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Abstract. In this paper, we first propose an efficient provably secure
identity-based signature (IBS) scheme based on bilinear pairings, then
propose an efficient identity-based blind signature (IBBS) scheme based
on our IBS scheme. Assuming the intractability of the Computational
Diffie-Hellman Problem, our IBS scheme is unforgeable under adaptive
chosen-message and ID attack. Efficiency analyses show that our schemes
can offer advantages in runtime over the schemes available. Furthermore,
we show that, contrary to the authors claimed, Zhang and Kim’s scheme
in ACISP 2003 is one-more forgeable, if the ROS-problem is solvable.

Keywords: Identity-based, Signature, Blind signature, Bilinear pair-
ings, Gap Diffie-Hellman group.

1 Introduction

The key generation procedure in the usual sense of public-key cryptography
renders all public keys random. Consequently, it is necessary to associate a public
key with the identity information of its owner. Such an association can be realized
by a public-key authentication framework: a tree-like hierarchical public-key
certification infrastructure (e.g., X.509 certification framework). In a certificate-
based public key system, before using the public key of a user, the participants
must verify the certificate of the user at first. As a consequence, this system
requires a large storage and computing time to store and verify each user’s
public key and the corresponding certificate. In 1984 Shamir [16] introduced the
concept of identity-based (simply ID-based) public key cryptosystem to simplify
key management procedures in certificate-based public key setting. Since then,
many ID-based encryption and signature schemes have been proposed.
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ID-based cryptosystems have a property that a user’s public key can be easily
calculated from his identity by a publicly available function, while his private
key can be calculated for him by a trusted authority, called Key Generation
Center (KGC). They enable any pair of users to communicate securely without
exchanging public key certificates, without keeping a public key directory, and
without using online service of a third party, as long as a trusted key generation
center issues a private key to each user when he first joins the network, so
they can be a good alternative for certificate-based public key infrastructure,
especially when efficient key management and moderate security are required.

Early, the bilinear pairings, namely Weil pairing and Tate pairing of algebraic
curves, were used in cryptography for the Menezes-Okamoto-Vanstone (MOV)
attack [11] (using Weil pairing) and Frey-Rück (FR) attack [7] (using Tate pair-
ing) to reduce the discrete logarithm problem on some elliptic curves or hyper-
elliptic curves to the discrete logarithm problem in a finite field. Recently, the
bilinear pairings have been found positive applications in cryptography to con-
struct new ID-based cryptographic primitives. In 2000, Joux [10] used the Weil
pairing to construct a tripartite one round Diffie-Hellman key agreement proto-
col. After Joux’s breakthrough, many ID-based cryptographic schemes have been
proposed using the bilinear pairings [5]. In Crypto 2001, Boneh and Franklin [2]
presented an ID-based encryption scheme based on bilinear pairings which to
be the first fully functioning, efficient and provably secure ID-based encryption
scheme. In Asiacrypt 2001, Boneh, Lynn and Shacham [3] proposed a basic sig-
nature scheme using pairings which has the shortest length among signature
schemes in classical cryptography.

There are five ID-based signature (IBS) schemes based on bilinear pairings
have been proposed. Sakai, Ohgishi and Kashara proposed a first IBS Scheme
using Weil pairing in 2000.Then, in 2002, Paterson proposed a new IBS scheme
using bilinear pairing. But, these two schemes without any formal proof of se-
curity. In 2003, there are three provably secure IBS scheme have been proposed.
Yi proposed a provably secure IBS scheme using Weil pairing in [18], Cha and
Cheon [4] proposed a provably secure IBS scheme from Gap Diffie-Hellman group
in PKC2003, and Hess proposed a efficient scheme [9] in SAC 2002.

Blind signature, first introduced by Chaum [6] at Crypto’82, is a variant
of digital signatures, which allows the user to get a signature without giving
the signer any information about the actual message or the resulting signature.
Formally, blindness means that the signer’s view and the resulting signature are
statistically independent, where the signer’s view is the set of all values that can
be gotten by the signer during the execution of the signature issuing protocol.
This blindness property plays a central role in applications such as electronic
voting and electronic cash systems. Up to now, two ID-based blind signature
(IBBS) schemes based on bilinear pairings have been proposed. The first scheme
was proposed by Zhang and Kim [19] in Asiacrypt 2002. Later, in ACISP 2003,
Zhang and Kim [20] proposed a new ID-based blind signature scheme based on
bilinear pairings. They claim that the security against generic parallel attack to
their new scheme doesn’t depend on the difficulty of ROS-problem.
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In this paper, we first propose an efficient provably secure ID-based signature
scheme based on bilinear pairings, then propose an efficient ID-based blind sig-
nature scheme based on our IBS scheme. We discuss the security and efficiency
of our schemes. We prove that our IBS scheme is unforgeable in the random
oracle model and show that our schemes can offer advantages in runtime, com-
munication and memory requirements over the schemes available. Furthermore,
we show that, contrary to the authors claimed, Zhang and Kim’s scheme in [20]
is one-more forgeable under the generic parallel attack if the ROS-problem is
solvable, namely the security against generic parallel attack to this scheme also
depends on the difficulty of ROS-problem.

The rest of the paper is organized as follows: Section 2 gives some notions.
In Section 3, we first give definitions for ID-based signature, and then propose
a provably secure ID-based signature scheme with a proof of security. ID-based
blind signature is discussed in Section 4. We give some definitions and propose
an efficient ID-based blind signature scheme there. We conclude in Section 5.

2 Bilinear Pairings and Gap Diffie-Hellman Groups

Let G1 be a cyclic additive group generated by P with order prime q, and G2
be a cyclic multiplicative group with the same order q. A bilinear pairing is a
map e : G1 × G1 → G2 with the following properties:

Bilinear: For all P1, P2, Q1, Q2 ∈ G1,

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),
e(P1, Q1 + Q2) = e(P1, Q1)e(P1, Q2).

These two equations above imply that e(aP, bQ) = e(P, Q)ab, for all a, b .
Non-degenerate: There exists P, Q ∈ G1 such that e(P, Q) �= 1;
Computable: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.
Modified Weil pairing [17] and Tate pairings [1, 8] are examples of bilinear

maps.
Following are three important mathematical problems.
Discrete Logarithm Problem (DLP): Given P, Q ∈ G1, find an integer a

such that Q = aP , whenever such an integer exists.
Decisional Diffie-Hellman Problem (DDHP): For a, b, c, given P, aP, bP,

cP ∈ G1, decide whether c = ab mod q.
Computational Diffie-Hellman Problem (CDHP): For a, b, given P, aP,

bP ∈ G1, compute abP .

We call G a Gap Diffie-Hellman (GDH) group if DDHP can be solved
in polynomial time but no probabilistic algorithm can solve CDHP with non-
negligible advantage within polynomial time in G.

In the following, we use the notation a ∈R A to mean that a is randomly
chosen from A.
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3 ID-Based Signatures

3.1 Definitions

Definition 1. (ID-Based Signature, IBS) An ID-based signature scheme con-
sists of four algorithms, Setup, Extract, Sign and Verify, where

Setup is a probabilistic polynomial-time algorithm for the key generation cen-
ter KGC, which takes a security parameter 1n, and returns system parameters
SP and master key.

Extract is a probabilistic polynomial-time algorithm for the KGC, which takes
input security parameter 1n, system parameters SP , master key and signer’s
identity ID, returns the signer’s private key SID.

Sign is a probabilistic polynomial-time signature issuing algorithm, which
takes input security parameter 1n, system parameters SP , message m, signer S’s
identity ID and his private key SID, outputs a signature σm,ID on message m.

Verify is a polynomial-time algorithm that takes input security parameter 1n,
system parameters SP , signer’s identity ID, message m and signature σm,ID,
outputs either “Accept” or “Reject”, simply 1 or 0.

The same as the normal signature, a secure ID-based signature scheme should
have two properties: completeness and unforgeability.

Definition 2. (IBS-Completeness) If the signer S runs the signature issuing al-
gorithm and outputs signature σm,ID, then for any constant c, and for sufficiently
large n,

Pr[Verify(1n, SP, m, ID, σm,ID) = 1] > 1 − n−c.

Definition 3. (Game A) Let A be a probabilistic polynomial-time algorithm
and let C be a challenger.

1. C runs Setup and sends the system parameters SP to A.
2. A can issue the following queries as he wants:

(a) Hash function query. C computes the value of the hash function for
the requested input and sends the value to A.

(b) Extract query. Given an identity ID, C runs Extract and sends the
private key corresponding to ID to A.

(c) Sign query. Given an identity ID and a message m, returns a signature
σm,ID to A.

3. A outputs a signature (ID, m, σm,ID), where ID and (ID, m) never query to
Extract and Sign, respectively.

A wins the Game A iff (ID, m, σm,ID) is a valid signatures.

Definition 4. (IBS-Unforgeability) An ID-based signature scheme is unforge-
able if any probabilistic polynomial-time algorithm A wins Game A with a ad-
vantage ε ≤ n−c for any constant c and sufficiently large n.
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3.2 Provably Secure ID-Based Signature Scheme

1. Setup. Choose a GDH group G1, which is a cyclic additive group gener-
ated by P with prime order q. Choose a cyclic multiplicative group G2 with
the same order q and a bilinear pairing e : G1 × G1 → G2. Pick a random
s ∈R Z

∗
q = Zq \ {0}, set Ppub = sP . Choose cryptographic hash functions

H1 : {0, 1}∗ × G2 → Z
∗
q and H2 : {0, 1}∗ → G1. Publish the system param-

eter SP = (G1, G2, e, q, P, Ppub, H1, H2), and keep the master key s privately.
2. Extract. Given an identity ID, compute PID = H2(ID) and return the

corresponding private key SID = sPID.
3. Sign. The signer randomly chooses r ∈R Z

∗
q , computes

R = e(PID, Ppub)r,

h = H1(m, R),
V = (rh + 1)SID,

and publishes the signature σm,ID = (R, V ) on message m.
(For notational purposes, in the proof of the security, signatures will be de-

noted by (m, ID, R, h, V ).)
4. Verify. To verify a signature σm,ID = (R, V ) on message m for an identity

ID, the verifier checks whether

e(V, P ) = RH1(m,R)e(PID, Ppub).

3.3 Security

The completeness can easily be proved by straightforward calculating. In the
following, we prove the unforgeability in the Random Oracle Model. The
proof is done in two steps. We firstly reduce ID attacks to given ID attacks and
then treat given ID attacks.

For the first case, we have below Lemma 1, since the Setup and Extract of
our scheme is the same as that of the Cha-Cheon scheme [4].

Lemma 1. If there is an algorithm A0 for an adaptively chosen message and
ID attack to our scheme with running time t0 and advantage ε0, then there is
an algorithm A1 for an adaptively chosen message and given ID attack which
has running time t1 ≤ t0 and advantage ε1 ≥ ε0(1 − 1

q )/qH2 , where qH2 is the
maximum number of queries to H2 asked by A0. In addition, the numbers of
queries to hash function H2, Extract, and Sign asked by A1 are the same as
those of A0.

Lemma 2. Let A be a probabilistic polynomial time algorithm and let qH1 and
qS be the maximum number of queries to the random oracle H1 and Sign oracle
asked by A, respectively. If A can produce a valid signature (m, ID, R, h, V ) with
probability ε ≥ 10(qS + 1)(qS + qH1)/q, then there is another algorithm B can
produce two valid signatures (m, ID, R, h, V ) and (m, ID, R, h′, V ′) such that
h �= h′ in expected time t′ ≤ 120686qH1t/ε.
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Proof. We only have to prove that the signature can be simulated with an in-
distinguishable distribution probability without the knowledge of the signer’s
private key. Once this is done, the result directly follows from Theorem 3 (The
Forking Lemma) in [13].

We first gave a simulator S: In order to sign the message m, S chooses r ∈R

Zq, h ∈R Z
∗
q , then computes V = rPpub and R = e(V, P )h−1

e(PID, Ppub)−h−1
. If

R = 1, S restarts the simulation. Otherwise, it returns the triple (R, h, V ).
Now we consider the following distributions:

ξ =

⎧
⎪⎪⎨

⎪⎪⎩

(R, h, V )

∣
∣
∣
∣
∣
∣
∣
∣

r ∈R Z
∗
q

h ∈R Z
∗
q

R = e(PID, Ppub)r

V = (rh + 1)SID

⎫
⎪⎪⎬

⎪⎪⎭

and

ζ =

⎧
⎪⎪⎨

⎪⎪⎩

(R, h, V )

∣
∣
∣
∣
∣
∣
∣
∣

r ∈R Zq

h ∈R Z
∗
q

V = rPpub

R = e(V, P )h−1
e(PID, Ppub)−h−1 �= 1

⎫
⎪⎪⎬

⎪⎪⎭

Let (T, a, U) be a valid signature, namely T ∈ G2 \ {1}, a ∈ Z
∗
q , U ∈ G1

such that e(U, P )e(PID, Ppub)a = T �= 1, we have following probabilities of this
signature appearing in above distributions:

Pr
ξ

[(R, h, V ) = (T, a, U)] = Pr
r �=0,h

⎡

⎣
e(PID, Ppub)r = T
a = h
(rh + 1)SID = U

⎤

⎦ =
1

(q − 1)2

Pr
ζ

[(R, h, V ) = (T, a, U)] = Pr
T �=1,h

⎡

⎣
e(V, P )h−1

e(PID, Ppub)−h−1
=T

a = h
rPpub = U

⎤

⎦=
1

(q − 1)2

It shows that two distributions above are the same, thus the signature can be sim-
ulated by simulator S with an indistinguishable distribution probability without
the knowledge of the signer’s private key.

Theorem 1. If there is an algorithm A for an adaptively chosen message and
ID attack to our scheme with running time t and advantage ε ≥ 10(qS +1)(qH1 +
qS)qH2/(q−1), then CDHP can be solved within expected time t′ ≤ 120686qH1t/ε
with probability 1−1/(q −1), where qH1 , qH2 and qS be the maximum number of
queries to the random oracle H1, H2 and Sign oracle asked by A, respectively.

Proof. Under the assumption of the theorem, from Lemma 1, there is an algo-
rithm A1 can forge a valid signature (m, ID, R, h, V ) with running time t1 ≤ t
and advantage ε1 ≥ ε(1 − 1

q )/qH2 ≥ 10(qS + 1)(qS + qH1)/q under adaptively
chosen message and given ID attack. Then from Lemma 2, there is algorithm
B can produce two valid signatures (m, ID, R, h, V ) and (m, ID, R, h′, V ′) such
that h �= h′ in expected time t′ ≤ 120686qH1t/ε.
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Armed with these two valid signatures (m, ID, R, h, V ) and (m, ID, R, h′, V ′),
we can solve CDHP with probability 1 − 1/(q − 1) as follows.

We run the simulator S in Lemma 2 with PID = xP, Ppub = yP, x, y ∈R Z
∗
q .

As signatures (m, ID, R, h, V ) and (m, ID, R, h′, V ′) are validly, we have

e(V, P ) = Rhe(PID, Ppub) = Rhe(xyP, P ),

e(V ′, P ) = Rh′
e(PID, Ppub) = Rh′

e(xyP, P ),

then have
h−1(V − xyP ) = h′−1(V ′ − xyP ),

so
xyP = (h−1V − h′−1V ′)/(h′−1 − h−1),

when h′ �= h.
Since both h and h′ are randomly chose from Z

∗
q , the probability of h′ = h

is 1/(q − 1). So, we can compute xyP from (P, xP, yP ), i.e. solve CDHP, with
probability 1 − 1/(q − 1).

3.4 Efficiency

We compare our schemes to the five available ID-based signature schemes based
on bilinear pairings. In the following we denote by E an exponentiation in G2, by
M a scalar multiplication in G1, by A a addition in G1, by SM a simultaneous
scalar multiplication of the form aP + bQ in G1, and by P a computation of
the pairing. The Setup and Extract stages are virtually identical for all six
schemes. We do not take hash evaluations into account, since all schemes are
require two hash evaluations. Five out of these six schemes (excepting the Scheme
in [4]) can be optimized by precomputing some pairings, such as e(PID, Ppub)
in our scheme, and using in later when it needed. So we will eliminate these
pairing computation. The computation overheads of all six schemes (optimized
by precomputing) are summarized in Table 1.

The pairing computation is the operation which by far takes the most run-
ning time, the simultaneous scalar multiplication and the scalar multiplication
are the second and third time-consuming, respectively. The Table 1 shows that

Table 1. Comparison of Six IBS Schemes

Schemes Sign Verify Security

Our Scheme 1M+1E 1P+1E Provable
Scheme in [9] 1M+1E 1P+1E Provable
Scheme in [4] 2M 2P+1M+1A Provable
Scheme in [18] 1SM+1M 2P+1M+1A Provable
Scheme in [12] 1SM+1M 1P+2E
Scheme in [14] 2M 2P
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our schemes only require 1P+1M and are far more efficient than other schemes
except [9].

We conclude that our schemes can offer advantage in runtime over other
schemes except [9].

4 ID-Based Blind Signatures

4.1 Definitions

Definition 5. (ID-Based Blind Signature, IBBS) An ID-based blind signature
scheme, which involves three parties, the key generation center KGC, the signer S
and the user U, consists of four algorithms, Setup, Extract, Sign and Verify,
where

Setup is a probabilistic polynomial-time algorithm for the key generation cen-
ter KGC, which takes a security parameter 1n, and returns system parameters
SP and master key.

Extract is a probabilistic polynomial-time algorithm for the KGC, which takes
input security parameter 1n, system parameters SP, master key and signer’s
identity ID, returns the signer’s private key SID.

Sign is an interactive probabilistic polynomial-time signature issuing protocol
between the signer S and the user U, in which they input security parameter 1n,
system parameters SP, the signer S’s identity ID in common, the signer S inputs
his private key SID and the user U inputs message m privately, respectively. They
engage in the signature issuing protocol and stop in polynomial-time. When they
stop, the user outputs either “False” or a signature σm,ID on message m.

Verify is a polynomial-time algorithm that takes input security parameter 1n,
system parameters SP, signer’s identity ID, message m and signature σm,ID,
outputs either “Accept” or “Reject”, simply 1 or 0.

A secure ID-based blind signature scheme should have the property of
blindness.

Definition 6. (Blindness) Let S′ be a probabilistic polynomial-time algorithm,
U0 and U1 be two honest users. U0 and U1 engage in the signature issuing pro-
tocol with S′ on messages mb and m1−b, and output signatures σb and σ1−b,
respectively, where b is randomly chosen from {0, 1}. Sends (m0, m1, σb, σ1−b) to
S′ and then S′ outputs b′ ∈ {0, 1}. For all such S′, U0 and U1, for any constant
c, and for sufficiently large n,

| Pr[b = b′] − 1/2| < n−c.

4.2 Our ID-Based Blind Signature Scheme

The Setup, Extract and Verify are the same as that of ID-based signature
scheme above. The Sign is as follows. The user may chooses P1 ∈ G1 and
computes e(P1, P ) beforehand outside of the signing protocol.
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Sign.
a. The signer randomly chooses r ∈R Z

∗
q , computes

R′ = e(PID, Ppub)r,

and sends R′ to the user as the commitment.
b. The user randomly chooses t1, t2 ∈R Z

∗
q as blinding factors, and computes

R = R′t1e(P1, P )t2 ,

h = H1(m, R),
h′ = ht1,

then sends h′ to the signer as the challenge.
c. The signer computes

V ′ = (rh′ + 1)SID,

then sends V ′ to the user as the response.
d. The user checks whether

e(V ′, P ) = R′h′
e(PID, Ppub).

If the user accepts, he computes

V = V ′ + ht2P1,

and publishes the signature σm,ID = (R, V ) on message m. Otherwise, outputs
“False”.

The protocol is shown in Fig. 1.

Signer User

r ∈R Z
∗
q

R′ = e(PID, Ppub)r R′
�

t1, t2 ∈R Z
∗
q

R = R′t1e(P1, P )t2

h = H1(m, R)
h′ = ht1h′

�
V ′ = (rh′ + 1)SID V ′

�
?

e(V ′, P ) = R′h′
e(PID, Ppub)

V = V ′ + ht2P1

�
σm,ID = (h, V )

Fig. 1. ID-Based Blind Signature Scheme
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4.3 Security and Efficiency

The completeness can easily be proved by straightforward calculating.

Blindness. For i = 0, 1, let (R′
i, h

′
i, V

′
i , ri) be data appearing in the view of

the signer during the execution of the signature issuing protocol with the user on
message mi, and let (mi, Ri, hi, Vi) be the corresponding message-signature pair.
It is sufficient to show that there exists factors (t1, t2) that maps (R′

i, h
′
i, V

′
i , ri)

to (mj , Rj , hj , Vj) for each i, j ∈ {0, 1}. To this end, we define t1 = h′
ih

−1
j , and

t2 satisfying Vj = V ′
i + hjt2P1. Since

e(V ′
i , P ) = R

′h′
i

i e(PID, Ppub),

e(Vj , P ) = R
hj

j e(PID, Ppub),

we have

R
′h′

i

i = e(V ′
i , P )e(PID, Ppub)−1,

Rj = e(Vj , P )h−1
j e(PID, Ppub)−h−1

j .

Then we see that

R′t1
i e(P1, P )t2 = R

′h′
ih

−1
j

i e(P1, P )t2

= e(V ′
i , P )h−1

j e(PID, Ppub)−h−1
j e(P1, P )t2

= e(V ′
i + hjt2P1, P )h−1

j e(PID, Ppub)−h−1
j

= e(Vj , P )h−1
j e(PID, Ppub)−h−1

j

= Rj

Thus, (R′
i, h

′
i, V

′
i , ri) and (mj , Rj , hj , Vj) have exactly the same relation defined

by the signature issuing protocol. Such (t1, t2) always exist regardless of the
values of (R′

i, h
′
i, V

′
i , ri) and (mj , Rj , hj , Vj). Therefore, even an infinitely pow-

erful S′ outputs a correct value b′ with probability exactly 1/2, so the scheme is
unconditional blind.

Unforgeability. Our blind scheme is based on the provably secure signature
scheme above. The Setup and Extract stages and the signing and verification
equations of our blind scheme are the same as those of the provably secure
signature scheme above. If an adversary can forge a valid signature of our blind
scheme, he can forge a valid signature of the scheme above too. The scheme
above was proven to be unforgeable under the hardness assumption of CDHP,
so we believe that our scheme is unforgeable too.

The most powerful attack on blind signature is one-more forgery introduced by
Pointcheval and Stern [13]. Unfortunately, up to now, there is no ID-based blind
signature scheme based on bilinear pairings can be proved secure in this model,
neither our scheme nor Zhang and Kim’s schemes. Finding a provably secure
ID-based blind signature scheme or finding a formal proof for some available
scheme remains an open problem.
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In [20], the authors claim that the security against generic parallel attack to
their scheme doesn’t depend on the difficulty of ROS-problem. Unfortunately, in
fact, the scheme in [20] is also forgeable under the generic parallel attack if the
ROS-problem is solvable, namely the security against generic parallel attack to
this scheme also depends on the difficulty of ROS-problem.

First we describe the ROS-problem.
ROS-Problem [15]: Given an oracle random function F : Z

l
q → Zq, find

coefficients ak,i ∈ Zq and a solvable system of l+1 distinct equations of Eqs. (1)
in the unknowns c1, c2, · · · , cl over Zq.

ak,1c1 + · · · + ak,lcl = F (ak,1, · · · , ak,l) (1)

for k = 1, 2, · · · , t.
Next we describe how an adversary A uses the generic parallel attack to forge

l + 1 valid ID-based blind signatures of the scheme in [20], assuming the ROS-
problem is solvable. Let qH1 be the maximum number of queries of H1 from
adversary.

1. The signer sends commitments R1 = r1PID, R2 = r2PID, · · · , Rl = rlPID.
2. A randomly chooses ak,1, · · · , ak,l ∈R Zq and messages m1, m2, · · · , mt. He

computes Uk =
∑l

i=1 ak,iRi and H1(mk, Uk) for k = 1, 2, · · · , t. Here t < qH1 .
3.A solves l + 1 of t Eqs. (2) in the unknowns c1, c2, · · · , cl over Zq.

H1(mk, Uk) =
l∑

j=1

ak,jcj (2)

for k = 1, 2, · · · , t.
4. A sends the solutions c1, c2, · · · , cl as challenge to the signer.
5. The signer sends back Vi = (ri + ci)SID for i = 1, 2, · · · , l.
6. For each solved Eq. (2), A gets a valid signature (mk, V ′

k, U ′
k) by setting

U ′
k = Uk =

l∑

i=1

ak,iRi

V ′
k =

l∑

i=1

ak,iVi

7. A outputs l + 1 signatures (mk, V ′
k, U ′

k) for k = 1, 2, · · · , l + 1. It is easy to
see that the forged signatures are valid. According to Eq. (2), we have

e(U ′
k + H1(mk, U ′

K)PID, Ppub) = e(
l∑

i=1

ak,iRi + (
l∑

i=1

ak,ici)PID, Ppub)

= e((
l∑

i=1

ak,iri)PID + (
l∑

i=1

ak,ici)PID, Ppub)

= e(
l∑

i=1

ak,i(ri + ci)PID, Ppub)
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= e(
l∑

i=1

ak,i(ri + ci)SID, P )

= e(
l∑

i=1

ak,iVi, P )

= e(V ′
k, P )

for k = 1, 2, · · · , l + 1.
Efficiency. We compare our scheme to the two available ID-based blind sig-

nature schemes based on bilinear pairings. We also do not take hash evaluation
and the pairing computation which can be precomputed into account.

In Zhang and Kim’s schemes [19, 20], before issuing a signature, the user does
not check whether the response that the signer sent is valid or not, namely
the user issues a signature regardless whether the signer performs the signature
issuing protocol right or not. This will damage the completeness. To avoid a
dishonest signer cheating a user, like our schemes, checking the response before
issuing a signature is necessary in these two schemes too. Thus, we take it into
account in the following discussion.

The computation overheads of all three schemes (optimized by precomputing)
are summarized in Table 2. (The number in bracket is the computation overhead
for checking response).

Table 2. Comparison of Three IBBS Schemes

Schemes Sign Verify

Our Scheme 2M+3E+1A+(1P+1E) 1P+1E
Scheme in [19] 1P+2SM+2M+2A+(1P+1E) 1P+1E
Scheme in [20] 1SM+3M+(2P+1M+1A) 2P+1M+1A

The Table 2 shows that our scheme only require 2P+2M and is far more
efficient than the schemes of [19] and [20], while the scheme in [19] requires
3P+2SM+2M and the scheme in [20] requires 4P+1SM+5M. The Sign stage of
our scheme taking less than half the runtime of [19] and [20], and the Verify
stage of our scheme and [19] taking less than half the runtime of [20]. The scheme
in [20] is hence the slowest. We conclude that our scheme can offer advantage in
runtime over the schemes [19, 20].

5 Conclusion

ID-based cryptosystem has a property that a user’s public key can be easily
calculated from his identity by a publicly available function, and can be hence a
good alternative for certificate-based public key infrastructure. Blind signature
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has the anonymity and plays a central role in applications such as electronic
voting and electronic cash systems. In this paper, we first propose a efficient
provably secure identity-based signature scheme based on bilinear pairings, then
propose an efficient identity-based blind signature scheme based on our IBS
scheme. Furthermore, we show that the scheme in [20] is also forgeable under
the generic parallel attack if the ROS-problem is solvable.

Up to now, there is no ID-based blind signature scheme can be proved secure,
neither our scheme nor Zhang and Kim’s schemes. Finding a provably secure
ID-based blind signature scheme or finding a formal proof for some available
scheme remains an open problem.
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