

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 73 – 86, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Pattern-Based Specification and Validation
of Web Services Interaction Properties

Zheng Li, Jun Han, and Yan Jin

Faculty of ICT, Swinburne University of Technology,
John Street, Hawthorn, Melbourne, Victoria 3122, Australia

{zli, jhan, yjin}@ict.swin.edu.au

Abstract. There have been significant efforts in providing semantic
descriptions for Web services, including the approach as exemplified by OWL-
S. Part of the semantic description in OWL-S is about the interaction process of
the service concerned, and adopts a procedural programming style. We argue
that this style of description for service interactions is not natural to publishing
service behavior properties from the viewpoint of facilitating third-party service
composition and analysis. In this paper, we introduce a declarative approach
that better supports the specification and use of service interaction properties in
the service description and composition process. This approach uses patterns to
describe the interaction behavior of a service as a set of constraints. As such, it
supports the incremental description of a service's interaction behavior from the
service developer's perspective, and the easy understanding and analysis of the
interaction properties from the service user's perspective. We also introduce a
framework and tool support for monitoring and checking the conformance of
the service's run-time interactions against its specified interaction properties, to
test whether the service is used properly and whether the service fulfils its
behavioral obligations.

1 Introduction

Service-Oriented Computing (SOC) is emerging as an important paradigm for IT
architectures and applications. A service provider publishes the interface description of
the service in a registry, through which a user may search and access the description to
locate the required services. The interface description of a Web service serves as the
contract of interaction with its consumers and is the place where a consumer can find
information about the service. In general, such a contract should cover issues beyond
interface signatures, including functionality, quality and interaction behavior of the
service. The more information about the service is provided, the more likely the service
will be properly understood and utilized. However, the current Web service description
standard - WSDL, only specifies the location and operation signatures of a service, but
lacks the mechanisms for capturing its behavioral properties. This may cause significant
problems regarding behavioral interoperability when the service is used. Without the
behavioral properties or knowledge of a service, the consumer may make incorrect
assumptions about the service, which may lead to interaction failure. As such, a rich

74 Z. Li, J. Han, and Y. Jin

service description model is needed to publish the observable behavior of Web services
in general and its interaction protocols in particular, so that the consumer can have a
better understanding of the service execution semantics and know how to interact with
the service in a proper manner [12].

OWL-S is a prevailing rich description model for Web services. Its service model
describes the interaction behavior of a service by viewing the service as a process. It
provides a set of control constructs such as sequence, split, split+join etc. to specify
the possible execution flow of a service’s operations. The service model employs a
procedural/imperative programming approach, and specifies step by step the process
that the service will perform to reach a particular result. Although this procedural
approach is suitable to certain situations, it has obvious limitations in characterizing
services with diverse behaviors because the resulting process model will become too
complex as part of the interface description. A complex interface description is
difficult to comprehend, process and therefore use.

We argue that a rule-based declarative approach provides a better choice as it
requires much simpler description, needing only one-third to one-sixth of the
statements required by the procedural approach, when representing the same behavior
[10]. In fact, a declarative style conveys the “what” rather than the “how” of the
procedural style, and is consistent with the intention of service (interaction)
description, i.e., “what” the service (interaction) behavior is. In addition, describing a
service in a declarative manner enables the consumer to use the service in ways that
the service designer does not foresee [11]. It also gives better support to automatic
reasoning-based validation of the composition of multiple services with diverse
behaviors [18]. For frequently changing services, adding and removing rules require
much less effort than modifying existing procedural definitions. This is a very useful
feature in the service design process, which always involves many iterations of
modification and revision on the service behavior definition.

In this paper, we introduce a declarative approach to specifying the interaction
behavior of Web services as interaction constraints. Each constraint states an occurrence
or sequencing properties of a service’s operation invocations, representing a partial view
of the service protocol on the invocations. As such, this approach allows incremental
specification of a service’s interaction protocol.

This approach is based on our previous research on interaction constraint
specification for software components [14, 15], which advocates the use of the
property specification pattern system proposed by Dwyer et al. in [9] in order to give
software practitioners easy access to the specification approach. As the basis for the
interaction constraint specification for Web services, we develop an OWL-based
ontology for the property patterns in this paper. We add this ontology to OWL-S as an
enhancement and an alternative to its procedural style definition of service interaction
behaviors.

We further introduce a framework and tool to monitor and check the conformance
of a service's run-time behavior against the specified service interaction constraints.
The framework employs finite state automata (FSA) to represent semantically an
interaction constraint, utilizes a SOAP message monitor to track the run-time
interactions of the service, and includes a validation module that checks the
interactions against the FSAs (i.e. interaction constraints) for error detection.

 Pattern-Based Specification and Validation of Web Services Interaction Properties 75

The remainder of the paper is structured as follows. In section 2, we give a
reference example as a basis for further discussion. Section 3 presents our constraint-
based approach to specifying service behavioral properties together with the ontology
for the interaction property patterns. Section 4 introduces the validation framework
and its implementation. We then discuss the related work in section 5 before drawing
some conclusions in section 6.

2 A Reference Example

Let us consider an auctioneer service that provides auction services on the Web. The
auctioneer publishes its interface description in WSDL and communicates with a
number of bidders and sellers by exchanging SOAP messages. The service is able to
accept registrations from new bidders/sellers and hold auctions among registered
bidders. It provides several operations to allow users to query the information of
auction items, register and un-register themselves to the service, login and logout the
service, bid or sell an item. The service also provides an operation allowing bidders to
retract their previous bids. Figure 1 shows an excerpt of the WSDL description for the
auctioneer.

<wsdl:definitions targetNamespace="http://localhost:8080/axis/services/Auctioneer"
……
<wsdl:portType name="Auctioneer">

 <wsdl:operation name="opRegister" parameterOrder="userInfo">
 <wsdl:input message="impl:opRegisterRequest" name="opRegisterRequest"/>
 <wsdl:output message="impl:opRegisterResponse" name="opRegisterResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opUnRegister" parameterOrder="userInfo">
 <wsdl:input message="impl:opUnRegisterRequest" name="opUnRegisterRequest"/>
 <wsdl:output message="impl:opUnRegisterResponse" name="opUnRegisterResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opLogin" parameterOrder="userInfo">

 <wsdl:input message="impl:opLoginRequest" name="opLoginRequest"/>
 <wsdl:output message="impl:opLoginResponse" name="opLoginResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opLogout" parameterOrder="userInfo">
 <wsdl:input message="impl:opLogoutRequest" name="opLogoutRequest"/>
 <wsdl:output message="impl:opLogoutResponse" name="opLogoutResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opBid" parameterOrder="userInfo itemNo price">
 <wsdl:input message="impl:opBidRequest" name="opBidRequest"/>
 <wsdl:output message="impl:opBidResponse" name="opBidResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opRetract" parameterOrder="userInfo bidRefNo">
 <wsdl:input message="impl:opRetractRequest" name="opRetractRequest"/>
 <wsdl:output message="impl:opRetractResponse" name="opRetractResponse"/>
 </wsdl:operation>

 <wsdl:operation name="opSell" parameterOrder="userInfo itemInfo">
 <wsdl:input message="impl:opSellRequest" name="opSellRequest"/>
 <wsdl:output message="impl:opSellResponse" name="opSellResponse"/>
 </wsdl:operation>
</wsdl:portType>
……

</wsdl:definitions>

Fig. 1. Excerpt of the Auctioneer Web Service Description in WSDL 1.1

76 Z. Li, J. Han, and Y. Jin

3 Pattern-Based Interaction Property Specification

In this section, we first introduce our pattern-based approach to specifying the
interaction behavior of Web services. We then define an ontology for the pattern system
to provide the semantic basis for such service behavior description. An example is given
to illustrate how the ontology is used to define service interaction constraints.

3.1 Property Specification Patterns

Our approach to defining interaction constraints for Web services builds on the
property Specification Pattern System (SPS) proposed by Dywer et al. in [9]. The SPS
patterns were originally developed as “high-level specification abstractions” to assist
practitioners to formally specify system properties. The authors showed in [9] that
SPS is able to cater for a majority of system properties.

In our approach, the SPS patterns and scopes are used to define basic and higher-
level operators used to specify the occurrence and sequencing rules about invocations
to a Web service. The introduction of SPS is aimed to facilitate the use of formal
methods by Web service developers in describing the service interaction constraints
or protocol. Precisely defined constraints are essential to ensure the proper use of the
services when composing business applications or processes. In Figure 2, we list the
basic pattern and scope operators used in our work as well as their usage, where op1,
…, and op4 are distinct operations and n is a natural.

op1 is absent

op1 exists [⎥
⎦

⎤
⎢
⎣

⎡
leastat

mostat
 n times]

op1 precedes op2
op1 leads to op2

⎪
⎭

⎪
⎬

⎫

 ×
⎪
⎩

⎪
⎨

⎧

globally
before op3

after op3

after op3 until op4
between op3 and op4

Fig. 2. Pattern and Scope Operators

Specifically, for a Web service, we provide SPS patterns for specifying the
restrictions on both the occurrence of individual operations’ invocations and the order
(or sequencing) between different operation invocations. The occurrence patterns
include absence, existence, and bounded existence. In particular, the absence pattern
requires that invocations to the given operation not occur (within the given scope).
The existence pattern states that invocations to the given operation must appear. The
bounded existence pattern extends it with lower and upper bounds on the number of
invocations. For example, to control the overall system performance, the auction
service provider may want to set a limit on the number of bids that a bidder can make
during each session. This can be stated as:

opBid exists at most 3 times after opLogin until opLogout;

where the upper bound is 3 (see below for explanations of the “after-until” scope).
The sequencing patterns include precedence, response, precedence chain, and

response chain. For instance, a precedence property of the auctioneer service
“opRegister precedes opUnRegister” states that there must be at least one opRegister

 Pattern-Based Specification and Validation of Web Services Interaction Properties 77

invocation before any opUnRegister invocation. One may think opRegister enables
opUnRegister. A response property “opLogin leads to opLogout” states that an
opLogin invocation must eventually be followed by an opLogout invocation. In
essence, this specifies a cause-effect relationship between opLogin and opLogout.

To handle more complex properties, SPS patterns can be associated with various
scopes such as global, before, after, between-and, and after-until. Each scope
specifies a portion(s) of a service’s interaction history, in which the given pattern
takes effect. More specifically, the global scope refers to the entire history. The
before scope refers to the initial portion of the history up to the first occurrence of
an call message of the given operation. The after scope however states the inverse,
i.e. the portion after the first occurrence of a reply message of the given operation.
In the between-and scope, each portion is marked between consecutive occurrences
of two messages. The starting message is the reply message of the first given
operation, while the ending message is the call message of the second given
operation. The after-until scope is similar but allows the portion to be open ended.
That is, the given pattern continues to take effect after a reply to the first operation,
even if the second operation will never be invoked afterwards. In contrast, in the
between-and scope, the second operation has to be invoked in order for the given
pattern to be applicable.

In the above, we have assumed operations be the atomic unit of concern. To cope
with realistic services, however, one needs to consider the effect of different
parameter values on the service interaction logic. Therefore, we allow conditions to
be associated with each constraint specification to fine-tune the specified relationship.
For example, the earlier constraint on the upper bound of bids by each bidder can be
elaborated as:

opBid exists at most 3 times after opLogin until opLogout
where opBid.userInfo = opLogin.userInfo = opLogout.userInfo;

As detailed later, we make use of the Semantic Web Rule Language (SWRL) to state
such conditions.

Note that, in general, SPS patterns can be nested to describe complex constraints
[9]. For simplicity, we do not explicitly deal with pattern nesting in this paper. It is
however easy to accommodate them in our specification approach.

The following are two further example constraints for the auctioneer service:

opBid precedes opRetract after opLogin until opLogout
 where opBid.userInfo = opRetract.userInfo = opLogin.userInfo = opLogout.userInfo
 and opBid.bidRefNo = opRetract.bidRefNo;

 opSell precedes opBid where opSell.itemNo = opBid.itemNo;

The first constraint states that if a bidder is to retract a valid bid (opRetract), there
must be a preceding successful bid (opBid) by the same bidder in the same session.
The second constraint says that a bidder can only bid for items on sale.

3.2 An Ontology for Interaction Property Patterns

The patterns and scopes used to specify service interaction constraints are defined in
the ontology for Interaction Property Patterns (IPPs). It provides a common

78 Z. Li, J. Han, and Y. Jin

terminology for service developers to specify the interaction constraints of Web
services in a standard and formal way.

The IPP ontology is defined using OWL and is designed as an add-on to OWL-S as
a complement to the Service Model. More specifically, the topmost class defined in
this ontology, InteractionContract, serves as an alternative to OWL-S
CompositeProcess class. Figure 3 depicts the relationship between the IPP ontology
and OWL-S. As shown, InteractionContract is embedded in the Service Model and
uses the AtomicProcess class as the basic entities to define the interaction constraints
of Web services in a rule-based/declarative manner. Note that the Service Profile and
Service Grounding are not affected.

Figure 4 presents all the classes and their relationships as defined in the IPP
ontology, where classes are drawn as ovals and properties are depicted as arc labels.
Note that the shaded classes are not part of the IPP ontology, but are defined in OWL-S
or XML Schema.

Fig. 3. Relationship between the IPP ontology and OWL-S

Fig. 4. Classes in the IPP Ontology

 Pattern-Based Specification and Validation of Web Services Interaction Properties 79

Class InteractionContract. In the IPP ontology, InteractionContract is the topmost
concept denoting all the interaction constraints for a service. InteractionContract is
defined as a subclass of OWL-S ServiceModel. It has a hasIConstraint property,
specifying an InteractionConstraint instance.

Class InteractionConstraint. The InteractionConstraint class has three properties,
hasPattern, hasScope and hasCondition. The hasPattern property ranges over the
class PatternConstruct. Its value specifies an occurrence or sequencing rule over
some operations’ invocations. The hasScope property ranges over the class
ScopeConstruct. Its value indicates the scope over which the specified rule applies.
The hasCondition property specifies an SWRL-Expression (defined in the OWL-S) for
the condition governing operation parameter values.

Class PatternConstruct. PatternConstruct is the superclass of four pattern classes:
PatternIsAbsent, PatternExists, PatternPrecedes and PatternLeadsTo. Each of them
is used to express one specific type of the service behavior. PatternIsAbsent has one
property subject that names the operation of concern. The value of subject is an
instance of PatternOperand that can be of either type OWL-S AtomicProcess, or
PatternConstruct. The latter enables potential pattern nesting. The subject property of
PatternExists is similar. In addition, PatternExists has three cardinality properties:
maxOccurBound, minOccurBound and occurBound used to restrict the number of
invocations to the operation of interest. All these properties are of the XML schema
data type: xsd:nonNegativeInteger. Well-formedness rules about their occurrences are
straightforward and thus omitted here. Both PatternPrecedes and PatternLeadsTo
have two properties, firstOperand and secondOperand, ranging over PatternOperand.

Class ScopeConstruct. As noted earlier, the ScopeConstruct class is used to indicate a
portion of the interaction history over which the constraint must be satisfied. There
are five ScopeConstruct subclasses: ScopeGlobal, ScopeBefore, ScopeAfter,
ScopeBetween, ScopeAfterUntil. Each of these classes defines zero, one or two
delimiters, specifying the starting and ending operation invocations or replies. It is
worth noting that the scope within which the constraint is evaluated starts, if
applicable, after the reply message of the first operation is received, and finishes, if
applicable, before the call message of the second operation is received.

ClassSWRL-Expression. As noted above, we use the SWRL-Expression class to
specify conditions for interaction constraints. The detail of this class can be found in
OWL-S and is thus not repeated here.

3.3 Example

To illustrate the use of the IPP ontology, consider the auctioneer Web service. As
discussed earlier, assume that a user can only bid at most 3 times within each of his
logins. This means the opBid operation can only be invoked at most 3 times after the
user successfully invokes opLogin and before he invokes opLogOut. Figure 5 shows
the definition of this constraint according to the IPP ontology.

80 Z. Li, J. Han, and Y. Jin

<ipp:InteractionConstraint>
 <ipp:hasPattern>
 <ipp:PatternExists>
 <ipp:subject>
 <process:process rdf:resource="#opBid"/>
 </ipp:subject>
 <ipp:maxOccurBound rdf:datatype="&xsd;#nonNegativeInteger">3</ipp:maxOccurBound>
 </ipp:PatternExists>
 </ipp:hasPattern>

 <ipp:hasScope>
 <ipp:ScopeAfterUntil>
 <ipp:firstDelimiter>
 <process:process rdf:resource="#opLogin"/>
 </ipp:firstDelimiter>
 <ipp:secondDelimiter>
 <process:process rdf:resource="#opLogOut"/>
 </ipp:secondDelimiter>
 </ipp:ScopeAfterUntil>
 </ipp:hasScope>

 <ipp:hasCondition>
 <expr:SWRL-Expression>
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList>
 <rdf:first>
 <swrl:sameIndividualAtom>
 <swrl:argument1 rdf:resource="#opBidUserInfo"/>
 <swrl:argument2 rdf:resource="#opLoginUserInfo"/>
 <swrl:argument3 rdf:resource="#opLogOutUserInfo"/>
 </swrl:sameIndividualAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </expr:expressionBody>
 </expr:SWRL-Expression>
 </ipp:hasCondition>
</ipp:InteractionConstraint>

Fig. 5. An Example Interaction Constraint Definition

4 Runtime Validation of Interaction Constraints

Explicit specification of Web service interaction constraints helps the service designer
and the service client to implement and use a service properly. Whether or not a
service is actually used correctly at run-time is a different question. Validation or
testing is often required. In this section, we introduce a framework and a tool that
allows us to validate the interactions with a Web service at run-time against its pre-
defined interaction constraints.

4.1 Validation Framework

Our validation framework and tool monitor and validate the messages received and
sent by a service against its interaction constraint specifications. Its message
monitoring and interception builds on Web service platforms and tools. Its validation
mainly makes use of the tool implementation of [14]. The monitoring and validation
process is fully automated at run time. Figure 6 shows the overall validation
architecture. The key techniques used include:

− Translating the constraint specifications into finite state automata (FSAs) that serve
as the constraints' internal representation for easy processing;

− Identifying and intercepting the run-time messages exchanged with a Web service;

 Pattern-Based Specification and Validation of Web Services Interaction Properties 81

Fig. 6. Validation Framework

− Advancing the effective constraint FSAs using the intercepted message, and
reporting violations, if any.
The monitoring framework consists of five components: Validation Manager

(VM), Constraint Specification Manager (CSM), FSA Validators (FVs), Message
Monitor (MM) and Pattern Library (PL), with VM coordinating all the other four
components. PL maintains all the patterns and scopes and their FSA semantics. CSM
reads the interaction constraint specifications embedded in the OWL-S service
description file, translates them into an internal format. MM observes the incoming
and outgoing SOAP messages of the Web service and intercepts the run-time
operation invocations. All the SOAP messages exchanged between the service and the
user are logged and forwarded to VM. Upon receiving a message, VM queries CSM
to get all relevant constraint specifications. If the corresponding FVs have not been
created, VM initialize them based on the used patterns and their FSA semantics stored
in PL. It then asks all the relevant FVs to check the intercepted operation invocation
message against their internal FSAs. If the message is not acceptable to any FSA, a
violation report is issued.

4.2 Constraint Representation

The semantics of interaction constraints is informally given in section 3. To enable
tool support, their semantics needs to be precisely defined. To do so, we choose FSAs
as their formal semantic representations. When involving no condition about
parameter values, in general, each interaction constraint has a corresponding FSA
representation where arc labels are sets of operation call or reply messages. Such a
FSA can be constructed prior to the first relevant message being identified. When a
“where” condition is stated, an interaction constraint corresponds to a number of
FSAs, each for a possible value combination of the parameters. Such an FSA is
dynamically instantiated only when a parameter value of interest is observed. Further
details about the FSA representation can be found in [13, 14]. We illustrate below the
FSA representation of constraints using the earlier example on the bounded existence
of bids (Figure 5).

Figure 7 shows the FSA corresponding to this example constraint, where b1opBid

denotes the set of all opBid call and reply messages exchanged with bidder b1 (i.e.,
opBid.userInfo refers to b1 as the ID). reply

b1opLogin is the set of opLogin reply messages

82 Z. Li, J. Han, and Y. Jin

Fig. 7. FSA for the Example Interaction Constraint of Figure 5

to b1.

call

b1opLogout is the set of opLogout call messages from b1. Note that we have

omitted all the other messages that can be received at every state for brevity. As
shown, opBid cannot be invoked when the FSA enters the rightmost state until b1 logs
out and re-logs in.

4.3 Validation Process

The validation process starts when the Message Monitor detects a SOAP
request/response message and forwards the message to the Validation Manager. Then
VM finds out from CSM all the interaction constraint specifications in which such a
message is of interest, and creates a FSA validator for each constraint using the
message’s parameter values, if such a FV does not already exist. VM then tries to
advance the state of each of these relevant FVs using the observed message. An error
or violation will be reported if the intercepted message is inhibited at the current state
of any FSA. That is, the message does not appear in any labeling set of any outgoing
arc of the current state. For example, an opBid call message received at the rightmost
state of Figure 7 represents a constraint violation. If there is no interaction constraint
in which an observed message is of interest, the message will be ignored by the
Validation Manager.

4.4 Implementation

Our implementation of the run-time monitoring framework is based on open source
platforms and tools. The reason behind this decision is that the source code is
available and new features can be added if required. For our implementation, Tomcat
5 and Apache Axis 1.2 are used to set up a web server to run Web services. Tomcat is
a lightweight HTTP server with all the features we need to run Web services. Axis
provides an implementation of the W3C SOAP standard. They constitute a reliable
and stable platform on which to implement Java Web Services.

In implementing the validation framework, we have reused the architecture of a
runtime validation tool developed in [14] for CORBA-based systems, including the
Pattern Library, Validation Manager and FSA Validator. However, these modules have
been enhanced to better deal with the full range of interaction property patterns. We
have also modified the Constraint Specification Manager module for processing the
XML-based specifications of service interaction constraints. A new addition in this

 Pattern-Based Specification and Validation of Web Services Interaction Properties 83

work is the Message Monitor that captures the SOAP messages (calls and returns)
exchanged between a service and its user(s), and analyzes them at run-time as to their
types, corresponding operations, etc. Part of it is a tool in the Axis package called SOAP
Monitor, providing a way to intercept the SOAP messages. The SOAP Monitor utility
adds one new handler to the global handler chain in the Axis architecture. As SOAP
requests and responses go in and out of the service, the SOAP messages are forwarded
to the SOAP Monitor service where it can be displayed using a web browser interface.

It is worth noting that our validation framework is not centralized. The Message
Monitor (MM) resides on each server hosting services. The other parts of the
framework can be deployed on the server, with the client or elsewhere. As long as the
MM on the server side is working, one or more validation applications can be
connected to MM, which enables multiple parties, such as service owner and users, to
monitor and validate service behavior simultaneously.

5 Related Work and Discussion

Some proposed Web service standards, such as BPEL [3] and WSCDL [16], are
composition languages in nature and specify service behavior from the service
composition or business process point of view [6].What they specify is the required
behavior for services rather than the behavior services actually provide.

Some ongoing research efforts recognize the needs for describing the behavior
properties of individual services, but use rather abstract notations that are not suitable
for service developers or users. [6-8] use a single finite state machine (FSM) to
describe the overall observable behavior of a service. [8] focuses on protocol
compatibility checking and [6, 7] extend FSMs by associating more properties to
transitions. Such a FSM-based approach is good at describing services with simple
behavior. However, when dealing with services with diverse behavior, this approach
does not scale well with the increase in the number of states and transitions. The
resultant FSMs can become difficult to understand and process. In contrast, our
divide-and-conquer specification approach scales well with the number of constraints.
On the other hand, [6, 7] deal with time-based service protocols. This can be
potentially integrated with our work emphasizing inter-message relationships,
resulting in more comprehensive service protocol descriptions.

[4, 19, 20] employ an ontological approach to specify interaction protocols. [4, 20]
define ontologies for FSMs. Like [6-8], they use a single FSM to model each service
behavior. Therefore, their approaches are subject to the same scalability limitation.
Whereas in our approach, the FSA is only used for run-time validation and we use
interaction property patterns for service behavior specification. Furthermore, we use
multiple constraints/FSAs to cover the full behavior of services, which offers
modularity and better scalability. [19] uses ontologies to represent service operation,
input, conditional/unconditional output, precondition, and conditional/unconditional
effect as the behavior constraint of a service. This approach is not capable of
expressing temporal sequencing interaction constraints.

A body of work on Web service monitoring has been reported. [17] proposes an
approach to specifying and monitoring Service Level Agreements. It focuses on Quality
of Service, and monitors such properties as performance and costs instead of interaction

84 Z. Li, J. Han, and Y. Jin

behavior. [5] aims to monitor service compositions at run-time to see whether services
satisfy the assertions specified in the service composition defined by BPEL. The
assertions are the requirements from the service consumer, rather than services’
properties. In contrast, our monitoring framework intends to assess whether a service’s
behavior conforms to its designer’s intent. In addition, our monitor attaches to the
service itself rather than to a service consumer such as the BPEL process.

Also related to our approach is the work based on patterns. [1] provides a rich set to
patterns that can be used to model workflow. The workflow patterns follow the
procedural approach to interaction specification and are very similar to the
ControlConstructs defined in OWL-S's Service Model. The approach we propose is
declarative in nature and is aimed at addressing the limitations of procedural approach
employed by OWL-S. The "Service Interaction Patterns" in [2] describes how an
individual message or a request/response message pair is transferred between two or
more parties, whereas our patterns describe the sequential order in which multiple
messages or operation invocations may occur. They mainly look at message exchanges
from a system point of view, while we primarily study message exchanges from an
individual service's point of view. As such, these two approaches have different focuses.

When putting our approach into practical use, the service designer needs to ensure
the consistency of all the interaction constraints of a service. Inconsistency among
constraints will leads to a situation where calls to an operation will always violate
some rules. This issue is discussed in [13] where consistency checking is done by
testing the non-emptiness of the language intersection of the interaction constraints
and proving that each operation has its role in the intersection.

6 Conclusion

In this paper, we have introduced a declarative constraint-based approach to speci-
fying the observable behavioral properties of Web services. The approach employs
intuitive patterns to help practitioners describe the interaction constraints of a Web
service. The constraints conjunctively determine the behavioral properties of the
service. We have defined an ontology for these patterns and embed it into the OWL-S
framework, enabling pattern-based interaction behavior description for Web services.

We have also presented a framework that supports the monitoring and validation of
the runtime interactions with Web services against their specified interaction
constraints. This provides a useful tool for adjudicating whether a service's behavior
conforms to its design and whether the service is being used properly. The tool is able
to identify and report any violations of such nature.

Our future work will include considering required operations of services and static
checking of interaction compatibility between services or between individual services
and the service composition specification.

Acknowledgement. This work is partially supported by the Department of Education,
Science and Training (DEST) grant (AU-DEST-CG060081) from the Innovation
Access Programme - International Science and Technology established under the
Australian Government's innovation statement, Backing Australia's Ability.

 Pattern-Based Specification and Validation of Web Services Interaction Properties 85

References

1. Workflow Patterns. www.workflowpatterns.com (2005)
2. Alistair Barros, M.D., Arthur ter Hofstede: Service Interaction Patterns. In Proc. 3rd

International Conference on Business Process Management (2005) 302-318, Eindhoven,
The Netherlands

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services version 1.1. http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/ (2003)

4. Ashri, R., Denker, G., Marvin, D., Surridge, M., Payne, T.R.: Semantic Web Service
Interaction Protocols: An Ontological Approach. In Proc. Third International Semantic
Web Conference, Vol. 3298 (2004) 304-319, Hiroshima, Japan

5. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In Proc.
International Conference on Service-Oriented Computing (2004) 193-202, New York City,
NY, USA

6. Benatallah, B., Casati, F., Skogsrud, H., Toumani, F.: Abstracting and Enforcing Web
Service Protocols. International Journal of Cooperative Information Systems Vol. 13 (4)
(2004) 413-440

7. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual Modeling of Web Service
Conversations. In Proc. Advanced Information Systems Engineering (CAiSE), Vol. 2681
(2003) 449-467, Klagenfurt/Velden, Austria

8. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
Composition of e-Services that Export their Behavior. In Proc. International Conference on
Service-Oriented Computing (2003) 43-58, Trento, Italy

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-
state Verification. In Proc. International Conference on Software Engineering (1999) 411-
420, Los Angeles, CA, USA

10. Gottesdiener, E.: Procedural versus declarative. Application Development Trends
Magazine (1997)

11. Guillaume, D., Plante, R.: Declarative Metadata Processing with XML and Java. In Proc.
Astronomical Society of the Pacific Conference Series, Vol. 238 (2001)

12. Han, J.: Interaction Compatibility: An Essential Ingredient for Service Composition. In
Proc. International Workshop on Grid and Cooperative Computing (2003) 59-66,
Shanghai, China

13. Jin, Y., Han, J.: Consistency and Interoperability Checking for Component Interaction
Rules. In Proc. Twelfth Asia-Pacific Software Engineering Conference (2005), Taipei,
Taiwan

14. Jin, Y., Han, J.: Runtime Validation of Behavioural Contracts for Component Software. In
Proc. Fifth International Conference On Quality Software (2005) 177-184, Melbourne,
Australia

15. Jin, Y., Han, J.: Specifying Interaction Constraints of Software Components for Better
Understandability and Interoperability. In Proc. International Conference on COTS-Based
Software Systems, Vol. 3412 (2005) 54-64, Orlando, Florida, USA

16. Kavantzas, N., Burdett, D., Ritzinger, G.: Web Services Choreography Description
Language Version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/ (2004)

17. Keller, A., Ludwig, H.: Defining and Monitoring Service-Level Agreements for Dynamic
e-Business. In Proc. Conference on Systems Administration (2002) 189-204, Philadelphia,
PA, USA

86 Z. Li, J. Han, and Y. Jin

18. Lara, R., Lausen, H., Arroyo, S., Bruijn, J.d., Fensel, D.: Semantic web services:
description requirements and current technologies. In Proc. International Workshop on
Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the Fifth
International Conference on Electronic Commerce (ICEC) (2003), Pittsburgh, PA, USA

19. Sriharee, N., Senivongse, T.: Discovering Web Services Using Behavioural Constraints
and Ontology. In Proc. International Conference on Distributed Applications and
Interoperable Systems, Vol. 2893 (2003) 248-259, Paris, France

20. Toivonen, S., Helin, H.: Representing Interaction Protocols in DAML. In Proc.
International Symposium on Agent Mediated Knowledge Management, Vol. 2926 (2003)
310-321, Stanford, CA, USA

	Introduction
	A Reference Example
	Pattern-Based Interaction Property Specification
	Property Specification Patterns
	An Ontology for Interaction Property Patterns
	Example

	Runtime Validation of Interaction Constraints
	Validation Framework
	Constraint Representation
	Validation Process
	Implementation

	Related Work and Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

