

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 255 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DySOA: Making Service Systems Self-adaptive

Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, and Dieter Hammer

Department of Computing Science, University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands

{b.i.j.siljee, i.e.bosloper, j.a.g.nijhuis,
d.k.hammer}@rug.nl

Abstract. Service-centric systems exist in a very dynamic environment. This
requires these systems to adapt at runtime in order to keep fulfilling their QoS.
In order to create self-adaptive service systems, developers should not only
design the service architecture, but also need to design the self-adaptability
aspects in a structured way. A key aspect in creating these self-adaptive service
systems is modeling runtime variability properties. In this paper, we propose
DySOA (Dynamic Service-Oriented Architecture), an architecture that extends
service-centric applications to make them self-adaptive. DySOA allows
developers to explicitly model elements that deal with QoS evaluation and
variable composition configurations. Having the DySOA elements explicit
enables separation of concerns, making them adaptable at runtime and reusable
in next versions. We demonstrate the use of DySOA with an example.

1 Introduction

Building systems from services has been emerging as a software paradigm [1], [2].
Service-centric systems consist of multiple services, possibly from different service
providers, working together to perform some functionality. A service implemented by
combining the functionality provided by other services is a composite service [3], and
the way a composite service is structured and behaves is the service composition.

Service-centric computing provides new techniques that allow for greater runtime
flexibility. Services are located, bound, and executed at runtime using standard
protocols such as UDDI, WSDL, and SOAP [4]. Because services are loosely-coupled
and have an explicit interface, it is relatively easy to integrate third-party services, and
to substitute one service for another at runtime.

Although the techniques for runtime adapting service systems are available, it
currently happens seldom. The reason is that no standards exist for self-adaptation,
the process where the service system autonomously makes decisions on when and
what to change and autonomously enacts the changes. Because technologies for self-
adaptation still miss, the burden for adaptation would fall on service users or service
providers. But users just want to use the service system, without being bothered with
collecting and composing the right services to make up the system. And service
providers might provide service systems that have thousands of users, making manual
adaptation an impossible task. This results in service-centric systems that, once
bound, will always call the same services.

256 J. Siljee et al.

Having such “static” service systems would not provide any problems, if nothing
changes during the period that a user makes use of the service system. Unfortunately,
this is not the case. Almost every service system exists in a very dynamic
environment that makes it nearly impossible to keep delivering the quality of service
(QoS) that the user pays for. The QoS that the service system has to deliver is often
formalized in a Service Level Agreement (SLA), and not fulfilling these QoS
requirements may result in penalties, e.g. the provider has to pay a fine or will loose
customers. Examples of the dynamics that service systems are confronted with are:

• Unreliable third-party services: third-party services are not controlled by the
service system provider and can fail unexpectedly.

• User changes: a service composition may serve multiple users, with each a
different SLA and thus different QoS requirements. These QoS requirements
can change when the user’s context changes, for example because the user
moves or starts using the same service on a different device. An example is a
changing security requirement, caused by a user leaving the office building
and going out on the street. Data transfer should then be better encrypted and
limited to non-secure documents.

• Network irregularities: available network bandwidth and throughput rates
between distributed services vary over time, potentially causing services to
be unreachable.

The dynamic context of service systems requires them to adapt to context changes
in order to keep fulfilling the QoS requirements. Service systems should be self-
adaptive, because, as explained earlier, manual adaptations by users or service
providers are not a feasible solution. In order for service systems to be self-adaptive,
they must be able to self-detect when and what to change and make this change
autonomously. This ability requires, among other things, runtime evaluating if the
current QoS fulfills the QoS requirements, and knowing the runtime variability
options. In this paper, we focus on modeling the possible configurations (i.e. the
variability) in self-adaptive service systems.

1.1 Design of Self-adaptive Systems

A software architecture provides a global perspective on the software system in
question. Architecture-based design of large-scale software systems provides major
benefits [5]. Designing the architecture for a software system shifts the focus away
from implementation issues towards a more abstract level. This enables designers to
get a better understanding of the big picture, to reason about and analyze behavior,
and to communicate about the system with others.

Part of a service architecture is the service composition, which can be described
with languages like BPEL and UML. Many other Web Service standards are used to
describe other aspects of the system. Each standard allows developers to specify a
certain part of self-adaptive service systems, but no approach exists for developers to
design variability options of these systems. This void results in ad-hoc solutions at the
implementation level, which hinders the development, reuse and evolution of systems.

In this paper we present DySOA, a Dynamic Service-Oriented Architecture.
DySOA extends service applications to make them self-adaptive in order to guarantee

 DySOA: Making Service Systems Self-adaptive 257

the QoS, despite the dynamic context of service systems. DySOA structures the
elements that deal with self-adaptation and variability, making them easier for
developers to model and reason about. DySOA provides explicit components that deal
with QoS evaluation and composition variability. Having all major self-adaptation
elements first-class makes it easier to develop them, to runtime update them, and to
reuse them for other systems.

The remainder of this paper is structured as follows. We describe the DySOA
architecture in section 2. We show the use of DySOA with an example in Section 3.
Section 4 covers related work and Section 5 concludes the paper.

2 DySOA

DySOA stands for Dynamic Service-Oriented Architecture, and is an architectural
extension for service-based application systems. DySOA provides a framework for
monitoring the application system, evaluating acquired monitoring data against the
QoS requirements, and adapting the application at runtime.

The purpose of DySOA is to assist the service application system in maintaining its
QoS. At design time, an application developer designs a system that is targeted to
fulfill the requirements. However, some of the QoS requirements are only known at
runtime (e.g. negotiated in an SLA), and service systems live in dynamic
environments, of which the properties cannot always be foreseen at design time. In
order to keep delivering the QoS requirements, the application system should be able
to self-adapt when necessary.

Many different aspects need to be taken into consideration for the development of a
self-adaptive system. It is very difficult to address all concerns in one model, and this
one model would be hard to evolve. The complexity can be reduced by splitting the
process from monitoring to reconfiguration into several steps. The different concerns
are then addressed in different components and models within each step. Having
explicit, separate models for the different aspects allows better communication between
different stakeholders (e.g. service providers or service users) and independent evolution
of the aspects. Furthermore, in order to evolve at runtime, the specific models have to be
available at runtime. In the next sections we describe the architectural model of DySOA
and the relation with service-based applications.

2.1 The DySOA Adaptation Process

Figure 1 shows the activity diagram of the DySOA runtime adaptation process. First,
monitors collect data about the application context. From the collected monitoring
data the QoS is determined. Some QoS attributes are directly measurable (e.g.
response time), but the values of many QoS attributes cannot be directly monitored
and need to be inferred from other context information. The determined QoS is
compared with the QoS requirements. If the result of this evaluation indicates the QoS
is good enough, then monitoring continues. If the QoS is not good enough, a new
configuration is chosen that will satisfy the QoS requirements. Finally, the changes
are enacted in the application. Possible changes are substituting a bound service for an
alternative service or changing the structure and the flow of the service composition.

258 J. Siljee et al.

Fig. 1. Activity diagram of the DySOA monitoring and adaptation process

configuration

<< component >>

VariationModelManager

<< component >>

TransitionFacilitator<< component >>

SystemManipulator

<< component >>

Configurator

<< component >>

Verifier

evaluation

<< component >>

Evaluator

analysis

<< component >>

QoSCalculator

<< component >>

QoSEstimator

<< component >>

ContextEstimator

monitoring

<< component >>

Monitor

<< component >>

Collector

application

<< component >>

Application

DySOA

Fig. 2. Overview of the DySOA component architecture

2.2 Overview of the DySOA Architecture

Figure 2 shows an overview of the DySOA architecture. It consists of four component
packages: the Monitoring component, the Analysis component, the Evaluation
component, and the Configuration component. The Application component does not
belong to the DySOA architecture, but refers to the service-based application system
that DySOA monitors and configures. Next we describe the functionality of each
component and its subcomponents.

2.2.1 Monitoring
The Monitoring component deals with acquiring information about the running
application and its environment. The Collectors gather the data necessary to

 DySOA: Making Service Systems Self-adaptive 259

determine the current application QoS. A Collector can, for example, intercept and
inspect service messages, or monitor a system resource. The kind of data collected
depends on the application domain and the QoS requirements itself, but it typically
involves data about individual services in the application (e.g. response times, failure
rates, exceptions), the execution environment (e.g. network bandwidth, processor
load), and the context of the application users (e.g. user GPS coordinates).

Collectors are runtime created, deployed and removed by the Monitor, which does
not interfere or deal with monitoring data itself, but manages the Collectors based on
a list of collectors needed per QoS attribute. Upon application reconfiguration the
Monitor re-evaluates the list and removes or deploys Collectors where necessary. The
Collectors provide the monitoring data to the QoSCalculator.

2.2.2 Analysis
The QoSCalculator uses monitoring data to determine the current QoS of the running
application. The determination may be executed in two steps; this depends on whether
QoS attribute information can be monitored directly. We distinguish three cases:

1) The QoS can be directly monitored, and the QoSCalculator just sends the
monitoring data on to the Evaluator. For instance, response time is directly
measurable.

2) The monitoring data contains information on the application or user context,
and has to be combined with e.g. information on the current application
configuration to determine the current QoS. In this case the QoSCalculator
sends the monitoring data to the QoSEstimator for QoS determination. The
result is provided to the Evaluator.

3) Again, the monitoring data only contains information on the application or
user context, but of such a low level that first a better understanding of the
context is necessary before the QoSEstimator can be used. In this case the
QoSCalculator transforms the monitoring data with the ContextEstimator.
The returned context information is used by the QoSEstimator to determine
the QoS sent to the Evaluator. For example, the GPS-coordinates of the user
location first need to be translated to country and corresponding language.

The ContextEstimator determines the context by analyzing the monitoring data. A
context model is used to associate monitoring data with context situations. A context
model can be based on a table or ontology (e.g. OWL [6]), and may be designed by
experiments. In the example of the GPS-coordinates, the context model associates
them with a language.

The QoSEstimator determines the QoS of the application, based on the context
information or the monitoring data. For example, to determine the availability of the
entire application system, the down-times of the individual services making up the
application are monitored. Because the overall availability depends on the workflow
between several services (e.g. parallel or in series), to determine the overall
availability the monitoring data is combined with a representation of the dynamic
structure of the application.

The QoSEstimator may use a composition model, containing the current
configuration of the application and QoS metrics, to calculate the QoS from the
monitoring data. Another option is a number of formulas to calculate the QoS.
Distinguishing between ContextEstimator and QoSEstimator allows both to be

260 J. Siljee et al.

adapted separately: the former when the context interpretation has to be changed and
the latter when the translation to QoS has to be changed.

2.2.3 Evaluation
The Evaluator determines if the current QoS satisfies the application QoS
requirements. For this purpose, it uses the QoS information provided by the
QoSCalculator, and uses a model containing the QoS requirements. The Evaluator
compares the QoS information to the QoS requirements; if the current QoS does not
satisfy, a reconfiguration is needed. The Evaluator sends this evaluation, including a
description of how well each QoS requirement is fulfilled and (expected) reasons of
failure, to the Configurator.

2.2.4 Reconfiguration
The Configurator is responsible for determining new application configurations.
Configuring the application is only possible if the configuration options are known.
Furthermore, the system should be able to determine if a configuration is valid. Also,
the Configurator should be able to enact a new configuration in the application
system. Having these features, Dysoa can reconfigure the service system.

Configuration Variability
In DySOA, designers can model the runtime variability of the self-adaptive service
system in a variation point view; a view that can be used as a supplement to other
design views. Variation points have been recognized as elements that facilitate
systematic documentation and traceability of variability, assessment, and evolution
[7]. Thus, variation points are perfectly suited as central elements in managing
variability, which holds for runtime variability as well. The variation model behind
this view is available at runtime, and is used by the Configurator. Our variation point
view is largely based on the one presented in [8]. In this paper, we have altered some
aspects to tailor the variation point view to self-adaptive software.

Variation Model
A variation point is uniquely identified by its name, and contains a description of the
variability it provides. This description can be informal or formal, as long as the
software developers can describe and understand the rationale behind each variation
point. A variation point identifies a location where variation occurs, and is therefore
associated with one or more variants. The variants of a variation point are, for
example, several services that provide the same functionality but with different QoS
characteristics, or several composition fragments: sets of services organized in
different process flows (e.g. BPEL activities).

An intrinsic variation point constraint restricts the variant selection of one variation
point. An extrinsic variation point constraint restricts the selection of two or more
variants from different variation points. The selection of variant a for variation point
vp1 might, for instance, demand the selection of variant b of variation point vp2, or it
might prohibit the selection variant c of variation point vp3.

Part of the specification of a variant is the realization, which can be described as a
recipe with instructions for realizing the binding of the variant dynamically. The
current bindings of a variation point are its currently bound variants.

 DySOA: Making Service Systems Self-adaptive 261

vp1a vp1b vp1c

vp2a

vp2b

Constraint
dependency

forbids
selection

vp1 vp2

a b c ba

(a) (b)

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

Fig. 3. (a) Two variation points. (b) The VariationModel containing the set of possible
configurations of the associated variants. The VariationModel does not contain configuration
(vp2a, vp1c) because an extrinsic constraint forbids its selection.

Furthermore, service systems often have open variation points: variants can be
added to or removed from an existing variation point while the system is running. For
service compositions this means that at runtime newly discovered services can be
added to the composition.

The VariationModel of a set of variation points vps is the set of possible
configurations of the variants belonging to vps, together with the (possibly estimated)
QoS attribute values of the variants. A DySOA VariationModel only represents
configurations possible at runtime. Furthermore, if an intrinsic or extrinsic constraint
forbids a certain configuration, then that configuration is not part of the
VariationModel. For example, Figure 3 (a) shows two variation points: vp1 and vp2.
vp1 has three variants, vp1a, vp1b, and vp1c, and vp2 has two variants, vp2a and vp2b.
An extrinsic constraint forbids the selection of both vp1c and vp2a. Each variant has an
explicit realization and quality attributes. Figure 3 (b) shows the corresponding
VariationModel. Five possible configurations exist, as the selection of (vp2a,vp1c) is
forbidden by the extrinsic constraint.

The VariationModel is not static; new services can be automatically discovered at
runtime or inserted by the user or provider of the service system. Additionally, the
QoS characteristics of a variant are not static and should be updatable as well. New
QoS values can be determined by monitoring, or a service provider can publish a new
QoS specification of its services. The VariationModelManager manages all the
runtime variability options of the application. The VariationModelManager is
responsible for keeping the available variability options up-to-date, e.g. by using
service discovery techniques to update the available services (e.g. UDDI).

Configuration Verification
The Verifier checks the correctness of new configurations proposed by the Configurator.
Examples of checks include variability constraints and deadlock detection.

Configuration Realization
When a new configuration has been verified, the SystemManipulator deploys the new
configuration in the running system, e.g. by deploying a new orchestration in the BPEL
engine of the application system or by reconfiguring a service proxy. The

262 J. Siljee et al.

SystemManipulator makes sure that application state and transactions are managed safely
by using the TransitionFacilitator. This component can for instance make sure that no
transactions are running during configuration, by postponing the start of new transactions.
A different approach is to interrupt transactions, send the appropriate exceptions, and
execute rollback- or compensation-actions. The state of the running business process (e.g.
contained in variables) is copied to the new application state if necessary.

Configuration Selection
Now we are able to deploy new application configurations safely, the Configurator
should be able to choose a new configuration, based on the results of the Evaluator.
There are several strategies to deal with evaluation results. The Configurator could
optimize, by always looking for a better configuration, handle pro-actively: switching
the configuration when danger for QoS failure appears, or recover: only choose a new
configuration if the QoS fails. Also, the timing for dealing with insufficient QoS is
variable; instead of immediate action, it might be allowable to wait for a while to see
if the QoS failure is not temporary. Additionally, choosing a new configuration can be
based on a formal trade-off of quality attributes (e.g. linear programming), a random
choice (in case no quality characteristics of variants are available in the
VariationModel) or anything in between. For instance, if time is no issue, the
Configurator can test many different configurations before making a decision.

These aspects are specified in the Strategy, a data structure that explicitly
represents how to act on the Evaluation results. The Configurator bases the decision
process on the currently chosen Strategy.

To summarize: the Configurator uses information from the Evaluator, the Strategy,
and the VariationModel to determine a new configuration, and uses the Verifier to
verify the correctness of the new configuration.

3 Example

In this section we show how to use DySOA to make a service application self-
adaptive. The service application is a video-on-demand service, consisting of third-
party services. In order to provide the user with the best QoS for his video stream, the
service application needs to be self-adaptive.

The Streaming Video Service (SVS) offers different kinds of streaming video:
movies and television series. Users contact the SVS on the internet and select a movie
or series episode to watch. For the actual delivery of the video, the SVS uses services
from video content suppliers. Each content supplier offers a certain set of streaming
video, in several resolutions, and with specific quality characteristics. The SVS
discovers the available video suppliers at runtime using a registry.

The SVS automatically binds to a video supplier service that provides the required
video content. For the actual streaming, the SVS invokes a proxy service that handles
the network connection between the video supplier and the user. The proxy buffers
the video stream, in order to protect against short discontinuities and to provide the
capability to rebind to another supplier without the user noticing. See Figure 4 for an
overview of the streaming video system. Below we show how the components and
data structures of the DySOA architecture are instantiated.

 DySOA: Making Service Systems Self-adaptive 263

Streaming
Video

Service

Video
Supplier

4

Video
Supplier

1

Video
Supplier

2

Video
Supplier

3

Proxy
service

Fig. 4. Service composition of the SVS application

Qos Requirements
Because of space limitations, we do not specify DySOA for all QoS requirements that
can trigger adaptations, like performance or cost. Here, we concentrate on two
requirements:

• Req 1: continuous availability of the video stream. The video should not stop
unless the user explicitly turns it off.

• Req 2: best possible video quality for the user. This is related to the user’s
display resolution, bandwidth and available streams from video suppliers.

Figure 5 shows the requirements representation.

Monitoring
The quality attributes referred to in the requirements cannot be directly measured. In
order to be able to evaluate whether the system fulfills these two requirements,
DySOA inserts the following collectors:

Fig. 5. The QoS Requirements

<wsp:Policy>
 <wsp:All>
 <qos:Policy

serviceName=”VideoProxy”>
 <qos:QoS name=”Availability”>
 <qos:Value>

 <qos:Min>0.95</qos:Min>
 <qos:Pref>1</qos:Pref>
 </qos:Value>

 </qos:QoS>

 <qos:QoS name=”VideoQuality”>
 <qos:Value>
 <qos:Min>0.8</qos:Min>
 <qos:Pref>1</qos:Pre>
 </qos:Value>
 </qos:QoS>
 </qos:Policy>
 </wsp:All>
</wsp:Policy>

264 J. Siljee et al.

1. A collector monitoring the output bit rate of the proxy video stream sent to
the user.

2. A collector monitoring the number of dropped packets on the proxy-to-user
connection. From time to time, the collector sends a small burst of packets to
estimate the available bandwidth.

3. A collector at the proxy monitoring the user video resolution. The streaming
protocol defines that if the video is resized, the collector is notified.

Analysis
Req 1 specifies availability of the video stream at the user playback device. The
measured proxy bit rate does not directly define this video stream availability; we
need to relate measured data to the video stream availability at the playback device.
For this example, the ContextEstimator uses a context model based on the simple
heuristic that the bit rate at the playback device is equal to the bit rate at the proxy
output. The advantage of having this rule explicit is that it is possible to adapt this
heuristic when it turns out to be incorrect.

The ContextEstimator returns the bit rate to the QoSCalculator. The latter sends
this information, together with the estimated bandwidth and resolution, to the
QoSEstimator, which calculates the availability and video quality.

The QoSEstimator is implemented by several functions that relate the data coming
from the QoSCalculator with the QoS requirements on availability and video quality.
The availability is specified in terms of the Mean Time To Failure (MTTF) and the
Mean Time To Repair (MTTR) of the video stream at the user, see Table 1. The
MTTF is determined from the bit rate as follows:

Let B be the bit rate at the playback device. A failure Fi refers to the event that the
bit rate drops to 0, where Fi (B) refers to failures in B. Ri (Fi) is the repair time after Fi.

If n is the number of failures during time t, then:

∑
=

=
n

i
i BF

t
MTTF

1

)(

∑
=

=
n

i
i

ii

BF

FR
MTTR

1

)(

)(

The video quality is determined from the bit rate B, the available bandwidth A and

the horizontal resolution of the offered stream (offeredR) and of the playback

device userR , see Table 1.

Table 1. Table with the functions for estimating the QoS attributes

QoS Attribute Function
Availability

MTTRMTTF

MTTF

+

VideoQuality

A

AB

R

RR

user

useroffered −
−

−
−1

 DySOA: Making Service Systems Self-adaptive 265

The data flow in the Analysis is as follows; the QoSCalculator sends the collector
monitoring data to the ContextEstimator, which returns context information on the
playback device’s bit rate. The QoSCalculator sends the context information and
monitoring data to the QoSEstimator. After the QoSEstimator has determined the
current QoS for availability and video quality, the QoS values are sent back to the
QoSCalculator, who provides it to the Evaluator.

Evaluation
The Evaluator compares the determined QoS values from the QoSCalculator with the
QoS requirements. In our example, the Evaluator checks if the current Availability
value is higher than 0.95, and if the current VideoQuality is higher than 0.8. The
results of this evaluation specify how each QoS requirement performs, and this is sent
to the Configurator. In this example we do not include possible causes for the failure
in the message.

Configuration
The VariationModel contains two variation points; a sup variation point for choosing
between movie suppliers, and a res variation point for choosing the video resolution
(see Figure 6). The VariationModelManager initially creates the list of variants for
sup by discovering available services that fulfill the functional requirements (i.e.
provide the selected movie). Each variant has a realization that specifies how to
invoke the variant. A supplier variant is realized by binding to the video supplier, and
a resolution variant is realized by passing the right parameters during binding.

These variation points cannot be configured independently, as not every supplier
provides all resolutions. Choosing a supplier can therefore rule out the choice for a
certain resolution. The VariationModel also models these dependencies.

When a QoS requirement is violated, a new configuration is chosen. In this case
the Strategy is a recovery strategy that acts immediately if the required QoS is not
met. The Configurator asks the VariationModelManager to look up alternative
variants, and to update the VariationModel with the observed QoS properties of the

Variant

Variation pointvp

a

Realization
relationship

...
..
.

Variant
properties

legendsup

supplier
1

supplier
2

supplier
3

name: stream2
realization: http://stream2/

bitrate: 320
quality

...

stream1/
name:
realiza

bitrat
qual

res

resolution 1 resolution 2

name: large
realization:
 <res>640x480</res>

name: small
realization:
 <res>320x240</res>

Fig. 6. The SVS VariationModel; the sup variation point has discovered video suppliers as
variants. The resolution variation point has two variants.

266 J. Siljee et al.

failing variant. The Strategy is configured to select the variants that best match the
QoS requirements. The selected variants are bound as described by their realizations,
and the SystemManipulator is implemented by calling a management method on the
proxy to switch the variant.

In this example we have shown how DySOA is instantiated for a simple example.
Because all data structures and components that deal with the self-adaptation of
DySOA are explicit in the architecture, it is relatively easy to runtime adapt these
elements, and to reuse the design for new service applications.

4 Related Work

Most methods for developing runtime self-adaptive systems concentrate on a specific
application domain or only on the implementation mechanisms for runtime change.
This related work discussion is limited to the more general development approaches
at the architectural level.

Some research focuses on a specific part of a dynamic architecture. Yang [9] for
example proposes a modeling method for a dynamically extendable adaptation kernel
that monitors whether changes should be made. The “adaptation rules” are composed
of a condition, which determines when to change, and an action, which specifies how
and what to change. The Lasagne framework [10] models runtime variability with
“extension identifiers” and provides composition policies attached to a component to
change its (messaging) behavior. Tsai [11] presents a framework and tool to specify
constraints and audit these constraints at runtime. Service providers register their
services at the framework, which tests the service to verify the constraints. Services
that pass the tests are available to incorporate in service compositions. Tsai’s
approach enables quality assurance beforehand, but limits the amount of services that
can be used by requiring testing every service before it is published, as not all services
and all quality constraints can be tested.

Architecture description languages (ADLs) are used to formally describe a
software architecture [12], and several ADLs support dynamism with specific first-
class language elements. Dynamic Wright [13] allows defining a variation model by
having explicit definitions of variable components. A “configuror” enacts changes
and contains a rule block that specifies when to exchange certain components for
other components. Weaves [14] provides explicit elements called “instruments” to
collect context information. “Observers” are modeled to evaluate this information.
“Actors” support enacting change by translating high-level to low-level changes.

Software construction methodologies go beyond modeling and additionally define
how to implement dynamic software. Bapty [15] presents an overall design approach
called Model Integrated Computing (MIC) for the development of a domain-specific
dynamic system. The models of a dynamic system are defined in “multi-aspect
domain-specific modeling environments”. To create a resulting implementation, the
MIC defines a development approach for “system synthesis tools” to turn the created
models into executable artifacts, and describes how to create the “runtime execution
environment”.

The architecture of a dynamic system can systematically be evaluated. Brusilovsky
[16] presents a layered evaluation framework for dynamic systems, designed to

 DySOA: Making Service Systems Self-adaptive 267

determine what parts of the architecture should be adapted if the dynamic behavior
does not resemble the required dynamic behavior. The framework separates the
responsibilities in the architecture of a dynamic system in two layers. The “adaptation
decisions” layer focuses on the architecture for reconfiguration, and the “interaction
assessment” layer describes the part of the architecture that monitors environment
data and transforms it into information.

5 Conclusion

Designing self-adaptive service systems is a major undertaking and requires software
engineering modeling methods and tools. The dynamic context of service systems
requires them to adapt to context changes in order to keep fulfilling the QoS
requirements. Current standards and techniques for service system engineering
typically provide an implementation-level solution for a single aspect of the dynamic
behavior. DySOA combines, at the architecture level, the necessary components and
data structures for the entire process. This allows separation of concerns and enables
developers to manage the complexity of the self-adaptive behavior.

The DySOA architecture can be used to develop service systems that
autonomously and dynamically adapt to a changing context and changing user
requirements. We demonstrated how the runtime variability is modeled in the
architecture for a self-adaptive service application example. Currently we are working
on the implementation of DySOA.

Acknowledgements

This research has been sponsored by SeCSE (Service-Centric System Engineering)
under contract no. IST-511680.

References

 1. Microsoft, Service-Oriented Architecture: Implementation Challenges, http://msdn.
microsoft.com/library/en-us/dnmaj/html/aj2soaimpc.asp (2004)

 2. Schmelzer R., "Service-Oriented Process Foundation Report", ZTR-WS108, ZapThink
(2003)

 3. Alonso G., Casati F., Kuno H., Machiraju V., Web Services - Concepts, Architectures and
Applications, Springer Verlag (2004)

 4. Tsai W. T., Song W., Paul R., Cao Z., Huang H., "Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing", COMPSAC 2004,
Hong Kong (2004) 554-559

 5. Shaw M., Garlan D., Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, New Jersey (1996)

 6. W3C Recommendation, OWL Web Ontology Language Overview, Recommendation,
http://www.w3.org/TR/REC-owl-ref-20040210 (2004)

 7. Bosch J., Design & Use of Software Architectures - Adopting and Evolving a Product
Line Approach, Addison-Wesley, Boston (2000)

268 J. Siljee et al.

 8. Sinnema M., Deelstra S., Nijhuis J., Bosch J., "COVAMOF: A Framework for Modeling
Variability in Software Product Families", The Third Software Product Line Conference
(SPLC 2004), Boston, USA (2004)

 9. Yang Z., Cheng B., Stirewalt K., Sadjadis M., Sowell J., Mckinley P., "An Aspect-
Oriented Approach to Dynamic Adaptation", Proceedings of the Workshop on Self-
Healing Systems (WOSS'02), ACM SIGSOFT, Charleston, SC (2002)

10. Truyen E., Vanhaute B., Nørregaard Jørgensen B., Joosen W., Verbaeten P., "Dynamic
and selective combination of extensions in component-based applications", IEEE,
Toronto, Ontario, Canada (2001) 223-242

11. Tsai W. T., Song W., Paul R., Cao Z., Huang H., "Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing", Hong Kong (2004)
554-559

12. Allen R., Douence D., Garlan D., "Specifying and analyzing Dynamic Software
Architecture", Springer-Verlag (1998) 21-37

13. Magee J., Kramer J., "Dynamic Structure in Software Architectures", Fourth Symposium
on the Foundation of Software Engineering (FSE 4), ACM SIGSOFT (1996) 24-27

14. Gorlick M. M., Razouk R. R., "Using Weaves for Software Construction and Analysis",
13th International Conference on Software Engineering (ICSE 13) (1991) 23-34

15. Bapty T., Scoot J., Neema S., Sjtipanovits S., "Uniform Execution Environment for
Dynamic Reconfiguration", IEEE Conference and Workshop on Computer-Based
Systems, Nashville, Tenessee (1999)

16. Brusilovsky P., Karagiannidis C., Sampson D., "The benefits of layered evaluation of
adaptive applications and services", Workshop on Empirical Evaluation of Adaptive
Systems, Sonthofen, Germany (2001)

	Introduction
	Design of Self-adaptive Systems

	DySOA
	The DySOA Adaptation Process
	Overview of the DySOA Architecture

	Example
	Related Work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

