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Abstract. Inspired by biological immune systems, a new immune-based
model for computer virus detection is proposed in this paper. Quanti-
tative description of the model is given. A dynamic evolution model for
self/nonself description is presented, which reduces the size of self set.
Furthermore, an evolutive gene library is introduced to improve the gen-
erating efficiency of mature detectors, reducing the system time spending,
false-negative and false-positive rates. Experiments show that this model
has better time efficiency and detecting ability than the classical model
ARTIS.

1 Introduction

As the fast development of Internet, the generating and spreading speed of new
computer viruses is getting higher and higher. Then, computer viruses and worms
are becoming an increasing problem in the world [1,2]. Therefore, it is necessary
to detect and eliminate computer viruses, especially the unknown viruses, in
real-time. However, it is very difficult for traditional preventing methods [3-5]
to solve this problem effectively. In recent years, researchers have taken some
researches on the computer network topologies and the spreading mechanism of
computer viruses [6-8], then presented some methods to restrain virus spreading
[9-11]. These methods can reduce the speed of virus spreading, however, they
can not prevent virus spreading [11]. Especially, the problem for unknown virus
detection is still not solved.

The problems found in computer security systems are quite similar to the ones
encountered in Biological Immune Systems (BIS). BIS has successfully solved the
problem of unknown virus detection [12]. Therefore, Artificial Immune System
(AIS) [13-15] is considered as a new way to defeat fast-proliferating computer
viruses. In 1994, Forrest presented a method of computer virus detection based
on the negative selection algorithm[16], which is the first time to use immune
mechanism for virus detecting and has greatly promoted the research of computer
virus immune system (CVIS). The most important works should be the general
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framework ARTIS for AIS and the computer virus immune model proposed, re-
spectively, by Hofmeyr [17,18] and Kephart [19,20]. In ARTIS, the concepts and
mechanisms of BIS, including self, nonself, self tolerance, immune cell (detec-
tors), memory cell (memory detectors), and costimulation were well simulated.
Many CVISs are mainly derived from ARTIS. For example, the computer virus
detection system proposed by Okamoto and Ishida [21], the agent based com-
puter virus immune architecture proposed by Harmer [22], and the HMM [23]
based computer immune model proposed by Jensen [24]. Different from ARTIS,
the computer virus immune model [19,20] proposed by IBM laboratory uses only
partial immune mechanisms, however, some other techniques such as automatic
extraction of computer virus signatures [19], virus trap [20], etc. have also been
adopted.

There are three major defects in the present CVISs: The first is that the self set
is very large in size. For example, during the experiments of LISYS [25], a famous
application of CVIS based on ARTIS, Hofmeyr and his colleagues collected over
2.3 million self elements in 50 days.The cost for mature detector training is
exponentially related to the size of self set [22], making it impossible to directly
collect self data from the network for the self tolerance of immature detectors.
LISYS has to aim at the detection of 7 kinds of network intrusions, where the
services provided by the network, as well as the normal network activities, were
simplified in order to decrease the size of self set. After laborious and complicated
classification, Hofmeyr finally selected over 3900 elements as self for the tolerance
process of the detectors, reducing the training cost for the tolerance of detectors.
However, the computation cost is still high.

The second deficiency is that the definitions of self and nonself in the sys-
tem are described in a static way with almost no changes. However, it is very
difficult to use a fixed definition for self and nonself in most practical applica-
tions. Furthermore, the roles of self and nonself may exchange at times, e.g.,
the legal network behaviors today may be dangerous tomorrow, and vice versa.
Therefore, it is necessary to update the definitions of self and nonself from
time to time. The static description model for self/nonself lacks the adapt-
ability, and thus cannot cater for the network monitoring in the real network
environment.

The third, the absence of rigorous quantitative descriptions in most presented
CVIS models results in the randomicity of CVIS implementation. Therefore, it
is not convenient to put these models into practical applications.

The above three problems have become the major obstacles to CVIS appli-
cations. Inspired by biological immune systems, a new immune-based model for
computer virus detection is proposed in this paper. Quantitative description of
the model is given. A dynamic evolution model for self/nonself description is pre-
sented, which reduces the size of self set. Furthermore, an evolutive gene library
is introduced to improve the generating efficiency of mature detectors, reducing
the system time spending, false-negative and false-positive rates. Experiments
show that this model has better time efficiency and detecting ability than the
classic model ARTIS.
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2 Proposed Theoretical Models

Given problem domain Ω, where Ω = {0, 1}l, l is a natural number. Antigens1

(Ag,Ag ⊂ Ω ) are defined as binary strings composed of program characteris-
tics, and is divided into two set: Self and Nonself, such that Self ∪ Nonself =
Ag, Self ∩ Nonself = Φ , where Self is the normal program characteristic set,
and Nonself is the program characteristic set infected by virus, respectively.
The task of a virus detection system is to classify an input pattern x ∈ Ag as
either Self or Nonself. This detection methodology can generate two types of
errors: false-positive error and false-negative error. A false-positive error occurs
when a member of Self set is incorrectly classified as malicious. Conversely, a
false-negative error is the classification of a member of Nonself set as benign.
Given detector set B = {< a, age, count > |a ∈ {0, 1}l∧age, count ∈ Z+∧age ≤
max age} , where a is antibody, l is the length of antibody a, age is the de-
tector age, count is the detector affinity, and max age is the upper limit of the
detector age. B is divided into immature, mature and memory detectors. Im-
mature detectors are newly generated ones given by I = {x|x ∈ B ∧ x.age <
λ ∧ x.count = 0}, where λ is tolerance period. Mature detectors are the ones
that are tolerant to Self but not activated by antigens, and given by T = {x|x ∈
B ∧ λ ≤ x.age < max age ∧ x.count < ε ∧ ∀y ∈ Self (fmatch(x.a, y) = 0)}
, where the lifecycle of mature detector is from λ to max age, ε is the ac-
tivation threshold, fmatch is the matching function based on the affinity be-
tween the detector and an antigen: if the affinity is greater than a specified
threshold, then 1 is returned, otherwise, 0 is returned. Memory detectors evolve
from mature ones that accumulate enough affinity in their lifecycle, and given
by M = {x|x ∈ B ∧ x.age = max age ∧ ∀y ∈ Self (fmatch(x.a, y) = 0)}.
Given antibody gene library G = {0, 1}[l/4] , where l is the antibody length of
detectors.

Fig. 1 illustrates the framework of our proposed model. Antigens (Ag) are
binary strings, having the program characteristics in a computer system. This
model serves to classify an input set (Ag) into self (AgSelf ) and
nonself (AgNonself ) by mature and memory detectors.

The new immature detectors, which are generated from antibody gene li-
brary through some evolutionary strategies (e.g., gene edit, genetic operator,
etc.), have to experience a self tolerance period: the detector will be eliminated
if it matches any self antigens (negative selection). The immature detectors that
survived in self tolerance period will evolve into mature ones, there the ma-
ture detectors have a fixed lifecycle: the detectors will be eliminated if they
do not accumulate enough affinity in their lifecycle; they will be activated if
they get enough affinity, i.e., viruses are found. However, the activated detec-
tors will be eliminated if they do not receive co-stimulation, i.e., false posi-
tive error, there the detected antigens are self elements. Meanwhile, the acti-

1 The classification method of antigens used in this paper is the one in the academic
immunology, which means antigens are classified into self antigen and nonself antigen,
called self and nonself for short.
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vated detectors will evolve into memory ones with the help of co-stimulation,
there the detected antigens are sure nonself elements. The memory detectors
have an infinite lifecycle, and will be activated as soon as they match an
antigen.

When a detector (e.g., a memory detector, or a mature one) detects a virus,
it will also clone itself and create a lot of similar detectors to protect the system
against similar virus infection. In each step, our proposed model will delete the
mutated self antigens from Self set in time through the dynamic description
of self. The tolerance of immature detectors to mutated self antigens is thus
prevented. Therefore, the false-negative error rate is reduced. Furthermore, the
false-positive error rate is also reduced by adding new self antigens into Self. As
the self set is dynamically defined, the immune tolerance in our model is also
called dynamic tolerance.

Fig. 1. The framework of our proposed model

In the following sections, the self set, antibody gene library, immature detector
set, mature detector set, memory detector set, and antigen set, are, respectively,
described in a quantitative way of set algebra.

2.1 The Evolution of Self

S(t) =
{

Sfirst, t = 0
fs lim((S(t − 1) ∪ Sdel(t)) ∪ Snew(t)), t > 0 (1)

where S(t), S(t − 1) ⊂ Self are, respectively, indicate the self-set at time t and
t -1. Sfirst is the initial self set. fs lim is a function used to limit the number
of self set: if the number of self set is larger than a given value max s size, the
least resent used self antigen is selected and discarded, and this procedure con-
tinues until the size of self set is equal to max s size. Sdel(t) are the mutated
self antigens discarded at time t, which includes three parts: 1) the unloaded
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software; 2) the elements recognized by new memory detectors; 3) the elements
infected by viruses. Snew(t) are the new self antigens (e.g., loading new software)
added into self set at time t.

2.2 The Evolution of Antibody Gene Library

G(t) =
{

Gfirst, t = 0
(G(t) − Gdead(t)) ∪ Gnew(t), t > 0 (2)

where G(t), G(t − 1) ⊂ G are, respectively, the antibody gene library at time t
and t -1. Gfirst is the initial gene-library, Gdead(t) =

⋃
x∈Mdead(t)

{fg ext(x)} are the

genes eliminated at time t, where Mdead(t) are the dead memory detectors which
cause false-positive error. Gnew(t) =

⋃
x∈Tcloned(t)

{fg ext(x)} are some excellent

genes added into the gene-library at time t, where Tcloned(t) are the activated
mature detectors2 at time t, fg ext(x)(x ∈ B) is a function used to extract genes
from a given detector x. The antibody gene-library is used to generate immature
detectors more efficiently, since the new immature detectors, which are generated
from antibody gene library through some evolutionary strategies (e.g., gene edit,
genetic operator, etc.), have a higher probability to go through the self-tolerance
than those generated randomly.

2.3 The Evolution of Immature Detectors

I(t) =
{

Φ, t = 0
(fage crt(I(t − 1)) − (Iuntolerance(t) ∪ Imatured(t))) ∪ Inew(t), t > 0

(3)
Iuntolerance(t) = {x|x ∈ fage crt(I(t − 1)) ∧ ∃y ∈ S(t − 1)(fmatch(x.a, y) = 1)}

(4)
Imatured(t) = {x|x ∈ fage crt(I(t − 1) − Iuntolerance(t)) ∧ x.age > λ} (5)

Equation (3) simulates the lymphocytes growth in the marrow, where the im-
mature detectors have to pass through the negative selection (see Eq.(4)), and
undergo λ(≥ 1) tolerance period steps of tolerance to evolve into mature ones.
I(t), I(t − 1) ⊂ I are, respectively, the immature detector set at time t and
t -1. fage crt(I(t − 1)) is to increase the age of each detector in I (t -1) by 1.
Iuntolerance(t) are the immature detectors which do not tolerate the self anti-
gens. Imatured(t) are the new mature detectors. Inew(t) are the newly
generated immature detectors. The generation of Inew(t) is based on the an-
tibody gene library G, where the key step is to generate the antibodies of
detectors. The newly generated antibodies of immature detectors are usually
composed of two parts: some antibodies are generated randomly, the others
are derived from G, while the deriving methods include gene edit, genetic
algorithm, etc.
2 The viruses detected by mature and memory detectors are, respectively, new viruses

and known ones.
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2.4 The Evolution of Mature Detectors

T (t) =
{

Φ, t = 0
(Tprod(t) − (Tdead(t) ∪ Tcloned(t))) ∪ Imatured(t) ∪ Tpermutation(t), t > 0

(6)
Tprod(t) = fage crt(fcount crt(T (t − 1), Ag(t − 1))) (7)

Tdead(t) = {x|x ∈ Tprod(t) ∧ x.age = max age ∧ x.count < ε} (8)

Tcloned(t) = {x|x ∈ (Tprod(t) − Tdead(t)) ∧ x.count ≥ ε} (9)

Tpermutated(t) = fclone mutation(Tcloned(t) ∪ Mcloned(t)) (10)

where T (t), T (t − 1) ⊂ T are, respectively, the mature detector set at time
t and t -1. Tprod(t) refers to the detectors evolving into the next generation
detectors, there the age and affinity of the detectors are increased. Tdead(t) is
the set of mature detectors that have not accumulate enough affinity (ε > 0)
in their lifecycle or are activated with no co-stimulation at time t. Tcloned(t) is
the set of mature detectors activated by antigens. Tmatured(t) is the set of newly
matured detectors. Tpermutated(t) is the set of clone detectors generated by the
cloning of activated detectors. fcount crt(X, Y )(X ⊂ B, Y ⊂ Nonself) is used
to accumulate the affinity of each detector in X, where the affinity of detector
x ∈ X is increased by |{y|y ∈ Y ∧ fmatch(x.a, y) = 1}|. fclone mutation(A)(A ⊂
B) is a clone and mutation function, where each element x ∈ A will clone

θ ∗ x.count� (θ > 0) new detectors, and, the new clone detectors will undergo
a process of mutation, there the mutation operation is to reedit the gene of the
detector. Mcloned(t) refers to equation (13). The evolution of mature detectors
simulates the primary response in BIS, whereas the clone selection mechanism
and the gene edit give the proposed model the learning ability.

2.5 The Evolution of Memory Detectors

M(t) =
{

Mfirst, t = 0
(M(t − 1) − Mdead(t)) ∪ fage set(Tcloned(t)), t > 0 (11)

Mdead(t) = {x|x ∈ M(t − 1) ∧ ∃y ∈ S(t − 1) fmatch(x.a, y) = 1} (12)

Mcloned(t) = {x|x ∈ M(t − 1) ∧ ∃y ∈ Ag(t − 1) fmatch(x.a, y) = 1} − Mdead(t)
(13)

where M(t), M(t − 1) ⊂ M are, respectively, the memory detector set at time
t and t -1. Mfirst is the initial memory detector set. Mdead(t) are the memory
detectors which recognize self antigens (false-positive error) and need to be elim-
inated. fage set is used to set the age of new memory detectors (Tcloned(t)) to
max age. Mcloned(t) are the activated memory detectors at time t.

Similar to BIS, our model has two types of immune response for antigens: the
primary response and secondary response, which are, respectively, performed by
mature detectors and memory ones. The primary response performed by ma-
ture detectors requires a relatively long period of time for learning: firstly, some
time is needed to generate suitable immature detectors; secondly, these detectors
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have to undergo λ steps of tolerance period for evolving into mature detectors;
thirdly, they will not be activated until they accumulate adequate affinity. There-
fore, the primary response has a lower efficiency. During this learning process,
those detectors, which play no effective function in classifying antigens, will be
killed. However, those superior detectors that have a good effective function in
classifying antigens will be reserved and evolve into memory ones. Therefore,
similar antigens will be detected quickly when they intrude the system again.
The secondary response, issued by memory detectors, is prompt, robust, and
needs no learning process, i.e. a memory detector will be activated immediately
once it matches with an antigen.

2.6 Antigen Detection

Ag(t) =
{

Agfirst, t = 0
(Ag(t − 1) − Agchecked(t)) ∪ Agnew, t > 0 (14)

AgNonself (t) = {x|x ∈ Agchecked(t) ∧ ∃y ∈ (Tcloned(t) ∪ Mcloned(t))
(fmatch(y.a, x) = 1)} (15)

AgSelf (t) = {x|x ∈ Agchecked(t)∧∀y ∈ (M(t)∪T (t))(fmatch(y.a, x) = 0)} (16)

Where Ag(t), Ag(t− 1) ⊂ Ag are, respectively, the antigen set at time t and t -1.
Agnew are the new antigens collected at time t. Agfirst is the initial antigen set.
Agchecked(t) are the antigens detected by mature or memory detectors at time t,
where AgNonself (t) and AgSelf (t) are, respectively, detected as self and nonself
antigens.

3 Performance Analysis

Suppose the program number in a computer system is Np, the average proportion
of nonself antigens in the system is ρN (0 < ρN < 1), the size of self set is |S|,
the size of mature detector set is |T |, the size of memory detector set is |M |, the
active threshold is ε , the probability of a detector matching an antigen is Pm,
and P(A) is the probability of event A.

Theorem 1. Given Pn the probability that a detector matching a self antigen
which is not listed in the self definition, such that Pn = (1 − Pm)|S| • [1 − (1 −
Pm)�Np•(1−ρN )�−|S|] .

Proof. Suppose A is the event that a detector does not match any self antigen,
B is the event that a detector matches at least one self antigen which is not
listed in the self definition. From (3), (4), and (5), we have Pn = P (AB). As
events A and B are independent each other, so P (AB) = P (A)P (B). Suppose
X is the number of a detector matching an antigen in event A, from [30] we
have X ∼ b(n, p), where n = |S|, p = Pm. Therefore, P (A) = P (X = 0) =
(Pm)0(1 − Pm)|S| = (1 − Pm)|S|. Furthermore, suppose Y is the number of a
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detector matching an antigen in event B, Y ∼ b(n, p), where n = Np(1 − ρn) −
|S|, ρ = Pm. Then, P (B) = 1 − P (Y = 0) = 1 − (1 − Pm)�Np•(1−ρN )�−|S| ] , so
Pn = (1 − Pm)|S| • [1 − (1 − Pm)�Np•(1−ρN )�−|S|]. ��
Theorem 2. Given a randomly selected nonself antigen x, the probability of
which is correctly recognized is Pr = 1 − (1 − Pm)[|M|+|T |(1/ε)](1−Pn) ≈ 1 −
e−Pm[|M|+|T |(1/ε)](1−Pn).

Proof. Suppose A is the event that x matches the detectors, including memory
detectors and mature ones. From (15), we have Pr = P (A). Let X be the number
of a detector matching an antigen in event A, from [30] we have X ∼ b(n, p),
where n is number of the really used detectors for detecting the nonself antigens.
Suppose the stimulate level of mature detectors is between 0 and ε−1 [12], then
the number of really used mature detectors is |T |/ε. As the detectors which
recognize self antigens are not considered, so the total number of the really used
detectors for detecting the nonself antigens is n = (|M | + |T |/ε)(1 − Pn), where
Pn is shown in Theorem 1, and p = Pm. Therefore, Pr = P (A) = 1 − P (X =
0) = 1 − (1 − Pm)[|M|+|T |(1/ε)](1−Pn). According to Poisson theorem [30], Pr ≈
1 − e−Pm(|M|+|T |(1/ε))(1−Pn) , when Pm is very small and (|M | + |T |/ε)(1 − Pn)
is very big. ��
Theorem 3. Given a randomly selected nonself antigen x, the probability of
which is classified as a self antigen by mistake Pneg = (1−Pm)(|M|+|T |)(1−Pn) ≈
e−Pm(|M|+|T |)(1−Pn) . Given a randomly selected self antigen y, the probabil-
ity of which is classified as a nonself antigen by mistake Ppos = 1 − (1 −
Pm)(|M|+|T |(1/ε))Pn ≈ 1 − e−Pm(|M|+|T |(1/ε))Pn .

Proof. Suppose A is the event that x does match any memory and mature de-
tectors, B is event that y matches the memory detectors or mature ones. From
(15) and (16), Pneg = P (A), Ppos = P (B). Let X be the number of a detector
matching a nonself antigen in event A, from [30] we have X ∼ b(n, p), where
n = (|M | + |T |)(1 − Pn) is number of detectors which recognize nonself anti-
gens, and p = Pm. Then, Pneg = P (A) = P (X = 0) = (1 − Pm)(|M|+|T |)(1−Pn)

. According to Poisson Theorem [30], Pneg ≈ e−Pm(|M|+|T |)(1−Pn), when Pm is
very small and (|M | + |T |)(1 − Pn) is very big. Furthermore, suppose Y is the
number of a detector matching a self antigen in event B, where Y ∼ b(n, p), n =
(|M |+|T |/ε)Pn is the number of detectors which recognize self antigens, p = Pm.
From the same way of Pneg, we have Ppos = 1 − (1 − Pm)(|M|+|T |(1/ε))Pn ≈
1 − e−Pm(|M|+|T |(1/ε))Pn . ��
Theorem 4. The number of self set is less than a constant, and the description
of self is macroscopically complete.

Proof. From equation (1), we have that the number of self set is always less
than a constant max s size. Although a few of self elements are collected by
the dynamic model for self description (i.e., section 2.1) in each step, however,
∞⋃

t=0
S(t) will cover the whole self space as time goes on. In other words, we have

that the description of self is macroscopically complete. ��
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4 Simulations and Experimental Results

A fixed length binary string (l=128) is used as the pattern characteristics of
software. IBM lab shows that the characteristic code with 128bit long is enough
[19], furthermore, the 128bit long characteristic code is become an industry stan-
dard [22]. The length of antibody is also 128bit. The self set is defined as 200
important system files. The experiment aims at the detection of 100 computer
viruses, and the antigen set is formed by 200 self files and 200 files infected by
experimental viruses. In the experiments, the parameter λ and max age are,
respectively, set to 5 and 15. And the matching function is defined by

fmatch(x, y) =
{

1, fh dis(x, y)/min(lx, ly) ≥ β
0, otherwise

(17)

where β > 0 is threshold, fh dis(x, y) is the Hamming distance [15] and given by

fh dis(x, y) =
l∑

i=1

δi (18)

where δi =
{

1, yi = xi

0, otherwise
, 1 ≤ i ≤ l.

Fig.2 and Fig.3 show how parameter β affects the performance of the model,
where |M | = 50, |S| = 100. The results show that the smaller the β, the stronger
the recognition ability of the model, and the lower the false-negative rate, how-
ever, the higher the false-positive rate. The results fit to Theorem 2 and 3.

The false-negative rate is mainly caused by the size of initial memory detector-
set (please refer to Fig.4). Although the β increasing will result in the increasing
of false-negative rate, however, it will not exceed 50%. According to Fig.2 and
Fig.3, we set β=0.8.

Fig.4 and Fig.5 show how parameter |M | affects the performance of the model,
where β = 0.8, |S| = 100. The false-negative rate of the model is nearly 100%
when |M | equals 0, and the recognition ability of the model is weak. However,
with the increasing of the size of memory detector-set, the recognition ability is

Fig. 2. The effect of matching threshold β
to the error rate

Fig. 3. The effect of matching threshold β
to the recognition ability
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Fig. 4. The effect of the memory detector
size to the error rate

Fig. 5. The effect of the memory detector
size to the recognition ability

improved rapidly. When |M | equals to 90, the model can recognize almost all 200
computer viruses (100 original viruses, 100 are their variations). The model can
detect almost all the variation viruses and new viruses (10% of all viruses). This
indicates that this model has a strong ability of self-learning. It also indicates
that the detection ability will be improved while increasing the size of memory
detector-set.

To test the performance of our model, the corresponding comparison experi-
ments were undertaken, with ARTIS [17, 18], proposed by Hofmeyr and Forrest
et al, selected as the opponent. ARTIS is a typical model in traditional CVIS,
which has significant impact on the design of CVIS.

Fig.6 shows the situation that the number of the needed immature detec-
tors for generating a fixed number (here is 20) of the mature detectors, where
β = 0.8, |M | = 50. The result shows that our proposed model has a higher ef-
ficiency than ARTIS. The number of candidate immature detectors is exponen-
tially related to the size of self-set in ARTIS, however, it is linear in our model.
This indicates that the time needed in self tolerance is much reduced when the
candidate immature detectors are generated through the antibody gene-library.

Fig.7 shows how the size of memory detector-set affects the performance for
both ARTIS and our model, where β = 0.8, |S| = 100. The result shows that our
model is better than ARTIS. Since the antibody genes are extracted from mem-
ory detectors, thus, the larger the memory detector-set, the more excellent genes,
therefore, better candidate immature detectors can be generated from antibody
gene library. In the experiments, we found that the mature detectors generated
from antibody gene library are distributed around the memory detectors, thus,
they will find the variation viruses or similar ones, however, it is difficult for
them to find the viruses that are much different from the known ones (i.e., new
viruses). In the experiments, we also found that this problem can be solved by
randomly generating immature detectors. Thus, a good idea for generating new
immature detectors is to adopt two strategies: some detectors are derived from
antibody gene library, but the others are randomly generated.

Fig.8 and Fig.9 show how the evolutive self-set affects the performance of
ARTIS and our proposed model, where some viruses are put into self-set, and
β = 0.8, |M | = 50. In the experiments we found that: 1) the size of self-set will
little affect the false-positive rate; 2) the size of memory detector set will affect
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Fig. 6. The comparison experiment for
the mature detector generating efficiency
of ARTIS and our model

Fig. 7. The comparison experiment for
the recognition ability of ARTIS and our
model

Fig. 8. The comparison experiment for
the false positive rate of ARTIS and our
model under different size of self set

Fig. 9. The comparison experiment for
the false positive rate of ARTIS and our
model under different size of memory de-
tector set

the false-positive rate, the reason is that the description of self is not completed;
3) the evolutive self-set can effectively reduce the false-positive rate, the reason
is that the nonself elements in self-set will be eliminated by the evolutive self
model through the feedback ability of memory detectors and the costimulation
from a outside system. The experimental results show that our proposed model
has a lower false-positive rate than ARTIS.

5 Conclusion

The previous models or methods, such as ARTIS, lack the ability of self-adap-
tation, have a higher false-positive and false-negative rate, therefore, have limited
applications. In this paper, a quantitatively depiction for dynamic evolutions of
self-set, antibody gene-library, immature detector-set, mature detector-set and
memory detector-set are presented. Then, an immune-based dynamic model for
computer virus is thus built. This model can efficiently reduce both the false-
positive rate and false-negative rate, and enhance the ability of self-adaptation
and diversity.
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