
Self Debugging Mode for Patch-Independent
Nullification of Unknown Remote Process

Infection

Ruo Ando and Yoshiyasu Takefuji

Keio University, Graduate School of Media and Governance,
Endo 5322, Fujisawa, 2528520 Japan
{Ruo, Takefuji}@sfc.keio.ac.jp
http://www.neuro.sfc.keio.ac.jp

Abstract. The rapid increase of software vulnerabilities shows us the
limitation of patch-dependent countermeasures for malicious code. We
propose a patch-independent protection technique of remote infection
which enables each process to identify itself with ”being infected” and
nullify itself spontaneously. Our system is operating system independent
and therefore does not need software rebuilding. Previously, no method
for stopping malicious process without recompiling source code or re-
building software has been proposed. In proposal system, target process
is running under self debugging mode which is activated by enhanc-
ing debug() exception handler and utilizing MSR debug register. In this
paper we show the effectiveness of proposal method by protecting the
remote process infection without patching security holes. Implemention
of device driver call back function and BranchIP recorder provides the
real-time prevention of unregistered worm attack through Internet. In ex-
periment, function test of stack buffer overflow of Win32.SQLExp.Worm
is presented. Also CPU utilization corresponding to the number of call-
ing function and some database operations is showed.

Keywords: self-debugging mode, real-time nullification, debug register,
improved debug exception handler, branchIP recorder.

1 Introduction

The rapid increase of software vulnerabilities and its exploitation imposes a great
burden on network administrators and client users. Recent cyber attacks, worms
and virsuses become more sophisticated. Some obfuscation and avoidance tech-
niques which evade network traffic inspection such is called polymorphic and
metamorphic coding. These techniques is now applied in malicious code writ-
ing.Win32.Evol and Simile virus is valid example which shows us the limita-
tion of naive signature based inspection of network traffic. The rapid spread of
Win32.SQLExp.Worm infection also shows the limitation of patch-based couter-
measures for new attack. Previously, instead of signature matching, the adaptive
prevention technique has been proposed. Some technique inspect the target file

Y.G. Desmedt et al. (Eds.): CANS 2005, LNCS 3810, pp. 85–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

86 R. Ando and Y. Takefuji

by executing it both on run-time environment and on virtual machine emula-
tion. Another run-time protection is mainly represented by compiler solutions
and operating system based method. Openwall Linux kernel patch project is to
improve the protection against buffer overflows. OpenBSD also provides the new
feature of stack protection technology against buffer overflows which is embed-
ded in the system compiler. Stack-smash protection compilers are used against
buffer overflows including the GCC extensions, libsafe, propolice, stackguard,
libmib, and MS .net compiler. However, their disadvantage lies in that kernels
and software components must be rebuilt.

In this paper we propose the method for the real-time infected process null-
fication using improved debug exception handler. This could be described as
automated debugging based on improved loader, driver-supplied callback func-
tion and debug exception handler. On this system attribute of self-debugging is
added to the target process, which makes it possible to control by itself when
attacked and infected without the file scanner or IDS.

Figure1 illustrates the concept of automated debug using improved debug
exception handler. In conventional debug method, the system needs to launch
debugging process and API. The target process can be executed in the memory
of debugging process. In proposal method, process does not need their debug-
ging process and API because exception handler is improved so that the debug
specified for malicious code is automated in running each process.

In this paper, the proposal system is constructed on 80x86 processor. The
80x86 processor has 20 different exception handlers. Table 1 shows the excep-
tion handlers mainly concerned with debugging issues. In this paper we present
improved exception handler. Particularly, we enhance debug() function with sig-

improved
exception handler

process

API

process

process

debug debug

conventional
debug method

proposal
debug method

I NT01
I NT01

debug process

Fig. 1. Automated debugging. By improving exception handler INT01H, the self-
debugging attribute is added to the target process. In proposal method, process under
inspection does not need debugging process and its memory, which provides sense of
infection and self-defense.

Self Debugging Mode for Patch-Independent Nullification 87

Table 1. Comparison of proposal system with previous method

No Exception Exception Handler Signal
1 Debug debug() SIGTRAP
2 NMI nmi() None
3 Breakpoint int3() SIGTRAP
4 Overflow overflow() SIGSEGV
5 BoundsCheck bound() SIGSEGV
12 StackException stack segment() SIGBUS
14 Page Fault page fault() SIGSEGV

nal SIGTRAP. Debug facilty is called when we set the T flag of eflags or when
the address of an instruction fall the range of an active debug register. The
concept of proposal method is automated debugging by the implementation of
some additional process within the debug() function. To achieve the concept of
proposal method, IDT (interrupt descriptor table) must be initialized and over-
written for dealing with the bugs hooked by INT01 insertion. In other words, to
enable exception, the kernel should initialize the IDT properly. The correspon-
dence between interrupt or exception vector and the address of each recognized
interrupt or exception handler is stored to IDT.

2 Self Debugging Mode

In this section we discuss the self debugging mode added to the target process.
Figure2 illustrated the activation of self debugging attribute to the target pro-
cess. The proposal method is divided into steps. First, we insert the INT01H

Execut a bl e

NTFS
i m pr o ved 0 1 H

handl e r

LoadI m ageNofi t y Rout i n e

i n ser t i n g I N T 0 1 H t a r ge t
proce s s ?

nor m al l o adi n g

no

yes

I D T

XXH h a n dl e r

Pr o ce s s l o aded

Fig. 2. Changing the self debug mode of the target process. When the executable file is
loaded, INT01H debug point is inserted and improved exception handler is registerd to
IDT. These steps begin the automated debug mode applying loader processing module
such as LoadImageNoiftyRoutine and bin fmt.

88 R. Ando and Y. Takefuji

debug instruction into the process like binary translation technique. Second,
the enhanced exception handler which is specified for the INT01H software bug
hooking is registered to IDT. These steps are executed when the executable is
loaded. In detail, we apply LoadImageNotifyRoutine in Win32 or loader process-
ing module such as bin fmt in linux in order to insert INT01H break point and
register the improved exception handler. Regardless of the kind of opearting sys-
tem, exception handler is speficied for bugs that causes exploitation. Now that
we completed this manipulation, the new attribute described as self-debugging
is added to the target process loaded. This mode makes it possible for the pro-
cess to be nullified by itself if it is infected by unregistered malicious code. The
detailed facilities of proposal system are discussed in the following.

2.1 Driver-Supplied Callback Function

To implement the proposal concept, we selected driver-based callback function,
which is notified whenever an image is loaded for execution. Driver-based call-
back function is utilized for the identification of loading the target process.
Highest-level system profiling drivers can call PsSetImageNotifyRoutine to set
up their load-image notify routines. This could be declared as follows, particu-
larly in Win32.

void LoadImageNotifyRoutine (
PUNICODE STRING FullImageName,
HANDLE ProcessId,
PIMAGE INFO ImageInfo);

Once the driver’s callback has been registered, the operating system calls the
callback function whenever an executable image is mapped into virtual memory.
When the LoadImageNotifyRoutine is called, the input FullImageName points
to a buffered Unicode identifying the executable image file. The argument of list
showing handle identities of process has been mapped when we call this function.
But this handle is zero if the newly loading image is a driver. If FullImageName,
which is input of LoadImageNotifyRoutine matches the name of target process,
we go on to call the improved exception handler.

2.2 Debug Register

IA-32 processors provides MSR(model specific registers) for the purpose of
recording taken brunches, interrupts and exception. Figure 3 shows the allocation
in debugCtlMSR register of Intel P6 family processors. In this paper we focus
on last branch interrupt / exceptions flag to save and search the EIP(32 bit in-
structional pointer). EIP means return address. The most recent taken branches,
interrupts and exception are stored in the last branch record stack MSRs. The
branch records inform us of branch-FROM and branch-TO instruction address.
Concerning F6 family processor, the five kinds of MSR, debugCtlMSR, Last-
BranchToIP, LastBranchFromIP, LastExceptionToIP and LastExecutionFromIP
and available. It is possible to set break points on branches, interrupts and excep-
tion and execute single step debugging through these registers. These registers

Self Debugging Mode for Patch-Independent Nullification 89

Reserved[7-31]

TR : Trace m essages enable[6]

perform ance m onitoring
break point pins[2-5]

single step-on baranches[1]

last branch / interrupt /
exceptions[0]

Fig. 3. Allocation in debugCtlMSR register. When the LBR is set, the proceesor
records the source and target address at the time the branch instruction or interrupt
is taken before the debug exception being generated.

can be used to collect last branch records, to set breakpoints on branches, inter-
rrupts, exceptions and to single step from on branch to the next.

3 Experiments

3.1 Win32.SQLExp.Worm

Recent security incident for the mission critial servers connected to networks
has been occurred at very high rates. In mission critical operation, server should
be running all the time under many accesses. Once the vulnerability and its
exploitation is found, this can be availeble for attackers all over the world. Par-
ticularly, the SQL slammer worms, emerged in 2003, caused more then 90 of
vulnerable servers all over the world to be infected within a few hours. This
worm attack exploits the vulnerability within the vulnerable SQL server. The
vulnerable SQL server when it is infected it will send 376 bytes packets via UDP
port 1434 to the original attack launcher and other random destinations to prop-
agate the worms. According to the mailing list of snort (open-source instruction
detection system), the signature of SQL slammer is as follows at 09:45:52 Sat
Jan 25 2003.

0x00b0 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65
..Qh.dllhel32hke
0x00c0 726e 5168 6f75 6e74 6869 636b 4368 4765
rnQhounthickChGe
0x00d0 7454 66b9 6c6c 5168 3332 2e64 6877 7332
tTf.llQh32.dhws2

90 R. Ando and Y. Takefuji

0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51
f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16
hsend....B.E.P..

After a while(half a day), the signature is changed as follows:

81 f1 03 01 04 9b xor ecx, 9B040103h
81 f1 01 01 01 01 xor ecx, 1010101h
51 push ecx
9B040103 xor 1010101 = 9A050002 = port 1434 -¿AF INET

However,this signature describes very specific features of implementation, send-
ing packets to port 1434. Actually, when we implemented and tested the same
kind of exploitation by VC++, the binary code is different from the signature
above.

This worm exploits the buffer overflow vulnerabilities of MSDE SQL server
2000 unpatched with PORT TCP1433 and UDP1434. In this case, the systematic
prevention of buffer overflow should be the first priority. against exploitation of
SQL slammer.

Proposal system

I A32 Processor

stack recorder

BranchI P_filter

LastBranchFromI P I NT 01H

Operating System

CALL RETxx

Fig. 4. BranchIP recorder. When the automated debug mode is enabled and the mode
of the target process is changed to self debug, the system executes inspection function
whenever the Branch instruction is called. BranchIP recoder hook the CALL/RET in-
strcution and store the saved EIP to stack recorder to check whether the bufferoverflow
attack is occurred. The saved EIP is obtained from LastBranchFromIP.

Self Debugging Mode for Patch-Independent Nullification 91

start RET

obtain stack segment

obtain stack pointer

obtain current IP

search IP in
stack recorder

delete 1 recod

set MSR

set EFLAG

IRETD

to process nullification

Not Found

Found

Fig. 5. Flow chart of BranchIP recorder. The self debug mode process checks whether
EIP changes after executing local function by using stack recorder. In nested calling
function, some saved EIPs are stored to the stack recorder. The proposal method checks
the overwriting return address by searching EIP in stack recorder. When the saved EIP
is found, this module is terminated in normal mode.

We implemented the Branch IP recorder for inspecting the overwriting EIP
after executing function occuring buffer overflow. Figure 4 illustrates the struc-
ture of Branch IP recorder. With the memory called stack recorder, we check
the transition of EIP while executing function occurring buffer overflow. In ex-
periment, we prototype this system on IA-32 processor because IA-32 family
enhanced facilities for debugging are available about inspecting code execution
and processor performance. The LastBranchToIP and LastBranchFromIP MSRs
are 32-bit registers for recording the instruction pointers for the last branch, in-
terrupt, or exception that the processor took prior to a debug exception being
generated. In our system, the inspecting the transition of EIP is possible by
monitoring LastBrachFromIP. Branch IP recorder has a FIFO memory for EIP
as follows. The inspection flow of saved EIP using Branch IP recorder is shown in
Figure5.Although this recording facility has FIFO structure, we can detect the
overwriting EIP that is not done in FIFO flow. because proposal system check
all stored EIPs when the branch insturction is executed. Experimental result

92 R. Ando and Y. Takefuji

of table 2-5 shows that our system is effective regrdless of the kinds of buffer
overflow signature as long as the target process is running on self debug mode.
We succeeded to stop SQL slammer infection on Windows 2000 SP0, without
patching security hole of MSDE.

3.2 Performance Measurements

The performance measurements were collected on a Windows 2000 host com-
puter system using Pentium III 1000 MHz with 1024 RAM. Concerning experi-
mental result 5.2, We measured the utilization of MS SQL server 2000.

Table 2 lists CPU utilization corresponding to the number of calling function.
We vary the number of executing local function from 100 to 10000. From 100
to 100, utilization is not changed rapidply, comparetively stable about less than
10%. From 1000 to 10000, it was showed that utilzation is not increased linearly.
It is showed that the proposal system is effective in the point that utilization
is less than 25 % when the function is executed 10000 times without the linear
increase.

Table 3 lists CPU utilization of SQL server processing SELECT queries. We
vary the number of READ queries from 5 to 30. CPU utilization is 9.14, 17.5
and 47.85, almost doubled corresponding to the number of queries. The perfor-
mance of proposal system is not reasonable compared with the lower column of
unprotected case. Although the utilization differences are caused partly by the

Table 2. CPU utilization corresponding to number of times of calling local funca-
tion(%)

times of calling function CPU utilization
100 8.75
200 9.12
500 9.6
700 9.93
1000 10.33
5000 14.25
7000 17.31
10000 24.89

Table 3. CPU utilization (%) according to the number of SELECT queries

the number of queries 30 10 5
proposal system enabled 1.48 1.21 0.97
proposal system disabled 1.28 1.08 0.89

Table 4. CPU utilization (%) according to the length of SELECT query

data length(byte) 500 200 50
proposal system enabled 1.89 1.61 1.39
proposal system disabled 1.71 1.37 1.18

Self Debugging Mode for Patch-Independent Nullification 93

Table 5. Comparison of proposal system with previous method

- rebuild prevention utilization
StackGuard O O mid
Bounds Checking O O high
OpenWall X O low
proposal system X O high

implementation of INSERT command, the complementary system is considered
below.

Table 4 lists CPU utilization of SQL server processing SELECT queries. We
vary the length of READ queries from 50byte to 500byte. The increase of CPU
utilization is insignificant in changing the data length while the proposal sys-
tem is sensitive to the number of query operation as shown in table. This result
is caused by the fact that the proposal system inspects the transition of in-
structional pointer stored in 32bit register (LastBranchFromIP) while in the
conventional scanning methods the length of signature changes according to the
various kinds of payload of malicious code. In other words, proposal system only
requires inspection the value of constant 32bit length, which makes it possible
to keep utilization reasonably low.

4 Conclusion

In this paper, we introduce the automated debug technique, utilizing the facility
of debug and instruction trace in processor level for real-time malicious process
nullification. The conventional anti-virus softwares are all based on stored sig-
natures. Consequently these schemes have the limitation against the unknown
exploit occuring buffer overflow and the unregistered attack such as metamor-
phic and polymorphic viruses and worms Instead of modifying the sophisticated
operating system for reducing vulnerabilities, we work out the new attributes for
target process called self-debugging. When the process is translated into memory,
this mode is activated by enhanced debug() exception handler. For the imple-
mentation of proposal system, driver supplied callback function is utilized for the
event-driven insertion of self debug facility. The each process which is INT0H
break point embeddedi is running on self debugging mode where software bugs
is controlled by improved debug() exception handler. In proposal system, we can
prevent of the exploitation of every kind of software bugs for which we can write
the controlling of exception of INT01H handler. Without rebuilding applications
and kernel, the system loading automated debugging technology can contorl in-
fected process to identify its infection and nullify by itself. In experiment, CPU
utilization of detecting buffer overflow, CPU time corresponding the number of
calling function and some operation of SQL database server was measured and
evaluated. Function test of stack buffer overflow of Win32.SQLExp.Worm is also
presented.

94 R. Ando and Y. Takefuji

Table 5 shows the comparison of proposal method and another adaptive pro-
tection techniques. The disadvantage of stack guard and bounds checking lies in
that kernels and software components must be rebuilt. Concerning OpenWall,
the kernel must be rebuild while the application with overflow vulnerability need
not recompiling. The proposal system takes advantage in the point that it does
not need rebuilding both kernel and application. Our method has also flexibility
for all kind of vulnerabilities such stack overflow, heap overflow, race condition
and so on as long as we can describe the property of software bugs in debug()
exception handler. The proposal system is experimented in MS SQL vulnera-
bility in 2003 and some database operations. The proposal scheme using a new
concept of sense of self is based on the automated debugging mode where the
execution of malicious code is nullified by autonomous control of target process.
The proposed scheme does not need the software-rebuilding, while the existing
schemes need the software-rebuilding. Finally, the concept of self debug mode is
operating system independent.

Acknowledgement

We are indebted to K.Shoji, T.Kawade and T.Nozaki, by courtesy of Sciencepark
Cooporation. Some idea in this paper grew out of the ongoing collaboration with
their team.

References

1. Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole:
Buffer Overflows - Attacks and Defenses for the Vulnerability of the Decade,
DARPA Information Survivability Conference and Expo, 2000.

2. Roesch, M:Snort - lightweight intrusion detection for networks. Proceedings of
Thirteenth Systems Administration Conference (LISA ’99), pp. 229-238,1999.

3. Symantec Corporation: Bloodhound Technology.
http://securityresponse.symantec.com/

4. Gene H. Kim and Eugene H. Spafford:Tripwire A File System Integrity Checker,
ACM Conference on Computer and Communications Security , pp. 18-29,1994.

5. Kosoresow, Andrew P. and Steven A. Hofmeyr, ”Intrusion Detection Via System
Call Traces”, IEEE Software,pp 35-40,1997.

6. Zeshan Ghory:Openwall Improving security with the openwall patch ,securityfo-
cus,2002.

7. Linux Openwall project. http://www.openwall.com/
8. David Larochelle and David Evans,Statically Detecting Likely Buffer Overflow Vul-

nerabilities,2001 USENIX Security Symposium, Washington, D.C., August 13-17,
2001.

9. C.Cowan, C.Pu, D.Maier, J.Walpole, P.Bakke, S.Beattie, A.Grier, P.Wagle,
Q.Zhang, and H.Hinton:StackGuard Automatic adaptive detection and preven-
tion of buffer-overflow attacks, In Proc. 7th USENIX Security Conference, pp 63–
78,1998.

10. Baratloo, A., N. Singh and T. Tsai, Libsafe: Protecting critical elements of stacks,
http://www.research.avayalabs.com/project/libsafe/.

Self Debugging Mode for Patch-Independent Nullification 95

11. J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie and N. Tawbi,
”Static Detection of Malicious Code in Executable Programs”. Proc. of the Inter-
national Symposium on Requirements Engineering for Information Security, 2001.

12. Richard W M Jones,Paul H J Kelly: Backwards-compatible bounds checking for
array and pointers in C programs, AADEBUG97,1997.

13. Intel Corporation: IA-32 IntelR Architecture Software Developer’s Manual, Volume
2A: Insruction Set Reference A-M,2004.

14. Intel Corporation: IA-32 IntelR Architecture Software Developer’s Manual, Volume
2B: Insruction Set Reference N-Z,2004.

15. Intel Corporation: IA-32 IntelR Architecture Software Developer’s Manual, Volume
3: System Programming Guide,2004.

	Introduction
	Self Debugging Mode
	Driver-Supplied Callback Function
	Debug Register

	Experiments
	Win32.SQLExp.Worm
	Performance Measurements

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

