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Abstract. Service-oriented modeling and analysis is a promising ap-
proach to manage context-aware cooperation among organizations be-
longing to the same value chain. Following this approach, a value chain
is modeled as a composition of services provided by different partners and
coordinated in a way that their interactions can be reorganized according
to changes in the environment. However, so far, most of the research work
in this area has been focused on the design of architectures handling ser-
vice discovery, compatibility and orchestration. Little attention has been
given to the specification and verification of context-aware composition
of services during the requirement engineering process. The goal of this
paper is to fill this gap through a methodological approach based on the
strict coupling between a social and a process model. The methodology
is discussed through a simple example.

1 Introduction

Industrial districts consist of a number of enterprises, often small-to-medium
(SME), that are physically close. These enterprises often collaborate through
short-term projects to deliver products and services. In such a setting, enter-
prises strive to exploit flexible forms of collaboration with their business part-
ners as a means to extend the boundaries of their planning activities, increase
performance through cooperation and reduce TCO (Total Cost of Ownership).
Industrial districts often include alliances, temporary or permanent, between two
or more legal entities that exist for the purpose of furthering business or social ob-
jectives without causing the participants to lose their autonomy. In general, this
cooperative environment is characterized by organizations that own heteroge-
neous information systems, with their own processes, procedures, data schemes,
internal roles and responsibilities.

As a consequence, industrial districts represent an ideal environment for the
implementation of a cooperative environment that supports the automation of
inter-organizational business processes through the logical composition of dis-
tributed services representing public views on organizations’ private workflows.
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In this context, ebXML is an example of a stable architectural solution that
provides a specification language and an architecture shifting the logic of com-
position from information to service exchange [14].

However, ebXML does not support inter-organizational business processes
that are context-aware in the sense that they are run-time customizable, i.e.,
they can readily adapt their structure according to feedbacks from the envi-
ronment. For example, a previous agreement cannot be re-negotiated during
the execution of a collaborative activity and a partner cannot be automatically
replaced when cooperative goals are not fulfilled. In order to overcome these
limitations, researchers and practitioners have focused much effort on imple-
menting service-oriented architectures supporting context-aware collaborations
among organizations [17,10]. In such settings, an inter-organizational process
is implemented through a composition of services supplied over multiple chan-
nels by different actors. In particular, a composition of services describes the
relationships among cooperating organizations according to a global, neutral
perspective, in terms of valid control and coordination mechanisms. Moreover, a
service composition is usually public, since it specifies the common rules defining
a valid interaction among distributed business processes.

Unfortunately, the fruits of this research on context-aware applications does
not have counterparts in methods, models and tools supporting the requirements
engineering process. Indeed, according to [3], the conceptual modeling and anal-
ysis of context-aware composition of services is in its early stage even if this is
the phase where the most and costliest errors are introduced to a design.

The goal of this work is to present a methodological framework that supports
the conceptual modeling and formal analysis of requirements for context-aware
service compositions through a social and a complementary process perspective.
The paper also explores how modelers can analyze different process alternatives
complying with the same social specification. Finally, our approach supports the
formal verification of critical properties of a service composition (e.g., termina-
tion, structural soundness and achievement of shared goals). This work repre-
sents therefore a first step toward the design of service compositions aligned with
different requirements policies.

In the remainder of the paper, we first motivate this work in terms of the
state of the art. Then in Section 3, we define a set of different requirements
policies adopted from the autonomic computing literature [9,13] that modelers
can adopt during the requirements analysis and process specification. Section 4
discusses the requirements analysis process supporting the implementation of a
composition of services. Finally, Section 5 discusses an example highlighting how
our model formalizes service compositions with respect to different requirements.

2 Related Work

Most of the current work on context-aware composition of services is focused
on service orchestration, discovery and semi-automatic management of com-
positions. For example, a theoretical model supporting service orchestration
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through colored Petri nets is proposed in [12]. In particular, this work pro-
poses a novel formal approach to the distribution of control responsibilities
among different actors.

Moreover, formal models of service compositions supporting e-service dis-
covery and composition are discussed in [1,18]. The work of Bultan et al. is
mainly focused on providing a model of compositions for detailed design. Under
this framework, individual services communicate through asynchronous messages
and each service maintains a queue for incoming messages. Moreover, a global
watcher keeps track of messages as they occur. However, this work pays little
attention to the problem of specifying and analyzing service compositions, even
though this is a key factor to improve collaboration among organizations. Notice
that these modeling techniques are particularly important within industrial dis-
tricts where the final output of a composition must comply with strategic goals
shared among different organizations. Moreover, the violation of goals requires
compensation actions aimed at leading the composition to a consistent state.

A promising starting point for a methodology supporting the specification of
context-aware composition of services is the adoption of a social model. Indeed,
this model facilitates goal refinement, the discovery of goal interactions, and the
identification of services that can contribute to their achievement. Moreover,
social models are consistent with coordination theory that constitutes the con-
ceptual background for modeling service compositions [11]. Requirements specifi-
cation through social models is discussed within the Tropos project, where the i*
model for early and late requirements analysis is discussed and formally defined.
The i* framework supports the modeling of social relationships among actors
and has been widely experimented within the context of Multi-Agent System
(MAS) development [3]. However, social specifications alone are inadequate for
modeling control and coordination mechanisms. In particular, they lack a formal
semantics to represent the standard and exceptional control flow for the actions
constituting a service composition. Accordingly, i* needs to be supplemented in
order to be adopted in our particular application domain.

3 Policies for Context-Aware Service Composition

In the following, we define a core set of policies that modelers should eval-
uate during the requirements engineering process associated with the specifi-
cation and verification of context-aware composition of services. This core set
involves a level of self error detection, i.e. controllability, that defines the strate-
gies to identify anomalous situations within a composition, and two levels of
self-management, flexibility and adaptability. Flexibility (also, self-repair) con-
cerns the management of problems repaired through the specification of ad-hoc
compensation flows, while adaptability (also, self-configuration) addresses coop-
eration scenario changes when the same problem occurs over time. It should be
noted that self-repair and self-composition are generally acknowledged as key
features of autonomic systems [13].



Modeling and Analyzing Context-Aware Composition of Services 201

Flexibility. Flexibility is referred to as the run-time management of service self-
repair intended to bring a composition in a consistent state at the lowest cost
and it is formalized according to three dimensions of analysis: automation level,
compensation classes and sparsity.

Automation level is concerned with the degree of human intervention in con-
ducting self-repair. We recognize three levels of intervention: automatic, manual
and semi-automatic. If the system can self-repair by itself in the presence of
anomalous events, the automation level is automatic, while if it only provides
monitoring capabilities the automation level is manual. Finally, if a system does
require some input to perform a compensation action, the automation level is
semi-automatic.

Compensation actions are distinguished into five classes that, as discussed in
[16], represent an exhaustive set of tasks that organizations may implement to
return a composition to a consistent state.

– Delay class calls for simply waiting a predefined time interval hoping that
the anomalous event is resolved; for example, missing information received
after waiting beyond the due date.

– Informative class calls for actions that communicate a particular anomalous
state of affair; for example a violation is notified to a business partner.

– Re-negotiatiation class involves either relaxation or tightening of goals and
constraints a result of process failures.

– Re-execution class involves the re-execution of one or multiple services, pos-
sibly starting the execution of the whole process.

– Re-transact class involves the re-execution of the entire composition with
other potential business partners. This kind of actions always involves the
failure of the current composition and, possibly, the replacement of one or
more process partners.

Sparsity formalizes where compensation actions take place with respect to
where the violation of goals occurs [2]. When the compensation is executed by the
business actor that detects the violation, the compensation is called centralized.
On the other hand, when the action is executed elsewhere it is called delegated.
A delegated compensation can be based on either a centralized or a delegated
decision. When the actor raising the anomalous event specifies the compensation
that its business partner should perform, the decision is centralized, otherwise
it is delegated. Moreover, a delegated compensation can be deterministic or not
depending on the knowledge of the identity of the business partners involved
in the composition. A typical example of non-determinism is the delegation of
a compensation action to any actor that plays a given role within the system.
Finally, a compensation is participative if it is performed by more than one ac-
tor. For example, re-negotiation is intrinsically participative since it requires to
establish a new agreement between two or more counterparts.

Controllability. During a service composition, anomalous events are detected
and communicated by control activities whose aim is to evaluate the fulfillment
of goals. Controllability concerns the level of visibility on the private business
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process that implements a service, or the localization of control activities. Notice
that, in our environment, control activities typically monitor quality of service
goals (for example, service lead-time, productivity and use of resources).

Controllability is defined through two dimensions of analysis: service view
and control policy. In service compositions such as the purchase of commodities
by an occasional buyer, control is typically targeted to the end of the service
with no intermediate checks during service execution. This view can be seen
as black box since control is only possible when service outputs are delivered.
Conversely, when control is possible on different activities during service execu-
tion, the service provides a public view on the private production process (i.e.,
grey-box).

Moreover, three control policies can be implemented when a service composi-
tion takes place. If control activities are performed where operating activities are
executed, control is said to be centralized. On the other hand, control is delegated
when control activities are performed elsewhere. Finally, if control activities are
performed where operating activities are executed and repeated elsewhere, the
control policy is redundant.

Let us consider a scenario that involves a service supplier and an occasional
buyer. The former always monitors service lead-time since it have to guarantee
an high quality of service (a violation of this commitment reduces the reputa-
tion of the buyer). The latter monitors the same attribute since it does not trust
the supplier completely. This short-term relationship represent a simple case of
redundancy since control is repeated by the buyer. However, we note that these
two control activities could return different results if compared each other since
service lead-time measured by the supplier could not consider network delays.
As a consequence, redundant does not mean superfluous.

Adaptability is concerned with modifications of the standard and exceptional
behavior of a composited process depending on the environment within which
the composition is deployed. The environment is modeled through (i) the set of
organizations involved within a composition (i.e., stakeholders) and through (ii)
their goals over time.

In particular, adaptability is required when stakeholders’ goals are repeti-
tively violated over time. According to the stakeholder dimension, a designer
may want to model different compositions as a function of the actors partic-
ipating in the cooperative process. For example, when a business-to-consumer
relationship is deployed, a provider could require payment before service deliv-
ery. On the contrary, for business-to-business interactions, payment could be
required after delivery. We note that the specification of this adaptive behavior
requires the formalization of two roles, i.e., corporate and retail. A stakeholder
could be also modeled through either the channel or the device used during a
service composition and, as a consequence, the behavior of a composition may
vary accordingly. For example, a device could be a desktop, a laptop or a mobile
phone. A channel could be a Virtual Private Network (VPN), Internet, a Wire-
less LAN or the GSM network. For each channel a designer may want to consider
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the bandwidth and the level of security of the channel (e.g., low, medium, high).
Therefore, a composition may vary depending on channel since organizations
may decide that strategic information provided by a given service can be shared
on a VPN (high-security, high-bandwidth) but not when the same service is re-
quired over the Internet. Moreover, a composition with an information service
provided for a laptop (e.g., querying a warehouse to check the availability of a
product) can be simpler if compared with a composition modeled for a desktop.

As discussed before, adaptation is especially desired when stakeholders’ goals
are repetitively violated over time. In this context, modelers should identify dif-
ferent alternatives to adapt the composition in order to reduce the violation
of their goals. In our framework, we identify a main composition and a set of
alternatives corresponding to other configurations when a goal/softgoal is repet-
itively violated. As a consequence, a composition shifts from an alternative to
another depending on nature and number of violations. We note that viola-
tions can be either interleaved or not depending on the policy that we adopt for
counting anomalous events. If the counter is reset every time a desired behavior
is reached, the policy is not interleaved, otherwise it is.

4 Domain Requirements Analysis of Services
Composition

Figure 1 shows the methodological steps through which modelers can perform
the requirements modeling and analysis for a service composition. These steps
comply with coordination theory that provides a theoretical foundation [11].
In particular, the methodology consists of a social analysis, a process analysis
and a verification phase. In the following we present each step. We note that
a social representation of a composition could generate different scenarios with
different business rules and, as a consequence, different process models. These
alternatives are evaluated studying the impact of different specification policies
(see Sect. 3) on strategic goals. The evaluation process is performed adopting the
labeling notation proposed in the NFR framework. Labels are defined as follows:
satisfied (✓), weakly satisfied (W+), undecided (U), weakly denied (W−), denied
(✕), conflict (z) [5].

4.1 Social Analysis

The social specification of a service composition is organized in the following
steps:

– Step 1.1. Identification of market players and dependencies; this step de-
termines the organizations involved in the composition and their business
relationships;

– Step 1.2. Refinement of business relationships, i.e., the actual pruning of
intentional elements according to control and coordination policies.
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Fig. 1. Methodological steps supporting the analysis and specification of a composition
of services

Our social analysis concerns a description of service composition that formal-
izes the strategy and the rationale of organizations interactingwithin a cooperative
environment (i.e., who, why and what). In particular, directors and decision mak-
ers receive feasibility analysis and define the general goals that the composition
should satisfy and the strategies through which these can be achieved. Then, gen-
eral strategies are refined into more operating goals and the corresponding services
fulfilling these goals are identified. The output of this step is an i* social model of
service composition and its level of detail is at the discretion of modelers.

In particular, our i* specification embeds intentional elements such as soft-
goals, goals, service (i.e., a task in the traditional i* notation) and information
resources [3,6]. Goals represent requirements to be fulfilled ( �= goal); softgoals
are similar to goals but their fulfillment is not clearly defined ( �= softgoal). A ser-
vice is a structured sequence of decisions and actions aimed at producing an added
value transformation of inputs into outputs ( �= service) and, finally, information
resources represent inputs/outputs to services ( �= resource).

Intentional elements are related to each other through Strategic Relationships
(SR) and Strategic Dependencies (SD). The SD model concerns with the speci-
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fication of social dependencies among organizations. In particular, an SD model
is a graph where each node represents an organization and each link between
two actors describes a dependency in terms of intentional entities. A dependency
formalizes an agreement between two organizations, i.e. a depender and a de-
pendee (depender –� – int. entity –� – dependee). The type of dependency
defines the nature of the agreement. In particular, a goal (or softgoal) depen-
dency represents the delegation of responsibility over the fulfillment of a goal
(or softgoal) from a depender to a dependee. A service dependency represents
the delegation of responsibility over the execution of a service from a depen-
der to a dependee. With respect to goal (or softgoal), a service dependency is
stronger since the depender also specifies how the service needed to fulfill a goal
(or a softgoal) must be implemented. Finally, a resource dependency represents
the need for an input that must be provided to a depender by a dependee. On
the other hand, the SR model supports the refinement process of stakeholder
goals through decomposition (—|–), contribution (→) and means-end (–�) links.
Directors and decision makers (see Figure 1) define their high-level goals and
strategies and then, following a refinement process, elicit the set of services (and
the corresponding resources) that should be performed to achieve their goals
(and softgoals).

4.2 Process Analysis

The process specification of a service composition is organized according to the
following steps:

– Step 2.1. Operationalization of intentional elements and specification of busi-
ness rules managing either goals fulfillment or violation.

– Step 2.2. Specification of the process model of composition complying with
both (i) the social model and (ii) the core set of policies that could be
adopted when modeling context-aware compositions (see Sect. 3).

Our process analysis describes the control and coordination mechanisms of a
service composition. In particular, decision makers receive a social model from
the previous step and, together with process analysts, define the business rules
modeling the standard and exceptional behavior of a service composition. Our
approach to the transformation of a social model into business rules has been
discussed in [6]. Moreover, business rules are specified according to ECA (event,
condition, action) rules complying with the following semantics [4]:

Events are only of two types End(sv), Begin(sv) where sv is a service, with
the natural meaning of beginning and end of the service passed as argument.

Let S be a set of symbols representing actors, RO a set of symbols represent-
ing roles played by actors in S, G a set of symbols representing strategic goals,
R a set of symbols representing information resources, Xt a set of discrete clocks
and CH and DV sets of symbols representing respectively channels and devices
used to supply a service in the conversation. A condition is a predicate p, that
can be categorized in the following classes:
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1. If p has the form Achieved(g), g ∈ G, it is a goal condition.
2. If p has one of the forms Fulfilled(a) or Done(a), a ∈ A, p is called com-

pensation condition.
3. If p has one of the forms Actor(s), Role(s, ro), Device(dv), Channel(ch), p

is called user condition. Actor(s) is satisfied when the current actor is s ∈ S;
Role(s, ro) is satisfied when the actor s ∈ S plays the role expressed by
ro ∈ RO; Device(dv) is satisfied when the current device is dv ∈ DV and
Channel(ch) is satisfied when the current channel is ch ∈ CH.

4. If p is a conjunction of predicates of the form [ρ•c]t, where •∈{≤,≥,=, <,>},
ρ ∈ Xt is a discrete clock, c ∈ � is a constant and the subscript t indicates
a time measurement unit, it is a temporal condition.

5. If p has the form (i) [ρ • c]t, where • ∈ {≤,≥,=, <,>}, ρ is a variable, c is a
constant and the square brackets with the index t denote that ρ and c are of
the same measurement unit t or (ii) Received(x, s, r)∧x ∈ X, where r ∈ R,
s ∈ S and X is a set of temporal conditions, p is a resource condition.

Actions can be composed by means of logical (i.e., ¬, ∨, ∧) and Sequence op-
erators. When actions are composed with ∨, the action to be enacted is selected
non-deterministically. The Sequence operator involves the execution of a finite
number of compensation actions in a sequence. However, compensation stops at
the first successful compensation action in the sequence. Moreover, compensa-
tion actions are grouped into classes (see Sect. 3), i.e. delay (e.g., wait for, delay,
. . . ), informative (e.g., notify, urge,. . . ), re-execute (e.g., re-execute, skip,. . . ), re-
negotiate (e.g., relax, tighten,. . . ) and re-transact (e.g. delegate execution,. . . ).

For example, Wait_for([t0, t1], r) requires to wait for a resource within t0 and
t1 time units, Re_execute([t0, t1], sv) requires the re-execution of a service sv,
Urge([t0, t1], sv, r) urges to the service sv the delivery of a resource r and Relax
([t0, t1], sv, [ρ • c]m) requires to service sv the relaxation of the constraint [ρ • c]m.

Finally, business rules are then mapped into a process model, i.e. a particular
instance of statechart [7] where transitions are labeled by the set of business rules
defined so far and where states labels are defined as follows [4].

A state label lq is a 5-uple lq =< sv, {s1, . . . , sn} / {ro1, . . . , ron} , x, ch, dv >,
with sv ∈ SV , si ∈ S ∀i ∈ [1 . . . n], roj ∈ RO ∀j ∈ [1 . . . n], x ∈ X, ch ∈ CH,
dv ∈ DV . The initial state q0 has no label. Final state labels are modeled as
< [commit, abort, pending], null, null, null, null>.

We note that the symbol ξ in the action part of an ECA rule means that no
action is performed during the transition from a state to another.

4.3 Verification Phase

The verification phase is organized as follows:

– Step 3.1. Formalization of safety and liveness properties [15] related to our
process model.

– Step 3.2. Translation of the process model into the Promela language of the
SPIN model checker [8].
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This final step verifies that the process model is correct, or otherwise provides
a counter example that points to specification inconsistencies.

Properties are generally defined by process analysts on the basis of require-
ments and then specified as LTL logic formulas by engineers. Hence, the process
description of a composition of services C is accepted iff it satisfies a set of LTL
formulas. Formally, let ϕ the conjunction of all LTL formulas, the process model
is accepted iff C| = ϕ.

Our properties can be classified as follows:

– Structural properties, modeling the functional characteristics of a compo-
sition of services. Critical structural properties include the verification that
a composite system is deadlock-free (i.e., absence of invalid end-states), that
it does not embed infinite cycles and that each service belonging to the pro-
cess is invoked (i.e., total functional coverage). More in general, structural
properties model each functional expectation from a run of a composition
of services involving a particular sequence of invocations, the ownership of
each service and the device/channel used to deliver a service.

– Temporal properties, modeling time constraints of a composition. In par-
ticular, temporal requirements state that a service belonging to the compo-
sition can not be invoked in a time less then or equal to t. Moreover, we can
also require that a service is not invoked before t.

– Quality of Service (QoS) properties, modeling the quality requirements
of a composition. Critical QoS properties formalize strategic business goals
whose fulfillment depends from the satisfaction of Service Level Agreement
(SLA) parameters such as productivity, yield, price and throughput.

Accordingly, LTL formulas can formalize the following critical scenarios:

– a scenario involving a single property. For instance, we may require that
the process lead-time is always constrained below a given threshold (i.e.,
�(lead − time < threshold);

– a scenario involving dependencies among properties belonging to the same
class. For instance, we may require that when a particular quality require-
ment is not fulfilled, the overall price of the composition must be below a pre-
defined threshold (i.e., �[(throughput ≤ .5) –> �(price < InitialPrice)]);

– a scenario involving dependencies among properties belonging to different
classes. In particular, assertions relating either temporal and QoS proper-
ties with structural properties are useful to validate scenarios involving the
behavior expected from a composite system as a consequence of exceptions.
For instance, we may require that the violation of a quality requirement
always lead to a negotiation of the initial agreement and viceversa (i.e.,
�[(throughput ≤ .5) ⇔ �Done(negotiation)]).

Notice that verification is possible since we generate non-deterministically
all the possible values of temporal and QoS variables. These values are obtained
by discretizing the domain of each variable into a finite number of significant
values. In this way, we keep finite the number of alternatives. For sake of the
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simplicity, the reader can assume that each state of the model is mapped into
a Promela process and that transitions among states are represented through
the exchange of messages between Promela processes. Under such sattings, the
non-deterministic generation of a temporal and QoS variable associated with a
service is implemented within its corresponding Promela process. An in-depth
discussion of the performances of our model checking technique has been pro-
vided in [4].

5 Example

This section illustrates how the social and process models proposed in Sect. 4
support the specification of a service composition according to different degrees
of flexibility, controllability and adaptability. Hence, our goal in this section is
threefold. First, we provide an intuitive use of our specification models through
a simple example. Second, we discuss how a single social specification can be
mapped into multiple alternative process models. Finally, we show how model
checking supports the identification of inconsistent behaviors in the process spec-
ification thus guiding modelers in their work.

Let us suppose that, within an industrial district, a buyer company buys lap-
top components on the market and supplies assembled laptops to a selected net-
work of retailers. Moreover, this buyer company decides to control components
before assembly since it aims at minimizing laptop malfunctions (i.e., errors). In
order to reduce total costs, the buyer also aims at minimizing the interaction
with the supplier. On the other hand, potential sellers within the district does
not provide any visibility on their production process. The production process
is thus private. However, during component delivery, they provide component
technical features required by the buyer to make quality control. We note that
this example precisely defines our requirements for controllability (i.e., control
delegation, black-box control). We note that control is considered delegated since
it is not implemented by the seller locally.

Fig. 2. Social model involving a buyer company and its laptop components supplier
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Table 1. Contribution of different alternatives on strategic goals (NFR Analysis)

Policy Result
Flexibility Controllability Subgoals Goal

1 ✕ black-box control ✓ delegated control ✓
minimize interac-
tions W+ Contain Cost W+

minimize errors
W−

2 centralized decision ✓ black-box control ✓ delegated control ✓
minimize interac-
tions ✕

Contain Cost W+

minimize errors ✓

3 delegated decision ✓ black-box control ✓ delegated control ✓
minimize interac-
tions U

Contain Cost ✓

minimize errors ✓

However, there are several possible choices with respect to flexibility that
need to be explored and compared during the design process. The social model
associated with this cooperating scenario is shown in Figure 2.

At this stage, the buyer may want to evaluate the impact of different policies
(see Sect. 3) on its high-level Contain Costs softgoal under the hypothesis that this
goal is decomposed into Minimize Errors and Minimize Interactions. Table 1 stud-
ies the impact of controllability and flexibility on these softgoals through the NFR
framework. In particular, flexibility impacts negatively on the Minimize Interac-
tion softgoal but, on the contrary, it contributes positively to Minimize Error.

First of all, let us consider the simplest specification scenario, i.e. flexibility
is not satisfied. This means that violations of the Guarantee QoS goal are not
managed. The analysis of the NFR three shows that this configuration weakly
satisfies the Contain Cost softgoal. In particular, the Minimize Interaction soft-
goal is weakly satisfied and the Minimize Error softgoal is weakly denied. If the
buyer is happy with the adoption of a strategy resulting in a weak satisfaction of
its high-level softgoal, the process model formalizing our cooperating scenario is
shown in Figure 3(a). This specification presents a black-box delegated control
where compensation is not implemented since when the QoS goal is violated the
composition automatically aborts.

The second alternative (see Table 1) is intended to specify a cooperating
scenario where the buyer wants to be sure that the compensation action raised by
violations of the Guarantee QoS goal brings the composition in a consistent state.
Accordingly, the buyer requires the implementation of a centralized decision,
but this requirement denies the Minimize Interactions softgoal. On the other
hand, the implementation of a centralized decision guarantees the satisfaction of
Minimize Errors. The final result is weak satisfaction of Contain Costs, as with
the first alternative. This means that the fulfillment of the Minimize Errors
softgoal balances the structural complexity derived by more interactions.

Figure 3(b) shows the process model associated with our second alternative.
With respect to the previous specification, from the perspective of controllability,
our scenario is unchanged since control is black-box and delegated. However,
the specification is a little bit more complex since compensation classes are in-
troduced together with sparsity. Figure 3(b) enriches the scenario described in
Figure 3(a) by allowing the re-execution of the production service when the QoS
goal is violated. Moreover, since re-execution is allowed exactly once, if the QoS
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ProdProd

commitabort

End(QoS_Control)
[¬Achieved(QoS_goal)]|ξ

{seller}

End(QoS_Control)
[Achieved(QoS_goal)]|ξ

Beg(Production)
[Received(null, seller, order)]|ξ

{buyer}

End(Production)
[Received(null, buyer, 
Technical Features)]|ξ

ConCon

ConCon

{buyer}

commit

abort

End(QoS_Control)
[¬Achieved(QoS_goal) ∧
Done(Re-execute(null, s, seller))]|ξ

{seller}

Beg(Production)
[Received(null, seller, order)]|ξ

End(QoS_control)
[¬Achieved(QoS_goal) ∧
¬(Done(Re-execute(null, prod, 
seller))]|
Re-execute(null, prod, seller)

End(QoS_Control)[Achieved(QoS_goal)|ξ

End(Production)
[Received(null, buyer, 
Technical Features)]|ξ

ProdProd

(a)

(b)

(c)

Prod

Con

{buyer}

commit

abort

End(Prod)
[¬Fulfilled(action)]| 
Notify(null, seller, QoS_goal)

{seller}

Beg(Prod)
[Received(null, seller, order)]|ξ

End(Production)
[Received(null, buyer, 
Technical Features)]|ξ

End(QoS_control)
[¬Achieved(QoS_goal)]|
Notify(null, seller, context)

End(QoS_control)
[Achieved(QoS_goal)|ξ

End(Prod)
[Fulfilled(action)]|ξ

Fig. 3. Poor flexibility (a), centralized decision (b), delegated decision (c)

goal is still violated the composition aborts. Re-execution is performed accord-
ing to the following guard condition: ¬Achieved(QoS_goal) ∧ ¬(Done(Re −
execute(null, s, seller)).

In summary, from the perspective of flexibility, this scenario is automatic, uses
re-execute compensation class and compensation is delegated with a centralized
decision. The compensation is delegated since it is executed by an actor different
from the one raising the exception, i.e. the seller. Moreover, decision is centralized
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since the compensation action is decided by the actor raising the exception (i.e.,
the buyer).

Finally, the third alternative in Table 1 studies the impact of flexibility on
high-level softgoals in case of delegated decision. According to this scenario, the
impact of flexibility on the Minimize Interaction softgoal improves from break to
hurt [5]. As a consequence, the Minimize Interaction softgoal is not denied but
undecided. Moreover, the Minimize Errors softgoal is still satisfied meaning that
the Contain Costs softgoal is satisfied as well. Hence, with respect to previous
two alternatives, this current alternative seems to capture a better compromise.

Figure 3(c) shows the process model associated with this third alternative. In
this case, a notification is provided to the seller that will perform a correspond-
ing compensation action. If the compensation fails the composition is aborted,
otherwise committed. Since the service view is black-box, the buyer is not aware
of the rules followed to compensate the violation. The buyer is only aware of the
behavior of the composition, independently of whether the compensation fails
or not.

Once the better policy has been identified, our last step is requirements
verification. Indeed, checking that the behavior of the compensation is consistent
with our requirements is a critical activity of our modeling process. Under this
scenario, we have two main vital requirements for our composition of services.

– An instance of the composition always terminates: ��(commit ∨ abort).
– The composition commits either if the QoS goal is fulfilled or if its violation

is successfully compensated:
∃qn ∈ F [ln = 〈commit, null, null, null, null〉 →
(∃a : Action, qs : QoSGoal(Achieved(qs) ∨ Fulfilled(a)))].

The analysis of the process model through model checking shows that Prod
is an invalid end state [8]. In particular, the generated counter-example shows
that the composition does not terminates into either commit or abort since our
specification does not model what happens when the order information resource
is not received. Hence, our model is enriched with a transition from Prod to
abort labeled as following:
Beg(Production)[¬Received(null, seller, order)]|ξ.

Moreover, a successive analysis shows the same problem for the Con state.
However, in this case Production has been already executed and modelers want
to avoid, if possible, an abort of the composition. As a consequence the process
model is completed as follows:

– A self-loop on the Prod state is added to urge the provisioning of Technical
Resources This transition is labeled as follows:
End(Production)[¬Received(null, seller, TechnicalFeatures)]|
Urge([1, 3], buyer, TechnicalFeatures).

– A pending state modeling that control is given to a human operator is added
to the composition to handle a failure of the Urge compensation action. The
transition from Prod to pending is labeled as follows:
End(Production)[¬Fulfilled(Urge([1, 3], buyer, TechnicalFeatures)]|ξ.
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This new version of the original process model fully satisfies the two critical
requirements formalized for our composition of services.

6 Conclusion and Future Work

This paper has presented a methodological framework that supports the mod-
eling and formal analysis of service compositions extending the i* social model
adopted in Tropos [3] with a complementary process perspective. Moreover, this
work has discussed a set of policies that designers should consider when shifting
the attention from a social representation of the cooperative environment to one
of the possible process scenarios. In summary, our proposal represents the first
step toward the implementation of autonomic inter-organizational business pro-
cesses, i.e., business processes that can self-repair, self-configure and self-tune
on the basis of feedbacks from the environment [13]. Specifically, we envision
an environment where several service compositions exist, but one is selected for
execution. If there are problems with this execution, the system can self-repair
or self-reconfigure by shifting to an alternative composition to improve its per-
formance with respect to the fulfillment of stakeholder goals. Mechanisms for
changing the composition on the basis of different types of feedback have not
been studied yet in our work.

Future research direction will include the development of a theory of robust-
ness for service compositions. In particular, we will study techniques to ensure
that a composition behaves in a reasonable way even when part of the goals are
inconsistent, implausible or unrealizable with the resources available.
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