Implicit Service Calls
in ActiveXML Through OWL-S

Salima Benbernou, Xiaojun He, and Mohand-Said Hacid

LIRIS,University Claude Bernard Lyon 1,
43 bld du 11 Novembre 1918, 69622 Villeurbanne-France
{sbenbern, x-he04, mshacid}@bat710.univ-lyonl.fr

Abstract. In this paper, we present a framework for implicit service
calls in data centric Peer to Peer Active XML language. Active XML is a
language devoted to the management of distributed data by embedding
Web service calls into XML document. The aim of implicit calls is to
allow dynamic data sources discovey through dynamic services discovery
and composition. Implicit service calls are based on the use of ontologies
for describing the domain and functionality of services to call and an
Active XML engine for calls evaluation. The evaluation process deals
mainly with dynamic service composition. It consists in matching OWL-
S descriptions contained in a query with service descriptions in a peer-to-
peer network. Such a network is structured in such a way that peers with
similar functionalities are grouped together and each peer makes itself
acquainted with matching relationships between its inputs/outputs and
those of other peers.

1 Introduction

Web services can be viewed as a programming paradigm that extracts and in-
tegrates data from heterogeneous information systems by providing interface
standards [7]. They can be described, published, located, invoked, and can even
operate with other services to form a new, composed service over a network.
When they are used to manage data on the Web, services bring new features :
(1) the discovery of Web services based on their functionality leads to the dis-
covery of data sources that contains expected data (i.e., retrieval of dynamic
data sources) ; (2) the dynamic composition of Web service allows to retrieve
dynamic data; (3) the invocation of web services on demand allows retrieval of
dynamic data.

Our work deals with the integration of the two first tasks into Active XML
framework which is a language for Web-scale data integration by embedding
calls to Web services into XML document [I]. Active XML allows retrieval of
dynamic data by including features in XML documents to indicate the location
of the service to be called, and to control three elements: the timing of the
service invocation , the lifespan of data and the extensional and intensional data
exchange. A service call which explicitly makes reference to a service location is
called explicit call.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 353-365} 2005.
© Springer-Verlag Berlin Heidelberg 2005

354 S. Benbernou, X. He, and M.-S. Hacid

In order to enable dynamic data source discovery and dynamic data retrieval
(i.e., when an update on data source occurs) by means of dynamic service com-
position in Active XML, we introduce implicit service calls. By resorting to
ontologies, we provide a way to specify service domain and service functionality
with Active XML documents.

The rest of the paper is organized as follows: Section 2 presents our motivation
through examples. Section 3 briefly describes Active XML. Section 4 presents our
framework for incorporating implicit service calls within Active XML documents.
Section 5 describes an Active XML architecture with implicit calls. We conclude
in Section 6.

2 Motivating Examples

1. Dynamic data sources discovery. Let us consider a scenario where we
want to make an inventory of books stored in city libraries. We assume
that each library has an Active XML peer with a service offering its own
book inventory. The implementation and the outputs of the services can be
different.

Now we want to make an inventory of the books stored in all the local
libraries of the ”GuangZhou” city. By means of explicit service calls, we
have to be aware of locations of all relevant services and then invoke an
explicit service call. Figure [Il shows an explicit call for book inventory. A
drawback with this method is that it is not resilient to changes. If Web
services locations change, then we have to manually encode the changes (by
modifying service calls).

With implicit service calls, it is sufficient to be aware of the service domain
(service category) of the data that we can offer (inputs of service) and of the
data that we expect to be returned (outputs of service). In our example, the
required service belongs to the Book domain, it has no data offered but a
list of books is expected as output. Figure [2] shows an implicit call. When
it is decided to activate this implicit service call drawn up by using these
descriptions, the evaluation of the required service location is launched and
terminates after a period of time. Then the user can decide which discovered
services he would like to invoke later. Finally, the chosen services are invoked.
As a result, we obtain the book inventories of the cities in spite of the
dynamism of the data sources. The other motivation of implicit service calls
is that we can invoke the relevant service without any knowledge regarding
its location.

2. Dynamic data retrieval. We want to build up a personal Portuguese-
Chinese dictionary. With explicit service call, we need to be aware of the
Portuguese-Chinese dictionary service location and invoke the service. In the
case a Portuguese-Chinese service does not exist, while two other dictionary
services — Portuguese-English and English-Chinese— exist and are locatable,
we will not expect an answer to the explicit call. However, with an implicit
service call by composing services through input and output descriptions,
the call will return an answer.

Implicit Service Calls in ActiveXML Through OWL-S 355

<?xml version="1.0" encoding="UTF-8" ?> <?xml version="1.0" encoding="UTF-8" ?>
- <Inventory> - <Inventory>
Inventory of the books of city libraries Inventory of the books of city libraries
- <city name="GuangZhou"> - <city name="GuangZhou">
- <sc serviceCat="hierachicalProfile.owl#book">
<sc>zhongshan.com/getBooks() </sc> <output param_data_type="Concepts.owl#booklist" />
<sc>GuangZhou.com/Books()</sc> </sc>
</city> </city>
</Inventory> </Inventory>
Fig. 1. Explicit call Fig. 2. Implicit call

Instead of describing how to obtain the data, an implicit service call de-
scribes the domain, the inputs and outputs of a required service based on
ontologies (here we use OWL-S). In our example, the required services in the
translator domain have a Portuguese word as input and a Chinese word as
output. The evaluation process of the implicit call is launched in the same
way as in the previous example.

3 Background

Active XML is a declarative language for distributed information management
and an infrastructure to support the language in a peer-to-peer framework. It
has two fundamental components: Active XML documents and Active XML

service [1L13L12].

ActiveXml document. Active XML documents are based on the simple idea
of embedding calls to Web services within XML documents. An XML syntax
is defined to denote service calls and the elements conforming to this syntax
are allowed to appear anywhere in an Active XML document. The presence
of these elements makes the document intensional, since these calls represent
some data that are not given explicitly, but intensionally, by providing means
to acquire the corresponding data when necessary. Active XML documents may
also be seen as dynamic since the same service called at different times may
give different answers if, for example, the external data source changed. So an
active XML document is capable of reflecting world changes, which means that
it has different semantics at different times. Figure[3is an example of an Active
XML document that represents databases of books. This document contains
some extensional information such as records of the publishers and one record
of a book The Economics of Technology and Content for Digital TV, and at the
same time some intensional information: a service call to get the books published
by the publisher described by Xpath.

Service call elements in ActiveXML. The Service Call(sc¢) element is defined
in the special namespace mentioned above and has a set of attributes and children
XML elements defining;:

— The Web service to call which is defined by serviceURL, serviceNameSpace,
methodName, and useWSDLDefinition.

356 S. Benbernou, X. He, and M.-S. Hacid

<?xml version="1.0" encoding="UTF-8" ?>
- <Inventory axml:docName="Inventory" xmins:axm|="http://www-
rocq.inria.fr/verso/AXML">
<publisher>Addison-Wesley</publisher>
<publisher>Morgan Kaufmann Publishers</publisher>
- <books>
- <book year="1999">
<title>The Economics of Technology and Content for Digital TV </title>
- <editor>
<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>
- <axml:sc frequency="every 3600000" methodName="GetBooksByPublisher"
mode="replace" serviceNameSpace="GetBooksByPublisher"
serviceURL="http://lirispbu.univ-
lyon1.fr:8080/axml/serviet/AxisServiet">
- <axml:params>
- <axml:param name="publisher">
<axml:xpath>../../publisher/text()</axml:xpath>
</axml:param>
</axml:params>
</axml:sc>
</books>
</Inventory>

Fig. 3. Active XML document: Inventory of books

— The attributes that provide information on how and when to invoke the
service call

the attributes that influence the behaviors imposed on the results,
parameters that are accepted by the web service.

frequency states when the Web service should be instantiated and the validity
of the returned results.

Frequency attribute has two modes: (1) immediate mode, means that service
calls have to be activated as soon as they expire (2) Lazy mode, means that a
service call will be activated only when its result is useful to the evaluation of a
query or when the instantiation of a service Call parameter, defined through an
XPath expression is necessary. The presence of lazy calls may cause dependencies
among call activations.

According to the expression of parameters, we distinguish two kinds of service
calls:(1) a concreteservice call is one whose parameters do not include XPath
expressions (2) a non-concrete service call is one whose parameters do include
at least one XPath expression.

Service Call Evaluation. The notion of task is introduced to track the eval-
uation of each particular service call. Since the service call is concrete or non
concrete, tasks can be concrete or non-concrete. There are two types of evalu-
ation for each invoked mode: (1) service call with immediate mode, where the
evaluation is done first by selecting the service calls and processing the selected
service call; (2) Service call with lazy mode, where the evaluation is performed

Implicit Service Calls in ActiveXML Through OWL-S 357

by first evaluating the dependencies between calls through a dependency graph
i.e. before instantiating XPath parameters, it is necessary to know which call is
affected by some updates in a node, and selecting the service that can be acti-
vated according to the attribute frequency and dependency graph, and finally
processing the selected service call by the algorithm for the non-concrete task.

4 TImplicit Calls in ActiveXML Documents

As we have seen previously, the service call defined in Active XML is explicit
since the service to call is indicated explicitly in the element azmli:sc by a set of
attributes that specify ”the service to call”. It requires a user to be aware of its
exact location. However, we expect to call a relevant service by its description
(service query), i.e. implicit service call, instead of its identification (location).
In order to realize an implicit service call, we have to know how to integrate the
automated service discovery and composition [9] [6] in Active XML. At first
glance, we describe how to add the semantic description in the service call and
then how to obtain the query based on these descriptions that are used for the

<?xml version="1.0" encoding="UTF-8"?>
<Inventory axml:docName="Inventory"
xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<publisher>Addison-Wesley</publisher>
<publisher>Morgan Kaufmann Publishers</publisher>
<books>
<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>
<axml:sc serviceCat=
"http://lirispbu.univ-lyonl.fr/services/hierarchicalProfile.owl#Book"
frequency="every 3600000" mode="replace" >
<axml :params>
<axml:param name="publisher"
param_ type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Input"
param data type=
"http://lirispbu.univ-lyonl.fr/services/Concepts.owl#publisher">
<axml:xpath> ../../publisher/text ()</axml:xpath>
</axml:param>
<axml:param name="booklist"
param_type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Output”
param data type=
"http://lirispbu.univ-lyonl.fr/services/Concepts.owl#booklist">
<axml:value />
</axml:param>
</axml:params>
</axml:sc>
</books>
</Inventory>

Fig. 4. Active XML document with implicit service call

358 S. Benbernou, X. He, and M.-S. Hacid

service discovery and composition. Then, we describe how to answer a query
by peer-to-peer composition in a network. Finally, we present how to evaluate
implicit service calls.

4.1 Implicit Calls and OWL-S Queries

Figure @ shows the syntax of an implicit service call which is different from the
explicit service call in two respects.

1. The implicit service call does not specify the attributes (serviceURL,
serviceNameSpace, methodName, signature, and use WSDL Definition) that
identify the service to be called, but a new attribute serviceCat allows to
specify the domain of a service. In our example, the domain of the query is
http://lirispbu.univ-lyonl.fr/services/hierarchicalProfil.owl#Book;

2. It adds two attributes param type and param data type to the param ele-
ment. Param type specifies the type (Inputs, Outputs) of a parameter.

Param data type describes the class the values of the parameter through
a concept belong to. In our example, we want to call a service that provides
a list of books based on the publisher’s name. The implicit service call is
defined as having two parameters:
(1) publisher being the input of the service whose value is of type
http://lirispbu.univ-lyonl.fr/services/Concepts.owl#publisher;
(2)booklist being the output of the service whose value is of type
http://lirispbu.univ-lyonl.fr/services/Concepts.owl#booklist.

4.2 Data Model for Implicit Service Calls
An implicit service call can be represented by a tuple < p, f, x1, ..., T, >,

— p : the peer that contains the expected service. It has to be evaluated by
Active XML. Initially, it has NULL as default value since we do not know
which service will be invoked.

— f : the domain of the expected service.

— Z1,...,Zy : the inputs and outputs annotated by concepts of the expected
service.

Based on the description of the implicit call, a query represented as an OWL-S
profile description [3L[4] is generated for the service discovery and composition.
The benefit of this representation is that the service discovery can be accom-
plished by performing matching between service profiles.

4.3 Peer-to-Peer Composition for Query Answering

Once the query is formalized with OWL-S profile, the discovery and composition
tasks can take place.

Implicit Service Calls in ActiveXML Through OWL-S 359

1. The choice of the peer-to-peer composition
There are two computing types for service discovery and composition: cen-
tralized computing [I0,T4,[41T] and distributed computing [852].

In the former case, a centralized registry exists; every Web service com-
ing on line advertises its existence and eventually its functionalities and
thereafter, every service requester has to contact the registry to discover
a particular service or to compose services and gather information about
them. Whereas such a structure is effective since it guarantees the discovery
of services it has registered, it suffers from problems such as performance
bottlenecks, single points of failure, and timely synchronization between the
providers and registries (i.e. by updating the changes of service availability
and capabilities) [].

Alternatively, distributed computing allows the registry to be converted
from its centralized nature to a distributed one. In the current Active XML
context, each peer in the network provides the other peers with its own data
as Web services using XQuery queries raised over the Active XML documents
in their repository. Hence, changes are frequent and numerous in the service
availability and functionalities in an Active XML peer. Furthermore, we
envision that the number of implicit service calls is enormous. As we have
seen previously, centralized computing is not suitable for such a situation,
while the distributed computing can resolve the availability, reliability and
scalability problems in this environment.

2. A composition network
In order to reduce the complexity of the peer-to-peer composition, we sug-
gest to compute it in a network, structured into two dimensions based on
the one proposed in [2]. In this network, each peer can provide some web
services dealing with particular domains. The peers that provide services for
the same domain are grouped together. Each peer is a member of at least
one domain. Each domain has both a master peer and a backup peer. The
master peer in each domain maintains two lists: (1) the list of master and
backup peers of other domains and (2) the list of all peers within the master
peer domain together with the services they provide as well as the input and
output parameters they accept and generate respectively. The backup peers
have a replica of these lists. Furthermore, each peer maintains its master,
backup peer and the predecessor-successor lists for its respective services. A
predecessor of a service means the outputs match the inputs of this service,
while a successor of a service has the inputs matching the outputs of this ser-
vice. So, discovery of peers that can participate in the composition through
these predecessor-successor relationships, starts from the peer(s) providing
the query’s outputs, up to those accepting the inputs (provided by the query)
required for the composition.
3. SearchService:The peer-to-peer composition structure

A peer-to-peer composition service component in ActiveXML system,
namely searchService, should be defined in order to achieve the service dis-
covery and composition task for implicit service call in the network described
previously. Its structure is based on WSPDS [5]. WSPDS (Web services

360

S. Benbernou, X. He, and M.-S. Hacid
AXML peer S2
AXML peer S1
query
XQuery
processor » v N
N red L/ L Nl AXML peer S3
,!.lpdz;te T - - \\.‘ «.:, SOAP
u:d?:ie 7 { | Communication bwrapper‘ ~ — —] SOAP
/2N engine =ty
5 consults "S- &‘ .
N D o\ | [Local query | SOAP
AXML engine service
AXML storage| ~Service T consults ~~3 .
definitions SOAP client

storage

service call service result
—_ —>

@ ‘ Peer = - ﬁ \\\\
Pmce<< DB)
Query DB

Master DB - Descriptions of servu:es
vtorage Tl

Fig. 5. Architecture for Active XML with implicit service calls

peer-to-peer discovery service) is a distributed discovery service implemented

as a cooperative service.

SearchService is composed by two engines: the communication engine and
the local query engine. Figure [l depicts the proposed structure for search-
Service:

(a) The communication engine: It provides the interfaces to the Active
XML evaluator, to the user and to the other peers. It is responsible for
the following tasks:

— Receiving service queries from evaluator, answering the queries by
local query (through the local query engine) and global query (via
the other peers) based on the query phase, merging the different
answers in order to allow the user to choose the services (particular
or composite) to be invoked, and finally delivering to the evaluator
the list of locations of chosen services;

— Receiving queries from the other peers in the peer-to-peer network,
resolving the queries by local query engine, and sending the response
to the caller as well as forwarding to the candidate peers the query
whose lifetime is not yet over (I'T'L > 0). The parameter TTL (Time
To Live) is used to restrict the dissemination of a query in the net-
work and to control the depth of the composition. For example, we
can suppose the value for TTL to be 7, and then the query can be
propagated in the network with only a depth of 7.

(b) The local query engine: It answers the query received by the commu-
nication engine to the local peer. It contains three modules: ServiceCat,

Implicit Service Calls in ActiveXML Through OWL-S 361

the Outputs and the Inputs which are respectively responsible of the

service domain, outputs matching , and inputs matching between the
OWL-S profile description of the query and those of existing services.

4. Composition algorithm used by searchService The Algorithm 1 de-

scribes the process of discovery and composition in searchService. When a

peer’s searchService receives the query from its evaluator, it forwards the

Algorithm 1 sketch-Composition Algorithm — searchService
Require: LQD — Location of Query in OWL-S profile Description
QP — Query Phase: toMaster, choice M aster, choice Peer, choiceComponent
TTL — Time To Live
Ensure: SLLD — Service (composite or simple) Location List with matching Degree
if Query comes from the evaluator, i.e. QP = toMaster then
Transmit this query with choiceMaster phase to its master and communicate the
result(SLLD) returned with the user
else
if QP = choiceMaster then
Transmit this query with choicePeer phase to the masters whose services are in
the same domain of the query
Fusion the results(SLLD) received and range the services in the results(SLLD)
based on their matching degrees
else
if QP = choicePeer then
if Jquery € QueryDB is similar to this query then
Return the results of the similar query as the responds
else
Transmit the query with choiceComponent phase to the member peers that
provides the services whose outputs match those of the query
Calculate the matching degree for each composition returned and add the
composition returned in SLLD
Save the query with the results(SLLD) obtained in its Data bases of query
end if
else
Reduce the TTL of the query
if the inputs of candidate service match those of the query then
Generate a composition that contains the service matched with its matching
degree and add it to the local composition list SLLD
else
if dpredecessors for the candidate service and the TTL <> 0 then
Transmit this query to its predecessors
Add the candidate service to the compositions in the list SLLD returned
by its predecessors
end if
end if
Fusion the local composition list with those returned by their predecessors
end if
end if
end if

362 S. Benbernou, X. He, and M.-S. Hacid

query to the master in its domain, communicates its master’s response with
the user and returns the list of compositions selected by a user to the eval-
uator. The master of the initiator peer determines the candidate domains
for the query and then relays the request to the master peers of these do-
mains. It orders the compositions by the matching degree and returns the
result to the initiator, when the master peers return the result. To respond to
the query, the masters then consult their proper Query DB to find whether
some of the existing queries match this query. If such queries exist, an an-
swer is sent. Otherwise, they search in their Peer DB to determine which
services in their domain provide all the expected outputs of the query and
transmit the query to the hosts of these candidate services. When these host
peers return the list of compositions, the master peers compute the match-
ing degree for each composition based on the output matching degree, the
input matching degree and the number of its components. Then the master
peers update their own Query DB and return the list of compositions. To
answer the query, the host determines whether the service requires inputs
that can be provided by the query inputs. If they match, the host adds the
service to the list of compositions. Otherwise, it relays this query to the peer
providing the predecessor of this service and waits for an answer from its
predecessor peer.

4.4 Evaluation of Implicit Service Calls

We have seen that in the case where an Active XML document contains the
service call in a lazy mode, the service call evaluation consists in three steps:
(1) evaluating a dependency graph for each non-concrete service call; (2) selecting
the service call that can be executed based on the frequency attribute and the
dependency graphs; and (3) processing the selected service.

However, for the implicit call, the evaluation of the service location is neces-
sary. Then the , in the evaluation process, the third step deals with the evaluation
of the evaluation of the service location and processing of the selected service.

Algorithm [l describes the processing of an implicit non-concrete task t. A
local process queryGenerator that takes the parameters annotated as inputs will
produce a query based on OWL-S profile description and will return the address
of the query. A local service searchService takes as parameters, the location of
the OWL-S query, the query phase (QP), the TTL and the service name as
inputs to achieve this task. Then, it returns the locations of services fulfilling
the query. When the evaluation of the service location is completed, the XPath
parameters that are not annotated as ”output” of the service call are evaluated.
Once the evaluation is done, each p; has the value of an Active XML forest
fi- Then the implicit non-concrete service call is unrolled into explicit concrete
calls. Each service candidate has to be called and takes as parameters each el-
ement in the cartesian product of the forest f. The processing of ¢ will end
when all these concrete tasks complete their execution. Similarly, the process-
ing of a concrete call can be adapted to accomplish the processing of implicit
concrete calls.

Implicit Service Calls in ActiveXML Through OWL-S 363

Algorithm 2 peer P, implicit non-concrete task t(d, Py, f,p1,p2; ..., Pn)
if Py = NULL then
LQD «—— queryGenerator(Py, f,p1,p2,...,pn) — Location of OWL-S Query De-
scription
QP «—— toMaster — Query Phase
TrL — 7
servieN «— NULL — service Name
SLL «—— call local service searchService(LQD, PQ,TTL, serviceN). — Services’
Location List
else
SLL «— (Py, f)
end if
evaluate the XPath parameters p1, p2, ..., pm — the parameters annotated as input.
for all p; € (p1,p2,...,pm) do
let f; be the value obtained for z; (an AXML forest)
end for
for all (Pf{,f{),..., (Pft/,ft') € LSL do
for all x = z1, 22, ..., xm € f1 X fo X ... X fr, doO
create tgc(t.root,Pf{,f{, (t.root,Pfé,fé, (,.,(Pft/,ft’,a:l,;rg, ey Tm).er)))
insert t, in W
end for
end for
suspend until all ¢, finish

5 Architecture

In this section, we propose a new architecture for Active XML in order to take
into account the implicit service call. Figure Bldepicts the internal architecture of
Active XML with implicit service call. We add two new modules to the original
structure:

1. searchService. It contains two components: the communication engine and
the local query engine. It is in charge the reception of the query from the
evaluator.

2. The storage. It maintains the components describing its own peer. Each
peer in the network contains two components in the storage:

(a) Description of services, is a registry of OWL-S descriptions of the services
provided by the peer. These service descriptions will be compared to the
service query by the local query engine.

(b) Process DB is a database maintaining the predecessor-successor rela-
tions dealing with the services provided by the peer. The directed graph
with input/output compatibility provided by Process DB can reduce the
computing complexity of the composition.

The master peers and backup peers contain three additional components
in the storage:

(a) Peer DB contains the peers providing the services of the community
presented by the master.

364 S. Benbernou, X. He, and M.-S. Hacid

(b) Master DB contains the master peers and backup peers of the other
domains. This database is necessary for the query propagation between
different domains.

(¢) Query DB maintains the query, together with its solution.

6 Conclusion

In this paper, we have presented the benefits of embedding implicit service calls
in Active XML and its realization by the discovery and composition of services.
The introduction of implicit service calls in Active XML leads to dynamic data
sources discovery by which we can obtain the expected data without knowl-
edge on the data location. To enable implicit service calls, we integrate some
techniques in the Active XML framework: (1) OWL-S is used to draw up the
query based on the annotation in the implicit service call, (2) A peer-to-peer
composition service is defined to be used in a structured network.

References

1. Omar Benjelloun. Active XML: A data centric perspective on Web services. PhD
thesis, Paris XI university, 2004.

2. Boanerges Aleman-Meza Budak Arpinar, Ruoyan Zhang and Angela Maduko.
Ontology-driven web services composition platform. e-Commerce Technology,
2004. CEC 2004. Proceedings. IEEE International Conference, July 2004.

3. The OWL Services Coalition. = Owl-s: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/, November 2004.

4. James Hendler Evren Sirin and Bijian Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in ICELS 2003, Angers, France, April 2003.

5. Ching-Chien Chen Farnoush Banaei-Kashani and Cyrus Shahabi. Wspds: Web
services peer-to-peer discovery service. International Symposium on Web Services
and Applications(ISWS’04), Nevada, June 2004.

6. Anupriya Ankolekar Katia Sycara, Massimo Paolucci and Naveen Srinivasan. Au-
tomated discovery, interaction and composition of semantic web services. Journal
of Web Semantics, 1(1), September 2003.

7. Stuart Madnick Mark Hansen and Michael Siege. Data integration using web
services. MIT Sloan Working Paper, May 2002.

8. Takuya Nishimura Massimo Paolucci, Katia Sycara and Naveen Srinivasan. Using
daml-s for p2p discovery. Proceedings of the International Conference on Web
Services, 2003.

9. Terry R. Payne Massimo Paolucci, Takahiro Kawamura and Katia P. Sycara. Se-
mantic matching of web services capabilities. in Proceedings of the First Interna-
tional Semantic Web Conference, 2002.

10. Marie desJardins Mithun Sheshagiri and Tim Finin. A planner for composing
services described in daml-s. AAMAS Workshop on Web Services and Agent-Based
Engineering, 2003.

11. Christophe Rey Mohand-Sad Hacid, Alain Leger and Farouk Toumani. Dynamic
discovery of e-service. the proceedings of the 18th French conference on advanced
databases. Paris, 2002.

12.

13.

14.

Implicit Service Calls in ActiveXML Through OWL-S 365

Omar Benjelloun Serge Abiteboul and Tova Milo. The active xml project:
an overview. ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-331.pdf,
2004.

Omar Benjelloun Serge Abiteboul and Tova Milo. Positive active xml. In Proc. of
ACM PODS, 2004.

Evren Sirin, Bijan Parsia, and James Hendler. Composition-driven filtering and
selection of semantic web services. In AAAI Spring Symposium on Semantic Web
Services, 2004.

	Introduction
	Motivating Examples
	Background
	Implicit Calls in ActiveXML Documents
	Implicit Calls and OWL-S Queries
	Data Model for Implicit Service Calls
	Peer-to-Peer Composition for Query Answering
	Evaluation of Implicit Service Calls

	Architecture
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

