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Abstract. In this paper, we propose a new variant of the NTRU pub-
lic key cryptosystem − the MaTRU cryptosystem. MaTRU works under
the same general principles as the NTRU cryptosystem, except that it
operates in a different ring with a different linear transformation for en-
cryption and decryption. In particular, it operates in the ring of k by k
matrices of polynomials in R = Z[X]/(Xn −1), whereas NTRU operates
in the ring Z[X]/(XN − 1). Note that an instance of MaTRU has the
same number of bits per message as an instance of NTRU when nk2 = N .
The improved efficiency of the linear transformation in MaTRU leads to
respectable speed improvements by a factor of O(k) over NTRU at the
cost of a somewhat larger public key.
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phy, lattice attacks, partial polynomial evaluation.

1 Introduction

Since the concept of public key cryptography was first introduced by Diffie and
Hellman [4] in 1976, there has been steadily increasing interest in cryptographic
studies; many public key cryptosystems have been proposed, i.e. RSA [22] based
on integer factorization problem, the McEliece systems [15] based on algebraic
coding theory, the ECC systems [12] based on the intractability of elliptic curve
DLP and the variants of Matsumoto-Imai cryptosystems [14, 3] based on the
systems of multivariable polynomials. Unfortunately, in practice many of these
algorithms are costly in terms of computational and space complexity. These
costs inhibit the ability of these algorithms to be substituted for symmetric key
cryptosystems, and it prevents some of them (e.g. RSA) from running effectively
on low power computing devices such as low-cost smart cards, RFID devices,
and cell phones. As a result, cryptographers continue to look for new, fast public
key cryptosystems, especially those which are based on different hard problems.
Since 1996, researchers from NTRU Cryptosystems [21] have proposed a group
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of fast public key cryptosystems based on partial evaluation of constrained poly-
nomials over polynomial rings. These cryptosystems include the NTRU public
key encryption algorithm [8] and the digital signature scheme NTRUSign [7].

Next, let us briefly describe one of these cryptosystems, NTRU. NTRU is a
public key cryptosystem that operates in the ring Z[X ]/(XN − 1). Encryption
and decryption of a message corresponds to applying a linear transformation to a
ring element. Since this linear transformation performs the multiplication of two
polynomials, the cost of applying it is O(N2) operations (assuming Fast Fourier
Transforms are not used). In addition, these operations are on small integers,
allowing for further speed optimizations. For these reasons, the speed of NTRU
is one of its strongest features. NTRU operates considerably faster than both
RSA and ECC at relatively the same security levels [13, 8]. However, the speed
of NTRU can be further improved by choosing a different ring and applying a
more efficient linear transformation [9, 10]. The hard problem underlying this
cryptosystem is related to finding short vectors in a lattice due to the properties
of short polynomials used in the system [2, 16, 20]. Since NTRU was proposed,
it has been cryptanalyzed heavily by the cryptographic community, and some
interesting results can be found in [5, 6, 11, 17, 19]. Meanwhile, some variants
of NTRU encryption schemes have also been proposed, such as the generalized
NTRU schemes [1].

The MaTRU cryptosystem, described in this paper, uses a more efficient
linear transformation while providing a security level comparable to that of
NTRU. MaTRU operates in the ring of k by k matrices of polynomials in
R = Z[X ]/(Xn − 1). Note that an instance of MaTRU has the same num-
ber of bits per message as an instance of NTRU when nk2 = N . While NTRU
involves performing a one-sided multiplication for encryption and decryption
[8], the linear transformation applied in MaTRU is a two-sided matrix multi-
plication. This means that the private key in MaTRU has two ring elements,
as opposed to one ring element in NTRU. This is essential because multiply-
ing on one side just gives a search space of size, say S, for the private key and
the effect would be linear. Then, a lattice attack could be mounted very simi-
lar to the one on NTRU. However, multiplying on both sides will amplify the
space of all linear transformations to S2. The lattice attack will be extremely
hard, due to the high dimension lattice matrix. Another difference between
the two cryptosystems is that the ring in MaTRU is not commutative. This
means that the matrices in the private key and the random matrices applied
during encryption must specifically be constructed so that they commute with
each other.

Since applying the linear transformation in MaTRU involves matrix multi-
plications, the encryption and decryption processes only require O(n2k3) op-
erations. This results in a speed increase by a factor of O(k) over NTRU. In
practice, this increase is approximately k

2 since MaTRU uses two matrix multi-
plications for every polynomial multiplication in NTRU. The private and public
key lengths for MaTRU are O(nk2), making them comparable to key lengths in
NTRU.
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In the next section, we describe our proposed MaTRU cryptosystem in detail.
Then, we discuss the parameter selection for MaTRU in Section 3. In Section
4, we present the details of the security analysis of the proposed scheme. We
show its security strength based on certain parameter choices and compare it
with standard NTRU in Section 5. Finally, we summarize our conclusions in
Section 6.

2 The MaTRU Algorithm

2.1 Notation

The MaTRU cryptosystem operates in the ring M of k by k matrices of ele-
ments in the ring R = Z[X ]/(Xn − 1). The ring R consists of polynomials with
degree at most (n−1) having integer coefficients. Multiplication and addition of
polynomials in R is done in the usual manner, but exponents of X are reduced
modulo n. Matrix multiplication in M is denoted using the ∗ symbol.

Besides n and k, MaTRU also uses the parameters p, q ∈ N. The numbers p
and q may or may not be prime, but they must be relatively prime. In general, p
is much smaller than q; in this paper, for ease of explanation, we stick to p = 2
or p = 3 and q in the range of 28 to 211. When we say we perform a matrix multi-
plication modulo p (or q), we mean that we reduce the coefficients of the polyno-
mials in the matrices modulo p (or q).We define the width of an element M ∈ M
to be |M |∞ = (maxpolys. m in M coeff. in m)−(minpolys. m in M coeff. in m) . The
width of M is the maximum coefficient in any of its k2 polynomials minus the
minimum coefficient in any of its polynomials. We say a matrix M ∈ M is short
if |M |∞ ≤ p. When short matrices are multiplied together, we get a matrix which
has a width which may be greater than p but is still almost certainly smaller
than q; we call this matrix pretty short. The definitions for width and short-
ness apply similarly to polynomials in R. For r ∈ R, |r|∞ = (max coeff. in r) −
(min coeff. in r). The polynomial r is said to be short if |r|∞ ≤ p. We also define

the size of an element M ∈ M to be |M | =
√∑

polys. m in M

∑
(coeff. in m)2.

When defining some of the sets of short matrices below, we use the notation

L(d) =

⎧
⎨
⎩M ∈ M | for i =

⌈
− p−1

2

⌉
. . .

⌈
p−1
2

⌉
, i �= 0, each polynomial

in M has on average d coefficients equal to i,
with the rest of the coefficients equal to 0.

⎫
⎬
⎭ .

For example, if p = 3 and n = 5, then L(2) consists of all matrices of polynomials
where on average each polynomial has 2 coefficients equal to 1, 2 coefficients equal
to −1, and 1 coefficient equal to zero. Or, if we had p = 2 and n = 5, then L(2)
consists of all matrices of polynomials where on average each polynomial has 2
coefficients equal to 1 and 3 coefficients equal to zero.

The parameters for MaTRU consist of the four integers (n, k, p, q) described
above and the five sets of matrices (Lf , LΦ, LA, Lw, Lm) ⊂ M. These sets have
the following meanings and compositions:



MaTRU: A New NTRU-Based Cryptosystem 235

Set Elements Description Composition
Lf f, g Compose private key Short; see (2) below
LΦ Φ, Ψ Random matrices applied for each

encryption
Short; see (2) below

LA A, B Used to construct f, g, Φ, Ψ Short; see (1) below
Lw w Used to construct public key Short
Lm m Messages Short; see (3) below

1. LA consists of all matrices C ∈ M such that C0, C1, . . . , Ck−1 are linearly
independent modulo q; and for short c0, . . . , ck−1 ∈ R,

∑k−1
i=0 ciC

i is short.
Section 3.2 describes the exact nature of LA that satisfies these conditions.

2. Lf and LΦ consist of all matrices D ∈ M constructed such that, for C ∈
LA and short c0, . . . , ck−1 ∈ R, D =

∑k−1
i=0 ciC

i. Additionally, matrices
in Lf must satisfy the requirement that they have inverses modulo p and
modulo q.

3. The set of messages Lm consists of all matrices of polynomials with coeffi-
cients modulo p. We therefore express

Lm =
{

M ∈ M |polynomials in M have coefficients
between

⌈
− p−1

2

⌉
and

⌈
p−1
2

⌉
}

.

This means that each message contains nk2 log2 p bits of information.

2.2 Key Creation

To create a public/private key pair, Bob chooses two k by k matrices A, B ∈
LA. Next, Bob randomly selects short polynomials α0, α1, . . . αk−1 ∈ R and
β0, β1, . . . βk−1 ∈ R. Bob then constructs the matrices f, g ∈ Lf by taking

f =
k−1∑
i=0

αiA
i and g =

k−1∑
i=0

βiB
i .

As noted above in Section 2.1, the matrices f and g must have inverses modulo p
and modulo q. This will generally be the case, given suitable parameter choices.
We denote the inverses as Fp, Fq and Gp, Gq, where

Fq ∗ f ≡ I(mod q) and Fp ∗ f ≡ I(mod p);
Gq ∗ g ≡ I(mod q) and Gp ∗ g ≡ I(mod p).

Note that I is a k by k identity matrix. Bob now has his private key, (f, g),
although in practice he will want to store the inverses Fp and Gp as well. Bob
now selects a random matrix w ∈ Lw, and constructs the matrix h ∈ M by
taking

h ≡ Fq ∗ w ∗ Gq (mod q) .

Bob’s public key consists of the three matrices, (h, A, B).
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2.3 Encryption

To encrypt a message to send to Bob, Alice randomly generates the short poly-
nomials φ0, φ1, . . . φk−1 ∈ R and ψ0, ψ1, . . . ψk−1 ∈ R. Alice then constructs the
matrices Φ, Ψ ∈ LΦ by taking

Φ =
k−1∑
i=0

φiA
i and Ψ =

k−1∑
i=0

ψiB
i .

Alice then takes her message m ∈ Lm, and computes the encrypted message

e ≡ p(Φ ∗ h ∗ Ψ) + m (mod q) .

Alice then sends e to Bob.

2.4 Decryption

To decrypt, Bob computes

a ≡ f ∗ e ∗ g (mod q) . (1)

Bob translates the coefficients of the polynomials in the matrix a to the range
−q/2 to q/2 using the centering techniques as in the original NTRU paper [8].
Then, treating these coefficients as integers, Bob recovers the message by com-
puting

d ≡ Fp ∗ a ∗ Gp (mod p) .

2.5 Why Decryption Works

In decryption, from Eq. [1] Bob has

a ≡ f ∗ (p(Φ ∗ h ∗ Ψ) + m) ∗ g (mod q)
≡ p(f ∗ Φ ∗ Fq ∗ w ∗ Gq ∗ Ψ ∗ g) + f ∗ m ∗ g (mod q)

Although matrix multiplication is not generally commutative, f and Φ here do
indeed commute:

f ∗ Φ ≡ (
∑k−1

i=0 αiA
i) ∗ (

∑k−1
i=0 φiA

i) (mod q)
≡

∑k−1
i=0

∑
i≡j+� (mod k) αjA

jφ�A
� (mod q)

≡
∑k−1

i=0
∑

i≡j+� (mod k) φ�A
j+�αj (mod q)

≡
∑k−1

i=0
∑

i≡j+� (mod k) φ�A
�αjA

j (mod q)
≡ (

∑k−1
i=0 φiA

i) ∗ (
∑k−1

i=0 αiA
i) ≡ Φ ∗ f (mod q)

Similarly, g ∗ Ψ ≡ Ψ ∗ g (mod q). So, Bob now has that

a ≡ p(Φ ∗ w ∗ Ψ) + f ∗ m ∗ g (mod q)

For appropriate parameter choices, |a|∞ ≤ q. Then, treating the polynomials
in this matrix as having coefficients in Z, Bob can take those coefficients modulo
p, leaving f ∗ m ∗ g(mod p). The original message is then recovered by left-
multiplying by Fp and right-multiplying by Gp.
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3 Parameter Selection

3.1 Selection of Pairs (f, g) and (Φ, Ψ)

We define df and dφ such that

Lf = L(df ) and LΦ = L(dφ) .

Since the matrices A and B are public, the security of f , g, Φ, and Ψ necessarily
depends on the difficulty of discovering the short polynomials αi, βi, φi, and ψi.
For this reason, we want to maximize the number of possible choices for these
polynomials. We therefore commonly select

df ≈ n

p
and dφ ≈ n

p
.

See section 4.1 for precise brute force security calculations.

Remark 1. A matrix f in the ring M will be invertible modulo p and q, only
if the correspond matrix determinant detf , which is in the ring R, is also in-
vertible modulo p and q. In practice, this is impossible if detf (1) = 0 (the sum
of the coefficient values of the determinant polynomial is equal to 0). So we
must re-select one or more of the polynomial elements in f if this condition was
not fulfilled.

3.2 Selection of A and B

A main concern in generating the matrices f and Φ (and likewise, g and Ψ)
is that they must not only commute, but they should also be short. Shorter
matrices ensure that |p(Φ ∗ w ∗ Ψ) + f ∗ m ∗ g|∞ will be smaller, which will allow
us to reduce q and valid ciphertexts will be decipherable.

To achieve this, we select A and B to be permutation matrices. A permutation
matrix is a binary matrix (i.e. consisting of only the scalars 0 and 1) such that
there is exactly one 1 in each row and column with all 0s elsewhere. Since A and
B have the additional requirement that the sets A0, . . . , Ak−1 and B0, . . . , Bk−1

are both linearly independent, we have that

k−1∑
i=0

Ai =
k−1∑
i=0

Bi =

⎛
⎜⎝

1 . . . 1
...

. . .
...

1 . . . 1

⎞
⎟⎠ .

This implies that each row and column of f will contain some permutation of
α0, . . . , αk−1, meaning that each αi will appear k times in f . An analogous
situation exists for g, Φ, and Ψ .

Using the common choice of df ≈ dφ ≈ n
p , we have that

|f | ≈
√

k2|αi|2 ≈

√
(p − 1)nk2

p
≈ |g| ≈ |Φ| ≈ |Ψ | .
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3.3 Selection of w

Like f and g, w should also be chosen to be short in order to keep |p(Φ ∗ w ∗
Ψ)+f ∗m∗g|∞ small. For security reasons, it is important that w remain secret
from an attacker. Therefore, in order to maximize the space of w we make

Lw = L
(⌊

n

p

⌋)
.

The size of w is then given by

|w| =

√
(p − 1)nk2

p
.

Remark 2. Note that when w is chosen in this manner, on average |w| ≈ |m|.
This means that |Φ ∗ w ∗ Ψ | ≈ |f ∗ m ∗ g|.

4 Security Analysis

4.1 Brute Force Attacks

To find a private key by brute force, an attacker must try all possible short
pairs of matrices (f, g) to find one such that f ∗ h ∗ g is also short. Since the
matrices A and B are public, f and g are determined by the 2k polynomials
α0, . . . , αk−1, β0, . . . , βk−1. Each of these polynomials has degree n − 1, so the
number of possible (f, g) pairs is

(key security) =
(

n!
(n − (p − 1)df )!df !(p−1)

)2k

. (2)

Similarly, the encryption of a particular message is determined by the 2k poly-
nomials φ0, . . . , φk−1, ψ0, . . . , ψk−1, so we have the same message security as Eq.
[2] with replacing df by dφ. Using a meet-in-the-middle attack, such as the method
due to Odlyzko [18] used on the standard NTRU algorithm, assuming sufficient
memory storage, the key and message security would be equal to the square root
of the above values.Note that for the standardNTRUalgorithmwith the suggested
parameters, the meet-in-the-middle attack is the most effective known attack.

4.2 Lattice Attacks

Key security. Message decryption, which left-multiplies the encrypted mes-
sage by f and right-multiplies it by g, amounts to the application of a linear
transformation T : M → M such that both T and T (h) are short. If this was
the case, then it is likely that either T is the transformation corresponding to
the one given by the actual private key, or that T will work as a substitute for
the private key in decrypting messages.
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Let Tf,g : M → M be the linear transformation corresponding to decryption
with the actual private key. Then Tf,g is defined by Tf,g(J) : J → f ∗J ∗g . What
does the transformation Tf,g look like? To see this, we look at where Tf,g takes
the basis matrices for the space of all possible matrices J . The basis consists
of the k2 matrices δi,j , where δi,j has a 1 in position (i, j) and 0s elsewhere.
We then have that Tf,g = (fδ0,0g fδ0,1g . . . fδk−1,k−1g) . This describes
how Tf,g maps the basis matrices for the space of possible J ’s: δ0,0 → fδ0,0g,
δ0,1 → fδ0,1g, and so on.

Since f =
∑k−1

i=0 αiA
i and g =

∑k−1
i=0 βiB

i, we can express Tf,g as
a combination of the k2 linear transformations TAi,Bj , where TAi,Bj =(
Aiδ0,0B

j Aiδ0,1B
j . . . Aiδk−1,k−1B

j
)
. We then have that Tf,g(J) =∑

i,j γi,jTAi,Bj (J) . In this formula, each polynomial γi,j is the multiple of TAi,Bj

needed to produce the particular transformation Tf,g. Therefore, we have pre-
cisely that γi,j = αiβj.

Now, since the αi’s and βj’s are short, the polynomials γi,j will be pretty
short. In addition, Tf,g(h) = w is short. So, the linear transformation Tf,g

corresponds to a short target vector (γ0,0, γ0,1, . . . , γk−1,k−1, w) in the lattice
L = {(T, T (h))}. This lattice L is generated by the rows of the following 2nk2

by 2nk2 matrix composed of four nk2 by nk2 blocks:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 h0,0 h0,1 . . . hk−1,k−1
0 1 . . . 0 hk−1,k−1 h0,0 . . . hk−1,k−2
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 h0,1 h0,2 . . . h0,0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the above matrix, the n by n matrix hi,j represents the n coefficients of the
polynomial at position (i, j) in h. Note that detL = qnk2

and dimL = 2nk2.
As noted earlier, each γi,j = αiβj, so |γi,j | = |αiβj | ≈ |αi||βj | ≈ (p − 1)df .

There are k2 γi,j polynomials, so the size of the target vector (γ0,0, γ0,1, . . . ,
γk−1,k−1, w) is given by

|target| ≈
√

((p − 1)df )2k2 + |w|2.

Using the suggested df ≈ n
p and |w| =

√
(p−1)nk2

p yields

|target| ≈

√
(p − 1)nk2((p − 1)n + p)

p2 .

By the Gaussian heuristic, the expected shortest vector in L is

|exp. shortest| =

√
dimL

2πe
(detL)

1
dim L =

√
qnk2

πe
.
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Let ch equal the ratio of the target vector to the expected shortest vector. If
ch is near 0, the target vector will likely be much smaller than any other vectors
in the lattice, and will therefore be easier to find. If ch is near 1, then there will
likely be many vectors near the size of the target, making the target difficult to
find. In our case,

ch ≈ |target|
|exp. shortest| ≈

√
πe(p − 1)((p − 1)n + p)

p2q
.

For example, the MaTRU parameters suggested in section 5 give values for ch

around 0.2. This means that if the LLL algorithm finds a vector in the lattice
L around two tenth the size of the expected shortest vector, then the algorithm
has most likely found Tf,g or another suitable linear transformation.

Message security. A lattice attack can also be used to try to discover a par-
ticular message. The way this is done is very similar to the lattice attack on
a key. Since we selected the parameters df ≈ dφ and |w| ≈ |m|, we have that
|Φ ∗ w ∗ Ψ | ≈ |f ∗ m ∗ g|. So the lattice security of a message will be the same as
that of the key, meaning cm ≈ ch. The constant cm indicates how difficult it will
be to discover a particular message. Finding the message will be more difficult
when cm is close to 1 and easier when cm is close to 0.

Remark 3. The above lattice matrix for MaTRU can be further optimized by
multiplying the top-left nk2 by nk2 identity submatrix by a scaling factor, α, as
in [8]. Also, by using zero-forcing technique [16], we can reduce the dimension of
the lattice matrix and increase the performance of lattice attacks. These consid-
erations will be taken into account in a future revision of the parameter choices
for MaTRU.

5 Discussion

5.1 Parameter Choices

Table 1 shows some possible parameter choices for MaTRU along with their
brute force and lattice security levels. Key and message securities listed below
are for a meet-in-the-middle attack; these values should be squared for a regular
brute force attack.

Table 1. Possible parameter choices for MaTRU

n k p q df dφ key security msg. security ch dim L

6 15 3 2048 2 2 297.4 297.4 0.118 2700
8 9 3 1024 2 2 278.4 278.4 0.188 1296
11 6 3 1024 3 3 279.0 279.0 0.215 792
16 8 2 379 8 8 2109.2 2109.2 0.318 2048
18 5 2 251 9 9 277.8 277.8 0.412 880
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5.2 Comparison with Standard NTRU

Here we compare the theoretical operating characteristics of MaTRU with those
of NTRU, as shown in Table 2. The properties are listed in terms of the pa-
rameters (N, p, q) for NTRU and the parameters (n, k, p, q) for MaTRU. These
should be compared by setting N = nk2, since this equates to plain text message
blocks of the same size.

Table 2. Comparison between MaTRU with NTRU

Characteristic NTRU [8] MaTRU [this paper]
Plain Text Block N log2 p bits nk2 log2 p bits
Encrypted Text Block N log2 q bits nk2 log2 q bits
Encryption Speed O(N2) operations O(n2k3) operations1

Decryption Speed O(N2) operations O(n2k3) operations1

Message Expansion logp q-to-1 logp q-to-1
Private Key Length 2N log2 p bits 2nk2 log2 p bits2

Public Key Length N log2 q bits 3nk2 log2 q bits3

Key Security (Message Security)4 N!
dg!2(N−2dg)! ( n!

((n−2)df )!df !2 )2k

Lattice Security, ch (cm)5 2(π2de2

3Nq2 )
1
4 1

3

√
2πe(2n+3)

q

1 Since MaTRU performs two-sided multiplications, the constant factor will be about
twice that of standard NTRU.
2 A key length of 2nk log2 p+ 2k2 log2 k bits can be achieved by storing f and g not as
matrices but as the 2k polynomials found in the matrices along with their positions in
the matrices.
3A key length of nk2 log2 q + 2k log2 k bits can be achieved by storing A and B not as
matrices but as the positions of each of the k 1s in the two matrices.
4For message security, dg is replaced by d for NTRU whereas df is replaced by dφ

for MaTRU. For ease of comparison, we fix p = 3. We refer the readers to [8] for the
definition of dg and d used in NTRU.
5Note that ch ≈ cm, so that we have equivalent security level at key and message. For
ease of comparison, we fix p = 3.

As indicated by the table, the total time for encryption and decryption is k
2

times faster for MaTRU than for NTRU. MaTRU has a larger public key length
as a result of needing to store the matrices A and B, but a smaller private key
length due to the particular nature of the private keys f and g.

For example, compare the NTRU “high” security level of (N, p, q) =
(263, 3, 128) with the MaTRU parameter choices of (n, k, p, q) = (18, 5, 2, 251).
NTRU in this case would have a plain text block size of 417 bits, a private key
length of 834 bits, and a public key length of 1841 bits. MaTRU would have a
plain text block size of 450 bits, a private key length of 297 bits, and a pub-
lic key length of 3611 bits. MaTRU would theoretically be 2.5 times faster at
encryption/decryption than the instance of NTRU in this case.
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6 Conclusion

We have presented the MaTRU cryptosystem in detail, and we have shown that
its security level is comparable to NTRU with respect to several well-known
attacks, including brute force attacks, lattice attacks and meet-in-the-middle at-
tacks. However, the security analysis of MaTRU is heuristic because there may
be a better attack on it than on the original NTRU. Further research on the
lattice attack on MaTRU may yield new techniques (e.g. subdividing the lat-
tice) that are more effective. We have also suggested several parameter choices
for MaTRU that provide a significant speed improvement over NTRU with rel-
atively similar security levels. Future work to obtain precise running times and
lattice attack times will allow for further refinements to the list of suggested Ma-
TRU parameters in Table 1. Additionally, the introduction of the commutative
family (using permutation matrices) has been given a reasonable scrutiny but
would benefit from further analysis. Finally, we believe that the continued study
of optimization, improvement and cryptanalysis of MaTRU based on the previ-
ously proposed techniques used with the original NTRU, especially the impact
of imperfect decryption [17], presents interesting challenges to explore.
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