ASTRO: Supporting Composition and Execution
of Web Services*

Michele Trainotti!, Marco Pistore!, Gaetano Calabrese?, Gabriele Zacco?,
Gigi Lucchese?, Fabio Barbon?, Piergiorgio Bertoli2, and Paolo Traverso?

L DIT, University of Trento, Via Sommarive 14, 38050, Trento, Italy
2 ITC-irst, Via Sommarive 18, 38050, Trento, Italy

Abstract. Web services are rapidly emerging as the reference paradigm
for the interaction and coordination of distributed business processes. In
several research papers we have shown how advanced automated plan-
ning techniques can be exploited to automatically compose web services,
and to synthesize monitoring components that control their execution. In
this demo we show how these techniques have been implemented in the
ASTRO toolset (http://www.astroproject.org), a set of tools that extend
existing platforms for web service design and execution with automated
composition and execution monitoring functionalities.

1 Introduction

Web services are rapidly emerging as the reference paradigm for the interaction
and coordination of distributed business processes. The ability to automatically
plan the composition of web services, and to monitor their execution, is therefore
an essential step toward the real usage of web services.

In previous works [I,[2L[3], we have shown how automated planning techniques
based on the “Planning via Model Checking” paradigm can effectively support
these functionalities. More precisely, the algorithms proposed in [1L[2[3] are based
on web service specifications described in BPEL4AWS, a standard language that
can be used both for describing existing web services in terms of their interfaces
(i.e., of the operations that are needed to interact with them) and for defining
the executable code that implements composite services.

Automated web service composition starts from the description of a num-
ber of protocols defining available external services (expressed as BPEL4WS
specifications), and a “business requirement” for a new composed process (i.e.,
the goal that should be satisfied by the new service, expressed in a proper goal
language). Given this, the planner must synthesize automatically the code that
implements the internal process that, exploiting the services of the external part-
ners, achieves the business requirement. This code is then emitted as executable
BPEL4WS code.

* This work is partially funded by the MIUR-FIRB project RBNE0195K5, “Knowl-
edge Level Automated Software Engineering”, and by the MIUR-PRIN 2004 project
“Advanced Artificial Intelligence Systems for Web Services”.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 495-501] 2005.
© Springer-Verlag Berlin Heidelberg 2005

496 M. Trainotti et al.

The automated synthesis techniques provided by the “Planning via Model
Checking” framework can be also exploited to generate process monitors, i.e.,
pieces of code that detect and signal whether the external partners behave consis-
tently with the specified protocols. This is vital to detect unpredictable run-time
misbehaviors (such as those that may originate by dynamic modifications of the
partners’ protocols), or other events in the executions of the web services that
need to be reported and analyzed.

Notice that these problems require to deal with nondeterminism (since the
behavior of external services cannot be foreseen a priori), partial observability
(since their status is opaque to the composed service), and extended goals (since
realistic business requirements specify complex expected behaviors rather than
just final states). By tackling the problem of composing and monitoring web
services, we have shown the capabilities of the “Planning via Model Checking”
approach in realizing such a complex planning task.

In this demo we show how these techniques can extend existing commer-
cial platforms for web service design and execution. More precisely, we describe
the ASTRO toolset (http://www.astroproject.org), which implements automated
composition and monitor generation functionalities as extensions of the Active
WebFlow platform. Active WebFlow (http://www.activebpel.org/) is a commer-
cial tool for designing and developing BPEL4WS processes which is based on the
Eclipse platform. It also provides an open-source BPEL4WS execution engine,
called Active BPEL. By implementing automated composition and monitoring
within Active WebFlow, these advanced functionalities can be combined with
the other “standard” functionalities provided by the platform (such as inspect-
ing BPEL4WS code, writing or modifying business processes, deploying these
processes and executing them) and become integral part of the life cycle of busi-
ness process design and execution.

2 A Service Composition Scenario

The demo is based on a classical web service composition problem, namely that of
the Virtual Travel Agency (VTA). It consists in providing a combined flight and
hotel booking service by composing two separate, independent existing services:
a Flight booking service, and a Hotel booking service.

The Hotel booking service becomes active upon a request for a room in a
given location (e.g., Paris) for a given period of time. In the case the booking is
not possible (i.e., there are no available rooms), this is signaled to the request
applicant, and the protocol terminates with failure. Otherwise, the applicant is
notified with information about the hotel (e.g., Hilton), cost of the room, etc.
and the protocol stops waiting for either a positive or negative acknowledgment.
In the first case, an agreement has been reached and the room is booked. In the
latter case, the interaction terminates with failure.

The protocol provided by the Flight booking service is similar. It starts upon
a request for flights that guarantee to stay in a given location (e.g., Paris) for
a given period of time. This might not be possible, in which case the appli-

ASTRO: Supporting Composition and Execution of Web Services 497

cant is notified, and the protocol terminates failing. Otherwise, information on
the flights (carrier, cost, schedule...) are computed and returned to the appli-
cant. The protocol suspends for either a positive or negative acknowledgment,
terminating (with success or failure resp.) upon its reception.

The expected protocol that the user will execute when interacting with the
VTA goes as follows. The user sends a request to stay in a given location during a
given period of time, and expects either a negative answer if this is not possible
(in which case the protocol terminates, failing), or an offer indicating hotel,
flights and cost of the trip. At this time, the user may either accept or refuse
the offer, terminating its interaction in both cases.

Of course several different interaction sequences are possible with these ser-
vices; e.g., in a nominal scenario, none of the services answers negatively to
a request; in non-nominal scenarios, unavailability of suitable flights or rooms,
as well as user refusals, may make it impossible to reach an agreement for the
trip. Taking this into account, the business requirement for the composed ser-
vice is composed of two subgoals. The “nominal” subgoal consists in reaching
the agreement on flights and room. This includes enforcing that the data com-
municated to the various processes are mutually consistent; e.g., the number of
nights booked in the hotel depends on the schedule of the selected flights. The
“recovery” subgoal consists in ensuring that every partner has rolled back from
previous pending requests, and must be only pursued when the nominal subgoal
cannot be achieved anymore.

By automated composition of the VTA process, we mean the automated gen-
eration of the code that has to be executed on the VTA server, so that requests
from the user are answered combining the Flight and Hotel services in a suitable
way. This composition has to implement the two sub-goals described above. After
the VTA process has been generated, its executions must be monitored, in order
to detect problems in the interactions with the other partners participating to
the scenario. Properties to be monitored include “correctness” checks (e.g., the
partners obey the declared protocols; the flight schedules are compatible with
the requests...). It is also possible to monitor “business” properties, e.g., the fact
that, when an offer for a trip is sent to the user, this offer gets accepted or not.

3 The ASTRO Toolset

This section presents a general overview of the ASTRO toolset. It consists of the
following tools: WS-gen, WS-mon, WS-console and WS-animator.

WS-gen is responsible for generating the automated composition. It consists
in a back-end layer and a front-end layer. The back-end layer takes as input the
BPEL4WS specifications of the interaction protocols that the composite service
has to implement, a “choreographic” file describing the connections between the
composition’s partners, and a goal file defining the composition requirement. It
consists of two applications (see Fig.1): BPELTranslator converts the BPEL4WS
specification files and the choreography file in an intermediate (.smv) file which is
adequate for representing “Planning via Model Checking” problems; WSYNTH

498 M. Trainotti et al.

USYNTH
BPELTramslator
BPEL
BPEL

| =W EPEL

[23::H
/

chor eography

Fig. 1. WS-gen architecture

Fig. 2. WS-gen front end

takes as input the problem domain, computes the plan which fulfills the require-
ments, and emits the plan in BPEL4WS format. The front-end (see Fig.2) is
responsible for controlling the composition process and for managing the gen-
erated BPEL4WS specification; it has been implemented as an Eclipse plugin,
and is hence integrated in the Active WebFlow environment.

WS-mon is responsible for generats the Java code implements the monitors for
the composed process and deploying them to the monitor framework. Similar to
WS-gen, it consists in a back-end layer and a front-end layer. The back-end takes
as input BPEL4WS specifications and a “choreographic” file, while the goal file
is replaced by a file specifying the properties to by monitored. The back-end layer
consists in three applications (see Fig.3): BPELTranslator, which is in common
with WS-gen, converts the BPEL4AWS specification files and the choreography
file in a .smv file which describes the problem domain; WMON takes as input the
problem domain, computes the plan which fulfills the monitoring requirements,
and emits this plan in Java format; and the DEPLOYER compiles the Java class
and deploy them to the monitor framework. The front-end (see Fig.4), which is
responsible for controlling the monitor generation process, has been implemented
as an Eclipse plugin, and is hence integrated in the Active WebFlow environment.

ASTRO: Supporting Composition and Execution of Web Services 499

oy
— . N N TR | \
\ II \‘ ;
N

i

b wspraply |

|

Fig. 3. WS-mon architecture

ey vl

¥ Dt e et b werven,
e repery e Premce
et e pory Lo~ Com s o sl carsla e

oo gy -
o ey e o ghe 3 e sk s o, v ot e s

T o - [mkr -
e el FF [rovie: s e T
i i e P

“9sh = CAas EEP W & = TE0 T in 153

Fig. 4. WS-mon front end

Wi-console

EPEL4E
Izemumion
Engine Cmsole

l I

b8
e
EPEL4IS a Memitor Bagine
Execution £
Engine a
P— : Honivor
Tmwrericory & Irentory

I Process I Memibor
instance instance

Fig. 5. Monitor framework architecture

The run-time monitor framework is responsible for executing the monitors
associated to a given process every time an instance of that process is executed.
It is also responsible for reporting the status of these monitors to the user in a
convenient way. It consists of a back-end layer and a front-end layer (see Fig.5).
The back-end layer has been implemented as an extension of the Active BPEL

500 M. Trainotti et al.

[] 2 E
Y RN T] T i
LLESNENCLIT N N BN e Thaus i7 75
Fig. 6. WS-console
5w - 8 o s
SN S
Bun. W [T
i [1 v n (1
[1se |01 =)
o L Flight
—T— [E=—1=
. o e T

[LITEE M rra [N B N-0 =r T |

Fig. 7. WS-animator

execution engine; the main goal is to sniff the input/output messages directed to
the process that has to be monitored and to forward them to the Java monitors
instances. The front-end implementation, WS-console, extends the Active BPEL
administration console in order to present the status of the monitors associated
with each process instance. In this way, violations of the monitored properties
are easy to be checked by the user (see Fig.6).

Finally, WS-animator (see Fig.7) is another Eclipse plugin, which gives the
user the possibility to “execute” the composite process (in our case, the VTA).
More precisely, it allows the user to play the roles of the actors interacting with
the composite process, while the Active WebFlow engine executes it.

ASTRO: Supporting Composition and Execution of Web Services 501

References

[1] Pistore, M.; Barbon, F.; Bertoli, P.; Shaparau. D.; and Traverso, P. 2004. Planning
and Monitoring Web Service Composition. In Proc. AIMSA’04.

[2] Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated Composition of Web
Services by Planning in Asyncronous Domains. In Proc. ICAPS’05.

[3] Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005. Automated Composition
of Web Services by Planning at the Knowledge Level. In Proc. IJCAI’05.

	Introduction
	A Service Composition Scenario
	The ASTRO Toolset

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

