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Abstract. Most multivariate schemes have potentially much higher per-
formance than other public key cryptosystems [15] [4] [1] [2]. Wolf and
Preneel [16] show multivariate quadratic public key schemes have many
equivalent keys and provide some transformations to identify the keys.
In this paper, we propose the idea of similar keys of MQ-based public
key cryptosystems(PKCs) and provide a method to reduce the size of
private key in MQ-based PKCs to 50% ∼ 70% of its original size. And
our method is generic for most MQ-based PKCs except for UOV-like and
STS-like schemes. Moreover, our method remains the equivalent security
and efficiency with original MQ-based PKCs.

Keywords: MQ, multivariate, public key cryptosystem, digital signa-
ture, similar key.

1 Introduction

Public key cryptography is involving the use of two separate keys, and the use of
two keys has profound consequences in the areas of non-repudiation, confiden-
tiality, and authentication. For example, on-line transactions need the digital
signature schemes to verify the validness, the e-mail security application like
PGP[18] needs the public key cryptosystem to protect the session key, and the
heart of the authentication service X.509[18] is public key certificate. Finding a
efficient, secure and easy to implement PKC is helpful to the network security
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application. Most MQ-based PKCs are faster than other PKCs in key genera-
tion/signing or decrypting/verifying or encrypting [15] [4] [1] [2]. Hence, they
may be applied in more occasions. However, the key size of MQ-based PKCs is
their drawback.

Number-theoretical PKCs have relatively small private key size, for example
RSA-1024 bits, ECC-163bits [7] [5]. MQ-based PKCs have a large size of private
key, such as C∗[8], HFE[11], QUARTZ[12], SFLASHv3[2], TRMS[15], TTS[1]
and UOV[6]. The reason is that most MQ-based PKCs need to store the affine
transformations, consisting of an invertible matrix and constant offset, and the
coefficients of polynomials in ϕ2. The coefficients of the affine transformations
are the major parts of the private key.

Changing the affine transformation is an intuitive way to reduce the size of
private key. Wang et al. [15] used the extension field instead of the ground field
and Hu et al. [4] used the elementary row operations to reduce the size of private
key, and both of them speeded up the signing or decrypting time. Though there
is still no attack to these specific affine transformations, they did not prove that
the specific affine transformation has the same security with arbitrary invertible
matrix.

Wolf and Preneel[16] showed some systematic schemes to analyze the equiv-
alent keys. And they provide the concept and the normal forms to reduce the
private key. In this paper we introduce the idea of similar keys of MQ-based
PKCs, and give a model for most MQ-based PKCs that can reduce the size of
the private key to 50% ∼ 70% of original size except for UOV-like and STS-like
[17] schemes, and we sketch that the new model has the same security as the
original model.

In Section 2, we describe the model of MQ-based public key scheme. In Sec-
tion 3, we define the similar key of MQ-based PKCs. In Section 4, we give our
model to reduce the keys and the performance. In Section 5, we discuss and
analyze our model. And our conclusion is in Section 6.

2 MQ-Based PKCs

For a typical MQ-based PKC, they operate on a base field K. And its public key is
composed of three maps, ϕ3◦ϕ2◦ϕ1, and its private key is the triple (ϕ−1

1 , ϕ2, ϕ
−1
3 ).

ϕ1 and ϕ3 are affine transformations in K
n and K

m respectively and ϕ−1
1 and

ϕ−1
3 are their inverse transformations. The ϕ2 is a quadratic transformation and

the structure of ϕ2 in each MQ-based PKC is different (HFE, SFLASHv3, C∗,
QUARTZ, TTS, TRMS, UOV). We illustrate the idea of similar keys with TRMS.
The following example is revised in the workshop of PKC2005 [13].

2.1 Structure of TRMS

There are a variety of schemes of TRMS which are all based on tractable rational
maps. Tractable rational maps on K

n are invertible affine transformations or,
after a rearrangement of indices if necessary, functions of the following form
ϕ : K

n → K
n,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = r1(x1)

y2 = r2(x2)
p2(x1)
q2(x1)

+
f2(x1)
g2(x1)

...

yk = rk(xk)
pk(x1, x2, . . . , xk−1)
qk(x1, x2, . . . , xk−1)

+
fk(x1, x2, . . . , xk−1)
gk(x1, x2, . . . , xk−1)

...

yn = rn(xn)
pn(x1, x2, . . . , xn−1)
qn(x1, x2, . . . , xn−1)

+
fn(x1, x2, . . . , xn−1)
gn(x1, x2, . . . , xn−1)

where for i = 2, 3, . . . , n, pi, qi, fi, gi are polynomials, and for i = 1, 2, . . . , n, ri

is a permutation polynomial on K. That is, ri is a polynomial function which is
also a bijection from K onto itself.

Let K = GF (28). We will construct 3 maps ϕ1 : K
28 → K

28, ϕ2 : K
28 → K

20,
ϕ3 : K

20 → K
20 where ϕ1, ϕ3 are invertible affine transformations, ϕ2 = π◦ ϕ̃2 ◦ i

with π a projection, i an imbedding, and ϕ̃2 identified as a tractable rational
map over some extension field over K.

Public Key. The public key is the result of the composition map ϕ3 ◦ϕ2 ◦ϕ1.

Private Key. The private key is the triple (ϕ−1
1 , ϕ2, ϕ

−1
3 ).

Signing. To sign a message M , first we compute its hash z = H(M) ∈
K

20 by a publicly agreed hash function. Then do y = ϕ−1
3 (z). Then choose

8 nonzero random numbers r1, r2, . . . , r8. Then get x by identifying it with
(ϕ̃2

−1 ◦ i)(r1, r2, . . . , r8,y) which is computed by a sequence of substitutions.
Then get the signature w = ϕ−1

1 (x).

Verifying. To verify a signature w, simply check if V (w) = (ϕ3 ◦ϕ2 ◦ϕ1)(w) =
(ϕ3 ◦ π ◦ ϕ̃2 ◦ i)(x) = (ϕ3 ◦ π)(r1, r2, . . . , r8,y) = ϕ3(y) = z = H(M).

2.2 Details of ϕ1 and ϕ3

Let ϕ1, ϕ3 be invertible affine maps on K
28 and K

20 respectively such that ϕ1 =
T1 ◦ L1 ◦ D1 ◦ U1 and ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3 where

1. T1 is a translation on K
28 and T3 is a translation on K

20. T3 is used to
cancel the constant terms in the public key. Therefore T3 is not chosen but
determined.

2. In general, L1 is a 28×28 lower triangular matrix over K and L3 is a 20×20
lower triangular matrix over K such that both with diagonal entries equal
to 1.

3. D1 is a 28× 28 diagonal matrix over K and D3 is a 20× 20 diagonal matrix
over K.

4. In general, U1 is a 28×28 upper triangular matrix over K and U3 is a 20×20
upper triangular matrix over K such that both with diagonal entries equal
to 1.

The scheme in [15] is a special form of ϕ1 and ϕ3.
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2.3 Details of ϕ2

Let L, L′, L′′ be the finite extension fields of K such that K ⊂ L
′′ ⊂ L

′ ⊂ L and
[L′′ : K] = 2, [L′ : L

′′] = 3, [L : L
′] = 3. Therefore we can identify an element

in K
2 as an element in L

′ = GF (216) ⊂ L
′ ⊂ L, an element in K

6 as an element
in L

′ = GF (248) ⊂ L, and an element in K
18 as an element in L = GF (2144).

Decompose (x1, x2, . . . , x28) ∈ K
28 into five groups: X1 = (x1, x2, . . . , x8),

X2 = (x9, x10, x11, x12, x13, x14), X3 = (x15, x16), X4 = (x17, x18, x19) and X5 =
(x20, x21, . . . , x28). Identify X1 with (0, . . . , 0, x1, x2, . . . , x8) ∈ L. Identify X2 ∈
K

6 as an element in L
′ ⊂ L. Identify X3 ∈ K

2 as an element in L
′′ ⊂ L

′ ⊂ L

and X4 ∈ K
3 with (0, x17, 0, x18, 0, x19) ∈ L

′′ ⊂ L. Identify X5 ∈ K
9 with

(0, x20, 0, x21, . . . , 0, x28) as an element in L. Hence we have a natural imbedding
i : K

28 ↪→ L
5 by i(x1, x2, . . . , x28) = (X1,X2,X3,X4,X5). Similarly, decompose

(y9, y10, . . . , y32) ∈ K
20 into four groups: Y2 = (y9, y10, y11, y12, y13, y14), Y3 =

(y15, y16), Y4 = (y17, y18, y19) and Y5 = (y20, y21, . . . , y28) and identify them as
elements in L. For any ri ∈ K, i = 1, 2, . . . , 8, identify R1 = (r1, r2, . . . , r8) ∈ K

8

with (0, . . . , 0, r1, r2, . . . , r8) ∈ L. Then we also have

i(r1, r2, . . . , r8, y9, y10, . . . , y28) = (R1, Y2, Y3, Y4, Y5) ∈ L
5.

Furthermore, since K
20 is a subspace of L

5 = K
90, we have the projection π :

L
5 → K

20 such that (π ◦ i)(r1, r2, . . . , r8, y9, y10, . . . , y28) = (y9, y10, . . . , y28)
Let ϕ̃2 : L

5 → L
5 be a tractable rational map of the following form.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 = X1

Y2 = X2 p2(X1) + f2(X1)
Y3 = r3(X3) + f3(X1,X2)
Y4 = X4 p4(X1,X2,X3) + f4(X1,X2,X3)
Y5 = X5 p5(X1,X2,X3,X4) + f5(X1,X2,X3,X4)

such that ϕ2 = π ◦ ϕ̃2 ◦ i, and we have the following in ϕ2:

1. R1 = X1 induces (r1, r2, . . . , r8) = (x1, x2, . . . , x8).
2. Y2 = X2 p2(X1) + f2(X1) induces

⎛

⎜
⎜
⎜
⎝

y9

y10

...
y14

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

x9

x10

...
x14

⎞

⎟
⎟
⎟
⎠

∗6

⎛

⎜
⎜
⎜
⎝

x1

x2

...
x6

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

c1x1x2

c2x2x3

...
c6x6x7

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

c7x3

c8x4

...
c12x8

⎞

⎟
⎟
⎟
⎠

where ci’s are constant parameters of user’s choice and u ∗n v denotes first
identifying u,v ∈ K

n in the extension field with degree n then carrying out
the multiplication there. For details see Appendix.

3. Y3 = r3(X3) + f3(X1,X2) induces

(
y15

y16

)

=
(

x15

x16

)2

+
(

c13x1x2 + c14x3x4 + · · · + c19x13x14

c20x14x1 + c21x2x3 + · · · + c26x12x13

)

+
(

c27x1

c28x2

)
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where
(

x15

x16

)2

=
(

x15

x16

)

∗2

(
x15

x16

)

and ci’s are constant parameters of user’s

choice.
4. Y4 = X4 p4(X1,X2,X3) + f4(X1,X2,X3) induces

⎛

⎝
y17

y18

y19

⎞

⎠ =

⎛

⎝
x17

x18

x19

⎞

⎠ ∗3

⎛

⎝
x8

x9 + x11 + x12

x13 + x15 + x16

⎞

⎠ +

⎛

⎝
c29x4x16

c30x5x10

c31x15x16

⎞

⎠ +

⎛

⎝
c32x9

c33x10

c34x11

⎞

⎠

where ci’s are constant parameters of user’s choice.
5. Y5 = X5 p5(X1,X2,X3,X4) + f5(X1,X2,X3,X4) induces

⎛

⎜
⎜
⎜
⎝

y20

y21

...
y28

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎝
x19

x18

x17

⎞

⎠

⎛

⎝
x16

x15

x14

⎞

⎠

⎛

⎝
x13

x12

x11

⎞

⎠

⎛

⎝
x10

x9

x8

⎞

⎠

⎛

⎝
x7

x6

x5

⎞

⎠

⎛

⎝
x4

x3

x2

⎞

⎠

⎛

⎝
x1

x19

x18

⎞

⎠

⎛

⎝
x17

x16

x15

⎞

⎠

⎛

⎝
x14

x13

x12

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∗3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎝
x20

x21

x22

⎞

⎠

⎛

⎝
x23

x24

x25

⎞

⎠

⎛

⎝
x26

x27

x28

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c35x18x19

c36x17x13

c37x16x14

c38x12x13

c39x15x14

c40x19x12

c41x18x10

c42x12x6

c43x13x5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

c44x1

c45x2

...
c52x9

⎞

⎟
⎟
⎟
⎠

where ci’s are constant parameters of user’s choice.
The reason why the formulas in the above assignments represents a permutation
polynomial r3 and polynomials p2, f2, f3, p4, f4, p5, f5 is as follows.
1. We identify X3 = (x15, x16) as an element in L

′′ = GF (216) which is of
characteristic 2. For any finite field of characteristic 2, X �→ X2 is an auto-
morphism. Hence let r3(X) = X2, then r3 is an automorphism on L

′′, hence

a permutation polynomial. And
(

x15

x16

)

�→
(

x15

x16

)2

surely represents r3.

2. For polynomials p2, f2, f3, p4, f4, p5, f5, simply notice that on a finite field,
any map is a polynomial map. See [14] for details. For example, we show the
case of p2 for illustration. Consider a map P on L as follows

P(X1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
0
0
x1

x2

x3

x4

x5

x6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

if X1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
x1

x2

x3

x4

x5

x6

x7

x8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

−→
0 otherwise.

Simply let p2 be the polynomial representation for P.
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2.4 The Key Size of TRMS

As shown above, ϕ1 = T1 ◦ L1 ◦ D1 ◦ U1, ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3, and there are
52 parameters c1, c2, . . . , c52 for the private key user to choose in ϕ2. Therefore
the size for private key is [28 + (0 + 1 + · · · + 27) + 28 + (27 + 26 + · · · + 0)] +
[20 + (0 + 1 + · · · + 19) + 20 + (19 + 18 + · · · + 0)] + 52 = 1284 Bytes.

Also, since the public key is 20 general quadratic polynomials in 28 variables

without constant terms, its size is 20 · (28 · 29
2

+ 28) = 8680 bytes. In general,
there are two ways to generate the public keys.

3 Similar Keys

First, we define the term ”Similar Keys” and discuss two transformations of
TRMS for similar keys.

Definition 1. Two public keys of MQ-based PKCs are similar if they are iden-
tical after a bijective linear transformation by the public key information in poly-
nomial time. Here the polynomial time should be less than the time to attack the
original MQ-based PKC.

We define some terms for discussing later. Let two public keys of TRMS be
VP = (ϕP3 ◦ ϕP2 ◦ ϕP1) = (p1, p2, · · · , pm) and VQ = (ϕQ3 ◦ ϕQ2 ◦ ϕQ1) =
(q1, q2, · · · , qm) ,where ϕP3 and ϕQ3 are invertible affine transformations over
K

m, ϕP1 and ϕQ1 are invertible affine transformations over K
n, ϕP2 and ϕQ2

are projections K
n → K

m, and p1, p2, · · · , pm, q1, q2, · · · , qm are quadratic poly-
nomials in n variables without constant terms.

3.1 Invertible Linear Transformation of ϕ3

If q1, q2, · · · , qm could be expressed as linear combinations of VP . And p1, p2, · · ·
, pm could be expressed as linear combinations of VQ. Then VP and VQ are
similar. More precisely, VP = L◦VQ and L is an invertible linear transformation.

Lemma 2. If ϕP1 = ϕQ1 and ϕP2 = ϕQ2. Then VP and VQ are similar keys.

Proof. VP = ϕP3 ◦ϕP2 ◦ϕP1 and VQ = ϕQ3 ◦ϕQ2 ◦ϕQ1. Since ϕP3 and ϕQ3 are
invertible transformations, there exists ϕ−1

P3, the inverse of ϕP3, and ϕ−1
Q3, the

inverse of ϕQ3. Hence ϕ−1
P3 ◦ ϕP3 = ϕ−1

Q3 ◦ ϕQ3 = Im.
ϕP3 = ϕP3 ◦ Im

= ϕP3 ◦ ϕ−1
P3 ◦ ϕP3

= ϕP3 ◦ ϕ−1
Q3 ◦ ϕQ3

VP = ϕP3 ◦ ϕP2 ◦ ϕP1

= ϕP3 ◦ ϕ−1
P3 ◦ ϕP3 ◦ ϕP2 ◦ ϕP1

= ϕP3 ◦ ϕ−1
Q3 ◦ ϕQ3 ◦ ϕQ2 ◦ ϕQ1

= ϕP3 ◦ ϕ−1
Q3 ◦ VQ
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Then we get the equations VP = L ◦VQ, where L = ϕP3 ◦ϕ−1
Q3 is an invertible

linear transformation.
Since pi is a linear combination of VQ, then we get the equation li,1q1+li,2q2+

· · · + li,mqm + pi = 0, for i ∈ (1, 2, · · · ,m) and li,j is the element of L in i-row
and j-column. It is easy to solve (li,1, li,2, · · · , li,m). We could get L by solving
n·(n+3)

2 equation in (m+1) variables in time complexity O(m2n2).

3.2 Substitution of ϕ1

Let R be a random permutation of X, X = (x1, x2, · · · , xn). If p1(X)=q1(R(X)),
p2(X) = q2(R(X)), · · · , pm(X) = qm(R(X)). Then VP and VQ are similar.

Lemma 3. If ϕP2 = ϕQ2, ϕP3 = ϕQ3 and ϕP1 = ϕQ1 ◦ A, where A is a
permutation matrix. Then VP and VQ are similar keys.

Proof. As our definition,

VP = ϕP3 ◦ ϕP2 ◦ ϕP1 = ϕQ3 ◦ ϕQ2 ◦ ϕQ1 ◦ A = VQ ◦ A.

If A could be computed by VP and VQ, then VP and VQ are similar. Let

Xi,v = (x1, x2, · · · , xn) ,where xj = v if j = i, and xj = 0 if j �= i.

For example X1,1 = (1, 0, 0, · · · , 0),X2,3 = (0, 3, 0, · · · , 0). Then we evaluate
VP (X1,1), VP (X2,1), · · · , VP (Xn,1) and VQ(X1,1), VQ(X2,1), · · · , VQ(Xn,1). Since
VP = VQ ◦A and A is a permutation matrix, we have VP (Xi,1) = VQ(A(Xi,1)) =
VQ(Xj,1), where j ∈ (1, 2, · · · , n).

If the values of VP (Xi,1) are all different, we could find the mapping of
A(Xi,1) = Xj,1 for all i ∈ (1, 2, · · · , n).

If VP (Xi,1) and VP (Xj,1) are equivalent, we evaluate VP (Xi,2), VP (Xj,2) and
VQ(Xi,2), VQ(Xj,2) to find the mapping of A(Xi,2) = Xk,2. If VP (Xi,2) and
VP (Xj,2) are still equivalent, we change Xi,2 to Xi,3 and continue to get the
permutation matrix A.

The probability of VP (Xi,v) = VP (Xj,v) is 1
|K|m−n = 1

256(28−20) = 2−64. The
probability of VP (Xi,1) = VP (Xj,1) and VP (Xi,2) = VP (Xj,2) is 2−128. It is so
small that we could ignore this happens. So A could be computed in the time
complexity O(m).

4 Our Scheme and Performance

We use Lemma 2 to transform the model of TRMS or other MQ-based PKCs.
If we fix ϕ2 and ϕ1, we will get the similar key no matter ϕ3 we choose. But we
still need ϕ3 to mask the equations of ϕ2 ◦ ϕ1.

4.1 Our Scheme

When we generate the key pair of TRMS as Section 2, we add a new affine
transformation ϕ4 such that V ′

P = ϕP4 ◦ϕP3 ◦ϕP2 ◦ϕP1 = (p′1, p
′
2, · · · , p′m) has a
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p′
i(X) = a11x

2
1 + a12x1x2 + · · · + a1ix1xi + · · · + a1nx1xn

+ a22x
2
2 + · · · + a2ix2xi + · · · + a2nx2xn

...
+ annpnpn

+ 0x1 + 0x2 + · · · + xi + · · · + 0xn

Fig. 1. One example of our new model

special form like Fig.1. If the coefficient of xi in p′i is zero, we generate ϕ1 again.
There are many choices of the above form of p′i. We just give one example to
illustrate.

From Lemma 2, any choice of ϕ3 has the unique ϕ4 to form the specific
polynomial set. And ϕ4 ◦ ϕ3 is also an affine transformation. The new model is
still one of TRMS (or the original MQ-based PKC). Actually we do not have to
generate and save ϕ3 and ϕ4, as ϕ4 ◦ϕ3 is unique. We generate ϕ2 ◦ϕ1 first, and
then use the Gaussian elimination to find the polynomials in Fig.1.

Public Key. The public key is the polynomials of V ′
P , and some terms in public

key are always zero so that we do not need to store these values and to compute
when encrypting or verifying.

Private Key. The private key for the new model of TRMS is only ϕ2 and ϕ−1
1 .

Signing and Verifying. When signing and verifying, we do the same steps of
[15], except that when signing, we first read the private key and find ϕ4◦ϕ3. This
overhead is the key expansion. This overhead is first introduced in MQ-based
PKCs, but it is quite general in symmetric key cryptosystems, like AES, DES.
The signing time of the new model equals the original model, and for some zero
monomials, the verifying time should be a little faster than the original model.

4.2 Performance

Key Size. The key size of private key in our model is only 50% ∼ 70% of the
one in the original model. We apply our model to other MQ-based PKCs. The
result is in Table 1.

Table 1. Private key reduction ratio of MQ-based PKCs

Scheme Name Original model (Bytes) Our model (Bytes) Reduction ratio

TRMS(20,28)1 396 276 69.7%

TRMS(20,28)2 1284 864 67.3%

TTS(20,28) 1399 979 70.0%

SFLASHv2 2450 1225 50.0%

SQARTZ 3914 2575 65.8%

1 computed with the detail in [15]
2 computed with the detail in Section 2
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Execution Time. We wrote code to test the execution time of our model and
the original model of TRMS in [15]. The result is in Table 2. The environment
is that CPU: P4 2.4GHz, RAM: 1024MB, OS: Linux + gcc 3.3, and parameters:
gcc -O3 -march=pentium4 -fomit-frame-pointer.

Table 2. Execution time of our model and the original model of TRMS

Operation Original model Our model

Generating Key (ms) 1.3 0.9

Setting Key (ms) x 0.1

Signing (ns) 7 7

Verifying (ns) 20 20

5 Discussion

5.1 Remark on Security

As we mentioned in Section 4, the public key of our new scheme is ϕP4◦ϕP3◦ϕP2◦
ϕP1 and ϕP3 ◦ ϕP2 ◦ ϕP1 is the original model. ϕ4 is the unique transformation
that is computable by the information of ϕP3 ◦ϕP2 ◦ϕP1. Here we motivate that
the security of the new model and the original model are equivalent.

We assume that there is a method A that can make a fake signature of our
new model of TRMS (or other MQ-based signature). Hence we can get a fake
signature of the original model.

Since ϕ4 can be computed from ϕP3 ◦ϕP2 ◦ϕP1 in time complexity O(m2n2)
and A could make a fake signature with ϕP4 ◦ϕP3 ◦ϕP2 ◦ϕP1, for any H ∈ K

m.
Then we get a signature S, that satisfies H = ϕP4 ◦ ϕP3 ◦ ϕP2 ◦ ϕP1(S).

If we want to make a fake signature with ϕP3 ◦ ϕP2 ◦ ϕP1, we get the hash
value Horiginal first. Then we evaluate the ϕ4(Horiginal). Then we apply A to
compute Soriginal such that ϕ4(Horiginal) = ϕP4◦ϕP3◦ϕP2◦ϕP1(Soriginal). And
ϕP4 is an invertible affine transformation. Then we get Soriginal is the signature
of Horiginal.

Horiginal = ϕ−1
P4 ◦ ϕP4(Horiginal)

= ϕ−1
P4 ◦ ϕP4 ◦ ϕP3 ◦ ϕP2 ◦ ϕP1(Soriginal)

= ϕP3 ◦ ϕP2 ◦ ϕP1(Soriginal).
The other direction is easy to understand as the new model of TRMS is one

of the original model. If a method A′ can attack the original model, hence A′

can attack the new model.

5.2 Key Generation

The key generation time is faster than the original model is reasonable. The
difference between these models is ϕ3. The original model needs to generate ϕ3

and the inverse of ϕ3. ϕ3 needs a lot of random numbers and the inverse of ϕ3

needs the Gaussian elimination. Though our model needs ϕ3 and ϕ4, ϕ4 ◦ ϕ3
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is from the Gaussian elimination of ϕ2 ◦ ϕ1. The Gaussian elimination takes
additive and multiplicative operations in the finite field. These operations take
less time than the random number generations.

5.3 Polynomial Forms

In our experiment, the probability to generate key successfully is 1000
1094∼1108 ≈ 0.9.

Some reviewer surprised at this result. As ϕ1, ϕ3, ϕ4 are all invertible, it must
be possible to map the linear terms to the identity matrix. The reason is ϕ2

is quadratic. Then the linear terms in public key are not only from the linear
terms in ϕ2 and ϕ1 but also the quadratic terms in ϕ2 and the linear terms and
constant terms in ϕ1.

Some reviewer suggests to restrict both ϕ1 and ϕ3 to linear transformations
and then we always generate key successfully. This is an interesting idea for HFE-
like or UOV-like schemes. However, it is not applicable to the current version of
TRMS as there are only 11 linear terms in ϕ2.

⎡

⎢
⎢
⎢
⎣

p1(X)
p2(X)

...
pm(X)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

a111 · · · a11n a122 · · · a12n · · · a1nn b11 · · · b1n

a211 · · · a21n a222 · · · a22n · · · a2nn b21 · · · b2n

...
...

...
...

...
...

...
...

...
...

...
am11 · · · am1n am22 · · · am2n · · · amnn bm1 · · · bmn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2
1

...
x1xn

x2
2

...
x2xn

...
pnpn

x1

...
xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 2. The matrix form of the public key

The polynomial form in Fig.1 is an example. In order to always generate key
successfully, we can change the polynomial form. If (p1, p2, · · · , pm) is the public
key. The public key can be represented in the matrix form like Fig.2. We perform
elementary row operations to find the rank of the coefficient matrix and make
the first non-zero term in each row to 1. The final coefficient matrix is the new
public key. As the polynomial form in Fig.1, the new public key is unique if the
original public key is similar. When saving the public key, we first save the index
of the first non-zero term in each row and then save the subsequent terms.

6 Conclusion

Wolf and Preneel [16] showed multivariate quadratic public key schemes have
many equivalent keys. In this paper, we introduce the idea of similar keys of
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MQ-based PKCs and utilize the idea for the new model of some MQ-based
PKCs. And this new model could reduce the size of private key to 50% ∼ 70%.
Moreover, our model remains the equivalent security and has a little advantage
of public key in size and verifying time.

We introduce two transformations to find the similar key in affine transfor-
mation, and we only apply Lemma 2 to reduce the size of the private key. The
methods to compute the number of the similar keys of the MQ-based PKCs are
not only these two transformations we provide. We will survey the others in the
future. And there may be other methods to reduce the key size with Lemma 3
or new transformations.

In this paper, we concentrate on the two affine transformations for similar
keys. There is another way to find the similar keys of a particular MQ-based
PKC, like HFE, TTS. That is to utilize the kernel information, ϕ2, to find the
similar keys and reduce the private key space.

Finally, our new model is general since most MQ-based PKCs are composed
of (ϕ1,ϕ2,ϕ3). There are two kinds of exceptions, STS schemes and UOV-like
schemes. STS schemes have a little reduction than others as there are many
coefficients in ϕ2. UOV-like schemes are composed of (ϕ1,ϕ2). But all still could
enjoy the advantage of the size of public key and encrypting time/verifying time.
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