Towards a Classification of Web Service Feature
Interactions

Michael Weiss!, Babak Esfandiari?, and Yun Luo®

1 School of Computer Science, Carleton University, Ottawa, Canada
{weiss, yluo}@scs.carleton.ca
2 Department of Systems and Computer Engineering, Carleton University
babak@sce.carleton.ca

Abstract. Web services promise to allow businesses to adapt rapidly
to changes in the business environment, and the needs of different cus-
tomers. The rapid introduction of new web services into a dynamic busi-
ness environment can lead to undesirable interactions that negatively
impact service quality and user satisfaction. In previous work, we have
shown how to model such interactions between web services as feature
interactions, and reason about undesirable side-effects of web service
composition. In this paper we present the results of subsequent research
on a classification of feature interactions among web services. Such a
classification is beneficial as we can then search for ways of detecting
and resolving each class of feature interaction in a generic manner. To
illustrate the interactions we use a fictitious e-commerce scenario.

1 Introduction

Feature interactions are interactions between independently developed features,
which can be either intended, or unintended and result in undesirable side-effects.
In previous work [9], we have shown how to model undesirable side-effects of web
service composition as feature interactions. The formal study of feature interac-
tions is known as the feature interaction problem. This problem has first been
investigated in the telecommunications domain [4]. It concerns the coordination
of features such that they cooperate towards a desired result at the application
level. However, the feature interaction problem is not limited to telecommuni-
cations. The phenomenon of undesirable interactions between components of a
system can occur in any software system that is subject to changes.

Interaction is certainly the very foundation of service-oriented architectures.
Web services must interact, and useful web services will “emerge” from the in-
teraction of more specialized services. As the number of web services available
increases, their interactions will also become more complex. Systems we build will
use third-party services, over whose implementation we have little control. Many
of the web service interactions will be intended, but others may be unintended
and undesirable, and we need to prevent their consequences from occurring. As
noted by [7], many of the side-effects are related to security and privacy.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 101-[IT4] 2005.
© Springer-Verlag Berlin Heidelberg 2005

102 M. Weiss, B. Esfandiari, and Y. Luo

This paper builds on our previous work [9[I1] by providing a categorization
of feature interactions in web services by cause, following similar work in the
telecommunications domain [2]. We also now propose a unified, realistic, and
quite generic case study (the “Amazin” virtual bookstore) that illustrates all the
discussed causes while remaining technology-agnostic and easily translatable to
other domains. We believe that the case study can be used as a benchmark for
future studies in feature interactions in web services.

While in our previous work we had hand-crafted our examples in order to
highlight the potential for feature interaction, in this work we used a candid ap-
proach in which features were described individually, and without consideration
as to their possible participation in feature interactions. The feature interactions
that we can observe only arose from composing the services for the scenario in
the case study. We believe that this approach strengthens our claims with respect
to the pervasiveness of the feature interaction problem in web services.

The paper is organized as follows. We first provide more background on the
feature interaction problem as it applies to web services, and on modeling web
services as features. We then present our classification of web service feature
interactions. To illustrate the interactions we present our case study of a fictitious
virtual bookstore. This classification is followed a summary of related work. We
conclude with a discussion and an outlook on future research.

2 Feature Interaction Problem

The first generation of web services did not exploit the benefits of a web of
services. They were either of a simple, non-composite nature (often information
services, such as a stock quote lookup service), or provided access to application
functionality over pre-existing business relationships. By contrast, the current
generation of web services are typically composite (i.e., they are constructed
from other, more primitive web services), and offered by third-party service
providers, and thus not grounded in existing relationships.

Web services of the first generation were predicated on two implict assump-
tions: (1) that services developed in isolation would either be used in isolation,
or, if part of a composite service, would not interact in inadvertent ways, and (2)
that users had full control over the services they used, or there was a common
understanding of the operation, and side-effects of these services. We argue that
those assumptions are no longer valid for current web services.

Consider the example of a word-processing service that uses two third-party
services, spell-checking and formatting [9]. Assume that the user has set her
language preference for the word-processing service to UK English. However, let
us also assume that, hidden to the word-processing service, the formatting service
itself incorporates a spell-checking service. This time, the formatting service
does not specify a language preference to the spell checking service. Suppose
that the spell checking service uses a US English dictionary by default. The
result of the service composition is that the incorrect language option will be
applied.

Towards a Classification of Web Service Feature Interactions 103

This is a case of an undesirable feature interaction. The concepts of feature
and feature interaction originated in the telecommunication domain. A feature
is the minimum user-visible service unit in this domain [4]. Features are often
independently developed and deployed. A feature interaction occurs when a fea-
ture invokes or influences another feature directly or indirectly. Although many
of these interactions are, indeed, intended, undesirable side-effects as a result of
the interaction of features are referred to as feature interaction problem.

3 Modeling Web Services as Features

Our approach is to model features at the early requirements stage using the
User Requirements Notation (URN) [I]. These models allow us to reason about
feature interactions, and document detection and resolution strategies. In this
approach, the intent and side-effects of a feature are modeled as goals, and their
operation in the form of scenarios. The interaction of features is captured in the
form of links between goals. Finally, we can represent the allocation of features
to subsystems (known as actors or components in URN), and the relationships
between these actors. This section provides a brief overview of the approach.

3.1 User Requirements Notation

URN contains two complementary notations: Goal-oriented Requirements Lan-
guage (GRL) [3], and Use Case Maps (UCM) [§]. In GRL requirements are
modeled as goals to be achieved by the design of a system. The main elements
of the notation are summarized in Fig. [l During the analysis, a set of initial
goals is iteratively refined into subgoals. These goals and their refinement re-
lationships form a goal graph that shows the influence of goals on each other,
and can be analyzed for goal conflicts. The perspectives of different stakeholders

Softgoal @
fAf\

Satisficed

Weakly Satisficed

/ Actor \ 9 Undecided

Weakly Denied

'Boundaryl
N
\\-—/
{ Task) Resource

(a) GRL Elements

%— Contribution

Correlation
———Pp»— Means-end
D- Dependency
I~ Decomposition
(d) GRL Links

(b) GRL Satisfaction Levels

Denied

Conflict

A

(c) Link Composition

+2

Break Hurt Some- Unknown

i++-

Make Help Some+ Equal

(e) GRL Contributions Types

Fig. 1. Summary of the Goal-oriented Requirements Language (GRL)

104 M. Weiss, B. Esfandiari, and Y. Luo

Start o Path I End OR-Fork
Point Point & Guarding cee eee .
Conditions re1 [c2l X OR-Join
« ¢ e——>—— .« Responsibility . ..
o ««« Direction Arrow [C3k /
+ ¢ o=+ « « Timestamp Point AND-Fork — +++ = AND-Join
b «++ Failure Point

=
.o -—Eb—° ++ Shared Responsibility I— —I

(a) UCM Path Elements (b) UCM Forks and Joins
Team Agent
oIV < >u1 71, , Static Stub &
Segments ID
(c) UCM Components . -ir -LI-]- « Dynamic Stub

sam)._—l E{OUT1}
. Plug-in Map
Waiting Timeout

path Timer Path (d) UCM Stubs and Plug-ins

Waiting .
path Waiting Place

Continuation
Path

Continuation
Trigger Path Timer
Path Release
(asynchronous) (synchronous)

(e) UCM Waiting Places and Timers

Fig. 2. Summary of the Use Case Map (UCM) notation

can also be described in GRL. For each stakeholder we model their goals, as
well as their dependencies on one another to achieve those goals. These goals of
one stakeholder can now also compromise the goals of other stakeholders. The
objective of the analysis is to determine the design alternative that resolves the
goal conflicts in a way that best satisfies all stakeholder’s initial goals.

The UCM notation provides a way of describing scenarios without the need
to commit to system components. The main elements of the notation are sum-
marized in Fig. Pl A scenario is a causally ordered set of responsibilities that
a system performs. Responsibilities can be allocated to components by placing
them within the boundaries of that component. This is how we will be modeling
feature deployment. With UCMs, different structures suggested by alternatives
that were identified in a GRL model can be expressed and evaluated by moving
responsibilities from one component (which is the UCM equivalent of a GRL
actor) to another, or by restructuring components. This perspective allows us
to refine the goals identified in a GRL model into greater detail, as necessary.
Generally, when creating these models we would iterate between both views.
That is, we cannot decide on the allocation of goals to actors simply within, eg,
a GRL model, but only after repeatedly refining both perspectives.

3.2 Feature Interaction Analysis

In our adoption of URN, we model features as goals, and service providers as
actors/components. The methodology proposed in [9] includes three steps:

1. Model the features to be analyzed as a GRL goal graph. Goal graphs allow
us to represent features, and to reason about conflicts between them.

Towards a Classification of Web Service Feature Interactions 105

2. Analyze the goal graph for conflicts. Conflicts point to possible feature in-
teractions, in particular, if a conflict “breaks” expected functionality.

3. Resolve the interactions. During this step, UCM models allow us to explore
the different alternatives suggested by the GRL models.

Examples of applying steps 1 and 2 will be provided in Section [l

4 Classification of Feature Interactions

We propose to classify feature interactions among web services by their type,
and their cause. We thus position our classification in the tradition of exist-
ing classifications of feature interactions for the telecommuncations domain [2],
while emphasizing web service-specific aspects. A classification of web service
feature interactions is beneficial as it allows their avoidance, detection, and res-
olution in a generic manner for each type of interaction. Solutions for specific
feature interactions can then be generalized to other interactions of the same
category.

Our classification is an extension of the work by [2] for the telecommunications
domain. That work was based on the premise, even more important now with
web services, that service creation is no longer governed by a single organization.
It also discusses a categorization by nature of the interactions, which depended
on the nature of the features involved ,the number of users, and the number
of components in the network. However, some causes of feature interactions do
not carry over to the web services domain. So we have dropped “Limitations on
Network Support” as a cause, since explicit service invocation in web services
possibly avoids all signaling ambiguity.

Cause

| | | |
Goal Conflict Deployment and Information Invocation Order
Ownership Hiding
Resource Violation of Policy Conflict
Contention Assumptions

Fig. 3. Classification by cause

In our classification, a first distinction is made between functional and non-
functional interactions with [9]. This distinction reflects that many of the side-
effects are, in fact, of a non-functional nature, that is, they affect service proper-
ties such security, privacy, or availability. What this paper adds is a classification
by cause shown in Fig.[3l It introduces two causes of interactions that we consider
specific to web services, and are not encountered in closed, centralized telecom-
munications systems: deployment and ownership, and information hiding.

106 M. Weiss, B. Esfandiari, and Y. Luo

Goal conflicts take the shape of conflicting (non-functional) goals. They often
occur as a result of unanticipated side effects, where in trying to achieve one
goal, we inadvertently negatively impact another goal. We can indicate side
effects in a GRL diagram by using a positive contribution link for the first, and
a negative correlation link for the second goal. Resource contention is the fact
that the use of some resource by a service makes it unavailable to another. It may
result in service availability issues. Deployment and ownership decisions (where
services are deployed, and who provides them) lead to performance, scalability
and quality assurance issues, as well as conflicts of interest.

Assumption violations are caused by services that make incorrect assumptions
about how another service works, and can, for example, be due to semantic
ambiguity (use of the same concepts in different ways), or the presence of different
versions of the same service. A result of information hiding is that service users
cannot control how a service is implemented. This can lead to duplication of
effort, inconsistencies, and even incorrect execution. Policy conflicts arise over
contradictory policies that govern the behavior of services. Finally, invocation
order is about features being invoked in a incorrect order, which may cause
features to become ineffective, or timing glitches causing intermittent errors.

5 Selected Examples of Interactions

In this section, we provide examples of interactions to illustrate the classification.
The context is a fictitious virtual bookstore, described in two parts:

1. We first describe the individual web services that will be used by the appli-
cation. These services are developed without knowledge of how they will be
composed later. Often they include third-party services that provide certain
supplementary functionality such as identity management or payment.

2. We then create a composite service for an virtual bookstore from these ser-
vices. We analyze the feature interactions that can occur as a result. As the
services have been implemented independently they may embody assump-
tions that cause unexpected behavior as the services are composed.

This purpose of this division is to reproduce the problems that can result in
the actual development of service-based applications. Each web service/feature
is implemented with developers making assumptions that are individually valid,
that is they faithfully implement the service interfaces. Feature interactions only
result when these services are composed, often in unanticipated ways.

5.1 Examples of Features

The following features have one aspect in common: they all focus on one narrow
type of service, and are usually employed in a supporting role. Examples of
such supplementary services are identity management, payment processing, or
shipping. In principle, any of these services could be provided by the requesting
actor, but usually at a significant development cost, or risk of poor quality.

Towards a Classification of Web Service Feature Interactions 107

Provider
[Service]

iPassport

’2
&
A
Kuthenticatign

!
]
[
'
1
.

Manage

Profile Profile

Requester
[Service]

Fig. 4. GRL model of the iPassport feature

iPassport. The first example is an identity management feature. Identity man-
agement simplifies authentication with multiple service providers. It allows ser-
vice requesters to authenticate themselves once with one service provider, and
to access other service providers related to the initial service provider through
a circle of trust. It simplifies the implementation of service providers, as well,
because they no longer need to provide their own authentication component.
Fig.@is a GRL model of the iPassport feature. It models the service as well as
each type of client as an actor (circle). As the diagram shows, iPassport mediates
between Requesters [Service] and Providers [Service], and acts thus as a kind
of broker. Requesters [Service] use iPassport to manage their profiles through
the Manage Profile service, while Providers [Service] can authenticate users and
access their profiles through the Authenticate and Access Profile services. Service
provisioning relationships are modeled as functional dependencies. Functional
requirements are represented as goals (rounded rectangle) that an actor wants
to achieve. As shown, the dependencies are not restricted to interfaces. They also
include non-functional and resource dependencies, for example, iPassport ensures

Requester [Service] iPassport Provider [Service]

Authenticate

access signln INE ourt accessProfile performServig

>

sigNgOtherPfovlder

edit IN

, Update
. I .

our1 store I

>

Fig.5. UCM model of the iPassport feature

108 M. Weiss, B. Esfandiari, and Y. Luo

the requester’s Legitimacy. Non-functional requirements are specified as softgoals
(clouds) that cannot be achieved in an absolute manner. Resources (rectangles)
represent physical or informational entities that must be available.

Internally, the iPassport feature is composed of an Authentication and a Pro-
file Management features, which is responsible for storing profiles, and giving
access to profile information. These features are shown as tasks (hexagons) that
specify ways of achieving a goal. They are related to the ldentity Management
goal via decomposition links. More insight into behavioral and deployment as-
pects of a feature (how the tasks are performed) can be gained from a UCM
model.

Fig. Bl shows the UCM model for iPassport. Note that this is only a top-level
model with placeholders (also known as stubs) for submaps that define the Au-
thenticate and Update behaviors (not shown). For example, the diagram captures
(in the feedback loop with signInOtherProvider) that one Provider [Service] can
link to another outside of the user’s control. In the diagram crosses represent
responsibilities, filled circles start points, and bars end points of paths.

PayMe. Payment processing allows payers to make secure payments online, and
simplifies credit card processing for payees, while contributing to increased sales
for them. As shown in Fig. [, the payment processing feature PayMe provides
two service interfaces: one to the Payer [Order] to Manage Accounts, and one to
the Payee [Order| to receive payment for an order. The Process Payment service
includes functionality to submit order details, as well as to cancel payments.

Fig. 6. GRL model of the PayMe service

Other Features. For reasons of space, we will sketch out the descriptions of
the other features. The ShipEx feature provides a Delivery service to the Ship-
per [Order] with functionality for initiating shipment of an order, and canceling
shipments, as well as a Tracking service for the Shippee [Order] to check on the
status of a shipment. The EvilAds feature is an advertisement placement ser-
vice, which provides a ClickAds service to any Host [Ad] that chooses to embed
ads into its services. Finally, the Shark proxy service provides a Caching ser-
vice through which a Provider [Service] can cache the results of popular service
requests.

We implemented prototypes of these features, and tested them independently.
However, space does not permit us to provide details of the implementation here,
and we limit ourselves to describing the analysis of the observed interactions.
Then we combined them into composite services, and analyzed the result for
feature interactions. The largest of these case studies is described next.

Towards a Classification of Web Service Feature Interactions 109

5.2 Composite Service: Virtual Bookstore

The actor diagram for the composite service is shown in Fig. [l The diagram
models the Amazin virtual bookstore that gives Customers access to its vir-
tual catalog, and the option to order books from the catalog through its Or-
der Processing service. This service is composed from the features described
above.

Amazin relies on a number of Suppliers to fulfill customer orders. Customer
logins are handled through the iPassport identity management service, which
provides an Authenticate User and an Access Profile service. On receiving a cus-
tomer order, Amazin authenticates the customer, and accesses the customer’s
profile. It then selects a Supplier which stocks the ordered book and invokes its
Order Processing service, passing along the customer’s identity.

-

- -
Dl e

_Access
Customer
Profile

‘L
N
iPasspart |

Profile Profile

Fig. 7. GRL model of virtual bookstore Amazin

An internal structure of the Amazin service that fits this description is also
shown in Fig. [l This design makes assumptions that, while in agreement with
service interfaces, may cause feature interactions. One potential source of inter-
actions is the following optimization: in addition to physical books, Amazin also
offers digital books for download, and it caches copies of popular orders.

The Supplier determines the availability of the ordered book, and, if successful,
obtains the customer’s payment and shipping preferences from the iPassport
service. It then invokes the Payment Processing service provided by the PayMe
financial service provider, and the Delivery service of Amazin’s ShipEx fulfillment
partner. Customers can track the progress of their orders via the Tracking service.
They can also manage their online profiles, and accounts through services.

110 M. Weiss, B. Esfandiari, and Y. Luo

If a Supplier cannot fulfill an order, it will attempt to satisfy it from its net-
work of Other Suppliers. Although omitted from the diagram, the chosen Other
Supplier will use the same payment and delivery services as Supplier. Finally,
some Suppliers choose to share selected customer information to an EvilAds ad-
vertisement agency via its ClickAds service as an additional source of revenue.

In the following we use this application to provide examples of the different
causes of interactions identified in Fig. Bl as well as their types.

5.3 Goal Conflict

One conflict arises between Manage Profile and Access Profile, and is of type
non-functional. As refined GRL model of the interaction is given in Fig.[Bl The
Convenience and Privacy goals of the Customer conflict with one another, since
any iPassport member organization can access the profile, including those orga-
nizations with whom the customer has no trusting relationship.

While there is a trusting relationship between Customer and Amazin, the re-
lationships between Customers and Suppliers are untrusted, and there is no guar-
antee that a Supplier will adhere to Amazin’s privacy policy. Instead, it could
decide, as an example, to sell the profile information to the target marketer
EvilAds, which will then target the Customer with unsolicited ads.

- -
@ .
s
.
.

Manage
Profile

4

3 Single
;
I
.
1
'

-,

Profile

-

Fig. 8. Goal conflict between Manage Profile and Access Profile

This interaction is an example of a goal conflict, but it can also be classified
as caused by deployment and ownership, information hiding, or a policy con-
flict. Deployment and ownership because at the root of the problem is one and
the same entity (iPassport) authenticates the Customer and controls access to its
profile. Profile information is shared between Amazin and its Suppliers without
involvement of the Customer (as the UCM model in Fig. [Hl clearly shows). Infor-
mation hiding since the Manage Profile interface does not declare that profiles
will be shared with parties the customer does not trust directly. Policy conflict

Towards a Classification of Web Service Feature Interactions 111

because Suppliers are not bound to the same privacy policy as Amazin, whose
policy is the only one the Customer has accepted explicitly.

5.4 Resource Contention

When Amazin invokes the Order Processing service of one of its Suppliers, this
supplier will, in turn, place an order with one of its network of Other Suppliers, if
it does not have the requested book in stock. However, this can lead to a situation
where the order is sent back to Amazin itself, which is just an Other Supplier.
Fig.[O shows a scenario where Amazin is both a client, as well as a supplier to a
given Supplier. If undetected, this can lead to an infinite loop of order requests,
which could cause all actors linked via the loop to become unavailable. The
dependencies at the source of the issue have been highlighted for emphasis.

This is a feature interaction between two implementations of the same feature,
Order Processing, as implemented by multiple actors.

Ny

PLAYS 7
-
Other
Supplier

Fig. 9. Resource contention between OrderProcessing and OrderProcessing

/
(Availability
Order
Processing

Profile b -

5.5 Violation of Assumptions

The Caching service used by the Amazin service to keep local copies of digi-
tal content, and the Payment Processing service interact as result of a violation
of assumptions. Caching digital content (in Shark, or another proxy) has the
potential of preventing that access to the content will be properly billed. The
Amazin service works correctly without caching, and thus an assumption may
have been built in that for every order, a respective order will be placed with
a supplier, and thus no internal accounting is required. If caching is added to
improve the performance of the service, there is a potential that the implica-

tions of this change (breaking this assumption) are not fully understood by the
designers.

112 M. Weiss, B. Esfandiari, and Y. Luo

Customer Amazin
- [!ProductInCache]
PlaceOrder [Digital SelectSupplier
P ros
| 4 rad
OrderC(imp]e(ed [HroductInCache] Subn\tOrde|
—
PayMe Supplier

ProcessPayment
3¢

sl

rderCompleted

Fig. 10. Interaction between between Caching and Payment Processing—Delivery

The UCM model in Fig. [I0 helps explain the situation. If ProductlnCache is
true, the return path in the upper left of the diagram will be taken.

5.6 Invocation Order

There is a potential conflict between Payment Processing and Order Processing,
or Payment Processing and Delivery due to timing errors. The interaction can
result in either the customer getting charged without the product shipped, or
the customer getting the product for free. Both errors exploit timing glitches, for

Customer Amazin
PlaceOrder SelectSupplier PlaceOrder
P —3
@ Lad
Cancel
P
@ \

PayMe Supplier

Cancel
|
1 o
Pmcess‘P‘aymem 1 ProcessOpder
sad
Caeel \\———)
Smp
%

ShipEx

rderCompleted

Fig. 11. Interaction between between Payment Processing and Order Processing

Towards a Classification of Web Service Feature Interactions 113

example, when the customer cancels their order, it could be that payment still
gets processed (because Payment Processing was started before the order was
canceled) but Delivery is aborted. The cancellation request was sent just before
payment started, but arrived after Payment Processing has proceeded.

The UCM model in Fig. [provides the basis for understanding the cause
of the interaction. The ProcessPayment and Ship responsibilities are initiated in
parallel (the vertical bar after ProcessOrder indicates concurrency), and can exe-
cute in any order of one another. The Cancel requests to a component only take
effect, if the ProcessPayment and Ship requests have not been started yet. This
means that there are two successful cancellation scenarios, and two unsuccessful
ones (where one of these requests has already been performed).

6 Related Work

In our earlier work [9] we have provided additional examples of interactions, as
well as approaches for resolving them. By contrast this paper does not con-
sider resolution. The goal conflict scenario is based on our work on assess-
ing privacy technologies [I0]. This paper also describes other privacy-caused
interactions.

Liu und Yu [5] describe work on discovering privacy and security problems in
P2P networks using GRL/i* Although they do not refer to feature interactions,
they introduce a concept of conflict, and an extension to the GRL notation to
indicate sources of conflict, as well as potential threats in a GRL model. In future
work, we will integrate their results into our approach.

7 Conclusion

In this work we have presented work towards a classification of web service fea-
ture interactions. Our goal was to identify potential feature interactions in a
composite web service. While some of these interactions can clearly be antici-
pated by service designers from past experience, it is impossible to plan for all
circumstances during which interactions may occur, including interactions with
services that do not even exist when a service is developed.

In our example, we therefore did not try to anticipate possible interactions,
but focused on implementing the specified service interfaces. We can liken the
development of web services to an iceberg. When we view a web service through
its interface we only see the tip of the iceberg. While we can make the inter-
face more specific, there will always be elements of its operation that escape
the interface specification, just as the tip of the iceberg is no indication of its
size.

More work on the classification is required. Our vision is that once a stable
classification is in place we will be able to describe in a generic manner how
interactions of services that fit a certain type and cause can be detected and
resolved. Identifying and describing such patterns for detecting and resolving
different kinds of interactions will set the agenda for our future work.

114

M. Weiss, B. Esfandiari, and Y. Luo

References

10.

11.

. Amyot, D., Introduction to the User Requirements Notation: Learning by Example.

Computer Networks, 42(3), 285-301, 2003.

. Cameron, J., Griffeth, N., et al, A Feature Interaction Benchmark for IN and

Beyond, Feature Interaction Workshop, 1-23, 1994.

. GRL, http://www.cs.toronto.edu/km/GRL, last accessed in June 2005.
. Keck, D, and Kuehn, P., The Feature and Service Interaction Problem in Telecom-

munications Systems, IEEE Trans. on Software Engineering, 779-796, 1998.

. Liu, L., Yu, E., and Mylopoulos, J., Analyzing Security Requirements as Rela-

tionships among Strategic Actors, Symposium on Requirements Engineering for
Information Security (SREILS), 2002.

. O’Sullivan, J., Edmond, D., and ter Hofstede, A., What’s in a Service? Towards Ac-

curate Description of Non-Functional Service Properties, Distributed and Parallel
Databases, 12, 117-133, Kluwer, 2002.

. Ryman, A., Understanding Web Services, http://www.software.ibm.com/wsdd/

techarticles/0307 ryman/ryman.html, 2003.

. UCM, http://www.usecasemaps.org, last accessed in June 2005.
. Weiss, M. and Esfandiari, B., On Feature Interactions among Web Services, Inter-

national Conference on Web Services (ICWS), 88-95, IEEE, 2004.

Weiss, M., and Esfandiari, B., Modeling Method for Assessing Privacy Technolo-
gies, in: Yee, G., Privacy in e-Services, Idea Books, 2006 (to appear).

Weiss, M., and Esfandiari, B., On Feature Interactions among Web Services, Inter-
national Journal on Web Services Research, 2(4), 21-45, October-December, 2005.

http://www.software.ibm.com/wsdd/library/ techarticles/0307_ryman/ryman.html
http://www.software.ibm.com/wsdd/library/ techarticles/0307_ryman/ryman.html

	Introduction
	Feature Interaction Problem
	Modeling Web Services as Features
	User Requirements Notation
	Feature Interaction Analysis

	Classification of Feature Interactions
	Selected Examples of Interactions
	Examples of Features
	Composite Service: Virtual Bookstore
	Goal Conflict
	Resource Contention
	Violation of Assumptions
	Invocation Order

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

