A Service Oriented Architecture for Deploying
and Managing Network Services

Victor A.S.M. de Souza and Eleri Cardozo*

Department of Computer Engineering and Industrial Automation,
School of Electrical and Computer Engineering,
State University of Campinas,
13083-970, Campinas, So Paulo, Brazil
{vsouza, eleri}@dca.fee.unicamp.br

Abstract. New generation network services must be deployed and man-
aged according to the customers’ specific requirements. In this context,
service providers must devise a way to design network services with near
zero development time and high degrees of customization and evolution.
Customization is necessary to fit the service according to the customers’
requirements, while evolution is necessary to adapt the service as soon as
these requirements change. In addition, customers are demanding the abil-
ity to manage the service in order to keep the usage, configuration, and
evolution under their control. This paper presents an approach based on
service oriented architecture (SOA) for developing network services able to
fulfill the requirements of rapid deployment, customization, and customer-
side manageability. The approach considers the network service as a set of
interacting elements implemented as Web Services. The service logic is ex-
pressed in terms of Web Services orchestration. Two services for the man-
agement of connections in optical networks are presented as a case study.

1 Introduction

New network services differ from the present ones in many aspects. Firstly, the
development time of the new services must be kept close to zero. In other words,
the time between the service design and its effective use must be very short (ide-
ally zero, no more than few hours in special cases). Secondly, the service must
take into account the exact customers’ requirements (and expectations) such as
aspects related to configuration, pricing, and quality. Finally, customers are de-
manding the ability to manage the main aspects of the service in order to take
advantage of their business peculiarities, e.g., traffic patterns and end-user pro-
files. Of course, price is always an important variable that can be reduced as long
as the complexities of service creation, deployment and management decrease.
In this scenario, network providers must devise new ways of designing, deploy-
ing and managing network services. We strongly believe that service composition
is the key toward this objective. A network service can be created by composing
a set of primitive services. This recurrent definition is important in the sense that

* The authors would like to thank Ericsson Brazil for its support.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 465-FT7} 2005.
© Springer-Verlag Berlin Heidelberg 2005

466 V.A.S.M. de Souza and E. Cardozo

it allows a more complex service be built above a set of already existing services
such as back-end, resource management, and network management services. For
instance, a Virtual Private Network (VPN) service can be built by composing a
connection service, an authentication service, a fault management service, and a
resource management service. These composed services are distributed through-
out the service provider’s enterprise, some of them running on the central office
and others running close to the transport network.

Actually, there is a gap between the software entities at the business level
and at the network level. Entities at the network level are based on low level
signaling protocols such as RSVP-TE (Resource Reservation Protocol - Traffic
Engineering) and OIF’s UNI (Optical Internetworking Forum’s User-to-Network
Interface). The access to these protocols are performed via operator’s interface,
network management protocols (e.g., SNMP - Simple Network Management Pro-
tocol), or proprietary application programming interfaces (APIs). The entities
at the business level, on the other hand, rely on high level software artifacts such
as enterprise components (e.g., Enterprise Java Beans, COM+) and web compo-
nents (e.g., Java Server Pages, Active Server Pages). Clearly, the gap between the
control and management entities at network level and the entities at the business
level is a complicating factor when a network service with high level of automa-
tion and integration must be designed and deployed in a short period of time.

Service oriented computing (SOC) is an attractive solution to narrow this gap
in the sense that it offers a good level of automation, integration, customization,
and flexibility in service creation, deployment, and management. This paper
proposes a service oriented architecture (SOA) for management and deployment
of services in a connection oriented network. The architecture assumes that all
the composed services are Web Services and composition is governed by Web
Services orchestration and choreography techniques. In this architecture, service
creation consists in the edition of an orchestration script while the service de-
ployment consists in the installation of this script in an appropriated software
engine. Service management is described via Web Services choreography, an in-
teraction agreement between different organizations or independent processes,
in our case service user and service provider. The edition of the orchestration
script can be assisted by specialized service creation tools, general purpose text
editors or even by software engineering modeling tools.

This paper is organized as follows. Section [2] presents a brief introduction to
SOC. Section [] presents the proposed SOA-based architecture for service cre-
ation, deployment, and management focusing on connection oriented networks.
Section [presents the services developed for assess the proposed architecture.
Section [0l discusses some related and recently published works. Finally, Sect.
presents some closing remarks.

2 Service Oriented Computing

Service oriented computing is considered by many a step forward in the distrib-
uted computing field. Distributed computing, mainly distributed objects and,

A SOA for Deploying and Managing Network Services 467

most recently, components, provide high cohesion, lower coupling, and modu-
larity to the applications. As a consequence, software reuse and evolution are
favored, with reduction of development and maintenance costs. Several open
standards for distributed computing such as CORBA (Common Object Request
Broker Architecture) and CCM (CORBA Component Model) from OMG (Ob-
ject Management Group), RMI (Remote Method Invocation) and EJB (Enter-
prise Java Beans) from the Java Community are mature and well accepted.
Software platforms supporting these standards are available, both commercially
and as open source software.

Unfortunately, these standards and platforms have not been used across enter-
prises. Security and interoperability issues are the most relevant reasons. Proto-
cols such as ITOP (Internet Inter-ORB Protocol) employed in CORBA and RMI
are not “firewall friendly”, while the interoperability between different standards
has never been completely addressed. Moreover, loose-ends on the standards may
result in interoperability problems between platforms implementing the same
standard.

It was in this context that SOC emerged, providing a way to interoperate
large software entities, independently of software platforms and systems em-
ployed by each enterprise. Service oriented computing is defined as “the com-
puting paradigm that utilizes services as fundamental elements for developing
applications” [I]. Using orchestration mechanisms we can build a more com-
prehensive service that can itself be part of a higher level composition [2]. The
service workflow is defined in orchestration scripts that is processed by an or-
chestration engine.

Some relevant characteristics of SOC reported in the literature are summa-
rized below:

— Interoperability - achieved through the use of an independent transport pro-
tocol.

— Composability - services can be composed to form another service, providing
a flexible, rapid and low cost way of creating new services.

— Reusability - being a modular unit of software, services generally can be
reused, reducing the time and effort to build new applications.

Ubiquity - services can be accessed from anywhere at any time.

— Granularity - services presents higher granularity when compared with ob-
jects and components, facilitating the development of complex systems.

— Coupling - loose coupling is achieved in different levels:

— Just real dependencies among software elements are implemented as long
as each service has its own defined interface;

— Using registering and discovering mechanisms no coupling is made to the
service location;

— Platform and language coupling can be avoided using a platform inde-
pendent transport protocol;

— Synchronism due to the request-response invocation style can be atten-
uated using asynchronous message exchange.

468 V.A.S.M. de Souza and E. Cardozo

As mentioned in Sect.[I], our objective is to enable a quick and flexible develop-
ment of new network services in connection oriented networks by addressing in-
teroperability and high coupling issues both inside and outside an administrative
network domain. The mentioned SOC characteristics fullfill these requirements.
The most relevant consequence of employing SOC in this field is a complete
integration of the network and business layers. This integration was proposed
more than a decade ago in the scope of TMN (Telecommunication Management
Network). However, TMN never achieved such an integration due to the need
of gateways (mediation and adaptation functions in TMN) to connect software
entities at different layers.

3 The Service Oriented Control and Management
Architecture

3.1 Architecture Overview

In SOA every logical entity is seen as a service. Services are built from scratch or
from legacy software by adding appropriated wrappers. These existing services
can be classified into two levels, the business and the network levels. Services at
the business level relate to the enterprise itself (e.g., subscription), while services
at the network level relate to the transport network (e.g., routing). As stated
before, there is a gap between services located into these two levels in terms of
software entities the services are based on. A common approach is to employ a
gateway software that converts the high level business decisions to the low level
network signaling. This is not a good solution as gateways are always bottlenecks
for interoperability, reliability and performance. Moreover, this approach ties
too hard the business and network layers, compromising service automatization,
customization and evolution.

In order to avoid gateways, we propose to enhance the network elements such
as routers and switches with a service interface. In our architecture, every net-
work element offers control and management functions through Web Services.
Since the network element already hosts a web server, extending this server to-
ward a Web Service engine is a minor step without significant impact to the
equipment final cost. In addition, to allow a smooth integration between the
business and network layers, the service interface of the network equipments
may eliminate the need of complex network protocols. In our case, the connec-
tion establishment protocol (usually RSVP-TE) is replaced by a much simpler
orchestration script. In this way we build a single service-based bus of communi-
cation, where one central orchestrated service is responsible for receiving client
requests and coordinate all calls to the composed services. This architecture is
presented in Fig.[Il The orchestrated service exposes a Web Service interface to
the service client.

3.2 Service Management

Once installed, the network service provides the client the ability to manage
the service, for instance, to alter the topology of a Virtual Private Network.

A SOA for Deploying and Managing Network Services 469

— Subscription

(] Authentication Provisioning .
5 Billing Configuration ResglliJé;eDEL?é(iirrl]ng
| Accounting Monitoring

(7] Logging

(7]

ch Back-end Service Resource
I Services Management Management
=
. . Y

Client I

..... Request -»@[Orchestrated Servicej

o
>
Q
-] Network Network
< Management Services
(®) . .
S Conf]gura_non Route Computation
@ Notification Fault Management
Z Monitoring Connection Oriented
Logging Network

Fig. 1. Proposed architecture

The network service can be accessed via user interfaces (e.g., web interfaces) or
via programatic interfaces where the service is accessed by other applications.
This allows the composition of end-to-end service over multiple domains, e.g.,
VPN services, Voice-over-IP (VoIP) services or Virtual LAN (VLAN) services.
In this context, it is necessary to precisely and unambiguously describe the
collaborations between the client and the service provider. This is exactly what
the choreography mechanism proposes [3]. As such, the service interface provided
to the client will have their interaction contract described by a choreography
script as shown in Fig. 21

3.3 Service Creation

Service creation is a matter of composing the services with specific functions
available at the business and the network levels. The hardest way to create
an orchestrated network service is by manually editing an orchestration script.

470 V.A.S.M. de Souza and E. Cardozo

Client Side Server Side

Client
End User Request

:o{Orchestrated Servicej

<Ireply>
<Iprocess>

I
Choreography
(Business Protocol)

—_——— e e e]

Business Process

Fig. 2. Proposed client architecture

Another possibility is to employ a general modeling language such as UML
(Unified Modeling Language) to specify the interactions among the composed
service, using, for instance, an UML activity diagrams [4]. For this, it is necessary
to specify a new UML profile in order to represent the particular domain of
interest. It is also necessary to use model transformations to translate the UML
model to the target orchestration language.

The most convenient way to create services is to use a Service Creation En-
vironment (SCE), a software designed specially to this task [BL[6]. SCEs employ
dedicated graphical interfaces with terms, icons, and diagrams known to the net-
work engineer. The output of the SCE is exactly the orchestration script ready
to execute in an orchestration engine. In any of the presented possibilities, ser-
vice composition leads to a reduction in the service development time, a major
issue in today’s dynamic business environments.

3.4 Service Deployment

Using orchestration, the service deployment consists simply in the installation
of the script in the orchestration engine. This can be performed via programatic
interfaces (e.g., invoked by the SCE) or manually, via a graphical user interface
provided by the orchestration engine.

A SOA for Deploying and Managing Network Services 471

4 Implementation Description

The architecture proposed in the Sect. Bl is general enough to deploy network
services of arbitrary complexity. As a case study, we have developed two optical
network services based on the proposed architecture: an Optical Connection
Service (OCS) and a Fault Management Service (FMS).

As in any connection oriented network, in optical networks it is necessary to
establish a connection before the traffic can be sent over the network. In optical
networks, connections are lightpaths that may transverse a number of optical
switches. The objective of the Optical Connection Service is to enable network
clients to create, manage and destroy lightpaths. The Fault Management Service
is aimed at restoring failed connections by setting up protection lightpaths.

Each optical switch in the domain will expose a cross connection service,
enabling the composition engine to set up the connections across the domain.
As the time required to setup a cross connection inside an optical switch is
high (order of ms) it is expected that the Web Service does not introduce a
considerable overhead in the connection establishment time.

All other necessary services to provide the connection service could be in-
stalled anywhere in the network, even on a third party domain (e.g., the billing
service could be provided by a credit card operator).

4.1 Composed Services

We identified the following composed services necessary to implement the Optical
Connection Service and the Fault Management Service:

— Optical Switch Service (OSS): a service exposed by the optical switch used
to cross connect ports (fibers), wavelengths or wavebands.

— Resource Management Service (RMS): a service responsible for storing data
about installed lightpaths, available resources, and Service Level Agreements
(SLAs). It also stores protection information associated to a lightpath.

— Routing Service (RS): a service responsible for computing a route inside the
optical network, given an ingress node, an egress node, and the available re-
sources on the network. It is also responsible for finding a disjoint route for
protection paths. The service must run a Routing and Wavelength Assign-
ment (RWA) algorithm over a topology discovered with the aid of a routing
protocol such as Open Shortest Path First - Traffic Engineering (OSPF-TE).

— Authentication Service (AS): a service responsible for authenticating the
network users.

— Accounting Service (AcS): a service responsible for keeping track of the re-
sources effectively used by a client for accounting and billing purposes.

— Logging Service (LS): a service respounsible for logging errors and any other
relevant information.

4.2 Implementation Details

In our system, the OSS, RMS, RS, AS, and LS composed services as previously
described were implemented from scratch. In a service provider environment,

472 V.A.S.M. de Souza and E. Cardozo

most of the composed services already exist, although not as Web Services. To
expose an existing service as a Web Service, the developer can take advantage of
many existing software tools. For instance, some EJB platforms generate Web
Service interface for existing enterprise beans (components).

We chose the Business Process Execution Language for Web Services (BPEL)
[7], as it is the most mature standard language for orchestration and choreog-
raphy (through the use of BPEL’s Ezxecutable Processes and Business Protocols,
respectively). As orchestration engine we chose ActiveBPEL [8] because it is
open source and implements all the BPEL 1.1 specification including the full
complement of BPEL activities.

Using the compensation mechanism provided by the BPEL language we are
able to support rollback in connection establishment. This mechanism defines
how individual or composite activities within a process are to be compensated
in cases where exceptions occur during service invocations. When an optical
switch in the connection path, for any reason, cannot install the cross connec-
tion as required, the previous switches that have already set their internal cross
connections need to undo the action previously taken. The orchestration en-
gine is in charge of coordinating the compensation actions that must be taken
(connection release in this case).

All the topology information about the optical network is stored in a database.
We have implemented a web interface where the network administrator can set
the physical network topology, including nodes, fibers, wavelengths per fiber,
cost of fiber, switching capacity, among other informations. This web interface
is shown in Fig. Bl In a real optical network this information could be discovered
using a routing algorithm such as OSPF-TE, but this is not relevant for the
evaluation of the connection and fault management services.

The RMS is in charge of keeping this database up-to-date. Before any re-
sources can be effectively used the RMS must be notified. This is necessary in
order to keep the network state up-to-date. The RS is capable of finding a route
inside the network, running a Shortest Path First (SFP) algorithm. It chooses
the path with lower cost, where the cost can be any parameter the network ad-
ministrator defines. After that, it runs a RWA based on the first-fit approach.
The RS is also capable of finding a disjoint lightpath for protection purposes.
Both RMS and RS were implemented in Java, using Axis Java as SOAP engine
and Apache Tomcat as web container.

The AS receives an username and password and verifies if this pair is valid.
The LS stores any informations passed to it in a file, with the time that event
occurred. In our case we are logging system exceptions and failure informations
for statistical purposes. These services are also implemented in Java.

The optical network element was emulated using a modified Linux kernel.
This kernel is Multiprotocol Label Switching (MPLS) capable and we used an
MPLS label table entry to emulate an optical cross connection. Wavelengths
are emulated using MPLS labels. We could use a range of labels to emulate a
waveband switching and a whole network interface to emulate a fiber switching.
For fiber switching emulation, using a packet filter (as provided by iptables) it

A SOA for Deploying and Managing Network Services 473

File Edit Wiew Go Bookmarks Tools Help

&

Network Editor

uUNICAMP
Management Fiber Editor
Mode Managerment Fiber Cost [—

Link Management
Lightpath Management No of Wavelenghts |1s

Left Interface |1o.10.3.21:0 |
Right Interface [ToToE20 =

Store | Update | Delete |

Fiber List

Click to edit, delete or
add a fiber

[1 I+

I Done

| RER I

Fig. 3. Web interface of the Network Editor

is possible to redirect a packet arriving at a given network interface to another
interface, no matter the packet contents. This is summarized in Fig. [l

In our emulated scenario the Optical Switch Service must set the MPLS label
table at the Linux kernel via system calls. As such, this service must be capable
of performing low level actions at the kernel. In a real scenario, this service must
run in the optical switch’s internal processor (or in an adjunct processor such
as a desktop). As a result, the service must be efficient and work with limited
resources. Due to these reasons we decided to code this service in C++, as it is
an efficient and compact object oriented programming language that still enables
low level interactions.

Apache HTTP server and Axis C++ were used to develop this service. We
decided to use a document literal wrapped style for all SOAP (Simple Object
Access Protocol) bindings, as SOAP encoding is being not recommended for
interoperability reasons. SOAP messages using document literal wrapped can
be totally validated, as the body part does not contain any type encoding info
and the message must be compliant with an agreed XML Schema [9,[10]. More-
over, the method name is present in the SOAP message, what simplifies the
dispatching of the message at the server side to the right method implementa-
tion. Indications that the industry is abandoning SOAP encoding can be seen
from its omission from the WS-I Basic Profile [I1].

Using all these composed services the OCS is capable of establishing a con-
nection inside the network. The interaction with the optical switches is accom-
plished concurrently, i.e., all the switches in the lightpath are cross connected
almost at the same time. This can produce a good performance improvement

474 V.A.S.M. de Souza and E. Cardozo

Q WSDL Interface

Optical Switch Service

MPLS Kernel Module

MPLS Label Table
eth 1 = fiber 1 eth 1 = fiber 1
eth 2 = fiber 2 labell —> label2 eth 2 = fiber 2
label3 —> label4
label5 —> label6

eth n = fiber n eth m = fiber m

label = wavelenght

Fig. 4. Emulated optical switch

when compared to signaling protocols where the cross connection are performed
sequentially.

When any link failure occurs or is cleared in the network the FMS must be
notified. Currently we have implemented the 1:1 and 1:n protection levels. On a
failure the FMS acts on the ingress node, firstly dropping the failed connection
and then adding the protection connection. The procedure is analogous when a
fault is cleared. The FMS only acts on the ingress node because the rest of the
lightpath is already set up.

Finally, all the traffic between the network client and the orchestration engine
is transmitted over a secure channel, using Secure Socket Layer (SSL). This aims
to protect user’s authentication and exchanged data.

4.3 Tests and Evaluation

To test the implemented system we developed a command line client program
to interact with the orchestrated service. The language used to code the client
software is not relevant, since the SOAP messages exchanged with the service
are XML Schema compliant. In our case we used Java language and Axis Java
as SOAP engine. The following tests were performed to evaluate the OCS and
FMS:

— Lightpath creation;
Lightpath dropping;
Fault restoration;
— Clear fault event.

In order to evaluate the performance impact of SOA in network services we
focused on response times. As response time we have considered the time between
a request message being sent and the response message arrival in client’s machine.
Further, in these tests we have not emulated the delay to set the cross connection

A SOA for Deploying and Managing Network Services 475

inside the optical elements and, as the cross connections are set concurrently,
there was no significant difference when varying the number of nodes in the
lightpath. The results of 100 measurements are shown in Table [I1

Table 1. Response time

Test Response Time (ms) Standard Deviation (ms)
Lightpath creation 122 13
Lightpath dropping 101 6
Fault restoration 125 5
Clear Fault 136 8

As optical connections generally have long duration the response time for
lightpath creation is acceptable. It is important to remember that it includes
the time of all processing needed to establish the connection, even those related
to the business layer (e.g., logging). Depending on the kind of application, no-
tably phone connections, the restoration response time can be very restrictive.
The response time of the FMS for these kind of applications can be considered
inadequate if compared to restoration times performed at Layer-2 (such as on
Synchronous Optical Networks - SONET). The performance obtained by the
FMS is adequate for applications with less stringent recovering requirements
such as web browsing and video on demand.

The lightpath dropping and clear fault times are not important issues except
in the case where the network is overloaded (all possible lightpaths are installed)
and there is need for new connections. Even in these cases, the times obtained
are very satisfactory.

The objective of our architecture is to provide quick and flexible development
of new network services. With the aid of specialized tools and appropriated
languages we consider we achieved our objective. The solutions are simple and
robust, and the implementation validates completely the proposed architecture.

5 Related Work

An important related work is being developed under the Canarie [I2] User Con-
trolled LightPath (UCLP) Research Program [13], implemented and tested in the
Canadian research network CA*Net4. UCLP allows end-users, either people or
software applications, to treat network resources as software objects, provisioning
and reconfiguring them within a single domain or across multiple, independently
managed domains. This research explores new features and enhancements to the
current implementation of UCLP through the use of Web Services workflow
and orchestration to create “Articulated Private Networks”. The main design
features of this architecture are [14]:

— All network software, hardware, lightpaths and cross connects are exposed
as Web Services;

476 V.A.S.M. de Souza and E. Cardozo

— Web Services workflow are employed to build a universal control plane across
instruments, lightpaths, cross connects, networks and software systems.

Different from UCLP approach, we have not allowed the client interact di-
rectly with the network elements inside a domain for security reasons. In our
architecture a contractual interface for each administrative domain is exposed in
order to provide services for the client, creating a layer over the services offered
by the domain. This is more likely to happen, as network providers have serious
restrictions in opening their networks for full signaling or management of net-
work elements. Furthermore, using the recurrent service construction provided
by SOA we can provide end-to-end services in a very structured way.

The work presented in [I5] proposes Web Services as an embedded technology
for home appliances. The work argues that this is not an unrealistic assumption
as the price and capacity of embedded processors are becoming reasonable for
this application. This current work proposes the use of Web Services inside
network devices, based on the same arguments.

Similarly to the proposals presented in references [13] and [16] our architecture
give the customer the ability to manage a set of service parameters considering
customers’ specific needs. Moreover, reference [I6] gives the customers the abil-
ity to build dynamically their application using a service trader. This could
improve the level of automation of our architecture and we are now considering
a similar approach, but employing UDDI (Universal Description, Discovery and
Integration) instead.

6 Closing Remarks

This paper proposes a service oriented architecture for deployment and manage-
ment of services in connection oriented networks. This architecture brings to the
network service provider a higher level of automation, integration and flexibility
in the design, deployment, and management of network services. These activi-
ties are performed by orchestration scripts executing in standard orchestration
engines. Two implementation instances of this architecture in the field of opti-
cal networks were developed in order to evaluate the feasibility of the proposed
architecture.

One advantage of using composition to build services over an heterogeneous
network is the elimination of interoperability bottlenecks. Instead of implement-
ing complex and sometimes poorly standardized protocols, network equipment
vendors can implement Web Service interfaces to control and manage their equip-
ments. By publishing this interface, network operators and third party software
vendors can control and manage network equipments by incorporating these
interfaces into composition scripts. Contrary of network protocols, the Web Ser-
vice interface need not to be fully standardized (they need only to expose similar
functionalities).

As a future work we are considering the incorporation of policies into the
orchestrated service in order to adapt the service use and management according
to user privileges and profiles.

A SOA for Deploying and Managing Network Services 477

Finally, we believe that Web Services is a practical way to integrate different
network domains. Network operators do not allow network signaling to cross
their network boundaries due to stability and security reasons. The offering of
inter-domain services via Web Services composition is more feasible and simpler
as network providers have full control over the information exchanged in the
inter-domain borders.

References

[1]
2]

3]

[10]
[11]

[12]
[13]

[14]

[15]

[16]

Mike P. Papazoglou and Dimitris Georgakopoulos. Service-oriented computing:
Introduction. Communications of the ACM, 46(10):24-28, October 2003.
Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weer-
awarana. The next step in web services. Communications of the ACM, 46(10):29—
34, 2003.

World Wide Web Consortium (W3C). Web Services Choreography Description
Language Version 1.0, December 2004. Working Draft.

Keith Mantell. From UML to BPEL. http://www-128.ibm.com/developerworks/
webservices/library /ws-uml2bpel/, September 2003.

ActiveWebflow Professional. http://www.active-endpoints.com/.

Oracle JDeveloper 10g. http://www.oracle.com/.

BEA Systems, International Business Machines Corporation, Microsoft Corpora-
tion, SAP AG, Siebel Systems. Business Process Ezecution Language for Web
Services Version 1.1, May 2003.

ActiveBPEL. http://www.activebpel.org/.

Russell Butek. Which style of WSDL should I use? http://www-128.ibm.com/
developerworks/webservices/library /ws-whichwsdl/index.html, May 2005.

Tim Ewald. The Argument Against SOAP Encoding. http://msdn.microsoft.
com/library /default.asp?url=/library/en-us/dnsoap /html/argsoape.asp, October
2002.

Web Services Interoperability Organization. Basic Profile Version 1.1, August
2004. http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

Canarie Inc. http://www.canarie.ca.

Bill St. Arnaud, Andrew Bjerring, Omar cherkaoui, Raouf Boutaba, Martin Potts,
and Wade Hong. Web Services Architecture for User Control and Management of
Optical Internet Networks. Proceedings of the IEEE, 92(9):1490-1500, September
2004.

Bill St. Arnaud. Web Services Workflow for Connecting Research Instruments and
Sensors to Networks. http://www.canarie.ca/canet4/uclp/UCLP Roadmap.doc,
December 2004.

Masahide Nakamura, Hiroshi Igaki, Haruaki Tamada, and Ken ichi Matsumoto.
Implementing integrated services of networked home appliances using service ori-
ented architecture. In ICSOC ’04: Proceedings of the 2nd international conference
on Service oriented computing, pages 269-278, New York, NY, USA, 2004. ACM
Press.

Dirk Thissen. Flexible Service Provision Considering Specific Customer Needs.
In Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing (EUROMICRO-PDP’02), pages 253-260. IEEE, 2002.

	Introduction
	Service Oriented Computing
	The Service Oriented Control and Management Architecture
	Architecture Overview
	Service Management
	Service Creation
	Service Deployment

	Implementation Description
	Composed Services
	Implementation Details
	Tests and Evaluation

	Related Work
	Closing Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

