
Security Analysis of Password-Authenticated
Key Agreement Protocols�

Kyung-Ah Shim1 and Seung-Hyun Seo2

1 Department of Mathematics
2 Department of Computer Science and Engineering,

Ewha Womans University, Seoul, Korea
kashim@ewha.ac.kr, seosh@ewhain.net

Abstract. Recently, there have been proposed a number of password-
authenticated key agreement protocols for two-party setting or
three-party setting. In this paper, we show that recently proposed three
password-authenticated key agreement protocols in [11, 12, 10] are inse-
cure against several active attacks including a stolen-verifier attack, an
off-line password guessing attack and impersonation attacks.

1 Introduction

Two entities, who only share a password, and who are communicating over an
insecure network, want to authenticate each other and agree on a session key
to be used for protecting their subsequent communication. This is called the
password-authenticated key exchange problem. The first password-authenticated
key exchange (PAKE) protocol, known as Encrypted Key Exchange (EKE), was
suggested by Bellovin and Merritt [1]. By using a combination of symmetric
and public-key cryptography, EKE resists dictionary attacks by giving a pas-
sive attacker insufficient information to verify a guessed password. Since it was
invented, many password-authenticated key agreement protocols that promised
increased security have been developed [2-4, 8, 9, 14-16].

In 1995, Steiner, Tsudik, and Waidner [15] extended two-party EKE protocol
to three-party one (STW-3P-EKE), in which all clients share a password with
a trusted server S only and in which S mediates between two communication
parties to allow their mutual authentication. The three-party EKE protocol is
particularly well-suited for large communication environments because it is in-
convenient in key management that every two communication parties mutually
share a secret. Unfortunately, Ding and Horster [7] showed that the STW-3P-
EKE is not resistant to undetectable on-line password guessing attacks. Lin, Sun
and Hwang [13] also pointed out that the STW-3P-EKE is not only vulnerable
to undetectable on-line password guessing attacks but also vulnerable to off-line
password guessing attacks. They proposed a new three-party EKE, in which the
server holds a long-term and publicly known public key to prevent both off-line
� This work was supported by the Korea Research Foundation Grant funded by the

Korean Government(MOEHRD).(KRF-2005-217-C00002).

Y.G. Desmedt et al. (Eds.): CANS 2005, LNCS 3810, pp. 49–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 K.-A. Shim and S.-H. Seo

and undetectable on-line password guessing attack. However, in their protocol,
communication parties have to obtain and verify the public key of the server,
a task which puts a high burden on the user. Later, there have been proposed
several key agreement protocols for three-parties, in which two clients establish
a common session key through a authentication server. Most of those protocols
require to use server’s public key to prevent password guessing attacks. How-
ever, the protocols may not be practical for some environments since clients
need to verify and keep the server’s public key. Recently, Lee et al [12] proposed
a new efficient verifier-based key agreement protocol for three parties, which
does not require server’s public key. They argued that the protocol was secure
against impersonation attacks and server compromise. In this paper, we show
that the protocol is still insecure against a stolen-verifier attack and imperson-
ation attacks. Also, Lee et al [11] proposed a two-party password-authenticated
key agreement protocol PAKA and its verifier-based version PAKA-X. In the
PAKA-X protocol, the client uses a plaintext of the password, while the server
stores a verifier for the password. So the protocol does not allow an adversary
who compromises the server to impersonate a client without actually running a
dictionary attack on the password file. We will show that the PAKA-X proto-
col is insecure against a stolen-verifier attack and an off-line password-guessing
attack.

At ICICS’02, Byun et al [5] proposed two password-authenticated key ex-
change protocol between clients with different passwords, so-called Client-to-
Client Password-Authenticated Key Exchange (C2C-PAKE) protocol. One is
for a cross-realm setting where two clients are in two different realms and hence
there exist two servers involved, the other is for a single-server setting where two
clients are in the same realm. The protocol being circulated for consideration
at the 27th SC27/WG2. Subsequently, Chen [6] and Kim et al [10] showed that
their protocol was insecure against a dictionary attack by a malicious server in
a different realm and Denning-Sacco attacks mounted by insiders, respectively.
And Kim et al [10] also proposed a modified protocol to resist these attacks.
In this paper, we point out that the modified protocol is also insecure against
impersonation attacks.

The rest of the paper is organized as follows. The next section presents the
attacks on the PAKA-X protocol. In section 3, we point out the Lee et al’s PAKE
for three-party is insecure against a stolen-verifier attack. In section 4, we show
that the modified C2C-PAKE protocol is insecure against partition attacks and
impersonation attacks. Concluding remarks are given in section 5.

2 Cryptanalysis of the PAKA-X Protocol

Lee et al [11] proposed a password-based authenticated key agreement protocol,
PAKA and its verifier-based version, PAKA-X. In this section, we show that
the PAKA-X protocol is insecure against a stolen-verifier attack and an off-line
password guessing attack. First, we review the PAKA-X protocol.

Security Analysis of Password-Authenticated Key Agreement Protocols 51

2.1 The PAKA-X Protocol

Let g be a generator of Z
∗
p, where p is a large prime and h a collision-resistant one-

way hash function. Henceforth, we will omit the operation ‘mod p’ for simplicity.
We assume that there is an initialization in which the client, Alice chooses a
memorable password, π, computes a verifier ν = gh(IdA,IdB,π) and then sends ν to
the server, Bob, over a secure channel. Bob stores (IdA, ν), where IdA indicates
an identifier of Alice. To enhance the efficiency of the protocol, ν = gh(IdA,IdB,π)

and h(IdA, IdB , π)−1 can be precomputed by Alice before the protocol runs.
The PAKA-X protocol is as follows;

1. Alice computes XA = ga ⊕ν by choosing a ∈R Z
∗
p and then sends {IdA, XA}

to Bob.
2. After receiving the message, Bob retrieves ν from a password file, computes

XB = νb ⊕ ν by choosing b ∈R Z
∗
p and then sends XB to Alice. While

waiting for a message from Alice, Bob computes KB = (XA ⊕ ν)b = gab and
V ′

A = h(IdA, XB, KB) and VB = h(IdB, XA, KB), in sequence.
3. After receiving the message from Bob, Alice computes

KA = (XB ⊕ ν)ah(IdA,idB,π)−1
= gab

and VA = h(IdA, XB, KA) and then sends VA to Bob. While waiting for a
message from Bob, Alice computes V ′

B = h(IdB , XA, KA).
4. On the receipt the message VA, Bob checks whether VA = V ′

A holds or not. If
it holds, Bob is convinced that KA is validated, and then sends VB to Alice.

5. On the receipt the message VB , Alice checks whether VB = V ′
B holds or not.

If it holds, Alice is convinced that KB is validated.
6. Finally, Alice and Bob compute the common session key K = h(KA) =

h(KB) = h(gab).

2.2 Attacks on the PAKA-X Protocol

Lee et al [11] argue that the PAKA-X is secure against sever compromise, i.e.,
an attacker who steals password file from the server cannot use that information
directly to impersonate the client. Now, we show that the PAKA-X protocol is
still vulnerable to server compromise, i.e., a stolen-verifier attack. If the host’s
password file is captured and then an adversary learns the value of the verifier
ν, it should still not allow the adversary to impersonate the user without an
expensive dictionary search. Then we say that the protocol is secure against
stolen-verifier attack or server compromise attack.

• Stolen-Verifier Attack on the PAKA-X Protocol
Suppose that an adversary E has captured A’s verifier ν and wishes to imper-
sonate A to B. E(A) represents E impersonating A.

1. First, the adversary E chooses a ∈R Z
∗
p and computes XA = νa ⊕ ν from ν.

Then E starts a protocol run sending {IdA, XA} to B impersonating A.

52 K.-A. Shim and S.-H. Seo

2. After receiving the message, B retrieves A’s verifier ν from a password file.
He chooses a random b, computes XB = νb ⊕ν and sends it to E(A). Then B
computes KB = (XA ⊕ν)b = (νa ⊕ν⊕ν)b = νab, and VB = h(IdB, XA, KB).
While waiting for a message from E(A), B computes V ′

A = h(IdA, XB, KB).
3. On the receipt the message, E(A) can obtain KA (which is the same as KB)

by computing (XB ⊕ ν)a = (νb ⊕ ν ⊕ ν)a = νab = KA from XB, ν and a.
And then E(A) computes VA = h(IdA, XB, KA) and sends it to B.

4. After receiving the message VA, B checks whether VA = V ′
A holds or not. The

equation holds since KA = KB. Then B is convinced that KA is validated
and sends VB = h(IdB, XA, KB) to A. Next, B computes the session key
K = h(KB) = h(νab).

5. After receiving the message VB, E(A) computes V ′
B = h(IdB , XA, KA) and

checks VB = V ′
B holds or not. Finally, E succeeds to impersonate A to B as

well as the knowledge of the session key K = h(KA) = h(νab).

By using the verifier, an adversary can compute the first transmitted mes-
sage XA to confine the shared secret to a predictable value from the message
computed by the legitimate user B. In other words, by fabricating the message
from the compromised verifier, the adversary can impersonate A and compute
the shared secret, KA = KB = νab established between E(A) and B without
the knowledge of the password π and an expensive dictionary search. Therefore,
the PAKA-X is insecure against the stolen-verifier attack unlike their claim in
[11].

We also show that the PAKA-X protocol is insecure against an off-line pass-
word guessing attack. The attack on the PAKA-X is mounted as follows;

• Off-line Password Guessing Attack on the PAKA-X Protocol
When A starts a protocol run by sending a message {IdA, XA = ga ⊕ ν} to B,
an attacker E(B) intercepts it and sends XB = 0 to A impersonating B. On the
receipt the message, A computes

KA = (XB ⊕ ν)ah(A,B,π)−1
= νah(A,B,π)−1

= ga, VA = h(IdA, XB, KA)

and then sends VA to E(B). After receiving the message, E stores it and stops
the protocol run.

(1.1) A −→ E(B) : IdA, XA = ga ⊕ ν
(1.2) E(B) −→ A : XB = 0
(1.3) A −→ E(B) : VA = h(IdA, XB, KA)
(1.4) E(B) −→ A : stop.

Finally, E executes an off-line password guessing attack and then finds the pass-

word π iterating upon all possible choices of π;

1. Pick a candidate π′.
2. Compute ν′ = gh(IdA,IdB ,π′) and K ′

A = XA ⊕ ν′ = (ga ⊕ ν) ⊕ ν′ from the
recorded message XA.

3. Compare VA with h(IdA, XB, K ′
A).

Security Analysis of Password-Authenticated Key Agreement Protocols 53

Since VA = h(IdA, XB, KA) = h(IdA, XB, ga), a match in the last step indicates
correct guess of the password. Therefore, an attacker succeeds to guess the valid
password π.

3 Cryptanalysis of the LKY Protocol

3.1 The LKY Protocol

We review the Lee et al’s verifier-based key agreement protocol (called the LKY
protocol)[12] for three parties without server’s public key. We assume that each
client uses a memorable password, while the server stores corresponding verifiers
instead of plaintext-equivalent passwords to resist to server compromise. Let p
be a large prime and g a generator of Z

∗
p. Let h(·) be a collision-resistant one-

way hash function. Assume that two clients, A and B, want to agree a common
session key though a authentication server, called AS. For registering for AS, A
and B, respectively, choose passwords πA and πB , compute verifiers vA = gtA ,
tA = h(A, S, πA) and vB = gtB , tB = h(B, S, πB), and then send vA and vB to
AS over a secure channel. AS stores vA and vB in a password file. The protocol
runs as follows;

1. A computes XA = ga by choosing a random a ∈ Z
∗
p and sends {A, XA} to

B.
2. After receiving the message from A, B choose a random b ∈ Z

∗
p, computes

XB = gb and sends {A, XA, B, XB} to AS. B also sends XB to A.
3. After receiving the message from B, AS retrieves vA and vB from a password

file. Then AS chooses c, d ∈ Z
∗
p computes XSA = (vA)c ⊕ vA and XSB =

(vB)d ⊕vB and sends XSA and XSB to A and B, respectively. While waiting
for messages from A and B, AS computes KSA = (XA)c = gac and KSB =
(XB)d = gbd.

4. After receiving the messages from AS and B, A computes KAS = (XSA ⊕
vA)t−1

A a = gac, VAS = h(A, B, S, XA, XB, XSA, KAS) and sends VAS to AS.
Similarly, after receiving the message from AS, B computes KBS = (XSB ⊕
vB)t−1

B b = gbd, VBS = h(B, A, S, XB, XA, XSB, KBS) and sends VBS to AS.
5. After receiving the messages from A and B, AS checks whether VAS =

h(A, B, S, XA, XB, XSA, KSA) and VBS = h(B, A, S, XB, XA, XSB, KSB)
hold or not. If they hold, AS is convinced that A and B are validated. Then
AS computes VSA = h(S, A, B, XA, XB, KSA), VSB = h(S, B, A,
XB, XA, KSB) and sends VSA and VSB to A and B, respectively.

6. After receiving the message from AS, A checks whether VSA = h(S, A, B,
XA, XB, KAS) holds or not. If it holds, A is convinced that both B and AS
are validated. Similarly, B checks whether VSB = h(S, B, A, XB, XA, KBS)
holds or not. If it holds, B is convinced that both A and AS are validated.
Finally, A and B compute KAB = (XB)a = gab and KBA = (XA)b = gab,
respectively, and then compute a common session key K = h(A, B, S, gab).

54 K.-A. Shim and S.-H. Seo

3.2 Stolen-Verifier Attack on the LKY Protocol

Now, we point out that the LKY protocol is insecure against a stolen-verifier
attack.

• Stolen-Verifier Attack on the LKY Protocol
Suppose that an adversary E has captured the verifiers vA and vB of A and B,
respectively, and wishes to impersonate both A and B to AS, simultaneously.

1. First, the adversary E sets XA = vA and XB = vB and then starts a protocol
run by sending {A, XA, B, XB} to AS impersonating B.

2. After receiving the message from B, AS retrieves vA and vB from a password
table. Then AS chooses c, d ∈ Z

∗
p, computes XSA = (vA)c ⊕ vA and XSB =

(vB)d ⊕vB and sends XSA and XSB to A and B, respectively. While waiting
for messages from A and B, AS computes KSA = (XA)c = vc

A and KSB =
(XB)d = vd

B.
3. After receiving the messages from AS, from known value vA, E computes

KAS = XSA ⊕ vA = vc
A, VAS = h(A, B, S, XA, XB, XSA, KAS) and sends

VAS to AS impersonating A. Similarly, E computes KBS = XSB ⊕vB = vd
B ,

VBS = h(B, A, S, XB, XA, XSB, KBS) and sends VBS to AS impersonat-
ing B.

4. After receiving the messages from A and B, AS checks whether VAS =
h(A, B, S, XA, XB, XSA, KSA) and VBS = h(B, A, S, XB, XA, XSB, KSB)
hold or not. The equations hold since KAS = KSA = vc

A and KBS =
KSB = vd

B as intended by the adversary. Thus, AS is convinced that A
and B are validated. Then, AS computes VSA = h(S, A, B, XA, XB, KSA),
VSB = h(S, B, A, XB, XA, KSB) and sends VSA and VSB to A and B, re-
spectively.

5. After receiving the message from AS, E checks whether VSA =
h(S, A, B, XA, XB, KAS) and VSB = h(S, B, A, XB, XA, KBS) hold or not.
Finally, E succeeds to impersonate both A and B to AS, simultaneously.

In above attack, by fabricating the messages and impersonating both A and
B, the adversary can compute the shared secrets, KAS and KBS established
between A and AS and B and AS, respectively, without the knowledge of genuine
passwords πA and πB, equivalently, tA and tB .

4 Cryptanalysis of the Modified C2C-PAKE Protocol

4.1 The Modified C2C-PAKE Protocol

We first review the modified C2C-PAKE protocol [10] in a cross-realm setting.
The following notation is used throughout this section.

• A, B Two clients in two different realms.
• IDA, IDB Identities of A and B, respectively.
• KDCA, KDCB Key Distribution Centers which store passwords of A

and B, resp.

Security Analysis of Password-Authenticated Key Agreement Protocols 55

• K A symmetric key shared between KDCA and KDCB.
• EK(·) A symmetric encryption under the symmetric key K.
• Epwa(·)/Dpwa(·) A symmetric encryption/decryption under the password

pwa.

The modified C2C-PAKE protocol runs as follows;

[Protocol Initialization]

1. Let p and q be sufficiently large primes such that q|p − 1, and let G =<
g > be a subgroup of F

∗
p with order q. Let g be a generator of G. Let Hi

(i = 1, 2) be cryptographic hash functions. The public system parameters
are < p, q, g, H1, H2 >. The system parameters are shared by all protocol
participants.

2. A chooses a password pwa, then transfers it to KDCA through a secure
channel. B also transfers pwb to KDCB, similarly. KDCA and KDCB store
(IDA, pwa) and (IDB , pwb), respectively, in their database.

[Ticket Issuing Stage]

1. First, A chooses a random x ∈ Z
∗
p and sends {Epwa(gx), IDB} to KDCA.

2. On the receipt of the message from A, KDCA obtains gx by decrypting
Epwa(gx) under A’s password pwa. Next, KDCA selects a random r ∈ Z

∗
p

and issues T icketB = EK(gxr, gr, IDA, IDB, L), where K is a symmetric
key shared between KDCA and KDCB and L is a lifetime of T icketB.
Then KDCA sends {T icketB, IDA, IDB, L} to A.

[Mutual Authentication and Key Exchange Stage]

1. Upon receiving T icketB from KDCA, A forwards T icketB to B with IDA.
2. B chooses a random y ∈ Z

∗
p and computes Epwb(gy). Then B sends

{Epwb(gy), IDA, IDB, T icketB} to KDCB.
3. After receiving the message from B, KDCB obtains gxr and gr by decrypting

T icketB with K, selects a random r′ ∈ Z
∗
p and computes (gxr)r′

and (gr)r′
.

Next, KDCB sends {gxrr′
, grr′} to B.

4. When B receives the message, B computes cs = H1(gxyrr′
) from gxrr′

and
y, chooses a random a ∈ Z

∗
p and computes Ecs(ga) and grr′y. Finally, B

sends {Ecs(ga), grr′y} to A.
5. On the receipt of the message, A computes cs = H1(gxyrr′

) from gyrr′
and

x and then obtains ga by decrypting Ecs(ga) under cs. Next, A chooses a
random b ∈ Z

∗
p and computes the session key sk = H2(gab) and Ecs(gb).

Then A sends {Esk(ga), Ecs(gb)} to B for the session key confirmation.
6. By decrypting Ecs(gb) with cs, B gets gb and computes sk = H2(gab). Then

B verifies ga by decrypting Esk(ga) with sk and sends Esk(gb) to A.
7. After receiving the message, A verifies gb by decrypting Esk(gb) with sk.

Finally, A (resp., B) authenticates B (resp., A)and share the session key.

Kim et al [10] argued that the modified C2C-PAKEprotocol is secure against all
kinds of attacks considered in [5] including the Denning-Sacco attack and Chen’s
dictionary attacks [6]. However,we will show that the modified C2C-PAKEprotocol

56 K.-A. Shim and S.-H. Seo

is totally broken by an active adversary without the knowledge of any secret in-
formation such as past session keys and the shared symmetric key.

4.2 Attacks on the Modified C2C-PAKE Protocol

Now, we show that the modified protocol is insecure against partition attacks
and two types of impersonation attacks.

• Partition Attacks
Both Byun et al’s original protocol [5] and the modified C2C-PAKE protocol [10]
use g as a generator of G, where G is a subgroup of F

∗
p of order q. However, it

is known that the protocols with such a generator are insecure against partition
attacks [9]. Thus, the C2C-PAKE and the modified C2C-PAKE protocols are
also insecure the attacks. However, the attacks can be easily prevented if g is
taken as a primitive element of F

∗
p, i.e., a generator of F

∗
p.

• Impersonation Attack I on the Modified C2C-PAKE Protocol
Suppose that an adversary E wants to impersonate A to B on the protocol.

[Ticket Issuing Stage]

1. An adversary E(A) chooses a random k ∈ Z
∗
p and sends {k, IDA, IDB} to

KDCA impersonating A.
2. On the receipt of the message from E(A), KDCA thinks that the stage is

initiated by A. Then KDCA obtains Dpwa(k) by decrypting k under pwa,
selects a random r ∈ Z

∗
p and generates T icketB = EK(Dpwa(k)r, gr, IDA, L).

Next, KDCA sends {T icketB, IDA, IDB} to E(A).

[Mutual Authentication and Key Exchange Stage]

1. After receiving T icketB from KDCA, E(A) sends {T icketB, IDA} to B
impersonating A.

2. Then B computes Epwb(gy) and sends {Epwb(gy), IDA, IDB, T icketB} to
KDCB.

3. E intercepts the message from B, chooses random k′, k′′ ∈ Z
∗
p and com-

putes gk′
and gk′k′′

. Then E(KDCB) sends {gk′
, gk′k′′} to B impersonating

KDCB.
4. After receiving {gk′

, gk′k′′} from E(KDCB), B thinks that it is sent from
KDCB. B computes cs = H1(gk′y) from gk′

and computes Ecs(ga) and
gk′k′′y. Then, B sends {Ecs(ga), gk′k′′y} to E(A).

5. On the receipt of the message, E(A) can obtain gk′y from gk′k′′y by comput-
ing (gk′k′′y)k′′−1

. Next, E computes cs = H1(gk′y) and then recover ga from
Ecs(ga). Next, E(A) chooses a random b ∈ Z

∗
p and computes a session key

sk = H2(gab) and Ecs(gb). Then E(A) sends {Esk(ga), Ecs(gb)} to B.
6. After receiving Esk(ga) and Ecs(gb), B first obtains gb by decrypting Ecs(gb)

and computes sk = H2(gab) and then verifies ga from Esk(ga). B computes
Esk(gb) and sends it to E(A).

7. Finally, E succeeds to impersonate both A and KDCB to B as well as the
knowledge of the session key sk = H2(gab).

Security Analysis of Password-Authenticated Key Agreement Protocols 57

• Impersonation Attack II on the Modified C2C-PAKE Protocol
Another impersonation attack can be mounted on the protocol without perform-
ing the Ticket Issuing Stage.

1. First, without issuing T icketB, E(A) chooses a random k ∈ Z
∗
p and sends

{k, IDA} to B impersonating A.
2. After receiving the message, B believes that k is a T icketB issued by KDCA.

Because there is no way to confirm that it is issued by KDCA. Then B
computes Epwd(gy) and sends {Epwb(gy), IDA, IDB, k} to KDCB.

3. Intercepting the message sent from B, E chooses k′, k′′ ∈ Z
∗
p, computes gk′

and gk′k′′
and sends them to B impersonating KDCB.

4. The remainder of this attack is the same as the impersonation attack I.
Finally, E succeeds to impersonate A to B as well as the knowledge of the
session key without issuing T icketB.

The weaknesses of the protocol against the impersonation attacks are due to
the fact that; i) in the Ticket Issuing Stage, anyone can obtain a valid ticket
of A from KDCA, because there is no device to verify whether the sender is A,
i.e., there is no way to verify the received message is a valid encryption under
A’s password pwa. ii) Similarly, in the Mutual Authentication and Key
Exchange Stage, B cannot assure that, in the step 3 in the modified C2C-
PAKE protocol, the received message is sent from KDCB, because, unlike the
original C2C-PAKE protocol, KDCB does not use B’s password or any secret
information between KDCB and B to generate the messages gxrr′

and grr′
for

B, and so it is impossible to verify the message is generated by a genuine KDCB.
Thus, in the modified C2C-PAKE protocol, KDCA and KDCB do not perform
the key distribution centers’ role as required.

5 Conclusion

We have shown that the PAKA-X and LKY protocol are insecure against the
stolen-verifier attacks. We have shown that the modified C2C-PAKE protocol
is insecure against the partition attack and impersonation attacks. These re-
sults imply that the protocol is insecure against active adversaries without the
knowledge of any secret information such as past session keys and the shared
symmetric key.

References

1. S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks, Proc. of the 1992 IEEE Computer Society
Conference on Research in security and Privacy, pp. 72-84, 1992.

2. S. M. Bellovin and M. Merritt, Augmented encrypted key exchange: Password-
based protocols secure against dictionary attacks and password file compromise,
Technical report, AT&T Bell Laboratories, 1994.

58 K.-A. Shim and S.-H. Seo

3. M. Bellare, D. Pointcheval and P. Rogaway, Authenticated Key Exchange Secure
Against Dictionary Attacks, Advances in Cryptography-Eurocrypt’00, LNCS 1807,
Springer-Verlag, pp. 139-155, 2000.

4. V. Boyko, P. MacKenzie, and S. Patel, Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman, Advances in Cryptography-Eurocrypt’00,
LNCS 1807, Springer-Verlag, pp. 156-171, 2000.

5. J. Byun, I. Jeong, D. Lee and C. Park, Password-authenticated key exchange be-
tween clients with different passwords, ICICS’02, LNCS 2513, Springer-Verlag, pp.
134-146, 2004.

6. L. Chen, A weakness of the password-authenticated key exchange between clients
with different passwords scheme, The documnet was being circulated for consider-
ation at the 27th SC27/WG2 meeting in Paris, France, 2003-10-20/24(2003).

7. Y. Ding and P. Horster, Undetectable on-line password guessing attacks, ACM
Operating Systems Review, vol. 29(4), 1995, pp. 77-86.

8. D. Jablon, Extended password methods immune to dictionary attack, Proc. of the
WETICE’97 Enterprise Security Workshop, Cambridge, MA, June 1997.

9. D. Jablon, Strong password-only authenticated key exchange, Computer Commu-
nication Review, 26(5), pp. 5-26, 1996.

10. J. Kim, S. Kim, J. Kwak and D. Won, Cryptanalysis and improvment of password-
authenticated key exchange between clients with different passwords, ICcsa’04,
LNCS 3043, Springer-Verlag, pp. 895-902, 2002.

11. S-W Lee, W-H Kim, H-S Kim, and K-Y Yoo, Efficient password-based authenti-
cated key agreement protocol, ICCSA’04, LNCS 3046, Springer-Verlag, pp. 617-
626, 2004.

12. S-W Lee, H-S Kim and K-Y Yoo, Efficient verifier-based key agreement protocol for
three parties without server’s public key, Applied Mathematics and Computation,
in Press.

13. C.-L. Lin, H.-M. Sun and T. Hwang, Three-party encrypted key exchange: attacks
and a solution, ACM Operating Systems Review, vol. 34(4), 2000, pp. 12-20.

14. P. MacKenzie and R. Swaminathan, Secure Network Authentication with Password
Identification, 1999 Submission to IEEE P1363a.

15. M. Steiner, G. Tsudik and M. Waidner, Refinement and extension of encrypted
key exchange, ACM Operating System review, 29(3), July, 1995.

16. T. Wu, The secure remote password protocol, Internet Society Symposium on
Network and Distribute System Security, pp. 97-111, 1998.

	Introduction
	Cryptanalysis of the PAKA-X Protocol
	The PAKA-X Protocol
	Attacks on the PAKA-X Protocol

	Cryptanalysis of the LKY Protocol
	The LKY Protocol
	Stolen-Verifier Attack on the LKY Protocol

	Cryptanalysis of the Modified C2C-PAKE Protocol
	The Modified C2C-PAKE Protocol
	Attacks on the Modified C2C-PAKE Protocol

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

