approaches offline [11]. Over 300 attacks are
simulated in nine weeks. Training data are generated in the first seven weeks
and testing data are derived in the rest two weeks. The attacks consisting of
a total of 33 different attack types are divided into four different attack cat-
egories, namely DoS, R2L, U2S and Probing. In this paper, the proposed IP
Weight metrics characterize the anomalousness of packet flows and hence we
are interested in those multiple-connection based network intrusions, in which
attacks are involved into multiple network connections and IP Weight metrics
can be calculated from these multiple connections (i.e. packet flows). During
the experiment, we extracted these attacks from the DARPA dataset and estab-
lished a new multiple-connection based network intrusion dataset, which con-
tains a combination of DoS, R2L, and Probing attacks. Specifically, we select 17
days’ data from the total 45 days’ (nine weeks) dataset. The corresponding at-
tack types include synflood, smurf, pod, teardrop, portsweep, ipsweep, land, back,
saint, udpstorm, guest, nmap, satan, imap, dict, apache2, processtable, mscan and
mailbomb.

One data record for the 1998 DARPA intrusion detection dataset mainly in-
cludes nine fields, namely index, traffic start date, traffic start time, duration,
service type, source port, destination port, source IP address and destination IP
address. Based on these data, we calculate three components of IP Weight met-
rics, namely ipwfreq , ipwran and ipwstr . The fourth component ipw load cannot
be derived in the offline evaluation since the DARPA dataset didn’t provide the
exact incoming or outgoing traffic information for the protected target host. As

A New Unsupervised Anomaly Detection Framework 107

a result, the specified network traffic in DARPA dataset are represented by total
3600 instances along with three dimensions, namely ipwfreq , ipwran and ipwstr .
3493 instances represent the normal network traffic and 107 instances represent
the intrusive traffic, which include 19 types of multiple-connection based network
intrusions.

Fig. 9. ROC curves for our detection system

Two performance metrics are used to evaluate the detection effectiveness,
namely detection rate (DR) and false positive rate (FPR). DR is the ratio of
the number of attack instances detected to the total number of attack instances
and FPR is the ratio of the number of normal instances detected as alerts to
the total number of normal instances. We calculate the DR and FPR by varying
the threshold outlier thres and then plot the receiving operator characteristic
(ROC) curve in Fig. 9. The best detection result is obtained at a threshold of
10−8, which corresponds to <DR = 80.37%, FPR = 2.03%> and 16 types of
multiple-connection based attacks out of a total of 19 attack types are detected
at this point. Attacks processtable, dictionary, and guest (variant of dictionary)
are missed by our detection system.

4.2 Online Evaluation

Online evaluation in a real networking environment is conducted to assess the
efficiency and effectiveness of our detection system. The implementation of our
system includes two modules, namely grader and detector. In the grader, IP
packets are collected and then IP Weights are calculated according to the corre-
sponding metrics. The IP Weights are then stored on a database. Synchronously,
the detector reads IP Weights from database, detects the outlier data for IP
Weights and then makes intrusion decisions.

The hardware topology of the live networking environment includes two
LANs: LAN1 and LAN2. The internal attack traffic is generated from LAN1;

108 W. Lu and I. Traore

LAN2 is the victim network. Our detection system is deployed on a specified
sever in LAN2. During the evaluation, we executed six types of network attacks
from LAN 1, four of which, categorized as distributed denial of service (DDoS)
attacks, include synflood, smurf, udpflood and a mixture of synflood and udpflood.
The other two attacks fall into the category of probing attacks, namely xscan
[19] and fluxay [7].

Table 2. Statistical information about response time for real attacks

Attack udpflood synflood smurf mixture flood fluxay xscan

Avg. res. time (s) 2.2 1.9 2.8 2.5 5.7 7.6

During the evaluation, each attack was repeated ten times and corresponding
attack starting time and intrusion detection time were recorded. The intrusion
response time is calculated as follows:

response time = detection time – starting time

The online evaluation shows that our detection system detected all the six
types of attacks and the corresponding response time is on the second level.
Table 2 illustrates the average response time for each attack over 10 times.

5 Conclusions

In this paper, we propose a real-time online intrusion detection framework, in
which network packet flows are first characterized and quantified by using some
anomalousness metrics named IP Weight and then an online outlier detection al-
gorithm is used to detect the outlier (noisy) data of IP Weight metrics. Intrusion
decisions are made according to the outcome of outlier detections. The offline
evaluation with the 1998 DARPA intrusion detection dataset and the online eval-
uation in a live networking environment show the efficiency and effectiveness of
our detection system.

The future works include improving the detection rate and decreasing false
alarm rate for our system. The best result in the offline evaluation yields a
80.37% detection rate with a 2.03% false alarm rate. Although it was suggested
that the DARPA dataset itself has some flaws [13], the offline experimental
results still provide a strong criteria for the performance of our detection frame-
work. In order to address the above issues, two substantial works are neces-
sary in the future. One is the characterization of the ‘normal’ network packet
flows by deriving new metrics under the constraint of effectiveness and efficiency.
The other is related to the detection techniques discriminating anomalous be-
haviors from normal profiles and the decision strategies verifying intrusive or
normal.

A New Unsupervised Anomaly Detection Framework 109

References

1. Anderson, J.P.: Computer Security Threat Monitoring and Surveillance. Technical
Report, James P. Anderson Co., Fort Washington, Pennsylvania (1980)

2. Axelsson, S.: The Base-Rate Fallacy and the Difficulty of Intrusion Detection. ACM
Transactions on Information and System Security (TISSEC), Vol. 3. (2000) 186-201

3. Dempster, A. P., Laird, N. M. and Rubin, D. B.: Maximum Likelihood from Incom-
plete Data via the EM Algorithm (with discussion). Journal of the Royal Statistical
Society B, Vol. 39. (1977) 1-38

4. Denning, D. E.: An Intrusion Detection Model. IEEE Transactions on Software
Engineering, No. 2. (1987) 222-232

5. Eskin, E.: Anomaly Detection over Noisy Data using Learned Probability Distribu-
tions. Proceedings of 17th International Conference on Machine Learning. (2000)
255-262

6. Eskin, E., Arnold, A., Prerau, M., Portnoy, L. and Stolfo, S.: A Geometric Frame-
work for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled
Data. On Application of Data Mining in Computer Security, Kluwer Academic
Publisher (2002)

7. Fluxay, http://www.netxeyes.com
8. Frank, J.: Artificial Intelligence and Intrusion Detection: Current and Future Di-

rections. Proceedings of the 17th National Computer Security Conference, (1994)
11-21

9. Forrest, S., Hofmeyr, S.A. and Longstaff, T.A.: A Sense of Self for Unix Processes.
Proceedings of 1996 IEEE Symposium on Security and Privacy. (1996) 120-128

10. Hochberg, J., Jackson, K., Stallings, C., McClary, J. F., DuBois, D. and Ford,
J.: NADIR: An Automated System for Detecting Network Intrusion and Misuse.
Computers & Security, 12 (3). (1993) 235-248

11. Kendall, K.: A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems. Master’s Thesis, Massachusetts Institute of Technology (1998)

12. Lunt, T., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D., Neumann, P.,
Javitz, H. and Valdes, A.: IDES: The Enhanced Prototype, A Real-time Intrusion
Detection System. Technical Report, SRI Project 4185-010, Computer Science Lab-
oratory, CA. (1988)

13. McHugh, J.: The 1998 Lincoln Lab IDS Evaluation - A Critique. Proceedings of
Recent Advances in Intrusion Detection, No. 1907 in LNCS. (2000) 145-161

14. Portnoy, L., Eskin, E. and Stolfo, S.: Intrusion Detection with Unlabeled Data
using Clustering. Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (2001)

15. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge, U.K., Cam-
bridge University Press (1996)

16. Roberts, F. S.: Measurement Theory. Addison-Wesley Publishing Company (1979)
17. Smaha, S. E.: Haystack: An Intrusion Detection System. Proceedings of the IEEE

Fourth Aerospace Computer Security Applications Conference. (1988) 37-44
18. Titterington, D., Smith, A. and Makov, U.: Statistical Analysis of Finite Mixture

Distributions. John Wiley & Sons, New York (1985)
19. X-scan, http://www.xfocus.org

	Introduction
	Feature Analysis
	Feature Selection
	Feature Extraction

	Outlier Detection and Intrusion Decision
	Evaluation
	Offline Evaluation
	Online Evaluation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

