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Abstract. Differential Evolution (DE) is generally considered as a reliable, ac-
curate, robust and fast optimization technique. DE has been successfully ap-
plied to solve a wide range of numerical optimization problems. However, the 
user is required to set the values of the control parameters of DE for each prob-
lem. Such parameter tuning is a time consuming task. In this paper, a self-
adaptive DE (SDE) is proposed where parameter tuning is not required. The 
performance of SDE is investigated and compared with other versions of DE. 
The experiments conducted show that SDE outperformed the other DE versions 
in all the benchmark functions. 

1   Introduction 

Evolutionary algorithms (EAs) are general-purpose stochastic search methods simu-
lating natural selection and evolution in the biological world. EAs differ from other 
optimization methods, such as Hill-Climbing [1] and Simulated Annealing [2], in the 
fact that EAs maintain a population of potential (or candidate) solutions to a problem, 
and not just one solution [3]. 

Due to its population-based nature, EAs can avoid being trapped in a local opti-
mum and consequently can often find global optimal solutions. Thus, EAs can be 
viewed as global optimization algorithms. However, it should be noted that EAs may 
fail to converge to a global optimum [4]. 

Recently, Storn and Price [5] proposed a new EA called Differential Evolution 
(DE). DE is similar to Genetic Algorithms (GAs) [6]. The main difference between 
GAs and DE is that, in GAs, mutation is the result of small perturbations to the genes 
while in DE mutation is caused by arithmetic combinations of individuals [6]. At the 
beginning of the evolution, the mutation operator of DE favors exploration. Then as 
the evolution progresses the mutation operator favors exploitation. Hence, DE auto-
matically adapts the mutation increments (i.e. search step) to the correct value during 
the evolution process. Another difference between GAs and DE is that simple GAs 
use a binary representation while DE uses a floating-point representation [7]. 

DE is easy to implement, requires little parameter tuning [8] and exhibits fast con-
vergence [9]. However, according to Krink et al. [10], noise may adversely affect the 
performance of DE due to its greedy nature. 
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DE has been successfully applied to solve a wide range of optimization problems. 
DE is now generally considered as a reliable, accurate, robust and fast optimization 
technique. However, the user needs to find the best values for the control parameters 
of DE for each problem. Finding the best values for the control parameters for each 
problem is a time consuming task. This paper proposes a new version of DE where 
the control parameters are self-adaptive. The new version is called Self-adaptive Dif-
ferential Evolution (SDE). The results of the experiments conducted are shown and 
compared with the versions of DE proposed by Price and Storn [11]. 

The reminder of the paper is organized as follows: Section 2 provides an overview 
of DE. The proposed version of DE is given in Section 3. Benchmark functions to 
measure the performance of DE are provided in Section 4. Results of the experiments 
are presented in Section 5. Finally, Section 6 concludes the paper. 

2   Differential Evolution 

Differential evolution does not make use of a mutation operator that depends on some 
probability distribution function, but introduces a new arithmetic operator which de-
pends on the differences between randomly selected pairs of individuals. 

For each parent, )(tix , of generation t, an offspring, )(tix′ , is created in the fol-

lowing way: Randomly select three individuals from the current population, namely 

)(1 tix , )(2 tix  and )(3 tix , with i1 ≠ i2 ≠ i3 ≠ i and i1, i2, i3 ~ U(1,…, s), where s 

is the population size. Select a random number r ~ U(1,…, Nd), where Nd is the num-
ber of genes (parameters) of a single chromosome. Then, for all parameters j = 1,…, 
Nd, if U(0, 1) < Pr, or if j = r, let 

))(-)(()()( 21 txtxFtxtx j,ij,ij3,iji, +=′  (1) 

otherwise, let 

)()( txtx ji,ji, =′  (2) 

In the above, Pr is the probability of reproduction (with Pr ∈ [0, 1]), F is a scaling 
factor with F ∈ (0, ∞), and )(tx ji,′  and )(tx ji,  indicate respectively the j-th parame-
ter of the offspring and the parent. 

Thus, each offspring consists of a linear combination of three randomly chosen in-
dividuals when U(0, 1) < Pr; otherwise the offspring inherits directly from the parent. 
Even when Pr = 0, at least one of the parameters of the offspring will differ from the 
parent (forced by the condition j = r). 

The mutation process above requires that the population consists of more than 
three individuals. 

After completion of the mutation process, the next step is to select the new genera-
tion. For each parent of the current population, the parent is replaced with its off-
spring if the fitness of the offspring is better, otherwise the parent is carried over to 
the next generation. 
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Price and Storn [11] proposed ten different strategies for DE based on the individ-

ual being perturbed (i.e. )(tj3,ix ), number of individuals used in the mutation proc-

ess and the type of crossover used. The strategy shown in this section is known as 
DE/rand/1. This strategy is considered to be the most widely used and the most suc-
cessful strategy [7]. 

The performance of DE is sensitive to the choice of control parameters [5, 12, 13, 
14]. Recently, there were several attempts to control the parameters of DE. Liu and 
Lampinen [13] proposed a fuzzy DE where the values of the control parameters (i.e. F 
and Pr) are adapted using fuzzy logic. Human knowledge and previous experience are 
used to establish the fuzzy rules and membership functions. This is not very objective 
and depends on how good the knowledge of the expert is. 

Abbas [15] proposed the Self-adaptive Pareto DE (SPDE), a self-adaptive ap-
proach to DE for multi-objective optimization problems. In SPDE, the parameter F is 
generated for each variable from a normal distribution, N(0,1). Each individual, i, has 
its own probability of reproduction, Pi. The parameter Pi is first initialized for each 
individual in the population from a uniform distribution between 0 and 1. Then, Pr is 
adapted according to the following equation: 

))(-)(()10()()( 321 tPtP,NtPtP iiii ×+=  (3) 

where i1, i2, i3 ~ U(1,…, s). 
According to Abbas [15], the proposed approach performed well compared to other 

evolutionary multi-objective optimization approaches. 
Zaharie [12] theoretically studied the behavior of DE and proposed an approach of 

adapting the control parameters of DE that is guided by the evolution of population 
diversity. 

More recently, Bui et al. [16] proposed to use DE/rand/1 that generates F from a 
uniform distribution between 0 and 1. According to Bui et al. [16], this approach 
performed better than the conventional DE/rand/1 using a fixed value of F. 

3   Self-adaptive Differential Evolution (SDE) 

Similar to SPDE, SDE uses self-adaptation to adapt the control parameters of DE. 
However, SDE self-adapts F, contrary to SPDE which uses a normal distribution 
N(0,1) for F. Furthermore, in SDE, Pr is generated for each individual from a normal 
distribution while SPDE self-adapts Pr according to equation (3). In addition, SPDE 
uses a normal distribution with mean zero and standard deviation one (i.e. N(0,1)). On 
the other hand, SDE uses normal distributions of different means and standard  
deviations. 

SDE works as follows: For each parent, )(tix , of generation t, an offspring, )(tix′ , 

is created in the following way: Randomly select three individuals from the current 

population, namely )(1 tix , )(2 tix  and )(3 tix , with i1 ≠ i2 ≠ i3 ≠ i and i1, i2, i3 ~ 

U(1,…, s), where s is the population size. Select a random number r ~ U(1,…, Nd), 
where Nd is the number of genes (parameters) of a single chromosome. Then, for all 
parameters j = 1,…, Nd, if U(0, 1) < N(0.5,0.15), or if j = r, let 
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))(-)()(()()( 21 txtxtFtxtx j,ij,iij3,iji, +=′  (4) 

otherwise, let 

)()( txtx ji,ji, =′   

where  

))(-)(()500()()( 654 tFtF.,NtFtF iiii ×+=  (5) 

with i4, i5, i6 ~ U(1,…, s).  
Thus, each individual i has its own scaling factor Fi which is a function for the 

scaling factor of randomly selected individuals. The parameter Fi is first initialized for 
each individual in the population from a normal distribution N(0.5,0.15) generating 
values which fits well within the range (0,1]. 

The rationale behind using a normal distribution N(0.5,0.15) for Pr is that 
N(0.5,0.15) will generate values in the range of [0.5-3×0.15,0.5+3×0.15] which cov-
ers the Pr boundary giving more probability to values surrounding 0.5. The reason for 
preferring values surrounding 0.5 is that Pr = 0.5 represents a uniform crossover (i.e. 
there is an equal probability that the new offspring will be chosen from either the 
perturbed individual or from the original individual). Hence, using N(0.5,0.15) will 
provide a relatively fair chance for both the perturbed individual and the original 
individual to be selected as the new offspring. According to our preliminary experi-
ments (not shown because of space limit), using a normal distribution N(0.5,0.15) for 
Pr generally performed better than using equation (3) on the tested functions. 

The normal distribution N(0,0.5) in equation (5) is used instead of N(0,1) on the 
basis of the assumption that N(0,0.5) will generate values in the range of [-1.5,1.5] 
which covers the F boundary (remember that F is usually ∈ [0.5, 1]) better than using 
N(0,1). N(0,1) will generate values in the range [-3,3]. Hence, N(0,1) may increase the 
probability of generating values of F outside the range (0,1]. If the value of Fi is not 
within (0,1], Fi will be repaired according to the repair rule used by Abbas [15]. The 
repair rule will truncate the constant part of the value (e.g. the value 1.4 will be ad-
justed to 0.4). 

4   Benchmark Functions 

The benchmark functions in this section provide a balance of unimodal and multimo-
dal functions. These standard test functions, taken from the literature of evolutionary 
computation, have been used in various DE studies [6, 10]. 

For each of these functions, the goal is to find the global minimizer. Formally 
speaking: 

Given f: dNℜ  ℜ 

find dNℜ∈∗x  such that dNff ℜ∈∀≤∗  x xx  ),()(   

Spherical: 0=∗x , with 0 )( =∗xf . 
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with 600600 ≤≤− ix . 

Spherical and Rosenbrock are unimodal while Rastrigin and Griewank are multi-
modal functions. 

5   Experimental Results 

In this section, SDE is compared with the other strategies of DE proposed by Price 
and Storn [11]. The control parameters for these strategies were set as follows: F = 
0.5 and Pr = 0.9. No attempt was made to tune the DE parameters to each problem. 
The rationale behind this decision is the fact that in real-world applications the 
evaluation time is significant and as such parameter tuning is usually a time consum-
ing process [10]. For all the algorithms used in this section s = 40. Furthermore, all 
functions were implemented in 50 dimensions. 

The results reported in this section are averages and standard deviations over 30 
simulations. Each simulation was allowed to run for 20 000 evaluations of the objec-
tive function. 

Table 1 shows the results of the experiments. Examining the results, SDE signifi-
cantly outperformed the other strategies in all the test functions. This shows the  
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efficiency of the SDE scheme in the unimodal and multimodal functions. The im-
provement is even more significant for the Rastrigin function. The Rastrigin function 
has many good local optima. Hence, it is known to be a difficult function to optimize. 
SDE performed very well in this function suggesting that SDE works well with diffi-
cult multimodal functions. Furthermore, examining the standard deviations of all the 
algorithms, it can be seen that SDE has the smallest standard deviation. Thus, one can 
conclude that SDE is more stable and thus more robust than the other versions of DE. 

Figures 1, 2, 3 and 4 show the DE/best/1 and DE/rand-to-best/1 getting trapped in a 
local optimum very early during the search. This behavior is expected because of the 
low diversity in both strategies. Figures 1, 2 and 4 show that SDE has a faster conver-
gence rate than DE/rand/2. On the other hand, the three figures show that DE/rand/1 
and DE/best/2 converge faster than SDE. However, SDE converges to a better solu-
tion than both DE/rand/1 and DE/best/2. For the Rastrigin function shown in Figure 3, 
it can be observed that SDE converges to a better solution faster than DE/rand/1, 
DE/rand/2 and DE/best/2. 

Table 1. Mean and standard deviation (±SD) of the function optimization results (Nd =50) 

 Sphere  Rosenbrock  Rastrigin  Griewank  
DE/rand/1 0.004225± 

0.008481 
135.352596± 

41.405378 
367.286133± 

28.252943 
0.810391± 
0.491085 

DE/best/1 9.10373± 
2.299977 

20704.1313± 
10067.8147 

291.457902± 
38.724004 

213.568685± 
53.005959 

DE/best/2 0.000767± 
0.001640 

165.565743± 
58.467422 

363.211698± 
125.392344 

0.33766± 
0.228069 

DE/rand/2 0.038096± 
0.022325 

191.239558± 
55.30455 

405.489141± 
18.75283 

1.540165± 
0.184424 

DE/rand-to-
best/1 

4.294976± 
0.797361 

6016.779462± 
2551.570461 

162.186077± 
28.675567 

94.336715± 
20.46955 

SDE 0.000034± 
0.000059 

108.599572± 
37.453761 

36.808762± 
8.520613 

0.070461± 
0.067611 
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Fig. 1. DE strategies performance for the 
Sphere (50D) 

Fig. 2. DE strategies performance for the 
Rosenbrock (50D) 
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Fig. 3. DE strategies performance for the 
Rastrigin (50D) 

Fig. 4. DE strategies performance for the 
Griewank (50D) 

6   Conclusion 

The performance of DE is sensitive to the choice of control parameters. Finding the 
best values for these parameters for each problem is a time consuming task. This 
paper proposes a self-adaptive version of DE, called SDE. The approach was tested 
on four benchmark functions where it outperformed other well-known versions of 
DE.  

Future research will investigate the contribution of each parameter in SDE. Fur-
thermore, SDE will be tested on more functions and compared with other optimiza-
tion techniques (e.g. SPDE, ES and EP). In addition, the effect of noise on the per-
formance of SDE will be explored. The effect of the population size and the problem 
dimension will also be investigated. 
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