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Abstract. Living cells are extremely well-organized autonomous systems, 
consisting of discrete interacting components. Key to understanding and 
modeling their behavior is modeling their system organization. Four distinct 
chemical toolkits (classes of macromolecules) have been characterized, each 
combinatorial in nature. Each toolkit consists of a small number of simple 
components that are assembled (polymerized) into complex structures that 
interact in rich ways. Each toolkit abstracts away from chemistry; it embodies 
an abstract machine with its own instruction set and its own peculiar interaction 
model. These interaction models are highly effective, but are not ones 
commonly used in computing: proteins stick together, genes have fixed output, 
membranes carry activity on their surfaces. Biologists have invented a number 
of notations attempting to describe these abstract machines and the processes 
they implement. Moving up from molecular biology, systems biology aims to 
understand how these interaction models work, separately and together.   

1   Introduction 

Following the discovery of the structure of DNA, just over 50 years ago, molecular 
biologists have been unraveling the functioning of cellular components and networks. 
The amount of molecular-level knowledge accumulated so far is absolutely amazing. 
And yet we cannot say that we understand how a cell works, at least not to the extent 
of being able to easily modify or repair a cell. The process of understanding cellular 
components is far from finished, but it 4is becoming clear that simply obtaining a full 
part list will not tell us how a cell works. Rather, even for substructures that have been 
well characterized, there are significant difficulties in understanding how components 
interact as systems to produce the observed behaviors. Moreover, there are just too 
many components, and too few biologists, to analyze each component in depth in 
reasonable time. Similar problems occur also at each level of biological organization 
above the cellular level. 

Enter systems biology, which has two aims. The first is to obtain massive amounts 
of information about whole biological systems, via high-throughput experiments that 
provide relatively shallow and noisy data. The Human Genome Project is a 
prototypical example: the knowledge it accumulated is highly valuable, and was 
obtained in an automated and relatively efficient way, but is just the beginning of 
understanding the human genome. Similar effort are now underway in genomics 
(finding the collection of all genes, for many genomes), in transcriptomics (the 
collection of all actively transcribed genes), in proteomics (the collection of all 
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proteins), and in metabolomics (the collection of all metabolites). Bioinformatics is 
the rapidly growing discipline tasked with collecting and analyzing such omics data.  

The other aim of syst4ems biology is to build, with such data, a science of the 
principles of operation of biological systems, based on the interactions between 
components. Biological systems are obviously well-engineered: they are very 
complex and yet highly structured and robust. They have only one major engineering 
defect: they have not been designed, in any standard sense, and so are not laid out as 
to be easily understood. It is not clear that any of the engineering principles of 
operations we are currently familiar with are fully applicable. Understanding such 
principles will require an interdisciplinary effort, using ideas from physics, 
mathematics, and computing. These, then, are the promises of systems biology: it will 
teach us new principles of operation, likely applicable to other sciences, and it will 
leverage other sciences to teach us how cells work in an actionable way. 

In this paper, we look at the organization of biological systems from an 
information science point of view. The main reason is quite pragmatic: as we 
increasingly map out and understand the complex interactions of biological 
components, we need to write down such knowledge, in such a way that we can 
inspect it, animate it, and understand its principles. For genes, we can write down long 
but structurally simple strings of nucleotides in a 4-letter alphabet, that can be stored 
and queried. For proteins we can write down strings of amino acids in a 20-letter 
alphabet, plus three-dimensional information, which can be stored a queried with a 
little more difficulty. But how shall we write down biological processes, so that they 
can be stored and queried? It turns out that biologists have already developed a 
number of informal notation, which will be our starting points. These notations are 
abstractions over chemistry or, more precisely, are abstractions over a number of 
biologically relevant chemical toolkits. 

2   Biochemical Toolkits 

Apart from small molecules such as water and some metabolites, there are four large 
classes of macromolecules in a cell. Each class is formed by a small number of units 
that can be combined systematically to produce structures of great complexity. That 
is, to produce both individual molecules of essentially unbounded size, and multi-
molecular complexes.  

The four classes of macromolecules are as follows. Different members of each 
class can have different functions (structure, energy storage, etc.). We focus on the 
most combinatorial, information-bearing, members of each class: 

• Nucleic acids. Five kinds of nucleotides combine in ordered sequences to form 
two nucleic acid polymers: DNA and RNA. As data structures, RNA is lists, and 
DNA is doubly-linked lists. Their most prominent role is in coding information, 
although they also have other important functions. 

• Proteins. About 20 kinds of amino acids combine linearly to form proteins. Each 
protein folds in a specific three-dimensional shape (sometimes from multiple 
strings of amino acids). The main and most evolutionary stable property of a 
protein is not the exact sequence of amino acids that make it up, nor the exact 
folding process, but its collection of surface features that determine its function. 
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As data structures, proteins are records of features and, since these features are 
often active and stateful, they are objects in the object-oriented programming 
sense. 

• Lipids: Among the lipids, phospholipids have a modular structure and can self-
assemble into closed double-layered sheets (membranes). Membranes differ in 
the proportion and orientation of different phospholipids, and in the kinds of 
proteins that are attached to them. As data structures, membranes are containers, 
but with an active surface that acts as an interface to its contents. 

• Carbohydrates: Among the carbohydrates, oligosaccharides are sugars linked in 
a branching structure. As data structures, oligosaccharides are trees. They have a 
vast number of configurations, and a complex assembly processes. 
Polysaccharides form even bigger structures, although usually of a semi-regular 
kind (rods, meshes). We do not consider carbohydrates further, although they are 
probably just as rich and interesting as the other toolkits. They largely have to do 
with energy storage and with cell surface and extracellular structures. But it 
should be noted that they too have a computational role, in forming unique 
surface structures that are subject to recognition. Many proteins are grafted with 
carbohydrates, through a complex assembly process called glycosylation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Eukaryotic cells have an extensive array of membrane-bound 
compartments and organelles with up to 4 levels of nesting. The 
nucleus is a double membrane. The external membrane is less 
than 10% of the total. 

Fig. 1. Eukaryotic Cell 
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Out of these four toolkits arises all the organic chemicals, composing, e.g., 
eukaryotic cells (Figure 1, [32] p.1). Each toolkit has specific structural properties (as 
emphasized by the bolded words above), systematic functions, and a peculiarly rich 
and flexible mode of operation. These peculiar modes of operation and systematic 
functions are what we want to emphasize, beyond their chemical realization.  

Cells are without doubt, in many respects, information processing devices. Without 
properly processing information from their environment, they soon die for lack of 
nutrients or for predation. The blueprint of a cell, needed for its functioning and 
reproduction, is stored as digital information in the genome; an essential step of 
reproduction is the copying of that digital information. There are hints that 
information processing in the genome of higher organisms is much more sophisticated 
than currently generally believed [33].  

We could say that cells are based on chemistry that also perform some information 
processing. But we take a more extreme position, namely that cells are chemistry in 
the service of information processing. Hence, we look for information processing 
machinery within the cellular machinery, and we try to understand the functioning of 
the cell in terms of information processing, instead of chemistry. In fact, we can 
readily find such information processing machinery in the chemical toolkits that we 
just described, and we can switch fairly smoothly from the classical description of 
cellular functioning in terms of classes of macromolecules, to a description based on 
abstract information-processing machines. 

3   Abstract Machines 

An abstract machine is a fictional information-processing device that can, in 
principle, have a number of different physical realizations (mechanical, electronic, 
biological, or even software). An abstract machine is characterized by: 

• A collection of discrete states. 
• A collection of operations (or events) that cause discrete transitions between 

states. 

The evolution of states through transitions can in general happen concurrently. The 
adequacy of this generic model for describing complex systems is argued, e.g.,  
in [22]. 

Each of the chemical toolkits we have just described can be seen as a separate 
abstract machine with an appropriate set of states and operations. This abstract 
interpretations of chemistry is by definition fictional, and we must be aware of its 
limitation. However, we must also be aware of the limitations of not abstracting, 
because then we are in general limited to work at the lowest level of reality (quantum 
mechanics) without any hope of understanding higher principles of organization. The 
abstract machines we consider are each grounded in a different chemical toolkit 
(nucleotides, amino acids, and phospholipids), and hence have some grounding in 
reality. Moreover, each abstract machine corresponds to a different kind of informal 
algorithmic notation that biologists have developed  (Figure 2, bubbles): this is 
further evidence that abstract principles of organization are at work. 
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Fig. 2. Abstract Machines, Molecular Basis, and Notations 

The Gene Machine (better known as Gene Regulatory Networks) performs 
information processing tasks within the cell. It regulates all other activities, including 
assembly and maintenance of the other machines, and the copying of itself. The 
Protein Machine (better known as Biochemical Networks) performs all mechanical 
and metabolic tasks, and also some signal processing. The Membrane Machine (better 
known as Transport Networks) separates different biochemical environments, and 
also operates dynamically to transport substances via complex, discrete, multi-step 
processes. 

These three machines operate in concert and are highly interdependent. Genes 
instruct the production of proteins and membranes, and direct the embedding of 
proteins within membranes. Some proteins act as messengers between genes, and 
others perform various gating and signaling tasks when embedded in a membrane. 
Membranes confine cellular materials and bear proteins on their surfaces. In 
eukaryotes, membranes confine the genome, so that local conditions are suitable for 
regulation, and confine other reactions carried out by proteins in specialized vesicles.  

Therefore, to understand the functioning of a cell, one must understand also how 
the various machines interact. This involves considerable difficulties (e.g. in 
simulations) because of the drastic difference in time and size scales: proteins 
interacts in tiny fractions of a second, while gene interactions take minutes; proteins 
are large molecules, but are dwarfed by chromosomes, and membranes are larger still. 
Before looking at the interactions among the different machine in more detail, we start 
by discussing each machine separately. 
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4   The Protein Machine (Biochemical Networks) 

4.1   Principles of Operation 

Proteins are long folded-up strings of amino acids with precisely determined, but 
often mechanically flexible, three-dimensional shapes. If two proteins have surface 
regions that are complementary (both in shape and in charge), they may stick to each 
other like Velcro, forming a protein complex where a multitude of small atomic 
forces crates a strong bond between individual proteins. They can similarly stick 
highly selectively to other substances. During a complexation event, a protein may be 
bent or opened, thereby revealing new interaction surfaces. Through complexation 
many proteins act as enzymes: they bring together compounds, including other 
proteins, and greatly facilitate chemical reactions between them without being 
themselves affected.  

Proteins may also chemically modify each other by attaching or removing small 
phosphate groups at specific sites. Each such site acts as a boolean switch: over a 
dozen of them can be present on a single protein. Addition of a phosphate group 
(phosphorilation) is performed by an enzyme that is then called a kinase. Removal 
of a phosphate group (dephosphorilation) is performed by an enzyme that is then 
called a phosphatase. For example, a protein phosphatase kinase kinase is a protein 
that phosphorilates a protein that phosphorilates a protein that dephosphorilates a 
protein. Each (de-)phosphorilation may reveal new interaction surfaces, and each 
surface interaction may expose new phosphorilation sites. 

It turns out that a large number of protein interactions work at the level of 
abstraction just described. That is, we can largely ignore chemistry and the protein 
folding process, and think of each protein as a collection of features (binding sites and 
phosphorilation sites) whose availability is affected by (de-)complexation and 
(de-)phosphorilation interactions. This abstraction level is emphasized in Kohn’s 
Molecular Interaction Maps graphical notation [29][27] (Figure 4). 

We can describe the operation of the protein machine as follows (Figure 3). Each 
protein is a collection of sites and switches; each of those can be, at any given time, 
either available or unavailable. Proteins can join at matching sites, to form bigger and 
bigger complexes. The availability of sites and switches in a complex is the state of 
the complex. A system is a multiset of (disjoint) complexes, each in a given state.  

The protein machine has two kinds of operations. (1) An available switch on a 
complex can be turned on or off, resulting in a new state where a new collection of 
switches and sites is available. (2) Two protein complexes can combine at available 
sites, or one complex can split into two, resulting in a new state where a new 
collection of switches and sites is available. 

Who is driving the switching and binding? Other proteins do. There are tens of 
thousands of proteins in a cell, so the protein machine has tens of thousands of+ 
“primitive instructions”; each with a specific way of acting on other proteins (or 
metabolites). For each cellular subsystem one must list the proteins involved, and 
how each protein interacts with the other proteins in terms of switching and 
binding.  
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Fig. 3. The Protein Machine Instruction Set 
 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 
From [29]. A: graphical primitives. B: complexation and phosphorilation. C: enzymatic 
diagram and equivalent chemical reactions. D: map of the p53-Mdm2 and DNA Repair 
Regulatory Network. 

Fig. 4. Molecular Interaction Maps Notation 
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4.2   Notations 

Finding a suitable language in which to cast such an abstraction is a non-trivial task. 
Kohn designed a graphical notation, resulting in pictures such as Figure 4 [29]. This 
was a tremendous achievement, summarizing hundreds of technical papers in page-
sized pictures, while providing a sophisticated and expressive notation that could be 
translated back into chemical equations according to semi-formal guidelines. Because 
of this intended chemical semantics, the dynamics of a systems is implied in Kohn’s 
notation, but only by translation to chemical (and hence kinetic) equations. The 
notation itself has no dynamics, and this is one of its main limitation. The other major 
limitation is that, although graphically appealing, it tends to stop being useful when 
overflowing the borders of a page or of a whiteboard (the original Kohn maps span 
several pages). 

Other notations for the protein machine can be devised. Kitano, for example, 
improved on the conciseness, expressiveness, and precision of Kohn’s notation 
[28], but further sophistication in graphical notation is certainly required along the 
general principles of [18]. A different approach is to devise a textual notation, 
which inherently has no “page-size” limit and can better capture dynamics; 
examples are Bio-calculus [38], and most notably κ-calculus [14][15], whose 
dynamics is fully formalized. But one may not need to invent completely new 
formalisms. Regev and Shapiro, in pioneering work [49][47], described how to 
represent chemical and biochemical interactions within existing process calculi (π-
calculus). Since process calculi have a well understood dynamics (better 
understood, in fact, than most textual notations that one may devise just for the 
purpose), that approach also provides a solid basis for studying systems expressed 
in such a notation. Finally, some notations incorporate both continuous and discrete 
aspects, as in Charon [3] and dL-systems [45]. 

4.3   Example: MAPK Cascade 

The relatively simple Kohn map in 0 (adapted from [25]) describes the behavior of a 
circuit that causes Boolean-like switching of an output signal in presence of a very 
weak input signal. (It can also be described as a list of 10 chemical reactions, or of 25 
differential/ algebraic equations, but then the network structure is not so apparent.) 
This network, generically called a MAPK cascade, has multiple biochemical 
implementations and variations. The components are proteins (enzymes, kinases, 
phophatases, and intermediaries). The circle-arrow Kohn symbol for “enzyme-
assisted reaction” can signify here either a complexation that facilitates a reaction, or 
a phosphorilation/dephosphorilation, depending on the specific proteins. 

The system initially contains reservoirs of chemicals KKK, KK, and K (say, 100 
molecules each), which are transformed by the cascade into the kinases KKK*, KK-
PP, and K-PP respectively. Enzymes E2, KK-Phosphatase and K-Phosphatase are 
always available (say, 1 molecule each), and tend to drive the reactions back. 
Appearance of the input enzyme E1 in very low numbers (say, less than 5) causes a 
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Fig. 5. ++ MAPK Cascade 

sharp (Boolean-like 0-100) transition in the concentration of the output K-PP. The 
concentrations of the intermediaries KK-PP, and especially KKK*, raise in a much 
smoother, non-Boolean-like, fashion. Given the mentioned concentrations, the 
network works fine by setting all reaction rates to equal values. 

To notice here is that the detailed description of each of the individual proteins, 
with their folding processes, surface structures, interaction rates under different 
conditions, etc. could take volumes. But what makes this signal processing network 
work is the structure of the network itself, and the relatively simple interactions 
between the components.  

4.4   Summary 

The fundamental flavor of the Protein Machine is: fast synchronous binary 
interactions. Binary because interactions occur between two complementary surfaces, 
and because the likelihood of three-party instantaneous chemical interactions can be 
ignored. Synchronous because both parties potentially feel the effect of the 
interaction, when it happens. Fast because individual chemical reactions happen at 
almost immeasurable speeds. The parameters affecting reaction speed, in a well-
stirred solution, are just a reaction-specific rate constant having to do with surface 
affinity, plus the concentrations of the reagents (and the temperature of the solution, 
which is usually assumed constant). Concentration affects the likelihood of molecules 
randomly finding each other by Brownian motion. Note that Brownian motion is 
surprisingly effective at a cellular scale: a molecule can “scan” the equivalent volume 
of a bacteria for a match in 1/10 of a second, and it will in fact scan such a bounded 
volume because random paths in 3D do not return to the origin. 

5   The Gene Machine (Gene Regulatory Networks) 

5.1   Principles of Operation 

The central dogma of molecular biology states that DNA is transcribed to RNA, and 
RNA is translated to proteins (and then proteins do all the work). This dogma no 
longer paints the full picture, which has become considerably more detailed in recent 
years. Without entering into a very complex topic [33], let us just note that some 
proteins go back and bind to DNA. Those proteins are called transcription factors 
(either activators or repressors); they are produced for the purpose of allowing one 
gene (or signaling pathway) to communicate with other genes. Transcription factors 
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are not simple messages: they are proteins, which means they are subject to 
complexation, phosphorilation, and programmed degradation, which all have a role in 
gene regulation. 

A gene is a stretch of DNA consisting of two (not necessarily contiguous or 
unbroken) regions: an input (regulatory) region, containing protein binding sites for 
transcription factors, and an output (coding) region, coding for one or more proteins 
that the gene produces. Sometimes there are two coding regions, in opposite 
directions [46], on count of DNA being a doubly-linked list. Sometimes two genes 
overlap on the same stretch of DNA.  

The output region functions according to the genetic code: a well understood and 
almost universal table mapping triplets of nucleotides to one of about 20 amino acids, 
plus start and stop triplets. The input region functions according to a much more 
complex code that is still poorly understood: transcription factors, by their specific 3D 
shapes, bind to specific nucleotide sequences in the input region, with varying binding 
strength depending of the precision of the match.  

Thus, the gene machine, although entirely determined by the digital information 
coded in DNA, is not entirely digital in functioning: a digitally encoded protein, 
translated and folded-up, uses its “analog” shape to recognize another digital string 
and promote the next step of translation. Nonetheless, it is customary to ignore the 
details of this process, and simply measure the effectiveness with which (the product 
of) a gene affects another gene. This point of view is reflected in standard notation for 
gene regulatory networks (Figure 7). 

 

   

 

 

 

 

 

Fig. 6. The Gene Machine Instruction Set 
 

In Figure 6, a gene is seen as a hardware gate, and the genome can be seen as a vast 
circuit composed of such gates. Once the performance characteristics of each gate is 
understood, one can understand or design circuits by combining gates, almost as one 
would design digital or analog hardware circuits. The performance characteristics of 
each gene in a genome is probably unique. Hence, as in the protein machine, we are 
going to have thousands of “primitive instructions”: one for each gene.  

A peculiarity of the gene machine is that a set of gates also determines the network 
connectivity. This is in contrast with a hardware circuit, where there is a collection of 
gates out of a very small set of “primitive gates”, and then a separate wiring list. Each 
gene has a fixed output; the protein the gene codes for (although post-processing may 
vary such output). Similarly, a gene has a fixed input: the fixed set of binding sites in 
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the input region. Therefore, by knowing the nucleotide sequence of each gene in a 
genome, one (in principle) also knows the network connectivity without further 
information. This situation is similar to a software assembly-language program: 
“Line 3: Goto Line 5” where both the input and output addresses are fixed, and the 
flow graph is determined by the instructions in the program. However, a further 
difference is that the output of a gene is not the “address” of another gene: it is a 
protein that can bind with varying strength to a number of other genes. 

The state of a gene machine is the concentrations of the transcription factors 
produced by each gene (or arriving from the environment). The operations, again, 
are the input-output functions of each gene. But what is the “execution” of a gene 
machine? It is not as simple as saying that one gene stimulates or inhibits another 
gene. It is known that certain genes perform complex computations on their inputs 
that are a mixture of boolean, analog, and multi-stage operators (Figure 7-B [54]). 
Therefore, the input region of each gene can itself be a sophisticated machine. 

Whether the execution of a gene machine should be seen as a continuous or 
discrete process, both in time and in concentration levels, is already a major 
question. Qualitative models (e.g.: random and probabilistic Boolean networks 
[26][50], asynchronous automata [52], network motifs [36]) can provide more insights 
that quantitative models, whose parameters are hard to come by and are possibly not 
critical. On the other hand, it is understood that pure Boolean models are inadequate 
in virtually all real situations. Continuous, stochastic, and decay aspect of 
transcription factor concentrations are all critical in certain situations [34][53].   

5.2   Notations 

Despite all these difficulties and uncertainties, a single notation for the gene machine 
is in common use, which is the gene network notation of Figure 7-A. There, the gates 
are connected by either “excitatory” (pointed arrow) or “inhibitory” (blunt arrow) 
links. What such relationships might mean is often left unspecified, except that, in a 
common model, a single constant weight is attached to each link.  

Any serious publication would actually start from a set of ordinary differential 
equations relating concentrations of transcription factors, and use pictures such at 
Figure 7-A only for illustration, but this approach is only feasible for small networks. 
The best way to formalize the notation of gene regulatory networks is still subject to 
debate and many variations, but there is little doubt that formalizing such a notation 
will be essential to get a grasp on gene machines the size of genomes (the smallest of 
which, M.Genitalium, is on the order of 150 Kilobytes, and one closer to human 
cellular organization, Yeast, is 3 Megabytes). 

5.3   Example: Repressilator 

The circuit in Figure 8, artificially engineered in E.Coli bacteria [19], is a simple 

oscillator (given appropriate parameters). It is composed of three genes with single input 

that inhibit each other in turn. The circuit gets started by constitutive transcription: each 
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A [16]: gene regulatory network involved in sea urchin embryo development: B [54]: 
boolean/arithmetic diagram of module A, the last of 6 interlinked modules in the regulatory
region of the endo16 sea urchin gene; G,F,E,DC,B are module outputs feeding into A, the 
whole region is 2300 base pairs. 

Fig. 7. Gene Regulatory Networks Notation 

 

 

 

 

 

Fig. 8. Repressilator Circuit 

gene autonomously produces output in absence of inhibition, and the produced output 
decays at a certain stochastic rate. The symmetry of the circuit is broken by the underlying 
stochastic behavior of chemical reactions. Its behavior con be understood as follows. 
Assume that gene a is at some point not inhibited (i.e. the product B of gene b is absent). 
Then gene a produces A, which shuts down gene c. Since gene c is no longer producing C, 
gene b eventually starts producing B, which shuts down gene a. And so on.  

5.4   Summary 
The fundamental flavor of the Gene Machine is: slow asynchronous stochastic 
broadcast. The interaction model is really quite strange, by computing standards. Each 
gene has a fixed output, which is not quite an address for another gene: it may bind to 
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a large number of other genes, and to multiple locations on each gene. The 
transcription factor is produced in great quantities, usually with a well-specified time-
to-live, and needs to reach a certain threshold to have an effect. On the other hand, 
various mechanisms can guarantee Boolean-like switching when the threshold is 
crossed, or, very importantly, when a message is not received. Activation of one gene 
by another gene is slow by any standard: typically one to five minutes, to build up the 
necessary concentration1. However, the genome can slowly direct the assembly-on-
need of protein machines that then act fast: this “swap time” is seen in experiments 
that switch available nutrients. The stochastic aspect is fundamental because, e.g., 
with the same parameters, a circuit may oscillate under stochastic/discrete semantics, 
but not under deterministic/continuous semantics [53]. One reason is that a stochastic 
system may decay to zero molecules of a certain kind at a given time, and this can 
cause switching behavior, while a continuous system may asymptotically decay only 
to a non-zero level. 

6   The Membrane Machine (Transport Networks) 

6.1   Principles of Operation 

A cellular membrane is an oriented closed surface that performs various molecular 
functions. Membranes are not just containers: they are coordinators and sites of major 
activity2. Large functional molecules (proteins) are embedded in membranes with 
consistent orientation, and can act on both sides of the membrane simultaneously. 
Freely floating molecules interact with membrane proteins, and can be sensed, 
manipulated, and pushed across by active molecular channels. Membranes come in 
different kinds, distinguished mostly by the proteins embedded in them, and typically 
consume energy to perform their functions. The consistent orientation of membrane 
proteins induces an orientation on the membrane.  

One of the most remarkable properties of biological membranes is that they form a 
two-dimensional fluid (a lipid bilayer) embedded in a three-dimensional fluid (water). 
That is, both the structural components and the embedded proteins freely diffuse on 
the two-dimensional plane of the membrane (unless they are held together by specific 
mechanisms). Moreover, membranes float in water, which may contain other 
molecules that freely diffuse in that three-dimensional fluid. Membrane themselves 
are impermeable to most substances, such as water and protons, so that they partition 
the three-dimensional fluid. This organization provides a remarkable combination of 
freedom and structure. 

Many membranes are highly dynamic: they constantly shift, merge, break apart, 

and are replenished. But the transformations that they support are naturally limited,  

 

                                                           
1 Consider that bacteria replicate in only 20 minutes while cyclically activating hundreds of 

genes. It seems that, at lest for bacteria, the gene machine can make “wide” but not very 
“deep” computations [36]. 

2 “For a cell to function properly, each of its numerous proteins must be localized to the correct 
cellular membrane or aqueous compartment.” [32] p.675. 
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Fig. 9. The Membrane Machine Instruction Set (2D) 

 
partially because membranes must preserve their proper orientation, and partially 
because membrane transformations need to be locally-initiated and continuous. For 
example, it is possible for a membrane to gradually buckle and create a bubble that 
then detaches, or for such a bubble to merge back with a membrane. But it is not 
possible for a bubble to “jump across” a membrane (only small molecules can do 
that), of for a membrane to turn itself inside-out. 

The basic operations on membranes, implemented by a variety of molecular 
mechanisms, are local fusion (two patches merging) and local fission (one patch 
splitting in two) [8]. We discuss first the 2D case, which is instructive and for which 
there are some formal notations, and then the 3D case, the real one for which there are 
no formal notations. 

In two dimensions (Figure 9), at the local scale of membrane patches, fusion and 
fission become indistinguishable as a single operation, switch, that takes two 
membrane patches, i.e. to segments A-B and C-D, and switches their connecting 
segments into A-C and B-D (crossing is not allowed). We may say that, in 2D, a 
switch is a fusion when it decreases the number of whole membranes, and is a fission 
when it increases such number. 

When seen on the global scale of whole 2D membranes, switch induces four 
operations: in addition to the obvious splitting (Mito) and merging (Mate) of 
membranes, there are also operation, quite common in reality, that cause a membrane 
to “eat” (Endo) or “spit” (Exo) another subsystem (P). There are common special 
cases of Mito and Endo, when the subsystem P consists of zero (Drip, Pino) or one 
(Bud, Phago) membranes. All these operations preserve bitonality (dual coloring); 
that is, if a subsystem P is on a dark (or light) background before a reaction, it will be 
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on a dark (or light) background after the reaction. Bitonality is related to preservation 
of membrane orientation, and to locality of operations (a membrane jumping across 
another one does not preserve bitonality). Bitonal operations ensure that what is or 
was outside the cell (light) never gets mixed with what is inside (dark). The main 
reactions that violate bitonality are destructive and non-local ones (such a digestion, 
not shown). Note that Mito/Mate preserve the nesting depth of subsystems, and hence 
they cannot encode Endo/Exo; instead, Endo/Exo can encode Mito/Mate [12]. 

  

 

 

 

 

 

 

 

 

 

 
Each row consists of initial state, two intermediate states, and final state 
(and back). 

Fig. 10. The Membrane Machine Instruction Set (3D) 
 

In three dimensions, the situation is more complex (Figure 10). There are 2 distinct 
local operations on surface patches, inducing 8 distinct global operations that change 
surface topology. Fusion joins two Positively curved patches (in the shapes of domes) 
into one Negatively curved patch (in the shape of a hyperbolic cooling tower) by 
allowing the P-patches to kiss and merge. Fission instead splits one N-patch into two 
P-patches by pinching the N-patch. Fusion does not necessarily decrease the number 
of membranes in 3D (it may turn a sphere into a torus in two different ways: T-Endo 
T-Mito), and Fission does not necessarily increase the number of membranes (it may 
turn a torus into a sphere in two different ways: T-Exo, T-Mate). In addition, Fusion 
may merge two spheres into one sphere in two different ways (S-Exo, S-Mate), and 
Fission may split one sphere into two spheres in two different ways (S-Endo, S-Mito). 
Note that S-Endo and T-Endo have a common 2D cross section (Endo), and similarly 
for the other three pairs. 

Cellular structures have very interesting dynamic topologies: the eukaryotic 
nuclear membrane, for example, is two nested spheres connected by multiple toroidal 
holes (and also connected externally to the Endoplasmic Reticulum). This whole 
structure is disassembled, duplicated, and reassembled during cellular mitosis. 
Developmental processes based on cellular differentiation are also within the realm of 
the Membrane Machine, although geometry, in addition to topology, is an important 
factor there. 
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6.2   Notations 
The informal notation used to describe executions of the Membrane Machine does not 
really have a name, but can be seen in countless illustrations (e.g., Figure 11, [32] 
p.730). All the stages of a whole process are summarized in a single snapshot, with 
arrows denoting operations (Endo/Exo etc.) that cause transitions between states. This 
kind of depiction is natural because often all the stages of a process are observed at 
once, in photographs, and much of the investigation has to do with determining their 
proper sequence and underlying mechanisms. These pictures are usually drawn in two 
colors, which is a hint of the semantic invariant we call bitonality. 

  

 

 

 

 

 

   

 

 
LDL particle (left) is recognized, ingested, and transported to a lysosome vesicle (right). 
[32], p.730. 

Fig. 11. Transport Networks Notation 
 

Some membrane-driven processes are semi-regular, and tend to return to 
something resembling a previous configuration, but they are also stochastic, so no 
static picture or finite-state-automata notation can tell the real story. Complex 
membrane dynamics can be found in the protein secretion pathway, through the Golgi 
system, and in many developmental processes. Here too there is a need for a precise 
dynamic notation that goes beyond static pictures; currently, there are only a few such 
notations [42][48][12]. 

6.3   Example: LDL Cholesterol Degradation 

The membrane machine runs real algorithms: Figure 11 depicts LDL-cholesterol 
degradation. The “problem” this algorithm solves is to transport a large object (an 
LDL particle) to an interior compartment where it can be degraded; the particle is too 
big to just cross the membrane. The “solution”, by a precise sequence of discrete steps 
and iterations, utilizes proteins embedded in the external cellular membrane and in the 
cytosol to recognize, bind, incorporate, and transport the particle inside vesicles to the 
desired compartment, all along recycling the active proteins. 

From MOLECULAR CELL 
BIOLOGY, 4/e by Harvey 
Lodish, et. al. ©1986, 
1990, 1995, 2000 by W.H. 
Freeman and Company. 
Figure 17-46, page 730 . 
Used with permission.

From MOLECULAR CELL 
BIOLOGY, 4/e by Harvey 
Lodish, et. al. ©1986, 
1990, 1995, 2000 by W.H. 
Freeman and Company. 
Figure 17-46, page 730 . 
Used with permission.
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6.4   Summary 

The fundamental flavor of the Membrane Machine is: fluid-in-fluid architecture, 
membranes with embedded active elements, and fusion and fission of compartments 
preserving bitonality. Although dynamic compartments are common in computing, 
operations such as endocytosis and exocytosis have never explicitly been suggested as 
fundamental. They embody important invariants that help segregate cellular materials 
from environmental materials. The distinction between active elements embedded on 
the surface of a compartment, vs. active elements contained in the compartment, 
becomes crucial with operations such as Exo. In the former case, the active elements 
are retained, while in the latter case they are lost to the environment. 

7   Three Machines, One System 

7.1   Principles of Operation 
We have discussed how three classes of chemicals, among others, are fundamental to 
cellular functioning: nucleotides (nucleic acids), amino acids (proteins), and 
phospholipids (membranes). Each of our abstract machines is based primarily on one 
of these classes of chemicals: amino acids for the protein machine, nucleotides for the 
gene machine, and phospholipids for the membrane machine.  

These three classes of chemicals are however heavily interlinked and 
interdependent. The gene machine “executes” DNA to produce proteins, but some of 
those proteins, which have their own dynamics, are then used as control elements of 
DNA transcription. Membranes are fundamentally sheets of pure phospholipids, but 
in living cells they are heavily doped with embedded proteins which modulate 
membrane shape and function. Some protein translation happens only through 
membranes, with the RNA input on one side, and the protein output on the other side 
or threaded into the membrane. 

Therefore, the abstract machines are interlinked as well, as illustrated in Figure 2. 
Ultimately, we will need a single notation in which to describe all three machines 
(and more), so that a whole organism can be described.  

7.2   Notations 
What could a single notation for all three machines (and more) look like? All formal 
notations known to computing, from Petri Nets to term-rewriting systems, have 
already been used to represent aspects of biological systems; we shall not even 
attempt a review here. But none, we claim, has shown the breadth of applicability and 
scalability of process calculi [35], partially because they are not a single notation, but 
a coherent conceptual framework in which one can derive suitable notations. There is 
also a general theory and notation for such calculi [37], which can be seen as the 
formal umbrella under which to unify different abstract machines. 

Major progress in using process calculi for describing biological systems was 
achieved in Aviv Regev’s Ph.D. thesis [47], where it is argued that one of the standard 
existing process calculi, π-calculus, enriched with a stochastic semantics [24][43][44], 
is extraordinarily suitable for describing both molecular-level interactions and higher 
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levels of organization. The same stochastic calculus is now being used to describe 
genetic networks [30]. For membrane interactions, though, we need something 
beyond basic process calculi, which have no notion of compartments. Ambient 
Calculus [13] (which extends π-calculus with compartments) has been adapted 
[47][48] to represent biological compartments and complexes. A more recent attempt, 
Brane Calculus [12], embeds the biological invariants and 2D operations from  
Section 6.  

These experiences point at process calculi as, at least, one of the most promising 
notational frameworks for unifying different aspects of biological representation. In 
addition, the process calculus framework is generally suitable for relating different 
levels of abstractions, which is going to be essential for feasibly representing 
biological systems of high architectural complexity. 

Figure 12 gives a hint of the difference in notational approach between process 
calculi and more standard notations. Ordinary chemical reaction notation is a process 
calculus: it is a calculus of chemical processes. But it is a notation that focuses on 
reactions instead of components; this becomes a disadvantage when components have 
rich structure and a large state space (like proteins). In chemical notation one 
describes each state of a component as a different chemical species (Na, Na+), leading 
to an combinatorial blowup in the description of the system (the blowup carries over 
to related descriptions in terms of differential equations). In process calculus notation, 
instead, the components are described separately, and the reactions (occurring through 
complementary event pairs such as !r and ?r) come from the interactions of the 
components. Interaction leads to a combinatorial blowup in the dynamics of 
interactions, but not in the description of the systems, just like in ordinary object-
oriented programming.  

On the left of Figure 12 we have a chemical description of a simple system of 
reactions, with a related (non-composition) Petri Nets description. On the right we 
have a process calculus description of the same system, with a related (compositional) 
description in terms of interacting automata (e.g., Statecharts [22] with sync 
pseudostates). Both kinds of descriptions can take into account stochastic reaction 
rates (k1,k2), and both can be mapped to the same stochastic model (Continuous-
Time Markov Chains), but the descriptions themselves have different structural 
properties. From a simulation point of view, the left-hand-side approach leads to large 
sparse matrices of chemical species vs. chemical reactions, while the right-hand-side 
approach leads to large multisets of interacting objects. 

7.3   Example: Viral Infection 
The example in Figure 13 (adapted from [2], p.279) is the “algorithm” that a specific 
virus, the Semliki Forest virus, follows to replicate itself. It is a sequence of steps that 
involve the dynamic merging and splitting of compartments, the transport of 
materials, the operation of several proteins, and the  interpretation of genetic 
information. The algorithm is informally described in English below. A concise 
description in Brane Calculus is presented in [12], which encodes the infection 
process at high granularity, but in its entirety, including the membrane, protein, and 
gene aspects.  
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Fig. 12. Chemical vs. P+rocess Calculi Notations 

 

      

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Fig. 13. Viral Replication 
 

A virus is too big to cross a cellular membrane. It can either punch its RNA 
through the membrane or, as in this example, it can enter a cell by utilizing standard 
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cellular phagocytosis machinery. The virus consists of a capsid containing the viral 
RNA (the nucleocapsid). The nucleocapsid is surrounded by a membrane that is 
similar to the cellular membrane (in fact, it is obtained from it “on the way out”). This 
membrane is however enriched with a special protein that plays a crucial trick on the 
cellular machinery, as we shall see shortly.  

Infection: The virus is brought into the cell by phagocytosis, wrapped in an additional 
membrane layer; this is part of a standard transport pathway into the cell. As part of  
that pathway, an endosome merges with the wrapped-up virus. At this point, usually, 
the endosome causes some reaction to happen in the material brought into the cell. In 
this case, though, the virus uses its special membrane protein to trigger an exocytosis 
step that deposits the naked nucleocapsid into the cytosol. The careful separation of 
internal and external substances that the cell usually maintains has now been 
subverted.  

Replication: The nucleocapsid is now in direct contact with the inner workings of the 
cell, and can begin doing damage. First, the nucleocapsid disassembles, depositing the 
viral RNA into the cytosol. This vRNA then follows three distinct paths. First it is 
replicated to provide the vRNA for more copies of the virus. The vRNA is also 
translated into proteins, by standard cellular machinery. The proteins forming the 
capsid are synthesized in the cytosol. The virus envelope protein is instead 
synthesized in the Endoplasmic Reticulum, and through various steps (through the 
Golgi apparatus) ends up lining transport vesicles that merge with the cellular 
membrane, along another standard transport pathway.  

Progeny: In the cytosol, the capsid proteins self-assemble and incorporate copies of 
the vRNA to form new nucleocapsids. The newly assembled nucleocapsids make 
contact with sections of the cellular membrane that are now lined with the viral 
envelope protein, and bud out to recreate the initial virus structure outside the cell. 

7.4   Summary 
The fundamental flavor of cellular machinery is: chemistry in the service of materials, 
energy, and information processing. The processing of energy and materials (e.g., in 
metabolic pathways) need not be emphasized here, rather we emphasize the 
processing of information, which is equally vital for survival and evolution [1]. 
Information processing tasks are distributed through a number of interacting abstract 
machines with wildly different architectures and principles of operation. 

8   Outlook: Model Construction and Validation 

The biological systems we need to describe are massively concurrent, heterogeneous, 
and asynchronous: notoriously the hardest kinds of systems to cope with in 
programming. They have stochastic behavior and high resilience to drastic changes of 
environmental conditions. What organizational principles make these systems work 
reliably, and what conditions make them fail? These are the questions that 
computational modeling needs to answer. 
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There are two main aspects to modeling biological systems. Model construction, 
requires first an understanding of the principles of operation. This is what we have 
largely been discussing here: understanding the abstract machines of systems biology 
should lead us to formal notations that can be used to build (large, complex) 
biological models. But then there is model validation: a good scientific model has to 
be verified or falsified through postdiction and prediction. We briefly list different 
techniques that are useful for model validation, once a specific model has been written 
up in a specific precise notation. 

Stochastic simulation of biochemical systems is a common technique, typically 
based on the physically well-characterized Gillespie algorithm [21], which originally 
was devised for reaction-oriented descriptions. The same algorithm can be used also 
for component-oriented (compositional) descriptions with a dynamically unbounded 
set of chemical species [44]. Stochastic simulation is particularly effective for systems 
with a relatively low number of interactions of any given kind, as is frequently the 
case in cellular-scale systems. It produces a single (high-likelihood) trace of the 
system for each run. It frequently reveals behavior that is difficult to anticipate, and 
that may not even correspond to continuous deterministic approximations [34]. It can 
be quantitatively compared with experiments. 

Static analysis techniques of the kind common in programming can be applied to 
the description of biological systems [40]. Control-flow analysis and mobility analysis 
can reveal subsystems that cannot interact [7][41]. Causality analysis can reconstruct 
the familiar network diagrams from process description [11]. Abstract interpretation 
can be used to study specific facets of a complex model [39], including probabilistic 
aspects [17]. 

Modelchecking is now used routinely in the analysis of hardware and software 
systems that have huge state spaces; it is based on the state and transition model we 
emphasized during the discussion of abstract machines. Modelchecking consists of a 
model description language for building models, a query language for asking 
questions about models (typically temporal logic), and an efficient state exploration 
engine. The basic technology is very advanced, and is beginning to be applied to 
descriptions of biological systems too, in various flavors. Temporal modelchecking 
asks qualitative questions such as whether the systems can reach a certain state (and 
how), or whether a state is a necessary checkpoint for reaching another state [9][20]. 
Quantitative modelchecking asks quantitative questions about, e.g., whether a certain 
concentration can eventually equal or double some other concentration in some state 
[4][6]. Stochastic modelchecking, based, e.g., on discrete or continuous-time Markov 
chain models, can ask questions about the probability of reaching a given state [31]. 

Formal reasoning is the most powerful and hardest technique to use, but already 
there is a long tradition of building tools for verifying properties of concurrent 
systems. Typical activities in this area are checking behavioral equivalence between 
different systems, or between different abstraction levels of the same system, 
including now biological systems [10][5]. 

While computational approaches to biology and other sciences are now common, 
several of the techniques outlined above are unique to computer science and virtually 
unknown in other fields; hopefully they will bring useful tools and perspectives to 
biology. 
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9   Conclusions 

Many aspects of biological organization are more akin to discrete hardware and 
software systems than to continuous systems, both in hierarchical complexity and in 
algorithmic-like information-driven behavior. These aspects need to be reflected in 
the modeling approaches and in the notations used to describe such systems, in order 
to make sense of the rapidly accumulating experimental data.  

 

“The data are accumulating and the computers are humming, what we are 
lacking are the words, the grammar and the syntax of a new language…” 

 Dennis Bray (TIBS 22(9):325-326, 1997) 
  

“The most advanced tools for computer process description seem to be also the 
best tools for the description of biomolecular systems.” 

 Ehud Shapiro (Biomolecular Processes as Concurrent Computation, 

Lecture Notes, 2001) 
  

“Although the road ahead is long and winding, it leads to a future where biology 
and medicine are transformed into precision engineering.” 

 Hiroaki Kitano (Nature 420:206-210, 2002) 
  

“The problem of biology is not to stand aghast at the complexity but to 
 conquer it.” 

 Sydney Brenner (Interview, Discover Vol. 25 No. 04, April 2004) 
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