
Towards Optimal Double-Length Hash Functions

Mridul Nandi

Applied Statistics Unit,
Indian Statistical Institute,

Kolkata, India
mridul r@isical.ac.in

Abstract. In this paper we design several double length hash functions
and study their security properties in the random oracle model. We de-
sign a class of double length hash functions (and compression functions)
which includes some recent constructions [4, 6, 10]. We also propose a
secure double length hash function which is as efficient as the insecure
concatenated classical hash functions [7].

1 Introduction

An n-bit compression function or hash function is said to be “ideal” or “max-
imally secure” if the best collision attack requires Ω(2n/2) many queries which
is same as the complexity of the birthday attack. To increase the security level,
one can design 2n-bit compression functions and hash functions (also known
as double length compressions or hash functions respectively). Potentially one
can expect a security level of Ω(2n) for a 2n-bit hash function. But the trivial
concatenated hash functions H ‖ G is not secure where one of the H and G
is a classical hash function [7]. In this paper we design several double length
compression functions and double length hash functions based on single length
compression functions. More precisely we consider the following problem;

Problem : Given a secure compression function, f : {0, 1}n×{0, 1}m → {0, 1}n

(or s compression functions f1, · · · , fs : {0, 1}n × {0, 1}m → {0, 1}n), m >
0, design a secure compression function F : {0, 1}2n × {0, 1}N−2n → {0, 1}2n

and a hash function H : {0, 1}≤L → {0, 1}2n, where N > 2n and L is suffi-
ciently large.

Designing a double length hash function from a single length compression
or hash function is also important in the hardware point of view. As crypto-
hardware are expensive, the construction which allows an existing hardware
would be meaningful while we are looking for more security. There were several
attempts to construct a secure block cipher based double length compression
functions. Again, most of these have several collision and preimage attacks much
better than the birthday attack [5, 6, 8, 10, 17]. Recently, Lucks [4, 10] designed
a secure double length compression function. A similar designed is proposed by
Hirose [6] by using a secure block ciphers of the form E : {0, 1}n × {0, 1}2n →
{0, 1}n. But the efficiency of their design is fairly low. A more efficient double

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 77–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

78 M. Nandi

length compression function based on three independent random compression
functions has been proposed by Nandi et. al. [13]. But the security of the com-
pression function is not maximum. So it would be interesting to design both
maximally secure and efficient double length hash function.

1.1 Our Contribution

In this paper we design several new double length hash functions and compute
their security level and the rate (measurement of efficiency).

Our first design is a generalization of Lucks’s [10] and Hirose’s [6] construc-
tions. Given a permutations p(·) on the set of all N -bit strings and a compression
function f : {0, 1}N → {0, 1}n, define fp(X) = f(X) ‖ f(p(X)). We show that
the double length function fp is maximally secure provided the permutation p
does not have any fixed point.

Next, we study the security level for the double length hash function defined
by the classical iteration of a compression function fp defined as above. We show
that, along with secure compression functions there are many more compression
functions which extends to a secure double length hash functions. Thus, we
have a wide class of maximally secure double length hash functions. Lucks and
Hirose’s construction belong to this class.

Then we design a construction similar to the concatenated hash function.
We show the collision security (or preimage security) level of the double length
hash function Ω(2n/ini−1) (or Ω(22n/ini−1) respectively), where i is the num-
ber of iterations of underlying compression function to invoke a double length
compression function. It determines the efficiency of the hash function.

2 Preliminaries

In this section we briefly recall some preliminaries of hash functions. We first give
a brief introduction of classical hash functions. Then we explain random oracle
model and the behavior of adversary in the random oracle model. Next, we
explain Joux’s attack and its application to the collision attack on concatenated
hash function. Finally we state the recent constructions of double length hash
functions and we compare their efficiencies.

2.1 The Classical Iterated Hash Function

We briefly explain a simplified version of Merkle-Damg̊ard method [3, 11]. Let
f : {0, 1}n × {0, 1}m → {0, 1}n be an underlying compression function. Given
a message M ∈ {0, 1}≤L = ∪L

i=0{0, 1}i, where L = 2m − 1 and an initial value
h0 ∈ {0, 1}n we apply the following padding rule;

– padding rule: Choose smallest i ≥ 0 such that |M | + i + 1 is multiple of m.
Let 〈|M |〉 be the m-bit binary representation of |M |. We write M ‖ 10i ‖
〈|M |〉 = m1 ‖ m2 · · · ‖ ml for some positive integer l and |mi| = m, 1 ≤ i ≤ l.

Towards Optimal Double-Length Hash Functions 79

Each mi is known as a message block of the underlying compression function.
We define the classical iterated hash function Hf (M), or simply H(M), by the
following method;

H(M) = hl, where hi = f(hi−1 ‖ mi), 1 ≤ i ≤ l.

the hi’s are known as intermediate hash values, i 	= 0, l. For simplicity, we ignore
the padding rule.

We use the notation h →x h′ (a labeled arc) to mean f(h, x) = h′, where
|h| = |h′| = n and |x| = m. Thus, the computation of H(M) can be represented
by a labeled path from h0 to hl as follows;

h0 →m1 h1 →m2 h2 · · · hl−1 →ml
hl or h0 ⇒M hl.

Thus, h0 ⇒M hl if and only if H(M) = hl.

2.2 The Random Oracle Model

Let FD→R be a set of all functions from D to R. A randomly chosen function
f from FD→R is known as a random function [2]. One can define a random
function in the following equivalent way and equivalence can be checked in a
straightforward way;

Definition 1. (Random Function)
A random function, f from D to R, takes values as random variables, such

that for any x ∈ D, f(x) has uniform distribution on R and for any k > 0 and
k distinct elements x1, · · · xk ∈ D, the random variables f(x1), · · · , f(xk) are
independently distributed.

Proposition 1. Let f : D → R be a random function and {X1, Y1} 	= {X2, Y2}
be two subsets of D. Then Pr [f(X1) = f(Y1)] = 1/|R| and Pr [f(X1) = f(Y1)
and f(X2) = f(Y2)] = 1/|R|2.

Proof. Since X1 	= Y1, f(X1) is uniformly distributed on R given f(Y1) and
hence Pr [f(X1) = f(Y1)] = 1/|R|.

For the second part of the proposition, without loss of generality, let us
assume that X1 /∈ {X2, Y2}. Thus f(X1) is uniformly distributed on R given the
random variables f(Y1), f(X2) and f(Y2). Thus, the conditional probability Pr
[f(X1) = f(Y1) | f(Y1), f(X2), f(Y2)] is 1/|R| and hence so is unconditional. So
we have,

Pr [f(X1) = f(Y1) and f(X2) = f(Y2)]
= Pr [f(X1) = f(Y1) | f(X2) = f(Y2)] × Pr [f(X2) = f(Y2)]
= Pr [f(X1) = f(Y1)] × Pr [f(X2) = f(Y2)]
= 1/|R|2. ��

We call f1, · · · , fs independent random functions if fi’s are chosen indepen-
dently and randomly from the set FD→R. We state an equivalent definition of
independent random functions.

80 M. Nandi

Definition 2. (Independent Random Functions)
We say a family of random functions f1, · · · , fs : D → R are independent ran-
dom functions if for any s subsets {x1

1, · · · , x1
k1

}, · · · , {xs
1, · · · , xs

ks
}, the random

vectors (f1(x1
1), · · ·, f1(x1

k1
)), · · ·, (fs(xs

1), · · ·, fs(xs
ks

)) are independently dis-
tributed.

The Adversary in the Random Oracle Model : When a hash function
H(·) is designed based on a random compression function f , an attack algorithm
is an oracle algorithm, Af , with the oracle f . Thus, adversary can ask several
queries of f adaptively and based on the query-response pairs adversary finally
outputs a message or a pair of messages depending on the nature of the attack. It
can choose x1, · · ·xq adaptively and get responses y1, · · · , yq, where yi = f(xi).
We can think that yi as a realization of the random variable f(xi) which is
observed by the adversary. Define the complete list of query-response pairs Q =
((x1, y1), · · · , (xq, yq)) by view of the adversary. Any output produced by the
adversary should only depend on the view. Moreover, if the adversary is finding
collisions for a hash function, H(·), based on the compression function, f(·),
and it outputs a pair of distinct messages M 	= N then the values of H(M) and
H(N) should be computed from the view. When we have two or more underlying
compression functions f1, f2, · · · , we have a set of lists of pairs {Q1, Q2, · · ·} called
view of the adversary, where Qi is the view due to the random compression
function fi, i ≥ 1.We define the complexity of an attack algorithm by size of the
view to be required to have non negligible probability of success or advantage [1].
The minimum complexity of an attack algorithm is a measurement of security
of the hash function.

2.3 The Birth-Day Attack

A set {M1, · · · , Mr} is said to be an r-way collision set of g : D → R, if g(M1) =
· · · = g(Mr). The above event is known as a multicollision.

BirthdayAttack(g, q, r) :

1. Choose x1, · · · , xq randomly from the domain D and compute yi = g(xi) for
1 ≤ i ≤ q.

2. Return a subset (if any) C ⊆ {x1, · · · , xq} of size r such that C is an r-
way multicollision subset for the function g. Otherwise return the output
“failure”.

The next proposition gives an estimate of the complexity of the birthday
attack in finding an r-way collision with significant probability. See [15, 16] for
a detail discussion.

Proposition 2. (Complexity of the Birthday Attack) [14]
For a random function g : D → {0, 1}n, the birthday attack with complexity
q finds an r-way collision with probability O(qr/2(r−1)n). Thus, the birthday
attack requires Ω(2n(r−1)/r) queries to find an r-way collision with significant
probability. For r = 2, the birthday attack requires O(2n/2) queries.

Towards Optimal Double-Length Hash Functions 81

2.4 Joux’s Multicollision Attack

In a recent paper by Joux [7], it was shown that there is a 2r-way collision at-
tack for the classical iterated hash function based on a compression function,
f : {0, 1}m+n → {0, 1}n, where the attack has complexity O(r 2n/2). This com-
plexity is much less than Ω(2

n(2r−1)
2r), which is the complexity for the birthday

attack (see Proposition 2).
Here is the basic idea of the attack. Consider a set of vertices V = {0, 1}n.

We use the notation h →M h′ (a labeled arc) to mean f(h, M) = h′. Here,
|h| = |h′| = n and |M | = m. The strategy is to first find r successive collisions
(see Figure 1) by performing r successive birthday attacks, as follows:

f(h0, m1) = f(h0, n1) = h1 (say), where m1 	= n1
f(h1, m2) = f(h1, n2) = h2 (say), where m2 	= n2

...
f(hr−1, mr) = f(hr−1, nr) = hr (say), where mr 	= nr.

For 1 ≤ i ≤ r, we apply BirthdayAttack(f(hi−1, ·), 2n/2, 2) to find mi 	= ni

such that f(hi−1, mi) = f(hi−1, ni). Thus the set

{x1 ‖ · · · ‖ xr : xi = mi or ni, 1 ≤ i ≤ r}

is a 2r-way collision set. The complexity of the attack is O(r 2n/2). Figure 1 is a
diagram illustrating the attack.

. . .
h0 h1 h2 hr

m1

n1 nrn2

mrm2

Fig. 1. Graphical representation of Joux’s multicollision attack

Applications of Multicollision Attacks : A natural and efficient approach
to produce large output hash values is the concatenation of several smaller output
hash values. For example, given two classical iterated hash functions, H and G,
one can define a hash function H(M) ‖ G(M). This idea has been frequently
used because it is efficient and simple to implement. However, due to the attacks
of Joux [7], there exists a collision attack that is more efficient than the birthday
attack. The complexity of the attack is roughly the maximum of the complexity
of the multicollision birthday attack on H and the complexity of the standard
birthday attack on G.

We briefly describe the attack (see [7] for more details). Let H and G have
output hash values of nH and nG bits in length, respectively.

1. By using Joux’s multicollision attack, find 2nG/2 messages which have com-
mon output hash value (say h∗) on H .

82 M. Nandi

2. Find two messages, say M and N where M 	= N , which are members of the
set of 2nG/2 messages found in step 1, such that they have same output hash
value (say g∗) on G. Note that we expect to be able to find a collision on an
nG-bit function from a set of 2nG/2 messages using the standard birthday
attack.

Thus, we have H(M) ‖ G(M) = H(N) ‖ G(N) = h∗ ‖ g∗. The overall
complexity of this attack is O(nG 2nH/2 +2nG/2). Note that we only assume that
H is a classical iterated hash function; G can be any hash function at all.

2.5 Rate Function (Efficiency Measurement) of Known Designs

We have underlying compression functions f1, f2, · · · fk : {0, 1}n × {0, 1}m →
{0, 1}n. We design a double length compression function, F : {0, 1}N → {0, 1}2n,
based on f1, f2, · · · fk. We define a measurement of the efficiency of the com-
pression function, F (·), called the rate function of F . Roughly, it measures the
number of message blocks that are hashed per underlying compression function.

Definition 3. (Rate Function)
Let a double length compression function, F , be based on f1, · · · , fk. Define the
rate function of F by N−2n

m×s , where s is the number of invocations of all fi’s are
required to compute F (X), X ∈ {0, 1}N .

Since F is a compression function, N > 2n. Thus, the rate function is always
positive. When the rate function is constant, we only use the term rate instead
of rate function. We define rate of the classical iterated hash function by the
rate of the underlying compression function.

Example 1. The underlying double length compression function of the concate-
nated hash function Hf1 ‖ Hf2 is F (H1, H2, M) = f1(H1, M) ‖ f2(H2, M),
where |H1| = |H2| = n and |M | = m. The rate function of F is 1/2.

Example 2. (Nandi et. al. [13]) Let fi : {0, 1}2n → {0, 1}n be three under-
lying compression functions, 1 ≤ i ≤ 3. Define, F : {0, 1}3n → {0, 1}2n, where
F (x, y, z) = (f1(x, y) ⊕ f2(y, z)) ‖ (f2(y, z) ⊕ f3(z, x)) with |x| = |y| = |z| = n.
The rate of this compression function is 1/3. The best collision attack on F
requires Ω(22n/3) many queries of fi’s in the random oracle model [13].

Example 3. (Lucks [10]) Let f : {0, 1}n+m → {0, 1}n be an underlying com-
pression function, m > n. Define F (H1, H2, M) = f(H1, H2, M) ‖ f(H2, H1, M),
|H1| = |H2| = n and |M | = m−n. The rate function of the compression function
is n+m−2n

2m = 1
2 − n

2m . When m = 2n, the rate of the compression function is 1
4 .

The compression function is not secure. But we show later (also see [10]) that
the classical hash function based on it is maximally secure in the random oracle
model.

Towards Optimal Double-Length Hash Functions 83

3 A Class of Double Length Compression Functions

Fix a compression function, f : {0, 1}n+m → {0, 1}n, and define a class of double
length compression functions

C = {fp = f(·) ‖ f(p(·)) : p is a “simple” permutation on {0, 1}n+m}.

By a simple permutation we mean both the permutations, p and p−1, are easy to
compute. One can also consider a compression function fp1,p2(X) = f(p1(X)) ‖
f(p2(X)) where |X | = n + m for two simple permutations p1 and p2. Since p1
and p2 are simple, it is sufficient to study the security properties of fp where
p = p2 ◦p−1

1 . All these compression function have rate 1
2 − n

2m (as in Example 3).

3.1 Security Analysis of the Compression Functions from C

In this section, we study the security properties of the compression functions
from the class, C, in the random oracle model of f . Let us first consider the
Example 3. In this example, F = fp, where p(H1, H2, M) = H2 ‖ H1 ‖ M ,
|H1| = |H2| = n and |M | = m − n. By using the birthday attack, find H, G and
M1, M2, such that (H, M1) 	= (G, M2) and f(H, H, M1) = f(G, G, M2). Now,
it is easy to check that fp(H, H, M1) = fp(G, G, M2). Here, we need O(2n/2)
many queries.

The reason for having the above attacks is that the permutation p has many
“fixed points”. X is called a fixed point of a function p(·), if p(X) = X . We
write Fp for the set of all fixed points of p. In the above example, Fp = {H ‖
H ‖ M : |H | = n, |M | = m − n} is the set of fixed points of the permutation
p and |Fp| > 2n. Thus, one can apply birthday attack to find a collision (or a
preimage) on the compression function f from the fixed point set. Similar attack
can be done for any compression function based on a permutation with more
that 2n many fixed points. In the light of the above discussion, one should use a
permutation, p, which does not have many fixed points. In fact, there are many
permutations where the set of fixed points are the empty set. We give two classes
of examples of that kind, in below.

Example 4. For A ∈ {0, 1}N \ {0}, define a permutation p : {0, 1}N → {0, 1}N

such that p(X) = X ⊕ A. It is easy to check that Fp is empty.

Example 5. We can map any N -bit string to an integer modulo 2N . We use
“ + ” to denote addition modulo 2N . Let p(X) = X + A where A 	= 0. Note
that, p(X) 	= X for all X . Moreover, if A 	= 2N−1 then the fixed point of
p(p(X)) = X + 2A (in notation, p2) is also empty.

Suppose, fp is a double length compression function based on a permutation,
p, where Fp is the empty set. Then a collision, fp(X) = fp(Y) with X 	= Y
implies f(X) = f(Y) and f(p(X)) = f(p(Y)). Thus, {X, Y } and {p(X), p(Y)}
are collision sets of f . Now, we have the following two cases.

84 M. Nandi

– Case-1 : Two collision sets are identical {X, Y } = {p(X), p(Y)}. Since p
does not have any fixed point, we have Y = p(X) and X = p(Y). Thus, we
should have a collision set {X, p(X)}, where p(X) 	= X and p(p(X)) = X .
Let Ω(K1(n)) (or in short K1) be the complexity of the best attack to find
a collision set of the form {X, p(X)}.

– Case-2 : {X, Y } 	= {p(X), p(Y)}. Let Ω(K2(n)) (or in short K2) be the
complexity of the best attack to find two distinct collision sets of the form
{X, Y } and {p(X), p(Y)}.

Thus a collision on fp reduces to the one of the above two events and hence
the complexity of best collision attack is min{K1, K2}. If p2 does not have any
fixed point then we can exclude the first case also and the complexity of the best
collision attack is K2(n). We summarize the above discussion as follows;

Proposition 3. The complexity of the best collision attack on fp is min
{Ω(K1(n)), Ω(K2(n))} where p is a permutation with no fixed point and K1
and K2 are defined as above. Moreover, if the permutation p2 does not have
any fixed point (like in the Example 5) then the best collision attack on fp is
Ω(K2(n)).

Now we give some evidences why K1 and K2 would be large for a good compres-
sion function f . Suppose an adversary tries to find two collision sets {X, Y } 	=
{p(X), p(Y)}. After finding a collision set {X, Y }, he does not have any free-
dom to choose for the second collision set and he is forced to check whether
{p(X), p(Y)} is a collision set or not. Thus K2 would be large and may be close
to 2n for a good underlying compression function.

Next, an adversary tries to find a collision set {X, p(X)}. For each message
X , p(X) is completely determined (also vice-versa) and hence the adversary has
to check equality of two values, f(X) and f(p(X)), instead of comparing several
values like in the birthday attack. Thus we expect K1 to be large. In the random
oracle model of f , we can prove that, K1(n) = K2(n) = 2n. We first introduce
a new notion called computable message.

Definition 4. (Computable Message)
Let the double length compression function, F , be based on the compression func-
tions, f1, · · · , fk. Let Qj = {(xj

1, y
j
1), · · · , (xqj , yqj)} be the view of fj, 1 ≤ j ≤ k

and let Q = (Q1, · · · , Qk). We say, an input X is computable message of F with
respect to the view Q, if the value of F (X) can be determined from Q.

For example, when F = fp, an input X is computable message of F with respect
to {(x1, y1), · · · , (xq, yq)}, view of f , if X = xi and p(X) = xj for some i, j ∈
[1, q]. Thus, fp(X) = f(xi) ‖ f(xj) = yi ‖ yj , which can be computed from Q.

Theorem 1. Under the assumption of the random oracle model of f , K1(n) =
K2(n) = 2n. Thus, for any permutation p where Fp is the empty set, any attack
algorithm finding collisions requires Ω(2n) many queries of f in the random
oracle model of f .

Towards Optimal Double-Length Hash Functions 85

Proof. If an adversary can ask at most q many queries then he can have at
most q many computable messages and hence at most

(
q
2

)
2-sets {X, Y }. Hence

the probability that the adversary finds X 	= Y with {X, Y } 	= {p(X), p(Y)}
such that f(X) = f(Y) and f(p(X)) = f(p(Y)) is at most

(
q
2

)
/22n (by using

Proposition 1). Thus, to have a significant success probability, q should be Ω(2n).
Similarly, from a set of q queries one can get O(q) many pairs of the form

(X, p(X)), where X and p(X) both are computable. For fixed X , Pr [f(X) =
f(p(X))] = 1/2n provided p(X) 	= X (see Proposition 1). Thus success probabil-
ity is at most q/2n and hence q = Ω(2n) for significant success probability. ��

Remark 1. Let p be a permutation where |Fp| << 2n/2 such that there are no
two elements X 	= Y ∈ Fp with f(X) = f(Y). We can prove Theorem 1 if the
permutation p satisfies the above condition instead of the condition given in the
Theorem.

4 A Class of Double Length Hash Functions

Now we study the double length hash functions defined by the classical iteration
of the compression functions fp stated in Sect. 3.

Definition 5. Let p be a permutation on the set of (n+m)-bits strings, m ≥ n.
Define Fp[2n] = {Z ∈ {0, 1}2n : ∃ M ∈ {0, 1}m−n such that Z ‖ M ∈ Fp }. It is
a projection of Fp onto the the first 2n-bits of it. We say the permutation, p(·),
is good if |Fp[2n]| = O(2n). In particular, when p does not have any fixed point
it is also a good permutation.

Nowwedefine the following attack. FindM andH /∈ Fp[2n], such that fp(H, M) ∈
Fp[2n], where |M | = m − n and |H | = 2n. Let the complexity of the best attack
be Ω(K3(n)) (or in short K3).

Proposition 4. The classical hash function, Hfp

, based on a good permutation
and an initial value H0 /∈ Fp[2n] has collision security min{K1, K2, K3}.

Proof. Let (M, M ′) be a collision pair of Hfp

and H0 /∈ Fp[2n]. We denote
Hi and Gi for internal hash values while computing the final hash value for
messages M = M1 ‖ M2 · · · and M ′ = M ′

1 ‖ M ′
2 · · · respectively. One of the

following holds:

1. There is an i such that Hi /∈ Fp[2n] but fp(Hi ‖ Mi+1) ∈ Fp[2n] or there is
a j such that Gj /∈ Fp[2n] but fp(Gj ‖ M ′

j+1) ∈ Fp[2n]. To achieve this we
need Ω(K3) many queries.

2. There are Hi, Gj /∈ Fp[2n] such that X = (Hi, Mi+1) 	= (Gj , M
′) = Y

and fp(X) = fp(Y). Since Hi, Gj /∈ Fp[2n], p(X) 	= X and p(Y) 	= Y .
Thus either {X, Y } 	= {p(X), p(Y)} are collision two sets or {X, p(X)} is
a collision set for the compression function f . To achieve this adversary
requires min{K1, K2} many queries of f .

Combining both the adversary needs min{K1, K2, K3} queries. ��

86 M. Nandi

Theorem 2. For a good permutation p and random compression function f ,
K3(n) = 2n and hence Hfp

is maximally secure against collision attack.

Proof. We have already seen that after q many queries the adversary can have at
most q many computable messages for fp. Given a computable message H ‖ M
with H /∈ Fp[2n], we have p(H ‖ M) 	= H ‖ M and hence fp(H ‖ M) is uni-
formly distributed over the set {0, 1}2n. But |Fp[2n]| < 2n since the permutation
p(·) is good. Thus we have, Pr [fp(H ‖ M) ∈ Fp[2n]]≤ 1/2n. Since we have at
most q computable message the success probability of the adversary is less than
q/2n. This proves the fact that K3(n) = 2n under the random oracle model
of f(·). By Theorem 1 and Proposition 4, Hfp

is maximally secure under the
random oracle model of f . ��

5 An Efficient Double Length Hash Function

Let the compression function be f : {0, 1}n × {0, 1}n → {0, 1}n. For i > 1,
define f (i) : {0, 1}(i+1)n → {0, 1}n by using the classical iteration. Thus, for
x0 ‖ · · · ‖ xi with |xj | = n, 0 ≤ j ≤ i and h0 = x0,

f (i)(x0 ‖ · · · ‖ xi) = hi, where hj = f(hj−1, xj), 1 ≤ j ≤ i.

We call f (i) is the i-iterated compression function. Now we can observe that
the multicollision on this compression function is not as easy as the classical hash
function, since we restrict the number of message blocks. Any ri-way collision on
f (i) reduces to at least r-way collision on the underlying compression function
f (by using pigeon-hole principle). Thus, if we assume that (r + 1)-way collision
on f is infeasible then we can have at most ri-way collision on f (i). Recall that,
in the random oracle model of f , r-way collision requires Ω(2n(r−1)/r) queries.
Now we summarize this by the following lemma.

Lemma 1. (ri +1)-way collision on f (i) reduces to at least (r+1)-way collision
on f . In particular, when f is a random function, the complexity of (ri + 1)-
way collision attack on f (i) is Ω(2nr/(r+1)) and the complexity of (ni + 1)-way
collision attack on f (i) is Ω(2n).

Like the concatenation of two independent hash functions we can define the
concatenation of two independent i-iterated compression functions. Thus, given
two independent compression functions, f1 and f2, we can define a double length
compression function, Fi(X) = f

(i)
1 (X) ‖ f

(i)
2 (X), |X | = n(i + 1). Obviously, in

this construction, we need to assume i ≥ 2. Otherwise, for i = 1, it does not
compress the input. Now we can study the security property of this concatenated
compression function in the random oracle model.

Lemma 2. If f is a random function then for any two distinct (i + 1)-block
inputs X and Y , Pr [f (i)(X) = f (i)(Y)] ≤ i/2n. If f1 and f2 are two independent
random functions then Pr [Fi(X) = Fi(Y)] = i2/22n.

Towards Optimal Double-Length Hash Functions 87

Proof. Let j be the round number where collision of f occurs. Call this event by
Cj . Thus, f (i)(X) = f (i)(Y) implies ∪i

j=1Cj . Now, Pr [Cj] = Pr [f(Xj) = f(Yj)
and Xj 	= Yj] = 1/2n, Xj and Yj denote the input of f at jth invocation for
messages X and Y respectively. Thus, Pr [∪i

j=1Cj] ≤ i/2n.

Pr [Fi(X) = Fi(Y)] = Pr [f (i)
1 (X) = f

(i)
1 (Y), f (i)

2 (X) = f
(i)
2 (Y)]

= Pr [f (i)
1 (X) = f

(i)
1 (Y)] × Pr [f (i)

2 (X) = f
(i)
2 (Y)]

≤ i2/22n.
The second equality follows from the fact that f1 and f2 are independent

random functions and the last inequality is immediate from the first half of the
Lemma. ��

Thus to find the collision probability for any adversary we need to compute the
number of pairs (X, Y) it can get from any possible set of queries. Note that
the adversary should compute the F -values of both X and Y . Now we state
the computable message which means the message whose hash value can be
computed from the set of queries the adversary made. We fix i ≥ 2.

Definition 6. (Computable message) Let Qj be the set of query response
tuples for the random function fj, j = 1, 2. X is said to be a computable message
for f

(i)
j (also for Fi) with respect to Qj if the value of f

(i)
j (X) (or Fi(X)) can

be computed from Qj (or Q1 ∪ Q2 respectively).

More precisely, if X = x0 ‖ · · · ‖ xi then X is computable for f
(i)
1 with respect

to Q1 if (x0 ‖ x1, h1), (h1 ‖ x2, h2),· · ·,(hi−1 ‖ xi, hi) ∈ Q1. Thus the f
(i)
1 -value

of X is hi. Similarly one can define computable messages for f
(i)
2 . A message X

is computable with respect to Q1 ∪ Q2 for the compression function Fi, if X is
computable for both f (i) with respect to Qj , j = 1, 2.

Let q be the number of queries. We assume that q = o(2n). Thus there is no
n-way collision on both f1 and f2. Note that, the complexity of n-way collision
on a random function is Ω(2n(n−1)/n) = Ω(2n). Thus we can have at most ni−1-
way collision on f

(i−1)
1 or f

(i−1)
2 . The number of computable messages for Fi is

at most qni−1. Thus, the total number of pairs of the form (X, Y) where X 	= Y
are (i + 1)-block inputs and both X and Y are computable messages is at most
q2n2(i−1)/2. Thus, the probability that we have a collision among these pairs
is bounded by i2q2n2(i−1)/22n+1. To have non-negligible probability we need
q = Ω(2n/ini−1). Thus we have the following theorem :

Theorem 3. If f1 and f2 are two independent random functions then the com-
plexity for finding a collision on Fi requires Ω(2n/(ini−1)) queries.

Efficiency of the compression function. The rate function of the compres-
sion function, Fi, is ((i+1)n−2n)/2ni = 1

2 − 1
2i . Thus, the rate of the compression

function is close to 1/2 provided i is large. So we have a trade-off between the
security level and the efficiency.

For s ≥ 2, define a double length hash function H : ({0, 1}n)∗ → {0, 1}2n.
We can define the hash function on arbitrary domain by applying some standard

88 M. Nandi

padding rule. Let M = m1 ‖ · · · ‖ ml be l-block message, |mi| = n for each i. Let
l = (s−1)b+r, where 0 ≤ r < s−1. Thus, we divide the message M = M1 ‖ · · · ‖
Mb ‖ Mb+1, where |Mi| = (s−1)n, 1 ≤ i ≤ b and |Mb+1| = rn. In case of r = 0 we
do not have any message block Mb+1. Let H0 be an initial two block message that
is |H0| = 2n. Now define the hash function H(H0, M) = F

(b)
s (M1 ‖ · · · ‖ Mb+1)

if r = 0, otherwise H(H0, M) = Fr(F
(b)
s (M1 ‖ · · · ‖ Mb+1) ‖ Mb+1).

Thus, the hash function is the classical iterated hash function using two
underlying compression functions Fs and Fr+1. Thus any collision on H reduces
to a collision on one of the compression functions. Thus we have the following
theorem;

Theorem 4. For any s ≥ 2, collision on H(s) requires Ω(2n/s2ns−1) comp-
lexity.

6 (2nd) Preimage Security Analysis

Similar to the previous section we can study the (2nd) preimage security. Recall
that we say a message X is computable from the set of queries Q if f (i)(X)
can be computed from the set Q. We have already observed that if q is the
maximum number of queries and at most r-way collision is possible then we can
have qri−1 computable messages. Now given M , Fi(M) is a 2n-bit random string.
We also have observed that Pr [F (M) = F (N)] = i2/22n, where M 	= N . So,
if q = o(2n) then the number of computable messages for N is at most ni−1q.
Thus, there will be a computable message N 	= M such that Fi(M) = Fi(N)
is bounded by qni−1/i222n. Thus complexity for any attack algorithm of 2nd
preimage attack is Ω(22n/i2ni−1).

Note that, in preimage or collision attack on Fi, we do not count the complex-
ity for multicollision attack. In fact, it is likely that if the number of computable
messages is qri−1 then the number of queries is at least q2n(r−1)/r. Thus one can
try to prove the following statement in the random oracle model;

The complexity of the best collision (or preimage) attack on the above double
length compression function Fi is Ω(2n/i) (or Ω(22n/i) respectively).

7 Conclusion

We have studied several new double length compression functions. We first in-
troduced a class of double length compression function which contains recently
known constructions [6, 10]. We studied their security levels in the random oracle
model. We also designed a double length compression function Fi of rate close to
1/2 (the rate of concatenated hash function). The design is very much similar to
the concatenated hash functions. It has almost maximal security level. In fact,
we believe that the complexity of the best collision attack on the above double
length compression function Fi is Ω(2n/i). It would be interesting to prove our
belief. A possible future research would be to design efficient as well as secure
double length hash functions.

Towards Optimal Double-Length Hash Functions 89

References

1. M. Bellare. A Note on Negligible Function. Journal of Cryptology, Springer-Verlag,
vol 15, No. 4, pp. 271-284, September 2002.

2. R. Canetti, O. Goldreich and S. Halvei. The random oracle methodology, revisited.
30th Annual ACM Symposium on Theory of Computing (STOC), pp. 209-218,
1998.

3. I. B. Damg̊ard. A Design Principle for Hash Functions. Advances in Cryptology
- Crypto’89, Lecture Notes in Computer Sciences, vol 435, Springer-Verlag, pp.
416-427, 1989.

4. H. Finney. More problems with hash functions. The cryptographic mailing list, 24
Aug 2004. Available at http://lists.virus.org/cryptography-0408/msg00124.html.

5. M. Hattori, S. Hirose and S. Yoshida. Analysis of Double Block Lengh Hash Func-
tions. 9th IMA International Conference Cryptographi and Coding, 2003, Lecture
Notes in Computer Science, vol 2898, 2003.

6. S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model, 7th International Conference on Information Security and Cryptology, 2004.

7. A. Joux. Multicollision on Iterated Hash Functions. Applications to Cascaded Con-
structions. Advances in Cryptology - Crypto’04, Lecture Notes in Computer Sci-
ence, vol 3152, 2004.

8. L. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length hash func-
tions. Journal of Cryptology, vol 11, no-1, winter, 1998.

9. L. Knudsen and B. Preneel. Construction of Secure and Fast Hash Functions Using
Nonbinary Error-Correcting Codes. IEEE transactions on information theory, vol
48, No. 9, Sept-2002.

10. S. Lucks. Design principles for Iterated Hash Functions. ePrint Archive Report,
2004. Available at http://eprint.iacr.org/2004/253.

11. R. Merkle. One Way Hash Functions and DES. Advances in Cryptology -
Crypto’89, Lecture Notes in Computer Sciences, Vol. 435, Springer-Verlag, pp.
428-446, 1989.

12. C. H. Meyer and M. Schilling. Secure program load with manipulation detection
code. Proceedings Securicom, pp. 111-130, 1988.

13. M. Nandi, W. Lee, K. Sakurai and S. Lee. Security Analysis of a 2/3-rate Double
Length Compression Function in The Black-Box Model. Fast Software Encryp-
tion’05, 2005.

14. M. Nandi and D. R. Stinson. Multicollision Attacks on Generalized Hash Functions.
Cryptology ePrint Archive, 2004. Available at http://eprint.iacr.org/2004/330.

15. D. R. Stinson. Cryptography : Theory and Practice, Second Edition, CRC Press,
Inc.

16. D. R. Stinson. Some observations on the theory of cryptographic hash functions.
ePrint Archive Report, 2001. Available at http://eprint.iacr.org/2001/020/.

17. T. Satoh, M. Haga and K. Kurosawa. Towards Secure and Fast Hash Functions.
IEICE Trans. vol E82-A, No. 1 January, 1999.

	Introduction
	Our Contribution

	Preliminaries
	The Classical Iterated Hash Function
	The Random Oracle Model
	The Birth-Day Attack
	Joux's Multicollision Attack
	Rate Function (Efficiency Measurement) of Known Designs

	A Class of Double Length Compression Functions
	Security Analysis of the Compression Functions from C

	A Class of Double Length Hash Functions
	An Efficient Double Length Hash Function
	(2nd) Preimage Security Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

