
On Service Discovery Process Types

Peer Hasselmeyer

C&C Research Laboratories, NEC Europe Ltd.,
53757 Sankt Augustin, Germany
hasselmeyer@ccrl-nece.de

Abstract. With the growing adoption of service-oriented computing,
locating services becomes increasingly commonplace. Accordingly, a large
number of systems for service discovery have been developed. Although
all these systems perform the same function, they do it in lots of different
ways. Finding commonalities of and differences between these systems
can be hard due to the lack of criteria to compare and classify various
discovery schemes.

This paper identifies the processes of registration and look-up as a
distinguishing feature of the various discovery systems. It describes the
possible types of processes, shows how they are distributed across the
lifecycles of the involved entities and classifies existing service discovery
systems according to these criteria. Some hints are given on how the
process-based view can help guide the selection of a particular discovery
style for a problem at hand.

1 Introduction

The use of service-oriented computing and service-oriented architectures be-
comes increasingly prevalent. The main principle of service-oriented architec-
tures is the loose coupling between service providers and service users. Service
providers can be internal to an organization as well as third parties external to
the service user’s organization. In any case, the service user needs to know the
service’s location and communication protocol before he can access it. Accord-
ingly, all service-oriented architectures offer some facility for locating services.
Although the functionality of these facilities is always the same (i.e. finding
an access point to a desired service), its realizations vary significantly among
the available architectures. The systems have different methods for describing
services, they offer different query possibilities, they use different transport pro-
tocols, and they have different registration and query interfaces. The multitude
of these features can make comparing different architectures hard. Hidden be-
low these features are the processes for service registration and look-up. These
processes are usually not mentioned explicitly, although they make comparing
and classifying different architectures possible.

This paper analyzes the processes used for registration and look-up. It is
discovered that both processes have a static and a dynamic form. These forms
are distinguished by how the processes are spread across the lifecycles of the

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 144–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Service Discovery Process Types 145

components performing registration or look-up. It is described how the different
processes affect certain aspects of systems using service discovery, e.g. application
development. Existing discovery systems are classified according to their types
of processes. In addition, it is shown how a process-based view can guide the
selection of a discovery architecture.

The paper starts in section 2 with definitions of the terms used throughout the
paper. It continues in section 3 with a detailed description of the various types
of processes commonly found in service discovery systems. Section 4 describes a
number of systems providing a discovery facility and classifies them according
to the process types. Some advice on selecting a particular service discovery
system using the proposed process-based view is given in section 5. Related
work is discussed in section 6 and some conclusions are presented in section 7.

2 Definitions

There are many different understandings of the terms involved in service-oriented
architectures. For example, the term “service” means different things to different
people. It is therefore necessary to first define the terms used throughout this
paper to avoid ambiguity.

Service. A service is a component that provides a certain set of functions to
other entities over a communications network. Service instance is a synonym for
service.

Service Type. A service type names the functionality of a service. Services are
of a certain service type if they provide at least the set of functions referred
to by this type. The actual description of these functions is called service type
description. It is assumed that this is a syntactic (interface) description.

Service Description. Description of non-functional service attributes. Service
descriptions can be used in registrations as well as in queries. In registrations,
they provide information about actual service properties, while in queries, they
state desired service properties.

Service Metadata. The service metadata includes all the information a service
is registered with. It consists of the service type, the service description, and the
service’s endpoint.

Service Provider. An entity that operates one or more services.
Client. An entity acting in the role of a service consumer in a specific service

interaction. A client can be a “real” client, i.e., it only consumes services, or a
service that happens to be in the client role in this particular interaction but
provides services in other interactions.

Service-Oriented Architecture. A service-oriented architecture (SOA) is based
on services as the main entities. Services provide certain functions to other enti-
ties. These entities can be pure clients or services themselves. Services and their
functions are discovered using a service registry.

Service Discovery. The process of finding services and their endpoints. This
includes registration and look-up.

146 P. Hasselmeyer

Endpoint. A communication port at which a service can be contacted. Services
might offer multiple endpoints.

Service Registry (often just called registry). A service that provides references
to other services. It accepts requests for registration from services (or other
entities that act on behalf of a service) and relays registration information on
demand to clients.

Registration. Registries keep records of available services. The resources that
such a record consumes at a registry are called a registration. Also, the process
of having registries store information about a service is called registration.

Look-up. The process of mapping queries to service endpoints. Clients looking
for certain services send queries to service registries. The queries contain some
description of what kind of service clients are looking for. Registries return a
set of available services matching the query. Services are represented by their
endpoints.

3 Discovery Processes

Service discovery consists of two main processes: the registration process and the
look-up process. Registration is used by services or their operators to announce
service availability. Look-up is used by clients to find the endpoints of needed
services.

Different service discovery architectures employ different processes for reg-
istration and look-up. These will be described in the following sections. The
method for distinguishing them involves looking at how the individual steps in
the process are allocated to the stages in the lifecycles of the entities execut-
ing the process. The registration process is executed by services, the relevant
lifecycles therefore are the ones of the services. The look-up process is executed
by clients, the relevant lifecycles therefore are the ones of the clients. As both
services and clients are software components, they follow a software lifecycle.
The stages of that lifecycle that are relevant to the registration and look-up
processes are the development, the deployment, the operation, and the unde-
ployment phases.

3.1 Registration Process

The basic lifecycle of a registration is rather simple. The registry creates a reg-
istration when a service is registered. From that point on, the registry includes
the registered data in responses to matching queries. The registration is deleted
when a service is removed from a registry.

As registrations belong to registries, their lifecycles can be observed at reg-
istries. The process for performing registration is executed by services (or their
providers), though. For the registration process, only the lifecycle of the associ-
ated service is relevant. This is the lifecycle considered here. Two different types
of service registration processes can be identified: a static and a dynamic type.
Figure 1 presents an overview of these two types. Interactions with the registry
are shown as rounded rectangles while supplied information is shown as bubbles.

On Service Discovery Process Types 147

Fig. 1. Registration Process Types

Static Registration Process Type. In systems using static registrations,
services are registered once and stay registered for an extended period of time.
Registration and removal are usually initiated by human staff members of
the service’s provider. Registrations are rarely updated. Different parts of the
service’s metadata are supplied at different stages of the service’s lifecycle. The
service type is usually encoded in the implementation, i.e., it is supplied during
the development phase. The service endpoint is only known at deployment time
and is therefore supplied in the deployment phase. Some default values for the
service description and the service registry’s endpoint can be supplied in the de-
velopment phase, but they will likely be modified during the deployment phase.

The actual registration of a service following a static process type happens
when it is initially deployed. The registration is removed when the service is
discontinued. Between registration and removal no communication is going on
between the service (or its provider) and the registry. The exception to this
rule is a possible maintenance phase in which the service’s metadata is changed.
Obviously, the new metadata needs to be supplied to the registry which involves
communication between the service (provider) and the registry. A consequence
of the absence of communication is that static registrations do not contain any
current information, e.g. about the availability of services.

Dynamic Registration Process Type. Systems supporting a dynamic reg-
istration process type usually employ automated methods for service registra-
tion. Services or their supporting middleware initiate service registration upon
startup. Human intervention is not needed. Registries use soft-state (lease-based)
registrations [3]. Such registrations are valid for only a limited amount of time,

148 P. Hasselmeyer

most commonly minutes to hours. To stay registered, services must periodically
extend the lifetime of their registrations. Upon expiration, registrations are au-
tomatically removed from the registry. The system is therefore automatically
cleaned from stale registrations and can be considered self-managing. The man-
ual removal of services is nevertheless possible as well.

Service metadata is again supplied at different stages in the lifecycle. Service
type information is handled the same way as in the static case – it is supplied
during the development phase. The service description can be supplied in the
development, the deployment, and, contrary to the static case, in the operation
phase. Depending on the middleware used, the service endpoint is either supplied
at deployment time or run-time. With technologies like CORBA (Common Ob-
ject Request Broker Architecture) or Java RMI (Remote Method Invocation),
the endpoint will be supplied at run-time as it can change across restarts. Using
web service technologies, the endpoint may be supplied during the deployment
phase as it rarely changes. The registry location can, as in the static case, be
supplied during the deployment phase. Alternatively, as the actual registration
happens during the operation phase, supplying the registry location can be post-
poned to that phase. One popular solution for this is to use a multicast scheme
to discover the registry location at run-time.

3.2 Look-Up Process

Just as service registrations can be static or dynamic, so can be service look-up
process types. The two different types are shown in figure 2. Although the figure

Fig. 2. Look-up Processes

On Service Discovery Process Types 149

shows look-up as a single step, it might actually consist of multiple steps, e.g. if
some iterative method to slowly narrow down the selection is used. The look-up
method is independent of the use of a static or a dynamic look-up process type.

Static Look-Up Process Type. In a static environment it is common practice
to look up services during the application development phase and put their
locations in the code. Alternatively, a configuration file can be used and the
look-up process can be moved to the deployment phase. In this case, only the
service type is supplied during the development stage. The service description
(i.e. the query) as well as the registry’s endpoint only need to be known during
the deployment phase. In both cases, the registry is not accessed at application
run-time.

Dynamic Look-Up Process Type. In a dynamic system, services are as-
sumed to be volatile and those available during the development or deployment
phases might not exist during the operation phase. Applications in dynamic
environments therefore usually perform look-up at run-time to find currently
available services and their endpoints. Information supplied during the develop-
ment phase are the service type and the look-up algorithm. This algorithm is
rather simple in “traditional” discovery systems, but is an important part of the
discovery process in content addressable networks [8].

The registry endpoint and the service description can be supplied during the
deployment or the operation phase. During deployment, this information goes
into some configuration file. If the endpoint is supplied at run-time, it can be
retrieved via some multicast scheme or calculated with the help of the look-up
algorithm. The service description might be affected by user input and might
therefore only be available at run-time.

The choice of a static or dynamic look-up process type is not directly related to
the choice of a particular registration process type. A dynamic look-up style can
be used in conjunction with a static registry. A static look-up style is ill-suited for
a dynamic registry, though, as service information is expected to change during
the lifetime of the service client. It is therefore common to bundle static look-up
with static registration and dynamic look-up with dynamic registration.

3.3 Foreknowledge

To perform service registration or look-up, the endpoint of the registry needs to
be known. This information is called “foreknowledge” in [10]. Such information
is needed by all entities using the service registry, i.e. services as well as clients. It
is important to note that the information does not need to be available explicitly.
In content addressable networks the location of the registry can be derived from
registration metadata and look-up queries at run-time. The foreknowledge in
this case is embedded in the queries or the service metadata and the algorithm
mapping that information to the registry location. Another important observa-
tion is the fact that the foreknowledge does not need to exist in all phases of the
registration and look-up lifecycles. The knowledge needed and the lifecycle phase

150 P. Hasselmeyer

in which it is supplied are shown in Figures 1 and 2 in the form of bubbles. The
foreknowledge needed does not depend on whether a process’ type is static or
dynamic. Only the lifecycle phase in which it is used varies with the process type.

In a system using static registrations information about the registry is only
needed at development or deployment time. It is therefore sufficient that the hu-
man developer or deployer has access to the registry’s endpoint information. As
that data is not needed at run-time, it is not kept anywhere in a running client.

In a dynamic system, information on the registry’s endpoint must be available
at run-time. The required information can be supplied in different ways. It could
for example be read from some configuration file. A multicast scheme can be
employed when a local registry is used thereby reducing configuration effort to
a minimum.

3.4 Process Type Implications

The adoption of a particular type of process influences the functionality of reg-
istries, the development of entities using discovery, and the performance of a
service-oriented system as a whole.

Functionality. The functionality of a registry depends on the registration style.
In the dynamic case, it must support soft-state registrations and the associated
functionality which is not needed in the static case. Furthermore, lifetime ex-
tensions happen quite frequently and those changes to the registration database
need to be accommodated. In systems using a static registration process type,
registrations have to be made persistent as they occur only once. For systems
using a dynamic registration process type it is okay to forget all the registrations
every once in a while as services will eventually re-register.

Implementation. Entities that are using service discovery, i.e., services per-
forming registration and clients using look-up, are implemented in different ways
depending on the type of the registration and look-up processes. When using
static registrations, services do not need to care about the actual registration as
this is supposed to be done by human operators before the service’s operation
phase. In systems using dynamic registrations, services must register at run-time
and need to take care of their registrations. This job can be delegated to the
infrastructure, though. In that case, services do not need to care about registra-
tions and their renewal. In fact, they do not even need to be aware of what kind
of registration process is used.

The situation is a bit different for look-ups. There is a difference in the pro-
gram logic depending on when look-up is performed. If a static look-up process
type is adopted, the client code does not need to contact the registry at run-
time. With a dynamic look-up process type, though, some communication with
the registry has to occur at run-time. The program code therefore needs to be
different depending on the look-up type. It is nevertheless possible to always use
code that assumes a dynamic look-up style and let the infrastructure map this
to a static environment.

On Service Discovery Process Types 151

Performance. The registration and look-up process types also affect the per-
formance of systems using service discovery. Obviously, a static system has a
better run-time performance as no communication between services or clients
and the registry has to occur during the operation phase. Depending on what
kind of discovery technique is used, the run-time penalty of dynamic look-up
can be significant. On the other hand, using dynamic registration and look-up
improves a system’s failure resilience. If look-ups follow a static process type, the
disappearance of an endpoint to a particular service renders all clients unusable.
A dynamic look-up process type allows this failure to be masked by being able
to switch over to other instances/endpoints of services.

4 Classifying Discovery Systems

This section briefly describes a number of well-known service discovery systems.
The main part of each description deals with registration and look-up properties.
Each system is classified according to its use of static or dynamic registration
and look-up process types. The results of the analysis are shown in Figure 3.

4.1 UDDI

The Universal Description, Discovery and Integration (UDDI) specification [7]
is the most well-known service discovery standard for the web services world. It
defines a centralized registry service, the interface to access it, and a data model
to describe services. The UDDI registry is modeled after the telephone book.
It lists companies (“white pages”) and the services that they provide (“yellow
pages”). Sticking to the telephone book analogy, data in UDDI registries is stored

registration process type

lo
ok

-u
p

pr
oc

es
s

ty
pe

static dynamic

dy
na

m
ic

st
at

ic

UDDI

DNS

flooding
P2P

ordered
P2P

Jini

Fig. 3. Classification of Popular Service Discovery Systems

152 P. Hasselmeyer

once and stays in them until it is actively removed. UDDI registries obviously
employ a static registration lifecycle and therefore follow a static registration
process type.

Look-up in UDDI registries usually follows a static process type as well. The
structure of the data in the directory makes drill-down operations a convenient
way of finding a needed service. A common approach to finding services in UDDI
registries is looking at the list of companies, finding a few that are trusted and
presumably offer the needed service, have a look at their service offers, and then
choose one of them. As trust is a complicated concept for machines, the described
process is always done by human beings. Usually, the developer of a service client
is looking for an appropriate service, not the deployer. The reason for this is the
lack of standardized interfaces that would make exchange of services a simple
configuration option. Currently, more often than not, the program code needs
to be modified to accommodate a different service provider.

Although dynamically exchanging a service provider in a web-service-based
world is currently not widely practiced, performing look-up at run-time is still a
sensible option. In this case, it is not used to make the choice of a service provider
configurable or dynamic, it is used to automate locating the current endpoint of
a well-known service of a well-known provider. A service client would perform a
look-up with a predefined query that returns the current endpoint of the needed
service. With this scheme, a provider can change the location of his services
without explicitly telling his clients. Dynamic look-up can increase the looseness
of the coupling between service provider and service client.

Because UDDI-based systems can work with both static and dynamic look-up,
the system appears in both sections with a tendency towards the static side.

4.2 Jini

Jini [9] is a Java-based infrastructure for handling service discovery. Registries
can be statically configured, or found at run-time via a multicast-based proto-
col. Registrations contain service descriptions and, instead of the endpoint of a
service, a Java object that enables remote service access. Such proxy objects are
stored at the registry and copied to the service user’s address space at run-time.
There, they adapt local function calls to whatever communications protocol the
associated service uses. Information about the endpoint of a service is therefore
stored inside the proxy object and kept hidden from the service user.

Registrations in Jini are lease-based. Clients wanting to register a service ne-
gotiate the registration lifetime with the registry. Leases need to be renewed
in time for services to stay registered. Registrations therefore follow a strictly
dynamic process type. Due to the use of proxy objects, this method is the only
viable option. Most of the Jini services use the Java RMI mechanisms for remote
procedure calls. Proxy objects contain the remote stubs for performing invoca-
tions. These in turn contain references to the associated server object. As the
server object might change with every restart of the server, previously handed
out references become invalid. Registration data therefore needs to be updated
at the registry. With an automated update system (as used with dynamic reg-

On Service Discovery Process Types 153

istrations), this is no problem. Performing updates by hand is rather tedious,
though. A static model is therefore not an optimal solution.

Look-ups also follow a dynamic process type, basically for the same reason
why registrations are dynamic. Remote object references may change frequently.
Embedding fixed, static references in client code is no option. In addition to that,
Jini transfers around proxy objects. These consist of data (e.g. object references)
and code. Just as the data changes, the code might change as well. As the code is
supplied by the service provider, it is impractical to statically embed that code
in service clients.

4.3 DNS

The Domain Name System (DNS) [6] is the most commonly used method for
resolving human-readable internet host names. The DNS system translates those
names to machine-understandable Internet Protocol (IP) addresses. DNS can
store mappings for different types of services, e.g. for mail relays. It can therefore
be considered a service discovery system.

The assumption for the DNS is that internet host names and the correspond-
ing addresses do not change frequently. As a result, registrations follow a static
process type. New internet host and domain names are stored at designated
name servers. The mapping stays at the name server until it is removed.

DNS look-ups follow a dynamic process type. To find a host, clients send a
query to the DNS sub-system on the local host. Queries that cannot be answered
locally are passed on to DNS servers one level up in the hierarchy. The path
followed by a query is statically configured by the administrators of the involved
DNS servers. The location information of the registry (the next DNS server) is
therefore configured for a host, not an individual client.

4.4 Peer-to-Peer Systems

Peer-to-peer (P2P) systems are dynamic networks of entities that cooperate to
provide certain services to participants. At present, P2P system are aimed mostly
at locating content, usually media files, but the same concepts can be used to
locate arbitrary services. As the set of participants in a P2P system is dynamic,
the set of offered services (or content) is dynamic as well. Searching (i.e. look-up)
in P2P systems therefore always follows a dynamic process type.

Regarding registrations, two different kinds of peer-to-peer systems can be
distinguished. Most of the P2P systems popular today employ a flooding search
approach. They send queries to all (or at least a large subset of) the service
providers. Service providers also act as registries. Content files are registered
locally and they are usually registered implicitly by putting them in specific
places on the local file system. They are unregistered by removing the files from
that location. It is therefore a registration process of the static type.

As flooding is not a scalable query mechanism, a second type of P2P systems
uses a controlled search approach. Systems of this type designate responsibility

154 P. Hasselmeyer

for a subset of the whole search space to certain nodes in the system. A re-
sponsible node can be found at a predictable location by applying a well-known
algorithm to the service’s metadata. An example of such a system is described
in [2]. In such systems, all nodes act as registries, but each service is registered
with just a (small) subset of them. Registrations are constrained in the temporal
domain and therefore need to be renewed. This is necessary because not only
the set of service providers (and with it, the set of services) changes, but so does
the set of registries and therefore the set of registries responsible for a specific
service. Registrations therefore follow a dynamic process type.

5 Architecture Selection

Besides offering a method for classification, a process-based viewpoint can also
guide the selection of a particular discovery architecture for a given problem. For
selecting a discovery system, a large number of different criteria exist, including
description capabilities, performance, scalability, supported platforms, protocols
used, etc. Most of these are of a low-level, technical nature. The process-based
viewpoint proposed here is on a higher level of abstraction, working more on the
architectural level than the implementation level.

The guidelines given here are not necessarily the most important ones. De-
pending on the circumstances in which a discovery system is to be used, different
criteria have different priorities. Nevertheless, we think that looking at discov-
ery process types gives a hint on what kind of discovery system is suitable to a
given problem. As it works on a comparatively high level of abstraction, it might
actually be the first criterion to consider.

When thinking of discovery, the processes for registration and look-up are not
a natural starting point. And indeed, they are not the first thing to look at, as
they only exist in conjunction with the entities that enact them, i.e., the services
and clients.

Therefore, to select a discovery architecture, one should first analyze the ser-
vices that are to be found by discovery. If these services are rather volatile,
their registrations are as well. Dynamic process types for registration and look-
up are therefore appropriate. A matching service discovery system should be
chosen.

If the set of services is small and the services’ metadata is static, a system
using static registrations is sufficient. Whether to use a static or dynamic look-
up process type in this case is a delicate trade-off. Static look-ups require some
manual configuration effort when services migrate. Dynamic look-ups need some
additional infrastructure that usually causes some initial set-up costs. The de-
cision therefore depends on the estimate of how frequently service registrations
change and thereby cause additional configuration costs.

It is important to note that even if individual services are rather static, but
there is a large set of services, the set as a whole becomes volatile, because
some changes in the set of services and their metadata always occur. Such a
system would benefit from at least a dynamic look-up style. Making registrations

On Service Discovery Process Types 155

dynamic can be a good idea as well, because static registrations become stale
eventually and their removal or update is often forgotten [5].

6 Related Work

There is a host of literature that compares various discovery systems. Most of
this literature, e.g. [1, 4], compares systems primarily aimed at ubiquitous com-
puting, especially SLP, UPnP, Bluetooth, and Jini. Among the criteria used
for distinction are the network protocol used for communication, the type of
service description, and the functionality of the systems. None of these compar-
isons deal with higher level abstractions or give guidance on where to use which
architecture.

To the knowledge of the author, only one paper [10] compares service discovery
systems on a more abstract level. Vanthournout et al. introduce a taxonomy of
discovery systems distinguishing them by design aspects. They analyze discovery
systems with respect to their structure, their foreknowledge, their registration
behavior, their query routing, the supported resources, and resource naming.
Although these represent a large set of criteria, the registration and look-up
processes are neither mentioned nor evaluated. As described here, those processes
influence the architecture of service discovery systems as well as the design of
applications. In fact, some of the above mentioned design aspects are influenced
by the processes. Namely, these are the foreknowledge, the registration behavior,
and the supported resources.

7 Conclusion

In this paper, we have identified the registration and look-up processes as dis-
tinguishing aspects of service discovery systems. Registration as well as look-up
can be either static or dynamic. A particular choice for either the registration or
the look-up process type does not influence the choice of the other process type.
The only caveat is that a static look-up process type does not match a dynamic
registration scheme.

We showed that individual registration and look-up process steps are dis-
tributed differently across component lifecycle phases depending on the type of
process used. We classified a number of well-known discovery architectures ac-
cording to the process-based view and showed that for each viable combination
of processes an examplar exists. We also described how the choice of a particular
process type influences the functionality of the registry, the implementation of
the entities, the performance of the system as a whole, and how foreknowledge
is spread across the lifecycle phases.

We hope that the presented work makes developers adopting service-oriented
architectures aware of the discovery processes and their interaction with com-
ponent lifecycles. We think that a classification according to process types facil-
itates the selection of a particular style of discovery and therefore the selection
of a particular discovery architecture.

156 P. Hasselmeyer

Acknowledgements

This work has been supported by the NextGRID project and has been partly
funded by the European Commission’s IST activity of the 6th Framework Pro-
gramme under contract number 511563. This paper expresses the opinions of
the author and not necessarily those of the European Commission. The Euro-
pean Commission is not liable for any use that may be made of the information
contained in this paper.

References

1. Christian Bettstetter and Cristoph Renner. A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol. In: Proceedings
EUNICE Open European Summer School, Twente, Netherlands, September 2000.

2. Jun Gao and Peter Steenkiste. Design and Evaluation of a Distributed Scal-
able Content Discovery System. Journal on Selected Areas in Communications,
22(1):54–66, January 2004.

3. Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant Mech-
anism for Distributed File Cache Consistency. In: Proceedings of the 12th ACM
Symposium on Operating System Principles, pages 202–210, December 1989.

4. Sumi Helal. Standards for Service Discovery and Delivery. IEEE Pervasive Com-
puting, 1(3):95–100, July 2002.

5. Mike Clark. UDDI – The Weather Report, November 2001. http://www.
webservicesarchitect.com/content/articles/clark04.asp

6. Paul V. Mockapetris. Domain Names - Concepts and Facilities, November 1987.
Internet RFC 1034.

7. OASIS Open. UDDI Version 3.0.2, October 2004. http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A Scalable Content-Addressable Network. In: Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM 2001), pages 161–172, August 2001.

9. Sun Microsystems Inc. Jini Architecture Specification – Version 2.0, June 2003.
http://www.sun.com/software/jini/specs/jini2 0.pdf.

10. Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A Taxonomy for
Resource Discovery. Personal and Ubiquitous Computing Journal, 9(2):81–89,
February 2005.

http://www.
webservicesarchitect.com/content/articles/clark04.asp
http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/ uddi-v3.0.2-20041019.htm
http://www.sun.com/software/jini/specs/jini2_0.pdf

	Introduction
	Definitions
	Discovery Processes
	Registration Process
	Look-Up Process
	Foreknowledge
	Process Type Implications

	Classifying Discovery Systems
	UDDI
	Jini
	DNS
	Peer-to-Peer Systems

	Architecture Selection
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

