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Abstract. Service aggregation is one of the main issues in the emerg-
ing area of service-oriented computing. The aim of this paper is to con-
tribute to the long-term objective of lifting service aggregation from man-
ual hand-crafting to a semi-automated engineered process. We present
a methodology which, given a set of service contracts, tries to construct
an aggregation of such services. Service contracts include a description
of the service behaviour (expressed by a YAWL workflow), as well as an
(ontology-annotated) signature. The core aggregation process basically
performs a control-flow and an (ontology-aware) data-flow analysis of a
set of YAWL workflows to build the contract of an aggregated service.

1 Introduction

Service-oriented computing [18] is emerging as a new promising computing pa-
radigm that centres on the notion of service as the fundamental element for
developing software applications. In this scenario, two prominent issues involved
in the development of next generation distributed software applications can be
roughly synthesised as: (1) discovering available services that can be exploited to
build a needed application, and (2) suitably aggregating such services to achieve
the desired result. A typical example [16] of the need of aggregating services
is a client wishing to make all the arrangements necessary for a trip (flights,
hotel, rent-a-car, and so on). Such a client query may not be satisfied by a single
service, while it could be satisfied by composing several services. Complex Web
service interactions however require more than SOAP, WSDL and UDDI can
offer [7], and semi-automatic aggregation frameworks based on such standards
are not available yet.

The aim of this paper is to contribute to the long-term objective of lifting
service aggregation from manual hand-crafting to a semi-automated engineered
process. We present a methodology which, given a set of service contracts, tries
to construct an aggregation of such services. Service contracts include a descrip-
tion of the service behaviour (expressed by a YAWL [23] workflow), as well as
an (ontology-annotated) signature. The core aggregation process basically per-
forms a control-flow and an (ontology-aware) data-flow analysis of a set of YAWL
workflows to build the contract of an aggregated service. Technically, these anal-
yses are defined by first expanding the services’ workflows with dummy YAWL
flow constructs, and by exploiting ontology-matching mechanisms to perform
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a semantics-aware data-flow analysis. It is worth noting that the aggregation
process is parametric with respect to the type of semantic annotations and
the matching mechanism. Namely different ontology-matching mechanisms can
be plugged-in (e.g., [4, 5, 17]), including the “void” one for syntactic matching
(matching=identity) in absence of ontological information. The result of the ag-
gregation process is a YAWL workflow which describes the interplay among all
the services considered, namely all the control-flow and data-flow relationships
among them.

In this paper we will try to focus on the aggregation process, and directly
consider the problem of how to aggregate a given set of service contracts. We
will not describe here how service contracts can be generated from service im-
plementations. (A thorough analysis of how to transform BPEL [3] specifica-
tions into workflows can be found in [26].) We will not describe either how the
initial set of services is chosen. We may assume that it has been selected by
some matchmaking algorithm in response to some client query. For instance, the
composition-oriented matchmaking algorithm in [4] returns a candidate set of
services which may collectively satisfy a client query. It is worth observing that
the aggregation process is completely separated from the process of selecting the
initial set of services. For instance, the latter can be also performed by a user
browsing a (semantics-enabled) UDDI registry and selecting some services.

It is worth noting that the proposed aggregation process can accept both
black-box and glass-box queries to drive the aggregation. Black-box queries sim-
ply specify the sets of inputs and outputs that the aggregated service should
request and offer respectively. Glass-box queries specify instead a process be-
haviour (i.e., a workflow and not just inputs/outputs) and can be used to check
whether it can be aggregated together with a given set of services.

The description of the proposed aggregation process can by synthesised in
three main steps: (1) perform control-flow and data-flow analysis on the input
services to determine their aggregation, (2) generate the contract of the aggre-
gated service, (3) deploy the aggregated service. We will concentrate on steps
(1) and (2) in this paper, and it is worth stressing the importance of separating
the phase of contract generation from the deployment of the aggregated service,
thus allowing multiple deployments of the latter.

2 Aggregation Framework

2.1 Service Contracts

We consider services that are described by contracts [13], and we argue that con-
tracts should in general include different types of information: (a) Ontology-
annotated signatures, (b) Behaviour, and (c) Extra-functional proper-
ties. Following [16], we argue that WSDL signatures should be enriched with
ontological information (e.g., expressed with OWL [10] or WSDL-S [15]) to de-
scribe the semantics of services, necessary to automatise the process of overcom-
ing signature mismatches as well as service discovery and composition. Still, the
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information provided by ontology-annotated signatures is necessary but not suffi-
cient to ensure a correct inter-operation of services. Following [13], we argue that
contracts should also expose a (possibly partial) description of the interaction
protocols of services. Indeed, such information is necessary to ensure a correct
inter-operation of services, e.g., to verify absence of locks. We argue that YAWL
[23] (see below) is a good candidate to express service behaviour as it has a well-
defined formal semantics and it supports a number of workflow patterns. Finally,
we argue that service contracts should expose, besides annotated signatures and
behaviour, also so-called extra-functional properties, such as performance, reli-
ability, or security. (We will not however consider these properties in this work,
and leave their inclusion into the aggregation framework as future work.)

We intend to build an aggregation framework capable of translating the be-
haviour of a service described using existing process/workflow modelling
languages (e.g., BPEL, OWL-S [16], etc.) into equivalent descriptions expressed
through an abstract language with a well-defined formal semantics, and vice-
versa. An immediate advantage of using such an abstract language is the pos-
sibility of developing formal analyses and transformations, independently of the
different languages used by providers to describe the behaviour of their services.
We consider that YAWL [23] is a promising candidate to be used as an abstract
workflow language for describing service behaviour. YAWL is a new proposal of
a workflow/business processing system, which supports a concise and powerful
workflow language and handles complex data, transformations and Web service
integration. YAWL defines twenty most used workflow patterns gathered by a
thorough analysis of a number of languages supported by workflow management
systems. These workflow patterns are divided in six groups (basic control-flow,
advanced branching and synchronisation, structural, multiple instances, state-
based, and cancellation).1 YAWL extends Petri Nets by introducing some work-
flow patterns (for multiple instances, complex synchronisations, and cancella-
tion) that are not easy to express using (high-level) Petri Nets. Being built on
Petri Nets, YAWL is an easy to understand and to use formalism. With respect
to process algebras, YAWL features an intuitive (graphical) representation of ser-
vices through workflow patterns. Furthermore, as illustrated in [22], it is likely
that a simple workflow which is troublesome to model for instance in π-calculus
may be instead straightforwardly modelled with YAWL. A thorough comparison
of workflow modelling with Petri Nets vs. π-calculus may be found in [22]. With
respect to the other workflow languages (mainly proposed by industry), YAWL
relies on a well-defined formal semantics. Moreover, not being a commercial lan-
guage, YAWL supporting tools (editor, engine) are freely available.

2.2 Aggregation Phases

As mentioned in the Introduction, a prerequisite of our framework is the set of
services to be aggregated which may be obtained either by manual selection or as

1 Space limitations do not allow us to illustrate these patterns. A thorough description
of them may be found in [24].
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output of a service discovery framework. It is worth noting that our aggregation
approach copes both with black-box and glass-box queries. On the one hand, a
black-box query specified only in terms of offered inputs and requested outputs
is transformed into an equivalent service which is then added to the registry
of matched services. On the other hand, one may submit services as glass-box
queries. By doing so one may also check whether the corresponding service can
be aggregated with a given set of services.

The semi-automated aggregation framework we propose can be synthesised
by the following phases:

0. Service Translation. This preliminary phase deals with translating real-
world descriptions (e.g., BPEL + semantics, or OWL-S, etc.) of the services
to be aggregated into equivalent service contracts using YAWL as an ab-
stract workflow language for expressing behaviour, and OWL for example
for expressing the semantic information. One may note that such a transla-
tion may be done off-line and hence it is not a burden for the aggregation
process. (A thorough analysis of how to transform BPEL specifications into
workflow patterns can be found in [26].)

1. Core Aggregation. During this phase YAWL processes are expanded with
explicit data- and control-flow (dummy) constructs, also called Input/
Output Control/Data enabler processes (or ICs/IDs/OCs/ODs for short).
We then express the initial control-flow connections in terms of the newly
added ICs and OCs. Next, we use data-flow dependencies (i.e., operation
and message mapping among the involved parties) provided by an ontology-
aware matching algorithm (e.g., [4, 5, 17]) to derive a data-flow mapping. We
express such mapping by suitably linking IDs and ODs.

2. Contract Generation. Firstly, we perform a basic check to see whether the
aggregated service does not have processes with unsatisfied inputs. Should
this be the case, we adequately eliminate unlinked ODs and other redundant
dummies introduced by the previous phase, and we cancel redundant control-
flow constructs. The ontology-annotated signature and behaviour we obtain
form the service contract of the aggregated service. The generated contract
can be further analysed (e.g., lock analysis) and optimised.

3. Service Deployment. Finally, the aggregated service can be deployed as a
real-world Web service (i.e., described using OWL-S, or BPEL + semantics,
etc.). Clients will hence see the aggregation as another Web service that can
now be discovered and further aggregated with other services. This operation
is the inverse of the operation done during the Service Translation phase.

As already mentioned in the Introduction, we will describe phases (1) and (2)
in the following, after introducing some definitions.

2.3 Definitions

We shall use the term “service” to denote the YAWL notion of “workflow spec-
ification”, “process” to denote a YAWL “task” as well as “start” and “end” to
denote YAWL “input condition” and “output condition”, respectively.
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We consider a set or registry of service contracts to be aggregated, where
each contract corresponds to an original service implementation (e.g., described
with BPEL and OWL for semantics, etc.). A contract S consists of an ontology-
annotated signature (i.e., semantic information, Sem for short) and of a be-
haviour description (Beh).2

Sem specifies the set of processes (Procs) as well as the name (Sname) and
the type (Stype) of the service. Indeed we argue that services, processes as well
as parameters (i.e., messages) should be annotated with ontological information
describing their types. Such information can be used by discovery frameworks
to better match services. For example, considering ontologies for services, pro-
cesses and parameters, we may have for example a “stock quote” service type,
a “flight reservation” process type, or a “notebook computer” parameter type,
and so on. Procs consists of the m processes of S together with start and end,
which are two special dummy processes used to mark the entry end exit points,
respectively, of S. A process P contains the sets of input (I) and output (O)
parameters, its name (Pname) and type (Ptype). Similarly to services and pro-
cesses, a parameter exposes its name (Iname) and type (Itype). Note that the
matching concerns types — rather than names — of parameters, processes or ser-
vices3. Name matching should be employed in absence of ontology-annotations.
The start and end dummy processes are defined similarly to the other processes
P yet they do not have IOs and ontological values associated. They are named
“DummyStart of P” and “DummyEnd of P”, respectively.

Beh contains information about both the control-flow constructs used by pro-
cesses in Procs (PC), as well as information about the control-flow dependencies
among such processes (PD). PC associates one join and one split construct to
each process P . A join or split control construct may be one of the following:
AND, OR, XOR, or EMPTY. Intuitively, the join specifies “how many” processes
before P are to be terminated in order to execute P , while the split construct
specifies “how many” processes following P are to be executed. The EMPTY
join (split) is used when at most one process execution precedes (follows, respec-
tively) the execution of P . PD defines the control-flow of S by means of a set of
process pairs. A pair < P, Q > specifies that P must be executed before process
Q (i.e., Q may begin its execution provided P has finished its execution).

Consider the following example which will be used as a basis for presenting
the applicability of our methodology, and for enhancing the description of the
proposed approach. A youngster passionate about winter sports and computer
science, decides to publish on her homepage a Web service providing information
on the conditions of her favourite slope. Basically, she wishes that other winter

2 When necessary, indexes shall be used for disambiguation.
3 Roughly, service matching may restrict the set of services to be considered, while

process matching may help refining further the selection (e.g., matching a “com-
puter selling” process of an “e shop” service) to possibly aggregate sub-services
rather than whole services. Finally, parameter matching can provide the data-flow
information necessary to achieve the aggregation.



Towards Semi-automated Workflow-Based Aggregation of Web Services 219

WinterResort

ClimateSensor

WeatherMonitor

Report
WindState

Report
SnowState

Preliminary
Analysis

WaitFor
ResortDecision

Notify
BaseStation

ClearSlope&
StopCabin

ReopenSlope&
StartCabin

Basic
SlopeInfo

SendReportTo
BaseStation

sensorLocation&Warning

sensorLocation&Warning

dangerFlag clearFlag

danger

resortID

resortID

resortIDwindCondition

snowCondition

windState snowState

clearFlag
slopeClosedFlag

slopeOpenedFlag

resortReport

resortReport

windState snowState

start

end

P sj

control-flow

join
process

split

input

output

AND join
or

XOR split

XOR join
or

AND split

EMPTY join
or split

LEGEND

Fig. 1. Example registry with three services to be aggregated

sports enthusiasts like her may access her page in order to see whether the slope
is practicable and the cabin is working.

One may assume that she locates the ontologically-enriched WR4 service (see
Figure 15) from a (semantically anotated) UDDI registry. Next, she feeds this
service as a black-box query to a discovery framework (e.g., [9] or [5]). This may
lead to selecting the other two services in Figure 1.

It is important to note that the example is not supposed to present a software
masterpiece as we would like to underline the fact that different services written
by different persons with different programming styles and backgrounds may
present (aggregation) issues. It is likely that the selected services do not match
perfectly, or that the ensemble is not optimal, and so on. Redundancies (e.g.,
redundant outputs) may occur as well. The three services are as follows:

CS basically gathers data from sensors located on top of the mountain. Upon
invocation, it executes process NBS which outputs the sensor’s location and
the warning level for the slope it is monitoring sLW , as well as the snow’s
condition sS (e.g., indication of avalanche danger) and the wind’s condition wS
(e.g., strong wind leads to stopping the cabin). We may assume that CS runs
periodically (e.g., every hour).

WM (or BaseStation) centralises data gathered from various CSs. It firstly
performs a preliminary analysis (e.g., reasoning based on a history record over
the past X years) through the execution of PA. On the one hand it specifies
whether there is an avalanche danger by enabling dF or, on the other hand
whether the slope is safe (e.g., it may be (re)opened). In the latter case cF is
enabled. The AND split of PA indicates that both RWS and RSS are to be
executed after it. RWS makes its own prediction on the wind state based on the
rID input. Similarly, RSS sets the snow state based on its prediction. The AND
join construct of WRD states that WRD may be executed provided both RWS

4 Due to space limitations, we shall use abbreviations throughout the paper (e.g., WR
instead of WinterResort).

5 In addition to the representation of YAWL tasks (i.e., processes) we graphically
describe their parameters as well.
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and RSS finished execution. WRD is in charge of waiting for a report from a
WR service (i.e., the decision of the latter on whether to close or to (re)open
the slope).

WR is a service that manages access to a slope and cabin. From a workflow
point of view, WR behaves differently from WM in the way that it uses a XOR
split in the BSI process and a XOR join in the SRBS process. The former
indicates that either CSSC or RSSC will be activated for execution, while the
latter indicates that SRBS will be invoked after each execution of either CSSC
or RSSC. BSI inputs the danger flag produced by the WM and it decides
either to clear the slope and stop the cabin (by executing the CSSC process), or
to (re)open the slope and (re)start the cabin (by executing the RSSC process).
Finally, SRBS sends a report to the WM service with its decision.

2.4 Core Aggregation

During this phase, all processes (except start and end ones) are expanded with
explicit control- and data-flow dummies. Then, a control-flow analysis expresses
the initial flow dependencies in terms of the newly added dummies. Last but not
least, a data-flow analysis coordinates processes of (possibly) different services
by taking into account a given data-flow mapping. The three steps are detailed
hereafter.

Process Expansion

Let us consider the empty (aggregated) service A. For each process P of each
service S, we generate the following five dummy processes:

– P ∗ corresponding to process P “stripped off” its join and split control con-
structs, and augmented with AND join and split constructs,

– an Input Control enabler IC P which inherits the initial join of P ,
– an Output Control enabler OC P which inherits the initial split of P ,
– an Input Data enabler ID P which is in charge of gathering all inputs needed

for the execution of P (if P has at least one input), as well as
– an Output Data enabler OD P which “offers” all outputs of P to other

processes (if P has at least one output).

With the exception of P ∗, all such processes lack IOs and ontological values.
Their purpose is to explicitly separate the control- and data-flow logic of P .
From a control-flow point of view, IC P and ID P are linked as inputs of P ∗

while OC P and OD P are linked as outputs. All added dummies as well as the
corresponding dependencies have to be added to BehA.

Initial PA
Expanded PA

OD_PA

IC_PA OC_PA

ID_PA
PA PA*

sLW

dF cF

sLW

dF cF

Fig. 2. Expansion of PA



Towards Semi-automated Workflow-Based Aggregation of Web Services 221

Figure 2 describes the process expansion step applied to process PA of service
WM . As one may note, PA∗ employs AND join and split constructs as, on the
one hand, both IC PA and ID PA have to finish execution before executing
PA∗ and, on the other hand, both OC PA and OD PA are to be executed
after PA∗ terminates. From a data-flow point of view, the AND join of ID PA
indicates that all inputs of PA must be available in order to execute PA. Dually,
the AND split of OD PA specifies that after PA finishes its execution, all its
outputs will be available to all processes requesting at least one of them as input.

Once all processes have been expanded, two more processes are introduced.
They are IC A and OC A corresponding to the input and the output control
enabler dummies of A. IC A has an AND split in order to activate ICs of all
services to be aggregated. Dually, OC A has an AND join in order to wait for
OCs of all services to finish execution. Links from start A to IC A as well as
from OC A to end A are added to BehA.

Control-Flow Analysis

During this step, control-flow dependencies of each service S are specified in
terms of the newly added ICs and OCs, as well as IC A and OC A, and then
added to BehA. The result of applying this step on the WM service may be
seen in Figure 3.6

Control-flow dependencies of WM

RWS*

RSS*

OC

WRD*PA*

ODID

OC

OD

IC

ID

OC

OD

IC

ID

OCIC

ID

IC_A OC_AIC

Fig. 3. Control-flow analysis for WM

For example, the initial link between PA and RWS has been translated to a
link between OC PA and IC RWS. Moreover, one should note that start WM
and end WM are now connected to IC A and OC A respectively. That is,
IC A enables (from the control-flow point of view) IC PA for execution. Du-
ally, OC WRD is connected to OC A and hence (from the control-flow point of
view) its execution is to be interpreted as the termination of WM .

Data-Flow Analysis

In order to derive data-flow information linking processes of (possibly) different
services, one has to match requested inputs with offered outputs. Our flexible
methodology allows for an ontology-based matching algorithm (e.g., [17, 5]) to
be plugged-in. “An input i of process P matches an output o of process Q if
and only if Itypei is in an exact or subsumes relation with Otypeo”. Dually, “an
output o of process Q matches an input i of process P if and only if Otypeo is
in an exact or plug-in relation with Itypei”. One should note that the notion of
6 All enabler dummies shall be abbreviated in figures from now onwards (e.g., IC

instead of IC PA, and so on).
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Data-flow mapping for WM
Data-flow mapping for WR
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Fig. 4. Data-flow analysis for our example

“match” used in this paper is in line with the one defined in [17, 16]. We shall call
such a match a data-flow dependency and a set of them as data-flow mapping.

From a data-flow point of view, a process P must have all its inputs available
in order to be executable. In this paper we assume that such data-flow dependen-
cies are provided by the matching framework. A maximal such mapping can be
obtained by employing a one-to-one matching between all process parameters of
the services to be aggregated. One should note that the user should be allowed
to modify, cancel or add dependencies in the mapping. A data-flow mapping
can be expressed in terms of IDs and ODs as follows. If input x of process P
matches output(s) y of process(es) Q then we generate the following:

1. A dummy process P x7 with no IOs or ontological value. However, it is impor-
tant to note that such a dummy employs a XOR join and an EMPTY split.
This is due to the fact that values for x may be obtained from different ys, yet
only one is needed. Furthermore, a link from P x to ID P is added to BehA.

2. A link from OD Q to P x which is added to BehA for every matched y.

Figure 4 illustrates the data-flow mapping for our example. Due to space issues,
P x dummy names will be abbreviated to x in figures from now onwards. One
should note that the CS service is not depicted as its only process (NBS) does
not have inputs.

2.5 Contract Generation

During this phase, the algorithm employs an input-driven basic check and then
it cleans the aggregated service A of redundant constructs.

Basic Validation

We firstly assume that all services are “well defined” in the sense that each initial
process P has at least one incoming link (with the exception of “start”) and at
least one outgoing link (with the exception of “end”). This means that each IC
has at least one incoming link, and that each OC has at least one outgoing link.
At this point one may encounter two situations:
– All processes P have their inputs satisfied. In other words, every input x

of P has been matched with at least one output y of a process Q. This
7 For simplicity we assume here that all P x are unique.
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translates to the fact that the P x dummy process has at least one incoming
link. Should this be the case, we say that the aggregation is successful — in
the way that there are no unsatisfied data- (and control-) flow constraints.

– At least one process P is missing some inputs. In other words there exists an
input x of P which has not been matched to any output(s) y of process(es)
Q. This translates to the fact that the P x dummy process has no incoming
links. Should this be the case, we say that the aggregation has not succeeded
— in the way that there is at least one unsatisfied data-flow constraint. The
(additional) missing inputs must be provided by other services, hence either
a refined query can be launched or the needed services can be manually
added to the set of services to be aggregated.

We chose to consider as valid such a “closed” workflow (i.e., without unsatis-
fied inputs) in order to enforce a necessary yet not sufficient condition for the
execution of (all) processes. Given a valid service contract, one may use analy-
sis tools in order to verify (dead-)lock freedom for example. As YAWL is built
upon Petri Nets (PN), analysis tools for the latter can be exploited to check
properties of PN translations of the former. For example WofYAWL [25] is an
analysis tool for YAWL workflows. WofYAWL maps an input YAWL workflow
into a PN with inhibitor arcs, and then analyses semi-positive transitions in the
short-circuited net. If the net is bound, it performs a relaxed soundness check
in the regular net. Finally the results are mapped back into a YAWL workflow,
possibly annotating the output with warnings (e.g., in the case of unbounded
nets). Figure 5 describes the aggregation contract we have obtained so far for
our example.8 One should note that all ICs (e.g., IC PA and so on) have at
least one incoming link, as well as, all OCs (e.g., OC PA and so on) have at
least one outgoing link. Moreover, all process with the exception of OD CSSC
and OD RSSC have at least one incoming and one outgoing link. We can say
that the aggregation is successful as there are no unsatisfied data- (or control-)
flow constraints.

Eliminating Redundancies

As one may have noted, not all dummy constructs introduced during the Core
Aggregation phase are necessary. Given the aggregated service is valid, we
can (repeatedly) eliminate redundant items, that is, dummies and join/split
constructs. One obtains at the end of this step the final service contract of A.
We hereafter describe three elimination criteria.
Dummy Absorption. Assume a dummy (i.e., control or data process enabler,
or process added during the data-flow analysis) iD connected as input of an-
other process P such that the pair < joiniD, joinP > is one of the follow-
ing – {< EMPTY, EMPTY >, < EMPTY, α >, < α, α >} –, where α ∈
{AND, XOR, OR}. Then, we “absorb” iD into P which remains unchanged. If
< joiniD, joinP > is < α, EMPTY > then we absorb iD into P with the obser-
vation that P inherits the join of iD (i.e., joinP := joiniD). The scenario is dual

8 Due to its verbosity we chose not to represent dummies introduced during the Data-

Flow step – with the exception of wS and sS. Moreover, the full graphical form of
the workflow (i.e., including process parameters and so on) has been omitted.



224 A. Brogi and R. Popescu

 -- Aggregated service -- before optimisation
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Fig. 5. Service contract A (before eliminating redundancies)

for absorbing output dummies. Absorbing means eliminating iD and updating
BehA correspondingly.
Dummy Elimination. An OD P employing an EMPTY split construct and that
does not have at least one outgoing link to other join of an ID Q can be elimi-
nated together with its corresponding link (from P to OD P ) from BehA. One
should note that the initial AND split of OD P should be cancelled first by the
following criteria.
Join/Split Elimination. A joinP �= EMPTY has to be set to EMPTY provided P
has only one incoming link. The dual (i.e., the “reset” of splitP given P has at
most one outgoing link) is resolved in similar way.

-- Aggregated service -- after optimisation
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Fig. 6. Final service contract A
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Let us come back to our example. Figure 4 indicates that all dummies in-
troduced during the data-flow analysis are redundant, except for wS (input of
CSSC) and sS (input of RSSC). The redundant joins are cancelled first and
then the respective redundant processes are absorbed into IDs and ODs. More-
over, the elimination criteria allow us to cancel almost all dummies introduced
during Process Expansion with the exception of OD CSSC, OD RSSC, and
OC BSI. The former two are tackled by the dummy elimination criterion. The
final version of A is given in Figure 6.

3 Concluding Remarks

The aim of this paper is to contribute to the long-term objective of lifting service
aggregation from manual handcrafting to a semi-automated engineered process.
We have presented the kernel of a semi-automated workflow based aggregation
framework of Web services. It consists of a methodology which, given a set of
service contracts, tries to construct an aggregation of such services.

We have synthesised three main phases of the proposed aggregation process:
(1) Core Aggregation – perform control- and data-flow analysis on the input
services to determine their aggregation, (2) Contract Generation – generate the
contract of the aggregated service, (3) Service Deployment – deploy an imple-
mentation of the aggregated service. While we concentrated on steps (1) and
(2) in this paper, it is worth stressing the importance of separating the phase of
contract generation from the deployment of the aggregated service, which allows
multiple deployments of the latter.

The main features of our approach are: (a) It can be used to aggregate services
written with different description languages (e.g., BPEL + semantics, OWL-S),
(b) It is (semi-)automatic – both with respect to service translation and co-
ordination (core aggregation and contract generation), (c) It allows a seamless
integration with service discovery systems (third-party matchmaking frameworks
can be straightforwardly plugged in), (d) It supports both black- and glass-box
queries (i.e., behaviour-less and behavioural queries), (e) It features composi-
tional aggregation (e.g., the aggregation of A, B, and C can be computed by
first aggregating A and B and then aggregating the obtained service with C),
and finally (f) It supports multiple deployments of the aggregated service.

Regrettably, space limitations do not allowa thoroughdiscussion of relatedwork
(e.g., manual [3, 28], semiautomatic [9, 12] or fully automatic approaches [2, 11,
19, 20, 21, 27]). Surveys on Web service composition can be found in [1, 6, 8, 14].
In manual Web service composition the requester acts as the service composer as
well. She has to browse the registry, find the desired service operations and model
their interactions into a flow structure. Fully automatic composition of services is
very difficult to achieve as the requester has to specify all input requirements of
registered service operations that make the composite service. Furthermore, pro-
cessing the request is a very time consuming process. A significant number of fully
automatic approaches employ planning techniques. A downside of planning is that
both the goal and the status are difficult to represent. Another issue is that all ser-
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vices involved in the composition have to be known a priori. It is however worth
observing that, while some of the previously mentioned features ((a) – (f)) are con-
sidered in some existing approaches, our approach is the first — at the best of our
knowledge — that provides all of them in a single framework.

A key ingredient of our framework is the notion of service contract, which in-
cludes a description of the service’s behaviour (expressed by a YAWL [23] work-
flow), as well as an (ontology-annotated) signature.Contracts are the basis for link-
ing services throughdata-flowdependencies aswell as for overcoming signature and
behaviour mismatches. They also pave the way for aggregrating services written
in different languages and for multiple deployments of the aggregated service.

Further investigation will be devoted to extend the core aggregation process
in order to ensure stronger formal properties of computed aggregations, and to
account for the adaptation of signature and behavioural mismatches in contracts.
Future work will also be devoted to the development of the semi-automated
derivation of contracts from real service implementations (considering first BPEL
and OWL-S, and exploiting the techniques described in [26]), and of the service
deployment phase (again considering BPEL and OWL-S first).
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