
B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 1 – 11, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomic Web Processes

Kunal Verma and Amit P. Sheth

LSDIS Lab, Dept. of Computer Science, University of Georgia, Athens, GA 30605, USA
{verma, amit@cs.uga.edu}

Abstract. We seek to elevate autonomic computing from infrastructure to proc-
ess level. Different aspects of autonomic computing – self configuring, self heal-
ing, self optimizing and self aware are studied for Autonomic Web Processes
(AWPs) with the help of a supply chain process scenario. Existing technologies
and steps needed to shorten the gap from current process management systems to
AWPs are studied in this paper. The behavior of AWPs is controlled by policies
defined by users. Sympathetic and parasympathetic policies are introduced to
model short and long term policies. A key advantage for elevating autonomic
computing to a process level is that the trade-offs can be more evident because the
process components map more readily to business functions.

1 Introduction

The increasing complexity in computing models, as well as massive growth in com-
puting resources has made efficient interaction of humans and information technology
increasingly difficult [10]. The vision of autonomic computing [14] proposes a com-
puting model analogous to the autonomic functioning of the human nervous system
which regulates various human functions without conscious control of the human
mind. Autonomic computing is characterized by systems with capabilities of self
management of their resources based on policies. The field of autonomic computing
has addressed some very important research issues like self adaptive middleware [16],
autonomic server monitoring [20] and policy driven data centers [15]. In this paper,
we propose to elevate autonomic computing from infrastructure level to the process
level to create Autonomic Web Processes (AWPs).

We present AWPs as a natural evolution of autonomic computing from individual in-
formation technology resources to the business processes that govern the functioning of
various businesses activities. Essentially, AWPs are self aware, self configuring, self
optimizing and self healing processes that interact with the environment based on user
specified policies. AWPs may be a more appealing way to benefit from autonomic
computing. This is because it is inherently more difficult to define and measure tangible
ROI for an infrastructure, but it can be more possible to do so since business functions
that can be directly supported by AWPs or mapped to its components.

In this paper, we will build upon previous research on semantic Web processes
 [18], workflows and autonomic computing to create a framework for AWPs. One of
the three process architectures presented in [22] termed “dynamic trading processes”
shared the characteristics of AWPs such as self configuration and dynamism. We use

2 K. Verma and A.P. Sheth

a motivating scenario to discuss the potential advantages of supporting autonomic
properties at the process level. We also briefly survey the current research and techno-
logical expertise for supporting each of the properties and try to outline enhancements
to current state of the art to create AWPs.

Consider following examples:

• When there is a change in supplier’s capabilities in highly reactive part procure-
ment process of a computer manufacturer such as Dell. Currently delays in part
deliveries lead to huge losses [13]. This is largely due to non responsive business
processes that take time to react to the environment. Using an AWP would help
the process to react to the situation with the help of declaratively specified poli-
cies. It is important to be able to model both the short term and the long term
policies. A short term policy may want to re-order the part from some other sup-
plier to reduce the immediate loss, but a long term policy might consider the pre-
vious order fulfillment history of the supplier, as well as, the relationship with the
supplier. In order to capture such policies, we introduce the concept of sympa-
thetic (short term) and parasympathetic (long term) policies.

• Where the manufacturer has already decided the suppliers, but a sudden change
in foreign currency exchange rate (modeled as an external/environmental con-
straint/parameter), may make another set of suppliers more optimal. For example,
Indian textiles became cheaper and the need to distribute risks became more im-
portant when China announced 2.5% devaluation of its currency and stopped
linking it solely to US$.

• When market demands and buyer needs change suddenly. Consider the case of
iPOD component manufacturers, before and after the announcement of iPOD
Nano. Based on the popularity of iPOD Mini, a manufacturer of its component
mini-drive could raise the cost or even be tempted to invest into new production
lines to increase capacity. However, if the manufacturer does not very quickly
react to the announcement and sudden popularity of the iPOD Nano which uses
flash memory, it could face substantial losses.

An AWP must continuously try to self optimize and must have the ability to recon-
figure the process. The rest of the paper is organized as follows. Section 2 provides
some background information about the autonomic nervous system and autonomic
computing. AWPs are defined in Section 3. The motivating scenario is presented in
Section 4. Section 5 presents AWP Properties in detail. Finally, Section 6 outlines the
conclusions and future work.

2 Background – Autonomous Nervous System and Autonomic
Computing

In this section, we provide a brief background of the autonomic nervous system
(ANS) and autonomic computing. The ANS is responsible for maintaining constant
internal environment of the human body by controlling involuntary functions like
digestion, respiration, perspiration, and metabolism, and modulating blood pressure
 [6]. All these functions are not voluntarily controlled by us (e.g., a person does not
have direct control over blood pressure). At a high level of granularity, the ANS has

 Autonomic Web Processes 3

four main functions [12]: 1) Sensory function – It gathers information from the out-
side world and inside the human body, 2) Transmit function – transmits the informa-
tion to the processing area, 3) Integrative Function – processes the information and
decides the best response and 4) Motor function – sends information to the muscles,
glands and organs so that they can respond properly. It is divided into two subsys-
tems- sympathetic and parasympathetic. The sympathetic nervous systems deals with
providing responses and energy needed to cope with stressful situations such as fear
or extremes of physical activity. It increases blood pressure, heart rate, and the blood
supply to the skeletal muscles at the expense of the gastrointestinal tract, kidneys, and
skin. On the other hand, the parasympathetic nervous systems brings normalcy in
between stressful periods. It lowers the heart rate and blood pressure, diverts blood
back to the skin and the gastrointestinal tract.

The vision of autonomic computing aims to make systems that simulate the auto-
nomic nervous system by being more self managing. The objective is to let user spec-
ify high level policies and then the system should be able to manage itself, based on
those policies. The following properties have been defined for autonomic systems
 [10] – self aware, self configuring and reconfiguring, self optimizing, self healing,
policy based interaction with other components and self protecting.

A blueprint for autonomic architectures [30] was presented in [11]. It identifies the
main entities in an autonomic system as – resources, touchpoints and autonomic man-
agers. The resources are the entities that are managed by managers. Touchpoints are
the interfaces by which the entities interact with the autonomic managers or other
resources. A touchpoint has two sub components – sensors and effectors. Sensors are
used to disseminate information about the resource by providing an interface for ac-
cessing the state of the resources. They also support event generation for sending
events to the autonomic managers. Effectors provide interfaces which are used by
autonomic managers to change state of resources. Another crucial aspect of auto-
nomic computing is the representation and reasoning based on policies.

3 Autonomic Web Processes

AWPs are Web service based processes that support the autonomic computing proper-
ties of being self configuring, self healing, self optimizing, self aware, self protecting
and self healing. The underlying backbone of AWPs will be based on autonomic
infrastructure proposed by various autonomic computing researchers. Our aim is
elevate these properties to the business process level, as the business processes are the
backbone of the businesses and key to their competitiveness. Fig. 1 shows the benefits
of autonomic computing at the infrastructure level and the process level. The benefits
of autonomic computing at the infrastructure level are manifold. Human involvement
is reduced in configuring infrastructure and recovering from failures. In addition,
businesses are able to guarantee SLAs based on autonomic resources. We believe that
these benefits can be leveraged in an even more efficient manner if the business proc-
esses that control the infrastructure were also autonomic. Hence, the benefits of auto-
nomic computing would be magnified by reducing human involvement in configuring
the processes and recovering from failures. In addition, the processes would be self
optimizing and highly reactive to changes in the environment.

4 K. Verma and A.P. Sheth

Autonomic Computing

Autonomic Web Processes

Networks Servers

Autonomic IT
Infrastructure

•Self Configuring: Lower IT
cost on maintenance and de-
ployment.

•Self Healing: Lower human
involvement in problem detec-
tion, analysis and solving.

•Self Optimizing: Better
SLAs to customers of the IT
infrastructure.

Business Processes

•Self Configuring: Proc-
esses configured with respect to
business policies.

•Self Healing: Quick re-
sponses to failures, leading to
large savings in cost.

•Self Optimizing: Environ-
ment changes lead to reconfigu-
ration to a lower cost process.

Databases

Fig. 1. Autonomic Web Processes and Autonomic Computing

4 Motivating Scenario

Consider the part procurement process of a computer manufacturer. The inventory
management software (IMS) sends an order of a number of parts to the procurement
module (PM). It is the IMS’s job to decide the quantities and number of parts to be
ordered. It is also responsible for deciding the amount of money to be spent on the
whole process and/or for each individual part and setting required times for delivery.
In addition, it may specify some compatibility issues between some quantities of the
parts (e.g. ordering a certain quantity of a type motherboard requires ordering
matching quantities of compatible memory, video cards, etc.). In other words, the
IMS is responsible for setting the configuration parameters for the part procurement
process.

We now introduce the part procurement process of the PM, which is responsible
for actually procuring the parts from suppliers without violating the constraints set by
the IMS. The PM has some more factors to consider like whether to order only from
preferred suppliers, or to choose cyclically among its bag of suppliers [13]. Ideally, it
should be able to optimally configure the part procurement process and then place the
orders. Then it should monitor the orders for physical and logical failures and have
the ability to deal with them. Physical failures are based on the supplier service going
off-line, while logical failures might include delay in delivery or partial order fulfill-
ment by suppliers.

 Autonomic Web Processes 5

In this paper, we will explore the autonomic aspects of the process shown in
Fig. 2. The AWP properties that we will consider are as follows.

• Self Configuring: How can the process be self-configured without violating the
constraints (policies) of the IMS and PM?

• Self Healing: Can the process use the policies to recover from physical and
logical failures?

• Self Optimizing: Identifying points for the process to be notified of more opti-
mal suppliers or currency exchange rates.

• Self Aware: Creating a comprehensive semantic model expressive enough to
support the above mentioned AWP properties.

In order to support these properties, we propose four AWP components, the auto-
nomic execution engine and three autonomic managers that support self configuring,
self healing and self optimizing functionalities.

Fig. 2. Autonomic Part Procurement Process

5 Defining Autonomic Computing Properties for AWPs

In this section, we describe different properties for AWPs. We start by explaining
each property with the help of motivating scenario presented in Section 4 and then
survey some of the research work relevant for supporting the property.

5.1 Self Configuring

An AWP must be able to configure itself on the basis on the user policies. For an
AWP, configuration may include the following functions- discovery of partners, que-
rying partners for quotes, negotiation with the partners, constraint analysis (non quan-
titative analysis, optimization using integer linear programming/genetic algorithms,
etc.) and dynamic/runtime binding. For the motivating scenario in Section 4, self

Autonomic Execution
Engine

Receive
Order

Configure

Order Part 1

Order Part 2

Order Part N

Monitor
Order Status

Schedule
Manufac-
turing

Autonomic
Configuration
Manager

Autonomic
Healing
Manager

Autonomic Self
Optimization-
Manager

Sensor Effector

6 K. Verma and A.P. Sheth

configuration refers to the optimal selection of suppliers of the process on the basis of
the computer manufacturer’s policies. The AWP configuration manager must be able
to configure the process with respect to the policies. The policy language must be able
to specify the goals of the configuration. In this case the goals of configuration are the
following:

1. Identify supplier(s) for each part (discovery)
2. Retrieve quote from database/ Query suppliers for quotes (cost estimation)
3. Negotiate better prices if possible (negotiation)
4. Find optimal suppliers and quantities based on the policies (constraint analysis)
5. Configure the process with the optimal suppliers (dynamic binding)

Fig. 3. AWP Configuration Manager

A high level overview of the AWP configuration manager is shown in Fig. 3.
There are three steps to the configuration. The AWP sends the configuration module
the goals for configuring it. Then the configuration module finds the required compo-
nents for the tasks needed and configures them. (e.g., a certain protocol may be
loaded for negotiation to configure the negotiation module). Finally, the process must
be configured using the different components.

There has been noteworthy research in all modules mentioned for configuration.
Semantic Web service which enhances the querying capabilities of UDDI has been
discussed [19] [26] [24]. The process of requesting quote from suppliers in the elec-
tronics domain has been standardized by RosettaNet. Negotiation using game theory
was discussed in [7] [9]. Constraint analysis has been discussed using integer linear
programming [2], genetic algorithms and SWRL [28]. Dynamic binding capabilities
for Web processes have been discussed in [25]. For creating an infrastructure for self
configuration AWPs all the modules must be created as autonomic components and
the interactions between them should be policy driven.

2. Discover and
configure compo-
nents according to
polices

3. Configure proc-
ess using the auto-
nomic components

Autonomic Components Layer

1. User Policies speci-
fying goals for process
configuration

AWP Configuration
Manager

Discovery
Engine

Cost Estima-
tion Module

Negotiation
Module

Constraint
Analyzer

Dynamic
Binder

 Autonomic Web Processes 7

5.2 Self Healing

An AWP must be able to recover from failures. There could be two types of failures –
system level failures and logical level failures. An example of a physical level failure
is a supplier Web service failing during order placement. Logical failures include
delay in delivery or the supplier fulfilling only part of the order. For either kind of
failure, the AWP must be able to make an optimal choice based on existing alterna-
tives. The choices could include replacing the supplier or canceling the order as a
whole. Replacing the supplier could be costly, as there may be a long term relation-
ship or some other parts’ orders may have to be cancelled and re-ordered because of
part dependencies.

The self healing behavior of an AWP should be governed by policies. In order to
preserve the long term business policies, we propose to model the recovery policies as
sympathetic policies (e.g., replace supplier after 5 retries or short term profit maximi-
zation) and the long term policies as parasympathetic policies (e.g., preferred supplier
order cancellation should be avoided). The AWP framework should be able to reason
on the policies and choose the most appropriate plan for healing. The self healing
aspect of an AWP can borrow from the rich work on workflow transactions [21],
compensation [4] and recovery [17]. Ideally, a cost based healing mechanism must be
created for AWPs, which combines all the three models (transaction, compensation,
recovery) with some optimization model.

5.3 Self Optimizing

An AWP must be able to optimize itself with changes in the environment. It must
have the ability to monitor the changes in the environment and reconfigure itself, if
there exists a more optimal configuration. As an example of change of the environ-
ment, consider the case where some of the suppliers are in different countries and the
change in currency conversion rates can render an optimal process sub-optimal. In
that case, the AWP must be able to change the suppliers by reconfiguring the process.
Other changes in the environments include a supplier announcing a discount, the most
favorable clause of a contract getting activated because the supplied offered a better
deal to another buyer or a new supplier registering itself with the manufacturer.

As shown in Fig. 4, the self optimization manager has a number of listeners, which
monitor the environment of the AWP. The entities and variables to be monitored are
selected according to the user specified policies. In this case, there are two entities
being monitored – currency exchange rates and supplier discounts. Fig. 4 shows a
currency change event above the user specified threshold which is detected by a lis-
tener and sent to the self optimization manager. The self optimization manager gener-
ates a reconfigure event for the configuration manager, which performs analysis using
different reasoning engines at its disposal. If a more optimal solution is found, it uses
the effector of the execution engine to change the process configuration. The self
optimization property creates a need for a new generation of process coordination
(workflow) engines that are not only guided by control flow constructs but also by
optimal execution based on the changing environment.

8 K. Verma and A.P. Sheth

Fig. 4. Self Optimization of AWP due to change in Environment

5.4 Self Aware

In order to achieve the autonomic computing properties in this section, an AWP must
be aware of itself and its environment. This implies that there must be a comprehen-
sive model of the AWP, the Web services, the environment and the policies that guide
its operation. Given the already entrenched position of the WSDL and related stan-
dards, a truly extensible and upwardly compatible approach that preserves current
investment in tools, techniques and training must be used to create model. Based on
our experience with the METEOR-S [18] project, which deals with modeling the
complete lifecycle of Web processes, we have concluded that no one approach is
enough to capture all the intricacies of AWPs. We will build upon our broad classifi-
cation of the semantics [23] required for this – data, functional, execution and non-
functional semantics to outline the model.

The emerging field of the Semantic Web [29] proposes using description logics
based ontologies (with the W3C recommended OWL language) to capture the seman-
tics of data on the Web. While, this seems adequate to capture the necessary data
semantics (inputs/outputs) of Web services, it is not adequate to capture the functional
semantics of Web services (what the Web service does), where a different representa-
tion like horn logic based SWRL may be more adequate. The execution semantics
focus on the behavioral aspects of Web services, the current state of Web processes
and different approaches like task skeletons [5], Petri nets based YAWL [1] or differ-
ent variants of temporal logic can be considered to represent the behavior of Web
services.

3. Optimize and send new
process configuration to
Execution Engine

2. Notify configuration
manager that possible
reconfiguration is needed

1. Change in relevant
currency rate beyond
threshold

Autonomic Execution Engine

Receive
Order

Configure

Order Part 1

Order Part 2

Order Part N

Monitor
Order Status

Schedule
Manufac-
turing

Sensor Effector

Autonomic Self Optimiza-
tion Manager

Listener1
(monitor currency
exchange rates)

Listener2 (monitor
supplier discounts)

Sensor Effector

Autonomic Self Configu-
ration Manager

Sensor Effector

 Autonomic Web Processes 9

The non-functional semantics include the policies, business rules, constraints, and
configuration/reconfiguration parameters. While the logic based modeling languages
are good for capturing qualitative aspects of business rules, and process constraints,
they are not effective in capturing the quantitative constraints for process optimiza-
tion, which can be represented using an operations research based technique like inte-
ger linear programming (ILP). For goal or utility based reconfiguration of processes
 [15] or decision theoretic planning models like Markov decision processes may be
more adequate. Another important issue in non functional semantics is the ability to
represent the policies at different levels - Business Level Policies, Process Level Poli-
cies, Instance Level Policies, and Individual Component Level Policies and have the
ability to resolve conflicts between them.

For self configuration, the discovery phase would require functional, data and non
functional semantics. All other phases – negotiation, constraint analysis and binding will
be guided by policies (i.e. non functional semantics). For self healing the execution
semantics which includes the state of process and transactional traits on the Web ser-
vices will be required. In addition, the best plan for healing will be decided using the
policies. For self optimizing, the entities in the environment to be monitored will be
specified using policies. Both, self optimizing and self healing involve reconfiguration.

An important aspect of our approach is the ability to map our model to existing
service oriented architecture standards [8] using the extensibility features, provided by
the standards. This has been illustrated in our previous work in WSDL-S [3] [24],
which adds data and functional semantics to WSDL and semantic extensions to WS-
Policy [27], which proposes using OWL ontologies and SWRL rules to represent
non-functional semantics of Web services using the WS-Policy framework.

6 Conclusions and Future Work

In this paper, we have a presented an approach for elevating autonomic computing to
the process level. We have provided a brief outline of how an AWP can support self
configuration, self healing and self optimizing properties. The contributions of this
paper include:

• Defining and creating a framework for AWPs.

• Studying the applicability of current research for creating AWPs.

As we discussed earlier, there has been significant work done on autonomic com-
puting, semantic and dynamic Web processes and workflows. AWPs are the logical
next step in the evolution of all these fields, as it builds upon the work done in these
vast and rich areas. As a first step towards creating AWPs, a comprehensive semantic
model of all aspects of AWPs will have to be created. In future, we will demonstrate
explicit need and use of the four types of semantics we have identified: data seman-
tics, functional semantics, non-functional semantics and execution semantics [23].

We have also tried to outline some of the initial steps which will be needed to sup-
port the other AWP properties. We have provided initial discussions on how to model
the first two examples mentioned in the introduction – autonomic supply chain recov-
ery from failure with the sympathetic and parasympathetic policies and self optimiza-
tion due to changes in environment with the help of the sensors, effectors and

10 K. Verma and A.P. Sheth

autonomic managers. We plan to implement these scenarios and test our hypotheses
about the benefits of AWPs.

As the benefits from creating AWPs are manifold for both business and scientific
processes, we aim to collaborate with our research partners in the industry and the aca-
demia to realize this vision. Our future work includes creating a research prototype that
supports AWPs and creating a theoretical model to represent all aspects of AWPs.

Acknowledgements

We would to thank members of the LSDIS Lab and the METEOR-S project whose
valuable insights and ideas helped us in writing this paper. In particular, special
thanks go to John A. Miller, Karthik Gomadam and Prashant Doshi.

References

[1] Wil M. P. van der Aalst, A.r H. M. ter Hofstede: YAWL: yet another workflow language.
Inf. Syst. 30(4): 245-275 (2005)

[2] R. Aggarwal, K. Verma, J. Miller and W. Milnor, "Constraint Driven Web Service Com-
position in METEORS," Proc. of the 2004 IEEE International Conference on Services
Computing (SCC 2004), 2004, pp. 23-30

[3] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, Web
Service Semantics - WSDL-S, A joint UGA-IBM Technical Note, version 1.0, http://
www.alphaworks.ibm.com/g/g.nsf/img/semanticsdocs/$file/wssemantic_annotation.pdf

[4] G. Alonso, D. Agrawal, A. Abbadi, M. Kamath, R. Günthör, C. Mohan: Advanced Trans-
action Models in Workflow Contexts. ICDE 1996: 574-581

[5] P. Attie, M.. Singh, E. A. Emerson, A. P. Sheth, M. Rusinkiewicz: Scheduling workflows
by enforcing intertask dependencies. Distributed Systems Engineering 3(4): 222-238
(1996)

[6] S. Bakewell, The Autonomic Nervous System, available at http://www.nda.ox.ac.uk/
wfsa/html/u05/u05_010.htm

[7] M. Burstein, C. Bussler, T. Finin, M. Huhns, M. Paolucci, A. Sheth, S. Williams, M. Za-
remba, A Semantic Web Services Architecture, To appear in IEEE Internet Computing,
2006.

[8] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana: The next step in Web services.
Communication of the ACM 46(10): 29-34 (2003)

[9] H. Davulcu, M. Kifer, I. V. Ramakrishnan: CTR-S: a logic for specifying contracts in
semantic web services. WWW (Alternate Track Papers & Posters) 2004: 144-153

[10] IBM Autonomic Computing Website, http://researchweb.watson.ibm.com/autonomic/
[11] IBM Autonomic Computing Blueprint Website, http://www-03.ibm.com/autonomic/

blueprint.shtml
[12] J. Johnson, Autonomic Nervous System, http://www.sirinet.net/~jgjohnso/nervous.html
[13] R. Kapuscinski, R.. Zhang, P. Carbonneau, Robert Moore, Bill Reeves, Inventory Deci-

sions in Dell’s Supply Chain, Interfaces, Vol. 34, No. 3, May–June 2004, pp. 191–205
[14] Jeffrey O. Kephart, David M. Chess: The Vision of Autonomic Computing. IEEE Com-

puter 36(1): 41-50 (2003)
[15] J. Kephart, W.. Walsh: An Artificial Intelligence Perspective on Autonomic Computing

Policies. POLICY 2004: 3-12

 Autonomic Web Processes 11

[16] V. Kumar, B. Cooper, K. Schwan, Distributed Stream Management using Utility-Driven
Self-Adaptive Middleware, The Proceedings of the 2nd IEEE International Conference
on Autonomic Computing, 2005.

[17] F. Leymann: Supporting Business Transactions Via Partial Backward Recovery In Work-
flow Management Systems. BTW 1995: 51-70

[18] METEOR-S: Semantic Web Services and Processes, http://lsdis.cs.uga.edu/projects/
meteor-s/

[19] M. Paolucci, T. Kawamura, T. Payne and K. Sycara, Semantic Matching of Web Services
Capabilities, Proc. of the 1st International Semantic Web Conference, 2002.

[20] C. Roblee V. B. George Cybenko, Large-Scale Autonomic Server Monitoring Using
Process Query Systems, The Proceedings of the 2nd IEEE International Conference on
Autonomic Computing, 2005.

[21] M. Rusinkiewicz, A. P. Sheth: Specification and Execution of Transactional Workflows.
Modern Database Systems 1995: 592-620

[22] A. P. Sheth, W. M. P. Aalst, I. B. Arpinar: Processes Driving the Networked Economy.
IEEE Concurrency 7(3): 18-31, 1999

[23] A. P. Sheth, “Semantic Web Process Lifecycle: Role of Semantics in Annotation, Dis-
covery, Composition and Orchestration,” Invited Talk, Workshop on E-Services and the
Semantic Web, WWW, 2003.

[24] K. Sivashanmugam, K. Verma, A. P. Sheth, J. A. Miller, Adding Semantics to Web Ser-
vices Standards, Proc. of the 1st International Conference on Web Services, 2003.

[25] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On Accommodating Inter Service
Dependencies in Web Process Flow Composition, Proc. of the AAAI Spring Symposium
on Semantic Web Services, March, 2004.

[26] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J. Miller,
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology and Management, 6 (1),
pp. 17-39, 2005.

[27] K. Verma, R. Akkiraju, R. Goodwin, Semantic matching of Web service policies, The
Proceedings of the Second Workshop on Semantic and Dynamic Web Processes
(SDWP), (in conjunction with ICWS), Orlando, Fl, 2005.

[28] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, Z. Wu, "The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes", LSDIS Lab Technical Report ,
University of Georgia, June 24, 2005

[29] W3C Semantic Web Activity, http://www.w3.org/2001/sw/
[30] S. White, J. Hanson, I. Whalley, D. Chess, J. Kephart: An Architectural Approach to

Autonomic Computing. ICAC 2004: 2-9

	Introduction
	Background – Autonomous Nervous System and Autonomic Computing
	Autonomic Web Processes
	Motivating Scenario
	Defining Autonomic Computing Properties for AWPs
	Self Configuring
	Self Healing
	Self Optimizing
	Self Aware

	Conclusions and Future Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

