
A High-Level Functional Matching
for Semantic Web Services

Islam Elgedawy, Zahir Tari, and James A. Thom

School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia

{elgedawy, zahirt, jat}@cs.rmit.edu.au

Abstract. Existing service matching techniques such as keyword-based
and ontology-based, do not guarantee the correctness of the matching
results (i.e. do not guarantee fulfilling user goals). This paper deals
with this problem by capturing the high-level functional aspects (namely
goals, contexts, and expected external behaviors) for both web services
and users in a machine-processable format, then matching these aspects
using the proposed functional substitutability matching scheme (FSMS).
Based on FSMS, this paper describes a direct matching technique in
which a user request is examined against one service description at a
time, such that web services match users requests when they have sub-
stitutable goals, contexts and expected external behaviors. The substi-
tutability semantics between the elements of application domains are
captured via the proposed substitutability graphs, which are used dur-
ing the matching process to mediate between users requests and web ser-
vices descriptions. Simulation results show that the proposed matching
approach succeeds in retrieving only the correct answers, while keyword-
based and ontology-based retrieval techniques could not eliminate the
appearance of false negatives and false positives.

1 Introduction

Existing matching techniques used in web service discovery, such as keyword-
based techniques and ontology-based techniques, fail to provide high matching
precision [4]. These techniques can be classified as “generic” as they are sup-
posed to work in all contexts and for all application domains. In a nutshell,
generic matching techniques examine the descriptions of web services by eliciting
the various concepts, including inputs, outputs and entities, from the descrip-
tions. Later, such concepts are matched using a keyword-based approach ([3]),
a more precise approach (which uses generic subsumption rules given via do-
main taxonomies [8]), a form of Logic ([1, 9]), or a combination of approaches.
Generic matching techniques are not suitable for web services as they do not
take into consideration additional semantics related to web services and users1,
such as goals, contexts and expected external behaviors, that are needed to ob-
tain correct results [4, 6, 7], as they provide information about (what a service
1 The term “user” is used to refer to humans and machines.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 115–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 I. Elgedawy, Z. Tari, and J.A. Thom

does/what a user wants) [4], the adopted constraints [6] and how the required
goal is going to be achieved[7]. To guarantee the correctness of the matching
results, we have identified the following requirements:

– User goals, contexts and expected external behavior should be semantically
captured in a machine understandable format so that the matchmaker can
understand them and later use them to find the correct answers.

– The high level functional aspects of web services, such as goals, contexts
and expected external behavior should be explicitly captured in a machine
understandable format so that the matchmaker can understand them and
use them to find the correct answers.

– The functional semantics of the application domain should be explicitly cap-
tured in a machine understandable format such that the matchmaker can
use them to mediate between the user request and web services descriptions.

– A formal matching scheme should use all these captured semantics (user
semantics, web service semantics, and application domain semantics) and
should guarantee the correctness of the matching results.

The G+ model we previously proposed in [4, 6] captures high-level functional
aspects (such as goals, functional contexts2, and expected external behaviors)
for both web services and users. Existing solutions for describing web services
(such as OWL-S[2]) do not have explicit representations for these high-level func-
tional aspects as they are described via text descriptions in the service profile.
Recently, WSMO [9] followed a similar approach to ours by providing an explicit
semantic representation for the high-level functional aspects such as goals, how-
ever it lacks explicit representation for web services behaviors (both internal and
external).

The matching scheme indicates what comparison aspect between the involved
elements is used, what matching rule is used, and how to judge the correctness
of the matching results. Therefore, this paper introduces the functional sub-
stitutability matching scheme (FSMS) that uses high-level functionality as the
comparison aspect, substitutability as the matching rule, and goal achievement
as the correctness criterion.

The proposed direct matching approach starts by filtering services that corre-
spond to different application domains and supports different domain roles. Then
checks the substitutability of the G+ models against user G+ model to find the
suitable set of services that fulfill user request. Substitutability between two
G+ models is determined according to the substitutability status between the
functional contexts and the operation sequences of the corresponding scenarios.
Functional context substitutability is determined according to the substitutabil-
ity of their pre, post and describing sets of constraints. Substitutability status
between two sets of constraints is determined by finding a sequence of consistent
transformations that transform the elements of the source set into the elements
of the target set using the proposed substitutability graphs. Substitutability of

2 A functional context describes the requirements for correct goal achievement, as
indicated in later sections.

A High-Level Functional Matching for Semantic Web Services 117

operation sequences is determined according to the substitutability of their cor-
responding behavior models. A behavior model is a sequence of states elicited
by tracing the transition points between the operations in the corresponding
operation sequence, such that a state is represented by the active constraints
at the corresponding transition point. Two states are matched according to the
substitutability status between their constraints.

This paper is organized as follows. Section 2 provides an overview of the
G+ model used to capture the high-level functional aspects. An overview of the
meta-ontology used is also provided. Section 3 introduces the functional substi-
tutability matching scheme. Section 4 provides details related to the proposed
direct matching approach between two given G+ models. Experiment results are
described in Section 5, and Section 6 concludes the paper.

2 The G+ Model

The G+ model [4, 6] is an extended goal model that provides an integration of
various concepts, including operational goals3, the corresponding functional con-
texts4, and the corresponding realization scenarios5. A functional context is rep-
resented by three sets of constraints6: pre-constraints (goal pre-conditions), post-
constraints (goal post-conditions), and describing-constraints. Table 1 provides
an example of a G+ instance, describing HotelReservationService, where Hotel-
Reservation, Submit-Room-Details, Submit-Payment-Details, Send-Confirmat-
ion are tourism domain operations defined in the used domain ontology.

Table 1. A G+ Example

Goal= “Hotel-Reservation”
FunctionalContext =〈 {CreditCard.Type = VISA, Hotel.Country = Australia},

{Payment.Status = OK, Confirmation.Status = Sent},
{Hotel.Function ∈ (Casino, Bank, Baby Setting, SPA, GYM)}〉

RealizationScenario=SubmitRoomDetails: SubmitPaymentDetails: SendConfirmation

As an application domain can be described by multiple ontologies, our ap-
proach uses a meta-ontology that acts as a schema for domain ontologies that in-
dicate what should be captured in an ontology and how. Hence during the match-
ing process, specific types of application domains’ elements and their semantics
will be used. The proposed meta-ontology consists of two layers: schematic layer
and a semantic layer. At the schematic layer, the types of the domain elements
are defined. At the semantic layer, the relations between the domain elements are
3 A goal that is represented by an application domain operation.
4 The requirements for correct goal achievements.
5 A scenario represents a sequence of application domain operations that tells one

story about how to achieve the goal.
6 Any constraint is formulated as Entity.Attribute Operator Value.

118 I. Elgedawy, Z. Tari, and J.A. Thom

Goal

Op2Op1

Op6Op5

Op8Op7

Op10Op9

Op12Op11

Op16Op15

O
p1

9

Op14Op13

Op22Op21

Op17Op18

Functional
Context

Has

Realized By
Followed By

Or

Fig. 1. An Example of a Scenario Network

captured. The proposed approach, however, restricts these relations to only one
type, namely the functional substitution relation, as FSMS uses substitutability
as the matching rule. The components of the schematic layer are concepts, op-
erations and roles. Concepts represent the domain entities, which are described
by a set of features. A feature is an attribute with its corresponding value. Op-
erations represent the domain legitimate transaction types. Every operation is
described by a set of features. Every operation has a set of input concepts and
a set of conditions over these concepts. Every operation has a set of output
concepts and a set of conditions over these concepts. Roles represent domain
legitimate actors. Every role is described by a set of features.

As many different scenarios can describe the achievement of a given goal, a
more complex G+ model can be defined by a scenario network allowing multiple
abstraction levels, showing how such a goal could be achieved. An example is
given in Figure 1. Tracing a goal scenario network from the goal node until a leaf
operation node represents one of the expected paths for achieving the goal. Such
a path is called Goal Achievement Pattern (GAP). A GAP describes a global
(end-to-end) snapshot of how a service goal is expected to be accomplished. This
snapshot provides information that helps the matchmaker to anticipate the ex-
ternal behavior of a service in a given context. In a nutshell, a GAP consists
of the following information: a functional context, a goal, and an operation se-
quence. A functional context represents the context of the corresponding service
defined in conjunction with any existing sub-contexts (that is the value cases of
the branching conditions along the path). Sub-contexts are added to the set of
pre-constraints that belongs to the functional context. An operation sequence is
a result of the tracing of a scenario network from the goal node till a leaf opera-
tion node. Formally, GAP = 〈Cntxt,G,OpSeq〉, where Cntxt is the GAP functional
context, G represents the GAP goal, and OpSeq is the GAP operation sequence.

A scenario network provides multiple abstraction levels for describing the
achievement of a given service goal (that is, an operation in a given scenario
could be described by another scenario network). So, we can extract multiple
abstraction level GAPs such that a group of GAPs will describe the same story
but at different levels of detail. This provides great flexibility to the matchmaker
to choose a suitable abstraction level to work on.

A High-Level Functional Matching for Semantic Web Services 119

3 The FSMS Matching Scheme

The following factors are used to judge the correctness of the results produced
by a the proposed matching approach. (i) A comparison aspect that indicates
which facts (about the involved entities) will be considered. (ii) A matching
rule that indicates how the comparison aspect will be examined. Finally, (iii)
a correctness criterion that validates the obtained results after applying the
matching rule. Any matching scheme should define its own comparison aspect,
matching rule and correctness criterion. This section describes a new matching
scheme, called Functional Substitutability Matching Scheme (FSMS), which uses
functionality as the comparison aspect, substitutability as the matching rule, and
goal achievement as the matching correctness criterion. A service’s functionality
is the service’s capability for achieving a given goal. This is captured using the
G+ model. In general, a goal G is considered achieved when transforming a
set of constraints Wi into another set of constraints Wj . This is denoted as
(Wi �−→G Wj), and its reads as “the goal G is achieved when transforming W1
into W2 using S”, where �−→ is the achievement operator. Adopting the G+

model, a goal is considered achieved when transforming the pre-constraint set
into the post-constraint set of the functional context using the defined GAP
(that is invoking the corresponding sequence of operations).

A user specifies both the request (in the G+ format) and the G+ models to
be published. The matchmaker succeeds in the matching of a service with the
user’s request when the service can achieve the request goal. For example, if the
request’s goal G is achieved when (W1 �−→G W2), and a service S achieves G
by transforming W3 into W4 (W3 �−→G W4), then S is considered a match for
the request when W1 ⇒ W3 (W1 can substitute W3) and W4 ⇒ W2 (W4 can
substitute W2). This enables the transformation of W1 into W2 by invoking S,
which means G is achieved. Constraint substitution via implication is restric-
tive as it leads to the appearance of false negatives. For example, the constraint
(City.Name=Cairo) implies the constraint (Country.Name= Egypt). However
this cannot be derived using implication as the two constraints have two differ-
ent scopes. To overcome this problem, we propose the concept of “constraints
semantics subsumption” that adopts the substitution semantics of application
domains; to find a transformation that transforms the source constraints into
the target constraints to determine the substitutability status between these
constraints. We propose to extend the meta-ontology to support use of substi-
tutability graphs.

Definition 1. (Substitutability Graph) A substitutability graph is a directed
graph, where a node is in the form of entity.attribute and an edge indicates the
substitutability direction. Every edge has the corresponding substitutability con-
ditions that must be satisfied in order to substitute a given entity’s attribute with
another entity’s attribute with respect to a given domain operation. Also every
edge has the corresponding conversion function between the attributes’ values.

As an entity could be a concept or a role, this implies for every domain two
substitutability graphs will be defined: a concept substitutability graph and a

120 I. Elgedawy, Z. Tari, and J.A. Thom

Concept

Concept

Operation

Substitutability
Constraints

+ Conversion
Function

At
tri

bu
te

s
Di

m
en

sio
n

iConcept jConcept

A Segment

Fig. 2. Concepts Substitutability Graph

role substitutability graph. Figure 2 shows how a concept substitutability graph
has been introduced: for every domain operation, and for every pair of concepts,
substitutability conditions are defined.

If no attributes are explicitly defined; this means all the concepts’ attributes
with the same name are substitutable with respect to such domain operation.
Their corresponding conversion functions will be a simple equality between the
attributes values. However if only specific attributes are substitutable, for ev-
ery pair of substitutable attributes an edge should be created such that the
corresponding substitutability constraints and conversion functions are defined.
For example, the attribute Rank of the concept Hotel can have the values in
the set {5,4,3,2,1}, which corresponds to the number of stars of the hotel,
while the attribute Class of the concept Accommodation can have values in
{Business,Economy}. For a hotel-reservation operation in the tourism domain,
the concept Accommodation could be substituted with the concept Hotel if the ac-
commodation type is temporary. Hence, the attribute Class could be substituted
by the attribute Rank using a specific conversion function, as indicated in Table 2.

Table 2. An Example of a Substitutability Graph Entry

Source Target Conversion Function Substitutability Conditions
Hotel.Rank Accommodation.Class If Hotel.Rank ≥ 3 Accommodation.Type=

Then Accommodation.Class = Business Temporary
Else
Accommodation.Class = Economy
End IF

A High-Level Functional Matching for Semantic Web Services 121

For instance (Hotel.Rank=4) and a service description (that indicates that
the service can book temporary business class accommodations), the match-
maker can return the service as a correct one if the other constraints in the
request are fulfilled. Formally, we introduce concepts substitutability graph
SGc as a directed graph such that SGc =

⋃n
i=1{〈Opi, Vc, Ec〉}, where Opi is

a domain operation, n is the number of operations in the domain, Vc is a set
of graph nodes such that Vc ⊆ ∆c

⊗
∆A that ∆c is the set of all concepts

∆A is the set of all attributes. Ec represents a set of graph edges such that
∀Ei ∈ Ec, Ei = 〈Va, Vb, Πab, Ψab〉. Πab is the set of substitution conditions that
must be satisfied in order for the concept.attribute represented by the node Va

(source node) to be substituted with the concept.attribute represented by the
node Vb (target node)7. Ψab is the conversion function that maps the value of the
source node into a value for the attribute in the target node. In a similar way, we
define role substitutability graph SGr. A substitutability graph is used to
determine if there exists a direct substitution (DS) between constraints’ scopes.

Definition 2. (Direct Substitution) Given two constraints Cni and Cnj and
two scopes A and B, such that A is the scope of Cni and B is the scope of Cnj,
a goal G, and a set of constraints W such that Cnj ∈ W , there exists a direct
substitution (DS) between A and B with respect to G and W iff there exists a
valid path P=L1, L2, ..., Ln between A and B in the corresponding substitutability
graph such that W ⇒ ∧i=n

i=1 ΠLi where Li is an edge between two scopes, and ΠLi

is the substitution constraints of edge Li
8.

When a matchmaker attempts to transform a constraint Cni (the source
constraint) into another constraint Cnj (the target constraint) with respect to
a given goal, first it checks if there exists a DS between their scopes. If so,
it uses the conversion function(s) to transform the source constraint Cni into
another constraint Cnk such that Cnk ⇒ Cnj

9. Otherwise the transformation
is considered not valid and the constraints cannot be substituted.

Two scopes are considered reachable if there exists a DS, or a sequence of DSs
between them. This sequence of DSs is the required transformation in order
to substitute the target constraint with the source one. When such a transfor-
mation exists, the source constraint is considered to semantically subsume the
target constraint with respect to the involved goal.

Definition 3. (Constraints Semantic Subsumption) Given two constraints Cni,
Cnj and a goal G, Cni semantically subsumes Cnj with respect to G (denoted
as Cni �→G Cnj) iff Cni and Cnj scopes are reachable with respect to G using a
transformation β, and Cni is transformed to Cnq using β such that Cnq ⇒ Cnj.

7 The correctness of the substitution conditions is the responsibility of the ontology
engineer.

8 A set of constraints is treated in implication as one constraint that is a conjunction
of the set elements.

9 It is important to note that Cnk and Cnj have the same scope.

122 I. Elgedawy, Z. Tari, and J.A. Thom

Adopting Definition 3, Cni matches Cnj when the involved transformation
does not violate the set of active constraints existed at the substitution time.

4 The Direct Matching Approach

Matching two web services based on their high-level functional aspects using
FSMS is determined according to the substitutability of their corresponding G+

models. We will first show how simple G+ models (represented by only one
GAP) are matched. Later we will show the same process on complex G+ models
(represented by a GAP forest).

Definition 4. (Direct G+ Matching) Given two simple G+ models G+
i and G+

j ,
G+

j can be substituted by G+
i , denoted as (G+

i � G+
j), iff (Opi = Opj) ∧ (Ctxti

�Opj Ctxtj) ∧ (GAPi �Opj GAPj), where Opi and Opj are the operations rep-
resenting the goals of G+

i and G+
j respectively. Ctxti and Ctxtj are the functional

contexts of G+
i and G+

j respectively. GAPi and GAPj are the goal achievement
patterns of G+

i and G+
j respectively.

Definition 4 indicates that G+
j matches G+

i when they are represented by the
same domain operation and the achievement requirements of G+

j (captured by
its functional context) are substitutable by the achievement requirements of G+

i .
So, the goal achievement pattern of G+

j is substitutable by the goal achievement
pattern of G+

i . The first step to realize Definition 4 is to illustrate how two
functional contexts are going to be matched in FSMS; later we will show how
two GAPs will be matched in FSMS.

Definition 5. (Functional Context Matching) Given two contexts Ctxti , Ctxtj
and a given goal G, Ctxtj can be substituted by Ctxti with respect to G (denoted
as Ctxti �G Ctxtj) iff ((CtxtPre

i �G CtxtPre
j) ∧ (CtxtPost

i �G CtxtPost
j)∧

(CtxtDesc
i �G CtxtDesc

j)).

Definition 5 indicates that a functional context Ctxtj matches Ctxti when its
constraints sets (pre, post and describing) are substitutable by the corresponding
constraints sets of Ctxti. More details about context matching can be found
in [6]. So, two GAPs are matched in FSMS as indicated in Definition 6.

Definition 6. (GAP Matching) Given two goal achievement patterns GAPi and
GAPj such that GAPi = 〈 Cntxti, Gi, OpSeqi 〉 and GAPj = 〈 Cntxtj , Gj,
OpSeqj 〉. GAPj can be substituted by (matches) GAPi denoted as (GAPi �
GAPj) iff (Gi = Gj) ∧ (Cntxti �Gj Cntxtj) ∧ (OpSeqi �Gj OpSeqj).

Definition 6 indicates that matched GAPs will be realizing the same goal
and will be having substitutable contexts and substitutable operation sequences.
Operation sequences could be matched syntactically, semi-semantically (adopts
1-to-1 state matching) or semantically (adopts many-to-many state matching).

A High-Level Functional Matching for Semantic Web Services 123

The semantic approach takes into consideration the effect of a group of opera-
tions on the external behavior of the service. The effect of invoking a sequence of
operations on (the external behavior of) a service resembles a sequence of state
transitions, where a state represents the (active) constraints at the correspond-
ing transition point. Every state corresponds to a specific set of user interactions
with the service (the external behavior). These user interactions are reflected
by the active constraints captured in the state. The state model corresponds to
the transition point between two operations (Opx and Opx+1) and differenti-
ates between the active and idle constraints, as the idle constraints do not have
any effects over the successor operation so they will be discarded during state
matching.

Definition 7. (State Definition) Given an operation sequence OpSeq = Op0,
Op1, . . . , Opn, a state Sx between the operations Opx−1 and Opx is defined as
〈fe

x, f i
x〉 such that fx = fe

x + f i
x, where fx is the set of active constraints at

transition point x, fe
x is the set of effective constraints, f i

x is the set of idle
constraints and + represents the union operator between two sets. fx, fe

x ,and
f i

x are computed as follows:(1) f0 = CtxtPre. (2)fx = f i
x−1 + OpPost

x−1 , where
1 ≤ x ≤ n+1. (3) f i

x = fx �G OpPre
x , where �G is the semantic difference between

two sets of constraints with respect to G.10 (4)fe
n+1 =fn+1. (5) f i

n+1 ={}.

Every state has a corresponding scope that is defined as the set of ele-
ment.attribute appearing as scopes in fe

x of the state. The following example
indicates how a state is automatically created.

Example 1. (State Creation) Let us consider two consecutive operations Submit-
Payment(Payment):Payment and Confirm-Order (Order, Payment): Order in a
given purchase online transaction. The pre-conditions of “Submit-Payment” op-
erations are {Payment.method = Null , Payment.details = Null }, while its post-
conditions are { Payment.method �= Null, Payment.details �= Null, Payment.status
= valid }. The pre-conditions of “Confirm-Order” are {Payment.status =
valid,Order.status = created }, while its post-conditions are {Order.status = con-
firmed }. According to Definition 7, the state that represents the transition point
between “Submit-Payment” and “Confirm-Order” will be as follows: Assuming the
independent set f i

x−1 = {Order.status = created}, hence fx is equal to
{Order.status =created , Payment.method �= Null, Payment.details �= Null, Pay-
ment.status = valid }, the effective constraints are the ones that imply the pre-
conditions of “Confirm-Order” operation and the rest of the constraints will be the
independent idle constraints as follows:

fe
x f i

x

{Order.status = created, {Payment.method �= Null,
Payment.status = valid} Payment.details �= Null}

10 A semantic difference between fx and OpPre
x is a subset of fx that has no reachable

scopes to elements of OpPre
x .

124 I. Elgedawy, Z. Tari, and J.A. Thom

The corresponding state sequence is created by applying Definition 7 at every
transition point, by tracing all the transition points in a given operation sequence.
After automatically constructing the state sequences from the involved operation
sequences, they are going to be matched using FSMS such that when the two state
sequences are matched, the corresponding operation sequences will be considered
matched. State sequences will be matched adopting many-to-many manner, in
which a group of states will be examined against another group of states.

Definition 8. (State Matching) Given two states Sx = 〈Se
x, Si

x〉, Sy = 〈Se
y , Si

y〉
and a goal G, Sy can be substituted by Sx with respect to G (denoted as Sx �G Sy)
iff (Se

x �G Se
y).

As the many-to-many approach is adopted, state merging is required to real-
ize such an approach. A state is represented by a set of constraints at a given
transition point. Merging two states means generating a new state that repre-
sents the set of constraints resulted after forming a virtual composite operation,
that is resulted from merging the operations following the transition points of
the merged states, as indicated in Figure 3.

0OpContext 1Op xOp yOp nOp

0OpContext 1Op

0S 1S

zOp

mS ZS

nOp
zOp

1 nS

mOp

ySxS

Corresponding Merged Operations

Merged States

The New Virtual
Operation

New Merged States

Fig. 3. Merging States

Opm should not affect any other state in the corresponding sequence. To
maintain this principle, both the pre/post conditions of Opm are defined as
follows: OpPre

m = OpPre
x + (OpPre

x+1 �G OpPost
x), and OpPost

m = OpPost
x+1 + (OpPost

x

�G OpPre
x+1) [5]. The new state resulting from the merge Sm will be created

according to the operator defined in Definition 7, adopting the values of Opm’s
pre/post conditions (see Definition 9).

Definition 9. (State Merge) Given two consecutive states Sx = 〈fe
x, f i

x〉, Sx+1
= 〈fe

x+1, f
i
x+1〉 and a goal G, the state Sm = 〈fe

m, f i
m〉 resulting from merging Sx

and Sx+1 with respect to G (denoted as Sm=Sx⊕GSx+1) is defined as follows:
f i

m = (f i
x �G fe

x+1). fe
m = (f i

x + fe
x) �G (f i

x �G fe
x+1).

Definition 10. (Expandable State) Given states Sx and Sy belonging to
StatSeqi and StatSeqj respectively and a goal G, Sx is expandable with respect to
Sy and G iff there exists a state Sq belonging to StatSeqi, x≤q, such that (Sw �G

Sy), where Sw is a new state resulting from merging the states from Sx to Sq.

A High-Level Functional Matching for Semantic Web Services 125

Definition 10 implies the expansion direction is “down”, however a state could
be expanded in “up” direction, meaning that this will be merged with its pre-
decessors. In order to realize the many-to-many matching approach, we need to
determine both the states in a given sequence that should be expanded as well as
the direction for the matching. We propose a transformation procedure, called

Fig. 4. Before and After Invoking SEQA

Start

Given
StatSeq1, StatSeq2,

and Cntxt

i=0; j=0;
S= StatSeq1[i]
T= StatSeq2[j]

BackTrackFlag= false

Does S match T?

Is T down expandable
w.r.t S?Yes

1- Expand T.
2- j=j + Expansion step.

Yes

1- Add S to the Augmented StatSeq1.
2- Add T to the Augmented StatSeq2.
3- Mark S matches T in the augmented sequences.
4- j = j+1.

No

 j > Length(StatSeq2) ?

End

1- T = StatSeq2[j].
2- i= i +1.

i > Length(StatSeq2) ?

S = StatSeq1[Length(StatSeq1)-1]. S = StatSeq1[i].

A

A

Yes

No

Yes No

Is S down expandable
w.r.t T?

No

1- Expand S
2- i=i +Expansion Step.

Yes

A

Is S up expandable
w.r.t T?

No

1- Merge the augmented states
of StatSeq1 located within the
S’s expansion step with S as
well as their matching peers in
StatSeq2 With T.

2- BackTrackFlag = false

Yes

A

1- BackTrack= i
2- BackTrackFlag=true
3- i= i +1.

i > Length(StatSeq2) ?

No

S = StatSeq1[i].

A

No

1- Mark T as Unmatched.
2- S= Statseq1[BackTrack].
3- 4- j = j+1.

Yes

 j > Length(StatSeq2) ?

End

Yes

No

A

Do not Overwrite BackTrack
when BackTrackFlag = True

If Scope of S is not part
of Scope of T, exclude
S from the merge such
that the merged states
are the states located
within the expansion

step

Fig. 5. SEQA Flow Chart

126 I. Elgedawy, Z. Tari, and J.A. Thom

sequence augmenter (SEQA), to decide which and when states will be merged
and the direction of merging. SEQA accepts two state sequences, a source se-
quence and a target sequence and the involved goal as its input, then returns
two augmented state sequences and their corresponding matching peers. Figure 4
shows how the sequence augmenter works.

Figure 5 depicts the flow chart of SEQA. StatSeq1 is the source sequence
and StatSeq2 is the target sequence. Let T represent the current target state
to be matched in StatSeq2 and S represent the current proposed matching
state in StatSeq1 that will be examined against T . Using Definition 8, SEQA
checks whether or not S matches T . If this holds, this will mean that Scope(S)
⊇ Scope(T), which gives an opportunity to check whether S also matches T ’s
successor when merged with T . If this is true, T will be down expanded, and
this process will be repeated until T is not down expandable. The current S is
added to the augmented source sequence and the current T (the expanded T if
so) is added to the augmented target sequence. Also, S and T are marked as a
matching peer. S may not match T , meaning either they have different scopes
or they have the same scope but the states’ conditions contradict, meaning they
will never match. However, having different scopes implies either (Scope(S) ⊂
Scope(T)) or (Scope(S) ∩ Scope(T) = ∅).

When Scope(S) ⊂ Scope(T), there is a chance for S to match T by down
expanding S. Even for the case of (Scope(S) ∩ Scope(T)= ∅) by down expand-
ing S, there may be a chance for the successors of S to match T . Hence, SEQA
will try to down expand S, marked as backtracking point. If S down expansion
fails, there is an opportunity for S to be up expandable with respect to T. If up
expansion succeeds, then the augmented sequences (source and target) should
be restructured. This happens by both merging all the states that lie within
the expansion step and merging their matching peers in the other augmented
sequence. If the up expansion procedure fails, this means the current S cannot
match the current state T . Therefore SEQA will try the S’s successor to match
it with T and also will check all the previous scenarios. If one of the previous
scenarios works and S matches T , SEQA prepares the next state in the tar-
get sequence to be matched. But if all the previous scenarios did not work for
all the successors of S, this implies that T cannot be matched with the given
source state sequence. Therefore T will be marked as unmatched, and SEQA
prepares the successor of T to be matched. It backtracks to the S’s state that
first tested with the unmatched T so as to give a chance for the successor of T to
be checked against this backtracked S. SEQA considers a source state sequence
is a match for a target state sequence, when every state in the target augmented
sequence must be substituted by an augmented state in the source in an order-
preserving manner. Complexity of SEQA is O(n3). The complexity of SEQA is
high as the worst case is every state in the target sequence must be examined
against the states of the source sequence for up and down state expansion, which
costs O(n2).

A High-Level Functional Matching for Semantic Web Services 127

5 Validation

The correctness of matching results can be judged through the F-measure met-
ric 11, as when having its value equal to one implies the matching results are
totally correct. Unfortunately, there are neither benchmarks nor standard data
sets for matching semantic web services. Hence we opted to use a random ap-
proach, where a random data set and queries are generated so as to validate the
devised matching techniques, following the same simulation experiments indi-
cated in [6] used for testing context matching. This section will therefore focus
on the evaluation of devised GAP matching techniques and compare them to
the semantic, semi-semantic and syntactic approaches.

Work-Load Generation. The proposed technique requires the existence of a
domain ontology that adopts the meta-ontology structure. The elements of the
conducted experiments are: a domain ontology (that includes concepts, opera-
tions, roles and the substitutability graphs); a data set of generic GAPs; and
a query set and its correct answers. We have generated a random number of
concepts, a random number of operations and a random number of roles to rep-
resent the domain elements. To make sure there are no contradicting conditions
when a new operation is generated, the following restrictions are followed when
generating the domain operations: (i) every operation has one distinct concept
as input parameter and it will be the operation output concept as well. (2) Ev-
ery operation has one pre condition over an attribute of the input concept, such
that the value of this attribute equals to its lower limit. (3) Every operation
has one post condition over the same attribute used in the pre conditions such
that the value of this attribute is less than its upper limit. Operation sequences
are generated by selecting a random number of operations from the generated
operations; in order to form our data set of generic GAPs.

Experiment Logic. We have generated a random data set of generic GAPs.
Then a query set is constructed by randomly selecting 10% of the data set.
Experiments are performed as follows. First, data and query sets are generated.
Second, ten mutated query sets are produced such that the first mutated query
set has the first 10% of the query set being mutated, the second mutated query
set has the first 20% of the query set being mutated, and so on until the tenth
mutated query set has 100% mutated queries. Third, all query sets are applied
to the semantic matching approach, the semi-semantic matching approach and
the syntactic approach. Fourth, the retrieval precision is calculated as indicated
before for all approaches. Finally, the above procedure is repeated 1000 times
and the final average result is computed.

Without a loss of generality, the mutation process is performed by merging
all the operations of a given GAP into one operation such that the new mutated
GAP will have only one operation. This operation is constructed as follows: (1)
Its input is a collection of the GAP operations’ inputs. (2) Its output is a col-
lection of the GAP operations’ outputs. (3) Its pre condition is a conjunction of
11 F-measure = 2×Precision×Recall

Precision+Recall
.

128 I. Elgedawy, Z. Tari, and J.A. Thom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mutation Percentage

F-
M

ea
su

re

1-to-1 Syntactic

1-to-1 Semantic

many-to-Many
Semantic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 1000 10000 100000

Data Set No Of Scenarios

Av
g

Q
ue

ry
 R

es
po

ns
e

in
 S

ec Syntactic

1-to-1 Semantic

many-to-many
Semantic

Fig. 6. A Comparison of GAP Matching Techniques

the GAP operations’ pre conditions. (4) Its post condition is a conjunction of
the GAP operations’ post conditions. The pre/post conditions of the new con-
structed operation are deliberately mutated to generate new sets of conditions,
so that the scopes of the original conditions are reachable from the scopes of
the mutated conditions using a randomly generated substitutability graphs. For
example, constraint (x>12) will be mutated into constraint (y>12) such that x
is reachable from y. Experiment results are shown in Figure 6.

As the original query set and the mutated query sets have the same answers,
the syntactic approach fails to answer the mutated queries. This is reflected by
the decrease of retrieval precision, as the percentage of mutated queries increases.
Also the semi-semantic approach fails to answer the mutated queries, except for
the cases that its GAP has only one operation. Therefore, the semi-semantic
approach could have the same behavior of the syntactic approach against the
mutated queries. This indicates that many-to-many matching approach should
be used instead of one-to-one approach when semantic matching is adopted.
However, precision is expensive as indicated in the figure but we believe there is
a good potential for performance enhancement as basic retrieval techniques are
used in these experiments.

6 Conclusion

This paper demonstrates that capturing the semantics of web services, users
and application domain in a machine-processable format is crucial for obtaining
correct matching results. This paper proposed an advanced matching scheme
for semantic web services, called Functional Substitutability Matching Scheme
(FSMS), which uses high-level functionality (as a comparison aspect), substi-
tutability (as a matching rule), and goal achievement (as a correctness criterion).
The application domain functional substitutability semantics are captured via
concept and role substitutability graphs. Adopting FSMS, we devised a direct
matching technique for semantic web services that is shown to provide correct
matching results (more details about other approaches are in [10]). Aggregate
service matching adopting FSMS is the future extension of this work (more de-
tails in [5]).

A High-Level Functional Matching for Semantic Web Services 129

Acknowledgment

This project is proudly supported by the ARC (Australian Research Council),
under the ARC Linkage project no. LP0347217.

References

1. J. Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. In Proceedings of Workshop on Application of Description Logics, Austria,
September 2001.

2. OWL Services Coalition. Owl S : Semantic markup for web services. http://www.
daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

3. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services. In Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB), pages 132–143. Morgan Kaufmann, 2004.

4. I. Elgedawy. A conceptual framework for web services semantic discovery. In
Proceedings of On The Move (OTM) to meaningful internet systems, pages 1004–
1016, Italy, 2003. Springer Verlag.

5. I. Elgedawy and Z. Tari. Aggregate high-level functional matching for semantic
web services. Technical Report TR-05-3, RMIT University, Australia, 2005.

6. I. Elgedawy, Z. Tari, and M. Winikoff. Exact functional context matching for web
services,. In International Conference on Service Oriented Computing (ICSOC),
November 2004.

7. I. Elgedawy, Z. Tari, and M. Winikoff. Scenario matching using functional substi-
tutability in web services. In Proceedings of the International Conference on Web
Information Systems Engineering (WISE), 2004.

8. P. Ganesan, H. Garcia Molina, and J. Widom. Exploiting hierarchical domain
structure to compute similarity. ACM Transactions on Information Systems,
21(1):64–93, January 2003.

9. U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and Dieter Fensel. Wsmo web
service discovery. http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112, 2004.

10. I. Elgedawy, Z. Tari, and M. Winikoff. Functional context matching for web ser-
vices. Technical Report TR-04-3, RMIT University, Australia, 2004.

	Introduction
	The G+ Model
	The FSMS Matching Scheme
	The Direct Matching Approach
	Validation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

