
 LNBI 3737, pp. 145 – 168, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Abstract Machines of Systems Biology

Luca Cardelli

Microsoft Research

Abstract. Living cells are extremely well-organized autonomous systems,
consisting of discrete interacting components. Key to understanding and
modeling their behavior is modeling their system organization. Four distinct
chemical toolkits (classes of macromolecules) have been characterized, each
combinatorial in nature. Each toolkit consists of a small number of simple
components that are assembled (polymerized) into complex structures that
interact in rich ways. Each toolkit abstracts away from chemistry; it embodies
an abstract machine with its own instruction set and its own peculiar interaction
model. These interaction models are highly effective, but are not ones
commonly used in computing: proteins stick together, genes have fixed output,
membranes carry activity on their surfaces. Biologists have invented a number
of notations attempting to describe these abstract machines and the processes
they implement. Moving up from molecular biology, systems biology aims to
understand how these interaction models work, separately and together.

1 Introduction

Following the discovery of the structure of DNA, just over 50 years ago, molecular
biologists have been unraveling the functioning of cellular components and networks.
The amount of molecular-level knowledge accumulated so far is absolutely amazing.
And yet we cannot say that we understand how a cell works, at least not to the extent
of being able to easily modify or repair a cell. The process of understanding cellular
components is far from finished, but it 4is becoming clear that simply obtaining a full
part list will not tell us how a cell works. Rather, even for substructures that have been
well characterized, there are significant difficulties in understanding how components
interact as systems to produce the observed behaviors. Moreover, there are just too
many components, and too few biologists, to analyze each component in depth in
reasonable time. Similar problems occur also at each level of biological organization
above the cellular level.

Enter systems biology, which has two aims. The first is to obtain massive amounts
of information about whole biological systems, via high-throughput experiments that
provide relatively shallow and noisy data. The Human Genome Project is a
prototypical example: the knowledge it accumulated is highly valuable, and was
obtained in an automated and relatively efficient way, but is just the beginning of
understanding the human genome. Similar effort are now underway in genomics
(finding the collection of all genes, for many genomes), in transcriptomics (the
collection of all actively transcribed genes), in proteomics (the collection of all

C. Priami et al. (Eds.): Trans. on Comput.Syst Biol. III,.

146 L. Cardelli

proteins), and in metabolomics (the collection of all metabolites). Bioinformatics is
the rapidly growing discipline tasked with collecting and analyzing such omics data.

The other aim of syst4ems biology is to build, with such data, a science of the
principles of operation of biological systems, based on the interactions between
components. Biological systems are obviously well-engineered: they are very
complex and yet highly structured and robust. They have only one major engineering
defect: they have not been designed, in any standard sense, and so are not laid out as
to be easily understood. It is not clear that any of the engineering principles of
operations we are currently familiar with are fully applicable. Understanding such
principles will require an interdisciplinary effort, using ideas from physics,
mathematics, and computing. These, then, are the promises of systems biology: it will
teach us new principles of operation, likely applicable to other sciences, and it will
leverage other sciences to teach us how cells work in an actionable way.

In this paper, we look at the organization of biological systems from an
information science point of view. The main reason is quite pragmatic: as we
increasingly map out and understand the complex interactions of biological
components, we need to write down such knowledge, in such a way that we can
inspect it, animate it, and understand its principles. For genes, we can write down long
but structurally simple strings of nucleotides in a 4-letter alphabet, that can be stored
and queried. For proteins we can write down strings of amino acids in a 20-letter
alphabet, plus three-dimensional information, which can be stored a queried with a
little more difficulty. But how shall we write down biological processes, so that they
can be stored and queried? It turns out that biologists have already developed a
number of informal notation, which will be our starting points. These notations are
abstractions over chemistry or, more precisely, are abstractions over a number of
biologically relevant chemical toolkits.

2 Biochemical Toolkits

Apart from small molecules such as water and some metabolites, there are four large
classes of macromolecules in a cell. Each class is formed by a small number of units
that can be combined systematically to produce structures of great complexity. That
is, to produce both individual molecules of essentially unbounded size, and multi-
molecular complexes.

The four classes of macromolecules are as follows. Different members of each
class can have different functions (structure, energy storage, etc.). We focus on the
most combinatorial, information-bearing, members of each class:

• Nucleic acids. Five kinds of nucleotides combine in ordered sequences to form
two nucleic acid polymers: DNA and RNA. As data structures, RNA is lists, and
DNA is doubly-linked lists. Their most prominent role is in coding information,
although they also have other important functions.

• Proteins. About 20 kinds of amino acids combine linearly to form proteins. Each
protein folds in a specific three-dimensional shape (sometimes from multiple
strings of amino acids). The main and most evolutionary stable property of a
protein is not the exact sequence of amino acids that make it up, nor the exact
folding process, but its collection of surface features that determine its function.

 Abstract Machines of Systems Biology 147

As data structures, proteins are records of features and, since these features are
often active and stateful, they are objects in the object-oriented programming
sense.

• Lipids: Among the lipids, phospholipids have a modular structure and can self-
assemble into closed double-layered sheets (membranes). Membranes differ in
the proportion and orientation of different phospholipids, and in the kinds of
proteins that are attached to them. As data structures, membranes are containers,
but with an active surface that acts as an interface to its contents.

• Carbohydrates: Among the carbohydrates, oligosaccharides are sugars linked in
a branching structure. As data structures, oligosaccharides are trees. They have a
vast number of configurations, and a complex assembly processes.
Polysaccharides form even bigger structures, although usually of a semi-regular
kind (rods, meshes). We do not consider carbohydrates further, although they are
probably just as rich and interesting as the other toolkits. They largely have to do
with energy storage and with cell surface and extracellular structures. But it
should be noted that they too have a computational role, in forming unique
surface structures that are subject to recognition. Many proteins are grafted with
carbohydrates, through a complex assembly process called glycosylation.

Eukaryotic cells have an extensive array of membrane-bound
compartments and organelles with up to 4 levels of nesting. The
nucleus is a double membrane. The external membrane is less
than 10% of the total.

Fig. 1. Eukaryotic Cell

From MOLECULAR CELL
BIOLOGY, 4/e by Harvey
Lodish, et. al. ©1986,
1990, 1995, 2000 by W.H.
Freeman and Company.
Figure 1-1, Page 1. Used
with permission.

148 L. Cardelli

Out of these four toolkits arises all the organic chemicals, composing, e.g.,
eukaryotic cells (Figure 1, [32] p.1). Each toolkit has specific structural properties (as
emphasized by the bolded words above), systematic functions, and a peculiarly rich
and flexible mode of operation. These peculiar modes of operation and systematic
functions are what we want to emphasize, beyond their chemical realization.

Cells are without doubt, in many respects, information processing devices. Without
properly processing information from their environment, they soon die for lack of
nutrients or for predation. The blueprint of a cell, needed for its functioning and
reproduction, is stored as digital information in the genome; an essential step of
reproduction is the copying of that digital information. There are hints that
information processing in the genome of higher organisms is much more sophisticated
than currently generally believed [33].

We could say that cells are based on chemistry that also perform some information
processing. But we take a more extreme position, namely that cells are chemistry in
the service of information processing. Hence, we look for information processing
machinery within the cellular machinery, and we try to understand the functioning of
the cell in terms of information processing, instead of chemistry. In fact, we can
readily find such information processing machinery in the chemical toolkits that we
just described, and we can switch fairly smoothly from the classical description of
cellular functioning in terms of classes of macromolecules, to a description based on
abstract information-processing machines.

3 Abstract Machines

An abstract machine is a fictional information-processing device that can, in
principle, have a number of different physical realizations (mechanical, electronic,
biological, or even software). An abstract machine is characterized by:

• A collection of discrete states.
• A collection of operations (or events) that cause discrete transitions between

states.

The evolution of states through transitions can in general happen concurrently. The
adequacy of this generic model for describing complex systems is argued, e.g.,
in [22].

Each of the chemical toolkits we have just described can be seen as a separate
abstract machine with an appropriate set of states and operations. This abstract
interpretations of chemistry is by definition fictional, and we must be aware of its
limitation. However, we must also be aware of the limitations of not abstracting,
because then we are in general limited to work at the lowest level of reality (quantum
mechanics) without any hope of understanding higher principles of organization. The
abstract machines we consider are each grounded in a different chemical toolkit
(nucleotides, amino acids, and phospholipids), and hence have some grounding in
reality. Moreover, each abstract machine corresponds to a different kind of informal
algorithmic notation that biologists have developed (Figure 2, bubbles): this is
further evidence that abstract principles of organization are at work.

 Abstract Machines of Systems Biology 149

Fig. 2. Abstract Machines, Molecular Basis, and Notations

The Gene Machine (better known as Gene Regulatory Networks) performs
information processing tasks within the cell. It regulates all other activities, including
assembly and maintenance of the other machines, and the copying of itself. The
Protein Machine (better known as Biochemical Networks) performs all mechanical
and metabolic tasks, and also some signal processing. The Membrane Machine (better
known as Transport Networks) separates different biochemical environments, and
also operates dynamically to transport substances via complex, discrete, multi-step
processes.

These three machines operate in concert and are highly interdependent. Genes
instruct the production of proteins and membranes, and direct the embedding of
proteins within membranes. Some proteins act as messengers between genes, and
others perform various gating and signaling tasks when embedded in a membrane.
Membranes confine cellular materials and bear proteins on their surfaces. In
eukaryotes, membranes confine the genome, so that local conditions are suitable for
regulation, and confine other reactions carried out by proteins in specialized vesicles.

Therefore, to understand the functioning of a cell, one must understand also how
the various machines interact. This involves considerable difficulties (e.g. in
simulations) because of the drastic difference in time and size scales: proteins
interacts in tiny fractions of a second, while gene interactions take minutes; proteins
are large molecules, but are dwarfed by chromosomes, and membranes are larger still.
Before looking at the interactions among the different machine in more detail, we start
by discussing each machine separately.

Gene
Machine

Protein
Machine

M
ak

es
 p

ro
te

in
s,

w
he

re
/w

he
n/

ho
w

m
uc

h D
irects m

em
brane construction

and protein em
bedding

Regulation

Metabolism, Propulsion
Signal Processing
Molecular Transport

Si
gn

al
s

co
nd

iti
on

s
an

d
ev

en
ts H

olds genom
e(s),

confines regulators

Confinement
Storage
Bulk Transport

Implements fusion, fission

Holds receptors, actuators
hosts reactions

Phospholipids

Nucleotides

Aminoacids

Model Integration
Different time

and space scales
P Q

Machine
Phospholipids

Membrane

150 L. Cardelli

4 The Protein Machine (Biochemical Networks)

4.1 Principles of Operation

Proteins are long folded-up strings of amino acids with precisely determined, but
often mechanically flexible, three-dimensional shapes. If two proteins have surface
regions that are complementary (both in shape and in charge), they may stick to each
other like Velcro, forming a protein complex where a multitude of small atomic
forces crates a strong bond between individual proteins. They can similarly stick
highly selectively to other substances. During a complexation event, a protein may be
bent or opened, thereby revealing new interaction surfaces. Through complexation
many proteins act as enzymes: they bring together compounds, including other
proteins, and greatly facilitate chemical reactions between them without being
themselves affected.

Proteins may also chemically modify each other by attaching or removing small
phosphate groups at specific sites. Each such site acts as a boolean switch: over a
dozen of them can be present on a single protein. Addition of a phosphate group
(phosphorilation) is performed by an enzyme that is then called a kinase. Removal
of a phosphate group (dephosphorilation) is performed by an enzyme that is then
called a phosphatase. For example, a protein phosphatase kinase kinase is a protein
that phosphorilates a protein that phosphorilates a protein that dephosphorilates a
protein. Each (de-)phosphorilation may reveal new interaction surfaces, and each
surface interaction may expose new phosphorilation sites.

It turns out that a large number of protein interactions work at the level of
abstraction just described. That is, we can largely ignore chemistry and the protein
folding process, and think of each protein as a collection of features (binding sites and
phosphorilation sites) whose availability is affected by (de-)complexation and
(de-)phosphorilation interactions. This abstraction level is emphasized in Kohn’s
Molecular Interaction Maps graphical notation [29][27] (Figure 4).

We can describe the operation of the protein machine as follows (Figure 3). Each
protein is a collection of sites and switches; each of those can be, at any given time,
either available or unavailable. Proteins can join at matching sites, to form bigger and
bigger complexes. The availability of sites and switches in a complex is the state of
the complex. A system is a multiset of (disjoint) complexes, each in a given state.

The protein machine has two kinds of operations. (1) An available switch on a
complex can be turned on or off, resulting in a new state where a new collection of
switches and sites is available. (2) Two protein complexes can combine at available
sites, or one complex can split into two, resulting in a new state where a new
collection of switches and sites is available.

Who is driving the switching and binding? Other proteins do. There are tens of
thousands of proteins in a cell, so the protein machine has tens of thousands of+
“primitive instructions”; each with a specific way of acting on other proteins (or
metabolites). For each cellular subsystem one must list the proteins involved, and
how each protein interacts with the other proteins in terms of switching and
binding.

 Abstract Machines of Systems Biology 151

Fig. 3. The Protein Machine Instruction Set

From [29]. A: graphical primitives. B: complexation and phosphorilation. C: enzymatic
diagram and equivalent chemical reactions. D: map of the p53-Mdm2 and DNA Repair
Regulatory Network.

Fig. 4. Molecular Interaction Maps Notation

Reprinted from
Molecular Biology
of the Cell (Mol.
Biol. Cell 1999 10:
2703-2734) with
the permission of
The American
Society for Cell
Biology.

A

C
B

D

Reprinted from
Molecular Biology
of the Cell (Mol.
Biol. Cell 1999 10:
2703-2734) with
the permission of
The American
Society for Cell
Biology.

A

C
B

D

Protein

On/Off switches

Binding Sites

Inaccessible

Inaccessible

Switching of accessible switches.
- May cause other switches and
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific
proteins in specific states.

Binding on accessible sites.
- May cause other switches and
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific
proteins in specific states.

Each protein has a structure
of binary switches and binding sites.
But not all may always be accessible.

152 L. Cardelli

4.2 Notations

Finding a suitable language in which to cast such an abstraction is a non-trivial task.
Kohn designed a graphical notation, resulting in pictures such as Figure 4 [29]. This
was a tremendous achievement, summarizing hundreds of technical papers in page-
sized pictures, while providing a sophisticated and expressive notation that could be
translated back into chemical equations according to semi-formal guidelines. Because
of this intended chemical semantics, the dynamics of a systems is implied in Kohn’s
notation, but only by translation to chemical (and hence kinetic) equations. The
notation itself has no dynamics, and this is one of its main limitation. The other major
limitation is that, although graphically appealing, it tends to stop being useful when
overflowing the borders of a page or of a whiteboard (the original Kohn maps span
several pages).

Other notations for the protein machine can be devised. Kitano, for example,
improved on the conciseness, expressiveness, and precision of Kohn’s notation
[28], but further sophistication in graphical notation is certainly required along the
general principles of [18]. A different approach is to devise a textual notation,
which inherently has no “page-size” limit and can better capture dynamics;
examples are Bio-calculus [38], and most notably κ-calculus [14][15], whose
dynamics is fully formalized. But one may not need to invent completely new
formalisms. Regev and Shapiro, in pioneering work [49][47], described how to
represent chemical and biochemical interactions within existing process calculi (π-
calculus). Since process calculi have a well understood dynamics (better
understood, in fact, than most textual notations that one may devise just for the
purpose), that approach also provides a solid basis for studying systems expressed
in such a notation. Finally, some notations incorporate both continuous and discrete
aspects, as in Charon [3] and dL-systems [45].

4.3 Example: MAPK Cascade

The relatively simple Kohn map in 0 (adapted from [25]) describes the behavior of a
circuit that causes Boolean-like switching of an output signal in presence of a very
weak input signal. (It can also be described as a list of 10 chemical reactions, or of 25
differential/ algebraic equations, but then the network structure is not so apparent.)
This network, generically called a MAPK cascade, has multiple biochemical
implementations and variations. The components are proteins (enzymes, kinases,
phophatases, and intermediaries). The circle-arrow Kohn symbol for “enzyme-
assisted reaction” can signify here either a complexation that facilitates a reaction, or
a phosphorilation/dephosphorilation, depending on the specific proteins.

The system initially contains reservoirs of chemicals KKK, KK, and K (say, 100
molecules each), which are transformed by the cascade into the kinases KKK*, KK-
PP, and K-PP respectively. Enzymes E2, KK-Phosphatase and K-Phosphatase are
always available (say, 1 molecule each), and tend to drive the reactions back.
Appearance of the input enzyme E1 in very low numbers (say, less than 5) causes a

 Abstract Machines of Systems Biology 153

Fig. 5. ++ MAPK Cascade

sharp (Boolean-like 0-100) transition in the concentration of the output K-PP. The
concentrations of the intermediaries KK-PP, and especially KKK*, raise in a much
smoother, non-Boolean-like, fashion. Given the mentioned concentrations, the
network works fine by setting all reaction rates to equal values.

To notice here is that the detailed description of each of the individual proteins,
with their folding processes, surface structures, interaction rates under different
conditions, etc. could take volumes. But what makes this signal processing network
work is the structure of the network itself, and the relatively simple interactions
between the components.

4.4 Summary

The fundamental flavor of the Protein Machine is: fast synchronous binary
interactions. Binary because interactions occur between two complementary surfaces,
and because the likelihood of three-party instantaneous chemical interactions can be
ignored. Synchronous because both parties potentially feel the effect of the
interaction, when it happens. Fast because individual chemical reactions happen at
almost immeasurable speeds. The parameters affecting reaction speed, in a well-
stirred solution, are just a reaction-specific rate constant having to do with surface
affinity, plus the concentrations of the reagents (and the temperature of the solution,
which is usually assumed constant). Concentration affects the likelihood of molecules
randomly finding each other by Brownian motion. Note that Brownian motion is
surprisingly effective at a cellular scale: a molecule can “scan” the equivalent volume
of a bacteria for a match in 1/10 of a second, and it will in fact scan such a bounded
volume because random paths in 3D do not return to the origin.

5 The Gene Machine (Gene Regulatory Networks)

5.1 Principles of Operation

The central dogma of molecular biology states that DNA is transcribed to RNA, and
RNA is translated to proteins (and then proteins do all the work). This dogma no
longer paints the full picture, which has become considerably more detailed in recent
years. Without entering into a very complex topic [33], let us just note that some
proteins go back and bind to DNA. Those proteins are called transcription factors
(either activators or repressors); they are produced for the purpose of allowing one
gene (or signaling pathway) to communicate with other genes. Transcription factors

K-PKKK KKK*

E1 (input)

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)
K-PKKK KKK*

E1 (input)

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

154 L. Cardelli

are not simple messages: they are proteins, which means they are subject to
complexation, phosphorilation, and programmed degradation, which all have a role in
gene regulation.

A gene is a stretch of DNA consisting of two (not necessarily contiguous or
unbroken) regions: an input (regulatory) region, containing protein binding sites for
transcription factors, and an output (coding) region, coding for one or more proteins
that the gene produces. Sometimes there are two coding regions, in opposite
directions [46], on count of DNA being a doubly-linked list. Sometimes two genes
overlap on the same stretch of DNA.

The output region functions according to the genetic code: a well understood and
almost universal table mapping triplets of nucleotides to one of about 20 amino acids,
plus start and stop triplets. The input region functions according to a much more
complex code that is still poorly understood: transcription factors, by their specific 3D
shapes, bind to specific nucleotide sequences in the input region, with varying binding
strength depending of the precision of the match.

Thus, the gene machine, although entirely determined by the digital information
coded in DNA, is not entirely digital in functioning: a digitally encoded protein,
translated and folded-up, uses its “analog” shape to recognize another digital string
and promote the next step of translation. Nonetheless, it is customary to ignore the
details of this process, and simply measure the effectiveness with which (the product
of) a gene affects another gene. This point of view is reflected in standard notation for
gene regulatory networks (Figure 7).

Fig. 6. The Gene Machine Instruction Set

In Figure 6, a gene is seen as a hardware gate, and the genome can be seen as a vast
circuit composed of such gates. Once the performance characteristics of each gate is
understood, one can understand or design circuits by combining gates, almost as one
would design digital or analog hardware circuits. The performance characteristics of
each gene in a genome is probably unique. Hence, as in the protein machine, we are
going to have thousands of “primitive instructions”: one for each gene.

A peculiarity of the gene machine is that a set of gates also determines the network
connectivity. This is in contrast with a hardware circuit, where there is a collection of
gates out of a very small set of “primitive gates”, and then a separate wiring list. Each
gene has a fixed output; the protein the gene codes for (although post-processing may
vary such output). Similarly, a gene has a fixed input: the fixed set of binding sites in

Coding region

Positive Regulation
TranscriptionNegative Regulation

Regulatory region

Gene
(Stretch of DNA)

Input Output
Input

Output1Output2
Input

Output1Output2

“External choice”
in the phage

Lambda switch

 Abstract Machines of Systems Biology 155

the input region. Therefore, by knowing the nucleotide sequence of each gene in a
genome, one (in principle) also knows the network connectivity without further
information. This situation is similar to a software assembly-language program:
“Line 3: Goto Line 5” where both the input and output addresses are fixed, and the
flow graph is determined by the instructions in the program. However, a further
difference is that the output of a gene is not the “address” of another gene: it is a
protein that can bind with varying strength to a number of other genes.

The state of a gene machine is the concentrations of the transcription factors
produced by each gene (or arriving from the environment). The operations, again,
are the input-output functions of each gene. But what is the “execution” of a gene
machine? It is not as simple as saying that one gene stimulates or inhibits another
gene. It is known that certain genes perform complex computations on their inputs
that are a mixture of boolean, analog, and multi-stage operators (Figure 7-B [54]).
Therefore, the input region of each gene can itself be a sophisticated machine.

Whether the execution of a gene machine should be seen as a continuous or
discrete process, both in time and in concentration levels, is already a major
question. Qualitative models (e.g.: random and probabilistic Boolean networks
[26][50], asynchronous automata [52], network motifs [36]) can provide more insights
that quantitative models, whose parameters are hard to come by and are possibly not
critical. On the other hand, it is understood that pure Boolean models are inadequate
in virtually all real situations. Continuous, stochastic, and decay aspect of
transcription factor concentrations are all critical in certain situations [34][53].

5.2 Notations

Despite all these difficulties and uncertainties, a single notation for the gene machine
is in common use, which is the gene network notation of Figure 7-A. There, the gates
are connected by either “excitatory” (pointed arrow) or “inhibitory” (blunt arrow)
links. What such relationships might mean is often left unspecified, except that, in a
common model, a single constant weight is attached to each link.

Any serious publication would actually start from a set of ordinary differential
equations relating concentrations of transcription factors, and use pictures such at
Figure 7-A only for illustration, but this approach is only feasible for small networks.
The best way to formalize the notation of gene regulatory networks is still subject to
debate and many variations, but there is little doubt that formalizing such a notation
will be essential to get a grasp on gene machines the size of genomes (the smallest of
which, M.Genitalium, is on the order of 150 Kilobytes, and one closer to human
cellular organization, Yeast, is 3 Megabytes).

5.3 Example: Repressilator

The circuit in Figure 8, artificially engineered in E.Coli bacteria [19], is a simple

oscillator (given appropriate parameters). It is composed of three genes with single input

that inhibit each other in turn. The circuit gets started by constitutive transcription: each

156 L. Cardelli

A [16]: gene regulatory network involved in sea urchin embryo development: B [54]:
boolean/arithmetic diagram of module A, the last of 6 interlinked modules in the regulatory
region of the endo16 sea urchin gene; G,F,E,DC,B are module outputs feeding into A, the
whole region is 2300 base pairs.

Fig. 7. Gene Regulatory Networks Notation

Fig. 8. Repressilator Circuit

gene autonomously produces output in absence of inhibition, and the produced output
decays at a certain stochastic rate. The symmetry of the circuit is broken by the underlying
stochastic behavior of chemical reactions. Its behavior con be understood as follows.
Assume that gene a is at some point not inhibited (i.e. the product B of gene b is absent).
Then gene a produces A, which shuts down gene c. Since gene c is no longer producing C,
gene b eventually starts producing B, which shuts down gene a. And so on.

5.4 Summary
The fundamental flavor of the Gene Machine is: slow asynchronous stochastic
broadcast. The interaction model is really quite strange, by computing standards. Each
gene has a fixed output, which is not quite an address for another gene: it may bind to

c b

aA B

C

Or

And

GateAmplify
Sum

DNA
Begin coding region

A

B

Reprinted with permission
from Yuh et al., SCIENCE
279:1896-1902. Copyright
1998 AAAS. Fig 6, p.1901.

Reprinted with permission from
Davidson et al., PNAS 100(4):1475–1480.

Copyright 2003 National Academy of
Sciences, U.S.A. Fig 1, p. 1476.

 Abstract Machines of Systems Biology 157

a large number of other genes, and to multiple locations on each gene. The
transcription factor is produced in great quantities, usually with a well-specified time-
to-live, and needs to reach a certain threshold to have an effect. On the other hand,
various mechanisms can guarantee Boolean-like switching when the threshold is
crossed, or, very importantly, when a message is not received. Activation of one gene
by another gene is slow by any standard: typically one to five minutes, to build up the
necessary concentration1. However, the genome can slowly direct the assembly-on-
need of protein machines that then act fast: this “swap time” is seen in experiments
that switch available nutrients. The stochastic aspect is fundamental because, e.g.,
with the same parameters, a circuit may oscillate under stochastic/discrete semantics,
but not under deterministic/continuous semantics [53]. One reason is that a stochastic
system may decay to zero molecules of a certain kind at a given time, and this can
cause switching behavior, while a continuous system may asymptotically decay only
to a non-zero level.

6 The Membrane Machine (Transport Networks)

6.1 Principles of Operation

A cellular membrane is an oriented closed surface that performs various molecular
functions. Membranes are not just containers: they are coordinators and sites of major
activity2. Large functional molecules (proteins) are embedded in membranes with
consistent orientation, and can act on both sides of the membrane simultaneously.
Freely floating molecules interact with membrane proteins, and can be sensed,
manipulated, and pushed across by active molecular channels. Membranes come in
different kinds, distinguished mostly by the proteins embedded in them, and typically
consume energy to perform their functions. The consistent orientation of membrane
proteins induces an orientation on the membrane.

One of the most remarkable properties of biological membranes is that they form a
two-dimensional fluid (a lipid bilayer) embedded in a three-dimensional fluid (water).
That is, both the structural components and the embedded proteins freely diffuse on
the two-dimensional plane of the membrane (unless they are held together by specific
mechanisms). Moreover, membranes float in water, which may contain other
molecules that freely diffuse in that three-dimensional fluid. Membrane themselves
are impermeable to most substances, such as water and protons, so that they partition
the three-dimensional fluid. This organization provides a remarkable combination of
freedom and structure.

Many membranes are highly dynamic: they constantly shift, merge, break apart,

and are replenished. But the transformations that they support are naturally limited,

1 Consider that bacteria replicate in only 20 minutes while cyclically activating hundreds of

genes. It seems that, at lest for bacteria, the gene machine can make “wide” but not very
“deep” computations [36].

2 “For a cell to function properly, each of its numerous proteins must be localized to the correct
cellular membrane or aqueous compartment.” [32] p.675.

158 L. Cardelli

Fig. 9. The Membrane Machine Instruction Set (2D)

partially because membranes must preserve their proper orientation, and partially
because membrane transformations need to be locally-initiated and continuous. For
example, it is possible for a membrane to gradually buckle and create a bubble that
then detaches, or for such a bubble to merge back with a membrane. But it is not
possible for a bubble to “jump across” a membrane (only small molecules can do
that), of for a membrane to turn itself inside-out.

The basic operations on membranes, implemented by a variety of molecular
mechanisms, are local fusion (two patches merging) and local fission (one patch
splitting in two) [8]. We discuss first the 2D case, which is instructive and for which
there are some formal notations, and then the 3D case, the real one for which there are
no formal notations.

In two dimensions (Figure 9), at the local scale of membrane patches, fusion and
fission become indistinguishable as a single operation, switch, that takes two
membrane patches, i.e. to segments A-B and C-D, and switches their connecting
segments into A-C and B-D (crossing is not allowed). We may say that, in 2D, a
switch is a fusion when it decreases the number of whole membranes, and is a fission
when it increases such number.

When seen on the global scale of whole 2D membranes, switch induces four
operations: in addition to the obvious splitting (Mito) and merging (Mate) of
membranes, there are also operation, quite common in reality, that cause a membrane
to “eat” (Endo) or “spit” (Exo) another subsystem (P). There are common special
cases of Mito and Endo, when the subsystem P consists of zero (Drip, Pino) or one
(Bud, Phago) membranes. All these operations preserve bitonality (dual coloring);
that is, if a subsystem P is on a dark (or light) background before a reaction, it will be

P

Pino

PhagoR R
Arbitrary

subsystem

Zero case

One case
Exo

Endo
P Q Q

P Q

Q Q

Q Q

Endo
special
cases

P Q P Q
DripP P

BudP PR R

One case

Arbitrary
subsystem

Mate

Mito

P Q
Zero case

Fusion

Fission

Mito
special
cases

Switch

A B

C D

A B

C D

P

Pino

PhagoR R
Arbitrary

subsystem

Zero case

One case
Exo

Endo
P Q Q

P QP Q

Q Q

Q Q

Endo
special
cases

P Q P Q
DripP P

BudP PR R

One case

Arbitrary
subsystem

Mate

Mito

P QP Q
Zero case

Fusion

Fission

Fusion

Fission

Mito
special
cases

Switch

A B

C D

A B

C D

Switch

A B

C D

A B

C D

 Abstract Machines of Systems Biology 159

on a dark (or light) background after the reaction. Bitonality is related to preservation
of membrane orientation, and to locality of operations (a membrane jumping across
another one does not preserve bitonality). Bitonal operations ensure that what is or
was outside the cell (light) never gets mixed with what is inside (dark). The main
reactions that violate bitonality are destructive and non-local ones (such a digestion,
not shown). Note that Mito/Mate preserve the nesting depth of subsystems, and hence
they cannot encode Endo/Exo; instead, Endo/Exo can encode Mito/Mate [12].

Each row consists of initial state, two intermediate states, and final state
(and back).

Fig. 10. The Membrane Machine Instruction Set (3D)

In three dimensions, the situation is more complex (Figure 10). There are 2 distinct
local operations on surface patches, inducing 8 distinct global operations that change
surface topology. Fusion joins two Positively curved patches (in the shapes of domes)
into one Negatively curved patch (in the shape of a hyperbolic cooling tower) by
allowing the P-patches to kiss and merge. Fission instead splits one N-patch into two
P-patches by pinching the N-patch. Fusion does not necessarily decrease the number
of membranes in 3D (it may turn a sphere into a torus in two different ways: T-Endo
T-Mito), and Fission does not necessarily increase the number of membranes (it may
turn a torus into a sphere in two different ways: T-Exo, T-Mate). In addition, Fusion
may merge two spheres into one sphere in two different ways (S-Exo, S-Mate), and
Fission may split one sphere into two spheres in two different ways (S-Endo, S-Mito).
Note that S-Endo and T-Endo have a common 2D cross section (Endo), and similarly
for the other three pairs.

Cellular structures have very interesting dynamic topologies: the eukaryotic
nuclear membrane, for example, is two nested spheres connected by multiple toroidal
holes (and also connected externally to the Endoplasmic Reticulum). This whole
structure is disassembled, duplicated, and reassembled during cellular mitosis.
Developmental processes based on cellular differentiation are also within the realm of
the Membrane Machine, although geometry, in addition to topology, is an important
factor there.

160 L. Cardelli

6.2 Notations
The informal notation used to describe executions of the Membrane Machine does not
really have a name, but can be seen in countless illustrations (e.g., Figure 11, [32]
p.730). All the stages of a whole process are summarized in a single snapshot, with
arrows denoting operations (Endo/Exo etc.) that cause transitions between states. This
kind of depiction is natural because often all the stages of a process are observed at
once, in photographs, and much of the investigation has to do with determining their
proper sequence and underlying mechanisms. These pictures are usually drawn in two
colors, which is a hint of the semantic invariant we call bitonality.

LDL particle (left) is recognized, ingested, and transported to a lysosome vesicle (right).
[32], p.730.

Fig. 11. Transport Networks Notation

Some membrane-driven processes are semi-regular, and tend to return to
something resembling a previous configuration, but they are also stochastic, so no
static picture or finite-state-automata notation can tell the real story. Complex
membrane dynamics can be found in the protein secretion pathway, through the Golgi
system, and in many developmental processes. Here too there is a need for a precise
dynamic notation that goes beyond static pictures; currently, there are only a few such
notations [42][48][12].

6.3 Example: LDL Cholesterol Degradation

The membrane machine runs real algorithms: Figure 11 depicts LDL-cholesterol
degradation. The “problem” this algorithm solves is to transport a large object (an
LDL particle) to an interior compartment where it can be degraded; the particle is too
big to just cross the membrane. The “solution”, by a precise sequence of discrete steps
and iterations, utilizes proteins embedded in the external cellular membrane and in the
cytosol to recognize, bind, incorporate, and transport the particle inside vesicles to the
desired compartment, all along recycling the active proteins.

From MOLECULAR CELL
BIOLOGY, 4/e by Harvey
Lodish, et. al. ©1986,
1990, 1995, 2000 by W.H.
Freeman and Company.
Figure 17-46, page 730 .
Used with permission.

From MOLECULAR CELL
BIOLOGY, 4/e by Harvey
Lodish, et. al. ©1986,
1990, 1995, 2000 by W.H.
Freeman and Company.
Figure 17-46, page 730 .
Used with permission.

 Abstract Machines of Systems Biology 161

6.4 Summary

The fundamental flavor of the Membrane Machine is: fluid-in-fluid architecture,
membranes with embedded active elements, and fusion and fission of compartments
preserving bitonality. Although dynamic compartments are common in computing,
operations such as endocytosis and exocytosis have never explicitly been suggested as
fundamental. They embody important invariants that help segregate cellular materials
from environmental materials. The distinction between active elements embedded on
the surface of a compartment, vs. active elements contained in the compartment,
becomes crucial with operations such as Exo. In the former case, the active elements
are retained, while in the latter case they are lost to the environment.

7 Three Machines, One System

7.1 Principles of Operation
We have discussed how three classes of chemicals, among others, are fundamental to
cellular functioning: nucleotides (nucleic acids), amino acids (proteins), and
phospholipids (membranes). Each of our abstract machines is based primarily on one
of these classes of chemicals: amino acids for the protein machine, nucleotides for the
gene machine, and phospholipids for the membrane machine.

These three classes of chemicals are however heavily interlinked and
interdependent. The gene machine “executes” DNA to produce proteins, but some of
those proteins, which have their own dynamics, are then used as control elements of
DNA transcription. Membranes are fundamentally sheets of pure phospholipids, but
in living cells they are heavily doped with embedded proteins which modulate
membrane shape and function. Some protein translation happens only through
membranes, with the RNA input on one side, and the protein output on the other side
or threaded into the membrane.

Therefore, the abstract machines are interlinked as well, as illustrated in Figure 2.
Ultimately, we will need a single notation in which to describe all three machines
(and more), so that a whole organism can be described.

7.2 Notations
What could a single notation for all three machines (and more) look like? All formal
notations known to computing, from Petri Nets to term-rewriting systems, have
already been used to represent aspects of biological systems; we shall not even
attempt a review here. But none, we claim, has shown the breadth of applicability and
scalability of process calculi [35], partially because they are not a single notation, but
a coherent conceptual framework in which one can derive suitable notations. There is
also a general theory and notation for such calculi [37], which can be seen as the
formal umbrella under which to unify different abstract machines.

Major progress in using process calculi for describing biological systems was
achieved in Aviv Regev’s Ph.D. thesis [47], where it is argued that one of the standard
existing process calculi, π-calculus, enriched with a stochastic semantics [24][43][44],
is extraordinarily suitable for describing both molecular-level interactions and higher

162 L. Cardelli

levels of organization. The same stochastic calculus is now being used to describe
genetic networks [30]. For membrane interactions, though, we need something
beyond basic process calculi, which have no notion of compartments. Ambient
Calculus [13] (which extends π-calculus with compartments) has been adapted
[47][48] to represent biological compartments and complexes. A more recent attempt,
Brane Calculus [12], embeds the biological invariants and 2D operations from
Section 6.

These experiences point at process calculi as, at least, one of the most promising
notational frameworks for unifying different aspects of biological representation. In
addition, the process calculus framework is generally suitable for relating different
levels of abstractions, which is going to be essential for feasibly representing
biological systems of high architectural complexity.

Figure 12 gives a hint of the difference in notational approach between process
calculi and more standard notations. Ordinary chemical reaction notation is a process
calculus: it is a calculus of chemical processes. But it is a notation that focuses on
reactions instead of components; this becomes a disadvantage when components have
rich structure and a large state space (like proteins). In chemical notation one
describes each state of a component as a different chemical species (Na, Na+), leading
to an combinatorial blowup in the description of the system (the blowup carries over
to related descriptions in terms of differential equations). In process calculus notation,
instead, the components are described separately, and the reactions (occurring through
complementary event pairs such as !r and ?r) come from the interactions of the
components. Interaction leads to a combinatorial blowup in the dynamics of
interactions, but not in the description of the systems, just like in ordinary object-
oriented programming.

On the left of Figure 12 we have a chemical description of a simple system of
reactions, with a related (non-composition) Petri Nets description. On the right we
have a process calculus description of the same system, with a related (compositional)
description in terms of interacting automata (e.g., Statecharts [22] with sync
pseudostates). Both kinds of descriptions can take into account stochastic reaction
rates (k1,k2), and both can be mapped to the same stochastic model (Continuous-
Time Markov Chains), but the descriptions themselves have different structural
properties. From a simulation point of view, the left-hand-side approach leads to large
sparse matrices of chemical species vs. chemical reactions, while the right-hand-side
approach leads to large multisets of interacting objects.

7.3 Example: Viral Infection
The example in Figure 13 (adapted from [2], p.279) is the “algorithm” that a specific
virus, the Semliki Forest virus, follows to replicate itself. It is a sequence of steps that
involve the dynamic merging and splitting of compartments, the transport of
materials, the operation of several proteins, and the interpretation of genetic
information. The algorithm is informally described in English below. A concise
description in Brane Calculus is presented in [12], which encodes the infection
process at high granularity, but in its entirety, including the membrane, protein, and
gene aspects.

 Abstract Machines of Systems Biology 163

Fig. 12. Chemical vs. P+rocess Calculi Notations

Fig. 13. Viral Replication

A virus is too big to cross a cellular membrane. It can either punch its RNA
through the membrane or, as in this example, it can enter a cell by utilizing standard

Na + Cl →k1 Na+ + Cl-

Na+ + Cl- →k2 Na + Cl
Na

Na
+

Cl

Cl-

!r ?r !s?s

k1

k2

k1

k2

Na Cl

Na+ Cl-

k1

k2

A process calculus (chemistry)

Na =!rk1; ?sk2; Na
Cl = ?rk1; !sk2; Cl

Cl-

Na+

A different process calculus (π)

This Petri-Net-like graphical representation degenerates
into large monolithic diagrams: precise and dynamic, but
not scalable, structured, or maintainable.

A compositional graphical representation, and the
corresponding calculus.

Reaction
oriented
Reaction
oriented

Interaction
oriented

Maps to
a CTMC

Maps to
a CTMC

The same “model”

Interaction
oriented

1 line per
reaction

1 line per
component

Na + Cl →k1 Na+ + Cl-

Na+ + Cl- →k2 Na + Cl
Na

Na
+

Cl

Cl-

!r ?r !s?s

k1

k2

k1

k2

Na Cl

Na+ Cl-

k1

k2

A process calculus (chemistry)

Na =!rk1; ?sk2; Na
Cl = ?rk1; !sk2; Cl

Cl-

Na+

A different process calculus (π)

This Petri-Net-like graphical representation degenerates
into large monolithic diagrams: precise and dynamic, but
not scalable, structured, or maintainable.

A compositional graphical representation, and the
corresponding calculus.

Reaction
oriented
Reaction
oriented

Interaction
oriented

Maps to
a CTMC

Maps to
a CTMC

The same “model”

Interaction
oriented

1 line per
reaction

1 line per
component

Phago

Mate
Exo

Drip

Exo

Bud

RNA
Replication

Translation

Translation

Assembly

Nucleus

E
nd

os
om

e

Disassembly

Virus
RNA
Capsid
Membrane
Envelope protein

Endoplasmic
Reticulum

(via Golgi)

RNA

Budding

Vesicle

Nucleocapsid}

Cytosol

Infection Replication Progeny

Phago

Mate
Exo

Drip

Exo

Bud

RNA
Replication

Translation

Translation

Assembly

Nucleus

E
nd

os
om

e

Disassembly

Virus
RNA
Capsid
Membrane
Envelope protein

Endoplasmic
Reticulum

(via Golgi)

RNA

Budding

Vesicle

Nucleocapsid}

Cytosol

Infection Replication Progeny

164 L. Cardelli

cellular phagocytosis machinery. The virus consists of a capsid containing the viral
RNA (the nucleocapsid). The nucleocapsid is surrounded by a membrane that is
similar to the cellular membrane (in fact, it is obtained from it “on the way out”). This
membrane is however enriched with a special protein that plays a crucial trick on the
cellular machinery, as we shall see shortly.

Infection: The virus is brought into the cell by phagocytosis, wrapped in an additional
membrane layer; this is part of a standard transport pathway into the cell. As part of
that pathway, an endosome merges with the wrapped-up virus. At this point, usually,
the endosome causes some reaction to happen in the material brought into the cell. In
this case, though, the virus uses its special membrane protein to trigger an exocytosis
step that deposits the naked nucleocapsid into the cytosol. The careful separation of
internal and external substances that the cell usually maintains has now been
subverted.

Replication: The nucleocapsid is now in direct contact with the inner workings of the
cell, and can begin doing damage. First, the nucleocapsid disassembles, depositing the
viral RNA into the cytosol. This vRNA then follows three distinct paths. First it is
replicated to provide the vRNA for more copies of the virus. The vRNA is also
translated into proteins, by standard cellular machinery. The proteins forming the
capsid are synthesized in the cytosol. The virus envelope protein is instead
synthesized in the Endoplasmic Reticulum, and through various steps (through the
Golgi apparatus) ends up lining transport vesicles that merge with the cellular
membrane, along another standard transport pathway.

Progeny: In the cytosol, the capsid proteins self-assemble and incorporate copies of
the vRNA to form new nucleocapsids. The newly assembled nucleocapsids make
contact with sections of the cellular membrane that are now lined with the viral
envelope protein, and bud out to recreate the initial virus structure outside the cell.

7.4 Summary
The fundamental flavor of cellular machinery is: chemistry in the service of materials,
energy, and information processing. The processing of energy and materials (e.g., in
metabolic pathways) need not be emphasized here, rather we emphasize the
processing of information, which is equally vital for survival and evolution [1].
Information processing tasks are distributed through a number of interacting abstract
machines with wildly different architectures and principles of operation.

8 Outlook: Model Construction and Validation

The biological systems we need to describe are massively concurrent, heterogeneous,
and asynchronous: notoriously the hardest kinds of systems to cope with in
programming. They have stochastic behavior and high resilience to drastic changes of
environmental conditions. What organizational principles make these systems work
reliably, and what conditions make them fail? These are the questions that
computational modeling needs to answer.

 Abstract Machines of Systems Biology 165

There are two main aspects to modeling biological systems. Model construction,
requires first an understanding of the principles of operation. This is what we have
largely been discussing here: understanding the abstract machines of systems biology
should lead us to formal notations that can be used to build (large, complex)
biological models. But then there is model validation: a good scientific model has to
be verified or falsified through postdiction and prediction. We briefly list different
techniques that are useful for model validation, once a specific model has been written
up in a specific precise notation.

Stochastic simulation of biochemical systems is a common technique, typically
based on the physically well-characterized Gillespie algorithm [21], which originally
was devised for reaction-oriented descriptions. The same algorithm can be used also
for component-oriented (compositional) descriptions with a dynamically unbounded
set of chemical species [44]. Stochastic simulation is particularly effective for systems
with a relatively low number of interactions of any given kind, as is frequently the
case in cellular-scale systems. It produces a single (high-likelihood) trace of the
system for each run. It frequently reveals behavior that is difficult to anticipate, and
that may not even correspond to continuous deterministic approximations [34]. It can
be quantitatively compared with experiments.

Static analysis techniques of the kind common in programming can be applied to
the description of biological systems [40]. Control-flow analysis and mobility analysis
can reveal subsystems that cannot interact [7][41]. Causality analysis can reconstruct
the familiar network diagrams from process description [11]. Abstract interpretation
can be used to study specific facets of a complex model [39], including probabilistic
aspects [17].

Modelchecking is now used routinely in the analysis of hardware and software
systems that have huge state spaces; it is based on the state and transition model we
emphasized during the discussion of abstract machines. Modelchecking consists of a
model description language for building models, a query language for asking
questions about models (typically temporal logic), and an efficient state exploration
engine. The basic technology is very advanced, and is beginning to be applied to
descriptions of biological systems too, in various flavors. Temporal modelchecking
asks qualitative questions such as whether the systems can reach a certain state (and
how), or whether a state is a necessary checkpoint for reaching another state [9][20].
Quantitative modelchecking asks quantitative questions about, e.g., whether a certain
concentration can eventually equal or double some other concentration in some state
[4][6]. Stochastic modelchecking, based, e.g., on discrete or continuous-time Markov
chain models, can ask questions about the probability of reaching a given state [31].

Formal reasoning is the most powerful and hardest technique to use, but already
there is a long tradition of building tools for verifying properties of concurrent
systems. Typical activities in this area are checking behavioral equivalence between
different systems, or between different abstraction levels of the same system,
including now biological systems [10][5].

While computational approaches to biology and other sciences are now common,
several of the techniques outlined above are unique to computer science and virtually
unknown in other fields; hopefully they will bring useful tools and perspectives to
biology.

166 L. Cardelli

9 Conclusions

Many aspects of biological organization are more akin to discrete hardware and
software systems than to continuous systems, both in hierarchical complexity and in
algorithmic-like information-driven behavior. These aspects need to be reflected in
the modeling approaches and in the notations used to describe such systems, in order
to make sense of the rapidly accumulating experimental data.

“The data are accumulating and the computers are humming, what we are
lacking are the words, the grammar and the syntax of a new language…”

 Dennis Bray (TIBS 22(9):325-326, 1997)

“The most advanced tools for computer process description seem to be also the
best tools for the description of biomolecular systems.”

 Ehud Shapiro (Biomolecular Processes as Concurrent Computation,

Lecture Notes, 2001)

“Although the road ahead is long and winding, it leads to a future where biology
and medicine are transformed into precision engineering.”

 Hiroaki Kitano (Nature 420:206-210, 2002)

“The problem of biology is not to stand aghast at the complexity but to
 conquer it.”

 Sydney Brenner (Interview, Discover Vol. 25 No. 04, April 2004)

References

[1] C.Adami. What is complexity? BioEssays 24:1085–1094, Wiley, 2002.
[2] B.Alberts, D.Bray, J.Lewis, M.Raff, K.Roberts, J.D.Watson. Molecular biology of the

cell. Third Edition, Garland.
[3] R.Alur, C.Belta, F.Ivancic, V.Kumar, M.Mintz, G.J.Pappas, H.Rubin, and J.Schug,.

Hybrid modeling of biomolecular networks. Proceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control, Rome Italy, March 28-30,
2001. LNCS 2034.

[4] M.Antoniotti, B.Mishra, F.Park, A.Policriti, N.Ugel. Foundations of a query and
simulation system for the modeling of biochemical and biological processes. In L.Hunter,
T.A.Jung, R.B.Altman, A.K.Dunker, T.E.Klein, editors, The Pacific Symposium on
Biocomputing (PSB 2003) 116-127. World Scientific, 2003.

[5] M.Antoniotti, C.Piazza, A.Policriti, M.Simeoni, B.Mishra. Modeling cellular behavior
with hybrid automata: bisimulation and collapsing. In Int. Workshop on Computational
Methods in Systems Biology (CMSB'03), LNCS. Springer, 2003. To appear.

[6] M.Antoniotti, A.Policriti, N.Ugel, B.Mishra. Model building and model checking for
biochemical processes. In Cell Biochemistry and Biophysics, 2003. In press.

[7] C.Bodei, P.Degano, F.Nielson, H.R.Nielson. Control flow analysis for the pi-calculus.
Proc. 9th International Conference on Concurrency Theory, LNCS 1466:84-98. Springer,
1998.

 Abstract Machines of Systems Biology 167

[8] K.N.J. Burger. Greasing membrane fusion and fission machineries. Traffic 1: 605–613.
2000.

[9] G.Ciobanu, V.Ciubotariu, B.Tanasa. A π-calculus model of the Na pump. Genome
Informatics 13:469-471, 2002.

[10] G.Ciobanu. Software verification of biomolecular systems. In G.Ciobanu, G.Rozenberg
(Eds.): Modelling in Molecular Biology, Natural Computing Series, Springer, 40-59,
2004.

[11] M.Curti, P.Degano, C.Priami, C.T.Baldari. Modelling biochemical pathways through
enhanced pi-calculus. Theoretical Computer Science 325(1):111-140.

[12] L.Cardelli. Brane calculi – Interactions of biological membranes. Proc. Computational
Methods in Systems Biology 2004. Springer. To appear.

[13] L.Cardelli, A.D.Gordon. Mobile ambients. Theoretical Computer Science, Special Issue
on Coordination, D. Le Métayer Editor. Vol 240/1, June 2000. pp 177-213.

[14] V.Danos, M.Chiaverini. A core modeling language for the working molecular biologist.
2002.

[15] V.Danos, C.Laneve. Formal molecular biology. Theoretical Computer Science, to
Appear.

[16] E.H.Davidson, D.R.McClay, L.Hood. Regulatory gene networks and the properties of the
developmental process. PNAS 100(4):1475–1480, 2003.

[17] A.Di Pierro, H.Wiklicky. Probabilistic abstract interpretation and statistical testing. Proc.
Second Joint International Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification. LNCS 2399:211-212. Springer, 2002.

[18] S.Efroni, D.Harel and I.R.Cohen. Reactive animation: realistic modeling of complex
dynamic systems. IEEE Computer, to appear, 2005.

[19] M.B.Elowitz, S.Leibler. A synthetic oscillatory network of transcriptional regulators.
Nature 403:335-338, 2000.

[20] F.Fages, S.Soliman, N.Chabrier-Rivier. Modelling and querying interaction networks in
the biochemical abstract machine BIOCHAM. J. Biological Physics and Chemistry
4(2):64-73, 2004.

[21] D.T.Gillespie. Exact stochastic simulation of coupled chemical reactions, Journal of
Physical Chemistry 81:2340–2361. 1977.

[22] D.Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming 8:231-274. North-Holland 1987.

[23] L.H.Hartwell, J.J.Hopfield , S.Leibler , A.W.Murray. From molecular to modular cell
biology. Nature. 1999 Dec 2;402(6761 Suppl):C47-52.

[24] J. Hillston. A compositional approach to performance modelling. Cambridge University
Press, 1996.

[25] C-Y.F.Huang, J.E.Ferrell Jr. Ultrasensitivity in the mitogen-activated protein kinase
cascade. PNAS 93:10078–10083, 1996.

[26] S.Kauffman, C.Peterson, B.Samuelsson, C.Troein. Random Boolean network models and
the yeast transcriptional network. PNAS 100(25):14796-14799, 2003.

[27] H.Kitano. The standard graphical notation for biological networks. The Sixth Workshop
on Software Platforms for Systems Biology, 2002.

[28] H.Kitano. A graphical notation for biochemical networks. BIOSILICO 1:169-176, 2003.
[29] K.W.Kohn. Molecular interaction map of the mammalian cell cycle control and DNA

repair systems. Molecular Biology of the Cell 10(8):2703-34, 1999.
[30] C.Kuttler, J.Niehren, R.Blossey. Gene regulation in the pi calculus: simulating

cooperativity at the Lambda switch. BioConcur 2004, ENTCS.

168 L. Cardelli

[31] M.Kwiatkowska, G.Norman, D.Parker. Probabilistic symbolic model checking with
PRISM: a hybrid approach. J. Software Tools for Technology Transfer (STTT), 6(2):128-
142. Springer-Verlag, 2004.

[32] H.Lodish, A.Berk, S.L.Zipursky, P.Matsudaira, D.Baltimore, J.Darnell. Molecular cell
biology. Fourth Edition, Freeman, 2002.

[33] J.S.Mattick. The hidden genetic program of complex organisms. Scientific American
p.31-37, October 2004.

[34] H.H.McAdams, A.Arkin. It's a noisy business! Genetic regulation at the nanomolar scale.
Trends Genet. 1999 Feb;15(2):65-9.

[35] R.Milner. Communicating and mobile systems: the π-calculus. Cambridge University
Press, 1999.

[36] R.Milo, S.Shen-Orr, S.Itzkovitz, N.Kashtan, D.Chklovskii, U.Alon. Network motifs:
simple building blocks of complex networks. Science 298:824-827, 2002.

[37] R.Milner. Bigraphical reactive systems. CONCUR 2001, Proc. 12th International
Conference in Concurrency Theory, LNCS 2154:16-35, 2001.

[38] M.Nagasaki, S.Onami, S.Miyano, H.Kitano: Bio-calculus: its concept and molecular
interaction. Genome Informatics 10:133-143, 1999. PMID: 11072350.

[39] F.Nielson, R.R.Hansen , H.R.Nielson. Abstract interpretation of mobile ambients.
Science of Computer Programming, 47(2-3):145-175, 2003.

[40] F.Nielson, H.R.Nielson, C.Priami, D.Rosa. Static analysis for systems biology. Proc.
ACM Winter International Symposium on Information and Communication
Technologies. Cancun 2004.

[41] F.Nielson, H.R.Nielson, C.Priami, D.Rosa. Control flow analysis for BioAmbients. Proc.
BioCONCUR 2003, to appear.

[42] G.Paun. Membrane computing. Springer, 2002.
[43] C.Priami. The stochastic pi-calculus. The Computer Journal 38: 578-589, 1995.
[44] C.Priami, A.Regev, E.Shapiro, W.Silverman. Application of a stochastic name-passing

calculus to representation and simulation of molecular processes. Information Processing
Letters, 80:25-31, 2001.

[45] P.Prusinkiewicz, M.Hammel, E.Mjolsness. Animation of plant development. Proceeding
of SIGGRAPH 93. ACM Press, 351:360, 1993.

[46] M.Ptashne. Genetic switch: phage Lambda revisited. Cold Spring Harbor Laboratory
Press. 3rd edition, 2004.

[47] A.Regev. Computational systems biology: a calculus for biomolecular knowledge. Ph.D.
Thesis, Tel Aviv University, 2002.

[48] A.Regev, E.M.Panina, W.Silverman, L.Cardelli, E.Shapiro. BioAmbients: an abstraction
for biological compartments. Theoretical Computer Science, to Appear.

[49] A.Regev, E.Shapiro: Cells as computation. Nature, 419:343, 2002.
[50] I.Shmulevich, E.R.Dougherty, W.Zhang. From Boolean to probabilistic Boolean

networks as models of genetic regulatory networks. Proceedings of the IEEE
90(11):1778-1792, 2002.

[51] Systems biology markup language. http://www.sbml.org.
[52] D.Thieffry, R.Thomas. Qualitative analysis of gene networks. Pacific Symposium on

Biocomputing 1998:77-88. PMID: 9697173.
[53] J.M.Vilar, H.Y.Kueh, N.Barkai, S.Leibler. Mechanisms of noise-resistance in genetic

oscillators. PNAS, 99(9):5988–5992, 2002.
[54] C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic cis-regulatory logic: experimental and

computational analysis of a sea urchin gene. Science 279:1896-1902, 1998.
www.sciencemag.org.

	Introduction
	Biochemical Toolkits
	Abstract Machines
	The Protein Machine (Biochemical Networks)
	Principles of Operation
	Notations
	Example: MAPK Cascade
	Summary

	The Gene Machine (Gene Regulatory Networks)
	Principles of Operation
	Notations
	Example: Repressilator
	Summary

	The Membrane Machine (Transport Networks)
	Principles of Operation
	Notations
	Example: LDL Cholesterol Degradation
	Summary

	Three Machines, One System
	Principles of Operation
	Notations
	Example: Viral Infection
	Summary

	Outlook: Model Construction and Validation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

