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Abstract. Providing authentication protocols for real time streams is a
challenging task. This is because the authentication rate is very impor-
tant for real time streams, whereas it is usually a bottleneck. Using im-
proved online/offline signatures and hash chain techniques as tools, our
proposed protocol greatly reduces the online computational and com-
municational cost and thus is more applicable to authenticate real time
streams.
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1 Introduction

A digital stream is a (potentially infinite) sequence of bits that a sender transmits
to a receiver. With the growth of the Internet and the popularization of electronic
commerce, there are more and more applications that need data transmissions
such as live video/radio broadcastings and real time stock quote systems. In the
data transmission, people are usually concerned with the following issues:

1) Privacy: the sender keeps information secret from those who are unauthorized
to see it.

2) Integrity: the receiver can ensure that information has not been altered by
any unauthorized parties.

3) Authenticity: the receiver can corroborate that the received information is
sent by a certain party.

4) Non-repudiation: the receiver can prove to a third party that the information
is sent by a certain party.

Over the years, researchers have proposed various techniques to achieve these
objects. For example, public encryption schemes[21, 3, 13] were proposed to en-
sure the privacy of data and signature schemes[2, 21, 20] were proposed to ensure
the authenticity.
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1.1 Authentication for Real Time Streams

In this paper, our goal is to provide authenticity as well as integrity and non-
repudiation for real time streams. A real time stream is quite different from a
non-real time stream since the sender cannot be expected to obtain the entire
stream before or on sending the stream. Thus, the sender can only buffer few
packets while transmitting these streams. In addition, the authentication rate
must be higher than the stream generation rate while this is not required for
non-real time streams.

1.2 Related Work

A trivial authentication method is to sign each packet[7]. The sender first splits
the stream into packets and signs each packet one by one. The receiver then
verifies these signatures after he/she receives the packets and their correspond-
ing signatures. However, this method has its disadvantage since every packet
requires a sign/verify computation and thus the computational cost is quite
heavy. In addition, adding a signature to each packet will greatly increase the
communication overhead.

In 1997, Gennaro and Rohatgi [7] proposed two paradigms for stream au-
thentications. In the paradigm for streams that can be known in advance by the
sender, they use hash chain techniques and signature techniques to authenticate
streams. In this paradigm, although a signature is amortized over several packets,
the computational cost is still high since a signature operation is very inefficient.
In the paradigm for streams that can not be known in advance, they employ one
time signatures introduced in [12, 14]. This paradigm results in a large commu-
nication overhead since the signature size and the key size of one-time signatures
are very large.

In 1998, Wong and Lam [23] proposed a tree chaining technique to authen-
ticate streams. Their construction is robust to any number of losses in streams.
However, the communication overhead per packet is quite large (even larger than
the size of a digital signature) and thus is not practical.

Miner and Staddon [15] proposed a graph-based authentication protocol in
2001. In their transmission model, each packet is assumed to be lost indepen-
dently with the same probability and the protocol is designed based on this
probability.

There are other authentication protocols for streams such as Perrig et al.’s
EMSS and TESLA scheme[18], Wu et al.’s object-based scheme[24] and Pan-
netract and Molva’s EC scheme[17]. Some of them, e.g., the TESLA scheme in
[18] and the objected based scheme in [24], do not offer non-repudiation.

1.3 Contribution

In previous works, using ordinary signature schemes such as RSA[21], DSA[16],
FFS[6, 5] or eFFS[23] will result in heavy computational cost[7, 15, 24, 17]
or a large communication overhead[23]. However, the so-called online/offline
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signatures[4, 22] can avoid this shortcoming by dividing the authentication pro-
cedure into two phases. The first phase is offline phase: this phase’s work can
be carried out any time before the stream to be transmitted is generated. The
second phase is online phase: this phase starts once the stream begins to be
generated. Dividing authentication into two phases can avoid the computational
and communicational bottlenecks that usually occur at the time of transmitting
streams.

In this paper, using our improved online/offline signature schemes and the
hash chain techniques[7, 19, 10] as building blocks, we construct an efficient au-
thentication protocol for real time streams. Compared to previous protocols, our
new construction has the following advantages:

1. By using our improved online/offline technique, we have greatly reduced the
computational and communicational cost of authenticating streams.

2. By using the hash chain techniques, we amortize a single signing/verification
operation over many packets.

3. Our protocol can tolerate 1 bursty loss of packet in a block. In addition, the
ability of tolerating packet loss can be strengthened by using more complex
hash chain constructions[18, 10].

1.4 Organization

The rest of this paper is organized as follows. In section 2, we give preliminaries.
Section 3 reviews online/offline signatures and proposes a new scheme to im-
prove the performance. Using the improved online/offline signature as a crucial
building block, section 4 proposes an efficient authentication protocol for real
time streams. Section 5 concludes this paper.

2 Preliminaries

2.1 Notations

The most of the following notations are borrowed from [8]. We denote by N the
set of natural numbers. If k ∈ N, we denote by 1k the concatenation of k ones
and by {0, 1}k the set of bitstrings of bitlength k. By {0, 1}∗, we denote the set
of bitstrings of arbitrary bitlength.

If S is a finite set, then the notation x
R← S denotes that x is selected randomly

from the set S. If A is a algorithm, by A(·) we denote that A receives only one
input. If A receives two inputs we write A(·, ·) and so on. If A(·) is a probabilistic
algorithm, y ← AO1,O2,...(x1, x2, . . .) means that on input x1, x2, . . . and with ac-
cess to oracles O1, O2, . . ., A’s output is y. If p(·, ·, . . .) is a predicate, the notation
Pr[p(x, y, . . .) : x

R← S; y R← T ; . . .] denotes the probability that p(x, y, . . .) will
be true after the ordered execution of the algorithms x

R← S, y
R← T, . . .. ”PPT”

is an abbreviation for ”probabilistic polynomial-time” and ”‖” represents the
concatenation operation.
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3 Online/Offline Signatures and Our Improvement

The main building blocks of our authentication protocol are our improved on-
line/offline signature scheme (which was first introduced in[4]) and the hash
chain techniques. In this section, we first review the definition and the state of
art of online/offline signatures. Then, In order to improve the performance, we
propose an improved online/offline signature scheme as well as a security proof.

An online/offline signature scheme is a signature scheme used in a particular
scenario where the signer must response quickly once the message to be signed
is presented. This notion was first introduced by Even, Goldreich and Micali in
1990[4]. The idea of online/offline signatures is to split the signing procedure
into two phases. The first phase is offline: in this phase, the signer does some
preparatory work before the message to be signed is presented. The second phase
is online: once the message to be signed is known, the signer utilizes the result
of the pre-computation and use a very short time to accomplish the signing
procedure.

Even et al. utilized one-time signature schemes to construct online/offline
signatures. Their method can convert any signature schemes into online/offline
signature schemes. Due to the use of one-time signatures, the resulting length of
signatures is very long. Therefore, the method is not practical.

In 2001, Shamir and Tauman[22] proposed a new online/offline signature
scheme which is based on trapdoor hash functions[11]. A trapdoor hash function
is a special type of hash function which is associated with a public (hashing)
key pk and a secret key. It has two inputs and is written as Hpk(·; ·). Given
pk and an input pair (m, r), everyone can compute the value of Hpk(m; r). But
only the person who holds the secret key can find collisions of the hash func-
tion. Shamir and Tauman’s improved scheme highly enhanced the efficiency of
signing, especially the efficiency in the online phase.

We call the schemes proposed by Even et al.[4] OT -OS scheme (online/offline
signatures based on one-time signatures) and the schemes proposed by Shamir
et al.[22] HSS-OS scheme (online/offline signatures using the hash-sign-switch
paradigm). Both OT -OS and HSS-OS utilize a standard signature and another
type of complex computation (OT -OS should compute one-time signatures and
HSS-OS should evaluate trapdoor hash functions). This increases the com-
plexity of online/offline signatures. Although HSS-OS’s efficiency in the online
phase is very high, the computational cost of the offline phase and verification
procedure is heavy. Furthermore, HSS-OS requires the signer hold two private
keys: one is for standard signatures, the other is for trapdoor hash functions.
Exposure of any of the keys could lead to a total break of the scheme.

In the following, we give a formal syntax of online/offline signatures.

3.1 The Syntax of Online/Offline Signatures

An online/offline signature scheme (OS) is a triple of algorithms (G, Sign, Ver).

– (pk, sk) ← G(1k) is a PPT algorithm which on input a security parameter
k ∈ N, outputs a public/private key pair (pk, sk).
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– σ ← Sign(sk, M) is a PPT algorithm which on input a private key sk and
a message M , outputs a signature σ. The signing algorithm consists of two
sub-algorithms:
– St ← Sign off(sk) is a PPT algorithm which on input the private key sk,

outputs a state information St.
– σ ← Sign on(St, M) is a PPT algorithm which on input a state St and a

message M , outputs a signature σ.
The signing algorithm Sign first runs Sign off(sk) to get St, then transfers St
and the message M to Sign on(·, ·), finally it returns the signature σ which is
the output of Sign on(St, M) .

– 0/1 ← Ver(pk, M, σ) is a PPT algorithm which on input the public key pk, a
message M and a signature σ, outputs 0 or 1 for reject or accept respectively.

Completeness: It is required that if Sign(sk, M) = σ then Ver(pk, M, σ) = 1
for all (pk, sk) generated by G(1k).

3.2 Security Notion

On defining the security notion of an online/offline signature scheme, we view
an OS scheme as a standard signature scheme and use the security notion called
existential unforgeability under chosen message attacks [9] in the random oracle
model [1].

Existential Unforgeability: Existential unforgeability for OS under chosen
message attacks in the random oracle model is defined in the following game. This
game is carried out between a simulator S and an adversary A. The adversary
A is allowed to make queries to a sign-oracle Sign(sk, ·) and a hash oracle h(·).
The attacking game is as follows:

1. The simulator runs G on input 1k to get (pk, sk). pk is sent to A.
2. On input (1k, pk), A is allowed to query the sign-oracle Sign(sk, ·) and the

hash oracle h(·) polynomial times.
3. A outputs a pair (M, σ).

The adversary wins the game if the message M has never been queried to the
oracle Sign(sk, ·) and Ver(pk, M, σ) = 1 holds. Let AdvA,OS be the advantage of
the adversary A in breaking the signature scheme, i.e.

AdvA,OS =Pr[Ver(pk, M, σ) = 1 : (pk, sk) ← G(1k); (M, σ) ← Ah(·),Signh(·)
(sk,·)]

where A has never requested M to the signing oracle and the probability is taken
over the internal coin tosses of the algorithm G and A.

Definition 1. An adversary A (t, qs, qh, ε)-breaks an online/offline signature
scheme OS if A runs in time at most t, makes at most qs queries to the signing
oracle and at most qh queries to the hash oracle, and AdvA,OS is at least ε.

A signature scheme OS is existentially unforgeable under chosen message
attacks if for every PPT adversary A, AdvA,OS is negligible.
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3.3 Our New Construction of Online/Offline Signatures

To improve Shamir and Tauman’s online/offline signature scheme HSS-OS, we
propose a new construction and prove its security. Compared to the scheme HSS-
OS, there is an almost 50% reduction in signature size and overall computational
cost.

The new online/offline signature scheme T H-OS is based on a trapdoor hash
family T H = (G, H, F) (A formal definition of a trapdoor hash family including
a security definition is given in Appendix A). A standard collision free hash
function h : {0, 1}∗ → {0, 1}α(k) (where α() is a polynomial function of the
security parameter k) is also needed, which will be treated as a random oracle
in the proof of security.

The scheme T H-OS = (G′, Sign, Ver) is constructed as follows:

– G′(1k). The key generation algorithm is set to be G, i.e., G′ = G. It takes as
input a security parameter k, outputs a key pair (pk, sk). Let Mpk, Rpk and
Qpk be T H’s message space, tag space and range set resp. It is required that
{0, 1}α(k) ⊂ Mpk holds.

– Sign off(sk). Given a secret key sk , proceeds as follows:
1. Select at random (m, r) ∈R Mpk × Rpk, and compute θ = Hpk(m; r).
2. Let St = (sk, θ, m, r).

Remark 1. Assigning (sk, θ, m, r) instead of (sk, m, r) to St is to avoid recom-
puting the value θ = Hpk(m; r) in the online phase.

– Sign on(St, M). Given St = (sk, θ, m, r) and a message M ∈ {0, 1}∗, com-
putes the signature as follows:
1. Compute m′ = h(M‖θ).
2. Run the collision-finding algorithm F of T H with the input (1k, sk, m, r, m′)

to obtain r′ such that Hpk(m′; r′) = Hpk(m; r).
3. Output the signature as σ = (θ, r′).

– Ver(pk, M, σ). Given a public key pk, a message M , and a signature σ = (θ, r′),
checks that Hpk(h(M‖θ); r′) ?= θ. Output 1 if this check succeeds and output
0 otherwise.

Completeness: it is straightforward.

3.4 Security and Efficiency

Theorem 1. Let T H be a uniform trapdoor hash family with a super-logarithmic
min-entropy β(·). Let T H-OS be the associated online/offline signature scheme
as constructed in Section 3.3. Then T H-OS is existentially unforgeable under
chosen message attacks in the random oracle model if T H is collision resistant.

The proof of the above is based on relatively standard ideas, but is complicated
by details of the simulations and models. Due to the page limitation, we present
it in the full paper.
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Efficiency. In the new scheme T H-OS, the offline phase involves only one eval-
uation of an trapdoor hash function. The online phase involves one operation
of finding a collision and one evaluation of a standard hash function. Using the
trapdoor hash family proposed by [22], the operation of finding a collision re-
quires about 0.1 modular multiplication of two 1024 bit numbers. Our scheme’s
verification algorithm involves one evaluation of an trapdoor hash function and
one evaluation of a standard hash function. We compare the efficiency of the
Hash-Sign-Switch paradigm (HSS-OS) [22] and our new scheme in Table 1.

Table 1. The cost of two online/offline signature schemes. Abbreviations used are:
”eva-TH” for an evaluation of a trapdoor hash function; ”eva-SH” for an evaluation
of a standard hash function; ”sign-SS” and ”ver-SS” for the signing and verification
algorithm of a standard signature scheme respectively. Note that the evaluation of a
standard hash function is very efficient, therefore we use an asterisk to remark it.

Schemes Sign off Sign on Ver Signature size
HSS-OS

(The Hash-Sign-
Switch

Paradigm)

1 eva-TH
1 sign-SS

1 finding collision 1 eva-TH
1 ver-SS

1 standard sig;
1 point in

Q × R

The New Scheme
T H-OS

1 eva-TH 1 eva-SH *
1 finding collision

1 eva-SH *
1 eva-TH

1 point in
Q × R

We can see that operations of the standard signature are eliminated in the
new scheme, at the cost of additional single hash evaluation in the online phase.
Thus, the new scheme need only one private key instead of two private keys in
the HSS-OS scheme and there is an almost 50% reduction in the signature size
and the overall computational cost.

4 Authenticating Real Time Streams

4.1 The New Protocol

Using improved online/offline signatures and the hash chain techniques as build-
ing blocks, we can construct an efficient protocol to authenticate real time
streams. The basic idea is to split the authentication procedure into two phases
just like in online/offline signature schemes. In the first phase(offline phase) , the
sender does some preparatory work before the streams to be send are known. In
the second phase(online phase), on obtaining the streams, the sender attaches
authentication information on streams and send these data to the receiver. The
following is the details of this protocol.

Suppose the sender is capable of buffering n packets. Suppose T H = (G, H, F)
is a trapdoor hash family and h : {0, 1}∗ → {0, 1}α(k) is a standard collision free
hash function. Let pk be the sender’s public key and sk be the corresponding
private key. Consider n packets that constitute a block.
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Offline phase:

1. The sender randomly selects s pairs:

(m̃1, r̃1); (m̃2, r̃2); . . . ; (m̃s, r̃s) ( (m̃j , r̃j) ∈ M × R , 1 ≤ j ≤ s)

and computes θj = Hpk(m̃j ; r̃j) (1 ≤ j ≤ s).
2. The sender stores m̃j , r̃j , θj (j = 1, 2, . . .) and sends θj (j = 1, 2, . . .) to

the receiver.

Remark 2. The number s depends on the number of blocks that the sender want
to send.

Remark 3. The offline phase can be carried out any time before the streams to
be send are known. Thus, we can greatly reduce the computational cost and
communication overhead while sending the streams. This is the most important
contribution of our scheme.

Online phase:

Suppose the j-th block’s packets are m1, m2, . . . , mn. For the j-th block, the
sender

1. Computes
Dn = h(mn‖00 . . .0)

Dn−1 = h(mn−1‖Dn‖00 . . .0)

Di = h(mi‖Di+1‖Di+2) (1 ≤ i ≤ n − 2)

2. uses the private key sk and (m̃j , r̃j) to compute rj(see section 3.3 for details)
such that

Hpk(h(D1‖θj); rj) = Hpk(m̃j ; r̃j).

3. sends < (rj , D1); (m1, D2, D3); (m2, D3, D4); . . . ; (mn−2, Dn−1, Dn); (mn−1,
Dn); mn > to the receiver where (rj , D1) is the header and (mi, Di+1, Di+2)
is the i-th packet.

Remark 4. If we use the trapdoor hash family in Appendix A, then the second
step of this phase (computing rj) has a complexity of approximate 0.1 modular
multiplication. This is very efficient compared to a standard signature evaluation.

Remark 5. The reader can see that every Di is repeated twice. Doing it in this
fashion is to avoid packet loss. We will explain this issue later.

Verification of streams:

On receiving the j-th block < (rj , D1); (m1, D2, D3); (m2, D3, D4); . . . ; (mn−2,
Dn−1, Dn); (mn−1, Dn); mn >, the receiver carries out the following steps.

– On receiving (rj , D1), check that

Hpk(h(D1‖θj); rj)
?= θj
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– On receiving the i-th packet (mi, Di+1, Di+2) (1 ≤ i ≤ n − 2), check that

h(mi‖Di+1‖Di+2)
?= Di

– On receiving (mn−1, Dn) , check that

h(mn−1‖Dn‖00 . . .0) ?= Dn−1

– On receiving mn , check that

h(mn‖00 . . .0) ?= Dn

4.2 Performance Analysis

We analyze the performance of our protocol from four aspects:

– buffering of sender. The maximum number of packets that need to be
stored by the sender in order to compute the authentication information is n.
Depending on the buffering capability of the sender and the situation of the
networks, n’s value can be flexible.

– Computational cost. This is one of the most important measurements of the
performance. We place our emphasis on the online phase since the bottleneck
of authenticating real time streams always occurs in transmitting the streams
(the computation of offline phase can be carried out any time before the stream
transportation). For a block (n packets), the sender needs to do n evaluations
of a standard hash function plus 0.1 modular multiplication of two 1024 bit
numbers (this is the computational cost of finding collisions of a trapdoor hash
function) if we use the trapdoor hash family in Appendix A. For the receiver,
n evaluations of a standard hash function and one evaluation of a trapdoor
hash function are needed.

Table 2. the performance of several authentication protocols. Abbreviations used are:
”eva-TH” for an evaluation of a trapdoor hash function; ”eva-SH” for an evaluation
of a standard hash function; ”sign-SS” and ”ver-SS” for the signing and verification
algorithm of a standard signature scheme respectively. Note that the evaluation of a
standard hash function is very efficient, therefore we use an asterisk to remark it. We
also note that 1 sign-SS � 0.1 modular multiplication.

Protocols Online
computational cost

of the sender

Online
communicational cost

Computational cost of
the receiver

Wong98[23]
Star chaining

1 sign-SS
n + 1 eva-SH *

n standard sig;
n(n − 1) hash lengths

1 ver-SS
n + 1 eva-SH *

Wong98[23]
Tree chaining

1 sign-SS
2n − 1 eva-SH *

n standard sig;
nlog2n hash lengths

1 ver-SS
2n − 1 eva-SH *

Pannetract03[17]
EC scheme

1 sign-SS
n eva-SH *

2 coding operations

≈ 2n hash lengths
(while p = 1/4)

1 ver-SS
n eva-SH *

Our protocol 0.1 multiplication
n eva-SH *

≈ 2n − 1 hash lengths 1 ver-SS
n eva-SH *



How to Authenticate Real Time Streams 143

– Communication overhead. For the same reason of analyzing the computa-
tional cost, we place our emphasis on the online phase. For a block (n packets),
the communication overhead (i.e., the additional authentication information
embedded in the stream) is 2n − 1 hash lengths.

– Tolerance of bursty loss. Our protocol can tolerate 1 bursty loss of packet,
i.e., the rest of packets can also be authenticated even if one packet is lost.
In addition, the ability of tolerating packet loss can be strengthened by using
more complex hash chain constructions[18, 10].

We compare the performance of several authentication protocols in Table 2
where our protocol uses the trapdoor hash family of Appendix A.

5 Conclusion

In this paper, we consider the authentication of digital streams over an insecure
network. Using our improved online/offline signature schemes and the hash chain
techniques as building blocks, we construct an efficient authentication protocol
for digital streams. Compared to previous protocols, our protocol greatly reduces
the online computational and communicational cost and thus is more applicable
to authenticate real time streams.
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1. Efficiency: Given a public hash key pk and a pair (m, r) ∈ Mpk × Rpk,

Hpk(m; r) is computable in polynomial time.
2. Collision resistance: Without private key, any PPT algorithm can not find

(m, r)and (m′, r′) such that m′ �= m and Hpk(m′; r′) = Hpk(m; r). A
formal description is given in Definition 4.

– F : collision-finding algorithm, a PPT algorithm satisfies:

Pr[Hpk(m′; r′) = Hpk(m; r) : (pk, sk) R← G(1k); (m, r) R← Mpk × Rpk;

m′(�= m) R← Mpk; r′ R← F(1k, sk, m, r, m′)] = 1.

Every member in a trapdoor hash family is called a trapdoor hash function.

Definition 3 (Uniform). A trapdoor hash family (G, H, F) is uniform if and
only if whenever the input (m, r) is uniformly distributed in Mpk × Rpk, the
output of the collision-finding algorithm F is uniformly distributed in Rpk.

Definition 4 (Collision resistance). Let T H = (G, H, F) be a trapdoor hash
family. The advantage of an adversary I in breaking T H’s collision resis-
tance is:

AdvI,T H = Pr[m′ �= m and Hpk(m′; r′) = Hpk(m; r) : (pk, sk) R← G(1k);

(m, r, m′, r′) R← I(1k, pk)]

where the probability is taken over the internal coin tosses of the algorithm G
and I.

An adversary I (t, ε)-breaks T H’s collision resistance if with running time of
at most t, I’s advantage AdvI,T H is at least ε.

A trapdoor hash family T H is collision resistent if for every PPT adversary
I, AdvI,T H is negligible.

An instantiation of trapdoor hash families[22]:

– Setup: Select at random two safe primes p, q ∈ {0, 1}L/2 (i.e., primes such
that p′

def= p−1
2 and q′

def= q−1
2 are primes) and compute N = pq. Choose at

random an element g ∈ Z
∗
N of order λ(N) (λ(N) def= lcm(p− 1, q − 1) = 2p′q′).

The public key is (N, g) and the private trapdoor key is (p, q).
– The Hash Family: For pk = (N, g), Hpk : ZN × Zλ(N) −→ Z

∗
N is defined to

be Hpk(m; r) def= gm‖r (mod N) (m‖r denotes the concatenation of m and r).
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– Finding trapdoor collisions: Given pk = (N, g), sk = (p, q), a pair
(m1, r1) ∈ ZN × Zλ(N) and an additional message m2 ∈ ZN . We can find
r2 such that gm1‖r1 = gm2‖r2 (mod N) as follows:

r2 = 2k(m1 − m2) + r1 (mod λ(N)).

Note that the computational cost of above operation is about one tenth of a
single modular multiplication of two 1024 bit numbers.

We refer the reader to[4, 22] for the details of constructions of secure and
efficient uniform trapdoor hash families.
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