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Abstract. The window algorithms for various signed binary representa-
tions have been used to speed up point multiplication on elliptic curves.
While there’s been extensive research on the non-adjacent form, little
attention has been devoted to non-sparse optimal signed binary repre-
sentations. In the paper, we prove some properties of non-sparse optimal
signed binary representations and present a precise analysis of the non-
sparse signed window algorithm. The main contributions are described
as follows. Firstly, we attain the lower bound k+1/3 of the expected
length of non-sparse optimal signed binary representations of k-bit posi-
tive integers. Secondly, we propose a new non-sparse signed window par-
titioning algorithm. Finally, we analyze Koyama-Tsuruoka’s non-sparse
signed window algorithm and the proposed algorithm and compare them
with other methods. The upper bound 5

6 ·2w−1 −1+ (−1)w

3 of the number
of precomputed windows of the non-sparse signed window algorithms is
attained.

Keywords: elliptic curve cryptosystems, point multiplication, signed
window algorithm, signed-digit number representations.

1 Introduction

Elliptic Curve Cryptosystems, as introduced by Koblitz [1] and Miller [2], are
based on the intractability of the discrete logarithm problem on elliptic curves.
The fundamental operation on elliptic curves is point multiplication, which is
an analogous operation as exponentiations on multiplicative groups. Hence, the
binary algorithm, the m-ary algorithm and the sliding window algorithm [3–7]
for exponentiations can be applied to point multiplication on elliptic curves.

Fortunately, a significant property of elliptic curve cryptosystems is that the
inverse of a point can be computed essentially for free. Therefore, signed bi-
nary representations of an integer n, as introduced by Booth [8] and Reitwiesner
[9], can be used to speed up point multiplication. In 1990, Morain and Olivos
[10] firstly suggested to apply the non-adjacent form (NAF) to construct the
addition-subtraction chain for point multiplication, which can save 11.11% oper-
ations compared to the binary algorithm. Furthermore, at Crypto’1992, Koyama
and Tsuruoka [11] proposed a signed binary window algorithm for a non-sparse
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optimal signed binary representation (called the KT recoding), which requires
fewer operations by using the sliding window method.

In [11], the KT recoding was considered better than the NAF with respect
to window technique since that the former has a larger average zero-run length.
However, it was noted in [12, 13] that in comparing various signed binary window
algorithms, it is important to take into account the number of the precompu-
tations. By far, in the previous literature [11-13, 21] the number of precom-
puted windows of Koyama-Tsuruoka’s signed window algorithm [11] is counted
by 2w−1 − 1. It is still a problem what is the precise number of precomputed
windows of the non-sparse signed window algorithm.

Note that an efficient sliding window technique, known as the width-w nonad-
jacent form (w-NAF), was independently introduced by Miyaji, Ono and Cohen
[14] and Solinas [15]. Some properties of the w-NAF have be extensively dis-
cussed in [16, 17, 18]. Recently, much attention has been devoted to left-to-right
w-NAF recodings. Joye and Yen [19] first developed a left-to-right NAF recod-
ing algorithm. Some left-to-right recodings with the same weight as the w-NAF
(w > 2), are respectively proposed by Avanzi [20], by Okeya et al. [21], and
by Muir and Stinson [22]. Furthermore, Möller [23, 24] introduced the fractional
window method, which can provide more flexibility in order to make best use of
the memory that is available.

In this paper, we propose some properties of non-sparse optimal signed binary
representations and make a precise analysis of the non-sparse signed binary win-
dow algorithm. Firstly, we prove the lower bound k+1/3 of the expected length
of non-sparse optimal signed binary representations. Secondly, we propose a new
non-sparse signed window partitioning algorithm, which is slightly better than
Koyama-Tsuruoka’s algorithm practically for the window width w = 4, 5, 6, 7.
Finally, we analyze the two non-sparse signed window algorithms, i.e. Koyama-
Tsuruoka’s algorithm and the proposed algorithm, and prove the upper bound
5
6 · 2w−1 − 1 + (−1)w

3 of the number of precomputed windows. Furthermore, we
give a comparison of various algorithms based on signed binary representations
including the w-NAF and the fractional window method.

The rest of this paper is organized as follows. Section 2 reviews signed binary
representations. Section 3 proves some properties of non-sparse optimal signed
binary representations of positive integers. Section 4 proposes a new non-sparse
signed window algorithm. Section 5 analyzes Koyama-Tsuruoka’s algorithm and
the proposed algorithm and compare them with other algorithms, such as the
w-NAF and so on. Finally, Section 6 concludes the paper.

2 Background

2.1 Notation

If an integer n =
∑k−1

i=0 ni2i with ni ∈ {0, 1}, we call (nk−1, . . . , n1, n0)2 the
binary representation of n. In a signed-digit number system, if n =

∑k
i=0 n′

i2
i

with n′
i ∈ {1, 0, 1}, we call (n′

k, . . . , n′
1, n

′
0)2 a signed binary representation of n.

Moreover, let 1 denote −1 for convenience.
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2.2 Signed Binary Representations

A signed binary representation
(
n′

k−1, . . . , n
′
1, n

′
0
)
2 is called an optimal signed bi-

nary representation of n, if its hamming weight (the number of non-zero digits)
is minimal among all the signed binary representations. One of the most im-
portant optimal signed binary representations is the non-adjacent form (NAF).
Some properties of signed binary representations have be presented in the liter-
ature [8, 9, 25-31]. We now give some required definitions and results.

Definition 1. [9] A signed binary representation
(
n′

k−1, . . . , n
′
1, n

′
0
)
2 with no

two adjacent digits being both non-zero is variously called the canonical, sparse
or non-adjacent form (NAF), which satisfies n′

i · n′
i+1 = 0 for all 0 ≤ i ≤ k − 1.

Property 1. [9, 25, 26, 27] The NAF has the following properties:

(1) Every integer n has a unique NAF.
(2) The NAF is an optimal signed-digit binary representation.
(3) For any integers n, the length of the NAF of n is at most one digit larger

than that of the binary representation of n.

Lemma 1. [29, 32] The probability that in an NAF the digit immediately to the
left of a 0 is another 0 is 1/2 and that it is 1 or −1 is in each case 1/4.

Let Tk denote the number of integers requiring at most k bits in the NAF
representations. Let T ′

k denote the number of integers requiring exactly k bits in
the NAF representations. Let T ′′

k denote the number of positive integers requiring
exactly k bits in the NAF representations.

Theorem 1. [27, 29]

Tk = (2k+2+(−1)k+1)/3, T ′
k = (2k+1+(−1)k+1 ·2)/3, T ′′

k = (2k+(−1)k+1)/3

Various optimal signed binary representations can be obtained. Optimal signed
binary representations other than the NAF are called non-sparse optimal signed
binary representations. For example, the binary representation of the integer
n = 413 is (110011101)2. The NAF representation is (1010100101)2 and a non-
sparse optimal signed-digit representation is (110100011)2.

3 Properties of Non-sparse Optimal Signed Binary
Representations

While there’s been extensive research on the properties of the NAF, little atten-
tion has been devoted to non-sparse optimal signed binary representations. Now
we propose two theorems on the lengths of non-sparse optimal signed binary
representations, which can be applied to the analysis of the non-sparse signed
window algorithm.

Note that the NAF representation can be converted into a non-sparse optimal
signed-digit representation by replacing ‘101’ and ‘101’ with ‘011’ and ‘011’.
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Hence, we can derive the expected length of non-sparse optimal signed binary
representations by counting the corresponding NAF representations. According
to the property of the NAF, the length of the corresponding NAF of a k-bit
positive integer is k or k+1 bits. In fact, the NAF representations of the exactly
k-bit positive integers consist of three cases:

(1) the k-bit NAF representations.
(2) the (k + 1)-bit NAF representations, which have the leading digits ‘1010’.
(3) the (k + 1)-bit NAF representations, which have the leading digits other

than ‘1010’.

Lemma 2. If the leading digits of (k+1)-bit NAF representations of an integer
n are ‘1010’,the length of the binary representation of n is k bits.

Proof. According to the property of the NAF, the NAF representation of an
integer n is unique and the (k + 1)-bit NAF representation has a corresponding
k-bit or (k + 1)-bit binary representation. Since that the leading digits of the
(k + 1)-bit NAF representation of n are ‘1010’, we have

n = 2k + (−1) × 2k−2 +
k−4∑

i=0

n′
i2

i, n′
i ∈ {1, 0, 1}

Since 2k−2 >
∑k−4

i=0 n′
i2

i, we can obtain n < 2k. Hence the integer n must be a
k-bit binary integer. ��

Theorem 2. For the exactly k-bit positive integers:

(1) the number of the k-bit NAF representations is Ck = 2k−1/3 + 1/2 +
(−1)k+1/6.

(2) the number of the (k+1)-bit NAF representations, which have the leading
digits ‘1010’, is C′

k = (2k−1 + (−1)k)/3.
(3) the number of the (k+1)-bit NAF representations, which have the leading

digits other than ‘1010’, is C′′
k = 2k−1/3 − 1/2 + (−1)k+1/6.

Proof. First consider the second case. When the leading digits of the (k+1)-
bit NAF representations are ‘1010’, the remaining bit string can be any of the
(k−3)-bit NAF representations. By Theorem 1, the number of the (k−3)-bit
NAF representations is Tk−3 = (2k−1+(−1)k)/3. Hence, we obtain C′

k = (2k−1+
(−1)k)/3.

Let Ck denote the number of the k-bit NAF representations of the exactly
k-bit positive integers and C′′

k denote the number of the (k + 1)-bit NAF rep-
resentations of the exactly k-bit positive integers, which have the leading digits
other than ‘1010’. Hence we have

{
Ck + C′

k + C′′
k = 2k−1

Ck + C′
k−1 + C′′

k−1 = T ′′
k

(1)

By solving the above equation (1), we obtain Ck = 2k−1/3 + 1/2 + (−1)k+1/6
and C′′

k = 2k−1/3 − 1/2 + (−1)k+1/6. ��
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Theorem 3. For the exactly k-bit positive integers, the lower bound of the ex-
pected length of the non-sparse optimal signed binary representations is k + 1/3
and the upper bound is k + 2/3.

Proof. Note that a non-sparse optimal signed binary representation can be ob-
tained by replacing ‘101’ and ‘101’ with ‘011’ and ‘011’ from the NAF representa-
tion. Moreover, only the conversion from ‘1010’ to ‘0110’ of the most significant
digits of the (k + 1)-bit NAF representations can reduce the length by 1. Hence
the expected length of the shortest non-sparse optimal signed binary represen-
tation is k + C′′

k /2k−1, which is approximately k+1/3.
Similarly, the expected length of the longest non-sparse optimal signed binary

representation of the exactly k-bit positive integers is approximately k+2/3,
which is equal to the expected length of the NAF representation. ��

4 New Non-sparse Signed Window Partitioning
Algorithm

Koyama and Tsuruoka [11] proposed a signed window algorithm based on the
KT recoding, which is a non-sparse optimal signed binary representation. The
KT recoding allows a few adjacent non-zeros, which can reduce the number
of the non-zero windows. Before the analysis of the non-sparse signed window
algorithm, we propose a new signed window partitioning algorithm, which can
obtain non-sparse signed windows by scanning the NAF representation. The
basic idea is converting the most significant digits ‘101’ or ‘101’ of a window into
’011’ or ‘011’, which increases the window length by 1. The proposed method is
described as Algorithm 1.

Note that for w=3, the proposed Algorithm 1, Koyama-Tsuruoka’s signed
window algorithm [11] and the window algorithm for the NAF [29, 32] have the
same expected zero-run length 1.5 and are indeed equivalent. For w ≥ 4, we
obtain the following Theorem 4.

Theorem 4. For a k-bit NAF representation and the window width w ≥ 4, the
expected number of non-zero windows of Algorithm 1 is

k

w + 4
3 + (−1)w

3·2w−1 − (1
2 )w−3 + (2 + (−1)w) · (1

2 )
w
2 − 3

4 ·(1−(−1)w)
.

Proof. The window partitioning process in Algorithm 1 can be modeled as a
Markov chain, whose states are the different possible windows. In [32], Semay
analyzed the the sliding window algorithm for the NAF representation. Since
Algorithm 1 outputs the non-sparse signed windows by scanning the NAF, we
adopt a similar analysis as that in [32]. Let i be the number of the non-zero
digits of a width-w window for the NAF representation. Let � denote a non-zero
digit 1 or 1. For w ≥ 4, the different windows (states) are:
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Algorithm 1. New signed window partitioning algorithm

Input: the NAF n =
�k

i=0 ni2i, ni ∈ {1, 0, 1}, 0 ≤ i ≤ k, the window width w ≥ 3.
Output: the windows W1, W2, . . . , Wr.
1. j := 1;
2. i := k;
3. while i ≥ 0 do
4. if ni = 0 then
5. Wj := 0;
6. j := j + 1;
7. i := i − 1;
8. else if (ni, . . . , ni−w+1) = (1, 0, 1, . . .) or (1, 0, 1, . . .) then

/* For i − w + 1 < 0, take (ni, . . . , n0). Similarly, so do Step 9 and 13. */
9. Wj := (0, 1, 1, ni−3, . . . , ni−w) or (0, 1, 1, ni−3, . . . , ni−w);
10. j := j + 1;
11. i := i − w − 1;
12. else
13. Wj = (ni, . . . , ni−w+1);
14. j := j + 1;
15. i := i − w;
16. end if.
17. end while.

i = 0 S1 = 0
i = 1 S2 = �0 . . .0 (length w)
i = 2 S3 = �0 . . .0� (length w)

S′
4 = 1010 . . .0 or 1010 . . . 0 (length w)

S′′
4 = 1010 . . . 0 or 1010 . . .0 (length w + 1)

S′′′
4 = 1010 . . . 0 � or 1010 . . .0� (length w + 1)

S′′′′
4 = �0 . . . 0 � 0 . . . 0 (length w)

. . .
3 ≤ i ≤ �w+1

2 � S′
2i−1 = 1010(0| � 0)∗ � or 1010(0| � 0)∗� (length w)

S′′
2i−1 = 1010(0| � 0)∗ � 0 or 1010(0| � 0)∗ � 0 (length w + 1)

S′′′
2i−1 = �00(0| � 0)∗� (length w)

(When w = 2i − 1, S′′′
w is not included.)

S′
2i = 1010(0| � 0)∗ or 1010(0| � 0)∗ (length w)

S′′
2i = 1010(0| � 0)∗0 or 1010(0| � 0)∗0 (length w + 1)

S′′′
2i = 1010(0| � 0)∗ � or 1010(0| � 0)∗� (length w + 1)

S′′′′
2i = �00(0| � 0)∗ (length w)

(When w = 2i, S′′′′
w is not included.)

Note that the states S′
2i−1,S

′′
2i−1 and S′′′

2i−1 correspond to the state S2i−1 in
[32] and the states S′

2i, S′′
2i, S′′′

2i and S′′′′
2i correspond to the state S2i in [32].

By a similar analysis as that in [32], we can calculate the stationary distri-
bution of the Markov chain, which is (π1, π2, π3, . . . , π

′
w, π′′

w, π′′
w) for w odd and
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(π1, π2, π3, . . . , π
′
w, π′′

w, π′′′
w ) for w even. Let f(w) = 3

7·2w−1+(−1)w , then the prob-
abilities are obtained as follows.

π1 = f(w) · (2w+1 + (−1)w)/3, π2 = π3 = f(w) · 2.

For i ≥ 2:

π′
2i = f(w) · 2i−1, π′

2i+1 = f(w) · 2i−1,
π′′

2i = f(w) · 2i−2, π′′
2i+1 = f(w) · 2i−1,

π′′′
2i = f(w) · 2i−2, π′′′

2i+1 = f(w) ·
[
(
w−i−2

i−1

)
− 1

]

· 2i,

π′′′′
2i = f(w) ·

[
(
w−i−1

i−1

)
− 1

]

· 2i.

The expected number of the non-zero windows is :
— For w odd:

k · 1 − π1

1 · π1 + w · (1 − π1) +
∑w−1

2
i=2 [f(w) · 2i]

=
k

w + 4
3 + (−1)w

3·2w−1 − (1
2 )w−3 + (1

2 )
w−3

2

(2)

— For w even:

k · 1 − π1

1 · π1 + w · (1 − π1) +
∑w−2

2
i=2 [f(w) · 2i] + f(w) · 2

w
2 −1

=
k

w + 4
3 + (−1)w

3·2w−1 − (1
2 )w−3 + 3 · (1

2 )
w
2

(3)

Thus, by (2) and (3) we have the result

k

w + 4
3 + (−1)w

3·2w−1 − (1
2 )w−3 + (2 + (−1)w) · (1

2 )
w
2 − 3

4 ·(1−(−1)w)
. (4)

��

According to Theorem 4, we obtain the average zero-run length of Algorithm 1
in Table 1.

Table 1. The Average Zero-run Length of Algorithm 1

width w=3 w=4 w=5 w=6 w=7 w=8

length 1.5 1.625 1.5625 1.59375 1.515625 1.4921875

It is shown that the proposed algorithm is slightly better than Koyama-
Tsuruoka’s signed window algorithm [11] for w = 4, 5, 6 and 7, which cases
are particularly attractive for elliptic curve cryptosystems.
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5 Analysis and Comparisons

5.1 Analysis of Non-sparse Signed Window Algorithms

Now we analyze Koyama-Tsuruoka’s signed window algorithm and the proposed
Algorithm 1, which have the same upper bound of the number of precomputed
windows. There are two problems on the analysis of Koyama-Tsuruoka’s signed
window algorithm in the literature [11–13]:

(1) In [11], the average length of the KT recoding is counted by k + 1/4.
However, according to Theorem 3 in Section 3, the lower bound of the average
length of the shortest non-sparse optimal signed binary representations is k+1/3.
Therefore, the previous result is incorrect and we revise it.

(2) In [11–13], the number of precomputed windows for non-sparse signed
window algorithm is counted by 2w−1 − 1. However, we note that some win-
dow values can’t appear in non-sparse optimal signed binary representations
and needn’t be precomputed. Hence there must be a upper bound smaller than
2w−1 − 1 and the previous analysis is inaccurate.

Now we consider the second problem. The sliding algorithm for computing
point multiplication n · P on elliptic curves is described as Algorithm 2. The
overall number of operations includes the number of the precomputations, the
number of the non-zero windows and the number of point doublings. Moreover,
since the inverse of a point on elliptic curves is easily computed, only odd positive
windows need be precomputed.

The overall number of operations of Koyama-Tsuruoka’s signed window algo-
rithm is (k + 1.75 − w) + k+1/4

w+1.5 + (2w−1 − 1) in [11, 13], where k = �log n� + 1.
Now we count the precise number of precomputed windows.

Algorithm 2. The sliding window algorithm for point multiplication Q = n · P

Input: n =
�k

i=0 n′
i2i, ni ∈ {1, 0, 1}, 0 ≤ i ≤ k, a point P , the window width w.

Output: Q = n · P .
1. Partition and precompute the left-to-right windows W1,W2,. . . ,Wr .
2. Q := W1P ;
3. for i = 2 to r do
3.1 Q := 2L(Wi)Q;
3.2 Q := Q + Wi · P ;
4. end for.
5. Output Q.

Theorem 5. For the window width w ≥ 2, the sliding window algorithm for
non-sparse optimal signed binary representations has:

(1) The upper bound of the number of precomputed windows is 5
6 · 2w−1 − 1 +

(−1)w

3 .
(2)The maximum precomputed window is 5

6 · 2w − 1
3 for w even, whose repre-

sentation is 11(01)w/2−1 and 5
6 ·2w − 5

3 for w ≥ 5 and odd, whose representation
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is 11(01)(w−1)/2−2001. For w = 3, the maximum precomputed window is 5, whose
representation is 101.

Proof. Note that only odd positive windows of at most w bits need be pre-
computed. The number of precomputed windows of non-sparse optimal signed
representations includes the number of precomputed windows of the NAF rep-
resentation and the number of the (k+1)-bit NAF representations, which have
the leading bits ‘1010’.

According to [29, 32], the number of precomputed windows of the NAF rep-
resentation is 1

3 · 2w − 1 − (−1)w

3 .
By Theorem 2, for the exactly k-bit positive integers, the number of the

(k + 1)-bit NAF representations, which have the leading bits ‘1010’, is C′
k =

(2k−1 + (−1)k)/3. Hence,we can obtain the number of the odd positive integers,
which have the leading bits ‘1010’ in their (k + 1)-bit NAF representations, is
1
6 · 2w−1 + (−1)w

6 + (−1)w

2 .
Therefore, the number of precomputed windows of the sliding window algo-

rithm for non-sparse optimal signed binary representations has is 5
6 · 2w−1 − 1 +

(−1)w

3 . The results on the maximum precomputed window follows. ��

Remark 1. Note that modified-NAF has been analyzed in [27]. In fact, the
modified-NAF can be converted into non-sparse optimal signed binary repre-
sentations by replacing some ‘101’ or ‘101’ with ‘011’ or ‘011’ and vice versa.

Let m is an odd positive integer such that 1 ≤ m ≤ 2w−1−3 for the fractional w-
NAF method by Möller [23,24]. We present the maximum precomputed window
for various representations in Table 2. Taking w = 5 as an example, the maximum
precomputed window for non-sparse optimal signed binary representations is
25, whose representation is (11001)2. The representation (11011)2, (11101)2 and
(11111)2 of the odd positive integers 27, 29 and 31 can’t appear in non-sparse
optimal signed binary representations.

Table 2. The Maximum Precomputed Window

Representation w=2 w=3 w=4 w=5 w=6

Binary 3=(11)2 7=(111)2 15=(1111)2 31=(11111)2 63=(111111)2
NAF 1=(1)2 5=(101)2 9=(1001)2 21=(10101)2 41=(101001)2
Non-sparse 3=(11)2 5=(101)2 13=(1101)2 25=(11001)2 53=(110101)2
w-NAF 1=(1)2 3=(11)2 7=(111)2 15=(1111)2 31=(11111)2
Factional w-NAF 1=(1)2 4+m 8+m 16+m 32+m

Theorem 6.
(1) The expected number of operations of Koyama-Tsuruoka’s non-sparse signed
window algorithm is:

(k − w +
11
6

) +
k + 1/3
w + 3/2

+
5
6

· 2w−1 − 1 +
(−1)w

3
.
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(2) Let s = 4
3 + (−1)w

3·2w−1 − (1
2 )w−3 + (2 + (−1)w) · (1

2 )
w
2 − 3

4 ·(1−(−1)w). The expected
number of operations of Algorithm 1 is:

(k +
1
3

− w + s) +
k + 1/3
w + s

+
5
6

· 2w−1 − 1 +
(−1)w

3

Proof. By Theorem 5, the number of precomputed windows is 5
6 ·2w−1−1+ (−1)w

3 .
By Theorem 3, the lower bound of the average length of non-sparse optimal
signed-digit representations is k + 1/3. Due to the equation in the literature
[12, 13, 28, 29], this result can be obtained. ��

5.2 Comparisons with Other Algorithms

Let L denote the length of the signed or unsigned binary representation of n.
Let s and t denote the average zero-run length and the number of precomputed
windows. The number of the non-zero windows can be determined by L

w+s . Note
that t precomputed windows {3P, 5P, 7P, . . . , (2t+1)P} can be obtained via the
addition chain P, 2P, 3P, 5P, 7P, . . . , (2t + 1)P . Hence, the number of operations
of the sliding window algorithm is counted by as follows [11-14, 28, 29]:

L − w + s + (
L

w + s
− 1) + (t + 1)

The expected zero-run length of the binary representation is 1. The expected
zero-run length of the NAF representation is 4

3 + (−1)w+1

3·2w−2 [12, 13, 28, 29, 32]. The
expected zero-run length of the KT recoding [11] is 3/2. Note that the w-NAF
should be seen as a width-(w−1) window algorithm with the zero-run length 2.

Let m be an odd positive integer such that 1 ≤ m ≤ 2w−1 − 3. The fractional
w-NAF method has the signed fractional windows {±1, ±3, . . . , ±(2w−1 + m)}
and the number of precomputed windows is 2w−2 − 1 + (m + 1)/2 for w ≥ 3.
The average density of the fractional w-NAF method is 1

w+ m+1
2w−1 +1

.

Therefore, we give a comparison of the non-zero density and the number of
precomputed windows of various representations in Table 3. Note that m is an
odd positive integer such that 1 ≤ m ≤ 2w−1 − 3. It is shown that when w ≤ 5,
there is a difference not more than 2 between the NAF and non-sparse signed-
digit representations.

For a signed window algorithm, there is an optimal window width w for k-
bit integers, which minimizes the number of operations. When k varies from
160 to 600, the optimal window width w varies from 3 to 6. For example, for
k=233, the binary method (double-and-addition) and the NAF method (double-
and-addition/subtraction) require 347.5 and 309.5 operations, respectively. For
k=233 and w=4, a comparison of various sliding window algorithms is given in
Table 4.

It is shown in Table 4 that there is a small difference among the various signed
window algorithms for k = 233. The w-NAF combined the fractional window
method can achieve the best performance by choosing a proper m.
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Table 3. The Non-zero Density and Number of Precomputed Windows

Representation w=2 w=3 w=4 w=5 w=6

Binary 0.333(1) 0.250(3) 0.200(7) 0.167(15) 0.143(31)
NAF 0.333(0) 0.222(2) 0.190(4) 0.157(10) 0.137(20)
KT recoding 0.286(1) 0.222(2) 0.182(6) 0.154(12) 0.133(26)
Algorithm 1 0.333(0) 0.222(2) 0.178(6) 0.152(12) 0.132(26)
w-NAF 0.333(0) 0.250(1) 0.200(3) 0.167(7) 0.143(15)
Fractional w-NAF 0 1+(m+1)/2 3+(m+1)/2 7+(m+1)/2 15+(m+1)/2

Table 4. Comparison of Various Algorithms (k = 233, w = 4)

Algorithm Precomputed Number of Operations

Binary+Window 7 283.6
NAF+Window 4 278.5
KT’s window 6 279.2
Algorithm 1 6 278.4
5-NAF 7 277.4
Fractional 4-NAF (m = 5) 6 278.36
Fractional 5-NAF (m = 1) 8 277.5

6 Conclusion

We present a precise analysis of Koyama-Tsuruoka’s signed window algorithm
and the new proposed non-sparse signed window algorithm. We also give com-
parisons of various algorithms and it is shown that the w-NAF combined the
fractional window method is more efficient than the others. Furthermore, the
properties of non-sparse signed binary representations can be applied to ana-
lyze the performance of various algorithms based on non-sparse signed binary
representations.
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2004.

7. D. M. Gordon, “A Survey of Fast Exponentiation Methods,” Journal of Algorithms,
vol. 27 , pp. 129-146,1998.

8. A. D. Booth, “A Signed Binary Multiplication Technique,” Q. J. Mech. Appl.
Math., vol. 4, no. 2, pp. 236-240, 1951.

9. G. W. Reitwiesner, “Binary arithmetic,” Advances in Computers, vol. 1, pp. 231-
308, 1960.

10. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains,” Theoretical Informatics and Applications, vol. 24,
pp. 531-543, 1990.

11. K. Koyama and T. Tsuruoka, “Speeding up elliptic curve cryptosystems using a
signed binary window method,” Advances in Cryptology - CRYPTO’92, LNCS
740, Springer-Verlag , pp. 345-357, 1992.

12. N. Kunihiro and H. Yamamoto, “Window and extended window methods for
addition-subtraction chain,” IEICE Trans. on Fundamentals, vol.E81-A, no.1, pp.
72-81, Jan. 1998.

13. E. De Win, S. Mister, B. Preneel and M. Wiener, “On the Performance of Signature
Schemes based on Elliptic Curves,” Proc. of ANTS’98, Springer-Verlag, LNCS
1423, pp. 252-266, 1998.

14. A. Miyaji, T. Ono and H. Cohen, “Efficient elliptic curve exponentiation,” In Pro-
ceedings ICICS’97, LNCS 1334, pp. 282-290, Springer-Verlag, 1997.

15. J. A. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves,”
In Proceedings of CRYPTO ’97, LNCS 1294, pp. 357-371, Springer-Verlag, 1997.

16. J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Designs, Codes and Cryp-
tography, vol. 19 , pp. 195-249, 2000.

17. H. Cohen, “Analysis of the sliding window powering algorithm,” J. of Cryptology,
vol. 18, no.1, pp.63-76, 2005.

18. J. A. Muir and D. R. Stinson, “Minimality and Other Properties of the Width-w
Nonadjacent Form,” to appear in Mathematics of Computation. Available at:
http://www.ccsl.carleton.ca/~jamuir/papers/wNAF-revised-3.pdf.

19. M. Joye, and S. M. Yen, “Optimal left-to-right binary signed-digit recoding,” IEEE
Trans. on Comp. 49 (7), pp. 740-748, 2000.

20. R. M. Avanzi, “A Note on the Signed Sliding Window Integer Recoding and a
Left-to-Right Analogue,” In: H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS
3357, pp. 130-143, Springer-Verlag, 2005.

21. Katsuyuki Okeya, Katja Schmidt-Samoa, Christian Spahn, Tsuyoshi Takagi,
“Signed Binary Representations Revisited,” CRYPTO 2004, LNCS 3152, pp. 123-
139, Springer-Verlag, 2004.

22. J. A. Muir, and D. R. Stinson, “New Minimal Weight Representations for Left-
to-Right Window Methods,” CT-RSA 2005 ,Lecture Notes in Computer Science
3376, pp. 366-383, Springer-Verlag, 2005.
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