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Preface

Indocrypt began in the year 2000 under the leadership of Bimal Roy and In-
docrypt 2005 was the sixth conference in this series. This series has been well
accepted by the international research community as a forum for presenting
high-quality cryptography research. This year a total of 148 papers were sub-
mitted for consideration to the Program Committee and after a careful review
process, 31 were accepted for presentation. We would like to thank the authors
of all submitted papers, including those that were accepted and those which,
unfortunately, could not be accommodated.

The reviewing process for Indocryptwas very stringent and the schedulewas ex-
tremely tight. The Program Committee members did an excellent job in reviewing
and selecting the papers for presentation. During the review process, the Program
Committee members were communicating using a review software developed by
Bart Preneel, Wim Moreau and Joris Claessens. We acknowledge them for provid-
ing the software. The software was hosted at I2R, Singapore and we are grateful to
Feng Bao and Jianying Zhou for allowing that. This year’s conference was deeply
indebted to Qiu Ying of I2R, Singapore, who took the responsibility of maintain-
ing the review software and the server. Without his great cooperation Indocrypt
2005 could not have been possible. In this regard I would like to acknowledge the
support of Tanmoy Kanti Das, Dibyendu Chakrabarti, Mridul Nandi, Deepak Ku-
mar Dalai, Sumanta Sarkar and Sourav Mukhopadhyay for handling important
administrative issues in the submission and review processes as well as for putting
together these proceedings in their final form. We are also grateful to Palash Sarkar
for his cooperation and guidance in Indocrypt 2005.

The proceedings include the revised versions of the 31 selected papers. Revi-
sions were not checked by the Program Committee and the authors bear the full
responsibility for the contents of the respective papers. Our thanks go to all the
Program members and the external reviewers (a list of them is included in the
proceedings) who put in their valuable time and effort in providing important
feedback to the authors. We thank V. Kumar Murty of the University of Toronto
for kindly agreeing to present the invited talk. The talk has been included in the
proceedings.

The organization of the conference involved many individuals. We express
our heartfelt gratitude to the general Co-chairs K. Gopinath and Soumyendu
Raha for taking care of the actual hosting of the conference. They were ably
assisted by Kumar Swamy H.V. and the members of the Organizing Committee.
There was also invaluable secretarial support from CAS Laboratory, Informat-
ics Laboratory (CSA department) and IMI at the Indian Institute of Science,
Bangalore. Finally, we would like to acknowledge Springer for active cooperation
and timely production of the proceedings.

December 2005 Subhamoy Maitra
C. E. Veni Madhavan

Ramarathnam Venkatesan
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Abelian Varieties and Cryptography

V. Kumar Murty

Department of Mathematics, University of Toronto,
40 St. George Street, Toronto, ON M5S 3G3, Canada

murty@math.toronto.edu

Abstract. Let A be an Abelian variety over a finite field F. The pos-
sibility of using the group A(F) of points on A in F as the basis of a
public-key cryptography scheme is still at an early stage of exploration.
In this article, we will discuss some of the issues and their current staus.
In particular, we will discuss arithmetic on Abelian varieties, methods
for point counting, and attacks on the Discrete Logarithm Problem, es-
pecially those that are peculiar to higher-dimensional varieties.

1 Introduction

Let A be an Abelian variety over a finite field F. Thus A is a smooth projective
algebraic variety defined over F on which there is an algebraic group operation,
also defined over F. In particular, the identity element O of the group is an
F-rational point. Abelian varieties of dimension one are called elliptic curves.

The possibility of using the group A(F) of points on A in F as the basis of a
public-key cryptography scheme is still at an early stage of exploration. In this
article, we will discuss some of the issues and their current staus. In particular,
we will discuss the problem of explicit and efficient arithmetic, algorithms for
efficient point counting, and criteria by which to eliminate cryptographically
weak Abelian varieties.

In order to keep our discussion to a moderate length, we shall merely outline
or draw attention to the many developments in this subject. We shall try to
emphasize those aspects in which we believe more work is needed.

Denote by F an algebraic closure of F and let

G = Gal(F/F)

be the Galois group. It is a procyclic group, being the inverse limit of cyclic
groups:

G � Ẑ = lim Z/NZ.

Let Frob = FrobF be the map

x �→ xq

where q is the number of elements in F. Sometimes, we may also write Frobq. It
is a topological generator of G.

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 V. Kumar Murty

There is an action of G on A(F). In particular, the function

n �→ deg(Frob− n)

is well defined. There is a polynomial PA(T ) with the property that for every n
(sufficiently large),

PA(n) = deg(Frob− n).

This is called the characteristic polynomial of the Frobenius automorphism. It
has many wonderful properties. In particular,

|A(F)| = PA(1).

Moreover, if d is the dimension of A,

PA(T ) =
2d∏

i=1

(1− ωiT )

where
|ωi| = q

1
2

and for 1 ≤ i ≤ d,
ωiωd+i = q.

We see from this that
|A(F)| = qd + O(qd− 1

2 ).

Since Abelian varieties of higher dimension have more points (roughly qd

where d is the dimension), a generic attack should take about

qd/2

steps. This means that it may be possible to use them as the basis of a secure
cryptographic scheme with a smaller value of q. Thus, for example, from this
point of view, a two-dimensional Abelian variety over a field of approximate size
282 would be as secure as an elliptic curve over a field of approximate size 2164.

To realize this in practice, we have to solve several problems:

– Explicit and efficient arithmetic
– Efficient point counting
– Understanding of other attacks that are peculiar to this setting.

2 Explicit and Efficient Arithmetic

For explicit and efficient arithmetic, most effort has been directed at elliptic curves.
The state of the art in efficient implementations of arithmetic of elliptic curves over
finite fields is given in the book [12]. It should be noted that some of this work is, in
fact, about improving the efficiency of arithmetic in finite fields. These results can
of course be applied directly in the higher dimensional case as well.
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In the higher dimensional case, we have already pointed out that the larger
group order ostensibly allows us to work securely in a finite field of smaller size.
However, there are two difficulties. Firstly, the theory of Abelian varieties in
higher dimensions has not, for the most part, been developed from the point of
view of explicit equations or explicit arithmetic. Much work remains to be done
in this regard. Secondly, even where one is able to explicitly give equations, the
number of variables tends to be large and this adds complexity to the algorithm.
In general, this added complexity seems to offset any gain that might be had by
working over a field of smaller size.

One class of Abelian varieties for which these problems have been studied
extensively is that of Jacobians of hyperelliptic curves. In this case, there has
been significant progress in developing efficient arithmetic. The general algo-
rithm of Cantor gives formulae for the addition of points on such Jacobians [4].
A considerable amount of work by many authors (including Chao, Gonda, Gua-
jardo, Guyot, Harley, Kaveh, Kuroki, Lange, Matsuo, Nagao, Paar, Patankar,
Pelzl, Tsujii, Wollinger and others) has been done on refining this algorithm
to improve the complexity. The standard by which such work is compared is
the speed relative to the known implementations for comparable elliptic curve
arithmetic.

For Abelian varieties that are Jacobians of hyperelliptic curves of genus 3,
the work of Guyot, Kaveh and Patankar [11] shows that in some cases, the
arithmetic is faster than comparable elliptic curve arithmetic. Their work builds
on the explicit formula method of Tanja Lange and others. It should be noted
that in making this comparison, the authors took into account the index calculus
attack of Thériault [22] on Jacobians of genus three hyperelliptic curves.

There has also been progress on the arithmetic of Abelian varieties that arise
as the Jacobian of more general curves. There is a general treatment due to
Arita, Miura and Sekiguchi [2].

3 Point Counting

For the problem of point counting, there are fast algorithms in the case of hyper-
elliptic Jacobians over fields of small characteristic (work of Satoh[20], Fouquet,
Gaudry and Harley[8], Kedlaya[14], Denef and Vercauteren[7], and others).

For the case of a general Abelian variety, there is only a baby step-giant step
approach to point counting. Gaudry and Harley [10] observed that if one knew
the number of points modulo an integer m, this can be sped up by a factor of√
m. An interesting result of Chao, Matsuo and Tsujii [5] was that this could

be improved if we knew the entire characteristic polynomial of Frobenius PA(T )
modulo m. This work was refined by Izadi and the author [13].

As an illustration of this, consider the case d = 3 (where d is the dimension
of A). The Gaudry-Harley algorithm costs

O(q5/4/m1/2)
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steps. The algorithm of Chao-Matsuo-Tsujii costs

O(q3/2/m)

steps. The refined algorithm in [13] gives a cost of

O(q5/4/m)

steps.
Much further work is needed to develop practical techniques of point counting

for general Abelian varieties.

4 Primality of the Group Order

The next question that arises is how likely it is that #A(Fq) is prime or nearly
prime. It will be interesting to estimate this as we vary over all Abelian varieties
of a fixed dimension over a fixed finite field. A related problem is to consider
a fixed Abelian variety over a number field and its reductions modulo various
primes. Let us briefly discuss the latter problem. It is a difficult one even in the
case of elliptic curves.

More precisely, consider an elliptic curveE over the rational numbers Q. There
is the following result of Ali Miri and the author [1]. Let E be an elliptic curve
over Q. Assuming the Generalized Riemann Hypothesis(GRH) (for all Dedekind
zeta functions), we have that

|E(Fp)|

has log log p prime divisors for a set of primes of density 1. Since log log p grows
very slowly with p, this is bounded in cryptographic ranges.

The Generalized Riemann Hypothesis is the assertion that the non-trivial
zeros of the zeta function ζF (s) of a number field F are on the critical line
Re(s) = 1

2 . This hypothesis is often introduced because it helps us to control
the error terms when counting prime ideals that satisfy certain splitting con-
ditions. In turn, certain natural Galois representations allow us to relate group
orders of Abelian varieties to the number of prime ideals with prescribed splitting
conditions.

In some cases, it is possible to dispense with the GRH by using sieve methods.
For example, in the case that E has complex multiplication, the above result has
been proved unconditionally by Cojocaru [6].

Note that there is a conjecture of Koblitz that asserts that #E(Fp) should be
prime for

∼ cE
x

(log x)2

of the primes p ≤ x where cE > 0 is a constant depending on E. He made
this conjecture in analogy with the conjectures of Hardy and Littlewood about
primes of the form 2p + 1. Koblitz’s conjecture is still open. The first progress
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towards the conjecture of Koblitz was the result of Ali Miri and the author [13].
There it was shown that assuming the GRH, there are

� x

(log x)2

primes p ≤ x such that #E(Fp) has atmost 13 prime divisors.
This used the lower bound Selberg sieve method. The result has been improved

by Steuding and Weng [21] who showed (using the weighted sieve) that 13 can
be replaced by 8. In the case that E has complex multiplication, these results
have been proved unconditionally and refined by Cojocaru [6]. In particular, she
shows that 13 can be replaced by 6 in the CM case.

For elliptic curves without complex multiplication, we can assert the exis-
tence of large prime power divisors for a positive proportion of the primes. More
precisely, we have the following result due to Ram Murty and the author.

Theorem 1. (Murty-Murty).
Let E be an elliptic curve defined over the rationals which does not have com-
plex multiplication. Assume the Generalized Riemann Hypothesis (GRH) for
Dedekind zeta functions. Then, for a positive proportion of the primes p,

|E(Fp)|

has a prime power divisor > p1/5−ε.

Note that |E(Fp)| is roughly of size p.

Outline of Proof. Let us set

Np = #E(Fp).

Then by the Weil bound,

Np = p + O(p
1
2 ).

Thus, by the prime number theorem,∑
p≤x

logNp ∼ x.

On the other hand, the sum on the left is also equal to∑
d≤x

Λ(d)π(x, d)

where Λ(d) is the usual von Mangoldt function and

π(x, d) = #{p ≤ x : Np ≡ 0 mod d}.

Assuming the GRH and using the Chebotarev density theorem, we have

π(x, d) =
1
d
π(x) + O(d3/2x1/2 log dNx)
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where N is the conductor of E. This means that∑
d≤x

1
5 −ε

Λ(d)π(x, d) = π(x)(
1
5
− ε) log x + O(x1−ε).

Hence ∑
x

1
5 −ε≤d≤x

Λ(d)π(x, d) ∼ (
4
5

+ ε)x.

Since the left hand side is∑
p≤x

∑
x

1
5 −ε≤d≤x

d|Np

Λ(d) ≤ (log x)
∑
p≤x

∑
x

1
5 −ε≤d≤x

d|Np

d prime power

1,

we deduce that for a set of primes p of density at least

4
5

Np has a prime power divisor > p
1
5−ε.

5 Splitting of Abelian Varieties

A phenomenon that is peculiar to the higher dimensional case is that of “splitt-
ting modulo all primes”. It is possible to have a simple (or absolutely simple)
Abelian variety defined over a number field which has the property that with
only finitely many exceptions, when it is reduced modulo a prime (ideal), it fac-
tors into Abelian varieties of smaller dimension. In particular, the group order
will not be prime. By the usual attacks, this makes such an Abelian variety not
optimal for cryptographic purposes.

This phenomenon of course cannot occur for elliptic curves. But it already
occurs in the two dimensional case, that is for Abelian surfaces. In particular,
let A be an Abelian surface that has endomorphisms by an indefinite quaternion
division algebra over Q. At all but finitely many primes p, the reduction Ap

modulo p is of the form
Ap ∼ Ep × Ep

where Ep is an elliptic curve over the residue field. Thus, even though A is simple
globally, it splits everywhere locally.

This is the geometric analogue of a phenomenon that has been known for a
long time in the context of polynomials. For example, the polynomial T 4 + 1 is
irreducible over Q but factors modulo p for every prime p.

This failure of the “local-global principle” was studied in [17] and in the
thesis of Patankar [19]. Much further investigation is needed here to identify
which Abelian varieties have this property.
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6 The Weil and Tate Pairings

Let Â denote the dual Abelian variety. The first pairing to consider is one that
comes from the cup product:

< ·, · >: A[m] × Â[m] −→ μm.

This is the Weil pairing and it is a non-degenerate pairing. In particular, if P is
a point in A[m] rational over F, then there is a point R ∈ Â[m] rational over F

such that
< P,R > �= 1.

Now, if Q is a point in A[m] with Q = rP , then

< Q,R > = < rP,R > = < P,R >r .

Thus, if the pairing < ·, · > can be computed efficiently, and if R can be found
efficiently, then the Discrete Logarithm problem on A(F) can be transferred to
one in μm. For the latter, there are subexponential algorithms available.

This is the basis of the Menezes-Okamato-Vanstone [15] attack. They consid-
ered the case of elliptic curves. In this case, Ê = E and we have a self-pairing

E[m] × E[m] −→ μm

that is alternating and non-degenerate.
Using the isomorphism

E[m] � (Z/m)2,

the above pairing is the exterior square map. Indeed, fix a basis P,Q say of E[m].
For T1, T2 ∈ E[m], write

Ti = aiP + biQ.

Then

< T1, T2 > = det
(
a1 a2
b1 b2

)
.

In this case there is an efficient algorithm for computing the Weil pairing due to
Miller [16]. We shall return to this later.

Frey and Rück [9] have indicated that a different pairing can be used in a
similar way. Suppose that m is prime to the characteristic of F and suppose that
the m-th roots of unity are in F. They define a pairing

A(F)/mA(F) × A(F)[m] −→ F×/F×m � μm.

Frey and Rück call this the Lichtenbaum-Tate pairing (or just the Tate pairing
for short). The method of Miller allows for the computation of this pairing as
well in the case of elliptic curves.
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7 Computation of Pairings

Let E/Fq be an elliptic curve (where q is a power of the prime p). Let gcd(m, p) =
1. Denote by Div0(E) the abelian group of divisors of degree zero on E.Two such
divisors, D1 and D2 say, are said to be linearly equivalent (written D1 ∼ D2) if
their difference is the divisor of a rational function onE. There is an isomorphism

E � Div0(E)/ ∼

given by
P �→ the class of (P ) − (O).

For P,Q ∈ E[m], take DP , DQ ∈ Div0(E) with DP ∼ (P ) − (O) and DQ ∼
(Q)−(O). Let fP , fQ be rational functions such that div(fP ) = mDP , div(fQ) =
mDQ. Suppose that DP and DQ have disjoint supports. Then the Weil pairing
is given by

< P,Q >=
fP (DQ)
fQ(DP )

,

The Tate pairing can also be described using fP (DQ). We must assume that F

contains the m-th roots of unity. The pairing

T : E(F)[m] × E(F)/mE(F) −→ F×/F×m

is given by
T (P,Q) = fP (DQ) mod mE(F).

Miller’s algorithm provides an efficient method to compute fP (DQ). Accord-
ing to this algorithm, one begins by randomly picking R, and forming

DP = (P +R)− (R).

If
div(fk) = k(P +R)− k(R)− (kP ) + (O)

then fm = fP .
We can compute fm inductively as follows. For R,S ∈ E, let us denote by

hR,S = 0 the straight line through R,S. Let us also denote by hS = 0 the vertical
line through S.
Then

div(hk1P,k2P ) = (k1P ) + (k2)P + (−(k1 + k2)P )− 3O
and

div(h(k1+k2)P ) = ((k1 + k2)P ) + (−(k1 + k2)P )− 2O
and so

fk1+k2 =
fk1fk2hk1P,k2P

h(k1+k2)P
.

The initial conditions are f0 = 1 and

f1 =
hP+R

hP,R
.
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Thus, the algorithm is as follows:

INPUTS:m =
∑t

i=0 bi2
i, S ∈ E

OUTPUT: f = fm(S).

f ← f1; Z ← P ;
For j ← t− 1, t− 2, . . . , 1, 0 do

f ← f2 hZ,Z (S)
h2Z (S) ; Z ← 2Z;

If bj = 1 then

f ← f1f
hZ,P (S)
hZ+P (S) ; Z ← Z + P ;

Endif
Endfor

Return f

There have been refinements and improvements of this basic algorithm in
varous settings due to many authors including Barreto, Eisenträger, Galbraith,
Harrison, Kim, Lauter, Lynn, Montgomery, Scott and Soldera. In recent joint
work with Ian Blake and Greg Xu[3], we have discovered some refinements of
Miller’s algorithm that apply in general. Our approach works for arbitrary finite
fields and saves log2 m field multiplications. A variant for finite fields of char-
acteristic three saves log3 m field multiplications. (In this case, log3 m of point
triplings are performed which can be done very efficiently). We expect that
similar calculations should work whenever one has an effective Riemann-Roch
theorem.

8 Attacks on the Abelian Variety Discrete Logarithm
Problem Using Pairings

Let us return to the Tate pairing. Work of Lichtenbaum and Tate shows that
this is a non-degenerate pairing. To use it for the Discrete Logarithm problem,
one tries to find a point R ∈ A(F) such that the map

A[m] −→ μm

given by
P �→ < R,P >

is an isomorphism. One then uses this map as with the Weil pairing to solve the
Discrete Logarithm problem. For the Discrete Logarithm problem, the essential
point is that there is an embedding of a large cyclic subgroup of A(F) into μm

(or more precisely, into the multipicative group F×) where one can use index
calculus methods to mount a subexponential attack.

This approach is very succesful for supersingular Abelian varieties. The reason
is that in this case, the eigenvalues of Frobenius are of the form

q
1
2 ζ
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where ζ is a root of unity. Since the eigenvalues lie in an extension field of Q of
degree ≤ 2d, this bounds the order of ζ. For example, for an elliptic curve, we
see that ζ2 lies in a quadratic field. So if ζ is an m-th root of unity, then

φ(m/(2,m)) ≤ 2.

This means that m ≤ 6. Thus, all the eigenvalues are (after normalization)
roots of a cyclotomic polynomial. In particular, |A(Fq)| (or atleast its exponent)
divides qk − 1 for some k that depends only on dim A. Thus if m divides this
order, then m divides qk − 1 and one applies the Tate pairing over the field Fqk .

If one tries to apply this attack in general, the problem is that there is no
good bound for k. However, one might consider Abelian varieties that are “al-
most supersingular” in the following sense. Let L be the splitting field of the
characteristic polynomial PA(T ) of Frobenius. Choose a prime p of L above p.
Consider the set of slopes

Slopes(A) = {ordpα : PA(α) = 0}.

This set is independent of the choice of prime p because L is Galois over Q.
Define also the length of each slope: for c ∈ Slopes(A), set

length(c) = #{α : ordpα = c}

where α ranges over zeros of PA(T ). A supersingular Abelian variety A can be
characterized by

Slopes(A) = {1
2
}

and
length(

1
2
) = 2d.

An almost supersingular Abelian variety A (or what Zarhin [23] calls Abelian
varieties of K3-type) can be defined as one for which

Slopes(A) = {0, 1, 1
2
}

with
length(0) = length(1) = 1

and
length(

1
2
) = 2d− 2.

For example, consider
A = E1 × E2

where E1 is a ordinary elliptic curve and E2 is a supersingular elliptic curve.
The Discrete Logarithm Problem here can be solved in

O(q
1
2+ε)
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steps. This is not subexponential but is much better than the generic square
root attack which in this case would take

O(q)

steps. Can one use pairings on almost supersingular Abelian varieties to get an
attack on DLP that is better than the square root attack?
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Abstract. We prove a conjecture on the asymptotic behavior of the
joint linear complexity profile of random multisequences over a finite
field. This conjecture was previously shown only in the special cases of
single sequences and pairs of sequences. We also establish an asymptotic
formula for the expected value of the nth joint linear complexity of ran-
dom multisequences over a finite field. These results are relevant for the
theory of word-based stream ciphers.

Keywords: Word-based stream ciphers, multisequences, joint linear
complexity, joint linear complexity profile.

1 Introduction

The linear complexity is an important tool in the system-theoretic approach to
the quality assessment of keystreams in stream ciphers (see [19]). The linear
complexity measures to what extent the keystream can be simulated by linear
feedback shift register sequences or, equivalently, by linear recurring sequences.
Ideally, the keystream should be a “truly random” sequence. Thus, the yardstick
in the assessment of keystreams by means of linear complexity is the behavior
of random sequences with respect to the linear complexity.

In practice, keystreams will be bit sequences, i.e., sequences of elements of
the binary field F2. Since it does not make any difference in the mathematical
treatment, we will consider more generally sequences of elements of a finite field
Fq of order q, where q is an arbitrary prime power. It is convenient to speak of
a sequence over Fq when we mean a sequence of elements of Fq.

Recent developments in stream ciphers point towards an interest in word-
based or vectorized stream ciphers (see e.g. [2], [4], [10], and the proposals
DRAGON and NLS to the ECRYPT stream cipher project [6]). The theory of
such stream ciphers requires the study of multisequences, i.e., of parallel streams
of finitely many sequences. In the framework of linear complexity theory, the
appropriate complexity measure for multisequences is the joint linear complex-
ity defined below. We denote an m-fold multisequence consisting of m parallel

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 13–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



14 H. Niederreiter and L.-P. Wang

streams of sequences S1, . . . , Sm over Fq by S = (S1, . . . , Sm) and we speak of
an m-fold multisequence over Fq. Here m is an arbitrary positive integer.

Definition 1. Let n be a positive integer and let S = (S1, . . . , Sm) be an m-
fold multisequence over Fq. Then the nth joint linear complexity L

(m)
n (S) of

S is the least order of a linear recurrence relation over Fq that simultaneously
generates the first n terms of each sequence Sj, j = 1, 2, . . . ,m. The sequence
L

(m)
1 (S), L(m)

2 (S), . . . of nonnegative integers is called the joint linear complexity
profile of S.

We always have 0 ≤ L
(m)
n (S) ≤ n and L

(m)
n (S) ≤ L

(m)
n+1(S). Note that the

definition of L(m)
n (S) makes sense also if each Sj , j = 1, 2, . . . ,m, is a finite

sequence containing at least n terms. This remark will be used later on, for
instance in equation (1).

The joint linear complexity and the joint linear complexity profile of mul-
tisequences have received a lot of attention recently. Feng, Wang, and Dai [8],
Xing [22], and Xing, Lam, and Wei [23] constructed multisequences with special
joint linear complexity profiles. Wang, Zhu, and Pei [21] discussed algorithmic
aspects of the joint linear complexity profile. The papers by Fu, Niederreiter,
and Su [9], Meidl [12], and Meidl and Niederreiter [13] are devoted to the study
of the joint linear complexity of periodic multisequences. Meidl and Winterhof
[14] proved bounds for the joint linear complexity profile of a special family
of multisequences. Probabilistic results on the joint linear complexity profile of
multisequences were obtained by Feng and Dai [7] and Wang and Niederreiter
[20]. Dai, Imamura, and Yang [3] considered aspects of the asymptotic behavior
of the joint linear complexity profile of multisequences. A recent survey article
on linear complexity, which includes material on the joint linear complexity, is
Niederreiter [16]. For earlier work we refer to the books of Cusick, Ding, and
Renvall [1] and Ding, Xiao, and Shan [5].

For the assessment of the quality of multisequences for word-based stream
ciphers, we need to know the behavior of the joint linear complexity profile of
random multisequences over Fq. According to a folklore conjecture (see [17], [20],
[22]), a random m-fold multisequence S over Fq satisfies

lim
n→∞

L
(m)
n (S)
n

=
m

m + 1
in a sense that will be made precise in Section 2. The only cases in which this
conjecture was proved so far are m = 1 (see Niederreiter [15]) and m = 2 (see
Wang and Niederreiter [20]). The main contribution of the present paper is to
prove this conjecture for all values of m.

2 The Results

We first need to set up an appropriate stochastic model for studying the joint
linear complexity profile of random m-fold multisequences over Fq. The assump-
tions underlying this stochastic model are the following: (i) strings (i.e., finite
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sequences) over Fq of the same length are equiprobable; (ii) corresponding terms
in the m streams making up an m-fold multisequence over Fq are statistically in-
dependent. The constructions of the following probability measures reflect these
assumptions.

Let Fm
q be the set of m-tuples of elements of Fq and let (Fm

q )∞ be the se-
quence space over Fm

q , i.e., the set of (infinite) sequences with terms from Fm
q . It

is obvious that the set (Fm
q )∞ can be identified with the set of m-fold multise-

quences over Fq, and henceforth we will use this identification. Let μq,m be the
uniform probability measure on Fm

q which assigns the measure q−m to each ele-
ment of Fm

q . Furthermore, let μ∞
q,m be the complete product measure on (Fm

q )∞

induced by μq,m.
For a property P of m-fold multisequences S ∈ (Fm

q )∞, we write Prob(P) for
the μ∞

q,m-measure of the set of all S ∈ (Fm
q )∞ that have the property P (provided

this set is μ∞
q,m-measurable). Of particular interest are those properties P for

which Prob(P) = 1 since these can be viewed as typical properties of a random
m-fold multisequence over Fq. We say that a property P holds with probability
1 if Prob(P) = 1.

The following theorem establishes the conjecture formulated in Section 1 and
gives also a rigorous enunciation in terms of the terminology introduced above.

Theorem 1. For any prime power q and any integer m ≥ 1 we have

lim
n→∞

L
(m)
n (S)
n

=
m

m + 1

with probability 1.

As mentioned in Section 1, Theorem 1 was previously known only in the cases
m = 1 and m = 2. Theorem 1 implies an asymptotic expression for the expected
value E(m)

n of the nth joint linear complexity of random m-fold multisequences
over Fq. Since the nth joint linear complexity depends only on the first n terms
of the m streams making up an m-fold multisequence over Fq, we can write E(m)

n

in the form
E(m)

n = q−mn
∑

T∈(Fm
q )n

L(m)
n (T), (1)

where (Fm
q )n is the set of strings of length n with terms from Fm

q . For m = 1 it
was shown by Rueppel [18–Chapter 4] (see also [19–Section 3.2]) that

E(1)
n =

n

2
+O(1) as n→∞.

For m = 2 and q = 2 it was proved by Feng and Dai [7] and for m = 2 and
arbitrary q it was shown by Wang and Niederreiter [20] that

E(2)
n =

2n
3

+O(1) as n→∞.

The following result holds for arbitrary q and m.
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Theorem 2. For any prime power q and any integer m ≥ 1 we have

E(m)
n =

mn

m + 1
+ o(n) as n→∞.

3 The Proofs

We recall some notation from [20]. For any integersm ≥ 1 and L ≥ 1, let P (m;L)
be the set of m-tuples I = (i1, . . . , im) ∈ Zm with i1 ≥ i2 ≥ · · · ≥ im ≥ 0 and
i1 + · · ·+ im = L. For any I = (i1, . . . , im) ∈ P (m;L), let λ(I) be the number of
positive entries in I. Then I can be written in the form

I = (i1, . . . , isI,1︸ ︷︷ ︸
sI,1

, isI,1+1, . . . , isI,1+sI,2︸ ︷︷ ︸
sI,2

, . . . , isI,1+···+sI,t−1+1, . . . , isI,1+···+sI,t︸ ︷︷ ︸
sI,t

,

. . . , isI,1+···+sI,μ(I)−1+1, . . . , isI,1+···+sI,μ(I)︸ ︷︷ ︸
sI,μ(I)

, iλ(I)+1, . . . , im︸ ︷︷ ︸
sI,μ(I)+1

),

where isI,1+···+sI,t−1+1 = · · · = isI,1+···+sI,t > isI,1+···+sI,t+1 for 1 ≤ t ≤ μ(I),
iλ(I)+1 = · · · = im = 0, and λ(I) = sI,1 + · · · + sI,μ(I). If λ(I) = m, then
sI,μ(I)+1 = 0. Furthermore, we define

c(I) =
λ(I)∏
i=1

(qm+1−i − 1)(qi − 1)
q − 1

,

d(I) =
μ(I)∏
j=1

sI,j∏
i=1

qi − 1
q − 1

.

Put
eλ(I) = 2× (0, 1, 2, . . . , λ(I), 0, . . . , 0) ∈ Zm+1.

For I ∈ P (m;L), let [I, n−L] denote the vector obtained by arranging the m+1
numbers between the square brackets in nonincreasing order. Let · denote the
standard inner product for vectors with m+1 components. As in [20], we define
b(I, n− L) as follows. If 0 ≤ n− L < iλ(I), then we put

b(I, n− L) = eλ(I) · [I, n− L]− λ(I)(λ(I) − 1)
2

.

If isI,1+···+sI,w+1 ≤ n−L < isI,1+···+sI,w for some integer w with 1 ≤ w ≤ μ(I)−1,
then

b(I, n− L) = eλ(I) · [I, n− L]−
(
λ(I)(λ(I) + 1)

2
− (sI,1 + · · ·+ sI,w)

)
.

Finally, if n− L ≥ i1, then

b(I, n− L) = eλ(I) · [I, n− L]− λ(I)(λ(I) + 1)
2

.
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For integers m ≥ 1, n ≥ 1, and 0 ≤ L ≤ n, let N (m)
n (L) be the number of

T ∈ (Fm
q )n with L

(m)
n (T) = L. Here (Fm

q )n has the same meaning as in (1). It is

trivial that N (m)
n (0) = 1. For 1 ≤ L ≤ n we have the formula

N (m)
n (L) =

∑
I∈P (m;L)

c(I)
d(I)

qb(I,n−L) (2)

which is obtained from [20–eq. (11) and Theorem 2].
We start the proof of Theorem 1 with the following elementary inequality.

Lemma 1. Let x1 ≥ x2 ≥ · · · ≥ xm be real numbers. Then

m∑
k=1

(k − 1)xk ≤
m− 1

2

m∑
k=1

xk.

Proof. We proceed by induction on m. The inequality is trivial for m = 1.
Suppose that the inequality is shown for m numbers and consider now m + 1
numbers. By the induction hypothesis and simple steps, we obtain

m+1∑
k=1

(k − 1)xk =
m∑

k=1

(k − 1)xk +mxm+1

≤ m− 1
2

m∑
k=1

xk +mxm+1 =
m− 1

2

m+1∑
k=1

xk +
m+ 1

2
xm+1

≤ m− 1
2

m+1∑
k=1

xk +
1
2

m+1∑
k=1

xk =
m

2

m+1∑
k=1

xk,

and the induction is complete. �

In the next two lemmas we present upper bounds on N
(m)
n (L). In the cases

m = 1 and m = 2 we have better results in the sense of convenient closed-form
expressions for N (m)

n (L) (see [20]).

Lemma 2. For any prime power q and any integers m ≥ 1 and n ≥ 1 we have

N (m)
n (L) ≤ q(m+1)L for 0 ≤ L ≤ n.

Proof. Since the result is trivial for L = 0, we can assume that 1 ≤ L ≤ n. If L
is the nth joint linear complexity of the m-fold multisequence S = (S1, . . . , Sm)
over Fq, then the first n terms of S1, . . . , Sm are determined by a simultaneous
linear recurrence relation of order L and by the mL initial values for this linear
recurrence relation (i.e., L initial values for each of the m sequences S1, . . . , Sm).
Since there are qL possibilities for a linear recurrence relation of order L over
Fq and qmL possibilities for the mL initial values from Fq, the desired result
follows. �
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Lemma 3. For any prime power q and any integers m ≥ 1 and n ≥ 1 we have

N (m)
n (L) ≤ C(q,m)Lmq2mn−(m+1)L for 1 ≤ L ≤ n,

with a constant C(q,m) depending only on q and m.

Proof. Note that for any I ∈ P (m;L) we have d(I) ≥ 1 and c(I) ≤ C1(q,m)
with a constant C1(q,m) depending only on q and m. Therefore in view of (2),

N (m)
n (L) ≤ C1(q,m)

∑
I∈P (m;L)

qb(I,n−L). (3)

Now fix I = (i1, . . . , im) ∈ P (m;L). Observe that

b(I, n− L) ≤ eλ(I) · [I, n− L], (4)

where eλ(I) = (0, 2, 4, . . . , 2λ(I), 0, . . . , 0) ∈ Zm+1 and [I, n−L] is the vector with
m+ 1 components obtained by rearranging i1, i2, . . . , im, n−L in nonincreasing
order. Since the last m− λ(I) components of [I, n− L] are 0, we have

eλ(I) · [I, n− L] = em · [I, n− L],

and so by (4) we obtain

b(I, n− L) ≤ em · [I, n− L]. (5)

Suppose that n− L is in position r in the vector [I, n− L], i.e.,

i1 ≥ i2 ≥ · · · ≥ ir−1 ≥ n− L ≥ ir ≥ · · · ≥ im.

Then

em · [I, n− L] = 2
r−1∑
k=1

(k − 1)ik + 2(r − 1)(n− L) + 2
m∑

k=r

kik

= 2
m∑

k=1

(k − 1)ik + 2(r − 1)(n− L) + 2
m∑

k=r

ik

≤ 2
m∑

k=1

(k − 1)ik + 2(r − 1)(n− L) + 2(m− r + 1)(n− L)

= 2
m∑

k=1

(k − 1)ik + 2m(n− L).

By applying Lemma 1, we get

em · [I, n− L] ≤ (m− 1)
m∑

k=1

ik + 2m(n− L) = 2mn− (m + 1)L.

In view of (3) and (5) this yields

N (m)
n (L) ≤ C1(q,m)q2mn−(m+1)L|P (m;L)|,

and by applying the trivial bound |P (m;L)| ≤ (L+ 1)m we obtain the result of
the lemma. �
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Since Theorem 1 is known for m = 1, we can assume in the proof of Theorem
1 that m ≥ 2. We note first that with the notation in Section 2 we have

Prob(L(m)
n (S) = L) = q−mnN (m)

n (L). (6)

Now we fix a positive integer n and let

An = {S ∈ (Fm
q )∞ : L(m)

n (S) ≤ 1
m+ 1

(mn− 2 logq n)}.

Put a(n) = � 1
m+1 (mn− 2 logq n)�. Then it follows from (6) and Lemma 2 that

μ∞
q,m(An) = q−mn

a(n)∑
L=0

N (m)
n (L) ≤ q−mn

a(n)∑
L=0

q(m+1)L

<
qm+1

qm+1 − 1
q(m+1)a(n)−mn ≤ qm+1

(qm+1 − 1)n2 .

It follows that
∑∞

n=1 μ
∞
q,m(An) < ∞. The Borel-Cantelli lemma [11–p. 228]

now shows that the set of all S ∈ (Fm
q )∞ for which S ∈ An for infinitely many

n has μ∞
q,m-measure 0. In other words, with probability 1 we have S ∈ An for

at most finitely many n. From the definition of An it follows then that with
probability 1 we have

L(m)
n (S) >

1
m + 1

(mn− 2 logq n) for all sufficiently large n. (7)

For a fixed positive integer n, let now

Bn = {S ∈ (Fm
q )∞ : L(m)

n (S) ≥ 1
m+ 1

(mn + (m+ 2) logq n)}.

Put b(n) = � 1
m+1 (mn+ (m+ 2) logq n)� and assume first that b(n) ≤ n. Then it

follows from (6) and Lemma 3 that

μ∞
q,m(Bn) = q−mn

n∑
L=b(n)

N (m)
n (L) ≤ C(q,m)q−mn

n∑
L=b(n)

Lmq2mn−(m+1)L

≤ C(q,m)q−mnnm
n∑

L=b(n)

q(m+1)(n−L)+(m−1)n

= C(q,m)q−nnm

n−b(n)∑
L=0

q(m+1)L

≤ C2(q,m)q−nnmq(m+1)(n−b(n)) ≤ C2(q,m)
n2

with a constant C2(q,m) depending only on q andm. If b(n)>n, then μ∞
q,m(Bn)=

0, and so the above bound holds in all cases.
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It follows that
∑∞

n=1 μ
∞
q,m(Bn) < ∞, and by applying the Borel-Cantelli

lemma as before we deduce that with probability 1 we have

L(m)
n (S) <

1
m+ 1

(mn+ (m + 2) logq n) for all sufficiently large n. (8)

By combining (7) and (8), we complete the proof of Theorem 1.
For the proof of Theorem 2, we recall from (1) that

E(m)
n = q−mn

∑
T∈(Fm

q )n

L(m)
n (T).

This can be written as the integral

E(m)
n =

∫
(Fm

q )∞
L(m)

n (S) dμ∞
q,m(S).

By the dominated convergence theorem [11–p. 125] and Theorem 1, we obtain

lim
n→∞

E
(m)
n

n
= lim

n→∞

∫
(Fm

q )∞

L
(m)
n (S)
n

dμ∞
q,m(S)

=
∫

(Fm
q )∞

lim
n→∞

L
(m)
n (S)
n

dμ∞
q,m(S) =

∫
(Fm

q )∞

m

m + 1
dμ∞

q,m(S)

=
m

m+ 1
,

which is the result of Theorem 2.

4 Conclusions

Theorem 1 shows that the nth joint linear complexity of a random m-fold multi-
sequence over Fq is roughly equal to mn/(m+1) for all n ≥ 1. This establishes a
benchmark for testing m-fold multisequences over Fq in terms of the joint linear
complexity profile. In other words, the joint linear complexity of an m-fold mul-
tisequence S over Fq that is suitable for word-based stream ciphers should follow
the same asymptotic behavior, i.e., we should have L(m)

n (S) close to mn/(m+1)
for all n ≥ 1. As a simple consequence of Theorem 1, we have shown in Theo-
rem 2 an asymptotic formula for the expected value E(m)

n of the nth joint linear
complexity of random m-fold multisequences over Fq.
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Period of Streamcipher Edon80
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Abstract. The period of a recent streamcipher proposal Edon80 is ana-
lyzed. Even though the average period may be quite large, we show that
for a randomly chosen key and IV pair, there exists a non-dismissible
probability that the produced keystream will be of very short period.

Keywords: Edon80, streamcipher, period.

1 Introduction

Edon80 [3] is one of the streamciphers submitted to eSTREAM, the ECRYPT
streamcipher project [1]. It was one of the ciphers chosen for presentation at the
Symmetric Key Encryption Workshop (SKEW, Århus, Denmark, May, 2005)
and rests on ideas previously presented at FSE 2005 [2]. The core of the cipher
consists of what is called a quasigroup string e-transformation, and using re-
lated theory previously developed, the designers present some provable results
supporting its security.

In this short paper, we study Edon80, focusing on its period. The designers
had projected a period of 2103, and even though this may be true on average,
we show that there exists a non-negligible probability that the keystream will
fall into a much shorter period. For example, with random use of key and IV,
keystreams of period as short as 255 may occur with probability 2−71 and the
existence of at least one key-IV pair producing a period-211 keystream can be
expected.

2 Edon80

The streamcipher Edon80 [3] will be described briefly in this section. It is a
hardware oriented streamcipher with intended security level corresponding to 80
bits. Keys of 80-bit size and IVs of 64-bit size are used.

Quasigroup. The first ingredient of Edon80 is four quasigroups of order 4. The
quasigroup operators are given explicitly in Table 1. If you are not familiar
with quasigroups, you can simply think of these as four different collections of
(possibly non-commutative and non-associative) multiplication rules •i, defined
on sets of four elements. Notice that each of the four operators are indexed by a
2-bit number.

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 23–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. Quasigroups

•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

KeySetup The 80-bit key K is used to select 80 sequential quasigroups that are
to be used for keystream production. The key is first divided into 40-many 2-bit
subkeys.

K = K0||K1|| · · · ||K39.

Then each of the working quasigroup operators ∗i (i = 0, 1, . . . , 79) are assigned
to be one of •j (j = 0, . . . , 3). Explicitly, recalling that each quasigroup operator
is indexed by a 2-bit number, we set

∗i ←
{
•Ki 0 ≤ i < 40,
•Ki−40 40 ≤ i < 80.

Hence the key K determines the working quasigroups completely, and any con-
secutive 40 operators ∗i determine the key completely.

IVSetup. For any fixed key, IVSetup sends a 64-bit IV to a finite sequence
(a0, . . . , a79), where each ai is a 2-bit value, in a key-dependent manner. For
discussions of this paper, we will not need to know its actual inner workings, but
we shall assume that it is well-designed, meaning that some sort of randomness
can be expected of the process.

Keystream generation. Consider the array of quasigroup elements given in
Table 2. It consists of 81 rows, each row is a sequence of quasigroup elements
extending infinitely to the right, and the top row is a fixed repeating pattern of
period-4. The first column contains the 80 quasigroup operations ∗i previously
determined from key. The next column contains the finite sequence obtained

Table 2. Keystream generation

∗i 0 1 2 3 0 1 2 . . .

∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 . . .
∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 . . .
∗2 a2 a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 . . .
∗3 a3 a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 . . .
...

...
...

...
...

∗78 a78 a78,0 a78,1 a78,2 a78,3 a78,4 a78,5 a78,6 . . .
∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 . . .
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from the IVSetup process. The rest of the elements ai,j are obtained sequen-
tially starting from the top left corner through quasigroup operations. More
explicitly, we set

ai,j = ∗i(ai,j−1, ai−1,j),

where we take a−1,j = j (mod 4) to be the top row and where ai,−1 = ai is the
second column. Pictorially, we can view this as

Finally, the keystream itself is given as every other element of the bot-
tom row.

keystream = (a79,1, a79,3, a79,5, . . . ).

Our discussion will center mostly on the key determining the quasigroup oper-
ators ∗i (i = 0, . . . 79) and the initial state (a0, . . . , a79) obtained right after the
IVSetup operation. These two will be referred to together as key-state pair from
now on.

Period. Calculation of each new row in Table 2 is said to be a quasigroup string
e-transformation. The designers of Edon80 assert that each e-transformation
increases the string period by a factor of 2.48 on average. Following along argu-
ments of the designers, the final keystream should have period

4× (2.48)80 × 1
2
≈ 2105.8

on average. The term 4 comes from the period of the initiating sequence at the
top, and the term 1

2 is multiplied because only every other term of last row is
used as keystream. But there seems to have been a slight miscalculation by the
designers and they project a period of 2103 instead of 2106.

No explicit restriction on the length of keystream usage is given by the de-
signers. Hence readers are led to believe that keystreams of length up to 2103

bits may be used.

3 Undesirable Key-State Pairs

We shall instantiate Table 2 in such a way that the bottom row is a sequence of
period 4. The corresponding key-state pair will result in producing a keystream
of period 2.
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3.1 Partial Key-State Pairs

Consider the series of five quasigroup string e-transformations given in Ta-
ble 3.Notice that the period of each row is 4. Actually, we found 166 ≈ 27.38

such 5-row key-state pairs of period 4. Through an exhaustive searching pro-
gram, we counted all d-row key-state pairs of period p, for small values of d and
p. The results are gathered in Table 4.The actual numbers written down in the
table are logarithms of the counts. So, for example, the first entry states that
there are approximately 27.38 key-state pairs of period 4, consisting of 5 rows.

Going down any column, one can see that the numbers increase at almost
a constant rate. This is easier to see in Figure 1, which is the graph version of
Table 4. Extrapolating, we obtain the values given in Table 5 for the number of
40-row key-state pairs. We can expect these values to be at least approximately
true and our future discussion will not depend too much on their exact value.

Table 3. Partial key-state pair of period 4

∗i 0 1 2 3 0 1 2 3 0 . . .

•2 1 1 2 2 1 1 2 2 1 1 . . .

•0 2 3 2 0 2 3 2 0 2 3 . . .

•3 1 2 2 0 1 2 2 0 1 2 . . .

•0 1 3 2 1 1 3 2 1 1 3 . . .

•2 0 3 1 2 0 3 1 2 0 3 . . .

Table 4. d-row period-p key-state pair count

d p = 4 p = 8 p = 16
5 7.38 11.49 13.30
6 9.36 13.58 15.68
7 11.04 15.63 18.01
8 12.97 17.71 20.30
9 14.75 19.76 22.55

10 16.63 21.81 24.77
11 18.44 23.85 26.96
12 20.30 25.88 29.13
13 22.13 27.91 31.29
14 23.97 29.94 33.44
15 25.81 31.96 35.57
16 27.65 33.98
17 29.49
18 31.33

Table 5. Expected number of 40-row short period key-states

p = 4 p = 8 p = 16
d = 40 71.81 82.46 88.57
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Fig. 1. Key-state pair count

3.2 Full Key-State Pairs Producing a Period-2 Keystream

Take any one of the 272-many 40-row key-state pairs of period 4. Its bottom
row, in particular, is a sequence of period 4. So there is a (1/4)4 probability
of it being equal to the top initiating sequence (0, 1, 2, 3, 0, . . . ). This has been
experimentally verified to hold roughly true at smaller row counts.1 Hence we
can expect there to be approximately 264-many 40-row key-state pairs having
bottom row identical to the initiating sequence. In the appendix, we have written
out one such partial key-state pair as an explicit example.

Now, fix any such 40-row key-state and attach another copy of the same
partial key-state to its bottom. This gives an explicit instantiation for Table 2.
This attaching is made possible by the fact that the 40-th row is identical to
the top of the copy. We also remark that, in this argument, we did not overlook
the fact that the top 40 rows will determine the key completely and hence also
the quasigroup operators for the lower 40 rows. Since ∗i = ∗i+40 (i = 0, . . . , 39),
our choice of using a copy on the bottom 40 rows does not conflict with this
structure of the cipher.

Recall that the actual keystream is every other quasigroup element from the
bottom row sequence. Hence, we have shown the existence of at least 264-many
(full) key-state pairs that all produce the identical keystream (1, 3, 1, 3, . . . ) of
period 2. We make no claims as to whether these key-state pairs may be reached
through normal IVSetup process.

1 We have reasons to believe that the slightly bigger value 1/240 reflects the actual
situation better than (1/4)4, but this does not affect the big picture.
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4 Undesirable Key-IV Pairs

In this section we shall instantiate Table 2 in such a way that the bottom row
is a sequence of relatively short period. There will be so many of these that a
meaningful number of them will be reachable through normal state initialization
process. In a way, we can see this as giving a class of weak key-IV pairs.

The instantiation will be done in two stages. First, the top 40 rows are filled
so that the 40-th row is of period 4, 8, or 16. Then, the rest of rows are filled
randomly subject to the restraints caused by the top 40 rows.

4.1 Key-State Pairs Producing Relatively Short Period Keystreams

Fix any 40-row key-state pair of period 4. In particular, the bottom row is a se-
quence of period 4, which may or may not be equal to the top initiating sequence.
These 40-rows determine the key completely, and hence also the quasigroup op-
erators ∗i (i = 40, . . . , 79) for the remaining lower 40 rows. Let us fix these lower
row operators accordingly and fill in the remaining 40 initial states (a40, . . . , a79)
with arbitrary quasigroup elements.

Following along the arguments of the cipher designers, we can expect a period
of 4 × (2.48)40 ≈ 254.41 at the bottom 80-th row. This leads to a keystream of
period 253.41 which is much smaller than the value 2103 projected by the designers
of Edon80 and also smaller than even the intended security level 280.

Since the 40-row key-state pairs were approximately 272 in number (Table 5),
and since we have 80-bit freedom coming from the choice of quasigroup elements
filling the bottom 40 rows, we can expect the existence of at least

- 272+80 key-state pairs producing keystreams of period 253.

A more exact statement would be that there exists a group of 272+80 key-state
pairs whose average period is 253. But we shall be a bit sloppy and express this
as in the above.

If we start with 40-row key-state pairs of period 8, or 16, we obtain the
existence of at least

- 282+80 key-state pairs producing period-254 keystreams and
- 289+80 key-state pairs producing period-255 keystreams,

respectively.

4.2 Key-IV Pairs Producing Relatively Short Period Keystreams

It remains to see if any of the discussed key-state pairs producing keystreams of
short period are reachable by normal IVSetup operation.

Recall that the IVSetup process is a 64-bit to 160-bit mapping for any fixed
key. Hence, under the assumption that the IVSetup is well-designed, given any
key-state pair, under random use of key and IV, the probability of it being
reachable by IVSetup is 2−96.

Thus we have the existence of at least
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- 256 key-IV pairs producing period-253 keystreams,
- 266 key-IV pairs producing period-254 keystreams, and
- 273 key-IV pairs producing period-255 keystreams.

Since there are 280+64 key-IV pairs, for a randomly chosen key-IV pair, the
probability of it producing a keystream

- of period 253 is at least 2−88,
- of period 254 is at least 2−78, and
- of period 255 is at least 2−71.

The latter two probabilities are larger than 2−80 and hence constitutes a valid,
although certificatory, attack on Edon80, if keystreams of such length were al-
lowed. Of course, if users were just given the value 2103 projected as period by
the cipher designers, as it is for the moment, keystreams of such length would
certainly be allowed.

5 Distribution of Keystream Periods

In this section, we show that if we look for keystreams of period slightly longer
than was considered in the previous section, then they are easier to encounter
during random key and IV use. The existence of key-IV pairs producing ex-
tremely short period keystreams is also shown.

5.1 Probability / Period Tradeoffs

We do not have to divide the 80 rows appearing in Table 2 into just top 40 and
bottom 40 rows. Extrapolating Table 4, one can come up with Table 6 that gives
expected number of, say, 34-row key-state pairs of short period.

Table 6. Expected number of 34-row short period key-states

p = 4 p = 8 p = 16
d = 34 60.77 70.34 75.85

One could start with any of these 34-row key-state pairs, fill the six rows from
the 35-th to 40-th with random key-state values, fill lower 40 row quasigroup
operators as defined by the upper 40 rows, and finally fill the rest of the states
with random values. This would gives us 4 · 6 + 80 = 104 bits of freedom.

Since 4×(2.48)46× 1
2 ≈ 261.28, and since we loose 96-bit freedom from relating

key-state pairs to key-IV pairs, we have the existence of following key-IV pairs.

- 269 key-IV pairs producing period-261 keystreams.
- 278 key-IV pairs producing period-262 keystreams.
- 284 key-IV pairs producing period-263 keystreams.
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All of these periods are still small relative to both 2103 and 280. In terms of how
often we may encounter these during random use of key and IV, we can expect
higher than

- 2−75 probability of encountering period-261 keystreams,
- 2−66 probability of encountering period-262 keystreams, and
- 2−60 probability of encountering period-263 keystreams.

These probabilities are much larger than the intended security level 2−80.
This shows that there is a tradeoff between how short a period keystream we

seek and how often we can encounter it at random. The tradeoff curve is given by
Figure 2 for the segment that is most interesting, i.e., when probability is greater
than 2−80 and period is smaller than 280. As an example, the left-most “◦” of

Fig. 2. Probability / period tradeoff

the graph tells us that if we use p = 16, we can show that with random use of
key-IV pairs, one will encounter keystreams of period 255.4 with probability no
less than 2−71.4. We have also marked the three points corresponding to d = 34
case, used in the above argument, with larger fonts, so that you can verify your
understanding of the graph.

Notice that we are only providing a lower bound on the probability for a
keystream of certain period to occur. We make no claims as to if these bounds
are even close to what actually happens. For example, with p fixed, if the fact that
given any divisor n of m, a period-n keystream is always a period-m sequence,
is considered, one can immediately conclude that the above probability figures
are much lower than what actually happens. On the orthogonal side, keystreams
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of same period may be obtained from multiple p values, so these can also be
added and still be used as a lower bound. Furthermore, it is clear that with
more computational power, we could work with p = 32 or p = 64 to obtain even
better tradeoff curves.

We chose not to deal with these matters, as our rough lower bounds were
already big enough to show that Edon80 is under trouble with respect to period
properties. The methods provided by this paper allows us to see the big picture,
but we believe a totally different approach, for example, statistical modeling, is
needed to understand the true extent of the period related problem, so as to be
used on the constructive side.

5.2 Existence of Key-IV Pairs of Very Short Period

We could also divide the 80 rows of Table 2 into two parts below the 40-th row.
Let us go back to Sectio n 3.2 and first fill the top 40 rows with any one of the

264-many 40-row period-4 key-state pairs that has the (0, 1, 2, 3, 0, . . . ) initiating
sequence at the bottom 40-th row. As before, add another copy below, but fill
the quasigroup elements a64, . . . , a79 for the last 16 rows at random, so that we
have an extra 32-bit degree of freedom.

Since 4× (2.48)16 × 1
2 ≈ 219.97, we have the existence of 264+32 key-IV pairs

producing period-220 keystreams. Recalling that probability of one of these being
reachable by normal IVSetup process is 2−96, one can expect the existence of at
least one key-IV pair that leads to a keystream of extremely short period 220.

Fig. 3. Key-IV count / period tradeoff
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If we start with p = 16 key-state pairs, we can conclude that there exists at
least one key-IV pair producing an even shorter period-211 keystream. This is
all shown in Figure 3. Although this single key-IV pair would be hard to reach
at random through normal use of this cipher, it still does pose a threat, as the
corresponding keystream is of extremely short period.

Once again, the counts we provide are only lower bounds. There may be
ways to produce low-period sequences different from the explicit method we
have considered.

Before ending this section, we remark that taking note of the top two “◦”
from Figure 3 can be interesting. For example, the top point tells us that there
are 267 key-IV pairs producing period-254 keystreams. The probability of en-
countering one of these key-IV pairs at random is 2−77, which is greater than
the intended security level 2−80. It is clear that working with larger p values will
give additional meaningful tradeoff points.

6 Conclusion

The period property of streamcipher Edon80 has been studied. We have shown
that there are quite a large number of key-state pairs that produce identical
sequence of period 2. We have also shown that there is a probability of no less
than 2−71 for a random key-IV pair to produce a keystream of period 255. The
tradeoff between period and occurrence probability was studied and a period-263

keystream can be expected from a random key-IV pair with probability at least
2−60. Finally, we can expect the existence of at least one key-IV pair producing
the extremely short period-211 keystream.

These short period keystreams occurwithprobability greater than 2−80and the
periods are very small relative to 2103, which is the value designers had projected
as cipher period. These numbers are smaller than even 280, which many would take
for granted from an 80-bit security cipher, unless explicitly stated otherwise. Also,
these key-IV pairs of bad characteristics, or weak key-IV pairs, are hard to catego-
rize at the moment and hence avoiding them does not seem to be easy.

These results show that while the average period of Edon80 may still be 2103

as projected, the range of keystream period is very wide with a non-dismissible
portion of key-IV pairs produce keystreams of periods shorter than one would
be comfortable with. Furthermore, one should keep in mind that we have only
given a (rough) lower bound on the probability of short period keystream occur-
rences. Recent supplementary results [4] on the period of Edon80, written by the
designers in response to an earlier version of the current paper, seem to indicate
that the actual situation is even worse than what we have pointed out so far.

Even though our results do not give any information on how to recover keys
or states, it does show that the period of Edon80 is far from being well un-
derstood. Before Edon80 can be used in practice, the distribution of keystream
periods with respect to randomly chosen key-IV pairs should be fully under-
stood and measures should be taken to prevent use of the shorter ones, if at
all possible.
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As the designers of Edon80 put no explicit restriction on the length of
keystream usable, and since probabilities for encountering these short keystreams
are greater than what is expected from the intended security level, our observa-
tion is technically a valid attack on streamcipher Edon80.
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A 40-Row Key-State Pair

Here is an explicit key-state pair consisting of 40 rows that contains the initial
sequence (0, 1, 2, 3, 0, . . . ) at the bottom row. This is not a concatenation of
smaller such partial key-state pairs.

∗i 0 1 2 3
0: •1 2 2 0 0 2
1: •1 0 0 1 0 0
2: •2 2 3 3 0 2
3: •0 0 3 1 2 0
4: •0 3 1 1 3 3
5: •0 0 2 3 1 0
6: •0 3 2 2 3 3
7: •0 0 1 3 1 0
8: •0 1 1 0 2 1
9: •0 0 2 1 3 0

10: •0 0 1 1 0 0
11: •0 1 1 1 2 1
12: •1 3 2 0 0 3
13: •0 0 1 2 1 0
14: •1 0 3 1 1 0
15: •1 1 3 2 0 1
16: •0 2 2 0 0 2
17: •1 0 0 1 0 0
18: •2 2 3 3 0 2
19: •0 0 3 1 2 0
20: •0 3 1 1 3 3
21: •0 0 2 3 1 0
22: •0 3 2 2 3 3
23: •0 0 1 3 1 0
24: •0 2 3 1 1 2
25: •1 2 1 1 1 2
26: •1 0 3 2 0 0
27: •1 2 1 2 2 2
28: •1 1 1 2 3 1
29: •0 0 2 0 3 0
30: •3 1 3 2 1 1
31: •1 1 3 1 1 1
32: •0 2 2 3 0 2
33: •0 2 0 3 3 2
34: •1 3 3 0 2 3
35: •1 2 1 0 0 2
36: •3 0 2 0 3 0
37: •3 1 3 2 1 1
38: •3 1 2 2 3 1
39: •3 3 0 1 2 3



On the Algebraic Immunity of Symmetric
Boolean Functions

An Braeken and Bart Preneel

Katholieke Universiteit Leuven,
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken, bart.preneel}@esat.kuleuven.be

Abstract. In this paper, we analyze the algebraic immunity of symmet-
ric Boolean functions. The algebraic immunity is a property which mea-
sures the resistance against the algebraic attacks on symmetric ciphers.
We identify a set of lowest degree annihilators for symmetric functions
and propose an efficient algorithm for computing the algebraic immunity
of a symmetric function. The existence of several symmetric functions
with maximum algebraic immunity is proven. In this way, we have found
a new class of functions which have good implementation properties and
maximum algebraic immunity.

1 Introduction

Symmetric functions have the property that the function value is determined
by the Hamming weight of the input vector. Therefore, a symmetric function
in n variables can be defined by a vector of length n + 1 which represents the
function values of the different Hamming weights of the input vectors. For this
reason, symmetric functions are very interesting functions in order to obtain low
memory in software. In hardware implementation, only a low number of gates is
required [15]. Properties such as balancedness and resiliency, propagation char-
acteristics and nonlinearity of symmetric functions are studied by Canteaut and
Videau [3]. It is shown that these functions do not behave very well in general
with respect to a combination of the properties such as nonlinearity, degree,
and resiliency, which are important properties for resisting distinguishing and
correlation attacks [2].

In 2002, several successful algebraic attacks on stream ciphers were proposed
by Courtois [5]. The success of these attacks do not depend on the classical
properties of nonlinearity or resiliency, but mainly on the weak behavior with
respect to the property of algebraic immunity. In this paper we study the re-
sistance of the symmetric functions against the algebraic attacks. We identify a
set of polynomials whose linear combinations lead to lowest degree annihilators
of a symmetric function. Since the size of this set is very small in comparison
with the general case, the algorithm for computing the algebraic immunity (AI)
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of a symmetric function becomes much more efficient. We prove the existence of
several symmetric functions with optimal algebraic immunity.

First, Sect. 2 deals with some background on Boolean functions and more in
particular on symmetric Boolean functions. Based on the identification of a set
of lowest degree annihilators of a symmetric function, we propose an algorithm
for computing the algebraic immunity of symmetric functions in Sect. 3. Sect. 4
presents several classes of symmetric functions which possess maximum algebraic
immunity. Finally, we conclude in Sect. 5.

2 Background

Let us first recall the basic background on Boolean functions together with some
properties of symmetric Boolean functions which were proven by Canteaut and
Videau [13].

Let Fn
2 be the set of all n-tuples of elements in the field F2 (Galois field

with two elements), endowed with the natural vector space structure over F2.
An element u = (u0, . . . , un−1) in Fn

2 can be represented by an integer Z2n

belonging to the interval [0, 2n − 1], i.e., u =
∑n−1

i=0 ui2i. We will use both
notations interchangeable in the rest of the paper.

A Boolean function f on Fn
2 is a mapping from Fn

2 onto F2. It can be uniquely
represented by the truth table (TT) which is the vector of length 2n consisting
of its function values. The support of the function f , sup(f) contains all vectors
x for which f(x) = 1. The (Hamming) weight wt(v) of a vector v ∈ Fn

2 is defined
as the number of nonzero positions.

Another unique representation, called the ANF, is the polynomial

f(x)=
⊕

(a0,...,an−1)∈Fn
2

h(a0, . . . , an−1)xa0
0 . . . x

an−1
n−1 , h(a) =

∑
x�a

f(x), for any a ∈ Fn
2 ,

where x � a means that xi ≤ ai for all 0 ≤ i ≤ n − 1. The degree of the poly-
nomial determines the algebraic degree of this function. The ANF of a function
consists of the modulo 2 sum of polynomials (x0 ⊕ a0 ⊕ 1) · · · (xn−1 ⊕ an−1 ⊕ 1)
for all a ∈ Fn

2 such that f(a) = 1. Denote the all-zero function or vector by 0
and the all-one function or vector by 1.

The Walsh transform Wf of a function f on Fn
2 is defined as the real valued

transformation

Wf (w) =
∑

x∈Fn
2

(−1)f(x)+w·x .

From the Walsh transform, we derive the property of nonlinearity Nf = 2n−1 −
1
2 maxw∈Fn

2
|Wf (w)|, which represents the smallest distance between a Boolean

function and any affine function [11].
As response to the algebraic attacks, Meier et al. [10] introduced the concept

of algebraic immunity (AI) for a Boolean function f on Fn
2 . This measure defines

the lowest degree of a non-zero function g from Fn
2 into F2 for which f · g = 0
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or (f ⊕ 1) · g = 0. The function g for which f · g = 0 is called an annihilator
function of f . The set of all annihilators of f is denoted by An(f). The AI is
upper bounded by

⌈
n
2

⌉
as proven in [4].

Symmetric functions have the property that the function value of all vec-
tors with the same weight is equal. Consequently, the truth table of the sym-
metric function on Fn

2 can be replaced by a vector vf of length n + 1 where
the components vf (i) for 0 ≤ i ≤ n represent the function value for vectors
of weight i. The vector vf is called the value vector (VV) of the symmetric
function f .

The ANF representation for a symmetric function can also be replaced by a
shorter form [3–Prop. 2], called the simplified ANF (SANF). Denote the homoge-
neous symmetric function, which is the function that contains all terms of degree
i for 0 ≤ i ≤ n, by σi. Then, the SANF is a polynomial in F2[x0, . . . , xn−1]/(x2

0−
x0, . . . , x

2
n−1− xn−1) with basis elements the homogeneous symmetric functions

σi for 0 ≤ i ≤ n:

f(x) =
n⊕

i=0

λf (i)σi, λf (i) =
∑
k�i

vf (k), for 0 ≤ i ≤ n .

The vector λf = (λf (0), . . . , λf (n)) is called the simplified ANF vector (SANF
vector).

3 Annihilators of Symmetric Functions

We first distinguish a set of polynomials whose linear combinations lead to
lowest degree annihilators of a symmetric function. Based on this set, we pro-
pose an efficient algorithm for computing the AI of a symmetric Boolean
function.

Denote the homogeneous symmetric function of degree i which depends on
the j variables {xn−j, xn−j+1, . . . , xn−1} with j ≥ i by σj

i . We also use the nota-
tion of P k

l to represent the set of polynomials where each polynomial contains all
k variables {x0, . . . , xk−1} and consists of the product of at most l factors where
every factor is either the sum of two variables, one variable, or the complement of
one variable. Consequently

⌈
k
2

⌉
≤ l. Note that the variables in the polynomials

P k
l play the same role, which means that changing the indices of the variables

does not introduce new polynomials in P k
l . Therefore, we define the role of the

variables {x0, . . . , xk−1} in the polynomials of P k
l as follows. Depending on l, the

first factors involving the first variables (starting from x0, x1, . . .) may consist of
one variable, the complement of one variable or the sum of two variables. The
following factors may consist of one variable and the sum of two variables, while
the last factors consist of the sum of two variables.

Example 1. If
⌈

k
2

⌉
= l, only the polynomial (x0⊕ x1)(x2 ⊕ x3) · · · (xk−2 ⊕ xk−1)

for k even and the polynomials x0(x1⊕x2)(x3⊕x4) · · · (xk−2⊕xk−1) and (x0⊕
1)(x1⊕x2)(x3⊕x4) · · · (xk−2⊕xk−1) for k odd belong to P k

� k
2 �. If

⌈
k
2

⌉
= l−1, the
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polynomials x0x1(x2⊕x3) · · · (xk−2⊕xk−1), (x0⊕1)x1(x2⊕x3) · · · (xk−2⊕xk−1),
(x0⊕ 1)(x1 ⊕ 1)(x2⊕ x3) · · · (xk−2 ⊕ xk−1), (x0 ⊕ x1)(x2⊕ x3) · · · (xk−2 ⊕ xk−1),
belong to P k

� k
2 �+1

for k even.

The goal of this section is to show that at least one of the lowest degree anni-
hilators with degree strictly less than

⌈
n
2

⌉
of a symmetric function on Fn

2 is a
linear combination of the polynomials of the following form:

n even: σ2
0P

n−2
n
2 −1, σ

3
0P

n−3
n
2 −1, . . . , σ

n−1
0 P 1

n
2 −1, σ0,

σ4
1P

n−4
n
2 −2, . . . , σ

n−1
1 P 1

n
2 −2, σ1, . . . , σ

n−2
n
2 −2P

2
1 , σ

n−1
n
2 −2P

1
1 , σn

2 −2, σn
2 −1

n odd: σ1
0P

n−1
�n

2 �−1
, σ2

0P
n−2
�n

2 �−1
, . . . , σn−1

0 P 1
�n

2 �−1, σ0,

σ3
1P

n−3
�n

2 �−2
, . . . , σn−1

1 P 1
�n

2 �−2, σ1, . . . , σ
n−2
�n

2 �−2
P 2

1 , σ� n
2 �−2, σ�n

2 �−1.

As
⌈

k
2

⌉
≤ l, the functions σk for k ∈ {0, . . . ,

⌈
n
2

⌉
− 1} depend on 2k + 2, 2k +

3, . . . , n variables for n even and 2k+1, 2k+2, . . . , n variables for n odd in order
to obtain annihilators of degree less than or equal to

⌈
n
2

⌉
−1. We will call this set

of polynomials ANS . We now give some examples of annihilators which consist
of the linear combination of polynomials in ANS .

Example 2. Let n = 16, and suppose f is a symmetric Boolean function on
Fn

2 with value vector vf that satisfies vf (i) = 0 for i ∈ {6, 7, 10, 11}. Then the
function g(x) = σ9

2x0(x1⊕x2)(x3⊕x4)(x5⊕x6) represents an annihilator of the
function f . This follows from the fact that σ9

2 is equal to 1 only for vectors in F9
2

with weight equal to 2,3,6,7. The function x0(x1⊕x2)(x3⊕x4)(x5⊕x6) is equal
to 1 only for a subset of vectors in F7

2 with weight 4. Consequently the function
g is equal to 1 only for a subset of vectors of weight 6,7,10,11.

If the value vector in the coordinates 2 and 6 is equal to c where c ∈ {0, 1}
for a symmetric function f in 10 variables, then (x0 ⊕ 1)(σ9

2 ⊕ σ9
3) represents an

annihilator with degree 3 of f if c = 0, or f ⊕ 1 if c = 1.

Theorem 1. One of the lowest degree annihilators of a symmetric function can
be constructed by means of a linear combination of the polynomials in ANS.

Proof. Annihilators of symmetric functions are equal to 0 for all vectors of a
certain weight which belong to the support of the corresponding symmetric func-
tion. But the annihilators can be 0 or 1 for vectors which do not belong to the
support of the symmetric function. Therefore, an example of an annihilator is
the one which consists of the product of a symmetric function which depends
on the last n − k variables in order to guarantee that the function value is 1
for vectors of the same weight, together with a polynomial that depends on the
other k variables and which is 1 for a subset of vectors with fixed weight. The
polynomials P k

l in the polynomials of ANS are constructed in such way that they
are equal to 1 only for a subset of vectors which have exactly one fixed and equal
weight. Corollary 1, which is based on Lemma 1, proves that the annihilators



On the Algebraic Immunity of Symmetric Boolean Functions 39

constructed by means of a linear combination of the polynomials in ANS have
lowest possible degree by showing that if one of the factors of the polynomials
P k

l would consist of more than 3 variables (in order to decrease the degree),
then there also exists an annihilator constructed by means of linear combina-
tions of the polynomials of ANS whose support is contained in the support of
this annihilator and which has smaller or equal degree. Therefore, we first prove
Lemma 1. ��

Remark 1. We note that the annihilators constructed by linear combinations
of the polynomials in ANS do not determine the complete basis of the ideal
of annihilators with degree strictly less than

⌈
n
2

⌉
of a symmetric function. For

instance, the function x0σ3 on F10
2 is annihilator of all symmetric functions on

F10
2 for which vf (4) = vf (8) = 0. But the function x0σ

9
3 ∈ANS also satisfies this

property. Both functions are linearly independent. Also note that the variables
of the polynomials P k

l play the same role in the representation, and that they
only depend on the first k variables. This is possible due to the symmetry of the
symmetric function. Since we are only interested in the existence of at least one
annihilator in order to determine the AI of the function, we can restrict us for
the search of annihilators into the set functions obtained by linear combinations
of the polynomials in ANS .

Lemma 1. Let r ≥ 3 and n ≥ r − 1. Define Sn
i as the symmetric function on

n variables of degree i,

Sn
i =

⊕
0≤k≤i

cSkσ
n
k where cSk ∈ {0, 1} for all 0 ≤ k ≤ i.

Denote the set of weights in the support of Sn
i by VS. Define also S

n−(r−1)
i−(r−1) =⊕

0≤k≤i c
S
kσ

n−(r−1)
k−(r−1) where σi = 0 for i < 0 and denote its support of the value

vector by VS′ . Then

{a+ r − 1 : a ∈ VS′} ⊆ {a, a+ 2, . . . , a+ r − 1 : a ∈ VS} (1)
{a+ r : a ∈ VS′} ⊆ {a+ 1, a+ 3, . . . , a+ r : a ∈ VS} (2)

We refer to an extended version of the paper for the proof of this lemma.

Example 3. Let n = 10, r = 3. The support of the value vector of the function
σ10

0 ⊕ σ10
1 ⊕ σ10

2 ⊕ σ10
5 belongs to VS = {0, 3, 4, 5, 8}. The support of the value

vector of σ8
0 ⊕ σ8

3 belongs to VS′ = {0, 1, 2, 4, 5, 6, 8}. The theorem implies that
{2, 3, 4, 6, 7, 8, 10} ⊆ {0, 2, 3, 4, 5, 6, 7, 8, 10}.

Directly from Lemma 1, we can derive

Corollary 1. Let r be odd and r ≥ 3, then the support of Sn−r
i (x0⊕· · ·⊕xr−1)

contains the support of Sn−(2r−1)
i−(r−1) x0(x1 ⊕ x2) · · · (x2r−3 ⊕ x2r−2). The support

of Sn−r
i (x0 ⊕ · · · ⊕ xr−1 ⊕ 1) contains the support of Sn−(2r−1)

i−(r−1) (x0 ⊕ 1)(x1 ⊕
x2) · · · (x2r−3 ⊕ x2r−2). Both pairs of functions have the same degree i+ 1.
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Let r be even and r ≥ 4, then the support of Sn−r
i (x0 ⊕ · · · ⊕ xr−1) contains

the support of Sn−(2r−2)
i−(r−2) (x0 ⊕ x1)(x2 ⊕ x3) · · · (x2r−3 ⊕ x2r−4). Both functions

have the same degree i + 1. The support of Sn−r
i (x0 ⊕ · · · ⊕ xr−1 ⊕ 1) contains

the support of Sn−2r
i−r (x0⊕x1)(x2⊕x3) · · · (x2r−1⊕x2r−2). The last function has

degree i in comparison with degree i+ 1 of the first function. This equation also
holds for r = 2.

We conclude that if one or more factors of the polynomial P k
l would consist of

the complement of two terms or more than three terms, then there always exists
an annihilator constructed by means of a linear combination of polynomials in
ANS which has degree smaller or equal and whose support is contained in the
support of that annihilator.

Let us now compute the number of polynomials in the set ANS .

Theorem 2. The number N of polynomials in ANS is equal to

N = 3 · 2�n
2 � − 2 ·

⌈n
2

⌉
− 3 .

Proof. We will compute the number for n even. In a similar way, the result is
obtained for n odd. Denote Rn

k for n even and 0 ≤ k ≤ n
2 − 1 as the sum of

all elements which have σi
k for i = 2k + 2, . . . , n as factor, i.e., the sum of all

elements of the sets P i
n
2 −k−1 for i = 0, . . . , n− (2k + 2):

Rn
k =

n−(2k+2)∑
i=0

|P i
n
2 −k−1| .

For i = n − (2k + 2), there is exactly one element in P
n−(2k+2)
n
2 −k−1 , namely

the polynomial (x1 ⊕ x2) · · · (xn−2k−2 ⊕ xn−2k−3). Every decrease of i until i =
n
2 − k − 1 with 1 gives one more degree of freedom, which leads to a factor
of two more for the possible polynomials in P i

n
2 −k−1. For instance, suppose the

polynomial P i
n
2 −k−1 has the form (x1⊕x2)(x3⊕x4) · · · at step i. After removing

one variable at step i − 1, we can have two additional elements in P i−1
n
2 −k−1

namely x1(x2 ⊕ x3) · · · and (x1 ⊕ 1)(x2 ⊕ x3) · · · . Removing another variable
leads again to two more polynomials: (x1 ⊕ x2) · · · , x1x2 · · · , (x1 ⊕ 1)x2 · · · ,
(x1 ⊕ 1)(x2 ⊕ 1) · · · . For i < n

2 − k − 1, due to the smaller number of variables,
the total number of polynomials decreases again with a factor of 2. Therefore,
we have that for 0 ≤ k ≤ n

2 − 1:

Rn
k = 2

n
2 −k−2∑

i=0

2i + 2
n
2 −k−1 .
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Consequently, the total number of terms belonging to class 2 is equal to

N =

n
2 −1∑
k=0

Rn
k = 2

�n
2 �−1∑
i=1

(2i − 1) + 2�n
2 � − 1 . ��

Example 4. For n = 14, we have that

σ0 → (|P 12
6 |, . . . , |P 0

6 |) = (1, 2, 4, 8, 16, 32, 64, 32, 16, 8, 4, 2, 1)
σ1 → (|P 10

5 |, . . . , |P 0
5 |) = (1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1)

σ2 → (|P 8
4 |, . . . , |P 0

4 |) = (1, 2, 4, 8, 16, 8, 4, 2, 1)
σ3 → (|P 6

3 |, . . . , |P 0
3 |) = (1, 2, 4, 8, 4, 2, 1)

σ4 → (|P 4
2 |, . . . , |P 0

2 |) = (1, 2, 4, 2, 1)
σ5 → (|P 2

1 |, . . . , |P 0
1 |) = (1, 2, 1)

σ6 → |P 0
0 | = 1

3.1 An Algorithm for Computing AI

As shown in the previous section, one of the lowest degree annihilators of degree
less than

⌈
n
2

⌉
consists of a linear combination of the N polynomials in ANS .

As determined in Theorem 2, the size of the set ANS is much smaller than the

number of all polynomials of degree less than
⌈

n
2

⌉
which is equal to

∑�n
2 �−1

i=0

(
n
i

)
.

Table 1 shows the comparison between both numbers for dimensions n = 2k with
5 ≤ k ≤ 10. We can conclude that the difference increases with the dimension.

The main goal of the algorithm that computes the AI of a function consists in
finding suitable linear combinations within these terms. Consequently, roughly
speaking the complexity for computing the AI of a symmetric function can be
upper bounded by N2.81 ≈ 58 · 21.4n, where 2.81 corresponds to the exponent
for Gaussian elimination [1].

Moreover, the additional tricks presented in [10] can be used to accelerate
the algorithm even further. Due to the fact that we have much less functions to
combine in the algorithm for computing the AI of a symmetric function, the AI of
any arbitrary symmetric function can be computed for much larger dimensions.

Instead of checking the whole set of 2n+1 symmetric functions for functions
on Fn

2 with maximum AI, we first present some properties on the value vector of
a symmetric function with maximum AI. These properties can be immediately
derived from the existence of the annihilators constructed by means of linear
combinations of polynomials in ANS .

Table 1. Comparison of the size of annihilator-set

n 10 12 14 16 18 20∑� n
2 �−1

i=0

(
n
i

)
386 1 586 6 476 26 333 106 762 431 910

|ANS| 83 177 367 749 1 524 3 049
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3.2 Properties

Theorem 3. Let f be a symmetric Boolean function on Fn
2 with value vector

vf . If vf (
⌈

n
2

⌉
−1) = vf (

⌈
n
2

⌉
+1) for all n, or in addition for n odd vf (

⌈
n
2

⌉
−2) =

vf (
⌈

n
2

⌉
), then f can not have maximum AI.

Theorem 4. Let 2j ≤ n < 2j+1− 1 where j ≥ 1 and f be a symmetric Boolean
function on Fn

2 with value vector vf . Define for all 0 ≤ i < 2j−1 the set Vi =
{l : l ≡ i mod 2j−1 for 0 ≤ l < n}. If there exists an i ∈ {0, . . . , 2j−1 − 1} such
that vf (k) = 0 (resp. 1) for all k ∈ Vi, then the AI of f is less than or equal to
2j−1 − 1. For n = 2j+1 − 1 where j ≥ 1, the value vector of f should be of the
form (a|ac) where a ∈ F

j
2 in order to reach the maximum AI.

Finally, we want to mention that also the condition on the weight of a Boolean
function, as derived in [6], is very strong for symmetric functions with an odd
number of variables. It implies that maximum AI can only be obtained for bal-
anced functions if n is odd. A large set of balanced functions in n odd are
the trivially balanced functions, i.e., the functions with value vector vf (i) =
vf (n − i) ⊕ 1 for all 0 ≤ i ≤

⌊
n
2

⌋
. In fact, the trivially balanced functions form

the whole set of balanced functions for n odd and n ≤ 128, except in dimensions
n ∈ {13, 29, 31, 33, 35,41, 47, 61, 63, 73, 97, 103} as shown in [14].

3.3 Experiments

For the computation of the AI, we can use a more efficient algorithm than the
algorithm of [10] as explained above and thus reach higher dimensions.

If n is odd, the condition of trivially balancedness is very powerful. We
checked until n ≤ 17 and can conclude that the only trivially balanced func-
tions with maximum AI have value vector vf such that

vf (i) =

⎧⎨⎩
0 for i <

⌈
n
2

⌉
1 for i ≥

⌈
n
2

⌉
.

(3)

In [12], the complete set of non-trivially balanced functions for n = 13 is de-
scribed. From this description, we derive that the AI of the non-trivial balanced
functions in 13 variables is less than or equal to 3 due to Theorem 4. Therefore,
we conclude that all symmetric functions in n odd and n ≤ 17 with maximum
AI have value vector defined by (3). We will show in the next section that a
symmetric function with such value vector always has maximal AI for every n
odd. Moreover, it can be easily proven that for n = 2i − 1, 2i + 1, with i ≥ 2,
only the trivially balanced functions with value vector determined by (3) have
maximum AI. In these dimensions, the property of Theorem 4 is very powerful.

For n even, we found more symmetric functions with maximum AI. In the
next section, we will theoretically prove the maximum AI for some of these
functions. The theorems will cover all symmetric functions with maximum AI
in dimensions less than or equal to 12 and all but one in dimensions 14 and 16.
We refer to the extended version of the paper for the complete set of symmetric
Boolean functions with maximum AI in dimensions n = 6, 8, 10, 12, 14, 16.
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4 Symmetric Functions with Maximum AI

In this section, we show the existence of several symmetric functions with maxi-
mum AI for all dimensions n. Let us first recall that the property of AI is invari-
ant under affine transformation in the input variables, i.e., f(x) and f(xA⊕ b),
where A is an n× n nonsingular matrix and b ∈ Fn

2 will have the same AI. This
follows from the fact that if g is annihilator of f , then g(xA ⊕ b) is annihilator
of f(xA⊕ b).

However, the AI of two functions f(x) and f(x)⊕ c ·x with c ∈ Fn
2 can differ

at most with 1. This can be easily seen as follows. Let g be annihilator of f such
that f(x) · g(x) = 0, then g(x)(c · x⊕ 1) is annihilator of (f(x) ⊕ c · x) because
(f(x)⊕ c · x)g(x)(c · x⊕ 1) = f(x)g(x)(c · x⊕ 1)⊕ (c · x)g(x)(c · x⊕ 1) = 0. The
last equality follows from the fact that c · x⊕ 1 is annihilator of c · x.

We now investigate the affine transformations on the input variables which
will transform a symmetric function into a new symmetric function. Due to
the following lemma proven by Dawson and Wu, we only need to check the
transformations x �→ xA⊕ c1, where A is a nonsingular n×n binary matrix and
c ∈ F2.

Lemma 2. [8] Let a ∈ Fn
2 \ {0, 1}. If f is a symmetric Boolean function, then

f(x⊕ a) is symmetric if and only if f is affine.

Theorem 5. In n even, the only binary linear transformation on the input vari-
ables of a symmetric function that will compute a new symmetric function on
Fn

2 is the transformation T = x �→ xA, where A is a nonsingular n × n matrix
over F2 with the property that the sum of the elements in each row and column
of A is equal to n− 1. For n odd, no such transformations exist.

The transformation (x0, . . . , xn−1) �→ (x0⊕1, . . . , xn−1⊕1) for all n will map
a symmetric function with value vector vf to a symmetric function with value
vector equal to the reverse of this value vector, i.e., vr

f .

Proof. A minimal requirement for a binary linear transformation x �→ xA which
maps a symmetric function onto a symmetric function is that the weight W
of the columns and rows of A is equal, since all variables play the same role
in a symmetric function. If W is greater than 1 and smaller than n − 1, the
transformation is not bijective or does not lead to a symmetric function.

Consider n even and W = n−1. If wt(x) is odd and equal to i, then we show
that wt(xA) is equal to n − i. Denote by V = {i : xi �= 0}. The coordinates j
with j ∈ {0, . . . , n− 1} in the vector xA are 1 if and only if the elements on the
corresponding column j of A are 1 exactly on the i positions of the set V . (Note
that it is not possible that there are i− 2k with k ≥ 1 elements in the columns
of A which are 1 and 2k elements which are 0 due to the fact that W = n− 1.)
The number of such columns in A is equal to

(
n−i

n−i−1

)
= n − i for i odd and

1 ≤ i ≤ n− 1.
Now we show that if wt(x) is even and equal to i, then wt(xA) = i. Denote

by V = {i : xi �= 0}. The coordinates j with j ∈ {0, . . . , n− 1} in the vector xA
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are 1 if and only if the elements on the corresponding column j of A are 1 on
exactly i− 1 positions of the set V . There are

(
i

i−1

)
= i possibilities for this to

occur.
For n odd, the transformation T is not bijective which follows immediately

from the fact that vectors of weight 0 and n are both mapped onto vectors of
weight 0.

Finally, since the transformation (x0, . . . , xn−1) �→ (x0⊕1, . . . , xn−1⊕1)maps
a vector of weight i onto a vector of weight n− i, this transformation corresponds
to the mapping of vf (i) onto vf (n− i) for every i with 0 ≤ i ≤ n. ��

We now present three basic classes of symmetric functions with maximum AI.
We refer to the extended version of the paper for the proofs of the theorems in
this section.

Class 1

Theorem 6. The symmetric function f in Fn
2 with value vector

vf (i) =
{

0 for i <
⌈

n
2

⌉
1 else (4)

has maximum AI. Let us denote this function f by Fk where k is equal to the
threshold

⌈
n
2

⌉
.

Remark 2. The maximum AI of this class of symmetric functions was indepen-
dently proven in [7] using a different proof method. This result was also presented
at [2].

For n even, we prove that also the function which only differs from the thresh-
old function F�n

2 � in the function value of the vector (1, . . . , 1) has maximum

AI. Denote the zero vector on Fn+1
2 with 1 on position i by ei for

0 ≤ i ≤ n.

Theorem 7. The symmetric function f with value vector vF� n
2 �
⊕ en in Fn

2 for

n even has maximum AI. The degree of f is equal to n if n �= 2i for i ≥ 1 and
equal to 2i−1 else.

Class 2
For n ≥ 8 and even, we can distinguish another class of symmetric functions
with maximum AI. These symmetric functions differ from Fn

2
in two symmetric

positions such that they possess the same weight as Fn
2
. Denote by si the all

zero vector on Fn+1
2 with 1 on positions i, n− i for 0 ≤ i < n

2 .

Theorem 8. Let n = 2k and k ≥ 4. The symmetric function f with value vector
vF n

2
⊕ sk−4 on Fn

2 has maximum AI.
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Again, the symmetric functions f which differ from the functions presented in
Theorem 8 only in the all-one vector have maximum AI for n ≥ 10. This can
be obtained by using the proof technique of Theorem 7 for showing the non-
existence of annihilators with degree less than n

2 for f and the proof technique
of Theorem 8 for f ⊕ 1.

Theorem 9. Let n = 2k and k ≥ 5. The symmetric function f with value vector
vF n

2
⊕ sk−4⊕ en on Fn

2 has maximum AI. The degree of f is equal to n if n �= 2i

with i ≥ 1 and equal to 2i−1 else.

We also present another class of functions which differs from Fn
2

in two symmet-
ric positions. These functions coincide with the function defined in Theorem 7
for n = 8.

Theorem 10. Let f be a symmetric function on Fn
2 with n even. If

(
n
n
2

)
≡ 1

mod 4, then the function with value vector vF n
2
⊕ s0 has maximum AI.

Example 5. The numbers n = 2i for i ≥ 3 satisfy the property that
(

n
n
2

)
≡ 1

mod 4.

Class 3
For n even, the third class of functions with maximum AI differs from Fn

2
in only

one position. Therefore these functions have weight different from the weight of
the functions of class 1 or 2.

Theorem 11. Let f be a symmetric function on Fn
2 with n even. For 1 ≤ i <⌊

n
4

⌋
, if
(n

2 +t−i
t

)
≡ 1 mod 2 for all t ∈ {1, . . . , i}, then the function f with value

vector vF n
2
⊕ en−i has maximum AI.

Example 6. For n = 14, since
(7
1

)
≡ 1 mod 2, the function value vector vF7 ⊕

e13 has maximum AI. Also
(7
3

)
≡ 1 mod 2,

(6
2

)
≡ 1 mod 2,

(5
1

)
≡ 1 mod 2,

and thus the function with value vector vF7 ⊕ e11 represents a function with
maximum AI.

Functions Derived From Classes 1, 2, and 3

For n even, the symmetric functions from classes 1, 2, and 3 can be used
to derive other symmetric functions by means of the affine transformation
(x0, . . . , xn−1) �→ (x0 ⊕ x1 ⊕ · · · ⊕ xn−2, x1 ⊕ x2 ⊕ · · · ⊕ xn−1, . . . , xn−1 ⊕ x0 ⊕
· · ·⊕xn−3). As already explained in the proof of Theorem 4, this transformation
maps vectors of odd weight i to vectors with weight n− i. If the weight is even,
then nothing is changed.

Corollary 2. Let f be a symmetric functions on Fn
2 which belongs to class 1 or

2. If n = 4k, then f ⊕ σ1 has maximum AI. If n = 4k + 2, then the symmetric
function with value vector vf⊕σ1 ⊕ en

2
has maximum AI.
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Let f be a symmetric functions on Fn
2 which belongs to class 3. If n = 4k,

then the function with value vector vf⊕σ1 ⊕ cen−i, where c = 1 if i is odd and
c = 0 otherwise, has maximum AI. If n = 4k + 2, then the function with value
vector vf⊕σ1 ⊕ en

2
⊕ cen−i, where c = 1 if i is odd and c = 0 otherwise has

maximum AI.

Remark 3. We want to note that the symmetric Boolean functions f derived
from the function F� n

2 � and also F�n
2 � ⊕ σn if n is even have very simple anni-

hilators. For instance, it can be easily seen that the functions xi1 · · ·xi�n
2 �

with

0 ≤ i1 < i2 < · · · < i�n
2 � ≤ n − 1 are annihilators of F�n

2 � ⊕ 1. Moreover, they

form exactly the basis of the set of annihilators for F�n
2 �⊕1. The basis of the an-

nihilators of F�n
2 �⊕σn⊕1 consists of the elements {x0 · · ·x�n

2 �−1⊕xi1 · · ·xi� n
2 �

:

0 ≤ i1 < i2 < · · · < i�n
2 � ≤ n− 1, (i1, . . . , i�n

2 �) �= (0, . . . ,
⌈

n
2

⌉
− 1)}.

A high number of terms in the equations is another important criteria for
the algebraic attacks. Therefore, one should be very careful in choosing the taps
of the filter function and the taps of the LFSR when using these symmetric
functions in a filter generator. The annihilators of the affine equivalent functions
are more complicated. However, this does not change the situation, since one
can always replace the filter generator by an equivalent generator with different
initial state and connection polynomial of the LFSR and with filter function
equal to the affine equivalent one (see [9]).

Annihilators of degree n
2 of symmetric functions which belong to classes 2 or

3 are more complicated and consist of more terms.

Properties
Properties such as degree, weight and maximum value in the Walsh spectrum of
the functions from classes 1, 2, and 3 for n even are summarized in Table 2. The
property of degree can be easily derived by using Proposition 2 and Proposition 4
of [3]. The nonlinearity of the functions is immediately derived from the weight
since one can show that maxw∈Fn

2
|Wf (w)| = |Wf (0)|. This is proven in detail

by Dalai et. al in [7].
The functions from class 1 for n odd are trivially balanced. The nonlinearity

of these functions is equal to 2n−1 −
(n−1

n−1
2

)
. This follows from the fact that the

restriction to the subspace xn = 0 (resp. xn = 1) is equal to the symmetric func-
tion (resp. complement of symmetric function) of class 1 in Fn−1

2 . As mentioned

Table 2. Properties of Symmetric function on Fn
2 with Maximum AI for n even

Function Degree weight max |Wf |
F n

2
2�log2 n� 2n−1 + 1

2

(
n
n
2

) (
n
n
2

)
F n

2
⊕ sn

2 −4 2�log2 n� 2n−1 + 1
2

(
n
n
2

) (
n
n
2

)
F n

2
⊕ en−i ≥ n − i 2n−1 + 1

2

(
n
n
2

) − ( n
n−i

) (
n
n
2

) − 2
(

n
n−i

)
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in [3], trivially balanced functions satisfy the property that the derivative with
respect to the all one vector is constant, i.e., D1f = 1. Also Wf (v) = 0 for all
vectors v of even weight.

5 Conclusions

We have presented in this paper an efficient algorithm for computing the AI of
a symmetric Boolean function. We have identified several classes of symmetric
functions with maximum AI.

Since the nonlinearity of functions with maximum AI is not sufficiently high
for resisting distinguishing attacks and correlation attacks as explained in [2], we
also investigated the existence of symmetric functions with suboptimal AI and
better nonlinearity. As shown in the extended version of the paper, it seems that
it is not possible to obtain a sufficient order of AI (in the order of 7) together
with a reasonable nonlinearity (in the order of ε = 2−9) for symmetric functions
which depend on less than 32 variables. Therefore in order to use symmetric
functions in practise, one should use them as a building block for instance by
means of the direct sum with a highly nonlinear Boolean function. Examples
of functions with high nonlinearity and which have still reasonable hardware
complexity are the Boolean functions which are affine equivalent with the trace
function of the power functions.

On the other hand, it is clear that a symmetric function has lots of structure.
Therefore, it is an interesting research question whether this structure can be
exploited in an attack. Also, the use of the direct sum of two functions has
been pointed out as a possible weakness in the design. But again, no attack is
known for this. There are two straightforward ways to destroy the symmetry
and to still maintain a large set of the properties such as nonlinearity, AI and
degree. The first way is by affine transformation on the input variables which
keeps the AI, nonlinearity and degree invariant. However, this method is not a
good solution, since one can construct an equivalent cipher, with different initial
state and different connection polynomial for the LFSR(s) where the function
is again symmetric (see [9]). The second way is to add an affine function, which
keeps the nonlinearity and degree invariant, but will decrease the AI with 1 in
general. For this transformation, it is not immediately clear how to rewrite it to
an equivalent scheme where the symmetric function is again obtained.
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Abstract. Prouff has introduced recently, at FSE 2005, the notion of
transparency order of S-boxes. This new characteristic is related to the
ability of an S-box, used in a cryptosystem in which the round keys are
introduced by addition, to thwart single-bit or multi-bit DPA attacks
on the system. If this parameter has sufficiently small value, then the
S-box is able to withstand DPA attacks without that ad-hoc modifica-
tions in the implementation be necessary (these modifications make the
encryption about twice slower). We prove a lower bound on the trans-
parency order of highly nonlinear S-boxes. We show that some highly
nonlinear functions, and in particular the S-box of AES, have very bad
transparency orders.

1 Introduction

Block cipher cryptosystems embedded in cryptographic devices are sensitive to
a series of cryptanalyses such as differential and linear attacks. Much is known
on the desired characteristics (balancedness, high nonlinearity or high algebraic
degree) of their S-boxes which permit an optimal resistance to these attacks. But
these cryptosystems and their implementation must also withstand the attacks
on the hardware. Indeed, one can obtain information from the side channels
in evaluating the timing of operations or their power consumption. The first
side channel attack, introduced by Kocher [20], permitted to obtain the whole
secret key in several cryptosystems (more precisely, in the implementation of
these cryptosystems), thanks to a timing of operations. Since this seminal pa-
per, a large number of very efficient attacks has been performed on various
cryptographic implementations (see e.g. [7, 8, 14, 16, 23, 24]), in particular in im-
plementations for smart cards. The differential power analysis (DPA) is one of
the most powerful such methods. Its efficiency is much greater than that of lin-
ear or differential cryptanalyses. For instance, in the case of DES, a DPA attack
needs about 2000 bytes of plaintext-ciphertext pairs, whereas linear or differen-
tial attacks need terabytes of such pairs (encrypted with a single key, or twice
as many encrypted with several keys, this makes them completely unpractical in
most situations, and in particular in the case of embedded cryptography, which
is the most favourable situation for DPA attacks). Fortunately, countermeasures
to DPA attacks exist, that can be added to the implementation to withstand

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 49–62, 2005.
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these attacks; for example, adding computations which are not necessary for the
encryption itself, or enciphering data so that the attacker has no information on
the input to the S-box [9, 12, 14, 28]. But these countermeasures make the code
size and the complexity of computation greater. This is a concern in the area
of embedded cryptography, becaus e of limited power and memory capability,
and it slows down the encryption by a factor of 2, roughly. A potentially better
method would be to choose the S-boxes so that they permit a high resistance
to linear and differential cryptanalyses and to DPA attacks as well. But is this
possible? To study such possibility, E. Prouff, extending in [27] the study made
by Guilley et al. [15] for the so-called single-bit DPA, has introduced a new
characteristic for S-boxes used in block cryptosystems in which the round keys
are introduced by addition: the transparency order. This extension by Prouff to
several coordinate functions of the S-box instead of just one (or of a linear com-
bination of the coordinate functions) shows that the transparency order must
not be greater that some value, depending on the amount of noise inside the
device and on the number of encryptions that a cryptanalyst can obtain with
the same key. The introduction of this parameter is interesting, as a first attempt
at theoretically characterizing and quantifying the resistance of S-boxes to DPA
attacks. Obviously, it would be nice if we could exhibit S-boxes with reasonably
high nonlinearities and with low transparency orders; unfortunately, this is still
an open problem. Prouff shows that the transparency order of an S-box F is null
if the S-box is a (cryptographically useless) affine function of a certain type and
that it is the worst possible when the coordinate functions of F are all bent. He
also proves that the transparency order of a function satisfying the propagation
criterion of high degree has bad value. However, this gives no information on
the behavior of realistic S-boxes. We show in the present paper that the most
important of those S-boxes currently used in cryptosystems - namely the inverse
function, used as S-box in the AES - has a very bad transparency order. This
may not mean that the use of inverse S-box is going to diminish because of this.
But it proves what was only believed true without proof before: the counter-
measures cannot be avoided with this precise S-box. We are able to obtain this
result thanks to bounds on the transparency order which relate it to the Walsh
spectra of the functions. We calculate the exact transparency order of the Gold
functions (which are not used as S-boxes because of their algebraic degree, which
is too low since it equals 2) and this permits us to evaluate (at least for these
functions) how precise are our bounds.

The paper is organized as follows: in Section 2, we recall some preliminaries
on S-boxes (Walsh transform, APN and AB functions). In Section 3, we recall the
definition of the transparency order and we prove several lower bounds. Relation
(4) shows in particular that the transparency order can be lower bounded by an
expression only depending on the Walsh transforms of the coordinate functions
of the S-box (recall that the Walsh transform plays also a central role in the
evaluation of the nonlinearity of the S-box). In Section 4, we deduce a lower
bound on the transparency order of the inverse function (in a finite field of
characteristic 2), and in particular of the S-box of the AES. We deduce that it
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cannot contribute by itself to a resistance to DPA attacks. We also calculate the
transparency order of the Gold functions and compare it with the lower bounds
obtained in Section 3.

2 Preliminaries on S-Boxes

Let Fn
2 be the n-dimensional vector space over the field F2. We call n-variable

Boolean function any function from Fn
2 to F2 and (n,m)-function any function

F = (f1, . . . , fm) from Fn
2 to Fm

2 (the coordinate functions fi of F are n-variable
Boolean functions). (n,m)-functions are used as S-boxes (substitution boxes)
in block ciphers, often with n = m. An (n,m)-function is called balanced if its
output is uniformly distributed over Fm

2 , which permits to withstand statistical
attacks.

For every n-variable Boolean function f , the character sum

F(f) =
∑

x∈Fn
2

(−1)f(x)

and the related Walsh transform Wf (a) = F(f + la), where la is the linear
function la(x) = a·x = a1x1+. . .+anxn (this addition being obviously calculated
mod 2), play an important cryptographic role. In particular, the nonlinearity Nf

of f equals 2n−1 − 1
2 maxa∈Fn

2
|Wf (a)|. The number maxa∈Fn

2
|Wf (a)| is usually

called the linearity of f and we shall denote it by Lf . It is lower bounded by
2n/2, because of Parseval’s relation

∑
a∈Fn

2
Wf

2(a) = 22n.
An n-variable Boolean function is called bent if its nonlinearity equals 2n−1−

2n/2−1.
Another important parameter related to a Boolean function f is the auto-

correlation function ACf (a) = F(Daf), where Daf is the derivative of f in the
direction of a:

Daf(x) = f(x) + f(x+ a).

The Fourier transform of the autocorrelation function, that is, by definition,
the function ÂCf (b) =

∑
a∈Fn

2
ACf (a)(−1)a·b, equals the square of the Walsh

transform of f :
ÂCf (b) = Wf

2(b).

In particular, for b = 0, we have:∑
a∈Fn

2

F(Daf) = Wf
2(0).

The following relation will be useful in the sequel: let f and g be two n-variable
Boolean functions, then∑

a∈Fn
2

F(Daf)F(Dag) = 2−n
∑
a∈Fn

2

Wf
2(a)Wg

2(a). (1)
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Indeed,
∑

a∈Fn
2
F(Daf)F(Dag) is the value at 0 of the Fourier transform of the

function a → F(Daf)F(Dag) and it is well-known that the Fourier transform
of the Hadamard product of two functions equals 2−n times the convolutional
product of the Fourier transforms of the functions. Hence, since the Fourier
transform of ACf equals Wf

2, we have (1).
Any (n,m)-function F (and in particular, any Boolean function) can be

uniquely represented as a polynomial on n variables with coefficients in Fm
2

of the form:

F (x1, ..., xn) =
∑

u∈Fn
2

c(u)
n∏

i=1

xui

i .

This representation is called the algebraic normal form of F and its degree d◦(F )
the algebraic degree of the function F .

Besides, for m = n, F can be identified to a function from the field F2n of
order 2n to itself, and has then a unique representation as a univariate polynomial
of degree smaller than 2n over this field:

F (x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

For any k, 0 ≤ k ≤ 2n − 1, the number w2(k) of nonzero coefficients ks ∈
{0, 1} in the binary expansion

∑n−1
s=0 2sks of k is called the 2-weight of k. The

algebraic degree of F is equal to the maximum 2-weight of the exponents i of
the polynomial F (x) such that ci �= 0.

For a function F : Fn
2 → Fn

2 and any elements a, b ∈ Fn
2 we denote

δF (a, b) = |{x ∈ Fn
2 : F (x+ a) + F (x) = b}|,

λF (a, b) =
∑
x∈Fn

2

(−1)b ·F (x)+a·x = Wb ·F (a).

Note that, for any a, b ∈ Fn
2 , the number δF (a, b) is even. Indeed, if x0 is a

solution of F (x+ a) + F (x) = b then x0 + a is a solution too.
The function λF is often called the Walsh transform of F . The nonlin-

earity NF of F is the minimum nonlinearity of all the nonzero linear com-
binations b · F , b �= 0, of its coordinate functions; hence it equals 2n−1 −
1
2 maxa,b∈Fn

2 ;b
=0 |λF (a, b)|. The multi-set of the values λF (a, b), a, b ∈ Fn
2 does

not depend on a particular choice of the inner product in Fn
2 . If we identify Fn

2

with F2n then we can take x · y = tr(xy), where tr(x) = x + x2 + ... + x2n−1
is

the trace function from F2n into F2.
We also denote

ΔF = {δF (a, b) : a, b ∈ Fn
2 , a �= 0},

ΛF = {λF (a, b) : a, b ∈ Fn
2 , b �= 0}.

A function F : Fn
2 → Fn

2 is called almost perfect nonlinear (APN) if ΔF = {0, 2}.
A function F : Fn

2 → Fn
2 is called almost bent (AB) or maximum nonlinear if

ΛF = {0,±2
n+1
2 }. Obviously, AB functions exist only for n odd.
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APN and AB functions are used in cryptography in block ciphers because
APN mappings possess the best resistance against the differential cryptanalysis
[1] and AB mappings oppose an optimum resistance to both linear [22] and
differential attacks.

For affinely equivalent functions F and F ′ = L ◦ F ◦ L′ (where L and L′

are two affine isomorphisms), we have ΔF = ΔF ′ , ΛF = ΛF ′ and if F is a
permutation then ΔF = ΔF −1 , ΛF = ΛF −1 [5]. Therefore, if F is APN (resp.
AB) and F ′ is affinely equivalent to either F or F−1 (if F is a permutation),
then F ′ is also APN (resp. AB).

Table 1 (resp. Table 2) gives all known values of exponents d (up to affine
equivalence and up to taking the inverse when a function is a permutation) such
that the power function xd is APN (resp. AB).

Every AB function is APN [6]. The converse is not true, even when n is odd.
A counterexample is given by the inverse APN function, which has the algebraic
degree n − 1 while the algebraic degree of any AB function is not greater than
(n+ 1)/2 [5].

The inverse function is not APN when n is even, but it is almost APN in
the sense that ΔF = {0, 2, 4}. It has been chosen (as elementary block) in the
S-box of the AES, with n = 8. It has nonlinearity 2n−1 − 2n/2, see [21, 25].
This value is the best known nonlinearity when n is even (see [4] for a list of
all known permutations with the same nonlinearity) and knowing whether there
exist (n, n)-functions with nonlinearity strictly greater than this value is an open
question (even for power functions).

Other APN and AB functions have been recently found, which are not equiv-
alent to power functions, see [2].

Table 1. Known APN power functions on F2n

Exponents d Conditions Proven in

Gold functions 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1
2 [26]

Kasami functions 22i − 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1
2 [19],[18]

Welch function 2t + 3 n = 2t + 1 [10]

Niho function 2t + 2
t
2 − 1, t even n = 2t + 1 [13]

2t + 2
3t+1

2 − 1, t odd

Inverse function 22t − 1 n = 2t + 1 [26]

Dobbertin function 24i + 23i + 22i + 2i − 1 n = 5i [11]

Table 2. Known AB power functions on F2n , n odd

Exponents d Conditions Proven in

Gold functions 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1
2 [26]

Kasami functions 22i − 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1
2 [19]

Welch function 2t + 3 n = 2t + 1 [3]

Niho function 2t + 2
t
2 − 1, t even n = 2t + 1 [17]

2t + 2
3t+1

2 − 1, t odd
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3 The Transparency Order

In [27], E. Prouff introduced a new characteristic for S-boxes in block cryptosys-
tems. The transparency order of an S-box F = (f1, . . . , fn) on Fn

2 is the number:

TF = max
b∈Fn

2

⎛⎝|n− 2wH(b)| − 1
22n − 2n

∑
a∈Fn

2
∗

∣∣∣∣∣
n∑

i=1

(−1)biF(Dafi)

∣∣∣∣∣
⎞⎠ . (2)

In this definition (which also exists for (n,m)-functions, but we shall study here
the case m = n only), the expression inside the brackets is positive for wH(b) = 0
and for wH(b) = n, and it is upper bounded by n for every b. Hence, as observed
in [27], we have 0 ≤ TF ≤ n. As also observed by Prouff, if the coordinate
functions fi of F are bent, then F has obviously worst possible transparency
order n. However, nothing more is said in [27] on the relationship between the
transparency order and the (non)linearities of the fi’s (it seems quite logical
that any non-linear S-box will be rather bad against this property, but this has
to be proven). We show below four bounds relating the transparency order to
the Walsh transforms of the coordinate functions. Bound (3) implies (4) which
implies (5) which implies in its turn (6). Bound (5) (resp. bound (6)) shows in
particular that, to have a chance of obtaining a good transparency order, two
kinds of parameters play a role: the nonlinearities of the coordinate functions
(resp. the nonlinearity of the S-box), which would better be not too high, and
the sizes of the Walsh supports of these functions and the sizes of the pairwise
intersections of these supports.
Theorem 1. Let F=(f1, . . . , fn) be any (n, n)-function. For every i = 1, . . . , n,
let Si denote the support of the Walsh transform of fi, that is, the set {a ∈
Fn

2 |Wfi(a) �= 0}, and let Lfi denote the linearity of fi (hence, its nonlinear-
ity equals 2n−1 − 1

2Lfi). Then, TF is lower bounded by each of the following
expressions:

n− 1
2n
√

2n − 1

√√√√ n∑
i=1

∑
a∈Fn

2
∗
F2(Dafi) + 2

∑
1≤i<j≤n

∑
a∈Fn

2
∗
F(Dafi)F(Dafj) (3)

n− 1
2

3n
2
√

2n − 1

√√√√ n∑
i=1

∑
a∈Fn

2

W 4
fi

(a) + 2
∑

1≤i<j≤n

∑
a∈Fn

2

W 2
fi

(a)W 2
fj

(a)− n2 23n (4)

n− 1
2

3n
2
√

2n − 1

√√√√ n∑
i=1

(L4
fi
|Si|) + 2

∑
1≤i<j≤n

(L2
fi
L2

fj
|Si ∩ Sj |)− n2 23n, (5)

where “| |” denotes the size. Consequently, denoting by NF the nonlinearity of F ,
and by LF its linearity (such that NF = 2n−1 − 1

2LF ), TF is lower bounded by:

n− 1
23n/2

√
2n − 1

⎛⎝⎛⎝ n∑
i=1

|Si|+ 2
∑

1≤i<j≤n

|Si ∩ Sj |

⎞⎠L4
F − n2 23n

⎞⎠1/2

. (6)
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Proof: Applying Cauchy-Schwartz’ inequality, we have:

∑
a∈Fn

2
∗

∣∣∣∣∣
n∑

i=1

(−1)biF(Dafi)

∣∣∣∣∣ ≤
⎛⎝(2n − 1)

∑
a∈Fn

2
∗

(
n∑

i=1

(−1)biF(Dafi)

)2
⎞⎠1/2

.

The sum: ∑
a∈Fn

2
∗

(
n∑

i=1

(−1)biF(Dafi)

)2

equals

n∑
i=1

∑
a∈Fn

2
∗
F2(Dafi) + 2

∑
1≤i<j≤n

(−1)bi+bj

∑
a∈Fn

2
∗
F(Dafi)F(Dafj).

Taking for b the null vector or the all-one vector, we get (3).
According to Relation (1), the sum

∑
a∈Fn

2
∗ (
∑n

i=1 F(Dafi))
2, that is equal to

the expression:∑n
i=1
∑

a∈Fn
2
F2(Dafi) + 2

∑
1≤i<j≤n

∑
a∈Fn

2
F(Dafi)F(Dafj) − n2 22n, equals

then:

2−n
n∑

i=1

∑
a∈Fn

2

Wfi

4(a) + 2−n+1
∑

1≤i<j≤n

∑
a∈Fn

2

Wfi

2(a)Wfj

2(a)− n2 22n.

This proves (4), and we deduce (5) and (6) since W 2
fi

(a) ≤ L2
fi

, for every a and
for every i, and since Lfi ≤ LF for every i. �

Remarks:
1. When the fi’s are bent, all of the expressions (3) to (6) equal TF = n, since
for every i, |Si| equals then 2n, Lfi equals 2n/2, and for every i, j, |Si ∩ Sj |
equals 2n.
2. Relation (4) gives

TF ≥ n− 1
23n/2

√
2n − 1

⎛⎝ ∑
a∈F2n

(
n∑

i=1

Wfi

2(a)

)2

− n2 23n

⎞⎠1/2

. (7)

4 Power Permutations

Bounds (3), (4), (5) and (6) seem complicated and we can wonder whether they
can ever be computed. We shall show that, in the case of power permutations,
their complexity decreases and that their computation can be done at least in
the cases of Gold functions and of inverse function (see Subsection 4.1).

The coordinate functions of a power function xd have the form fi(x) =
tr(bixd), where the bi’s are linearly independent. Set b �= 0. Assuming that d
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is co-prime with 2n − 1 (i.e. that the power function is a permutation), the
character sum

∑
x∈F2n

(−1)tr(bxd+ax) equals

∑
x∈F2n

(−1)
tr

(
b
(

x

b1/d

)d
+a
(

x

b1/d

))
=
∑

x∈F2n

(−1)tr
(

xd+
(

a

b1/d

)
x
)
,

where 1/d denotes the inverse of d mod 2n − 1. Hence, denoting the function
tr(bxd) by fb, and the function tr(xd) by f , we have

Wfb
(a) = Wf

( a

b1/d

)
, (8)

and the support of Wfb
equals b1/dS, where S is the support of Wf .

Hence
∑

b∈F∗
2n

∑
a∈F2n

W 4
fb

(a) = (2n − 1)
∑

a∈F2n
W 4

f (a).
It is well-known that

∑
b∈F2n

∑
a∈F2n

W 4
fb

(a) equals 22n times the size of the
set {(x, y, z) ∈ F3

2n |xd + yd + zd + (x+ y + z)d = 0}. Indeed, we have∑
b∈F2n

∑
a∈F2n

W 4
fb

(a) =

∑
b∈F2n

∑
a∈F2n

∑
x,y,z,t∈F2n

(−1)tr(b(xd+yd+zd+td)+a(x+y+z+t)) =

∑
x,y,z,t∈F2n

⎛⎝ ∑
b∈F2n

(−1)tr(b(xd+yd+zd+td))

⎞⎠⎛⎝ ∑
a∈F2n

(−1)tr(a(x+y+z+t))

⎞⎠ ,

and the sum
∑

b∈F2n
(−1)tr(b(xd+yd+zd+td)) is null if xd + yd + zd + td �= 0 (resp.

the sum
∑

a∈F2n
(−1)tr(a(x+y+z+t)) is null if x+ y + z + t �= 0).

Since the condition xd + yd + zd + (x + y + z)d = 0 is satisfied under the
sufficient condition that two elements among x, y and z are equal (the number of
such cases equals 3 · 22n − 2n+1),

∑
a∈F2n

W 4
f (a) is therefore lower bounded by

1
2n−1

(
22n · (3 · 22n − 2n+1)−

∑
a∈F2n

W 4
0 (a)

)
= 1

2n−1

(
22n · (3 · 22n − 2n+1)− 24n

)
=

23n+1, as well as
∑

a∈F2n
W 4

fb
(a), for every b �= 0. We deduce:

Lemma 1. If F = (f1, . . . , fn) is a power permutation, then

n∑
i=1

∑
a∈F2n

W 4
fi

(a) =

n 22n

2n − 1
(
|{(x, y, z) ∈ F3

2n |xd + yd + zd + (x + y + z)d = 0}| − 22n
)
≥

n · 23n+1.
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If xd is APN, then the condition xd+yd+zd+(x+y+z)d = 0 is satisfied if and
only if two elements among x, y and z are equal, and

∑
a∈F2n

W 4
f (a) equals 23n+1,

as well as
∑

a∈F2n
W 4

fb
(a), for every b �= 0. Hence

∑n
i=1
∑

a∈F2n
W 4

fi
(a) = n·23n+1.

Let us consider now, for c �∈ F2, the sum
∑

a∈F2n
Wf

2(a)Wfc

2(a) involved in
(4). According to (8), it is equal to 1

2n−1 times∑
b∈F∗

2n

∑
a∈F2n

W 2
fb

(a)W 2
fb

( a

c1/d

)
=

∑
b∈F∗

2n

∑
a∈F2n

W 2
fb

(a)W 2
fbc

(a) =

⎛⎝ ∑
b∈F2n

∑
a∈F2n

∑
x,y,z,t∈F2n

(−1)tr(b(xd+yd+czd+ctd)+a(x+y+z+t)) − 24n

⎞⎠ .

Hence, we have:

Lemma 2. If F (x) = xd is a power permutation and f(x) = tr(F (x)), fc(x) =
tr(cF (x)), c �∈ F2, then ∑

a∈F2n

Wf
2(a)Wfc

2(a) = (9)

22n

2n − 1
(
|{(x, y, z) ∈ F2n

3 |xd + yd + czd + c(x + y + z)d = 0}| − 22n
)
.

There does not seem to exist a nice general lower bound on this expression, even
when xd is APN (taking x = y only leads only to the positivity of∑

a∈F2n
Wf

2(a)Wfc

2(a)). We first consider the particular case of the inverse
function.

4.1 The Inverse Function and the S-Box of the AES

Let d = 2n− 2 = −1 [mod 2n− 1] (xd equals 1/x if x �= 0 and equals 0 if x = 0).
We know that xd is APN when n is odd, and is not APN when n is even. Recall
that this function is used with n = 8 as the basic S-box in the AES.

In Appendix 1, we show why it seems impossible to calculate the exact value
of the transparency order of the inverse function. So we must use the method
initiated in the introduction of Section 4 (see Lemmas 1 and 2).

We study in Appendix 2, for any c �= 0, the solutions of the equation xd +
yd + czd + c(x+ y + z)d = 0. We obtain:

– if c = 1, then:
• if n is odd, the number of solutions of the equation xd + yd + zd + (x+
y + z)d = 0 equals 22n + 4(2n − 1) + 2(2n − 1)(2n − 2) = 3 · 22n − 2n+1;
we calculated already this number (the function is APN);
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• if n is even, the number of solutions of the equation xd + yd + zd + (x+
y+z)d = 0 equals 22n +8(2n−1)+2(2n−1)(2n−2) = 3 ·22n +2n+1−4,
since tr(1) = 0; this number could have also been calculated by using
the results of Nyberg [26].

– if c �= 1, then
• if tr(c) = tr(1/c) = 0, the number of solutions of the equation xd + yd +
czd + c(x + y + z)d = 0 equals 22n + 4(2n − 1) + 4(2n − 1) + 2(2n −
1)(2n−1 − 2) = 2 · 22n + 3 · 2n − 4
• if tr(c) = 0 and tr(1/c) = 1 or if tr(c) = 1 and tr(1/c) = 0, the number

of solutions of the equation xd + yd + czd + c(x + y + z)d = 0 equals
22n + 4(2n − 1) + 2(2n − 1)(2n−1 − 2) = 2 · 22n − 2n

• if tr(c) = tr(1/c) = 1, the number of solutions of the equation xd + yd +
czd+c(x+y+z)d = 0 equals 22n+2(2n−1)(2n−1−2) = 2 ·22n−5 ·2n+4.

Note that, in the case c �= 1, the greatest number that we have obtained is 2 ·22n +
3 · 2n − 4. According to Relation (9), we deduce that Bound (4) gives, if n is odd:

TF ≥

n−
(
n(2 · 22n − 2n+1) + n(n− 1)(22n + 3 · 2n − 4)

2n(2n − 1)2
− n2

(2n − 1)

)1/2

=

n− 1
2n/2(2n − 1)

(
4n2(2n − 1) + n(22n − 5 · 2n + 4)

)1/2 ≈ n−
√

n

2n

and if n is even:
TF ≥

n−
(
n(2 · 22n + 2n+1 − 4) + n(n− 1)(22n + 3 · 2n − 4)

2n(2n − 1)2
− n2

(2n − 1)

)1/2

=

n− 1
2n/2(2n − 1)

(
4n2(2n − 1) + n(22n − 2n)

)1/2 ≈ n−
√

n

2n
.

Hence, the inverse function has bad transparency order! In particular, in the
case of the S-box of the AES (n = 8), our bound gives that TF ≥ 7.8, which is
close to n = 8.

4.2 The Gold Functions

For F (x) = x2i+1 (gcd(i, n)=1, n odd), fb(x) = tr(bx2i+1) (b �= 0) and for a �= 0,
we have Dafb(x) = tr(bax2i

+ ba2i

x+ ba2i+1) = tr(((ba)2
n−i

+ ba2i

)x+ ba2i+1).
Hence, F(Dafb) equals ±2n if (ba)2

n−i

+ ba2i

= 0 and is null otherwise. We
have (ba)2

−i

+ ba2i

= 0 if and only if ba + b2
i

a22i

= 0, that is, if and only
if b2

i−1a22i−1 = 1, or equivalently ba2i+1 = 1, since gcd(i, n)=1. Hence, for
every a �= 0, there exists exactly one b such that F(Dafb) �= 0, and therefore
at most one i such that F(Dafi) �= 0. We deduce that TF equals in fact n −

1
22n−2n

∑
a∈Fn

2
∗
∑n

i=1 |F(Dafi)| = n − 1
22n−2n

∑n
i=1

(∑
a∈Fn

2
∗ |F(Dafi)|

)
. Note
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that this observation is valid whatever is the evenness of n. Here, n is odd, so
that F is a permutation. For every b �= 0, there exists then a unique a �= 0 such
that ba2i+1 = 1 and we deduce TF = n − n2n

22n−2n = n − n
2n−1 . We see that the

transparency order of Gold functions is bad too. These functions had already
the drawback of having low degree.

The fact that we could calculate the exact value of TF in the case of Gold AB
functions is an opportunity of seeing whether, at least in this case, our bound
(6) is good or not. It is well known that the support of the Walsh transform of
the function tr(x2i+1) (n odd, gcd(i, n) = 1) equals H = {a ∈ F2n | tr(a) = 1}.
Indeed, since function tr(x2i+1) is quadratic (i.e. has degree 2), for every a ∈ F2n ,
the function tr(x2i+1) + tr(ax) is unbalanced if and only if its restriction to the
kernel of its associated symplectic form, that is, the vectorspace E = {x ∈
F2n | ∀y ∈ F2n , tr(x2i+1)+ tr(y2i+1)+ tr((x+ y)2

i+1) = 0}, is constant. We have
E = {x ∈ F2n |x2i

+ x2n−i

= 0} = {x ∈ F2n |x22i

+ x = 0} = {0} ∪ {x ∈
F2n

∗ |x22i−1 = 1} = {0, 1}. It is a simple matter to see that, for every k �= j, we
have |b1/(2i+1)

j H ∩ b1/(2i+1)
k H | = 2n−2, since the bj ’s are nonzero and pairwise

distinct. We deduce that Relation (6) gives

TF ≥ n− 1
23n/2

√
2n − 1

((
n 2n−1 + n(n− 1) 2n−2) 22n+2 − n2 23n

)1/2

= n−
√
n√

2n − 1
.

The difference between TF = n− n
2n−1 and n−

√
n√

2n−1 is negligible with respect
to TF .

5 Conclusion

We were able to show that the transparency orders of two highly nonlinear S-
boxes (including the S-box of the AES) are bad. This confirms the intuition
that nonlinear mappings used as S-boxes may be unable to avoid using heavy
countermeasures to DPA attacks (and the resulting penalties on efficiency). But
it remains to show that the other functions included in tables 1 and 2 (for
instance) have also bad transparency orders.
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Appendix 1

In this appendix, we see whether it is possible to calculate the exact value of
TF when F (x) is the inverse function x−1, equal to 1

x if x �= 0 and to 0 if

x = 0. For every a, b �= 0, we have Dafb(x) = tr
(

ab
x(x+a)

)
if x �= 0, x �= a and

Dafb(x) = tr
(

b
a

)
if x = 0 and if x = a.

Hence, F(Dafb) equals
∑

x∈F2n
(−1)tr(abx−1(x+a)−1)−2+2(−1)tr(b/a), that is,

by changing variable x into ax:
∑

x∈F2n
(−1)tr(a−1b(x2+x)−1)− 2 + 2(−1)tr(a−1b).

Since x2 + x ranges uniformly over the hyperplane {u ∈ F2n | tr(u) = 0} when x

ranges over F2n , we deduce that F(Dafb) equals 2
∑

u∈F2n | tr(u)=0
(−1)tr(a−1bu−1)−

2+2(−1)tr(a−1b), that is, equals
∑

u∈F2n
[(−1)tr(a−1bu−1) + (−1)tr(u+a−1bu−1)]−

2 + 2(−1)tr(a−1b), that is, changing u into ab−1u:

F(Dafb) =
∑

u∈F2n

(−1)tr(u−1) +
∑

u∈F2n

(−1)tr(ab−1u+u−1) − 2 + 2(−1)tr(a−1b).

Since x−1 is a permutation, the first of these two sums is null. The second one is
known under the name of Kloosterman sum. It is proved in [21] that, when ab−1

ranges over F2n , the set of the values of this sum equals the set of all the integers
congruent with -1 modulo 4, in the range [−2

n
2 +1, 2

n
2 +1]. But the distribution of

these values is not known and this gives therefore no information on the possible
value of the expression inside the brackets in (2).

Appendix 2
Let us consider the equation xd + yd + czd + c(x+ y + z)d = 0 for any c �= 0. If
x = y, then it is satisfied. This makes 22n solutions. We study now the solutions
such that x �= y.
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Case 1: if z = 0 or z = x+ y, then the equation reduces to xd + yd + c(x+ y)d = 0.
- If x = 0 (and y �= 0) or y = 0 (and x �= 0), then it is satisfied if c = 1 and it is
not satisfied if c �= 1.
- If x �= 0 and y �= 0, it is equivalent to 1

x + 1
y + c

x+y = 0, that is, x2+y2+cxy = 0,

or equivalently
(

x
cy

)2
+ x

cy + 1
c2 = 0. Thus, if tr

( 1
c2

)
= 0, that is, if tr

( 1
c

)
= 0,

then the equation admits two solutions in x, for every y �= 0; note that these
two solutions satisfy x �= 0 and x �= y, since c is nonzero. This makes altogether
2 [2 (2n − 1) + 2 (2n − 1)] = 8 (2n − 1) solutions if c = 1 and tr

( 1
c

)
= 0 (that

is, if n is even), 2 [2 (2n − 1)] = 4 (2n − 1) if c = 1 and tr
( 1

c

)
= 1 (that is, if n

is odd) or if c �= 1 and tr
( 1

c

)
= 0 and none if c �= 1 and tr

( 1
c

)
= 1.

Case 2: if z �= 0, z �= x + y and x = 0 or y = 0 - say y = 0 (and x �= 0), then
the equation reduces to 1

x + c
z + c

x+z = 0, or equivalently xz + z2 + cx2 = 0,

that is,
(

z
x

)2 + z
x + c = 0. This last equation admits two solutions z, for every

x �= 0, if tr(c) = 0 and none otherwise. Note that the two solutions, if they
exist, satisfy z �= 0 and z �= x+ y = x, since c is nonzero. This makes altogether
2 (2 (2n − 1)) = 4 (2n − 1) solutions if tr(c) = 0 and none otherwise.
Case 3: if z �= 0, z �= x+ y, x �= 0 and y �= 0, then the equation is equivalent to
1
x + 1

y + c
z + c

x+y+z = 0, that is, (x+ y + z)(yz + xz + cxy) + cxyz = 0, that is,
(x+ y)(cxy + (x+ y)z + z2) = 0. Since x �= y, this is equivalent to(

z

x+ y

)2

+
z

x+ y
+

cxy

x2 + y2 = 0. (10)

Two cases concerning x and y can occur:

- if tr
(

cxy
x2+y2

)
= 1, then Equation (10) has no solution.

- if tr
(

cxy
x2+y2

)
= 0, then Equation (10) has two solutions z. Note that, since x

and y are distinct and nonzero, and since c is nonzero, these two solutions satisfy
z �= 0 and z �= x+ y.

Let us determine the number of ordered pairs (x, y), with x and y distinct and

nonzero, such that tr
(

cxy
x2+y2

)
= 0. We have xy

x2+y2 = x
x+y +

(
x

x+y

)2
, and x

x+y

ranges uniformly over F2n \ F2 when (x, y) ranges over F∗
2n

2 \ {(x, x);x ∈ F∗
2n};

hence xy
x2+y2 ranges uniformly over {u ∈ F∗

2n | tr(u) = 0} when (x, y) ranges
over F∗

2n
2 \ {(x, x);x ∈ F∗

2n} (more precisely, every element {u ∈ F∗
2n | tr(u) = 0}

equals xy
x2+y2 for (2n−1)(2n−2)

2n−1−1 = 2n+1−2 ordered pairs (x, y)). Thus, if c = 1 then

the condition tr
(

cxy
x2+y2

)
= 0 is satisfied for all of the (2n−1)(2n−2) ordered pairs

(x, y), and if c �∈ F2, it is satisfied for (2n+1 − 2)(2n−2 − 1) = (2n − 1)(2n−1− 2)
ordered pairs. This makes altogether 2(2n − 1)(2n − 2) solutions if c = 1 and
2(2n − 1)(2n−1 − 2) if c �∈ F2.

Summarizing, this gives what is stated at Subsection 4.1.
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Abstract. At ASIACRYPT 2004, Hong et al. introduced the notion of
UOWHFs of order r > 0. A UOWHF has the order r if it is infeasible
for any adversary to win the game for UOWHF where the adversary is
allowed r adaptive queries to the hash function oracle before outputting
his target message. They showed that if a UOWHF has the order r, its
some-round MD (Merkle-Damg̊ard) or some-level TR (TRee) extension
is a UOWHF. Since MD and TR extensions do not require additional
key values except the key of compression functions for hashing, their re-
sult means that the order of UOWHFs can be useful for minimizing the
total key length. In this paper we study how to construct such UOWHFs
of order r. As the first step, we observe Bellare-Rogaway UOWHF and
Naor-Yung UOWHF. It is shown that Bellare-Rogaway UOWHF has the
order 0 and that Naor-Yung UOWHF has the order 1. We generalize the
construction of Naor-Yung UOWHF based on a one-way permutation to
that of the UOWHF of order r.

Keywords : Hash Function, Collision Resistant Hash Function (CRHF),
Universal One-Way Hash Function (UOWHF), Higher Order Universal
One-Way Hash Function.

1 Introduction

The notion of universal one-way hash function (UOWHF) was introduced by
Naor and Yung [6]. It is a family of functions H = {hK}K∈K with hK : {0, 1}n →
{0, 1}m, for which the following game is infeasible: the adversary chooses x as
a target message, then receives a key K ∈ K selected uniformly at random and
wins if he can find x′ such that x �= x′ and hK(x) = hK(x′).

UOWHFs have been studied with skepticism of collision-resistant hash func-
tions (CRHFs) that the CRHF is too strong assumption to design. Bellare and
Rogaway [1] showed that the Merkle-Damg̊ard extension, which is the most pop-
ular method to be used to extend a CRHF with a finite domain to one with a
larger domain, cannot be applicable to UOWHFs by giving an example of a
UOWHF with a finite domain whose 2-round MD (Merkle-Damg̊ard) extension
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is not a UOWHF. Their example means that it cannot be avoided that the longer
message is hashed, the longer key is required in any extension for UOWHFs. So,
later work have been concentrated on minimizing key length. Bellare and Rog-
away suggested two extensions for UOWHFs with linear structure, LH and XLH,
and two extensions for UOWHFs with tree structure, TH and XTH.

Shoup [11] proposed a nice improvement of XLH extension, and Mironov [5]
proved that it achieves minimal key length among all XLH-like extension. Recent
work by Sarkar [8, 9, 10] and Lee et al. [4] have provided different extensions with
parallel structures with varying trade-off between degree of parallelism and key
length.

1.1 CRHFs and UOWHFs

UOWHF is a strictly weaker primitive than CRHF. Simon [12] showed that there
is an oracle relative to which UOWHFs exist but not CRHFs. He also stated that
it is not likely that a convincing construction of a collision-resistant hash function
can be built on nothing more than the assumption of a one-way permutation.
However, in the point that Naor and Yung [6] suggested a construction of a
UOWHF based on a one-way permutation, it is more plausible to recognize a
family of functions as a UOWHF than a CRHF.

Extending a UOWHF has the problem that the key length increases according
to the length of a message. Such problem does not exist in case of CRHFs since
MD or TR (TRee) extension does not increase the key size.

1.2 Order of Universal One-Way Hash Functions

Hong et al. [3] introduced the notion of UOWHFs of order r. A UOWHF H of
order r is a family of hash functions {hK}K∈K such that it is feasible for any
adversary to win the following game: a key K is selected uniformly at random
from K, the adversary asks r adaptive queries to the hash function oracle hK(·),
chooses x as a target message, then receives the key K and wins if he can find
x′ such that x �= x′ and hK(x) = hK(x′). According to this terminology, the
standard definition of UOWHF is a UOWHF of order 0. They showed that
if a UOWHF H has the order r, then its (r + 1)-round MD extension is a
UOWHF and that if a UOWHF H = {hK : {0, 1}dn → {0, 1}n}K∈K has order
r = (dl − d)/(d− 1), then its l-level TR extension is a UOWHF. Note that MD
and TR constructions do not require additional random key values except the
key of compression functions for hashing. So, these results allow us to reduce the
key length required for extending a UOWHF of order 0 if we consider the order
of the compression function as a UOWHFs.

For example, let H = {hK : {0, 1}n+m → {0, 1}n}K∈K be a UOWHF, where
K = {0, 1}k. Assume that we use XLH extension for extending H . If we don’t
consider the order of H , we should use (k + Ln/m)-bit key to hash a L-bit
message, where L is a multiple of m. However, if the order of H is known as
r, we can see that (r + 1)-round MD extension F = {fK : {0, 1}n+(r+1)m →
{0, 1}n}K∈K of H is a UOWHF. So, the amount of required key bits for hashing
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Table 1. The comparison of the shortest key length required by the extension methods
with a linear structure when the compression UOWHF H has order 0 and r > 0. Here
k is the key length of H and hK : {0, 1}n+m → {0, 1}n. L is the length of the message
to be hashed (measured in bits) and a multiple of m.

Extension Key Length (order 0) Key Length (order r) Reference
LH Lk

m
� Lk

m(r+1)� [1]
XLH k + Ln

m
� 1

r+1

(
k + Ln

m

)� [1]
Shoup k + �log2

Ln
m

� � 1
r+1

(
k + �log2

Ln
m

�)� [11]

a L-bit message by using XLH extension is decreased to �(k + Ln/m)/(r + 1)�.
Table 1 compares the key length required for extending a UOWHF of order 0
and of order r with sequential extension methods such as LH, XLH, and Shoup’s
method. Note that a UOWHF is no more than one of order 0 if we don’t consider
its order.

Notice that we treated extensions with linear structure for simplicity but we
can give a similar (but little more complicated) argument about extensions with
tree structure.

1.3 Motivation and Contribution

As mentioned in the previous subsection, the order of UOWHFs can be useful for
minimizing the total key length required for extension. According to the results
in [3], applying such extension as LH, XLH, etc. directly to a UOWHF is wasting
random key materials. Note that many researchers have worked hard to build
extending methods with optimal key length. Our work has been launched from
the question: does there exist a construction of UOWHFs of any order r > 0?
In this paper, we will suggest a provably secure and generalized construction of
UOWHFs of order r > 0, as Naor and Yung [6] suggested a one-way-permutation-
based construction of a UOWHF.

As the first step of our work, we check the order of Bellare-Rogaway UOWHF
HBR and Naor-Yung UOWHF HNY. We show that HBR has order 0. The con-
struction of HBR is not based on other primitives, but this result is interesting in
the point that it is a well-matched example with the contraposition of a theorem
in [3] that the order of the UOWHF is less than r − 1 if r-round MD extension
of a UOWHF is not a UOWHF. Note that in [1] it has been already shown that
2-round MD extension of HBR is not a UOWHF.

We also prove that HNY has order 1. Therefore, according to work in [3],
2-round MD extension of HNY is a UOWHF. This implies that we can reduce
the key length required for extending HNY by half if we consider its order. We
generalize HNY to a provably secure construction of a UOWHF with order r > 0
based on a one-way permutation, HNYr . HNYr has the key length of (r + 1)n
bits when the input length is n, while HNY has the key length of 2n. There is a
tradeoff between order and key length in the sense of the key length for extending
a UOWHF. Assume that an extension method requires the additional key length
of t bits for extending a UOWHF of order 0 in order to hash a message. Then,
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the total key length for extending HNYr is (r+1)n+� t
r+1�. This relation between

t and r can be useful for determining the optimal order for some schemes. For
example, in the environment where the message length is fixed, t is also fixed. In
such environment, the key length is minimized if we use the UOWHF of order r
such that (r + 1)2 ∼= t

n .
Roughly according to another result in [3], the larger the order is, the closer to

a CRHF a UOWHF is. However, we show that for any r, there exists a UOWHF
of order r which is not a CRHF.

2 Preliminaries

2.1 Notations

Let {0, 1}n be the set of all the strings of length n. When a and b are bit strings,
a||b denotes the concatenation of a and b. When b is a value, a←− b means that
b is computed and then a is set to b. Similarly, when both U and V are sets,
U ←− V means that U is put to V . When U is a set and u is an element of U ,
u

$←− U means that u is uniformly at random from U . When A is an algorithm
or a program, A(x) −→ a means that A on the input x outputs a.

2.2 Definitions of Cryptographic Hash Functions

We give formal definitions of CRHF, UOWHF, UOWHF of order r, and OWP
(One-Way Permutation).

Definition 1 (CRHF). Let H = {hK}K∈K be a family of functions with hK :
M −→ C for K ∈ K. H is (t, ε)-CRHF if any adversary A cannot win the
following game with the probability ε and within the running time t.

GameCRHF(H,A)

1 : K
$←− K

2 : A(K) −→ (x, x′)
3 : if x �= x′ and hK(x) = hK(x′), then output “A wins”
4 : else, output “A loses”

Definition 2 (UOWHF). LetH = {hK}K∈K be a family of functions with hK :
M −→ C for K ∈ K. H is (t, ε)-UOWHF if any adversary A = (A1, A2) cannot
win the following game with the probability ε and within the running time t.

GameUOWHF(H,A)

1 : K
$←− K

2 : A1(null) −→ (x, State)
3 : A2(K,x, State) −→ x′

4 : if x �= x′ and hK(x) = hK(x′), then output “A wins”
5 : else, output “A loses”
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We can exchange the order of Step 1 and 2 in GameUOWHF(H,A) since the
two steps are independent and the order of them does not effect Step 3. So,
the notion of the conventional UOWHFs is equivalent to that of UOWHFs of
order 0.

Definition 3 (UOWHF of order r). Let H = {hK}K∈K be a family of func-
tions with hK : M −→ C for K ∈ K. H is (t, ε)-UOWHF(r) if any adversary
A = (A1, A2) cannot win the following game with the probability ε and within
the running time t.

GameUOWHF(r)(H,A)

100 : K
$←− K

200 : Q←− ∅

300 : if r > 0 do
310 : for i = 1, · · · , r do
311 : A1(Q) −→ xi

312 : yi ←− hK(xi)
313 : Q←− Q ∪ {(xi, yi)}
400 : A1(Q) −→ (x, State)
500 : A2(K,x, State) −→ x′

600 : if x �= x′ and hK(x) = hK(x′), then output “A wins”
700 : else, output “A loses”

Note that A1 never gets the key K and has just r adaptive accesses to hK(·)
which behaves as like an oracle. The order of h means the number of adaptive
queries which the adversary can ask to the hash function oracle hK(·) when it
has no information of the key.

Finally, we introduce the definition of a one-way permutation. In the defini-
tion of a one-way function or permutation, we are not forced to consider the key
space [7].

Definition 4 (OWP: One-Way Permutation). A permutation f : {0, 1}n →
{0, 1}n is (t, ε)-OWP if any adversary A cannot win the following game with the
probability ε and within the running time t.

GameOWP(f,A)

1 : x
$←− {0, 1}m

2 : A(f(x)) −→ x′

3 : if x = x′, then output “A wins”
4 : else, output “A loses”

2.3 MD and TR Extensions

Let H = {hK}K∈K be a family of functions with hK : {0, 1}n+m → {0, 1}n. Then
r-round MD extension of H , MDr[H ] is {MDr[hK ] : {0, 1}n+rm→ {0, 1}n}K∈K.
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Let x ∈ {0, 1}n+rm be x0||x1|| · · · ||xr where x0 ∈ {0, 1}n and xi ∈ {0, 1}m for
i = 1, · · · , r. Then, for K ∈ K, MDr[hK ](x) is computed as follows.

Algorithm MDr[hK ](x)
1 : y0 ←− x0
2 : for i = 1, ..., r do
3 : yi ←− hK(yi−1||xi)
4 : output yr

Let H = {hK}K∈K be a family of functions with hK : {0, 1}dm → {0, 1}m.
Then l-level TR extension of H , TRl[H ] is {TRl[hK ] : {0, 1}dlm → {0, 1}m}K∈K.
Let x ∈ {0, 1}dlm be x1

0||x2
0|| · · · ||xdl

0 where xi
0 ∈ {0, 1}m for i = 1, · · ·dl. Then,

for K ∈ K, TRl[hK ](x) is computed as follows.

Algorithm TRl[hK ](x)
1 : for i = 1, ..., l do
2 : for j = 1, ..., dl−i do
3 : xj

i ←− hK(x(j−1)d+1
i−1 || · · · ||xjd

i−1)
4 : output x1

l

2.4 Review of Previous Work

In this subsection we review the results in [3]. The following theorems state
the relationships among UOWHFs of various order and CRHFs. Let TH be the
worst-case time to compute hK(·).

Theorem 1 (In [3]). Let H = {hK}K∈K be a family of functions with hK :
{0, 1}m −→ {0, 1}c and m > c. Then,

1. H is a (t, ε)-UOWHF ⇔ H is a (t, ε)-UOWHF(0).
2. For any r ≥ 0, H is a (t′, ε)-UOWHF(r + 1) ⇒ H is a (t, ε)-UOWHF(r),

where t = t′ −Θ(TH +m+ c).
3. For any r ≥ 0, H is a (t′, ε)-CRHF ⇒ H is a (t, ε)-UOWHF(r), where

t = t′ −Θ(r)(TH +m+ c).

According to the above theorem, UOWHFs of order r > 1 are in the place
between CRHF and conventional UOWHF (of order 0), and as r increases, the
notion of UOWHF(r)s is closer to the notion of CRHFs. However, we show that
the two notions do not meet. For any r > 0, we can construct a UOWHF which
is not a CRHF but has the order r. Let H = {hK}K∈K be a UOWHF(r) where
K = {0, 1}k and hK : {0, 1}k+m −→ {0, 1}k. Then we can construct the following
family of functions: H ′ = {h′K}K∈K where for K,x ∈ {0, 1}k and y ∈ {0, 1}m,
h′K(x||y) is defined as follows.

h′K(x||y) =
{

0||hK(x||y) if x �= K,
1||K if x = K.

(1)

Clearly, H ′ is not a CRHF, but still UOWHF(r).
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Theorem 2. Let H be a (t, ε)-UOWHF(r). Then, H ′ defined above is a (t′, ε′)-
UOWHF(r) where ε′ = 2k

2k−r
ε− 1

2k(2k−r) and t = t′ −Θ(rTH).

Proof. See Appendix.

The following theorems are main contributions of [3] together with introduc-
tion of the notion of UOWHF of order r.

Theorem 3 (In [3]). Let H = {hK}K∈K be a family of functions with hK :
{0, 1}c+m → {0, 1}c. If H is a (t′, ε′)-UOWHF(r) then, MDr+1[H ] is a (t, ε)-
UOWHF, where ε = (r + 1)ε′ and t = t′ −Θ(r)(TH +m+ c).

Theorem 4 (In [3]). Let H = {hK}K∈K be a family of functions with hK :
{0, 1}dc → {0, 1}c. If H is a (t′, ε′)-UOWHF(r) and r = (dl − d)/(d− 1). Then
TRl[H ] is a (t, ε)-UOWHF, where ε = (r + 1)ε′, and t′ = t+Θ(dl)(TH + dc).

3 Order of Bellare-Rogaway UOWHF

Bellare and Rogaway [1] gave an example of a UOWHF whose 2-round MD
extension is not a UOWHF. This example is as follows. Let H0 = {h0

K}K∈K be a
(t, ε)-UOWHF where K = {0, 1}k and for K ∈ K, h0

K : {0, 1}c+k+m −→ {0, 1}c.
Then HBR = {hBR

K }K∈K with hBR
K : {0, 1}c+k+m −→ {0, 1}c+k is defined as

follows. For K ∈ {0, 1}k, x ∈ {0, 1}c, y ∈ {0, 1}k, and z ∈ {0, 1}m, let

hBR
K (x||y||z) =

{
h0

K(x||y||z)||K if y �= K
1c||1k if y = K.

The following is proved in [1].

Proposition 1. HBR has the following properties.

1. HBR is (t′, ε− 2−k+1)-UOWHF, where t′ = t−Θ(m + 2k)
2. There is an adversary that wins the GameUOWHF(MD2[HBR], ·), within the

time t′′ = Θ(m + k) and with the success probability ε′′ = 1− 2−k.

This example has made many cryptographers abandon applying MD extension
to UOWHFs and research other extending methods. We show that this counter-
example satisfies the contraposition of the statement of Theorem 3. The point is
that HBR is a UOWHF but MD2[HBR] is not. According to the contraposition,
the order of HBR is not 1 and so its order should be zero.

Theorem 5. The order of HBR is zero.

Proof. The proof is easy. We can make an adversary A = (A1, A2) which works
in the GameUOWHF(1)(HBR, A) and has a very simple strategy. A1 asks a query
which is selected uniformly at random from {0, 1}c+k+m. Once A1 is given the
answer by the hash function oracle hBR

K (·), it can know the key K with the
probability 1 − 2−k. A1 selects and outputs x||K||z as a target message where
x, z ∈ {0, 1}k. A2 on the input (K,x||K||z) selects and outputs x′||K||z′ as a
sibling message such that x �= x′ or z �= z′. By the definition of HBR, the two
messages collide under hBR

K . Hence the order of HBR is less than 1, so it is zero.
��
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4 Order of Naor-Yung UOWHF

In [6] a construction of a UOWHF based on a one-way permutation is introduced.
This example shows that if a one-way permutation exists then a UOWHF also
exists. It is constructed as follows.

Let f : {0, 1}k −→ {0, 1}k be a one-way permutation and Chop : {0, 1}k −→
{0, 1}k−1 be a function which simply chops the least significant bit.G = {gK}K∈K
is a family of functions where K = {0, 1}2k, and for nonzero a ∈ {0, 1}k and
b, x ∈ {0, 1}k, ga||b(x) is defined as

ga||b(x) = Chop(ax+ b).

It is considered that all the computations are in the finite field F2k . Then Naor-
Yung UOWHF HNY is defined as {hNY

K = gK ◦ f}K∈K.
Note that G has collision accessibility: Given that ga||b(x1) = ga||b(x2) it is

possible to generate a, b ∈ {0, 1}k within a reasonable time such that ga||b(x1) =
ga||b(x2) with equal probability over all functions in G which obey the restriction
of the same function value for x1 and x2. It is proved that HNY is a UOWHF
from the properties of f and G in [6]. We generalize and formalize the definition
of the collision accessibility to be suitable for our work as follows.

Definition 5 ((t, r)-Collision-Accessible). Let E be a family of functions.
E is (t, r)-collision-accessible if for given r distinct points (x1, y1), · · · , (xr, yr)
and a pair of inputs (x, x′) it is possible to generate e ∈ E within time t such
that e(x1) = y1, · · · , e(xr) = yr and e(x) = e(x′) with equal probability over all
functions in E which obey the restriction that e(x1) = y1, · · · , e(xr) = yr and
e(x) = e(x′).

From this definition we can claim the following.

Lemma 1. G is (t, 1)-collision-accessible, where t = O(k3).

Proof. It is sufficient to show that a and b are easily determined for a point (x1, y1)
and a collision (x, x′). For the collision (x, x′), the following equation should hold.

Chop(ax+ b) = Chop(ax′ + b).

By cancellation, the above equation is changed as follows.

Chop(a(x− x′)) = 0.

Since x �= x′, the above equation can be written like this:

a(x− x′) = 1.

So, a is uniquely determined as (x − x′)−1. Then, b is determined such that
Chop(ax1 +b) = y1 for the pair of query-answer (x1, y1). The time for generating
a and b is dominated by the time for the computation of (x−x′)−1, so t = O(k3).

��

Let F be a (t′, ε)-OWP. Now, we show that the order of HNY is 1.
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Theorem 6. HNY is a (t′′, ε′)-UOWHF(1) for t′′ = t′ − O(k3 + Tf) and ε′ =
2k

2k−1ε−
1

2k−1 where Tf is the worst-case time to compute f(·).

Proof. We assume that there is an adversary A = (A1, A2) which works in the
GameUOWHF(1)(Hny, A). An adversary B which works in the GameOWP(f,B)
can be built as like Fig. 1.

GameOWP(f, B)

10 : w
$←− {0, 1}k

20 : z ←− f(w)
30 : B(z) do
31 : A1(null) asks a query x1

32 : y1 ←− {0, 1}k−1

33 : A1({x1, y1}) −→ (x, State)
34 : if f(x) = z then x′ ←− x and output x′

35 : Choose K ∈ {0, 1}2k such that
gK(f(x1)) = y1 and gK(f(x)) = gK(z)

36 : A2(K, x, State) −→ x′

37 : output x′

40 : if x′ = w then output “B wins”
50 : else, output “B loses”

Fig. 1. GameOWP(f, B): B has an adversary A = (A1, A2) as a subroutine, which
works in GameUOWHF(1)(HNY, A).

The GameOWP(f,B) starts with giving z = f(w) to the adversary B where
w is selected uniformly at random from {0, 1}k. B on the input z runs the
adversary A and simulates the oracle of A1. For the query x1 of A1, B re-
turns the answer y1 which is selected uniformly at random from {0, 1}k. When
A1 outputs a target message x in Step 33, if f(x) = z then B stops simu-
lating GameUOWHF(1)(HNY, A) and outputs x. If f(x) �= z then B chooses
K = a||b ∈ {0, 1}2k. Since w and y1 were chosen randomly, it is guaranteed
that K is determined with uniform probability from lemma 1. A2 on the input
(K,x, State) outputs x′. Note that each HNY

K is a 2-1 function. If Step 36 is suc-
cessful, i.e hNY

K (x) = hNY
K (x′) but x �= x′, then f(x′) = z and so x′ = w. Hence,

the probability that B wins is as follows.

Pr[B wins] = Pr[f(x) = z] + Pr[A wins] · Pr[f(x) �= z]

= 2−k +
2k − 1

2k
· Pr[A wins].

The running time of B is that of A plus the overhead of Step 10, 20, 32, and 35.
The overhead is about O(k3 + Tf ). ��
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5 Construction of UOWHFs of Order r

We introduce a construction of a UOWHF of order r > 0 by generalizing HNY.
We consider a family of functions G = {gK}K∈K where K = {0, 1}(r+1)k. For
each ar �= 0 and ar−1, · · · , a0, x ∈ {0, 1}k, gar||···||a1||a0(x) is defined by

gar||···||a1||a0(x) = Chop(arx
r + · · ·+ a1x+ a0).

All the computations are in F2k .

Lemma 2. G is (t, r)-collision-accessible, where t = O(r3k3).

Proof. The proof is similar to that of lemma 1. Let (x1, y1), · · · , (xr, yr) be r
distinct points and a pair of inputs (x, x′). We choose r 1-bits b1, · · · , br uniformly
at random from {0, 1}. For the r points, we should find K = ar|| · · · ||a0 such
that the following equations hold.

arx
r
1 + · · ·+ a1x1 + a0 = y1||b1,

...
arx

r
r + · · ·+ a1xr + a0 = yr||br.

There exists an index i ∈ [0, r] such that every aj �= ai is represented by an
affine transform of ai. It means that the entropy of K = ar|| · · · ||a0 decreases
from 2(r+1)k to 2k. Then, the other constraint,

Chop(arx
r + · · ·+ a0) = Chop(arx

′r + · · ·+ a0)

can be re-written by ai as follows.

Chop(αai + β) = 0

where α and β are constants in F2k . Two cases can be considered for the above
equation. The former case is αai + β = 0, and the latter case is αai + β = 1.
ai can be determined in both cases within the running time O(r3k3) which is
dominated by the time for computing a matrix multiplication. ��

Let f : {0, 1}k −→ {0, 1}k be a (t′, ε)-UOWHF. Then, a family of functions
HNYr is constructed as {hNYr

K = gK ◦ f}K∈K. We show that the order of HNYr

is r.

Theorem 7. HNYr is a (t′′, ε′)-UOWHF(r) for t′′ = t′ − O(r3k3 + Tf ) and
ε′ = 2k(2r−1)

2k−1 ε− 2r−1
2k−1 where Tf is the worst-case time to compute f(·).

Proof. The proof is similar to Theorem 6. Assume that there exists an adversary
A which works in GameUOWHF(r)(HNYr , A). An adversary B which works in
GameOWP(f,B) can be built from A as like Fig. 2.

In Step 340, if f(x) = z for the target message x which A1 outputs then B
stops the simulation of GameUOWHF(r)(HNYr , A) and outputs x. If f(x) �= z
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GameOWP(f, B)

100 : w
$←− {0, 1}k

200 : z ←− f(w)
300 : B(z) do
310 : Q ←− ∅

320 : for i = 1, · · · , r do
321 : A1(Q) asks i-th query xi

322 : yi
$←− {0, 1}k−1

323 : Q ←− Q ∪ {(xi, yi)}
330 : A1(Q) −→ (x, State)
340 : if f(x) = z then x′ ←− x and output x′

350 : Choose K ∈ {0, 1}(r+1)k such that
gK(f(x1)) = y1, · · · , gK(f(xr)) = yr,
and gK(f(x)) = gK(z)

360 : A2(K, x, State) −→ x′

370 : output x′

400 : if x′ = w then output “B wins”
500 : else, output “B loses”

Fig. 2. GameOWP(f, B): B has an adversary A = (A1, A2) as a subroutine, which
works in GameUOWHF(r)(HNYr , A).

then B keeps the simulation and outputs what A2 produces. So, the probability
that B wins is as follows.

Pr[B wins] = Pr[f(x) = z] + Pr[A wins] · Pr[f(x′) = z|A wins] · Pr[f(x) �= z]

= 2−k + Pr[A wins] · Pr[f(x′) = z|A wins] · 2
k − 1
2k

.

Since GK is a composition of a polynomial with degree r and Chop, there exist
at most distinct 2r − 1 inputs of HNYr

K colliding with x. Since f(w) is a root of
the equation arX

r + · · ·a1X+a0 = GK(z) and w is chosen uniformly at random,
Pr[f(x′) = z|A wins] is greater than or equal to 1

2r−1 .
The running time of B is that of A plus the overhead, where the overhead is

O(k3 + Tf ). ��

6 Conclusions

In this paper, we showed the existence of UOWHFs of order r > 0 by studying
how to construct them. As the first step, we researched the orders of known
UOWHF constructions — Bellare-Rogaway and Naor-Yung constructions. It was
shown that the order of Bellare-Rogaway UOWHF is 0, and that the order Naor-
Yung UOWHF is 1. We constructed a UOWHF of order r > 0 by generalizing
Naor-Yung UOWHF. With this generalized construction, we give the answer ‘yes’
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for the question: does there exist a construction of UOWHFs of any order r > 0
?, which was asked in the beginning of the paper. This generalized construction
is not creative, but it is an interesting result which shows that for any proper
r > 0, UOWHFs of order r exists as long as one-way permutations do.

This result obviously contributes to optimal usage of known UOWHF ex-
tending methods. UOWHFs of order r > 0 can be extended to some-round MD
or some-level TR without additional key values, and such extensions can be used
as a new compression function. So, if we choose the optimal order r for a partic-
ular environment (e.g. the message length is fixed) and construct a UOWHF of
order r, then the total key length required for hashing messages can be almost
minimized. If someone find a more efficient method to construct a UOWHF of
order r > 0 whether its security is based on any other cryptographic primitives
or not, it will be a very interesting result.
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A Proof of Theorem 2

Proof. Assume that there is an adversary A = (A1, A2) which plays in the
GameUOWHF(r)(H ′, A). We use A to build an adversary B = (B1, B2) which
plays in the GameUOWHF(r)(H,B), depicted in Fig. 3.

GameUOWHF(r)(H, B)

100 : K
$←− K

200 : B1 sets QA and QB to be ∅

300 : for i = 1, ..., r do
310 : B1(QB) runs A1(QA) to get A1’s query xi||yi

where xi ∈ {0, 1}k and yi ∈ {0, 1}m
320 : B1(QB) asks a query xi||yi to hK(·)
330 : zi ←− hK(xi||yi)
340 : QB ←− QB ∪ {(xi||yi, zi)}, QA ←− QA ∪ {(xi||yi, 0||zi)}
400 : A1(QA) −→ (x||y, StateA), B1(QB) −→ (x||y, StateB)

where StateB = StateA

500 : B2(K, x||y, StateB) do
510 : If there is an index i such that xi = K,

then x′||y′ $←− {0, 1}k+m and output x′||y′

520 : A2(K, x||y, StateA) −→ x′||y′

530 : output x′||y′

600 : if x||y �= x′||y′ and hK(x||y) = hK(x′||y′) then output “B wins”
700 : else, output “B loses”

Fig. 3. GameUOWHF(r)(H, B): B has an adversary A = (A1, A2) as a subroutine,
which works in GameUOWHF(r)(H ′, A)

In the beginning of GameUOWHF(r)(H,B), B1 runs A1 to obtain its queries
for i = 1, ..., r. If A1 gives a query xi||yi then B1 send it to the hash
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function oracle hK(·). When B1 gets zi = hK(xi||yi), B1 returns 0||zi to
A1 as the answer for A1’s i-th query. B1’s target message is the same as
A1’s target message x||y. Since QA = {(x1||y1, 0||z1), · · · , (xr ||yr, 0||zr)} while
QB = {(x1||y1, z1), · · · , (xr||yr, zr)}, the adversary A supposes that every xi

is not equal to K. However, if there is an index i such that xi = K, then
B2(K,x||y, StateB) outputs a random value from {0, 1}k+m. Thus, in this
case, the probability that x′||y′ collides with x||y for hK is 2−k. Otherwise,
B2(K,x||y, StateB) outputs A2(K,x||y, StateA)’s result. Let E be the event that
there is an index i such that xi = K and Ē be the complementary event of E.
Then, the probability that B wins is like this:

Pr[B wins] = Pr[E] · 2−k + Pr[Ē] · Pr[A wins]. (2)

We are left with bounding Pr[E]. Let D1 be the event that all xi’s are same, and
let D2 be the event that all xi’s are distinct. Then, the probability that E occurs
is bounded as follows.

Pr[E|D1] ≤ Pr[E] ≤ Pr[E|D2]. (3)

It is easy to understand that Pr[E|D1] = 2−k and Pr[E|D2] = 1− r · 2−k. So, (2)
can be bounded below by 2−2k + r · 2−k · Pr[A wins].

The running time of B is at most that of A plus the overhead Θ(rTH). ��
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Abstract. In this paper we design several double length hash functions
and study their security properties in the random oracle model. We de-
sign a class of double length hash functions (and compression functions)
which includes some recent constructions [4, 6, 10]. We also propose a
secure double length hash function which is as efficient as the insecure
concatenated classical hash functions [7].

1 Introduction

An n-bit compression function or hash function is said to be “ideal” or “max-
imally secure” if the best collision attack requires Ω(2n/2) many queries which
is same as the complexity of the birthday attack. To increase the security level,
one can design 2n-bit compression functions and hash functions (also known
as double length compressions or hash functions respectively). Potentially one
can expect a security level of Ω(2n) for a 2n-bit hash function. But the trivial
concatenated hash functions H ‖ G is not secure where one of the H and G
is a classical hash function [7]. In this paper we design several double length
compression functions and double length hash functions based on single length
compression functions. More precisely we consider the following problem;

Problem : Given a secure compression function, f : {0, 1}n×{0, 1}m → {0, 1}n
(or s compression functions f1, · · · , fs : {0, 1}n × {0, 1}m → {0, 1}n), m >
0, design a secure compression function F : {0, 1}2n × {0, 1}N−2n → {0, 1}2n

and a hash function H : {0, 1}≤L → {0, 1}2n, where N > 2n and L is suffi-
ciently large.

Designing a double length hash function from a single length compression
or hash function is also important in the hardware point of view. As crypto-
hardware are expensive, the construction which allows an existing hardware
would be meaningful while we are looking for more security. There were several
attempts to construct a secure block cipher based double length compression
functions. Again, most of these have several collision and preimage attacks much
better than the birthday attack [5, 6, 8, 10, 17]. Recently, Lucks [4, 10] designed
a secure double length compression function. A similar designed is proposed by
Hirose [6] by using a secure block ciphers of the form E : {0, 1}n × {0, 1}2n →
{0, 1}n. But the efficiency of their design is fairly low. A more efficient double
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length compression function based on three independent random compression
functions has been proposed by Nandi et. al. [13]. But the security of the com-
pression function is not maximum. So it would be interesting to design both
maximally secure and efficient double length hash function.

1.1 Our Contribution

In this paper we design several new double length hash functions and compute
their security level and the rate (measurement of efficiency).

Our first design is a generalization of Lucks’s [10] and Hirose’s [6] construc-
tions. Given a permutations p(·) on the set of all N -bit strings and a compression
function f : {0, 1}N → {0, 1}n, define fp(X) = f(X) ‖ f(p(X)). We show that
the double length function fp is maximally secure provided the permutation p
does not have any fixed point.

Next, we study the security level for the double length hash function defined
by the classical iteration of a compression function fp defined as above. We show
that, along with secure compression functions there are many more compression
functions which extends to a secure double length hash functions. Thus, we
have a wide class of maximally secure double length hash functions. Lucks and
Hirose’s construction belong to this class.

Then we design a construction similar to the concatenated hash function.
We show the collision security (or preimage security) level of the double length
hash function Ω(2n/ini−1) (or Ω(22n/ini−1) respectively), where i is the num-
ber of iterations of underlying compression function to invoke a double length
compression function. It determines the efficiency of the hash function.

2 Preliminaries

In this section we briefly recall some preliminaries of hash functions. We first give
a brief introduction of classical hash functions. Then we explain random oracle
model and the behavior of adversary in the random oracle model. Next, we
explain Joux’s attack and its application to the collision attack on concatenated
hash function. Finally we state the recent constructions of double length hash
functions and we compare their efficiencies.

2.1 The Classical Iterated Hash Function

We briefly explain a simplified version of Merkle-Damg̊ard method [3, 11]. Let
f : {0, 1}n × {0, 1}m → {0, 1}n be an underlying compression function. Given
a message M ∈ {0, 1}≤L = ∪L

i=0{0, 1}i, where L = 2m − 1 and an initial value
h0 ∈ {0, 1}n we apply the following padding rule;

– padding rule: Choose smallest i ≥ 0 such that |M |+ i + 1 is multiple of m.
Let 〈|M |〉 be the m-bit binary representation of |M |. We write M ‖ 10i ‖
〈|M |〉 = m1 ‖ m2 · · · ‖ ml for some positive integer l and |mi| = m, 1 ≤ i ≤ l.
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Each mi is known as a message block of the underlying compression function.
We define the classical iterated hash function Hf (M), or simply H(M), by the
following method;

H(M) = hl, where hi = f(hi−1 ‖ mi), 1 ≤ i ≤ l.

the hi’s are known as intermediate hash values, i �= 0, l. For simplicity, we ignore
the padding rule.

We use the notation h →x h′ (a labeled arc) to mean f(h, x) = h′, where
|h| = |h′| = n and |x| = m. Thus, the computation of H(M) can be represented
by a labeled path from h0 to hl as follows;

h0 →m1 h1 →m2 h2 · · ·hl−1 →ml
hl or h0 ⇒M hl.

Thus, h0 ⇒M hl if and only if H(M) = hl.

2.2 The Random Oracle Model

Let FD→R be a set of all functions from D to R. A randomly chosen function
f from FD→R is known as a random function [2]. One can define a random
function in the following equivalent way and equivalence can be checked in a
straightforward way;

Definition 1. (Random Function)
A random function, f from D to R, takes values as random variables, such

that for any x ∈ D, f(x) has uniform distribution on R and for any k > 0 and
k distinct elements x1, · · ·xk ∈ D, the random variables f(x1), · · · , f(xk) are
independently distributed.

Proposition 1. Let f : D → R be a random function and {X1, Y1} �= {X2, Y2}
be two subsets of D. Then Pr [ f(X1) = f(Y1)] = 1/|R| and Pr [ f(X1) = f(Y1)
and f(X2) = f(Y2)] = 1/|R|2.

Proof. Since X1 �= Y1, f(X1) is uniformly distributed on R given f(Y1) and
hence Pr [ f(X1) = f(Y1)] = 1/|R|.

For the second part of the proposition, without loss of generality, let us
assume that X1 /∈ {X2, Y2}. Thus f(X1) is uniformly distributed on R given the
random variables f(Y1), f(X2) and f(Y2). Thus, the conditional probability Pr
[f(X1) = f(Y1) | f(Y1), f(X2), f(Y2)] is 1/|R| and hence so is unconditional. So
we have,

Pr [f(X1) = f(Y1) and f(X2) = f(Y2) ]
= Pr [f(X1) = f(Y1) | f(X2) = f(Y2) ] × Pr [ f(X2) = f(Y2) ]
= Pr [ f(X1) = f(Y1) ] × Pr [ f(X2) = f(Y2) ]
= 1/|R|2. ��

We call f1, · · · , fs independent random functions if fi’s are chosen indepen-
dently and randomly from the set FD→R. We state an equivalent definition of
independent random functions.



80 M. Nandi

Definition 2. (Independent Random Functions)
We say a family of random functions f1, · · · , fs : D → R are independent ran-
dom functions if for any s subsets {x1

1, · · · , x1
k1
}, · · · , {xs

1, · · · , xs
ks
}, the random

vectors (f1(x1
1), · · ·, f1(x1

k1
)), · · ·, (fs(xs

1), · · ·, fs(xs
ks

)) are independently dis-
tributed.

The Adversary in the Random Oracle Model : When a hash function
H(·) is designed based on a random compression function f , an attack algorithm
is an oracle algorithm, Af , with the oracle f . Thus, adversary can ask several
queries of f adaptively and based on the query-response pairs adversary finally
outputs a message or a pair of messages depending on the nature of the attack. It
can choose x1, · · ·xq adaptively and get responses y1, · · · , yq, where yi = f(xi).
We can think that yi as a realization of the random variable f(xi) which is
observed by the adversary. Define the complete list of query-response pairs Q =
((x1, y1), · · · , (xq, yq)) by view of the adversary. Any output produced by the
adversary should only depend on the view. Moreover, if the adversary is finding
collisions for a hash function, H(·), based on the compression function, f(·),
and it outputs a pair of distinct messages M �= N then the values of H(M) and
H(N) should be computed from the view. When we have two or more underlying
compression functions f1, f2, · · · ,we have a set of lists of pairs {Q1,Q2, · · ·} called
view of the adversary, where Qi is the view due to the random compression
function fi, i ≥ 1.We define the complexity of an attack algorithm by size of the
view to be required to have non negligible probability of success or advantage [1].
The minimum complexity of an attack algorithm is a measurement of security
of the hash function.

2.3 The Birth-Day Attack

A set {M1, · · · ,Mr} is said to be an r-way collision set of g : D → R, if g(M1) =
· · · = g(Mr). The above event is known as a multicollision.

BirthdayAttack(g, q, r) :

1. Choose x1, · · · , xq randomly from the domain D and compute yi = g(xi) for
1 ≤ i ≤ q.

2. Return a subset (if any) C ⊆ {x1, · · · , xq} of size r such that C is an r-
way multicollision subset for the function g. Otherwise return the output
“failure”.

The next proposition gives an estimate of the complexity of the birthday
attack in finding an r-way collision with significant probability. See [15, 16] for
a detail discussion.

Proposition 2. (Complexity of the Birthday Attack) [14]
For a random function g : D → {0, 1}n, the birthday attack with complexity
q finds an r-way collision with probability O(qr/2(r−1)n). Thus, the birthday
attack requires Ω(2n(r−1)/r) queries to find an r-way collision with significant
probability. For r = 2, the birthday attack requires O(2n/2) queries.
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2.4 Joux’s Multicollision Attack

In a recent paper by Joux [7], it was shown that there is a 2r-way collision at-
tack for the classical iterated hash function based on a compression function,
f : {0, 1}m+n → {0, 1}n, where the attack has complexity O(r 2n/2). This com-
plexity is much less than Ω(2

n(2r−1)
2r ), which is the complexity for the birthday

attack (see Proposition 2).
Here is the basic idea of the attack. Consider a set of vertices V = {0, 1}n.

We use the notation h →M h′ (a labeled arc) to mean f(h,M) = h′. Here,
|h| = |h′| = n and |M | = m. The strategy is to first find r successive collisions
(see Figure 1) by performing r successive birthday attacks, as follows:

f(h0,m1) = f(h0, n1) = h1 (say), where m1 �= n1
f(h1,m2) = f(h1, n2) = h2 (say), where m2 �= n2

...
f(hr−1,mr) = f(hr−1, nr) = hr (say), where mr �= nr.

For 1 ≤ i ≤ r, we apply BirthdayAttack(f(hi−1, ·), 2n/2, 2) to find mi �= ni

such that f(hi−1,mi) = f(hi−1, ni). Thus the set

{x1 ‖ · · · ‖ xr : xi = mi or ni, 1 ≤ i ≤ r}

is a 2r-way collision set. The complexity of the attack is O(r 2n/2). Figure 1 is a
diagram illustrating the attack.

.  .  .
h0 h1 h2 hr

m1

n1 nrn2

mrm2

Fig. 1. Graphical representation of Joux’s multicollision attack

Applications of Multicollision Attacks : A natural and efficient approach
to produce large output hash values is the concatenation of several smaller output
hash values. For example, given two classical iterated hash functions, H and G,
one can define a hash function H(M) ‖ G(M). This idea has been frequently
used because it is efficient and simple to implement. However, due to the attacks
of Joux [7], there exists a collision attack that is more efficient than the birthday
attack. The complexity of the attack is roughly the maximum of the complexity
of the multicollision birthday attack on H and the complexity of the standard
birthday attack on G.

We briefly describe the attack (see [7] for more details). Let H and G have
output hash values of nH and nG bits in length, respectively.

1. By using Joux’s multicollision attack, find 2nG/2 messages which have com-
mon output hash value (say h∗) on H .
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2. Find two messages, say M and N where M �= N , which are members of the
set of 2nG/2 messages found in step 1, such that they have same output hash
value (say g∗) on G. Note that we expect to be able to find a collision on an
nG-bit function from a set of 2nG/2 messages using the standard birthday
attack.

Thus, we have H(M) ‖ G(M) = H(N) ‖ G(N) = h∗ ‖ g∗. The overall
complexity of this attack is O(nG 2nH/2 +2nG/2). Note that we only assume that
H is a classical iterated hash function; G can be any hash function at all.

2.5 Rate Function (Efficiency Measurement) of Known Designs

We have underlying compression functions f1, f2, · · · fk : {0, 1}n × {0, 1}m →
{0, 1}n. We design a double length compression function, F : {0, 1}N → {0, 1}2n,
based on f1, f2, · · · fk. We define a measurement of the efficiency of the com-
pression function, F (·), called the rate function of F . Roughly, it measures the
number of message blocks that are hashed per underlying compression function.

Definition 3. (Rate Function)
Let a double length compression function, F , be based on f1, · · · , fk. Define the
rate function of F by N−2n

m×s , where s is the number of invocations of all fi’s are
required to compute F (X), X ∈ {0, 1}N .

Since F is a compression function, N > 2n. Thus, the rate function is always
positive. When the rate function is constant, we only use the term rate instead
of rate function. We define rate of the classical iterated hash function by the
rate of the underlying compression function.

Example 1. The underlying double length compression function of the concate-
nated hash function Hf1 ‖ Hf2 is F (H1, H2,M) = f1(H1,M) ‖ f2(H2,M),
where |H1| = |H2| = n and |M | = m. The rate function of F is 1/2.

Example 2. (Nandi et. al. [13]) Let fi : {0, 1}2n → {0, 1}n be three under-
lying compression functions, 1 ≤ i ≤ 3. Define, F : {0, 1}3n → {0, 1}2n, where
F (x, y, z) = (f1(x, y) ⊕ f2(y, z)) ‖ (f2(y, z) ⊕ f3(z, x)) with |x| = |y| = |z| = n.
The rate of this compression function is 1/3. The best collision attack on F
requires Ω(22n/3) many queries of fi’s in the random oracle model [13].

Example 3. (Lucks [10]) Let f : {0, 1}n+m → {0, 1}n be an underlying com-
pression function, m > n. Define F (H1, H2,M) = f(H1, H2,M) ‖ f(H2, H1,M),
|H1| = |H2| = n and |M | = m−n. The rate function of the compression function
is n+m−2n

2m = 1
2 −

n
2m . When m = 2n, the rate of the compression function is 1

4 .
The compression function is not secure. But we show later (also see [10]) that
the classical hash function based on it is maximally secure in the random oracle
model.
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3 A Class of Double Length Compression Functions

Fix a compression function, f : {0, 1}n+m → {0, 1}n, and define a class of double
length compression functions

C = {fp = f(·) ‖ f(p(·)) : p is a “simple” permutation on {0, 1}n+m}.

By a simple permutation we mean both the permutations, p and p−1, are easy to
compute. One can also consider a compression function fp1,p2(X) = f(p1(X)) ‖
f(p2(X)) where |X | = n + m for two simple permutations p1 and p2. Since p1
and p2 are simple, it is sufficient to study the security properties of fp where
p = p2 ◦p−1

1 . All these compression function have rate 1
2 −

n
2m (as in Example 3).

3.1 Security Analysis of the Compression Functions from C
In this section, we study the security properties of the compression functions
from the class, C, in the random oracle model of f . Let us first consider the
Example 3. In this example, F = fp, where p(H1, H2,M) = H2 ‖ H1 ‖ M ,
|H1| = |H2| = n and |M | = m− n. By using the birthday attack, find H,G and
M1,M2, such that (H,M1) �= (G,M2) and f(H,H,M1) = f(G,G,M2). Now,
it is easy to check that fp(H,H,M1) = fp(G,G,M2). Here, we need O(2n/2)
many queries.

The reason for having the above attacks is that the permutation p has many
“fixed points”. X is called a fixed point of a function p(·), if p(X) = X . We
write Fp for the set of all fixed points of p. In the above example, Fp = {H ‖
H ‖ M : |H | = n, |M | = m − n} is the set of fixed points of the permutation
p and |Fp| > 2n. Thus, one can apply birthday attack to find a collision (or a
preimage) on the compression function f from the fixed point set. Similar attack
can be done for any compression function based on a permutation with more
that 2n many fixed points. In the light of the above discussion, one should use a
permutation, p, which does not have many fixed points. In fact, there are many
permutations where the set of fixed points are the empty set. We give two classes
of examples of that kind, in below.

Example 4. For A ∈ {0, 1}N \ {0}, define a permutation p : {0, 1}N → {0, 1}N
such that p(X) = X ⊕A. It is easy to check that Fp is empty.

Example 5. We can map any N -bit string to an integer modulo 2N . We use
“ + ” to denote addition modulo 2N . Let p(X) = X + A where A �= 0. Note
that, p(X) �= X for all X . Moreover, if A �= 2N−1 then the fixed point of
p(p(X)) = X + 2A (in notation, p2) is also empty.

Suppose, fp is a double length compression function based on a permutation,
p, where Fp is the empty set. Then a collision, fp(X) = fp(Y ) with X �= Y
implies f(X) = f(Y ) and f(p(X)) = f(p(Y )). Thus, {X,Y } and {p(X), p(Y )}
are collision sets of f . Now, we have the following two cases.
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– Case-1 : Two collision sets are identical {X,Y } = {p(X), p(Y )}. Since p
does not have any fixed point, we have Y = p(X) and X = p(Y ). Thus, we
should have a collision set {X, p(X)}, where p(X) �= X and p(p(X)) = X .
Let Ω(K1(n)) (or in short K1) be the complexity of the best attack to find
a collision set of the form {X, p(X)}.

– Case-2 : {X,Y } �= {p(X), p(Y )}. Let Ω(K2(n)) (or in short K2) be the
complexity of the best attack to find two distinct collision sets of the form
{X,Y } and {p(X), p(Y )}.

Thus a collision on fp reduces to the one of the above two events and hence
the complexity of best collision attack is min{K1,K2}. If p2 does not have any
fixed point then we can exclude the first case also and the complexity of the best
collision attack is K2(n). We summarize the above discussion as follows;

Proposition 3. The complexity of the best collision attack on fp is min
{Ω(K1(n)), Ω(K2(n))} where p is a permutation with no fixed point and K1
and K2 are defined as above. Moreover, if the permutation p2 does not have
any fixed point (like in the Example 5) then the best collision attack on fp is
Ω(K2(n)).

Now we give some evidences why K1 and K2 would be large for a good compres-
sion function f . Suppose an adversary tries to find two collision sets {X,Y } �=
{p(X), p(Y )}. After finding a collision set {X,Y }, he does not have any free-
dom to choose for the second collision set and he is forced to check whether
{p(X), p(Y )} is a collision set or not. Thus K2 would be large and may be close
to 2n for a good underlying compression function.

Next, an adversary tries to find a collision set {X, p(X)}. For each message
X , p(X) is completely determined (also vice-versa) and hence the adversary has
to check equality of two values, f(X) and f(p(X)), instead of comparing several
values like in the birthday attack. Thus we expect K1 to be large. In the random
oracle model of f , we can prove that, K1(n) = K2(n) = 2n. We first introduce
a new notion called computable message.

Definition 4. (Computable Message)
Let the double length compression function, F , be based on the compression func-
tions, f1, · · · , fk. Let Qj = {(xj

1, y
j
1), · · · , (xqj , yqj )} be the view of fj, 1 ≤ j ≤ k

and let Q = (Q1, · · · ,Qk). We say, an input X is computable message of F with
respect to the view Q, if the value of F (X) can be determined from Q.

For example, when F = fp, an input X is computable message of F with respect
to {(x1, y1), · · · , (xq, yq)}, view of f , if X = xi and p(X) = xj for some i, j ∈
[1, q]. Thus, fp(X) = f(xi) ‖ f(xj) = yi ‖ yj , which can be computed from Q.

Theorem 1. Under the assumption of the random oracle model of f , K1(n) =
K2(n) = 2n. Thus, for any permutation p where Fp is the empty set, any attack
algorithm finding collisions requires Ω(2n) many queries of f in the random
oracle model of f .
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Proof. If an adversary can ask at most q many queries then he can have at
most q many computable messages and hence at most

(
q
2

)
2-sets {X,Y }. Hence

the probability that the adversary finds X �= Y with {X,Y } �= {p(X), p(Y )}
such that f(X) = f(Y ) and f(p(X)) = f(p(Y )) is at most

(
q
2

)
/22n (by using

Proposition 1). Thus, to have a significant success probability, q should be Ω(2n).
Similarly, from a set of q queries one can get O(q) many pairs of the form

(X, p(X)), where X and p(X) both are computable. For fixed X , Pr [f(X) =
f(p(X))] = 1/2n provided p(X) �= X (see Proposition 1). Thus success probabil-
ity is at most q/2n and hence q = Ω(2n) for significant success probability. ��

Remark 1. Let p be a permutation where |Fp| << 2n/2 such that there are no
two elements X �= Y ∈ Fp with f(X) = f(Y ). We can prove Theorem 1 if the
permutation p satisfies the above condition instead of the condition given in the
Theorem.

4 A Class of Double Length Hash Functions

Now we study the double length hash functions defined by the classical iteration
of the compression functions fp stated in Sect. 3.

Definition 5. Let p be a permutation on the set of (n+m)-bits strings, m ≥ n.
Define Fp[2n] = {Z ∈ {0, 1}2n : ∃ M ∈ {0, 1}m−n such that Z ‖M ∈ Fp }. It is
a projection of Fp onto the the first 2n-bits of it. We say the permutation, p(·),
is good if |Fp[2n]| = O(2n). In particular, when p does not have any fixed point
it is also a good permutation.

Nowwedefine the following attack. FindM andH /∈ Fp[2n], such that fp(H,M) ∈
Fp[2n], where |M | = m − n and |H | = 2n. Let the complexity of the best attack
be Ω(K3(n)) (or in short K3).

Proposition 4. The classical hash function, Hfp

, based on a good permutation
and an initial value H0 /∈ Fp[2n] has collision security min{K1,K2,K3}.

Proof. Let (M,M ′) be a collision pair of Hfp

and H0 /∈ Fp[2n]. We denote
Hi and Gi for internal hash values while computing the final hash value for
messages M = M1 ‖ M2 · · · and M ′ = M ′

1 ‖ M ′
2 · · · respectively. One of the

following holds:

1. There is an i such that Hi /∈ Fp[2n] but fp(Hi ‖Mi+1) ∈ Fp[2n] or there is
a j such that Gj /∈ Fp[2n] but fp(Gj ‖ M ′

j+1) ∈ Fp[2n]. To achieve this we
need Ω(K3) many queries.

2. There are Hi, Gj /∈ Fp[2n] such that X = (Hi,Mi+1) �= (Gj ,M
′) = Y

and fp(X) = fp(Y ). Since Hi, Gj /∈ Fp[2n], p(X) �= X and p(Y ) �= Y .
Thus either {X,Y } �= {p(X), p(Y )} are collision two sets or {X, p(X)} is
a collision set for the compression function f . To achieve this adversary
requires min{K1,K2} many queries of f .

Combining both the adversary needs min{K1,K2,K3} queries. ��
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Theorem 2. For a good permutation p and random compression function f ,
K3(n) = 2n and hence Hfp

is maximally secure against collision attack.

Proof. We have already seen that after q many queries the adversary can have at
most q many computable messages for fp. Given a computable message H ‖M
with H /∈ Fp[2n], we have p(H ‖ M) �= H ‖ M and hence fp(H ‖ M) is uni-
formly distributed over the set {0, 1}2n. But |Fp[2n]| < 2n since the permutation
p(·) is good. Thus we have, Pr [fp(H ‖ M) ∈ Fp[2n]]≤ 1/2n. Since we have at
most q computable message the success probability of the adversary is less than
q/2n. This proves the fact that K3(n) = 2n under the random oracle model
of f(·). By Theorem 1 and Proposition 4, Hfp

is maximally secure under the
random oracle model of f . ��

5 An Efficient Double Length Hash Function

Let the compression function be f : {0, 1}n × {0, 1}n → {0, 1}n. For i > 1,
define f (i) : {0, 1}(i+1)n → {0, 1}n by using the classical iteration. Thus, for
x0 ‖ · · · ‖ xi with |xj | = n, 0 ≤ j ≤ i and h0 = x0,

f (i)(x0 ‖ · · · ‖ xi) = hi, where hj = f(hj−1, xj), 1 ≤ j ≤ i.

We call f (i) is the i-iterated compression function. Now we can observe that
the multicollision on this compression function is not as easy as the classical hash
function, since we restrict the number of message blocks. Any ri-way collision on
f (i) reduces to at least r-way collision on the underlying compression function
f (by using pigeon-hole principle). Thus, if we assume that (r+ 1)-way collision
on f is infeasible then we can have at most ri-way collision on f (i). Recall that,
in the random oracle model of f , r-way collision requires Ω(2n(r−1)/r) queries.
Now we summarize this by the following lemma.

Lemma 1. (ri +1)-way collision on f (i) reduces to at least (r+1)-way collision
on f . In particular, when f is a random function, the complexity of (ri + 1)-
way collision attack on f (i) is Ω(2nr/(r+1)) and the complexity of (ni + 1)-way
collision attack on f (i) is Ω(2n).

Like the concatenation of two independent hash functions we can define the
concatenation of two independent i-iterated compression functions. Thus, given
two independent compression functions, f1 and f2, we can define a double length
compression function, Fi(X) = f

(i)
1 (X) ‖ f (i)

2 (X), |X | = n(i+ 1). Obviously, in
this construction, we need to assume i ≥ 2. Otherwise, for i = 1, it does not
compress the input. Now we can study the security property of this concatenated
compression function in the random oracle model.

Lemma 2. If f is a random function then for any two distinct (i + 1)-block
inputs X and Y , Pr [f (i)(X) = f (i)(Y )] ≤ i/2n. If f1 and f2 are two independent
random functions then Pr [Fi(X) = Fi(Y )] = i2/22n.
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Proof. Let j be the round number where collision of f occurs. Call this event by
Cj . Thus, f (i)(X) = f (i)(Y ) implies ∪i

j=1Cj . Now, Pr [Cj ] = Pr [f(Xj) = f(Yj)
and Xj �= Yj ] = 1/2n, Xj and Yj denote the input of f at jth invocation for
messages X and Y respectively. Thus, Pr [∪i

j=1Cj ] ≤ i/2n.

Pr [Fi(X) = Fi(Y )] = Pr [f (i)
1 (X) = f

(i)
1 (Y ), f (i)

2 (X) = f
(i)
2 (Y )]

= Pr [f (i)
1 (X) = f

(i)
1 (Y )] × Pr [f (i)

2 (X) = f
(i)
2 (Y )]

≤ i2/22n.
The second equality follows from the fact that f1 and f2 are independent

random functions and the last inequality is immediate from the first half of the
Lemma. ��

Thus to find the collision probability for any adversary we need to compute the
number of pairs (X,Y ) it can get from any possible set of queries. Note that
the adversary should compute the F -values of both X and Y . Now we state
the computable message which means the message whose hash value can be
computed from the set of queries the adversary made. We fix i ≥ 2.

Definition 6. (Computable message) Let Qj be the set of query response
tuples for the random function fj, j = 1, 2. X is said to be a computable message
for f (i)

j (also for Fi) with respect to Qj if the value of f (i)
j (X) ( or Fi(X)) can

be computed from Qj (or Q1 ∪ Q2 respectively).

More precisely, if X = x0 ‖ · · · ‖ xi then X is computable for f (i)
1 with respect

to Q1 if (x0 ‖ x1, h1), (h1 ‖ x2, h2),· · ·,(hi−1 ‖ xi, hi) ∈ Q1. Thus the f (i)
1 -value

of X is hi. Similarly one can define computable messages for f (i)
2 . A message X

is computable with respect to Q1 ∪ Q2 for the compression function Fi, if X is
computable for both f (i) with respect to Qj , j = 1, 2.

Let q be the number of queries. We assume that q = o(2n). Thus there is no
n-way collision on both f1 and f2. Note that, the complexity of n-way collision
on a random function is Ω(2n(n−1)/n) = Ω(2n). Thus we can have at most ni−1-
way collision on f

(i−1)
1 or f (i−1)

2 . The number of computable messages for Fi is
at most qni−1. Thus, the total number of pairs of the form (X,Y ) where X �= Y
are (i+ 1)-block inputs and both X and Y are computable messages is at most
q2n2(i−1)/2. Thus, the probability that we have a collision among these pairs
is bounded by i2q2n2(i−1)/22n+1. To have non-negligible probability we need
q = Ω(2n/ini−1). Thus we have the following theorem :

Theorem 3. If f1 and f2 are two independent random functions then the com-
plexity for finding a collision on Fi requires Ω(2n/(ini−1)) queries.

Efficiency of the compression function. The rate function of the compres-
sion function, Fi, is ((i+1)n−2n)/2ni= 1

2−
1
2i . Thus, the rate of the compression

function is close to 1/2 provided i is large. So we have a trade-off between the
security level and the efficiency.

For s ≥ 2, define a double length hash function H : ({0, 1}n)∗ → {0, 1}2n.
We can define the hash function on arbitrary domain by applying some standard
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padding rule. Let M = m1 ‖ · · · ‖ ml be l-block message, |mi| = n for each i. Let
l = (s−1)b+r, where 0 ≤ r < s−1. Thus, we divide the message M = M1 ‖ · · · ‖
Mb ‖Mb+1, where |Mi| = (s−1)n, 1 ≤ i ≤ b and |Mb+1| = rn. In case of r = 0 we
do not have any message block Mb+1. Let H0 be an initial two block message that
is |H0| = 2n. Now define the hash function H(H0,M) = F

(b)
s (M1 ‖ · · · ‖ Mb+1)

if r = 0, otherwise H(H0,M) = Fr(F
(b)
s (M1 ‖ · · · ‖Mb+1) ‖Mb+1).

Thus, the hash function is the classical iterated hash function using two
underlying compression functions Fs and Fr+1. Thus any collision on H reduces
to a collision on one of the compression functions. Thus we have the following
theorem;

Theorem 4. For any s ≥ 2, collision on H(s) requires Ω(2n/s2ns−1) comp-
lexity.

6 (2nd) Preimage Security Analysis

Similar to the previous section we can study the (2nd) preimage security. Recall
that we say a message X is computable from the set of queries Q if f (i)(X)
can be computed from the set Q. We have already observed that if q is the
maximum number of queries and at most r-way collision is possible then we can
have qri−1 computable messages. Now given M , Fi(M) is a 2n-bit random string.
We also have observed that Pr [F (M) = F (N)] = i2/22n, where M �= N . So,
if q = o(2n) then the number of computable messages for N is at most ni−1q.
Thus, there will be a computable message N �= M such that Fi(M) = Fi(N)
is bounded by qni−1/i222n. Thus complexity for any attack algorithm of 2nd
preimage attack is Ω(22n/i2ni−1).

Note that, in preimage or collision attack on Fi, we do not count the complex-
ity for multicollision attack. In fact, it is likely that if the number of computable
messages is qri−1 then the number of queries is at least q2n(r−1)/r. Thus one can
try to prove the following statement in the random oracle model;

The complexity of the best collision (or preimage) attack on the above double
length compression function Fi is Ω(2n/i) (or Ω(22n/i) respectively).

7 Conclusion

We have studied several new double length compression functions. We first in-
troduced a class of double length compression function which contains recently
known constructions [6, 10]. We studied their security levels in the random oracle
model. We also designed a double length compression function Fi of rate close to
1/2 (the rate of concatenated hash function). The design is very much similar to
the concatenated hash functions. It has almost maximal security level. In fact,
we believe that the complexity of the best collision attack on the above double
length compression function Fi is Ω(2n/i). It would be interesting to prove our
belief. A possible future research would be to design efficient as well as secure
double length hash functions.
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Abstract. Combination of modular addition (+) and exclusive-or (⊕)
is one of the widely used symmetric cipher components. The paper in-
vestigates the strength of modular addition against differential crypt-
analysis (DC) where the differences of inputs and outputs are expressed
as XOR. In particular, we solve two very frequently used equations (1)
(x + y) ⊕ (x + (y ⊕ β)) = γ and (2) (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ,
known as the differential equations of addition (DEA), with a set of batch
queries. In a companion paper, presented at ACISP’05, we improved the
algorithm by Muller (at FSE’04) to design optimal algorithms to solve
the equations with adaptive queries. However, a nontrivial solution with
batch queries has remained open. The major contributions of this paper
are (i) determination of lower bounds on the required number of batch
queries to solve the equations and (ii) design of two algorithms which
solve them with queries close to optimal. Our algorithms require 2n−2

and 6 queries to solve (1) and (2) where the lower bounds are 3
4 ·2n−2 (the-

oretically proved) and 4 (based on extensive experiments) respectively (n
is the bit-length of x, y, α, β, γ). This exponential lower bound is an im-
portant theoretical benchmark which certifies (1) as strong against DC.
On the other hand, the constant number of batch queries to solve (2)
discovers a major weakness of modular addition against DC.

Muller, at FSE’04, showed a key recovery attack on the Helix stream
cipher (presented at FSE’03) with 212 adaptive chosen plaintexts (ACP).
At ACISP 2005, we improved the data complexity of the attack to 210.41.
However, the complexity of the attack with chosen plaintexts (CP) was
unknown. Using our results we recover the secret key of the Helix cipher
with only 235.64 chosen plaintexts (CP) which has so far been the only
CP attack on this cipher (under the same assumption as that of Muller’s
attack). Considering the abundant use of this component, the results
seem useful to evaluate the security of many block ciphers against DC.
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1 Introduction

Addition and XOR. Mixing two different group operations is a common tech-
nique adopted by the designers of symmetric ciphers to make cryptanalysis dif-
ficult. The main reason behind the wide use of mixing modular addition (or
simply addition) with XOR is their high speed on modern machines and their
non-linearity over GF(2). Helix [6], IDEA [9], Mars [3], RC6 [14], Twofish [15]
and the MD-family of hash functions are a few applications of addition and
XOR. Plenty of research has also been spent on analyzing behaviors of addition,
XOR and their mixing. Staffelbach and Meier worked on determination of the
probability distribution of the carry for integer addition [16]. Wallén investigated
the linear approximations of modular addition [18]. Lipmaa et al. dealt with the
equation (x+ y)⊕ ((x⊕ α) + (y⊕ β)) = γ and its dual to investigate the differ-
ential properties [10, 11]. Paul and Preneel showed that the satisfiability of an
arbitrary set differential equations of addition is in the complexity class P and
designed algorithms to solve them efficiently [13].

Batch and Adaptive Queries. Cryptologic analogue of a query is a plaintext
(or a ciphertext depending on the mode of attack). Similarly, attacks based
on batch and adaptive queries are equivalent to chosen plaintext (CP) attack
and adaptive chosen plaintext (ACP) attack respectively. A CP attack is more
practical than the corresponding ACP attack because, in the latter case, we
assume the attacker to be powerful enough to submit queries adaptively, i.e.,
the next query is computed based on the answers to the previous queries. In
other words, an ACP attack requires two computing oracles while a CP attack
needs only one. There is a large number of research papers launching CP and
ACP attacks on many practical ciphers. For example, the boomerang attack
introduced by Wagner is an ACP attack [17] and, therefore, less practical. The
slide attacks by Biryukov and Wagner can be implemented using both CP and
ACP but with different amount of data and time [5]. The time-memory trade-off
attack by Hellman [7] and the differential attack on DES by Biham and Shamir
[4] are CP attacks; so they are attributed more practical importance. In this
paper we will deal with a very frequently encountered set of equations in secret
key cryptography, known as differential equations of addition (explained in the
next paragraph), to solve them with a set of batch queries (equivalent to a CP
attack).

Summary of the Results. Addition mod 2n is extensively used as a block
cipher component. Differential Cryptanalysis (DC) is one of the most powerful
attacks against block ciphers [4]. In this paper we investigate the security of
addition under DC. In particular, we deal with the following two equations where
differences of inputs and outputs of addition are expressed as exclusive-or

(x+ y)⊕ (x+ (y ⊕ β)) = γ , (1)
(x+ y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ . (2)
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These equations are known as differential equations of addition (DEA). In
course of cryptanalysis of MD5 in 1992, Berson observed the hardness to analyze
modular addition for large n when differences are expressed as XOR [2]. The ap-
parent difficulty to analyze combination of addition and XOR seems to justify
its widespread application in symmetric cryptography. The solution to the above
equations with adaptive queries (an (α, β) is a query) was first given in [12]. In
the companion paper [13], we provided optimal algorithms which required (n−1)
and 3 adaptive queries in the worst case to solve (1) and (2) respectively. How-
ever, a nontrivial solution with a set of batch queries has remained elusive (the
problem is elaborated in Section 3). As argued before, solution with adaptive
queries is less practical because of the assumption of more powerful adversary
which uses two oracles. This paper solves the equations with batch queries where
only one oracle is needed. Our algorithm solves (1) with 2n−2 queries where a
lower bound on the number of queries is 3

4 · 2n−2 (for all n > 3), i.e., the lower
bound is optimal up to a constant factor of 4

3 . This exponential lower bound con-
stitutes an important theoretical reference point which endorses the equations’s
strong resistance against DC. On the other hand, (2) has been solved with only
6 (for all n > 2) queries which is two more than a conjectured lower bound (note
that the total number of queries is 22n) – this fact shows a major cryptographic
weakness of addition under DC and therefore, this component should be used
with caution. In practical cryptanalysis, using these results we are successful to
recover the secret key of a recently proposed stream cipher Helix [6], which was a
candidate for consideration in the 802.11i standard, with 235.64 chosen plaintexts
which has so far been the only CP attack on this cipher (the earlier attacks were
ACP attacks with data complexities 212 and 210.41 [12, 13]). In view of plenty of
applications of addition and XOR, our analyses seem suitable to evaluate cryp-
tographic strength of many ciphers. In addition, solutions to the above equations
emerge as typical tasks in many branches of mathematics and computers science
such as combinatorics, Boolean algebra, computational complexity. For example,
the results may be useful to solve equations involving modular multiplication and
T -functions [8]. Last but not the least, the technique used to derive all the results
of this article, is purely combinatorial and easier than the traditional algebraic
methods that use Gröbner bases to solve multivariate polynomial equations [1].

2 Notation

The ith bit of an n-bit integer l is denoted by li (l0 denotes the least significant
bit or the 0th bit of l). The operation addition modulo 2n over Z2n can be
viewed as a binary operation over Zn

2 (we denote this operation by ‘+’) using
the bijection that maps (ln−1, · · · , l0) ∈ Zn

2 to ln−12n−1 + · · · + l020 ∈ Z2n .
The symbols ‘⊕’ and ‘∧’ denote the operations bit-wise exclusive-or and bit-wise
and of two n-bit integers respectively. We will denote a ∧ b by ab. Throughout
the paper, [p, q] denotes a set containing all integers between the integers p and
q including both of them. Unless otherwise stated, n denotes a positive integer.
The size of a set S is denoted by |S|.
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3 The Problem: Solving DEA with Batch Queries

In Sect. 1, we have already provided the motivation for solving the following two
differential equations of addition (DEA) over Zn

2 ,

(x+ y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ, (3)
(x+ y)⊕ (x+ (y ⊕ β)) = γ , (4)

where x, y are the only fixed unknown variables. The bit-length of each of
x, y,α,β, γ is n. In the present context, solving (3) should be understood to
be solving the set of all 22n equations generated by ranging (α, β) with the cor-
responding γ for a fixed unknown (x, y) (for (4) the number of all equations is
2n). Such an (α, β) is known as a query. As pointed out in [13] also, the num-
ber of solutions satisfying all 22n equations is no more than that of any subset
of the equations and therefore, solving these 22n equations reduces the search
space of the secret (x, y) to the minimum. The most captivating question that
follows immediately is that whether it is possible to solve a subset of the 22n

equations and obtain the same solution as that of the entire 22n equations. In
cryptographic applications, minimizing the number of equations to solve DEA’s
can be translated into reduction of the data complexities of many attacks [12],
[13]. Next, we formalize the problem for easy understanding of many results.
In the companion paper [13], we built an adversarial model that worked with
adaptive queries. In the subsequent sections, we adapt the previous formalism
to an attack model which uses batch queries.

3.1 The Power of the Adversary

The power of the adversary is described below.

1. The adversary has unrestricted computational power and an infinite amount
of memory.

2. The adversary submits a set of queries {(α, β)} in a batch, to an honest
oracle1 which computes the γ’s using the fixed unknown (x, y) in (3) and
returns them to the adversary. The fixed (x, y) is defined to be the seed of
the oracle.

An oracle with seed (x, y) is viewed as a mapping Oxy : Zn
2 × Zn

2 → Zn
2 and

defined by

Oxy = {(α, β, γ) | (α, β) ∈ Zn
2 × Zn

2 , γ = (x+ y)⊕ ((x ⊕ α) + (y ⊕ β))} . (5)

The above adversarial model for (3), can be tailored for (4) by setting (α, β) ∈
{0}n × Zn

2 and the mapping Oxy : {0}n × Zn
2 → Zn

2 .
The model is suitable for a chosen message attack where the adversary sub-

mits queries to an oracle in batch and based on the replies she computes unknown
values.
1 An honest oracle correctly determines γ.
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3.2 The Useful Set D̃ and the Solution Set D̃-Consistent

Oxy, defined in (5), generates a family of mappingsF = {Oxy | (x, y) ∈ Zn
2×Zn

2}.
If D ∈ F then D is called a character set. Note that |D| = 22n and therefore, a
character set uniquely represents a set of 22n equations if we deal with (3). The
aim of the adversary is to find all (x, y)’s satisfying these 22n equations from
a subset of the character set D. The set of all such satisfiable (x, y)’s is called
D-satisfiable. If we work with (4) then |D| = 2n.

Equivalent Task. Applying the following transformation on a character set D
we compute D̃,

D̃ = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ D} .

We call D̃ a useful set. Note |D̃| = 22n if (3) is considered. An element (α, β, γ̃) ∈
D̃ corresponds to the following equation

(x+ y)⊕ ((x ⊕ α) + (y ⊕ β)) ⊕ α⊕ β = γ̃.

Let D̃-consistent denote the set of all (x, y)’s satisfying all 22n equations corre-
sponding to D̃. It can be shown that

D-satisfiable = D̃-consistent.

Therefore, the task is equivalent to determination of D̃-consistent from a subset
of the useful set D̃. Note that there is a bijection between D and D̃. If we deal
with (4) then |D̃| = 2n.

Equivalent Oracle Output. The oracle output γ on query (α, β) will be
adjusted to γ̃ = α⊕ β ⊕ γ for easy understanding of many deductions.

Rules of the Game. Below, we describe the rules followed by the adversary who
determines the set D̃-consistent. The essence of the whole problem is brought
out in the following points.

1. The adversary starts with no information about x and y except their bit-
length n.

2. The adversary submits a set of queries (α, β)’s in a batch, irrespective of the
seed (x, y). The oracle returns to the adversary the set of γ̃’s corresponding
to the queries and the chosen (x, y).

3. The adversary fails if, with the submitted queries, she is unable to compute
D̃-consistent for some (x, y) ∈ Zn

2 × Zn
2 .

We search for an algorithm that determines D̃-consistent, for all (x, y) ∈ Zn
2 ×

Zn
2 , with the same set of submitted queries. Furthermore, there is an additional

challenge to reduce the number of required queries as much close as possible to
the minimum.
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4 Previous Work: The Number of Solutions

Before embarking on designing algorithms to solve the equations, we first estab-
lish the number of all solutions for different seeds (x, y)’s, i.e., the size of D̃-
consistent (see Sect. 3.2 for the definition). We follow a series of steps (Sect. 4.1
and 4.2) leading up to the formulation of D̃-consistent in Sect. 4.3. We shall
heavily use the results of this section to obtain two important contributions of
the paper: (i) lower bounds on the number of queries (described in Sect. 5) and
(ii) the proofs of correctness of our algorithms which computes D̃-consistent (ex-
plained in Sect. 6). Due to lack of space the results of this section are provided
without proofs and examples. See the companion paper [13] for them.

4.1 Step 1: Relation Among Input Bits

Let A ⊆ D̃ where D̃ is a useful set. Take an arbitrary element (α, β, γ̃) ∈ A
(n > 1). Observe that γ̃i+1 can be computed using only the preceding bits xi, yi,
ci, αi, βi, γ̃i, ∀ i ∈ [0, n− 2], from the following three equations

γ̃i+1 = ci+1 ⊕ c̃i+1, ci+1 = xiyi ⊕ xici ⊕ yici, c̃i+1 = x̃iỹi ⊕ x̃ic̃i ⊕ ỹic̃i

where ci is the carry at the ith position of (x + y), x̃i = xi ⊕ αi, ỹi = yi ⊕ βi

and c̃i = ci ⊕ γ̃i. Table 1 lists the values of γ̃i+1 as computed from all values of
xi, yi, ci, αi, βi, γ̃i.

Table 1. The values of γ̃i+1 corresponding to the values of xi, yi, ci, αi, βi, γ̃i. A row
and a column are denoted by R(l) and Col(k)

(xi, yi, ci) (αi, βi, γ̃i)
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) R(0)

(0,0,0) 0 0 0 1 0 1 1 1 R(1)
(1,1,1)
(0,0,1) 0 0 1 0 1 0 1 1 R(2)
(1,1,0)
(0,1,0) 0 1 0 0 1 1 0 1 R(3)
(1,0,1)
(1,0,0) 0 1 1 1 0 0 0 1 R(4)
(0,1,1)
Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7) Col(8)

4.2 Step 2 : Computation of Parameters Gi, Si, 0 and Si, 1 from A

We now determine an important quantity, denoted by Gi, for nonempty A ⊆ D̃.
In Gi, we store the ith and (i+ 1)th bits of γ̃ and the ith bit of α and β for all
(α, β, γ̃) ∈ A. We call Gi the ith core of A. More formally (suppose n > 1),

Gi = {(αi, βi, γ̃i, γ̃i+1) | (α, β, γ̃) ∈ A}, i ∈ [0, n− 2] . (6)
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Meaning of the expression “Gi ⇒ (xi, yi, ci)” for a known Gi. Let
|Gi| = g. Take an element (αi, βi, γ̃i, γ̃i+1) ∈ Gi. In Table 1, find the row(s) of
the fourth coordinate γ̃i+1 in the column specified by the first three coordinates
(αi, βi, γ̃i) in R(0) and put them in set Fi1. Find Fi1, · · ·Fig for all g elements
of Gi. Let Fi =

⋂
j Fij and R(x)∈ Fi. If (xi, yi, ci) is in Col(0)×R(x) then we

say Gi ⇒ (xi, yi, ci). If Fi = φ then no such (xi, yi, ci) exists.

How to compute Si, j using Gi. Si, j = {(xi, yi) |Gi ⇒ (xi, yi, ci = j)}.
Now, we show a fundamental relation between Si, 0 and Si, 1 that will be used
to obtain several results.

Proposition 1. For all nonempty set A ⊆ D̃ and all n > 1, |Si, 0| = |Si, 1|
∀ i ∈ [0, n− 2].

We set,

|Si, 0| = |Si, 1| = Si ∀ i ∈ [0, n− 2]. (7)

4.3 Step 3 (final): Formulation of the Size of A-Consistent

Let A ⊆ D̃. The definition of A-consistent which denotes the set of all (x, y)’s
satisfying the equations represented by A is a natural extension of the definition
of D̃-consistent. The general formula for the number of solutions for any given
set of DEA (the set may not contain all possible equations) is shown in the
following proposition.

Proposition 2. Let A �= φ and S denote |A-consistent|. Then,

S =

⎧⎪⎨⎪⎩
0 if γ̃0 = 1 for some (α, β, γ̃) ∈ A,
4 ·
∏n−2

i=0 Si if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n > 1,
4 if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n = 1.

The Si’s are defined in (7).

|D̃-consistent| for (4) and (3) are obtained in Theorem 1 and Theorem 2 as
special cases of Proposition 2 where D̃ = A.

Theorem 1. Let the position of the least significant ‘1’ of x in the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ

be t and x, y, β, γ ∈ Zn
2 . Let a useful set D̃ be given. Then |D̃-consistent| is

(i) 2t+3 if n− 2 ≥ t ≥ 0,
(ii) 2n+1 otherwise (including the case when x = 0).

Theorem 2. Let a useful set D̃ be given for the equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Zn
2 . Then |D̃-consistent|=4.
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5 Lower Bounds on the Number of Queries

Armed with the results derived in the previous section, we are now ready to
establish one of the crucial results of this article, i.e., lower bounds on the number
of queries, submitted in a batch, to solve the said equations. As it is already clear
from the previous discussion that the trivial method is to submit all possible
queries and then solve it; the challenge lies with a nontrivial solution which
uses less number of queries. It is always regarded as an important theoretical
benchmark as to how far it is possible to reduce the number of queries. The
significance of a lower bound is that no algorithm can solve the equations with
queries less than it.

The condition for a lower bound is determined by the fact that, if A ⊆ B ⊆ D̃
then |D̃-consistent| ≤ |B-consistent| ≤ |A-consistent|. The condition is stated in
the following theorem whose proof is given in the associate paper[13].

Theorem 3. We consider the equation

(x + y)⊕ (x+ (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n − 3 ≥ t ≥ 0. Let
all the submitted queries and the oracle outputs be stored in the set A (note that
φ ⊂ A ⊆ D̃ where D̃ is a useful set). Suppose that there is no query (0, β) for
which the oracle output is γ̃ with γ̃n−2 = 1. Then |A-consistent| > |D̃-consistent|.

Instead of establishing a lower bound for the entire seed space Zn
2 ×Zn

2 , we derive
a lower bound for a subset of Zn

2 × Zn
2 , denoted by Vn, 0 which is the collection

of all (x, y)’s with x0 = 1 (that is, the position of the least significant ‘1’ of x
is zero). Note that |Vn, 0| = 22n−1. It is easy to conclude that the lower bound
derived for Vn, 0 is also a lower bound for the entire seed space Zn

2 × Zn
2 .

Theorem 4. A lower bound on the number of queries (0, β)’s, submitted in a
batch, to solve

(x+ y)⊕ (x+ (y ⊕ β)) = γ

where (x, y) ∈ Vn, 0 is (i) 3 · 2n−4 if n ≥ 4, (ii) 2 if n = 3, (iii) 1 if n = 2 and
(iv) 0 if n = 1.

Proof. (i) When n ≥ 4. Let all the submitted queries and the oracle outputs be
stored in the set A (φ ⊂ A ⊆ D̃ where D̃ is a useful set) and |A-consistent| = |D̃-
consistent| for all (x, y) ∈ Vn, 0. By Theorem 3, a necessary condition is that
there must exist at least one query (0, β) for which the oracle output is γ̃ with
γ̃n−2 = 1 otherwise |A-consistent| > |D̃-consistent|. We shall henceforth denote
a query (0, β) by β.

We first encode the bit-string of a query β as the edges and the corresponding
output γ̃ as the nodes (denoted by circles) on a path of the full binary tree as
shown in Fig. 1. The possible values of βi are denoted as the edges of the tree
between the depth i and the depth (i + 1) (the root of the tree is at depth 0).
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Fig. 1. An arbitrary path P in the subtree (black node indicates value 1 and white
node 0)

Similarly the possible values of γ̃i can be assigned to the nodes at the depth i.
Note that all possible 2n queries are encoded in the tree.

The Approach. We shall isolate a subtree and show that, if an arbitrary path
in that subtree is not present as the prefix of one of the submitted queries then
there exists a seed (x, y) ∈ Vn, 0 such that, on all other queries, the outputs are
γ̃’s with γ̃n−2 = 0. Therefore a lower bound is the number of all paths present
in that particular subtree.

Node Assignment Rule. The rule shows how to select the values of γ̃’s for
all the queries. In the nodes of the entire tree we now put the values of γ̃. We
select an arbitrary path P (which is a prefix of a query) in the subtree whose
leaf nodes are at the depth (n − 2) and whose first two edges are (0, 1) and
(1, 0) and (1, 1) (see Fig. 1). Note that the values at the nodes B and C will
be 0 and 1 respectively because x0 = 1. Now we put 1 in all nodes on the path
P from the depth 2 till the depth (n− 2). The two child nodes D and D′ of the
last node on P are assigned 0 and 1 arbitrarily. All other nodes in the tree are
assigned 0. The intuition that such an assignment rule gives a valid solution is
derived from an observation in Table 1 (see Sect. 4.1) that the matrix cut off
by rows R(1), R(2) and R(3) and columns Col(2), Col(3) and Col(4) has only
diagonal elements 1 (this fact is used to prove Lemma 1).

Proof Continued. Suppose P is not a prefix of any query in A. As shown in
Fig. 1, all nodes at depth (n − 2), except the one on the path P , are assigned
zeros. Therefore, there is no query β in A such that the corresponding output γ̃
has γ̃n−2 = 1. This leads to a contradiction. Therefore, there must be a query
in A whose prefix is P . Now P is an arbitrary path in the subtree constructed
above. Now the total number of paths (or prefixes of queries) in the subtree is
3 · 2n−4. The following lemma completes the proof.
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Lemma 1. For any arbitrary P with the first two edges (0, 1) or (1, 0) or (1, 1)
in the tree constructed above, all queries and their outputs encoded in the tree
according to the Node Assignment Rule, produce a valid solution (x, y) ∈ Vn, 0.

Proof. For any arbitrary P , the core Gi’s (0 ≤ i ≤ n − 2), computed from the
values of γ̃’s and β’s (according to the Node Assignment Rule), are of one of the
following forms

G0 = {(0, 0, 0, 0), (0, 1, 0, 0)} ,
Gi = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, ai), (0, 1, 1, bi)} , 1 ≤ i ≤ n− 2

where ai, bi ∈ [0, 1] and ai = 1 ⊕ bi. Now each Si > 0 (obtained from Table 1
using the Gi’s). Therefore, the number of valid solutions S = 4 ·

∏n−2
i=0 Si > 0

(see Proposition 2). In fact the number solutions is 8 (verification of a part of
Theorem 1). ��
The proofs of (ii), (iii) and (iv) are immediate from Table 1. �
Lower bounds for the equation (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ. In this case,
lower bounds on the number of batch queries, for n = 2 and 3, are 2 and 3
respectively. This can be proved by searching through all possible x, y, α, β and
γ̃ exhaustively. However, the situation becomes intractable when n ≥ 4 when
the number of all possible x, y, α, β and γ̃ for only 3 queries becomes extremely
large (260 for n = 4). We did extensive experiments with many test vectors and
found that three queries were insufficient to solve the equations when n ≥ 4. We
state the following conjecture.

Conjecture 1. A lower bound on the number of queries (α, β), submitted in a
batch, to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

is 4 if n ≥ 4.

6 Algorithms

In this section, we present two algorithms Algorithm 1 and Algorithm 2 to
solve (4) and (3) with a set of batch queries. The inputs to the algorithms are
the bit-length n, the oracle O and the Table 1. The outputs are the Gi’s (defined
in Sect. 4.2) computed from a set of queries and their replies. Our target is to
select a subset of all possible queries such that the set of solutions derived from
the Gi’s is the same as D̃-consistent, for all (x, y)’s. Algorithm to compute the
actual solution set from the set of Gi’s is described in Sect. 2.5 of [13]. Below we
discuss the motivation and correctness of the algorithms; as we exclude many
details, the pseudocode covers all cases.

Discussion: Algorithm 1(sketch). The number of queries required by the al-
gorithm is 2n−2 which is one fourth of all possible 2n queries (note that a lower
bound is 3

4 · 2n−2). The two for loop’s (in steps 8-17 and 10-13) are the most
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Algorithm 1. Algorithm to solve the equation (x + y)⊕ (x+ (y ⊕ β)) = γ

Require: Oracle O, n, Table T
Ensure: The core Gi’s
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating all 4 possible solutions and exit;
3: β = (1, 1, · · · , 1, 1)n; /*The first query*/
4: γ̃ = O(β); /*Oracle output*/
5: Q = {β} and A = {(0, β, γ̃)}; /*Collecting query and output*/
6: If n = 2 then Go to Step 20;
7: If n > 3 /*If n = 3, the execution automatically jumps to Step 18)*/
8: For all t ∈ [1, n − 3] in increasing order
9: {Initialize Q′ = φ;

10: For all β ∈ Q
11: {β′ = (1, 1, · · · , β′

t = 0, βt−1, · · · , β0); /*New query*/
12: O(β′) = γ̃′; /*Oracle output*/
13: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)};}
14: β′ = (1, 1, · · · , β′

t = 1, 0, · · · , 0); /*New query*/
15: O(β′) = γ̃′; /*Oracle output*/
16: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)}; /*Collecting output*/
17: Q = Q ∪ Q′;}
18: β′ = (1, 1, · · · , β′

n−2 = 1, 0, · · · , 0); /*last query*/
19: O(β′) = γ̃′ and A = A ∪ {(0, β′, γ̃′)}; /*Collecting Oracle output*/
20: Return the core Gi’s for all i ∈ [0, n − 2] computed from A.

important parts of the algorithm. For easy understanding of the algorithm, let
us see how the algorithm works when the position of the least significant ‘1’ of
x is zero (i.e., x0 = 1). Note that we have to submit queries such that the Gi’s
(0 ≤ i ≤ n−2) obtained from them correspond to S0 = 2 and Si = 1∀i ∈ [1, n−2]
(Proposition 2, Theorem 1). In the tth iteration of the bigger loop we submit a
set of queries which ensures that Gt = {(0, 1, 1, a), (0, 0, 1, b), (0, 1, 0, c)} which
implies that St = 1. The tth iteration also produces at least one output γ̃ with
γ̃t+1 = 1 which will be used in the next loop. If there is no output with γ̃t+1 = 1
then St+1 > 1 and hence the algorithm fails (see Theorem 3). The proof of
correctness of the algorithm when x0 �= 1 is similar to the above argument.

Discussion: Algorithm 2 (sketch). The number of queries required by the algo-
rithm is 6 which is two more than the best known lower bound (also note that the
number of all possible queries is 22n). The proof of correctness of this algorithm
is by showing that the submitted queries produce Si = 1 for all i ∈ [0, n − 2]
(Proposition 2, Theorem 2). Six queries are submitted in steps 3, 5, 8, 10, 12, 14.
Now we consider only the first two queries in steps 3 and 5. For these queries,Gi =
{(1, 0, γ̃i, γ̃i+1), (0, 1, γ̃′i, γ̃

′
i+1)} if i even. Note that, in this case, if γ̃i = γ̃′i then

Si = 1 otherwise Si = 2 (from Table 1). Also observe that Gi = {(1, 0, γ̃i, γ̃i+1),
(1, 0, γ̃′i, γ̃

′
i+1)} if i odd. In this case, if γ̃i �= γ̃′i then Si = 1 otherwise Si = 2. Now,

we detect a combinatorial relation in the precomputed Table 1 which establishes
that, if Si = 2 then Si−1 = 1 (leaving out the proof). The 3rd and the 4th queries
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Algorithm 2. Algorithm to solve the equation (x+ y)⊕ ((x+α)+ (y⊕β)) = γ

Require: Oracle O, n, Table T
Ensure: the core Gi’s
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating all 4 possible solutions and exit;
3: (α[1], β[1]) = ((11 · · · 11)n, (00 · · · 00)n);/*First Query*/
4: γ̃[1] = O(α[1], β[1]); /*Oracle Output*/
5: (α[2], β[2]) = ((· · · 101010)n , (· · · 010101)n);/*Second Query*/
6: γ̃[2] = O(α[2], β[2]); /*Oracle Output*/
7: If n = 2 then Go to Step 16;
8: (α[3], β[3]) = ((· · · 101010)n , (· · · 000000)n);/*Third Query*/
9: γ̃[3] = O(α[3], β[3]); /*Oracle Output*/

10: (α[4], β[4]) = ((· · · 111111)n , (· · · 010101)n);/*Fourth Query*/
11: γ̃[4] = O(α[4], β[4]); /*Oracle Output*/
12: (α[5], β[5]) = ((· · · 000000)n , (· · · 010101)n);/*Fifth Query*/
13: γ̃[5] = O(α[5], β[5]); /*Oracle Output*/
14: (α[6], β[6]) = ((· · · 101010)n , (· · · 111111)n);/*Sixth Query*/
15: γ̃[6] = O(α[6], β[6]); /*Oracle Output*/
16: A = {(α[i], β[i], γ̃[i]) | for all i’s}
17: Return the core Gi’s for all i ∈ [0, n − 2] computed from A.

are generated from the second query assuming Si = 2 for some odd i’s. We change
all the even numbered bits of the second query (α[2], β[2]). It can be shown that
making (α[2]i, β[2]i) = (0, 0) and (1, 1) for all even i’s ensures that Si = 1 for all
odd i’s. Exactly the same way the 5th and the 6th queries are generated from the
second query (α[2], β[2]) assuming that Si = 2 for some even i’s. Now we change
the odd numbered bits of (α[2], β[2]) to (0, 0) and (1, 1) to ensure that all Si = 1
for all even i’s. Therefore, the number of solutions derived from these 6 queries is
S = 4 ·

∏n−2
i=0 Si = 4 as suggested in Theorem 2.

7 Cryptographic Applications

Security of Modular addition against DC for Batch Queries. In view of
the large scale application of modular addition in symmetric cryptography, our
results seem effective in the evaluation of security of cipher components which
mixes two different group operations addition and XOR. The fact that only 6
queries submitted in a batch (which is a more practical attack scenario than
that with adaptive queries) are sufficient to reduce the search space of the secret
(x, y) from 22n to only 4 (for all n ≥ 4) should be recognized as a warning to
the designers (see Algorithm 2). On the other hand the high exponential lower
bound on the number of queries for another differential equation of addition
(3 ·2n−4 for all n ≥ 4) underlines an important theoretical reference point which
advocates it for being relatively strong under DC (see Theorem 4). One direct
application of our results in practical cryptanalysis is described below. At this
moment, we are not aware of other applications of the results, yet it can very
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likely be used to evaluate cryptographic strengths of many modern ciphers which
use modular multiplication combined with modular addition and XOR.

Cryptanalysis of Helix. Helix, proposed by Ferguson et al. [6], is a stream
cipher with a combined MAC functionality. This cipher was a candidate for
consideration in the 802.11i standard. The main component of the primitive is
combination of addition and XOR. The fact that the internal state of Helix
depends on the plaintext allows for cryptanalysis with chosen plaintexts (CP)
and adaptive chosen plaintexts (ACP). Muller mounted an ACP attack which
recovers the secret key of the Helix cipher with 212 plaintexts. In [13], the data
complexity of the attack was improved to 210.41. We refer the readers to [12] for
a detailed analysis of the attack. Our key recovery attack goes on the same line
as Muller’s attack. We cannot describe the attack in full detail because of space
constraints, however, we pick out a portion which is critical to our CP attack.
The crux of the whole attack is solving the equation (x+ y)⊕ (x+ (y⊕ β)) = γ
with β’s and the corresponding γ’s to recover the secret information (x, y), in
the framework described in Sect. 3.1, for 50 times (n = 32 for the Helix cipher).
Every time β corresponds to a CP. Algorithm 1 shows that the above equa-
tion can be solved with 2n−2 CP’s (230 for n = 32). Therefore, the total data
complexity of our CP attack is 50 · 230, i.e., 235.64 plaintexts.

8 Conclusion and Further Research

We showed a lower bound on the number of batch queries to solve a DEA which
is optimal up to a constant factor. For solving another DEA, our algorithm uses
number of queries which is constant asymptotically. Our results are used directly
to recover the key of the Helix cipher with chosen plaintexts rather than with
adaptive chosen plaintexts which has so far been the best CP attack on this
cipher. The paper also leaves many interesting questions open. One possible re-
search direction may be to close the gap between the lower and upper bounds
on the number of queries to solve DEA. Another way to extend the work is
to analyze components which combine more complex transformations such as
modular multiplication, T -functions with addition.
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Abstract. Stream ciphers are widely used for online-encryption of ar-
bitrarily long data, for example when transmitting speech-data between
a mobile phone and a base station. An important class of stream ciphers
are combiners with memory, with the E0 generator from the Bluetooth
standard for wireless communication being their most prominent exam-
ple. In this paper, we develop design principles for increasing the resis-
tance of combiners with memory against the most dangerous types of
cryptanalytic attacks, namely correlation attacks and algebraic attacks.
In the case of algebraic attacks, we introduce the first method to guar-
antee lower bounds on the attack complexity. Starting from the design
of the E0 generator, we combine our results in order to construct ciphers
that are simultaneously strengthened against both kinds of attacks. Our
analysis shows that small changes in the design of E0 already suffice to
improve its security enormously.

Keywords: Stream cipher, combiners with memory, algebraic attacks,
correlation attacks, Bluetooth E0.

1 Introduction

Today, electronic communication has gained more and more importance, in-
voking an increasing demand for confidential data transmission. Widely used
are keystream generators which produce bitstreams z := z1, z2, . . . of arbitrary
length in dependence on a secret initial value K ∈ {0, 1}n. The sender en-
crypts a stream of plaintext bits p := p1, p2, . . . to a stream of ciphertext bits
c := c1, c2, . . . by XOR-ing p and z componentwise, i.e., ct := pt ⊕ zt. A receiver
who shares the secret key K can produce z in the same way as the sender and
decrypt ct via pt = ct⊕zt. Following Kerckhoff’s principle, it is assumed that an
adversary knows the specification of the keystream generator and some of the
keystream bits zt, whereas K is secret to him. Consequently, an attack consists
of recovering the secret key K.

An important class of keystream generators are combiners with memory.
Since their introduction in [17] to overcome the trade-off between linear com-
plexity and correaltion immunity, they have been widely examined in cryptog-
raphy and have found their way into practical applications. The perhaps best
known example used in practice is the E0 keystream generator which is part of
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the Bluetooth standard, a widely applied standard for short- to mid-distance
wireless communication between mobile devices.

The best attacks against combiners with memory that are currently known
are correlation attacks [10, 11, 18, 14, 15] and algebraic attacks [1, 6]. A correla-
tion attack consists of finding and exploiting linear functions

L(Xt, . . . , Xt+r−1, zt, . . . , zt+r−1)

which are biased, i.e., equal to zero with some probability �= 1/2. Algebraic at-
tacks mark somehow the opposite. Here, valid non-linear equations of preferably
low degree are used to describe K by a system of equations.

Although much effort has been put into the refinement of these attacks, only
little is known about how to resist them. Our results are design principles for
combiners with memory to improve the security in respect of both kinds of
attacks.

In general, finding highly biased linear functions L for correlation attacks are
only feasible for small values of r. However, in the case of E0, the best currently
known attack [14] uses a special class of biased linear functions which allow for
an exhaustive search for the best correlations even for relatively large values of
r, more precisely for r up to 25. We show how to avert this approach completely.

Further on, we introduce a design principle which guarantees that all valid
equations in Xt, . . . , Xt+r−1, zt, . . . , zt+r−1 have a degree greater than or equal
to a certain lower bound. This marks the first lower bound on the complexity of
algebraic attacks derived so far.

Our proposals can be easily combined to construct combiners with memory
which are strengthend against both correlation and algebraic attacks.

The paper is structured as follows. Section 2 defines combiners with memory
and explains correlation and algebraic attacks against them. In Sects. 3 and
4, we put correlation attacks and algebraic attacks into theoretical frameworks
and derive according countermeasures, which we use in Sect. 5 to introduce and
examine modified versions of E0. Section 6 concludes the paper.

2 Combiners with Memory

A combiner with memory, or shortly a (k, �)-combiner, consists of k driving
devices, a finite state machine (FSM) C with an � bit state and two mappings
f : {0, 1}�×{0, 1}k → {0, 1} and δ : {0, 1}�×{0, 1}k → {0, 1}�. Let Xt ∈ {0, 1}k
denote the output of the driving devices and Ct ∈ {0, 1}� the state of the FSM
at clock t ≥ 1.

Combiners with memory are regulary clocked. At each clock, one keystream
bit is produced as zt = f(Ct, Xt), and the state of the FSM is updated to Ct+1 :=
δ(Ct, Xt). Combiners with memory have the advantage that they combine high
algebraic degree with high correlation immunity (cf. [19]). Correlation immunity
means that the output zt is not or only weakly correlated to the sum of a subset
of the input bits.
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For the rest of the paper, we focus on the well-studied subclass of combin-
ers with memory that use Linear Feedback Shift Registers (LFSRs) as driv-
ing devices. The output xt of an LFSR is computed as xt = Lt(K), where Lt

denotes a known linear Boolean function and K ∈ {0, 1}n the LFSR’s secret
initial state.

A famous practical LFSR-based combiner with memory is the (4, 4)-combiner
E0, which uses four LFSRs of lengths 25, 31, 33 and 39, respectively. Based
on an internal key K that is re-initialized frequently, the Bluetooth stream
cipher utilizes E0 to produce consecutive, fixed-length frames of keystream.
In [3], it was shown that an efficient attack on E0 implies an efficient attack
on the whole cipher. Consequently, improving the security of E0 is a natural
demand.

Amongst all publicly known attacks on combiners with memory, the fastest
are correlation attacks and algebraic attacks. In the following, we give a brief
description of these attacks.

Correlation attacks exploit linear equations

L(Xt, . . . , Xt+r−1, zt, . . . , zt+r−1) = 0

which are true with probability 1/2 +λ with λ �= 0. λ is called the bias. General
methods to systematically compute the equations with the highest value of |λ|
exist (e.g., cf. [10]), but since their complexity is exponential in k, � and r, these
methods are only feasible for small values.

However, if the output function f(C,X) can be written as the sum of two
functions α(X) and β(C), i.e., zt = α(Xt) ⊕ β(Ct), one can try to use biased
linear combinations in the expressions β(Ct). More precisely, an attacker looks
for coefficients γ = (γ0, . . . , γr−1) such that

λ := λ(γ) :=

(
Pr

[
r−1⊕
i=0

γi · βt+i = 0

]
− Pr

[
r−1⊕
i=0

γi · βt+i = 1

])
�= 0 . (1)

Amongst all non-trivial biases, the attacker is interested in finding and using the
maximum bias, which is defined as λmax := max{|λ(γ)|}.

The output function of E0 is exactly of the desired type. In [14], it was
proved that λmax = 25/256 for r ≤ 25, where 25 is the length of the shortest
LFSR. This observation and the exploit of a synchronization flaw led to the best
currently known attack on the Bluetooth cipher [15]. The complexities of this
attack are given in Table 1.

Table 1. The complexity of the fastest correlation attack on E0 as presented in [15]

λmax Frames Data Time Space

λ m = max( 1
λ10 , 236.59

λ8 ) 24m 36m + 3 · 218 · min(m, 218) m

25
256 234.74 239.32 240.17 234.74
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Algebraic attacks are based on solving systems of equations. An attacker uses
a Boolean function F : {0, 1}k·r → {0, 1} such that for all clocks t, it holds that

F (Xt, . . . , Xt+r−1, zt, . . . , zt+r−1) = 0 . (2)

The existence of such equations has been proved in [1]. Using the equivalence
Xt = Lt(K), (2) allows to write a system of equations which describes the secret
key K in dependence of the observed keystream (zt). Accordingly, the secret key
K can be recovered by solving the system of equations.

Although computing the solution is NP-hard in general, it might become eas-
ier if the number of known keystream bits and therefore the number of equations
increases. Let R denote the number of accessible equations and μ the number
of occurring monomials. If R' μ, the best method known today is to compute
Groebner bases. Unfortunately, until now it is impossible to predict the time
effort, albeit simulations indicate that the effort drops with increasing number
of equations (cf. [9]).

In the case of R ≈ μ, linearization [7] is the first choice. The idea of lin-
earization is to substitute each occurring monomial by a new variable and to
treat the whole system as a system of linear equations, making it easily solvable
by Gaussian elimination.

For the case that the number of equations exceeds the number of monomials,
one might reduce the degree of the equations in a precomputation step. This
idea is known as ”fast algebraic attacks”, which have been introduced in [6] and
further improved in [2, 12]. However, the attack scenario is more restrictive as it
requires the attacker to know many successive keystream bits and (2) to have a
special structure.

All theses approaches have in common that their time effort strongly depends
on the degree d of the incorporated equations. The lower the degree, the faster
the attacks. Hence, a natural countermeasure against such attacks is to avoid
low degree equations. For this subject, the terminology ”algebraic immunity”
has been introduced in [16] and extended to combiners with memory in [4].

For the rest of the paper, we will concentrate on algebraic attacks where
R ≈ μ and μ is approximately

(
n
d

)
. If ϕ denotes the number of functions F of

degree d fulfilling (2) and n denotes the key size |K|, then the amount of data
is ≈

(
n
d

)
/ϕ, and the memory and time efforts are in O

((
n
d

)2) and O
((

n
d

)3),
respectively.

The currently best algebraic attack on E0 in this scenario uses a function
F of degree 4 over 4 clocks. The corresponding attack complexities are given in
Table 2.

Table 2. The efforts of an algebraic attack on E0 with key size n and an equation of
degree d

#F Data Time Space

General ϕ O
((

n
d

)
/ϕ
)

O
((

n
d

)3)
O
((

n
d

)2)
E0: n = 128, d = 4 1 223.35 270.04 246.69
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Observe that the performance of algebraic attacks drops if the minimum
possible degree d increases. The same is true for the correlation attack if λmax
shrinks. In the following, we derive several countermeasures against these at-
tacks for general (k, l)-combiners. In Sect. 5, we will then apply these results to
construct variations of E0 with improved security.

3 Design Principles Against Correlation Attacks

As stated in Sect. 2, the correlation attack exploits biased linear equations
L(Xt, . . . , Xt+r−1, zt, . . . , zt+r−1) = 0. Finding functions with the highest ab-
solute bias is difficult in general. In the case that the output function can be
written as the sum of two functions α(X) and β(C), i.e., zt = α(Xt) ⊕ β(Ct)
for all keybits zt, one can instead try to find biased linear combinations in the
expressions β(Ct). This allows to treat much higher values of r than the general
method. In the case of E0, this approach yielded the fastest attack known so far
(cf. [15]).

The theory in this section is motivated by this setting. Golić [11] already
established a theoretical framework and a lot of interesting results on estimat-
ing correlations between XOR-sums of X-inputs and Z-outputs for functions
Z = F (X,Y ), which matches exactly the situation of combiners with memory.
What we do in the following is to derive a formula (Theorem 1) allowing to
efficiently compute the special correlations that the correlation attack of Lu and
Vaudenay [15] is based on. We then conclude some design criteria for avoiding
this type of correlations and show how these correlations can be reduced by a
local optimization of the E0-design.

We consider the scenario that for each time unit t ≥ 1, there is a separate
Boolean function βt : {0, 1}� × {0, 1}k → {0, 1}, revealing information about Ct

and Xt.
Let F r : {0, 1}� × {0, 1}k·r → {0, 1} be defined by

F r(C1, X1, . . . , Xr) := β1(C1, X1)⊕ . . .⊕ βr(Cr, Xr) ,

where C1 ∈ {0, 1}�, X1, . . . , Xr ∈ {0, 1}k and Ct+1 := δ(Ct, Xt). We are inter-
ested in the value λ := λ(F r) := Pr[F r = 0]− Pr[F r = 1].

Observe that (1) is captured in this scenario by setting βt(Ct, Xt) := β(Ct)
if γt = 1 and βt :≡ 0 otherwise.

We will express λ in terms of the transition matrix P and the bias matrices
Bt of the FSM C, which are defined as follows.

Definition 1. For all states C,C′ ∈ {0, 1}�, we denote by p(C,C′) the proba-
bility that state C will change into C′, i.e., p(C,C′) = 2−k |{X ; δ(C,X) = C′}| .
Additionally, let bt(C,C′) be the value

2−k · (|{X ;βt(C,X) = 0, δ(C,X) = C′}|− |{X ;βt(C,X) = 1, δ(C,X) = C′}|) .

We call the matrix P = (p(C,C′))C,C′∈{0,1}� the transition matrix of C and the
matrix Bt = (bt(C,C′))C,C′∈{0,1}� the bias matrix of C corresponding to time
unit t.



Design Principles for Combiners with Memory 109

Theorem 1. It holds for all r ≥ 1 that

λ = λ(F r) = 2−�
(
eT
)
◦B1 ◦ · · · ◦Br ◦ e , (3)

where e denotes the constant-1 vector of length 2�.

As usual, we denote by BT the transpose of a given matrix B. The proof of
Theorem 1 can be found in Appendix A.

Formula (3) allows to compute the biases which are relevant for correlation
attacks against combiners with memory and to derive corresponding design cri-
teria to immunize them against these types of attacks. In particular, (3) yields
two different criteria for δ and βt in order to achieve that λ(F r) = 0 for all r ≥ 1.
Note that these and more general criteria could also be derived from the more
general and somewhat different calculations in [11].

The first one considers the situation that βt is independent of X ∈ {0, 1}k,
i.e., β(C,X) = β(C) for all X . This reflects the situation of E0.

Definition 2. We call βt to be balanced if |β−1
t (0)| = |β−1

t (1)|. Furthermore,
we say that δ is balanced if k = � and p(C,C′) = 2−k for all C,C′.

Theorem 2. Let βt either be ≡ 0 or depend only on C and be balanced, the
latter being true for at least one time unit t. If δ is also balanced, then λ = 0.

Proof. If βt ≡ 0, then Bt = P . Because of (eT ) · P = eT , we can assume
w.l.o.g. that β1 �≡ 0. Observe that the property of βt being balanced implies that∑

C(−1)β1(C) = 0. Let X(C,C′) := {X ; δ(C,X) = C′}. If βt depends only on C,
then bt(C,C′) can be rewritten to

bt(C,C′) =

⎧⎨⎩
0 if X(C,C′) = ∅

|X(C,C′)|/2k if X(C,C′) �= ∅, β(C) = 0
−|X(C,C′)|/2k if X(C,C′) �= ∅, β(C) = 1

⎫⎬⎭ = (−1)βt(C) · p(C,C′)

Let vT := (eT ) · B1. We show that v is already the all-zero vector which
concludes the proof. Let (vT )C denote the C-th entry of vT . Then,

(vT )C =
∑
C

(−1)β1(C)p(C,C′) = 2−k ·
∑
C

(−1)β1(C)

︸ ︷︷ ︸
=0

= 0 . ��

In the case that the functions βt are not independent of X , it is also possible
to entirely avoid correlations if we put some additional conditions on βt.

Definition 3. The function β : {0, 1}� × {0, 1}k → {0, 1} is called C-balanced
if for all states C ∈ {0, 1}� it holds that∣∣{X ∈ {0, 1}k, β(C,X) = 0

}∣∣ = ∣∣{X ∈ {0, 1}k, β(C,X) = 1
}∣∣ .

Lemma 1. Let B denote the bias matrix with respect to the state transition
function δ : {0, 1}� × {0, 1}k → {0, 1}� and a C-balanced function β : {0, 1}� ×
{0, 1}k → {0, 1}. Then B ◦ e = 0.
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Proof. It can be easily checked that for all C ∈ {0, 1}� it is

(B ◦ e)C =

∣∣{X ∈ {0, 1}k, β(C,X) = 0
}∣∣− ∣∣{X ∈ {0, 1}k, β(C,X) = 1

}∣∣
2k

,

which, by definition, equals 0 if β is C-balanced. ��

Theorem 3. Let r ≥ 1 and βt be either C-balanced or constant 0 for all t,
1 ≤ t ≤ r. Then λ(F r) = 0.

Proof. Note that for βt ≡ 0, the bias matrix Bt equals the state transition func-
tion P of the FSM C. As each row of P corresponds to a probability distribution
over {0, 1}�, we obtain P ◦e = e. The rest follows straightforwardly from (3) and
Lemma 1. ��

We want to point out that the previous statements are only true as long as the
corresponding input words Xt are independent values in {0, 1}k. In the case that
LFSRs are used as driving devices, this is only the case as long as r is at most
the length of the shortest LFSR. For example, in the case of E0, this would
mean that r ≤ 25. This imposes no serious drawback, because so far, no feasible
methods are known to compute the bias while considering the LFSR-structure.

The previous results immediately imply two different design criteria to avoid
any biased linear combinations in the expressions β(Ct). Actually, they have
even wider applications. For example, the output function

f
((
c1, c2, c3, c4

)
,
(
x1, x2, x3, x4)) = c2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

used in E0 is C-balanced. This guarantees that no biased linear combinations of
the keystream bits zt exist for r ≤ 25, the length of the shortest LFSR.

Golić [11] showed that there is a lower bound t0 such that for all t ≥ t0
there are nontrivial correlations between certain XOR-sums of the inputs of t
consecutive time units and the corresponding outputs. It would be interesting to
investigate if the correlation attack of Lu and Vaudenay [15] can be generalized
towards exhibiting this type of correlations.

4 Design Principles Against Algebraic Attacks

In this section, we examine the existence of low-degree equations and introduce
the first method to guarantee a lower bound for the effort of algebraic attacks.
Let Z ∈ {0, 1}r for r ≥ 1 be fixed. We say that a function F := {0, 1}k·r → {0, 1}
is a Z-function if F �≡ 0 and for each clock t, it holds that

(zt, . . . , zt+r−1) = Z ⇒ F (Xt, . . . , Xt+r−1) = 0 . (4)

In [1], Z-functions were introduced and their existence was proved. An algebraic
attack consists of computing for each Z ∈ {0, 1}r a Z-function FZ of the lowest
possible degree and to set up the system of equations

F(zt,...,zt+r−1)(Xt, . . . , Xt+r−1) = 0, t = 1, 2, . . .
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In [1], Z-functions of degree 4 for all Z ∈ {0, 1}4 were developed for E0. In
[6], a method was proposed to obtain equations of degree 3, however with the
enormous value r ≈ 8.822.188. It is still an open question whether Z-functions
exist of degree < 4 and r ' 8.822.188. In this section, we provide a general
construction which guarantees a lower bound on the degrees of all possible Z-
functions if r is at most the length of the shortest LFSR. This is the first general
countermeasure against algebraic attacks on combiners with memory proposed
so far.

Definition 4. Let r ≥ 1 be fixed and Z = (z1, . . . , zr) ∈ {0, 1}r. We set XZ

to be the set of inputs (X1, . . . , Xr) ∈ {0, 1}k·r which possibly can produce the
output Z, more precisely, for which there exist C1, . . . , Cr ∈ {0, 1}� such that
zi = f(Ci, Xi) for 1 ≤ i ≤ r and Ci+1 = δ(Ci, Xi)} for 1 ≤ i ≤ r − 1.

We will later need the additional property that C1 equals some fixed value C
and denote the corresponding subset of XZ by XC,Z .

With (4), one can easily see that F is a Z-function if and only if F (X) = 0 for
all X ∈ XZ . This leads directly to the notion of annihilators.

Definition 5. We say that a Boolean function p �≡ 0 is an annihilator of a
subset A ⊆ {0, 1}n if p(x) = 0 for all x ∈ A. We denote the set of annihila-
tors of A by Ann(A). Furthermore, we define for A ⊂ {0, 1}n mindeg(A) :=
min{deg(f); f ∈ Ann(A)}. If A = {0, 1}n, we set mindeg(A) :=∞.

The idea is that if we can prove a lower bound for mindeg(XZ) for all Z, this
gives a lower bound for the effort of algebraic attacks. In the following, we will
propose a construction which makes it possible to derive such a lower bound.

We first show that under certain conditions, each ”local” lower bound for
mindeg(Xzr,C) is also a ”global” lower bound for mindeg(X(z1,...,zr)).

Theorem 4. For a Boolean function α : {0, 1}k → {0, 1}, let mindeg
(
α−1(0)

)
and mindeg

(
α−1(1)

)
both be equal to a value d and let β : {0, 1}� → {0, 1}. If

the output function f can be expressed as

f(C,X) := α(X)⊕ β(C) = z , (5)

then it holds for all r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, and C ∈ {0, 1}� that

mindeg(XZ) ≥ mindeg(XC,Z) = d .

Proof. Because of XZ,C ⊆ XZ , each annihilator of XZ is an annihilator of XZ,C

as well. This shows the first inequality.
Moreover, it holds for all choices z ∈ {0, 1} and C ∈ {0, 1}� that XC,z =

α−1(β(C) ⊕ z) and therefore mindeg(XC,z) = d.
Let r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, C1 ∈ {0, 1}� and f(Y1) ∈ IF2[Y1] be an

annihilator of XC1,z1 . Then, f can be seen as an element in IF2[Y1, . . . , Yr] which
annihilates XC1,Z , too. This shows that mindeg (XC1,Z) ≤ mindeg (XC1,z1) = d.

We prove now by induction over r that mindeg(XC1,Z) ≥ d for all choices
of C1 and Z. For r = 1, the claim is certainly true. Now let r > 1 and the
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claim be true for all r′ < r. Fix Z = (z1, . . . , zr) and C1 and f(Y1, . . . , Yr) ∈
Ann(XC,Z) having the minimal degree mindeg(XC,Z). Choose an arbitrary value
(X1, . . . , Xr) ∈ {0, 1}k·r and set C2 := δ(C1, X1). Then

f∗(Y2 . . . , Yr) := f(X1, Y2, . . . , Yr)

annihilates XC2,(z2,...,zr). Hence,

mindeg (XC1,Z) = deg(f) ≥ deg(f∗) ≥ mindeg
(
XC2,(z2,...,zr)

)
≥ d ,

where the last inequality is true by assumption. ��

The theorem implies the following strategy. Choose an output function α such
that mindeg

(
α−1(0)

)
and mindeg

(
α−1(1)

)
is the maximum possible value. This

will guarantee the same lower bound for all Z-functions, as long the values
X1, . . . , Xr are independent elements in {0, 1}k. In the case that they are the
outputs of LFSRs, this condition holds for r less than or equal to the length of the
shortest LFSR (e.g., 25 in the case of E0). This restriction is not critical, since
all currently known methods to derive Z-functions become practically infeasible
as soon as r ≥ 7. We emphasize that Theorem 4 yields the only lower bound
for algebraic attacks proposed so far. Further on, this approach can be com-
bined with the methods presented in the previous section to achieve maximum
resistance against certain correlation attacks.

The value d is equivalently known under the term ”algebraic immunity”,
which was introduced in [16] in the context of memoryless combiners and exam-
ined in several papers since then. This means that any proposal for a function
with optimum algebraic immunity can be incorporated in our design.

So far, only few proposals for algebraic immune functions have been made
(e.g., [8]). A rather straightforward candidate is the majority-function:

Corollary 1. Let k ≥ 1. For the majority function maj : {0, 1}k → {0, 1}
defined by

maj(x) =
{

0 if weight(x) < k/2 or weight(x) = k/2 and x1 = 0
1 otherwise ,

it holds that mindeg(maj−1(0)) = mindeg(maj−1(1)) = k/2.

A proof can be found in [5]. The authors pointed out that maj has a very low
nonlinearity, making it a bad choice for memoryless combiners. However, this is
no problem in the context described above, as long as high biases λ are avoided
(e.g., using the principles described in Sect. 3).

Using our design principle and a Boolean function with optimum algebraic
immunity, it is possible to exclude the existence of Z-functions having a degree
less than �k/2�. In fact, experiments have shown that the actual values of mindeg
are higher, showing that �k/2� is a rather coarse estimation. Further on, one can
easily increase this bound, even without increasing the number of LFSRs by
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using several different bits per LFSR and clock. For example, in the case of E0,
one could use the modified output and update functions zt := maj(X2t−1, X2t)
and Ct+1 := δ(δ(Ct, X2t−1), X2t). The bitrate is halfed, but the existence of
Z-functions of degree less than 4 can be excluded.

5 Application to E0

In this section, we apply the results from the previous sections to improve the
security of the E0 keystream generator. Consequently, we assume that k = � = 4
and that the keystream bit zt is computed by zt = f(Ct, Xt) = α(Xt)⊕ β(Ct).

In the case of E0, we have α(Xt) = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t and β(Ct) = c2t . The
state transition function of E0 is defined as

δ0(Ct, Xt) =
(
S1

t+1 ⊕ c1t ⊕ c4t ,S0
t+1 ⊕ c2t ⊕ c3t ⊕ c4t , c

1
t , c

2
t

)
,

where St+1 = (S1
t+1,S0

t+1) =
⌊

x1
t+x2

t+x3
t+x4

t+2·c1
t+c2

t

2

⌋
.

Using Theorem 1, we computed the maximum absolute biases over 25 clock
cycles (the length of E0’s shortest LFSR) for all 16 E0-variants where the func-
tion β is of the form β(a1,a2,a3,a4)(Ct) = a1 · c1t ⊕ a2 · c2t ⊕ a3 · c3t ⊕ a4 · c4t for
a = (a1, a2, a3, a4) ∈ {0, 1}4. Note that the original β function of E0 corresponds
to β(0,1,0,0). As shown in Table 3, the minimum absolute bias λ = 0.024414 is
obtained for a = (0, 1, 1, 1). We denote the corresponding generator by E1

0 . Un-
fortunately, there exist Z-functions of degree 3 for E1

0 , which makes it weaker
against algebraic attacks than the original E0. However, choosing the a-value
with the second best minimum absolute bias (we call the corresponding genera-
tor E2

0) yields mindeg = 6.
In the next step, we exploit our theory to completely avoid biases. Starting from

the definition of E0, we obtain the generator E3
0 by replacing the state transition

function by δ1, which is defined as the integer addition modulo 24, i.e.,

δ1
(
c1t , . . . , c

4
t , x

1
t , . . . , x

4
t

)
=

⎛⎝ 3∑
i=0

c4−i
t 2i +

3∑
j=0

x4−j
t 2j

⎞⎠ mod 16 .

Since δ1 is balanced, Theorem 2 implies λ = 0, i.e., E3
0 is immune against the

approach used in [14]. However, we computed Z-functions of degree 3 for E3
0 .

We therefore replace the function α of E3
0 by the majority function described in

Corollary 1. For the resulting generator E4
0 , we obtain mindeg = 5. If we addi-

tionally replace the function β by the majority function, mindeg even increases
to 6. Note that the λ = 0 property is still preserved by these modifications.
Thus, we obtain a keystream generator E5

0 with λmax = 0 , and whose resis-
tance against algebraic attacks is significantly increased compared to E0. Notice
that in all cases, the values of mindeg were actually higher than the theoretical
lower bound of �k/2� = 2. The constructions of the considered generators and
the respective performances of algebraic and correlation attacks are summarized
in Table 4. The average numbers of Z-functions for the generators are given in
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Table 3. Maximum absolute biases and efficiency of correlation attacks for βa-
generators

a max (λ) Frames Data Time Space
(0, 0, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 0, 1, 0) 0.244141 224.16 228.74 237.59 224.16

(0, 0, 1, 1) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 0, 0) 0.097656 234.74 239.32 240.17 234.74

(0, 1, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 1, 1, 0) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 1, 1) 0.024414 253.56 258.15 258.73 253.56

(1, 0, 0, 0) 0.244141 224.16 228.74 237.59 224.16

(1, 0, 0, 1) 0.250000 223.89 228.47 237.59 223.89

(1, 0, 1, 0) 0.097656 234.74 239.32 240.17 234.74

(1, 0, 1, 1) 0.038528 246.98 251.56 252.15 246.98

(1, 1, 0, 0) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 0, 1) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 1, 0) 0.152588 229.58 234.17 237.77 229.58

(1, 1, 1, 1) 0.097656 234.74 239.32 240.17 234.74

Table 4. Definitions of the candidate generators and efficiencies of algebraic and cor-
relation attacks

Algebraic Attack Correlation Attack
δ α

(
x1

t , x
2
t , x

3
t , x

4
t

)
β
(
c1
t , c

2
t , c

3
t , c

4
t

)
mindeg Time λ Time

E0 δ0 x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t c2
t 4 270.18 0.097656 240.17

E1
0 δ0 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c2

t ⊕ c3
t ⊕ c4

t 3 255.25 0.024414 258.73

E2
0 δ0 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c1

t ⊕ c3
t ⊕ c4

t 6 297.22 0.038528 252.15

E3
0 δ1 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c2

t 3 255.25 0 n/a
E4

0 δ1 maj(x1
t , x

2
t , x

3
t , x

4
t ) c2

t 5 284.11 0 n/a
E5

0 δ1 maj(x1
t , x

2
t , x

3
t , x

4
t ) maj(c1

t , c
2
t , c

3
t , c

4
t ) 6 297.22 0 n/a

Appendix B. We note that the generator E2
0 , which is just a slight modification

of E0 (we only made β depend on two more state bits), already yields a similar
resistance against algebraic attacks as E5

0 and significantly decreases the vul-
nerability against correlation attacks. This desirable property – small changes
to the cipher leading to great security improvements – particularly recommends
this construction for the 3-year roadmap for enhancing the Bluetooth system
[20] that was recently announced by the Bluetooth SIG and so far only includes
moderate security enhancements.

6 Conclusion

In this paper, we developed design principles to counter the most effective attacks
today, namely correlation and algebraic attacks. Applied to E0, we can show that
small modifications already suffice to improve the security significantly.
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A Proof of Theorem 1

We have to prove that for all r ≥ 1 it holds that λ(F r) = 2−�(eT )◦B1◦· · ·◦Br◦e,
where F r : {0, 1}� ×

(
{0, 1}k

)r → {0, 1} is for all C1 ∈ {0, 1}� and X1, · · · , Xr ∈
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{0, 1}k defined by F r(C1, X1, · · · , Xr) = β1(C1, X1) ⊕ · · · ⊕ βr(Cr, Xr), with
Ct+1 = δ(Ct, Xt).

We start with some basics on computing biases. For given finite set S and
real functions f, g : S → IR we denote by (f, g) = 1

|S|
∑

s∈S f(s)g(s) a positive

definite scalar product on IRS . Note that for each Boolean function f : {0, 1}n →
{0, 1} it holds that λ(f) =

(
(−1)f , 1

)
.

We call a Boolean function f : {0, 1}n → {0, 1} unbiased, if λ(f) = 0, i.e., if∣∣f−1(1)
∣∣ = ∣∣f−1(0)

∣∣.
Consider two disjoint finite sets S and S′, functions f : S → IR and g : S′ →

IR, and let h : S × S′ → IR be defined by h(s, s′) = f(s)g(s′). Note that

(h, 1) =
1

|S||S′|
∑

s∈S,s′∈S′
f(s)g(s′) =

1
|S|
∑
s∈S

f(s)
1
|S′|

∑
s′∈S′

g(s′) = (f, 1)(g, 1) .

This implies that for Boolean functions f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1},
and h : {0, 1}n × {0, 1}m → {0, 1}, defined by h(s, s′) = f(s) ⊕ g(s′), it holds
that λ(h) = λ(f) · λ(g).

Now let us denote by f r : {0, 1}� ×
(
{0, 1}k

)r → IR the function (−1)F r

.
For all r ≥ 1 and C ∈ {0, 1}�, we define an additional function f r

C : {0, 1}�×(
{0, 1}k

)r → IR as follows. For all C1, X1, · · · , Xr ∈ {0, 1}� let

f r
C(C1, X1, · · · , Xr) =

{
f r(C1, X1, · · · , Xr) if δ(Cr, Xr) = C
0 otherwise .

The intermediate states C2, · · · , Cr are defined via the rule Ci+1 = δ(Ct, Xt).
Note that f r

C maps into {−1, 0, 1}. Let Γ r
C = (f r

C , 1) and Γ r = (Γ r
C)C∈{0,1}� .

Observe that f r =
∑

C∈{0,1}� f r
C and λ(F r) =

∑
C∈{0,1}� Γ r

C . Theorem 1 is a
straightforward consequence of the following lemma.

Lemma 2. For C ∈ {0, 1}� and r ≥ 1 it holds that (Γ r)T = 2−�(eT )◦B1◦· · ·◦Br,
where Bt denote the bias matrices as defined in Definition 1.

Proof. For all C,C′ ∈ {0, 1}� we denote by gC,C′ : {0, 1}k → {0, 1} the Boolean
function defined by gC,C′(X) = 1 iff δ(C,X) = C′. Observe that for each t ≥ 1
it holds that

((−1)βt(C,·)gC,C′ , 1) = bt(C,C′) . (6)
We show the lemma by induction on r. Note that, due to (6), for all C ∈ {0, 1}�

Γ 1
C = 2−(k+�)

∑
C1,X1

(−1)β1(C1,X1)gC1,C(X1) = 2−�
∑
C1

bt(C1, C) .

Consequently, Γ 1 = 2−�(eT ) ◦B1. For r > 1, the function f r
C can be written as

f r
C(C1, X1, · · · , Xr) =

∑
C′∈{0,1}�

f r−1
C′ (C1, X1, · · · , Xr−1)(−1)βr(C′,Xr)gC′,C(Xr) .

Hence, by the remarks in the last subsection and (6), we obtain

Γ r
C =

∑
C′∈{0,1}�

Γ r−1
C′ br(C′, C) and (Γ r)T = (Γ r−1)T ◦Br . ��
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B Z-Functions for the Considered Generators

For all variants of E0 that were considered in Sect. 5, Table 5 lists the minimum
degree and the respective number of Z-functions over r clock cycles. For Exam-
ple, for E4

0 , the minimum degree of Z-functions over up to 5 clock cycles is 5,
and there are 40, 264, 896, and 2528 Z-functions over 2, 3, 4 and 5 clock cycles,
respectively.

The computation of the number of Z-functions over 6 clocks for E5
0 was

still in progress when we finalized this paper. Since in all our experiments, the
minimum degree of the Z-functions never decreased with increasing r, we suspect
that mindeg = 6 will also hold for E5

0 and r = 6.

Table 5. mindeg and number of Z-functions for the candidate generators

Cipher E0 E1
0 E2

0 E3
0 E4

0 E5
0

mindeg 4 3 6 3 5 6
Clocks Number of equations
r = 2 0 12 0 4 40 12
r = 3 0 48 24 40 264 318
r = 4 16 144 160 144 896 1416
r = 5 64 384 544 416 2528 > 0
r = 6 192 ? > 0 ? ? ?
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Abstract. Let p be a prime and let a and c be integers modulo p. The
quadratic congruential generator (QCG) is a sequence (vn) of pseudo-
random numbers defined by the relation vn+1 ≡ av2

n +c mod p. We show
that if sufficiently many of the most significant bits of several consecu-
tive values vn of the QCG are given, one can recover in polynomial time
the initial value v0 (even in the case where the coefficient c is unknown),
provided that the initial value v0 does not lie in a certain small subset
of exceptional values.

1 Introduction

For a prime p, denote by IFp the field of p elements and always assume that it is
represented by the set {0, 1, . . . , p− 1}. Accordingly, sometimes, where obvious,
we treat elements of IFp as integer numbers in the above range.

For fixed a ∈ IF∗
p, c ∈ IFp, the quadratic generator (vn) of elements of IFp is

given by the recurrence relation

vn+1 ≡ av2
n + c mod p n = 0, 1, . . . , (1)

where v0 is the initial value.
We refer to the coefficients a and c as the multiplier and shift , respectively.

This generator has many interesting applications in cryptography, see [4, 14, 15,
16, 17, 9].

In the cryptographic setting, the initial value v0 and the constants a and c
are assumed to be the secret key, and we want to use the output of the generator
as a stream cipher. Of course, if several consecutive values vn are revealed, it is
easy to find v0, a and c. So in this setting, we output only the most significant
bits of each vn in the hope that this makes the resulting output sequence difficult
to predict. The paper [3], shows that not too many bits can be output at each
stage: the quadratic generator is unfortunately polynomial time predictable if
sufficiently many bits of its consecutive elements are revealed, so long as a small
number of secret keys are excluded. However, some of the results in that paper
only hold after excluding a small set of a, see [3–Theorem 3]. If this small set is
not excluded, the algorithm for finding the secret information may fail. An opti-
mist might hope that by deliberately choosing a to lie in this excluded set, one

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 118–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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can generate cryptographically stronger sequences. This paper aims to show that
this strategy is unlikely to succeed. Namely we introduce some modifications and
additions to the method of [3] which allow us to attack the generators no matter
how the value of a is chosen. In fact, our idea is similar to the approach in pa-
per [2]. We demonstrate our approach in the special cases when a and c are public
and when c is secret and a is public. This last case was not considered in the
mentioned paper. But we believe that the extra strength of the result we obtain
makes this situation of interest in its own right. We also believe this approach
can be extended to the case when both a and c are secret [3–Theorem 5].

Assume that the sequence (vn) is not known but, for some n, some approxi-
mations wj are given. We show that if a and c are public or if a is public and c
secret the values vn+j and a can be recovered from this information in polyno-
mial time if the approximations wj are sufficiently good and if a certain small
set of initial values v0 are excluded. (The results in [3] exclude a small set of a
in addition to values of v0, and so in this sense our result here is stronger.)

The remainder of the paper is structured as follows.
We start with a short outline of some basic facts about lattices in Section 2.1

and polynomial in congruences Section 2.2. In Section 3 we consider the cases of
quadratic generator with known multiplier and shift in Subsection 3.1 and with
known multiplier and unknown shift in Subsection 3.2. Finally, Section 4 makes
some final comments and poses several open questions.

2 Lattices and Polynomials

2.1 Background on Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.

We review several related results and definitions on lattices which can be
found in [5]. For more details and more recent references, we also recommend
consulting [1, 6, 7, 11, 12, 13].

Let {b1, . . . , bs} be a set of linearly independent vectors in IRr. The set

L = {z : z = c1b1 + . . .+ csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . , bs}. If s = r, the lattice L
is of full rank.

To each lattice L one can naturally associate its volume

vol (L) =
(
det (〈bi, bj〉)s

i,j=1

)1/2
,

where 〈a, b〉 denotes the inner product. This definition does not depend on the
choice of the basis {b1, . . . , bs}.

For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem, see Theorem 5.3.6 in Section 5.3 of [5], gives the upper bound

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2 vol (L)1/s (2)
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on the shortest nonzero vector in any s-dimensional lattice L in terms of its
volume. In fact, s1/2 can be replaced by the Hermite constant γ

1/2
s , for which

we have
1

2πe
s+ o(s) ≤ γs ≤

1.744
2πe

s+ o(s), s→∞.

The Minkowski bound (2) motivates a natural question: how to find the
shortest vector in a lattice. The celebrated LLL algorithm of Lenstra, Lenstra and
Lovász [10] provides a desirable solution in practice, and the problem is known
to be solvable in deterministic polynomial time (polynomial in the bit-size of the
basis of L), provided that the dimension of L is fixed (see Kannan [8–Section 3],
for example). The lattices in this paper are of fixed dimension. (Note that there
are several indications that the shortest vector problem is NP-complete when
the dimension grows.)

In fact, in this paper we consider only very special lattices. Namely, only
lattices which are consisting of integer solutions x = (x0, . . . , xs−1) ∈ ZZs of the
system of congruences

s−1∑
i=0

aijxi ≡ 0 mod qj , j = 1, . . . ,m,

modulo some integers q1, . . . , qm. Typically (although not always) the volume
of such a lattice is the product Q = q1 . . . qm. Moreover, all the aforementioned
algorithms, when applied to such a lattice, become polynomial in logQ.

2.2 Polynomial Congruences

Our second basic tool is essentially the theorem of Lagrange which asserts that
a non-zero univariate polynomial of degree N over any field has no more than
N zeros in this field.

The polynomials we consider belong to a certain family of functions
parametrised by small vectors in a certain lattice, thus the size of the family
can be kept under control.

Now we present a technical result for later use. The following lemma is an
adaptation of an argument in the paper [2]:

Lemma 1. Let p > 5 be a prime and let α be a nonzero integer modulo p. Then
the bivariate congruence

αx ≡ y mod p,

with gcd(x, y) = 1, |x| < p1/3 and |y| < p1/3 has at most two integer solutions
(x, y).

Proof. Suppose that (x, y) and (x′, y′) are two solutions. Then xy′ ≡ yx′ mod p
and since both xy′ and yx′ have absolute value at most p2/3 we find that xy′ =
yx′. But since gcd(x, y) = gcd(x′, y′) = 1 we now obtain the thesis.
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3 Predicting the Quadratic Generator

Throughout the paper the term polynomial time means polynomial in log p.
Our results involve another parameter Δ which measures how well the values wj

approximate the terms vn+j . This parameter is assumed to vary independently
of p subject to satisfying the inequality Δ < p (and is not involved in the
complexity estimates of our algorithms.)

More precisely, we say that w is a Δ-approximation to u if |w − u| ≤ Δ. In
all of our results, the case where Δ grows like a fixed power pδ where 0 < δ < 1
corresponds to the situation where a positive proportion δ of the least significant
bits of terms of the output sequence remain hidden.

To simplify the notation, we assume that n = 0 from now on.

3.1 Predicting the Quadratic Generator with Known Multiplier
and Shift

We can formulate the main result in this subsection.

Theorem 1. Let p be a prime number and let Δ be an integer such that p > Δ ≥
1. For any a ∈ IF∗

p and c ∈ IFp, there exists a set U(Δ; a, c) ⊆ IFp of cardinality
#U(Δ; a, c) = O(Δ4) with the following property. There exists an algorithm
which, when given a, c and Δ-approximations w0, w1 to two consecutive values
v0, v1 produced by the quadratic generator (1), where v0 �∈ U(Δ; a, c), returns the
value of v0 in deterministic polynomial time.

Proof. The theorem is trivial when Δ4 ≥ p and we assume that Δ4 < p. We fix
a, c ∈ IFp and we assume that v0 ∈ IFp is chosen so as not to lie in a certain subset
U(Δ; a, c) of IF∗

p of cardinality O(Δ4). As its definition is fairly complicated we
define it gradually.

Let εj := vj − wj , j = 0, 1. From v1 ≡ av2
0 + c mod p, we obtain

w1 + ε1 − a(w0 + ε0)2 − c ≡ 0 mod p.

Writing

A ≡ (w1 − aw2
0 − c) mod p, B1 ≡ −2aw0Δ mod p,

B2 ≡ Δ mod p, C ≡ −aΔ2 mod p,

we obtain
AΔ2 +B1Δε0 +B2Δε1 + Cε20 ≡ 0 mod p. (3)

Therefore the lattice L consisting of integer solutions

x = (x0, x1, x2, x3) ∈ ZZ4

of the system of congruences

Ax0 +B1x1 +B2x2 + Cx3 ≡ 0 mod p,

x0 ≡ 0 mod Δ2,

x1 ≡ x2 ≡ 0 mod Δ,
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contains a vector

e =
(
Δ2e0, Δe1, Δe2, e3

)
=
(
Δ2, Δε0, Δε1, ε

2
0
)
.

We have
e0 = 1, |e1|, |e2| ≤ Δ, |e3| ≤ Δ2,

thus
‖e‖ ≤

(
4Δ4)1/2

= 2Δ2.

Let f =
(
Δ2f0, Δf1, Δf2, f3

)
be a shortest nonzero vector in L. So, ‖f‖ ≤

‖e‖ ≤ 2Δ2. We have

|f0| ≤ 2, |f1|, |f2| ≤ 2Δ, |f3| ≤ 2Δ2.

Note that we may compute f in polynomial time from the information we are
given. The vector d = f0e−e0f = (0, Δd1, Δd2, d3) ∈ L and has first component
0. We might hope that e and f are always parallel. If not, we claim that d1 = 0
unless v0 belongs to the set V(Δ; a, c) which we define below.

Using the definition of L, we find that

−2aw0d1 + d2 − ad3 ≡ 0 mod p, (4)

where di = eif0 − fi, and thus |di| ≤ 2|ei|+ |fi| for i = 1, 2, 3. Hence

|d1|, |d2| ≤ 4Δ, |d3| ≤ 4Δ2. (5)

Substituting wi = vi − εi, i = 0, 1, into the congruence (4), we find the
following congruence

−2ad1v0 ≡ E mod p,

where
E = a (−2d1ε0 + d3)− d2.

We define U(Δ; a, c) as the set a values v0 that satisfy some congruence
of the form (4) with d1 �≡ 0 mod p. The bounds (5) imply that d1 can take
only O(Δ) distinct values. Moreover, E can take O(Δ3) distinct values (because
2d1ε0 − d3 = O(Δ2) and d2 = O(Δ)). Since d1 �≡ 0 mod p, this means that
#U(Δ; a, c) = O(Δ4).

So, we can assume that v0 �∈ U(Δ; a, c). The bound (5) on |d1| and this
assumption imply

d1 = 0 and − d2 + ad3 ≡ 0 mod p.

We distinguish two cases: f0 �= 0 and f0 = 0 and analyze them separately.

Predicting the generator when f0 �= 0. Since d1 = 0 we have f0ε0−f1 ≡ 0 mod p.
The bound on |f1| shows that ε0 = f1/f0 and so we may compute the secret
information ε0.
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Predicting the generator when f0 = 0. In this case we have d = f = (0, 0, Δf2, f3)
verifying f2 ≡ af3 mod p. It is easy to see that f3 �≡ 0 mod p. Otherwise would
contradict the fact that f is a nonzero vector. Hence f3a ≡ f2 mod p and so we
may write

sa ≡ r mod p, where r = f2/ gcd(f2, f3) and s = f3/ gcd(f2, f3).

Note that r and s are coprime,

|r| ≤ 2Δ, |s| ≤ 2Δ2. (6)

Moreover we know explicitly r and s since we have computed f .
From the congruence (3) we derive

rw2
0 − sw1 + sc︸ ︷︷ ︸+ 2rw0︸ ︷︷ ︸ ε0 − sε1 + rε20 ≡ 0 mod p

We now consider a new lattice: the lattice L′ consisting of solutions x =
(x0, x1, x2) ∈ ZZ3 of the congruences

L′ :

⎧⎨⎩ (rw2
0 + sc− sw1)Δ−3x0 + 2rw0Δ

−2x1 + x2≡ 0 mod p
x0≡ 0 mod Δ3

x1≡ 0 mod Δ2
(7)

It is easy to check that the lattice (7) contains the vector

e′ =
(
Δ3, Δ2ε0, rε

2
0 − sε1)

)
.

Thus the Euclidean norm ‖e′‖ of e′ satisfies the inequality

‖e′‖ ≤
√
Δ6 +Δ6 + 16Δ6 = 3

√
2Δ3.

Again, we now show that all short vectors in L′ are parallel to e′ unless v0
belongs to the set V ′(Δ; a, b) which we define below.

Assume, for a contradiction, that there is another vector

f ′ = (Δ3f ′
0, Δ

2f ′
1, f

′
2) ∈ L′

with ‖f ′‖ ≤ ‖e′‖ ≤ 3
√

2Δ3 which is not parallel to e′. The vector d′ ∈ L′
defined by

d′ = f ′ − f ′
0e

′ = (0, Δ2d′1, d
′
2).

verifies:
|d′1| ≤ 9Δ, |d′2| ≤ 21Δ3. (8)

Using the first congruence in (7), we find that

2rw0d
′
1 + d′2 ≡ 0 mod p. (9)

If d′1 ≡ 0 mod p, then using bounds (8) we obtain d′1 = d′2 = 0. This implies
that vectors e′ and f ′ are parallel which it is a contradiction.
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Substituting w0 = v0 − ε0 in the congruence (9)

2rv0d
′
1 ≡ E′ mod p, (10)

where E′ ≡ 2rε0d′1 − d′2 mod p. We define V ′(Δ; a, c) the set of values v0 that
satisfy some congruence of the form (10) with d′1 �≡ 0 mod p. Since d′1 �≡ 0 mod p,
the congruence (10) can be satisfied for at most 1 values of v0 once r, d′1 and
E′ have been chosen. By bounds (6) we can apply Lemma 1 then there are
at most 2 choices for r. There are O(Δ3) choices for E′ since |E′| ≤ 42Δ3.
Hence there are only O(Δ4) values of v0 that satisfy some congruence of the
form (10) where the d′i and E′ satisfy the appropriate bounds. This means that
#V ′(Δ; a, c) = O(Δ4). So all short vectors in L′ are parallel to e′ whenever
v0 �∈ V ′(Δ; a, b).

Finally, we apply a deterministic polynomial time algorithm for the shortest
vector problem in a finite dimensional lattice to find a shortest nonzero vector
f ′ in L′, and this vector must be parallel to e′. We recover e′ by using the fact
that e′ = f ′/f ′

0. This gives us ε0 which is used to calculate v0.
Defining

U(Δ; a, b) = V(Δ; a, b) ∪ V ′(Δ; a, b)

which concludes the proof.

As we said in the introduction section [3–Theorem 3] excludes a small set of
values of a.

3.2 Predicting the Quadratic Generator with Known Multiplier
and Unknown Shift

In this subsection we consider the problem of breaking the quadratic generator
given a and approximations to three consecutive values. We prove the following
result:

Theorem 2. Let p be a prime number and let Δ be an integer such that p >
Δ ≥ 1. For any a ∈ IF∗

p and c ∈ IFp, there exists a set U(Δ; a, c) ⊆ IFp of
cardinality #U(Δ; a, c) = O(Δ5) with the following property: there exists an
algorithm which, when given a and Δ-approximations wi, i = 0, 1, 2 to three
consecutive values v0, v1, v2 produced by the quadratic generator (1), where v0 �∈
U(Δ; a, c), recovers v0 and c in deterministic polynomial time.

Proof. We can assume that Δ5 < p and that v0 ∈ IFp is chosen so as not to lie in
a certain subset U(Δ; a, c) of IF∗

p of cardinality O(Δ5). As its definition is fairly
complicated we define it gradually. By hypothesis, we have:

vi = wi + εi, |εi| ≤ Δ, i = 0, 1, 2 , and av2
i + c ≡ vi+1 mod p, i = 0, 1.

So, we obtain the following equation that involves the known parameters a, wi

and with the desired information εi:

(aw2
0−w1−aw2

1+w2)+2aw0 ε0︸︷︷︸−(1+2aw1) ε1︸︷︷︸+ ε2︸︷︷︸+a (ε20 − ε21)︸ ︷︷ ︸ ≡ 0 mod p

(11)
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Then, the vector (1, ε0, ε1, ε2, ε20 − ε21) satisfies the congruence (11) with known
coefficients. In order to handle a vector with norm-balanced components, we
write:

(aw2
0 − w1 − aw2

1 + w2) Δ2︸︷︷︸+2aw0ΔΔε0︸︷︷︸−(1 + 2aw1)ΔΔε1︸︷︷︸+
+ΔΔε2︸︷︷︸+aΔ2 (ε20 − ε21)︸ ︷︷ ︸ ≡ 0 mod p.

So, the e := (Δ2, Δε0, Δε1, Δε2, ε
2
0 − ε21) lies in the lattice L consisting of

(x0, x1, x2, x3, x4) ∈ ZZ5 verifying:

L :

⎧⎪⎪⎨⎪⎪⎩
(aw2

0 − w1 − aw2
1 + w2)x0 + 2aw0Δx1 − (1 + 2aw1)Δx2+

+Δx3 + aΔ2x4 ≡ 0 mod p,
x0 ≡ 0 mod Δ2,

x1, x2, x3 ≡ 0 mod Δ.

Also, we have ‖e‖ < 3Δ2. We can compute on polynomial time a shortest vector
f in the lattice L:

f =: (Δ2f0, Δf1, Δf2, Δf3, f4), ‖f‖ < 3Δ2,

|f0| < 3, |f1|, |f2|, |f3| < 3Δ, |f4| < 3Δ2.
(12)

We hope that e and f are always parallel, that this

d := f0e− f = (0, Δd1, Δd2, Δd3, d4) ∈ L

is the null vector. If not, we claim that d1 = d2 = 0 unless v0 belongs to the set
V(Δ; a, c) which we define below. Substituting in (11) we derive

2aw0d1 − (1 + 2aw1)d2 + d3 + ad4 ≡ 0 mod p,

and using the bounds in (12)

|d1|, |d2|, |d3| < 6Δ, |d4| < 9Δ2 (13)

Now, plugin wi = vi − εi, i = 0, 1 in the above congruence, we get

2a(v0 − ε0)d1 − (1 + 2a(v1 − ε1))d2 + d3 + ad4 ≡ 0 mod p.

Substituting v1 ≡ av2
0 + c mod p in the above congruence we obtain:

2ad1v0 − 2ad1ε0 − d2 − 2ad2(av2
0 + c) + 2ad2ε1 + d3 + ad4 ≡ 0 mod p.

Then, P (v0) ≡ 0 mod p with

P (T ) = −2a2d2T
2 + 2ad1T − 2ad1ε0 − d2 − 2ad2c + 2ad2ε1 + d3 + ad4.

Let’s define the first piece of the exceptional set V(Δ; a, c) as the set of
elements v0 ∈ IFp such that there exist integers d1, d2, d3, d4, ε0, ε1 satifying:

d1d2 �≡ 0 mod p and P (v0) ≡ 0 mod p.
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The bounds in (13) imply that the number of elements in V(Δ; a, c) is O(Δ5),
because in the equation:

−2a2d2v
2
0 + 2ad1v0 + 2ad2c+ d2 − d3 ≡ a(2d2ε1 − 2d1ε0 + d4) mod p,

there may exist less than O(Δ2) possibilities for the right term. On the other
hand, in the left term, there may appear O(Δ3) different (always nonconstant)
polynomials.

Whenever v0 �∈ V(Δ; a, c), it must be d1 = d2 = 0, because of the bounds for
these integers, see again (13).

Once under this assumption, we look at the first coefficient of the vector f .
If f0 �= 0, we can easily recover:

ε0 = f1(f0)−1, ε1 = f2(f0)−1, (as identities in ZZ).

We concentrate the study when f0 = 0. Then, d = (0, 0, Δd2, Δd3, d4) with

d3 + ad4 = f3 + af4 ≡ 0 mod p

It is easy to see that f4 �≡ 0 mod p, otherwise f is the null vector. We compute
integers r, s, with gcd(r, s) = 1, and |r| < 3Δ, |s| < 3Δ, such that:

a ≡ rs−1 mod p

By Lemma 1, the possibilities for these integers do not vary as we consider
different aproximations, but remain fixed for the parameters a, p,Δ. Now, we
change equation (11):

(rw2
0 − sw1 − rw2

1 + sw2) + 2rw0ε0 − (s+ 2rw1)ε1 + sε2 + r(ε20 − ε21) ≡ 0 mod p.

(rw2
0−sw1−rw2

1+sw2)+2w0r ε0︸︷︷︸−2w1r ε1︸︷︷︸+s(ε2 − ε1)+r(ε20 − ε21)︸ ︷︷ ︸≡0 mod p.

(14)
Finally,

(rw2
0 − sw1 − rw2

1 + sw2) Δ3︸︷︷︸+ 2w0rΔΔ2ε0︸ ︷︷ ︸−2w1rΔΔ2ε1︸ ︷︷ ︸ +

+Δ3 s(ε2 − ε1) + r(ε20 − ε21)︸ ︷︷ ︸ ≡ 0 mod p.

So, the vector e′ := (Δ3, Δ2ε0, Δ
2ε1, s(ε2 − ε1) + r(ε20 − ε21)) lies in the lattice:

L′ :

⎧⎨⎩
(rw2

0 − sw1 − rw2
1 + sw2)x0 + 2rw0Δx1 − 2rw1Δx2 +Δ3x3 ≡ 0 mod p

x0 ≡ 0 mod Δ2

x1, x2 ≡ 0 mod Δ2

Again, we now show that all short vectors in L′ are parallel to e′ unless v0
belongs to the set V ′(Δ; a, b) which we define below.



Cryptanalysis of the Quadratic Generator 127

Assume, for a contradiction, that there is another vector. We compute on
polynomial time a vector f ′ with minimum norm in L′.

f ′ = (Δ3f ′
0, Δ

2f ′
1, Δ

2f ′
2, f

′
3), ‖f ′‖ < 13Δ3

|f ′
0| < 13, |f ′

1|, |f ′
2| < 13Δ, |f ′

3| < 13Δ3 (15)

The vector d′ := f ′
0e

′−f ′ =: (0, Δ2d′1, Δ
2d′2, d

′
3) is also in the lattice L′. We can

bound its coefficients by (15):

|d′1|, |d′2| < 26Δ, |d′3| < 169Δ3. (16)

Now, by (14), we find that

2w0rd
′
1 − 2w1rd

′
2 + d′3 ≡ 0 mod p (17)

Substituting w0 = vi − εi in the congruence (17) we derive

2(v0 − ε0)rd′1 − 2(av2
0 + c− ε1)rd′2 + d′3 ≡ 0 mod p. (18)

Then, P ′(v0) ≡ 0 mod p with

P ′(T ) := −2ard′2T
2 + 2rd′1T − 2rd′1ε0 − 2rd′2c+ 2rd′2ε1 + d′3.

We define V ′(Δ; a, c) the set of elements v0 ∈ IFp such that there exist integers
d′1, d

′
2, d

′
3, ε0, ε1, r, s with the appropriate bounds verifying:

d′1d
′
2 �≡ 0 mod p and P ′(v0) ≡ 0 mod p.

By the bounds in the integers d′1, d
′
2, d

′
3, ε0, ε1, r, s, we have that #V ′

(Δ; a, c) = O(Δ5), because in the equation:

−2ard′2v
2
0 + 2rd′1v0 + 2rd′2c ≡ 2rd′1ε0 − 2rd′2ε1 − d′3 mod p,

there areO(Δ3) options for the right side, andO(Δ2) different (and nonconstant)
polynomials in v0 for the left one.

Now, if v0 �∈ V ′(Δ; a, c), it must be d′1 ≡ d′2 ≡ 0 mod p, then using bounds
(16) we obtain d′1 = d′2 = d′3 = 0. This implies that vectors e′ and f ′ are parallel
which it is a contradiction. So, e′ and f ′ are parallel vectors.

Once again, if we have f ′
0 �≡ 0 mod p, we recover easily the approximation

errors and the orginal values. Now, if f ′
0 ≡ 0 ⇒ f ′

0 = 0, we would have f ′ =
(0, 0, 0, 0′) which it is a contradiction.

We just must define U(Δ; a, c) := V(Δ; a, c)∪V ′(Δ; a, c) to comple the proof.

4 Remarks and Open Questions

Obviously our Theorem 1 is nontrivial only for Δ = O(p1/4) and Theorem 2 only
for Δ = O(p1/5). Thus increasing the size of the admissible values of Δ (even at
the cost of considering more consecutive approximations) is interesting.
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One can presumably obtain a very similar result in the dual case, where c is
given but the multiplier a is unknown.

As we have mentioned several other results about predictability of nonlin-
ear generators have recently been obtained in [3]. However, they are somewhat
weaker than the present result because each of them excludes a certain small
exceptional set of pairs of parameters (a, c). In particular the Theorem 5 of
[3] when both multiplier and shift are secret. We believe that the approach of
this work may help to eliminate this drawback. Certainly this question deserves
further study.

We do not know how to predict the quadratic (and other generators consid-
ered in [3]) in the case when the modulus p is secret as well. We remark that in
the case of the linear congruential generator a heuristic approach to this problem
has been proposed in [6]. However it is not clear how to extend this (even just
heuristically) to the case of nonlinear generators.

Acknowledgment. This work is partially supported by Spanish Ministry of
Science grant MTM2004-07086.
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Abstract. Dragon is a word oriented stream cipher submitted to the
ECRYPT project, it operates on key sizes of 128 and 256 bits. The
original idea of the design is to use a nonlinear feedback shift register
(NLFSR) and a linear part (counter), combined by a filter function to
generate a new state of the NLFSR and produce the keystream. The
internal state of the cipher is 1088 bits, i.e., any kinds of TMD attacks
are not applicable. In this paper we present two statistical distinguishers
that distinguish Dragon from a random source both requiring around
O(2155) words of the keystream. In the first scenario the time complexity
is around O(2155+32) with the memory complexity O(232), whereas the
second scenario needs only O(2155) of time, but O(296) of memory. The
attack is based on a statistical weakness introduced into the keystream
by the filter function F . This is the first paper presenting an attack on
Dragon, and it shows that the cipher does not provide full security when
the key of size 256 bits is used.

1 Introduction

A stream cipher is a cryptographic primitive used to ensure privacy over a
communication channel. A common way to build a stream cipher is to use a
keystream generator (KSG) and add the plaintext and the output from the
keystream generator, resembling a one-time pad. A block cipher is another cryp-
tographic primitive, which could be considered as a one-to-one function, mapping
a block of the plaintext to a block of the ciphertext. Although block ciphers are
well studied, stream ciphers can offer certain advantages compared to block ci-
phers. Stream ciphers can offer much higher speed, and can be constructed to
be much smaller in hardware, and thus they are of great interest to the indus-
try. To mention a few of the most recent proposals of such word-oriented KSGs
are, e.g., VMPC [1], RC4A [2], RC4 [3], SEAL [4], SOBER [5], SNOW [6, 7],
PANAMA [8], Scream [9], MUGI [10], Helix [11], Rabbit [12], Turing [13], etc.

The NESSIE project [14] was funded by the European Unions Fifth Frame-
work Program and was launched in 2000. The main objective was to collect a
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portfolio of strong cryptographic primitives from different fields of cryptogra-
phy, one of those fields was stream ciphers. During those three years of NESSIE
new techniques for cryptanalysis on stream ciphers were found, and many new
proposals were broken. After a few rounds of the project evaluation, all of the
stream cipher proposals were found to contain some weaknesses. At the end, no
stream cipher was included in the final portfolio.

The situation clearly requires the cryptographic community devote greater
attention to design and analysis of stream ciphers. Due to this reason, the Eu-
ropean project ECRYPT announced a call for stream cipher primitives. 35 pro-
posals were submitted to the project by April 2005, and most of them were
presented at the workshop SKEW 2005 [15] in May.

Cryptanalysis techniques discovered during the NESSIE project have allowed
to strengthen new designs greatly, and to break new algorithms has become more
difficult. However, there are many good submissions to ECRYPT, and the stream
cipher Dragon [16] is one of them.

Dragon, designed by a group of researches, Ed Dawson et. al., is a word
oriented stream cipher based on a linear block (counter) and a nonlinear feedback
shift register (NLFSR) with a very large internal state of 1088 bits, which is
updated by a nonlinear function denoted by F . This function is also used as
a filter function producing the keystream. The idea to use a NLFSR is quite
modern, and there are not many cryptanalysis techniques on NLFSRs yet found.

This is the first work which propose an attack on Dragon. In a distinguishing
attack one has to decide whether a given sequence (keystream) is the product of a
cipher, or a truly random generator. In this paper we show how statistical weak-
nesses in the F function can be used to create a distinguisher for Dragon. Our
distinguishing attack requires around O(2155) words of keystream from Dragon,
it has time complexity O(2155+32) and needs O(232) of memory, an alternative
method is also presented that only requires time complexity O(2155) but needs
O(296) of memory. This is an academic attack which shows that Dragon does
not provide full security when a key of size 256 bits is used, i.e., it can be broken
faster than exhaustive search. This kind of analysis is, perhaps, the most pow-
erful attack on stream ciphers, and, in some cases, it can be turned into a key
recovery attack.

The outline of the paper is the following. In Section 2 a short description
of the stream cipher Dragon is given. Afterward, in Section 3, we derive linear
relations and build our distinguisher. In Section 4 we summarize different at-
tack scenarios on Dragon, and finally, in Section 5 we present our results, make
conclusions and discuss possible ways to overcome the attack.

1.1 Notations and Assumptions

For notation purposes we use ⊕ and � to denote 32 bit parallel XOR and
arithmetical addition modulo 232, respectively. By x � n we denote a binary
shift of x by n bits to the right. We write x(t) to refer the value of a variable x
at the time instance t. By PExpr we denote a distribution of a random variable
or an expression “Expr”.
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To build the distinguisher, we first make two reasonable assumptions common
for linear cryptanalysis:

(a) Assume that at any time t the internal state of NLFSR is from the uniform
distribution, i.e., the words Bi are considered independent and uniformly
distributed;

(b) Assume that the keystream words are independent.

2 A Short Description of Dragon

Dragon is a stream cipher constructed using a large nonlinear feedback shift reg-
ister, an update function denoted by F , and a memory denoted by M1 . It is a
word oriented cipher operating on 32 bit words, the NLFSR is 1024 bits long, i.e.,
32 words long. The words in the internal state are denoted by Bi, 0 ≤ i ≤ 31 .
The memory M (counter) contains 64 bits, which is used as a linear part with the
period of 264. The cipher handles two key sizes, namely 128 bits keys and 256 bit
keys, in our attack we disregard the initialization procedure and just assume that
the initial state of the NLFSR is truly random.

Each round the F function takes six words as input and produces six words
of output, as shown in Figure 1. These six words, denoted by a, b, c, d, e, f , are
formed from words of the NLFSR and the memory register M , as explained in
(1), where M = (ML||MR).

a = B0 b = B9 c = B16

d = B19 e = B30 ⊕ML f = B31 ⊕MR

(1)

The F function uses six Z232 → Z232 S-boxes G1, G2, G3, H1, H2 and H3,
the purpose of which is to provide high algebraic immunity and non-linearity.
These S-boxes are constructed from two other fixed Z28 → Z232 S-boxes, S1 and
S2, as shown below.

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3),
G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3),
G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3),
H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3),
H2(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3),
H3(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3),

where 32 bits of input, x, is represented by its four bytes as x = x0||x1||x2||x3.
The exact specification of the S-boxes can be found in [16]. The output of

the function F is denoted as (a′, b′, c′, d′, e′, f ′), from which the two words a′ and

1 This is rather a new way to design stream ciphers, when two independent linear and
nonlinear parts are combined by a filter function. A similar idea is used in other pro-
posals to ECRYPT, e.g., stream cipher Grain and others.
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Fig. 1. F -function

e′ forms 64 bits of keystream as k = a′||e′. Two other output words from the
filter function are used to update the NLFSR as follows B0 = b′, B1 = c′, the
rest of the state is updated as Bi = Bi−2, 2 ≤ i ≤ 31. A short description of the
keystream generation function is summarized in Figure 2.

Input = {B0|| . . . ||B31, M}
1. (ML||MR) = M.
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f).
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31.
6. M + +
7. k = a′||e′

Output = {k, B0, . . . , B31, M}

Fig. 2. Dragons’s Keystream Generation Function

3 A Linear Distinguishing Attack on Dragon

3.1 Linear Approximation of the Function F

Recall, at time t the input to the function F is a vector of six words
(a, b, c, d, e, f) = (B0, B9, B16, B19, B30 ⊕ML, B31 ⊕MR). The output from the
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function is (a′, b′, c′, d′, e′, f ′). To simplify further expressions let us introduce
new variables. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

b′′ = b⊕ a = B9 ⊕B0

c′′ = c� (a⊕ b) = B16 � (B9 ⊕B0)
d′′ = d⊕ c = B19 ⊕B16

f ′′ = f ⊕ e = B30 ⊕B31 ⊕ML ⊕MR

(2)

If the words denoted by Bs are independent, then these new variables will
also be independent (since B19 is independent of B16 and random, then d′′ is
independent and random as well; similarly, independence of B16 lead to the
independence of c′′, etc.).

The output from F can be expressed via (a, b′′, c′′, d′′, e, f ′′) as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a′ = (a � f ′′)⊕H1(b′′ ⊕G3(e � d′′))⊕(
(f ′′ ⊕G2(c′′)) �

(
c′′ ⊕H2(d′′ ⊕G1(a� f ′′))

))
e′ = (e � d′′)⊕H3(f ′′ ⊕G2(c′′))⊕(

(d′′ ⊕G1(a � f ′′)) �
(
(a � f ′′)⊕H1(b′′ ⊕G3(e � d′′))

)) (3)

Let us now analyze the expression for a′. The variable b′′ appears only once
(in the input of H1), which means that this input is independent from other
terms of the expression, i.e., the term H1(. . .) can be substituted by H1(r1),
where r1 is some independent and uniformly distributed random variable. Then,
the same will happen with the input for H2.

We would like to approximate the expression for a′ as

a′ = a⊕Na, (4)

where Na is some non uniformly distributed noise variable. If we XOR both sides
with a and then substitute a′ with the expression from (3), we derive

Na = a⊕ (a � f ′′)⊕H1(r1)⊕
(
(f ′′ ⊕G2(c′′)) � (c′′ ⊕H2(r2))

)
. (5)

Despite the fact that G and H are Z232 → Z232 functions, they are not likely
to be one-to-one mappings, consider the way the S-boxes are used as Z28 → Z232

functions 2 . It means that even if the input to a G or a H function is completely
random, then the output will still be biased. Moreover, the output from the
expressions (x ⊕ Gi(x) and similarly x ⊕Hi(x)) is also biased, since x in these
expressions plays a role of an approximation of the Gi and the Hi functions.
These observations mean that the noise variable Na, is also biased if the input
variables are independent and uniformly distributed.
2 The cipher Turing uses similar Z232 → Z232 functions based on Z28 → Z232 S-boxes,

which can be regarded as a source of weakness. However, no attack was found on
Turing so far.
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By a similar observation, the expression for e′ can also be approximated as
follows.

e′ = e⊕Ne, (6)

where Ne is the noise variable. The expression for Ne can similarly be derived
as

Ne = e⊕ (e� d′′)⊕H3(r3)⊕
(
(d′′ ⊕G1(a′′)) � (a′′ ⊕H1(r4)

)
, (7)

where a′′ = a�f ′′ is a new random variable, which is also independent since it has
f ′′ as its component, and f ′′ does not appear anywhere else in the expression (7).
The two new variables r3 and r4 are also independent and uniformly distributed
random variables by a similar reason.

3.2 Building the Distinguisher

The key observation for our distinguisher, is that one of the input words to the
filter function F , at time t is partially repeated as input to F at time t+15, i.e.,

e(t+15) = a(t) ⊕M
(t+15)
L . (8)

Let us consider the following sum of two words from the keystream.

s(t) = a′(t) ⊕ e′(t+15) = (a(t) ⊕N (t)
a )⊕ (a(t) ⊕M

(t+15)
L ⊕N (t+15)

e )

= N (t)
a ⊕N (t+15)

e︸ ︷︷ ︸
N

(t)
tot

⊕M (t+15)
L

(9)

By this formula we show how to sample from a given keystream, so that the
samples s(t) are from some nonuniform distribution PDragon of the noise variable
N

(t)
tot (later also referred as P

N
(t)
tot

). Collected samples s(t) form a so-called type
PType, or an empirical distribution. Then, we have two hypothesis:{

H1 : PType is drawn according to PDragon

H2 : PType is drawn according to PRandom
. (10)

To distinguish between them with negligible probability of error (whether the
samples are drawn from the noise distribution PDragon or from the uniform dis-
tribution PRandom), the type should be constructed from the following number of
samples

N ≈ 1/ε2, (11)

where ε is the bias, calculated as

ε = |PDragon − PRandom| =
232−1∑
x=0

|PDragon(x)− PRandom(x)|. (12)
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When the type PType is constructed, a common tool in statistical analysis is
the log-likelihood test. The ratio I is calculated as

I = D(PType||PRandom)−D(PType||PDragon)

=
232−1∑
x=0

PType(x) log2
PDragon(x)
PRandom(x)

, (13)

where D(·) is the relative entropy defined for any two distributions P1 and P2 as

D(P1||P2) =
∑
x∈Ω

P1(x) log2
P1(x)
P2(x)

, (14)

where Ω is the probability space.
Finally, the decision rule δ(PType) is the following

δ(PType) =

{
H1, if I ≥ 0
H2, if I < 0

. (15)

For more on statistical analysis and hypothesis testing we refer to, e.g., [17, 18].
The remaining question is how to deal with the counter value ML. Below we

present a set of possible solutions that one could consider.

(1) One possible solution would be to guess the initial state of the counter
M (0) (in total 264 combinations), and then construct 264 types from the
given keystream, assuming the value M (t)

L in correspondence to the guessed
initial value of M (0). However, it will increase the time complexity of the
distinguisher by 264 times;

(2) One more possibility is to guess the first 32 bits M (0)
R of the initial value of

the counter M (0), i.e., 232 values. If we do so, then we always know when
the upper 32 bits ML are increased, i.e., at any time t we can express M (t)

L

as follows.
M

(t)
L = M

(0)
L �Δ(t), (16)

where Δ(t) is known at each time, since M (t)
R is known. Recall from (9), the

noise variable N (t)
tot is expressed as s(t) ⊕M

(t+15)
L . However, this expression

can also be approximated as

s(t) ⊕ (M (0)
L �Δ(t+15))→ s(t) ⊕ (M (0)

L ⊕Δ(t+15))⊕N2, (17)

where N2 is a new noise variable due to the approximation of the kind
“� ⇒ ⊕”. Since M (0)

L can be regarded as a constant for every sample s(t),
it only “shifts” the distribution, but will not change the bias. Consider that
a shift of the uniform distribution is again the uniform distribution, so, the
distance between the noise and the uniform distributions will remain the
same. This solution requires O(232) guesses, and also introduce a new noise
variable N2;
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(3) Another possible solution could be to consider the sum of two consecutive
samples s(t) ⊕ s(t+1). Since ML changes slowly, then with probability (1 −
2−32) we have M

(t)
L = M

(t+1)
L , and this term will be eliminated from the

expression for that new sample. Unfortunately, this method will decrease
the bias significantly, and then the number of required samples N will be
much larger than in the previous cases.

In our attack we tried different solutions, and based on simulations we decided
to choose solution (2) for our attack, as it has the lowest attack complexity.

3.3 Calculation of the Noise Distribution

Consider the expression for the noise variable s(t) ⊕M
(t+15)
L = N

(t)
a ⊕ N

(t+15)
e .

For simplicity in the formula, we omit time instances for variables.

N
(t)
tot = N (t)

a ⊕N (t+15)
e = (a � f ′′)⊕ (a� d′′)⊕H1(r1)⊕H3(r3)⊕

⊕
((
f ′′ ⊕G2(c′′)

)
�
(
c′′ ⊕H2(r2)

))
⊕
((
d′′ ⊕G1(a′′)

)
�
(
a′′ ⊕H1(r4)

)) (18)

We propose two ways to calculate the distribution of the total noise random
variable N

(t)
tot. Lets truncate the word size by n bits (when we consider the

expression modulo 2n), then in the first case the computational complexity is
O(24n) . This complexity is too high and, therefore, requires the noise variable
to be truncated by some number of bits n ' 32, much less than 32 bits. The
second solution has a better complexity O(n2n), but introduces two additional
approximations into the expression, which makes the calculated bias smaller than
the real value, i.e., by this solution we can verify the lower bound for the bias
of the noise variable. Below we describe two methods and give our simulation
results on the bias of the noise variable N (t)

tot.

(I) Consider the expression (18) taken by modulo 2n, for some n = 1 . . . 32.
Then the distribution of the noise variable can be calculated by the fol-
lowing steps.
a) Construct three distributions, two of them are conditioned

P(G2(c′′) mod 2n|c′′), P(G1(a′′) mod 2n|a′′), P(H1(x) mod 2n)
3.

The algorithm requires one loop for c′′ (a′′ and x) of size 232. The time
required is O(3 · 232);

b) Afterwards, construct two more conditioned distributions

P(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|d′′)

and
P(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|f ′′).

3 If the inputs to the Hi functions is random, their distributions are the same, i.e.,
PH1 = PH2 = PH3 .
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This requires four loops for d′′, a′′, x(= G1(a′′) mod 2n), and y(=
H1(r4) mod 2n), which takes time O(24n) (and similar for the sec-
ond distribution);

c) Then, calculate another two conditioned distributions

P(Expr1|a) = P((a�f ′′)⊕(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|a),

P(Expr2|a) = P((a�d′′)⊕(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|a).

Each takes time O(23n);
d) Finally, combine the results, partially using FHT, and then calculate

the bias of the noise:

PNtot = P(Expr1|a) ⊕ P(Expr2|a) ⊕ PH1 ⊕ PH3 .

This will take time O(23n + 3n · 2n).
This algorithm calculates the exact distribution of the noise variable taken
modulo 2n, and has the complexity O(24n). Due to such a high computa-
tional complexity we could only manage to calculate the bias of the noise
when n = 8 and n = 10:

εI |n=8 = 2−80.59

εI |n=10 = 2−80.57. (19)

(II) Consider two additional approximations of the second � to ⊕ in (18).
Then, the total noise can be expressed as

N
(t)
tot =H1(r1)⊕H2(r2)⊕H3(r3)⊕H1(r4)⊕

(
G2(c′′)⊕ c′′

)
⊕
(
G1(a′′)⊕ a′′

)
⊕N3 ⊕N2,a ⊕N2,e,

(20)

where
N3 = (a � f ′′)⊕ (a� d′′)⊕ f ′′ ⊕ d′′,

and N2,a and N2,e are two new noise variables due to the approximation
�⇒ ⊕, i.e.,N2,a = (x� y)⊕ (x⊕ y), for some random inputs x and y, and
similar for N2,e. Introduction of two new noise variables will statistically
make the bias of the total noise variable smaller, but it can give us a lower
bound of the bias, and also allow us to operate with distributions of size 232.

First, calculate the distributions P(Hi), P(G1(a′′)⊕a′′) and P(G1(c′′)⊕c′′),
each taking time O(232). Afterward, note that the expressions for
N2,a, N2,e and N3 belong to the class of pseudo-linear functions mod-
ulo 2n (PLFM), which were introduced in [19]. In the same paper, algo-
rithms for construction of their distributions were also provided, which
take time around O(δ · 2n), for some small δ. The last step is to per-
form the convolution of precomputed distribution tables via FHT in time
O(n2n). Algorithms (PLFM distribution construction and computation of
convolutions) and data structures for operating on large distributions are
given in [19]. If we consider n = 32, then the total time complexity to



Attack the Dragon 139

calculate the distribution table for Ntot will be around O(238) operations,
which is feasible for a common PC. It took us a few days to accomplish
such calculations on a usual PC with memory 2Gb and 2×200Gb of HDD,
and the received bias of Ntot was

εII |n=32 = 2−74.515. (21)

If we also approximate (M (0)
L �Δ(t))→ (M (0)

L ⊕Δ(t))⊕N2, and add the
noise N2 to Ntot, we receive the bias

εΔII |n=32 = 2−77.5, (22)

which is the lower bound meaning that our distinguisher requires approx-
imately O(2155) words of the keystream, according to (12).

4 Attack Scenarios

In the previous section we have shown how to sample from the given keystream,
where 32 bit samples are drawn from the noise distribution with the bias
εΔII |n=32 = 2−77.5. I.e., our distinguisher needs around O(2155) words of the
keystream to successfully distinguish the cipher from random. Unfortunately, to
construct the type correctly we have to guess the initial value of the linear part
of the cipher, the lower 32 bits M

(0)
R of the counter M . This guess increases

the time complexity of our attack to O(2187), and requires memory O(232). The
algorithm of our distinguisher for Dragon is given in Table 1.

Table 1. The distinguisher for Dragon (Scenario I)

for 0 ≤ M
(0)
R < 232

PType(x) = 0, ∀x ∈ Z232

Δ = 0 (or = −1, if M
(0)
R = 0)

for t = 0, 1, . . . , 2155

if (M (0)
R � t) = 0 then Δ = Δ � 1

s(t) = a′(t) ⊕ e′(t+15) ⊕ Δ

PType(s(t)) = PType(s(t)) + 1

I = x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source
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Table 2. Distinguisher for Dragon with lower time complexity (Scenario II)

for 0 ≤ t < 2155

T [t mod 264][a′(t) ⊕ e′(t+15)] + +

for M
(0)
R = 0, . . . , 232 − 1

for Δ = 0, . . . , 264 − 1

for x = 0, . . . , 232 − 1

PType

(
x ⊕ ((Δ � M

(0)
R )  32

))
+ = T [Δ][x]

I =
∑

x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source

We, however, can also show that time complexity can easily be reduced
downto O(2155), if memory of size O(296) is available. Assume we first con-
struct a special table T [Δ][s] = #{t ≡ Δ mod 264, s(t) = s}, where the samples
are taken as s(t) = a′(t) ⊕ e′(t+15). Afterwards, for each guess of M (0)

L the type
PType(·) is then constructed from the table T in time O(296). Hence, the total
time complexity will be O(2155 + 232 · 296) ≈ O(2155). This scenario is given in
Table 2.

5 Results and Conclusions

Two versions of a distinguishing attack on Dragon were found. The first scenarios
requires a computational complexity of O(2187) and needs memory only O(232).
However, the second scenario has a lower time complexity around O(2155), but
requires a larger amount of memory O(296). These attacks show that Dragon
does not provide full security and can successfully be broken much faster than
the exhaustive search, when a key of 256 bits is used.

From the specification of Dragon we also note that the amount of the
keystream for an unique pair of the IV and the key is limited to 264. However,
our attack works when the same key and IV are used to produce 2155 words of
the keystream. This is an academic attack which shows a statistical weakness of
the keystream sequence, and reveals the leakage in the design.

Actually, our distinguisher consists of 232 subdistinguishers. If one of them
says “this is Dragon”, then it is taken as the result of the final distinguisher. If all
subdistinguishers output “Random source”, then the overall result is “Random”
as well 4.

4 The idea to use many subdistinguishers was first proposed in the attack on
Scream [20].
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Below we give a few suggestions how to prevent Dragon from this kind of
attack:

1) The linear part M changes predictably, when the initial state is known. It
might be more difficult to mount the attack if the update of M would depend
on some state of the NLFSR;

2) Another leakage is that two words a′||e′ are accessible to the attacker. If we
would have an access only to a′, or, may be, some other combination of the
output from F (like, the output a′||d′, instead), then it might also protect the
cipher from this attack. However, both these suggestions have weaknesses for
different reasons;

3) One more weakness are poor Gi and Hi S-boxes. May be they can be con-
structed in a different way, closer to some one-to-one mapping function.

Several new stream cipher proposals are based on NLFSRs and this topic has
been poorly investigated so far. We believe that it is important to study such
primitives, since it could be an interesting replacement for widely used LFSR
based stream ciphers.
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Abstract. This article presents some new results concerning two alge-
braic attacks against the F-FCSR constructions proposed in [2]. We focus
on the parameters of the stream ciphers proposed that permit to mount
algebraic attacks when using the IV mode. The complexity obtained for
the first attack described here is 245 binary instructions using 215 known
IV values for the construction F-FCSR-SF1. All the proposed attacks are
full key recovery attacks. We do not contest that the FCSRs are a good
and new idea, we just say that the chosen parameters do not ensure the
security level claimed.

Keywords: Stream cipher, cryptanalysis, algebraic attack.

1 Introduction

In [8] and [7], a new class of attacks called “algebraic attacks” was introduced.
Those cryptanalyses use the fact that the relation between the initial state con-
structed in the general case from the key and the internal state at time t is linear.
Then an attacker could construct a huge system of equations from the observed
output words using the previous remark and he does not have any more but to
solve the obtained system.

So finding non linear transition functions for stream ciphers becomes urgent.
Some propositions called T-functions were made by A. Klimov and A. Shamir
in [12, 13, 14]. An other possible choice proposed in [2] and in [3] is to use an
FCSR: a binary automaton with carries. All the results concerning the com-
plexity, the provided period comes from the 2-adic theory. In [2], the authors
proposed four constructions (F-FCSR-SF1, F-FCSR-SF8 F-FCSR-DF1 and F-
FCSR-DF8) based on a same simple construction called F-FCSR. Two others
constructions called F-FCSR-8 and F-FCSR-H based on the same principles
were proposed in the call for stream cipher primitives of the European Network
of Excellence ECRYPT (see [3] and [17]).

In this paper, we propose two algebraic attacks with known IV values against
the F-FCSRs based upon a bad choice of the parameters when using the IV mode

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 143–154, 2005.
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for the constructions proposed in [2] (not for the one described in [3]): even if
the transition function is not linear, the degree between the key bits and the
first output bit is very low. The first attack proposed is a traditional one but
the second one uses some particular properties of the structure of the FCSRs.
In fact, we could, if we made an exhaustive search on some particular key bits,
control and lower the degree between the key bits and the first output bit. These
two attacks are full key recovery attacks.

We want to point out one more time that those attacks do not threaten the
FCSRs themselves but just shows that the parameters of [2] were not carefully
chosen. We do not contest the security level provided by the FCSR (especially
against the algebraic attacks), we only claim that the security margin induced
by the total construction proposed in [2] is not sufficient. Notice also that two at-
tacks with chosen IVs against the constructions proposed in [2] will be presented
at SAC’05 by E. Jaulmes and F. Muller (see [10]). They have also studied the
version presented in [3] and published their analyses on the ECRYPT web-site
(see [9]).

This paper is organized as follows: after a short recall about the FCSRs
themselves and about the constructions proposed in [2] and in [3], Section 2
describes the particular properties used to mount the proposed attacks whereas
Section 3 describes the two proposed algebraic attacks.

2 Background on the F-FCSRs

The Feedback with Carry Shift Registers were introduced first by Klapper and
Goresky in [11]. In [2], T. Berger and F. Arnault proposed to use them as the
transition function of a filtered stream cipher. We first recall how an FCSR
automaton works. For more details on the F-FCSRs, the reader could refer to
[1, 2].

2.1 The FCSR Automaton

Let q be a negative integer such as |q| is prime and p be a number such as
0 ≤ p < |q|. Then you could write p as p =

∑n−1
i=0 pi2i and d = 1−q

2 =
∑n−1

i=0 di2i.
The FCSR automaton with feedback prime q and an initial value p produces the
2-adic expansion of p/q that could be seen as an infinite sequence of bits ai such
as (see [15]):

p = q ·
∞∑

i=0

ai2i

Let us consider the sequence of integers p(t) defined by: p(0) = p, p(t+ 1) =
(p(t)− qai)/2. It is easy to verify that 0 ≤ p(t) < −q and p(t)/q =

∑∞
j=t aj2j.

The sequences (ai) and (p(t)) could be generated from an FCSR automa-
ton defined using two registers (sets of cells): a main register M and a carry
register C.

The main register M contains n binary cells, each bit is denoted by mi(t)
(0 ≤ i ≤ n− 1). We call the integer m(t) =

∑n−1
i=0 mi(t)2i the content of M .



Two Algebraic Attacks Against the F-FCSRs Using the IV Mode 145

The carry register contains � cells where � + 1 is the number of nonzero di

digits, i.e. the Hamming weight of d. More precisely, the carry register contains
one cell for each nonzero di with 0 ≤ i ≤ n− 2. We denote ci(t) the binary digit
contained in this cell. We put ci(t) = 0 when di = 0 or when i = n − 1. We
call the integer c(t) =

∑n−2
i=0 ci(t)2i the content of C. The Hamming weight of

the binary expansion of c(t) is at most �. Note that, if di = 0, then ci(t) = 0
for all t. We denote by cj1(t), . . . , cj�

(t) the active carries cells, i.e. the � cells
corresponding with di = 1. We have c(t) =

∑�
i=1 cji(t)2ji .

A simple example with q = −347, d = 174 = 0xAE, k = 8 and � = 4 is
described on the figure just bellow.

m(t) m7 m6 m5 m4 m3 m2 m1 m0� � � � � � � �� � � � �
� � � �

c(t) 0 0 c5 0 c3 c2 c1 0

� � � �
� � � �

d 1 0 1 0 1 1 1 0

The symbol � denotes the addition with carry.

The transition function of the registers could be written

m(t + 1) = (m(t))<<1 ⊕ c(t)⊕m0(t)d (1)
c(t + 1) = (m(t))<<1 ⊗ c(t)⊕ c(t)⊗m0(t)d⊕m0(t)d ⊗ (m(t))<<1 (2)

where ⊕ denotes bitwise XOR, ⊗ denotes bitwise AND, and << 1 is a simple
shift to the left.

Note that m0(t) is the least significant bit of m(t) and represents the feedback
bit. The integers m(t), c(t) and d are integers of bit-size n (or less).

So if m(0) = p, at time t, the following relations are always satisfied:

p(t) = m(t) + 2c(t).

The transition function could also be described at the cell level:

mi(t+ 1) = mi+1(t)⊕ dici(t)⊕ dim0(t) (3)
ci(t+ 1) = di (mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)) (4)

The period T of the FCSR automaton is maximal if |q| is prime and the order
of 2 modulo q is exactly |q| − 1. In that case, T is equal to |q| − 1, so we have:
2n < T < 2n+1 − 1. The number of the possible states of the FCSR automaton
is 2n+�.

In [2], the authors proposed to use the following parameters n = 128 and
� = 68 before to apply on the chosen FCSR a filtering function. They choose the
prime number q equal to:

q1 = −493877400643443608888382048200783943827
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In [3], the authors proposed another primitive called F-FCSR-H and designed
for hardware utilization with a register length equal to n = 160 bits. The corre-
sponding connection integer is:

q2 = −1993524591318275015328041611344215036460140087963

that corresponds with n = 160 and � = 82.

2.2 The Proposed Constructions

The four constructions proposed in [2] filter some of the bits of the main register
with q = q1 in the following way:

– F-FCSR-SF1: The filtering function is known and consists of a linear func-
tion f = (f0, · · · , fn−1) on GF (2)n. If s(t) denotes the output bit at time t,
we have: s(t) =

⊕n−1
i=0 fi ·mi(t).

– F-FCSR-SF8: The filtering function is also known but the aim here is to
output one byte, so the filtering function consists in 8 sub-filters F0, · · · , F7
on 16 bits linearly independent and publicly known. The output byte S(t)
is then the XOR at sixteen bits level between the eight sub-filters and the
main register M folded at byte level.

– F-FCSR-DF1: This is the same construction as SF1 but, this time, the
filter is unknown and derived from the key.

– F-FCSR-DF8: This is the same construction as SF8 but, this time, the
filter is unknown and the eight sub-filters are derived from the key.

In [3], the authors proposed a first construction called F-FCSR-8 corresponding
with the F-FCSR-DF8 construction. The second construction submitted called
F-FCSR-H corresponds with the case where n = 160, l = 82 with the q value
equal to q2 and F-FCSR-SF8 (the 8 sub-filters are constructed using the d value)
is applied with a key setup and an IV injection defined as follows: M = K +
280 · IV . The carry register C is initialized to 0 and 128 iterations are discarded
at each IV change (for the details of the used filter see [3]).

In the previous proposed constructions, the initialization of the FCSR using
the key K of length lK = n is m(0) = K and c(0) = 0: p(0) = m(0)+2·c(0) = K.

2.3 Description of the IV Mode

An IV mode is also proposed in [2] where the IV value is directly injected in
the cells of the carry register at bit level whereas the key is injected in the main
register and in the filter if required according the F-FCSR version used. After
this initialization, the FCSR is clocked 6 times and the 6-th output bit or byte
becomes the first output bit or byte according the version we use.

This article focus on some algebraic attacks using this IV mode: the number
of clocks is not sufficient to prevent the stream-cipher from this kind of attacks:
the degree of the first output is too small.
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3 Particular Algebraic Properties of the FCSR
Automaton

We focus on this section on several algebraic properties of the FCSR that will
be used to mount the cryptanalyses presented in section 4.

3.1 Some Results on the Degree and the Number of Monomials of
Algebraic Equations

We consider here that at time t ≥ 0, the main register M = m(t) is composed
of mi(t) with i ∈ [0..n − 1] and the carry register C = c(t) of cji(t) with i ∈
[0..� − 1]. These values mi(t) and cji(t) could be seen as polynomials in the
first indeterminates (m0(0), · · · ,mn−1(0), cj1(0), · · · , cj�

(0)). In order to perform
algebraic attacks on the FCSR, we are going to study in this section the degree
and the number of monomials occurring in these polynomials.

We denote by deg(m(t)) and deg(c(t)) the maximum of the degree of each
mi(t), resp. cji(t) in terms of the monomials constructed from the unknowns
(m0(0), · · · ,mn−1(0), cj1(0), · · · , cj�

(0)).

Lemma 1. The following relations on the degree are satisfied:

deg(m(t+ 1)) ≤Max(deg(m(t)), deg(c(t)))
deg(c(t+ 1)) ≤Max(deg(m(t)) + deg(c(t)), 2 · deg(m(t)))

Proof: It is a direct consequence of the equations (1) and (2). �

Proposition 1. We have deg(m(t)) ≤ Fib(t) and deg(c(t)) ≤ Fib(t+1), ∀t ≥ 1
where Fib(t+1) is the (t+1)-th term of the Fibonacci sequence such as Fib(0) = 1
and Fib(1) = 1.

Proof: This proof could be made by induction:
At t = 0, we have deg(m(0)) = 1 = Fib(0) and deg(c(0)) = 1 = Fib(1).
Now, suppose that the relations deg(m(t)) ≤ Fib(t) and deg(c(t)) ≤ Fib(t + 1)
hold for t. Using Lemma 1, we deduce

deg(m(t+ 1)) ≤Max(Fib(n), F ib(n+ 1)) = Fib(n+ 1)
deg(c(t+ 1)) ≤ Fib(n) + Fib(n+ 1) = Fib(n+ 2) �

This bound is just an upper bound that could only be reached if d0 = 1. In the
FCSRs we study, due to the fact that |q| is prime for a security aim (see [1, 2]),
d is always even and d0 = 0. So, the degree of m(t) for the FCSR defined using
q1 is under this bound.

We are also interested in the number of distinct monomials that can occur
in the m(t) and in the c(t) polynomials.

Proposition 2. The polynomials mi(t) and ci(t) only depend on the indetermi-
nates (m0(0), · · · ,mt−1(0), c0(0), · · · , ct−1(0) and (mi+1(0), · · · ,mi+t(0),ci(0) ,
· · · , ci+t−1(0)).
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Proof: This result could be obtained by induction using equations (3) and (4).
�

The most important consequence of this result is the fact that, even if the degree
of an algebraic equation is s, this equation does not contain all the monomials
of degree less or equal to s, but only a small part of them.

It seems difficult to determine exactly the number of monomials given by
Proposition 2 but we have computed the degree of algebraic equations and the
number of distinct monomials occurring in the main register (i.e. in the polyno-
mials mi(t) for the value of q = q1 given in [2] and 0 ≤ t ≤ 6). For example, if
t = 6, the degree of m(t) is 10 and the maximal number of monomials of m(6) is
274891. (Note that, due to the complexity of computing the algebraic equations,
we were not able to obtain these values for t ≥ 7.)

3.2 Algebraic Equations with Known Carries

We have seen in Section 2.3 that in the IV mode described in [2], the initial
contents of carries are known, i.e. cj1(0), · · · , cj�

(0) become fixed values. From
Proposition 2, we deduce the following corollary:

Corollary 1. If the initial contents of carries cj1(0), . . . , cj�
(0) are known, the

polynomials mi(t) only depend (m0(0), . . . ,mt−1(0),mi+1(0), . . . , mi+t(0)) for
t ≥ 1. The maximal degree of m(t) satisfies the upper bound deg(m(t)) ≤ 2t.

As previously, this upper bound is not reached as soon as � < n. We have
computed the degree and the number of distinct monomials in m(t) for the
value of q = q1 given in [2] and 0 ≤ t ≤ 7 (see Table 1) and have compared
them with the usual upper bound given by the sum of the binomial coefficients
(
∑d

i=0 C
i
128 where d is the degree given in Table 1).

Table 1. mi(0) unknown, ci(0) known

nb of iterations 0 1 2 3 4 5 6 7
nb of monomials 128 129 256 758 2490 8830 32836 125420
Degree in mi(0) 1 1 2 3 4 6 8 10
Binomial coefficient 129 129 8257 349633 11017633 ≈ 232 ≈ 240 ≈ 248

In the second attack presented here, we use a stronger property based on the
fact that the knowledge of some feedback bits limits the increase of the degree
and the number of monomials. This knowledge is equivalent to those of m0(0),
m1(0), . . . ,mt−1(0). We suppose now that not only the initial values of the carries
are known but also the t values m0(0), m1(0), . . . ,mt−1(0) of the main register.

Proposition 3. Suppose that cj1(0), . . . , cj�
(0), m0(0), . . . , mt−1(0) are known.

For 1 ≤ s ≤ t, the monomials occurring in mi(s) are those obtained from the set
of indeterminates {mi+1(0), · · · ,mi+t(0)} and of degree strictly less than s. The
degree of m(s) satisfies the relation deg(m(s)) < s.
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Table 2. mi(0) known for i := 0 to 5, ci(0) known

nb of iterations s 0 1 2 3 4 5 6
nb of monomials in m(s) 123 123 123 244 484 960 1904
deg(m(s)) 1 1 1 2 3 4 5

Moreover, if Is denotes the set of all possible monomials of mi(s), then the
size of Is can be computed by the following recurring relations:
#{I1} = #{I2} = n− t + 1, and #{Is+1} = 2.#{Is} − 2s−1, ∀s / 2 ≤ s < t.

Proof: The first part of the proposition is a direct consequence of the Propo-
sition 2 considering that the variables cj1(0), · · · , cj�

(0) and m0(0),· · · ,mt−1(0)
are known.

Using the equations (3) and (4), it is easy to verify that deg(m(1)) =
deg(m(2)) = 1, and then that the number of possible monomials is n − t + 1
(including the constant term 1).

From equations (3) and (4) and from the knowledge of cj1(0), . . . , cj�
(0) and

m0(j) for 0 ≤ j < t, we deduce that deg(m(s + 1) = deg(c(t)) ≤ deg(m(t)) + 1.
It implies that deg(m(s)) ≤ s− 1 for 1 < s < t. We also deduce from the same
equations that

I1 = I2 = {1,mt(0),mt+1(0), . . . ,mn−1(0)}.

The monomials of Is are exactly those of the form mi1(0)mi2(0) · · ·mir (0),
with t ≤ i1 < i2 < . . . < ir < n, r < s and ir − i1 < s.

Clearly Is is a subset of Is+1. Moreover, the new monomials of Is+1 are
obtained in the following way: each monomial mi1(0)mi2 (0) . . .mir (0) corre-
sponds to a new one mi1(0)mi2(0) . . .mir (0)mi1+s(0). It is possible if and only
if i1 < n − s. There are 2s−1 monomials in Id such that i1 ≥ n − s. This gives
the recurring relation #{Is+1} = 2.#{Is} − 2s−1. �

The so obtained bound b = #{It} is a good approximation on the number of
monomials in the algebraic equations after t iterations.

Table 2 gives the results obtained with q1, t = 6, cj1(0) = . . . = cj68(0) = 1
and m0(0) = . . . = m5(0) = 1. (Notice that all the values of the second row of
this table reach the bound #{Is}.)

4 Algebraic Attacks with Known IV Values

The two attacks presented in this section are attacks with known IV values.

4.1 General Principle of an Algebraic Attack

Algebraic attackswere introduced by N. Courtois and W. Meier in [8] and in [7] and
exploit the fact that the dependence between the key bits and the internal states
at time t is linear when using an LFSR. Suppose, for example, that the key K is
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directly injected in the first initial state of size n at t = 0: Init0 = (K0, · · · ,Kn−1)
where (K0, · · · ,Kn−1) is the representation ofK at bit level. Suppose also that the
output bit (or word) s(t) could be written at time t: s(t) = f(Lt(K0, · · · ,Kn−1))
where f is a boolean function from GF (2)m into GF (2)k and L is the linear tran-
sition function. Then, you could built a system of equations of degree deg(f) for
different t values where the unknown variables are the key bits. It is possible to
solve the obtained system using a relinearization technique (see [5]) or a dedicated
algorithm using the Gröbner basis (see [4]).

There are many improvements of such techniques: you could find some low
degree multiples of f to lower the general degree of the built system (see [16]),
try to find a relation using several output words (see [7]) and so on.

If an FCSR is used as a transition function, the problem becomes more dif-
ficult due to the fact that this transition function is no more linear. However,
if the number of iterations is sufficiently small, the degree of the corresponding
system linking the output words and the key bits stays reasonable. Moreover,
all the filtering function proposed in [2] and in [3] are linear and do not increase
the degree of the system. More formally, the obtained system could be written
as: s(t) = f(T t(K0, · · · ,Kn−1)) where f is a linear function from GF (2)n into
GF (2)k (k = 1 or 8 for the constructions studied here) and where T is the
FCSR transition function: the degree of the t-th equation depends on the degree
of T t. The first equation at time t = 0 is linear, the following one is quadratic
and the degree increases at each clock according the relation demonstrated in
Section 3.

4.2 A First Simple Attack

The principle of this attack is very simple: the first output after a change of a
known IV gives an algebraic equation which can be computed, since there are
only 6 iterations before the first output.

So, suppose that, as described in [2], the initial value of the main register is
m(0) = (m0(0), · · · ,m127(0)) = (K0, · · · ,K127) where each Ki, ∀i ∈ [0..127]
denotes a key-bit of the keyK and that the initial value of the carry register denoted
by c(0) = (c0(0), · · · , c67(0)) is known and is equal to IV = (IV0, · · · , IV67). In
[2], the first output s(t) = s(6) (that could be a bit or a byte) is computed after six
clocks, the previous outputs being discarded. So, we could construct the following
simple algebraic attack against all the constructions proposed in [2] when using the
IV mode:

– For a subset of N known IV values, compute the first output bit (or byte)
s(6) and generate the corresponding system with N ′ equations.

– Linearize the obtained system and use a Gaussian elimination to solve it.
– When you find a solution, test the obtained key for a known IV by generating

few key-stream bits.

So, the complexity of this attack is about (N ′)3 basic binary instructions.
Let us now determinate the required number of known IV values for the four
constructions described in Section 2.2.
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First, we have seen in Section 3 that the number of possible monomials after
6 clocks, given in Table 1 is 32836 � 215. So, in the case of F-FCSR-SF1, this
number corresponds exactly to the number of unknowns due to the fact that the
filter is linear and completely known. So, the complexity of the previous attack
is about 245 basic binary operations for a number of known IV values equal to
N = N ′ = 215.

For the F-FCSR-SF8 construction, the number of monomials depending
on the key bits is always the same 215 but less known IV values are required:
each output byte S(6) gives 8 equations. So, the complexity is the same than
previously but the number of known IV values required is equal to N = 212

whereas the number of equations is always the same N ′ = 215.
In the case where the F-FCSR-DF1 construction is used, the filter is dy-

namic and constructed from the key. So we could consider it as 128 unknown
coefficients denoted by fi, ∀i ∈ [0..127]:

s(6) =
127⊕
i=0

fi ·mi(6).

So, taking into account the fi values as unknowns, the number of monomials is
multiplied by a factor 128 and then we need about N ′ � 128·215 = 222 equations
generated from N = 222 known IV values for a complexity equal to 222·3 = 266

basic binary instructions.
In the last case (F-FCSR-DF8), where the filter is unknown and derived

from the key and where the output is one byte, you could write the output bits
in the following way:

Sj(6) =
15⊕

i=0

f8j+i ·m8j+i(6)

for j = 0, · · · , 7.
So if you only consider one output bit (the first one for example), the number

of unknowns added is only 16 instead of 128. So, the number of monomials is
multiplied by a factor 16 and you need 219 known IV values to generate 219

equations for a complexity equal to 23·19 = 257 basic binary instructions.
All the previous results are summed up in Table 3.

Table 3. First attack

Algorithm Attack Complexity Data
F-FCSR-SF1 IV mode algebraic 245 215

F-FCSR-DF1 IV mode algebraic 266 222

F-FCSR-SF8 IV mode algebraic 245 212

F-FCSR-DF8 IV mode algebraic 257 219
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Table 4. Second attack

Algorithm Attack Complexity Data
F-FCSR-SF1 IV mode exhaust. + alg 239 211

F-FCSR-DF1 IV mode exhaust. + alg 260 218

F-FCSR-SF8 IV mode exhaust. + alg 239 28

F-FCSR-DF8 IV mode exhaust. + alg 251 215

4.3 Improving the Previous Attack

We have seen in Section 3.2 that we could lower the degree and so the number
of monomials of m(t) by knowing t feedback bits. So, we could improve the
previous attack by sharing it in two parts, first we perform an exhaustive search
on t = 6 feedback bits (i.e. the bits m0(0), · · · ,m5(0)) by generating, for each
value, a system of equations and after by solving this simpler system.

The algorithm is then the following one:

– for each possible value of m0(0), · · · ,m5(0) do
– for N known IV values, compute the first corresponding output word s(6)

(a bit or a byte).(In case you use F-FCSR-DF8, take only into account the
first output bit S0(t).)

– generate the system of N ′ equations
– solve the corresponding system by linearization
– when you find a solution, test the obtained key by generating few key-stream

bits.

We detail here the complexity of a such attack for F-FCSR-DF1 (the details
of the other cases are left to the reader). The number of monomials is 1904 ≈
210.89 (c.f. Table 2). So, taking into account the 128 unknown bits of the filter,
N = 128 · 210.89, N ′ = 128 · 210.89 and the total complexity of the previous
attack is 23·17.89 · 26 ≈ 260 operations considering a resolution with a simple
linearization.

The corresponding complexity for F-FCSR-DF8 is 251 operations, for F-
FCSR-SF1, that corresponds with 239 operations and for F-FCSR-SF8 with 239

operations.
We have implemented the first attack described (see section 4.2) on a small

example to prove its relevance with q = −112979 and d = 56490. So, the main
register M contains 16 binary cells m(t) and the carry register c(t) 8 cells. We
consider here that the number of initial clocks is 3. We solve the obtained system
using the implementation of the Buchberger algorithm provided by magma 2.9.

Table 5. Experimental number of monomials for n = 16

nb of iterations 0 1 2 3 4 5 6 7
nb of monomials 16 17 32 86 250 766 2372 7148
Degree in mi(0) 1 1 2 3 4 6 8 10
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To simplify the resolution we consider here that the unknown filtering variables
are directly the key bits. Solve the obtained system takes about fifteen minutes on
a Pentium 4 and gives 328 possible solutions including the good one: K =0xdde5.

More, when we compute the number of exact monomials for the previous
example, we obtain the following results.

4.4 Could We Apply This Attack on F-FCSR-8 and on F-FCSR-H ?

Those attacks especially the second one could not be applied on the two versions
proposed for the ECRYPT call for stream cipher primitives [17] (see [3]) due to
a greater number of clocks before the first output generation.

To prevent the FCSR constructions using an IV mode from the algebraic
attacks proposed in this paper, the required number of clocks t before generating
an output must verify the following inequality 2n > 2t · (#{It})2.37 where 2.37 is
the coefficient of the resolution of a linear system given in [6] and where #{It}
is the cardinal of the set defined in Proposition 3. For example, if n = 128, the
minimal number of initial clocks must be at least equal to 34. If n = 160 for a
key length equal to 80 bits, this lower bound is equal to 20.

The new parameters chosen for F-FCSR-8 (F-FCSR-DF8 using 64 initial clocks
instead of 6, the number of monomials given by Proposition 3 is then close to 264)
and F-FCSR-H (the construction presented in Section 2.2 with 160 initial clocks
and n = 160 for a key length equal to 80 bits, then the number of possible monomi-
als is 280) described in the ECRYPT submission (see [3] for more details) verifies
the previous conditions and prevent the new proposed FCSR constructions from
the two attacks described in this paper that become more expansive than the ex-
haustive key search.

In the estimation of the number of monomials made here, we do not take
into account the time required to compute all those algebraic equations (we do
not evaluate the corresponding complexity) but experimentally, it seems that
this complexity becomes greater than the resolution of the system itself for more
than 10 iterations.

5 Conclusion

We present in this paper two algebraic attacks against the F-FCSR constructions
proposed in [2] based on some bad choices in the stream-cipher parameters but
also on some particular algebraic properties of the FCSRs described here.

We do not contest the security level provided by the FCSR, we only claim
that the security margin induced by the total construction proposed in [2] is
not sufficient. The proposed parameters (size of the FCSR, number of clocks
before the first output,...) must be enlarged. This is what have been done in the
constructions submitted to the ECRYPT call for stream ciphers [3]. However,
some other attacks could be applied on those two new versions as noticed by E.
Jaulmes and F. Muller in [9].
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Abstract. This paper proposes a novel approach for cryptanalysis of
keystream generators consisting of the composition of a linear finite state
machine (LFSM) and nonlinear mapping. The proposed approach in-
cludes a dedicated decimation of the sample for cryptanalysis based on
the following: Suppose certain B bits of the LFSM initial state as known
and identify time instances where certain arguments of the nonlinear
function depend only on these B bits and are equal to zero. As opposed
to previously reported methods, the proposed one also identifies and uses
certain characteristics of the LFSM state-transition matrix in order to
reduce the nonlinearity of the system of overdefined equations employed
in an algebraic attack scenario, or to reduce the noise introduced by the
linearization of the nonlinear function which corrupts the linear equa-
tions employed in a correlation attack scenario. The proposed method
is employed for developing efficient algorithms for cryptanalysis of the
nonlinear combination keystream generator reported at INDOCRYPT
2004.

Keywords: Stream ciphers, nonlinear combination keystream generator,
state transition matrix, LFSRs, algebraic attacks, fast correlation attack,
decimation.

1 Introduction

This paper points out novel algebraic and correlation attack techniques for crypt-
analysis of certain keystream generators for stream ciphers known as the non-
linear combination generators (see [11], for example), and shows the insecurity
of a particular keystream generator from this class reported in [4].

A general paradigm of the algebraic and correlation attacks is based on estab-
lishing and processing a system of overdefined equations which are: (i) nonlinear
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and (mainly) error free in the case of algebraic attacks; (ii) linear and (very)
noisy in the case of correlation attacks (assuming that a noisy equation denotes
an equation which is satisfied with a certain, known, probability). Some early
algebraic attacks on stream and related ciphers have been reported in [6] as
well as in [17] and [18]. Very recently, a number of algebraic attacks have been
reported in [7], [8], [13], [1], [9] and [19]. All contemporary fast correlation at-
tacks originate from [12] and they follow block or convolutional codes decoding
approaches. An overview of contemporary fast correlation attacks is available
in [10]. The reported iterative block decoding approaches include [14], [15], and
the non-iterative approaches include these reported in [16] and [5], for example.
The convolutional code based approaches for fast correlation attack have been
considered in a number of papers including the recent one [20].
Motivation for the work.
The general powerful algebraic attacks that have been recently reported are
based on the construction of an overdefined system of nonlinear equations em-
ploying only certain characteristics of the nonlinear function. Accordingly, the
performance of these attacks strongly depends on the nonlinear part, and if this
part does not have certain characteristics appropriate for cryptanalysis, the at-
tacks could become very complex or even not feasible. A goal of this paper is
to address the following issue: Find a way to involve into the algebraic attack
certain characteristics of the linear part in order to obtain more powerful attacks
against certain nonlinear functions (which could be heavily resistant against the
reported algebraic attacks). An additional motivation for this work was a com-
plementary extension of the algebraic attack approach reported in [19].

The paradigm of contemporary fast correlation attacks could be considered
as consisting of the following main steps: (i) assuming that certain secret key
bits are known, specification of an overdefined system of noisy linear equations;
(ii) solving the specified system as a decoding problem via hypothesis testing
and evaluation of parity checks. The noise involved in the system of equations is
a consequence of linearization of a nonlinear system of equations which describes
the considered stream cipher. As a result, this noise is not an usual random one
and accordingly could be an objective of adjustment attempts. Accordingly, the
motivations for this work include consideration of the possibilities for specifying
the systems of equations with a noise level lower than the one obtained by a
simple straightforward linearization of the initial system of nonlinear equations
related to the nonlinear filter.

Finally, a motivation for this work was to show incorrect security claims
regarding the keystream generator reported at INDOCRYPT 2004, [4] and to
provide a warning regarding misleading examples of the Boolean functions with
generalized cryptographic properties [4].
Contributions of the paper.
This paper proposes novel approaches for developing fast algebraic and correla-
tion attacks on certain nonlinear combination keystream generators.

Regarding algebraic attacks, a novel approach for constructing the overde-
fined system of binary nonlinear algebraic equations with reduced nonlinearity
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relevant for cryptanalysis is pointed out. The main feature of the novel approach
is that it employs certain characteristics of the generator linear part (the involved
LFSM) to identify positions of the generator output sequence where certain ar-
guments of the nonlinear function depend only on a part of the generator initial
state and are equal to zero. Assuming that this part of the initial state can be
considered as known, a more suitable system of nonlinear multivariate equations
(with reduced nonlinearity) can be established. The assumed initial state part
can be recovered via exhaustive hypothesis testing later on.

Regarding the fast correlation attack, following the above dedicated decima-
tion approach, this paper yields a technique for reducing the noise which corrupts
the parity-checks. This provides reduction of the processing complexity, usually
at the expense of a longer sample required. The noise reduction originates from
identification of suitable time instances for the modelling and linearization. The
linearization is based on a sophisticated involvement of certain LFSMs and the
nonlinear function characteristics.

The proposed frameworks are employed for attacking the nonlinear combi-
nation keystream generator consisting of 5 LFSRs (total length 209) and a novel
nonlinear combining function reported at INDOCRYPT 2004 [4]. It is shown
that the dedicated decimation based algebraic and correlation attacks can ef-
ficiently break the reported keystream generator and that they appear as the
more powerful ones in comparison with the previously reported algebraic and
fast correlation attacks. The explicit claim from [4] that the security parameter
of the proposed generator against fast correlation attacks is equal to 60, becomes
incorrect as the developed algorithm for fast correlation attack based on the ded-
icated sample decimation contradicts this statement - its main features are: (i)
pre-processing time complexity ∼ 256; (ii) processing time complexity ∼ 244;
(iii) required sample ∼ 253; (iv) required memory ∼ 249. Furthermore, for this
system, the developed dedicated sample decimation based algebraic algorithm
for cryptanalysis is even more efficient: (i) pre-processing time complexity ∼ 239;
(ii) processing time complexity ∼ 229; (iii) required sample ∼ 239; (iv) required
memory ∼ 236. The above results show that the proposed keystream genera-
tor is entirely insecure, that the explicit security claims regarding the generator
are incorrect, and that, actually, no one appropriate example of the proposed
Boolean functions with “generalized cryptographic properties” is given.

2 Basic Framework of the Dedicated Sample Decimation
Based Algebraic and Fast Correlation Attacks

This section introduces the main ideas for developing certain algebraic and fast
correlation attacks based on the dedicated decimation of the sample given for
cryptanalysis.

2.1 Model of the Keystream Generators Under Consideration

We consider keystream generators belonging to the class of nonlinear com-
bination generators which consist of a number of LFSMs whose outputs are
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combined by a nonlinear Boolean function, and a similar consideration holds for
the nonlinear filter (for more details regarding these keystream generators see
[11], for example).

A binary linear finite state machine (LFSM) can be described as Xt =
AXt−1, where A is the state transition matrix (over GF(2)) of the consid-
ered LFSM. Let X0 be the column (L× 1) matrix [XL−1, ..., X0]T representing
the initial contents or initial state of the LFSM, and let Xt = [X(t)

L−1, ..., X
(t)
0 ]T ,

be the L-dimensional column vector over GF(2) representing the LFSM state
after t clocks, where XT denotes the transpose of the L-dimensional vector X.
We define

Xt = AXt−1 = AtX0, At =

⎡⎢⎣A(t)
1
·

A(t)
L

⎤⎥⎦ , t = 1, 2, . . . , (1)

where At is the t-th power over GF(2) of the L×L state transition binary matrix
A, and each A(t)

i , i = 1, 2, ..., L, represents a 1× L matrix (a row-vector).
Let LFSM(k), denotes a known LFSM with only the initial state X(k)

0 , k =
1, 2, ...,K, determined by the secret key, and f(·) is a known nonlinear memory-
less function of K arguments generated by the corresponding LFSMs.

The model assumes that the state Xt of the generator is the union of the
component states corresponding to the involved LFSMs, Xt =

⋃K
k=1 X(k)

t .
According to (1), the output xk(t) of LFSM(k), is given as

xk(t) = A(k,t)
1 X(k)

0 , (2)

where A(k,t)
1 denotes the first row of the t-th power of the state transition matrix

A(k), and X(k)
0 is its initial state, k = 1, 2, ...,K.

Finally, the output bit z(t) of the considered keystream generator at the time
instance t is determined by z(t) = f(.),

f(x1, x2, ..., xK) = a0⊕1≤i≤Kaixi⊕1≤i<j≤Kaijxixj⊕...⊕a12...Kx1x2...xK , (3)

where the coefficients a0, ai, aij , ..., a12...K ∈ GF(2), and for simplicity xk stands
for xk(t).

2.2 Underlying Ideas for the Decimated Sample Based Attacking

The attack consists of the following two main phases:

– Pre-Processing: Assuming that certain subset of the secret bits is known,
decimate the sample so that at the selected points the nonlinear function
degenerate to a more suitable one for the cryptanalysis.

– Processing: Perform the main steps of cryptanalysis taking into account only
the sample elements selected in the pre-processing phase.
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Note the following issues regarding the above proposed basic framework:

– Implementation of the framework includes a preprocessing phase which is
independent of a particular sample (i.e. it should be done only once), and a
processing phase which recovers the secret key based on the given sample.

– Assuming a nonlinear function suitable for the proposed attack, the gain in
the processing phase is a consequence of the following:
• a (highly) reduced nonlinearity of the related system of equations in the

case of algebraic attacks;
• a (highly) reduced correlation noise in the case of fast correlation attacks.

In a particular case we employ an approach based on the following assumption
and its consequences.

Assumption 1. For a given pattern of B elements of X0 with indices i, i ∈ I,
at certain time instances t ∈ T , the following is valid:

• For each k ∈ K∗, K∗ ⊂ K, the output of LFSM(k) at t ∈ T is equal to zero.
Let the cardinality ofK∗ be K∗. Let |T | denotes the cardinality of T , i.e. the total
number of the time instances when Assumption 1 holds. The following statement
can be readily proved: The content of T depends on the LFSMs involved and the
assumed B bits, and can be obtained by a straightforward evaluation employing
(1)-(2).

The proposed attacking framework does not yield gain in all but in certain
scenarios: On the other hand, it could be considered as a design guideline in
order to avoid constructions vulnerable by the related attacking techniques.

2.3 Framework of the Decimated Sample Based Fast Correlation
Attack

We propose the following framework for developing fast correlation attacks based
on the dedicated sample decimation against the nonlinear combination keystream
generators.

– Pre-Processing
• Identify conditions which imply that the employed nonlinear function
f(·) reduce to one which can be approximated with a linear one intro-
ducing the approximation (correlation) noise lower than in a case of the
direct approximation.
• According to the identified conditions, in a general case perform a search

in order to determine an appropriate sampling where the Assumption 1
can be fulfilled.

– Processing
• Perform appropriate fast correlation attack over the decimated sample

where the correlation noise is reduced.
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2.4 Framework of the Decimated Sample Based Algebraic Attack

We propose the following framework for developing algebraic attacks based on
the dedicated sample decimation against the nonlinear combination keystream
generators.

– Pre-Processing
• Identify conditions which imply that the employed nonlinear function
f(·) reduce to a function f∗(·) which has a lower algebraic degree.
• According to the identified conditions, in a general case perform a search

in order to determine an appropriate sampling where the Assumption 1
can be fulfilled.

– Processing
• Perform appropriate algebraic attack over the decimated sample where

the involved nonlinear function is f∗(·).

3 The Keystream Generator Proposed at INDOCRYPT
2004

The nonlinear combination generator recently proposed in [4], Section 3.5, con-
sists of the following:

• 5 LFSRs: LFSR1, LFSR2, LFSR3, LFSR4 and LFSR5 of lengths L1 = 61,
L2 = 63, L3 = 21, L4 = 31, and L5 = 33, respectively, combined via
• nonlinear function

f(x1, x2, x3, x4, x5) = x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4 ⊕ x3x5 ⊕ x1 ⊕ x2 , (4)

and the generator is displayed in Fig. 1
It is claimed that due to the employed nonlinear Boolean function the genera-

tor is resistant against the known fast correlation attacks assuming “the security
parameter equal to 60”.

In the next two sections it will be shown that the generator reported in [4] is
breakable employing the proposed framework for dedicated decimation based cor-
relation and algebraic attacks. The algorithms developed for cryptanalysis of the

f(x1,x2,x3,x4,x5) = 
x2x3x4x5 + x1x2x3 +
x1x4 + x3x5 + x1 + x2

nonlinear

function

LFSR 1      (L1=61)

LFSR 2     (L2=63)

LFSR 3     (L3=21)

LFSR 4     (L4=31)

LFSR 5     (L5=33)

x1

X2

outputx3

x4

x5

Fig. 1. Nonlinear combination keystream generator proposed in [4]
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abovekeystreamgenerator followtheproposedframework,buttheyalso includethe
“customization”, as well, regarding the considered particular keystream
generator.

Finally, although it is claimed in [4] that the parameters of the reported
keystream generator should be scaled up for a real use, this scaling up does not
help regarding the problem of effective key size versus the formal one: namely
the effective key size always remains much smaller than the formal one. Partic-
ularly, if the total length of the involved LFSRs is increased from 209 to 256
corresponding to a typical secret key size of 256 bits, and the corresponding
scaling up of each LFSR is employed, the scheme again suffer from the same
weakness and the cryptanalysis is feasible even if the parameters are scaled up
for 50% (corresponding to the key of 314 bits).

4 A Cryptanalysis Employing Novel Correlation
Approach

The dedicated decimation based correlation attacking approach against the key-
stream generator [4] assumes identification of the time instances t at which a
certain subset of the LFSRs outputs x1(t), x2(t), x3(t), x4(t), x5(t), equal to
zero, so that after replacement in the nonlinear combination function f(·) a
much lower approximation-correlation noise is obtained in comparison with the
corresponding straightforward linearization.

Note that when the arguments x1 and x3 of f(·) are equal to zero the function
reduces to f∗(·) = x2 which can considered as the most favorable case in which
the source function is replaced by one of its inputs resulting in a correlation
noise equal to zero, and accordingly yielding the direct recovering of LFSR2
initial state. Employing similar and related correlation considerations, all the
initial states can be recovered.

4.1 Algorithm for Cryptanalysis

This sectionproposesabasicdecimatedsamplebasedcorrelationattack(Algorithm
I), and a time-memory trade-off based version of this approach (Algorithm II).

Algorithm I
– Pre-Processing

1. Assume that certain B < L1 bits of the initial state of LFSR1 are known;
search over the powers of LFSR1 state transition matrix, and identify a
set T of the time instances where x1(t) depends only on the assumed B
bits;

2. Record a set T of dimension I = O(L2) (typically I = 4(L2 + Δ),
Δ ∼ L2).

– Processing
1. Assume previously not considered B bits of LFSR1 initial state and the

entire initial state of LFSR3, and construct a subset τB of T such that
x1(t) = x3(t) = 0, t ∈ τB.
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2. Recover the initial state candidate of LFSR2 solving the system of L2 lin-
ear equations relating, via the state-transition matrix powers, the initial
state bits and the given generator outputs {z(t)}t∈τB .

3. Set the recovered candidate as the initial states of LFSR2 and generate
the corresponding generator output sequence {ẑ(t)}, t ∈ τB .

4. If {ẑ(t)} = {z(t)}, t ∈ τB , accept the current candidates for the initial
states of LFSR3 and LFSR2 and B bits of LFSR1 as the correct ones;
Otherwise go to the step 1 and continue processing.

5. Employing the recovered initial states of LFSR2 and LFSR3, and the B
bits of LFSR1, consider the time instances t where x2(t) = x3(t) = 0 so
that

x1(t)x4(t)⊕ x1(t) = z(t) , (5)

and recover the remaining L1−B initial state bits of LFSR1 employing
a fast correlation attack technique as follows.
(a) Assume that

x1(t)⊕ e(t) = z(t) , (6)

where e(t) is a realization of a random binary variable which takes
value 1 with the probability p = 0.25 (i.e. the correlation noise is
equal to 0.25).

(b) Recover the j-th bit, j = B + 1, B + 2, ..., L1, of LFSR1 initial state
as follows:
i. For each j, j = B + 1, B + 2, ..., L1, collect M powers tj,m,
m = 1, 2, ...,M , of LFSR1 state-transition matrix such that in
its first row there are all zeros on the positions B+1 to L1 except
1 on the j-th position, and there is an arbitrary pattern on the
positions 1 to B.

ii. Based on the collected powers, specify M parity-check equations
related the j-th LFSR initial state bit and the corresponding
tj,m-th output bit, m = 1, 2, ...,M .

iii. Recover the j-th bit of LFSR1 state employing the maximum
likelihood decoding for given M parity-checks.

6. Assuming that the current initial states of LFSR1, LFSR2, and LFSR3
are correct, taking into account the time instances t such that x1(t) =
x2(t) = 0 and x3(t) = 1, recover unknown LFSR5 initial state via the
following x5(t) = z(t).

7. Assuming that the current initial states of LFSR1, LFSR2, LFSR3 and
LFSR5 are correct, taking into account the time instances t = 1, 2, ...,,
directly recover the initial state of LFSR4 based on
f(x1(t), x2(t), x3(t), x4(t), x5(t)) = z(t).

The above basic dedicated sample decimation based fast correlation attack
can be modified in a number of ways in order to provide more efficiency in certain
implementation scenarios.

Remarks. (i) Steps 1 and 2 of the processing phase resembles the approach
employed in [3]. (ii) Additional gains in Algorithm I can possibly be achieved
considering more sophisticated fast correlation attack approaches as in [5].
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A particular variant of Algorithm I which yields a time-memory trade off
and a reduced time processing complexity at the expense of increased space
complexity is given in bellow. The main difference is in the pre-processing of the
required Gaussian elimination to retrieve the initial state of LFSR2.

Algorithm II

The differences between Algorithm II and Algorithm I are as follows.

– Pre-Processing
After the pre-processing steps 1 and 2 of Algorithm I, the following ones are
added.

• For each of 2L3−1 possibilities assume the entire initial state of LFSR3,
construct a subset τB of T such that x3(t) = x1(t) = 0, t ∈ τB and do
the following.
∗ Determine the initial states of LFSR2 based on the equations x2(t) =
Z(t) and the corresponding t-th powers of LFSR2 state-transition
matrix, t ∈ τB , as a function of the variables {Z(t)}t∈τB corre-
sponding to the L2 first outputs from the generator assuming that
the cardinality of τB is equal to L2 +Δ;
∗ Subsequently determine the general expression of the corresponding

outputs for the last Δ time instances t, t ∈ τB;
∗ Record the above determined expressions for the initial state of

LFSR2 and its corresponding outputs for the last Δ time instances
t, t ∈ τB .

– Processing
Instead of the processing steps 1 - 3 of Algorithm I, the following ones are
employed.

• Assume a previously not considered hypothesis onB bits of LFSR1 initial
state and the entire initial state of LFSR3;
∗ For j = 1, 2, ..., L2 do the following:
∗ Evaluate the LFSR2 output bit employing the given sample {zt}t and

the preprocessed expression for LFSR2 output bit at time instance
t corresponding to the position L2 + j in the increasing order of
elements of τB ;

∗ Reject the current hypothesis if the the evaluated value is not equal
to the corresponding sample value.

• Accept as the LFSR2 initial state the candidate corresponding to the
not rejected hypothesis during the previous processing step.

Note that since L3 + B < Δ, Δ ∼ L2, we assume that only one hypothesis will
remain valid.

Remark. The pre-processing in Algorithm II regarding construction of the gen-
eral solutions is similar to the pre-processing which yields the general inversion
employed in [2].
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4.2 Main Characteristics of the Proposed Correlation Cryptanalysis

According to Algorithm I and Algorithm II steps, it can be directly proved that
the main features of these algorithms are given by the following propositions.
Regarding the proofs of these statements, as well as for the other proofs, note the
following: (i) factors of the form 2X correspond to certain exhaustive searches; (ii)
factors of the form Xω correspond to the complexity of the Gaussian elimination;
(iii) factors of the form X2 correspond to the complexity of evaluation the X
general solutions for given particular values.

Proposition 1. Employment of Algorithms I or II assumes that the expected
required sample is O(2L1−BL2).

Proposition 2. When Algorithm I is employed, the expected time complexity of
pre-processing is O(2L1−BL2), and the expected space complexity is O(L2).

When Algorithm II is employed, the expected time complexity of pre-processing
is max{O(2L1−BL2), O(2B+L3L2ω)}, and the expected space complexity is
O(2B+L3L22).

Proposition 3. When Algorithm I is employed, the expected time complexity of
the processing is 2B+L3O(L2ω)+O((L1−B)M +L5ω)+O(L4), where ω = 2.7,
M ≤ 10, and the expected space complexity is O(L2).

When Algorithm II is employed, the expected time complexity of the process-
ing is 2B+L3O(L2) + O((L1 − B)M + L5ω) + O(L4), where ω = 2.7, M ≤ 10,
and the expected space complexity is O(2B+L3L22).

Table 1. Numerical summary of the requirements for cryptanalysis of the nonlinear
combination keystream generator from [4] employing proposed correlation attacks

pre-processing processing required required
time complexity time complexity sample memory

proposed
Algorithm I, B = 17 ∼ 253 ∼ 253 ∼ 253 ∼ 28

proposed
Algorithm II, B = 17 ∼ 256 ∼ 244 ∼ 253 ∼ 249

According to the Propositions 1 - 3, Table 1 yields a numerical summary of the
attacking requirements of the proposed correlation based techniques for crypt-
analysis. Note that different trade-offs, suitable for the particular scenarios, are
possible between the pre-processing time complexity, processing time complex-
ity, required memory and required sample. As opposed to the claims in [4] Table
1 implies the breakability of the considered keystream generator employing the
developed dedicated decimation based correlation attack.

4.3 A Discussion on Reported Fast Correlation Attacks

It is correctly claimed in [4], that the best reported fast correlation attacks are
not feasible because their direct employment require simultaneous consideration
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of two LFSRs, LFSR1 and LFSR2, of total length L1+L2 = 124 and this is too
long for feasible attacking (see [16] and [5], for example).

On the other hand if we have knowledge about the LFSR1 initial state, it
is possible to mount an appropriate fast correlation attack in order to recover
LFSR2 initial state, but the assumption on the LFSR1 initial state availabil-
ity has cost proportional to its recovery via an exhaustive search, i.e. 261 − 1,
implying the security parameter equal to 60, as claimed in [4].

5 A Cryptanalysis Employing Novel Algebraic Approach

The dedicated decimation based algebraic approach against the keystream gen-
erator [4] assumes identification of the time instances t at which a certain subset
of the LFSRs outputs x1(t), x2(t), x3(t), x4(t), x5(t), is equal to zero so that
the combination function f(·) reduces to one with much lower algebraic degree.

Note that when the arguments x3 and x4 of f(·) are equal to zero the function
reduces to f∗(·) = x1⊕x2 with d∗ = 1 which is very suitable for algebraic attacks.

5.1 Algorithm for Algebraic Cryptanalysis

The following is a basic form of the algorithm which performs the cryptanalysis
employing the dedicated decimation based algebraic attack.

Algorithm III

– Pre-Processing
1. Assuming that certain B < L4 bits of the initial state of LFSR4 are

known, search over the powers of LFSR4 state transition matrix, and
identify a set T of the time instances where x4(t) depends only od the
bits considered as known.

2. Record a set T of dimension I = 4(L1 + L2 +Δ), Δ ∼ L1 + L2.
3. For each of 2L3−1 possibilities assume the entire initial state of LFSR3,

construct a subset τB of T such that x3(t) = x4(t) = 0, t ∈ τB, and do
the following.
• Determine the initial states of LFSR1 and LFSR2 based on the set

of equations
x1(t)⊕ x2(t) = Z(t) , t ∈ τB , (7)

as a function of the variables {Z(t)}t∈τB corresponding to the L1+L2
first outputs from the generator included in τB ;
• Subsequently determine the general expression of the corresponding

outputs of LFSR1 and LFSR2 for the last L1 +L2 time instances t,
t ∈ τB.

• Record the above determined expressions for the initial states of
LFSR1 and LFSR2 and theirs corresponding outputs for the last
L1 + L2 time instances t, t ∈ τB.
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– Processing
1. Assume a previously not considered hypothesis onB bits of LFSR4 initial

state and the entire initial state of LFSR3.
2. For j = 1, 2, ..., Δ do the following:
• evaluate the LFSR1 and LFSR2 output bits employing the given

sample {zt}t and the preprocessed expressions for LFSR1 and LFSR2
output bits at time instance t corresponding to the position L1+L2+
j in the increasing order of elements of τB;
• Reject the current hypothesis if mod2 sum of the the evaluated values

is not equal to the corresponding sample value.
3. Accept as the LFSR1 and LFSR2 initial states the candidates corre-

sponding to the not rejected hypothesis during the previous processing
step.

4. Assuming that the current initial states of LFSR1, LFSR2 and LFSR3,
and the B bits of LFSR4 are correct and taking into account that x4(t) =
0, t ∈ TB, recover LFSR5 initial state via the following set of equations

x1(t)x2(t)x3(t)⊕ x3(t)x5(t)⊕ x1(t)⊕ x2(t) = z(t) , t ∈ TB , (8)

where only {x5(t)}t∈TB , is unknown.
5. Assuming that the current initial states of LFSR1, LFSR2, LFSR3 and

LFSR5, and the B bits of LFSR4 are correct, recover unknown LFSR4
initial state part via the following set of equations

x2(t)x3(t)x4(t)x5(t)⊕ x1(t)x2(t)x3(t)⊕
x1(t)x4(t)⊕ x3(t)x5(t)⊕ x1(t)⊕ x2(t) = z(t) . (9)

5.2 Main Characteristics of the Proposed Algebraic Cryptanalysis

According to the Algorithm III structure, it can be directly proved that the main
features of Algorithm III are given by the following propositions.

Proposition 4. The expected required sample is O((L1 + L2)2L4−B).

Proposition 5. The expected time complexity of pre-processing is O(2B+L3(L1+
L2)ω) +O((L1 +L2)2L4−B), where ω = 2.7, and the expected space complexity
is O(2B+L3(L1 + L2)2).

Proposition 6. The expected time complexity of the processing is 2B+L3O(L1+
L2)+O(L5ω))+O((L4−B)ω), where ω = 2.7, and the expected space complexity
is O(2B+L3(L1 + L2)2).

5.3 Comparison of the Proposed and Reported Approaches for
Algebraic Cryptanalysis

According to the results reported in [8], [1] and [9] it can be directly shown that
the following proposition holds.

Proposition 7. Employment of an algebraic attack based on the results reported
in [8], [1] and [9] for cryptanalysis of the nonlinear combination keystream gen-
erator [4] has the following main features:
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Table 2. Numerical comparison of the requirements for cryptanalysis of the nonlinear
combination keystream generator from [4] employing proposed algebraic attack and
the algebraic attack based on the results reported in [8], [1] and [9] assuming in the
second case that the algebraic degree is d = 3 instead the initial d = 4 due to the
transformation f ′(·) = (x2 ⊕ 1)f(·).

pre-processing processing required required
time complexity time complexity sample memory

algebraic attack following
reported in [8], [1], [9] ∼ 256 ∼ 236 ∼ 221 ∼ 236

proposed
Algorithm III, B = 5 ∼ 245 ∼ 233 ∼ 235 ∼ 240

proposed
Algorithm III, B = 1 ∼ 241 ∼ 229 ∼ 239 ∼ 236

• The expected required sample is O(
(

L1+L2+L3+L4+L5
d

)
);

• The expected time complexity of pre-processing is O(
(

L1+L2+L3+L4+L5
d

)ω
), and

the expected space complexity is O(
(

L1+L2+L3+L4+L5
d

)
(L1+L2+L3+L4+L5)2);

• The expected time complexity of the processing is
O(
(

L1+L2+L3+L4+L5
d

)
(L1 + L2 + L3 + L4 + L5)2), and

the expected space complexity is
O(
(

L1+L2+L3+L4+L5
d

)
(L1 + L2 + L3 + L4 + L5)2);

where ω = 2.7 and d = 3 due to the algebraic degree reduction via employment
the function f ′(·) = (x2 ⊕ 1)f(·) instead f(·).
Regarding Proposition 7, particularly note that the fast preprocessing can not
be employed because L2 = 63 and L3 = 21 are not co-prime, and this is in
collision with a basic constraint regarding the fast pre-processing given in [1].

According to the Propositions 4 - 7, Table 2 yields an illustrative numeri-
cal summary of the attacking requirements of the reported and the proposed
techniques for cryptanalysis.

Table 2 implies the breakability of the considered keystream generator em-
ploying the developed dedicated decimation based algebraic attack, and that the
developed technique is, in the considered scenario, significantly superior than the
best previously reported techniques. Comparing Table 1 and Table 2, we observe
that the correlation based approach in this particular case is less efficient than
the algebraic one. This is due to the fact that LFSR4 is shorter than LFSR1,
which also results in a smaller value of B.
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Abstract. We give three weaknesses of a recently proposed streamci-
pher MICKEY. A small class of weak keys is found and we show time-
memory-data tradeoff is applicable. We also show that the state update
function reduces entropy of the internal state as it is iterated, result-
ing in keystreams that start out differently but become merged together
towards the end.

Keywords: MICKEY, stream cipher, time memory data tradeoff, inter-
nal state entropy, weak key.

1 Introduction

MICKEY [4] is a streamcipher submitted to eSTREAM [2], targeting 80-bit
security in low-end hardware environments. It was one of the algorithms selected
and presented at the Symmetric Key Encryption Workshop (SKEW, Århus,
Denmark, May, 2005).

Internal state of the cipher consists of two 80-bit feedback shift registers that
are carefully designed to mutually and irregularly clock each other. The output
keystream is a simple XOR of the two shift register outputs and hence not much
more than the two registers themselves are needed for a hardware implemen-
tation of MICKEY. Since the minimum internal state size for a streamcipher
aiming for 80-bit security is 160 bits, the cipher seems to be quite near the min-
imum point reachable with respect to hardware implementation cost and this
makes it a very attractive proposal for constrained hardware environments.

In this paper, three undesirable properties of MICKEY, in relation to its
security aspects, are discussed. The first is that time-memory-data tradeoff is
applicable with online complexity lower than exhaustive search. It is widely
believed that using an internal state of twice key size eliminates TMD-tradeoffs
completely. We show that, with the BSW sampling technique, we can effectively
reduce the search space and apply TMD-tradeoff to a reduced internal state.

Our second remark concerns the fact that the state update function is not
bijective. This reduces entropy of the internal state as the generator is run for-
ward and we study the accumulated entropy loss. We show that although the
restriction to 240-bits of keystream usage per key setup, set up by the designers,

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 169–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 J. Hong and W.-H. Kim

prevents any keystream from circling back through a whole period, it does not
stop two different long keystreams from merging together towards the end.

The last observation we make is the existence of a small family of weak keys
and the higher security cousin MICKEY-128 is considered in the appendix.

2 MICKEY

Let us very briefly recall the specifications of MICKEY and fix notation.
MICKEY uses two 80-bit registers named R and S. Register R is a linear

feedback shift register whose cells we denote by ri (0 ≤ i ≤ 79). Depending on a
control bit, it is clocked in two different ways. If the control bit is 0, it is clocked
in the normal way. When the control bit is 1, it is clocked 240− 23 times. A way
to do this without repeatedly clocking the register is given, but we shall not be
concerned with implementation aspects. Register S is a nonlinear feedback shift
register whose cells we denote by si (0 ≤ i ≤ 79). As with R, there are two ways
to clock S, the choice being made through another control bit.

Since R is an LFSR, it is clear that, once the control bit used for the most
recent clocking is known, it may be inverted one step back. The inversion map
will be linear for both cases of the control bit. Similarly, as the designers state
in their specifications, the clocking for S is also invertible, once the control bit
is fixed. The actual inverse clocking method is easy to find once the clocking
method is fully understood.

One bit of keystream is produced before each internal state update by XOR-
ing two bits contained in cells r0 and s0. To update the whole generator, the
XOR s27 ⊕ r53 of two bits is set as control bit for register R, the bit s53 ⊕ r26
is set as the control bit for register S, and the two 80-bit registers are clocked
accordingly. After each key-IV loading, which we do not describe, the keystream
generator may be used to produce at most 240 bits of keystream.

The general ideas of this paper should be understandable with what has so
far been explained of MICKEY. But those interested in following actual compu-
tations should consult the original specification [4] for more information.

3 TMD-Tradeoff with BSW Sampling

In this section, we shall see that time-memory-data tradeoff is applicable to the
internal state of MICKEY with online complexity less than exhaustive search.

3.1 BS-Tradeoff

The problem of recovering the internal state of a streamcipher, given multiple
keystream segments, may be seen as a special case of the following more general
inversion problem.

Given a one-way function f : X → Y and a set D = {yi}i ⊂ Y, find at
least one xi ∈ X for which f(xi) = yi.
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Our interest lies in the case where X is the set of all internal states, Y is the
set of keystream segments long enough to reliably distinguish states, and f is
the mapping of state to finite keystream segment. Once the internal state corre-
sponding to some keystream segment is obtained by inverting this mapping, the
cipher can be run forward to obtain all future keystream for that session.

Starting with the work of Hellman [9], numerous studies on time-memory-
(data) tradeoff attacks have appeared in the literature, but we shall focus on
the TMD-tradeoff attack given by Biryukov and Shamir [5]. The BS-tradeoff,
interpreted as a tool for inverting one-way functions f : X → Y, is as follows.

Let N = |X | be the size of the search space. Given any triple (T,M,D)
satisfying the tradeoff curve

TM2D2 = N2 with 1 ≤ D2 ≤ T, (1)

there exists an algorithm that solves the inversion problem in the following sense.
Before a target set D of size D is given, the attacker prepares tables to be

stored in memory of size M through a pre-computation phase requiring (offline)
time P = N/D. When the target data set D is given, with high probability, a
single solution to the inversion problem is produced within (online) time T .

A typical point on the BS-tradeoff curve is

T = M = N
1
2 , D = N

1
4 , with P = N

3
4 . (2)

Since the attack complexity of this approach is taken to be the maximum of
T , M , and D, disregarding the offline time complexity, together with birthday
paradox based TMD-tradeoff attacks [3, 8], this has worked as a reason for many
recent streamcipher designs incorporating internal state size at least twice as big
as intended security level. MICKEY follows this trend and uses 160-bit state size
to aim for 80-bit security.

3.2 Restricting the Search Space

Let us explain the basics of BSW-sampling [6]. Suppose we can find a subset
X ′ ⊂ X for which elements of Y ′ = f(X ′) can easily be singled out from Y.
Consider the restriction f ′ : X ′ → Y ′ of f to X ′. Given a target data set D ⊂ Y,
one samples the data by taking D′ = D∩Y ′ and apply TMD-tradeoff to f ′ with
the smaller data set D′. As the search space X ′ is smaller than X , this should
be more efficient than applying TMD-tradeoff to f itself, and it is clear that
any inversion of f ′ is also an inversion for f . Of course, the (pre-sampling) data
requirement will be larger than the usual approach.

3.3 Sampling MICKEY Keystream

The usual way of applying TMD-tradeoff attack to MICKEY is to consider the
case where X is the set of all 160-bit internal states and Y is the set of all
keystream segments of 160-bit length. The mapping f will send an internal state
to the first 160 keystream bits obtained from the state.
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To apply the sampling method, we define Y ′ to be the set of all 160-bit
keystream segments which starts with 27 zeros. These are certainly easily dis-
tinguishable from the rest of the elements of Y. With an understanding of BS-
tradeoff algorithm, it should be clear that the only obstacle to its actually ap-
plication on the restricted mapping f ′ : X ′ = f−1(Y ′)→ Y ′ is the construction
of an arbitrary, efficiently computable, preferably injective, mapping1

h : Y ′ → X ′. (3)

The construction of this mapping for MICKEY is a bit tedious, so let us go
through this step by step.

1. View a random element y ∈ Y ′ as a 133-bit value by disregarding the 27
initiating zeros.

2. Fill register S with the first 80 bits of y.
3. Fill cells r1, . . . , r53 of register R with the remaining 53 bits of y. We shall

consider the remaining 27 cells, r0 and r54, . . . , r79 as having been filled with
indeterminate variables x0 and x54, . . . , x79. To define the mapping (3), it
suffices to determine the correct values for these variables which allow the
keystream generated from this state to start with 27 zeros.

4. Since the first output bit r0 ⊕ s0 must be zero, and since s0 is already fixed,
we immediately obtain x0. Hence forth, we shall treat x0 as a constant rather
than as a variable.

5. Calculate s53 ⊕ r26, the control bit for S, and also s27 ⊕ r53, the control bit
for R.

6. Clock register S according to its control bit.
7. Clock register R according to its control bit. In saying this, we mean to

write the contents of the cells as linear functions of the remaining variables
x54, . . . , x79. In particular, using the feedback equation for R, one can show
that the new content of r0 will be

- x79, if the control bit for R is zero, and
- x79 ⊕ x0, if the control bit for R is one.

Recalling the fact that x0 has already been determined, and using the con-
dition for the second output bit to be zero, one determines x79 which is
actually the feedback bit. We can now treat x79 also as a constant, rather
than as a variable.

8. The update method of R is so that determination of the feedback bit allows
cells r0, . . . , r53 to be determined explicitly, and for the rest of the cells to be
written as a function of the remaining 25 variables x54, . . . , x78. For example,
the current updated value of r79 will be either x78 ⊕ x79 or x78, depending
on the (known) control bit for R.

9. Once again, calculate both control bits and clock the two registers accord-
ingly.

10. This time, the new value for s0 and the zero-output condition will determine
the variable x78 and also the second feedback bit.

1 This mapping need not be related to the inverse of f in any way.
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11. Continue in this manner until all variables are determined. Each added
clocking determines one more indeterminate and hence at most 26 clockings
are needed.

We have thus defined an appropriate mapping (3) and successfully reduced the
search space size from 2160 to N = 2133.

3.4 TMD-Tradeoff with Sampling on MICKEY

Let us now see what TMD-tradeoff complexities we can obtain on the smaller
space X ′.

Start with unfiltered data size of 260. For example, these may be obtained by
sliding a window of 160-bit size over 220-many keystreams, each of (240 + 159)-
bit length. Only about 2−27 of these will start with 27 zeros. Hence the sampled
data to be used in our TMD-tradeoff attack is D = 233 = 260−27. Values T = 266

and M = 267, together with D = 233 and N = 2133, satisfy the TMD-tradeoff
curve (1), and the offline pre-computation complexity becomes P = 2100.

In summary, once a table costing offline time 2100 is built, TMD-tradeoff
attack with BSW sampling on MICKEY is possible with online complexity 267.
This is (almost) the minimum online complexity achievable with our sampling.

If lowering the pre-computation time is more desirable, we start with unfil-
tered data size of 266.5. This results in the tradeoff point T = 279, M = 254, and
D = 239.5, with pre-computation time P = 293.5.

Owing to the pre-computation complexity larger than exhaustive search of
key, some would not view this technically as a break of MICKEY. But still, it
does show that we cannot treat MICKEY as providing absolutely full 80-bit
security. Furthermore, the fact that such sampling is possible can be viewed as
a weakness in itself. This might open doors to other exploits.

Notice that ECRYPT’s current recommendation for key sizes [1] seem to be
viewing anything less than 81 bits to be vulnerable to exhaustive search by large
agencies, hence the pre-computation time 2100 or 293.5 cited above should be
seen as reachable in the near future.

We refer readers to Appendix A for a related general treatment of complex-
ities involving TMD-tradeoff with BSW sampling.

4 State Entropy Loss

The state update function of MICKEY starts by calculating two control bits.
These bits determine the fate of the very bits used to obtain the control bits. This
kind of double-use of information usually produces collisions. The state update
function is not one-to-one and through repeated application of the state update
function, entropy of the state is bound to decrease. In this section, through
heuristic arguments, we study the actual amount of entropy lost.2

2 Readers should not confuse the state update function with the state-to-keystream
function of the previous section. Also, neither is related to the initialization process.
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4.1 Preliminary

Given a set X = {xi}i∈I , with each element xi appearing with probability pi,
the entropy of set X is defined as

H(X) = −
∑
i∈I

pi log2 pi. (4)

For example, if some set Y contains N elements and all elements occur with
equal probability, then it is easy to show that H(Y ) = log2 N . Hence, a set of
size 2n with uniform probability distribution has entropy n.

Given a mapping ϕ, acting on a space of size N and of uniform distribution,
let us define the notation

EL(ϕ) = log2 N −H(Image(ϕ)), (5)

EL(ϕ) = log2 N − log2 |Image(ϕ)|. (6)

The operator EL measures the entropy loss suffered by a uniform space through
application of a mapping. Operator EL measures the same value in a rough way,
by assuming that all elements of the image space occur with equal probability.
We will always have EL(ϕ) ≥ EL(ϕ) for any map ϕ.

4.2 Initial Comparison of Update Function and Random Mapping

There following behavior of random mappings is well known [7, 10].

Lemma 1. The expected number of image points under a random mapping on
N elements, has the asymptotic form (1 − 1

e )N , as N →∞.

Using our notation, this may be written equivalently in the following way.

Lemma 2. For random mappings ϕN on N elements, the expected value of
EL(ϕN ) approaches − log2(1− 1

e ) ∼ 0.6617 as N →∞.

So, if a random function were chosen as the state update function for some
streamcipher, the internal state would lose more than 0.66-bit entropy on its
first update.

Let us see how the MICKEY’s state update function behaves in this respect.
For the rest of this section, ϕ will denote a random mapping and f will denote
the state update function of MICKEY. Consider the following procedure.

1. Choose random states for both registers R and S.
2. Calculate the reverse clocking of register R, assuming control bit set to 0,

and call the new stateR0. Similarly, previous state ofR assuming control bit
1 is calculated and named R1. The same is done for register S with results
named S0 and S1.

3. For each of the four possible (Ri,Sj) pairs, calculate the two control bits
(s27 ⊕ r53, s53 ⊕ r26) and check to see if these match the control bits (i, j)
that was used. Count the number of matches.
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This procedure counts the number of internal states that map to the chosen
random state under the state update function f . Note that a state may have
anywhere from zero up to four pre-image states. We repeated3 this process for
a total of 220 times, while tallying the occurrence of random states having each
number of pre-images. The result is recorded in Table 1.

Table 1. Distribution of 220 randomly chosen states according to pre-image counts

inverse count 0 1 2 3 4 total

randomly chosen states 307988 452017 279418 0 9153 220

The table shows, in particular, that of the 220 states we had chosen at ran-
dom, 307988-many of them corresponded to no pre-image, where as 740588-many
were image points under at least one pre-image. So about 70.63% of the states we
had tried were image points. Assuming that this proportion extends to the set
of all states, we can calculate EL(f) ∼ − log2(0.7063) ∼ 0.5017. Comparing this
with the corresponding value 0.6617 for a random function stated by Lemma 2,
we can expect the behavior of f with respect to entropy loss to be somewhere
between a permutation and a random function.

Let us next work with f ◦f , i.e., f iterated twice, in seeing the distribution of
states according to inverse image counts. For every pre-image of a random state
under f , we checked if this pre-image again had a pre-image under f . Result of
twice iterated inverse image counting is given in Table 2.

Table 2. Distribution of 220 randomly chosen states according to pre-image counts
under mapping (f ◦ f)

inverse count 0 1 2 3 4 5

randomly chosen states 218.81 217.95 217.92 215.82 214.65 210.35 · · ·

· · · 6 7 8 9 10 11 12 13 ∼ 16 total

211.20 27.93 27.48 25.55 23.32 0 24.00 0 220

The total number of twice iterated images is 588990 and accounts for about
56.17% of all 220 states tried. As before, we can calculate EL(f ◦ f) ∼ 0.8321.
Hence, from the view point of entropy preservation, f ◦f is worse than a random
mappings.

One of our goals for this section is to see how much internal state entropy
is lost through 240 iterated applications of state update function f . Notice that
239 applications of f ◦ f is equal to 240 applications of the single f . So even
though f is better than a random function in relation to entropy loss, as we
have seen evidence that f ◦ f is worse than a random function, working with
random mapping ϕ as an approximation of f could be a possibility. We shall see
more justification for this in the next subsection.
3 Random states were chosen with the C-language rand() function which is known to

be not so random, but as it is unrelated to f , this should not affect our results.
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4.3 Iterations of Update Function and Random Mapping

Let us calculate the entropy of Image(f). Going back to Table 1, it appears that
about

307988
220 · 2160 ∼ 2158.23

internal states never appear as image point under f . Probability of any one of
these 2158.23-many states to be equal to a randomly produced image point under
f is 0.

Similarly, 2158.79 ∼ 452017
220 · 2160 internal states have exactly one pre-image

under f . If we fix any one of these and are given a randomly produced image
point under f , then the two are equal with probability roughly 1/2160. There are
2158.09 ∼ 279418

220 · 2160 internal states with two f pre-images. If we fix any one of
these, the probability of it coinciding with a randomly produced f -image state
is 2/2160. Finally, for 2153.16 ∼ 9153

220 · 2160 states, their probability of coinciding
with a randomly produced f -image is 4/2160.

The sum of all probabilities

0 · 2158.23 +
1

2160 · 2
158.79 +

2
2160 · 2

158.09 +
3

2160 · 0 +
4

2160 · 2
153.16 ∼ 0.99894

is not exactly 1, but reasonably close, so we shall ignore this. With samples
bigger than 220, the sum would be closer to 1.

Placing all information into the definition (4) for entropy gives us

H(Image(f)) = −
{
2158.79 1

2160 log2(
1

2160 ) + 2158.09 2
2160 log2(

2
2160 )

+ 0
3

2160 log2(
3

2160 ) + 2153.16 4
2160 log2(

4
2160 )

}
∼ 160− 0.6028.

We have calculated the entropy loss EL(f) = 0.6028 of state update function f .
As expected, this is greater than the rough measure EL(f) = 0.5017, which we
obtained earlier in Section 4.2. This process can be repeated for f ◦ f to obtain
EL(f ◦ f) = 0.9913.

Let us denote k-many compositions of f as fk. Through the method just
explained, we explicitly obtained EL(fk) values for many values of k. The results
are given as ◦ -points in Figure 1. The x-axis gives the logarithm of k-values and
the y-axis gives the entropy loss in bits. For small values of k, the entropy loss
values we obtained seemed quite accurate, but for larger k, multiple tests resulted
in slightly varying entropy loss values. So we used larger sample sizes (some as
large as 224) for larger k to keep the variance to an acceptable degree as can be
witnessed from the graph.

The graph also contains three rough entropy measures EL(fk), EL(ϕk), and
EL((f ◦ f)k). The graph for EL(fk) comes from the same test data that gave
EL(fk). Multiple tests indicated that our EL(f) data points were accurate
enough for multiple points to be almost undistinguishable on the graph. The
curve for EL((f ◦ f)k) contains points that do not correspond to integer values
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Fig. 1. Entropy loss under iteration

of k and hence may seem strange, but this is because we had just taken the
unit left-shift of EL(fk) in its place. Finally, the graph for EL(ϕk) relies on the
following well-known lemma [7, 10].

Lemma 3. For random mappings on N elements, the expected number of k-th
iterate image points has the asymptotic form (1− τk)N , as N →∞. Here, τk is
given by the recursion formula, τ0 = 0, τk+1 = exp(τk − 1).

For any fixed N , since repeated iterations of ϕ eventually results in a cycle of
expected length O(

√
N), the number of k-th iterate image points must stop

decreasing at some point as k nears N . But in our situation, even with N = 2160

fixed, the values of 1 ≤ k ≤ 240 we are interested in are much smaller than
√
N ,

so using (1 − τk)N as the approximate number of image points should not be
too unreasonable. Our • -points are actually nothing more than calculations of
− log2(1− τk), which is the value for EL(ϕ) under the assume that the number
of k-th iterate image points is (1− τk)N .

As was argued in Section 4.2, we can confirm that the curve EL(ϕk), which
gives a rough measure of entropy loss for random mappings, sits comfortable in
between respective curves for f and f ◦ f . We can also see that the real entropy
loss EL(fk) for state update function follows the rough entropy loss EL(ϕk) of
random mapping very closely.

We can expect these trends to continue for higher values of k, as long as they
are very small relative to

√
N . As this is true for k values we are interested in,

we shall use − log2(1−τk) to approximate EL(fk) in the next subsection. In any
case, there is less than 1-bit difference between any of the four graphs, and the
exact value will not be critical in our discussions.
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Table 3. Rough entropy loss estimate for iterated random mapping

k 1 2 22 23 24 25 26 27 28 29 210 211 212

− log2(1 − τk) 0.66 1.09 1.68 2.40 3.23 4.13 5.07 6.04 7.02 8.011 9.006 10.003 11.0016

The following conjecture gives some explicit numbers to approximate EL(fk).

Conjecture 1. We have

− log2(1 − τk)→ log2(k)− 1

as k →∞.

We have no proof for this statement, but experimental results given in Table 3
supports this very strongly.

Let us summarize what we have discussed so far.

1. State update function f behaves close to a random function with respect to
entropy preservation properties, although some difference can be seen.

2. We saw evidence that the entropy loss EL(fk) may be approximated by
EL(ϕk) ∼ − log2(1 − τk) ∼ log2(k) − 1 for those values of k much smaller
than

√
N , but not too small.

3. Based on the previous statement, we can expect 39-bit entropy loss of inter-
nal state after 240 iterations of state update function f .

We do not claim that the 39-bit entropy loss is an exact value. But we have
provided heuristic argument that it can be seen as a rough approximation.

4.4 Security Implications

We have, so far, confirmed that the state update function of MICKEY is not
a permutation of the internal state but rather behaves like a random function.
This, in itself, is not a desirable property for a state update function.

Turning to more specific numbers, first recall that the designers restricted
keystream usage to 240 bits for each key-IV setup. From discussions of the pre-
vious subsection, we can expect entropy loss of internal state to be equivalent
to 39 bits after 240 iterations of the state update function. As the internal state
started out with 160-bit entropy, at the end of the keystream of length 240, state
entropy would be equivalent to about 121 random bits.

Now, suppose we collect long keystreams, each of length 240 − ε, where ε
is small relative to 240, for example, ε = 220. We pair these keystreams with
their respective final internal states. If we collect 260.5-many of these, due to the
birthday paradox, we are highly likely to find two keystreams with identical final
internal states. Once the states are equal, keystreams of length ε produced from
that point on will also be equal.

In short, if we collect large number of long MICKEY keystreams, we are
bound to find two keystreams that started out differently, but ends the same,
irrespective of whether the collected keystreams correspond to one or multiple
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keys. This may not qualify as an attack, but does show that using multiple long
keystreams from MICKEY can be dangerous.

The large number 260.5 may give a wrong impression about the related threat
level. Notice that any (k+1)-th iterate image state is at the same time a k-th iterate
image state. This observation implies that multiple shifts of a single keystream all
qualify as (slightly shorter) long keystreams appearing in the above argument.

Let us try some more explicit numbers. One keystream of length 240 can be
shifted multiple times to produce (239 − ε)-many keystreams, each of length (at
least) 239 + ε. A gathering of 222-many 240-length keystreams can thus also be
interpreted as about 261 ∼ 222 · (239 − ε) keystreams of length 239 + ε. Since
entropy of state after 239 iterated state updates is expected to be about 122, one
could say that we are likely to obtain a matching state.

In reality, more than 222 base keystreams of length 240 will need to be gath-
ered before a match is found. This is because no matching will occur within
the set of shifted sequences originating from the same base sequence. The exact
analysis of these numbers seems to be complicated, but it is clear that the threat
caused by state entropy loss cannot be dismissed lightly.

So far, we have stated the entropy loss as an undesirable property, rather
than as an attack on MICKEY. But if one wants to consider the related data
complexity, it should be noticed that the whole keystream need not be stored.
Only the ending parts are used in looking for a match. The actual amount of
data that needs processing is C · 260.5 ∼ 268, where constant C is the number of
keystream bits needed to reliably distinguish between different states. It is not
totally clear as to which number should be taken as data complexity.

To develop a concrete attack scenario, it could be worthwhile to think about
the case where an appropriate keystream set is pre-generated and compared with
target online data.

Remark 1. Let us add a few words of explanation on the use of EL versus EL.
Some might believe that EL, which corresponds to iterated image point counts,
should be considered in these arguments. The difference between the two mea-
sures is whether the uneven distribution within the image set was taken into
account. Given two sets of the same size, a collision is more likely to appear
in the one with a more uneven probability distribution. Hence, the distribution
within the set does matter in these arguments, with the conclusion that EL(f),
rather than EL(f), is the correct measure to look at.

Remark 2. This subsection has shown that any streamcipher with a random, as
opposed to bijective, state update function should take care to use a state size
larger than twice security level.

5 A Small Class of Weak Keys

Let us first quote from the MICKEY specification [4].

There is a small class of arguably weak keys for MICKEY: namely, those
(K, IV ), pairs for which the state of R after loading is all zeroes. . . .,
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if an attacker assumes that this is the case, she can readily confirm her
assumption and deduce the remainder of the generator state by analyzing
a short sequence of keystream. But, because this can be assumed to occur
with probability roughly 2−80 we do not think it necessary to prevent it
(and so in the interests of efficiency we do not do so).

Notice that the all-zero state of register R is fixed under either value of
its control bit. Given the full specification for S, one can easily check that the
following is an S-state which is fixed under either value of its control bit. The
state is given in hexadecimal notation with the left end corresponding to s0.

10f0 02a1 000b 853f fff8

This fixed point was found by guessing just two cell values s78 and s79. The rest
follows sequentially from the fixed point requirement.4

If register S is ever set to the above fixed S-state, since the content of cell s0 is
0, the keystream produced will be equal to whatever registerR, with its irregular
clocking, produces. Those (key, IV) pairs, which sets register S to the above state
after loading, forms a weak key class in the sense given by the designers. The
probability of encountering one of these at random is roughly 2−80.

We now have two weak key classes, and we can expect the probability of
encountering one of these to be roughly 2−79, which is strictly greater than
2−80. Deciding not to prevent either of these in view of efficiency will be harder
to justify.

6 Conclusion

We have studied security aspects of the eSTREAM proposal MICKEY. Three
undesirable properties have been discovered.

1. Time-memory-data tradeoff is applicable with online complexity smaller
than exhaustive key search. Pre-computation needed is more demanding than
exhaustive search but this could be reachable in the near future.

2. The internal state loses entropy with repeated applications of the state up-
date function, resulting in keystreams that start out differently but merge
together towards the end.

3. There exists a small family of weak keys.

The first of these may be removed through internal state size increase, or with a
more complicated output filter. But neither method would be desirable in view
of efficiency. The second weakness seems more fundamental to the design of
MICKEY and does not seem to be easy to fix. The third can be avoided easily
with small extra cost.

It can be said that none of these weaknesses are absolutely critical, but these
must still be taken into account by anyone intending to use MICKEY.
4 It turns out that the above S-state is the unique state fixed under both control bit

values.
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A General Argument for TMD-Tradeoffs with BSW
Sampling

Let us work with BS-tradeoff and BSW sampling in a more general setting and
find the tradeoff point of minimal online complexity. Notation of Section 3 will
be used.

Set N ′ = |X ′| = |Y ′| = R·N so that givenD random target points, D′ = R·D
of them will belong to Y ′. The tradeoff curve will be TM2D′2 = N ′2, P = N ′/D′,
with 1 ≤ D′2 ≤ T , or equivalently, TM2D2 = N2, P = N/D, D′ = RD with
1 ≤ D′2 ≤ T .

A typical point on this curve is

T = M = D = N
2
5 , D′ = R = N

1
5 , and P = N

3
5 . (7)

Compared with (2), we have achieved lowered time and memory complexity at
the expense of higher data complexity. In all, the overall online complexity has
dropped from N

1
2 to N

2
5 . Notice that pre-computation time has decreased also.

We add a word of caution, as the complexities T and P of (2) are counted in
terms of number of applications of f , where as those of (7) refer to applications
of f ′, composed with h appearing in (3). So if the efficiency of function h is not
comparable to that of f , the two time complexities cannot be compared in their
raw form. Of course, similar remarks apply to M , with (7) at an advantage this
time, but its importance is smaller.
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B MICKEY-128

It is quite clear that arguments we’ve given for MICKEY should be applicable
in much the same way to its 128-bit security cousin MICKEY-128. We briefly
write down the respective results concerning TMD-tradeoff and weak keys. Due
to lack of time and computational power, we have not been able to study the
entropy loss of MICKEY-128 state under its update function.

B.1 TMD-Tradeoff with BSW Sampling

TMD-tradeoff is applicable to MICKEY-128 in the same way as with MICKEY.
Through BSW sampling, the search space size is reduced from 2256 to 2213.
Keystream segments starting with 43-many zero bits are the data we should be
looking for.

A typical tradeoff point would be T = 2106, M = 2107, D = 253, with
P = 2160. The D refers to filtered data, and the total data needed before filtering
step is 296.

The tradeoff point giving minimal pre-computation time is T = 2127, M =
286, D = 263.5, with P = 2149.5. The pre-filter data requirement is 2106.5.

B.2 A Small Class of Weak Keys

There exists one fixed S-state which remains fixed under either value of the
control bit. It is given below with the left end corresponding to s0.

05ff d071 d020 c3fc 0c1c 037f 1f3f ef98

This S-state gives a small family of weak keys which may be encountered at
random with probability 2−128.
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3 Objectif Sécurité, Gland, Switzerland

Abstract. Since the original publication of Martin Hellman’s cryptan-
alytic time-memory trade-off, a few improvements on the method have
been suggested. In all these variants, the cryptanalysis time decreases
with the square of the available memory. However, a large amount of
work is wasted during the cryptanalysis process due to so-called “false
alarms”. In this paper we present a method of detection of false alarms
which significantly reduces the cryptanalysis time while using a minute
amount of memory. Our method, based on “checkpoints”, reduces the
time by much more than the square of the additional memory used,
e.g., an increase of 0.89% of memory yields a 10.99% increase in per-
formance. Beyond this practical improvement, checkpoints constitute a
novel approach which has not yet been exploited and may lead to other
interesting results. In this paper, we also present theoretical analysis of
time-memory trade-offs, and give a complete characterization of the vari-
ant based on rainbow tables.

Keywords: Time-memory trade-off, cryptanalysis, precomputation.

1 Introduction

Many cryptanalytic problems can be solved in theory using an exhaustive search
in the key space, but are still hard to solve in practice because each new instance
of the problem requires to restart the process from scratch. The basic idea of a
time-memory trade-off is to carry out an exhaustive search once for all such that
following instances of the problem become easier to solve. Thus, if there are N
possible solutions to a given problem, a time-memory trade-off can solve it with
T units of time and M units of memory. In the methods we are looking at T is
proportional to N2/M2 and a typical setting is T = M = N2/3.

The cryptanalytic time-memory trade-off has been introduced in 1980 by
Hellman [8] and applied to DES. Given a plaintext P and a ciphertext C, the
problem consists in recovering the key K such that C = SK(P ) where S is
an encryption function assumed to follow the behavior of a random function.
Encrypting P under all possible keys and storing each corresponding ciphertext
allows for immediate cryptanalysis but needs N elements of memory. The idea of
a trade-off is to use chains of keys. It is achieved thanks to a reduction function
R which generates a key from a ciphertext. Using S and R, chains of alternating

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 183–196, 2005.
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ciphertexts and keys can thus be generated. The key point is that only the first
and the last element of each chain are stored. In order to retrieve K, a chain is
generated from C. If at some point it yields a stored end of chain, then the entire
chain is regenerated from its starting point. However, finding a matching end of
chain does not necessarily imply that the key will be found in the regenerated
chain. There exist situations where the chain that has been generated from C
merges with a chain that is stored in the memory which does not contains K.
This situation is called a false alarm. Matsumoto, with Kusuda [10] in 1996
and with Kim [9] in 1999, gave a more precise analysis of the parameters of the
trade-off. In 1991, Fiat and Naor [6, 7] showed that there exist cryptographically
sound one-way functions that cannot be inverted with such a trade-off.

Since the original work of Hellman, several improvements have been pro-
posed. In 1982, Rivest [5] suggested an optimization based on distinguished points
(DP) which greatly reduces the amount of look-up operations which are needed
to detect a matching end point in the table. Distinguished points are keys (or
ciphertexts) that satisfy a given criterion, e.g., the last n bits are all zero. In
this variant, chains are not generated with a given length but they stop at the
first occurrence of a distinguished point. This greatly simplifies the cryptanal-
ysis. Indeed, instead of looking up in the table each time a key is generated
on the chain from C, keys are generated until a distinguished point is found
and only then a look-up is carried out in the table. If the average length of
the chains is t, this optimization reduces the amount of look-ups by a factor
t. Because merging chains significantly degrades the efficiency of the trade-off,
Borst, Preneel, and Vandewalle [4] suggested in 1998 to clean the tables by dis-
carding the merging and cycling chains. This new kind of tables, called perfect
table, substantially decreases the required memory. Later, Standaert, Rouvroy,
Quisquater, and Legat [14] dealt with a more realistic analysis of distinguished
points and also proposed an FPGA implementation applied to DES with 40-bit
keys. Distinguished points can also be used to detect collisions when a function
is iterated, as proposed by Quisquater and Delescaille [13], and van Oorschot
and Wiener [15].

In 2003, Oechslin [12] introduced the trade-off based on rainbow tables and
demonstrated the efficiency of his technique by recovering Windows passwords.
A rainbow table uses a different reduction function for each column of the table.
Thus two different chains can merge only if they have the same key at the same
position of the chain. This makes it possible to generate much larger tables.
Actually, a rainbow table acts almost as if each column of the table was a separate
single classic1 table. Indeed, collisions within a classic table (or a column of a
rainbow table) lead to merges whereas collisions between different classic tables
(or different columns of a rainbow table) do not lead to a merge. This analogy
can be used to demonstrate that a rainbow table of mt chains of length t has
the same success rate as t single classic tables of m chains of length t. As the
trade-off based on distinguished point, rainbow tables reduce the amount of
look-ups by a factor of t, compared to the classic trade-off. Up until now, trade-

1 By classic we mean the tables as described in the original Hellman paper.
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off techniques based on rainbow tables are the most efficient ones. Recently, an
FPGA implementation of rainbow tables has been proposed by Mentens, Batina,
Preneel, and Verbauwhede [11] in order to retrieve Unix passwords.

Whether it is the classic Hellman trade-off, the distinguished points or the
rainbow tables, they all suffer from a significant quantity of false alarms. Contrar-
ily to what is claimed in the original Hellman paper, false alarms may increase
the time complexity of the cryptanalysis by more than 50%. We will explain this
point below. In this paper, we propose a technique whose goal is to reduce the
time spent to detect false alarms. It works with the classic trade-off, with dis-
tinguished points, and with rainbow tables. Such an improvement is especially
pertinent in practical cryptanalysis, where time-memory trade-offs are generally
used to avoid to repeat an exhaustive search many times. For example, when
several passwords must be cracked [12], each of them should not take more than
a few seconds. In [1], the rainbow tables are used to speed up the search pro-
cess in a special database. In such a commercial application, time is money, and
therefore any improvement of time-memory trade-off also.

In Section 2, we give a rough idea of our technique based on checkpoints.
We provide in Section 3 a detailed and formal analysis of the rainbow tables.
These new results allow to formally compute the probability of success, the
computation time, and the optimal size of the tables. Based on this analysis we
can describe and evaluate our checkpoint technique in detail. We illustrate our
method by cracking Windows passwords based on DES. In Section 4, we show
how a trade-off can be characterized in general. This leads to the comparison
of the three existing variants of trade-off. Finally, we give in Section 5 several
implementation tips which significantly improve the trade-off in practice.

2 Checkpoint Primer

2.1 False Alarms

When the precalculation phase is achieved, a table containing m starting points
S1, . . . , Sm and m end points E1, . . . , Em is stored in memory. This table can be
regenerated by iterating the function f , defined by f(K) := R(SK(P )), on the
starting points. Given a row j, let Xj,i+1 := f(Xj,i) be the i-th iteration of f on
Sj and Ej := Xj,t. We have:

S1 = X1,1
f→ X1,2

f→ X1,3
f→ . . .

f→ X1,t = E1

S2 = X2,1
f→ X2,2

f→ X2,3
f→ . . .

f→ X2,t = E2
...

...

Sm = Xm,1
f→ Xm,2

f→ Xm,3
f→ . . .

f→ Xm,t = Em

In order to increase the probability of success, i.e., the probability that K ap-
pears in the stored values, several tables with different reduction functions are
generated.
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Given a ciphertext C = SK(P ), the on-line phase of the cryptanalysis works
as follows: R is applied on C in order to obtain a key Y1, and then the function
f is iterated on Y1 until matching any Ej . Let s be the length of the generated
chain from Y1:

C
R→ Y1

f→ Y2
f→ . . .

f→ Ys

Then the chain ending with Ej is regenerated from Sj until yielding the expected
key K. Unfortunately K is not in the explored chain in most of the cases. Such a
case occurs when R collides: the chain generated from Y1 merged with the chain
regenerated from Sj after the column where Y1 is. That is a false alarm, which
requires (t− s) encryptions to be detected.

Hellman [8] points out that the expected computation due to false alarms
increases the expected computation by at most 50 percent. This reasoning relies
on the fact that, for any i, f i(Y1) is computed by iterating f i times. How-
ever f i(Y1) should be computed from Yi because f i(Y1) = f(Yi). In this case,
the computation time required to reach a chain’s end is significantly reduced
on average while the computation time required to rule out false alarms stays
the same. Therefore, false alarms can increase by more than 50 percent the ex-
pected computation. For example, formulas given in Section 3 allow to determine
the computation wasted during the recovering of Windows passwords [12]: false
alarms increase by 125% the expected computation.

2.2 Ruling Out False Alarms Using Checkpoints

Our idea consists in defining a set of positions αi in the chains to be checkpoints.
We calculate the value of a given function G for each checkpoint of each chain
j and store these G(Xj,αi) with the end of each chain Xj,t. During the on-line
phase, when we generate Y1, Y2, . . . , Ys, we also calculate the values for G at each
checkpoint, yielding the values G(Yαi+s−t) . If Ys matches the end of a chain
that we have stored, we compare the values of G for each checkpoint that the
chain Y has gone through with the values stored in the table. If they differ at
least for one checkpoint we know that this is a false alarm. If they are identical,
we cannot determine if a false alarm will occur without regenerating the chain.

In order to be efficient, G should be easily computable and the storage of
its output should require few bits. Below, we consider the function G such that
G(X) simply outputs the less significant bit of X . Thus we have:

Pr{G(Xj,α) �= G(Yα+s−t) | Xj,α �= Yα+s−t} =
1
2

(
1− 1

2|K|

)
≈ 1

2
.

The case Xj,α �= Yα+s−t occurs when the merge appears after the column α
(Fig 1). The caseXj,α = Yα+s−t occurs when either K appears in the regenerated
chain or the merge occurs before the column α (Fig. 2).

In the next section we will analyze the performances of perfect rainbow tables
in detail. Then, we will introduce the checkpoint concept in rainbow tables and
analyze both theoretical and practical results.
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EjSj

Y1

Ys

Yα+s−t

Xj,α

checkpoint

Fig. 1. False alarm detected with proba-
bility 1/2

EjSj

Y1

Ys

Xj,α

checkpoint

Yα+s−t

Fig. 2. False alarm not detected

3 Perfect Rainbow Tables and Checkpoints

3.1 Perfect Tables

The key to an efficient trade-off is to ensure that the available memory is used
most efficiently. Thus we want to avoid the use of memory to store chains that
contain elements which are already part of other chains. To do so, we first gen-
erate more chains than we actually need. Then we search for merges and remove
chains until there are no merges. The resulting tables are called perfect tables.
They have been introduced by [4] and analyzed by [14]. Creating perfect rainbow
and DP tables is easy since merging chains can be recognized by their identical
end points. Since end points need to be sorted to facilitate the look-ups, identify-
ing the merges comes for free. Classic chains do not have this advantage. Every
single element of every classic chain that is generated has to be looked up in
all elements of all chains of the same table. This requires mt� look-ups in total
where � is the number of stored tables. A more efficient method of generating
perfect classic tables is described in [2]

Perfect classic and DP tables are made of unique elements. In perfect rainbow
tables, no element appears twice in any given column, but it may appear more
than once across different columns. This is consistent with the view that each
column of a rainbow table acts like a single classic table. In all variants of the
trade-off, there is a limit to the size of the perfect tables that can be generated.
The brute-force way of finding the maximum number of chains of given length t
that will not merge is to generate a chain from each of the N possible keys and
remove the merges.

In the following sections, we will consider perfect tables only.

3.2 Optimal Configuration

From [12], we know that the success rate of a single un-perfect rainbow table is
1 −

∏t
i=1

(
1− mi

N

)
where mi is the number of different keys in column i. With

perfect rainbow tables, we have mi = m for all i s.t. 1 ≤ i ≤ t. The success rate
of a single perfect rainbow table is therefore

Prainbow = 1−
(
1− m

N

)t

. (1)
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The fastest cryptanalysis time is reached by using the largest possible perfect
tables. This reduces the amount of duplicate information stored in the table and
reduces the number of tables that have to be searched. For a given chain length t,
the maximum number mmax(t) of rainbow chains that can be generated without
merges is obtained (see [12]) by calculating the number of independent elements
at column t if we start with N elements in the first column. Thus we have

mmax(t) = mt where m1 = N and mn+1 = N
(
1− e−

mn
N

)
where 0 < n < t.

For non small t we can find a closed form for mmax (see [2]):

mmax(t) ≈
2N
t + 2

.

From (1), we deduce the probability of success of a single perfect rainbow table
having mmax chains:

Pmax
rainbow = 1−

(
1− mmax

N

)t

≈ 1− e−t mmax
N ≈ 1− e−2 ≈ 86%.

Interestingly, for any N and for t not small, this probability tends toward a
constant value. Thus the smallest number of tables needed for a trade-off only
depends on the desired success rate P . This makes the selection of optimal
parameters very easy (see [2] for more details):

� =
⌈
− ln(1− P )

2

⌉
, m =

M

�
, and t =

ln(1 − P )
ln(1− M

�N )�
≈ −N

M
ln(1− P ).

3.3 Performance of the Trade-Off

Having defined the optimal configuration of the trade-off, we now calculate the
exact amount of work required during the on-line phase. The simplicity of rain-
bow tables makes it possible to include the work due to false alarms both for
the average and the worst case.

Cryptanalysis with a set of rainbow tables is done by searching for the key in
the last column of each table and then searching sequentially through previous
columns of all tables. There are thus a maximum of �t searches. We calculate the
expectation of the cryptanalysis effort by calculating the probability of success
and the amount of work for each search k. When searching a key at position c
of a table, the amount of work to generate a chain that goes to the end of the
table is t − c. The additional amount of work due to a possible false alarm is c
since the chain has to be regenerated from the start to c in order to rule out the
false alarm. The probability of success in the search k is given below:

pk =
m

N

(
1− m

N

)k−1
. (2)

We now compute the probability of a false alarm during the search k. When
we generate a chain from a given ciphertext and look-up the end of the chain in
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Table 1. Calculated and measured performance of rainbow tables

N = 8.06 × 1010, t = 10000,
m = 15408697, � = 4

theory measured over 1000
experiments

encryptions (average) 1.55 × 107 1.66 × 107

encryptions (worst case) 2.97 × 107 2.96 × 108

number of false alarms (average) 1140 1233

number of false alarms (worst case) 26048 26026

the table, we can either not find a matching end, find the end of the correct chain
or find an end that leads to a false alarm. Thus we can write that the probability
of a false alarm is equal to one minus the probability of actually finding the key
minus the probability of finding no end point. The probability of not finding an
end point is the probability that all points that we generate are not part of the
chains that lead into the end points. At column i, these are the mi chains that
we used to build the table. The probability of a false alarm at search k (i.e., in
column c = t− �k

� �) is thus the following:

qc = 1− m

N
−

i=t∏
i=c

(
1− mi

N

)
(3)

where c = t−
⌊

k
�

⌋
, mt = m, and mi−1 = −N ln(1 − mi

N ). When the tables have
exactly the maximum number of chains mmax we find a short closed form for qc

(see [2] for more details):

qc = 1− m

N
− c(c + 1)

(t+ 1)(t + 2)
. (4)

The average cryptanalysis time is thus:

T =
k=�t∑
k=1

c=t−� k
�

�

pk (W (t− c− 1) +Q(c)) �+ (1− m

N
)�t (W (t) +Q(1)) � (5)

where W (x) =
i=x∑
i=1

i and Q(x) =
i=t∑
i=x

qii.

The second term of (5) is the work that is being carried out every time no
key is found in the table while the first term corresponds to the work that is
being carried out during the search k. W represents the work needed to generate
a chain until matching a end point. Q represents the work to rule out a false
alarm. We can rewrite (5) as follows:
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T =
k=�t∑
k=1

c=t−� k
�

�

pk

(
i=t−c−1∑

i=1

i+
i=t∑
i=c

qii

)
�+ (1− m

N
)�t

(
i=t∑
i=1

i+
i=t∑
i=1

qii

)
�

=
k=�t∑
k=1

c=t−� k
�

�

pk

(
(t− c)(t− c− 1)

2
+

i=t∑
i=c

qii

)
�+ (1− m

N
)�t

(
t(t− 1)

2
+

i=t∑
i=1

qii

)
�

We have run a few experiments to illustrate T . The results are given in Table 1.

3.4 Checkpoints in Rainbow Tables

From results of Section 3.3, we establish below the gain brought by the check-
points. We firstly consider only one checkpoint α. Let Y1 . . . Ys be a chain gen-
erated from a given ciphertext C. From (3), we know that the probability that
Y1 . . . Ys merges with a stored chain is qt−s. The expected work due to a false
alarm is therefore qt−s(t− s).

We now compute the probability that the checkpoint detects the false alarm.
If the merge occurs before the checkpoint (Fig. 2) then the false alarm cannot be
detected. If the chain is long enough, i.e., α + s > t, the merge occurs after the
checkpoint (Fig. 1) with probability qα. In this case, the false alarm is detected
with probability Pr{G(Xj,α) �= G(Yα+s−t) | Xj,α �= Yα+s−t}.

We define gα(s) as follows:

gα(s) =

⎧⎪⎨⎪⎩
0 if there is no checkpoint in column α,

0 if (α+ s) ≤ t, i.e. the generated chain does not reach column α,

Pr{G(Xj,α) �= G(Yα+s−t) | Xj,α �= Yα+s−t} otherwise.

We can now rewrite Q(x) =
i=t∑
i=x

i (qi − qα · gα(t− i)) .

We applied our checkpoint technique with N = 8.06 × 1010, t = 10000,
m = 15408697, � = 4 and G as defined in Section 2.2. Both theoretical and
experimental results are plotted on Fig. 3.

We can generalize to t checkpoints. We can rewrite Q(x) as follows:

Q(x) =
i=t∑
i=x

i

⎛⎝qi − qi · gi(t− i)−
j=t∑

j=i+1

(
qj · gj(t− j)

k=j−1∏
k=i

(1− gk(t− k))

)⎞⎠ .

We now define memory cost and time gain. Let M , T , N and M ′, T ′, N ′ be
the parameters of two trade-offs respectively. We define σM and σT as follows:

M ′ = σM ·M and T ′ = σT · T.

The memory cost of the second trade-off over the first one is straightforwardly
defined by (σM−1) = M ′/M−1 and the time gain is (1−σT ) = 1−T ′/T . When
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Table 2. Cost and gain of using checkpoint in password cracking, with N = 8.06×1010 ,
t = 10000, m = 15408697, and � = 4

Number of checkpoints 1 2 3 4 5 6

Cost (memory) 0.89% 1.78% 2.67% 3.57% 4.46% 5.35%

Gain (time) storing chains 1.76% 3.47% 5.14% 6.77% 8.36% 9.91%

Gain (time) storing checkpoints 10.99% 18.03% 23.01% 26.76% 29.70% 32.04%

Optimal checkpoints 8935

± 5

8565
9220

± 5

8265
8915
9370

± 5

8015
8655
9115
9470

± 5

7800
8450
8900
9250
9550

± 50

7600
8200
8700
9000
9300
9600

± 100

a trade-off stores more chains, it implies a memory cost. Given that T ∝ N2/M2

the time gain is:

(1− T ′

T
) = 1− 1

σ2
M

.

Instead of storing additional chains, the memory cost can be used to store check-
points. Thus, given a memory cost, we can compare the time gains when the ad-
ditional memory is used to store chains and when it is used to store checkpoints.
Numerical results are given in Table 2.

The numerical results are amazing. An additional 0.89% of memory saves
about 10.99% of cryptanalysis time. This is six times more than the 1.76% of
gain that would be obtained by using the same amount of memory to store addi-
tional chains. Our checkpoints thus perform much better than the basic trade-off.
As we add more and more checkpoints, the gain per checkpoint decreases. In our
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example it is well worth to use 6 bits of checkpoint values (5.35% of additional
memory) per chain to obtain a gain of 32.04%. The 0.89% of memory per check-
point are calculated by assuming that the start and the end of the chains are
stored in 56 bits each, as our example uses DES keys. As we explain in Section 5
the amount of bits used to store chain can be optimized and reduced to 49 bits
in our example. In this case a bit of checkpoint data adds 2% of memory and it
is still well worth using three checkpoints of one bit each to save 23% of work.

4 Characterization and Comparison of Trade-Offs

In this section we give a generic way of characterizing the different variants of the
trade-off. We calculate the characteristic of rainbow tables exactly and compare
it to measured characteristics of other variants.

4.1 Time-Memory Graphs

Knowing how to calculate the success rate and the number of operations needed
to invert a function, we can now set out to plot the time-memory graphs. In
order to do so, we fix a given success rate and for each memory size we find
the table configuration that yields the fastest trade-off and plot the time that
it takes. The graphs show that cryptanalysis time decreases with the square
of the memory size, independently of the success rate. We can thus write the
time-memory relation as

T =
N2

M2 γ(P ) (6)

where γ(P ) is a factor that depends only on the success probability. It is inter-
esting to note that for P = 86% which is the the maximum success probability
of a single rainbow table, the factor is equal to 1. In that case we find the typical
trade-off which was already described by Hellman, namely that M = T = N

2
3 .
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Fig. 4. Time-Memory graphs for rainbow tables, with various success rates.For
Prainbow = 86% the graph follows exactly T = N2/M2
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Note that this simple expression of the trade-off performance was not possible
for the previous variants. In those cases, calculations were always based on non-
perfect tables, on the worst case (the key is not found in any table) and ignoring
the amount of work due to false alarms. Optimizations have been proposed
with these limitations, but to our knowledge the actual average amount of work,
including false alarms has never been used to find optimal parameter. Our simple
formula allows for a very simple calculation of the optimal parameters when any
two of the success rate, the inversion time or the memory are given.

4.2 The Time-Memory Characteristic

The previous section confirms that rainbow tables follow the same T ∝ N2/M2

relation as other variants of the trade-off. Still, they seem to perform better.
We thus need a criterion to compare the trade-offs. We propose to use γ(P ) as
the trade-off characteristic. The evolution of γ over a range of P shows how a
variant is better than another. Figure 5 shows a plot of γ(P ) for rainbow tables:

In the following sections, we compare the performance of rainbow tables with
the performance of classic tables and DP tables. DP tables are much harder to
analyze because of the variable length of the chains. We will thus concentrate
on classic tables first.

4.3 Classic and DP Tables

The trade-off using classic or DP tables can also be characterized using the γ
factor. Indeed both trade-offs follow the T ∝ N2/M2 relation in a large part
of the parameter space up to a factor which depends of the success rate and
the type of trade-off. We have first devised a strategy to generate the largest
possible perfect tables for each variant of the trade-off and have then used as
many tables as necessary to reach a given success rate. The details of this work
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and the resulting time-memory graphs are available in [2]. In Figure 6 we show
the evolution of the trade-off characteristic of classic tables and of DP tables.

The experiments and analysis show that rainbow tables outperform classic
tables and DP tables for success rates above 80%. Below this limit, perfect
classic tables are slightly better than perfect rainbow tables in terms of hash
operations needed for cryptanalysis. However, the price of using classic tables is
that they need t times more table look-ups. Since these do not come for free in
most architectures (content addressable memory could be an exception), rainbow
tables seem to be the best option in any case.

5 Implementation Tips

For the sake of completeness we want to add some short remarks on the optimized
implementation of the trade-offs. Indeed, an optimized implementation can yield
performance gains almost as important as the algorithmic optimizations. We
limit our tips to the implementation of rainbow tables.

5.1 Storing the Chain End Points

The number of operations of the trade-off decreases with the square of the avail-
able memory. Since available memory is measured in bytes and not in number
of chains, it is important to choose an efficient format for storing the chains.
A first issue is whether to use inputs or outputs of the function to be inverted
(keys or ciphertexts) as beginning and end of chains. In practice the keys are
usually smaller than the ciphertexts. It is thus more efficient to store keys (the
key at the end of the chain has no real function but the extra reduction needed
to generate it from the last ciphertext is well worth the saved memory). A second
and more important issue is that we can take advantage of the way the tables
are organized. Indeed a table consists of pairs of beginnings and ends of chains.
To facilitate look-ups the chains are sorted by increasing values of the chain
ends. Since the ends are sorted, successive ends often have an identical prefix.
As suggested in [3] we can thus remove a certain length of prefix and replace it
by an index table that indicates where every prefix starts in the table.

In our Windows password example, there are about 237 keys of 56 bits.
Instead of storing the 56 bits, we store a 37 bit index. From this index we take
21 bits as prefix and store only the last 16 bits in memory. We also store a table
with 221 entries that point to the corresponding suffixes for each possible prefix.

5.2 Storing the Chain Starting Points

The set of keys used for generating all the chains is usually smaller that the total
set of keys. Since rainbow tables allow us to choose the starting points, we can use
keys with increasing value of their index. In our example we used about 300 million
starting points. This value can be expressed in 29 bits, so we only need to store the
29 lower bits of the index. The total amount of memory needed to store a chain is
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thus 29+16 bits for the start and the end. The table that relates the prefixes to the
suffixes incurs about 3.5 bits per chain.Altogetherwe thus need 49bits per chain.A
simple implementation that stores the full 56 bits of the start and end chain would
need 2.25 times more memory and be 5 times slower.

5.3 Storing the Checkpoints

For reasons of efficiency of memory access it may in some implementations be
more efficient to store the start and the end of a chain (that is, its suffix) in
multiples of 8 bits. If the size of some parameters does not exactly match the
size of the memory units, the spare bits can be used to store checkpoints for free.
In our case, the 29 bits of the chain start are stored in a 32 bit word, leaving 3
bits available for checkpoints.

6 Conclusion

We have introduced a new optimization for cryptanalytic time-memory trade-offs
which performs much better than the usual T ∝ N2/M2. Our method works by
reducing the work due to false alarms. Since this work is only a part of the total
work our method can not reduce the work indefinitely. Besides having better
performance, checkpoints can be generated almost for free while generating the
trade-off tables. There is thus no indication for not using checkpoints and we
conjecture that they will be used in many future implementations of the trade-
off. Also, checkpoints are a new concept in time-memory trade-offs and they
may lead to further optimizations and applications. In order to analyze the
gain due to checkpoints we have presented a complete analysis of the rainbow
tables. Using this analysis we are able to predict the gain that can be achieved
with checkpoints. Finally we have also presented a simple way of comparing the
existing variants of the trade-off with a so-called trade-off characteristic. We have
calculated this characteristic for rainbow tables and measured it for the other
variants. The results show that rainbow tables outperform the other variants
in all cases except when table look-ups are free and the success probability is
below 80%. The fact that the cryptanalysis time decreases with the square of
the number of elements stored in memory indicates that it is very important to
reduce the memory usage. This is why we have shared our tips on how this can
be achieved in practice.
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Abstract. In this paper, we analyze a wavelet based watermarking
scheme proposed by Barni et al in 2001. The said scheme modifies high
frequency wavelet coefficients to embed a watermark in an image. The
scheme employs well known HVS model during embedding to embed the
watermark in a perceptually transparent manner. Here we present a suc-
cessful cryptanalysis of the scheme using single watermarked copy. In
the process of cryptanalysis, we recover the watermark signal from the
marked image and the attack is similar to cryptographic key recovery
attack. Furthermore, we not only successfully recover the secret water-
mark signal from the attacked image, but also we are able to remove the
watermark. This raises a serious question about the security and usabil-
ity of the watermarking scheme in any practical system.

Keywords: Cryptanalysis, Watermark Recovery, Wavelet Transform,
Copy Attack.

1 Introduction

Rapid growth in the popularity of Internet file sharing applications has led to a
situation where protection of copyright became a serious problem for the content
providers. Entertainment industry is loosing millions of dollars due to widespread
illegal sharing of copyrighted material. Several technologies were developed to
tackle the rampant abuse of copyright and watermarking is one such technology
which is ( probably ) most effective. A lot of watermarking techniques have been
developed to embed invisible copyright information in the image and they employ
different kinds of signal processing techniques. Some of these schemes also embed
user specific watermark(s) for fingerprinting. Further, these schemes should with-
stand several benchmark attacks available in the existing literature. However,
“Benchmarking is not really a security evaluation, but mainly a robustness eval-
uation” [6]. In the absence of proper security evaluation, these schemes depend
on the sophisticated signal processing techniques to earn user confidence and
acceptability. Unlike cryptographic schemes, few attempts have been made to
analyze each of the popular watermarking schemes and to study customized at-
tacks in highlighting their weaknesses. Commercial use of watermarking schemes
without proper security analysis is a risky endeavor as hackers may find it easy
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to break, causing considerable financial loss to the media owner. In this paper,
we concentrate on a specific watermarking scheme described in [2] and present a
very strong attack that successfully recovers and removes the secret watermark
bits from the watermarked image.

Most of the watermarking schemes follow the same design paradigm and em-
bed a secret signal in the host media to generate the marked media. Also, em-
bedding process should not introduce any visible or statistical distortions. Let I
be the original host image and s be the secret watermark, then the embedding
process can be presented as Iw = I + s. Note that, we consider the image I as a
two dimensional matrix only. And minor changes in values of the matrix cause
very little visible changes in the resultant image and it remains visually indistin-
guishable from the original image I. During the lifetime of a watermarked image,
the image may undergo different kinds of processing, some of them are malicious
and directed towards the watermark removal. Thus, watermark signal should be
robust enough to withstand malicious processing. To resolve any copyright dis-
pute, the owner extracts the mark from the disputed image I# to prove his/her
ownership. Most of these watermark verification processes are correlation based,
i.e., they rely on the correlation between the recovered signal s# = I# − I and
watermark signal s as the measure of confidence in the detection process. Many
watermarking schemes embed user specific watermark s(i) for forensic tracking
of users violating the copyright. Thus a robust watermarking scheme should not
only ensure that it correctly identify the malicious buyer, but also the probabil-
ity of false positive ( i.e. probability of wrongly implicating an honest buyer )
should be very small.

A scheme is considered to be secured if an attacker, who has access to the
algorithmic principle of the scheme but has no access to the key, should not be
able to tamper with the watermark [1, 9]. This cryptographic principle was first
introduced by Kerckohoffs [11] in 1883. There are several examples to prove that
“Security-by-Obscurity” (the assumption that opponent will remain ignorant
about the system being used ) can’t work – the latest one being the Secure
Digital Music Initiative (SDMI) challenge [3]. Thus, given a watermarked image
Iw, the challenge in front of the attacker is to construct an image I# in such
a manner that I# is indistinguishable from I and s# is uncorrelated with s(i).
Then it is not possible to identify the malicious buyer i any more. A robust
watermarking scheme should defend such an attack.

Image processing based benchmark attacks like Stirmark [17, 16] are very
popular with the designers of watermarking schemes and most of the recently
proposed schemes are robust to it. However, security against collusion attack [8]
is a serious issue, as most of the existing schemes are vulnerable against it.
On the other hand, collusion attack may not be practical as it requires a large
number of watermarked copies to be successful. Thus attacks based on single
watermarked copy are gaining lot of attention [12, 10, 15, 6]. According to [12],
there are lots of redundant clips in an audio/video. These clips can be used
interchangeably as they are almost replica of each other, or they can be com-
bined to form a new clip to replace one of the existing clips. Now, these type of
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alteration is enough to defeat many watermarking schemes and this is the basic
idea of replacement attack reported in [12]. Attacks reported in [10, 15] can be
mounted on those schemes where decoder is in public domain for watermark ver-
ification. Another class of attack directed towards the correlator detectors that
does not use original image for detection, is ambiguity attack [4]. Also authors
of [5] use the ambiguity attack to design a new zero-knowledge watermarking
scheme. Recently Cayre et al [6] successfully mounted an attack on “wide spread
spectrum(WSS)” based watermarking techniques, in which authors propose a
key recovery attack using Blind Source Separation tools like Principal Com-
ponent Analysis and Independent Component Analysis. Here, we introduce an
attack which employs completely different methodology from those attacks and
it is analogous to cryptographic key recovery attack. We not only recover most
of the secret watermark signal, but also we remove the watermark signal from
the attacked images. For the attacker, we also introduce techniques to indirectly
measure the absence of watermark in the attacked image.

In this paper, we study the watermarking scheme by Barni et al [2] from the
cryptographic point of view. Our attack is based on single watermarked copy
and recovers most of the watermark successfully. Further, we are able to remove
the watermark information from the attacked images. Successful recovery of
secret watermark can pave the way for mounting the “copy attack” [13] on the
scheme. Also, the original and recovered watermarks possess high correlation
with the watermarked image, thus both the attacker and the owner can claim
the ownership of the image in the absence of trusted third party registration of
watermarks. In Section 2, we describe the scheme proposed in [2] and the attack
is described in Section 3.

2 The Wavelet Based Watermarking Scheme

Recent growth of interest in the wavelet based watermarking schemes and wavelet
transform in general started with the introduction of JPEG 2000, a wavelet based
compression technique for images. Basic idea behind the wavelet transform is to
study different frequency components of a signal. Given a signal f(t), one may
want to study the frequency components locally in time. The popular fourier
transform can provide the frequency components of f but time localization can-
not be easily achieved by fourier transform. Windowed fourier transform can
achieve time localization to certain extent by applying fourier transform on a
slice of f appeared between the time interval ti and tj . However, wavelet trans-
form [7] can provide a better time localization than windowed fourier transform.

Let us explain the wavelet transform using Haar basis [18]. Wavelet transform
is basically a one dimensional transform and to apply it to images, one must per-
form it along the row first, along the column next. Consider the following one
dimensional signal I = [11, 5, 7, 15] consisting of four samples. Haar wavelet
transform first takes the pairwise averages and then calculates the half of the
subtracted values. So, after first level of wavelet transform the coefficients look
like IL=1

wav = [11+5
2 , 7+15

2 , 11−5
2 , 7−15

2 ] = [8, 11, 3,−4]. First two coefficients are av-
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Fig. 1. Left: 2D Wavelet Transform, Right: Coefficients used for Watermarking (Shaded
Region)

erages and known as low frequency components. Last two coefficients (half of the
subtracted values) are known as detail or high frequency coefficients. In the next
level of wavelet transform, normally the low frequency coefficients are subjected
to further processing. Thus, IL=2

wav = [8+11
2 , 8−11

2 , 3,−4] = [9.5,−1.5, 3,−4]. As,
in this example, there is only one low frequency component, we can not proceed
further. Note that, one can also choose the high frequency coefficients at any
level for next level of wavelet transform. This recursive computation of wavelet
coefficients is based on the filter bank. Form the wavelet coefficients one can get
back the original signal by pairwise addition and subtraction. For example, we
can get back the coefficients of the previous level by the operation 9.5±−1.5.

To extend these ideas to images, we consider an image as a 2D signal and
apply wavelet transform separately, first along the rows and then along the
columns. In each level of wavelet transform four different bands are generated
and they are denoted as LL,HL,LH,HH. One of the four bands is selected for
next level of wavelet transform and the structure looks like a tree.

2.1 Watermark Embedding

The wavelet based watermarking algorithm proposed by Barni et al [2] embeds
the watermark in the host image by modifying the high frequency wavelet coef-
ficients. During watermark embedding, the host image I is subjected to 4 levels
of wavelet transformations. As can be seen from Figure 1, there are four wavelet
subbands at each level. Let us denote these subbands by Iθ

l , where l, θ denote
the level and orientation of wavelet subbands, respectively. In popular literature,
these four subbands θ ∈ 0, 1, 2, 3 at each level are denoted by HL,HH,LH,LL.
During watermark embedding, though forward wavelet transform is performed
upto four levels, the wavelet coefficients generated from the first level of wavelet
transform are only used for watermarking. This ensures minimal distortions to
the watermarked image. Note that, coefficients from all the levels are used dur-
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ing measurement of sensitivity of human eyes to local image changes. We like
to point out that for the wavelet transform Daubechis-6 [7] filter bank is used
in [2].

A pseudorandom binary sequence consisting of ±1 is used as the watermark.
The sequence is selected in such a manner that the mean and standard deviation
of the sequence is equal to 0, 1 respectively. Let us denote the watermark sequence
by xθ, θ ∈ (0, 1, 2). Watermark is inserted in the host image by modifying the
wavelet coefficients in the following manner.

Ĩθ
l (i, j) = Iθ

l (i, j) + αxθ(i, j)wθ(i, j) (1)

Here α is used to control the embedding strength and perceptual weighing func-
tion wθ(i, j) is used as the measure of local sensitivity of the image I to noise.
As watermark is embedded in the high frequency wavelet coefficients at level 0
only, we can rewrite the equation 1 as follows.

Ĩθ
0 (i, j) = Iθ

0 (i, j) + αxθ(i, j)wθ(i, j), θ ∈ 0, 1, 2 (2)

Perceptual Weighing. A modified method of Lewis and Knowles [14] is used
in [2] to compute the perceptual weighing function wθ and its value is always
positive. We introduce the method used to compute wθ briefly here and refer to
[2–page 785] for details.

wθ(i, j) =
Θ(l, θ)Λ(l, i, j)Ξ(l, i, j)0.2

2
(3)

Here Θ(l, θ) is given by the following equation.

Θ(l, θ) =
{√

2, if θ = 1
1, otherwise

}
.

⎧⎪⎪⎨⎪⎪⎩
1.00, if l = 0
0.32, if l = 1
0.16, if l = 2
0.10, if l = 3

⎫⎪⎪⎬⎪⎪⎭ (4)

One can compute Λ(l, i, j) in the following manner.

Λ(l, i, j) = 1 + L′(l, i, j) (5)

L′(l, i, j) =
{

1− L(l, i, j) if L(l, i, j) ≤ 0.5
L(l, i, j), otherwise

}
(6)

L(l, i, j) =
1

256
I3
3

(
1 +
⌊

i

23−l

⌋
, 1 +

⌊
j

23−l

⌋)
(7)

Ξ gives an idea about the image texture around the pixel (i, j) and consists of
product of two terms. First term is the mean square value of all detail subbands
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( i.e., θ ∈ 0, 1, 2) and the second term is the variance of the subband at level I3
3 .

Ξ can be computed as follows.

Ξ(l, i, j) =
3−l∑
k=0

1
16k

2∑
θ=0

1∑
x=0

1∑
y=0

[
Iθ
k+l

(
y +

i

2k
, x+

j

2k

)]2
.

V ar

{
I3
3

(
1 + y +

i

23−l
, 1 + x+

j

23−l

)}
x = 0, 1
y = 0, 1

(8)

2.2 Watermark Detection

Watermark detection is oblivious, i.e., original image is not required during wa-
termark verification. The correlation between the marked wavelet coefficients
and the embedded watermark acts as the measure of confidence in the detection
process. If the correlation is greater than certain predefined threshold Tρ, then
the image is watermarked. Threshold Tρ is set in such a manner that the prob-
ability of false positive Pf is negligible. If the size of the watermarked image is
2M × 2N , then the correlation ρ can be computed as follows.

ρ =
1

3MN

2∑
θ=0

M−1∑
i=0

N−1∑
j=0

Ĩθ
0 (i, j)xθ(i, j) (9)

In [2] the false positive is set at Pf ≤ 10−8. Then the threshold is computed as

Tρ = 3.97
√

2σ2
ρB . Here σρB is given by the following equation.

σ2
ρB ≈

1
(3MN)2

2∑
θ=0

M−1∑
i=0

N−1∑
j=0

(Ĩθ
0 (i, j))2 (10)

3 Proposed Attack

Most of the recently proposed state of the art attacks are based on single wa-
termarked copy and the proposed attack is no different. We successfully remove
the watermark from the watermarked image using a single watermarked copy
only. In addition to this, we are able to extract the secret watermark bits from
the marked images which shows little attention being paid to the security of the
scheme during design phase. Particularly the ease with which it is possible to
extract the secret watermark bits, poses serious threat to security. Consider the
following scenario. Alice registers her secret watermark bits with the certifying
authority and uses the watermark to mark her image prior to distribution. This
is done to protect the copyright from infringement and authentication. Now,
Bob gets a watermarked copy from Alice and extracts her secret watermark.
Then Bob can pass any image as originated from Alice by embedding Alice’s
watermark in it. This will undermine the credibility of Alice. If we replace Al-
ice by a security agency which issues important document like passport with
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watermarked images of the passport holder and protects its authenticity by wa-
termarking, then the security risk of using Barni et al scheme is too obvious. Also
successful recovery of “secret watermark” can facilitate the way for mounting the
copy attack [13] as mentioned here.

We will present the proposed attack in a stepwise manner. First, we will de-
scribe the watermark removal techniques which acts as the precursor to more sig-
nificant watermark recovery attack. Barni et al watermarking scheme [2] modifies
the high frequency wavelet coefficients at the first level to embed the watermark.
A very naive attack would be to remove the high frequency wavelet coefficients
at the first level altogether. Thus no trace of watermark will remain in the at-
tacked image. However, this may degrade the quality of the attacked image. Let
us first study the effect of wavelet coefficients removal on the image quality. We
will use peak signal to noise ratio (PSNR) as a measure of image quality. During
the attack we first perform forward wavelet transform upto level 4 of an im-
age I. And after that we remove all the high frequency wavelet coefficients, i.e.,
Iθ
0 (i, j) = 0 for θ ∈ (0, 1, 2). Then reverse wavelet transform is performed to get

back the attacked image. In Table 1, we present results related to this attack.
Note that, wavelet coefficients removed from the first level are known as detail
coefficients and they essentially store information regarding the edges present
in an image. Thus removing these coefficients will ( to a little extent ) smudge
the edges present in the image. However, as we can see from the experimental
results presented in Table 1 and the image presented in Figure 2, the images are
of acceptable quality. Next we present an attack which is as effective as this one
but preserves the image quality better.

Addition of watermark can be treated as addition of noise to the host im-
age. It is well known in image processing that filtering is an effective tool for
denoising images. Thus filtering can be used to remove the watermark. Also,
if the noise (i.e., watermark) gets removed (even partially) the resultant im-
age gets closer to the original image. This implies that proper filtering can im-
prove the image quality also. As the watermark/noise is inserted in the high
frequency wavelet coefficients only, we can apply averaging filter to remove the
watermark. In Table 3, we present experimental results related to averaging fil-
ter operation. It can be seen that watermark is not detectable in the attacked
images.

Let us now analyze the situation from the attacker’s point of view. Even if
image processing operations are able to remove the watermark from the water-
marked image, there is no way to verify whether the watermarks got removed
or not as the attacker does not have any access to secret watermark bits. In
the next subsection, we will show how to get back the actual watermarking bits
which enables the attacker to verify whether watermarking signal got removed
or not.

3.1 Recovering the Secret Watermark

Watermarking algorithm of [2] only verifies the presence or absence of the mark.
Let us for the moment consider that the algorithm is non-oblivious and decoder
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has access to original host image I. Under these circumstances, one can easily
extract the watermark from the marked image in the following manner.

xθ(i, j) =
Ĩθ
0 (i, j)− Iθ

0 (i, j)
αwθ(i, j)

(11)

Note that, if we assume that watermark consists of ±1 only, we may not need
to know the actual values of α and wθ(i, j). As both α and wθ(i, j) are positive,
we can easily compute the xθ(i, j). However, the attacker does not have any
access to the original image to extract the watermark. In the previous section,
we have commented that the filtering removes the noise and the resultant image
is much closer to the original image. Thus we can use the filtered image IA as
approximate original in place of original image I. The exact algorithm to extract
the watermark is as follows.

Algorithm 1

1. Read the watermarked image Ĩ having size 2M × 2N .
2. Replace each pixel of Ĩ by the average of itself and its neighbours. Let us

denote the resultant image by IA.
3. Perform forward wavelet transform on Ĩ , IA upto level 4 to get Ĩθ

0 and IAθ
0 .

4. For i = 0 . . .M − 1 Do
(a) For j = 0 . . .N − 1 Do

i. For θ = 0 . . . 2 Do
A. If (Ĩθ

0 (i, j)− IAθ
0 (i, j)) > 0 Then xAθ(i, j) = 1

B. Else xAθ(i, j) = −1
5. If xAθ have mean ≈ 0 and s.d. ≈ 1 then the extracted watermark is a valid

candidate.

Step 5 of algorithm 1 actually checks whether the extracted watermark is valid.
This check is done to ensure that the extracted watermark satisfies the criteria
used to generate the watermark at first place, i.e., mean and standard deviation
of the watermark bits should be 0, 1 respectively. However, this check does not
conclusively ensure that the Ĩ is actually watermarked by the owner using xAθ. In
the next subsection we propose a method to verify that the extracted watermark
is indeed used to mark the image.

3.2 Verification of Extracted Watermark

It is known that the presence of watermark can be detected without the original
image. As the correlation between the two different pseudorandom sequences is
zero, if we check the presence of watermark using bit sequence which is differ-
ent from the one used to mark the image, the correlation ρ will be negligible.
Now this property can be used to predict whether the extracted watermark was
actually used for watermarking the present image. One can see that the suc-
cess of extraction procedure rest on proper approximation of original image. If
the extracted watermark is correct, then the correlation between the extracted
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watermark and watermarked image will be significant. Thus we can clearly ver-
ify correctness of the extracted watermark by checking whether the extracted
watermark possesses significant correlation with watermarked image. Here we
consider the correlation ρ as significant if ρ > 0.5. The exact algorithm is as
follows.

Algorithm 2

1. Read the watermarked image Ĩ having size 2M × 2N .
2. Extract the watermark xAθ using algorithm 1.
3. Detect the presence of watermark by Barni et al algorithm and using xAθ as

the watermark.
4. If ρ > 0.5 report IA as the attacked image and xAθ as the correct watermark.
5. Otherwise report failure.

Now we know whether the extracted watermark is valid or not. Let us assume
that the extracted watermark is valid, then we can easily check whether the
watermark got removed or not. We compute the correlation ρ between the at-
tacked image and the extracted watermark xAθ. If the correlation is negligible,
i.e., ρ ≈ 0.00, then the attacker is successful in removing the watermark from the
attacked image. Also proper extraction of the watermark itself is a very strong
attack which is similar to key recovery attack in cryptography. As the watermark
is known to the attacker, the attacker can mount several other attacks including
the copy attack [13].

4 Experimental Results

In this section, we present experimental results in support of our claims using
a similar experimental setup as used in [2]. Daubechis-6 filterbank is used for
wavelet transformations and different standard images having size 512× 512 are
used for experimentations. Let us first present the results regarding the removal
of wavelet coefficients. An image is subjected to forward DWT up to four levels
and high frequency coefficients at level l = 0 are removed. Here by removal, we

Fig. 2. Removal: Left:original, Middle: Coefficients Removed, Right: Filtered Images
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Table 1. Coefficients Removal

Image PSNR(w,a) PSNR(o,a) ρ Tρ Detector Response
Lena 31.91 33.79 0.0013 0.0065 Absent

Peppers 29.86 30.74 0.0250 0.0666 Absent
Boat 30.13 30.88 0.0073 0.0483 Absent
Elaine 30.99 32.78 0.0006 0.0100 Absent
F16 29.43 31.30 0.0003 0.0306 Absent

Table 2. Average Filtering

Image PSNR(w,a) PSNR(o,a) ρ Tρ Detector Response
Lena 32.06 33.83 0.0069 0.0329 Absent

Peppers 30.24 32.97 0.0110 0.0343 Absent
Boat 30.83 31.70 0.0230 0.0409 Absent
Elaine 30.94 32.91 0.0213 0.0303 Absent
F16 29.77 31.88 0.0222 0.0439 Absent

mean that the coefficient value is replaced by zero. After that, reverse DWT is
performed to get back the image. In Figure 2, we present the resultant image. As
can be seen from Figure 2, as well as from the PSNR values in Table 1 that the
resultant image is of very good quality. In table 1, PSNR(w,a) and PSNR(o,a)
represent PSNR of attacked images with respect to watermarked and original
images, respectively. It can be seen that the watermark cannot be detected from
any of the attacked images. This proves effectiveness of our attack. Next we study
the effectiveness of our second attack, where watermarked images are subjected
to average filtering. During average filtering, we replace each pixel with the
average of it and its neighboring pixel values. Actually the idea is to minimize
the effect of high frequency noise. The resultant image is presented in Figure 2.
Note that, Barni et al watermarking scheme embeds the watermark in the high
frequency zone only. This is also evident from the figure 3 presented in [2].
Table 2 presents results related to this attack and it is evident from the results
that the attack is effective in removing the watermark. PSNR of attacked images
with respect to original and watermarked images are reported in the table. It is
apparent that the PSNR of attacked images with respect to original images are
better than the PSNR of the attacked images w.r.t watermarked images.

Most significant part of our attack is to recover the watermark from the wa-
termarked images. We recover the watermark from the watermarked image using
the average filtered image as the approximate original image. The result is pre-
sented in Table 3. The mean and standard deviation of the extracted watermark
should be equal to zero and one, respectively. This is because the embedded wa-
termarks are of similar statistical characteristics. Note that, mean and standard
deviation of the extracted watermark, as reported in Table 3, is very close to
the actual theoretical value. Successful extraction of watermark help us to verify
whether our attack is successful or not. Also, successful recovery of watermark
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Table 3. Watermark Recovery

Image Correctly Recovered Bits Mean Standard Deviation ρw ρavg

Lena 86.40% 0.0000 1.0001 0.5347 0.0091
Peppers 83.31% -0.0035 0.9999 0.5641 0.0054

Boat 83.23% -0.0027 0.9999 0.6322 0.0089
Elaine 80.30% -0.0039 0.9999 0.6365 -0.0020
F16 94.15% 0.0017 0.9999 0.6764 0.0021

may have other serious implications as discussed in the earlier section. In Ta-
ble 3, we present results related to recovery of watermark. In all the cases we
can successfully recover at least 80% of the watermark bits. In Table 3, ρw is the
correlation between the watermarked image and extracted watermark. Similarly
ρavg is the correlation between the filtered image and extracted watermark. It
is also evident that extracted watermark possesses high correlation with the wa-
termarked images and insignificant correlation with the attacked (i.e., filtered)
images. This gives confidence to the attacker in the watermark removal procedure
because high correlation between the extracted watermark and watermarked im-
age is interpreted as the successful extraction of watermark. Similarly, negligible
correlation between the extracted watermark and attacked images indicates the
absence of watermark in those images.

5 Conclusion

In this paper, we systematically study the Barni et al watermarking scheme from
cryptanalytic point of view and introduce techniques to remove and recover the
secret watermark signal. Experimental results confirm our claims regarding the
recovery of secret watermark which is a very serious flaw of the scheme. It will be
interesting to see whether it is further possible to recover the original image itself
from the watermarked copy. Another possibility that should be investigated in
greater detail is the possibility of mounting the ambiguity and copy attack on
the scheme.
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Abstract. This paper revisits a public key cryptosystem which is based
on finite string-rewriting systems. We consider a new approach for crypt-
analysis of such proposals—the so-called completion attack. If a partic-
ular kind of weak key is generated, then a passive adversary is able to
retrieve secret messages with a significant probability. Our idea can be
applied to other rewriting based cryptosystems as well. Finally we dis-
cuss issues concerning the practical usage and present some experimental
results. The described vulnerabilities lead to the conclusion that at least
the key generation of Oleshchuk’s cryptosystem has to be revised.

Keywords: Cryptanalysis, completion attack, string-rewriting systems,
Church-Rosser property, Knuth-Bendix completion, weak keys.

1 Introduction

The security of almost every public key cryptosystem relies on the intractability
of only a few number-theoretic problems, e.g., factoring large integers or com-
puting discrete logarithms in finite groups. Unfortunately, no proof of hardness
(from a complexity theoretical point of view) is known for these assumptions.
Therefore it sounds reasonable to look for other possible trapdoor functions in
different areas of mathematics or computer science. Further there is the hope
that such proposals [11, 13, 14, 9] will provide some kind of “provable security”,
because their underlying questions (e.g. the word problem for finitely presented
groups) are undecidable in general. Beside other difficulties a primary prob-
lem in the design of such cryptosystems remains: The gap between the aver-
age and the worst case hardness of the instances, and hence the possibility of
weak keys.

Vladimir A. Oleshchuk [1] proposed a public key cryptosystem that relies on
the undecidability of the word problem in semigroups. A basic ingredient of his
approach are string-rewriting systems. Each system is represented by a rule set
containing ordered pairs of strings over a finite alphabet. Bidirectional rewrit-
ing on a string is performed through replacing (non-deterministically chosen)
occurrences of the left-hand side by the right-hand side of a rule or vice versa.
This operation induces an equivalence relation and we say that two strings are

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 209–220, 2005.
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congruent, if they can be rewritten to each other in finitely many steps. The
uniform word problem is the question of whether two given strings are congru-
ent modulo a given rewriting system. This problem is undecidable in general,
i.e. there exists no algorithm which terminates for all instances with the correct
answer. However, if the set of rules is finite and the string rewriting system has
the Church-Rosser property, then the word problem can be solved in polyno-
mial time. This fact has been used by Oleshchuk [1, 2] to construct a trapdoor
function and later the so-called Church-Rosser codes.

We consider a quite straightforward technique to attack such kind of cryp-
tosystems. The so-called completion attack employs the well-known Knuth-
Bendix algorithm on an improper chosen public key and constructs an equivalent
string-rewriting system which has the Church-Rosser property. We show that it
is possible to recover secret messages with significant probability, if the previous
step was successful. Due to the undecidable termination of the completion pro-
cedures the (in)security of Oleshchuk’s cryptosystem with respect to our attack
remains somewhat unsettled.

The paper is organized as follows: The next section provides some nota-
tions and preliminaries. Then we briefly repeat the definition of Oleshchuk’s
public key cryptosystem and present an obvious variant. The fourth section
is devoted to ideas for cryptanalysis, and in particular to the completion at-
tack. Finally we consider practical issues and discuss experimental results with
the attack.

2 Preliminaries

Let Σ be a finite alphabet. Σ∗ denotes the set of all strings over this alphabet
including the empty word ε. The concatenation of two strings x and y is simply
written as xy. Further, |x| denotes the length of a string x, where |ε| = 0, |a| = 1
for a ∈ Σ, and |xa| = |x| + 1 for x ∈ Σ∗, a ∈ Σ. If A,B ⊆ Σ∗ are languages,
then their product is defined to be AB = {xy | x ∈ A, y ∈ B}.

A string-rewriting system R on Σ is a subset of Σ∗×Σ∗. Each pair (�, r) ∈ R
is called rewrite rule. The word � ∈ Σ∗ is the left-hand side and the word r ∈ Σ∗

the right-hand side of such a rule. Here we will only be dealing with finite string-
rewriting systems, i.e. R is finite and its size is given by ||R|| =

∑
(�,r)∈R |�|+ |r|.

Each string-rewriting system induces a reduction relation →∗
R on Σ∗, which

is the reflexive transitive closure of the single-step reduction relation →R =
{(x�y, xry) | x, y ∈ Σ∗ and (�, r) ∈ R}. If there is no v ∈ Σ∗ such that u →R v
holds, then the string u is called irreducible modulo R. We denote the set of
all irreducible words modulo R by IRR(R). For finite string-rewriting systems
IRR(R) is regular, i.e. a finite-state acceptor recognizing IRR(R) can be effec-
tively constructed from the rules of R. The reflexive, symmetric, and transitive
closure of →R is the Thue congruence ↔∗

R. We define the congruence class of
a word u ∈ Σ∗ as [u]R = {v ∈ Σ∗ | v ↔∗

R u}. This notation is expandable to
A ⊆ Σ∗ by [A]R = {v ∈ Σ∗ | ∃u ∈ A : v ↔∗

R u}.
An arbitrary string-rewriting system R is called
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– noetherian if there exists no infinite sequence of reductions w.r.t. R,
– confluent if, for all u, v, w ∈ Σ∗, u →∗

R v and u →∗
R w imply that v and w

have a common descendant w.r.t. R (i.e. ∃z ∈ Σ∗ : v →∗
R z and w →∗

R z),
– convergent if R is noetherian and confluent,
– length-reducing if |�| > |r| holds for each rewrite rule (�, r) ∈ R.

A string-rewriting system R is Church-Rosser (i.e. R has the Church-Rosser
property) if, for all x, y ∈ Σ∗ with x ↔∗

R y, there exists a word z ∈ Σ∗ such
that x→∗

R z and y →∗
R z. Hence, R is Church-Rosser if and only if R is conflu-

ent [3]. For finite length-reducing systems this property is decidable in polyno-
mial time [7]. If a finite length-reducing system R is Church-Rosser, then each
congruence class has a unique irreducible element (modulo R) called normal
form. Thus the corresponding word problem

Instance: Two arbitrary strings x, y ∈ Σ∗.
Question: Are x and y congruent modulo R, i.e. does x↔∗

R y holds?

can be solved in linear time by comparing the normal forms [4].
Let R1 and R2 be string-rewriting systems on Σ. R1 refines R2, if for all

u, v ∈ Σ∗ the congruence u ↔∗
R1

v implies u ↔∗
R2

v. If R1 refines R2 and
R2 refines R1, then they generate the same Thue congruence and are called
equivalent. It is straightforward that R1 refines R2, if and only if the congruence
�↔∗

R2
r holds for each rewrite rule (�, r) ∈ R1.

Let > be a strict partial ordering on Σ∗. This ordering is called admissible if
u > v implies that xuy > xvy holds for all x, y ∈ Σ∗, and it is called well-founded
if there is no infinite strictly descending sequence u1 > · · · > ui > ui+1 > · · · . A
string-rewriting system R on Σ is compatible with a given ordering >, if � > r
holds for each rewrite rule (�, r) ∈ R.

A nonempty set C ⊆ Σ∗ is called a code, if for all words ui1 , . . . , uin ∈ C,
uj1 , . . . , ujm ∈ C, the equality of ui1 · · ·uin = uj1 · · ·ujm implies ui1 = uj1 . By
induction we deduce n = m and uik

= ujk
for all 1 ≤ k ≤ n. If C is a code then

any word from C∗ has a unique factorization over C.

3 Oleshchuk’s Public Key Cryptosystem

We briefly repeat the original definition of Oleshchuk’s public key cryptosys-
tem [1]. Afterwards a subsection appends a necessary requirement for unique
decryption, which was established later in [2]. Finally we slightly vary the dis-
cussed cryptosystem by introducing an additional secret morphism.

Let Σ be the plaintext alphabet of possible messages M = {w | w ∈ Σ∗}.
Without loss of generality, we consider only the binary case Σ = {x0, x1}. The
ciphertext alphabet Δ should be larger than Σ, i.e. |Δ| > |Σ|.
Key Generation. Let T be a finite and length-reducing Church-Rosser string-
rewriting system on Δ. We choose u1, u2, . . . , ut ∈ IRR(T ) such that, for all
i, j = 1, . . . , t, the word uiuj is irreducible modulo T and the set {u1, u2, . . . , ut}
is a code. Now let R0, R1 ⊂ {u1, u2, . . . , ut} be two nonempty disjoint sets,
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i.e. R0 ∩ R1 = ∅. Further let L0 ⊆ [R0]T and L1 ⊆ [R1]T be two nonempty
regular languages. Note that by construction L0 ∩L1 = ∅ because T is confluent
and R0, R1 are disjoint. The next step of key generation picks a finite string-
rewriting system S on Δ such that � ↔+

T r, for all rewrite rules (�, r) ∈ S, i.e.
S refines T . This property can be tested easily because T is Church-Rosser and
thus the corresponding word problem is decidable in linear time [4]. However, it
is not clear how to construct S efficiently without leaking information about T .

The finite string-rewriting system S and the languages L0, L1 form the public
key Kpub. The finite Church-Rosser system T and the sets R0, R1 should be kept
secret, because they represent the private key Ksec.

Encryption. The encryption of the letter xi is a random word y ∈ [Li]S . There-
fore the non-deterministic function Encrypt : M → C maps a possible mes-
sage m = xi1xi2 · · ·xin , where xik

∈ Σ, k = 1, . . . , n, to a random ciphertext
c ∈ [Li1Li2 · · ·Lin ]S . In practice one will do the following two steps:

1. Encode the plaintext m = xi1xi2 · · ·xin into m̂ = x̂i1 x̂i2 · · · x̂in , where each
string x̂ik

is randomly chosen from the corresponding language Lik
.

2. Rewrite the m̂ randomly and uniformly according to the rules of S.

Decryption. For the decryption of a secret message c ∈ C one has to find a word
m̂ ∈ (L0 ∪ L1)∗ such that c ↔∗

S m̂ holds. In general the finite string-rewriting
system S may have an undecidable word problem [4] and even decidability does
not guarantee that the problem is computationally feasible [6].

With the secret key Ksec = (T,R0, R1) decryption becomes easy, because T
has the Church-Rosser property and thus there exists a uniquely defined word
m̃ ∈ IRR(T ) such that c→∗

T m̃. This normal form can be found in linear time [4]
and its factorization m̃ = ui1ui2 · · ·uin (where uik

∈ Rik
) obviously reveals the

plaintext m = xi1xi2 · · ·xin of the encrypted message.

3.1 Necessary Requirement for Unique Decryption

It was observed [2] that the condition uiuj ∈ IRR(T ) for all i, j = 1, . . . , t is not
sufficient for a unique decoding. In fact one has to ensure (during the process of
key generation) that (R0 ∪ R1)∗ ⊆ IRR(T ) holds. However, this generalization
can be effectively tested, since both sides are regular languages.

Let ψT = max{|�1|, . . . , |�|T ||} for all rewrite rules (�i, ri) ∈ T and let ψR =
max{|u1|, . . . , |ut|} for all words ui ∈ (R0 ∪ R1). Now it is sufficient to check
whether the inclusion (R0 ∪ R1)≤2 max{ψT ,ψR} ⊆ IRR(T ) holds. For example,
this can be performed by generating all concatenations of length less than or
equal to 2 max{ψT , ψR} and verifying the irreducibility for each of them.

3.2 Morphism Strengthened Variant

The following idea is based on a well-known technique [12, 9, 19] to hide the
structure of the rewriting steps by an additional morphism. Let Γ be a new
ciphertext alphabet of much greater cardinality than Δ and let g : Γ ∗ → Δ∗ be
a monoid homomorphism which meets the following conditions:
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1. For each letter γ ∈ Γ we either have g(γ) = ε or g(γ) ∈ Δ. In the first case
we will call γ a dummy symbol.

2. At least for each letter δ ∈ Δ there exists a γ ∈ Γ such that g(γ) = δ.

In the strengthened variant of Oleshchuk’s cryptosystem such a morphism g
is part of the secret key, i.e. Ksec = (T,R0, R1, g). The modified public key
Kpub = (S, L0, L1) is obtained from the original (S,L0, L1) as follows:

S = {(g−1(�), g−1(r)) | (�, r) ∈ S} ∪D

The finite set D contains dummy rules (�, r) whose words �, r ∈ Γ ∗ satisfy
g(�) = g(r) = ε. Obviously, the refinement property of S remains valid under
the images of g, i.e. the congruence g(�)↔∗

T g(r) holds for all (�, r) ∈ S.
The generation of L0 respectively L1 depends on their representation: If Li

is a finite set one can easily compute Li = {g−1(w) | w ∈ Li}. Otherwise, if they
are represented by a grammar GLi one might apply g−1 to each terminal symbol
δ ∈ Δ in all derivation rules of GLi .

Finally the decryption has to be changed slightly: In a new initial step the
legal recipient of an encrypted message c ∈ C can apply the morphism g in linear
time. Afterwards he proceed as usual, i.e. reducing the result g(c) modulo T .

4 Cryptanalysis

Like similar cryptosystems [15, 16] the discussed approach is vulnerable to par-
ticular cryptanalytic attacks, if weak keys are chosen during the key generation.
Specifically, here we are concerned about “bad string-rewriting systems”.

4.1 Completion Attack on S

Oleshchuk [1] already noticed that it is not necessary to find the exact secret
system T generated by the legal key owner. Any Church-Rosser system T ′ where
all of the conditions

1. S refines T ′

2. [L0]T ′ ∩ [L1]T ′ = ∅
3. ([L0]T ′ ∪ [L1]T ′) ∩ IRR(T ′) is a code
4. ([L0]T ′ ∪ [L1]T ′)∗ ⊆ IRR(T ′) (reformulated according to [2])

apply, can be used to decrypt messages. In general, there is no algorithm to
decide whether a finite string-rewriting system is equivalent to any finite Church-
Rosser system [5]. But a cryptanalyst can try techniques known as completion
procedures to construct such a convergent system T ′ from S.

The Knuth-Bendix completion [17] takes as input a finite string-rewriting
system S on Δ and an admissible well-founded strict partial ordering > on Δ∗.
Based on this ordering the system S is turned into an equivalent system T ′

that is compatible with > by orienting each rule with respect to this ordering.
Thus T ′ will be noetherian. Then the critical pairs of T ′ are computed, and for
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each critical pair that does not resolve a new rule is introduced. Unfortunately,
each new rule can lead to new unresolvable critical pairs, and hence, this pro-
cess may not terminate. Moreover, the termination highly depends on the used
ordering >. A detailed description of the Knuth-Bendix completion is omitted
here. Interested readers are referred to the existing literature [10, 17, 3].

Let (S,L0, L1) be a KBC-weak public key, i.e. the Knuth-Bendix completion
procedure terminates and outputs a length-reducing system T ′ which is equiv-
alent to S. Thus a cryptanalyst can reduce an observed ciphertext c ∈ C to a
normal form m̃′ ∈ IRR(T ′) in linear time [4], i.e. c→∗

T ′ m̃′. Further let us assume
that the regular languages L0 and L1 are finite. By reducing all words of the
Li’s to their normal forms modulo T ′ the adversary will get the finite languages
R′

i = {u′ ∈ IRR(T ′) | ∃x̂ ∈ Li : x̂ →∗
T ′ u′} efficiently. Moreover, these sets are

of the same size as the Li’s.
First, consider the restricted case of one-bit messages (n = 1): We can reduce

the hard problem of deciding whether c ∈ [L0]S or c ∈ [L1]S to a much easier
question modulo T ′.

Lemma 1 (One-bit Messages). c ∈ [Li]S if and only if m̃′ ∈ R′
i, for i = 0, 1.

Proof. We prove both cases i = 0 and i = 1 in common:

⇒ For c ∈ [Li]S there exists a word x̂ ∈ Li such that c ↔∗
T ′ x̂ ↔∗

T ′ m̃′ since
S and T ′ are equivalent. Further, by construction each x̂ has an irreducible
word u′ ∈ R′

i modulo T ′ where x̂ →∗
T ′ u′. Finally u′ = m̃′, because T ′ is

confluent and consequently the normal forms are unique.

c �� ∗
S, T ′

��

∗
T ′

��������
�������

∗ T

��

x̂

∗
T ′

����
��

��
��

��
��

�

∗ T

��

m̃′

∗
T

��������������
= u′

∗
T

����
��

��
��

��
��

�

m̃ = u

⇐ The other direction follows by similar arguments. ��

Now we turn to longer messages, i.e. n > 1. Here appears the problem that not
necessarily (R′

0 ∪R′
1)

∗ ⊆ IRR(T ′) and thus the decoding may be ambiguous.
Let L̄′

0 ⊆ L0 respectively L̄′
1 ⊆ L1 be the finite set of all strings x̂ij ∈ Lij

used during the encryption of a fixed ciphertext c, i.e. c ∈ [L̄′
i1 L̄

′
i2 · · · L̄′

in
]S .

Further denote by R̄′
i = {u′ ∈ IRR(T ′) | ∃x̂ ∈ L̄′

i : x̂→∗
T ′ u′} the corresponding

normal forms modulo T ′. Under three additional conditions, namely that T ′ is
code preserving w.r.t. L̄′

i, we can generalize the previous Lemma 1.

Lemma 2 (Arbitrary Messages). If [L̄′
0]T ′ ∩ [L̄′

1]T ′ = ∅, ([L̄′
0]T ′ ∪ [L̄′

1]T ′) is
a code, and ([L̄′

0]T ′ ∪ [L̄′
1]T ′)∗ ⊆ IRR(T ′), then
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1. (R̄′
0 ∪ R̄′

1)
∗ ⊆ IRR(T ′) and (R̄′

0 ∪ R̄′
1) is a code, and

2. c ∈ [L̄′
i1 L̄

′
i2 · · · L̄

′
in

]S if and only if m̃′ ∈ R̄′
i1R̄

′
i2 · · · R̄

′
in

. (for all n ∈ IN)

Proof. The first claim is obvious, because R̄′
0 ⊆ [L̄′

0]T ′ and R̄′
1 ⊆ [L̄′

1]T ′ . The
remaining part follows by an inductive application of Lemma 1 using the fact,
that (R̄′

0 ∪ R̄′
1) is a code and that all possible concatenations of the included

words are irreducible modulo T ′. ��

Proposition 1. The congruence classes [L0]T ′ and [L1]T ′ are disjoint.

Proof. Assume the contrary. T ′ and S are equivalent, i.e. ↔∗
S =↔∗

T ′ , and thus
for each w ∈ ([L0]T ′ ∩ [L1]T ′) the congruence ŵ0 ↔∗

S w↔∗
S ŵ1 holds for at least

two words ŵ0 ∈ L0, ŵ1 ∈ L1. However, since S refines T and the string-rewriting
system T is Church-Rosser there exists a unique normal form u ∈ IRR(T ) such
that ŵ0 →∗

T u and ŵ1 →∗
T u. Hence it either violates the condition L0 ∩ L1 = ∅

or contradicts the unique decryption of messages. ��

Theorem 1. If the public key is KBC-weak and if L0, L1 are finite sets, then a
passive adversary can retrieve the plaintext of an encrypted message with signif-
icant probability in linear time.

Proof. The adversary applies Lemma 2. In the case of a KBC-weak key (com-
pletion procedure terminates) the first condition is always fulfilled, because
[L0]T ′ ⊇ [L̄′

0]T ′ and [L1]T ′ ⊇ [L̄′
1]T ′ are already disjoint (see Proposition 1).

Moreover, the remaining conditions are often satisfied for short messages or
sparse sets L̄′

0, L̄
′
1 (including the trivial case of one-bit messages). As (R̄′

0 ∪ R̄′
1)

is a code the adversary can easily determine the corresponding factorization of
m̃′ and hence the plaintext. Further, if one of the necessary conditions does not
hold, a passive adversary is probably still able to retrieve partial information
about the corresponding plaintext m. Note that for a successful attack it may
be sufficient to distinguish some subwords of m̃′ between R′

0 and R′
1. ��

Example 1 (Knuth-Bendix Completion Attack).

T = {(cb, c), (aa, a), (ab, a)}, S = {(ab, aab), (cba, ca), (baa, ba)}

R0 = {cacac}, R1 = {aca}, L0 = {caacbabc}, L1 = {abacbaab}

On input of S and >llex (length-lexicographical ordering) the Knuth-Bendix
completion terminates with the length-reducing Church-Rosser system

T ′ = {(aab, ab), (cba, ca), (baa, ba), (caa, ca)}.

By reducing L0, L1 modulo T ′ we get R′
0 = {cacabc} and R′

1 = {abacab}.

caacbabc
(4)→T ′ cacbabc

(2)→T ′ cacabc

abacbaab
(2)→T ′ abacaab

(4)→T ′ abacab
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Now suppose that the cryptanalyst observes the ciphertext c = cbaacabc, which
can be reduced in two steps to m̃′ = cacabc ∈ [R′

0]T ′ .

c = cbaacabc
(2)→T ′ caacabc

(4)→T ′ cacabc = m̃′ ∈ [R′
0]T ′

Hence the corresponding plaintext is the single letter x0.

As consequence we have to avoid the KBC-weakness during the key generation.
Unfortunately, such a property is undecidable [5] in general. Hence the security
of Oleshchuk’s cryptosystem with respect to completion attacks remains unde-
cidable. Furthermore, even the morphism strengthened variant does not really
protect against this kind of attack, because it leaves the distinguish ability be-
tween R′

0 and R′
1 unchanged. In such a case, however, the effort of the adversary

increases since he has to deal with the included dummy rules.
The straightforward idea to prevent our attack might be the usage of infinite

regular languages Li, e.g., represented by grammars in the public key. Nonethe-
less, the L̄′

i’s are still finite, because the sender can only apply finitely many
rewrite steps during the encryption. But the point is that hopefully these sets
are large enough such that the computation of the distinguishing normal forms
R̄′

i is infeasible for a bounded adversary.
We stress that completion attacks are applicable to other rewriting based

schemes, e.g., the public key cryptosystem of Samuel et al. [19]. In their pro-
posal (Church-Rosser) tree replacement systems [20, 21] are used for building
the trapdoor. Thus it seems to be very likely to mount successful tree com-
pletion procedures and retrieve parts of secret messages, if KBC-weak keys are
chosen as well.

4.2 Guessing T by Pre- or Suffix Properties of S

Other properties of weak keys are exploitable: A pitfall stems from the fact that
S refines T . Of course, if S = {(x�y, xry) | (�, r) ∈ T, x, y ∈ Δ∗} the congruence
x�y ↔∗

T xry holds for each rewrite rule in S.
A cryptanalyst can guess the secret Church-Rosser system T , if S was simply

chosen like above, i.e. for some (�, r) ∈ T with |�| > |r| there exists a prefix z ∈ Δ∗

such that (z�, zr) ∈ S or (zr, z�) ∈ S.

4.3 Further Ciphertext-Only Attacks

If the string-rewriting system S and the sets L0, L1 are not carefully gener-
ated, then (analogously to [16]) additional information about the corresponding
plaintext m ∈ M is leaked by a given ciphertext c ∈ C.

For example, assume that a letter of the ciphertext alphabet Δ appears only
in words either from L0 or L1. Assume further that this relation is preserved by
the rules of S. Now the adversary counts the occurrences of such a letter in c and
hence obtains information about the number and positions of the x0’s resp. x1’s
in the plaintext m. One can generalize this kind of attack to other “measures”,
e.g., if S preserves some unique subword or a characteristic length. Again, the
point is that a cryptanalyst only has to distinguish between L0 and L1.
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5 Practical Issues

This section sketches some questions that arose during our implementation of
Oleshchuk’s cryptosystem. The programming was done as proof of concept in ap-
proximately 1 600 lines of C++ code. Thus features and documentation are very
limited: The program constructs a random key pair (Kpub = (S,L0, L1),Ksec =
(T,R0, R1)) and performs some simple encryption/decryption operations on one-
bit and larger messages. Finally, if possible, the completion attack (see Sec-
tion 4.1) is mounted. We provide the source code [23] under the GNU General
Public License, if the reader would like to verify the results of the next section
or if he want to use parts of our work in further cryptanalysis.

Choosing “Cryptographically Good” Parameter Settings. This seems to be a seri-
ous question since many possible parameters may have influence on the security
of the entire cryptosystem, e.g., the size of the ciphertext alphabet Δ, the sizes
of the string-rewriting systems T and S, the sizes of the sets Ri, and, if finite sets
Li are used, the number of applied rules during their generation. In the original
paper there were only few hints how to choose these parameters appropriately.

Concerning the ciphertext alphabet Δ we can say that in the unary case the
word problem becomes decidable for finite string-rewriting systems [3]. On the
other hand, if we consider a bounded number of rewrite rules over an arbitrary
finite alphabet, then there exists a string-rewriting system with only three rules
which has an undecidable word problem [18]. It is a well-known open question [22]
of whether or not this problem becomes decidable if we consider only one-rule
rewriting systems. Hence S should have at least three rules.

Generating a String-rewriting System S that Refines T . Up to now we don’t
have any other method than to randomly guess S and check whether � ↔+

T r
holds for all rewrite rules (�, r) ∈ S. Each obvious strategy to perform this in
a more efficient way will probably introduce new vulnerabilities, e.g., by the
inherent structure of the derived public key space. Beside the other concerns,
this issue is the most crucial problem since it makes the generation algorithm
really impractical for reasonable key sizes.

Encrypting Messages. Here we have to ensure that a cryptanalyst cannot handle
the word problem by a brute-force search in the Thue congruence. Therefore the
number of nodes in the derivation tree of c↔∗

S m̂ should grow exponentially in
the number of performed rewrite steps during the encryption.

Ciphertext Blow-up. From a practical point of view the enormous ciphertext
blow-up of the encryption function is undesirable. Of course, we can try to
balance the application of length-increasing and length-reducing rewrite rules,
but such a strategy could be another starting point for successful attacks.

6 Experimental Results

Now we want to estimate how likely the proposed completion attack works in
practice. We stress again that in general it is undecidable whether a public key is
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Table 1. Experimental results with the completion attack (three independent runs)

|S| = 3 |S| = 4 |S| = 5

|R0 ∪ R1| = 5 23 : 12, 24 : 20, 23 : 14︸ ︷︷ ︸
23.3% vs. 15.3%

13 : 4, 8 : 7, 15 : 12︸ ︷︷ ︸
12% vs. 7.6%

5 : 3, 4 : 1, 4 : 3︸ ︷︷ ︸
4.3% vs. 2.3%

|R0 ∪ R1| = 10 17 : 13, 19 : 10, 23 : 11︸ ︷︷ ︸
19.6% vs. 11.3%

13 : 8, 9 : 5, 11 : 2︸ ︷︷ ︸
11% vs. 5%

4 : 2, 5 : 1, 3 : 2︸ ︷︷ ︸
4% vs. 1.6%

|R0 ∪ R1| = 25 22 : 10, 23 : 13, 26 : 10︸ ︷︷ ︸
23.6% vs. 11%

12 : 4, 15 : 8, 9 : 6︸ ︷︷ ︸
12% vs. 6%

3 : 1, 4 : 1, 5 : 2︸ ︷︷ ︸
4% vs. 1.3%

KBC-weak. Thus our experimental results can only give an very rough approxi-
mation. Further there are practical limitations, in particular the generation of S,
while performing such an analysis. Hence we restrict our investigation to “small
keys” which may have less cryptographic relevance. Table 1 shows the number
of successful Knuth-Bendix completions on S (using the length-lexicographical
ordering) versus the number of successful completion attacks (Theorem 1) itself.
The attack was performed on a fixed 112-bit message and we have count only
a proper decryption as successful. The completion procedure was aborted either
after three iterations or if more than 250 critical pairs occurred. For each single
run our program [23] has generated (randomly and uniformly) one hundred in-
stances of Oleshchuk’s cryptosystem with |Δ| = 3, |T | = 3, and 6 ≤ ||T || ≤ 12.
These parameters have been chosen to achieve a reasonable time-frame for the
experiment. The above results show that our attack works well in the small
parameter scenario, if the Knuth-Bendix completion itself is successful.

7 Conclusion

We have shown that the discussed cryptosystem is principally vulnerable to
the presented completion attack. Even the strengthened variant does not hide
the distinguish ability of the encoding languages properly. Thus, at least in our
opinion, it does not offer an acceptable level of cryptographic security. On the
other hand, the KBC-weakness of public keys is undecidable in general. Hence it
is very hard to estimate how likely our attack works in practice. We leave it as an
open question whether Oleshchuk’s cryptosystem can be repaired to withstand
the proposed attacks. However, the practical issues have shown clearly that all
further effort can be only of theoretical interest.
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Abstract. In broadcast networks, it is often required to encrypt data
so that only a privileged set of users with access to the session key can
access the data. The standard technique of transferring the session key to
each user individually does not scale with the number of users typically
found on a network such as cable. This method is not only time-wise
inefficient, but also incurs high communication cost. To counter this, a
number of approaches have been proposed in the literature that include
methods based on secret sharing schemes, construction of subset covers
using combinatorial designs, etc.

In this paper, we propose and study two natural combinatorial opti-
mization problems related to the subset cover framework for broadcast
encryption. Here our objective is to minimize the communication cost
given certain security and storage related constraints. We first derive
lower bounds for the optimal communication cost for both problems.
Then we propose the Partition-and-Power (PaP) subset cover scheme
and show that it can provide a secure broadcast encryption with the
communication costs matching those lower bounds. We illustrate the
merits of the PaP scheme through a few examples and compare it with
some of the prevailing subset cover schemes.

Keywords: Broadcast Networks, Encryption, Key Distribution, Subset
Cover.

1 Introduction

In a broadcast network, a transmitter broadcasts signals that are intercepted
by a set of receivers by tuning to the appropriate frequency. The medium of
transmission may be air as in Radio or Television or dedicated transmission lines
(Cable). The signals are usually sent in the clear so that any receiver within a
certain radius of the transmitter or, in the case of cable, connected to the cable
network can intercept the signal.

With the introduction of pay-per-view and video on demand, it is also re-
quired to encrypt some of the signals so that only authorized users can receive
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these signals. This requires the secure transmission of the decryption key (also
called the session key) to each authorized recipient allowing them to decipher
further signals with that key.

This is possible provided each recipient has its own deciphering key for re-
ceiving secure transmissions (such as the session key) from the broadcaster. The
deciphering keys can be distributed to the recipients through devices that have
the key and decryption algorithm embedded in them.

Thus, to send an encrypted message such as a video stream to k users, a
broadcaster would first have to encrypt the session key with each user’s en-
ciphering key and transmit k blocks of encrypted text. However, this scheme
becomes impractical when the user base is large. A cable operator would typi-
cally be providing services to a million users. Just transferring a session key may
involve encrypting and transmitting a few hundred thousand blocks of cipher-
text. Moreover it is not a true broadcast scheme (see Berkovits [2]), since the
transmitter is using the broadcast message to reach each recipient in series.

In broadcast encryption, each receiver is initially configured with a set of
keys. The keys are not updated, i.e. the receivers are stateless. A session is a
time interval when a message is broadcast to a privileged or non-revoked subset
of receivers. A broadcast consists of a message encrypted with a session key along
with a header that contains information for the non-revoked users to recover the
session key. The efficacy of a broadcast encryption scheme is determined by three
parameters

– the processing time or the number of operations at the receiver to recover
the session key

– the storage at receiver
– the transmission overhead or the size of the message header.

The goal of broadcast encryption is to minimize the transmission overhead
while keeping the storage size at the receiver and processing time as small as
possible.

1.1 Related Work

Chiou and Chen were the first to propose a broadcast technique in [5] using a
locking mechanism. This approach requires a large transmission overhead but
less storage at the receivers.

In [2], a broadcast scheme was proposed by Berkovits that is based on the
“k out of n” secret sharing scheme of Shamir [11]. The scheme uses polynomial
interpolation and related vector formulation methods, but requires frequent up-
date of the secret shares.

Fiat and Naor [7] consider k-resilient broadcast schemes where coalitions of
k users not in the privileged set cannot recover the session key. When k is of the
order of the number of receivers, then the transmission overhead as well as the
processing time becomes large.

Stinson [12] discusses the general approach to fully resilient broadcast en-
cryption using secret sharing schemes and key predistribution schemes. It is
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illustrated by using balanced incomplete block designs (BIBDs) together with
threshold schemes to construct new broadcast encryption schemes. The resulting
schemes again require a large transmission length.

As the reader can already sense from the description of different schemes,
there is a trade-off between communication and storage. Blundo et al study it
in information theoretic setting for unconditionally secure broadcast encryption
schemes in [3, 4]. Luby and Staddon [9] study the inherent trade-off between the
number of establishment keys held by each user and the number of transmissions
needed to establish a new broadcast key. Unlike [4], their model is combinatorial
in nature. They show essentially tight exponential lower bounds on the number
of transmissions needed to establish a new broadcast key given an upper bound
on the number of establishment keys held by each user.

In order to break away from such theoretical bounds [3, 4, 9], Abdalla, Shavitt
and Wool consider a model in [1] that allows a controlled number of users out-
side the privileged set to occasionally receive the broadcast. They introduce f -
redundant establishment key allocations which guarantee that the total number
of recipients is no more than f times the number of intended receivers.

In [10], Naor, Naor and Lotspiech introduce the subset difference method
to cover the set of non-revoked users by a collection of disjoint subsets. Each
non-revoked user uses the key corresponding to his subset to recover the session
key. If r is the number of revoked users and n the total number of users, their
scheme has a transmission overhead of 2r − 1 messages, each receiver stores
O(log2 n) keys and the processing time at a receiver is O(log n) operations.
These bounds are improved by Halevy and Shamir [8] using a Layered Subset
Difference (LSD) scheme. Specifically, they reduce the storage size to O(log3/2 n)
while the processing time remains the same. However, the transmission overhead
increases to 4r messages.

1.2 Our Contribution

In this paper, we consider the traditional broadcast encryption problem as stated
in the introduction under the subset cover framework. Like the authors of [4]
and [9], our objective is also to study the communication-storage trade-off.

In [4], each receiver is given some secret information and the users use the
information to compute common keys via a key pre-distribution scheme. The
efficiency of the systems in [4] is measured by considering the amount of secret
information held by each user as compared to the information content of the
broadcast made to establish the session key; and the size of the broadcast as
compared to its information content. In this paper, like [9], we assume that the
users are actually given the keys (as in an integrated circuit (IC) card) rather
than the information to compute them, and the communication is measured in
terms of the number of keys needed to establish the session key. These are both
important practical parameters. In an implementation of a broadcast encryption
system, a receiver’s keys may be contained in an IC card with only limited
memory, and the broadcaster may want to limit the number of transmissions due
to cost-efficiency concerns. Under these assumptions, we prove that for a given
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upper bound on the number of keys held by each user, there is an inherent lower
bound on the transmission overhead needed to recover the session key. Because
of the differences between our measurements of efficiency and those in [4], the
optimal systems in [4] are not optimal in our model. For example, they present an
optimal scheme using resolvable designs, with

(n/2
n/4

)
= Ω(2n/2/

√
n) transmissions

to broadcast to a privileged set of size n/2, out of universe of n receivers, that
requires each user to generate

(
n−1
n
4 −1

)
keys. In this paper, we present a system

in which each receiver has 2g keys and only O(n/g) transmissions are needed
where g is a system determined constant dependent on the storage constraint
and security consideration.

In [9], the authors consider the privileged sets of only a certain fixed size.
In our model, any subset out of universe of n receivers could be a privilged set.
Thus our model is more general that that described in [9]. It is important to note
that [9] addresses the issue of number of transmissions, but not the issue of the
size of transmission. Thus, one of their three constructions requires O(n) binary
strings of the same size as the session key be sent with each transmission. Our
construction is efficient in this respect, since it requires only that a binary string
of the same size as the broadcast key be sent with each transmission. Another
difference between [4, 9] and this paper is in the mathematical tools used to prove
the lower bounds on the trade-off between communication and storage.

Outline of Paper: In the next section, we describe our subset cover frame-
work. In Section 3, we study the communication-storage trade-off by posing it as
a combinatorial optimization problem and derive lower bounds for the optimal
transmission overhead cost given the storage constraint and security consider-
ation. In Section 4, we describe our Partition-and-Power design in detail and
show that it can provide a secure broadcast encryption with the communication
costs matching these lower bounds. In Section 5, we compare our design with
other subset-cover schemes.

2 The Subset Cover Framework

Let R = {r1, . . . , rn} be a set of n receivers capable of receiving transmissions
from a broadcaster B. Let X ⊆ 2R be a collection of subsets of R which forms a
cover for R, i.e. every subset of R can be expressed as a union of some elements
from X . Formally,

∀R ⊆ R, ∃XR ⊆ X such that
⋃

X∈XR

X = R.

Let
fX (R) = min

XR⊆X ,⋃
X∈XR

X=R.

|XR|,

and let (with slight abuse of notation)

fX = max
R⊆R

fX (R).
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Thus fX is the maximum number of sets from X required to cover a subset
of R.

In our setting, for each X ∈ X , there exists an establishment key KX that is
known only to the receivers in X . Moreover, the broadcaster B has a message
MX that uniquely addresses X . Note that the broadcaster B has |X | such
different messages (requiring log(|X |)1 bits per message) to address every subset
in the cover.

Now to distribute a session key K to an arbitrary set of receivers, say R,
B first finds the smallest cover for R by the elements from X . Suppose it is
R = X1 ∪X2 ∪ . . .Xf . Then B sends the following broadcast

〈[MX1 , . . . ,MXf
, EKX1

(K), . . . , EKXf
(K)], EK(M)〉, (1)

where EKX (K) is the encryption of K under KX and EK(M) is the broadcast
message M encrypted under K.

Any receiver stores all the establishment keys KX corresponding to each
X ∈ X it is a member of. Now consider a receiver r ∈ R who is supposed
to receive the above broadcast. The receiver r then must belong to one of the
Xis since Xis cover R. Suppose r ∈ X1. When r starts receiving the above
broadcast, it uses the initial message part (here MX1) to figure out which of its
establishment keys (here KX1) to use for recovering the session key. Since the
message is well-structured, it knows that it can use that key (KX1) to decrypt
EKX1

(K) and recover K. Later it uses the session key K to recover the actual
message M from EK(M).

The transmission overhead, the quantity within the square brackets in (1), is
thus proportional to f . As noted earlier, log(|X |) bits would be sufficient for MX .
Let’s suppose that all keys (and their encrypted avatars) are t bits in length. Since
fX is the maximum number of sets in X to cover any subset of R, the number of
bits transmitted by B as a transmission overhead is O(fX (log(|X |) + t)).

Example 1. Let X = {{r1}, . . . , {rn}}. Then fX = n. In this case, the transmis-
sion overhead is O(n logn + nt) bits. This is essentially the standard technique
of transferring the session key to each user individually. ��

3 Optimization Problems

Observe that the establishment key KX must be unique for every X ∈ X . Then
our goal is to minimize the following expression

T = fX (log(|X |) + t) (2)

over all X that can cover R subject to

|X | < 2t. (3)

1 All logs in this paper are in base 2.
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Lemma 1. |X | ≥ n.

Proof. Since the privileged set could potentially include only an individual re-
ceiver, any cover X of R must have {ri} ( 1 ≤ i ≤ n) as its members. ��

Lemma 2. fX log(|X |) ≥ n.

Proof. Suppose fX = j. Since every subset of R is covered by j or less elements
of X , we have

2n ≤
(
|X |
1

)
+ · · ·+

(
|X |
j

)
≤ |X |j (4)

so that |X | ≥ 2n/j and fX log(|X |) ≥ n. ��

If we choose X to be all subsets of R, then fX = 1 and |X | = 2n. Thus,
fX log(|X |) = n, and the number of bits transmitted is n+ t. This is optimal in
light of Lemma 2. By (3), this also implies that t ≥ n.

In practice, n is typically very large. This would make the length of the
establishment key exorbitant, and therefore, very difficult to manage as well as
use for encryption. Security and efficiency considerations would suggest a range
for t. We incorporate it in our analysis in the next subsection.

3.1 Constraining the Key Size

In practice, the key-size is restricted. We fix t. In this case, the goal is to limit
the transmission overhead given a limit on the size of the cover, i.e. |X | < 2t.
Since, by Lemma 1, |X | ≥ n, this implies n < 2t.

We first obtain a lower bound on fX . Again, assume fX = j. From inequal-
ities (3) and (4), we have

2n ≤ (2t)j .

Thus fX = j ≥ n/t.2 This and Lemma 2 imply that the optimal transmission
overhead cost

T = fX (log(|X |) + t)
≥ n+ fX t
≥ 2n. (5)

Choice of t: Note that the above lower bound for T is independent of t. Then
what is a good choice of t? We need to consider security aspects against brute-
force attack of an eavesdropper. The eavesdropper succeeds if it can find the
establishment key KX associated with some subset X in the cover for it can
start receiving the broadcast meant for X .

2 This bound can be tightened by observing that inequality (4) can be improved to
2n ≤ (|X |e/j)j . This yields j ≥ n/(t − log j + log e).
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Assume that an establishment key needs to be valid for 1 year. Assume that
a brute force attack to recover the establishment key can perform 106 tests per
second. Thus a receiver can perform a maximum of 106 × 24 × 365 × 3600 ≈
3.2 × 1013 such tests. The key-length is t. Equating 2t with 3.2 × 1013, we get
t ≈ 45.

Example 2. Suppose n = 220 ≈ 106, and t = 45. Thus there are |X | = O(245)
distinct establishment keys stored on n receivers. This implies on an average
Ω(225) establishment keys per receiver. Since each key is of length t = 45 bits,
this amounts to the minimum 180MB of average storage per receiver. In practice,
t could be larger and a receiver’s keys may be contained in an IC card with very
limited memory. We, therefore, need to do the analysis for the lower bound of
T with this storage constraint factor into consideration. ��

3.2 Constraining the Storage at a Receiver

A bound on the storage at a receiver directly translates to the number of subsets
a receiver can belong to in a subset cover. Let’s fix a cover X of R such that
|X | < 2t. Let X i = {X | ri ∈ X ∈ X}. Let’s add a constraint that

∀i : |X i| ≤ 2m. (6)

Our goal is to minimize T subject to the constraints (3) and (6).

Lemma 3. Suppose fX = j. Consider any subset R ⊆ R and let

XR = {X1, X2, . . . , Xk} ⊂ X

be its cover such that k = fX (R) ≤ j. Then, there exist k distinct receivers
ri1 , ri2 , . . . , rik

∈ R such that rip ∈ Xp for 1 ≤ p ≤ k.

Proof. Without loss of generality, let R = {r1, r2, . . . , r|R|}. Now consider an
undirected bipartite graph G on the vertex set V (G) = V1 ∪ V2 where

V1 = {v1, v2, . . . , vk},
V2 = {w1, w2, . . . , w|R|}, and

E(G) = {(vp, wq) | rq ∈ Xp}.

For any S ⊆ V1, let its neighborhood in V2 be

N(S) = {wq | ∃vp ∈ S such that (vp, wq) ∈ E(G)}.

Note that XR is the best cover for R in X . Moreover, as discussed in the proof
of Lemma 1, {ri} ∈ X for 1 ≤ i ≤ n. Therefore, it is clear that |N(S)| ≥
|S|. Otherwise, the sets Xps (∈ XR) corresponding to the nodes in S could be
replaced by sets {rq} ∈ X for each wq ∈ N(S). Since they are |N(S)| < |S| in
number, this gives a better cover for R!

Thus, the Hall’s condition [6–Ch. 2] for the existence of a perfect V1-matching
is satisfied. Therefore, there exist k distinct nodes wi1 , wi2 , . . . , wik

∈ V2 such
that (vp, wip) ∈ E for 1 ≤ p ≤ k. This implies that the corresponding receivers
ri1 , ri2 , . . . , rik

∈ R exist such that rip ∈ Xp for 1 ≤ p ≤ k. ��
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Corollary 1.

2n ≤
fX∑
k=1

(
n

k

)
2mk. (7)

Proof. Let P = 2R denote the power set of R. Obviously, |P| = 2n. Let

P ′
k = {X1 ∪X2 ∪ . . . ∪Xk | ∃1 ≤ i1 < i2 < . . . < ik ≤ n : X ip . Xp},

P ′ =

fX⋃
k=1

P ′
k.

Consider any R ⊆ R. Let its best cover be XR = {X1, X2, . . . , Xk} in X .
By Lemma 3, R must have some k ≤ fX elements, say ri1 , ri2 , . . . , rik

such that
rip ∈ Xp for 1 ≤ p ≤ k. Thus, by definition of P ′

k, R ∈ P ′
k. Since R is any subset

of R, P = P ′. By definition above,

2n = |P| = |P ′| ≤
fX∑
k=1

|P ′
k| ≤

fX∑
k=1

(
n

k

)
2mk.

��

For j ≤ n/2, it is easy to verify that

j∑
i=1

(
n

i

)
2mi ≤ 2

(
n

j

)
2mj.

Letting j = fX , using
(
n
j

)
≤ (en/j)j approximation, and applying above obser-

vation to the RHS of (7), we get

2n ≤ 2
(
n

j

)
2mj

≤ 2(e2mn/j)j. (8)

Solving (8) for j = fX , we get j ≥ n−1
m+log en−log j . This implies the following

simplified lower bound:

fX ≥
n− 1

m + 2 + log(m + log en)
. (9)

The inequality (9) and Lemma 2 imply that the optimal transmission overhead
cost

T = fX (log(|X |) + t)
≥ n+ fX t

≥ n+
(n− 1)t

min(m+ 2 + log(m + log en), t)
. (10)
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Example 3. Suppose n = 220 ≈ 106, and t = 45. Let m = 7. Thus, a receiver
can store upto 27 = 128 establishment keys amounting to less than 1KB of
memory. The lower bound of (10) tells us that the transmission overhead is
at least 4.25Mbits. This is better than the lower bound of 2Mbits provided
by (5). ��

4 The Partition-and-Power Scheme

Let g = min(�t− log n�,m + 1). Let’s partition R into groups of size g each as
follows: define the jth group of receivers as

Gj = {r(j−1)g+1, . . . , rjg}

for j = 1, . . . , f = n/g. Let 2Gj denote the Power Set of Gj , i.e. the collection
of all subsets of Gj . Then let

XPAP = 2G1 ∪ · · · ∪ 2Gf .

Note that both (3) and (6) are satisfied by XPAP. Namely,

1. |XPAP| = n
g 2g ≤ n

t−log n ·
2t

n ≤ 2t, and

2. |XPAP
i | = 2g−1 ≤ 2m.

To distribute a session key K to a subset R of receivers,R is written uniquely
as a disjoint union

R = X1 ∪ · · · ∪Xf

with Xj ⊆ Gj . Thus, fXPAP = f = n/g. Depending on R, some of these Xis
could be empty. Let 1 ≤ i1 < i2 < . . . < ik ≤ f be the indices of the non-empty
Xs. Now the overall broadcast is

〈[Mi1 , . . . ,Mik
, EKXi1

(K), . . . , EKXik
(K)], EK(M)〉. (11)

where EKX (K) is the encryption of K under the establishment key KX and
EK(M) is the broadcast message M encrypted under K. The message Mij (for
1 ≤ j ≤ k) has two components: the first component is of length log f = logn−
log g bits and it indicates the group number ij . The second component is of
length g bits and it addresses the subset Xij ∈ 2Gij . Thus, the total length
of the message Mij is at most logn − log g + t − logn ≤ t bits. Therefore the
transmission overhead, the quantity in the square brackets in (11), is of length
at most 2kt ≤ 2fXPAPt = 2nt

g bits. Thus, for the example 3, the PaP scheme
will have transmission overhead of 11.25Mbits.

Note that each receiver stores 2g−1 ≤ 2m keys, one for each subset it belongs
to in the group. Thus, the storage at each receiver is t2g−1 = O( t2t

n ) bits.



230 S. Aravamuthan, and S. Lodha

Salient Features of the PaP Scheme:

– The PaP scheme can handle privileged sets of any size.
– It is fully resilient in the sense that no collusion of non-receivers can break

this scheme.
– In practice, t is large for security reasons, while m is small owing to memory

limitations. Thus, t > m + logn is often the case. Then the transmission
overhead of the PaP scheme is within a factor three of the optimal, i.e.
< 3T .

– Addition and removal of a receiver is very easy to handle in the PaP scheme.
To remove a receiver ri from the broadcast network, it is marked as unused.
To add a new receiver to the network, if there is any group containing an un-
used receiver, it is assigned to this new receiver. Otherwise, t may have to be
increased to accommodate the creation of a new group. The earlier receivers
can be designed to truncate messages to t bits and ignore the additional bits.

5 A Comparison with Other Subset Cover Schemes

In this section, we compare our lower bounds and the PaP scheme to other
prevailing subset cover schemes. As already pointed out in the Subsection 1.2,
we will not consider the schemes and the bounds from [4] in these comparisons.

In [9], the authors consider the privileged sets of only a certain fixed size.
In out model, any subset out of universe of n receivers could be a privilged
set. Thus our model is more general that that described in [9]. Moreover, the
lower bounds and the schemes in [9] are geared more towards small or large
sized privileged sets. For example, if the number of revoked users is r = n/2,
then the lower bound derived in (10) is better than the one derived from
[9–Theorem 12].

In [10], the authors propose two subset cover schemes. For r revoked users,
the complete subtree method requires a transmission overhead of r log(n/r) and
a storage of logn keys per receiver. The subset difference method requires (2r−1)
transmission overhead and (log2 n)/2 storage.

These bounds are improved in the Layered Subset-Difference (LSD) scheme
of Halevy and Shamir [8]. In particular, their scheme uses O(log3/2 n) keys per
receiver and a transmission overhead of 4r messages in the worst case and 2r on
average.

Continuing with the example 3, let’s suppose that the number of revoked
users is r = n/2. Here the subset difference scheme requires storage of 200 keys
per receiver and transmission overhead of n messages. The LSD scheme requires
storage of ≈ 100 keys per receiver and transmission overhead of 2n messages.
The PaP scheme, with g = m + 1 = 8, requires 128 keys per receiver and a
transmission overhead of n/4 messages. Thus the savings in the transmission
overhead due to the PaP scheme are significant without any big strain on the
memory.
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6 Conclusion

In this paper, we have studied two natural combinatorial optimization problems
related to the subset cover framework for broadcast encryption. Our objective
was to minimize the transmission overhead cost given an upper bound on the
number of keys per receiver and a lower bound on the key-length. These are
important parameters to study because they measure quantities that affect the
security, cost-effectiveness, and speed of a broadcast encryption system.

We derived lower bounds for the optimal communication cost for both prob-
lems and showed that these bounds are essentially tight by constructing the
Partition-and-Power (PaP) subset cover scheme. The PaP scheme is fully re-
silient against any collusion of non-privileged receivers and it can handle priv-
ileged sets of any size. Moreover it can easily adapt to dynamic environments
where receivers can join and/or leave.
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Abstract. In this paper, we propose a new variant of the NTRU pub-
lic key cryptosystem − the MaTRU cryptosystem. MaTRU works under
the same general principles as the NTRU cryptosystem, except that it
operates in a different ring with a different linear transformation for en-
cryption and decryption. In particular, it operates in the ring of k by k
matrices of polynomials in R = Z[X]/(Xn −1), whereas NTRU operates
in the ring Z[X]/(XN − 1). Note that an instance of MaTRU has the
same number of bits per message as an instance of NTRU when nk2 = N .
The improved efficiency of the linear transformation in MaTRU leads to
respectable speed improvements by a factor of O(k) over NTRU at the
cost of a somewhat larger public key.

Keywords: Public key cryptosystems, NTRU, lattice based cryptogra-
phy, lattice attacks, partial polynomial evaluation.

1 Introduction

Since the concept of public key cryptography was first introduced by Diffie and
Hellman [4] in 1976, there has been steadily increasing interest in cryptographic
studies; many public key cryptosystems have been proposed, i.e. RSA [22] based
on integer factorization problem, the McEliece systems [15] based on algebraic
coding theory, the ECC systems [12] based on the intractability of elliptic curve
DLP and the variants of Matsumoto-Imai cryptosystems [14, 3] based on the
systems of multivariable polynomials. Unfortunately, in practice many of these
algorithms are costly in terms of computational and space complexity. These
costs inhibit the ability of these algorithms to be substituted for symmetric key
cryptosystems, and it prevents some of them (e.g. RSA) from running effectively
on low power computing devices such as low-cost smart cards, RFID devices,
and cell phones. As a result, cryptographers continue to look for new, fast public
key cryptosystems, especially those which are based on different hard problems.
Since 1996, researchers from NTRU Cryptosystems [21] have proposed a group
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of fast public key cryptosystems based on partial evaluation of constrained poly-
nomials over polynomial rings. These cryptosystems include the NTRU public
key encryption algorithm [8] and the digital signature scheme NTRUSign [7].

Next, let us briefly describe one of these cryptosystems, NTRU. NTRU is a
public key cryptosystem that operates in the ring Z[X ]/(XN − 1). Encryption
and decryption of a message corresponds to applying a linear transformation to a
ring element. Since this linear transformation performs the multiplication of two
polynomials, the cost of applying it is O(N2) operations (assuming Fast Fourier
Transforms are not used). In addition, these operations are on small integers,
allowing for further speed optimizations. For these reasons, the speed of NTRU
is one of its strongest features. NTRU operates considerably faster than both
RSA and ECC at relatively the same security levels [13, 8]. However, the speed
of NTRU can be further improved by choosing a different ring and applying a
more efficient linear transformation [9, 10]. The hard problem underlying this
cryptosystem is related to finding short vectors in a lattice due to the properties
of short polynomials used in the system [2, 16, 20]. Since NTRU was proposed,
it has been cryptanalyzed heavily by the cryptographic community, and some
interesting results can be found in [5, 6, 11, 17, 19]. Meanwhile, some variants
of NTRU encryption schemes have also been proposed, such as the generalized
NTRU schemes [1].

The MaTRU cryptosystem, described in this paper, uses a more efficient
linear transformation while providing a security level comparable to that of
NTRU. MaTRU operates in the ring of k by k matrices of polynomials in
R = Z[X ]/(Xn − 1). Note that an instance of MaTRU has the same num-
ber of bits per message as an instance of NTRU when nk2 = N . While NTRU
involves performing a one-sided multiplication for encryption and decryption
[8], the linear transformation applied in MaTRU is a two-sided matrix multi-
plication. This means that the private key in MaTRU has two ring elements,
as opposed to one ring element in NTRU. This is essential because multiply-
ing on one side just gives a search space of size, say S, for the private key and
the effect would be linear. Then, a lattice attack could be mounted very simi-
lar to the one on NTRU. However, multiplying on both sides will amplify the
space of all linear transformations to S2. The lattice attack will be extremely
hard, due to the high dimension lattice matrix. Another difference between
the two cryptosystems is that the ring in MaTRU is not commutative. This
means that the matrices in the private key and the random matrices applied
during encryption must specifically be constructed so that they commute with
each other.

Since applying the linear transformation in MaTRU involves matrix multi-
plications, the encryption and decryption processes only require O(n2k3) op-
erations. This results in a speed increase by a factor of O(k) over NTRU. In
practice, this increase is approximately k

2 since MaTRU uses two matrix multi-
plications for every polynomial multiplication in NTRU. The private and public
key lengths for MaTRU are O(nk2), making them comparable to key lengths in
NTRU.
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In the next section, we describe our proposed MaTRU cryptosystem in detail.
Then, we discuss the parameter selection for MaTRU in Section 3. In Section
4, we present the details of the security analysis of the proposed scheme. We
show its security strength based on certain parameter choices and compare it
with standard NTRU in Section 5. Finally, we summarize our conclusions in
Section 6.

2 The MaTRU Algorithm

2.1 Notation

The MaTRU cryptosystem operates in the ring M of k by k matrices of ele-
ments in the ring R = Z[X ]/(Xn − 1). The ring R consists of polynomials with
degree at most (n−1) having integer coefficients. Multiplication and addition of
polynomials in R is done in the usual manner, but exponents of X are reduced
modulo n. Matrix multiplication in M is denoted using the ∗ symbol.

Besides n and k, MaTRU also uses the parameters p, q ∈ N. The numbers p
and q may or may not be prime, but they must be relatively prime. In general, p
is much smaller than q; in this paper, for ease of explanation, we stick to p = 2
or p = 3 and q in the range of 28 to 211. When we say we perform a matrix multi-
plication modulo p (or q), we mean that we reduce the coefficients of the polyno-
mials in the matrices modulo p (or q).We define the width of an element M ∈M
to be |M |∞ = (maxpolys. m in M coeff. in m)−(minpolys. m in M coeff. in m) . The
width of M is the maximum coefficient in any of its k2 polynomials minus the
minimum coefficient in any of its polynomials. We say a matrix M ∈M is short
if |M |∞ ≤ p. When short matrices are multiplied together, we get a matrix which
has a width which may be greater than p but is still almost certainly smaller
than q; we call this matrix pretty short. The definitions for width and short-
ness apply similarly to polynomials in R. For r ∈ R, |r|∞ = (max coeff. in r)−
(min coeff. in r). The polynomial r is said to be short if |r|∞ ≤ p. We also define

the size of an element M ∈M to be |M | =
√∑

polys. m in M

∑
(coeff. in m)2.

When defining some of the sets of short matrices below, we use the notation

L(d) =

⎧⎨⎩M ∈M | for i =
⌈
− p−1

2

⌉
. . .
⌈

p−1
2

⌉
, i �= 0, each polynomial

in M has on average d coefficients equal to i,
with the rest of the coefficients equal to 0.

⎫⎬⎭ .

For example, if p = 3 and n = 5, then L(2) consists of all matrices of polynomials
where on average each polynomial has 2 coefficients equal to 1, 2 coefficients equal
to −1, and 1 coefficient equal to zero. Or, if we had p = 2 and n = 5, then L(2)
consists of all matrices of polynomials where on average each polynomial has 2
coefficients equal to 1 and 3 coefficients equal to zero.

The parameters for MaTRU consist of the four integers (n, k, p, q) described
above and the five sets of matrices (Lf ,LΦ,LA,Lw,Lm) ⊂M. These sets have
the following meanings and compositions:
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Set Elements Description Composition
Lf f, g Compose private key Short; see (2) below
LΦ Φ, Ψ Random matrices applied for each

encryption
Short; see (2) below

LA A,B Used to construct f, g, Φ, Ψ Short; see (1) below
Lw w Used to construct public key Short
Lm m Messages Short; see (3) below

1. LA consists of all matrices C ∈ M such that C0, C1, . . . , Ck−1 are linearly
independent modulo q; and for short c0, . . . , ck−1 ∈ R,

∑k−1
i=0 ciC

i is short.
Section 3.2 describes the exact nature of LA that satisfies these conditions.

2. Lf and LΦ consist of all matrices D ∈ M constructed such that, for C ∈
LA and short c0, . . . , ck−1 ∈ R, D =

∑k−1
i=0 ciC

i. Additionally, matrices
in Lf must satisfy the requirement that they have inverses modulo p and
modulo q.

3. The set of messages Lm consists of all matrices of polynomials with coeffi-
cients modulo p. We therefore express

Lm =
{
M ∈M |polynomials in M have coefficients

between
⌈
− p−1

2

⌉
and

⌈
p−1
2

⌉ }
.

This means that each message contains nk2 log2 p bits of information.

2.2 Key Creation

To create a public/private key pair, Bob chooses two k by k matrices A,B ∈
LA. Next, Bob randomly selects short polynomials α0, α1, . . . αk−1 ∈ R and
β0, β1, . . . βk−1 ∈ R. Bob then constructs the matrices f, g ∈ Lf by taking

f =
k−1∑
i=0

αiA
i and g =

k−1∑
i=0

βiB
i .

As noted above in Section 2.1, the matrices f and g must have inverses modulo p
and modulo q. This will generally be the case, given suitable parameter choices.
We denote the inverses as Fp, Fq and Gp, Gq, where

Fq ∗ f ≡ I(mod q) and Fp ∗ f ≡ I(mod p);
Gq ∗ g ≡ I(mod q) and Gp ∗ g ≡ I(mod p).

Note that I is a k by k identity matrix. Bob now has his private key, (f, g),
although in practice he will want to store the inverses Fp and Gp as well. Bob
now selects a random matrix w ∈ Lw, and constructs the matrix h ∈ M by
taking

h ≡ Fq ∗ w ∗Gq (mod q) .

Bob’s public key consists of the three matrices, (h,A,B).
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2.3 Encryption

To encrypt a message to send to Bob, Alice randomly generates the short poly-
nomials φ0, φ1, . . . φk−1 ∈ R and ψ0, ψ1, . . . ψk−1 ∈ R. Alice then constructs the
matrices Φ, Ψ ∈ LΦ by taking

Φ =
k−1∑
i=0

φiA
i and Ψ =

k−1∑
i=0

ψiB
i .

Alice then takes her message m ∈ Lm, and computes the encrypted message

e ≡ p(Φ ∗ h ∗ Ψ) +m (mod q) .

Alice then sends e to Bob.

2.4 Decryption

To decrypt, Bob computes

a ≡ f ∗ e ∗ g (mod q) . (1)

Bob translates the coefficients of the polynomials in the matrix a to the range
−q/2 to q/2 using the centering techniques as in the original NTRU paper [8].
Then, treating these coefficients as integers, Bob recovers the message by com-
puting

d ≡ Fp ∗ a ∗Gp (mod p) .

2.5 Why Decryption Works

In decryption, from Eq. [1] Bob has

a ≡ f ∗ (p(Φ ∗ h ∗ Ψ) +m) ∗ g (mod q)
≡ p(f ∗ Φ ∗ Fq ∗ w ∗Gq ∗ Ψ ∗ g) + f ∗m ∗ g (mod q)

Although matrix multiplication is not generally commutative, f and Φ here do
indeed commute:

f ∗ Φ ≡ (
∑k−1

i=0 αiA
i) ∗ (

∑k−1
i=0 φiA

i) (mod q)
≡
∑k−1

i=0
∑

i≡j+� (mod k) αjA
jφ�A

� (mod q)
≡
∑k−1

i=0
∑

i≡j+� (mod k) φ�A
j+�αj (mod q)

≡
∑k−1

i=0
∑

i≡j+� (mod k) φ�A
�αjA

j (mod q)
≡ (
∑k−1

i=0 φiA
i) ∗ (

∑k−1
i=0 αiA

i) ≡ Φ ∗ f (mod q)

Similarly, g ∗ Ψ ≡ Ψ ∗ g (mod q). So, Bob now has that

a ≡ p(Φ ∗ w ∗ Ψ) + f ∗m ∗ g (mod q)

For appropriate parameter choices, |a|∞ ≤ q. Then, treating the polynomials
in this matrix as having coefficients in Z, Bob can take those coefficients modulo
p, leaving f ∗ m ∗ g(mod p). The original message is then recovered by left-
multiplying by Fp and right-multiplying by Gp.
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3 Parameter Selection

3.1 Selection of Pairs (f, g) and (Φ, Ψ)

We define df and dφ such that

Lf = L(df ) and LΦ = L(dφ) .

Since the matrices A and B are public, the security of f , g, Φ, and Ψ necessarily
depends on the difficulty of discovering the short polynomials αi, βi, φi, and ψi.
For this reason, we want to maximize the number of possible choices for these
polynomials. We therefore commonly select

df ≈
n

p
and dφ ≈

n

p
.

See section 4.1 for precise brute force security calculations.

Remark 1. A matrix f in the ring M will be invertible modulo p and q, only
if the correspond matrix determinant detf , which is in the ring R, is also in-
vertible modulo p and q. In practice, this is impossible if detf (1) = 0 (the sum
of the coefficient values of the determinant polynomial is equal to 0). So we
must re-select one or more of the polynomial elements in f if this condition was
not fulfilled.

3.2 Selection of A and B

A main concern in generating the matrices f and Φ (and likewise, g and Ψ)
is that they must not only commute, but they should also be short. Shorter
matrices ensure that |p(Φ ∗w ∗Ψ) + f ∗m ∗ g|∞ will be smaller, which will allow
us to reduce q and valid ciphertexts will be decipherable.

To achieve this, we select A and B to be permutation matrices. A permutation
matrix is a binary matrix (i.e. consisting of only the scalars 0 and 1) such that
there is exactly one 1 in each row and column with all 0s elsewhere. Since A and
B have the additional requirement that the sets A0, . . . , Ak−1 and B0, . . . , Bk−1

are both linearly independent, we have that

k−1∑
i=0

Ai =
k−1∑
i=0

Bi =

⎛⎜⎝1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎠ .

This implies that each row and column of f will contain some permutation of
α0, . . . , αk−1, meaning that each αi will appear k times in f . An analogous
situation exists for g, Φ, and Ψ .

Using the common choice of df ≈ dφ ≈ n
p , we have that

|f | ≈
√
k2|αi|2 ≈

√
(p− 1)nk2

p
≈ |g| ≈ |Φ| ≈ |Ψ | .
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3.3 Selection of w

Like f and g, w should also be chosen to be short in order to keep |p(Φ ∗ w ∗
Ψ)+f ∗m∗g|∞ small. For security reasons, it is important that w remain secret
from an attacker. Therefore, in order to maximize the space of w we make

Lw = L
(⌊

n

p

⌋)
.

The size of w is then given by

|w| =

√
(p− 1)nk2

p
.

Remark 2. Note that when w is chosen in this manner, on average |w| ≈ |m|.
This means that |Φ ∗ w ∗ Ψ | ≈ |f ∗m ∗ g|.

4 Security Analysis

4.1 Brute Force Attacks

To find a private key by brute force, an attacker must try all possible short
pairs of matrices (f, g) to find one such that f ∗ h ∗ g is also short. Since the
matrices A and B are public, f and g are determined by the 2k polynomials
α0, . . . , αk−1, β0, . . . , βk−1. Each of these polynomials has degree n − 1, so the
number of possible (f, g) pairs is

(key security) =
(

n!
(n− (p− 1)df )!df !(p−1)

)2k

. (2)

Similarly, the encryption of a particular message is determined by the 2k poly-
nomials φ0, . . . , φk−1, ψ0, . . . , ψk−1, so we have the same message security as Eq.
[2] with replacing df by dφ. Using a meet-in-the-middle attack, such as the method
due to Odlyzko [18] used on the standard NTRU algorithm, assuming sufficient
memory storage, the key and message security would be equal to the square root
of the above values.Note that for the standardNTRUalgorithmwith the suggested
parameters, the meet-in-the-middle attack is the most effective known attack.

4.2 Lattice Attacks

Key security. Message decryption, which left-multiplies the encrypted mes-
sage by f and right-multiplies it by g, amounts to the application of a linear
transformation T : M → M such that both T and T (h) are short. If this was
the case, then it is likely that either T is the transformation corresponding to
the one given by the actual private key, or that T will work as a substitute for
the private key in decrypting messages.
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Let Tf,g : M→M be the linear transformation corresponding to decryption
with the actual private key. Then Tf,g is defined by Tf,g(J) : J → f ∗J ∗g . What
does the transformation Tf,g look like? To see this, we look at where Tf,g takes
the basis matrices for the space of all possible matrices J . The basis consists
of the k2 matrices δi,j , where δi,j has a 1 in position (i, j) and 0s elsewhere.
We then have that Tf,g = (fδ0,0g fδ0,1g . . . fδk−1,k−1g) . This describes
how Tf,g maps the basis matrices for the space of possible J ’s: δ0,0 → fδ0,0g,
δ0,1 → fδ0,1g, and so on.

Since f =
∑k−1

i=0 αiA
i and g =

∑k−1
i=0 βiB

i, we can express Tf,g as
a combination of the k2 linear transformations TAi,Bj , where TAi,Bj =(
Aiδ0,0B

j Aiδ0,1B
j . . . Aiδk−1,k−1B

j
)
. We then have that Tf,g(J) =∑

i,j γi,jTAi,Bj (J) . In this formula, each polynomial γi,j is the multiple of TAi,Bj

needed to produce the particular transformation Tf,g. Therefore, we have pre-
cisely that γi,j = αiβj.

Now, since the αi’s and βj’s are short, the polynomials γi,j will be pretty
short. In addition, Tf,g(h) = w is short. So, the linear transformation Tf,g

corresponds to a short target vector (γ0,0, γ0,1, . . . , γk−1,k−1, w) in the lattice
L = {(T, T (h))}. This lattice L is generated by the rows of the following 2nk2

by 2nk2 matrix composed of four nk2 by nk2 blocks:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 h0,0 h0,1 . . . hk−1,k−1
0 1 . . . 0 hk−1,k−1 h0,0 . . . hk−1,k−2
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 h0,1 h0,2 . . . h0,0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the above matrix, the n by n matrix hi,j represents the n coefficients of the
polynomial at position (i, j) in h. Note that detL = qnk2

and dimL = 2nk2.
As noted earlier, each γi,j = αiβj, so |γi,j | = |αiβj | ≈ |αi||βj | ≈ (p − 1)df .

There are k2 γi,j polynomials, so the size of the target vector (γ0,0, γ0,1, . . . ,
γk−1,k−1, w) is given by

|target| ≈
√

((p− 1)df )2k2 + |w|2.

Using the suggested df ≈ n
p and |w| =

√
(p−1)nk2

p yields

|target| ≈

√
(p− 1)nk2((p− 1)n+ p)

p2 .

By the Gaussian heuristic, the expected shortest vector in L is

|exp. shortest| =
√

dimL

2πe
(detL)

1
dim L =

√
qnk2

πe
.
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Let ch equal the ratio of the target vector to the expected shortest vector. If
ch is near 0, the target vector will likely be much smaller than any other vectors
in the lattice, and will therefore be easier to find. If ch is near 1, then there will
likely be many vectors near the size of the target, making the target difficult to
find. In our case,

ch ≈
|target|

|exp. shortest| ≈

√
πe(p− 1)((p− 1)n+ p)

p2q
.

For example, the MaTRU parameters suggested in section 5 give values for ch
around 0.2. This means that if the LLL algorithm finds a vector in the lattice
L around two tenth the size of the expected shortest vector, then the algorithm
has most likely found Tf,g or another suitable linear transformation.

Message security. A lattice attack can also be used to try to discover a par-
ticular message. The way this is done is very similar to the lattice attack on
a key. Since we selected the parameters df ≈ dφ and |w| ≈ |m|, we have that
|Φ ∗w ∗ Ψ | ≈ |f ∗m ∗ g|. So the lattice security of a message will be the same as
that of the key, meaning cm ≈ ch. The constant cm indicates how difficult it will
be to discover a particular message. Finding the message will be more difficult
when cm is close to 1 and easier when cm is close to 0.

Remark 3. The above lattice matrix for MaTRU can be further optimized by
multiplying the top-left nk2 by nk2 identity submatrix by a scaling factor, α, as
in [8]. Also, by using zero-forcing technique [16], we can reduce the dimension of
the lattice matrix and increase the performance of lattice attacks. These consid-
erations will be taken into account in a future revision of the parameter choices
for MaTRU.

5 Discussion

5.1 Parameter Choices

Table 1 shows some possible parameter choices for MaTRU along with their
brute force and lattice security levels. Key and message securities listed below
are for a meet-in-the-middle attack; these values should be squared for a regular
brute force attack.

Table 1. Possible parameter choices for MaTRU

n k p q df dφ key security msg. security ch dim L

6 15 3 2048 2 2 297.4 297.4 0.118 2700
8 9 3 1024 2 2 278.4 278.4 0.188 1296
11 6 3 1024 3 3 279.0 279.0 0.215 792
16 8 2 379 8 8 2109.2 2109.2 0.318 2048
18 5 2 251 9 9 277.8 277.8 0.412 880
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5.2 Comparison with Standard NTRU

Here we compare the theoretical operating characteristics of MaTRU with those
of NTRU, as shown in Table 2. The properties are listed in terms of the pa-
rameters (N, p, q) for NTRU and the parameters (n, k, p, q) for MaTRU. These
should be compared by setting N = nk2, since this equates to plain text message
blocks of the same size.

Table 2. Comparison between MaTRU with NTRU

Characteristic NTRU [8] MaTRU [this paper]
Plain Text Block N log2 p bits nk2 log2 p bits
Encrypted Text Block N log2 q bits nk2 log2 q bits
Encryption Speed O(N2) operations O(n2k3) operations1

Decryption Speed O(N2) operations O(n2k3) operations1

Message Expansion logp q-to-1 logp q-to-1
Private Key Length 2N log2 p bits 2nk2 log2 p bits2

Public Key Length N log2 q bits 3nk2 log2 q bits3

Key Security (Message Security)4 N!
dg!2(N−2dg)! ( n!

((n−2)df )!df !2 )2k

Lattice Security, ch (cm)5 2(π2de2

3Nq2 )
1
4 1

3

√
2πe(2n+3)

q

1 Since MaTRU performs two-sided multiplications, the constant factor will be about
twice that of standard NTRU.
2 A key length of 2nk log2 p+ 2k2 log2 k bits can be achieved by storing f and g not as
matrices but as the 2k polynomials found in the matrices along with their positions in
the matrices.
3A key length of nk2 log2 q + 2k log2 k bits can be achieved by storing A and B not as
matrices but as the positions of each of the k 1s in the two matrices.
4For message security, dg is replaced by d for NTRU whereas df is replaced by dφ

for MaTRU. For ease of comparison, we fix p = 3. We refer the readers to [8] for the
definition of dg and d used in NTRU.
5Note that ch ≈ cm, so that we have equivalent security level at key and message. For
ease of comparison, we fix p = 3.

As indicated by the table, the total time for encryption and decryption is k
2

times faster for MaTRU than for NTRU. MaTRU has a larger public key length
as a result of needing to store the matrices A and B, but a smaller private key
length due to the particular nature of the private keys f and g.

For example, compare the NTRU “high” security level of (N, p, q) =
(263, 3, 128) with the MaTRU parameter choices of (n, k, p, q) = (18, 5, 2, 251).
NTRU in this case would have a plain text block size of 417 bits, a private key
length of 834 bits, and a public key length of 1841 bits. MaTRU would have a
plain text block size of 450 bits, a private key length of 297 bits, and a pub-
lic key length of 3611 bits. MaTRU would theoretically be 2.5 times faster at
encryption/decryption than the instance of NTRU in this case.
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6 Conclusion

We have presented the MaTRU cryptosystem in detail, and we have shown that
its security level is comparable to NTRU with respect to several well-known
attacks, including brute force attacks, lattice attacks and meet-in-the-middle at-
tacks. However, the security analysis of MaTRU is heuristic because there may
be a better attack on it than on the original NTRU. Further research on the
lattice attack on MaTRU may yield new techniques (e.g. subdividing the lat-
tice) that are more effective. We have also suggested several parameter choices
for MaTRU that provide a significant speed improvement over NTRU with rel-
atively similar security levels. Future work to obtain precise running times and
lattice attack times will allow for further refinements to the list of suggested Ma-
TRU parameters in Table 1. Additionally, the introduction of the commutative
family (using permutation matrices) has been given a reasonable scrutiny but
would benefit from further analysis. Finally, we believe that the continued study
of optimization, improvement and cryptanalysis of MaTRU based on the previ-
ously proposed techniques used with the original NTRU, especially the impact
of imperfect decryption [17], presents interesting challenges to explore.
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Abstract. We propose and discuss an anonymous password-based au-
thenticated key exchange scheme that allows a user in a group to establish
a session key with a server in an anonymous way. In our scheme, each
user in a legitimate group and the server share a human-memorable pass-
word, and they can authenticate each other. The scheme is secure against
the dictionary attack. Furthermore, we extend this to the scheme that
allows any subgroup of at least k-out-of-n users of the group to establish
a session key with the server in an anonymous way.

Keywords: Password-based authenticated key exchange, Anonymous
group authentication, Oblivious transfer.

1 Introduction

1.1 Password-Based Authenticated Key Exchange

The Diffie-Hellman protocol provides a nice way to establish a common key be-
tween two parties, however, it is vulnerable to the man-in-the-middle attack.
Under the realistic circumstance, an adversary can control all communications
between legitimate parties. In fact, an adversary can freely copy, resend, modify
or delete messages transmitted between the legitimate parties. Therefore, it is es-
sential to provide some mean to authenticate the entities and the key established.
An authenticated key exchange scheme (AKE) is an essential technique to solve
this problem. It allows two parties holding a long-term secret to authenticate
the agreed session key that will be used for their secure communication.

There are two types of AKE. The first is the scheme where two parties already
hold a long and random secret key. There are numerous schemes in this category.
See [7] for examples. The second is a password-based authenticated key exchange
scheme (PAKE), where two parties share only a human-memorable password,
which is relatively short and easily guessed. It authenticates the parties even
under the circumstance that the users have restricted computing and memory
devices. The password-based authenticated key exchange scheme secure against
the dictionary attack was proposed by Bellovin and Merrit[2]. Since then, such
schemes have been extensively studied. We here mention some of the attempts;

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 244–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the following are not exhaustive at all. Bellare et al. [3] and Boyko et al. [8]
proposed a formal model and security goals for password-based authenticated
key exchange schemes. Katz et al. [13] and Gennaro et al. [12] showed a PAKE
schemes that has provable security in the standard model. Recently, Bresson et
al. constructed an efficient PAKE with provable security in the random oracle
model [5]; Abdalla et al. showed a simple PAKE schemes that are relying little
on random oracles [1].

In both approaches above, the communicating parties have to share secret
information before communication starts. The difference between these two ap-
proaches is the quality of the secret keys. On one hand, keys in the first scheme
are long and randomly chosen from the uniformly distributed binary sequences
of a fixed length. On the other hand, the keys in the second have low entropy,
that is, sequences that probably lie in a dictionary of feasible size for exhaustive
search by a computer and easily guessed by an adversary. From the attacker’s
standpoint, the password-based scheme is vulnerable unless sufficient consider-
ation is taken because it is quite easy to guess the password and check whether
or not the guessed password is correct by data transmitted. However, it has an
advantage that users do not have to hold any additional store device, whereas
the users have to carry the store device containing the long random key for the
first scheme.

1.2 Anonymous Authentication Scheme

An anonymous authentication scheme (AA) [6, 14, 10] (or anonymous group iden-
tification scheme) is a protocol that allows a member called a prover of a group
Γ to convince a verifier that she is a member of Γ without revealing any infor-
mation about her. So this is an interactive proof; the protocol consists of two
parties, the prover and the verifier, and the prover convinces the verifier that she
knows a secret without revealing itself. We should note that no outside adver-
sary is considered in the security of this scheme. The security model for this is
different from that of (password-based) authenticated key exchange schemes in
which the typical adversary is not a protocol participant. Thus it is not trivial
to establish and authenticate a common session key using an anonymous au-
thentication scheme. We also note that secret keys are long and random in the
all previous attempts [6, 14, 10] along this research. So it seems interesting to
construct a password-based anonymous authentication scheme, where the secret
kept by the users has low entropy such as a short word in a dictionary. Such
scheme has not been proposed so far as far as we know.

1.3 Our Contribution

All previous PAKE schemes allow two parties to authenticate each other, but
their identities turn to be revealed. This should be inconvenient in the case
that users desire to hide their identities although a secure authenticated session
key with a server is established. In this context, the authentication means to
verify that the entity whom the server communicates belongs to a predetermined
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legitimate group of users. In this paper, we propose a new model of PAKE called
an anonymous password-based authenticated key exchange (APAKE). We require
APAKE to be secure against the offline dictionary attack as it is required to
PAKE. The key idea in the construction of APAKE is to embed an oblivious
transfer protocol (OT) into a two-party PAKE scheme. We follow the security
model in [3, 5] and analyze the security of our proposed schemes in random oracle
model.

We also extend this to a scheme that allows any subgroup of at least k-out-of-
n users of a group Γ to generate a session key with the server in password-based
and anonymous way.

Our scheme attains the anonymity under the assumption that the server
follows the protocol. As a matter of fact, there exists an active attack by the
server to detect the user identity. However, the server has to take a risk of
revealing his dishonest behavior. Such attack can distinguish whether the user
belong to some subgroup Γ ′ ⊂ Γ or not with success probability k

n while the
probability of disclosure of the server’s dishonest probability is n−k

n , where n
and k are the number of the users in Γ and Γ ′ respectively.

Table 1. Compare with related schemes

Schemes Example Type of Protocol Security attained/
secret data goal adversary

AKE [4, 11] Random bit sequence KE Confidential/outsider
Authentication/outsider

PAKE [1, 3, 5, 8] Password KE Confidential/outsider
[12, 13] (low entropy bit sequence) Authentication/outsider

AA [6, 14, 10] Random bit sequence ID Authentication/outsider
Anonymity/server

APAKE Proposal Password KE Confidential/outsider
in this (low entropy bit sequence) Authentication/outsider
paper Anonymity/server

Here, KE and ID stand for key exchange and identification (entity authenti-
cation), respectively.

1.4 Application

To justify our proposal of APAKE, we show a plausible application. Suppose
that a business company has the set of employee {C1, . . . , Cn}. Every Ci has a
secret password to access to the company’s network. In the company, everyone
is allowed to report her or his personal opinion on any issues on their activ-
ities to the president of the company in order to improve their performance
or working environment. Probably, such a report should be confidential occa-
sionally. On the other hand, one wishes to hide their identity when reporting
something that the president feels unpleasant. In such a case, APAKE can be
used to establish a session key for later use of encrypted communication in a
password-based and anonymous way. Establishing a session key, the employee
Ci and the president can have encrypted communication even though the pres-
ident is sure that he is communicating with one of {C1, . . . , Cn} but does not
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know whom the president is communicating. In this model, we do not have
to construct any extra anonymous transmission channel other than providing
a password to each employee. In this application, we need a password-based
key exchange scheme and the anonymity property and APAKE provides both of
the properties.

2 Model and Definitions

In this section, we formalize the protocol goals, the security of the protocol and
attacker’s ability.

2.1 Model and Protocol Goals

Participants. APAKE protocol involves a server S and a group Γ of n users
C1, . . . , Cn, that is, Γ = {C1, . . . , Cn}. We call {S, Γ} a set of participants of
APAKE.

Protocol goal. When user Ci wish to have communication with S, Ci first
establish a session key with S for later encrypted communication. Moreover,
Ci wants to keep his privacy from S and anybody else. APAKE provides such
a technique; it allows Ci to establish a session key with S without giving any
information on Ci’s identity to S and anybody else. After the protocol, a user
in the legitimate group can establish a session key with the server and nobody
other than the user knows with whom the server agrees the session key. We also
consider a protocol where at least k users in the group can establish a session
key with the server but less than k users cannot.

Long-lived key. Each user Ci ∈ Γ holds a low entropy password pwi that
is picked independently each other from a dictionary D. Server S holds a list
pwS = {pwi}Ci∈Γ . We call pwi and pwS the long-lived keys of user Ci and the
server S, respectively. The typical size of a dictionary D is about 230 and so a
password may be short and guessed easily.

Adversary. In our scheme, the security is twofold; confidentiality of the session
key and authenticity of user and server, and anonymity and unlinkability of
the user. The adversary varies corresponding to the security considered. When
considering the confidentiality of the session key and authenticity of user and
server, the adversary is somebody who is not a legal participant of the protocol.
On the other hand, the adversary to break the anonymity and unlinkability may
be a server even though the server is a legal participant.

2.2 Security Notions

Our scheme should satisfy both security properties of a password-based authen-
ticated key exchange and the anonymity/unlinkability of an anonymous authen-
tication scheme. Basically our scheme attains the same security level as these
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two schemes except for that the anonymity for our scheme is guaranteed only
against the passive attacks of a server; we assume the server follows the protocol
and does not deviate it.

First, we denote the adversary against confidentiality of the session key and
authenticity of user and server as A. We shall explain the act of A below.

Executing the protocol. Let Ci ∈ Γ and S be two participants that par-
ticipate in APAKE protocol P . Each of them may have several instances called
oracles involved in distinct, possibly concurrent, executions of P . Generally, we
denote the instance ρ of participant U by Πρ

U .
An adversary A is a probabilistic algorithm with a distinguished query tape.

The capability of A is modeled by queries he can ask to the oracles, representing
the actions of A over the interaction among the protocol participants. The oracle
queries made by A are formally defined in [3]. See [3] for more details.

- Execute(Ci, ρ, S, δ)-This query models passive attack, where the adversary
gets access to honest executions of P between the instances Πρ

Ci
and Πδ

S by
eavesdropping.

- Reveal(U, ρ)-This query models the misuse of the session key by instance
Πρ

U (known-key attacks). The query is only available to A if the attacked
instance actually “holds” a session key and it releases the latter to A.

- Send(U, ρ,m)-This query enables to consider active attacks by having A
sending a message to instance Πρ

U . The adversary A gets back the response
Πρ

U generates in processing the message m according to the protocol P . A
query Send(Ci, ρ, Start) initializes P , and thus the adversary receives the
initial flow the user instance Πρ

Ci
should send out to the server S.

AKE security. The confidentiality (semantic security) of the session key is
evaluated by how much information on the key is leaked to the adversary. If
no information is leaked, or information leaked is negligible in polynomial time
computation, the adversary cannot distinguish the session key and a random bit
sequence by polynomial time computation. On the other hand, if information is
leaked, then the probability that an adversary can determine whether a given
bit sequence is a session key processed by the APAKE protocol or a randomly
and uniformly chosen bit sequence is substantially larger than 1

2 .
An adversary A is allowed to call oracles Execute and Send during an exe-

cution of the APAKE protocol P . Eventually, A calls Test(U, ρ)-query only one
time, for some instance Πρ

U . The Test(U, ρ)-query is only available to A if at-
tacked instance Πρ

U is Fresh (which roughly means that the session key that Πρ
U

hold is not “obviously” known to the adversary.) The Test oracle tosses a coin
and obtains a bit b ∈ {0, 1}. If b = 0, then Test gives a random bit sequence, and
if b = 1, then Test gives a session key (the output of Reveal(U, ρ)). Receiving the
output of Test, an adversary A is a probabilistic algorithm and outputs b′, which
represents A’s guess of b. An ake advantage is the double of the probability that
A correctly guesses the value of b minus 1, that is,

Advake
P,D(A) = 2 Pr[b = b′]− 1,
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where the probability is taken over all the random coins of the adversary and all
the oracles and the passwords are picked from a dictionary D. The protocol P is
said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary
A running in time t.

Authentication. Another goal of the adversary A is to impersonate a user
or the server. We denote the probability that A successfully impersonates a
sever instance (resp. user instance) in an execution of P by SuccS−auth

P (A) (resp.
SuccC−auth

P (A)). Impersonation succeeds when a user (resp. the server) accepts a
session key which is shared with no instance of the server (resp. the user in Γ ),
that is,
SuccS−auth

P (A) = Pr[C accept a key with no instance of S]
SuccC−auth

P (A) = Pr[S accept a key with no instance of Ci ∈ Γ ]

In this paper we consider unilateral authentication of the server (S-auth). The
protocol P is said to be (t, ε)-S-auth-secure if A’s success probability for breaking
S-auth is smaller than ε for any adversary A running in time t.

Here, we explain the anonymity and unlinkability of the user against S.

Anonymity. A protocol is anonymous if no information about the user’s identity
is revealed, whereas the user can establish a session key with the server. We shall
show that any user Ci gives no information to S except that he is a member of
Γ . We consider only a passive attack by the server S, that is, we assume that
S does not deviate the protocol. Let P (Ci, S) be a transaction of APAKE run
between user Ci in Γ and S. Let Πi a probability space of P (Ci, S). We say that
our APAKE achieves anonymity if for any two user Ci, Cj ∈ Γ , we have

Πi = Πj .

This is different from the setting in [10], where the verifier can send any challenge
as long as it is allowed. If the verifier sends an unlawful challenge, then the
prover can detect it in the scheme [10]. On the other hand, the server, who can
be regarded as a verifier, has to follow the protocol to make a challenge in our
scheme. As we discuss in Section 5, there is an active attack to identify Ci at
the risk of losing the server’s qualification. Such attack can distinguish whether
Ci belong to some subgroup Γ ′ ⊂ Γ or not with success probability k

n while the
probability of disclosure of the server’s dishonest behaviors is n−k

n , where n and
k are the number of the users in Γ and Γ ′ respectively.

Unlinkability. A protocol achieves unlinkability if S cannot determine whether
two key agreement transactions are made by a single user.

3 APAKE Scheme

3.1 Preparation

Computational Diffie-Hellman assumption. Suppose that G = 〈g〉 is a
cyclic group of prime order p. A (t, ε)-CDHg,G attacker in G is a probabilistic
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algorithm Δ running in time t to compute gxy for given gx and gy such that
the success probability Succcdh

g,G(Δ) is greater than ε. We denote the maximal
success probability over all adversaries running in time t by Succcdh

g,G(t) . The
CDH-assumption is the assumption that Succcdh

g,G(t) ≤ ε.

Oblivious transfer. A 1-out-of-n OT is a protocol where a sender S has n
secret strings and a chooser C can obtain only one of them without revealing his
choice of index. In [15], Tzeng gives an efficient 1-out-of-n OT that is secure in
the random oracle model. We briefly explain Tzeng’s protocol. Suppose that S
has n secret strings α1, α2, . . . , αn of size l1 and C wants to obtain the string of
index i. Let g and h be generators of a cyclic group G, and H be a hash function
from {0, 1}∗ to {0, 1}l1 which is considered as a random oracle.

1. C chooses uniformly and randomly r ∈ Zp and computes Q(i) = grhi, and
sends query Q(i) to S.

2. For every 1 ≤ j ≤ n, S chooses uniformly and randomly kj ∈ Zp and
computes βj = H((Q(i)(hj)−1)kj , j) ⊕ αj and sends the answer A(Q(i)) =
{(β1, g

k1), . . . , (βn, g
kn)} to C (⊕ denotes the bitwise exclusive-or).

3. C extracts (βi, g
ki) from A(Q(i)) and obtains αi as αi = βi ⊕H((gki)r, i).

3.2 Proposed Scheme

Let G = 〈g〉 be a finite cyclic group whose order is an l-bit prime number p
and every element of G is represented by a bit string of size l1. The operation
in G is written multiplicatively. Let g, h are generators of G; assume that the
discrete logarithm logg h is unknown to all. Let F ,G,H0,H1,H2 be a random
hash functions from {0, 1}∗ to {0, 1}l1. So we assume these are random oracles.
Let Γ be a user-group (or simply group) of n users {C1, . . . , Cn}. Each user Ci

in Γ is initially provided a distinct low entropy password pwi, while S holds a
list of these passwords. We set PWFi = F(pwi) and PWGi = G(i, pwi).

All pwi are independently picked from the dictionary D according to the
distribution Dpw. We use the notation Dpw(τ) for the probability to be in the
most probable set of τ passwords:

Dpw(τ) = max
P⊆D

{
Pr

pw∈Dpw

[pw ∈ P|�P ≤ τ ]
}

Note that if we denote by UN the uniform distribution among N passwords,
UN (τ) = τ/N . We first provide a high-level description of our protocol:

Outline of the scheme

1. Ci chooses uniformly and randomly a secret exponent x and sends the cor-
responding Diffie-Hellman public key gx to S.

2. S chooses uniformly and randomly a secret exponent y. Next, S prepares n
elements gygF(pwi) for 1 ≤ i ≤ n, where F is a random oracle.

3. Ci makes an (1-out-of-n) OT query in order to get gygF(pwi) from S.
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4. S answers the query in a manner that Ci will retrieve only gygF(pwi) and
then gy.

5. Ci and S compute the common Diffie-Hellman secret value gxy. Ci and S
will use this gxy to generate the common section key and authenticate each
other.

Detailed description. As mentioned in Sec.1.3, we construct APAKE by embed
an OT protocol into a two-party PAKE scheme. In fact, we can use any OT to
our protocol, but as we design a PAKE that works on a finite cyclic group G so
we also apply an OT that works on G for convenient. Here, we will use the OT
of Tzeng in [15] which is simple and designed for elements in G. Our protocol is
run between user Ci and the server S. The pair (Q(i), A(Q(i))) in our protocol
is an OT run by Ci and S. See Figure 1 for the protocol flow.

Phase 1.
1. Ci chooses randomly and uniformly x, r ∈ Zp and computes X = gx.

Next, Ci generates a query Q(i) for the i-th data in OT protocol as
Q(i) = grhG(i,pwi) = grhPWGi .

2. Ci sends (Γ,X,Q(i)) to S.
Phase 2.

1. S chooses randomly and uniformly y, k1, . . . , kn ∈ Zp and computes Y =
gy and αi, βj for 1 ≤ j ≤ n as follows

αj = Y gF(pwj) = Y gPWFj , βj = H0

( (
Q(i)(hPWGj )−1

)kj
, j
)
⊕ αj .

2. Let A(Q(i)) = (β1, . . . , βn, g
k1 , . . . , gkn), and let KS = Xy.

Fig. 1. Our APAKE with server-authentication
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3. S computes the authenticator AuthS and the session key skS as follows
AuthS = H2(Γ, S,X,A(Q(i)), Y,KS) and skS = H1(Γ, S,X,A(Q(i)),
Y,KS).

4. S sends (S,A(Q(i)),AuthS) to Ci.
Phase 3.

1. Ci extracts αi from A(Q(i)) as αi = βi ⊕H0((gki)r, i).
2. Ci computes Y = αi(gPWFi)−1, KC = Y x.
3. Ci computes AuthC = H2(Γ, S,X,A(Q(i)), Y,KC) and checks whether

AuthS
?= AuthC

4. If AuthS is valid, Ci accepts and computes the session-key skC as skC =
H1(Γ, S,X,A(Q(i)), Y,KC). If AuthS is invalid then Ci aborts the pro-
tocol.

Remark: In Phase 1 above, only person who knows pwi can make a correct query
for gygF(pwi). Thus, an attacker trying to make an on-line attack cannot succeed
in guessing the correct password pwi.

3.3 Security

AKE security/Authentication. We provide a theorem claiming that the
APAKE protocol satisfies AKE security and the unilateral authentication of the
server S.

Theorem 1. (AKE/S-Auth Security). Suppose that APAKE protocol is run
employing a group of a prime order p and a dictionary D equipped with the
distribution Dpw. For any adversary A with a time bound t, with less than qse

Send-queries, qex Execute-queries, and qg and qh hash queries to {G,F} and
{H0,H1,H2}, respectively, we have

Advake
apake(A) ≤ 2qse

2l1
+ 12×Dpw(qse) + 12q2

h × Succcdh
g,G(t + 3τe) +

4T 2

p
,

SuccS−auth
apake (A) ≤ qse

2l1
+ 3×Dpw(qse) + 3q2

h × Succcdh
g,G(t+ 3τe) +

T 2

p
,

where T = qse + qq + qg, and τe is the computational time for an exponentiation
in G.

The proof of Theorem 1 is similar to the one in [5] and we give it in full version of
this paper due to lack of space. We here give only the outline. Before the outline
of the proof, we note that this theorem shows that the protocol is secure against
dictionary attacks since the advantage of the adversary essentially grows with
the ratio of interactions (number of Send-queries) to the number of passwords.

Outline of Proof. Here, we show an intuitive idea behind the proof. As we men-
tioned, the proof is similar to the one in [5], however, there is a clear difference
between the protocol of Bresson et al.[5] and ours. We use an oblivious transfer
transaction (Q(i), A(Q(i))) between Ci and S in our protocol. This additional
information just securely transmits Y to Ci while it does not reveal any infor-
mation that may be used to expose the user identity, password or session key:
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- We see that Q(i) is uniformly distributed because r is chosen uniformly
and randomly. Therefore, Q(i) does not reveal any information about Ci’s
identity and pwi.

- Due to privacy of S guaranteed by the OT protocol, the user Ci can learn
only αi(1 ≤ i ≤ n) from the transaction. As we embedded the password pwi

in Q(i) and βj(1 ≤ j ≤ n) as

Q(i) = grhPWGi = grhG(i,pwi) and βj = H0

((
Q(i)(hPWGj )−1)kj

, j
)
⊕αj ,

only Ci, who knows pwi, can learn αi. In other words, nobody other than
Ci obtains any meaningful information from A(Q(i)).

- Moreover, Ci does not obtain any information on any αj(i �= j) and so he
cannot mount the dictionary attack to obtain the other users’ password.

As a result, the information that S and Ci can use is almost similar to that in
the protocol [5]. Therefore, we obtain a similar security result to [5]. Q.E.D.

Anonymity/Unlinkability

Theorem 2. The anonymity and unlinkability of APAKE protocol is uncondi-
tional.

Proof. We see that the triple (Γ,X = gx, Q(i)) in any transaction of APAKE
protocol made by any user Ci is uniformly distributed over the set {Γ}×G×G

because x and r are chosen uniformly and randomly from Zp. Therefore, nobody
distinguishes a transaction of Ci and a transaction of Cj (i �= j). This implies
that APAKE unconditionally satisfies the anonymity, that is, the anonymity does
not depend on any computational assumption. Similarly, we can show the un-
linkability. Q.E.D.

3.4 Mutually Authentication

In addition to Phase 1, Phase 2 and Phase 3, we run Phase 4 in order to
authenticate the users without revealing the user’s identity. In this mode, we
assume S behave honestly.

Phase 4.

1. Ci computes AuthC = H3(Γ, S,X,A(Q(i)), Y,KC), where H3 is a random
hash function of {0, 1}∗ to {0, 1}l1. Ci sends AuthC to S.

2. S checks whether AuthC = H3(Γ, S,X,A(Q(i)), Y,KS). If AuthC is valid then
S accepts and computes the session key as skS=H1(Γ, S,X,A(Q(i)), Y,KS).

The APAKE with mutual authentication is illustrated in Fig.2.
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Fig. 2. APAKE with mutual-authentication

4 k-out-of-n APAKE Scheme

4.1 Description

Weshall extend theAPAKE scheme in theprevious section to the scheme thatallows
any subgroup of Γ consisting of at least k users (k ≤ n) to generate a common
sessionkeywithS inpassword-basedauthenticatedandanonymousway.Moreover,
a subgroup consisting of less than k users is unable to generate a common session
key with S. We employ a k-out-of-n OT in [9] but we omit the description of the
scheme for lack of space. See Figure 3 for the protocol flow. Let C be a subgroup of
Γ consistingofkusers.WemayassumeC = {C1, . . . , Ck}without lossofgenerality.

Phase 1.
1. C chooses randomly and uniformly x ∈ Zp and computes X = gx. Next,

each Ci (1 ≤ i ≤ k) chooses randomly and uniformly γi, ai ∈ Zp. These
γi and ai are keep secret by Ci. Then, each Ci(1 ≤ i ≤ k) computes
wi = hγiG(i,pwi) and Ai = wig

ai . Let Q = (A1, . . . , Ak).
2. C sends (Γ,X,Q) to S.

Phase 2.
1. S chooses randomly and uniformly y ∈ Zp and computes Y = gy.
2. S shares y using Shamir’s secret sharing scheme by choosing randomly

and uniformly b1, . . . , bk ∈ Zp, and sets f(x) = y + b1x+ · · ·+ bkx
k and
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yi = f(i) for 1 ≤ i ≤ k. Note that we have y = λ1f(1) + · · · + λkf(k),
where λi = Π1≤j≤k,j 
=i

j
j−i .

3. S computes Yi = gyi for 1 ≤ i ≤ n.
4. S chooses randomly and uniformly z ∈ Zp and computes Z = gz.
5. S computes Di = Az

i for 1 ≤ i ≤ k and αi = Yig
F(pwi)⊕H0(wz

i ) for 1 ≤
i ≤ n. Let A(Q) = (Z,D1, . . . , Dk, α1, . . . , αn), KS = Xy

6. S computes the authenticator AuthS and the session key skS as follows
AuthS = H2(Γ, S,X,A(Q), Y,KS) and skS = H1(Γ, S,X,A(Q), Y,KS).

7. S sends (S,A(Q(i)),AuthS) to Ci.
Phase 3.

1. For 1 ≤ i ≤ k, C extracts Yi from A(Q) as Yi = [αi ⊕ H0(Di(Zai)−1)]
(gF(pwi))−1

2. C computes Y = Y λ1
1 · · ·Y λk

k and KC = Y x.

3. C checks whether the authenticator of S is valid or not by AuthS
?=

AuthC = H2(Γ, S,X,A(Q), Y,KC)
4. If AuthS is valid, C accepts and computes the section key skC as skC =
H1(Γ, S,X,A(Q), Y,KC).

4.2 Security

Any subgroup of at least k users in the legitimate group can authenticate their
qualification that they comprise at least k users and establish a session key
with the server, whereas any subset of less than k users cannot establish or
authenticate a session key with the server. In addition, we have to consider an
adversary A that colludes with at most k − 1 users in C. Security properties of
k-out-n APAKE is similar with scheme in Sec.3. Detailed explanations will be
presented in the full version of the paper.

5 Discussion

We discuss active attack by S in the scheme of Sec. 3.2. In the case that S behaves
honestly, we can extend our scheme to a mutually authenticated key exchange
scheme by adding one more authenticate flow from Ci to S as illustrated Fig.2.
Unfortunately, if S is malicious and attempts to expose identity of Ci, then S
can perform an active attack as follows. After receiving (Γ,X,Q(i)) from a user,
S chooses some subset Γ ′ = {Ci1 , . . . , Cik

} ⊂ Γ that he guest Ci is belong to
(1 ≤ k ≤ n − 1). S then chooses two distinct random numbers y1, y2 ∈ Zp,
computes Y1 = gy1 , Y2 = gy2 and modify αi as αi = Y1g

PWFi for Ci ∈ Γ ′ and
αj = Y2g

PWFj for Cj ∈ Γ \Γ ′. S then set KS = Xy1 and computes AuthS =
H2(Γ, S,X,A(Q(i)), Y1,KS). S then sends A(Q(i)) and AuthS to the user.

If S’s guess is correct, that is, the user Ci is belong to Γ ′, then Ci accepts and
sends back AuthC to S. Otherwise, the user rejects AuthS. So, we can see that S
will succeed in with the probability k/n, while his malicious action is exposed
with probability (n−k)/n. In the about attack, to earn more information about
identity of Ci, S should choose a smaller k, but in that case, his malicious action
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Fig. 3. Our k-out-n APAKE with server-authentication

will be exposed with larger probability. In a realistic scenario, the server would
be reluctant to take a risk to disclose his dishonest behavior. To correct this
problem will be our future work.
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Abstract. The most significant pairing-based cryptographic protocol to
be proposed so far is undoubtedly the Identity-Based Encryption (IBE)
protocol of Boneh and Franklin. In their paper [6] they give details
of how their scheme might be implemented in practice on certain su-
persingular elliptic curves of prime characteristic. They also point out
that the scheme could as easily be implemented on certain special non-
supersingular curves for the same level of security. An obvious question
to be answered is – which is most efficient? Motivated by the work of Gal-
lant, Lambert and Vanstone [14] we demonstrate that, perhaps counter
to intuition, certain ordinary curves closely related to the supersingular
curves originally recommended by Boneh and Franklin, provide better
performance. We illustrate our technique by implementing the fastest
pairing algorithm to date (on elliptic curves over fields of prime charac-
teristic) for contemporary levels of security, albeit on a rather particular
class of curves. We also point out that many of the non-supersingular
families of curves recently discovered and proposed for use in pairing-
based cryptography can also benefit (to an extent) from the same tech-
nique.

Keywords: Tate pairing implementation, pairing-based cryptosystems.

1 Introduction

If it is to be successful in the long term, pairing-based cryptography needs ef-
ficient algorithms for the calculation of the Weil or Tate pairing. In his early
text book Menezes [17] mentions an implementation of the Weil pairing which
“reported running times of just a few minutes” on a SUN-2 SPARC-station.
However this is more than a little unfair – at the time there was no real in-
centive to try and optimise the standard technique, based on Miller’s algorithm
[18], and for the cryptanalytic purpose for which the Weil pairing was being
used, a few minutes was more than adequate to make the point. In practice the
Tate pairing has some advantages over the Weil pairing in most contexts, as first
pointed out by Frey, Müller and Rück [12].

However the development of protocols that require fast pairings has produced
a series of improvements and tricks which have drastically reduced this running
time down to just a few milliseconds.

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 258–269, 2005.
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One target might be that the pairing calculation should take as long as an
RSA decryption, for the same level of security, and as pointed out by Scott [21],
this target has already almost been reached. However more improvements may
be possible, and it is the purpose of this paper to illustrate a new method which
can either produce a further speed-up of up to 20%, or half the amount of storage
required, depending on the context in which the pairing is to be calculated.

The development of fast pairings has advanced on two fronts. The first has
concentrated on optimising algorithms for the Tate pairing on elliptic curves of
prime characteristic, both supersingular and ordinary. The second has focused
on algorithms for supersingular curves of small characteristic, typically of char-
acteristic 2 and 3. The former approach is epitomised by the work of Barreto,
Kim, Lynn and Scott [2] and Galbraith, Harris and Soldera [13]. For an easy-to-
read description of the so-called BKLS-GHS algorithm, with timings, see [21].
While the BKLS-GHS algorithm is also suitable for use over small characteristic
curves, the work of Duursma and Lee [11] made it clear that a more efficient
algorithm was possible in this context. This approach culminated in the work
of Barreto, Galbraith, O’hEigeartaigh and Scott [1], which introduced the prim-
itive ηT pairing, and showed how the Tate pairing could be calculated from it
using an iterative loop only half the size of that required by Duursma and Lee.
They also raise the possibility that pairings over characteristic 2 supersingular
hyperelliptic curves may also be competitive.

However comparing the two types of fast pairings is difficult, as it amounts
to comparing the difficulty of the discrete logarithm problem in fields of prime
characteristic, with that in fields of small characteristic (although we do know
that the latter is easier than the former for the same size of field [9]). In our
view this comparison has not been adequately experimentally investigated. How-
ever the most authoritative comparison that we have found is due to Lenstra
[16]. From this, and using the timings from [1], it would appear that the ηT

approach may in fact be the fastest. However since there is still some con-
cern that the discrete logarithm problem in fields of low characteristic may be
even easier than we currently think, in this paper we will concentrate exclu-
sively on the prime characteristic case. See [20] for a nice discussion of these
issues.

It has been suggested that pairings might be speeded up by using a prime
modulus p of low Hamming weight [15]. This idea can be used with both su-
persingular and non-supersingular curves. However this also raises legitimate
concerns about a possible lowering of discrete-logarithm security. We will not
consider the use of a prime modulus of low Hamming weight here.

A critical parameter of any pairing implementation is the embedding de-
gree, or “security multiplier”, denoted k. For reasons of efficiency it is usually
recommended that k be even [2] . The security multiplier relates the size of
the base field over which points on the elliptic curve are manipulated, with the
discrete-logarithm security of the pairing. For example on a particular supersin-
gular hyperelliptic curve of characteristic 2, a value of k = 12 is possible [1], and
so a hyperelliptic curve over the field F2113 would result in a pairing with the
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discrete logarithm security of a 12*113=1356 bit binary extension field, which by
reference to [16] might be considered to be adequately secure. So a large security
multiplier implies that we can work on an elliptic or hyperelliptic curves over a
smaller base field, with efficiency advantages. However the advantage of a large
security multiplier is perhaps not as great as one might think, as the major part
of the pairing calculation involves manipulations over the extension field (of size
1356 bits in our example), rather than over the smaller base field.

In the case of prime characteristic fields, the use of a security multiplier of
k = 2 has proven to be surprisingly efficient for contemporary levels of security
[21]. Note that for supersingular elliptic curves over fields of prime character-
istic, k = 2 is the maximum possible. The issue of how to scale security in
pairing based protocols has been considered by both Koblitz and Menezes [15],
and by Scott [22]. The consenus is that the appropriate way to scale security
is to increase the security multiplier rather than increase the size of the prime
modulus.

Note that by “contemporary levels of security”, we mean a 1024-bit prime
extension field size, and a group size of 160-bits. This implies roughly the same
security as 1024-bit RSA [22].

Here we are concerned with the calculation of the Tate pairing, denoted
e(P,Q), which evaluates as an element of order r in Fpk where P is a point of
order r on E(Fp) and Q is a point on E(Fpk).

The rest of this papers is structured as follows: First we recall the super-
singular curves originally recommended for use with IBE. Then by making a
small change to the definition of these curves we draw attention to a class of
non-supersingular curves with a useful property. Next we demonstrate that such
curves are quite easy to generate. In our main contribution we describe some new
algorithms which exploit the special property of these curves to speed up the
calculation of the Tate pairing. We conclude with some results and by suggesting
some extensions of the basic idea.

2 Supersingular Curves

In their original paper [6], Boneh and Franklin recommend the use of either of
these supersingular curves over Fp

y2 = x3 +Ax, where p ≡ 3 mod 4 (1)

y2 = x3 +B, where p ≡ 2 mod 3 (2)

On supersingular curves the modified pairing is calculated as ê(P,Q) =
e(P, ψ(Q)), where e(P,Q) denotes the Tate pairing, and ψ(.) denotes the distor-
tion map. For the first curve an appropriate distortion map is defined as ψ1 :
(x, y) → (−x, αy) where α =

√
−1, and for second curve the distortion map is

ψ2 : (x, y)→ (βx, y) where β is a non-trivial cube root of unity. Note that both
α and β are elements of the extension field Fp2 , corresponding to the security
multiplier value of k = 2.
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In the Boneh and Franklin IBE scheme there is a necessity to hash identities
to curve points. For the second curve this can be done by hashing the identity
string to the y coordinate, and then solving the modular cubic equation for x.
Since p ≡ 2 mod 3, this will always be possible. For the first curve one could
hash the identity to x and test if x3 + ax is a quadratic residue. If it is not then
negate x. Then solve the modular quadratic for y, and choose one of the two
solutions according to some convention. This will always work as p ≡ 3 mod 4
implies that -1 is a quadratic non-residue.

3 Not Supersingular Curves

Consider now these non-supersingular curves over Fp

y2 = x3 +Ax, where p ≡ 1 mod 4 (3)

y2 = x3 +B, where p ≡ 1 mod 3 (4)

Recall that IBE can equally well be implemented on these curves, using the
Tate pairing e(P,Q) directly. Suitable curves can be found with k = 2, but of
course we are no longer restricted to this value alone – larger values of k are also
possible (see below).

Note that all that has been changed is the congruence conditions applying to
p. For our convenience here we will describe these curves as the not-supersingular
(NSS) curves to distinguish them from the generality of ordinary curves. Under
these circumstances what becomes of the distortion maps? Well of course they
are no longer distortion maps, as now α, β ∈ Fp. However these mappings con-
tinue to be useful, as we will see, not as distortion maps, but rather as efficient
endomorphisms.

What about hashing identities to curve points on these curves? One interest-
ing feature of k = 2 curves is that both the curve and its quadratic twist have
the same embedding degree of k = 2. This arises from the condition that the
group order r divides both p+1 and p+1−t (the number of points on the curve),
where t is the trace of the Frobenius for the particular curve [2]. Therefore it
follows that r also divides p+1 + t, the number of points on the quadratic twist
of the curve, and either curve is a suitable vehicle for IBE.

To be concrete we will from this point on concentrate our attention to the
curve of equation (4), although all our results apply equally to the other curve.
For simplicity choose p = 7 mod 12, so that -1 is a quadratic non-residue, and a
quadratic twist of the original curve is given by y2 = x3−B. Then if an identity
is hashed to a value x, if x3 + B is not a quadratic residue, then (−x)3 − B
will be. So the trick is to hash to either the original curve or to the twisted
curve, depending on the identity. IBE public parameters for both the curve and
its twist must be maintained, but other than that the IBE implementation will
proceed smoothly with negligible additional overhead.
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4 Curve Generation

While generating suitable parameters for supersingular curves is easy, it is much
more challenging to generate suitable non-supersingular curves. However a lot of
progress has been made. Just as pairing-based cryptography was getting started,
Miyaji, Nakabayashi and Takano [19] described a method for generating non-
supersingular curves with embedding degrees of 3, 4 and 6. Barreto, Lynn and
Scott [3] were the first to provide simple formulae for generating whole families
of curves with useful embedding degrees. Their results were extended by Brezing
and Weng [7], and later by Barreto and Naehrig [4] who came up with formulae
which allow the generation of k = 12 curves with many nice properties. We will
return to these curves later, but for now will just make the observation that the
majority of such curves are of the not-supersingular form.

By far the most general method for generating pairing-friendly non-
supersingular curves in that due to Cocks and Pinch [5], and this is the method
that we shall use to generate k = 2 not-supersingular curves suitable as re-
placements for the standard supersingular curves described above, for use with
Boneh and Franklin IBE. Crucially (for us) the Cocks-Pinch algorithm allows a
free choice of the group order r. It is well known that a choice of a low Hamming
weight r speeds up the Tate pairing calculation [2], [13], [21]. Alternatively it
suffices if a small multiple of r has a low Hamming weight.

While these methods provide formulae for determining the prime modulus p
and the trace of the Frobenius t of the desired curve, they do not generate the
curve parameters directly. For this the method of Complex Multiplication must
be used [10]. Note that the not-supersingular curves are associated with a CM
discriminant of D = −4 and D = −3 respectively. In these cases determining
the curve parameters is particularly simple, as for example demonstrated in [4].

For our NSS curve (4), the Cocks-Pinch algorithm can be described very
simply: Select a suitable r of low Hamming weight (or a small multiple of which
has low hamming weight). Calculate v =

√
−4/3 mod r. Set t = ωr. Keep adding

r to v until p = (3v2 + t2)/4 is prime. (Choose ω so that p is 512 bits). Note that
r | p+1−t. Finally use the CM method to find the curve parameter B associated
with the curve of order p + 1 − t. (There are 6 possible group orders generated
by the CM method in this case [10], so care must be taken to choose the right
one). This truncated description of the method is adequate for our immediate
purposes; for a more detailed description the reader is encouraged to refer to [5].

5 Efficient Pairings on NSS Curves

In their paper Gallant, Lambert and Vanstone [14] describe an efficient method
for point multiplication, that applies to NSS curves, and indeed this paper is
the main source of inspiration for the current work, although we exploit the
endomorphism in a completely different way. Another motivation comes from
consideration of the ηT pairing as described in [1].

In the course of calculating the Tate pairing e(P,Q) the first parameter, the
point P , is multiplied by its order. Of course this results in the point-at-infinity.
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In the course of this process the intermediate values of this point, as it typically
follows a simple double-and-add trajectory to its pre-ordained destination, along
with the second parameter Q, are used to accumulate the pairing value. In some
contexts the value of P may be fixed and known in advance (for example it may
be a public parameter, or a private key). In this case these intermediate values
can be precalculated and stored, with some performance benefit [21].

Choosing as a parameter a group order r of low Hamming weight drastically
reduces the number of expensive add steps, and hence speeds the algorithm.
However does this process take full advantage of our ability to choose r? The
intuition that led to the discovery of the ηT pairing was that the multiplication
by the group order could perhaps be divided into two parts. At the “half-way”
stage, the point P might be “close” to where it started. Therefore the second
half of the iteration would hopefully be a simple function of the first part, and
so only half the number of iterations might be required. Here we demonstrate
that something similar can be achieved for NSS curves.

Gallant, Lambert and Vanstone [14] have pointed out the following useful
facts about NSS curves, and the efficient endomorphisms that they support.

For the curve (3) let P be a point of prime order r, with coordinates (x, y), and
take λ such that λ2 +1 = 0 mod r. Then the point λP has coordinates (−x, αy),
where α is a square root of -1 mod p. Note that there are two possibilities for
α, depending on the two possible solutions of the quadratic equation for λ. The
endomorphism in this case is defined as φ1 : (x, y)→ (−x, αy).

For the curve (4) let P be a point of prime order r, with coordinates (x, y),
and take λ such that λ2 + λ+ 1 = 0 mod r. Then the point λP has coordinates
(βx, y), where β is a non-trivial cube root of unity mod p. Note that there are
two possibilities for β, depending on the two possible solutions of the quadratic
equation for λ. The endomorphism is this case is defined as φ2 : (x, y)→ (βx, y).

This implies that given a point P on one of these curves, one can immediately
determine a fixed multiple of the point, with a single field multiplication. In [14]
this is exploited to develope a fast point multiplication algorithm.

Focusing on the latter curve, our idea is that λ should be chosen in advance,
of low Hamming weight. For example we might choose λ = 2n. Then select as r a
large prime divisor of λ2 +λ+1. For example n = 87, and r = (2174 +287+1)/73
(a 168-bit prime) would seem to be a suitable choice. Using a double and add
algorithm for the calculation of the Tate pairing would require the calculation of
2n(2nP +P )+P 1. However using the endomorphism we can immediately know
the value of 2nP + P . And this implies that we know the sequence of points
that will occur during the final 2n doublings, without having to explicitly calcu-
late them (exploiting the well-known commutativity of the endomorphism with
point multiplication: aφ(P ) = φ(aP )). This results in significant computational
savings.

Now we explain our technique in a little more detail. Given the point P with
coordinates (x, y), and using the endomorphism, it is easy to calculate 2nP+P as

1 As pointed out by Duursma and Lee [11] the final point addition can be omitted
without changing the value of the pairing.
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the point (−(β + 1)x,−y). Clearly if the values of the initial 2n point doublings
were stored, the values of the final 2n doublings can be found at the cost of
a single field multiplication, resulting in a faster algorithm. Alternatively if the
value of P is fixed, only half the storage would be required. Either way the result
is a more efficient algorithm. However it is possible to do a little better than this.

For the first n iterations of Miller’s algorithm the contribution to the pairing
value is (yQ − yi) −mi(xQ − xi), where (xi, yi) is the point 2iP , mi is the line
slope resulting from the current point doubling, and (xQ, yQ) is the point Q.
This value can be multiplied at will by any element of Fp, as the effect of any
such multiplication will be wiped out by the final exponentiation. For the final
n iterations the contribution will be (yQ + yi) + (β2 + 1)mi(xQ + (β + 1)xi) –
note the adjusted value of the slope. But since β is a non-trivial cube root of
unity, we know that β2 +β+1 = 0 mod p. Substituting and simplifying we have
(yQ +yi)+(β2 +1)mi(xQ +(β+1)xi) = (yQ +yi)+mi(βxQ−xi). Now multiply
by -1 to obtain the equivalent contribution of (−yQ − yi)−mi(βxQ − xi).

Observe therefore that we can obtain the same values by switching the point
Q to Q̄ for the final n iterations, where Q̄ = (βxQ,−yQ), and using exactly the
same sequence of (xi, yi) as we did for the first n iterations.

5.1 A Basic Algorithm

We are now ready to bring these ideas together and describe our modified BKLS-
GHS algorithm in detail. First we equip ourselves with a library which can add
or double points on an elliptic curves by means of a function A.add(B) which
adds B to A, and returns the line slope m.

Next we need a function g(.) to calculate the contribution of the current
iteration to the pairing value. The returned value is used for the first n iterations,
and the values for the final n iterations are calculated at the same time (at very
little extra cost) and stored for later use.

Algorithm 1. Function g(.)
Input: A, B, Q, i
1: xi, yi ← A
2: xQ, yQ ← Q
3: mi = A.add(B)
4: store −yQ − yi − mi(βxQ − xi) in an array element s[i]
5: return yQ − yi − mi(xQ − xi)

In practice the functionA.add(B) will be faster if the pointA is represented in
projective coordinates, which makes for a somewhat more complex g(.) function.
We omit the details, except to point out that much of the calculation is shared
between the stored point and the returned point, with further savings.

For optimal performance the point Q is deliberately placed into the trace-
zero subgroup, which means that only the variable yQ is in Fp2 . The variables
xi, yi, xQ,mi are all in Fp. See [21] for details. The returned and stored values
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are in Fp2 . Sometimes we pass the dummy parameter – for i. As the notation
suggests, in this case the storage step is omitted.

Care must be taken to ensure that correct non-trival cube root of unity for
β is chosen, as there are two possibilities associated with the two solutions for
λ2 + λ + 1 = 0 mod r. The right value can easily be found by trial and error,
and the value of βxQ can then be precalculated and stored.

For the particular case n = 87 the full Tate pairing algorithm is given in
Algorithm 2. This algorithm will also work for any choice of λ = 2n which leads
to a near-prime value of r = λ2 + λ + 1. However in practice, and in the range
of useful values, good values for n are hard to find.

Algorithm 2. Computation of e(P,Q) on NSS curve (4), k = 2, λ = 287,
r = (λ2 + λ+ 1)/73
Input: P, Q
Output: e(P, Q)
1: A ← P , f ← 1
2: for i ← 1 to 87 do
3: f ← f2.g(A,A, Q, i)
4: end for
5: f ← f.g(A, P, Q, −)
6: for i ← 1 to 87 do
7: f ← f2.s[i]
8: end for
9: return f (p−1)(p+1)/r

5.2 A Better Algorithm

Consider now the slightly more complicated choice of λ = 2a + 2b. In this case we
have much greater control of r, and it is much easier to find a prime value which
still has a very low Hamming weight. For example choosing λ = 280 + 216 gives
a prime r = λ2 + λ + 1 of 161 bits. A slight complication arises in this case, as
the multiplication of the point P by r no longer follows a purely double-and-add
algorithm, and so Miller’s algorithm needs to be slightly modified to accomodate
this. In the following algorithm3, the variableh is used to handle this modification.

The extra storage requirement for the array s is not very large (2x512x81
bits), but in some circumstances it may become an issue. An alternative version
of the algorithm requires no storage, for a little extra work. See algorithm 4.

6 Results

An important first step in an implementation is to use the Cocks and Pinch
algorithm to generate a suitable 512-bit, k=2 NSS elliptic curve. The curve
y2 = x3 + 5 mod p, for the 512-bit prime p, where

p = 11457475683995493806353174186205825314535461236767597441115533728505070527823

154532657656991234473986641703193940343559823628668878734326909502089393493643
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Algorithm 3. Computation of e(P,Q) on NSS curve (4), k = 2, λ = 2a + 2b,
a > b, r = λ2 + λ+ 1. Requires an array s of length a.
Input: P, Q
Output: e(P, Q)
1: A ← P , f ← 1, j ← 1
2: for i ← 1 to a − b do
3: f ← f2.g(A,A, Q, j ++)
4: end for
5: f ← f.g(A, P, Q, j ++)
6: for i ← 1 to b do
7: f ← f2.g(A,A, Q, j ++)
8: end for
9: f ← f.g(A, P, Q, −)

10: h ← f , j ← 1
11: for i ← 1 to a − b do
12: f ← f2.s[j ++]
13: end for
14: f ← f.s[j ++]
15: f ← f.h
16: for i ← 1 to b do
17: f ← f2.s[j ++]
18: end for
19: return f (p−1)(p+1)/r

Algorithm 4. Computation of e(P,Q) on NSS curve (4), k = 2, λ = 2a + 2b,
a > b, r = λ2 + λ+ 1. No extra storage requirement.
Input: P, Q
Output: e(P, Q)
1: A ← P , f1 ← 1, f2 ← 1, j ← 1
2: for i ← 1 to a − b do
3: f1 ← f2

1 .g(A,A, Q, 0)
4: f2 ← f2

2 .s[0]
5: end for
6: f1 ← f1.g(A,P, Q, 0)
7: f2 ← f2.s[0]
8: for i ← 1 to b do
9: f1 ← f2

1 .g(A,A, Q, 0)
10: f2 ← f2

2 .s[0]
11: end for
12: f1 ← f1.g(A,P, Q, −)
13: f ← fλ

1 .f2

14: return f (p−1)(p+1)/r

was quickly found. The Tate pairing was calculated on this curve using algo-
rithms 3 and 4 with a = 80 and b = 16, and compared with the pairing calcu-
lated on the original Boneh and Franklin supersingular curve using the method
described in [21]. As anticipated, the NSS curve pairings are significantly faster.
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Table 1. NSS vs Supersingular Tate Pairing – 3GHz Intel PIV

Curve type Fp muls Time (ms)
512-bit, k = 2 Supersingular curve 4070 8.9

512-bit, k = 2 NSS curve, with storage 3163 7.2
512-bit, k = 2 NSS curve, no storage 3329 7.5

We provide both timings and a count of the total number of Fp modular
multiplications and squarings required. In the implementation we used a final
exponentiation based on the calculation of a Lucas sequence, which allows easy
times-two compression of the output, as described in [21] and [23].

7 Extensions

The basic idea can be extended in a few directions. Firstly the same basic
technique will also work for the “other” NSS curve of equation (3). The idea
could also be applied to the non-supersingular curves with CM discriminants of
D = −7 and D = −8, as described in [14], although in these cases the savings
would be much less significant as the endomorphisms are much more complex
to calculate. In fact it would be more correct to refer to the class of exploitable
curves as “small discriminant CM curves”.

If the first parameter P is fixed, then no savings will be realised in terms of
computation using this method as all the multiples of P can be precalculated
and stored. However using NSS curves only half the storage will be required,
which leads to greater efficiency, and which might be significant in a constrained
environment.

The method has been described in the context of a security multiplier of
k = 2, but it also applies immediately to higher values of k. In these cases the
computational time savings will be smaller, as the implicit point multiplication
of P by r becomes a less significant part of the overall calculation [22].

We note in passing that the method of Gallant, Lambert and Vanstone [14]
also has direct application to pairing-based protocols which require point mul-
tiplication, such as the Boneh and Franklin IBE, if they are implemented on
NSS curves. With our choice of group order the deployment of this scheme be-
comes particularly simple: Calculate kP as k1P + k2φ(P ), where k2 = k/λ, k1 =
k mod λ. See [14] for details.

Finally we point out that many curves that have been suggested as suitable
for use in pairing-based cryptography are in fact already of the NSS form [3], [7],
and furthermore have a group order of the required form. For example the k = 12
curve suggested in Appendix A of [3] is of this form, as is the nice k = 8 curve
suggested by Brezing and Weng [7] and implemented in [22]. This is facilitated
by the group order of these curves being derived from a cyclotomic polynomial
which, as luck would have it, is of the same form as r = λ2 + λ+ 1.

Are NSS curves any less secure than supersingular curves or indeed general
pairing-friendly non-supersingular curves? There is no reason to think so. In
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standard elliptic curve cryptography some classes of curves are considered as
weaker than others, although sometimes the reasons are not well supported by
any hard evidence. For example it is considered in certain quarters (for example
the German National Security Agency), that curves with smaller CM discrim-
inants are in some sense weaker than others [8]. Whatever the merits of such
judgements, they do not apply in the pairing context, where it is already known
that there is an index calculus attack on the extension field Fpk , which arises
as a direct consequence of having a small embedding degree k. Of course by
choosing p and k wisely this index calculus attack becomes infeasible. It re-
mains an interesting open question whether or not there are any weak classes of
pairing-suitable curves, supersingular or non-supersingular.

8 Conclusions

We have described a method of calculating pairings on certain non-supersingular
curves, which is faster than using the equivalent supersingular curve, as originally
recommended by Boneh and Franklin [6] for use in Identity Based Encryption.
The proposed method is more efficient in terms of time (or of space) than any
other method so far proposed for elliptic curves over fields of prime characteristic
and at contemporary levels of security.
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Abstract. The Boneh-Franklin identity-based encryption (BF-IBE)
scheme [6] is well-known as a fully functional identity-based encryption
(IBE) scheme. Recently, Galindo [13] pointed out a flaw in the original
proof of the security of the BF-IBE scheme. He claims that its secu-
rity can be fixed without changing both the scheme and the underlying
assumption if the efficiency of the security reduction is sacrificed. This
result would be bad news for many cryptographic schemes [1, 7, 10, 15]
that are based on the BF-IBE scheme because an inefficient security re-
duction would imply either the lower security level or the use of larger
key sizes to attain a given security level. In this paper, we give a new
proof of the security of the BF-IBE scheme, showing that it has a tighter
security reduction than had been previously believed.

1 Introduction

Identity-based cryptography utilizing pairing has become a fashionable topic
since the fully functional identity-based encryption (IBE) scheme was proposed
in 2001 by Boneh and Franklin [6]. Historically, identity-based cryptography was
proposed by Shamir [18] in 1984 to simplify certificate management in e-mail
systems. In this approach, a user can choose an arbitrary string (e.g., an e-mail
address and telephone number) as his/her own public key. The user receives
his/her private key from a “Private Key Generator” (PKG) after authenticat-
ing himself/herself and registering the public key in the PKG. This paradigm
bypasses the trust problems that arise in traditional certificate-based public key
infrastructures (PKIs).

Although various identity-based signature (IBS) and authentication (IBA)
schemes have been proposed, the fully functional identity-based encryption (IBE)
scheme was not found until 2001 by Boneh and Franklin [6] and independently
by Cocks [11]. Boneh and Franklin construct the IBE scheme (called the “BF-
IBE scheme”) by utilizing the Weil paring. Cocks describes another construction
using quadratic residues modulo a composite, which is less practical than the
BF-IBE scheme. The BF-IBE scheme is very practical for use and has had a great
influence on later designs of cryptographic protocols, even though its security is
given in the heuristic model (i.e., the random oracle model).
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Recently, Galindo [13] pointed out a flaw in the original proof of the (IND-
ID-CCA sense) security of the BF-IBE scheme. This flaw has consequences for
many other schemes [1, 7, 10, 14, 15, 16, 17] that are based on the BF-IBE scheme.
He claims that the security of the BF-IBE scheme can be fixed without changing
both the scheme and the underlying assumption if the efficiency of the security
reduction is sacrificed. The security reduction is a measure indicating how the
strength of the underlying intractable problem, which is used as a cryptographic
assumption, is preserved in the underlying scheme’s security. An inefficient secu-
rity reduction would imply either the lower security level or the use of larger key
sizes to attain a given security level. Therefore it is important to find a proof
of the security that gives a tight security reduction. In this paper, we give a
new proof of the security of the BF-IBE scheme, showing that it has a tighter
security reduction than had been previously believed.

2 Preliminaries

Notations and conventions. We use standard notations and conventions for
writing probabilistic algorithms and experiments. If A is a probabilistic algo-
rithm, then A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and
coin tosses r. We let y ← A(x1, x2, . . . ; r) denote the experiment of picking r at
random and letting y be A(x1, x2, . . . ; r). When S is a probability space, x← S
denotes the operation of picking an element with its distribution from S. If S
is a set, x ← S is the operation of picking an element uniformly from S. We
use x, y ← S as shorthand for x ← S; y ← S. For probability spaces or sets
S1, S2, . . . , the notation Pr[ x1 ← S1; x2 ← S2; . . . : p(x1, x2, . . . ) ] denotes the
probability that the predicate p(x1, x2, . . . ) is true after the ordered execution
of the algorithms x1 ← S1, x2 ← S2, etc. If α is neither an algorithm, a prob-
abilistic space, nor a set then x ← α is a simple assignment statement. We say
that a function μ : N → R is negligible if for every constant c > 0 there exists
an integer kc such that μ(k) ≤ k−c for all k ≥ kc. For a set A, #A denotes the
number of elements in A.

2.1 Bilinear Maps and the Bilinear Diffie-Hellman Assumption

Let G1 and G2 be two groups of order q for some prime q. Then a map ê :
G1×G1 → G2 is said to be an admissible bilinear map if it satisfies the following
properties:

1. Bilinear: We say that a map ê : G1 × G1 → G2 is bilinear if ê(aP, bQ) =
ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity
in G2. Observe that G1 and G2 are groups of prime order this implies that
if P is a generator of G1 then ê(P, P ) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(P,Q) for any
P,Q ∈ G1.
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It is known that an admissible bilinear map can be constructed by using the
Weil pairing on elliptic curves (see [6] for details).

We say that a randomized algorithm G is a BDH parameter generator if (1)
G takes a security parameter k ∈ N, (2) G runs in polynomial time in k, and (3)
G outputs a prime number q, the description of two groups G1,G2 of order q,
and the description of an admissible bilinear map ê : G1 ×G1 → G2. We denote
the output of G by G(1k) = 〈 q,G1,G2, ê 〉.
Bilinear Diffie-Hellman (BDH) Assumption. Let G be a BDH parame-
ter generator. We define the advantage of an algorithm A in solving the BDH
problem for G as

Advbdh
G,A(k) = Pr

[
〈 q,G1,G2, ê 〉 ← G(1k) ; P ← G∗

1 ; a, b, c← Z∗
q :

A(q,G1,G2, ê, P, aP, bP, cP ) = ê(P, P )abc
]
.

We say that G satisfies the BDH assumption if Advbdh
G,A(k) is negligible for any

probabilistic polynomial-time (PPT) algorithm A.

2.2 Chosen Ciphertext Security for Identity-Based Encryption

We say that an IBE scheme Π is polynomial time indistinguishable (or semanti-
cally secure) against an adaptive chosen ciphertext attack (IND-ID-CCA) if no
PPT algorithm A has a non-negligible advantage against the Challenger in the
following IND-ID-CCA game:

Setup: The challenger takes a security parameter k ∈ N and runs the Setup
algorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

Phase 1: The adversary issues queries q1, . . . , qm where qi is one of:
– Extraction query 〈 IDi 〉. The challenger responds by running algorithm Ex-

tract to generate the private key di corresponding to the public key IDi.
It sends di to the adversary.

– Decryption query 〈 IDi, Ci 〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using di. It sends the re-
sulting plaintext to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length messages M0,M1 ∈ M and an identity ID on which it wishes to
be challenged. The only constraint is that ID did not appear in any private key
extraction query in Phase 1. The challenger picks a random bit b ∈ {0, 1} and
sets C = Encrypt(params, ID,Mb). It sends C as the challenge to the adversary.

Phase 2: The adversary issues more queries qm+1, . . . , qn where qi is one of:
– Extraction query 〈 IDi 〉 where IDi �= ID. Challenger responds as in Phase 1.
– Decryption query 〈 IDi, Ci 〉 �= 〈 ID, C 〉. Challenger responds as in Phase 1.
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These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins

the game if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define A’s
advantage in attacking the scheme Π as Advind-id-cca

Π,A (k) =
∣∣Pr[b = b′]− 1

2

∣∣. The
probability is over the random bits used by the challenger and the adversary.

Definition 1. We say that the IBE scheme Π is IND-ID-CCA secure if
Advind-id-cca

Π,A (k) is negligible for any PPT algorithm A.

2.3 The Boneh-Franklin IBE Scheme

The BF-IBE scheme, which is called Full-Ident in [6], is given as follows. We let
G be some BDH parameter generator.

Setup: Given a security parameter k ∈ N, do the following: (1) 〈 q,G1,G2, ê 〉 ←
G(1k), (2) P ← G1 ; s← Z∗

q ; Ppub ← sP , and (3) choose cryptographic hash
functions H1 : {0, 1}∗ → G∗

1, H2 : G2 → {0, 1}m, H3 : {0, 1}m × {0, 1}n →
Z∗

q , and H4 : {0, 1}m → {0, 1}n. (In the security analysis, we view the Hi

(1 ≤ i ≤ 4) as random oracles.) The message space is M = {0, 1}n. The
ciphertext space is C = G∗

1 × {0, 1}m × {0, 1}n. The system parameters are
params = 〈 q,G1,G2, ê,m, n, P, Ppub 〉, and the master-key is s ∈ Z∗

q . The fol-
lowing algorithms, Extract, Encrypt, and Decrypt, can make queries to every
hash function Hi (1 ≤ i ≤ 4): For the Hi-query x, we denote its response from
Hi as Hi(x).

Extract: For a given string ID ∈ {0, 1}∗, the algorithm sets the private key dID

to be dID = sQID, where QID = H1(ID) ∈ G∗
1.

Encrypt: To encrypt M ∈ M under the public key ID, do the following: (1)
QID ← H1(ID) ; σ ← {0, 1}m ; r ← H3(σ,M), and (2) set the ciphertext to
be C = 〈 rP, σ ⊕H2(gID

r),M ⊕H4(σ) 〉, where gID = ê(QID, Ppub).
Decrypt: Let C = 〈U, V,W 〉 be a ciphertext encrypted using the public key ID.

If C �∈ C, reject the ciphertext. To decrypt C by using the private key dID, do
the following: (1) σ ← V ⊕H2(ê(dID, U)) ; M ←W ⊕H4(σ) ; r← H3(σ,M),
and (2) if it holds that U = rP , output M as the decryption of C; otherwise,
reject the ciphertext.

3 Security of the Boneh-Franklin IBE Scheme

3.1 Background

To prove the security of the Boneh-Franklin IBE scheme (called Full-Ident), the
authors define an IBE scheme (called BasicIdent) and two public-key encryption
(PKE) schemes (called BasicPub and BasicPubhy) in [6]. BasicIdent is a simpli-
fied version of Full-Ident, BasicPub is a PKE scheme derived from BasicIdent,
and BasicPubhy is a PKE scheme obtained by applying the Fujisaki-Okamoto
conversion [12] to BasicPub. Given these definitions, the following four claims
are presented:
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Claim 1. BasicPub is IND-CPA secure under the BDH assumption. Concretely,
suppose there is an IND-CPA adversary A that has advantage ε(k) against Ba-
sicPub and A runs in time at most t(k). Suppose A makes at most qH2 queries to
the random oracle H2. Then there is an algorithm B that solves the BDH prob-
lem for G with advantage at least 2ε(k)

qH2
and running time t(k) +O((1 + qH2

2)l).

Claim 2. Suppose there is an IND-ID-CPA adversaryA that has advantage ε(k)
against BasicIdent and A runs in time at most t(k). Suppose A makes at most
qE private key extraction queries, and at most qH2 queries to the random oracle
H2. Then there is an IND-CPA adversary B against BasicPub with advantage at
least ε(k)

e(1+qE) and running time t(k)+(qH1 +qE)tG∗
1
+O((1+(qH1 +qE +qD)2)l).

Claim 3 (Fujisaki-Okamoto [12]). Suppose there is an IND-CCA adversary
A that has advantage εA(k) against BasicPubhy and A runs in time at most
tA(k). Suppose A makes at most qD decryption queries, and at most qH3 , qH4

queries to the random oracles H3, H4 respectively. Then there exists an IND-
CPA adversary B against BasicPub with advantage εB(k) and running time
tB(k) where:

εB(k) ≥ FOow-cpa
adv (εA(k), qH3 , qH4 , qD) =

(εA(k) + 1)(1− 2/q)qD − 1
2(qH3 + qH4)

and

tB(k) ≤ FOow-cpa
time (tA(k), qH3 , qH4 , qD) = tA(k) + qH3tenc

+O((1 + qH3
2 + qH4

2 + qDqH3(1 + qH4))l).

Claim 4. Suppose there is an IND-ID-CCA adversary A that has advantage
ε(k) against Full-Ident and A runs in time at most t(k). Suppose A makes at
most qE private key extraction queries, at most qD decryption queries, and
at most qH1 queries to the random oracle H1. Then there exists an IND-CCA
adversary B against BasicPubhy with advantage at least ε(k)

e(1+qE+qD) and running
time t(k) + (qH1 + qE + qD)tG∗

1
+ qDtdec +O((1 + (qH1 + qE + qD)2)l).

Here, l denotes the length of the input to algorithm A, e ≈ 2.718 denotes the
base of the natural logarithm, tG∗

1
denotes the time required for computing a

scalar multiplication on G∗
1, tenc denotes the time required for encryption in

Full-Ident, and tdec denotes the time required for decryption in Full-Ident. (From
here on we use this notation.)

Assuming that these claims are true, Claims 1 and 2 induce that BasicIdent is
IND-ID-CPA secure under the BDH assumption, and Claims 1, 3 and 4 induce
that Full-Ident is IND-ID-CCA secure under the BDH assumption. Namely, the
following result is then obtained.

Boneh and Franklin’s Result [6]. Let the hash functions H1, H2, H3, H4 be
random oracles. Then Full-Ident is IND-ID-CCA secure assuming BDH problem
is hard in groups generated by G. Concretely, suppose there is an IND-ID-CCA
adversary A that has advantage εA(k) against Full-Ident and A runs in time
at most tA(k). Suppose A makes at most qE extraction queries, at most qD
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decryption queries, and at most qHi queries to Hi (1 ≤ i ≤ 4) respectively. Then
there is an algorithm B that solves BDH problem in groups generated by G with
running time tB(k) where:

Advbdh
G,B(k) ≥ 2FOow-cpa

adv

(
εA(k)

e(1 + qE + qD)
, qH3 , qH4 , qD

)
qH2

−1,

tB(k) ≤ FOow-cpa
time (tA(k) + (qH1 + qE + qD)tG∗

1
+ qDtdec

+O((1 + (qH1 + qE + qD)2)l), qH3 , qH4 , qD).

Recently, Galindo [13] pointed out a flaw in the original proof showing that
Claim 4 is true. Although the proofs of Claims 2 and 4 are similar, the flaw exists
only in the proof of Claim 4. And he claims that it is possible to fix the security
of the BF-IBE scheme without changing both the scheme and the underlying
assumption if the efficiency of the security reduction is sacrificed [13]. In his
revised proof of the security of the BF-IBE scheme, Claim 5 is given instead of
Claim 4.

Claim 5. Suppose there is an IND-ID-CCA adversary A that has advantage
ε(k) against Full-Ident and A runs in time at most t(k). Suppose A makes at most
qE private key extraction queries, at most qD decryption queries, and at most
qH1 queries to the random oracle H1. Then there exists an IND-CCA adversary
B1 against BasicPubhy with advantage at least ε(k)

qH1

(
1− qE

qH1

)
and running time

t(k) + (qE + qD)tG∗
1

+ qDtdec +O((1 + (qH1 + qE + qD)2)l).

Assuming that this claim is true, Claims 1, 3 and 5 induce that Full-Ident is
IND-ID-CCA secure under the BDH assumption. Namely, the following result is
then obtained.

Galindo’s Result [13]. Let the hash functions H1, H2, H3, H4 be random or-
acles. Then Full-Ident is IND-ID-CCA secure assuming BDH problem is hard in
groups generated by G. Concretely, suppose there is an IND-ID-CCA adversary
A that has advantage εA(k) against Full-Ident and A runs in time at most tA(k).
Suppose A makes at most qE extraction queries, at most qD decryption queries,
and at most qHi queries to Hi (1 ≤ i ≤ 4) respectively. Then there is an algo-
rithm B that solves BDH problem in groups generated by G with running time
tB(k) where:

Advbdh
G,B(k) ≥ 2FOow-cpa

adv

(
εA(k)
qH1

(
1− qE

qH1

)
, qH3 , qH4 , qD

)
qH2

−1,

tB(k) ≤ FOow-cpa
time (tA(k) + (qE + qD)tG∗

1
+ qDtdec

+O((1 + (qH1 + qE + qD)2)l), qH3 , qH4 , qD).

Galindo supposes that qH1 � qE , qD in his proof of Claim 5. He then claims
that the efficiency of his security reduction of the BF-IBE scheme is a bit worse
than the previous one. However, there are problems in his proof of Claim 5, and
the claim is also unreliable. The details of the problems are given in the proof
of Claim 7 in Section 3.2.
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3.2 Our Proof of the Security

In this section, we give a new proof of the security of the BF-IBE scheme, show-
ing that it has a tighter security reduction than had been previously believed.
We give Claim 6 instead of Claim 3, and Claim 7 instead of Claims 4 and 5.
The security reduction in Claim 3 corresponds to the case where the under-
lying public-key encryption (PKE) scheme in the hybrid encryption scheme is
secure in the sense of one-way (i.e., OW-CPA). Claim 6 says that the security
reduction is drastically improved if the security of the underlying PKE scheme
is strengthened to IND-CPA.

Claim 6. Suppose there is an IND-CCA adversary A that has advantage εA(k)
against BasicPubhy and A runs in time at most tA(k). Suppose A makes at
most qD decryption queries, and makes at most qH3 , qH4 queries to the random
oracles H3, H4 respectively. Then there exists an IND-CPA adversary B against
BasicPubhy with advantage εB(k) and running time tB(k) where:

εB(k) ≥ FOind-cpa
adv (εA(k), qH3 , qH4 , qD)

=
((

1− 3
q
− 1

2n

)qD

+
qH3 + qH4

2m

)
· εA(k) +

1
2

(
1− 3

q
− 1

2n

)qD

+
qH3 + qH4

2m+1 − 1
2

and

tB(k) ≤ FOind-cpa
time (tA(k), qH3 , qH4 , qD) = tA(k) + qH3tenc

+O((1 + qH3
2 + qH4

2 + qDqH3(1 + qH4))l).

The proof of Claim 6 is given in the full version of this paper. Claim 7 is the
revision of Claim 5. We will describe the problems of Claim 5 in the proof of
Claim 7.

Claim 7. Suppose there is an IND-ID-CCA adversary A that has advantage
ε(k) against Full-Ident and A runs in time at most t(k). Suppose A makes at
most qE private key extraction queries, at most qD decryption queries, and at
most qH1 queries to the random oracle H1. Then there exists an IND-CCA
adversary B against BasicPubhy with advantage at least ε(k)

1+qH1+qD
and running

time t(k) + (qE + qD)tG∗
1

+ qDtdec +O((1 + (qH1 + qE + qD)2)l).

Proof. The proof is given by solving the problems of the original proof of Claim
5. We show how to construct an IND-CCA adversary B that uses A to gain ad-
vantage ε(k)

1+qH1+qD
against BasicPubhy. Algorithm B works by interacting with A

in an IND-ID-CCA game as follows (B simulates the challenger for A): The game
between algorithm B and its challenger starts with the challenger generating a
random public key Kpub by running a key generation algorithm of BasicPubhy.
Algorithm B receives a public key Kpub = 〈 q,G1,G2, ê,m, n, P, Ppub, QID 〉 from
its challenger. Algorithm B can make queries to the random oracles H2, H3, H4.
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Setup: AlgorithmB givesA the system parameters 〈 q,G1,G2, ê,m, n, P, Ppub 〉.
Algorithm A makes queries to the random oracles H1, H2, H3, H4, where H1
is a random oracle controlled by B as described below.

H1-queries: To respond to A’s queries, algorithm B maintains two lists, H list1
1

and H list2
1 , of tuples 〈 i, ID, Q, b 〉 as explained below, where i ∈ N, ID ∈ {0, 1}∗,

Q ∈ G1, and b ∈ Z∗
q ∪{∗}. These lists are initially empty. We let L1 = #H list1

1

and L2 = #H list2
1 (cf. Remark 1). Algorithm B first selects a random j ∈

{1, 2, . . . , 1+qH1+qD}. When A queries the oracleH1 at a point IDi, algorithm
B responds as follows:
1. If there is a tuple 〈λ, IDλ, Qλ, bλ 〉 on the H list1

1 or H list2
1 such that IDi =

IDλ then algorithm B responds with H1(IDi) = Qλ (∈ G∗
1).

2. Otherwise:
(a) if L1 �= j−1, algorithm B picks a random bi ∈ Z∗

q , sets Qi = biP , adds
〈L1 + 1, IDi, Qi, bi 〉 to the H list1

1 , and responds to A with H1(IDi) =
Qi.

(b) if L1 = j − 1, algorithm B sets Q = QID, adds 〈 j, IDi, Q, ∗ 〉 to the
H list1

1 , and responds to A with H1(IDi) = Q, where ∗ denotes a special
symbol.

Phase 1: Private key queries. Let IDi be a private key extraction query is-
sued by algorithm A. Algorithm B responds to this query as follows:
1. If there is a tuple 〈λ, IDλ, Qλ, bλ 〉 on the H list1

1 or H list2
1 such that IDi =

IDλ then algorithm B obtains a Qλ ∈ G∗
1 such that H1(IDi) = Qλ.

2. Otherwise, algorithm B picks a random bi ∈ Z∗
q , sets Qi = biP , and adds

〈L2 + 1, IDi, Qi, bi 〉 to the H list2
1 . Algorithm B then obtains a Qi ∈ G∗

1
such that H1(IDi) = Qi.

3. Let 〈 i, IDi, Qi, bi 〉 be the corresponding tuple. If the tuple is on the H list1
1

and i = j, algorithm B picks a random c′ ∈ {0, 1} and outputs c′ as its
guess for c. Algorithm B then halts.

4. We know Qi = biP for some bi ∈ Z∗
q . Algorithm B sets di = bi Ppub, and

gives di to A.

Phase 1: Decryption queries. Let 〈 IDi, Ci 〉 be a decryption query issued by
algorithm A. Let Ci = 〈Ui, Vi,Wi 〉. Algorithm B responds to this query as
follows:
1. If there is a tuple 〈λ, IDλ, Qλ, bλ 〉 on the H list1

1 or H list2
1 such that IDi =

IDλ then algorithm B obtains a Qλ ∈ G∗
1 such that H1(IDi) = Qλ.

2. Otherwise:
(a) if L1 �= j − 1, algorithm B picks a random bi ∈ Z∗

q , sets Qi = biP ,
and adds 〈L1 + 1, IDi, Qi, bi 〉 to the H list1

1 . Algorithm B then obtains
a Qi ∈ G∗

1 such that H1(IDi) = Qi.
(b) if L1 = j−1, algorithm B sets Q = QID, and adds 〈 j, IDi, Q, ∗ 〉 to the

H list1
1 , where ∗ denotes a special symbol. Algorithm B then obtains a

Q ∈ G∗
1 such that H1(IDi) = Q.

3. Let 〈 i, IDi, Qi, bi 〉 be the corresponding tuple. If the tuple is on the H list1
1

and i = j, algorithm B relays the decryption query Ci to the challenger
and relays the challenger’s response back to A.
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4. Otherwise, algorithm B runs the algorithm for responding to private key
queries to obtain the private key for the public key IDi. Then use the
private key to respond to the decryption query.

Challenge: Once algorithm A decides that Phase 1 is over, it outputs a pub-
lic key IDch and two messages M0,M1 on which it wishes to be challenged.
Algorithm B works as follows:
1. Algorithm B gives the challenger M0 and M1 as the messages that it wishes

to be challenged on. The challenger responds with a BasicPubhy ciphertext
C = 〈U, V,W 〉 such that C is the encryption of Mc for a random c ∈
{0, 1}.

2. Suppose that there is a tuple 〈 i, IDi, Qi, bi 〉 on the H list1
1 such that IDch =

IDi. (Note that the IDch never appears on the H list2
1 .)

(a) If i = j then algorithm B obtains a Q ∈ G∗
1 such that H1(IDch) = Q.

Algorithm B responds to A with the challenge C.
(b) Otherwise, algorithm B picks a random c′ ∈ {0, 1} and outputs c′ as

its guess for c. Algorithm B then halts.
3. Suppose that there is no tuple 〈 i, IDi, Qi, bi 〉 on the H list1

1 such that IDch =
IDi.
(a) if L1 �= j − 1, algorithm B picks a random c′ ∈ {0, 1} and outputs c′

as its guess for c. Algorithm B then halts.
(b) if L1 = j − 1, algorithm B sets Q = QID, and adds 〈 j, IDch, Q, ∗ 〉

to the H list1
1 , where ∗ denotes a special symbol. Algorithm B then

obtains a Q ∈ G∗
1 such that H1(IDch) = Q. Algorithm B responds to

A with the challenge C.

Phase 2: Private key queries. Algorithm B works as in Phase 1, except for
the extraction query for IDch, which is rejected.

Phase 2: Decryption queries. Algorithm B works as in Phase 1, except for
the decryption query for 〈 IDch, C 〉, which is rejected.

Guess: Eventually algorithm A produces a guess c′ for c. Algorithm B outputs
c′ as its guess for c.

Remark 1. In the above, we note that L1 implies the number of elements in
H list1

1 at the time that the underlying query is made or the challenge identity is
given. Similarly, L2 implies the number of elements in H list2

1 at the time that the
underlying query is made. It is easily known that H list1

1 is the list that contains
the identities that are possible candidates to become the challenge identity, and
H list2

1 is the list that contains the identities that never become the challenge
identity.

In the original proof of Claim 5, algorithm A is required to makes a query to
the random oracle H1 at the point IDch in order for algorithm B′ (IND-CCA
adversary) to win the IND-CCA attack game. (This is induced from the fact
that algorithm B′ selects a random j from the set {1, 2, . . . , qH1} in the H1-
queries stage. See [13] for details.) In general, algorithm A, however, does not
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necessarily issue an H1-query at the point IDch. For example, we can construct
an algorithm C that never makes an H1-query at IDch and that can break Ba-
sicIdent (see [6] for details of the algorithm) in the sense of IND-ID-CCA. In
the challenge stage, algorithm C chooses IDch ∈ {0, 1}∗ and M0,M1 ∈ M′ at
random, and it outputs 〈 IDch,M0,M1 〉 to its challenger, where M′ denotes
the message space of BasicIdent. For the given challenge ciphertext 〈U, V 〉 =
〈 rP,Mb ⊕ H2(ê(QIDch

, Ppub)r) 〉, algorithm C picks a random α ∈ {0, 1}n and
makes a decryption query 〈U, α⊕ V 〉 to obtain α⊕Mb. Thus, algorithm C can
always guess b ∈ {0, 1} without making an H1-query at IDch. On the other hand,
in our proof, algorithm B selects a random j from the set {1, 2, . . . , 1+qH1 +qD}.
When the challenge identity IDch is output by A, algorithm B runs the algo-
rithm for responding to H1-queries. And IDch does not appear in any private
key query (i.e., IDch never appears on the H list2

1 .). Hence, the tuple 〈 IDch, Q, ∗ 〉
can be always found in the list H list1

1 at the end of the guess stage. We note that
L1 ≤ 1+ qH1 + qD and L2 ≤ qE . Thus, the flaw in the original proof is revised in
our proof to obtain the precise security reduction of the BF-IBE scheme. Some
other small flaws in the original proof are also revised. (The details of those flaws
are omitted in this paper. However, they can be easily known by comparing our
proof of Claim 7 and the original proof of Claim 5 in [13].)

It is easy to verify that the amount of running time of B is as claimed: For
example, from the specification of B, we know that the running time for checking
two lists H list1

1 and H list2
1 is at most

∑1+qH1+qE+qD

i=1 (l1i+ l2) = l1(1 + qH1 +
qE + qD)(2 + qH1 + qE + qD)/2 + l2(1 + qH1 + qE + qD), where l1 = |IDi| and
l2 = |i|+ |Qi|+ |bi| for the tuples 〈 i, IDi, Qi, bi 〉 on the lists.

To study B’s advantage, we define the following events:

– E1 is the event that algorithm A issues a private key query IDj that corre-
sponds to the tuple 〈 j, IDj , Q, ∗ 〉 on the H list

1 during Phase 1 or 2.
– E2 is the event that algorithm A sets the challenge identity IDch that does

not correspond to the tuple 〈 j, IDj , Q, ∗ 〉 on the H list
1 .

– G = ¬E1 ∧ ¬E2.

If the event G is true then algorithm A’s view is identical to its view in the real
attack. Therefore, ∣∣∣∣Pr[c = c′ | G]− 1

2

∣∣∣∣ ≥ ε(k). (1)

Since ¬E2 implies ¬E1 (if IDj is the challenge identity then A can not ask at any
point for its private key), we have

Pr[G] = Pr[¬E1 ∧ ¬E2] = Pr[¬E2] ≥
1

1 + qH1 + qD
. (2)

On the other hand, we have

Pr[c = c′ | ¬G] =
1
2

(3)

from the specification of B. From (1), (2), and (3), we finally have
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2

∣∣∣∣ = ∣∣∣∣Pr[c = c′ | G] Pr[G] + Pr[c = c′ | ¬G] Pr[¬G] − 1
2

∣∣∣∣
=
∣∣∣∣Pr[c = c′ | G] Pr[G] +

1
2
(1− Pr[G])− 1

2

∣∣∣∣
=
∣∣∣∣Pr[c = c′ | G]− 1

2

∣∣∣∣Pr[G] ≥ ε(k)
1 + qH1 + qD

.

This shows that B’s advantage is at least ε(k)
1+qH1+qD

as claimed.

Claims 1, 6 and 7 induce that Full-Ident is IND-ID-CCA secure under the BDH
assumption. Namely, Theorem 1 is our result for the security of the BF-IBE
scheme.

Theorem 1. Let the hash functions H1, H2, H3, H4 be random oracles. Then
Full-Ident is IND-ID-CCA secure assuming BDH problem is hard in groups gen-
erated by G. Concretely, suppose there is an IND-ID-CCA adversary A that has
advantage εA(k) against Full-Ident and A runs in time at most tA(k). Suppose A
makes at most qE extraction queries, at most qD decryption queries, and at most
qHi queries to Hi (1 ≤ i ≤ 4) respectively. Then there is an algorithm B∗ that
solves BDH problem in groups generated by G with running time tB∗(k) where:

Advbdh
G,B∗(k) ≥ 2FOind-cpa

adv

(
εA(k)

1 + qH1 + qD
, qH3 , qH4 , qD

)
qH2

−1,

tB∗(k) ≤ FOind-cpa
time (tA(k) + (qE + qD)tG∗

1
+ qDtdec

+ O((1 + (qH1 + qE + qD)2)l), qH3 , qH4 , qD).

Here, l denotes the length of the input to algorithm A, tG∗
1

denotes the time
required for computing a scalar multiplication on G∗

1, and tdec denotes the time
required for decryption in Full-Ident. The functions FOind-cpa

adv and FOind-cpa
time are

defined in Claim 6.

Boneh and Franklin’s result and Galindo’s result (cf. Section 3.1) respectively
induce that

Advbdh
G,B(k) ≥ εA(k)

e qH2(qH3 + qH4)(1 + qE + qD)
(4)

and

Advbdh
G,B(k) ≥ εA(k)

qH1qH2(qH3 + qH4)

(
1− qE

qH1

)
(5)

for sufficiently large k (although they are unreliable as described in Section 3.1
and this section). Theorem 1 induces that

Advbdh
G,B∗(k) ≥ 2εA(k)

qH2(1 + qH1 + qD)
(6)

for sufficiently large k. In general, it is difficult to determine which of the given
security reductions is the most efficient, because the number of queries to the
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oracles depends on the (unknown) adversary. Galindo supposes that qH1 �
qE , qD in his revised proof of the security of the BF-IBE scheme (although any
explicit reason for this supposition is not given in [13]). In fact, the answer from
the private key extraction oracle or the decryption oracle for the query including
IDi will be useful for the adversary only when he/she knows the value of QIDi

.
From the similar reason, we can suppose that qH3 , qH4 � qD. Furthermore,
while the denominators of the probabilities in (4) and (5) are represented in
terms of a cubic expression of qH1 , qH2 , qH3 , qH4 , qE , and qD, the denominator
of the probability in (6) is represented in terms of a quadratic expression of qH1 ,
qH2 , and qD. From these reasons, we can consider the efficiency of the security
reduction to be improved.

4 Conclusion

In this work, we have provided a new and correct security reduction for the Boneh
and Franklin IBE scheme, showing that it is tigher than had been previously
believed. Our corrections and improvements we have presented in this paper
can be applied to many other cryptographic schemes [1, 7, 10, 14, 15, 16, 17] that
are based on the BF-IBE scheme. However, we cannot say that our new security
reduction is efficient enough because it is very worse than the security reductions
for many practical public-key encryption schemes. Hence, it is a significant open
problem to design a practical IND-ID-CCA secure IBE scheme with a tigher
security reduction under a reasonable assumption.
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Abstract. We introduce a new undeniable signature scheme which is
existentially unforgeable and anonymous under chosen message attacks
in the standard model. The scheme is an embedding of Boneh and
Boyen’s recent short signature scheme in a group where the decisional
Diffie-Hellman problem is assumed to be difficult. The anonymity of
our scheme relies on a decisional variant of the strong Diffie-Hellman
assumption, while its unforgeability relies on the strong Diffie-Hellman
assumption.

1 Introduction

We design new undeniable signatures. Our approach is both practical and the-
oretical: we build a very efficient protocol with short signatures and analyze
its security in the complexity theory setting (i.e with reductionist proofs). The
security (in the sense of unforgeability and anonymity) relies on strong Diffie-
Hellman assumptions in the standard model. It is worth noting that the new
mechanism is the first efficient scheme proven secure without any random oracles.

Related work. The self-authenticating property of digital signatures can be suit-
able for many applications such as dissemination of public-key certificates or
official announcements, but seems undesirable in personally or commercially sen-
sitive applications. Therefore it may be preferable to put some restrictions on
this property to prevent misuse of signatures. Undeniable signatures were intro-
duced in 1989 by Chaum and van Antwerpen [6] to limit the self-authenticating
property of digital signatures. In this setting, one has to interact with the signer
in order to be convinced of the validity of a given signature. The security of the
seminal protocol relies on the discrete logarithm problem, but suffers from the
fact that the interactive protocols were not zero-knowledge. In 1990, Chaum [5]
improved the initial proposal by providing a zero-knowledge version. The secu-
rity of Chaum and van Antwerpen’s undeniable signatures was eventually proven
by Okamoto and Pointcheval in 2001 [20], using the so-called gap-problems. In
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[21], Ogata, Kurosawa, and Heng showed that the security can in fact be proven
under a classical computational assumption. This concept has been investigated
for years, and many proposals appear in the literature. In 1991, the concept has
been refined by giving the possibility to transform an undeniable signature into a
self-authenticating signature. These convertible undeniable signatures, proposed
in [3] by Boyar, Chaum, Damg̊ard and Pedersen, provide individual and universal
conversions of the signatures. They were broken and repaired in 1996 by Michels,
Petersen and Horster [17]. Several schemes were subsequently proposed, based
on well-known signatures [10, 9, 8]. Recently, an identity-based undeniable signa-
ture scheme built on bilinear maps was proposed by Libert and Quisquater [16].
Monnerat and Vaudenay [18, 19] proposed short undeniable signatures based on
characters (without the conversion property). Finally, we extended in [15] the
concept of convertible undeniable signatures by giving the signer the ability to
convert signatures pertaining to a specific time period.

Our contributions. In groups where there exists an oracle for the decisional Diffie-
Hellman problem, Chaum and van Antwerpen’s undeniable signatures become
self-authenticating. They were revisited by Boneh, Lynn and Shacham (BLS) in
2001 [2] and considered on groups where there exists an admissible bilinear map.
An elegant variant of these signatures, still pairing-based, was introduced in 2004
by Boneh and Boyen [1] (and also by Zhang, Safavi-Naini and Susilo [23]). Its
unforgeability was proven in the standard model. Contrary to the latter ap-
proach, in this article, we remove the bilinear map from Boneh-Boyen signatures
to obtain the first efficient undeniable signature scheme without random oracle.

In [12], Goldwasser and Waisbard proposed designated confirmer signatures
without random oracles. Their techniques could be extended to construct secure
undeniable signatures. Indeed, this transformation is straightforward, since their
general construction remains secure if the designated confirmer is the signer
himself. Goldwasser and Waisbard do not give efficient disavowal protocols for
their instanciations. They argued for designated confirmer signatures there is
no need for such a protocol. However, to get an efficient complete undeniable
signature protocol, there are a number of non-trivial details that would need to
be worked out. The resulting schemes will be far less efficient than our proposal.

Our undeniable signatures are to Chaum and van Antwerpen undeniable sig-
natures what Boneh-Boyen’s signatures are to BLS. In the dual way, the new
scheme is to Boneh-Boyen’s scheme what Chaum and van Antwerpen’s construc-
tion is to BLS.

The security of previous proposals of undeniable signatures is carried in the
random oracle model and therefore is only heuristic. Like Boneh-Boyen’s scheme,
the security of our protocol does not rely on any idealized primitive but needs
stronger computational assumptions. As pointed out in [14], the confirming and
denying protocols are important elements in the security analysis of an undeni-
able signature scheme. The main difficulties to study our scheme in the standard
security model, arise in the simulation of the interactive confirmation and deny-
ing protocols in the reductionist proof. The present paper provides the first
security analysis for undeniable signatures in this interactive setting.
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2 Preliminaries

2.1 Undeniable Signatures

Definition 1 (Undeniable Signatures). Given an integer k, an undeniable
signature scheme US with security parameter k is defined by the following:
– a common parameter generation algorithm US.Setup: it is a probabilistic

algorithm which takes as input k. The outputs are the public parameters;
– a key generation algorithm for the signers US.SKeyGen: it is a probabilistic

algorithm which takes as input the public parameters and outputs a pair of
keys (pk, sk);

– a key generation algorithm for a verifiers US.VKeyGen: it is a probabilistic
algorithm which takes as input the public parameters and outputs a pair of
keys (pk, sk);

– a key registration protocol US.Register is a protocol between a “key registra-
tion authority” (KRA) and a verifier with common input the public parame-
ters. At the end, the KRA outputs a pair (pk, notif) where pk is the verifier’s
public key and notif ∈ {0, 1}∗ is a key registration authorization decision.

– a signing algorithm US.Sign: it is a probabilistic algorithm which takes as
input a message m, a secret key sk and the public parameters. The output σ
is an undeniable signature on m;

– confirming/denying protocols US.{Confirm.Deny}: they are protocols which
take as input a message m, a putative undeniable signature σ on m, a pair
of keys (pk, sk) and the public parameters. The output is a (possibly non-
interactive) non-transferable proof that σ is actually a valid/invalid undeni-
able signature on m, with respect to the key pk;

and must satisfy the following properties (formally defined below):
1. correctness and soundness: the confirming and denying protocols and the

verifying algorithms are complete and sound, where completeness means that
valid (invalid) signatures can always be proved valid (invalid), and soundness
means that no valid (invalid) signature can be proved invalid (valid);

2. unforgeability: given a public key, it is computationally infeasible, without the
knowledge of the corresponding secret key to produce an undeniable signature
that is accepted by the verification algorithm or by the confirming protocol;

3. anonymity: given a message m and an undeniable signature σ on m, it is
computationally infeasible to find which secret key was used to generate σ;

4. non-transferability: a verifier participating in an execution of the confirm-
ing/denying protocols does not obtain information that could be used to con-
vince a third party about the validity/invalidty of a signature.

Remark 1. The aim of the protocol Register is to force the verifiers to “know”
the secret key corresponding to their public key, in order to enforce the non-
transferability property. We assume for simplicity that the verifier just reveals
his key pair (pk, sk) and the key registration authority authorizes it if and only
if (pk, sk) ∈ US.VKeyGen(params).1

1 This can always be done, since we can assume that the secret key contains the
randomness input used to generate it.
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2.2 Security Model

Anonymity. The notion of anonymity under a chosen message attack (Ano-
CMA) was precisely defined by Galbraith and Mao in [8]. An Ano-CMA-adversary
A runs in two stages. In the find stage, it takes as input two public keys pk0 and
pk1 and outputs a messagem� (and some state information s). In the guess stage
it gets a challenge undeniable signature σ� formed by signing the message m� at
random under one of the two keys, and must say which key was chosen. In both
stages, the adversary has access to the signing oracles Σ0, Σ1, to the confirming
oracles ΥC,0 and ΥC,1 (with registered verifying keys) and to the denying oracles
ΥD,0 and ΥD,1 (with registered verifying keys). The only restriction is that he
cannot query the couple (m�, σ�) on the confirming/denying oracles.

Definition 2 (Anonymity). Let US be an undeniable signature scheme and let
A be an Ano-CMA-adversary against US. We consider the following two random
experiments, for r ∈ {0, 1}, where k is a security parameter:

Experiment Expano-cma−r
US,A (k)

params R←− US.Setup(k)
(pk0, sk0)

R←− US.KeyGen(params)
(pk1, sk1)

R←− US.KeyGen(params)
(m�, s)← AΣ0,Σ1,ΥC,0,ΥC,1,ΥD,0,ΥD,1(find, params, pk0, pk1)
σ� ← US.Sign(params,m, skr)
d← AΣ0,Σ1,ΥC,0,ΥC,1,ΥD,0,ΥD,1(guess, params, pk0, pk1,m

�, σ�)
Return d

We define the advantage of A via:
Advano−cma

US,A (k) =
∣∣∣Pr
[
Expano−cma−1

US,A (k) = 1
]
− Pr

[
Expano−cma−0

US,A (k) = 1
]∣∣∣ .

Given (k, τ) ∈ N2 and ε ∈ [0, 1], the scheme US is said to be (k, τ, ε)-Ano-
CMA secure, if no Ano-CMA-adversary A running in time τ has an advantage
Advano−cma

US,A (k) ≥ ε.

Security against existential forgery under chosen message attack. Se-
curity for digital signatures was defined by Goldwasser, Micali and Rivest [11]
as existential forgery against adaptive chosen message attacks (EF-CMA). For
undeniable signatures, unforgeability security is defined along the same lines,
with the notable difference that, while mounting a chosen-message attack, we
suppose that the adversary is allowed to query a confirming (resp. a denying)
oracle ΥC (resp. ΥD) on any couple message/signature of his choice, in addition
to the classical access to the signing oracle Σ. As usual, in the adversary answer,
there is the natural restriction that in the returned couple message/signature
(m�, σ�), the message m� has not been queried to the oracle Σ.

Definition 3 (Unforgeability). Let US be an undeniable signature scheme
and let A be an EF-CMA-adversary against US. We consider the following ran-
dom experiment, where k is a security parameter:
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Experiment Expef−cma
US,A (k)

params R←− US.Setup(k)
(pk, sk) R←− US.KeyGen(params)
(m�, σ�)← AΣ,ΥC ,ΥD (params, pk)
Return 1 if σ� is a valid signature on m�

0 otherwise

We define the success of A via Succef-cma
US,A (k) = Pr

[
Expef-cma

US,A (k) = valid
]
.

Given (k, τ) ∈ N2 and ε ∈ [0, 1], the scheme US is said to be (k, τ, ε)-
EF-CMA secure, if no EF-CMA-adversary A running in time τ has a success
Succef-cma

US,A (k) ≥ ε.

2.3 Proof of Knowledge

We cannot replace the zero-knowledge interactive proofs by non-interactive non-
transferable proofs, to obtain the security results in the standard model. As
far as we know, all these non-interactive proofs are either highly inefficient or
obtained by applying the Fiat-Shamir heuristic to interactive designated-verifier
proofs, and therefore their security relies on the random oracle paradigm.

Let G be a group. To confirm or deny that a bit string is a signature in the
new undeniable signature scheme, it is necessary to prove that a given quadruple
(L,M,N,O) ∈ G4 is a Diffie-Hellman quadruple (or not). To face blackmailing or
mafia attacks against our undeniable signatures, we use interactive designated
verifier proofs, as introduced in [13] by Jakobsson, Sako, and Impagliazzo, in
Chaum’s proofs of equality (cf. Fig. 1) and inequality (cf. Fig. 2) of discrete
logarithm of [5]. The idea is to replace the generic commitment scheme by a
trapdoor commitment, as defined in [4], and using classical techniques, the proofs
are readily seen to be complete, sound, and above all non-transferable. The

Prover Verifier

(u, v) ∈R [[1, q − 1]]2

C←−−−−−−−−−−−−−−−− C = uL + vN
r ∈R [[1, q − 1]]
R1 = C + rPV

R2 = xR1
R1, R2−−−−−−−−−−−−−−−−→

u, v←−−−−−−−−−−−−−−−−
C

?= uL + vN
r−−−−−−−−−−−−−−−−→

R1
?= C + rPV

R2
?= (u + yr)M + vO

Fig. 1. ZKIP protocol to prove that x = logL(M) = logN(O)
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Prover Verifier
s ∈R [[0, λ]] and u ∈R [[1, q − 1]]

C, C′
←−−−−−−−−−−−−−−−− C = uL + sN and C′ = uM + sO

find s′ such that
(xC − C′) = s′(xN − O)

r ∈R [[1, q − 1]]

C′′ = s′L + rPV
C′′

−−−−−−−−−−−−−−−−→
u←−−−−−−−−−−−−−−−−

C
?= uL + s′N

(s′, r)−−−−−−−−−−−−−−−−→ C′′ ?= s′L + rPV and s
?= s′

Fig. 2. ZKIP protocol to prove that x = logL(M) �= logN(O)

Table 1. Some values of λ and computational workload in the proof of inequality

security λ λ = 31 λ = 1023

230 #iterations
#exp.

30/ log2(λ + 1)
λ/2 × #iterations

6
93

3
1534.5

280 #iterations
#exp.

80/ log2(λ + 1)
λ/2 × #iterations

16
248

8
4092

protocols, involve a point PV = yL where y is the secret key of the verifier,
and the prover must be convinced that PV is well-formed (in the undeniable
signature scheme, the registration protocol is used to force the users to know the
secret-key corresponding to their public key).

In both protocols, the prover is given (L,M,N,O), and he knows x =
logL(M). As argued in [5], in the proof of inequality, the prover can cheat with
probability (λ + 1)−1. This leads to the table 1 with examples for suitable λ
together with the round and computational complexities.

2.4 Underlying Problems

The security of asymmetric cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Throughout the paper G denotes an
additive group of prime order q (e.g. the group of points of an elliptic curve over
a finite field, a subgroup of the multiplicative group of a finite field). Our scheme
relies on the difficulty of the algorithmic problems described below in G but on
no other special property. Therefore, we choose not to pin down a specific group
and to describe the protocol in a generic way:

Definition 4. A prime-order-group-generator (POGG) is a probabilistic algo-
rithm that takes a security parameter k as input and outputs a pair (q,G) where
q is a prime with 2k < q < 2k+1, G is a group of order q.



Short Undeniable Signatures Without Random Oracles 289

Let P be a generator of G. In [1], Boneh and Boyen introduced a new computa-
tional problem in a bilinear context. For our purpose, we consider this problem
in the classical discrete log setting, i.e without bilinear map.

�-Computational Strong Diffie-Hellman (�-CSDH): let x be in [[1, q− 1]].
Given an integer � ∈ N and (P, xP, x2P, . . . , x�P ) ∈ G�+1, compute a pair(
(x+ h)−1P, h

)
in G× [[1, q − 1]] for some h ∈ [[1, q − 1]].

The invisibility of our protocol relies on the decisional variant of this problem:
�-Decisional Strong Diffie-Hellman (�-DSDH): let x be in [[1, q − 1]].
Given an integer � ∈ N and (P, xP, x2P, . . . , x�P ) ∈ G�+1, and a pair (Q, h)
in G× [[1, q − 1]] for some h ∈ [[1, q − 1]], decide whether Q = (x+ h)−1P .

In [20], Okamoto and Pointcheval proved the security of the FDH variant of
Chaum and van Antwerpen’s undeniable signatures by introducing a new class of
computational problems, called gap problems. In [21], Ogata, Kurosawa and Heng
proved that the unforgeability of the protocol is equivalent to the classical CDH
problem. In the context of undeniable signatures, the confirming and denying
protocols can be executed on any message/putative signature chosen by the
adversary. To take into account this kind of oracle access, we have to introduced
a gap-variant of the Strong Diffie-Hellman problem if we do not want to lose a
large factor in the unforgeability security reduction to CSDH.
�-Gap Strong Diffie-Hellman (�-GSDH): let x be in [[1, q − 1]]. Given an
integer � ∈ N and (P, xP, x2P, . . . , x�P ) ∈ G�+1, compute a pair

(
(x+ h)−1P, h

)
in G× [[1, q − 1]] for some h ∈ [[1, q − 1]], with the help of a �-DSDH oracle.

3 Short Undeniable Signatures Without Random Oracles

3.1 The New Scheme

In this section, we describe our new undeniable signature scheme, parameterized
by a prime-order-group-generator Gen. Note, that as mentioned above, for this
basic version of the scheme, we use the direct key registration.

Common parameter generation algorithm US.Setup: on input a security
parameter k, the algorithm Gen(k) is run to produce a pair (q,G). An element
P is picked at random in G \ {0G} and the public parameters are (q,G, P ).

Key generation algorithm for the signers US.SKeyGen: Alice picks at
random her secret key (a1, a2) ∈ [[1, q − 1]]2 and sets (P1, P2) as her public key,
with P1 = a1P and P2 = a2P .

Key generation algorithm for the verifiers US.VKeyGen: Bob picks at
random his secret key b ∈ [[1, q − 1]] and sets PB = bP as his public key.

Signing algorithm US.Sign: to sign a message m ∈ [[1, q − 1]], Alice picks at
random r ∈ [[1, q−1]] and sets S = (a1+m+ra2)−1P . The signature is σ = (S, r).

Confirming/Denying protocol US.{Confirm,Deny}: given a message m and
a putative signature σ = (S, r) on m, Alice proves to Bob (who has published a
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registered valid public key PB) that logS(P−mS) = logP (P1+rP2) or not, using
the protocols described in section 2.3. For the sake of simplicity, we suppose that
the signer do not interleave several instances asynchronously nor concurrently.

Remark 2. The notion of on-line/off-line signatures was introduced by Even,
Goldreich and Micali [7]. The idea is to generate signatures in two phases. The
first one is performed off-line (i.e. before the message to be signed is given) and
the second phase is performed on-line (once the message to be signed is known).
On-line/Off-line signatures are useful since in many applications the signer has
a very limited response time once the message is presented but he can carry out
costly computations between consecutive signing requests.

Using the sign and switch paradigm, we can convert our undeniable signature
scheme into a highly efficient on-line/off-line scheme. The signer computes off-
line S = (a1 + t)−1P for a random t ∈ [[1, q − 1]]. Once he is given the message
m, the signature is completed with r = a−1

2 (t −m) where a−1
2 mod q can also

be precomputed. The on-line signature completion procedure then amounts to
computing a hash value, a substraction and a multiplication modulo q.

Remark 3. One may require, of course, unforgeability and anonymity of the un-
deniable signatures, even against the key registration authority. To achieve this,
one can replace the direct key registration protocol by a zero-knowledge proof
of knowledge of the verifier’s secret key (using for instance the Schnorr proof of
knowledge of discrete logarithms [22]). The unforgeability and the anonymity of
the scheme, can still be proved in the standard security model (by using rewind-
ing techniques). Details on the security arguments will be given in the full version
of the paper.

3.2 Security Results

Anonymity. For any Ano-CMA adversary A, we denote by BadA the event that
A queries a valid signature to the confirming/denying oracle, which has not been
obtained from the signing oracle.

Proposition 1. Let Gen be a POGG and let US be the associated undeniable
signature scheme. For any Ano-CMA adversary A against US, with security pa-
rameter k, which has advantage ε = Advano−cma

US,A (k), running time τ , making
qΣ queries to the signing oracle, qC to the confirming oracle, qD to the denying
oracle and registers up to qR keys, there exists an adversary B against (qΣ +1)-
DSDH of advantage ε′ = Adv(qΣ+1)−dsdh

Gen,B (k) and running time τ ′, such that
ε′ ≥ ε/2− (qΣ + 2)2−k − Pr[Bad] and τ ′ ≤ qCτ + qΣ(qΣTG + O(1)), where TG

denotes the time complexity to perform a scalar multiplication in G.

Proof. Let k be a security parameter, (q,G) be a couple generated by Gen. We
consider a random instance of �-DSDH denoted by (P, xP, x2P, . . . , x�P,Q, h)
and we may assume that qΣ = � + 1. We denote by Ai the point xiP , for all
i ∈ [[0, qΣ − 1]]. We construct a simulation which solves this instance.
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Game0We consider an Ano-CMA-adversary A with advantage Advano−cma
US,A (k),

within time τ . The key generation algorithm is run twice to produces two
pairs of keys (pk0, sk0) and (pk1, sk1). In his first stage, the adversary A
is fed with pk0 and pk1, and, querying the signing oracles Σ0 and Σ1,
and the confirming/denying oracles ΥC,0, ΥC,1, ΥD,0 and ΥD,1, outputs
a message m�. A challenger picks b� ∈ {0, 1} at random and queries the
signing oracle Σb� on m� and sets the answer as σ�. In its second stage the
attacker is given σ� and has once more a permanent access to the oracles,
with the natural restriction not to query the challenge signature on the
confirming/denying oracles. We denote by qΣ the number of queries to
the signing oracle and qC to the confirming oracle and qD to the denying
oracle.

In any game Gamei, we denote by Guessi the event b� = b. By definition,
|2 Pr[Guess0]− 1| = Advano−cma

USBM,A(k).
Game1 First, B, picks at random (α, a0, a1) ∈ [[1, q − 1]]3, initializes a counter c

to the value 1 and two lists Σ-List = {} and Σ-List = {}. B prepares qΣ

random elements hi ∈ [[1, q − 1]], for i ∈ [[1, qΣ ]]. If h ∈ {h1, . . . , hqΣ} or
(αh mod q) ∈ {h1, . . . , hqΣ}, B aborts: this happens with probability at
most qΣ21−k. B computes the following polynomial:

f(y) =
qΣ∏
i=1

(y + hi) =
qΣ∑
i=0

αiy
i ∈ Fq[y], and the points P=

qΣ∑
i=0

αiAi =f(x)P ,

P0 =
qΣ+1∑
i=1

αi−1Ai = xf(x)P = xP ′ and P1 = αP0 = αxP ′. Finally

B sets params = (q,G, P ′), pk0 = (P0, a0P
′), pk1 = (P1, a1P

′) and
feeds A with pk0 and pk1. The distribution of (pk0, pk1) is unchanged
since (A0, . . . , A�, Q, h) is a random instance of the �-DSDH problem and
(α, a0, a1) is picked at random. Therefore we have Pr[Guess1] = Pr[Guess0].

Game2 From this game, B performs a specific stage that allows it to retrieve each
verifier secret key y. If the direct key registration is used, then this is
straightforward, otherwise, B might have to replay the simulation once
with the same random tape such that monitoring the re-registration of
PA by A allows to extract y. In our case, this simulation is obviously
perfect, therefore we obtain Pr[Guess2] = Pr[Guess1].

Game3 Now B simulates the signing oracles. It initializes a counter to c = 1,
and for each new request m ∈ {0, 1}∗, B constructs this polynomial

of Fq[y]: fc(y) =
f(y)
y + hc

=
qΣ∏
j=1
j 
=c

(y + hj) =
qΣ−1∑
j=0

β
(c)
j yj and then computes

Sc =
1
αb

qΣ−1∑
j=0

β
(c)
j Aj =

1
αb(x+ hc)

P ′ where Σb, with b ∈ {0, 1} is the or-

acle queried. Then B sets rc = (hcα
b −mc)a−1

b . If rc = 0, then B aborts,
else it outputs (Sc, rc) as a valid signature on mc for the public key pkb

and adds (mc, (Sc, rc), b) in the Σ-List. B increments the counter. During
its whole execution, B reports failure in the signing simulation with prob-
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ability at most qΣ2−k. This game perfectly simulates the signing oracle
if it does not abort. Therefore |Pr[Guess3]− Pr[Guess2]| ≤ qΣ2−k.

Game4 When the adversary queries the confirming oracle ΥC,b with b ∈ {0, 1}
on a putative signature σ on m, B checks whether (m,σ, b) appears in
the Σ-List. If not, B adds this signature σ in the Σ-List and outputs
Invalid. Otherwise B computes R = P ′ − mS and Q = Pb + rabP

′

where σ = (S, r) and simulates the proof of equality logS(R) = logP ′(Q)
as follows : A sends a commitment C to B, who picks γ ∈ [[1, q − 1]] at
random and computes R1 = γP ′ and R2 = γQ and sends (R1, R2) to A
who decommits (u, v) and B verifies that C = uP ′ + vR. If it is the case,
B rewinds A, and resets the simulation with the same random tape. He
replays the same simulation up to the moment where A sends C. B, now
that he knows u, v, and y, picks r ∈ [[1, q − 1]] at random and computes
R1 = C + rPA (where PA = yP ′) and R2 = (u+ yr)Q+ vS, and sends it
to A, which accepts the proof.

When the adversary queries the denying oracle ΥD,b with b ∈ {0, 1} on
a putative signature σ = (S, r) on m, B verifies that σ does not appear
in the Σ-List (if it does it outputs Valid) and updates the Σ-List with
σ. Then B computes R = P ′ − mS and Q = Pb + rabP

′ and simulates
the denying protocol as follows : when A sends (C,C′) to him, B picks
randomly r̃ ∈ [[0, λ]] and sends to A the point C′′ = r̃P ′. A sends him
back u, and B looks for s′ ∈ [[0, λ]] such that C = uP ′ + s′R. If he does
not find such an s′, he aborts. Otherwise B computes r = (r̃ − s′)y−1 so
that C′′ = s′P ′ + rPA (where PA = yP ′). Then B sends (s′, r).
This simulation is perfect, therefore we have Pr[Guess4] = Pr[Guess3].

Game5 Now B simulates the challenge signature. The euclidean division of f(y) by

(y+h) gives
f(y)
y + h

=
γ

x+ h
+

qΣ−2∑
i=0

γiy
i. B picks at random b� ∈ {0, 1} and

the challenge signature is (S�, r�) where S� =
γ

αb� Q+
qΣ−2∑
i=0

γiα
b�(i−1)Ai

and r� = (hαb� − m�)a−1
b� which is likely to be zero with probability at

most 2−k. If this happens B aborts the simulation, otherwise he fedsAwith
(S�, r�). This game perfectly simulates the signing oracle unless it aborts.

This completes the description of B. If Q = Qreal = (x + h)−1P , this game
perfectly simulates the challenge generation if the event Bad does not occur
and B does not abort (which happens with probability at most 2−k). Therefore
|Pr [Guess5|Q = Qreal]− Pr [Guess4]| ≤ 2−k + Pr[Bad].

If Q = Qrandom is a random element from G, the adversary gains no informa-
tion on b, in an information theoretic sense, therefore:
Pr [Guess5|Q = Qrandom] ≤ 1/2 + 2−k + 2−k.

The last term accounts for the probability that Qrandom = Qreal. By definition,
the advantage in the Game5 simulation in solving the (qΣ + 1)-DSDH problem
is: Adv(qΣ+1)−dsdh

Gen,Game5 (k) = |Pr [Guess5|Q = Qreal]− Pr [Guess5|Q = Qrandom]| .
A simple computation gives the claimed bounds for ε′ and τ ′. ��
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Proposition 2. Let Gen be a POGG and let US be the associated undeniable
signature scheme. For any Ano-CMA adversary A against US, with security pa-
rameter k, which has advantage ε = Advano−cma

US,A (k), running time τ , making
qΣ queries to the signing oracle, qC to the confirming oracle, qD to the denying
oracle and registers up to qR keys, there exists an EF-CMA-adversary C with
success ε′′ = Succef−cma

US,A (k), running time τ ′′, making qΣ queries to the signing
oracle, qC to the confirming oracle, qD to the denying oracle and registers up to
qR keys such that ε′′ ≥ Pr[BadA] and τ ′′ ≤ τ +O(1).

Proof. Let k be a security parameter, (q,G) be a couple generated by Gen. We
consider random public key pk and we construct a simulation which produces
an existential forgery associated to pk.

Game0Exactly the same game as in the previous proof. By definition, we still
have |2 Pr[Guess0]− 1| = Advano−cma

US,A (k).
Game1 In this game, the algorithm C simulates A’s access to the oracles this

way. It forwards pk0 = pk to A with a new public key pk1 randomly
reducible to pk (as in Game?? of the previous proof). C simulates A’s
signing and confirming/denying protocols by using its own signing and
confirming/denying oracles for each ofA’s query. During the simulation, C
stored in a Σ-List any pair message/signature accepted by the confirming
oracle, not obtained from his signing oracle.
At the end of its Find stage, A produces a message m� and sends it to its
challenger. C simulates this challenger by picking at random a bit b� and
produces either a real signature ofm� thanks to its signing oracle. Let σ� be
this signature. C sends σ� toA, who begins its Guess stage. The simulation
of all oracles is the same as in the Find stage. Finally A produces a bit b�.
This game is clearly identical to the previous one. Hence, we obtain
Pr[Guess1] = Pr[Guess0].

Finally, A’s output bit is discarded by C, which outputs an element of the Σ-List
if it is not empty, and a random element of {0, 1}∗×G× [[1, q− 1]] otherwise. Its
running time is the same as A’s, and its success it at least Pr[Bad]. ��

Theorem 1 (Anonymity of US). Let Gen be a POGG and let US be the asso-
ciated undeniable signature scheme. For any Ano-CMA adversary A against US,
with security parameter k, which has advantage ε = Advano−cma

US,A (k), running
time τ , making qΣ queries to the signing oracle, qC to the confirming oracle, qD

to the denying oracle and registers up to qR keys, there exist

– an adversary B against (qΣ +1)-DSDH of advantage ε′ = Adv(qΣ+1)−dsdh
Gen,B (k)

and running time τ ′;
– an EF-CMA-adversary C with success ε′′ = Succef−cma

US,A (k), running time τ ′′,
making qΣ queries to the signing oracle, qC to the confirming oracle, qD to
the denying oracle and registers up to qR keys

such that ε′ + ε′′ ≥ ε/2 − (qΣ + 2)2−k, τ ′ ≤ qCτ + qΣ(qΣTG + O(1)) and
τ ′′ ≤ τ +O(1) where TG denotes the time complexity to perform a scalar multi-
plication in G.
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Proof. The result is an obvious consequence of the two previous propositions.
��

Unforgeability.

Theorem 2 (Unforgeability of US). Let Gen be a POGG and let US be the
associated undeniable signature scheme. Let A be an EF-CMA-adversary against
US with success ε = Succef−cma

US,A (k) within time τ making qΣ queries to the
signing oracle, qC to the confirming oracles and qD to the denying oracle.

1. There exists an adversary B against (qΣ + 1)-GSDH of advantage
ε′ = Adv(qΣ+1)−gsdh

Gen,B (k) with running time τ ′ such that:
ε′ ≤ ε/2− qΣ2−k and τ ′ ≤ τ + (qC + qD)TDSDH +O(qΣ)
where TDSDH denotes the time complexity of the oracle DSDH.

2. There exists an adversary C against (qΣ + 1)-CSDH of advantage
ε′′ = Adv(qΣ+1)−csdh

Gen,C (k) with running time τ ′′ such that:
ε′′ ≤ ε(2(qC + qD + 1))−1 − qΣ2−k and τ ′′ ≤ τ +O(qΣ).

Proof.(Sketch) We consider an EF-CMA-adversary A with success
Succef−cma

US,A (k) within time τ . The key generation algorithm is run to pro-
duces a pair of keys (pk, sk). The adversary A is fed with pk, and, querying the
signing oracle Σ, and the confirming and denying oracles ΥC and ΥD, outputs a
couple message/signature (m�, σ�), where σ� was not obtained from the signing
oracle. We denote by qΣ the number of queries to the signing oracle and qC to
the confirming oracle and qD to the denying oracle.

As in Boneh and Boyen proof of security, we will construct an algorithm B
(resp. B) which is likely to break the random instance of (qΣ + 1)-GSDH (resp.
the (qΣ + 1)-CSDH): (P, xP, x2P, . . . , xqΣ+1P ).

We distinguish two type of forgers. The simulation of any interaction with the
adversary is indistinguishable from the real attack. The only difference comes
from the possibility offered to the adversary to query a confirming/denying oracle
on any couple message/signature of his choice.

1. Thanks to the decisional oracle associated to (qΣ + 1)-SDH and the points
P, xP, x2P, . . . , xqΣ+1P , B can construct a static oracle Ox, which, given
Q and R as inputs, answers whether R = xQ. Therefore, B an perfectly
simulate an appropriate proof as in the proof of the theorem 1. The rest of
the simulation follows mutatis mutandis the one of Boneh and Boyen [1] from
which we obtain the claimed bound on ε′ and τ ′ once taken into account the
computational cost of the simulation of the confirming and denying oracles.

2. We can suppose without loss of generality that the potential forgery out-
put by A is queried to the confirming oracle at the end of C’s execution.
We say that a couple message/signature is special if it is a valid mes-
sage/signature pair queried by A to the confirming oracle or the denying
oracle such that the signature has not been obtained from the signing oracle
(in particular (m�, σ�) is special if A succeeds). C picks at random an index
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� ∈ [[1, qC + qD + 1]] as its guess of first query of a special message/signature
couple. In A’s execution, we denote by s the actual index of this first query
(and s =∞ if A does not make such a request). For the i-th query with i < �,
C chooses to confirm the signature if it has been made by the signing oracle
and to deny it otherwise. This simulation is done as in the previous proof.
If the �-th query (m�, σ�), has been obtained from the signing oracle, then C
aborts. Otherwise following mutatis mutandis Boneh and Boyen’s simulation
C tries to solve the (qΣ +1)−CSDH problem using the value σ�. C does not
abort with probability 1/(qC + qD + 1) and we get the bounds on ε′′ and τ ′′

once taken into account the computational cost of this simulation. ��

Corollary 1 (Security of US). Let Gen be a POGG and US be the associated
undeniable signature scheme. Under the DSDH assumption in Gen, US is EF-
CMA and Ano-CMA secure against polynomial-time adversaries.

4 Conclusion

We designed the first efficient construction for undeniable signatures. It is a vari-
ant of Boneh-Boyen’s signature scheme in a situation where the DDH problem
is supposed to be difficult. The unforgeability and the anonymity are related
to variants of the strong Diffie-Hellman assumption. The new scheme offers the
advantage of issuing short signatures. Moreover, the computational costs for the
signer in the signature generation, the confirmation/denial protocols and the
receipt generation algorithms are the lowest of all known schemes.

Zhang and Chen [24] proposed very recently a new digital signature scheme in
a bilinear setting whose resistance to forgery is reduced, in the standard security
model, to a new algorithmic problem called the k-square roots problem. This
protocol is very close to Boneh and Boyen’s scheme, the underlying non-linear
operation in [[1, q− 1]] being the square root extraction, instead of the inversion.
The computational costs of generation and verification and the size of these
signatures are identical to those of Boneh-Boyen’s signatures. By embedding
this scheme in a classical cryptographic setting we can construct, with the same
technique, a new efficient undeniable signature scheme which can be proved
unforgeable in the standard security model.
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Abstract. Recently, Boneh and Boyen proposed a short digital signature
scheme where signatures are as short as DSA signatures, but are provably
secure in the absence of random oracles. We propose threshold signature
schemes based on their short signature scheme. Signatures of our schemes
are the same as the underlying short signature scheme. We also prove se-
curity of our schemes under q-SDH assumption without using random or-
acles. To the best of our knowledge, this is the first threshold construction
for the short signature scheme without random oracles.

1 Introduction

Threshold cryptography and secret sharing have been given considerable atten-
tion. The first threshold secret sharing schemes, based on the Lagrange inter-
polating polynomial and linear project geometry, were proposed by Shamir [20]
and Blakley [5], respectively.

Many efficient digital signature and threshold signature schemes are proved
secure in the random oracle model. However, most prominently is the result
from [9] that there exists an encryption scheme which is secure in the random-
oracle model (RO model), but is not secure in the complexity-theoretic model
(CT model), no matter the instantiation of the RO. This leads to focus on
constructing secure cryptosystems proved without random oracles.

Most current practical signature schemes secure without random oracles are
based on the Strong RSA assumption[11][12]. Recently, Boneh and Boyen [6]
proposed a short digital signature scheme where signatures are as short as DSA
signatures, but are provably secure in the absence of random oracles. Boneh-
Boyen short signature scheme is proved to be existentially unforgeable under
a chosen message attack without using random oracles. They prove security of
their scheme using a complexity assumption called the Strong Diffie-Hellman
assumption, or SDH for short. Roughly speaking, the q-SDH assumption in a
group G of prime order p states that the following problem is intractable: given
g, gx, gx2

, · · · , gxq ∈ G as inputs, output a pair (c, g1/(x+c)) where c ∈ Z∗
p . q-SDH

may be viewed as a discrete logarithm analogue of the Strong RSA assumption.
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The properties of q-SDH make it a useful tool for constructing cryptographic
systems. Several signature schemes based on q-SDH assumption are presented
[6][7][10].

In this paper, we present threshold signature schemes based on the short sig-
nature scheme without random oracles. To our best knowledge, short threshold
signature schemes without random oracles have not been given. Our schemes give
several distributed constructions for the short signature scheme without random
oracles based on known techniques, such as Pedersen VSS [18], and distributed
multiplication [1][2], etc. Though it significantly simplifies signature verification
in the underlying short signature scheme, the bilinear map is not easily applied
to the share validation in our threshold constructions. The main obstacle is the
distributed inversion computation in the exponent. To the date, the best meth-
ods to distributedly compute the inverse of a shared secret is taken from [4]. For
the distributed inversion in the exponent, the inverse of some random variable
must be constructed publicly. Intuitively, the bilinear map is not adapted for
simplifying this situation.

The remainder of this paper is organized as follows. In section 2, we give a
brief review of Boneh et al.’s scheme. In section 3, we present some build blocks
will be used in our proposed schemes. In section 4, we propose a threshold
signature scheme based on Boneh-Boyen scheme using error correct technique.
In section 5, we propose an optimal resilient short threshold signature scheme
not using error correct technique. In section 6, we shall present security proof
for our new schemes. Finally, section 7 is our conclusion.

2 Brief Review of Boneh-Boyen Short Signature Scheme

We give a brief review of Boneh-Boyen short signature scheme in the standard
model using the q-SDH assumption.

Let (G1, G2) be bilinear groups where |G1| = |G2| = p for some prime p. For
the moment we assume that the messages m to be signed are elements in Z∗

p ,
but it is pointed out that, the domain can be extended to all of {0, 1}∗ using a
collision resistant hash function H : {0, 1}∗ → Z∗

p .

Key generation: Pick a random generator g2 ∈ G2 and set g1 = ψ(g2). Pick
random x, y

R←− Z∗
p , and compute u← gx

2 ∈ G2 and v ← gy
2 ∈ G2. Also compute

z ← e(g1, g2) ∈ GT . The public key is (g1, g2, u, v, z). The secret key is (x, y).

Signing: Given a secret key x, y ∈ Z∗
p and a message m ∈ Z∗

p , pick a random

r ∈ Z∗
p and compute σ ← g

1/(x+m+yr)
1 ∈ G1. Here 1/(x+ m + yr) is computed

modulo p. In the unlikely event that x+m+yr = 0 we try again with a different
random r. The signature is (σ, r).

Verification: Given a public key (g1, g2, u, v, z), a message m ∈ Z∗
p , and a

signature (σ, r), verify that

e(σ, u · gm
2 · vr) = z

If the equality holds the result is valid; otherwise the result is invalid.
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3 Building Blocks

Here we briefly recall and present a few techniques that we use in our solutions.

3.1 Pedersen’s Verifiable Secret Sharing

Our scheme uses an information theoretically secure verifiable secret sharing
scheme given by Pedersen [18]. Let g and h be elements of a group G with the
order p where logg h is unknown. To share a secret S in Zp, the dealer first
chooses two t-degree random polynomials f(x) and d(x) from Zp[x] such that
f(0) = S. Let R denote a random companion secret of S, the free term of d(x).

(1) The dealer chooses two random polynomials f(x) and d(x) over Zp, where
f(0) = S. Then the dealer secretly transmits to each party Pi his shares Si =
f(i) mod p and Ri = d(i) mod p respectively. The dealer also publishes Ek =
gfkhgk where fk and gk, k = 0, · · · , t, are the k-th coefficients of f(x) and d(x)
respectively.

(2) Each player Pi verifies his shares as: gSihRi =
∏t

k=0 E
ik

k . If the verification
is not passed, then Pi broadcasts a complaint to the dealer. When the complaints
are more than t, then dealer is disqualified. Otherwise, dealer must reveal the
correct shares satisfied with the verification equation. If it is not satisfied, the
dealer is disqualified.

Let ΛG be the set of players that are not disqualified. Apparently, the secret
S can be reconstructed: S =

∑
i∈ΛG

λi,ΛGSi mod p, where λi,ΛG is the Lagrange
interpolation coefficient.

We use the notations referred to [1][2]. The protocol described above could

be denoted as PedV SS(S,R)[g, h]
f,d−→ (Si, Ri)(E0, · · · , Et). For simplicity, if no

misunderstanding is expected, polynomials put on an arrow may be omitted. The
Pedersen VSS protocol is denoted as PedV SS(S,R)[g, h]→ (Si, Ri)(E0, · · · , Et).

3.2 Distributed Random Secret Sharing

As it is well-known, the players can share a random value unknown to any set
of players less than t+ 1 by using Pedersen’s VSS. We refer to this shared ran-
dom value generation protocol as RndV SS([S], [R])[g, h]→ (Si, Ri)(E0, · · · , Et).
Brackets [·] imply that the values are unknown to any set of players less than
the threshold.

(1) Each player Pi runs PedV SS(S(i)
0 , R

(i)
0 )[g, h]→ (S(i)

j , R
(i)
j )(E(i)

0 , · · · , E(i)
t )

as a dealer. Note that (i) is a superscript, not an exponent.
(2) Let QG be the set of players that are not disqualified in the above

step. Each player Pi computes locally its shares: Si =
∑

j∈QG
S

(j)
i mod p, Ri =∑

j∈QG
R

(j)
i mod p and all players compute the verification information: Ek =∏

j∈QG
E

(j)
k , k = 0, · · · , t.

Notice that the shared secret S is defined as S =
∑

i∈QG
S

(i)
0 mod p.

Using RndV SS([S], [R])[g, h] → (Si, Ri)(E0, · · · , Et) as subroutines, a joint
Feldman-like random secret sharing protocol can be given, with the value gS is
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public where S is the random secret in Zp. This protocol is called DKG in [13][14]
to highlight its role as distributed key generation in threshold DSS schemes. The
protocol achieves an unconditionally secure joint random secret sharing where
the secret S is uniformly distributed but also the public value gS . We denote it
by ExpRSS([S], [R])[g, h] → (Si, Ri)(E0, · · · , Et;F0, · · · , Ft) as follows.

(1) The players run RndV SS([S], [R])[g, h]→ (Si, Ri)(E0, · · · , Et).
(2) Let QG be the set of players that are not disqualified in the above step.

If Pi ∈ QG, Pi broadcasts values F (i)
k = gf

(i)
k , where f (i)

k is the k-th coefficients
of the polynomial for sharing S

(i)
0 , k = 0, · · · , t.

(3) Each player Pj verified the values broadcasted by Pi ∈ QG: gS
(i)
j =∏t

k=0 (F (i)
k )jk

. If the check fails for player Pi, Pj complains against Pi by broad-
casting the values S(i)

j and R
(i)
j , which pass the verification in step (1) but fail

in this step.
(4) For player Pi who receive at least one valid complaint, the other players

reconstruct in the clear the polynomial for sharing S
(i)
0 and values F (i)

k = gf
(i)
k ,

k = 0, · · · , t.
(5) All players compute the verification information: Fk =

∏
j∈QG

F
(j)
k , k =

0, · · · , t, and the public value gS = F0.

3.3 Fault Tolerant Interpolation

Interpolation techniques have proved useful tools for various system-theoretic
problems. In Shamir’s secret sharing scheme, the secret is shared by a random
polynomial. The shared secret and polynomial can be reconstructed from t + 1
correct shares via Lagrange interpolation equation. If the shares gathered by the
combiner are not totally correct, we call this type of polynomial reconstruction
problem as fault tolerant interpolation.

If c1, · · · , cn, n ≥ 3t+1, are the shares after running a Shamir secret sharing
scheme, and we assume that at most t values are modified by malicious adversary,
then the shared secret can be recovered by using the Welch-Berlekamp decoding
algorithm [21]. We denote this procedure as c = WBInterpolation(c1, · · · , cn).

Let G be a cyclic group of order p, and g be its generator. Set wi = gci ,
i = 1, · · · , n, n ≥ 3t + 1, and W = {w1, · · · , wn}. It is assumed that at most
t values are modified by malicious adversary. From t + 1 values, interpolation
“in the exponent” means that we can calculate β =

∏t+1
j=1 w

λij ,Λ

ij
, where Λ =

{ij, j = 1, · · · , t + 1}, a (t + 1)-subset of the correct wi’s and λi,Λ’s are the
corresponding Lagrange interpolation coefficients. C. Peikert in [19] claims that
unique decoding in the exponent, when the number of errors e < d/2, is no
harder than the CDH problem in the same group. Thus, we can not achieve
in general an efficient algorithm of fault tolerant interpolation in the exponent.
The most ”efficient” procedure of calculating gc “in the exponent” we could
achieve is presented as follows, only adapted to certain cases, such as when t
and n are small, or n is much larger than t, etc. We denote this procedure as
gc = ExpInterpolation(gc1 , · · · , gcn).
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(1) Select O1 be a set of t + 1 values from W . Interpolating over exponent
[14] from these t + 1 sample values, there exists a polynomial c(x) of degree t
over exponent such that gc(i) = wi, where wi ∈ O1. Construct a set S1 of all the
values lie in that polynomial. Clearly, O1 ⊆ S1, |S1| ≥ t + 1. If |S1| ≥ 2t + 1,
then the algorithm stops, gc0 can be interpolated over exponent from O1 and
outputted. Set k = 1.

(2) Set k = k+1. If there exists a set Ok of t+1 values from W with Ok �⊂ Si,
i = 1, · · · , k− 1, then select the set. Otherwise, the algorithm stops and outputs
“not found”.

(3) Construct a set Sk for the values lie in the t-degree interpolation polyno-
mial over exponent from the t+ 1 sample values in Ok.

(4) If |Sk| ≥ 2t + 1, then the algorithm stops, gc0 can be interpolated over
exponent from Ok and outputted. Otherwise, go to step (2).

4 Proposed Short Threshold Signature Scheme,
n ≥ 4t + 1

In this section, we shall propose the short threshold signature scheme. Our
scheme is comprised of three phases: (1) distributed key generation stage, (2)
threshold signature generation stage, (3) signature verification stage. The signa-
ture verification stage is just as in the original short signature scheme.

Before we present the details of our scheme, we shall first outline the com-
munication and adversary models.

Communication model. We assume that the involved n participants are con-
nected by a broadcast channel. Furthermore, any one pair of the participants is
connected by a private channel. We also assume that there is a universal clock
such that each participant knows the absolute time, and the communication
channel is (partially) synchronous by rounds.

Adversary model. We consider a static adversary who chooses corrupted par-
ticipants at the beginning of each time period. For the robustness, it means
that the scheme can be successfully finished even if the adversary corrupts t
participants at most.

4.1 Distributed Key Generation Stage

We are interested in joint verifiable threshold key generation algorithms produc-
ing Shamir’s secret sharing of a secret without a trusted dealer. DKG protocol
of [13][14] is based on the ideas similar to the protocol of Pedersen’s [17], has
comparable complexity, but provably fixes the weakness of the latter.

Of course, we can use the New-DKG protocols in [13][14] to distributedly
generate the shared secret keys and output public keys. However, when n ≥ 4t+1,
we can use error correct technique to simplify the distributed key generation.

(k.1) The players generate secret values x,y, uniformly distributed in Zp, by
running two instances of RndV SS(·) with polynomials of degree t:

RndV SS([x], [R(x)])[g2, h2]→ (xi, R
(x)
i )(E(x)

0 , · · · , E(x)
t )
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RndV SS([y], [R(y)])[g2, h2]→ (yi, R
(y)
i )(E(y)

0 , · · · , E(y)
t )

(k.2) Each player Pi broadcasts ui = gxi
2 , vi = gyi

2 .
(k.3) Every player Pi computes locally

u = gx
2 = ExpInterpolation(u1, · · · , un)

v = gy
2 = ExpInterpolation(v1, · · · , vn)

The public key is (g1, g2, h2, u, v, z). The secret key is (x, y).

4.2 Threshold Signature Generation Stage

Assume a message m, let a group of n participants performs the following steps
to generate the signature:

(s.1) Generate r
(a) The players generate a secret value r, uniformly distributed in Z∗

p , by
running

RndV SS([r], [R(r)])[g2, h2]→ (ri, R
(r)
i )(E(r)

0 , · · · , E(r)
t )

with a polynomial of degree t.
(b) Player Pi broadcasts ri. If Pi doesn’t broadcast a value, set ri to null.
(c) Player Pi computes locally

r = WBInterpolation(r1, · · · , rn)

(s.2) Share a random polynomial with constant term 0
Execute RndV SS(0, 0])[g2, h2]→ (bi, R

(b)
i )(E(b)

0 , · · · , E(b)
2t ) with a polynomial

of degree 2t.
(s.3) Share (x+m+ ry)−1 mod p
(a) Generate a random value a, uniformly distributed in Z∗

p , with a polyno-

mial of degree t, using RndV SS([a], [R(a)])[g2, h2]→ (ai, R
(a)
i )(E(a)

0 , · · · , E(a)
t ).

(b) Player Pi broadcasts ci = ai(xi +m+ ryi) + bi mod p.
(c) Player Pi computes locally

c = WBInterpolation(c1, · · · , cn) mod p

c̄ = c−1 mod p, āi = c̄ · ai mod p

Notice that the reciprocal c̄ = a−1 · (x + m + ry)−1 mod p. As a result of
these rounds, each player Pi obtains his secret information: a share āi of (x +
m+ ry)−1 mod p.

(s.4) Generate signature σ
(a) Player Pi broadcasts σi = gāi

1 .
(b) Player Pi computes locally

σ = ExpInterpolation(σ1, · · · , σn)

Notice the result of these rounds is σ = g
1/(x+m+ry)
1 .
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The final signature is (r, σ).
Notation. Because we use the fault tolerant algorithm in the exponent, the

scheme is adapt to t and n are relatively small. But this scheme can achieve
adaptive security with the additional erasure assumption [8].

However, if G1 = G2 or g1 = g2, we can construct a threshold scheme avoiding
fault tolerant interpolation in the exponent. The modified version is given below:

(1) For the distributed key generation stage, just run the New-DKG protocols
in [13] to generate the secret and public keys.

(2) Modify the step (s.3)(a) in the threshold signature generation stage as
follows:

(s.3)(a’) Jointly Run ExpV SS([a], [R(a)])[g2, h2]→ (ai, R
(a)
i )(E(a)

0 , · · · , E(a)
t ;

F
(a)
0 , · · · , F (a)

t ) to randomly generate a secret a and a public value F (a)
0 = ga

2 .
(3) After step (s.3)(b), the signature σ = g

1/(x+m+ry)
1 can be computed

locally as

σ = (ga
2 )c−1

= (F (a)
0 )c−1 mod p

5 Optimally Resilient Short Threshold Signature Scheme,
n ≥ 2t + 1

In the above scheme, because the error correct techniques are used, it is not opti-
mally resilient, i.e. the number of corrupted parties is tolerant to be less than n/4.
In this section, we shall propose an optimally resilient short threshold signature
scheme. This scheme is comprised of four phases: (1) distributed commitment-
key generation stage, (2) distributed key generation stage, (3) threshold signa-
ture generation stage, (4) signature verification stage. The signature verification
stage is just as in the underlying short signature scheme.

We set G1 = G2, g1 = g2.

5.1 Distributed Commitment-Key Generation Stage

To achieve the optimal resilience, when the distributed key generation stage is
executed on an input g2 only, a (trapdoor) commitment-key h2 ∈ G2 must first be
generated for Pedersen’s VSS protocols. There are several so-called h-generation
protocols existed [13][17][3][8]. The commitment-key generation protocols used in
[3][8] are applied to adaptive security, and could also be adapted to our models.
Note that the commitment-key generation protocol is needed to be performed
only once for threshold signature application.

We use the Ped-DKG protocol presented in [17] to generate the first trapdoor
commitment-key h2 ∈ G2. Although Gennaro et al. claim in [13] that Ped-DKG
protocol cannot output a random commitment-key with uniform distribution,
they also prove that it is infeasible to compute the discrete log of the output
of Ped-DKG. This captures the property which is sufficient for our purpose. We
denote the Ped-DKG protocol presented in [17] (a little modification to fit our
models) as HGen(·) here.
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(h.1) The players perform commitment-key generation protocol HGen(·) to
output a (trapdoor) commitment-key h2 ∈ G2 for Pedersen’s commitment. Note
that the corresponding trapdoor logg2

h2 is unknown to any set of t players.

5.2 Distributed Key Generation Stage

It is exactly the distributed key generation protocol DKG for discrete-log based
systems of Gennaro et al. [13][14].

(k.1) The players generate secret values x,y, uniformly distributed in Zp, by
running two instances of ExpV SS(·) with polynomials of degree t:

ExpV SS([x], [R(x)])[g2, h2]→ (xi, R
(x)
i )(E(x)

0 , · · · , E(x)
t ;F (x)

0 , · · · , F (x)
t )

ExpV SS([y], [R(y)])[g2, h2]→ (yi, R
(y)
i )(E(y)

0 , · · · , E(y)
t ;F (y)

0 , · · · , F (y)
t )

Notice u = F
(x)
0 = gx

2 , v = F
(y)
0 = gy

2 is public.
The public key is (g1, g2, h2, u, v, z). The secret key is (x, y).

5.3 Threshold Signature Generation Stage

Let a group of n participants performs the following signature generation steps:
(s.1) Generate r
(a) The players generate a secret value r, uniformly distributed in Z∗

p , by
running

RndV SS([r], [R(r)])[g2, h2]→ (ri, R
(r)
i )(E(r)

0 , · · · , E(r)
t )

with polynomials of degree t.
(b) Player Pi broadcasts ri and its companion R

(r)
i . Player Pj verifies

gri
2 h

R
(r)
i

2 =
∏t

k=0
(E(r)

k )ik

(c) Player Pi selects any subset Λ(r) of t+1 players who pass the verification
in the above round, and computes locally: r =

∑
i∈Λ(r) λi,Λ(r)ri mod p, where

λi,Λ(r) is the appropriate Lagrange coefficient for the set Λ(r).
(s.2) Share (x+m+ ry)−1 mod p and generate signature
(a) Generate a random value a, uniformly distributed in Z∗

p , with a polyno-

mial of degree t, using ExpV SS([a], [R(a)])[g2, h2] → (ai, R
(a)
i )(E(a)

0 , · · · , E(a)
t ;

F
(a)
0 , · · · , F (a)

t ).
(b) Each player Pi calculates bi = xi +m+ ryi mod p. Then Pi backs-up ai

and bi using

PedV SS(<ai>,<R
(a)
i >)[g2, h2]→ (ai,j , R

(a)
i,j )(<E

(ai)
0 >,E

(ai)
1 , · · · , E(ai)

t )

PedV SS(<bi>,<R
(b)
i >)[g2, h2]→ (bi,j , R

(b)
i,j )(<E

(bi)
0 >,E

(bi)
1 , · · · , E(bi)

t )

PedV SS(<ai>,R
(ai)
i )[<E

(bi)
0 >, h2]→ (<ai,j>,R

(ai)
i,j )(E(vai)

0 , · · · , E(vai)
t )
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where E(ai)
0 =

∏t
k=0 (E(a)

k )ik

, R(b)
i = R

(x)
i + m + rR

(y)
i , and E

(bi)
0 = gbi

2 h
R

(b)
i

2 =
gm
2 h

m
2 ·
∏t

k=0 (E(x)
k · (E(y)

k )r)ik

. Brackets 〈·〉 mean that the variable can be lo-
cally computed by the receivers or senders, or it has been sent before. At least
t + 1 players succeed in back-up sharing. Set Λ(ab) of all players who pass the
verification in this round.

(c) Each player Pi, i = 1, · · · , 2t + 1, shares ci = aibi mod p using (t, n)
Pedersen’s VSS as follows:

PedV SS(<ci>,<R
(c)
i >)[g2, h2]→ (ci,j , R

(c)
i,j )(<E

(vai)
0 >,E

(ci)
1 , · · · , E(ci)

t )

where R(c)
i =R

(b)
i ·ai+R

(ai)
i mod p, and E(vai)

0 =(E(bi)
0 )aih

R
(ai)
i

2 =gci
2 h

R
(b)
i ·ai+R

(ai)
i

2 .
If player Pl fails in the verification of these Pedersen’s VSS, because his shares

al and bl are linear combinations of {ai, bi, i ∈ Λ(ab)}, set al =
∑

i∈Λ(ab) δi,Λ(ab)ai

and bl =
∑

i∈Λ(ab) δi,Λ(ab)bi mod p. Then, Pj broadcasts a′j =
∑

i∈Λ(ab) δi,Λ(ab)ai,j ,
b′j =

∑
i∈Λ(ab) δi,Λ(ab)bi,j mod p, together with their associated randomness (com-

puted as the same linear combination of the associated randomness generated
in the above steps). Bad values are sieved out using the public commitments.
Let Λ1 be any t + 1 players passed all former verification. Then, it is easily
computed that al =

∑
j∈Λ1

λj,Λ1a
′
j mod p, and bl =

∑
j∈Λ1

λj,Λ1b
′
j mod p. Thus,

cl = albl mod p is publicly recovered and can be shared using Pedersen’s VSS
with constant polynomials.

(d) The current secret value c = ab mod p is a linear combination of the
values c1, · · · , c2t+1. Let Λ(c) = {1, · · · , 2t+1} and λi,Λ(c) , i = 1, · · · , 2t+1, be the
corresponding Lagrange coefficients. Each player Pj broadcasts the appropriate
linear combination c′j =

∑
i∈Λ(c) λi,Λ(c)ci,j mod p, together with their associated

randomness. Bad values are sieved out using the public commitments. Let Λ be
any t+ 1 players passed all former verification. Then, it is easily computed that
c =

∑
j∈Λ λj,Λc

′
j mod p.

(e) Each player can computes locally

σ = (ga
2 )c−1

= (F (a)
0 )c−1

Notice the result of these rounds is actually σ = g
1/(x+m+ry)
1 . The final signature

is (r, σ).

6 Security Proof

Let G1, G2 be cyclic group of prime order p, where possibly G1 = G2. Let g1 be a
generator of G1 and g2 a generator of G2. We formally defined the computation
assumptions of Boneh-Boyen short signature scheme and our threshold schemes
as follows.

Definition 1. (q-SDH Assumption [6][7]) For every PPT algorithm A, the fol-
lowing function Advq−SDH

A (l) is negligible.

Advq−SDH
A (l) = Pr[(A(g1, g2, g

x
2 , · · · , gxq

2 ) = (c, g1/(x+c)
1 )) ∧ (c ∈ Zp)]
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where the probability is over the random choice of a generator g2 in G2 (with
g1 ← ψ(g2)), of x in Z∗

p , and of the random bits of A.

It is easy to see that if the q-SDH assumption holds, then the DL assumption
holds.

The standard notion of security for a signature scheme is called existential
unforgeability under a chosen message attack, was formally defined in [16]. In
Boneh-Boyen short signature scheme, a slightly stronger notion of security, called
strong existential unforgeability, is considered. This stronger security notion is
also required for threshold DSS signature schemes in [14]. From this security
notion, Gennaro et al. [14] presented the definitions of unforgeability and ro-
bustness for threshold signature schemes.

Definition 2. We say that a (t, n)-threshold signature scheme T S = (Dist-Key-
Gen,Thresh-Sig) is unforgeable, if no malicious adversary who corrupts at most
t players can produce, with nonnegligible probability, the signature on any new
(i.e., previously unsigned) message m, given the view of the protocol Dist-Key-
Gen and of the protocol Thresh-Sig on input messages m1, · · · ,mk which the
adversary adaptively chose.

Definition 3. A threshold signature scheme T S = (Dist-Key-Gen,Thresh-Sig)
is (t, n)-robust if both Dist-Key-Gen and Thresh-Sig can complete successfully
even in the presence of an adversary who corrupts maliciously t players.

In order to prove unforgeability, Gennaro et al. use the concept of simulatable
adversary view [15]. The following definition [14] is actually a stronger property
than Definition 2.

Definition 4. A threshold signature scheme T S = (Dist-Key-Gen, Thresh-Sig)
is simulatable if the following properties hold:

(1) The protocol Dist-Key-Gen is simulatable. That is, there exists a simula-
tor SIM1 that, on input the public key PK and the public output generated by
an execution of Dist-Key-Gen, can simulate the view of the adversary on that
execution.

(2) The protocol Thresh-Sig is simulatable. That is, there exists a simulator
SIM2 that, on input the public input of Thresh-Sig (in particular the public key
PK and the message m), t shares xi1 , · · · , xit , and the signature σ of m, can
simulate the view of the adversary on an execution of Thresh-Sig that generates
σ as an output.

Indeed, one can prove that if the underlying signature scheme S is unforgeable
and T S is simulatable (satisfies Definition 4) then T S is unforgeable (satisfies
Definition 2).

Now, we give the security analysis of our schemes following the above defini-
tions and the models defined in section 4.

Theorem 1. Under the q-SDH assumption, short threshold signature scheme
presented in section 4 is a secure (unforgeable and robust) threshold signature
scheme for short signature scheme resistant to t faults against a static malicious
adversary, when the number of player is n ≥ 4t+ 1.
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Proof. (sketch) The robustness is evident. To prove unforgeable security by re-
duction to underlying short signature scheme, it is needed to construct a sim-
ulator protocol by standard techniques. We assume w.l.o.g. that the adversary
corrupted the first t players P1, · · · , Pt. The simulator protocol is shown below.

SIM1-Short-DKG:
Input: public key u, v ∈ G2.
(SIM1-k.1) Simulator runs RndV SS(·) protocols on behalf of the honest

players. Notice that (x1, · · · , xt) and (y1, · · · , yt) of the corrupted players are
known to the simulator.

(SIM1-k.2.0) Simulator computes ui = gxi
2 , vi = gyi

2 for i = 1, · · · , t. Then,
from u0 =u, u1,· · ·, ut, and v0 =v, v1,· · ·, vt, compute ut+1,· · ·, un and vt+1,· · ·, vn

by interpolation “in the exponent”.
(SIM1-k.2) Simulator broadcasts ut+1, · · · , un and vt+1, · · · , vn for honest

players.
(SIM1-k.3) Follow the instructions of the protocol for the honest players.
SIM1-Short-TSG:
Input: public key u, v ∈ G2, message m, signature (r, σ), shares (x1, · · · , xt)

and (y1, · · · , yt) of the corrupted players.
(SIM1-s.1) (a) Simulator runs RndV SS([r∗], [R(r∗)])[g2, h2] → (r∗i , R

(r∗)
i )

(E(r∗)
0 , · · · , E(r∗)

t ) on behalf of the honest players. Notice that all the values
are known to the simulator.

(b.0) For f∗(0) = r, f∗(1) = r∗1 , · · · , f∗(t) = r∗t , compute the polynomial
f∗(x). Set r∗t+1 = f∗(t+ 1), · · ·, r∗n = f∗(n).

(b) Simulator controls the honest player Pi broadcasts r∗i , i = t + 1, · · · , n.
(c) Follow the instructions of the protocol for the honest players. Notice that

all players can compute locally r = WBInterpolation(· · · , r∗t+1, · · · , r∗n).
(SIM1-s.2) Follow the instructions of the protocol for the honest players.
(SIM1-s.3) (a) Follow the instructions of the protocol for the honest players.
(b.0) Choose a random value ĉ uniformly distributed in [0, p−1]. For g∗(0) =

ĉ, g∗(1) = c1 = a1(x1 + m + ry1) + b1, · · ·, g∗(t) = ct = at(xt + m + ryt) + bt,
compute the polynomial g∗(x). Set c∗t+1 = g∗(t+ 1), · · ·, c∗n = g∗(n).

(b) Simulator controls the honest player Pi broadcasts c∗i , i = t + 1, · · · , n.
(c) Follow the instructions of the protocol for the honest players. Notice

that all players can compute locally ĉ = WBInterpolation(· · · , c∗t+1, · · · , c∗n),
c̄ = ĉ−1 mod p.

(SIM1-s.4) (a.0) Compute σi = gc̄·ai
1 , i = 1, · · · , t. From the values σ0 = σ,

and σi, i = 1, · · · , t, simulator generates σ∗
j = σλj,0 ·

∏t
i=1 σ

λj,i

i for j = t+1, · · · , n
with known Lagrange interpolation efficients λj,i.

(a) Simulator controls the honest player Pi broadcasts σ∗
i , i = t + 1, · · · , n.

(b) Follow the instructions of the protocol for the honest players. Notice that
all players can compute locally σ = ExpInterpolation(· · · , σ∗

t+1, · · · , σ∗
n).

Since the simulator steps do not involve the secret key (that the simulator
does not know), it is clear that the view of the adversary in these steps is
identically distributed between the real and the simulated execution.
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Theorem 2. Under the q-SDH assumption, short threshold signature scheme
presented in section 5 is a secure (unforgeable and robust) threshold signature
scheme for short signature scheme resistant to t faults against a static malicious
adversary, when the number of player is n ≥ 2t+ 1.

Proof. (sketch) Since logg2
h2 is not known to any player, player Pi could com-

pute logh2
E

(bi)
0 only if bi = 0. However, as b = x + m + ry is assumed to be

honestly shared, bi = 0 happens with probability 1/p. Thus, the chance that
player Pi distributes inconsistent shares remain negligible. Then, the robustness
can be evidently proved.

For the unforgeability, as Theorem 1, we also assume w.l.o.g. that the ad-
versary corrupted the first t players P1, · · · , Pt. The simulator protocol is shown
below.

SIM2-Short-CKG:
(SIM2-h.1) Simulator runs the simulator protocol for HGen(·) as lemma 2

in [13]. Notice that the trapdoor logg2
h2 is known to the simulator.

SIM2-Short-DKG:
Input: public key u, v ∈ G2, h2 ∈ G2.
(SIM2-k.1) Simulator runs simulator protocols for

ExpV SS([x], [R(x)])[g2, h2]→ (xi, R
(x)
i )(E(x)

0 , · · · , E(x)
t ;F (x)

0 , · · · , F (x)
t )

ExpV SS([y], [R(y)])[g2, h2]→ (yi, R
(y)
i )(E(y)

0 , · · · , E(y)
t ;F (y)

0 , · · · , F (y)
t )

with inputs F (x)
0 = u and F

(y)
0 = v. Notice that (x1, · · · , xt) and (y1, · · · , yt) of

the corrupted players are known to the simulator.
SIM2-Short-TSG:
Input: public key u, v ∈ G2, h2 ∈ G2, trapdoor λ = logg2

h2, message m,
signature (r, σ), shares (x1, · · · , xt) and (y1, · · · , yt) of the corrupted players.

(SIM2-s.1) (a) Simulator runs RndV SS([r∗], [R(r∗)])[g2, h2] → (r∗i , R
(r∗)
i )

(E(r∗)
0 , · · · , E(r∗)

t ) on behalf of the honest players. Notice that all the values
are known to the simulator.

(b.0) For f∗(0) = r, f∗(1) = r∗1 , · · · , f∗(t) = r∗t , compute the polynomial
f∗(x). Set r̂∗t+1 = f∗(t + 1), · · ·, r̂∗n = f∗(n). Using the trapdoor, compute the
R̂

(r∗)
j such that r̂∗j + λ · R̂(r∗)

j ≡ r∗j + λ ·R(r∗)
j mod p, j = t + 1, · · · , n.

(b) Simulator controls the honest player Pi broadcasts r̂∗i and R̂
(r∗)
i , i =

t+ 1, · · · , n.
(c) Follow the instructions of the protocol for the honest players.
(SIM2-s.2) (a.0) Choose a random value ĉ uniformly distributed in [0, p− 1].

Compute A = σĉ.
(a) Simulator runs the simulator protocol for

ExpV SS([a], [R(a)])[g2, h2]→ (ai, R
(a)
i )(E(a)

0 , · · · , E(a)
t ;F (a)

0 , · · · , F (a)
t )

with the input F (a)
0 = A. Notice that (a1, · · · , at) of the corrupted players are

known to the simulator.
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(b) Follow the instructions of the protocol for the honest players. Note that
ai, R

(a)
i are generated in (SIM2-s.2)(a), xi, R

(x)
i ; yi, R

(y)
i are generated in (SIM2-

k.1).
(c) Follow the instructions of the protocol for the honest players.
(d) For g∗(0) = ĉ, g∗(1) = c′1, · · ·, g∗(t) = c′t, compute the polynomial g∗(x).

Set ĉ′t+1 = g∗(t + 1), · · ·, ĉ′n = g∗(n). Simulator controls the honest player Pi

broadcasts ĉ′i, R̂′
i, i = t+ 1, · · · , n, where ĉ′i + λ · R̂′

i ≡ c′i + λ ·R′
i mod p.

(e) Follow the instructions of the protocol for the honest players. Notice that

(ga
2 )ĉ−1

= (F (a)
0 )ĉ−1

= (σĉ)ĉ−1
= σ

It is clear that the view of the adversary in these steps is identically dis-
tributed between the real and the simulated execution, except (SIM2-h.1). In
SIM2-h.1, we cannot generate h2 to be random because a rushing party can af-
fect its distribution. However, the step captures the property which is sufficient
for our purpose: a simulator can compute the DL of h2, but the adversary is not
able to compute the trapdoor logg2

h2.

7 Conclusion

In this paper, we have proposed threshold signature schemes based on Boneh
et al’s short signature scheme. Under the q-SDH assumption, our schemes is
robust and fully secure without using random oracles. We proved security of our
schemes in the standard model.
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Abstract. Contract signing is a fundamental service in doing business.
The Internet has facilitated the electronic commerce, and it is neces-
sary to find appropriate mechanisms for contract signing in the digi-
tal world. From a designing point of view, digital contract signing is
a particular form of electronic fair exchange. Protocols for generic ex-
change of digital signatures exist. There are also specific protocols for
two-party contract signing. Nevertheless, in some applications, a con-
tract may need to be signed by multiple parties. Less research has been
done on multi-party contract signing. In this paper, we analyze an op-
timistic N-party contract signing protocol, and point out its security
problem, thus demonstrating further work needs to be done on the de-
sign and analysis of secure and optimistic multi-party contract signing
protocols.

Keywords: Secure electronic commerce, multi-party contract signing,
security protocol analysis.

1 Introduction

The Internet has facilitated the electronic commerce. Many business transactions
have been shifted to the Internet. The motivation for such a trend is the efficiency
and cost-saving. However, as new risks may arise in the digital world, sufficient
security measures should be taken. This will help users to establish the confidence
for doing business on the Internet.

Contract signing is a fundamental service for business transactions, and has
been well practiced in the traditional paper-based business model. Now, it is nec-
essary to find appropriate mechanisms for contract signing in the digital world.
Consider several parties on a computer network who wish to exchange some
digital items but do not trust each other to behave honestly. Fair exchange is
a problem of exchanging data in a way that guarantees either all participants
obtain what they want, or none does. From a designing point of view, contract
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signing is a particular form of fair exchange, in which the parties exchange com-
mitments to a contract (typically, a text string spelling out the terms of a deal).
That is, a contract is a non-repudiable agreement on a given text such that after
a contract signing protocol instance, either each signer can prove the agreement
to any verifier or none of them can. If several signers are involved, then it is a
multi-party contract signing (MPCS) protocol.

There are some two-party contract signing protocols in the literature. Nev-
ertheless, less research has been done on multi-party contract signing. In this
paper, we analyze an optimistic multi-party contract signing protocol, and point
out its security problem, thus demonstrating further work needs to be done on
the design and analysis of secure and optimistic multi-party contract signing
protocols.

The rest of this paper is organized as follows. In Section 2, we review the
previous work related to contract signing, outline the properties to be satisfied
when designing an optimistic contract signing protocol and give explicit defini-
tions for some terms used along the descriptions of these protocols. In Section 3,
we analyze an optimistic N -party contract signing protocol presented in [11] and
demonstrate that the protocol cannot achieve fairness. We conclude the paper
in Section 4.

2 Related Work

As contract signing is a particular case of fair exchange, any fair exchange pro-
tocol found in the literature in which digital signatures are exchanged can be
considered as the related work. In all practical schemes, contract signing involves
an additional player, called Trusted Third Party (TTP). This party is (at least
to some extent) trusted to behave correctly, thus playing the role of a notary in
paper-based contract signing and somehow sharing the legal duties the former
ones have. In fact, designing and implementing a contract signing protocol using
an on-line TTP should not be a complicated task. In this case, if Alice and Bob
wish to enter into a contract, they each sign a copy of the contract and send it to
the TTP through a secure channel. The TTP will forward the signed contracts
only when it has received valid signatures from both Alice and Bob.

Nevertheless, in our continuous search for speeding up our daily life activities,
it is desirable not using a TTP in a contract signing protocol. Additionally,
if the TTP is not involved, the notary fee could be avoided. Some protocols
appear in the literature trying to eliminate the TTP’s involvement using gradual
exchange of signatures [9, 10]. But these solutions are not deterministic, thus
may not be accepted by signatories. Our objective is to focus on contract signing
protocols that necessarily use a TTP only in those cases in which an exception
occurs (i.e., a network communication failure or a dishonest party’s misbehavior).
Otherwise (all-honest-case), the TTP will not be contacted, and parties will bring
the protocol to its end by themselves. In the literature, these protocols are called
optimistic contract signing protocols [2, 3, 4, 14, 15, 16, 17].
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Some properties extracted from the different previous work on optimistic
contract signing are summarized as follows.

– Effectiveness - if each party behaves correctly, the TTP will not be involved
in the protocol.

– Fairness - no party will be in an advantageous situation at the end of the
protocol.

– Timeliness - any party can decide when to finish a protocol run without
loosing fairness.

– Non-repudiation - no party can deny its action.
– Verifiability of TTP - if the TTP misbehaves, all harmed parties will be able

to prove it.
– Transparency of TTP - if the TTP is contacted to resolve the protocol, the

resulting contract will be similar to the one obtained in case the TTP is not
involved.

– Abuse-Freeness - it is not possible for an attacker (either a legitimate par-
ticipant or an outsider) to show a third party that the contract final state is
under its control.

In [8], Ben-Or et al. presented an optimistic contract signing protocol based
on a probabilistic approach. Such a contract signing protocol is said to be (ν, ε)-
fair if for any contract C, when signer A follows the protocol properly, if the
probability that signer B is privileged to validate the contract with the TTP’s
help is greater than ν, the conditional probability that “A is not privileged”,
given that “B is privileged”, is at most ε.

Previous work in which several signatories are involved in a contract can
be found in [1, 6, 11, 12]. Only Asokan et al. addressed the MPCS problem in
synchronous networks [1]. As Asokan states, this solution clearly improves the
efficiency of those asynchronous protocols previously presented with respect to
the number of messages; 4(n − 1) messages in the all-honest-case and 6n − 4
messages in the worst case. This is possible due to a better reliability of the
underlaying network as we can see in Definition 1 below.

Some authors considered the abuse-freeness property in [13, 7]. Baum-
Waidner proposed new protocols in [6] that improve the solutions presented
for asynchronous networks in [7] such that the number of rounds is significantly
reduced in the case that the number of dishonest participants t is considerably
less than the total number of participants n - the smaller t is, the better results
the new protocols achieve.

Definition 1. A “synchronous” contract signing protocol is used in synchronous
networks in which there is a limited time for a message to reach its destination
(otherwise it has been lost and the appropriate transport layer manages these
events) even if an attack occurs. Thus a party can determine that a message has
not been sent by other party if it did not arrive within the limited time. Users’
clocks are assumed to be synchronized.

Definition 2. An “asynchronous” contract signing protocol is used in asyn-
chronous networks in which there is no limited time for a message to reach
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its destination. Loss and unsorted arrival of messages are possible and have to
be managed by the contract signing protocol itself. Clocks are not assumed to be
synchronized among users.

A number of protocols exist in the literature which use an asynchronous model of
network (i.e., messages can be reordered and lost) with deadline parameters. But
when a deadline is introduced, and thus, synchronized clocks among users are
assumed (at least at the moment the deadline is approaching), these protocols
are converted into synchronous protocols.

In the literature, MPCS protocols make use of either a ring or a matrix
topology. Throughout these solutions, authors use the terms round and step
without clearly defining them, which often brings on confusion with respect to
the metric to be used for its efficiency evaluation. For this reason we explicitly
define these terms as follows:

– Round is understood as the existing time slot in which messages are dis-
tributed in synchronous networks. In asynchronous networks, the entities
need to wait a local time before going to the next round (in case the round
is not completed).

– Step refers to the action of sending or receiving a message. It is the operation
performed by a participating entity. Each round means one step (when all
the messages from all entities are distributed or broadcasted in the same
time slot, usually in matrix topologies) or several steps (when messages from
the same round are distributed from one entity to another, usually in ring
topologies).

It has to be noted that there is some confusion in the literature with respect
to the term ‘round’. Some authors explain that when the next message to be sent
depends on the previous one, that is a different round. But we claim two different
cases can be found (1) message to be sent depends on the previous one because
the entity needs to compute/verify it before sending the next one or (2) message
to be sent depends on the previous one because there is a distribution order to be
respected (as in ring topologies). We consider a round occurs in Case (1).

All of previous solutions to the asynchronous multi-party contract signing
problem reach the lower bound on the number of rounds described in Theorem
3 given in [13]:

Any complete and optimistic asynchronous contract-signing protocol with
n participants requires at least n rounds in an optimistic run.

Describing the theorem, Garay et al. stated that for each party Pi, when it
sends a message that can be used (together with other information) by other
entities to obtain a valid contract, as the protocol is fair, it must have received
in a previous round, a message from the rest of participants in order to be able to
get a valid contract too (probably with the TTP’s help), no matter how others
behave. By an inductive argument, they showed the number of rounds is at least
n. This stands for t = n − 1 and the lower bound decreases with t number of
dishonest parties.
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Ferrer’s asynchronous protocol presented in [11] with only three rounds is an
exception. It claimed some years ago to use a number of rounds independent from
the number of participants. As this is supposed a huge improvement with respect
to efficiency, we analyze the protocol and demonstrate in the next section, it
is flawed.

3 Analysis of a MPCS Protocol

To the best of our knowledge, only the asynchronous protocol in [11] can finish
multi-party contract signing in 3 rounds. Here we demonstrate that this protocol
does not fulfill the property of fairness.

It is not clear whether the informal argument given in the theorem above
apply to this protocol, since at the end of the first round (that is, after the first
n+1 steps needed for all entities to distribute all messages in a ring topology),
every party has received at least the initial commitment from every other party 1.
So we give another argument for the theorem above to make clearer that this
protocol is not compliant with the theorem, and demonstrate with an attack,
the validity of our argument.

We base our argument on the number of rounds a TTP needs to determine
whether a party is misbehaving when requesting resolution (i.e., it requests the
TTP to cancel but continues the main protocol): The TTP cannot determine
whether a party is misbehaving until round = roundcurrent + 1, since the TTP
needs to wait until the next round to see whether this entity cheated and contin-
ued the protocol. That means if n− 1 dishonest parties exist in the worst case,
and each of them requests the cancel sub-protocol in a different round, n rounds
are the minimum required to satisfy fairness in an asynchronous optimistic con-
tract signing protocol.

3.1 Protocol Description

The original notation used in the protocol description is as follows:

- M : message containing the contract to be signed. The contract specifies
the order of players in a ring for exchanging signature of principal i on the
contract M .

- hi = Si(H(M)) : signature of principal i on contract M , where H(.) is a
collusion-resistant one-way hash function.

- ACKi = Si(H(h-ACK)) : signature of principal i on h-ACK, all the signa-
tures and acknowledgments given by other parties in the ring.

- ACK2B = SB(H(ACKC)) : last acknowledgment sent to the last player in
the protocol.

- cancel, cancelA, cancelC, f inish: variables used by the TTP to maintain the
state of a protocol run.

1 Note that only one step would have been needed if a matrix topology is used and
all distribute their commitments at the same time.
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Suppose A, B, and C are 3 parties going to sign a contract. A is the first
principal in the ring architecture, C is the last one, and all the rest (P2 · · ·Pn−1
for n parties) behave as B. This has been previously agreed upon a setup phase
by all entities. The exchange sub-protocol is as follows:

1. A→ B : M,hA

2. B → C : M,hA, hB

3. C → A : hB, hC

4. A→ B : hC , ACKA

5. B → C : ACKA, ACKB

6. C → A : ACKB , ACKC

7. A→ B : ACKC

8. B → C : ACK2B

If the protocol run is completed, everybody will hold non-repudiation (NR) ev-
idence. In order to demonstrate to an external party the existence of a contract
signed by all parties, following NR evidence has to be provided:

– A holds hB, hC , ACKB, ACKC

– B holds hA, hC , ACKA, ACKC

– C holds hA, hB, ACKA, ACKB, ACK2B

If there is an exception in the main exchange protocol, then the parties get
involved in either cancel or finish sub-protocols with the TTP. First of all, the
TTP’s intervention is to verify the correctness of the information given by par-
ties. If this information is incorrect, the TTP will send an error message to that
party. Some state variables (cancel, finish, cancelA and cancelC) are used, all
of which with a value false at the beginning for a particular exchange. ACKTTP

is the TTP’s signature on H(M); this is equivalent to an acknowledgement from
a party that should have sent.

If A says that she has not received the first message sent by C, A may initiate
the following cancel sub-protocol:

1. A→ TTP : h(M), hA

2. TTP → A : IF finish = true THEN ACKTTP

ELSE STTP (H(cancelled, hA));
TTP stores cancel = true

If the variable finish is true, it means B or/and C had previously finished
the protocol with the TTP (see paragraphs below). The TTP had given the NR
token ACKTTP to B or/and C, and now it has to give the same NR token to A.
If B and C had not contacted the TTP previously, the TTP will send a message
to A to cancel the transaction, and it will store this information (cancel = true)
in order to satisfy future requests from B or C.

If A says that she has not received the last message from C, A may initiate
the following finish sub-protocol:
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1. A→ TTP : h(M), hA, hB, hC

2. TTP → A : IF cancel = true THEN STTP (H(cancelled, hA));
TTP stores cancelA = true

ELSE ACKTTP ;
TTP stores finish = true

If the variable cancel is true, it means B had previously contacted the TTP
(see paragraphs below). The TTP had given a message to B to cancel the trans-
action, and now it has to send a similar message to A. Additionally, the TTP
will store the variable cancelA with value true to satisfy potential petitions from
C. If B had not contacted the TTP previously, the TTP will send the NR token
ACKTTP to A. In this case the TTP will assign the value true to the variable
finish, in order to satisfy future petitions from B or/and C.

If B says that he has not received the second message from A, B may initiate
the following cancel sub-protocol:

1. B → TTP : h(M), hA, hB

2. TTP → B : IF finish = true THEN ACKTTP

ELSE STTP (H(cancelled, hB));
TTP stores cancel = true

If the variable finish is true, it means A or/and C had previously finished
the protocol with the TTP. The TTP had given the NR token ACKTTP to A
or/and C, and now it has to give the same NR token to B. If A and C had not
contacted the TTP previously, the TTP will send a message to B to cancel the
transaction, and it will store this information (cancel = true) in order to satisfy
future petitions from A or C.

If B says that he has not received the last message from A, B may initiate
the following finish sub-protocol:

1. B → TTP : h(M), hA, hB, hC , ACKA

2. TTP → B : IF cancelC = true THEN STTP (H(cancelled, hB))
ELSE ACKTTP ;

TTP stores finish = true

If the variable cancelC is true, it meansA and C (in this order) had previously
contacted the TTP (see paragraphs above). The TTP had given a message to A
and C to cancel the transaction, and now it has to send a similar message to B.
If A had not cancelled the exchange, the TTP will send the NR token ACKTTP

to B. In this case the TTP will assign the value true to the variable finish, in
order to satisfy future petitions from A or/and C.

If C says that he has not received the second message from B, C may initiate
the following finish sub-protocol:

1. C → TTP : h(M), hA, hB, hC

2. TTP → C : IF cancel = true THEN STTP (H(cancelled, hC));
TTP stores cancelC = true

ELSE ACKTTP ;
TTP stores finish = true
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If the variable cancel is true, it means A or/and B had previously contacted
the TTP (see paragraphs above). The TTP had given a message to A or/and
B to cancel the transaction, and now it has to send a similar message to C.
Additionally, the TTP will store the variable cancelC with value true to satisfy
potential future petitions from B. If A and B had not cancelled the exchange
with the TTP previously, the TTP will send the NR token ACKTTP to C. In
this case the TTP will assign the value true to the variable finish, in order to
satisfy future petitions from A or/and B.

If C has not received the last message from B, C may initiate the following
second finish sub-protocol:

1. C → TTP : h(M), hA, hB, hC , ACKA, ACKB

2. TTP → C : IF cancelA = true THEN STTP (H(cancelled, hC))
ELSE ACKTTP ;

TTP stores finish = true

If the variable cancelA is true, it means B and A (in this order) had pre-
viously contacted the TTP. The TTP had given a message to A and B to
cancel the transaction, and now it has to send a similar message to C. If A
and B had not cancelled the exchange with the TTP previously, the TTP
will send the NR token ACKTTP to C. In this case the TTP will assign the
value true to the variable finish, in order to satisfy future petitions from A or/
and B.

3.2 Security Analysis

Once we have described the protocol, the first step of our analysis is to check
whether this protocol fulfills all the defined properties.

– It is an asynchronous protocol, i.e., messages can be lost or reach their des-
tination in an unsorted way.

– It is effective, since no TTP participation is needed if all parties behave
correctly.

– It is not fair, since some parties can be in an advantageous position at the
end of the protocol. Furthermore, this flaw cancels the rest of properties.
It does not fulfill timeliness, non-repudiation (parties could deny their ac-
tions), verifiability of TTP, transparency of TTP (the TTP signs affidavits),
and abuse-freeness (it allows an entity to decide the final outcome of the
protocol).

Using the TTP’s resolution protocol just described, let us have a look at
the following scenario. Suppose there are 4 participants (A,B1, B2, C), where
B1 and B2 behave as B in the resolution protocol as they are the intermediate
participants in the ring architecture.
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1. A→ B1 : M,hA

2. B1 → B2 : M,hA, hB1

3. B2 → C : M,hA, hB1 , hB2

4. C → A : hB1 , hB2 , hC

5. A→ B1 : hB2 , hC , ACKA

: B1 resolves:: cancel = true; and continues the protocol
6. B1 → B2 : hC , ACKA, ACKB1

7. B2 → C : ACKA, ACKB1 , ACKB2

8. C → A : ACKB1 , ACKB2 , ACKC

: A resolves:: cancelA = true; and continues the protocol
9. A→ B1 : ACKB2 , ACKC

10. B1 → B2 : ACKC

: B2 resolves:: finish = true; gets the contract
: and continues the protocol

11. B2 → C : ACK2B2

: C resolves:: cancelled

In this arbitrary protocol execution, all entities contact the TTP for resolving
the protocol even though they continue its execution, getting different results.
B1 invokes its cancel sub-protocol in step 5, A invokes its finish sub-protocol
in step 8, B2 invokes its finish sub-protocol in step 10, and after finishing the
protocol C invokes its second finish sub-protocol.

At the end of the protocol, and with the TTP’s help, B2 and C obtain
different results. This is due to lack of state variables to maintain the actual
status of the protocol. cancelA and cancelC are not enough for controlling
the status if n − 1 (n > 3) parties are dishonest when they cancel the pro-
tocol. In other words, there is no sub-protocol when Bi says it has not received
the last message from Bj (i > j) ∈ [P2 · · ·Pn−1] and the wrong sub-protocol
is used.

Furthermore, an inconsistency can be found in its explanation for 3 parties.
In the 3-party version, B and A cancel the protocol (in this order) but continue
with its execution. If the protocol stops before the last step, A and B have the
signed contract, but C can obtain only a cancel token instead. If priority to
the cancel token is assigned by the arbitrator, then the protocol is fair, since C
presents its cancel token to the arbitrator in case of dispute and the arbitrator
settles that the contract has been cancelled.

But if the last step occurs, then now, all get the signed contract but A and B
have cancel tokens. In this case priority to the finished state should be assigned,
as the honest party acting properly (C) got the contract. Nevertheless, the ar-
bitrator does not know who is the honest party, and cannot assign priority to
the tokens. This is a serious contradiction. And this happens with any sequence
(e.g., also if A and C cancel in this order while B is honest). As shown above,
parties cheat about their protocol state when contacting the TTP. Obviously,
the TTP can detect it, but can do nothing to repair the situation.
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Moreover, in the original work there is no dispute resolution process defined
for the multi-party version, which makes it more difficult to explicitly resolve
possible conflicts. We claim that in any design of a contract signing protocol, a
well-defined dispute resolution process has to be provided.

4 Conclusions

Contract signing is a particular form of fair exchange, in which the parties ex-
change commitments to a contract. Previous work mainly focused on two-party
contract signing. In some applications, however, a contract may need to be signed
by multiple parties. In this paper, we analyzed an optimistic N -party contract
signing protocol, and pointed out its security problem. This clearly demonstrates
that if we want a bank deposit to be made with several beneficiaries, further re-
search is needed on the multi-party fair exchange protocols and more concretely
on multi-party contract-signing protocols. Part of this research contemplates
formal verification and analysis of existing solutions.

This finding encourages us to study and improve existing multi-party contract
signing solutions. Definitely further work is needed in synchronous networks, and
an improvement of efficiency in asynchronous networks needs to be achieved to
bring these applications into reality with the user’s confidence.

Acknowledgements

The work described here is partially funded by the FP6-2002-IST-1 project
UBISEC, contract number 506926 and the first author has been funded by the
Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) under the
III Andalusian Research Plan.

References

1. N. Asokan, Birgit Baum-Waidner, Matthias Schunter, and Michael Waidner. Opti-
mistic synchronous multi-party contract signing. Technical Report RZ 3089, IBM
Zurich Research Lab, 1998.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for
multi-party fair exchange. Technical Report RZ 2892 (# 90840), IBM, Zurich
Research Laboratory, 1996.

3. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In Proceedings of 4th ACM conference on Computer and communications
security, pages 7–17. ACM Press, 1997.

4. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. IEEE Journal on Selected Areas in Communications, 18(4):593–610,
2000.

5. Feng Bao, Robert Deng, and Wenbo Mao. Efficient and practical fair exchange
protocols with off-line ttp. In Proceedings of 1998 IEEE Symposium on Security
and Privacy, pages 77–85. IEEE, May 1998.



Attacking an Asynchronous Multi-party Contract Signing Protocol 321

6. Birgit Baum-Waidner. Optimistic asynchronous multi-party contract signing with
reduced number of rounds. In Proceedings of 28th International Colloquium on
Automata, Languages and Programming, pages 898–911. Springer, 2001.

7. Birgit Baum-Waidner and Michael Waidner. Round-optimal and abuse-free multi-
party contract signing. In Proceedings of 27th International Colloquium on Au-
tomata, Languages and Programming, LNCS 1853, pages 524–535. Springer, 2000.

8. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, volume 36, pages 40–46,
1990.

9. M. Blum. Three applications of the oblivious transfer, 1981.
10. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Communications of the ACM, volume 28, pages 637–647, 1985.
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Rotger. Optimality in asynchronous contract signing protocols. In Proceedings
of 1st International Conference on Trust and Privacy in Digital Business, LNCS
3184. Springer, August 2004.

13. Juan A. Garay and Philip D. MacKenzie. Abuse-free multi-party contract signing.
In Proceedings of 13th International Symposium on Distributed Computing, pages
151–165. Springer, 1999.
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Institut für Algorithmen und Kognitive Systeme / E.I.S.S.,
Universität Karlsruhe (TH), Am Fasanengarten 5, 76128 Karlsruhe, Germany

{bohli, muellerq, sr}@ira.uka.de

Abstract. When using cryptographic protocols for security critical ap-
plications premature abort is a serious threat. We define two important
properties called quit fairness and quit correctness for protocols to resist
attacks by premature abort. The main result of the paper is that quit
fairness and quit correctness can be achieved for two-party secure func-
tion evaluation whereas for multi-party protocols the two properties of
quit fairness and quit correctness are mutually exclusive.

This negative result implies that countermeasures to premature abort,
e.g. optimistic protocols, are vital for secure electronic applications.

Keywords: Fairness, Cryptography, Security requirements.

1 Introduction

When using security protocols for electronic applications premature abort is
a serious threat. Imagine a secure multi-party computation for which knowing
the result is advantageous at the stock market, e.g. several companies securely
compute joint statistics on commercial data. In such a situation corrupted par-
ticipants can gain an unfair advantage if they can abort the computation while
having substantially more knowledge about the result than the honest partici-
pants.

In this work we consider two security aspects of a premature abort:

– Quit fairness: The corrupted parties should not obtain a substantial amount
of information about the result of the computation without having the uncor-
rupted participants learning an almost equal amount of information about
the result. More formally: When neglecting prior knowledge then the proba-
bility for the corrupted parties of guessing the correct result is always close
to the probability with which each honest party can guess the correct result.
This security property will be called quit fairness.

– Quit correctness: The adversary should not be able to “bias” the partial
information to lead an uncorrupted party to wrong conclusions and subse-
quently to wrong decisions. The corrupted parties could do this by aborting
the protocol in a moment when the partial information of the honest partic-
ipants hint at a specific result. The corresponding security property is called
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quit correctness and ensures that the corrupted parties cannot condition an
abort on the partial information known to the honest parties.

We use the term quit fairness from [1] to distinguish this kind of fairness from
other notions of fairness, e.g. fair scheduling or fair in the sense of unbiased coin
tosses. The main result of the paper is that quit fairness and quit correctness
can be achieved for two-party secure function evaluation whereas for multi-party
protocols the two properties quit fairness and quit correctness are mutually ex-
clusive. This negative result implies that countermeasures to premature abort,
e.g. optimistic protocols, are vital for secure electronic business.

RelatedWork. Quit fairness has mainly been studied in protocols for fair exchange,
where two parties try to exchange information, such that neither party gets the
other party’s information without giving her information to the other party. A sur-
vey article about fair exchange can be found in [2]. Luby, Micali and Rackoff [3] de-
scribe a protocol for fair exchange of a secret bit by flipping a symmetrically biased
coin. The idea of the coin tosses is that from one coin flip the parties receive only a
small piece of information about the other party’s secret and the symmetry guar-
antees that both participants obtain the same amount of information. However, it
allows a participant to recognize once he is ahead of the expected knowledge and
thus cannot achieve quit fairness in our strong sense. Other methods for distribut-
ing abit arediscussed in [4].Cleve [5] introduces an improvedversionof theprotocol
of [3] which avoids the mentioned attack and takes quit correctness into account.
Other occurrences of (quit) fair two-party protocols are fair non-repudiation (for
a survey see e.g. [6]) or fair contract signing [7].

The problem of general fair multi-party computation is considered by Gold-
wasser and Levin in [1] where they propose protocols for secure function evaluation
based on the oblivious transfer primitive, although, they do not consider the attack
mentioned above. Garay, MacKenzie and Yung [8] describe a way for quit fair com-
putations in a variant of the model of universal composability [9]. However, they
rely on computational assumptions plus the additional assumption that the com-
putational power of the adversary is approximately known. We will consider quit
fairness without exact bounds for the computational power of the adversary. Our
results remain valid for polynomially bounded adversaries, but for simplicity we
consider the adversary to be unbounded. Another approach with timing assump-
tions, namely “timed commitments”, is presented in [10].

In this work, we show that a quit fair and quit correct secure function evalu-
ation withstanding all known attacks is impossible for more than two parties. As
in [1] we study secure function evaluation in a multi-party setting, i.e., n parties
Pi, . . . , Pn aim at computing the result y of a boolean function f(x1, . . . , xn) where
xi is the input of party Pi. We consider just deterministic computations, but the
results are also valid for randomized computations by giving an additional input
α corresponding to the random choices of the ideal functionality and evaluation of
the function f(x1, . . . , xn, α).

Outline. First, in Sect. 2, we summarize the security model that is the basis for
the following section. In Sect. 3 we define and analyze quit fairness and quit cor-
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rectness and prove that quit fairness and quit correctness are mutually exclusive in
the multi-party case. Finally, in Sect. 4, we outline implications of our result and
conclude.

2 Security Model

We formulate the security notions of protocols in a simulation based security model
like the universal composability model [9] or the model of [11, 12]. In the simulation
based models a protocol is given in a real model and an ideal functionality speci-
fying the protocol task is given in an ideal model. The protocol in the real model
is called a secure realisation of an ideal functionality if the two models are indis-
tinguishable for a special machine, called the environment Z in [9] (respectively
honest protocol user H in [11, 12]).

In the real model a set of connected machines runs the protocol obtaining the
protocol inputs from Z and giving the protocol output to Z. Another special ma-
chineA is given to model the adversary that has the network under her control. In
the ideal model an ideal functionality F as a specification for the function evalua-
tion is doing the computation. F gets the protocol input xi for each uncorrupted
party from Z and delivers the output to Z, after it has received the inputs from
every party. In this model only a limited adversary, called simulator, is given. The
simulator has no access to messages sent betweenF and uncorrupted participants;
the simulater controls only inputs and outputs of corrupted participants. A proto-
col is regarded secure, if for any adversary in the real model, there exists an sim-
ulator in the ideal model, such that the environment cannot distinguish real and
ideal model.

Our impossibility results will be derived in the ideal model and hence apply to
all real protocols which implement a real functionality. To derive the impossibility
results we rely only on two properties of the security models:

– There is at most one machine active at any time.
– The adversary can always abort the protocol when she is active.

The first property is achieved in both models by a message driven scheduling, i.e. a
machine becomes only active when it receives a message. The message scheduling
is generally controlled by the adversary, though we assume an exception: Output
channels of the ideal functionalityF will be scheduled by the functionalityF itself.

We assume the adversary can abort the protocol at any time during her turn.
This assumption is justified not only because of the adversarial scheduling, but
also because the adversary is allowed to corrupt a majority of participants and
instruct them not to follow the protocol any further, while on the other hand a
minority cannot be able to complete the protocol. The result of an abort is that no
honest party will give any further output. Because we look at fairness in such abort
situations, settings like optimistic fair exchange (a trusted third party is available
which is used to recover the result if something goes wrong) are not considered.

We denote a single participant by M,M denotes the set of all protocol partic-
ipants. Further let H ⊆ M be the subset of honest and C := M \ H the set of
corrupted participants.
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3 Quit Fairness and Quit Correctness

3.1 Quit Fairness

Informally, by quit fairness we demand that an adversary cannot abort the proto-
col having received more knowledge than the honest parties. Quit fairness is not
implied in the ideal model. The standard formulation of a functionality F in the
sense of [9] for secure evaluation of a function f does not guarantee quit fairness:
The functionality waits for inputs x1, . . . , xn, computes y := f(x1, . . . , xn) and
outputs the result y to all participants. According to the properties of the security
model the messages are delivered one by one. Thus the adversary can corrupt a
party M and deliver the message y at first from F to M and then abort the proto-
col. In this case only the adversary learns y while the honest parties will not know
more about y than they could already deduce from their inputs.

Obviously, even in the ideal model, F should not output the result “at once”,
but generate an output sequence similar to the protocols for fair exchange [3, 5]. In
order to bound the additional knowledge a single corruptedparty canhave to ’being
maximally one packet ahead’ it needs to be ensured that no one will get the (n+1)-
th packet of the output sequence before every party knows the n-th packet. This
cannot be guaranteed if the functionality F ’s output channels are scheduled by
the adversary since the adversary could schedule the channels to corrupted parties
more frequently than the channels to honest participants. Therefore we assume
the ideal functionalityF assures that no messages will be delivered too early. This
is modelled by “localized” output channels, i.e., the delivery of messages on these
channels is self-scheduled by F itself ad seriatim.1

First we fix some notation. We denote the output sequence sent fromF to M by
outM. For r ∈ IN the elements of the output sequence that were scheduled up to the
r-th activation of the adversary will be denoted with outrM. Note that the output
sequence is finite and in absence of an abort all packets will be delivered, i.e., there
exists a R ∈ IN, such that for r ≥ R outrM = outM. For a set N of participants we
also write outN , outrN for the sets of according output sequences. Finally, to mea-
sure the information in an output sequence, we introduce an estimation function δ.
Let δ(outrM) be the estimation of the result based only on the ideal functionality’s
output sequence outrM:

δ(outrM) := argmaxŷ P (ŷ | outrM) .

In Sect. 3.3 we will use the abbreviation δi := δ(outrMi
).

Now we can define the property quit fairness. With a quit fair protocol it is
impossible for the adversary to abort the protocol such that she learns significantly
more about the output thanhonest parties, i.e., her probability to predict the result

1 As an alternative solution one could imagine that F sends the outputs to the differ-
ent parties one by one and waits for an acknowledgment for a message by the receiv-
ing party before sending further messages to any other party. Since this confirmations
would be additional protocol inputs, it would be a legal usage for the environment Z
to omit the messages and provoke an abort.
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based only on the output is no more than 1
k greater than the probability of honest

parties for security parameter k and some constant c. This leads to the following
formal definition:

LetF be an ideal functionality for secure evaluation of a function y = f(x1, . . . ,
xn) for inputs (x1, . . . , xn). LetMbe the set of participating parties,H⊆Mbe the
subset of honest participants and C :=M\H the subset of corrupted participants.
Let outM, with P (δ(outM) = y) = 1, denote the output delivered to M ∈ M and
outC the adversary’s output.

Definition 1 (Quit fairness). A functionality F is called quit fair if the adver-
sary can not abort in a moment when she has an advantage greater than 1

k for the
security parameter k:

∀r ∈ IN ∀A ∀M ∈ H :

P (δ(outrM) = y | A aborts in r) ≥ P (δ(outrC) = y) | A aborts in r)− 1
k
,

where the probability is taken over the distribution of all outputs outM of F .

Remark 1. Note that in [1] the definition of quit fairness is different. The knowl-
edge of a participant is measured in the increase of the probability to guess the
correct output. The definition of Goldwasser and Levin demands that per round
every party gets an information less than 1

k for a security parameter k with addi-
tional conditions on the mean value and the standard deviation of the probability
ratio of wrong and correct guesses for a player.They prove a protocol to be quit fair
according to their definition. This protocol delivers one bit of information by send-
ing bits which are results from coin tosses which have a bias towards the correct
result.

In this work we do not adopt the definition of [1], but introduce a conceptually
simpler definition of quit fairness. However, it can easily be seen that the impossi-
bility results can be carried over to the definition of [1].

3.2 Output Distribution

We study now the distribution of the output sequences outM of a quit fair func-
tionality. Let us assume as a first attempt a two party case where both parties get
independent coin tosses biased to the result. As shown in [3], by theory of random
walks, the adversary can get an advantage in some runs of such sequences of bi-
ased coin tosses. The reason is that the adversary can recognize when it is very
likely that she has an advantage. Namely, when she gets a higher ratio of equal bits
than expected from the bias, the adversary can abort the protocol in this moment
and has with high probability more information than average. Obviously, if every
party gets the same bits, the quit fairness property is fulfilled. However, as shown
in Sect. 3.3, quit correctness is missing.

A method for the output generation that achieves quit fairness is proposed in
[5]. Cleve introduces a protocol for fair exchange of secrets. The protocol uses a
gradual disclosure scheme with T rounds. The bit to be learnt is denoted by y.
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Before the protocol starts T − 1 values pi are fixed such that 1
2 < p1 < · · · < pT =

1 and the protocol computes in round i a bit zi so that P (δ(z1, . . . , zi) = y) =
P (zi = y) = pi. The values pi are the steps in which the probability advances that
a uncorrupted participant learns the result.

This approach yields a method for the ideal functionalityF to compute for ev-
ery party M ∈M output sequences outM := {zM

1 , . . . , z
M
T }. We assume thatF com-

putes an independent sequence for each participant M. At first k values pi = i/k+1
2

are fixed. The ideal functionality F has to assure that no party receives zi+1 be-
fore all parties have received zi. Then the protocol guarantees that after output
round t the confidence level for all M is P (δ(outM,t) = y) = pt. An ideal function-
ality for two-party computation using Cleve’s approach for computing the output
sequences is indeed quit fair.

Lemma 1. Let F be an ideal functionality for the computation of y = f(x1, x2)
with n = 2 participants that—step by step—outputs independent sequences for the
two participants according to [5]. Then F is quit fair.

Proof. If the adversary has corrupted one party, she can be only one output packet
ahead. Therefore her certainty about the result can be pi contrary to pi−1 for the
honest party. But the difference pi − pi−1 goes to zero in the security parameter k
whichdetermines thenumber of rounds. If the adversaryhas corruptedbothparties
the protocol is trivially fair, since there are no uncorrupted parties left. ��

In spite of this lemma for the two-party case we have to be careful if more than
two parties are involved. A quit fair functionality F that outputs sequences outM
independently generated for each M can not be quit fair for three and more parties.
Obviously the adversarycan corrupt twoparties and will get two output sequences.
Because the output sequences are (conditionally) independent, and hence different
with high probability, it will provide additional information. We characterize the
output distribution of quit fair functionalities formally in a lemma:

Lemma 2. Let F be a quit fair ideal functionality for the computation of y =
f(x1, . . . , xn) with n ≥ 3 participantsM = {M1, . . . ,Mn}. Let outrMi

be the out-
put received by Mi ∈ M before the r-th activation of the adversary and pr :=
P (δi

2 = y) ≥ 0.5 be the probability that participant Mi’s output points to the cor-
rect result. Then the outputs outMi and outMj of two different participants i, j are
equal with a probability converging to 1 for k → ∞. More precisely: for all r ∈ IN,
i, j ∈ {1, . . . , n}:

P (δi = δj) ≥
pr − 1

2 −
1
k

pr − 1
2 + 1

k

.

Proof. Let F be a quit fair ideal functionality for a multi-party computation with
partiesM = {M1,M2,M3, . . . ,Mn}.Wewill concentrate on the partiesM1,M2,M3
and assume without restriction that the adversary has corrupted two of them: C =
{M1,M2}. The output sequences accessible for the adversary aredenotedbyoutC =

2 δi is a short form for δ(outr
Mi

).
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{outM1 , outM2}; the uncorrupted party M3 gets output outM3 . Now consider the
adversary aborts the protocol in activation r if both of her outputs at this time
yield the same result δ1 = δ2. Obviously, the adversary’s guess for the result in this
case will be δ(outrMC ) := δ1 = δ2. By quit fairness we have for the probability that
the adversary guesses the correct result:

P (δ(outrC) = y | δ1 = δ2) ≤ P (δ3 = y) +
1
k

. (1)

Note that:

P (δ1 = δ2) + P (δ1 = y) + P (δ2 = y) = 1− 2 · P (δ1 = δ2 = y) . (2)

By applying Bayes’ rule we get:

P (δ(outr{M1,M2}) = y | δ1 = δ2) =
P (δ1 = δ2 = y)
P (δ1 = δ2)

(2)
=

P (δ1 = δ2)− 1 + P (δ1 = y) + P (δ2 = y)
2P (δ1 = δ2)

(1)
≤ P (δ3 = y) +

1
k

,

and by solving for P (δ1 = δ2):

P (δ1 = δ2) ≥
1
2 (P (δ1 = y) + P (δ2 = y)− 1)

P (δ3 = y)− 1
2 + 1

k

≥
P (δ3 = y)− 1

2 −
1
k

P (δ3 = y)− 1
2 + 1

k

,

using P (δi = y) ≥ P (δ3 = y)− 1
k for i ∈ {1, 2}. ��

This lemma shows that in a setting with more than two parties the outputs have
to be almost identical for all parties. Unfortunately, the protocol of [5] turns out
not to be quit fair, if the parties get identical outputs with a high probability. This
can be easily understood in a two-party scenario. The adversaries strategy, having
corrupted one participant, is to abort in some fixed round r if she just has got a new
output element that differs from the previous one and that is still unknown to the
honest party. Let us assume that this element was the t-th element, so she can now
correctly guess the output with a probability pt, hence without considering this
element she was wrong with a probability of pt and because this probably wrong
output is still the current output of the honest party, this party will guess right only
with a probability of 1− pt, significantly less than the expected pt−1.

3.3 Quit Correctness

So we reconsider the output generated by a random coin biased towards the result.
When every party gets independent coins, the protocol cannot be quit fair if the
adversary can corrupt more than one participant. But the protocol will be quit fair
if all participants get the same bit every round. Although we have quit fairness for
more than two parties now a new problem arises if the outputs of the adversary and
an honest party M are identical. The adversary can abort the protocol execution
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in a moment the party’s output outM is to her favor. Even worse, if the adversary
already knows the result y, e.g. by her inputs or by available external information,
the abort can be in a moment the honest participants are misled. In this case party
M will guess the result wrong. This is not violating the quit fairness property since
the adversary’s output does not contain more information about y3, but the honest
party M gets less information than expected. We call a protocol that is not suscep-
tible to this attack quit correct.

For a quit correct protocol the average information in the output honest par-
ties have got at an abort in round r should be independent of the adversary’s abort
strategy, i.e. the adversary cannot condition her abort strategy on the information
of the honest parties. We try to capture this in the following definition, using the
notation from Definition 1: LetF be an ideal functionality for secure function eval-
uation of a function y = f(x1, . . . , xn) for inputs (x1, . . . , xn). LetM be the set
of participants, H ⊆ M be the subset of honest participants and C := M \ H
the subset of corrupted participants. Let outM, with P (δ(outM) = y) = 1, denote
the output delivered to M ∈ M and outC the adversary’s output. We compare the
output distribution of honest participants in the case of a premature abort when
interacting with different adversariesA1 andA2.

Definition 2 (Quit correctness). A functionality F is called quit correct if for
all inputs (x1, . . . , xn) and all adversaries A1 andA2, which have a non-zero prob-
ability to abort in the same round (based on different strategies):

∀r ∀M ∈ H :
P (δ(outrM) = y | A1 aborts in r) = P (δ(outrM) = y | A2 aborts in r) .

We will now study how quit correctness affects the output distribution of F and
compare it to the results obtained in Sect. 3.2.

Lemma 3. Let F be a quit correct ideal functionality for secure function evalua-
tion of a function y = f(x1, . . . , xn) for inputs (x1, . . . , xn). Then for every pair
of parties M1,M2 ∈ M and for all r ∈ {1, . . . , k} the output sequences outrM1

and
outrM2

are indistinguishable from conditionally independent given y:

P (δ1 = y, δ2 = y) = P (δ1 = y) · P (δ2 = y) ,

with overwhelming probability.

Proof. LetA1 andA2 be two adversaries that know the result of the computation
in advance. Given y, let outM1 and outM2 be distinguishable from conditionally
independent. Then there exists a r where with a non-negligible probability:

P (δ2 = y | δ1 = y) �= P (δ2 = y) ,

with probabilities taken over the outputs. LetA1 abort the protocol always in the
r-th round andA2 abort in the r-th round only if δ1 �= y. Then the protocol is not
quit correct. ��
3 To carry out this attack one can think of the adversary knowing the result a priori or

she has an interest in leading an honest party to a specific decision.
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Theorem 1. For an ideal functionality realizing a nontrivial secure function eval-
uation with n > 2 participants the properties of quit fairness and quit correctness
are mutually exclusive.

Proof. The result follows immediately by combining Lemma 2 and 3. The outputs
have to be almost equal to reach quit fairness, while quit correctness requires a
output distribution indistinguishable from conditionally independent. ��

4 Conclusions

The desirable security properties of quit fairness and quit correctness are individ-
ually achievable, but mutually exclusive for protocols involving three or more par-
ties. It is difficult to say which of the two properties is more important, because
learning a partial result seems to be useless if it can (with a certain probability) be
biased by the adversary.

This dilemma becomes apparent if one bases a decision at the stock market
on the result of a secure computation. If the protocol is not quit fair it might give
the adversary a competitive edge, whereas if it is not quit correct one cannot ac-
tually use the partial results. Applications of secure computations should ensure
quit fairness and quit correctness. Hence, future research should continue to de-
velop reasonable assumptions4 to guarantee this.
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Abstract. We present a bandwidth-efficient off-line anonymous e-cash
scheme with traceable coins. Once a user double-spends, his identity can
be revealed and all his coins in the system can be traced, without resort-
ing to TTP. For a security level comparable with 1024-bit standard RSA
signature, the payment transcript size is only 512 bytes. Security of the
proposed scheme is proven under the q-strong Diffie-Hellman assumption
and the decisional linear assumption, in the random oracle model. The
transcript size of our scheme can be further reduced to 192 bytes if ex-
ternal Diffie-Hellman assumption is made. Finally, we propose a variant
such that there exists a TTP with the power to revoke the identity of
a payee and trace all coins from the same user, which may be desirable
when a malicious user is identified by some non-cryptographic means.

Keywords: E-cash, Coin-traceability, Bilinear Pairing.

1 Introduction

To conduct business transaction over the Internet, one of the ways to make
payment is to use e-cash. The simplest model of an e-cash scheme involves three
types of parties: banks B, shops S, and customers C. An e-cash scheme is a set
of protocols which includes withdrawal (by C from B), purchase (by C to S)
and deposit (by S to B). In the electronic world, all objects are represented by
data; e-cash is by no means an exception. Special design can be incorporated in
real cash to prevent counterfeiting, but it is easy to duplicate e-cash. Thus it is
necessary to prevent a user from spending the same coin twice (double-spending).

Resembling real cash, it is desirable that the shop can accept a payment au-
tonomously, without consult any other parties, possibly the bank. E-cash scheme
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satisfying this property is described as an off-line one. The coins are most prob-
ably spent in two different shops when they are double-spent. It is kind of im-
possible for the shops to check for double-spending on their own. Instead, the
bank checks for double-spending when the shops deposit the coins. Either the
shops will get the real payment, or the bank will identify the double-spender.
On the other hand, honest spenders cannot be slandered to have double spent
(exculpability), and when the shops deposit the money from the payee, the bank
should not be able to trace who the actual spender is (anonymity).

Many e-cash systems allow the identification of double-spender have been
proposed, but most of them rely on the existence of a trusted third party (TTP)
to revoke the anonymity (so as to identify the double-spender) when double-
spending occurs. The revocation is done probably with the help of a database
maintained by the bank, where certain tracing information obtained during the
withdrawal protocol are stored. This information is usually in an encrypted form
that is believed to be decryptable by the TTP only.

Even though a secure e-cash system prevents the TTP from slandering an
honest spender, the revocation feature gives the TTP an elusive power to revoke
the anonymity of honest spender as well. To remove this high level of trust, an
anonymous e-cash scheme should support owner-tracing without TTP. Identity
of double spender should be revoked while the identity of honest user is always
protected. To further punish the double spender, all coins spent (and possibly to
be spent) by a cheating user can be linked while the withdrawals and payments
of an honest user remains unlinkable. That is, certain information can be put
in a blacklist so that the coin from the double-spenders can be recognized when
it is spent. Moreover, such coin-tracing can only be (instead of trusted to be)
performed after double-spending has occurred.

Recent proposal by Camenisch, Hohenberger and Lysyanskaya [8] supports
traceability of owner and coin without a TTP. Moreover, their scheme (here-
inafter referred as CHL scheme) has the distinctive feature that a user can with-
draw more than one coin in a single withdrawal protocol, and these coins can
be spent in an unlinkable manner. Put it in a more formal way, 2� coins can be
withdrawn with the cost of O(� · k) instead of O(2� · k), where k is a security
parameter. As a result, a “compact electronic wallet” is made possible.

Our Contributions.

– We propose three short e-cash systems with different features:
1. identification and coin-tracing of double-spender without TTP.
2. even shorter payment transcript size.
3. owner-tracing and coin-tracing of honest users with the help of a TTP.

– We reinvestigate the efficiency of the CHL scheme, which includes the band-
width requirements in payment and deposit protocol, and also the bank’s
storage requirement. We compare it with our proposal for typical usage.

Organization. Next two sections discuss related works and technical prelimi-
naries. We define our security model in Section 4. The constructions of the e-cash
systems are presented in Section 5, accompanied by a comparison of our proposal
with the CHL scheme. We conclude the paper in Section 6.
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2 Related Work

To protect the benefit of the banks, e-cash should deter counterfeiting. A secure
digital signature, being unforgeable, is a good candidate for implementing e-cash.
The idea of blind signature was proposed in [11] to support untraceable payment
system. The bank can sign on the information associated with the transaction
in a blinded way without knowing the information about an individual’s where-
abouts and lifestyle. Beside, blind signature ensures unlinkability: even the bank
is given the message/signature pair at later stage, it is impossible to recollect the
corresponding invocation of signing protocol. However, the property that user
can ask the bank to blindly sign any message is undesirable. Cut-and-choose
methodology was applied in [12] such that the bank can ensure by statistical
probability that the user has not presented a malformed message. But it is very
inefficient by nature. Alternatively, later research work proposed using variations
of blind signature scheme, such as restrictive blind signature [6] and partially
blind signature [1], to prove a user has not breached security.

Group signatures, introduced by Chaum and Heyst [13], allow individual
members to make signatures on behalf of the group. The identity of the ac-
tual signer is kept secret, but there is a TTP that can revoke this anonymity.
Group signature also provides “another kind” of unlinkability, such that the
signature produced by the same signer is unlinkable. These privacy-oriented
properties (signer-anonymity and unlinkability) have been utilized in various e-
cash proposals. The concept of “member” plays different roles in various e-cash
proposal; for examples, the issuing banks [18], the payees who spend the coins
[18, 19, 23, 25], and the coins themselves (referred as “group of coins” model)
[10, 20].

The unlinkability of these signatures could be used maliciously, like money
laundering and obtaining a ransom safely [27]. Fair e-cash system, suggested
independently by [7] and [24], can detect the misuse by criminal when necessary.
In fair blind signature [24] and group signature, a TTP can revoke the unlinka-
bility and anonymity respectively. The existence of TTP is especially useful in
designing fair e-cash systems. Examples include [25, 19, 23, 10].

For detection of double-spending, the idea of cut-and-choose can also help.
However, many similar components are involved in the cash, which make the
scheme inefficient. More efficient mechanism involves a single-term only, an ex-
ample is the secret sharing line method in [14, 15]. The technique to realize this
“single-term” property may vary in different schemes [6, 14, 15, 21].

In the “group of coins” model, double-spending detection mechanism can
be achieved by compromising the unlinkability of signer-anonymous signatures.
Some schemes exploited this idea implicitly. For example, the scheme in [10]
incorporated a “linkability tag” to the underlying group signature scheme [2] to
ensure the linkage of double-spent coins. As noted in [26], accusatory linking that
outputs the identity of the double-spender is needed for offline e-cash system,
or the cheater has already benefited by exchanging the double-spent coins with
the goods or services before the coins are voided by the bank.
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In addition to double-spending detection, it is beneficial to have the coin-
traceability, such that all the coins withdrawn by a particular payee can be
traced. Early fair e-cash systems either do not support coin tracing (e.g. [19]
and [25]), rely on the online participation of a TTP (e.g. [7]), or rely on the
offline presence of a TTP (e.g. [10] and [24]). Usually the TTP is overpowered.
For examples, the TTP in [17] can trace the coins spent by any honest user,
and the TTP in the linkable group signature extension of [26] can reveal the
identity of any honest user. A new idea of coin-tracing is to do , the coin-tracing
without a TTP: any party can trace the coins of the same payee once this payee
double-spent [8]. The mechanism in [8] is efficient in the sense that one-by-one
checking on spent coins is not necessary, in contract with the traceable signatures
in [17].

Note that coin-traceability is different from double-spent coins detection.
The later only applies on the coins spent by a double-spender, but the former
notion has said nothing about it. For examples, the scheme in [22] and the e-
cash system from the transaction escrow scheme in [16] support coin-tracing of
any user.

3 Preliminaries

We review concepts related to bilinear pairings ê : G1 ×G2 → GT .

– G1 and G2 are two cyclic multiplicative groups of prime order p.
– g1, g2 are generators of G1 and G2 respectively.
– ψ is a computable isomorphism from G2 to G1 and ψ(g2) = g1.
– ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– ê(g1, g2) �= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1,
G2) are a bilinear group pair if the group action in G1, G2, the isomorphism ψ
and the bilinear mapping ê are all efficiently computable.

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follows: Given a quadruple (g, ga, gb, gc) ∈ G4,
decides whether c = ab. We say that the (t, ε)-DDH assumption holds in G if no
t-time algorithm has advantage at least ε in solving the DDH problem in G.

Definition 2 (Decisional Linear Diffie-Hellman). The Decisional Linear
Diffie-Hellman (DLDH) problem in G1 is defined as follows: Given a sextuple in
the form of (g1, g2, g3, g1

a, g2
b, g3

c) ∈ G1
6, decides whether c = a+b. We say that

the (t, ε)-DLDH assumption holds in G1 if no t-time algorithm has advantage at
least ε in solving the DLDH problem in G1.

DLDH problem is proposed and proven secure in the generic group model in [4].

Definition 3 (q-Strong Diffie-Hellman). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1,G2) is defined as follows: Given a (q + 2)-tuple (g1, g2,
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gx
2 , g

x2

2 , · · · , gxq

2 ) ∈ G1 ×G
q+1
2 , output a pair (A, c) such that A(x+c) = g1 where

c ∈ Z∗
p. We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if no t-time

algorithm has advantage at least ε in solving the q-SDH problem in (G1,G2).

Again, q-SDH problem is proven secure in the generic group model [3].

Definition 4 (eXternal Diffie-Hellman). The eXternal Diffie-Hellman
(XDH) problem in (G1,G2,GT ) is defined as solving the DDH problem in G1
given the follwing three efficient oracles

1. solving DDH problem in G2,
2. computing the isomorphism from G2 to G1,
3. and computing the bilinear mapping of groups G1 ×G2 to GT .

We say that the (t, ε)-XDH assumption holds in (G1,G2,GT ) if no t-time algo-
rithm has advantage at least ε in solving the XDH problem in (G1,G2,GT ).

The above assumption implies that the isomorphism is computationally one-
way, i.e. there does not efficient way to complete ψ−1 : G1 → G2. The discus-
sion on the choice of elliptic curves which can make the above assumption hold
can be found in [4]. In short, the bilinear groups (G1,G2) should be instanti-
ated using the Weil or Tate pairing over MNT curves; but not supersingular
curves.

4 Security Model of E-Cash System

4.1 Framework

An anonymous e-cash system consists of three parties: the bank, the user and
the merchant, together with the following six algorithms.

– Setup. On input an unary string 1λ, where λ is a security parameter, the
algorithm outputs a master secret key s and a list of publicly known system’s
parameter param. In an anonymous e-cash, the master secret key is owned
by the bank which allows it to issue electronic coins.

– User Setup. On input of param, randomly outputs a key pair (pk, sk).
– Withdrawal. The user with input (pk, sk) withdraws a electronic coin from

the bank. The bank responses with input s. After executing the protocol,
the user obtains the coin c while the bank retains certain information τw
which allows it to trace the user should this user double-spends some coin.
The bank maintains a database for this trace information.

– Payment. The user with input c spends. The merchant response with input
param. After the protocol the merchant obtains a transcript including a proof
of validity π of the coin c, and possibly some auxiliary information aux, and
outputs 0/1, depending whether the payment is accepted.

– Deposit. The merchant submits (π, aux) to the bank for deposit. The bank
outputs 0/1, indicating whether the deposit is accepted. It is required when-
ever a honest merchant obtains (π, aux) by running the Payment protocol
with some user, there is a guarantee that this coin will be accepted by the
bank. The bank adds (π, aux) to the database of spent coins.
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– Owner tracing (of double-spender). Whenever a user double spent, this
algorithm allows the bank to identify the double spender. Formally, on in-
put two payment protocol transcripts from the same coin c, the algorithm
outputs the public key pk of the owner of coin c.

– Coin tracing (of double-spender). Whenever a user double spent, this
algorithm allows the bank to publish some tracing information so that all
spending of the same user are identified. Formally, on input two payment
transcripts from the same coin c of the same owner pk, outputs a set of
information {tag} so that anyone with {tag} can identify all coins from user
(with public key pk) during the payment protocol.

We stress that the difference between fair e-cash and anonymous e-cash is
that, in the former case, there exists a TTP which can revoke the anonymity of
the coin and hence the privacy of the user. Whether this is desirable or not de-
pends the application as the unconditional anonymity can be misused for illegal
purposes such as money laundering or perfect blackmailing.

4.2 Security Definition

Security properties are described informally at first.

– Correctness. If an honest user runs Withdrawal with an honest bank and
runs Payment with an honest merchant, the merchant accepts the coin. The
merchant later runs Deposit with the bank, which will accept the coin.

– Balance. It means that no collusion of users and merchants can ever spend
more coins than they withdrew. This is the most important property from
the bank’s point of view. We require that the adversary, after running qu

Withdrawal protocol with the bank, cannot run the Deposit protocol suc-
cessfully with the bank for qu + 1 times. A deposit query is successful if
either (1) the bank accepts the coin or (2) the bank identifies the coin is
being double-spent but is unable to identify the double spender1.

– Identification of double-spenders. It is required that suppose a user double
spent, he must be identified.

– Tracing of double-spenders It is required that if a user double spent, all of
his other coins can be traced regardless of it is spent honestly or not.

– Anonymity of users Even when the bank cooperates with any coalition
of users and merchants, cannot learn anything about an honest user’s
spending.

– Exculpability An honest user cannot be accused of having double spent.

We focus on Balance and Anonymity, the two most important requirements
of e-cash system. The capabilities of an adversary A is modeled as oracles that
answers the following queries from the adversary.
1 It is assumed that the bank holds the responsibility to charge the double-spender,

so the merchant is credited even if the coin has been identified to have been double-
spent. An honest merchant may not be able to detect double-spending in an off-line
anonymous e-cash system. Thus, condition (2) is included in the definition of balance.
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– Withdrawal queries: A engages in the withdrawal protocol as user and ob-
tains a valid coin.

– Payment queries: A engages in the deposit protocol as a merchant.
– Hash queries: A can ask for the values of the hash functions for any input.

We require that the answers from the oracles are indistinguishable from the view
as perceived by an adversary in real world attack.

Balance. The following game played between a challenger C and an adversary
A formally defines the Balance property.

Definition 5 (Game Balance).

– (Initialization Phase.) The challenger C takes a large security parameter λ
and runs the Setup to generate a list of system’s parameters param and also
a master secret key s. C keeps s to itself and sends param to A.

– (Probing Phase.) The adversary A can perform a polynomially bounded num-
ber of queries to the oracles in an adaptive manner.

A wins the above game if the number of successful withdrawal queries plus
payment queries is less than that of successful deposit queries. A deposit query
is successful if either the bank accepts the deposit request or the bank identifies
double-spent but is unable to identify the double spender. The advantage of A is
defined as the probability that A wins.

Definition 6 (Balance). An e-cash game is said to have the Balance property
if no adversary has a non-negligible advantage in the game Balance.

Anonymity. The following game played between a challenger C and an adver-
sary A formally defines the anonymity of e-cash system.

Definition 7 (Game Anonymity).

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs the Setup to generate a list of system’s parameters
param and also the bank’s secret key s. C gives s and param to A.

– (Challenge Phase.) The adversary A runs the withdrawal protocol with C.
Then C runs deposit protocol with A acting as the bank.

– (End Game Phase.) The adversary A decides if the underlying coin of the
two runs are the same.

A wins the above game if it guesses correctly. The advantage of A is defined
as the probability that A wins minus 1

2 .

Definition 8 (Anonymity). A e-cash scheme is anonymous if no adversary
has a non-negligible advantage in the game Anonymity.
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5 Our Proposed E-Cash Systems

Global parameters for both systems. Let λ be the security parameter.
(G1,G2) is a bilinear group pair with computable isomorphism ψ as discussed.
|G1| = |G2| = p for some prime p of λ bits. H : {0, 1}∗ → Zp is a cryptographic
hash function. We assume there exists a group Gp of order p where DDH is hard.

5.1 Short E-Cash

We present a short e-cash system that supports identification and coin tracing
of double-spender without the need of a TTP. We require the user to verifiably
encrypt the tracing information under his own public key during the withdrawal
protocol, assuming PKI is deployed. By using technique in [6], secret key of the
double-spender can be extracted, and thus tracing information can be decrypted.

– Bank Setup. The bank’s public key is bpk = (g1, g2, w, h1, h2, h3, u, v, h, ht)
and the private key bsk = γ, generated as follows.
1. Randomly generates generator g2 ∈ G2 and sets g1 = ψ(g2).
2. Randomly selects γ ∈R Z∗

p and sets w = g2
γ .

3. Randomly selects generators h1, h2, h3, u, v ∈R G1.
4. Randomly selects generators h, ht of Gp.

– User Setup. Each user is equipped a discrete logarithm type of public and
private key pair (hs, s) ∈ Gp × Z∗

p.
– Withdrawal Protocol. When a user with public key y = hs ∈ Gp wants to

withdraw money from the bank, the following protocol is executed.
1. User selects ā, b̄ such that āb̄ = s, computes C̄ = hā

1h
b̄
2 ∈ G1, and a

signature based on proofs of knowledge (SPK) Π1 that C̄ is correctly
formed. User sends (C̄,Π1) to the bank.

2. The bank verifies that Π1 is valid, randomly generates r and sends it
back to the user.

3. User then computes a = ār, b = b̄r−1, C = h1
ah2

b, and computes the
encryption R of ht

a and ht
b under its public key hs for coin tracing. User

sends to the bank C, R and SPK Π2 that they are correctly formed.
4. The bank verifies that Π2 is valid, randomly selects x ∈R Z∗

p and com-

putes A = (g1C)
1

γ+x ∈ G1. The bank sends (A, x) back to the user.
5. The bank keeps (A, x,C,Π2) in record and debits the user accordingly.
6. User checks if the coin (A, x, a, b) satisfies ê(A,wgx

2 ) = ê(g1ha
1h

b
2, g2).

The encryption and the proof Π1 and Π2 are shown in the appendix.
– Payment Protocol. Suppose the user spends the coin (A, x, a, b) to a mer-

chant with the identity I ∈ {0, 1}∗, the following protocol is executed.
1. User randomly generates α, β ∈R Z∗

p, computes the auxiliary commit-
ment A1 = uα, A2 = vβ , A3 = Ah3

α+β , and tracing information
B1 = ht

a and B2 = ht
b. {A1, A2, A3} ∈ G1 and {B1, B2} ∈ Gp.

2. User computes two helper values δα = xα and δβ = xβ.
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3. User undertakes a proof of knowledge of values (α, β, x, a, b, δα, δβ) sat-
isfying the relations: A1 = uα, A2 = vβ , Ax

1 = uδα , Ax
2 = vδβ , B1 = ht

a,
B2 = ht

b, ê(A3, g2)xê(h3, g2)−(δα+δβ)ê(h3, w)−(α+β)ê(h1, g2)−aê(h2, g2)−b

=
ê(g1,g2)

. This proof of knowledge proceeds as follow.

and B1
?= Bc

2ht
st both hold and rejects otherwise.

– Deposit Protocol. The merchant with identity I sends the payment tran-
script (σ, c, st) and M to the bank. The bank verifies the payment transcript
exactly as the merchant did. In addition, the bank has to verify that I is
indeed the identity of the merchant and (M,σ) is not used before by that
merchant. This is to prevent colluding users and merchants submitting dou-
ble spent coin (which have completely identical transcript). The bank also
checks for double-spending by searching if the (B1, B2) is already existing in
some entry in the deposit database. If it is not found, (B1, B2, c, st) is stored
and the payment is accepted as valid. Otherwise it is a doubly-spent coin.

– Owner Tracing. Let the two payment transcripts are (σ, c, st) and (σ′, c′, s′t),
the bank computes b̂ = st−s′

t

c′−c and â = st +cb̂. The private key and the public
key of the double-spender are ŝ = âb̂ and ŷ = hŝ respectively.

– Coin Tracing. The bank decrypts the value ht
a and ht

b for all other coins
issued to the double-spender by the exposed key pair.

5.2 Shorter -Cash

We can further shorten our payment transcript to 192 bytes with the XDH
assumption. We highlight the changes from the short e-cash system as follow.

– Bank Setup. Basically the same except the bank’s public key is shortened
to bpk = (g1, g2, w, h1, h2, h, u, v).

ê(A3,w)

• (Auxiliary Commitment.) User computes A1, A2, A3, B1, B2 as above.
• (Commitment.) User randomly selects rα, rβ , rx, ra, rb, rδα , rδβ

∈R

Z
∗
p, computes T1 = urα , T2 = vrβ , T3 = Arx

1 u−rδα , T4 = Arx
2 v−rδβ ,

T5 = ê(A3, g2)rx ê(h3, g2)
−rδα−rδβ ê(h3, w)−rα−rβ ê(h1, g2)−ra ê(h2, g2)−rb ,

T6 = h
(ra)
t and T7 = h

(rb)
t . T1, T2, T3, T4 are in G1, T5 is in GT and

T6 ,T7 are inG p.• (Challenge.) Merchant sends the transaction information M to user.
User computes c =

H
(A1, A2, A3, B1, B2, T1, T2, T3, T4, T5, T6, T7,M, I).

• (Response.) User computes sα = rα − cα, sβ = rβ − cβ, sx = rx −
cx, sδα

= rδα
− cδα, sδβ

= rδβ
− cδβ , sa = ra − ca, sb = rb −

cb and st = a − cb. User sends (σ, c, st) to merchant, where σ =
(A1, A2, A3, B1, B2, sα, sβ , sx, sa, sb, sδα

, sδβ
).

• (Verify.) Merchant computes
∗ T̃1 = Ac

1u
sα , T̃2 = Ac

2v
sβ , T̃3 = Asx

1 u−sδα , T̃4 = Asx
2 v−sδβ ,

∗ T̃5 = ( ê(g1,g2)
ê(A3,w) )

c ê(A3,g2)
sx

ê(h3,g2)
(sδα

+sδβ
)
ê(h3,w)(sα+sβ)ê(h1,g2)sa ê(h2,g2)

sb

,

∗ T̃6 = Bc
1ht

sa , T̃7 = Bc
2ht

sb .

Accepts if c
?= H(A1, A2, A3, B1, B2, T̃1, T̃2, T̃3, T̃4, T̃5, T̃6, T̃7,M, I)

E
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– User Setup. Basically the same except the group Gp is replaced with G1.
– Withdrawal Protocol. The coin (A, x, a, b) is generated with the same

mechanism and hence Ax+γ = g1h
a
1h

b
2 still holds. But the tracing infor-

mation becomes A1 = ua and A3 = ub. To accommodate the changes, we
need a new SPK Π3 instead of the original Π2. Again Π3 is shown in the
appendix.

– Payment Protocol. User spends the coin (A, x, a, b) to a merchant with the
identity I ∈ {0, 1}∗ by executing the following protocol.
1. User computes auxiliary commitment A1 = ua, A2 = Ava, A3 = ub and

a helper value δ = xa.
2. User undertakes a proof of knowledge of values (a, b, x, δ) satisfying

A1 = ua, Ax
1 = uδ, A3 = ub, ê(A2, g2)xê(v, g2)−δ ê(v, w)−a ê(h1, g2)−a

ê(h2, g2)−b = ê(g1,g2)
ê(A2,w) . This proof of knowledge proceeds as follow.

• (Auxiliary Commitment.) User computes A1, A2, A3 as above.
• (Commitment.) User randomly selects ra, rb, rx, rδ ∈R Z∗

p, computes
∗ T1 = ura , T2 = Arx

1 u−rδ ,
∗ T3 = ê(A2, g2)rx ê(v, g2)−rδ ê(v, w)−ra ê(h1, g2)−ra ê(h2, g2)−rb .

• (Challenge.) Merchant sends the transaction informationM ∈ {0, 1}∗
to user. User computes c = H(A1, A2, A3, T1, T2, T3,M, I).
• (Response.) User computes sa = ra − ca, sb = rb − cb, sx = rx − cx,
sδ = rδ − cδ and st = a − cb. User sends (σ, c, st) to the merchant,
where σ = (A1, A2, A3, sa, sb, sx, sδ).
• (Verify.) Merchant computes T̃1 = Ac

1u
sa , T̃2 = Asx

1 u−sδ and T̃3 =
( ê(g1,g2)

ê(A2,w) )
cê(A2, g2)sx ê(v, g2)−sδ ê(v, w)−sa ê(h1, g2)−sa ê(h2, g2)−sb .

Accepts if both of c
?= H(A1, A2, A3, T̃1, T̃2, T̃3,M, I) and A1

?=
Ac

3u
st hold, rejects otherwise.

– Deposit Protocol. Merchant sends the payment transcript (σ, c, st) to bank
for deposit. In the enhanced protocol, double-spending is identified by the
pair (A1, A3) (instead of (B1, B2)).

– Owner Tracing. Suppose the two transcripts are (σ, c, st) and (σ′, c′, s′t), the
bank computes b̂ = st−s′

t

c′−c and â = st + cb̂. The private key and the public
key of the double-spender are ŝ = âb̂ and ŷ = hŝ respectively.

– Coin Tracing. The bank can decrypt the values ua and ub for all other coins
issued to the double-spender for tracing.

5.3 Short E-Cash with TTP

In some scenario, the law enforcing agency got the knowledge of a certain crimi-
nal by non-cryptographic means, and wants to stop this user from using his coins
(which has already been withdrawn). This can be achieved by incorporating a
TTP in our scheme for revoking identity and coin tracing of all users.

For our first proposed scheme, instead of having h3, u, v generated fairly, the
TTP selects ξ1, ξ2 such that h3 = uξ1 = vξ2 . The TTP can revoke the identity
of every spender by computing A = A3/(A

ξ1
1 Aξ2

2 ) and identifying the spender
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from the withdrawal transcript. For the shorter version, TTP’s private-public
key pair is (ξ, v = uξ). To revoke the identity of the spender, TTP computes
A = A2/(A

ξ
1) for the bank to identify the spender from the withdrawal protocol.

Coin tracing can be achieved by requiring users to encrypt tracing infor-
mation ({ha

t , h
b
t}, or {ua, ub} for the shorter version) under TTP’s public key.

In fact, coin tracing and owner tracing power can be held by different TTP,
and each feature can be independently incorporated, by using different proofs in
SPK. Due to space limitations, details can be found in the full paper.

5.4 Security Analysis

The security of our system is assured by the following theorems. Their proofs
can be found in the full version of this paper. The security analysis of the shorter
version goes in a similar way.

Theorem 1 (Balance). Our proposed construction has the balance property
under the q-SDH assumption, in the random oracle model.

Theorem 2 (Anonymity). Our proposed construction has the anonymity prop-
erty under the DLDH assumption in G1 and DDH assumption in Gp, in the
random oracle model.

5.5 Comparison with Compact E-Cash

We compare the bandwidth and the storage requirement of our scheme with
the second scheme in [8] (which supports full coin-tracing). In the following
comparison, we instantiate the CHL scheme with a 1024-bit RSA modulus. For
our scheme, we take p be a 170-bit prime with the families of curves described
in [5]. Using the standard point compression technique, each element in G1 is
171-bit. Each coin consists of one element in G1 and three elements in Z∗

p. The
coin size is thus 681 bits. Each payment transcript contains three elements in
G1 (A1, A2, A3), two elements in Gp (B1, B2) and nine element in Z∗

p, making
its length 512 bytes, if we assume elements in Gp is representable in 1024 bits.
As for the shorter version, each payment transcript contains three elements in
G1 (A1, A2, A3) and six elements in Z∗

p, making its length 192 bytes.
In the CHL scheme, the withdrawal protocol enables the user to withdraw

2� coins at a time. For the payment and deposit protocols, only one coin is
processed each time. The space complexity of the withdrawal, payment and
deposit transcript are all of order �. In the payment protocol, the user needs
to compute 7 + 9� auxiliary commitments together with 17 + 21� commitments
during the SPKs, and the response takes about 20� elements. The payment
transcript size is about (24 + 50�) × 1024 bits. Taking � = 10, spending one
coin requires transmission bandwidth of 1024 × (24 + 500) bits, i.e. around 60
Kilobytes. In our scheme, each payment transcript is of constant size 512 bytes.
Our scheme’s bandwidth requirement in payment is 100 times more efficient.

The withdrawal protocol of the CHL scheme require some more investiga-
tion. Without counting the verifiable encryption, the bandwidth required for
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withdrawing 2� coins is (2 + 3�) × 1024 bits, which is very efficient per coin.
However, the verifiable encryption is rather inefficient in itself. For a cheating
probability lower than 2k, the user is required to perform 2k encryptions while
the bank must perform k encryptions. After this process, the bank needs to store
all these 2k encryption transcripts later decryption. The verifiable encryption on
s is to be performed with relative to the Pedersen commitment A = g0

rg1
ug2

sgi
ti

for i = 3 to 3�+3. Precisely speaking, k rounds of the verifiable encryption has to
be done, with each round consisting of one commitment, two bilinear El Gamal
encryptions, and 3� + 3 responses (the 3� + 3 term arise since the user has to
proof that encryption on s is correctly formed with respect to A, which contains
3 + 3� exponents). Suppose each component is of size 1024-bit, the total tran-
script size is (4 + 3�)/8 kilobytes for each round, making the total transmission
requirement of k(4 + 3�)/8 kilobytes.

A simple trick to simplify the computation is to compute another Pedersen
commitment B = gr′

0 g1
s, proved that the term s in both A and B are the same,

and do the verifiable encryption with respect to B. In this case, each round is
of size 5 × 1024 bits, and a total of 5k/8 kilobytes for k rounds. After that,
the bank need to store this 5k/8 kilobytes of information for later decryption.
Thus, bandwidth requirement for CHL’s withdrawal protocol per coin (including
verifiable encryption using the improved method) is 2+3�+5k

8·2� kilobytes.
For a cheating probability of 0.001(k = 10)2 and taking � = 10 , the average

storage per coin required is 10 bytes, using the improved protocol. In our scheme,
this kind of inefficient verifiable encryption is not needed with the help of SPK
Π2. A total of 873 bytes is required for each coin (the number of bits required
by SPK Π1, Π2 is 1363 and 5627 bits respectively), and the bank only needs to
store 512 bytes of the encrypted information for each coin.

In short, our scheme is about 50 times less efficient per coin in the withdrawal
protocol, and 100 times more bandwidth efficient per coin during the payment
protocol and the deposit protocol. Withdrawal can be done by a desktop while
the payment may be done in a mobile device with lower computational power and
storage. We believe that our scheme is an improvement over the CHL scheme.

6 Conclusion

Double spender tracing is important in an anonymous e-cash system. Coin trac-
ing may be even more important as the bank can freeze the possible misbehavior
of a double-spender. Most existing systems relies on the existence of an over-
powered TTP, which may identify the spender of a coin and trace all the coins
by a particular spender, even the spender is an honest one who never double-
spend. Recently, Camenisch, Hohenberger and Lysyanskaya proposed an e-cash
system with traceable coins [8]. Once a user double-spends, his identity can be
revealed and all his coins in the system can be traced, without resorting to TTP.
Their scheme is “compact” in the sense that a user can withdraw 2� coins in a
2 It is worth noting that using k = 10 is in favor of the CHL scheme since the cheating

probability of our scheme is 1/q with q being a 170-bit prime.
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single withdrawal protocol with the cost of O(� · k), and the coins can be spent
in an unlinkable manner. This result is theoretically very efficient. However, we
identify that the bandwidth requirements in payment and deposit protocol, and
the bank’s storage, may not be efficient for realistic scenario.

In this paper, we present a bandwidth-efficient off-line anonymous e-cash
scheme with traceable coins. For a security level comparable with 1024-bit stan-
dard RSA signature, the payment transcript size is only 512 bytes. Security
of the proposed scheme is proven under the q-strong Diffie-Hellman assumption
and the decisional linear assumption, in the random oracle model. The transcript
size of our scheme can be further reduced to 192 bytes if external Diffie-Hellman
assumption is made. To the best of authors’ knowledge, it is the shortest e-
cash system currently available. We also show how to incorporate a TTP that
is responsible for the owner-tracing and coin-tracing, if such a TTP is desired.
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A Signature Knowledge of Representation

A signature of knowledge allows a signer to prove the knowledge of a secret with
respect to some public information non-interactively by tying his knowledge of
a secret to a message begin signed. Following the notion in [9], we called these
signature “Signatures based on Proofs of Knowledge” (SPK).

As an example, we denote the zero-knowledge proof of the discrete logarithm
of y by SPK{(x) : y = gx}(M), where M is the hash value of the commitment.

The SPK Π1, Π2 and Π3 used in our proposal are shown below.
Π1 = SPK{(ā, b̄, s, r1, δ) : C̄ = hā

1h
b̄
2
∧
A1 = hr1

1 hā
2
∧
Ab̄

1 = hδ
1h

s
2
∧
y =

hs}(M) where M = H(C̄, A1, y, h1, h2, ).
For Π2, first compute A1 = C̄r and A2 = C̄r−1

and execute the follow-
ing SPK: Π2 = SPK{(ā, b̄, a, b, δa, δb, ta, tb) : C̄ = hā

1h
b̄
2
∧
A1 = ha

1h
δb
2
∧
A2 =
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hδa
1 hb

2
∧
C = ha

1h
b
2
∧
R1 = hta

∧
R2 = ytaha

t

∧
R3 = htb

∧
ytbhb

t}(M), where
M = H(C̄, A1, A2, C,R1, R2, R3, R4, h1, h2, y). Note that R1,R2,R3,R4 is the
encryption of ha

t and hb
t under the public key y = hs.

For Π3, first compute A1 = C̄r and A2 = C̄r−1
and execute the follow-

ing SPK: Π3 = SPK{(ā, b̄, δa, δb, a, b, s) : C̄ = hā
1h

b̄
2
∧
A1 = ha

1h
δb
2
∧
A2 =

hδa
1 hb

2
∧
C = ha

1h
b
2
∧
y = hs

∧
R1 = ht1

∧
R2 = yt1ua

∧
R3 = ht2

∧
R4 =

yt2ub}(M), where M = H(C̄, C,A1, A2, R1, R2, R3, R4, y, h1, h2, u, v). Note that
R1, R2, R3, R4 is the encryption of ua and vb under the public key y = hs.
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Abstract. We propose a scheme for electronic cash based on symmetric
primitives. The scheme is secure in the framework for universal compos-
ability assuming the existence of a symmetric CCA2-secure encryption
scheme, a CMA-secure signature scheme, and a family of one-way, col-
lision-free hash functions. In particular, the security proof is not in the
random-oracle model. Due to its high efficiency, the scheme is well-suited
for devices such as smart-cards and mobile phones. We also show how
the proposed scheme can be used as a group signature scheme with one-
time keys.

1 Introduction

1.1 Background and Previous Work

The concept of electronic cash, e-cash, was introduced by Chaum et al. [6],
and several subsequent schemes have been proposed [2, 8, 20, 18, 16, 14, 13, 3]. In
an e-cash scheme there are three types of participants – the bank, merchants,
and users. The users can withdraw coins from the bank and spend them at
merchants. An e-cash scheme is online or offline. In the former case the bank
is involved in every transaction, whereas in the second case payments can be
performed without contacting the bank. Obviously offline schemes are preferable
to online schemes. However, an electronic coin, being nothing but a string of
numbers, can be copied and spent more than once, and in an offline scheme such
double-spendings cannot be detected during the actual purchase. Rather than
preventing double-spending, offline schemes are designed so that double-spenders
are detected and identified.

Privacy is a crucial ingredient of e-cash schemes. It is desirable that merchants
cannot learn the identity of the user, or even determine whether two payments
were made by the same user or not. Many schemes also provide the same privacy
towards the bank. However, anonymity also works in favor of criminals using the
scheme for illegal activities protected by the privacy offered. To protect against
such events some schemes offer the possibility for trusted third parties to trace
a payment.

Most schemes require a merchant to deposit a coin after the purchase. A few
schemes allow a coin to be transferred between users in several steps before it is
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deposited at the bank [15, 16]. Such schemes are said to have transferable coins.
Another possible feature is divisability, i.e., that a coin may be spent only in
part [16, 14, 13].

1.2 Group Signatures and E-Cash Schemes

Group signatures were introduced by Chaum and van Heyst [7]. In a group
signature scheme there is a group manager and group members. The group man-
ager delegates the right to generate signatures to the group members, and also
publishes a group public key. Members can sign messages, and a signature can
be verified against the group public key, but only the group manager can open
a signature to learn the identity of the signer. To anyone else the signature is
anonymous.

Group signatures bear many resemblances to electronic cash. Group signa-
tures are indistinguishable to anyone but the group manager in very much the
same way payments are indistinguishable in anonymous e-cash schemes. One
important difference is that there is no concept of double-spending for group
signatures. See, e.g., [11] for an example of an e-cash scheme based on group
signatures.

1.3 Our Contribution

All the above schemes involve trapdoor functions such as variants of ElGamal
encryption or RSA groups. A real-life electronic cash scheme would probably
be implemented on a portable device with low computational power such as a
smart-card or a mobile phone. For such schemes it is important that the amount
of computation is low, especially on the user side. The difference between zero,
one or two exponentiations in the payment protocol is significant, whereas many
schemes require tens, or in some cases hundreds, of exponentiations. The mer-
chant terminal is more comparable to a low-end PC, but also in this case it
is desirable to reduce the amount of computation to one or a few exponent-
iations.

Outline of Scheme. In this paper we propose a scheme which relies on symmet-
ric primitives such as symmetric encryption, hash functions and pseudo-random
functions. The only computations performed by the user during payment is eval-
uation of pseudo-random functions, and the merchant verifies a signature. It is
commonly believed that there exist efficient algorithms for the primitives needed,
e.g., AES and SHA-256. The scheme has been implemented on a mobile plat-
form [21]. Our scheme builds along the lines of the scheme by Sander and Ta-
Shma [18].

When a user U withdraws a coin, the bank encrypts the identity of U . Then
U uses a pseudo-random function to create a list of values and sends the hash
values of the pseudo-random values to the bank. The coin, consisting of the
encrypted identity and the hash values, is inserted as a leaf into a Merkle hash
tree. After a certain amount of time, the bank builds the tree and publishes the
root. To spend a coin, the user reveals half of the preimages of the hash values
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together with a path from the coin up to a published root. The merchant verifies
the correctness of the preimages, and verifies that the chain of hash values is
valid.

If a user double-spends a coin, then she has revealed the preimage of more
than half of the hash values. If this happens the bank decrypts the encrypted
identity. From only the revealed preimages of a double-spent coin, it may be
possible to successfully spend the coin a third time. In other words, a user double-
spending a coin risks being held responsible for additional purchases. This gives
additional incentive not to double-spend. The anonymity of the scheme follows
from the security of the encryption scheme, and unforgeability of coins follows
since the hash function is collision-free.

As an additional feature of our scheme the payment protocol is non-inter-
active. In other words, the user produces a coin that can only be deposited by
the designated merchant. This enables a user to prepare a coin for a certain
merchant. In addition, anyone can verify that the coin has been prepared for
that merchant. As an example, a parent can give a coin to their child which can
be spent only at a certain store.

We show security for our scheme in the framework for universal composability
(UC) [4]. We stress that our proof of security is in the plain model and not
in the random-oracle model. We only assume that the encryption scheme is
CCA2-secure, that the hash functions are one-way and collision-free, and that
the pseudo-random functions are indistinguishable from random functions. We
believe that the current scheme is the first scheme for electronic cash with a
security proof in the UC-model and also the first practical scheme that does not
use the random-oracle model for its security proof.

Previous e-cash schemes that are secure in the plain model include [18] and
[10]. The former uses zero-knowledge proofs based on general methods, and the
latter is a blind signature scheme using general methods for two-party compu-
tation from which an e-cash scheme may be built. Neither of these is practical.

Our scheme does not offer the same anonymity towards the bank as many
other schemes. It is an interesting question whether a scheme that does not
involve trapdoor functions can offer the anonymity towards the bank in the
same strong sense as, e.g., [6]. For a more thorough discussion on this, see the
full version [19].

Relations to Group Signatures. Although proposed as a scheme for elec-
tronic cash, our scheme has some similarities with group signatures. The bank
has the ability to open a coin to extract the identity in the same way the group
manager can open a signature. As a matter of fact, our scheme can be seen as
a group signature scheme with one-time keys. This is discussed in further detail
in Section 6.

Comparison to Sander-Ta-Shma. As in the scheme by Sander and Ta-Shma
[18], in our scheme the bank builds a hash tree and the merchant uses the
published root when verifying a coin. In their scheme a zero-knowledge protocol
is used by the user to prove ownership of a preimage of a hash value and a path
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to some certified root. Focusing on efficiency, we avoid the zero-knowledge proof
by letting the user reveal preimages of κ/2 out of κ hash values. The cost for
this efficiency increase is that the bank always can identify the payer.

2 Notation and Definitions

2.1 Notation

String concatenation is denoted by ||. For two integers a and b their concatenation
a||b is the number created by concatenating their binary representations, e.g.,
a||b = 2kba + b, if b is a kb-bit number. By s ←R S we mean that s is chosen
independently and uniformly at random from the finite set S.

We define [n] = {1, 2, . . . , n}. Let I = {i1, i2, . . . , ik}, ij < ij+1, be a subset of
[n]. For a list of values v = (v1, v2, . . . , vn) we define vI = (vi1 , vi2 , . . . , vik

). Let
f be a function, S = {s1, s2, . . . , sm} a set, and v = (v1, v2, . . . , vn) a vector. We
define f(S) = {f(s1), f(s2), . . . , f(sm)} and f(v) = (f(v1), f(v2), . . . , f(vn)).

2.2 Basic Definitions

A function ε is negligible if ε(κ) < 1/p(κ) for any polynomial p(κ) and sufficiently
large κ.

We define hash functions and pseudo-random functions as families of func-
tions. The most common way to realize a family of functions is to define the
function such that it depends on a key. A function is drawn from the family by
generating a key.

We use hash functions that are collision-free, sometimes called collision-
resistant, and one-way. Let Hκ be a family of hash functions that map values
in {0, 1}∗ to {0, 1}κ, and let H = {Hi}∞i=1. Intuitively H is collision-free if it is
infeasible to find two distinct inputs that hash to the same value and one-way if
it is hard to compute a preimage of a random value for H ←R Hκ.

Let Rκ be a family of functions from {0, 1}κ to {0, 1}κ, and let R = {Ri}∞i=1.
Let Uκ be the family of all functions from {0, 1}κ to {0, 1}κ. Informally R is said
to be pseudo-random if it is infeasible to distinguish a function from Rκ from a
function from Uκ.

A signature scheme SS = (Kg, Sig,Vf) is correct if Vfpk(m, Sigsk(m)) = 1
for (pk, sk) generated by Kg and any message m. SS is secure against chosen-
message attacks, CMA-secure [9], if it is infeasible to produce valid message-
signature pair for any message, even if the adversary has access to a signing
oracle Sigsk(·).

A symmetric encryption scheme CS = (Kg, E,D) is secure against a cho-
sen cipher-text attack, CCA2-secure, if it is infeasible to distinguish between
encryptions of two messages of the adversary’s choice, even if the adversary is
given access to an encryption oracle and a decryption oracle. This is a natural
extension of CCA2-security for asymmetric encryption schemes [17].

Please see the full version [19] for precise security definitions.
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2.3 Merkle Trees and Hash Chains

Consider the task of proving that a value belongs to a set of certified values.
One way to achieve this is to create a binary tree with the values as leaves by
setting the value of every inner node to the hash value of the concatenation of
the values of its two children and publish the root in a certified way. This is
called a Merkle tree [12].

From a Merkle tree a hash chain from each leaf up to the root of the tree
can be constructed. For each step the chain contains a value and an order bit
which says whether the given value should be concatenated from the left or from
the right.

An example of a Merkle tree is given in Figure 1. From the tree in the figure we
can construct a hash chain from c121 up to the root as (c121, ρ, v2, r, v11, l, c122, r).
The values in the chain from c121 have been circled in the figure. Note that v1
and v12 are not part of the chain, since these values are computed during veri-
fication.

Definition 1 (Hash chain). A hash chain h of length d is a vector h =
(v, h0, h1, o1, h2, o2, . . . , hd−1, od−1) where oi ∈ {l, r}. A hash chain is said to
be valid under a hash function H if h0 = h′0, where h′d−1 = v and

h′i−1 =
{
H(hi||h′i) if oi = l
H(h′i||hi) if oi = r

for i = d−1, d−2, . . . , 1. This is written isvalidH(h) = 1, or isvalid(h) = 1 if it is
clear from the context which hash function is used. We also define root(h) = h0
and leaf(h) = v.

Once a Merkle tree has been built for a set of values and its root value has been
published, constructing a hash chain for a value not in the set implies finding
a collision for the hash function. Since this is assumed to be infeasible, Merkle
trees give a method of proving membership.

We define the randomized function buildtreeH(S) with input a set S =
{s1, s2, . . . , sn} to build and output a hash tree of depth �log2 n� where the
leaves have values s1, . . . , sn in random order. When n is a power of two, all

ρ = H(v1, v2)

v1 = H(v11, v12)

v11 = H(c111, c112)

c111 c112

v12 = H(c121, c122)

c121 c122

v2 = H(v21, c22)

v21 = H(c211, c212)

c211 c212

c22

Fig. 1. A Merkle tree with the values stored in the hash chain from c121 to the root
marked
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leaves have equal depth d− 1, and otherwise some leaves have depth d− 2. The
function getchainT (s) returns the hash chain from the first leaf with value s to
the root in the tree T and ∅ if no such leaf exists.

It is possible to join two Merkle trees into a new Merkle tree by creating a
new root which has the two trees as children. Sander and Ta-Shma describe how
the number of active roots can be reduced by joining the existing trees. In our
scheme we do not join trees in this way, although the scheme could be modified
to do so.

3 The Protocol

3.1 Security Parameters

Two security parameters, κ1 and κ2, are used in the protocol. The parameter κ1
can be thought of as key length for the symmetric cipher, and κ2 is the number
of bits needed so that each merchant can be identified by a κ2-bit number with
κ2/2 number of ones.

3.2 The Players

The players in the protocols are denoted B, P1, . . . , Pm. To simplify the de-
scription we also write P0 for B. Except for the bank, any player may act
as a customer, i.e., withdraw and spend coins, as well as a merchants, i.e.,
accept payments and deposit coins. We abuse notation and let Pi represent
both the identity of the player and the Turing machine taking part in the
protocol.

We let I be a public map from identities to [κ2] such that I(Pi) has cardinal-
ity κ2/2 and I(Pi) �= I(Pj) for Pi �= Pj . I can be thought of as a collision-free
hash function which maps its input to {0, 1}κ2 with the additional property that
the number of 1’s in the output is always exactly κ2/2, although it is probably
more practical to realize the map with a table. We define

spanI ({Pi1 , Pi2 , . . . , Pik
}) =

⎧⎨⎩P | I(P ) ⊆
k⋃

j=1

I(Pij )

⎫⎬⎭ .

Given preimages of a coin corresponding to players Pi1 , Pi2 , . . . , Pik
one can com-

bine the preimages to spend the coin at any player in spanI({Pi1 , Pi2 , . . . , Pik
}).

It holds that P ∈ spanI(S) if P ∈ S. Since I is injective spanI({P}) = {P}.

4 The Ideal Functionality

4.1 Introduction

In this section we define the ideal functionality FEC and discuss why it captures
the properties of an e-cash scheme.
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We use a model where the ideal functionality is linked to the players through
a communication network CI . The communication network forwards a message
m from a player P as (P,m) to the ideal functionality. When CI receives (P,m)
from the functionality, it forwards the message m to player P . Except for im-
mediate functions, defined as a message from a player P immediately followed
by a response to the same player P , the ideal adversary S is informed of when a
message is sent, but not of the content. The ideal adversary is allowed to delay
the delivery of such a message, but not change its content.

The functionality described here has only one non-immediate function – the
withdrawal protocol.

The adversary is allowed to choose an arbitrary number of players to corrupt
at start-up. For further discussion on this, see the full version [19]. We do not
allow the adversary to corrupt B. It would be possible to give a functionality
that allows the adversary to corrupt B. In such a functionality even a corrupted
B would not be able to “revoke” an issued coin. However, since this would make
the functionality more complex, we describe FEC for a trusted bank.

4.2 Informal Description

The ideal functionality FEC for an e-cash scheme accepts the following messages.

– KeyGen to set up keys.
– Issue Coin to issue a coin to the designated user.
– Tick to build a new hash tree.
– Prepare Coin to mark a coin for spending at a certain merchant.
– Verify Coin to verify whether or not a coin can be spent at a certain mer-

chant.
– Open Coin to let the bank extract the identity of the user the coin was issued

to.
– Check Doublespent to check whether a coin has been spent more than once.

There is no separate message for depositing a coin at the bank. To deposit the
merchant hands the coin to the bank, which runs the Verify Coin algorithm to
check if the coin is valid.

4.3 Definition of the Ideal Functionality

The ideal functionality FEC holds a counter t that is initialized to 0 and indexed
sets Ci for coins that have been issued in period i. For convenience we let C =⋃

i Ci. For e = (c, ·, k, ·) ∈ C we define valH(e) = c||H(k1)||H(k2)|| · · · ||H(kκ2).
The functionality holds a set of signed roots Tsigned and a set of coins ready to
be spent Tprepared. The sets Ci, Tsigned, Tprepared are initialized to ∅. The tables
stored by the functionality are summarized in Table 1.

The functionality must be indistinguishable from the protocol, which implies
that it must output data on the same format as the real protocol, and therefore
it must depend on the implementation of the real protocol. This can be achieved
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Table 1. The tables stored by the ideal functionality FEC

Name Content
Ci (c, Pi, k, h), where c is a bit-string, Pi the coin-owner, k the

coin-secret and h the hash chain.
Tprepared Coins which are about to be spent.
Tsigned The certified roots.

by querying the ideal adversary for any such output, or the functionality can
produce the output itself. In the former case, the ideal adversary needs to be
tailor-made for a certain implementation of the protocol, whereas in the latter
case the functionality must be parameterized by the implementation. We choose
the second approach in this paper.

The functionality is parameterized by a symmetric encryption scheme CS =
(Kg, E,D), a signature scheme SS = (Kg, Sig,Vf), a family of pseudo-random
functions R and collision-free, one-way hash functions H drawn from a fam-
ily of hash functions Hκ1 . To simplify the description we assume that SS is
correct. Instead of parameterizing the functionality it is possible to give a non-
parameterized description, where the functionality is given (a description of) the
function families from S at startup. The definition of FEC is given in Figure 2.
FEC captures some specifics of the current scheme, such as the tree update

function, the specific format of a coin, the weaker anonymity, a non-interactive
payment protocol, and the possibility to transfer prepared coins to other users.
Therefore a generic ideal functionality for electronic cash would differ from
ours.

4.4 On the Ideal Functionality

In this section we discuss why FEC captures the security requirements for elec-
tronic cash. The five messages KeyGen, Issue Coin, Tick, Prepare Coin, and
Check Doublespent are all straight-forward. They manipulate tables, and use
H,R, CS,SS only to produce output that has the format of a coin. When an-
swering the Open Coin query, the functionality decrypts c if it is not found in
the table. This is so since the CCA2-security of CS does not prevent Z from
producing a valid cleartext-ciphertext pair and use it to determine whether it
interacts with the functionality or the real protocol.

Since the most involved message is Verify Coin, we discuss it in more detail.
As noted in [5], messages created by corrupted players or messages created with
keys that do not originate from the protocol must be verified according to the real
protocol rather than rejected. Otherwise the environment Z could distinguish
between the ideal functionality and the real protocol by creating a new pair of
signature keys and sign a root with this new key pair. The same holds for a
corrupted U which might leak its secret to Z to let Z prepare coins internally
without interacting with the protocol.

When a coin is verified, Condition 1 says that it should be considered invalid
if it has not been issued by B. Condition 2 say that if the coin is being verified



A Universally Composable Scheme for Electronic Cash 355

Functionality 1 (FH,R,CS,SS
EC ). Until (B, KeyGen) is received all messages except

(B, KeyGen) are ignored.

– Upon reception of (Pi, KeyGen) proceed as follows:
1. If Pi = B, set key ← Kg(κ1), (pk, sk) ← Kg(κ1), and return (B, KeyGen, pk).
2. Else record Pi in the member list and draw U i from the family Uκ1 and

return (Pi, KeyGen).
– Upon reception of (B, Issue Coin, Pi), verify that Pi is in the member list. If

not, return (B, Not A Member) and quit. Set

c ← Ekey(0), kj ← (U i(c||j))κ2
j=1, z ← H(k) ,

where k = (k1, k2, . . . , kκ2). Add (c, Pj , k, ∅) to Ct. Hand (S , New Coin, Pi)
and (Pi, New Coin, c, z) to CI .

– Upon reception of (B, Tick), set T ← buildtreeH(valH(Ct)) and modify each
e = (c, Pi, k, ∅) ∈ Ct into (c, Pi, k, getchainT (valH(e))). Set σ ← Sigsk(root(T ))
and add root(T ) to Tsigned. Return (B, Tick, T, σ) to CI . Set t ← t + 1.

– Upon reception of (Pi, Prepare Coin, c, z, Pj), find k such that (c, Pi, k, ·) ∈ C.
If no such k exists, then hand CI the message (Pi, Reject Prepare Coin, c)
and quit. Otherwise set k̃ ← kI(Pj), return (Pi, Prepared Coin, c, k̃) to CI
and store (c, Pj) in Tprepared.

– Upon reception of (Pi, Verify Coin, c, z, k̃, Pj , h
′, σ, pk′), find Pl, k, h such

that (c, Pl, k, h) ∈ C. Return (Pi, Verify Coin, c, Pj , invalid) to CI if at least
one of the following holds:
1. No such entry exists.
2. pk = pk′ and root(h) /∈ Tsigned.
3. Vfpk′(root(h), σ) = 0.
4. h′ �= h.
5. Pl is not corrupted, and

(k̃ �= kI(Pj)) ∨ (Pj /∈ spanI({P | (c, P ) ∈ Tprepared})) .

6. Pl is corrupted and H(k̃) �= zI(Pj).
Otherwise return (Pi, Verify Coin, c, Pj , valid) to CI .

– Upon reception of (B, Open Coin, c), find a value (c, P, ·, ·) in C. If no such
entry exists, then set P ← Dsk(c). Return (B, Open Coin, c, P ).

– Upon reception of (Pl, Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2) from CI ,
execute (Verify Coin, c, z, k̃i , h, σ, Pji) for i = 1, 2.
1. If at least one execution returns (Verify Coin, c, Pji , invalid), then re-

turn (Pl, Check Doublespent, c, invalid) to CI .
2. If Pj1 = Pj2 then return (Pl, Check Doublespent, c, no), otherwise return

(Pl, Check Doublespent, c, yes) to CI .

Fig. 2. The definition of FH,R,CS,SS
EC

with the correct key public key, then it is valid only if B actually signed the
root, and Condition 3 ensures a correct answer when the coin is verified with
a different public key. Because of the correctness of SS, Condition 3 always
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holds for pk = pk′ if the root has been signed. Condition 4 says that the correct
path must be given. Condition 5 says that if the coin owner is not corrupted,
the coin must have been prepared for the designated receiver Pj . (Recall that
spanI({P}) = {P}.) Alternatively if the coin has been prepared more than once,
then Pj must be in the span of the set of receivers. Condition 6 says that for a
corrupt coin owner, the coin is accepted if the given preimages actually hash to
the correct values.

Anonymity. In the ideal protocol, c is an encryption of 0, and thus the coin
does not contain any information about the owner. The only information that
is disclosed to the merchant is to which tree the coin belongs. The amount of
information this contains depends on the size of the tree. The larger the tree,
i.e., the longer the interval between Tick messages, the smaller the amount of
information released to the merchant.

Fairness. By fairness we mean that if a player (or coalition of players) prepares
l + 1 coins that pass Verify Coin after withdrawing only l coins, at least one
withdrawn coin will be detected as double-spent. Since the only coins that can
be successfully spent are the coins in the database C, and the only way to have
a coin being added to the database is to engage in the withdrawal protocol, by
the pigeon hole principle at least one coin has been prepared twice in this case.
The implementation of the double-spending detection in the ideal functionality
guarantees that the double-spender is revealed.

Non-frameability. A coalition of players should not be able to spend coins
withdrawn by someone outside of the coalition. Since the Prepare Coin al-
gorithm checks that it is called by the coin owner, this requirement is ful-
filled.

Detection of double-spenders. A user that spends a coin at two different
merchants will by construction have to produce two different sets of ki’s and will
always be detected by the bank.

Since double-spending at a single merchant will not be detected by the bank,
it is the responsibility of the merchant to detect such actions, holding a list
of the coins spent at that merchant. However, a simple modification of the
scheme allows the merchant to remember only the coins spent the same day.
To achieve this, we include the date in the computation of the index set. In
the other words, rather than disclosing the list kI(Pi), the list kI(Pi,date) is
disclosed.

Correctness. An e-cash scheme is correct if a coin withdrawn by an honest
player always, or almost always, can be spent at an honest merchant and the
merchant can deposit the coin at the bank. It is immediate from the construction
that this property holds for the ideal functionality provided that the signature
scheme SS is correct.
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5 The Real Protocol

5.1 Definition of the Protocol

We give the definition of the protocol in the FSIG-hybrid model. The ideal sig-
nature functionality FSIG [1, 5] accepts messages KeyGen, Sign, Verify to set up
keys, sign a message, and verify a signature. We use the definition of FSS

SIG given
in Figure 3, slightly modified from [5] in that the functionality is parameterized
by the signature scheme, and that SS is assumed to be correct.

Functionality 2 (FSS
SIG [5]).

– Upon reception of (B, KeyGen), set (pk, sk) ← Kg. Hand (B, pk) to CI .
– Upon reception of (B, Sign, m), set σ ← Sigsk(m), store m, and hand

(B, Signature, m, σ) to CI .
– Upon reception of (Pi, Verify, m, σ, pk′), set f = 0 if B is uncorrupted, m is not

stored, and pk = pk′. Otherwise set f = Vfpk′(m, σ). Hand (Pi, Verify, m, f)
to CI .

Fig. 3. The definition of FSS
SIG

We are now ready to define the protocol πH,R,CS
EC .

Protocol 1 (πH,R,CS
EC ).

– The bank B acts as follows:
• Upon reception of (KeyGen), B creates and stores a symmetric key key←

Kg(κ1), requests pk from FSIG, sets C ← ∅ and returns (KeyGen, pk).
• Upon reception of (Issue Coin, Pi), B initiates the following protocol

with Pi:
1. B computes c← Ekey(Pi) and sends (Withdrawal Request, c) to Pi.
2. Pi sets kj ← Ri(c||j), z ← H(k). Then it outputs (New Coin, c, z)

and hands (Withdrawal Response, c, z) to B.
3. B stores (c||z1||z2|| . . . ||zκ2) in C.

• Upon reception of (Open Coin, c), B returns (Open Coin, c,Dkey(c)).
• Upon reception of (Tick), B computes a new hash tree T from all stored

values, i.e., sets T = buildtreeH(C). It acquires a signature σ on root(T )
from FSIG, sets C = ∅, and returns (Tick, T, σ).

– A non-bank player Pi, i.e., i > 0, acts as below:
• Upon reception of (KeyGen), Pi creates and stores a pseudo-random func-

tion Ri ←R Rκ1 and returns (KeyGen).
• Upon reception of (Prepare Coin, c, z, Pj), Pi sets kl ← Ri(c||l) for
l = 1, . . . , κ2 and verifies that z = H(k). If this does not hold, it outputs
the message (Reject Prepare Coin, c) and quits. Otherwise it sets k̃ =
kI(Pj) and outputs (Prepared Coin, c, k̃).
• Upon reception of (Withdrawal Request), Pi acts as described above.
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– In addition to the above, any player Pi, including the bank, acts as follows.
• Upon reception of (Verify Coin, c, z, k̃, Pj , h, σ, pk), Pi proceeds as fol-

lows:
1. Pi sends (Verify, root(h), σ, pk) to FSIG. If FSIG returns 0, then Pi

returns (Verify Coin, c, Pj , invalid) and quits.
2. Pi verifies that H(c, z) = leaf(h) and that isvalidH(h) = 1. If this

is not the case, then Pi returns (Verify Coin, c, Pj , invalid) and
quits.

3. Pi verifies that H(k̃) = zI(Pj) . If this is not the case, then it returns
(Verify Coin, c, Pj , invalid) and quits.

Pi returns (Verify Coin, c, Pj , valid).
• Upon reception of (Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2), Pi ex-

ecutes (Verify Coin, c, z, k̃i, h, σ, Pji ) for i = 1, 2.
1. If at least one execution returns (Verify Coin, c, Pji , invalid), then

Pi returns (Check Doublespent, c, invalid) and quits.
2. If Pj1 = Pj2 then Pi returns (Check Doublespent, c, no), otherwise

it returns (Check Doublespent, c, yes).

5.2 On the Real Protocol

The protocol relies on the existence of an ideal signature functionality. Such a
functionality can be implemented with a CMA-secure signature scheme [1, 5]. It
is possible that a merchant will verify several coins from the same tree. In these
cases the merchant can save time by only verifying the signature once.

The scheme relies on the roots being constructed after a certain amount of
time, and therefore coins may not be immediately usable. The scheme can also
be used without this delay by constructing a tree of size one for each coin is-
sued and returning the signature to the user immediately. This increases coin
size since there is a separate signature for each coin, but does not increase the
amount of computation the user has to perform. This modification also elim-
inates linkability issues when coins with same owner are placed in the same
tree.

5.3 Security of the Real Protocol

In the full version [19] we prove the following theorem:

Theorem 1. The protocol πH,R,CS
EC securely realizes FH,R,CS,SS

EC in the FSS
SIG-

hybrid model if H is drawn from a collection H of one-way collision-free hash
functions, R is a collection of pseudo-random functions, and CS is a CCA2-
secure encryption scheme.

6 Comparison to Group Signatures

Our scheme is in some ways similar to group signatures. A coin can be viewed
as a signature on the identity of the merchant. Signatures by different users are
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indistinguishable to merchants, but not to the bank. This corresponds to a group
signatures scheme where the bank acts as group manager.

A user can only sign once for every coin she withdraws. For electronic cash
this is a fundamental property, but it differs, of course, from ordinary group
signatures. Also when used a group signatures scheme, there is no exculpability
against the group manager. In other words the group manager can frame a group
member.

Some group signature schemes offer revocation. When converting our scheme
into a group-signature like scheme this can be achieved by publishing the coins
issued to the revoked player. When verifying a signature, the verifier first checks
the coin against the revocation list.

7 Conclusions

We have given a scheme for electronic cash that is based on symmetric primitives.
The construction is efficient, and can be implemented on mobile phones or smart-
cards without a cryptographic co-processor. We have also showed how to convert
the scheme into a group signature scheme with one-time keys.
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Abstract. VLSI circuits are open to sidechannel attacks which disclose
information about its internal state to an adversary. Privacy is a design
attribute to quantify the circuit’s resistance and resilience to sidechannel
attacks. There has been some recent work in cryptography to capture the
notion of privacy in circuits. Several constructions to transform a circuit
into a private circuit have also been proposed. In this paper, we quantify
the energy cost of providing privacy. We use the classical area-time-
energy VLSI complexity theory techniques to prove lower bounds on the
energy of any VLSI computation for a given function f parametrized by
its privacy P (Privacy P or a P -private circuit implies that at least P
bits of the circuit need to be observed to derive a single bit of information
about an internal node). The main result establishes a lower bound of
Ω
(
t2n2) on the E or ET or AT 2 product of any t-private computation

of an n-bit multiplier or shifter. Incidentally, the privacy transformation
proposed by Ishai et al [6] will generate n-bit multiplier and shifter with
matching energy, energy-time, and AT 2 characteristics establishing that
these lower bounds are tight. The privacy of the base design, without
any privacy enhancement techniques, is t = 1. Hence this demonstrates
that the privacy comes at a quadratic multiplicative factor energy cost,
which can be significant for portable, energy-starved applications such
as Smart card. We further introduce the notion of information splitting
secret sharing based privacy enhancement techniques. The lower bound
on the energy for this case improves to Ω

(
Pn2), a factor P improvement.

1 Overview

Sidechannel attacks [9], [8] are known to be serious threats to crypto hardware.
The examples of such attacks include differential power attacks, timing attacks,
EM radiation measurement based attacks, and direct observation attacks. More-
over, the intellectual property protection even for the non-cryptographic hard-
ware faces the same sidechannel information leakage issues. Inclusion of TPM
[2] in most computing systems will bring forth hardware privacy issues in every
day VLSI designs. Several methods have been developed to mask the system
behavior with respect to its energy/power profile [4], [5]. Most recently, how-
ever, Ishai, Sahai and Wagner [6] provided the most comprehensive treatment
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of privacy enhancing constructions for an arbitrary VLSI computation (which is
based on the prior work of Chari et al. [5] and Messerges [10].

Specifically, a general construction guarding against any type of sidechannel
adversary creates multiple shares of each original bit in the logic. These shares
can be made to be un-correlated in the secret-splitting scheme, which gives the
additional privacy in an intuitive sense. The disclosure of any subset of these
shares should reveal as little information about the original bit as possible (0 if
possible). This is consistent with our notion of privacy. For instance, Messerges
[10] creates a random bit/variable rx for each random bit/variable x. The two
shares created from x then are rx and rx ⊕ x. Note that the two shares carry
enough information about x so that it can be uniquely decoded at the other end.
Additionally, the revelation of rx or rx⊕x does not reveal any information about
x (both shares are needed to decode x). Hence if the adversary can only get one
of the two shares, complete privacy is guaranteed. Ishai et al. [6] generalize this
scheme further by creating t+1 shares with t random shares rx1 , rx2 , . . . , rxt and
the t + 1st share x ⊕ rx1 ⊕ rx2 ⊕ . . . , ⊕rxt (their construction uses m = 2t + 1
shares which can be refined to t + 1 shares). Their t-private circuits yield no
information to the adversary for an adversary limited to up to t observations
per cycle. This is a very robust design style.

We demonstrate in this paper that such privacy guarantees come at a sub-
stantial energy cost (and area cost). Specifically, the energy consumption of a
t-private VLSI computation goes up by a factor t2. The energy E (for a pipelined
computation) or ET product for a sequential implementation is bounded by
Ω
(
P 2I(f, n)2

)
for privacy level P (P -private circuits in [6] notation). Such re-

sults provide valuable insights about the VLSI implementation costs related to
privacy issues. Most of the building blocks of cryptographic hardware, integer
multiplication, shifting, DFT have information complexity I(f, n) of order of n
bits. This indicates that such blocks will consume energy proportional to n2P 2

to attain privacy P as opposed to energy proportional to n2 for a base imple-
mentation. For one, this implies that the energy cost of achieving privacy levels
equivalent of the order of n bits (even if almost all of the input bits are seen by
the adversary, no sidechannel information compromising the secrecy of results
would have leaked) is fairly prohibitive at Ω

(
n4
)
. Given that privacy is a larger

issue in portable systems, which are more amenable to sidechannel attacks, and
yet are energy limited; the energy cost of privacy enhancement becomes an im-
portant parameter. A battery operated device has finite amount of energy (per
battery charge), and hence is designed to perform maximal computations within
this energy budget. For such a system, a privacy level of even 10 results in an
energy overhead of a factor equal to approximately 100! We use this observation
to consider an alternative way to derive the privacy enhancing shares. These
information splitting shares reduce switching per shared bit in proportion to the
number of shares. In such information splitting privacy schemes, the energy cost
can be shown to be proportional to n2P , a P -fold reduction.

We first introduce the VLSI computing, energy and privacy model in Sec-
tion 2. the energy model. Some basic definitions and preliminaries are established
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in Section 3. Section 4 contains the energy-privacy trade-off results. Section 5 in-
troduces the information-splitting privacy model and sketches the energy bounds
proofs. Section 6 concludes the paper.

2 Model

We introduce the VLSI model followed by the privacy model.

2.1 VLSI and Energy Model

Grid and I/O Ports: The model of VLSI computation is essentially the same
as the one described by Thompson [12]. A computation is abstracted as a com-
munication graph. A communication graph is very much like a flow graph with
the primitives being some basic operators that are realizable as electrical devices.
Two communicating nodes are adjacent in this graph. A layout can be viewed
as a convex embedding of the communication graph in a Cartesian grid (a λ
separated grid derived from the λ based design rules).

Energy Model: The following is an enhancement of this model to account for
energy. It is more or less similar to the model proposed by Kissin [7] except for
the multiswitch energy case. We assume that whenever a wire of length l changes
state, it consumes Θ(l) switching energy. This has the following justification for
CMOS technology. The switching energy required to switch a node of capacitance
C is CV 2/2. The capacitance C of the wire equals εA

d , where ε is the permittivity
of the dioxide, A = w l is the area of the wire, and d is the depth of the dioxide.
Then the switching energy is CV 2/2 = V 2 ε w

2d l. In a typical layout, the widths
of all the wires are within a constant factor of the minimum metal width for
a process. For a given process, d and ε are constant. The supply voltage V ,
currently is in the range .8-2 Volts and is not expected to be lowered significantly
in order for a chip to remain noise-immune. Thus dioxide depth d, wire width w,
permittivity ε and the supply voltage V can all be absorbed into a proportionality
constant permitting us to conclude that the energy needed to switch a wire of
length l is Θ(l). When a bit is stored on-chip for k time units, we charge k units of
energy. The logic is broadly classified into two design styles — combinational and
sequential. The design style determines the number of times a wire can switch
in response to a new input, which has a strong bearing on the effectiveness of
the lower bound proof techniques. For this reason, the following two cases are
considered.

Combinational/Uniswitch Model: In a combinational circuit, each wire is
limited to switch at most once in the absence of race conditions. These are acyclic
circuits with the restriction that for each input instance no signal can switch more
than once. The output value is determined solely by the input combination. This
model was named the Uniswitch Model (USM) by Kissin [7]. In this paper, to
avoid confusion, we will use the term combinational which covers both USM and
MSM (multiswitch model) as defined by Kissin.
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Sequential/Multiswitch Model: The other design style is sequential where
combinational blocks are used repeatedly under the control of finite state ma-
chines. The switching of the wires in sequential circuits cannot be bounded by
one. Tyagi [13] used the term Multiswitch Model (MSM) to refer to this model.
However, to avoid ambiguity with Kissin’s MSM model, we will refer to this
model as sequential model. Note that the multiple switching can occur due to
presence of either cycles or race conditions or both. The race conditions without
cycles constitute combinational circuits. The other two cases fall in the domain
of sequential circuits.

2.2 Privacy Model

We adopt a variant of Agrawal and Aggarwal [1] who provide an entropy based
definition of privacy.

Definition 1. Privacy of a single variable x is defined as the entropy of x, h(x),
given by

∫
Ωx

fx(i) log fx(i)di. Note that Ωx is the domain of x and i is a value in
Ωx. This is the classical information theoretic definition of entropy for a variable
x viewed as a random variable.

If this variable x’s privacy were to be enhanced by applying a perturbing function
rx, we can capture conditional entropy of x as follows.

Definition 2. Conditional privacy of a single variable x perturbed by a function
rx is defined as the conditional entropy of x, h(x|rx), given by

∫
Ωx,rx

fx,rx(i, j)
log fx,rx(i, j)di dj.

The loss of privacy for x resulting from the exposure of rx is the key definition
of privacy developed in Agrawal and Aggarwal [1].

Definition 3. The privacy loss for variable x resulting from the exposure of a
perturbing variable rx is defined as 1− 2h(x|rx)/2h(x).

Note that if rx is a random variable chosen independently from x (as is the case
in [10] and [6]), the privacy loss is 0 since h(x|rx) = h(x). Now we can define
the notion of privacy as used in Ishai et al. [6].

Definition 4. A variable x is designed to be t-private if it is perturbed by at
least k ≥ t variables rx1 , rx2 , . . . , rxk

and the privacy loss for x resulting from
the exposure of any subset of up to t perturbing variables is 0.

Note that this definition of privacy insists on maintaining 0 correlation between
the protected variable x and any subset of its perturbing variables. In these
schemes, x is represented by at least t + 1 physical variables, also known as
its shares xs0, xs1, . . . , xst. In other words, almost all the shares of x carry 0
information about x in these schemes. We call such privacy schemes information
isolating schemes or information isolating shares. Later in the paper (Section 5),
we will introduce a variant called information-splitting shares or privacy schemes.
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Once again, to recap Messerges [10] and Ishai et al. [6] schemes, Messerges
splits each variable x into two shares rx (a random bit) and rx ⊕ x. He calls
this scheme a masking scheme. He also introduces a similar arithmetic masking
variant. Ishai et al. generalize this scheme to split x into t + 1 shares xs0 =
rx1 , xs1 = rx2 , . . . , xst−1 = rxt , xst = rx1 ⊕ rx2 ⊕ · · · ⊕ rxt ⊕ x. They then
provide a transformation for the Boolean basis of a “not” gate and an “and”
gate where each operand is a t + 1 bit value.

Privacy Adversary: ¿From privacy perspective, our adversary is similar to the
one assumed in Ishai, Sahai, Wagner [6]. It is a t-limited, interactive adversary.
The adversary can choose the inputs to the circuit to be asserted for each round,
and can choose an arbitrary set of up to t internal nodes to observe/sample. The
adversary is allowed to choose an input and t internal nodes in each round i on
the basis of its observations in the preceding rounds. In order to accommodate
power attacks, the adversary can also choose to observe the power nodes, i.e.,
some of these t observations are power nodes. For a power node, the adversary
is not interested in a Boolean value. It observes the current profile of that node
for a certain duration Δt in that round. If the power node is internal, such
an observation is feasible through EM radiation measurement. For an external
power pin, the current can be measured directly.

3 Preliminaries

In this section, we briefly review the most relevant concepts from VLSI com-
plexity theory – information or communication complexity of a function. We
also state and prove a lemma to bound the switching incurred in transmitting
k bits of information. Finally, a key cutting lemma to separate a chip into two
parts is presented. In the following, log and ln refer to the base 2 and natural
logarithms respectively and e is the inverse of natural logarithm.

3.1 Information

Many proof techniques in VLSI complexity theory argue about the amount of
information exchanged between two disjoint regions on a chip. The information
content is measured in terms of number of bits, which is also consistent with
the information-theoretic notion of information based on the entropy function.
Hence the number of bits required to transmit k distinct events with probabilities
p1, p2, . . . , pk is given by �H(P )� where H(P ) =

∑k
i=1 pi log

(
1
pi

)
.

In most of the proofs in this paper, we will distinguish between physical bits
and information bits. When two disjoint regions on a chip need to exchange
k bits of information; we are referring to the information-theoretic definition of
bits. We will use information bit to refer to the information content of data.
On the other hand, the term bit is also used to refer to the concept of binary
digits; which is the number of physical bits in the data. Note that in order to
communicate k bits of information (or k information bits), at least k physical bits
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have to be used. We can, of course, always use k′ > k physical bits to encode 2k

distinct events (k information bits), however the most efficient communication
occurs when the number of information bits is the same as the number of physical
bits. In this paper, we use the term bits to default to physical bits.

Note that we assume, without loss of generality, that the information is sig-
naled by switching a wire. It may seem, at first glance, that synchronous circuits
can get around this assumption by transmitting information through the signal
level and clock cycle count, i.e., if a wire retains signal level 1 from clock cy-
cle 0 through clock cycle k then the event k is communicated. Note, however,
that in such a scenario, the clock wire is providing implicit communication by
switching twice during each clock period. Hence the basic mode of signaling is
still switching. The following lemma formalizes this argument for combinational
circuits.

Lemma 1. Let k combinational wires, which switch at most once, be the only
wires connecting two disjoint regions R1 and R2 in a VLSI circuit. The amount
of information that can be exchanged between R1 and R2 is at most k information
bits.

Proof. Note that each wire can switch at most once and hence it carries a binary
event. The entropy function H(p) for a binary probability distribution has a
maximum value 1. This argument holds assuming that the single switch of the
wire is not decoded along with some timing information in order to generate more
information bits. For instance, the time slot when the wire w switches conveys T
events for a circuit operating for T time slots resulting in logT information bits.
In this scenario, k wires can carry up to k logT information bits. How can such
timing information be provided? The clock wires are precluded in combinational
model since they need to switch more than once. The other option consists of
two regions R1 and R2 maintaining their own clocks that are consistent. But
this requires T synchronization events in our VLSI model as we discussed in
Section 2. In combinational model, each synchronization event takes one wire
with one switch. Hence the transmission of k logT information with explicit time
information requires k + T combinational wires, which is even less efficient.

Now we introduce the notion of information complexity of a function
f(xnxn−1 . . . x1) = ymym−1 . . . y1. Let Cf = (V,W, I,O) be a cir-
cuit to compute f . Consider a partition π =

{
πL = {xi1 , xi2 , . . . xi�n/2�},

πR = {xj1 , xj2 , . . . xj�n/2�}
}

that divides the set of input bits into two equal-
sized sets. The chip Cf can possibly be partitioned in such a way that one
partition contains the input ports corresponding to πL and the other one con-
tains the input ports for πR. Let I(f, Cf , π,x, n) be the number of bits that
need to be exchanged between πL and πR when the input bits are assigned
values according to x ∈ {0, 1}n. Note that I(f, Cf , π,x, n) is ∞ for all the par-
titions π that cannot be realized in the chip Cf . The information complexity
of f , I(f, n), is the minimum number of bits exchanged between any two al-
most equal-sized partitions of the input bits over all implementations, which is
minCf

minπ∈Πn maxx I(f, Cf , π,x, n). Πn is the set of all approximately equal
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sized partitions of n bits such that each set in the partition contains at least
n/c bits for a constant c > 1. We will use I to denote I(f, n) in the following,
whenever the function f is implicit. Many techniques were developed to derive
lower bounds on I(f, n) for specific functions [[14], [12], [16]]. A particularly
interesting class of functions: transitive functions, was introduced by Vuillemin
[15]. A transitive function embeds a transitive permutation group computation.
Some examples of transitive functions include shifting, integer multiplication and
linear transforms. Vuillemin also showed that I(f, n) for a transitive function
is Ω(n).

3.2 Switching Lemma

R1

R1

R1

R2
R2

RI1

R1

R2

RI2

R2

H

V

tl

bl

tr

br

tl
tr

bl
br

Fig. 1. An Illustration of the Cutting Method

We wish to show that when
k information bits are en-
coded with k′ > k phys-
ical bits and transmitted
across w wires; they in-
duce a significant amount
of switching. The main dif-
ficulty in proving lower
bounds on energy consump-
tion arises from the obser-
vation that expanding infor-
mation can reduce switch-
ing and hence reduce en-
ergy. An extreme scenario
expands the information ex-
ponentially. For instance,
a chip could transmit 2k-
bit long strings to convey
k information bits. Only
the strings from {0∗10∗} ∩
{0, 1}2k

(strings of length 2k

with only one 1) are used to
transmit the information. The string 0i−1102k−i conveys the ith event. Note that
the switching in such a string is limited to only two, at the borders of the bit 1.
The switching lemma bounds the average switching by Ω (k/ log(k′/k)). Let us
first introduce the notion of alternation.

We say that in a bit sequence a1, a2, . . . , al, there is an alternation at position
j if aj �= aj+1 for 1 ≤ j ≤ l − 1. Let δj be 1 if aj �= aj+1 and 0 otherwise. Then
the total alternation for a l-bit sequence is given by

∑l−1
j=1 δj .

Lemma 2. Let k′ and k be two positive integers such that k′ ≥ k. The average
number of alternations in transmitting a k′ bit encoding of k information bits,
A(k′, k) ≥ k/4 log(4k′/k).
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Note that if a k′ bit sequence is sent on a single wire then the average
switching is identical to the average alternation of the bit sequence. Lemma 2
proves that a k′ > k bit encoding of k information bits (2k distinct events) has
average alternation at least k/4 log(4k′/k). Now let us consider the case when
the k′-bit encodings are sent on l > 1 wires.

Lemma 3. Let k information bits be encoded with k′ > k physical bits. The
average switching in transmitting k′ bits on l > 0 wires is at least k/4 log(4k′/k).

3.3 Cutting Lemma

The basic technique to derive VLSI lower bounds (introduced by Thompson
[12]) first cuts the chip into parts such that each part has approximately half
the input bits. For area-time lower bounds, a simple variant of a line cutting
the rectangular chip is sufficient. For energy lower bounds, a cut needs to satisfy
several additional conditions, as will become evident later.

We first prove a key cutting lemma. Note that we have not used the floor
function to denote the integer value of a fraction

⌊
x
y

⌋
in the following lemma in

order to avoid the clutter of notation. The use of floor function would not have
changed the results.

Lemma 4. Let C = (V,W, I,O) be a circuit to compute f . Let us assume that
no input port reads more then n/81 input bits. There exist two sets of input ports
I1 ⊂ I and I2 ⊂ I such that I1 and I2 each read at least n/81 input bits. Let RI1

and RI2 denote the smallest rectangles containing I1 and I2 respectively. Let p1
(p2) be the perimeter of RI1 (RI2). Let h (v) be the horizontal (vertical) distance
between RI1 and RI2 . Then at least one of the following statements holds true.

1. h ≥ min(p1/4, p2/4).
2. v ≥ min(p1/4, p2/4).

Proof. Since no input port reads more than n/81 input bits, we can find a vertical
line V bisecting the chip into two halves such that each half reads at least n/3
input bits. The argument for it is similar to that in Ullman [[14] , page 49], which
states that moving an input port from one side to the other can move at most
n/3 bits. Note that such a line need not be a straight line. It could be a line
with one jog as shown in Thompson’s cutting argument [12]. Let us concentrate
on the right-hand side of V . Once again, we can find a horizontal line H that
cuts the right-hand side of V into two parts such that each part reads at least
n/9 input bits. The left-hand side of V is also cut into two parts by the line
H . At least one of these parts reads n/6 input bits. Without loss of generality,
let the bottom part read greater than or equal to n/6 input bits. Let RI1 and
RI2 be the smallest rectangles containing the input ports in the bottom-left and
top-right quadrants respectively, as shown in Figure 1.

Now cut both RI1 and RI2 first vertically and then horizontally as before.
This gives rise to four rectangles Rtl

1 , Rtr
1 , Rbl

1 and Rbr
1 each reading at least
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n/54 input bits. We also get Rtl
2 , Rtr

2 , Rbl
2 and Rbr

2 each reading at least n/81
input bits. Let Rtl

1 , Rtr
1 , Rbl

1 , Rbr
1 , Rtl

2 , Rtr
2 , Rbl

2 and Rbr
2 have perimeter ptl

1 ,
ptr
1 , pbl

1 , pbr
1 , ptl

2 , ptr
2 , pbl

2 and pbr
2 respectively. Without loss of generality, let a

rectangle in RI1 have the smallest perimeter. Let this rectangle be Rtr
1 with

the smallest perimeter p = ptr
1 . Since we will be separating this rectangle from

one of the rectangles in RI2 , any other rectangle in RI1 can only have a larger
separation. Consider the rectangle Rbl

2 . It has perimeter pbl
2 ≥ p. Then either

its width w ≥ p/4 or its height h ≥ p/4. If the width of Rbl
2 is greater than or

equal to p/4 then Rbr
2 is horizontally separated from Rtr

1 by distance at least p/4
where the perimeter of Rtr

1 is p. Otherwise Rtl
2 is vertically separated from Rtr

1
by distance at least p/4. All the other pairs of rectangles have an even larger
separation. This proves the assertion.

4 Energy Privacy Trade-Off

R I1

R I2

p rings

Fig. 2. The Rings Used in ET Lower Bound

In this section, we show
that the combinational en-
ergy and combinational &
sequential ET product have
a lower bound of Ω

(
t2I2

)
for a t-private implementa-
tion, where I is the informa-
tion complexity of the func-
tion, I(f, n). The sequen-
tial energy can be shown
to be Ω

(
t3/2I3/2

)
. In par-

ticular, these results apply
to transitive functions such
as shifting, multiplication
and DFT. Since the infor-
mation complexity of tran-
sitive functions is known
to be Ω(n), these lower
bounds translate into: combinational and sequential ET product, Ω(t2n2); com-
binational E, Ω(t2n2); sequential E, Ω(t3/2n3/2). Let us consider the worst case
switching energy first.

4.1 Worst Case Switching Energy

The strategy for the proof is as follows. We cut the given chip according to
the procedure outlined in the cutting lemma (Lemma 4) so that there are two
widely separated sections of the chip containing a high number of input bits
(n/c for a constant c > 1) each. By definition, the information complexity I
is the minimum number of information bits that must be exchanged between
two regions containing at least n/c input bits each for a constant c > 1. Due



370 A. Tyagi

to privacy enhancements, in a t-private circuit, these sections exchange at least
tI bits. A cut is a bounding box around these input bit regions. The switching
lemma from Section 3 provides a lower bound on the switching energy consumed
at such a cut. This energy is summed over several such disjoint cuts leading to a
lower bound. Our lower bounds along with the lower bounds on I result in energy
lower bounds parametrized by n and t. We start with the uniswitch/pipelined
energy case.

Combinational Energy

Recall that no wire in a combinational circuit can switch more than once. Hence
no input port can read more than one input bit. Given that all the 2n input
values are uniformly distributed, any input bit has probability 1/2 of differing
from another input bit. If an input port did read two or more input bits, it will
switch more than once at least for some input assignments, once between initial
state and the first input bit, and then between the first and second input bits.
This implies that a combinational circuit C = (V,W, I,O) must contain n input
ports.

Theorem 1. A combinational t-private VLSI computation of a function f with
information complexity I has an energy-time product ET = Ω(t2I2). The com-
binational energy consumption is also Ω(t2I2). Hence the ET product and the
switching energy of t-private transitive function implementations are Ω(t2n2).

Proof. Note that the proof of Lemma 1 also implies that in combinational cir-
cuits, every input port reads at most one input bit. Thus we can use Lemma 4
to derive two rectangles RI1 and RI2 satisfying the following conditions. RI1

and RI2 each contain at least tn/81 input ports (or bits derived from the input
decoder of [6]). Their horizontal or vertical separation is greater than or equal to
min(p1/4, p2/4) where p1 and p2 are their respective perimeters. Without loss of
generality, let this separation be p1/4. We build p1/4 new bisections in the follow-
ing way. Let W (0) be the set of all the horizontal or vertical unit length wire seg-
ments crossing the perimeter of RI1 . Let W (i) be defined recursively as the set of
unit length wires adjacent to the wires in W (i−1) and not in W (0), . . . ,W (i−1)
and not inside RI1 . These are the rings around RI1 as shown in Figure 2. Note
that if the chip boundaries do not allow some of these rings to expand along
some directions then only the wires in the expansion towards RI2 constitute the
bisection ‘rings’. Let us consider the rings W (0),W (1), . . .W ((p1/4)− 1). Note
that W (0) contains at most p1+4 unit length wire segments that link it to W (1).
It can be seen that the perimeter of W (i) for 1 ≤ i ≤ (p1/4−1) is p1 +8i and at
most p1 +8i+4 unit length wire segments are contained in the bisection of W (i)
and W (i+ 1). Hence the number of unit length wire segments connecting W (i)
to W (i+1) for 0 ≤ i ≤ (p1/4−1) has an upper bound of 3p1. The combinational
model dictates the uniswitch requirement which allows each wire to switch at
most once. Lemma 1 shows that each wire in a combinational circuit can carry at
most one bit of information during the course of computation. Note that the race
conditions induced switching, omitted from the combinational model, does not
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carry any extra information. Hence, the total number of bits transmitted across
a ring, m, cannot exceed 3p1. If the majority of the output bits are generated in-
side a ring W (i), then the information about the input bits read in RI2 needs to
come into the ring. Otherwise, the information about the input bits read inside
the ring needs to go out. In either case, since RI1 and RI2 initially contain in-
formation on at least n/81 input ports, the number of information bits traveling
across these rings is Ω(tI) due to t-privacy. Let mWi physical bits cross W (i).
Note that since the maximum number of physical bits that can be transmitted
across a ring is 3p1, mWi ≤ 3p1, ∀i. Hence by Lemma 3 the switching at a ring
W (i) is at least tI

4 log(4mWi
/tI) ≥

tI
4 log(12p1/tI) . The length of each wire segment in

a ring W (i) is one and hence the energy consumption at a ring equals the switch-
ing count. Summed up over p1/4 rings, the energy E is tIp1

16 log(12p1/tI) . Note that
for the correctness of the computation the total number of physical bits crossing
a ring must at least equal the number of privacy enhanced information bits tI,
i.e, 3p1 ≥ mWi ≥ tI. Also observe that for p1 > tI/3, p1

16 log(12p1/tI) > tI/96.
Thus the combinational energy is Ω(t2I2). Since the time taken is at least one
time unit: T ≥ 1, ET product is also Ω(t2I2).

Sequential Energy

In a sequential circuit, the principal difficulties in proving a good lower bound
are as follows. An input port can be multiplexed to read many input bits. A
wire can be used to multiplex many bits, unlike the combinational/uniswitch
case where a wire carries at most one bit. In the extreme, a wire may transmit a
bit for each time unit. Or to make things even more complicated, a hand-shaking
protocol might induce a few periods of activity on an otherwise idle wire. These
conditions in conjunction with information expansion make it harder to get a
handle on sequential energy consumption.

Now we are ready to prove a lower bound on the sequential ET product,
which uses an argument similar to the one used in Theorem 1.

Theorem 2. A sequential t-private VLSI implementation of a function f with
information complexity I has an energy-time product ET = Ω(t2I2). Hence the
ET product of a t-private implementation of a transitive function is Ω(t2n2).

Next, we derive a Ω
(
t3/2n3/2

)
lower bound on the sequential energy of t-private

implementations of transitive functions. The key intuition to support an tn
√
tn

lower bound on sequential energy is the relationship between the perimeter and
area of a two-dimensional region. A region with perimeter p can have area at
most p2. An encoding of tn information bits into m > tn physical bits creates a
bottle-neck at the perimeter.

We use a lemma based on Baudet’s ideas [3] to establish that even if an input
port reads many input bits, these bits would have to be remembered before an
output bit can be asserted for a transitive function. Thus before any output
bit can be generated, the information about almost all the n input bits should
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either be stored on the chip or should be read at that time. Hence, at least Ω(tn)
storing nodes are needed for the computation of a transitive function.

We will use the cutting lemma, Lemma 4, in proving the sequential energy
lower bound of Ω(t3/2n3/2). However, Lemma 4 guarantees the two well sepa-
rated rectangles only when no input port reads more than n/81 input bits. The
Ω
(
t3/2n3/2

)
sequential energy can either be attributed to the storage cost of the

input bits for the duration the computation needs to retain them or it can be
attributed to the routing energy of information. We prove both the scenarios in
the following theorem to illustrate the role of both storage and routing energy.

Theorem 3. The sequential energy of a t-private implementation of a transitive
function is Ω(t3/2n3/2).

5 Information-Splitting Privacy Schemes

The redundant information resulting from privacy enhancement always results in
increased switching energy consumption. If one were to encode the n information
bits with m > n redundant bits (as is done in many of the information-theoretic
codes), the average switching per wire to transmit the m bits can be bounded
(from below) by n/ log(2m/n). The wire lengths (and in turn the switched ca-
pacitances), however, increase in proportion to m in this scenario. Hence the
resulting switching energy scales as mn/ log(2m/n) which always exceeds Ω(n2)
given by the non-redundant encoding with m = n.

Unlike the information-theoretic coding techniques that strive towards redun-
dant codes either for fault-tolerance (error correction) or for reduced switching,
the secret splitting introduces m shares that all switch with high activity factor.
A random bit switches with probability .5 and contains full information (entropy)
with P (x = 1) = .5 and P (x = 0) = .5. Hence, in the privacy transformations,
we end up paying for the increased wire capacitance without deriving the bene-
fits of the reduced switching! This is the motivation behind information-splitting
privacy schemes.

Definition 5. A variable x is designed to be t-private if it is perturbed by at
least k ≥ t variables rx1 , rx2 , . . . , rxk

and the privacy loss for x resulting from
the exposure of any one of the t perturbing variables does not exceed h(x)/t. In
other words, the revealed/leaked information is at most linear in the number of
exposed bits.

In other words, the original information in x is split into t equal buckets of in-
formation h(x)/t each. Moreover, the leaked information is linearly proportional
to the number of exposed bits. This can be achieved in many ways. Qualifying
variables that split the cube set of x [11] into a t-partition will have such an
information-splitting property. Admittedly, this model is less robust than the
information-isolating privacy schemes. However, the energy savings are signifi-
cant (a multiplicative factor t) as indicated by the following theorem.
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Theorem 4. A combinational t-private information-splitting VLSI computa-
tion of a function f with information complexity I has an energy-time product
ET = Ω(tI2). The combinational energy consumption is also Ω(tI2). Hence the
ET product and the switching energy of t-private information-splitting transitive
function implementations are Ω(tn2).

Proof omitted.
Note that we are using a more information-theoretic notion of privacy as op-
posed to the one based on the simulation of the adversary’s view as in Ishai
et al. [6]. Also observe that a statistical privacy variant of information-splitting
can also be obtained. In fact, an information-splitting t-private circuit itself can
be shown to provide

√
t level of statistical privacy. In the following, we moti-

vate a logic synthesis scenario for introducing information-splitting privacy in
an adder.

Consider the generate-propagate paradigm for addition of two n-bit numbers
X = xnxn−1 . . . x1 and Y = ynyn−1 . . . y1. Let generate signal gi = xi.yi denoting
the conditions under which carry is generated at the ith bit position. Similarly,
let pi denote the carry propagation condition given by xi ⊕ yi. Then the carry
computation is given by ci = gi + pi.ci−1. This schema already points to many
natural shares of ci. Specifically, two shares are given by gi and pi.ci−1. In
fact, up to i shares of ci can be extracted by the following expression: ci =
gi + pi.gi−1 + pi.pi−1.gi−2 + . . .+ pi.pi−1. . . . .p2.g1 + pi.pi−1. . . . .p2.p1.cin. Note
that these shares are additive with or rather than ex-or. One can develop logic
where the shares are mutually exclusive. Also note that not all these shares carry
equal amount of information (same switching probability). This example is only
for illustration purposes. In a logic synthesis system (for random logic), as much
balance in information between shares as possible can also be incorporated as a
goal. We are currently working on modifications to SIS [11], a multi-level logic
synthesis system, to incorporate such privacy.

6 Conclusions

The sidechannel attacks on VLSI implementations are becoming commonplace.
Many privacy schemes to tolerate an observation aperture of up to t variables
(called a t-private circuit) have been proposed. In this paper, we demonstrate
that the switching energy cost of any t-private implementation of a function such
as n-bit integer multiplication, n-bit shifter, or n-point DFT is at least a constant
multiple of t2n2. These bounds are tight in as much as implementations matching
these bounds exist. This is a t2 fold increase in switching energy just to support
t-privacy. We then propose an alternate schema for privacy enhancement called
information-splitting privacy. The energy costs of such schemas can be shown
to be only tn2, or t times more energy efficient than the original information-
isolating schemas. This is the first work of its kind incorporating the newly
emerging security and privacy attributes into VLSI complexity theory.
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Abstract. The curves recommended by NIST are defined over finite
fields GF (2m) with m = 163, 233, 283, 409, 571. Among them GF (2163)
and GF (2409) have type-IV Gaussian normal bases. Using the Reyhani-
Masoleh and Hasan’s serial multiplier for type-I optimal normal basis, in
this paper, we propose a new serial multiplier for GF (2m) with type-IV
Gaussian normal basis, which reduces the critical XOR path delay of the
best known Reyhani-Masoleh and Hasan’s serial multiplier by 25% and
the number of XOR gates of Kwon et al.’s multiplier by 2. Therefore
our proposed multiplier can be applicable to implementing the protocols
related to the area including ECC under in ubiquitous computing.
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1 Introduction

Finite fields are important to cryptography and coding theory and especially to
public key cryptography such as in ECC, XTR and ElGamal type cryptosystems,
thus many researchers devote their attentions to efficient finite field arithmetic
[10,12]. Finite field arithmetic depends on the basis representation and an ele-
ment of the finite field is usually represented with respect to polynomial basis
[6,8,19], normal basis [1,4,9,13,14,15,16,17,18] and the nonconventional basis [7]
sometimes. In hardware implementation, the merit of the normal basis repre-
sentation is that the result of squaring an element is simply the right cyclic
shift of its coordinates. In particular, the type-I optimal normal basis generated
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by an irreducible All One Polynomial is the best known efficient among the
normal bases implementation [4,7,15,16]. Massey-Omura [11] invented the serial
multiplier which has a long path delay with parallel input and serial output.
Agnew et al. [1] proposed a Sequential Multiplier with Parallel Output (SMPO)
by improving Massey-Omura’s serial multiplier. Recently, Reyhani-Masoleh and
Hasan [13,17] proposed a SMPO with the lower area complexity and a little
higher path delay than that of Agnew et al. In 2004, Kwon et al. [9] proposed
a SMPO improving that of Agnew et al. whose path delay is unchanged and
the area complexity is equal to or higher than that of Reyhani-Masoleh and
Hasan according to type-II or otherwise. On the other hand, Yang et al. [20]
proposed a SMPO which has the same path delay as that of Kwon et al. by
reconstructing the multiplication matrix of Reyhani-Masoleh and Hasan over
type-II optimal normal basis. Although the arithmetic operations in finite fields
are the most efficient in case they have type-I optimal normal bases, two curves
recommended by NIST are defined over the finite fields with type-IV Gaussian
normal bases. Finite fields GF (2m) with type-IV Gaussian normal bases for odd
m can be embedded in finite fields with type-I optimal normal bases[see Lemma
1]. In this regard, we, in this paper, propose a new architecture for SMPO which
transforms the Gaussian normal basis multiplication in GF (2m) into the type-
I optimal normal basis multiplication in GF (24m) based on Reyhani-Masoleh
and Hasan’s SMPO over GF (2m) having a type-IV Gaussian normal basis. Our
SMPO reduces the critical XOR path delay of the serial multiplier of Reyhani-
Masoleh and Hasan by 25% and has the same critical path delay as that of Kwon
et al. The number of XOR gates of our proposed serial multiplier is the same as
that of Reyhani-Masoleh and Hasan and is fewer than that of Kwon et al. by 2.

2 Type-k Gaussian Normal Bases for GF (2m)

In this section, we give some preliminaries for the normal basis representation
of the finite field element and introduce a normal basis of low complexity. It is
well known that there is always a normal basis for the finite field GF (2l) over
GF (2) for any positive integer l [10,12]. If there exists an element β of GF (2l)
such that the set N = {β, β2, · · · , β2l−1} is a basis for GF (2l) over GF (2), then
N is called the normal basis for GF (2l) over GF (2) and β is called the normal
element. Then any A ∈ GF (2l) can be represented as follows.

A =
l−1∑
i=0

aiβ
2i

, ai ∈ GF (2).

For brevity, the normal basis representation of A will be denoted by

A = (a0, a1, · · · , al−1).

Also the matrix representation of A will be

A = a× β
T

= β × aT ,



Modified Serial Multipliers for Type-IV Gaussian Normal Bases 377

where a = [a0, a1, · · · , al−1], β = [β, β2, · · · , β2l−1
] and T denotes the vector

transposition. The merit of the normal basis representation is that the result of
squaring an element A is simply the right cyclic shift(RCS) of its coordinates.
That is,

A2 = (al−1, a0, a1, · · · , al−2).

Let A =
∑l−1

i=0 aiβ
2i

, B =
∑l−1

i=0 biβ
2i ∈ GF (2l), where ai, bi ∈ GF (2) and

C = AB =
∑l−1

i=0 ciβ
2i

. Then

C = (a× β
T
)× (β × b

T
) = aMb

T
,

where the multiplication matrix M is defined as

M = β
T × β = (β(2i+2j)), 0 ≤ i, j ≤ l− 1.

If each β2i+2j

is represented with respect to the normal basis, then we have
M = M0β +M1β

2 + · · ·+Ml−1β
2l−1

, where Mi is an l by l matrix over GF (2).
Using the property of squaring an element with normal basis representation, the
coefficients of C is obtained as below,

ci = aMib
T

= a(i)M0b
(i)T

,

where a(i) = [ai, ai+1, · · · , ai−1], b
(i)

= [bi, bi+1, · · · , bi−1]. From this result, we
can show that the numbers of 1s in Mi, 0 ≤ i ≤ l− 1 are the same. The number
of 1s in each Mi is called the complexity of the normal basis and denoted by CN .
Gao et al. proved that CN ≥ 2l−1 [3, 12].Throughout this paper, each element of
the finite field will be represented with respect to a normal basis. Now we describe
a construction of normal bases of low complexity. Let m, k be positive integers,
n = mk and n+1(�= 2) prime. Let τ be an element ofGF (n+1)∗ of order k and γ ∈
GF (2n) be a primitive n-th root of unity. Suppose that gcd(n/e,m) = 1, where e
is the order of 2 modulo n+ 1. Then β = γ + γτ + γτ2

+ · · ·+ γτk−1
generates a

normal basis forGF (2m) overGF (2) [2,5,12], that is,N = {β, β2, β22
, · · · , β2m−1}

is a normal basis of GF (2m) overGF (2). Then β is called Gaussian period of type
(m, k) over GF (2) [2,5,9]. If CN = 2m− 1, then N is called the optimal normal
basis of type-I or type-II according to k = 1 or 2 respectively. A polynomial whose
coefficient are all 1s is called All-One-Polynomial(AOP), e.g. xn+xn−1+· · ·+x+1.
It is well known that GF (2n) has a type-I optimal normal basis overGF (2) if and
only if n + 1 is prime and GF (n + 1)∗ =< 2 >, the fnite field generated by 2
modulo n+ 1 [12].

Throughout this paper, we assume that m is odd and GF (2m) has a type-IV
Gaussian normal basis. Then, by the following lemma, it is obvious that the
finite field GF (2m) is a subfield of GF (24m).

Lemma 1. Suppose that m is odd and GF (2m) has a type-IV Gaussian normal
basis, then GF (4m + 1)∗ =< 2 >, i.e. GF (24m) has a type-I optimal normal
basis.
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Proof. Since GF (2m) has a type-IV Gaussian normal basis, 4m + 1 is prime
and (4m/e,m) = 1, where e is the order of 2 in GF (4m + 1)∗. Therefore e
is equal to one of m, 2m or 4m. Moreover, if GF (4m + 1)∗ =< g >, where
2 = gt, 0 ≤ t < 4m, then e = 4m/(t, 4m). Therefore t is even in case e = m, 2m,
and thus 2 is a quadratic residue of 4m+1. On the other hand, 4m+1 is the form
of 8k+ 5 since m is odd. Therefore 2 is a quadratic nonresidue of 4m+ 1, which
leads to the contradiction. Consequently the order of 2 is 4m in GF (4m+ 1)∗.

Now, we like to find the methods for representing an element of GF (2m) as an
element of GF (2n), n = 4m. In the sequel, any element A of GF (2n) will be
denoted by the vector representation A = (a0, a1, · · · , an−1). From the funda-
mental property of the finite field, for any element B of GF (24m), B is also an
element of GF (2m) if and only if B2m

= B. Therefore, using the property of
squaring an element with respect to a normal basis, we obtain the following.

Theorem 1. Let B = (b0, b1, · · · , b4m−1) be an element of GF (24m). Then B is
an element of GF (2m) if and only if bi = bt, where i ≡ t mod m for 0 ≤ i, t <
4m, that is, B = (b0, b1, · · · , bm−1, · · · , b0, b1, · · · , bm−1).

Let n = 4m. Then n + 1 prime and GF (n + 1)∗ =< 2 >. If γ is a primitive
n+1-th root of unity, then γ generates a type-I optimal normal basis of GF (2n)
over GF (2) [12] and thus we have β = γ + γ2m

+ γ22m

+ γ23m

since τ = 2m.
Therefore each element A of GF (2m) can be represented as

A = A0β +A1β
2 +A2β

22
+ · · ·+Am−1β

2m−1
,

where each Ai ∈ GF (2). Since GF (2m) is a subfield of GF (2n), A is represented
with respect to normal bases in two ways as follows.

A = A0γ +A1γ
2 +A2γ

22
+ · · ·+Am−1γ

2m−1
+A0γ

2m

+A1γ
2m+1

+A2γ
2m+2

+

· · ·+Am−1γ
22m−1

+ · · ·+A0γ
23m

+A1γ
23m

+A2γ
23m+1

+ · · ·+Am−1γ
24m−1

,

and
A = a0γ + a1γ

2 + a2γ
22

+ · · ·+ a4m−1γ
24m−1

.

We thus have

Ai = ai+tm, 0 ≤ i ≤ m− 1, 0 ≤ t ≤ 3. · · · (∗)

3 Serial Multiplier of Reyhani-Masoleh and Hasan Using
AOP

In this section we revisit the structure of the serial multiplier proposed by
Reyhani-Masoleh and Hasan [13,17] using AOP. For brevity, we use two no-
tations ((i)) ≡ i mod m and 〈〈i〉〉 ≡ i mod n from now on. Let GF (2n) be the
finite field generated by the AOP xn + xn−1 + · · ·+ x+ 1 and γ be a root of the
AOP, then γ generates the type-I optimal normal basis. Let δi = β1+2i

, then n
becomes even and δi = γ1+2i

, where i = 1, 2, · · · , v = n/2, since β = γ. Then we
have the following lemma since γ is a root of the AOP.
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Lemma 2.

δi =

{
γ2ki

, 1 ≤ i ≤ n/2− 1,
1 =

∑n−1
j=0 γ

2j

, i = n/2,

where ki satisfies the congruence 2i + 1 ≡ 2ki mod n+ 1.

Reyhani-Masoleh and Hasan [13,17] proved the following lemma by substituting
all the entries of the the multiplication matrix M = (β2i+2j

) by the element of
the form β2j

, 0 ≤ j ≤ n− 1.

Lemma 3. Let GF (2n) be a finite field having a type-I optimal normal basis, γ a
generator of the optimal normal basis, A,B ∈ GF (2n), C = AB, and g ∈ {0, 1}.
Then

C =
n−1∑
j=0

a〈〈j−g〉〉b〈〈j−g〉〉γ
2j

+
v−1∑
i=1

(
n−1∑
j=0

xj,iγ
2j

)2
ki +

n−1∑
j=0

(
v−1∑
i=1

xi,v)γ2j

, v = n/2,

where xj,i =
{
ajb〈〈i+j〉〉 + a〈〈i+j〉〉bj if g=1
(aj + a〈〈i+j〉〉)(bj + b〈〈i+j〉〉) if g=0.

4 The Type-IV Gaussian Normal Bases Multipliers

4.1 A New Serial Multiplier

Let GF (2m) has a type-IV Gaussian normal basis and m is odd, n = 4m. Then
n + 1 prime and GF (n + 1)∗ =< 2 > . Now, We like to embed the elements
A,B ∈ GF (2m) to the elements in GF (2n) with respect to type-I optimal basis
and then construct a new multiplier for the finite subfield GF (2m) to calculate
C = AB modifying Reyhani-Masoleh and Hasan multiplier described in section
3. For the later, we now define an exponent.

Definition 1. Suppose that n = 4m,n + 1 prime, GF (n + 1)∗ =< 2 > and
ki is the exponent defined in Lemma 2. For 1 ≤ i0 ≤ u = (m − 1)/2 and
i ∈ {i0,m− i0,m + i0, 2m− i0}, we will define ςi as follows.

ςi =
{

((ki)), i ≡ i0 mod m,
((ki + i0)), i ≡ −i0 mod m.

Then we have the following.

Theorem 2. Assume that GF (2m) has a Gaussian normal basis of type-IV,
n = 4m, u = (m− 1)/2, and g ∈ {0, 1}. If A,B are belong to GF (2m) and C is
the product of A and B, then

C =
m−1∑
j=0

A((j−g))B((j−g))β
2j

+
m−1∑
j=0

(
u∑

i0=1

xj,i0(
1∑

w=0

β2ςwm+i0 +
2∑

w=1

β2ςwm−i0 ))2
j

,

where xj,i =
{
AjB((i+j)) +A((i+j))Bj if g=1,
(Aj +A((i+j)))(Bj +B((i+j))) if g=0.
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Proof. Without loss of generality, we prove the theorem for g = 1. Let A,B ∈
GF (2m) ⊂ GF (2n). Thus, by Lemma 3

C = AB =
n−1∑
j=0

a〈〈j−1〉〉b〈〈j−1〉〉γ
2j

+
v−1∑
i=1

(
n−1∑
j=0

xj,iγ
2j

)2
ki +

n−1∑
j=0

(
v−1∑
i=1

xi,v)γ2j

, v = 2m,

and aj = A((j)), bj = B((j)), 0 ≤ j ≤ n − 1, from the equation (∗). Therefore we
calculate only AiBi for i = 0, 1, 2, · · · ,m− 1. Next, if i = wm, 1 ≤ w ≤ 2, then

xj,i = ajb〈〈i+j〉〉 + a〈〈j+i〉rlanglebj = A((j))B((i+j)) +A((i+j))B((j)) = 0.

Lastly,
xj,i = ajb〈〈j+i〉〉 + a〈〈j+i〉〉bj

= AjB((j+i)+A((j+i))Bj

= x((j)),((i)).
Therefore, for 1 ≤ i ≤ (m− 1)/2,

n−1∑
j=0

xj,iγ
2j

=
3∑

t=0

(
m−1∑
j0=0

xj0,iγ
2j0 )2

tm

=
m−1∑
j0=0

(xj0,i

3∑
t=0

γ2tm

)2
j0 =

m−1∑
j0=0

xj0,iβ
2j0

.

Thus,

v−1∑
i=1

(
n−1∑
j=0

xj,iγ
2j

)2
ki =

v−1∑
i=1

(
m−1∑
j0=0

xj0,iβ
2j0 )2

ki =
m−1∑
j0=0

(
v−1∑
i=1

xj0,iβ
2ki )2

j0
.

For 1 ≤ i0 ≤ u = (m− 1)/2, we divide is into two classes as follows.
(1) i = wm + i0, 0 ≤ w ≤ 1,
(2) i = wm− i0, 0 ≤ w ≤ 2.
For (1),

xj,i = xj,wm+i0

= ajb〈〈j+wm+i0〉〉 + a〈〈j+wm+i0〉〉bj
= A((j))B((j+i0)) +A((j+i0))B((j))
= x((j)),i0 .

For (2),
xj,i = xj,wm−i0

= ajb〈〈j+wm−i0〉〉 + a〈〈j+wm−i0〉〉bj
= A((j))B((j−i0)) +A((j−i0))B((j))
= x((j−i0)),i0 .

Therefore,

C=AB =
m−1∑
j=0

A((j−1))B((j−1))β
2j

+
m−1∑
j=1

(
v−1∑
i=0

xj,iβ
2ki )2

j

=
m−1∑
j=0

A((j−1))B((j−1))β
2j

+
m−1∑
j=0

(
u∑

i0=1

xj,i0(
1∑

w=0

β2kwm+i0 +
2∑

w=1

β2kwm−i0+i0
))2

j

.

This completes the proof.
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From Theorem 2, if

Gj(A,B) = A((j−g))B((j−g))β +
u∑

i0=1

xj,i0 (
1∑

w=0

β2ςwm+i0 +
2∑

w=1

β2ςwm−i0 ),

then
C = ((G2

m−1 +Gm−2)2 + · · ·+G1)2 +G0,

where Gm−t(A,B) = Gm−1(A2t−1
, B2t−1

). Moreover, since β2j

appears 4 times
for each j, there can occur at most 4u+1 terms in the right hand side of the last
equation . However, that β2i

appears twice for each i0 means the same value is
added twice. Therefore such terms can be neglected. Consequently, the number
of XOR gates of the serial multiplier is

M = |{β}|+
u∑

i0=1

|{β2ςi0 , β2ςm−i0 , β2ςm+i0 , β2ς2m−i0 }|+ εu,

where

ε =
{

1 if g = 1,
2 if g = 0.

And if we set l = Maxm−1
j=0 Mj + 1, where Mj = |{wm + i0|ςwm+i0 = j, 0 ≤ w ≤

1}|+ |{wm− i0|ςwm−i0 = j, 1 ≤ w ≤ 2}|+ t and

t =
{

1 ifj = 0,
0 ifj �= 0,

then l determines the critical path delay of the XOR gates. To reduce the value
of l, we need the following.

Corollary 1. Assume that GF (2m) has a type-IV Gaussian normal basis,n =
4m, and g ∈ {0, 1}. If A,B ∈ GF (2m) ⊂ GF (2n) and C = AB, then

C =
m−1∑
j=0

(A((j+j0−g))B((j+j0−g))β
2j0 )2

j

+
m−1∑
j=0

(
u∑

i0=1

x((j+ji0 )),i0(
1∑

w=0

β2ςwm+i0+ji0 +
2∑

w=1

β2ςwm−i0+ji0 ))2
j

,

where xj,i =
{
AjB((i+j)) +A((i+j))Bj if g=1,
(Aj +A((i+j)))(Bj +B((i+j))) if g=0.

Proof. If we perform ji0 -fold right cyclic shift on each basic element β2j

appeared
in C in Theorem 2 for each i0, then

C =
m−1∑
j=0

(A((j−g))B((j−g))β
2j0 )2

j−j0

+
m−1∑
j=0

(
u∑

i0=0

xj,i0(
1∑

w=0

β2ςwm+i0+ji0 +
2∑

w=1

β2ςwm−i0+ji0 ))2
j−ji0 .
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Substitute the value of β which has earlier derived and matches the bits, then
we obtain the result.

Therefore if we define

G′
j(A,B) = A((j+j0−g))B((j+j0−g))β

2j0

+
u∑

i0=1

x((j+ji0 )),i0(
1∑

w=0

β2ςwm+i0+ji0 +
2∑

w=1

β2ςwm−i0+ji0 ),

then
C = ((G′2

m−1 +G′
m−2)

2 + · · ·+G′
1)

2 +G′
0,

where G′
m−t(A,B) = G′

m−1(A2t−1
, B2t−1

) by Corollary 1.
Let l′ = Maxm−1

j=0 M ′
j + 1, where M ′

j = |{wm + i0|ςwm+i0 + ji0 = j, 0 ≤ w ≤
1}|+ |{wm − i0|ςwm−i0 + ji0 = j, 1 ≤ w ≤ 2}|. Then the process of calculating
C in Corollary 1 is as follows. Firstly, for each i0, we seek for ji0 such that l′

becomes to be optimal and choose j0 being different from l′. Next, G′
j(A,B)

is obtained by j0-fold and ji0 -fold right shift of the first term and the second
term respectively in the equation defining Gj(A,B). Lastly, C is calculated by
G′

js and thus the XOR path delay for calculating C can be reduced to �log2 l
′�.

Therefore the critical XOR path delay is determined by l′.

Fig. 1. The structure of the proposed multiplier over GF (2m)

The serial multiplier given in Fig.1 is constructed from Corollary 1. The Z
array calculates xj,i for each 1 ≤ i ≤ u = (m − 1)/2. G′

m−1 is calculated in the
block G′, and the block Xj,i indicates the methods of operations according to
g = 0 or g = 1.
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4.2 Optimization

In implementing our proposed multiplier, for a fixed 1 ≤ i0 ≤ u = (m− 1)/2, if
some

ςi, i = i0,m− i0,m+ i0, 2m− i0,

in Theorem 2 are the same, then so are the outputs of β2ςi . Therefore the result
is not changed if we discard them. Thus we can reduce the number of XOR gates
and path delay. In this regard, the number of XOR gates and path delay can be
reduced by confirming whether the values of ςi coincide for some i.

Lemma 4. Assume that m odd, 4m+1 prime and GF (4m+1)∗ =< 2 >. Then
one of k1 = k2 + u mod m or k3 = k4 + u mod m holds for u = (m− 1)/2 if, in
GF (4m+ 1)∗ =< 2 >,{

2u + 1 = 2k1 , 2m−u + 1 = 2k2 ,
2m+u + 1 = 2k3 , 22m−u + 1 = 2k4 .

Proof. All the following equations are modulo 4m+1. Since (1+2m)2 = 2m+1 =
(2u+1)2, we have 1+2m = ±2u+1. From this fact, we will first prove 2m+u−2u =
±1. Using 22m = −1,

2m+u − 2u = 2m+u + 22m+u

= 2m+u(1 + 2m)

=
{
−1 if 1 + 2m = 2u+1,
1 if 1 + 2m = −2u+1.

Next, we prove this lemma by dividing into two cases i.e. 1 + 2m = 2u+1 and
1 + 2m = −2u+1.
(1) If 1 + 2m = −2u+1, then 2u + 1 = 2m+u. Therefore

2m−u + 1 = 2u+1 + 1
= −(2m + 1) + 1
= −2m = 23m.

(2) If 1 + 2m = 2u+1, then 2m+u + 1 = 2u. Thus we have

22m−u + 1 = 2m+u+1 + 1 = 2m2u+1 + 1 = 2m(1 + 2m) + 1 = 2m.

This completes the proof.

By Lemma 4, if GF (2m) have a type-IV Gaussian normal basis and m be odd
then for u = (m − 1)/2, either ςu = ςm−u or ςm+u = ς2m−u. Thus, for g = 1,
there need M = (5m− 7)/2 XOR gates.

Now, we like to give an algorithm in order to find a method for calculating
the optimal l′ by determining j0, ji0 satisfying Corollary 1 with respect to each
type-IV Gaussian normal basis. First of all, let us define three sets and a matrix
for 1 ≤ i0 ≤ u, as follows.
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Ti0 = {i0,m− i0,m+ i0, 2m− i0}, Si0 = {ςt|t ∈ Ti0}, S′
i0

= Si0 −{ςi|ςi = ςj , i �=

j ∈ Ti0}, S = (sij)1≤i≤u,0≤j≤m−1, where sij =
{

1 if j ∈ S′
i,

0 otherwise.

Algorithm 1. (Algorithm for finding S′)
Input : S, l′ − 1 = 3,m
Output : S′

1. l = l′; j = 0;u = (m− 1)/2;mmm = m;
2. ttt = l; ss = 0;
3. While(ttt > l− 1)

3.1 j = 0;
3.2 While(j < mmm)

3.2.1 i = 0; ttt = 0;
3.2.2 While(i < u)

3.2.2.1 If sij = 1, then ttt = ttt + 1;
3.2.2.2 If ttt = l, then ss = i; i = u; j = mmm;
3.2.2.3 i = i+ 1

3.2.3 j = j + 1;
3.3 If ttt > l − 1, then S = Sss >> 1.

4. Return(S).
Here, Sss >> 1 means 1-fold right cyclic shift(RCS) of ss-th row in S.

There needs a total of 2m − 4 XOR gates to calculate the optimal value of l′.
In other words, S has

∑u
i=1 Mi − 1 = 2m − 4 nonzero entries. We like to find

the target matrix S′ containing at most (l′ − 1) nonzero entries in each column
using Algorithm 1. Although the lower bound of l′− 1 is equal to 2 in this case,
it is sufficient to seek for S′ containing three 1s (note that l′ − 1 = 3) in each
column since the value of the critical XOR path delay is 1 + �log2 4�.

Remark 1. For m ≤ 1000, we can easily find the target matrix S′ with l′−1 = 3
for GF (2m) using Algorithm 1.

5 Complexity

In this chapter, we calculate the complexities of the serial multiplier constructed
in Theorem 2 and Corollary 1 of section 4.1.

Theorem 3. The maximum complexities of the multiplier of Theorem 2 and
Corollary 1 are
a) m AND gates, (5m− 7)/2 XOR gates in case g = 1, (m + 1)/2 AND gates,
3m− 4 XOR gates in case g = 0 and
b) TA + 3TX path delay, where TA and TX denote AND delay and XOR delay
respectively.

Proof. For a), if g = 1, then there need one AND gate in order to calculate
Aj−1Bj−1 and the total number of AND gates to generate xj,i0 is m − 1 since,
for each 1 ≤ i0 ≤ u = (m−1)/2, there need two AND gates in order to calculate
xj,i0 . Therefore we need a total of m AND gates. Since the number of XOR
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Table 1. Comparison of Sequential Type-IV Gaussian Normal Basis Multipliers over
GF (2m)

Multipliers # AND # XOR Critical Path Delay flip-flop
MO[11] 4m − 7 ≤ (4m − 8) TA + �lg(4m)�TX 2m

Agnew et.al. [1] m ≤ 4m − 7 TA + 3TX 3m

Reyhani- Masoleh and Hasan [17] m (5m − 7)/2 TA + 4TX 3m

Reyhani- Masoleh and Hasan [17] (m+1)/2 3m − 4 TA + 4TX 3m

Kwon et.al. [9] m (5m − 3)/2 TA + 3TX 3m

Proposed g = 1 m (5m − 7)/2 TA + 3TX 3m

Proposed g = 0 (m+1)/2 3m − 4 TA + 3TX 3m

gate to generate each xj,i0 is 1 for each 1 ≤ i0 ≤ u = (m − 1)/2, there needs a
total of (m− 1)/2 XOR gates. There need 1 + 2(m− 1) XOR gates to calculate
Gj(A,B)2 +Gj−1(A,B) except xj,i0 , and thus we need a total of 5(m−1)/2+1
XOR gates. By the way, for i0 = u, two ςi0 coincide by Lemma 4. Therefore
the optimized total number of XOR gates is (5m− 7)/2. For g = 0, there need
(m − 1)/2 and 1 AND gates to generate xj,i0 and AjBj respectively and thus
we need a total of (m + 1)/2 AND gates. And there need a total 3m− 4 XOR
gates in case g = 0 similarly.
For b), it is immediately that both of the number of path delay of AND gates
and that of XOR gates to generate xj,i0 are equal to 1. Thus the critical XOR
path delay is 1 + �log2 4� since the number of the upper bound of the number of
XOR gates to generate the basic element β2j

in Gj(A,B)2 +Gj−1(A,B) except
xj,i0 is 4. This completes the proof.

Thus, we can obtain the following table 1.

6 Example

1) For g = 1,m = 7, we obtain the matrices S and S′ from Algorithm 1 as
follows.

S =

⎛⎝1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0

⎞⎠ , S′ =

⎛⎝1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 0 1 0 0 1

⎞⎠ .

In this case l′ − 1 = 2. Then j1 = 0, j2 = 0, j3 = 1, and G′
m−1 = A5B5β +

x6,1(β+β22
+β25

+β26
)+x6,2(β2+β23

+β24
+β25

)+x0,3(β23
+β26

), where x6,1 =
A6B0 + A0B6, x6,2 = A6B1 + A1B6, x0,3 = A0B3 + A3B0. The corresponding
serial multiplier for GF (27) is given in Fig.2.
2) If g = 1,m = 37, then n = 148 and GF (149)∗ =< 2 >. Since

Gj(A,B) = Aj−1Bj−1β +
u∑

i0=1

xj,i0 (
1∑

w=0

β2ςwm+i0 +
2∑

w=1

β2ςwm−i0 ),
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Fig. 2. The serial multiplier for GF (27)

Fig. 3. The matrices S and S′ for GF (237)

the entries of j-th column of the matrix S are 1 if j ∈ {ςi0 , ςm−i0 , ςm+i0 , ς2m−i0}
for 1 ≤ i0 ≤ u and 0 otherwise. By twice right cyclic shift of 16-th row, we
can obtain the target matrix S′ having at most three 1s in each column. The
matrices S and S′ are given in Fig.3.

7 Conclusion

In Lemma 1, we proved that GF (4m + 1)∗ =< 2 > if GF (2m) has a type-IV
Gaussian normal basis and m odd. From Lemma 1 and using the fact that if
GF (2m) having type-IV Gaussian normal basis and m is odd, then GF (2m) is
a subfield of GF (24m) having a type-I optimal normal basis, in this paper, we
propose a new architecture for SMPO, which transforms the Gaussian normal
basis multiplication in GF (2m) into the type-I optimal normal basis multiplica-
tion in GF (24m) based on Reyhani-Masoleh and Hasan’s SMPO over GF (2m)



Modified Serial Multipliers for Type-IV Gaussian Normal Bases 387

having a type-IV Gaussian normal basis. From Table 1, we can confirm that
our proposed SMPO reduces the critical XOR path delay of the serial multi-
plier of Reyhani-Masoleh and Hasan by 25% and has the same critical path
delay as that of Kwon et al. And the number of XOR gates of our proposed
serial multiplier is the same as that of Reyhani-Masoleh and Hasan and is fewer
than that of Kwon et al. by 2. Therefore we expect our proposed serial mul-
tiplier will be efficiently applied to hardware implementations in the related
application areas.
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52 Avenue Alduy, 66860 Perpignan, France

Abstract. This paper explores elliptic curve cryptosystems over fields
of small odd characteristic p = 3 or 5. We establish formulas multiplying
by p a random point on an ordinary curve defined over Fpn , thereby im-
proving scalar multiplication on random and special curves for p = 3 or
5 using a p-Multiply-and-Add method. We study the complexity of our
method and compare it to other schemes.

Keywords: Elliptic curve, cryptography, scalar multiplication, small
characteristic.

1 Introduction
Elliptic curve cryptography (ECC), proposed independently by Koblitz [11] and
Miller [13] in 1985, is a more efficient and secure alternative to the RSA [19]
cryptosytem. ECC security is based on the difficulty of the discrete logarithm
problem in the group of points of elliptic curves.

The most important operation of ECC protocols is the scalar multiplication
of a point on a curve. Specifically, given an integer k and a point Q on the
curve, we have to compute kQ. Scalar multiplication is usually done by a chain
of double and add using the so-called Double-and-Add method. Doubling and
Adding points on the curve require several field multiplications, additions, and
one eventual inversion of the point coordinates. Hence, the efficiency of the
protocols relies deeply on the arithmetic of the curve and the arithmetic of
the underlying field.

Until now, research efforts have focused only on large prime fields and bi-
nary fields to provide efficient and secure implementations of ECC protocols.
Other types of finite fields, for example fields of small odd characteristic, have
received little attention: only few works concerning supersingular curves on F3n

have been done, motivated by the existence of curves suitable for identity-based
cryptosystems (cf. the work of Boneh et al. [2]) and few works on Koblitz curve
which concern a small set of ellitptic curve (cf. [21]).

In this paper we focus on ordinary curves defined over Fpn when p = 3, 5.
We noticed that the multiplication of a point by p can be done efficiently when
p is small. This fact comes from an underlying property of morphisms between
curves: the morphism Q �→ pQ splits into the composition of the Frobenius

S. Maitra et al. (Eds.): INDOCRYPT 2005, LNCS 3797, pp. 389–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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morphism and another curve morphism, which is simpler to evaluate than pQ. To
improve the efficiency of scalar multiplication on the curve, we propose replacing
the Double-and-Add method with a p-Multiply-and-Add method, which exploits
the efficiency of multiplication by p.

The remainder of this paper is organized as follows: in the first section we
review some basic facts on elliptic curves over finite fields, finite field arith-
metic and point representation. Then we establish the general property of the
p-multiplication in curves E(Fpn). We present the p-Multiply-and-Add method
to do scalar multiplication. In the fifth section we give the formulas for comput-
ing 3Q in characteristic 3, and study the global cost of scalar multiplication. In
the sixth section we do the same for the characteristic 5 case. We finish with a
brief conclusion.

2 Background

Given a finite group with underlying difficult discrete logarithm problem (DLP)
and efficient group law, one could use this group to implement cryptographic
protocols such as ElGamal encryption [7] or Diffie-Hellman key exchange [6].

Elliptic curves have a group structure which provides efficient group arith-
metic and difficult DLP. Indeed, let Fpn be a finite field, with p > 3 (resp. p = 3),
an elliptic curve E over Fpn is the set of pairs (x, y) ∈ Fpn × Fpn , satisfying an
equation of the form Y 2 = X3 + aX + b (resp. Y 2 = X3 + aX2 + b when p = 3),
plus a point at infinity O. We have a group law on the set of points of E: given
two points Q1 = (x1, y1) and Q2 = (x2, y2) on E, we compute the addition
Q3 = (x3, y3) = Q1 +Q2 by

when p > 3{
x3 = λ2 − x1 − x2
y3 = λ(x3 − x1) + y1

where λ =

{
y2−y1
x2−x1

if Q1 �= ±Q2
3x2

1+a
2y1

if Q1 = Q2

when p = 3{
x3 = λ2 − a− x1 − x2
y3 = λ(x1 − x3)− y1

where λ =
{ y2−y1

x2−x1
if Q1 �= ±Q2

ax1
y1

if Q1 = Q2

Before proceeding, we note that the formulas of the group law need inversion in
the field, which is a relatively expensive operation compared to multiplication.
It is possible to avoid inversion in addition and doubling formulas when using
projective coordinates. A projective point can be set in an affine form by one
inversion and several multiplications.

There are different types of projective coordinates which yield different effi-
ciencies for the addition and doubling formulas, the most used are the Jacobian
coordinates. For more on these coordinates, we refer to the work of Cohen et
al. [4]. In the same paper, Cohen et al. pointed out that the use of mixed of
coordinates, affine and Jacobian, could speed-up scalar multiplication.

Efficient scalar multiplication requires fast arithmetic in the field Fpn . For
now, efficient arithmetic can be done by using a special representation of Fpn :
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polynomial basis representation [1], or normal basis representation [15]. When
we use special polynomial basis, or normal basis, the powering to p in Fpn will
be markedly cheaper compared to the cost of multiplication. For example, when
p = 3, 5 the exponentiation to p has a cost of roughly 2n additions in Fp using
suitable polynomial basis, and is free of computation for normal basis.

We refer to the papers [9, 16] of Smart and Page for a practical algorithm for
multiplication and cubing in fields F3n . These methods can be extended to field
Fpn for small odd p.

Using elliptic curve cryptosystems on these types of fields necessitates special
requirements for security. Specifically, as stated by Diem in [5] we have to employ
prime degree n ≥ 11 for the degree of Fpn to prevent the Weil Decent attack.
The other requirements are more usual: to prevent Pohlig-Hellman’s attack [17]
and other generic attacks on DLP such as the Pollard rho method [18], we have
to use a curve whose cardinality is either a big prime number or a product of a
small integer with a big prime number.

3 Computing pQ in Characteristic p

Let E be an elliptic curve defined over the field Fpn by the equation Y 2 =
X3 + aX + b when p > 3 (but the same could be done for Y 2 = X3 + aX2 + b
when p = 3). The multiplication by p on the curve E inducesa morphism of
curve [p] : E → E defined by Q �→ pQ.

We will split this morphism to get a simpler expression of pQ. For this, first
we denote σ the Frobenius of Fpn over Fp defined by u �→ up.

Next, if we define Eσ the elliptic curve given by the equation Y 2 = X3 +
σ(a)X +σ(b), we can construct a morphism F from E to Eσ where F is defined
by F ((x, y)) = (σ(x), σ(y)). From [20] we have the following splitting of [p]

E
[p] ��

F ���
��

��
��

� E

Eσ

φ

����������

(1)

where the morphism φ : Eσ → E expresses as φ(x, y) =
(

Px(x)
Pz(x) ,

Py(x)y
Pz(x)

)
where

Px, Py and Pz are polynomials such that degPx = p, degPy = p+2 and degPz =
(p− 1)/2. The splitting of [p] for a point Q = (x, y) of E implies

pQ = φ(F (Q)) =
(
Px(xp)
Pz(xp)

,
Py(xp)yp

Pz(xp)

)
. (2)

Consequently, to multiply a point Q by p , we first compute F (Q) which is cheap
because of the low cost of powering to p in Fpn ; secondly we evaluate φ at F (Q).
Now, the cost of the multiplication by p of the point Q is roughly equal the the
cost of the evaluation φ at the point F (Q). When p is small, the polynomials
Px, Py and Pz have small degrees. The evaluation of φ at the point F (Q) should
be in this case, easy to compute thereby obtaining an efficient multiplication by
p on the curve E.
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4 Scalar Multiplication with a p-Multiply-and-Add
Method

We can use this efficient multiplication by p to improve scalar multiplication
on the curve. The most common method to multiply a point Q by an integer
k is the Double-and-Add method, with a classical binary representation of the
integer k, or with a signed representation (e.g. the Non-Adjacent Form [12]).
Other methods use memory storage, and differ on whether the point Q is fixed
or not. For a good survey on these methods, refer to the paper by Hankerson et
al. [12].

In this paper we will study only scalar exponentiation methods for non-fixed
point Q. The Signed Window Radix-p representation (SWRp,w) is a version of
sliding signed binary window representations (cf. the NAFw given in [12]) for
the case of radix-p representation with p > 2. Specifically, for an integer k, an
SWRp,w representation of k is given by the coefficients of the expression of k in
a signed radix-p expansion k =

∑�−1
i=0 kip

i, where each |ki| < pw

2 , ki �≡ 0 mod p
and between the two non-zero ki there is at least w − 1 zeros (unless one of the
two non-zero ki is the leading coefficient k�−1).

Algorithm 1. Signed window in radix-p
Require: An integer k ≥ 0, a prime p and a window length w
Ensure: The SWRp,w of k

i ← 0
while k > pw

2 do
if k ≡ 0 mod p then

ki ← 0, k ← k/p
else

ki ← k mods pw, k ← (k − ki)/p
end if
i ← (i + 1)

end while
ki ← k, � ← (i + 1)
Return (k�−1, . . . , k0)

It is not difficult to see that the length of the representation of k > 0 is
smaller than �logp(k)� + 1. Moreover the number of non-zero ki in SWRp,w

is equal to �
w+ 1

p−1
since in (p − 1)w + 1 consecutive coefficients, there is on

average, exactly (p− 1) non-zero coefficients. We can use this representation to
do scalar multiplication on the elliptic curve E(Fpn). We use a modified version
of the Double-and-Add method: the p-Multiply-and-Add method. The integer k
is given by its SWRp,w representation SWRp,w(k) = (k�−1, . . . , k0)p.

The general complexity of this scalar multiplication method is then equal
to �Multp + �

w+ 1
p−1

Add + Precomputations. To get a complete evaluation of the

complexity of this method, we have to explain how we do the precomputations.
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Algorithm 2. p-Multiply-and-Add
Require: A curve E(Fpn), a point Q ∈ E and the SWRp,w = (k�−1, . . . , k0) represen-

tation of an integer k .
Precomputations. for i = 0, . . . , pw−1

2 do T [i] ← iQ.
R ← O
for i = � − 1 to 0 do

R ← pR
if ki ≥ 0 then

R ← R + T [ki]
else

R ← R − T [−ki]
end if

end for
Ensure: R

Algorithm 3. Radix-p precomputations
Require: The size of the window w, the elliptic curve E and a point P
Ensure: A table T containing iP for 1 < i ≤ pw−1

2 and i �≡ 0 mod p
C[1] ← P, T [0] ← O, T [1] ← P
for i = 1 to (p − 1) do

C[i + 1] ← C[i] + P { Computation of C0 and S ′
0 = C0}

T [i + 1] ← C[i + 1]
end for
for t = 1 to w − 2 do

for i = 1 to (p − 1) do
C[i] ← pC[i] { Computation of ptC0}
for j = 0 to (pt − 1), j �≡ 0 mod p do

T [j + pti] ← T [j] + C[i] { Computation of St+1 = St + ptC0}
end for

end for
end for
for i = 1 to p−1

2 do
C[i] ← pC[i] { we compute pw−1C0}
for j = 0 to (pw−1 − 1), j �≡ 0 mod p and j + pw−1i ≤ pw−1

2 do
T [j + pw−1i] ← T [j] + C[i] { Computation of Sw}

end for
end for
return T

Since the number of computed points grows exponentially with w, the length
of the window, and the cost of the precomputation could be not negligible. A
straightforward method consists of computing the points of Sw by adding P
repetitively.

Here we will use a more refined method inspired by the method presented by
Cohen et al. [14]. This method uses the multiplication by p on the curve (instead
of the curve doubling used in the original Cohen’s method). Specifically, this
method iteratively computes the sets
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S′i =
{
iP, such that 0 ≤ i < (pi − 1) and i �= 0 mod p

}
.

This set is computed using the recursive relation S′i+1 = S′i + pi × C0 where
C0 = {iP, such that 0 < i < (p− 1)} . At the end we get Sw by computing the
points iQ in S′w−1 + pw−1C0 such that i ≤ pw−1

2 . The algorithm 3 uses this
strategy to do the precomputations.

Let us evaluate the complexity of this algorithm. Since we do only one addi-
tion to compute each element of the table T , the complexity of this algorithm is
equal to

pw−1(
p− 1

2
)Add + ((w − 2)(p− 1) +

p− 1
2

)Multp. (3)

When the points of Sw are expressed in affine coordinates, which is generally the
best choice (cf [4]), each point addition requires one inversion, which is costly. In
this situation, the algorithm 3 becomes really interisting by using Montgomery’s
algorithm (for example cf. [3], Algorithm 10.3.4) to do simultaneous inversions
in the computation S′i +(pi−1C0). Specifically, Montgomery’s algorithm replaces
m inversions with one inversion and (3m − 3) multiplications, so we will use
this algorithm to simultaneously compute the inversions of T [j] + C[i] for j =
0, . . . , pt−1.

5 Scalar Multiplication on Curves Defined Over the
Field F3n

Interest in the characteristic three case has grown recently, because of the ex-
istence of supersingular curves suitable for identity-based cryptosystems. Here
we will deal with non-supersingular curves. We will establish tripling formulas
in affine and Jacobian coordinates. We will then study scalar multiplication for
curves Y 2 = X3 + aX2 + b with random or sparse coefficients a, b.

Recently Smart and Westwood in [22], have studied the arithmetic of elliptic
curves over characteristic three fields which are defined by this type of equation
Y 2 = X3 +X2 + 1, i.e., with a = 1. They showed that these curves correspond
to curves with points of order three, and are in correspondence with curves of
Hessian form Y 3 + X3 = XY d with d ∈ F3n . They established formulas for
doubling in Hessian form which are cheap compared to doubling in Weierstrass
form, and tripling formulas in Weierstrass form in a form close to (2).

We have slightly modified the tripling formulas of Smart and Westwood. We
state below our formulas for every curve Y 2 = X3+aX2+b. But in the case a = 1
these formuas improve by one multiplication in Jacobian coordinates and two
multiplications and one squaring in affine coordinates the cost of the formulas
of Smart and Westwood.

Tripling in Affine Coordinates

We begin with the tripling formula when the points are given in affine coordinates.
Let Q = (x, y) be a point on E, the coordinates of Q3 = 3Q, where Q3 = (x3, y3),
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are given by x3 = y6/(a2(x3 + b)2) − x3a/(x3 + b), and y3 = y9(a3(x3 + b)3) −
y3/(x3 + b). The details of the computation are given below.

Table 1. Tripling in affine coordinates

x3 = D2 − B′, (S)
y3 = D3 − B, (C)

with

⎧⎨⎩
X = x3, (C)
Y = y3, (C)
A = 1/(X + b), (I)

and

⎧⎨⎩
B = Y A, (M)
B′ = aXA, (2M)
D = B/a, (M)

The cost of tripling in affine coordinates is equal to 3C + 4M + S + I where
C represents the cubing in F3n , M the multiplication, S the squaring and I the
inversion.

Tripling in Jacobian Coordinates

The Jacobian coordinates offer the cheapest tripling among coordinates which
avoid inversion. Let Q = (x, y, z) be a point on E in Jacobian coordinates, we
compute Jacobian coordinates of 3Q, where 3Q = (x3, y3, z3), as follows

Table 2. Tripling in Jacobian coordinates

x3 = D2 − aAF (2M)
y3 = D3

1 − Y F 2 (M + S + C)
z3 = F

with

⎧⎨⎩
A = (xz)3 (M + C)
B = bz9 (M + 2C)

D1 = y3/a (M + C)
and

{
D2 = D2 (S)
F = A + B

The cost of the tripling formula in Jacobian coordinates is equal to 6M +
2S + 5C.

On the Use of Sparse Coefficients

The tripling formulas in Tables 1 and 2 in affine and Jacobian coordinates,
require several constant multiplications. Indeed, in the case of affine coordinates,
we multiply by a in the computation of B′ and by 1

a in the computation of D.
For the Jacobian coordinates, we multiply by b in B, by 1

a in D and by a in x3.
If we choose the constants a and b of the curve equation with sparse rep-

resentation in F3n , the multiplication by such constants can be implemented
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efficiently. If we use the formulas in Tables 1 and 2 generally we cannot have a
and 1

a simultaneously sparse. In order to get a maximum sparse constant, we
slightly modified the formulas to avoid multiplication by 1

a .
For tripling in affine coordinates we propose the formulas in Table 9 in the

appendix. The cost of tripling is equal to 3C + 5M + S + I when the constants
are not sparse, but when a, b and a2 are sparse the cost of tripling becomes
3C + 2M + S + I. For the Jacobian coordinates, we suggest the formulas in
Table 10 in the appendix. The total cost of tripling is equal to 7M + 2S + 5C
but when the constants are sparse the cost become 3M+2S+5C. In both cases,
the gain is not negligible.

Scalar Multiplication

For now the elliptic curve E is given by the equation Y 2 = X3 + aX2 + b where
a and b are random or sparse elements in F3n . In Table 3 below we provide the
cost of each elementary operation in each coordinate system in terms of cubing
(C), squaring (S), multiplication (M), and inversion (I) in F3n .

Table 3. Cost of the operations on the curve

Operation Coordinates Cost
system Random coeff. Sparse coeff.

Addition Affine S + 2M + I S + 2M + I

Mixed addition Jacobian 2C + 3S + 8M 2C + 3S + 7M

Doubling Affine S + 3M + I S + 2M + I
Doubling Jacobian 3C + 2S + 7M 3C + 2S + 5M

Tripling Affine 3C + S + 4M + I 3C + S + 3M + I
Tripling Jacobian 5C + 2S + 6M 5C + 2S + 3M

Now using the cost of each elementary operation we can compute the global
cost of scalar multiplication. For simplification, we will suppose that the cost of
squaring is roughly equal to the cost of multiplication, and that the cost of cubing
is negligible compared to multiplication. We have computed the global cost of
scalar multiplication in Table1 4 first using the Double-and-Add method (DA)
with an integer k which is given by its NAFw of length �. The precomputations
are done using Cohen’s method [14]. And we have also computed the cost of
the scalar multiplication using Triple-and-Add method (TA) (Algorithm 2 with
p = 3) with the integer k given by its SWR3,w representation of the integer k
with length �′. The precomputations are done with Algorithm 3 and by using
Mongomery’s trick for inversions.

When w = 1, i.e., in the case of negligible precomputations, we remark that in
general, the Triple-and-Add method is better than the Double-and-Add method
1 The R or S corresponding to Coeff in the first column of the Table means

R=Random,S=Sparse
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Table 4. Cost of scalar multiplication with precomputations in E(F3n)

Coord., Method, Key, Coeff. Cost
Aff., DA, NAFw, R. (�(4 + 3

w+1 ) + 3 · 2w−1 + 4w − 18)M + (�(1 + 1
w+1 ) + w)I

Aff., DA, NAFw, S. (3�(1 + 1
w+1 ) + 3 · 2w−1 + 4w − 15)M + (�(1 + 1

w+1 ) + w)I
Jac., DA, NAFw, R. (�(9 + 11

w+1 ) + 3 · 2w−1 + 4w − 23)M + (w + 1)I
Jac., DA, NAFw, S. (�(7 + 10

w+1 ) + 3 · 2w−1 + 3w − 19)M + (w + 1)I
Aff., TA, SWR3,w, R. (� log3(2)(5 + 3

w+ 1
2
) + 2 · 3w + 10w − 20)M

+(� log3(2)(1 + 1
w+ 1

2
) + 2w − 1)I

Aff., TA, SWR3,w, S. (� log3(2)(4 + 3
w+ 1

2
) + 2 · 3w + 8w − 16)M

+(� log3(2)(1 + 1
w+ 1

2
) + 2w − 1)I

Jac., TA, SWR3,w, R. (� log3(2)(8 + 11
w+ 1

2
) + 2 · 3w + 10w − 23)M + 2wI

Jac., TA, SWR3,w, S. (5� log3(2)(1 + 2
w+ 1

2
) + 2 · 3w + 8w − 17)M + 2wI

by about 20%, and that the use of sparse coefficients provides an important
increase in speed using scalar multiplication in the Triple-and-Add method.

Let us study the practical case � = 160, and compute the best window size in
each situation. To simplify we will suppose that the cost of inversion is roughly
equal to 10M . We obtain

• for the Triple-and-Add method, minimal computation is reached in Jacobian
coordinates: it is equal to 1186M + 6I when w = 3 for random coefficients,
and 855M + 6I when w = 3 for sparse coefficients;
• for the Double-and-Add method, minimal computation is reached in Ja-

cobian coordinates: it is equal to 1779M + 6I when w = 5 for random
coefficients, and 1531M + 6I when w = 5 for sparse coefficients.

In each situation, i.e., with sparse and random coeffcient, we note that Triple-
and-Add method gives a real improvement in the cost of scalar multiplication.
Specifically, the use of sparse coefficients provides an important increase in speed
employing the Triple-and-Add method.

6 Scalar Multiplication on Ordinary Elliptic Curve
Defined Over F5n

Let E be an elliptic curve defined by Y 2 = X3 + aX + b, with a, b ∈ F5n and
Q = (x, y) a point on E. The equation (2) of section (3) has in this situation the
following form

5Q =
(
Px(x5)
P 2

z (x5)
,
y5Py(x5)
Pz(x5)

)
,

where degPx = 5, degPy = 6 and degPz = 2. We modified this expression
of 5Q to increase the efficiency of mulitplication by 5. We obtain the following
formulas, first in the case of affine coordinates, and then in Jacobian coordinates.



398 C. Negre

Table 5. Multiplication by 5 in affine coordinates

x5 = 4MxA/M2
z , (S + 2M + I)

y5 = 2My/M3
z , (2M)⎧⎪⎪⎨⎪⎪⎩

X = x5, (Exp)
Y = y5, (Exp)
A = X + ab,
B = x2, (S)

and

⎧⎨⎩
C = A2, (S)

E† = (B + a)2 − xb + 2a2, (S + M)
F = X + 3ab,

and

⎧⎨⎩
M†

x = (B + 2a)10 + 3abY 2, (Exp + 2S + M)
M†

y = Y E5(abF − a5) + Y 5, (2Exp + 3M)
M†

z = aC + 3(a3 + 3b2)2. (M)

The total cost of the multiplication by 5 in affine coordinates is equal to
5Exp + 6S + 10M + I, where S represents squaring, I the inversion, M the
multiplication, and Exp the exponentiation to 5 in the field F5n .

Table 6. Multiplication by 5 in Jacobian coordinates

x5 = −(C10 + 3DY 2)(X + D), (Exp + S + 2M)

y5 = 2(Y F 5(DG − B5) + Y 5), (3Exp + 3M)

z†
5 = (aE + 3(a3 + 3b2)2A5)Z, (Exp + 3M)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2, y2, z2, (3S)
X = x5, Y = y5, (2Exp)
Z = z5, (Exp)
A = z4, (S)
B† = az4 (M)

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C = x2 + 2B,

D† = ab(z2)5, (M)
E = (X + D)2, (S)
F = 2C2 − xy2, (S + M)
G = X + 3D.

The total cost of the multiplication by 5 in Jacobian coordinates of the point
Q is equal to 8Exp+ 7S + 11M .

On the Use of Sparse Coefficients

As in the case of characteristic three, we remark that in the formulas above
several constant multiplications are needed († indicates where such multiplica-
tions are required). Specifically, there are three constant multiplications in the
Jacobian formula and four in the affine formula. We can exploit this fact by
using sparse curve coefficients a and b. This provides a way to speed-up the
multiplication by 5 by decreasing the number of multiplications by three or four
depending on the coordinate system used.

Consequently, we will divide the study of the complexity of scalar multiplica-
tion into two cases: 1) where a and b are random elements of F5n , and 2) where
a and b are sparse elements of F5n .
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Complexity

In Table 7 below, we provide the cost of different operations on the curve in
the affine, Jacobian and modified Jacobian coordinate systems (for additional
details on this, see the paper by Cohen et al. [4]). The cost of each operation is
given in terms of exponentiation to 5 (Exp), squaring (S), multiplication (M)
and inversion (I) in F5n . Now, using the cost of the elementary operations on

Table 7. Curve Operations

Operation Coordinate System Cost
Random coeff. Sparse coeff.

Addition Affine S + 2M + 1I S + 2M + I

Mixed Addition Jacobian 3S + 8M 3S + 8M
Mixed Addition Modified Jacobian 5S + 9M 5S + 8M

Doubling Affine 2S + 2M + 1I 2S + 2M + I
Doubling Jacobian 6S + 4M 5S + 4M
Doubling Modified Jacobian 4S + 4M 4S + 4M

Multiply by 5 Affine 5Exp + 6S + 10M + I 5Exp + 6S + 6M + I
Multiply by 5 Jacobian 8Exp + 7S + 11M 8Exp + 7S + 8M

curve E, we can determine the total cost of scalar multiplication on the curve.
This means that for integer k and point Q, we are going to determine the total
cost to compute kQ. We study the two following situations.

First if we fix k to be an � bit length integer, using the Double-and-Add
method (DA) with an integer k given by its NAFw [8], the total cost of scalar
multiplication is equal to �Double + �

w+1Add + Precomputations. The precom-
putations are done using the method given in [14].

Secondly, for the 5-Multiply-and-Add method (5-MA), if �′ is the length of
the representation in basis 5 of k =

∑�′−1
i=0 ki5i the total cost of the 5-Multiply-

and-Add method is equal to �′Mult5 +
(

�′

w+ 1
4

)
Add + Precomputations, where

Mult5 represents the cost of the multiplication by 5 and w is the size of the
window. We have �′ ∼= � log 2

log 5 = � log5(2).
If we suppose that the cost of a squaring is equal to the cost of multiplication

and if we neglect the cost of exponentiation to 5 in the field F5n , we obtain the
overall cost of the sclalar multiplication in each coordinate system in Table2 8.

When w = 1, i.e., in the case of negligible precomputations, we remark
that in general, the 5-Multiply-and-Add method is better than the Double-and-
Add method by about 9%, and that the use of sparse coefficients provides an
important increase in speed using scalar multiplication in the 5-Multiply-and-
Add method.
2 The R or S corresponding to Coeff in the first column of the Table means

R=Random,S=Sparse.
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Table 8. Cost of scalar multiplication in E(F5n)

Coord.,Method,Key, Coeff. Type Cost
Aff., DA, NAFw, R. (�(4 + 3

w+1 ) + 3 · 2w−1 + 4w − 17)M
+(�(1 + 1

w+1 ) + w)I
Aff., DA, NAFw, S. (�(4 + 3

w+1 ) + 3 · 2w−1 + 4w − 17)M
+(�(1 + 1

w+1 ) + w)I
Mod. Jac., DA, NAFw, R. (�(8 + 14

w+1 ) + 3 · 2w−1 + 4w − 21)M + (w + 1)I
Mod. Jac., DA, NAFw, S. (�(8 + 13

w+1 ) + 3 · 2w−1 + 4w − 21)M + (w + 1)I
Aff., 5-MA, SWR5,w, R. (� log5(2)(16 + 3

w+ 1
4
) + 5w−1 · 12 + 64w − 114)M

+(� log5(2)(1 + 1
w+ 1

4
) + 4w − 2)I

Aff., 5-MA, SWR5,w, S. (� log5(2)(12 + 3
w+ 1

4
) + 5w−1 · 12 + 48w − 86)M

+(� log5(2)(1 + 1
w+ 1

4
) + 4w − 2)I

Jac., 5-MA, SWR5,w, R. (� log5(2)(18 + 11
w+ 1

4
) + 5w−1 · 12 + 64w − 116)M

+(4w − 1)I
Jac., 5-MA, SWR5,w, S. (� log5(2)(15 + 11

w+ 1
4
) + 5w−1 · 12 + 48w − 89)M

+(4w − 1)I

If we study the practical situation � = 160 we remark that, under the condi-
tion that the cost of inversion is of 10M (cf. for example [10])

• for the 5-Multiply-and-Add method, minimal computation is reached in ja-
cobian coordinates: it is equal to 1650M + 7I when w = 2 for random
coefficients, and 1185M + I when w = 1 for sparse coefficients;
• for the Double-and-Add method, minimal computation is reached in jacobian

coordinates: it is equal to 1705M + 5I when w = 5 for random coefficients,
and 1674M + 5I when w = 5 for sparse coefficients.

Thus in the case of random coefficients, we note that 5-Multiply-and-Add method
provides only a small gain compared to the Double-and-Add method. Conversely,
the use of sparse coefficients provides an important increase in speed employing
the 5-Multiply-and-Add method when w = 2. This clearly justifies the use of
scalar multiplication on the curve in these methods.

7 Conclusion

We have presented a new way to multiply a point Q by 3 and 5 on curves defined
over a field of characteristic 3 and 5 respectively. We used a p-Multiply-and-Add
method to do scalar multiplication on the curve. We saw that this approach
provides a scalar multiplication method which is less costly than the classic
method of Double-and-Add.

Theoretically this method extends for bigger characteristics p ≥ 7. But in
these cases we did not obtain multiplication by p as efficiently as necessary due
to the high degree of morphism φ defined in equation (1).
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8. D. Hankerson, J. López Hernandez, and A. Menezes. Software Implementation of
Elliptic Curve Cryptography over Binary Fields. In Proceedings of the Second In-
ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 1965 of Lecture Notes in Computer Science, 2001.

9. K. Harrison, D. Page, and N. P. Smart. Software implementation of finite fields of
characteristic three. LMS Journal of Computations and Mathematics, 5:181–193,
2002.

10. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and Computation, 78(3):171–177, 1988.

11. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–
209, 1987.

12. M. Brown and D. Hankerson and J. López and A. Menezes. Software Implemen-
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A Tripling Formulas with Sparse Coefficients
We provide below modified formulas for tripling in affine and Jacobian coordi-
nates when the elliptic curve has sparse coefficients a, b.

Table 9. Tripling in affine coordinates - sparse coefficients

x3 = D2 − B′, (S)
y3 = D3 − B, (C)with

⎧⎨⎩
X = x3, (C)
Y = y3, (C)

A† = 1
a(X+b) , (M + I)

and

⎧⎨⎩
D = Y A (M)

B′† = a2XA, (2M)
B† = aD, (M)

Table 10. Tripling in Jacobian coordinates - sparse coefficients

x†
3 = D2 − a3AF (2M)

y†
3 = D3

1 − aY G2 (2M + S + C)
z3 = G

with

⎧⎨⎩
A = (xz)3 (M + C)
B† = bz9 (M + 2C)
D1 = y3 (C)

and

⎧⎨⎩
D2 = D2 (S)
F = A + B
G† = aF (M)

In each case we put the mark † when constant multiplication are required.
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Abstract. Hyperelliptic curve cryptosystems (HECC) can be imple-
mented on a variety of computing devices, starting from smart cards to
high end workstations. Side-channel attacks are one of the most poten-
tial threats against low genus HECC. Thus efficient algorithms resistant
against side channel attacks are the need of the hour. In the current work
we provide implementation ready formulae for addition and doubling on
curves of genus 2 which are shielded against simple side-channel analysis
by having a uniform performance. This is achieved by applying the con-
cept of side-channel atomicity – introducing cheap dummy operations to
make all traces look identical.

So far a detailed study of countermeasures against side-channel at-
tacks exists only for differential attacks. There one assumes that the
performance is made predictable by other means. But apart from the
double-and-alway-add approach only generalizations of the Montgomery
form were suggested and only for odd characteristic. They are less effi-
cient and do not combine well with some of the countermeasures against
differential attacks. Hence, our contribution closes the gap to achieve
secured implementations of HECC on devices exposed to side-channel
attacks.

To increase the performance even further we show how our formulae
can be implemented in parallel on two multipliers using a low number
of registers. It is also possible to combine our method with precomputa-
tions.
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curve cryptosystems, scalar multiplication, side-channel atomicity, par-
allel algorithms.
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1 Introduction

Hyperelliptic curve cryptosystems (HECC) are gradually gaining popularity due
to their versatility. For general curves of low genus there is no subexponential
algorithm known to solve the hyperelliptic curve discrete logarithm problem
(HCDLP). So, like ECC, HECC provides a high level of security with much
smaller keys and smaller operands compared to RSA. This makes curve based
systems very interesting for resource constrained devices like smart cards and
mobile devices. Since these are generally used in hostile outdoor environments,
implementations of HECC must be particularly robust.

Although for suitably chosen system parameters the DLP on HEC is hard to
compute, a straightforward implementation is vulnerable to side-channel attacks
(SCA). These attacks recreate the secret key of a user by sampling side-channel
information like timing, power consumption and electromagnetic radiation traces
of the computations.

The usual scenario in elliptic and hyperelliptic curve discrete logarithm based
cryptosystems is that the scalar multiplication is composed from a sequence of
additions and doublings and that these group operations differ from the side-
channel information. If the secret is established using a single trace, e. g. by
observing the sequence of group additions and doublings which are linked directly
to the bits of the key, one speaks of simple side-channel analysis (SSCA). To
avoid SSCA a possible but ineffective solution is to use a fixed pattern of group
additions and doublings which is filled with dummy operations if needed.

If the implementation is shielded against SSCA an attacker could still gain
information from the side channel data by using measurements for different in-
puts and fixed secret scalar. Often the performance depends on the intermediate
results and an attacker could use his own device to simulate the computations
and look for correlations among the observed traces. One uses the term differen-
tial side-channel analysis (DSCA) if the attack uses information from different
inputs and statistics among them. As DSCA makes use of the knowledge of
the internal state the approach is to randomize the internal representation such
that the attacker cannot simulate the state and thus cannot group the observed
side-channel traces.

For elliptic curves, finding efficient countermeasures against both types of
attacks has been an active research area during the past years starting from
[8], such that now countermeasures can be applied with only little performance
loss. For hyperelliptic curves, Avanzi [2] has generalized the countermeasures
against DSCA. His approach assumes the implementation to be secured against
SSCA by other means like the double-and-always-add-method. However, there is
still the lack of an efficient SSCA secured implementation and with the present
paper we aim at filling this gap. 1 We give at hand the complete formulas for
an efficient SSCA shielded implementation such that now it is possible to have
a fully secured device running HECC.

1 We like to point out that this problem is not solved by applying Cantor’s algorithm
as also there the executions differ depending on the input.



SCA Resistant Parallel Explicit Formula for Addition and Doubling 405

To this end we consider the proposal made by Chevallier-Mames, Ciet and
Joye in [7] which has been proved to be the most cost effective one in case of ECC.
The computational overhead involved in this countermeasure is almost negligible
introducing only a few further field additions and no multiplications. The method
divides the point addition and doubling algorithms into small parts, called side-
channel atomic blocks, which are indistinguishable from the side-channel as they
contain always the same sequence of operations. This is based on the assump-
tion that real and dummy operations cannot be distinguished. When the scalar
multiplication is computed with these addition and doubling algorithms, it be-
comes a computation of a series of atomic blocks and the side-channel informa-
tion becomes uniform. This difference is visualized in the following two pictures:
Figure 1 shows the view of the attacker who only sees a uniform sequence of op-
erations. In Figure 2 one sees that the first three steps belonged to an addition
while the following ones show the beginning of a doubling.

. . . . . .

Fig. 1. Attacker’s view on algorithm

. . . . . .

ADD9 ADD10 ADD11 DBL1 DBL2 DBL3 DBL4 DBL5

Fig. 2. Actual operations inside blocks

In the current work we propose for the first time hyperelliptic curve divisor
addition and doubling formulae divided into side-channel atomic blocks. The
existing formulae [17] for arithmetic on hyperelliptic curves of genus 2 form
the basis for this work but to combine them with side-channel atomicity some
more considerations are needed as e. g. one needs to decide upon the content
of the atomic blocks and arrange the formulas in a suitable manner. In even
characteristic most implementations of finite field arithmetic support inversions
and thus group operations in affine coordinates are faster than in inversion-free
systems. Still, inversions are the most costly field operations and they do not fit
in the small atomic block setting. Additionally, over binary fields, squarings are
far less expensive than multiplications. Our strategy was to take the whole group
operation as one atomic block which forced a rewriting of addition and doubling.
This is the same solution as done for elliptic curves in in even characteristic by
[7] – but our blocks are much more involved and larger.

As a second topic we show that our algorithms allow for an efficient imple-
mentation in parallel if the system admits two field element multipliers, each
capable of carrying out a multiplication. We state the formula for odd charac-
teristic in a manner such that the blocks with odd index can be performed by
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one processor and those with even index by another. For even characteristic we
have prescribed the order in which the operations can be computed in parallel.

For implementations it is important to note that the curves are given in
the standard form. This allows the DSCA countermeasures of divisor and curve
randomization to be applied directly. Furthermore, windowing methods can be
used to increase the speed. Obviously, our method leaks the Hamming weight
of the scalar. This information can be made uniform by applying the win-
dowing method proposed by Möller [21] (see also [13] for the application
to ECC).

Compared to the recently proposed generalizations of Montgomery arith-
metic to genus two curves [9, 16], our formulae obtain a much higher speed
with the additional option of parallel execution and the advantage of windowing
methods. Namely, Duquesne’s formulae need 69 multiplications per bit while in
odd characteristic our approach needs 55 multiplications per bit of the scalar on
average assuming a NAF expansion of the scalar. Additionally, our algorithm
allows extra speed-up from windowing methods and precomputations and works
for every curve while [9] needs a divisor of order 2. The formulae in [16] are
even slower but more general. Very recently Gaudry [10] suggested much more
efficient Montgomery-like formulae for the case that the curve has full 2-torsion.

Our algorithms are the fastest for general HECC achieving SPA resistance
and allowing for DPA resistance.

In the following we briefly outline the background and then study separately
the cases of odd and even characteristic both times investigating parallel imple-
mentations. Finally we discuss memory requirements.

2 Background

In this section we will briefly describe hyperelliptic curve cryptosystems and
side-channel atomicity, the most efficient countermeasure against simple power
attacks.

2.1 Hyperelliptic Curve Cryptosystems

This section mainly serves to fix the notation. For the background of hyperelliptic
curve cryptography we refer to the literature e. g. [1, 4, 5, 14, 15, 19].

We concentrate on curves of genus 2 over a finite field Fq given by an equation
of the form C : y2+h(x)y = f(x), where h(x), f(x) ∈ Fq[x], deg(f) = 5, deg(h) ≤
2 and f is monic. Furthermore, we require that there is no point on C over the
algebraic closure which is a common solution to both partial derivatives. The
group one uses is the divisor class group of C and the group elements can be
represented by 2 polynomials [u(x), v(x)] satisfying u, v ∈ K[x], deg v < deg u ≤
2, u monic and u | v2 + hv − f .

Cantor’s algorithm [6, 15] describes the arithmetic using these representatives
and polynomial arithmetic. The first attempt to compute divisor addition by
explicit formulae was made by Spallek [23]. Harley [12] largely improved the
running time and Gaudry and Harley used such formulae in their record on
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point counting [11]. Later many researchers gave detailed studies for various
genera and different finite fields. An overview of most proposals can be found
e. g. in [20]. For general curves of genus 2, the explicit formulae proposed by
Lange are considered the most efficient ones. The latest version with an extensive
comparison of coordinate systems is available in [17]. We refer to that paper for
further details and notation. To measure the efficiency we count the number of
field operations needed; we use [i], [m], [s], [a], and [n] to denote an inversion, a
multiplication, a squaring, an addition or a field negation respectively. In general
we refer to the coefficient of xi in a polynomial k(x) as ki, i. e. k(x) =

∑
kix

i.

2.2 Side-Channel Atomicity

The formulae in the following sections are side-channel indistinguishable under
certain assumptions on the indistinguishability of the finite field operations which
we state here for further reference.

1. In a finite field of large characteristic all multiplications are indistinguish-
able. In particular, this includes the case of squaring. This is usually satisfied
provided that the squaring is carried out by the same hardware used for mul-
tiplication. Furthermore, it is also possible to use the concept of atomicity on
a lower level and design the field operations to be side-channel independent.
In even characteristic we assume this property only if both inputs to the
multiplication are different, i. e. unless squarings are involved since they are
usually much faster and thus easy to identify.

2. Any additions are indistinguishable, similarly all negations have the same
side-channel traces.

3. Table-look ups do not reveal the storage address, access to the same element
cannot be distinguished from access to a different element.

We would like to point out that we are aware that these assumptions are not
automatically satisfied but need to be enabled by a careful implementation of
the underlying operations.

3 Our Methodology

First of all we mention here that the task at hand is very much implementa-
tion dependent and that our assumptions might not hold for all environments.
Furthermore, we need to consider separately the cases of odd and even charac-
teristic.

3.1 Odd Characteristic

For odd characteristic one can always achieve h(x) = 0 and f4 = 0 by a linear
transformation of the coordinates, for the latter the characteristic needs to differ
from 5. We deal with the new coordinates (see [17]) as they are most efficient
and assume the input to be affine, therefore we can use mixed coordinates. An
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intermediate result is represented by 8 coordinates [U0, U1, V0, V1, Z1, Z2, z1, z2]
with the correspondence ui = Ui/Z

2
1 and vi = V1/(Z3

1Z2) to affine coordinates.
The additional entries are used to accelerate the computation and satisfy z1 =
Z2

1 , z2 = Z2
2 .

Our design can be combined with the DSCA countermeasures proposed for
HECC [2]. The easiest one is divisor randomization: Z1 and Z2 are multiplied
with random field elements r1 and r2. The new representation of the same group
element is given by [U0r

2
1 , U1r

2
1 , V0r

3
1r2, V1r

3
1r2, Z1r1, Z2r2, z1r

2
1 , z2r

2
2 ]. One up-

date takes 2[s], 10[m], thus far less than one full group operation, and should be
performed several times during a scalar multiplication. To avoid attacks similar
to [22] the final result should be made affine or at least be randomized before out-
put. As this countermeasure is not effective against Goubin type attacks, Avanzi
suggests to add a divisor before the scalar multiplication for which the respective
multiple is known and which can be removed from the result. For this a small
table is sufficient which is updated during the execution. This countermeasure
can be combined with our approach.

Curve randomization is usually not suggested in odd characteristic as one
either needs to use a non-trivial h(x) leading to worse performance or do not
prevent Goubin type attacks as the Vi are multiplied by a constant only while
not gaining any performance advantage over the divisor randomization method.

3.2 Even Characteristic

Most implementations of characteristic 2 arithmetic allow to compute inversions
rather efficiently, hence, for this case we stick to affine coordinates. The inversion
free systems trade one inversion per group operation for several multiplication,
e. g. the cost for an addition with inversion is 1[i] + 22[m] + 3[s] and the cost
without inversion is 38[m] + 6[s].

For doublings the fastest explicit formulae can be found in [18] but they de-
pend heavily on the curve coefficients. Since we want to prevent DSCA as well,
our approach should allow for curve randomization (cf.[2]) as divisor random-
ization cannot be used with affine input. Therefore, we assume a general curve
equation requiring only h2 ∈ {0, 1} which can always be achieved. Hence, the
multiplications with h2 are not counted.

The transformations are induced by the changes of variables y �→ y′ +ax′ + b
and x �→ x + c. Due to the constant terms, Goubin type attacks are avoided.
The coefficients h2 and h1 remain fixed which is not a problem as at least one
of them is nonzero. To keep enough randomness we need to allow nonzero f4.

4 Formulas for Even Characteristic

The complexities of the divisor addition and doubling for curves over fields of
even characteristic are 1[i] + 22[m] + 3[s] and 1[i] + 23[m] + 5[s] respectively
besides some additions each. Here we take in to account the extra costs due to
multiplications with f4. However, the atomic blocks corresponding to addition
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and doubling must match perfectly, i.e. they must have the same operations at
the corresponding positions and we distinguish between [i], [m], [s], and [a].

The inversions must be placed at the same locations in both addition and
doubling. Let us divide each block into two parts each. We name the part before
the inversion in addition to be A1 and that following inversion to be A2. Similar
parts for doubling are named as D1 and D2 respectively. For the atomic blocks
to be indistinguishable from the side-channel, the costs of A1 and D1 must be
equal. Also, the costs ofA2 andD2 must be equal. Looking at the explicit formula
in [17] we find that cost(A1) = 9[m] + 1[s] and cost(D1) = 11[m] + 2[s]. So a
natural way of attaining cost(A1) = cost(D1) is to add 2 dummy multiplications
and 1 dummy squaring in A1. Furthermore, to allow parallel execution we try
to group the multiplications in tuples.

But we observe that the inversion step in doubling needs only r and s1
(see [17] as reference for the variables). Hence, the computation of s0 can be
postponed to a later stage. The computation of s0 needs one multiplication
which can be carried out after the inversion. By doing so we can save one dummy
multiplication in A1.

Now, the costs of the parts A2 and D2 are 13[m] + 2[s] and 13[m] + 3[s],
respectively. Hence, introducing one dummy squaring to A2 we can make their
costs equal. In Table 1 we show HCADD and HCDBL algorithms for even char-
acteristic as one atomic block each. We denote dummy additions, squarings
and multiplications by the notations ∗[a], ∗[s], ∗[m] respectively. These entries
also show which register is used as write location when executing the dummy
operation.

Note that both operations HCADD and HCDBL now have the same number
and same order of field operations. Hence, they are indistinguishable by SSCA.
This way they can be safely used in any binary or windowing algorithm for
computing the scalar multiplication.

In the table some expressions involving h2Tk can be found; as h2 ∈ {0, 1},
this either means 0 or Tk. Additions involving the curve coefficients might turn
out to be dummy additions if the respective coefficient is 0. If h1 = 0 or f4 = 0,
some steps can be skipped completely.

4.1 Parallel Implementation

A system having two multipliers and two adders and hardware for other field op-
erations (one each) can implement our algorithms. Design of one such hyperellip-
tic parallel coprocessor has been recently proposed in [3]. The same architecture
except for the scheduler will work nicely for our scheme, too. As field addition
is an inexpensive operation in comparison to multiplication, it is possible to use
only one adder to minimize the chip area. Our algorithm seems to require some
more registers. But as the register size is half the size of the ones used for ECC,
the memory requirement is not as high as it seems from the register count. We
consider the memory requirement in Section 6.

Field addition is a very cheap operation, thus we propose that it should be
carried out by a single adder sequentially. In a multiplication round we use two
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Table 1. HCDBL and HCADD Algorithms as One Atomic Block, even char

Algorithm HCADD Algorithm HCDBL
In: D1 = [u10, u11, v10, v11] D = [u0, u1, v0, v1]

D2 = [u20, u21, v20, v21]
Out: D1 + D2 = 2D = [u′

0, u
′

1, v
′

0, v
′

1]
[u′

0, u
′

1, v
′

0, v
′

1]
Init: T1 ← u10, T2 ← u11 T1 ← u0, T2 ← u1

T3 ← v10, T4 ← v11, T3 ← v0, T4 ← v1

T5 ← u20, T6 ← u21,
T7 ← v20, T8 ← v21

1 T9 = T2 + T6 (inv1) T5 = h1 + h2T2 (ṽ1)
2 T10 = T1 + T5 (z2) T7 = h0 + h2T1 (ṽ0)
3 T11 = T9 ∗ T9 T6 = T2 ∗ T2 (w1)
4 ∗[s], T12 T8 = T5 ∗ T5 (w2)
5 T13 = T2 ∗ T9 T9 = T2 ∗ T5 (w3)
6 T11 = T1 ∗ T11 T8 = T1 ∗ T8

7 T12 = T10 + T13 (inv0) T9 = T7 + T9 (inv0)
8 T13 = T10 ∗ T12 T7 = T7 ∗ T9

9 ∗[m], T13 T12 = T2 ∗ f4

10 T10 = T11 + T13 (r) T7 = T8 + T7 (r)
11 T3 = T3 + T7 (w0) T8 = f3 + T6 (w3)
12 T4 = T4 + T8 (w1) T10 = T8 + h2T4 (k′

1)
13 T11 = T9 + T12 T8 = h2T4 + T8

14 ∗[a], T13 T8 = T8 + T12

15 T13 = T3 + T4 T6 = f2 + h2T3

16 T14 = 1 + T2 T11 = h1 + T4

17 T3 = T3 ∗ T12 (w2) T8 = T2 ∗ T8

18 T4 = T4 ∗ T9 (w3) T11 = T4 ∗ T11

19 ∗[a], T12 T8 = T8 + T11

20 ∗[a], T12 T8 = T6 + T8 (k′

0)
21 T12 = T11 ∗ T13 T11 = T8 ∗ T9 (w0)
22 T14 = T4 ∗ T14 T12 = T10 ∗ T5 (w1)
23 T12 = T3 + T12 T5 = T5 + T9

24 T12 = T12 + T14 (s′1) T8 = T8 + T10

25 ∗[a], T13 T6 = 1 + T2

26 T4 = T1 ∗ T4 T5 = T5 ∗ T8

27 T13 = T10 ∗ T12 T6 = T12 ∗ T6

28 T4 = T3 + T4 (s′0) T5 = T5 + T11

29 ∗[a], T3 T5 = T5 + T6 (s′1)
30 ∗[m], T3 T8 = T7 ∗ T5

31 T12 = T12 ∗ T12 T5 = T5 ∗ T5

32 T3 = 1/T13 (w1) T8 = 1/T8 (w1)

Algorithm HCADD Algorithm HCDBL
33 T13 = T3 ∗ T10 (w2) T9 = T7 ∗ T8 (w2)
34 T14 = T3 ∗ T12 (w3) T5 = T5 ∗ T8 (w3)
35 T10 = T10 ∗ T13 (w4) T7 = T7 ∗ T9 (w4)
36 T4 = T4 ∗ T13 (s′′0 ) T6 = T1 ∗ T12

37 T13 = T4 + T6 (l′2) T6 = T11 + T6 (s′0)
38 ∗[s], T11 T8 = T7 ∗ T7 (w5)
39 T3 = T4 ∗ T6 T6 = T6 ∗ T9 (s′′0 )
40 T12 = T10 ∗ T10 (w5) T11 = T6 ∗ T6

41 T3 = T3 + T5 (l′1) T9 = T2 + T6 (l′2)
42 T11 = T4 ∗ T5 (l′0) T10 = T2 ∗ T6

43 T2 = T2 + T4 T10 = T10 + T1 (l′1)
44 T4 = T4 + T9 T2 = T6 + T2

45 T4 = T4 + h2T10 T2 = h2T2 + h1

46 T2 = T9 + h2T10 ∗[a], T12

47 T4 = T2 ∗ T4 T6 = T1 ∗ T6 (l′0)
48 T10 = T10 ∗ h1 T12 = T8 ∗ f4

49 T9 = T9 + f4 T11 = T11 + T12

50 T9 = T9 ∗ T12 T2 = T2 ∗ T7

51 T4 = T1 + T4 T1 = T2 + T11 (u′

0)
52 T4 = T4 + T3 T2 = h2T7 + T8 (u′

1)
53 T2 = T2 + T12 (u′

1) T7 = T6 + T9 (w1)
54 T4 = T4 + T10 ∗[a], T8

55 T1 = T4 + T9 (u′

0) ∗[a], T8

56 T10 = T2 + T13 (w1) ∗[a], T8

57 T9 = T2 ∗ T10 T8 = T2 ∗ T7

58 T9 = T1 + T9 T8 = T8 + T1

59 T9 = T9 + T3 (w2) T8 = T8 + T10 (w2)
60 T9 = T14 ∗ T9 T8 = T8 ∗ T5

61 T9 = T8 + T9 T8 = T8 + T4

62 T9 = h1 + T9 T8 = T8 + h1

63 T4 = h2T2 + T9 (v′

1) T4 = T8 + h2T2 (v′

1)
64 T9 = T1 ∗ T10 T9 = T1 ∗ T7

65 T9 = T9 + T11 (w2) T7 = T6 + T9 (w2)
66 T9 = T14 ∗ T9 T5 = T7 ∗ T5

67 T9 = T7 + T9 T5 = T5 + T3

68 T9 = h0 + T9 T7 = T5 + h0

69 T3 = h2T1 + T9 (v′

0) T3 = T7 + h2T1 (v′

1)

u′

0 ← T1, u
′

1 ← T2, u′

0 ← T1, u
′

1 ← T2,
v′

0 ← T3, v
′

1 ← T4 v′

0 ← T3, v
′

1 ← T4

multipliers M1 and M2. The operations given in Table 1 are already grouped
in a way to allow two multipliers. Starting from the top every two adjacent
multiplications can be executed in parallel. This ordering takes into account
that not both processors try to write to the same location at the same time and
that not one processor reads a register which is changed in the same step by the
other processor.

5 Formulas for Odd Characteristic

For explicit formulae for curves over fields of odd characteristic, mixed addition
in new coordinates involves 35[m]+6[s] and doubling involves 34[m]+7[s]. In the
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Table 2. HCDBL Algorithm in Atomic Blocks, odd char

Algorithm HCDBL
Input: D = (U0, U1, V0, V1, Z1, Z2, z1, z2)
Out: 2D = (U ′

0, U
′

1, V
′

0 , V ′

1 , Z′

1, Z
′

2, z
′

1, z
′

2)
Init: T1 = U0, T2 = U1, T3 = V0, T4 = V1,

T5 = Z1, T6 = Z2, T7 = z1, T8 = z2

Γ1 T9 = T4 ∗ T4 Γ2 T10 = T2 ∗ T4

* *
* T10 = −T10

* *
Γ3 T11 = T3 ∗ T7 Γ4 T12 = T9 ∗ T1

T11 = T11 + T10 *
T4 = −T4 *
* *

Γ5 T10 = T3 ∗ T11 Γ6 T13 = T1 ∗ T7

T10 = T10 + T12 *
T9 = −T9 T13 = −T13

* *
Γ7 T12 = T2 ∗ T2 Γ8 T15 = T7 ∗ T7

T14 = T12 + T13 *
T13 = −T13 *
T14 = T14 + T14 *

Γ9 T16 = T15 ∗ f3 Γ10 T6 = T6 ∗ T10

T16 = T16 + T12 *
* *
T12 = T13 + T13 *

Γ11 T15 = T15 ∗ T7 Γ12 T6 = T6 ∗ T7

T14 = T14 + T16 *
T16 = −T16 *
T12 = T12 + T12 *

Γ13 T15 = T15 ∗ f2 Γ14 T14 = T8 ∗ T14

T12 = T12 + T16 *
* T14 = −T14

* *
Γ15 T12 = T12 ∗ T2 Γ16 T16 = T14 ∗ T4

T12 = T12 + T15 *
T15 = −T6 *
T2 = T2 + 1 *

Γ17 T8 = T8 ∗ T12 Γ18 T13 = T13 ∗ T16

T8 = T8 + T9 *
T6 = −T14 *
* *

Γ19 T9 = T8 ∗ T11 Γ20 T16 = T16 ∗ T2

T8 = T8 + T6 *
T14 = −T15 T2 = −T2

T12 = T4 + T11 T2 = T2 + 1

Algorithm HCDBL(Contd.)
Γ21 T12 = T12 ∗ T8 Γ22 T6 = T14 ∗ T5

T12 = T12 + T16 T13 = T13 + T9

T4 = −T4 T9 = −T9

* T6 = T6 + T6

Γ23 T11 = T13 ∗ T13 Γ24 T14 = T14 ∗ T14

T12 = T12 + T9 *
* T2 = −T2

* *
Γ25 T5 = T7 ∗ T12 Γ26 T9 = T12 ∗ T13

* *
* *
* *

Γ27 T7 = T5 ∗ T5 Γ28 T14 = T14 ∗ T2

* T8 = T1 + T2

* *
* T14 = T14 + T14

Γ29 T1 = T1 ∗ T9 Γ30 T12 = T12 ∗ T5

* T15 = T12 + T9

T1 = −T1 *
* T14 = T14 + T14

Γ31 T2 = T2 ∗ T12 Γ32 T15 = T8 ∗ T15

* T15 = T1 + T15

T2 = −T2 T1 = −T1

* *
Γ33 T13 = T5 ∗ T13 Γ34 T10 = T5 ∗ T10

T15 = T15 + T2 T10 = T10 + T10

T13 = −T13 *
T2 = T2 + T13 *

Γ35 T4 = T4 ∗ T10 Γ36 T3 = T3 ∗ T10

T14 = T4 + T14 T13 = T13 + T13

T4 = −T4 T15 = −T15

T14 = T14 + T14 T3 = T1 + T3

Γ37 T3 = T3 ∗ T7 Γ38 T8 = T6 ∗ T6

T1 = T14 + T11 T16 = T13 + T8

T3 = −T3 T2 = −T2

T4 = T1 + T4 T12 = T2 + T16

Γ39 T11 = T12 ∗ T1 Γ40 T13 = T12 ∗ T16

T3 = T3 + T11 *
* T2 = −T16

T4 = T4 + T15 *
Γ41 T4 = T4 ∗ T7 (Γ42) *

* *
T13 = −T13 *
T4 = T4 + T13 *

U ′

0 ← T1, U
′

1 ← T2, V
′

0 ← T3, V
′

1 ← T4

Z′

1 ← T5, Z
′

2 ← T6, z
′

1 ← T7, z
′

2 ← T8.
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Table 3. HCADD Algorithm in Atomic Blocks, odd char

Algorithm HCADD
Input: D1 = (U10, U11, V10, V11, 1, 1, 1, 1)
D2 = (U20, U21, V20, V21, Z21, Z22, z21, z22)
Out: D1 + D2 = (U ′

0, U
′

1, V
′

0 , V ′

1 , Z′

1, Z
′

2, z
′

1, z
′

2)
Init: T1 = U10, T2 = U11, T3 = V10, T4 = V11,

T5 = U20, T6 = U21, T7 = V20, T8 = V21,
T9 = Z21, T10 = Z22, T11 = z21, T12 = z22

Γ1 T10 = T9 ∗ T10 Γ2 T13 = T2 ∗ T11

* *
* T6 = −T6

* T13 = T6 + T13

Γ3 T12 = T10 ∗ T11 Γ4 T14 = T1 ∗ T11

* *
T6 = −T6 T14 = −T14

* T14 = T5 + T14

Γ5 T15 = T2 ∗ T13 Γ6 T16 = T13 ∗ T13

T15 = T14 + T15 *
* *
* *

Γ7 T14 = T14 ∗ T15 Γ8 T16 = T1 ∗ T16

* *
* *
* *

Γ9 T17 = T3 ∗ T12 Γ10 T18 = T4 ∗ T12

T14 = T14 + T16 *
T7 = −T7 T8 = −T8

T17 = T7 + T17 T18 = T8 + T18

Γ11 T12 = T15 ∗ T17 Γ12 T16 = T13 ∗ T18

T15 = T13 + T15 T18 = T17 + T18

T12 = −T12 T16 = −T16

* *
Γ13 T15 = T15 ∗ T18 Γ14 T17 = T10 ∗ T14

T15 = T12 + T15 *
T12 = −T12 T7 = −T7

T18 = 1 + T2 *
Γ15 T18 = T16 ∗ T18 Γ16 T10 = T9 ∗ T17

T15 = T15 + T18 *
* T8 = −T8

* *
Γ17 T18 = T1 ∗ T16 Γ18 T17 = T17 ∗ T17

T18 = T12 + T18 *
* *
* *

Γ19 T12 = T13 ∗ T15 Γ20 T9 = T9 ∗ T15

* *
T12 = −T12 *
* *

Algorithm HCADD(Contd.)
Γ21 T16 = T11 ∗ T18 Γ22 T14 = T14 ∗ T15

T16 = T12 + T16 *
* *
* *

Γ23 T12 = T2 ∗ T15 Γ24 T8 = T8 ∗ T14

* *
T12 = −T12 *
T12 = T12 + T18 *

Γ25 T16 = T12 ∗ T16 Γ26 T18 = T15 ∗ T18

* *
* *
* *

Γ27 T12 = T11 ∗ T18 Γ28 T15 = T15 ∗ T15

T11 = T6 + T13 *
T12 = −T12 *
T11 = T6 + T11 *

Γ29 T17 = T11 ∗ T17 Γ30 T13 = T13 ∗ T15

T16 = T16 + T17 T13 = T12 + T13

* *
T16 = T8 + T16 T13 = T12 + T13

Γ31 T11 = T6 ∗ T15 Γ32 T17 = T5 ∗ T18

T6 = T5 + T6 T18 = T15 + T18

T11 = −T11 T12 = −T12

T16 = T8 + T16 *
Γ33 T18 = T6 ∗ T18 Γ34 T7 = T7 ∗ T14

T18 = T11 + T18 T7 = T7 + T17

T11 = −T11 T17 = −T17

T11 = T11 + T12 *
Γ35 T6 = T9 ∗ T9 Γ36 T12 = T10 ∗ T10

T18 = T17 + T18 T13 = T12 + T13

T17 = −T6 *
* T11 = T11 + T13

Γ37 T5 = T1 ∗ T17 Γ38 T7 = T7 ∗ T17

T5 = T5 + T16 *
T5 = −T5 T6 = −T13

T8 = T5 + T8 *
Γ39 T8 = T8 ∗ T17 Γ40 T14 = T11 ∗ T13

* *
T5 = −T5 T14 = −T14

T5 = T5 + T18 *
Γ41 T15 = T5 ∗ T11 (Γ42) *

T7 = T7 + T15 *
T11 = −T17 *
T8 = T8 + T14 *

U ′

0 ← T5, U
′

1 ← T6, V
′

0 ← T7, V
′

1 ← T8,
Z′

1 ← T9, Z
′

2 ← T10, z
′

1 ← T11, z
′

2 ← T12.

following we assume that multiplications and squarings cannot be distinguished
from the side-channel information. This is a common assumption for odd char-
acteristic also made in [7], but it needs to be verified for each environment. We
comment on this after the main explanation in Remark 1.
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With these conventions both divisor addition and doubling require 41[m]
each. From a detailed investigation of the formulas in [17] and the papers referred
therein, we observe that there are at most 2 additions and 1 negation needed
between 2 multiplications. Accordingly we design our atomic blocks to contain
one multiplication, two additions and a negation. We remark that the same
solution has been chosen in [7]. We checked that this leads to the optimal design
as on the one hand more additions and negations are not useful. On the other
hand, even though more dummy operations (additions and negations) are needed
compared to ECC, smaller blocks lead to many dummy multiplications which
turn out to be worse than the extra additions. Furthermore, these idle operations
will help in case [s] �= [m].

Now that we fixed the content of the blocks our aim is to split the explicit
formulae into atomic blocks which will easily conform to a parallel implemen-
tation as well. In [20] the authors have proposed a general methodology to par-
allelize any explicit formula. The proposed methodology requires to create a
precedence digraph of the multiplication operations. The vertices represent the
multiplication operations. There is one arc from a vertex v1 to v2 if the later
can be computed after the first one without any intermediate multiplication
operation.

In the situation we are in now, one feels tempted to split the explicit formulae
into atomic blocks first and then go for the said methodology treating one atomic
block as one operation in order to create a precedence graph of atomic blocks.
One important observation of our study is that such a strategy may not bear
fruit. That is simply because one can split the HCADD and HCDBL into atomic
operations in several ways, hence the precedence graph is not unique. Therefore
we use the other strategy, i. e. we start by using the methodology of [20] to find
out the multiplication operations which can be implemented in parallel. Put
them in different atomic blocks and then distribute the addition and subtraction
operation suitably among them. We take care that while two atomic blocks are
being processed in parallel no conflict occurs.

In Table 2 we present the HCDBL algorithm for odd characteristic split into
atomic blocks and in Table 3 the HCADD (mixed coordinates) is stated. Note,
that the dummy step Γ42 is not needed in a sequential implementation. In a
parallel implementation one needs to introduce this additional atomic block as
otherwise the second processor would remain idle which would be visible from
the side-channel.

Remark 1. If squarings and multiplications can be distinguished from their side-
channel information one can work around by replacing the squaring Tj = Ti ∗Ti

by the sequence of assignments Tj = Ti + (−1), Tj = Tj ∗ Ti and Tj = Tj + Ti.
The value −1 is stored in some extra variable. As there are many idle addition
states one would expect that this countermeasure does not require any overhead.
However, the first block in doubling is a squaring such that the inputs cannot
be adjusted beforehand. Our suggestion for this case is to use a different atomic
block which starts with an addition of the constant −1 which can obviously be
replaced by a dummy operation if not needed. The resulting formulas follow
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directly from ours. At first sight it might seem desirable to use the cheaper step
“addition of the constant 1” instead. But this requires a subtraction later on and
in the later steps of HCADD and HCDBL there are not enough idle negation
and addition steps to take care of this.

5.1 Parallel Implementation

One can observe that the explicit formula for odd characteristic can be processed
in parallel. One set of multiplier and adder can be engaged in computing the
atomic blocks with odd subscript (e. g. Γ1, Γ3, . . . in HCADD), while the other
set of multiplier and adder can be assigned the atomic blocks with even indices
(e. g. Γ2, Γ4, . . . in HCADD). The tables are designed in order to avoid conflicts
in writing and reading registers.

6 Memory Requirements

Memory requirement is an important consideration for an algorithm which is
likely to be used in resource constrained devices. In even characteristic, as can
be seen in the tables, HCADD uses 14 registers including 4 registers for the base
divisor and at most 3 registers to store non-trivial curve parameters h1, h0 and
f4. HCDBL uses 12 and at most 5 registers to store non-trivial curve parameters
h0, h1, f2, f3, f4. Table 1 also shows how to schedule the dummy operations in
order to avoid using a further register. Thus for even characteristic 17 registers
are required to compute the scalar multiplication. To avoid expensive reads from
the long term memory one could add 4 more registers to keep the base divisor
and the curve parameters. From these 21 registers only 12 are active, the others
are read only.

In odd characteristic, HCADD uses 18 registers including 4 read-only regis-
ters (T1−T4) for the base divisor in affine coordinates, the curve parameters are
not used. HCDBL uses 16 active registers and only two curve coefficients need
to be stored, namely f2, f3. We need 1 register for dummy operations, thus 19
registers are enough to perform a scalar multiplication. To reduce the number
of memory accesses, the base divisor and the curve coefficients should be kept
in registers throughout the scalar multiplication. Then in total, 23 registers are
required out of which 6 are nonactive. Note that we have used more registers to
enable the algorithm to be implemented in parallel. To avoid conflicts, we do not
use a register for writing if it read earlier (e. g. in the additions after the multi-
plications) in the same block by the parallel processor, even though it might be
free at that time. We do not see a problem with both processors reading at the
same time. HCADD and HCDBL designed for sequential implementation would
require slightly smaller number of registers.

It is worthwhile to note that the registers are around 80 bits here, capable
of holding one field element. In ECC, the registers have double size, showing
that in relation we do not need much more space while achieving not only SPA
resistance but also parallel executable formulae.
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7 Conclusion

In this paper we have developed the arithmetic on genus 2 curves in odd and even
characteristic such that the side-channel information is uniform. This was done
in odd characteristic by introducing atomic blocks from which the whole group
operation can be built. The additional dummy operations are only additions and
negations.

In even characteristic each group operation constitutes a separate atomic
block which results in one additional dummy multiplication and one squaring.
This approach is natural as inversions are not too costly in characteristic two
and, hence, inversion-free formulae are slower for most devices. If inversions are
more expensive than we assume, one can use Lange’s new coordinates [17] and
build the group operations from small atomic blocks as in the case of odd char-
acteristic. Since in even characteristic squarings are no longer comparable to
multiplications, we suggest to build an atomic block consisting of 1 multiplica-
tion and n+ 2 additions, where n is the number of additions needed to perform
a squaring in the given field representation. As this depends highly on the rep-
resentation – trinomial vs. pentanomial and polynomial bases vs. normal basis
we have not included this study but for each fixed field implementation this is
possible to build – but too lengthy for publication. For special choices of the
curve, especially for deg h = 1, this approach is more efficient as the doublings
need fewer operations [18] and a cheap doubling is useful in windowing methods.

On the following pages we state the tables for odd characteristic.
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