

Lecture Notes in Computer Science 3826
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Boualem Benatallah Fabio Casati
Paolo Traverso (Eds.)

Service-Oriented
Computing –
ICSOC 2005

Third International Conference
Amsterdam, The Netherlands, December 12-15, 2005
Proceedings

13

Volume Editors

Boualem Benatallah
The University of New South Wales, School of Computer Science and Engineering
Sydney, NSW 2052, Australia
E-mail: boualem@cse.unsw.edu.au

Fabio Casati
Hewlett-Packard
1501 Page Mill Rd, MS 1142, Palo Alto, CA, 94304, USA
E-mail: fabio.casati@hp.com

Paolo Traverso
ITC-IRST
Via Sommarive 18, Povo, 38050 Trento, Italy
E-mail: traverso@itc.it

Library of Congress Control Number: 2005936810

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

ISSN 0302-9743
ISBN-10 3-540-30817-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30817-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11596141 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Third International Conference on
Service-Oriented Computing (ICSOC 2005), that took place in Amsterdam, The
Netherlands, December 12-15, 2005.

The 2005 edition had the important and ambitious goal of bringing together the
different communities working in Web services and service-oriented computing. By
attracting excellent contributions from different scientific communities, ICSOC aims
at creating a scientific venue where participants can share ideas and compare their
approaches to tackling the many still-open common research challenges. The
commitment to cross-area fertilization was put into practice by having a very
diversified Program Committee and by the presence of several area coordinators,
leaders in the respective communities who encouraged and supervised submissions in
each area. This is also the first edition to feature a successful workshop and demo
program, with selected demos also presented in a paper-like fashion so that they get
the attention they deserve.

In addition, ICSOC 2005 inherited from previous editions a strong industrial
presence, both in the conference organization and in the program. This is very
important due to the industrial relevance and the many challenges of service oriented
technologies.

The paper selection process was very thorough. This year, ICSOC introduced a
two-phase review process where authors were invited to provide their own feedback,
which the Program Committee took into account in the discussion and final decision
on paper acceptance. ICSOC 2005 received over 200 contributions, accepting 32 full
papers (3 of which are industrial papers) and 14 short papers. In addition to the
regular, industry, and short presentations, the conference featured tutorials, panels, a
vision session to discuss the evolution of service-oriented computing, and – as
customary in ICSOC – top-notch keynotes, given by leaders in the industrial and
academic community.

The excellent program that was assembled for presentation at this conference is a
reflection of the hard and dedicated work of numerous people. We thank the members
of the Program Committee and the reviewers for their great efforts in selecting the
papers, even more so this year as the two-phase review process posed an additional
burden on the reviewers. We also acknowledge the great contribution of Willem Jan
van den Heuvel and Kees Leune in the local organization, of Shonali Krishnaswamy,
Helen Paik, and Michael Sheng in handling the publicity, and of Frans Laurijssen,
who maintained the website. Special thanks go to Piergiorgio Bertoli and Maurizio
Napolitano for the tremendous job and their impressive and continuous assistance
with the review process logistics and for handling the camera-ready contributions. We
also thank Christoph Bussler and Meichun Hsu (Panel Chairs), Schahram Dustdar
(Demo Program Chair), Asit Dan and Vincenzo D'Andrea (Tutorial Chairs), Frank
Leymann and Winfried Lamersdorf (Workshop Chairs), and Maurizio Marchese

Preface VI

(Financial Chair). Last but not least, we thank our sponsors, which include IBM,
Hewlett-Packard, the Universities of Tilburg and Trento along with the Vrijie
Universiteit Amsterdam, NICTA, ITC-irst, and our partners ACM SIGWeb and
SIGSoft.

We hope you find the papers in this volume interesting and stimulating.

Paco Curbera and Mike Papazoglou (ICSOC 2005 Conference Chairs)
Boualem Benatallah, Fabio Casati, and Paolo Traverso (ICSOC 2005 Program

Chairs)
Jean Jaques Dubray (ICSOC 2005 Industrial Chair)

��������	�
���

���������
���������������

Conference Chairs Francisco Curbera, IBM Research, USA
Mike Papazoglou, Tilburg University,

Netherlands

Program Chairs Boualem Benatallah, UNSW, Australia
Fabio Casati, Hewlett-Packard, USA
Paolo Traverso, ITC-irst, Italy

Industrial Track
Chair

Jean Jacques Dubray, Attachmate, USA

Demo Chair Schahram Dustdar, Vienna University of
Technology, Austria

Panel Chairs Christoph Bussler, DERI, Ireland Mei Hsu,
USA

Tutorial Chairs Asit Dan, IBM Research, USA
Vincenzo D’Andrea, Univ. of Trento, Italy

Workshop Chairs Frank Leymann, Univ. of Stuttgart, Germany
Winfried Lamersdorf, Hamburg University,

Germany

Financial Chair Maurizio Marchese, Univ. of Trento, Italy

Publicity Chairs Helen Paik, QUT, Australia
Shonali Krishnaswamy, Monash Univ.,

Australia
Michael Sheng, UNSW, Australia

Area Coordinators Roger Barga, Microsoft

 Elisa Bertino, Purdue

 Jim Blythe, ISI/USC

 Stefano Ceri, Politecnico di Milano

 Boi Faltings, EPFL

 Ian Foster - ANL & University of Chicago

 Carlo Ghezzi, Politecnico di Milano

Richard Hull, Bell Labs Research, Lucent

Tech.

 Hui Lei, IBM

 Ugo Montanari, University of Pisa

Organization VIII

 John Mylopolous, University of Toronto

 Colette Roland, University of Paris

Local Organization Chairs Willem Jan van den Heuvel, Tilburg
University, Netherlands

Kees Leune, Tilburg University, Netherlands

�
��
�����
���		���

Wil van der Aalst Eindhoven University of Technology,
Netherlands

Marco Aiello University of Trento, Italy
Jose Luis Ambite ISI, USA
Mikio Aoyama Nanzan University, Japan
Carlo Batini Univ. Milano – Bicocca, Italy
Luciano Baresi Politecnico di Milano, Italy
Walter Binder EPFL, Switzerland
Susanne Biundo Univ. of Ulm, Germany
Sjaak Brinkkemper Univ. of Utrecht, Netherlands
Athman Bouguettaya Virginia Tech, USA
Marco Brambilla Politecnico di Milano, Italy
Tevfik Bultan University of California, USA
Malu Castellanos Hewlett-Packard, USA
Jen-Yao Chung IBM T. J. Watson Research center, USA
Bruno Crispo Free University Amsterdam, Netherlands
Ernesto Damiani University of Milano, Italy
Umesh Dayal Hewlett-Packard, USA
Jens-Peter Dittrich ETH Zurich, Switzerland
Alex Delis University of Athens, Greece
Asuman Dogac METU, Turkey
John Domingue Open University, UK
Schahram Dustdar Vienna University of Technology, Austria
Kim Elms SAP, Australia
Dieter Fensel DERI, Ireland
Ioannis Fikouras BIBA, Germany
Gianluigi Ferrari University of Pisa, Italy
Daniela Florescu Oracle, USA
Dimitrios
Georgakopoulos

Telcordia, USA

Enrico Giunchiglia University of Genoa, Italy
Claude Godart INRIA, France
Andrew D. Gordon Microsoft Research, Cambridge, UK
Jaap Gordijn Free Univ. Amsterdam, Netherlands

Organization IX

Paul Grefen Eindhoven Univ. of Technology,
Netherlands

John Grundy University of Auckland, New Zealand
Mohand-Said Hacid Université Claude Bernard Lyon, France
Jos van Hillegersberg Erasmus Univ., Netherlands
Meichun Hsu HP, USA
Subbarao Kambhampati Arizona State University, USA
Alfons Kemper TU München, Germany
Matthias Klusch DFKI, Germany
Jana Koehler IBM Zurich, Switzerland
Bernd Kraemer University of Hagen, Germany
Ruben Lara Tecnologia, Informacion y Finanzas, Spain
Ninghui Li Purdue University, USA
Ling Liu Georgia Tech, USA
Brian LaMacchia Microsoft, USA
Frank Leymann University of Stuttgart, Germany
Heiko Ludwig IBM Research, USA
Pierluigi Lucchese ITC-irst, Italy
Ioana Manolescu INRIA, France
Neil Maiden City University, London, UK
David Martin SRI International, USA
Massimo Mecella University “La Sapienza” Rome, Italy
Aad Van Moorsel Newcastle Univ., UK
Brahim Medjahed University of Michigan, USA
Anne Ngu Southwest Texas State University, USA
Tommaso Di Noia Politecnico di Bari, Italy
Aris M. Ouksel University of Illinois at Chicago, USA
Beng Chin Ooi National University of Singapore, Singapore
Maria Orlowska UQ, Australia
Flavio De Paoli Univ. Milano – Bicocca, Italy
Barbara Pernici Politecnico di Milano, Italy
Marco Pistore Università di Trento, Italy
Dimitris Plexousakis FORTH, Greece
Bijan Parsia University of Maryland at College Park,

USA
Axel Polleres Digital Enterprise Research Institute

InnsbrAustria
Omer Rana Cardiff Univ., UK
Calton Pu Georgia Tech, USA
Rainer Ruggaber SAP, Germany
Vladimiro Sassone University of Sussex, UK
Akhil Sahai Hewlett-Packard, USA
Rizos Sakellariou University of Manchester, UK

Organization X

Ming-Chien Shan Hewlett-Packard, USA
Amit Sheth University of Georgia, USA
John Shepherd UNSW, Australia
Biplav Srivastava IBM, India
Ian Sommerville Lancaster University, UK
Maarten Steen Telematica Institute, Netherlands
Jianwen Su UCSB, USA
Katia Sycara Carnegie Mellon University, USA
Kian-Lee Tan National University of Singapore, Singapore
Paolo Tonella ITC-irst, Italy
Farouk Toumani LIMOS, France
Vijay Varadharajan Macquarie Univ. and Microsoft, Australia
Athena Vakali Aristotle University, Greece
Raymond Wong University of New South Wales, Australia
Michael Wooldridge University of Liverpool, UK
Martin Wirsing Ludwig Maximilians University Munich,

Germany

Roel Wieringa University of Twente, Netherlands
Jian Yang Macquarie University, Australia
Arkady Zaslavsky Monash University, Australia
Gianluigi Zavattaro University of Bologna, Italy
Yanchun Zhang Victoria University, Australia
�
�
����	�
�������������
�
D. Ardagna
C. Ardagna
R. Batenburg
D. Berardi
P. Bertoli
C. Braghin
F. Cabitza
C. Cappiello
P. Ceravolo
G. Chafle
G. Conforti
A. Corallo
V. D’Andrea
M. Daneva
S. De Capitani di Vimercati
F. De Rosa
E. Di Sciascio
F. Donini

G. Elia
F. Eruysal
D. Florescu
P. Fournogerakis
G. Frankova
F. Frati
E. Freiter
C. Fugazza
G.R. Gangadharan
G. Gianini
D. Gorla
R. Helms
W. Hordijk
K. Hribernik
S. Jansen
R. Kazhamiakin
N. Kokash
J. Kopecky

Organization XI

K. Kuladinithi
A. Kumar
M. Lankhorst
H. Lausen
A. Lazovik
R. Levenshteyn
L. Liang
T. Liebig
X. Liu
M. Loregian
D. Lundquist
J. Ma
L. Maesano
A. Marconi
L. Mariani
S. Marrara
A. Maurino
N. Mehandjiev
C. Mentrup
P. Missier
S. Mittal
S. Modafferi
E. Mussi

P. Philipopoulos
P. Plebani
S. Pokraev
Y. Qi
B. Schattenberg
M. Sheng
P. Strating
D. Teller
C. Tziviskou
A. Udugama
J. van der Spek
P. van Eck
J. Versendaal
M. Viviani
G. Vizzari
J. Vonk
T. Wang
K. Windt
A. Wombacher
D. Wong
L. Xu
X. Yang
G. Zheng

��
��
��������	�	�	�
���

Tilburg University, Netherlands
University of Trento, Italy
Vrije Universiteit Amsterdam, Netherlands
ITC-irst, Italy
NICTA, Australia
ACM SIGWeb, USA
ACM SIGSoft, USA
Hewlett-Packard , USA
IBM, USA

Table of Contents

Vision Papers

Autonomic Web Processes
Kunal Verma, Amit P. Sheth . 1

The (Service) Bus: Services Penetrate Everyday Life
Frank Leymann . 12

Service Oriented Architectures for Science Gateways on Grid Systems
Dennis Gannon, Beth Plale, Marcus Christie, Liang Fang,
Yi Huang, Scott Jensen, Gopi Kandaswamy, Suresh Marru,
Sangmi Lee Pallickara, Satoshi Shirasuna, Yogesh Simmhan,
Aleksander Slominski, Yiming Sun . 21

Service Specification and Modelling

Toward a Programming Model for Service-Oriented Computing
Francisco Curbera, Donald Ferguson, Martin Nally,
Marcia L. Stockton . 33

Speaking a Common Language: A Conceptual Model for Describing
Service-Oriented Systems

Massimiliano Colombo, Elisabetta Di Nitto, Massimiliano Di Penta,
Damiano Distante, Maurilio Zuccalà . 48

A Rule Driven Approach for Developing Adaptive Service Oriented
Business Collaboration

Bart Orriens, Jian Yang, Mike Papazoglou . 61

Service Design and Validation

Pattern-Based Specification and Validation of Web Services Interaction
Properties

Zheng Li, Jun Han, Yan Jin . 73

Using Test Cases as Contract to Ensure Service Compliance Across
Releases

Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta,
Gianpiero Esposito, Valentina Mazza . 87

XIV Table of Contents

Towards a Classification of Web Service Feature
Interactions

Michael Weiss, Babak Esfandiari, Yun Luo . 101

Service Selection and Discovery

A High-Level Functional Matching for Semantic Web Services
Islam Elgedawy, Zahir Tari, James A. Thom . 115

Service Selection Algorithms for Composing Complex Services with
Multiple QoS Constraints

Tao Yu, Kwei-Jay Lin . 130

On Service Discovery Process Types
Peer Hasselmeyer . 144

SPiDeR: P2P-Based Web Service Discovery
Ozgur D. Sahin, Cagdas E. Gerede, Divyakant Agrawal,
Amr El Abbadi, Oscar Ibarra, Jianwen Su . 157

An Approach to Temporal-Aware Procurement of Web Services
Octavio Mart́ın-Dı́az, Antonio Ruiz-Cortés, Amador Durán,
Carlos Müller . 170

Service Composition and Aggregation

Approaching Web Service Coordination and Composition by Means of
Petri Nets. The Case of the Nets-within-Nets Paradigm

P. Álvarez, J.A. Bañares, J. Ezpeleta . 185

Modeling and Analyzing Context-Aware Composition of Services
Enzo Colombo, John Mylopoulos, Paola Spoletini 198

Towards Semi-automated Workflow-Based Aggregation of Web
Services

Antonio Brogi, Razvan Popescu . 214

Choreography and Orchestration: A Synergic Approach for System
Design

Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi,
Gianluigi Zavattaro . 228

Table of Contents XV

Service Monitoring

PerfSONAR: A Service Oriented Architecture for Multi-domain
Network Monitoring

Andreas Hanemann, Jeff W. Boote, Eric L. Boyd, Jérôme Durand,
Loukik Kudarimoti, Roman �Lapacz, D. Martin Swany,
Szymon Trocha, Jason Zurawski . 241

DySOA: Making Service Systems Self-adaptive
Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, Dieter Hammer 255

Towards Dynamic Monitoring of WS-BPEL Processes
Luciano Baresi, Sam Guinea . 269

Service Management

Template-Based Automated Service Provisioning – Supporting the
Agreement-Driven Service Life-Cycle

Heiko Ludwig, Henner Gimpel, Asit Dan, Bob Kearney 283

Proactive Management of Service Instance Pools for Meeting Service
Level Agreements

Kavitha Ranganathan, Asit Dan . 296

Adaptive Component Management Service in ScudWare Middleware
for Smart Vehicle Space

Qing Wu, Zhaohui Wu . 310

Semantic Web and Grid Services

Semantic Caching for Web Services
Stefan Seltzsam, Roland Holzhauser, Alfons Kemper 324

ODEGSG Framework, Knowledge-Based Annotation and Design of
Grid Services

Carole Goble, Asunción Gómez-Pérez, Rafael González-Cabero,
Maŕıa S. Pérez-Hernández . 341

Implicit Service Calls in ActiveXML Through OWL-S
Salima Benbernou, Xiaojun He, Mohand-Said Hacid 353

Semantic Tuplespace
Liangzhao Zeng, Hui Lei, Badrish Chandramouli 366

XVI Table of Contents

Security, Exception Handling, and SLAs

Trust-Based Secure Workflow Path Construction
M. Altunay, D. Brown, G. Byrd, R. Dean . 382

Reputation-Based Service Level Agreements for Web Services
Radu Jurca, Boi Faltings . 396

Handling Faults in Decentralized Orchestration of Composite Web
Services

Girish Chafle, Sunil Chandra, Pankaj Kankar, Vijay Mann 410

What’s in an Agreement? An Analysis and an Extension of
WS-Agreement

Marco Aiello, Ganna Frankova, Daniela Malfatti 424

Industrial and Application Papers

SOA in the Real World – Experiences
Manoj Acharya, Abhijit Kulkarni, Rajesh Kuppili,
Rohit Mani, Nitin More, Srinivas Narayanan, Parthiv Patel,
Kenneth W. Schuelke, Subbu N. Subramanian . 437

Service-Oriented Design: The Roots
Tiziana Margaria, Bernhard Steffen, Manfred Reitenspieß 450

A Service Oriented Architecture for Deploying and Managing Network
Services

Victor A.S.M. de Souza, Eleri Cardozo . 465

Demo Papers

Dynamo: Dynamic Monitoring of WS-BPEL Processes
Luciano Baresi, Sam Guinea . 478

WofBPEL: A Tool for Automated Analysis of BPEL Processes
Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst,
Stephan Breutel, Marlon Dumas, Arthur H.M. ter Hofstede 484

OpenWS-Transaction: Enabling Reliable Web Service Transactions
Ivan Vasquez, John Miller, Kunal Verma, Amit Sheth 490

Table of Contents XVII

ASTRO: Supporting Composition and Execution of Web Services
Michele Trainotti, Marco Pistore, Gaetano Calabrese,
Gabriele Zacco, Gigi Lucchese, Fabio Barbon, Piergiorgio Bertoli,
Paolo Traverso . 495

Demonstrating Dynamic Configuration and Execution of Web Processes
Karthik Gomadam, Kunal Verma, Amit P. Sheth,
John A. Miller . 502

Short Papers

Programming and Compiling Web Services in GPSL
Dominic Cooney, Marlon Dumas, Paul Roe . 508

Semantic Management of Web Services
Daniel Oberle, Steffen Lamparter, Andreas Eberhart,
Steffen Staab . 514

Composition of Services with Nondeterministic Observable Behavior
Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo,
Massimo Mecella . 520

Efficient and Transparent Web-Services Selection
Nicolas Gibelin, Mesaac Makpangou . 527

An Approach to Parameterizing Web Service Flows
Dimka Karastoyanova, Frank Leymann, Alejandro Buchmann 533

Dynamic Policy Management on Business Performance Management
Architecture

Teruo Koyanagi, Mari Abe, Gaku Yamamoto, Jun Jang Jeng 539

A Lightweight Formal Framework for Service-Oriented Applications
Design

Aliaksei Yanchuk, Alexander Ivanyukovich, Maurizio Marchese 545

A MDE Approach for Power Distribution Service Development
Cristina Marin, Philippe Lalanda, Didier Donsez 552

Semantic Web Services for Activity-Based Computing
E. Michael Maximilien, Alex Cozzi, Thomas P. Moran 558

The Price of Services
Justin O’Sullivan, David Edmond, Arthur H.M. ter Hofstede 564

XVIII Table of Contents

Managing End-to-End Lifecycle of Global Service Policies
Daniela Rosu, Asit Dan . 570

Applying a Web Engineering Method to Design Web Services
Marta Ruiz, Pedro Valderas, Vicente Pelechano . 576

An Architecture for Unifying Web Services Authentication and
Authorization

Robert Steele, Will Tao . 582

Specifying Web Service Compositions on the Basis of Natural Language
Requests

Alessio Bosca, Giuseppe Valetto, Roberta Maglione, Fulvio Corno 588

Author Index . 595

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 1 – 11, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomic Web Processes

Kunal Verma and Amit P. Sheth

LSDIS Lab, Dept. of Computer Science, University of Georgia, Athens, GA 30605, USA
{verma, amit@cs.uga.edu}

Abstract. We seek to elevate autonomic computing from infrastructure to proc-
ess level. Different aspects of autonomic computing – self configuring, self heal-
ing, self optimizing and self aware are studied for Autonomic Web Processes
(AWPs) with the help of a supply chain process scenario. Existing technologies
and steps needed to shorten the gap from current process management systems to
AWPs are studied in this paper. The behavior of AWPs is controlled by policies
defined by users. Sympathetic and parasympathetic policies are introduced to
model short and long term policies. A key advantage for elevating autonomic
computing to a process level is that the trade-offs can be more evident because the
process components map more readily to business functions.

1 Introduction

The increasing complexity in computing models, as well as massive growth in com-
puting resources has made efficient interaction of humans and information technology
increasingly difficult [10]. The vision of autonomic computing [14] proposes a com-
puting model analogous to the autonomic functioning of the human nervous system
which regulates various human functions without conscious control of the human
mind. Autonomic computing is characterized by systems with capabilities of self
management of their resources based on policies. The field of autonomic computing
has addressed some very important research issues like self adaptive middleware [16],
autonomic server monitoring [20] and policy driven data centers [15]. In this paper,
we propose to elevate autonomic computing from infrastructure level to the process
level to create Autonomic Web Processes (AWPs).

We present AWPs as a natural evolution of autonomic computing from individual in-
formation technology resources to the business processes that govern the functioning of
various businesses activities. Essentially, AWPs are self aware, self configuring, self
optimizing and self healing processes that interact with the environment based on user
specified policies. AWPs may be a more appealing way to benefit from autonomic
computing. This is because it is inherently more difficult to define and measure tangible
ROI for an infrastructure, but it can be more possible to do so since business functions
that can be directly supported by AWPs or mapped to its components.

In this paper, we will build upon previous research on semantic Web processes
 [18], workflows and autonomic computing to create a framework for AWPs. One of
the three process architectures presented in [22] termed “dynamic trading processes”
shared the characteristics of AWPs such as self configuration and dynamism. We use

2 K. Verma and A.P. Sheth

a motivating scenario to discuss the potential advantages of supporting autonomic
properties at the process level. We also briefly survey the current research and techno-
logical expertise for supporting each of the properties and try to outline enhancements
to current state of the art to create AWPs.

Consider following examples:

• When there is a change in supplier’s capabilities in highly reactive part procure-
ment process of a computer manufacturer such as Dell. Currently delays in part
deliveries lead to huge losses [13]. This is largely due to non responsive business
processes that take time to react to the environment. Using an AWP would help
the process to react to the situation with the help of declaratively specified poli-
cies. It is important to be able to model both the short term and the long term
policies. A short term policy may want to re-order the part from some other sup-
plier to reduce the immediate loss, but a long term policy might consider the pre-
vious order fulfillment history of the supplier, as well as, the relationship with the
supplier. In order to capture such policies, we introduce the concept of sympa-
thetic (short term) and parasympathetic (long term) policies.

• Where the manufacturer has already decided the suppliers, but a sudden change
in foreign currency exchange rate (modeled as an external/environmental con-
straint/parameter), may make another set of suppliers more optimal. For example,
Indian textiles became cheaper and the need to distribute risks became more im-
portant when China announced 2.5% devaluation of its currency and stopped
linking it solely to US$.

• When market demands and buyer needs change suddenly. Consider the case of
iPOD component manufacturers, before and after the announcement of iPOD
Nano. Based on the popularity of iPOD Mini, a manufacturer of its component
mini-drive could raise the cost or even be tempted to invest into new production
lines to increase capacity. However, if the manufacturer does not very quickly
react to the announcement and sudden popularity of the iPOD Nano which uses
flash memory, it could face substantial losses.

An AWP must continuously try to self optimize and must have the ability to recon-
figure the process. The rest of the paper is organized as follows. Section 2 provides
some background information about the autonomic nervous system and autonomic
computing. AWPs are defined in Section 3. The motivating scenario is presented in
Section 4. Section 5 presents AWP Properties in detail. Finally, Section 6 outlines the
conclusions and future work.

2 Background – Autonomous Nervous System and Autonomic
Computing

In this section, we provide a brief background of the autonomic nervous system
(ANS) and autonomic computing. The ANS is responsible for maintaining constant
internal environment of the human body by controlling involuntary functions like
digestion, respiration, perspiration, and metabolism, and modulating blood pressure
 [6]. All these functions are not voluntarily controlled by us (e.g., a person does not
have direct control over blood pressure). At a high level of granularity, the ANS has

 Autonomic Web Processes 3

four main functions [12]: 1) Sensory function – It gathers information from the out-
side world and inside the human body, 2) Transmit function – transmits the informa-
tion to the processing area, 3) Integrative Function – processes the information and
decides the best response and 4) Motor function – sends information to the muscles,
glands and organs so that they can respond properly. It is divided into two subsys-
tems- sympathetic and parasympathetic. The sympathetic nervous systems deals with
providing responses and energy needed to cope with stressful situations such as fear
or extremes of physical activity. It increases blood pressure, heart rate, and the blood
supply to the skeletal muscles at the expense of the gastrointestinal tract, kidneys, and
skin. On the other hand, the parasympathetic nervous systems brings normalcy in
between stressful periods. It lowers the heart rate and blood pressure, diverts blood
back to the skin and the gastrointestinal tract.

The vision of autonomic computing aims to make systems that simulate the auto-
nomic nervous system by being more self managing. The objective is to let user spec-
ify high level policies and then the system should be able to manage itself, based on
those policies. The following properties have been defined for autonomic systems
 [10] – self aware, self configuring and reconfiguring, self optimizing, self healing,
policy based interaction with other components and self protecting.

A blueprint for autonomic architectures [30] was presented in [11]. It identifies the
main entities in an autonomic system as – resources, touchpoints and autonomic man-
agers. The resources are the entities that are managed by managers. Touchpoints are
the interfaces by which the entities interact with the autonomic managers or other
resources. A touchpoint has two sub components – sensors and effectors. Sensors are
used to disseminate information about the resource by providing an interface for ac-
cessing the state of the resources. They also support event generation for sending
events to the autonomic managers. Effectors provide interfaces which are used by
autonomic managers to change state of resources. Another crucial aspect of auto-
nomic computing is the representation and reasoning based on policies.

3 Autonomic Web Processes

AWPs are Web service based processes that support the autonomic computing proper-
ties of being self configuring, self healing, self optimizing, self aware, self protecting
and self healing. The underlying backbone of AWPs will be based on autonomic
infrastructure proposed by various autonomic computing researchers. Our aim is
elevate these properties to the business process level, as the business processes are the
backbone of the businesses and key to their competitiveness. Fig. 1 shows the benefits
of autonomic computing at the infrastructure level and the process level. The benefits
of autonomic computing at the infrastructure level are manifold. Human involvement
is reduced in configuring infrastructure and recovering from failures. In addition,
businesses are able to guarantee SLAs based on autonomic resources. We believe that
these benefits can be leveraged in an even more efficient manner if the business proc-
esses that control the infrastructure were also autonomic. Hence, the benefits of auto-
nomic computing would be magnified by reducing human involvement in configuring
the processes and recovering from failures. In addition, the processes would be self
optimizing and highly reactive to changes in the environment.

4 K. Verma and A.P. Sheth

Autonomic Computing

Autonomic Web Processes

Networks Servers

Autonomic IT
Infrastructure

•Self Configuring: Lower IT
cost on maintenance and de-
ployment.

•Self Healing: Lower human
involvement in problem detec-
tion, analysis and solving.

•Self Optimizing: Better
SLAs to customers of the IT
infrastructure.

Business Processes

•Self Configuring: Proc-
esses configured with respect to
business policies.

•Self Healing: Quick re-
sponses to failures, leading to
large savings in cost.

•Self Optimizing: Environ-
ment changes lead to reconfigu-
ration to a lower cost process.

Databases

Fig. 1. Autonomic Web Processes and Autonomic Computing

4 Motivating Scenario

Consider the part procurement process of a computer manufacturer. The inventory
management software (IMS) sends an order of a number of parts to the procurement
module (PM). It is the IMS’s job to decide the quantities and number of parts to be
ordered. It is also responsible for deciding the amount of money to be spent on the
whole process and/or for each individual part and setting required times for delivery.
In addition, it may specify some compatibility issues between some quantities of the
parts (e.g. ordering a certain quantity of a type motherboard requires ordering
matching quantities of compatible memory, video cards, etc.). In other words, the
IMS is responsible for setting the configuration parameters for the part procurement
process.

We now introduce the part procurement process of the PM, which is responsible
for actually procuring the parts from suppliers without violating the constraints set by
the IMS. The PM has some more factors to consider like whether to order only from
preferred suppliers, or to choose cyclically among its bag of suppliers [13]. Ideally, it
should be able to optimally configure the part procurement process and then place the
orders. Then it should monitor the orders for physical and logical failures and have
the ability to deal with them. Physical failures are based on the supplier service going
off-line, while logical failures might include delay in delivery or partial order fulfill-
ment by suppliers.

 Autonomic Web Processes 5

In this paper, we will explore the autonomic aspects of the process shown in
Fig. 2. The AWP properties that we will consider are as follows.

• Self Configuring: How can the process be self-configured without violating the
constraints (policies) of the IMS and PM?

• Self Healing: Can the process use the policies to recover from physical and
logical failures?

• Self Optimizing: Identifying points for the process to be notified of more opti-
mal suppliers or currency exchange rates.

• Self Aware: Creating a comprehensive semantic model expressive enough to
support the above mentioned AWP properties.

In order to support these properties, we propose four AWP components, the auto-
nomic execution engine and three autonomic managers that support self configuring,
self healing and self optimizing functionalities.

Fig. 2. Autonomic Part Procurement Process

5 Defining Autonomic Computing Properties for AWPs

In this section, we describe different properties for AWPs. We start by explaining
each property with the help of motivating scenario presented in Section 4 and then
survey some of the research work relevant for supporting the property.

5.1 Self Configuring

An AWP must be able to configure itself on the basis on the user policies. For an
AWP, configuration may include the following functions- discovery of partners, que-
rying partners for quotes, negotiation with the partners, constraint analysis (non quan-
titative analysis, optimization using integer linear programming/genetic algorithms,
etc.) and dynamic/runtime binding. For the motivating scenario in Section 4, self

Autonomic Execution
Engine

Receive
Order

Configure

Order Part 1

Order Part 2

Order Part N

Monitor
Order Status

Schedule
Manufac-
turing

Autonomic
Configuration
Manager

Autonomic
Healing
Manager

Autonomic Self
Optimization-
Manager

Sensor Effector

6 K. Verma and A.P. Sheth

configuration refers to the optimal selection of suppliers of the process on the basis of
the computer manufacturer’s policies. The AWP configuration manager must be able
to configure the process with respect to the policies. The policy language must be able
to specify the goals of the configuration. In this case the goals of configuration are the
following:

1. Identify supplier(s) for each part (discovery)
2. Retrieve quote from database/ Query suppliers for quotes (cost estimation)
3. Negotiate better prices if possible (negotiation)
4. Find optimal suppliers and quantities based on the policies (constraint analysis)
5. Configure the process with the optimal suppliers (dynamic binding)

Fig. 3. AWP Configuration Manager

A high level overview of the AWP configuration manager is shown in Fig. 3.
There are three steps to the configuration. The AWP sends the configuration module
the goals for configuring it. Then the configuration module finds the required compo-
nents for the tasks needed and configures them. (e.g., a certain protocol may be
loaded for negotiation to configure the negotiation module). Finally, the process must
be configured using the different components.

There has been noteworthy research in all modules mentioned for configuration.
Semantic Web service which enhances the querying capabilities of UDDI has been
discussed [19] [26] [24]. The process of requesting quote from suppliers in the elec-
tronics domain has been standardized by RosettaNet. Negotiation using game theory
was discussed in [7] [9]. Constraint analysis has been discussed using integer linear
programming [2], genetic algorithms and SWRL [28]. Dynamic binding capabilities
for Web processes have been discussed in [25]. For creating an infrastructure for self
configuration AWPs all the modules must be created as autonomic components and
the interactions between them should be policy driven.

2. Discover and
configure compo-
nents according to
polices

3. Configure proc-
ess using the auto-
nomic components

Autonomic Components Layer

1. User Policies speci-
fying goals for process
configuration

AWP Configuration
Manager

Discovery
Engine

Cost Estima-
tion Module

Negotiation
Module

Constraint
Analyzer

Dynamic
Binder

 Autonomic Web Processes 7

5.2 Self Healing

An AWP must be able to recover from failures. There could be two types of failures –
system level failures and logical level failures. An example of a physical level failure
is a supplier Web service failing during order placement. Logical failures include
delay in delivery or the supplier fulfilling only part of the order. For either kind of
failure, the AWP must be able to make an optimal choice based on existing alterna-
tives. The choices could include replacing the supplier or canceling the order as a
whole. Replacing the supplier could be costly, as there may be a long term relation-
ship or some other parts’ orders may have to be cancelled and re-ordered because of
part dependencies.

The self healing behavior of an AWP should be governed by policies. In order to
preserve the long term business policies, we propose to model the recovery policies as
sympathetic policies (e.g., replace supplier after 5 retries or short term profit maximi-
zation) and the long term policies as parasympathetic policies (e.g., preferred supplier
order cancellation should be avoided). The AWP framework should be able to reason
on the policies and choose the most appropriate plan for healing. The self healing
aspect of an AWP can borrow from the rich work on workflow transactions [21],
compensation [4] and recovery [17]. Ideally, a cost based healing mechanism must be
created for AWPs, which combines all the three models (transaction, compensation,
recovery) with some optimization model.

5.3 Self Optimizing

An AWP must be able to optimize itself with changes in the environment. It must
have the ability to monitor the changes in the environment and reconfigure itself, if
there exists a more optimal configuration. As an example of change of the environ-
ment, consider the case where some of the suppliers are in different countries and the
change in currency conversion rates can render an optimal process sub-optimal. In
that case, the AWP must be able to change the suppliers by reconfiguring the process.
Other changes in the environments include a supplier announcing a discount, the most
favorable clause of a contract getting activated because the supplied offered a better
deal to another buyer or a new supplier registering itself with the manufacturer.

As shown in Fig. 4, the self optimization manager has a number of listeners, which
monitor the environment of the AWP. The entities and variables to be monitored are
selected according to the user specified policies. In this case, there are two entities
being monitored – currency exchange rates and supplier discounts. Fig. 4 shows a
currency change event above the user specified threshold which is detected by a lis-
tener and sent to the self optimization manager. The self optimization manager gener-
ates a reconfigure event for the configuration manager, which performs analysis using
different reasoning engines at its disposal. If a more optimal solution is found, it uses
the effector of the execution engine to change the process configuration. The self
optimization property creates a need for a new generation of process coordination
(workflow) engines that are not only guided by control flow constructs but also by
optimal execution based on the changing environment.

8 K. Verma and A.P. Sheth

Fig. 4. Self Optimization of AWP due to change in Environment

5.4 Self Aware

In order to achieve the autonomic computing properties in this section, an AWP must
be aware of itself and its environment. This implies that there must be a comprehen-
sive model of the AWP, the Web services, the environment and the policies that guide
its operation. Given the already entrenched position of the WSDL and related stan-
dards, a truly extensible and upwardly compatible approach that preserves current
investment in tools, techniques and training must be used to create model. Based on
our experience with the METEOR-S [18] project, which deals with modeling the
complete lifecycle of Web processes, we have concluded that no one approach is
enough to capture all the intricacies of AWPs. We will build upon our broad classifi-
cation of the semantics [23] required for this – data, functional, execution and non-
functional semantics to outline the model.

The emerging field of the Semantic Web [29] proposes using description logics
based ontologies (with the W3C recommended OWL language) to capture the seman-
tics of data on the Web. While, this seems adequate to capture the necessary data
semantics (inputs/outputs) of Web services, it is not adequate to capture the functional
semantics of Web services (what the Web service does), where a different representa-
tion like horn logic based SWRL may be more adequate. The execution semantics
focus on the behavioral aspects of Web services, the current state of Web processes
and different approaches like task skeletons [5], Petri nets based YAWL [1] or differ-
ent variants of temporal logic can be considered to represent the behavior of Web
services.

3. Optimize and send new
process configuration to
Execution Engine

2. Notify configuration
manager that possible
reconfiguration is needed

1. Change in relevant
currency rate beyond
threshold

Autonomic Execution Engine

Receive
Order

Configure

Order Part 1

Order Part 2

Order Part N

Monitor
Order Status

Schedule
Manufac-
turing

Sensor Effector

Autonomic Self Optimiza-
tion Manager

Listener1
(monitor currency
exchange rates)

Listener2 (monitor
supplier discounts)

Sensor Effector

Autonomic Self Configu-
ration Manager

Sensor Effector

 Autonomic Web Processes 9

The non-functional semantics include the policies, business rules, constraints, and
configuration/reconfiguration parameters. While the logic based modeling languages
are good for capturing qualitative aspects of business rules, and process constraints,
they are not effective in capturing the quantitative constraints for process optimiza-
tion, which can be represented using an operations research based technique like inte-
ger linear programming (ILP). For goal or utility based reconfiguration of processes
 [15] or decision theoretic planning models like Markov decision processes may be
more adequate. Another important issue in non functional semantics is the ability to
represent the policies at different levels - Business Level Policies, Process Level Poli-
cies, Instance Level Policies, and Individual Component Level Policies and have the
ability to resolve conflicts between them.

For self configuration, the discovery phase would require functional, data and non
functional semantics. All other phases – negotiation, constraint analysis and binding will
be guided by policies (i.e. non functional semantics). For self healing the execution
semantics which includes the state of process and transactional traits on the Web ser-
vices will be required. In addition, the best plan for healing will be decided using the
policies. For self optimizing, the entities in the environment to be monitored will be
specified using policies. Both, self optimizing and self healing involve reconfiguration.

An important aspect of our approach is the ability to map our model to existing
service oriented architecture standards [8] using the extensibility features, provided by
the standards. This has been illustrated in our previous work in WSDL-S [3] [24],
which adds data and functional semantics to WSDL and semantic extensions to WS-
Policy [27], which proposes using OWL ontologies and SWRL rules to represent
non-functional semantics of Web services using the WS-Policy framework.

6 Conclusions and Future Work

In this paper, we have a presented an approach for elevating autonomic computing to
the process level. We have provided a brief outline of how an AWP can support self
configuration, self healing and self optimizing properties. The contributions of this
paper include:

• Defining and creating a framework for AWPs.

• Studying the applicability of current research for creating AWPs.

As we discussed earlier, there has been significant work done on autonomic com-
puting, semantic and dynamic Web processes and workflows. AWPs are the logical
next step in the evolution of all these fields, as it builds upon the work done in these
vast and rich areas. As a first step towards creating AWPs, a comprehensive semantic
model of all aspects of AWPs will have to be created. In future, we will demonstrate
explicit need and use of the four types of semantics we have identified: data seman-
tics, functional semantics, non-functional semantics and execution semantics [23].

We have also tried to outline some of the initial steps which will be needed to sup-
port the other AWP properties. We have provided initial discussions on how to model
the first two examples mentioned in the introduction – autonomic supply chain recov-
ery from failure with the sympathetic and parasympathetic policies and self optimiza-
tion due to changes in environment with the help of the sensors, effectors and

10 K. Verma and A.P. Sheth

autonomic managers. We plan to implement these scenarios and test our hypotheses
about the benefits of AWPs.

As the benefits from creating AWPs are manifold for both business and scientific
processes, we aim to collaborate with our research partners in the industry and the aca-
demia to realize this vision. Our future work includes creating a research prototype that
supports AWPs and creating a theoretical model to represent all aspects of AWPs.

Acknowledgements

We would to thank members of the LSDIS Lab and the METEOR-S project whose
valuable insights and ideas helped us in writing this paper. In particular, special
thanks go to John A. Miller, Karthik Gomadam and Prashant Doshi.

References

[1] Wil M. P. van der Aalst, A.r H. M. ter Hofstede: YAWL: yet another workflow language.
Inf. Syst. 30(4): 245-275 (2005)

[2] R. Aggarwal, K. Verma, J. Miller and W. Milnor, "Constraint Driven Web Service Com-
position in METEORS," Proc. of the 2004 IEEE International Conference on Services
Computing (SCC 2004), 2004, pp. 23-30

[3] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, Web
Service Semantics - WSDL-S, A joint UGA-IBM Technical Note, version 1.0, http://
www.alphaworks.ibm.com/g/g.nsf/img/semanticsdocs/$file/wssemantic_annotation.pdf

[4] G. Alonso, D. Agrawal, A. Abbadi, M. Kamath, R. Günthör, C. Mohan: Advanced Trans-
action Models in Workflow Contexts. ICDE 1996: 574-581

[5] P. Attie, M.. Singh, E. A. Emerson, A. P. Sheth, M. Rusinkiewicz: Scheduling workflows
by enforcing intertask dependencies. Distributed Systems Engineering 3(4): 222-238
(1996)

[6] S. Bakewell, The Autonomic Nervous System, available at http://www.nda.ox.ac.uk/
wfsa/html/u05/u05_010.htm

[7] M. Burstein, C. Bussler, T. Finin, M. Huhns, M. Paolucci, A. Sheth, S. Williams, M. Za-
remba, A Semantic Web Services Architecture, To appear in IEEE Internet Computing,
2006.

[8] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana: The next step in Web services.
Communication of the ACM 46(10): 29-34 (2003)

[9] H. Davulcu, M. Kifer, I. V. Ramakrishnan: CTR-S: a logic for specifying contracts in
semantic web services. WWW (Alternate Track Papers & Posters) 2004: 144-153

[10] IBM Autonomic Computing Website, http://researchweb.watson.ibm.com/autonomic/
[11] IBM Autonomic Computing Blueprint Website, http://www-03.ibm.com/autonomic/

blueprint.shtml
[12] J. Johnson, Autonomic Nervous System, http://www.sirinet.net/~jgjohnso/nervous.html
[13] R. Kapuscinski, R.. Zhang, P. Carbonneau, Robert Moore, Bill Reeves, Inventory Deci-

sions in Dell’s Supply Chain, Interfaces, Vol. 34, No. 3, May–June 2004, pp. 191–205
[14] Jeffrey O. Kephart, David M. Chess: The Vision of Autonomic Computing. IEEE Com-

puter 36(1): 41-50 (2003)
[15] J. Kephart, W.. Walsh: An Artificial Intelligence Perspective on Autonomic Computing

Policies. POLICY 2004: 3-12

 Autonomic Web Processes 11

[16] V. Kumar, B. Cooper, K. Schwan, Distributed Stream Management using Utility-Driven
Self-Adaptive Middleware, The Proceedings of the 2nd IEEE International Conference
on Autonomic Computing, 2005.

[17] F. Leymann: Supporting Business Transactions Via Partial Backward Recovery In Work-
flow Management Systems. BTW 1995: 51-70

[18] METEOR-S: Semantic Web Services and Processes, http://lsdis.cs.uga.edu/projects/
meteor-s/

[19] M. Paolucci, T. Kawamura, T. Payne and K. Sycara, Semantic Matching of Web Services
Capabilities, Proc. of the 1st International Semantic Web Conference, 2002.

[20] C. Roblee V. B. George Cybenko, Large-Scale Autonomic Server Monitoring Using
Process Query Systems, The Proceedings of the 2nd IEEE International Conference on
Autonomic Computing, 2005.

[21] M. Rusinkiewicz, A. P. Sheth: Specification and Execution of Transactional Workflows.
Modern Database Systems 1995: 592-620

[22] A. P. Sheth, W. M. P. Aalst, I. B. Arpinar: Processes Driving the Networked Economy.
IEEE Concurrency 7(3): 18-31, 1999

[23] A. P. Sheth, “Semantic Web Process Lifecycle: Role of Semantics in Annotation, Dis-
covery, Composition and Orchestration,” Invited Talk, Workshop on E-Services and the
Semantic Web, WWW, 2003.

[24] K. Sivashanmugam, K. Verma, A. P. Sheth, J. A. Miller, Adding Semantics to Web Ser-
vices Standards, Proc. of the 1st International Conference on Web Services, 2003.

[25] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On Accommodating Inter Service
Dependencies in Web Process Flow Composition, Proc. of the AAAI Spring Symposium
on Semantic Web Services, March, 2004.

[26] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J. Miller,
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology and Management, 6 (1),
pp. 17-39, 2005.

[27] K. Verma, R. Akkiraju, R. Goodwin, Semantic matching of Web service policies, The
Proceedings of the Second Workshop on Semantic and Dynamic Web Processes
(SDWP), (in conjunction with ICWS), Orlando, Fl, 2005.

[28] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, Z. Wu, "The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes", LSDIS Lab Technical Report ,
University of Georgia, June 24, 2005

[29] W3C Semantic Web Activity, http://www.w3.org/2001/sw/
[30] S. White, J. Hanson, I. Whalley, D. Chess, J. Kephart: An Architectural Approach to

Autonomic Computing. ICAC 2004: 2-9

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 12 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The (Service) Bus: Services Penetrate Everyday Life

Frank Leymann

Institute of Architecture of Application Systems,
University of Stuttgart, Universitätsstr. 38,

70569 Stuttgart, Germany

Frank.Leymann@informatik.uni-stuttgart.de

Abstract: We sketch the vision of a ubiquitous service bus that will be the base
for hosting and accessing services everywhere. The utility model for using IT
artifacts is implied. Applications on top of the service bus will be centered on
business processes and will be adaptive in multiple dimensions. The ubiquitous
service bus will change the way we think about information technology.

1 Introduction

Service oriented computing and service oriented architectures are accepted as the next
step in building distribute applications. Especially, Web services ([1], [16]) as
particular incarnation of service oriented technology has broad acceptance in the
industry and is supported by products of many vendors.

In this paper we sketch the vision of a globally available infrastructure for hosting
and accessing services everywhere. Services in our context are not only software
functions usually thought of when talking about services but also hardware artifacts.
The latter is brought to the area of service orientation by recent movements of Grid
computing towards Web service technology [4].

Section 2 describes the basic component of this infrastructure, namely the service
bus, and its key capabilities supporting our vision. The new model of using IT in a
manner we are familiar with from traditional utilities is sketched in Section 3.
Application structures fostered by the envisioned infrastructure and envisioned
exploitation model are portrayed in Section 4.

2 The Bus

The architecture of a middleware platform for realizing service oriented computing
based on Web service standards is outlined in [16]. We refer to this middleware simply
as service bus. Complying to Web service standards a particular implementation of a
service bus interoperates by definition with all other implementations of a service bus –
at least when ignoring all the interoperability issues addressed by initiatives like WS-I,
which we take the liberty to do in sketching our vision. In this sense, the collection of

 The (Service) Bus: Services Penetrate Everyday Life 13

interacting service bus implementations can be viewed as one single piece of
middleware referred to as the service bus (or even just the bus) – similar to the Web
being realized by a collection of interacting components like HTTP origin servers,
proxies, browsers, etc.

2.1 Virtualization

The main functionality of the service bus is virtualization (see Fig. 1): Since all
services accessible via the service bus are described by WSDL the service bus hides
from a user of a service the implementation details of a service like the programming
language used for its implementation, the hosting application server, the underlying
operating system platform, and so on. When making a request, a user of a service
simply refers to the (WSDL) interface an implementation of which is needed and
passes the data to be processed by an implementation, and the service bus will select
one of the available corresponding implementations of this interface to perform the
user’s request [11].

To further support proper selection done by the service bus, both, requests as well
as services may be annotated by policies. Policies describe non-functional properties
like transactional capabilities, security features, costs etc. Basically, services publish
the non-functional properties they support, and requests specify the non-functional
properties expected. The service bus uses the policies associated with a request to
further reduce the number of matching services. In doing so, the service bus
determines based on both policies an “effective policy” that will govern the actual
interaction between the requestor and the service chosen.

Message

OperationPort Type
Binding(), ,

Port

Request
Requestor

Policy

I nput Data

Provider
Policy

Effective
Policy

1 Find

S
e
r
v
i
c
e

B
u
s

WSDL

2 Select

4 Bind

3 Match

5 Connect

6 Send
0 Submit

Discovery

EPR

Fig. 1. Executing Requests within the Bus

14 F. Leymann

The service bus may even support requests without requestors having to specify the
interface a service has to implement. Services may be annotated with semantics
describing the business meaning of the functions provided. In turn, requestors have to
provide semantic descriptions of the function requested instead of explicitly naming a
corresponding interface. The service bus locates and selects a matching service based
on these semantic descriptions. Web services describing the functions they offer
semantically are referred to as “semantic Web services” [6].

2.2 Optimization

Thus, the service bus virtualizes services based on interface descriptions or semantic
descriptions as well as based on non-functional properties: All service implementations
supporting the interface or semantic description as well as the non-functional properties
of a request are interchangeable from the requestor’s point of view. The corresponding
services can be jointly viewed as a pool of services being able to satisfy the request. The
members of such a pool can be distributed over the network, they can be implemented
in very different environments, they can be accessible over very different protocols etc.
In case more than one service qualifies the service bus will use additional criteria to
select a particular member from that pool.

When selecting such an implementation on behalf of a user the service bus has all
liberties as long as the service chosen matches the functional and non-functional
properties of the request of the user. Consequently, the spectrum of possible
mechanisms for choosing a member from the pool of all qualifying services reaches
from very simply mechanisms like random selections up to sophisticated optimization
mechanisms.

Optimization may be done according to various sets of criteria. For example, the
service bus may consider the workload of the overall environment (evenly distributing
work), the cost of mediating the request (preferring local implementations of a service
over remotely available implementations) etc. Optimization may favor
implementations of the provider of the local service bus used by the requestor, may
strive towards reducing costs for the requestor, or may strive towards maximizing
profit across all requests served by a certain provider considering a set of service level
agreements, and so on (see Section 3.3 below).

2.3 Management

To enable optimization the service bus must able to retrieve information required for
the various kinds of optimizations like state data and so on. Similarly, the service bus
must be able to influence the state of services like restarting a certain service. For this
purpose, services have to support corresponding interfaces in addition to the interface
providing the proper (application) functions.

Data that is providing the context for performing a request offered by a service is
referred to as a “WS-Resource”. An element of this data context is called a “resource
property”. The resource framework ([24], [25]) specifies certain requests to
manipulate resource properties and to manage the lifecycle of WS-Resources (see
[18] for more details). Changes of resource properties may influence optimization
decisions or may require actions on the corresponding services to change their state.

 The (Service) Bus: Services Penetrate Everyday Life 15

For this purpose, a topic-based notification or publish/subscribe infrastructure has
been defined that is part of the service bus itself ([26], [27]) and allows to register for
changes of resource properties.

The corresponding infrastructure can be used in a much broader sense: Any data
required to decide about proper management of a resource may be specified as a
collection of corresponding resource properties. Here, a resource is any software or
hardware artifact made available as a (manageable) service. Resources of different
types support specific operations to enable management of its instances. The
publish/subscribe features of the service bus may then be used by systems
management components to monitor resources and properly react by using the
resource specific interfaces. In this sense, the service bus itself becomes the basis for
managing an overall environment in a service-oriented manner [28].

The publish/subscribe features can also be used as the basis for realizing feedback
loops to control resources in an autonomic manner [13]: The monitoring component
of such a feedback loop filters and aggregates notification events from the resources,
the analysis component correlates the remaining events and predicts potential critical
situations, the planning component decides on actions needed to prevent such
situations by generating a corresponding plan, and the execution component performs
this plan (see [20] for more details). After executing the plan, the predicted situation
is unlikely to occur. Furnishing the service bus with such feedback loops results in an
infrastructure that can protect, optimize, and heal itself [5].

For example, a critical situation may indicate that a certain application needs more
resources to meet its goals in terms of the number of users to be supported with a
certain response time. The plan for preventing not meeting this goal is a flow with
activities that use the interfaces of the resource types required (like CPUs, storage,
installation services). After executing such a “provisioning flow” [8] additional
resource are available to the application such that it will not miss its goal [2].

3 Utility Computing

The service bus is the basis for sharing resources. For example, resources owned by
one company can be made available to other parties – and this can be done on a fee
base enabling a business for outsourcing IT artifacts.

3.1 Traditional ASP Model

Abstracting from technology, this is the “traditional” service provider model. Within
the application service provider (ASP) model, the provider hosts, runs, maintains an
application on behalf of another company for a fee. When the ASP model came up
fees had been determined upfront based on an estimation of the resources needed to
satisfy the non-functional requirements (response time, availability, number of users
etc.) of a customer. Typically, these estimations were based on expected peak loads
and as a consequence, customers had to pay for resources that they seldom need. This
is often seen as an obstruction to the broad acceptance of the ASP model – despite the
fact that companies ask for the ability to outsource parts of their IT infrastructure to
be able to focus on their core business competencies.

16 F. Leymann

3.2 Dynamic Provisioning

Dynamic provisioning technology and autonomic technology will remove this hurdle:
Customers specify service levels objectives for outsourced resources with their
provider and will only pay for the actual resources used. At the provider side this is
based on the kind of feedback loops sketched above that ensure to meet the service
levels agreed, with provisioning flows being performed when service level objectives
are jeopardized. When dynamically provisioned resources are no longer needed they
will be automatically de-provisioned. Thus, over-provisioning will no longer take
place as in the original ASP model resulting in an economy of scale that reduces fees
for outsourced resources.

The corresponding model is referred to as “utility model” [14]: Paying only for
what has been actually used is the model of classical utilities (power, gas, water…).
Using compute resources (both, software and hardware) in such a manner will create
a new kind of utility called “computing utility”. Making compute resources available
when needed and for the time needed is also called “computing on demand”.

3.3 Software as a Service

Using software in the utility model implies that the provider does also provide the
hardware and middleware required to actually run the software. Thus, using software
in the utility model typically means for a customer to outsource the corresponding
complete infrastructure to the provider. The customer uses “software as a service”
(aka SaaS).

If critical functions are used based on this model customers negotiate service level
objectives such as average response time, availability etc. with the service provider.
The agreed too set of objectives together with fees to be paid by the customer if the
objectives are met and penalties to be paid by the provider if objectives are not met
result in a service level agreement (SLA) [3]. The service provider strives to optimize
profits based on the set of SLAs negotiated with his customers: This is one kind of
optimization mentioned above (see Section 2.2) that the service bus must support
(either directly or by some component extending its functionality).

4 Applications

Often, services are composed of other services. Business processes are the most
widespread example for such a composition. The term orchestration got established
in the meantime for supporting the composition of services into a business process.
Since the services offered by an orchestration may be used in other orchestrations a
recursive composition model for services results. BPEL ([21], [22]) is the established
language for specifying orchestrations in the Web service area.

When specifying an orchestration it is opaque whether or not a service used is also
an orchestration. If a service used in an orchestration is again structured as an
orchestration and both of the structures are considered for composition more precise
interaction details can be specified. Such a specification is referred to as
choreography in the meantime. WS-CDL [23] has been proposed as language for
specifying choreographies.

 The (Service) Bus: Services Penetrate Everyday Life 17

4.1 Structure

Applications based on services thus consist of orchestrations and services they use,
i.e. applications in a service environment are based on a two-level programming
model ([9], [17]). To be precise, an orchestration specifies the types of services used,
and during deployment of an orchestration additional information must be provided
that allows the service bus to select appropriate services at runtime of the
orchestration (see [12], [13]).

The overall infrastructure, thus, includes an orchestration engine as an integral part
which is typically based on workflow systems [10] that support BPEL. Even business
processes that include interactions with human beings may be supported [19]. The
orchestration engine navigates through the underlying process model and determines
the kind of service needed. The underlying service bus selects a matching service on
behalf of the orchestration engine and returns the response of the service chosen to it.

In doing so, quality of services are folded in based on policies that describe the
requirements of the business process and polices that are associated with the
candidates considered by the service bus (see Section 2.1). For example, a business
process may specify that messages exchanged between the orchestration and the
service chosen must be encrypted and transported reliably, or that an invocation of a
service must be done transactional. Thus, non-functional requirements of an
application can be specified that will be enforced at runtime by the service bus.

4.2 Adaptability

The service bus may choose for different instances of the same business process
model different services for one and the same activity of the business process model.
Thus, the overall orchestration is adaptive in terms of services used, i.e. the
underlying services available to an orchestration may change in terms of different
providers, different implementation etc. This is similar to adaptability in terms of
people performing a certain activity which is supported since long in workflow
systems [10]. Adaptability in terms of services chosen may even go further by
supporting the selection of services that deviate from the type of service prescribed by
the business process model [7]. Adaptability in terms of the logic (i.e. control and data
flow) of an orchestration may be supported too [15]. Finally, based on dynamic
provisioning technology the environment hosting an application is adaptive too as
described in Section 2.3.

Additional flexibility can be supported based on providing “skeletons” of process
models (Fig. 2). Being characterized as a skeleton has various aspects, represented to the
outside via “points of variability” (see v1,…,v4 in the figure below). For example: A
business process model may only specify that certain kind of activities have to be
performed and the type of messages exchanged with each of such an activity, but the
type of services to be used is not specified – the type has to be detailed by the
organization deploying the process model (point of variability v1 below). Or a business
process model may define some of its structure as fixed while other parts of the model
may be changed by the deploying organization; point of variability v2 below allows to
change transition condition q, for instance, and point of variability v4 allows to omit

18 F. Leymann

v1

v2

v3

v4

q

A

B

C

Xpt

pt ’

Fig. 2. Variable Applications

activity C at all in the business process model. Or a business process model vaguely
specifies that some sort of actions must happen in course of the business process but the
whole corresponding fragment of the model must be provided by the deploying
organization (point of variability v3 below). Or a business process model may only
specify its externally observable behavior while its internal implementation is
“arbitrary” (and possibly hidden) as long as the specified behavior results.

This spectrum of adaptability is important for reasons like customization of
applications, representing best practices, or specifying constraints for using
collections of services. Applications will externalize their points of variability, and
tools will present them allowing to modify the applications accordingly. Not only will
application logic be represented as points of variability but also environment aspects
of an application; these aspects correspond to service level objectives, for example,
which influence the selection of underlying hardware, middleware etc. to satisfy the
objectives. Dynamic provisioning (Section 3.2) and using software as a service
(Section 3.3) will make use of these kinds of points of variability to negotiate SLAs
and set up the overall environment appropriately (see [8] and [13] for more details).

4.3 Outsourcing

Since BPEL itself is portable across environments customers can specify their
business processes in BPEL and run them anywhere in the environment. The services
needed by the orchestration are selected by the bus based on deployment information
specified for the orchestration. This selection can be influenced by preferences of the
provider of the hosting infrastructure of the orchestration, i.e. the provider may itself
offer the corresponding services or may have special contracts with other providers of
those services. Thus, a customer may outsource a business process completely, even
without taking care about the providers of the services composed by the
corresponding orchestration. I.e. the utility computing model applies to complete
business processes and applications.

 The (Service) Bus: Services Penetrate Everyday Life 19

5 Conclusion

The current Web is an infrastructure for accessing content everywhere (“content
Web”). Web service technology will likely provide an infrastructure for accessing
services everywhere (“service Web”). Since Web service technology is not restricted
to Web protocols access to services over any kind of suitable protocols, across
heterogeneous environments will be supported. Quality of services used from today’s
application servers will be supported by the service bus. Composition of services from
other services available on the bus will be the way of building new applications.
These applications can be hosted anywhere on the bus resulting in a utility model for
IT artifacts. As a consequence, outsourcing and off-shoring of IT will become
ubiquitous allowing companies to focus on their core business.

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services, Springer 2004.
2. K. Appleby, S.B. Calo, J.R.Giles, K.-W.Lee. Policy-based automated provisioning, IBM

Systems Journal 43(1) (2004).
3. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M.

Spreitzer, A. Yousse. Web services on demand: WSLA-driven automated management,
IBM Systems Journal 43(1) (2004).

4. I. Foster, C. Kesselmann. The Grid 2, Morgan Kaufmann 2004.
5. A.G. Ganek, T.A. Corbi. The dawning of the autonomic computing area, IBM Systems

Journal 42(1) (2003).
6. M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel. Semantic Business Process

Management: Using Semantic Web Services for Business Process Management, Proc.
IEEE ICEBE 2005 (Beijing, China, October 18-20, 2005).

7. D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, A. Buchmann. Extending
BPEL for Run Time Adaptability, Proc. EDOC’2005, (Enschede, The Netherlands,
September 19 – 23, 2005).

8. A. Keller, R. Badonnel. Automating the Provisioning of Application Services with the
BPEL4WS Workflow Language, Proc. DSOM 2004 (Nancy, France, November 2004).

9. F. Leymann, D. Roller. Workflow based applications, IBM Systems Journal 36(1) (1997)
102-123.

10. F. Leymann, D. Roller. Production Workflow: Concepts and Techniques, Prentice Hall
2000.

11. F. Leymann. Web Services: Distributed applications without limits, Proc. BTW'03
(Leipzig, Germany, February 2003), Springer 2003.

12. F. Leymann. The Influence of Web Services on Software: Potentials and Tasks, Proc. 34th
Annual Meeting of the German Computer Society (Ulm, Germany, September 20 – 24,
2004), Springer 2004.

13. F. Leymann, Combining Web Services and the Grid: Towards Adaptive Enterprise
Applications, Proc. CAiSE/ASMEA’05 (Porto, Portugal, June 2005).

14. M.A. Rappa. The utility business model and the future of computing services, IBM
Systems Journal 43(1) (2004).

15. M. Reichert, P. Dadam. ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control, Journal of Intelligent Information Systems 10(2) (1998).

20 F. Leymann

16. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services
Platform Architecture, Prentice Hall 2005.

17. G. Wiederhold, P. Wegner, S. Ceri. Towards Megaprogramming: A paradigm for
component-based programming, Comm. ACM 35(22) 1992, 89 – 99.

Links: (followed on September 17, 2005)
18. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, F. Leymann, M. Nally, T. Storey,

S. Tuecke, S.Weerawarana. Modeling stateful resources with Web services, Globus
Alliance & IBM, 2004, http://www.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf

19. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P. Schmidt,
I. Trickovic, WS-BPEL Extension for People (BPEL4People), IBM, SAP 2005 http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

20. D. H. Steinberg. What you need to know now about autonomic computing, Part 2: The
infrastructure, IBM Developerworks, 2003. ftp://www6.software.ibm.com/software/
developer/library/i-autonom2.pdf

21. Business Process Execution Language For Web Services V1.1, BEA, IBM, Microsoft,
SAP & Siebel, 2003, http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/

22. OASIS BPEL Technical Committee, http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsbpel

23. Web Services Choreography Description Language, W3C Working Draft, 2004,
http://www.w3.org/TR/ws-cdl-10/

24. Web Services Resource Framework, IBM, Globus, Computer Associates, Fujitsu, Hewlett-
Packard http://www-106.ibm.com/developerworks/library/ws-resource/

25. OASIS Resource Framework Technical Committee, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsrf

26. Web Services Notification, Akamai, Computer Associates, Fujitsu, Globus, Hewlett-
Packard, IBM, SAP, Sonic Software, TIBCO Software 2004, http://www-106.ibm.com/
developerworks/library/specification/ws-notification/

27. OASIS WS-Notification Technical Committee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsn

28. OASIS Web Services Distributed Management (WSDM) http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsdm

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 21 – 32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Service Oriented Architectures
for Science Gateways on Grid Systems

Dennis Gannon, Beth Plale, Marcus Christie, Liang Fang,
Yi Huang, Scott Jensen, Gopi Kandaswamy, Suresh Marru,

Sangmi Lee Pallickara, Satoshi Shirasuna, Yogesh Simmhan,
Aleksander Slominski, and Yiming Sun

Department of Computer Science, Indiana University,
Bloomington Indiana, USA

gannon@cs.indiana.edu

Abstract. Grid computing is about allocating distributed collections of resources
including computers, storage systems, networks and instruments to form a coher-
ent system devoted to a “virtual organization” of users who share a common in-
terest in solving a complex problem or building an efficient agile enterprise. Ser-
vice oriented architectures have emerged as the standard way to build Grids. This
paper provides a brief look at the Open Grid Service Architecture, a standard be-
ing proposed by the Global Grid Forum, which provides the foundational con-
cepts of most Grid systems. Above this Grid foundation is a layer of application-
oriented services that are managed by workflow tools and “science gateway” por-
tals that provide users transparent access to the applications that use the resources
of a Grid. In this paper we will also describe these Gateway framework services
and discuss how they relate to and use Grid services.

1 Introduction

A Grid is a network of compute and data resources that has been supplemented with a
layer of services that provide uniform and secure access to a set of applications of inter-
est to a distributed community of users. The most significant examples of Grid systems
have come from communities engaged in distributed scientific collaborations. For ex-
ample, NEESGrid [1] is a set of shared resources used by earthquake engineers. The
Particle Physics Data Grid [2] is a collaboration based on sharing data and analysis tools
used in the hunt for subatomic particles. There are many more examples. There is also
now a very active industrial community that is defining Grid technology in terms of the
requirements of data center management and application service provisioning.

In the early days, Grid systems were built with ad hoc collections of software, but
the emergence of Web Services has galvanized the community around Service Ori-
ented Architectures (SOAs). Two organizations have emerged to help organize stan-
dard for these groups. The Enterprise Grid Alliance [3], let by Oracle is defining use
cases for service frameworks for the data center. The Global Grid Forum (GGF) [4]
is the older and larger organization that represents both the scientific and industrial
community in defining the standards for Grid technology. GGF is organized along a
standards track and a community track. The focus of the standards track is the Open

22 D. Gannon et al.

Grid Services Architecture (OGSA), which is being promoted by GGF as the future
SOA for Grid systems. The community track is a forum of research groups that are
looking at the role of new technologies in both the scientific and vertical market do-
mains such as telecommunications, biotechnology and media.

In this paper we will provide a very brief, high level overview of OGSA and then
turn to a discussion of the service architecture that is used by virtual organizations
centered around scientific applications of Grid systems. Within the Teragrid project
[5] these are referred to as “Science Gateways”. The goal of a science gateway is
to provide a community of users access to scientific tools and applications that
execute on the back-end compute and data resources. The users should be able to
use the applications as an extension of their desktop without ever knowing that
there may be a massive Grid framework in the background supplying the computing
power. Typically these gateways are organized around a web portal and a family of
desktop tools. The portal server authenticates the user and establishes the user’s
authorization to access data resources and applications. The applications often take
the form of workflow templates that are instantiated and executed on the user’s
behalf. As illustrated in Figure 1, the workflow engine must interact with applica-
tion metadata and data services, application registries and data directories and Grid
resource brokers. Notification services are used to log and monitor application
progress and to create the provenance documentation needed to make computational
experiments repeatable.

There are many examples of gateway systems in use today and each has a
slightly different version of the service architecture that supports it. In many cases
the gateway services are built directly on top of an OGSA-like SOA, and in other
cases the true Grid layer is very thin or even non-existent. In this paper we will
describe examples of each and we will consider one in detail that does build upon a
solid Grid foundation.

Fig. 1. Service Architecture for a Science Gateway

 Service Oriented Architectures for Science Gateways on Grid Systems 23

2 The Open Grid Service Architecture

The Open Grid Service Architecture (OGSA) is a product of the Global Grid Forum
OGSA-WG led by Hiro Kishimoto. The first specification of OGSA [6] can be viewed
as a profile for the organization of a standard Grid. OGSA contains six families of
services which, when properly integrated, deliver a functioning Grid system. It must be
noted that, at the time of this writing, there are no official implementations of OGSA,
because the details of a basic service profile is still being developed. However, under-
standing the six core components can be a useful way to understand how Grid systems
differ from other SOAs. We describe each of these service classes below.

2.1 Execution Management Services

Most Grid systems must manage the execution of computing tasks on the resources
that comprise the Grid. OGSA models execution management in terms of three
classes of services: Resources, Job Management and Monitoring, and Resource selec-
tion. The Resource services describe service containers and persistent state handlers.
The Job Manager handles the full lifecycle of the execution of a set of jobs. It inter-
acts with task queues on each computation resource as well as the other services in-
volved in resource brokering and resource monitoring. The resource selection ser-
vices consist of execution planning, which build schedules of jobs and resources,
candidate set generation services, which produce the likely resources for running a
particular job or set of jobs, and reservation services which interact with accounting
and authorization systems. One interesting outcome of this work has been the Job
Submission Description Language that is a schema for describing jobs. JSDL [7] is
being used by a variety of Grid projects including the large Japanese Grid project
NARAGI [9] and GridSAM [8] from the London e-Science Centre and the Open
Middleware Infrastructure Institute [10].

2.2 Data Services

OGSA data services are intended to address the movement and management of a
number of different data resources. These include the standards such as flat files, data
streams and relational, object and XML databases. But they are also concerned with
derivations, i.e. data that is derived by queries or transformations on other data, and
Data services such as sensors. The types of activities that must be supported by the
data services include remote access, staging, replication, federation, derivation and
metadata generation and management. In addition, these capabilities are to be pre-
sented to the user in the form of virtualized services that hide the different implemen-
tations that are required to support different media and low-level data types. Virtual-
ized services are a way to realize in practice the distributed systems notion of “access
transparency”.

The OGSA working groups involved with defining the specific data services are
still hard at work. However, there are important pieces that are currently in use. One
important component is OGSA Data Access and Integration [11], which establishes
the definition and development of generic Grid data services providing access to and
integration of data held in relational database management systems, as well as

24 D. Gannon et al.

semi-structured data held in XML repositories. Another important contribution is the
replica location service provided by the Globus toolkit GT4.

2.3 Resource Management Services

There are three categories of resource management that are of concern to OGSA. First
there are the actual physical resources: computers, networks, storage systems and in-
struments. At the lowest level this management is done through standard protocols and
frameworks like CIM and SNMP. But OGSA stipulates that there is another intermedi-
ate level where a common interface and approach is needed. This is where the Web
Service Resource Framework (WSRF), a proposed standard, is most appropriate be-
cause it gives a standard way to discover and interrogate services that interact with the
management interface of each resource. WSDM, Web Services Distributed Manage-
ment, is an additional tool that OGSA envisions using for this activity.

The second class of resource management involves resources of a Grid such as re-
source reservation and monitoring. The third class is the management of the OGSA
infrastructure itself. There are two type of interfaces to these management services:
functional interfaces, which accomplish tasks such as creating or destroying a job,
and manageability interfaces, which provide the mechanisms to manage a capability,
such as monitoring a job manager. In general, these services provide resource reser-
vation, monitoring and control of resources, virtual organization management, prob-
lem determination and fault management, metering and policy management.

2.4 Security Services

The OGSA security services are designed to make it possible to enforce the security
policies of a particular Grid and its member organizations. OGSA postulates the
existence of six services: a credential validation service, a trust service, an authoriza-
tion service, an attribute service, an audit service and a bridge translation service.
Though OGSA does not give the precise definition of these services they observe that
the services must support the following capabilities:

• Authentication. The credential validation and trust service should be able to
verify an identity assertion.

• Identity Mapping. The trust, attribute and bridge translation service should en-
able the translation of an identity that is valid in one domain within the Grid into
an identity that is valid in another domain within the same Grid.

Authorization should be provided by the authorization service. The audit service
tracks security-relevant events and is policy driven.

2.5 Self-management Services

An important concept in OGSA is that interactions between users and services are
largely based on Service Level Agreement (SLA), which are documents that govern
the way transactions are carried out. For example, when submitting a job, a user
negotiates the jobs priority, a guaranteed completion time and required resources with
a service level manager to arrive at a working SLA. Self-management services

 Service Oriented Architectures for Science Gateways on Grid Systems 25

automate the tasks of configuration, healing and optimization needed to keep the
Grid operating correctly and meeting its SLAs. The service level management ser-
vices operate by monitoring load and utilization of resources and the running state of
the other services. Based on the monitoring data, the management services must do
an analysis to make sure that all the SLAs can be satisfied. If not, the management
services must adjust priorities or provision additional resources.

2.6 Information Services

Information services provide the mechanisms for the other Grid services to learn
about dynamic events used for status monitoring and directory information that is
used to discover services and logged data. The information services are typically
based on a web service publish-subscribe event notification system such as WS-
Eventing or WS-Notification. But dynamic directory and query services also play a
critical role.

A closely related and important concept is that of naming. OGSA assumes a three
level naming systems in which the top-level is a human readable name. The middle
level is a persistent abstract unique identifier. The lowest level is the actual address
(or addresses) of the object being named. For example, a Grid notification may state
that a new resource exists identified by its abstract unique name. A user or another
service can use a name resolver service or directory to obtain an address for this ob-
ject. A human user can use the directory services to discover entities that correspond
to a particular human readable name.

3 Actual Grid Systems

OGSA is still a work in progress, so there are no certified implementations. However
there are a number of software stacks that are available that are used in different Grid
deployments and many of these contain many of the features of OGSA. Several of
these are available as open source systems and are used extensively in the scientific
community. The Globus Toolkit GT4 [12] is the most frequently used. It contains
elements of all of the OGSA core service areas except for self-management. It will be
used as the core service layer for the National Science Foundation TeraGrid project
[5]. It is also used in the bioinformatics Grid GeneGrid [13], and GridCast [14], a
Grid to support the delivery of multi-media for the BBC. The Laser Interferometer
Gravitational Wave Observatory (LIGO) [15] uses GT3, the previous version of
Globus. GT3 is also used in the Network for Earthquake Engineering [1] and Cancer
Biomedical Informatics Grid caGrid [16].

Another SOA for Grids, gLite [17], coming out of CERN, supports research in
high-energy physics. gLite is used in the “Enabling Grids for E-SciencE” EGEE
project [18] and the LHC Computing Grid [19]. Another large Physics project is the
Open Science Grid OSG [20], which uses elements of GT4 and gLite. The Legion
system, which is one of the oldest software platforms for Grid computing is being
redeveloped as a web SOA by the University of Virginia and is being used in the
Global Bio Grid [21]. Another early OGSA-like Grid is Discovery Net [22]. In
addition to these OGSA-like SOAs used in large science Grids, there are several

26 D. Gannon et al.

commercial products that are available and in use in the enterprise computing sector.
We expect that many of these will evolve into close compliance with OGSA.

4 The Application Service Layer: Scientific Gateways

There are really two types of Science Gateways. One type is a service gateway that
bridges two Grids. An example of this is a proposed Gateway between TeraGrid and
the Open Science Grid (OSG) that will allow OSG users access to TeraGrid re-
sources. The second type of Gateway is a collection of tools that allow a large num-
ber of users transparent access to remotely deployed application and database ser-
vices. Typically these systems use a web portal and desktop tools such as a workflow
composer and visualization tools. There are many excellent examples of this type of
service organization. Some projects use an extensive Grid infrastructure similar to
OGSA as the underlying foundation, while others are relatively lightweight and self-
contained. For example, the Taverna [23] system, which is widely used in biomedical
applications, does not rely on an underlying Grid. Rather it directly orchestrates web
service and other services available on the Internet. Another powerful tool to help
scientists orchestrate web services and other applications is Kepler [24]. While Ke-
pler can be used as a desktop tool to orchestrate simple services, it can also be used in
a large grid-based gateway, such as the Biomedical Informatics Research Network
BIRN [25]. Finally, Triana [26] is a workflow composition tool that can be used by
scientists either as a desktop application, or as a component to a larger Grid Gateway,
such as used with the GridLab project [27]. Another excellent Gateway that does not
require extensive backend OGSA-style Grid support is ServoGrid [28], a portal for
computation geophysics. On a closely related topic, the Earth Systems Grid [29] pro-
vides an excellent portal that provides access to tools for climate research. Unlike
some of the others, it is based on a substantial Globus-based Grid foundation.

To provide a better idea of what a Grid based Gateway architecture looks like, we
will look at one project in detail. The Linked Environments for Atmospheric Discov-
ery (LEAD) project is an National Science Foundation sponsored effort to vastly
improve our ability to predict tornadoes, hurricanes and other mesoscale weather
events. The project, led by Kelvin Drogemeier at the University of Oklahoma in-
volves seven other primary institutions1. The use-case for LEAD can be described as
follows. Vast arrays of instruments are constantly collecting data about the weather.
This includes ground sensors measuring pressure, humidity, lighting strikes as well as
Doppler radars and airborne detectors such as balloons and commercial aircraft, and
satellites. There are also substantial data about previous weather events. In LEAD,
data-mining agents will monitor the instrument data streams looking for interesting
emerging severe storm conditions. When something significant is detected, the agent
will broadcast notification events to a workflow engine. These events will trigger one
or more waiting workflows to begin executing. The job of the workflows is to inter-
act with resource broker services to invoke a series of data “ingest” analysis services
and start up an “ensemble” of weather forecast simulations each representing a

1 Indiana University, the University of Alabama Huntsville, the National Center for Supercom-

puting Applications (NCSA), UNIDATA/UCAR, Millersville University, Howard University
and the University of North Carolina.

 Service Oriented Architectures for Science Gateways on Grid Systems 27

slightly different scenario. (An ensemble may be a few dozen simulations or hun-
dreds, depending on resource availability.) As these simulations proceed other data
analysis services will compare the output of each with the evolving state of the real
weather. Those simulations that fail to track reality will be terminated and those that
are doing well will be given more resources. As the simulations predict a developing
area of trouble, the workflows will be able to direct some of the instruments, such as
the newest generation of Doppler radars, to gather more detailed information in the
region of concern. This improved data can be used to increase the resolution of the
simulation. When the simulations begin to converge on a serious severe storm in the
making, the scientific team will be alerted. At this point the scientists may choose to
interact with the workflow to cause additional scenarios to be explored or to generate
visualizations.

In addition to this real-time adaptive storm prediction scenario, LEAD must also
support a workbench for researchers, teachers and students of all age groups. This
diverse user base has vastly different requirements. The LEAD Gateway service
architecture has components that support two primary activities:

• Data discovery, data and metadata management, and data storage.
• Workflow management for simulation and data analysis services.

To support these activities there are six persistent services as illustrated in Figure 2.
The portal server is user’s primary access point. When the user authenticates with
the server (via standard https protocols), the portal server fetches the user’s Proxy
X.509 certificate and a set of SAML based authorization tokens. The authorization
tokens determine which other services the user has access to. The portal server pre-
sents the user with a series of JSR-168 portlets that provide the interfaces to the other
core services.

Fig. 2. LEAD Gateway Services

28 D. Gannon et al.

For most users, the primary portlet is the MyLEAD service [30] and associated
tools. MyLEAD is a metadata catalog of each users experimental data and results.
The tools associated with MyLEAD include an interactive query tool that allows a
user to search for data based on a variety of experimental attributes, a Geo-query tool
that allows a user to define data in terms of geospatial (i.e., map coordinates), tempo-
ral and data attributes, and a resource catalog, that allows the user to select data from
public weather services such as UNIDATA Local Data Manager (LDM) servers.
The portal components of MyLEAD talk to the MyLEAD agent web service which is
the front end for the MyLEAD catalog which is built on the OGSA-DAI service [11].

The “high-end” experimental users of LEAD need the ability to integrate large
scale simulation and data analysis codes into experimental workflows. The way they
do this is through an Application Factory service. They begin by deploying their
application on some host in the back-end Grid. A description of the deployment and
how it is invoked (including the types of input files it needs and output files it gener-
ates) is encoded by the scientist into a “service map document”. This document can
then be uploaded into the portal application factory interface, which passes it to the
application factory service. The application factory is now able to create a web ser-
vice component that can launch the application as part of a workflow or directly from
the portal. The WSDL for the generated application service is loaded into a service
registry, which uses soft-state concept of “leases” to keep track of the state of the
service. These application service instances are not assumed to be persistent because
they run on remote hosts as user processes. The application factory is capable of re-
starting an application service that is no longer running if it is needed by a workflow.

Fig. 3. The workflow composer tool

 Service Oriented Architectures for Science Gateways on Grid Systems 29

Fig. 4. The workflow composer can be used to monitor events published by a data mining
workflow

The workflow service is based on a limited version of BPEL we call GPEL. It has
been designed specifically to host long-running workflows that interact with applica-
tion and data management services. Because BPEL is not a language that atmospheric
scientists find very friendly, we have built a graphical user interface along the lines
of Kepler and Triana. As shown in Figure 3, this interface allows the user to compose
application components from a pallet of known application components. The com-
poser tool compiles the graphical description into a BPEL document which is stored
in the user’s persistent space (i.e., MyLEAD) and in the workflow engine. Because
the application services typically work by consuming and producing large files, the
input and output components allow the user to specify these files by the persistent
abstract unique identifier which can be used by a Grid name resolver to locate and
stage a copy of the desired object.

The final service is Notification. The LEAD notification system is based on a ser-
vice that implements both the WS-Eventing and an early version of the WS-
Notification standards. This critical service ties together many of the components of
the LEAD gateway. Every application service publishes events about its current state
for each invocation of that service. Collectively, the event histories for each service
invoked as part of a workflow form a record of each computational experiment. The
entire event history is logged in the user’s MyLEAD space as part of the record for
that experiment. This gives the user the ability to examine each step of the process
and also provides provenance information for every data product generated along the
way. As shown in Figure 4, it is possible for the workflow composer to subscribe to
the experiment event stream and monitor it as it progresses. This has proven to be an
essential tool for debugging. The anticipated number of users who will actually com-
pose and debug new workflows is expected very small. But to simplify their task, the
portal contains an Experiment wizard which is able to guide a user through all the

30 D. Gannon et al.

steps required to set up an experiment, compose a workflow (or select a pre-
composed workflow template and bind parameters to it), and run it. The results are
automatically registered with MyLEAD.

The vast majority of LEAD Gateway users will probably only use the MyLEAD
interface to browse data and apply canned transformations to them. Teachers will
want to present students with simple simulation scenarios and allow them to execute
them with limited capabilities. To facilitate this we are developing special tools that
allow teachers to imbed a “user interface” to a workflow so that any authorized stu-
dent can enact it. The user interface can be embedded into the xhtml text of an educa-
tional module.

5 Conclusions

It should now be clear that a service-oriented architecture is both an elegant and a
practical way in which to provide scientific communities shared access to tools and
resources. SOAs are the basis for both OGSA-style Grids and science gateways.
These gateway frameworks are usually built around a web portal and a set of desk-
top clients that access backend application services. The OGSA group has done an
excellent job of characterizing the families of services required for different classes
of computing and data Grids. What remains unclear is the degree to which a gate-
way framework needs the full power of an OGSA-style Grid. In many communities,
it is sufficient to provide a portal and tools that allow users unfettered access to
public web services. These communities resist installing complex grid infrastruc-
tures because of the management overhead it requires. They want lightweight, sim-
ple solutions that can be dropped into any user’s environment with little or no
effort.

In other cases, such as the LEAD example described here, a full-blown Grid infra-
structure is needed to handle the task of doing state-of-the-art predictions of storms.
Yet LEAD must also serve a community of educators and scientists that demand
lightweight solutions. The dividing line between these two extremes involves the size
of the data and the scale of computing required to satisfy the users needs. The high-
end of LEAD tasks require massive data management and supercomputing support,
while the educational environment requires modest data access and analysis and very
limited simulation capability. In the majority of life science applications, the work is
data analysis and transformation based on relatively small data sets available from
public web services. Consequently, large Grid deployment is not always necessary in
many bioinformatics applications.

A flexible service oriented architecture for Science Gateways is one that allows
application services to be installed as simple components on any platform, yet they
must be able to connect and interoperate with the larger, more secure back-end Grid
services in a manner that is transparent to the user. By building the gateway service
architecture as a modular component framework where one can deploy application
services as needed, it is possible to create a system that works in a local environment
but also exploits the power of large Grids.

 Service Oriented Architectures for Science Gateways on Grid Systems 31

References

1. Network for Earthquake Engineering http://it.nees.org/
2. The Particle Physics Data Grid. http://ppdg.net
3. The Enterprise Grid Alliance. http://www.gridalliance.org/en/index.asp
4. The Global Grid Forum. http://www.ggf.org
5. NSF Teragrid Project, http://www.teragrid.org/
6. Foster, I., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Kishimoto, H., Maciel, F.,

Savva, A., Seibenlist, F., Subramaniam, R., Treadwell, J., Von Reich, J.: The Open Grid
Service Architecture, V. 1.0, www.ggf.org/ggf_docs_final.htm, GFD.30. July 2004.

7. Global Grid Forum, Job Submission Description Language. Draft specification available
at http://forge.gridforum.org/projects/jsdl-wg

8. GridSAM – Grid Job Submission and Monitoring Web Service, http://www.lesc.ic.ac.uk/
gridsam/

9. Matsuoka, S., Shimojo, S, Aoyagi, M., Sekiguchi, S., Usami, H., Mura, K., Japanese
Computational Grid Project: NAREGI. Proc. IEEE vol. 93, no. 510, 2005.

10. Open Middleware Infrastructure Institute, http://www.omii.ac.uk
11. Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Chue Hong, N., Collins, B.,

Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan, J., Pa-
ton, N., Pearson, D., Sugden, T., Watson, P., and Westhead, M.: Design and implementa-
tion of Grid database services in OGSA-DAI, Concurrency and Computation: Practice
and Experience, Vol. 17, No. 2-4, Feb-Apr 2005, pp. 357-376.

12. The Globus Project: GT4. http://www.globus.org/toolkit/.
13. Jithesh, P., Kelly, N., Donachy, P., Harmer, T., Perrott, R., McCurley, M., Townsley, M.,

Johnston, J., McKee, S.: GeneGrid: Grid Based Solution for Bioinformatics Application
Integration and Experiment Execution. CBMS 2005: 523-528

14. Belfast e-Science Center, http://www.qub.ac.uk/escience/projects/gridcast.
15. Laser Interferometer Gravitational Wave Observatory, http://www.ligo.caltech.edu
16. William Sanchez, Brian Gilman, Manav Kher, Steven Lagou, Peter Covitz, caGRID White

Paper, https://cabig.nci.nih.gov/guidelines_documentation/caGRIDWhitepaper.pdf
17. Light Weight Middleware for Grid Computing, http://glite.web.cern.ch/glite/
18. Enabling Grids for E-SciencE, http://public.eu-egee.org
19. LHC Computing Grid, http://lcg.web.cern.ch/lcg/
20. Open Science Grid, http://www.opensciencegrid.org/gt4
21. The University of Virginia, The Global Bio Grid http://www.cs.virginia.edu/~gbg
22. Al Sairafi, S., Emmanouil, S., Ghanem, M., Giannadakis, N., Guo, Y., Kalaitzopolous, D.,

Osmond, M., Rowe, A., Syed I., and Wendel P.: The Design of Discovery Net: Towards
Open Grid Services for Knowledge Discovery. IInternational Journal of High Perform-
ance Computing Applications. Vol 17 Issue 3. 2003.

23. Oinn, T., Greenwood, M., Addis, M., Ferris, J., Glover, K., Goble C., Hull, D., Marvin, D.,
Li,, P., Lord, P., Pocock, M., Senger, M., Wipat, A. and Wroe, C.: Taverna: Lessons in
creating a workflow environment for the life sciences. Concurrency and Computation:
Practice & Experience, Special Issue on Scientific Workflows, to appear 2005.

24. Ludaescher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, Zhao, J.: Scientific Workflow Management and the Kepler System. CC:P&E, Spe-
cial Issue on Scientific Workflows, to be published 2005.

25. Grethe JS, Baru C, Gupta A, James M, Ludaescher B, Martone ME, Papadopoulos PM,
Peltier ST, Rajasekar A, Santini S, Zaslavsky IN, Ellisman MH. : Biomedical informatics
research network: building a national collaboratory to hasten the derivation of new under-
standing and treatment of disease. Stud Health Technol Inform. 2005;112:100-9.

32 D. Gannon et al.

26. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor,
I., Wang, I.: Programming Scientific and Distributed Workflow with Triana Services.
CC:P&E, Special Issue on Scientific Workflows, to appear 2005.

27. The GridLab Project. http://www.gridlab.org/
28. Aktas, M., Aydin, G., Donnellan, A., Fox, G., Granat, R., Lyzenga, G., McLeod, D., Pal-

lickara, S., Parker, J., Pierce, M., Rundle, J., and Sayar, A.: Implementing Geographical
Information System Grid Services to Support Computational Geophysics in a Service-
Oriented Environment. NASA Earth-Sun System Technology Conf., June 2005

29. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini,
L., Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Middleton, M. VNefedova, V.,
Pouchard, L., Shoshani, A., Sim, A., Strand, G., and Williams, D.: The Earth System
Grid: Supporting the Next Generation of Climate Modeling Research. Proc. IEEE, vol. 93,
no. 485, 2005

30. Plale, B., Gannon, D., Huang, Y., Kandaswamy, G., Lee Pallickara, S., Slominski, A.:
Cooperating Services for Data-Driven Computational Experimentation, Computing in Sci-
ence & Engineering, IEEE Computing in Science and Engineering, vol 7, no. 5, pp. 24-33,
2005.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 33 – 47, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward a Programming Model
for Service-Oriented Computing

Francisco Curbera, Donald Ferguson, Martin Nally, and Marcia L. Stockton

IBM Corp.
{curbera, dff, nally, mls}@us.ibm.com

Abstract. The service oriented paradigm is, at its core, a model of distributed
software components, built around the idea of multi-protocol interoperability
and standardized component contracts. The Web Services Interoperability (WS-
I) profiles provide standards for runtime interoperability, and the Web Services
Description Language (WSDL) and WS-Policy define service contracts that
support interoperability between developer tools. A major goal of Service
Oriented Architectures (SOAs) is to enable an abstraction layer that integrates
and bridges over platform and implementation technology differences,
effectively providing a universal business software component and integration
framework. Achieving a complete solution requires a portable component
model and well-defined patterns for components types. This paper examines the
main requirements for a SOA programming model and identifies its most
relevant characteristics. In line with SOA’s goals, such model must allow a
broad community of users (including non-programmers) to create service-
oriented applications by instantiating, using, assembling and customizing
different component types that match the user’s goals, skills, and conceptual
framework. Moreover, these component types must be portable and
interoperable between multiple different vendors’ runtimes.

1 Introduction: Service Oriented Architectures

This paper deals with the problem of defining a service-oriented programming model
(component model). At its core, a programming model defines

1. A set of roles, and skills for each role.
2. A set of tasks and an associated role.
3. A set of part types or component types that the roles create and use.
4. A set of interfaces that a role uses when implementing a specific component type.

As an example, in Java 2 Enterprise Edition™ (J2EE) [1], “dynamic Web page
developer” might be a role. A programmer in this role produces Java Server Pages (JSPs)
[2] and Servlets [3], and may use JavaBeans™ [4] that encapsulate access to business
logic and back-end systems. Programmers in other roles provide the JavaBeans, isolating
the dynamic Web page developers from the details of relational database access or
integration with non-J2EE applications through connectors and adaptors.

Roles are not necessarily programmer roles, and we use the terms “implement” and
“interface” in a loose sense. Defining a programming model has many benefits, most
noticeably a reduction in complexity. No single role needs to understand all of the

34 F. Curbera et al.

possible ways of implementing a function, or all the interfaces a system exports. There
are well defined bounds on the breadth of complexity exposed to each role, and well-
defined hand-offs between differently skilled developers (different roles). Finally, a
programming model enables vendors to provide role and task based tools. The visual
metaphors a tool should surface to a programmer implementing a workflow process are
significantly different from the metaphors for WYSIWYG Web page design.

This paper focuses primarily on the part types or components of a programming
model for Service Oriented Architectures (SOAs). The goals of the service-oriented
architecture approach to building enterprise applications include enabling faster
integration of business applications inside and between organizations, fostering reuse
of application logic, and supporting flexible transformation of enterprise business
processes. Taking their cue from the success of the Web in the realm of human-to-
application interactions, some say that eventually SOAs should be able to provide
support for a new global, fully networked, and dynamic economy.

A precise characterization of SOA may at this point still be a matter of debate.
Some key aspects, however, seem to have been widely accepted by now:

1. SOA is a “distributed component” architecture. SOA components are transparently
located inside or outside the enterprise and universally accessible as services through
a stack of universally supported, interoperable remote procedure call (RPC) and
messaging protocols. Standards for defining interfaces provide interoperability
between developer tools. “On the wire” protocol interoperability, as opposed to code
portability, is the centerpiece of SOA component interactions because it supports the
principle of universal access and platform independence. Today, SOA only provides
platform independence from the caller’s perspective; the service implementer,
however, is linked to a specific platform and development tool.

2. Like other component models before it, SOA components encapsulate functionality
and enable reuse. However, well-defined SOA components do so at a level
granularity and abstraction much closer to the business functions and requirements
that are meaningful at the business modeling level (as opposed to the information
technology level).

3. SOA components offer declarative, machine processable contracts that enable third
parties to access the services that the components provide. SOA contracts explicitly
state functional characteristics as well as non-functional (quality of service - QoS)
capabilities and requirements. SOA components may document their operations
using the Web Services Description Language WSDL [5], and extend this
definition to document valid sequences of operations using Business Process
Execution Language for Web Services (BPEL4WS) [6] abstract processes.

4. Based on their explicit contracts, components can be automatically and
dynamically found, selected and bound by means of their declarative properties,
and integrated using composition mechanisms.

The purpose of this paper is to discuss requirements and characteristics of a SOA
programming model. Current standards and specifications imply much about the
design of the programming model. Four important aspects of a SOA programming
model may be derived from the preceding summary characterization of SOA:

 Toward a Programming Model for Service-Oriented Computing 35

1. Platform independence and virtualization.
2. Centrality of composition mechanisms.
3. Flexibility in the component configuration.
4. Loose coupling between components.

We discuss these aspects below.

Virtualization
The central role of universal interoperability in SOA naturally leads to the notion of
virtualization. From an interoperability standpoint, all applications are accessed as
services regardless of their underlying implementation differences and their location
in the network (co-resident, inside an enterprise, over the Internet). Likewise, from a
SOA programming model perspective, applications are (potentially) SOA components,
despite being implemented in a variety of different underlying technologies.

A SOA programming model in this sense is fundamentally different from other
programming models in that it is “virtual” and maps over and into a variety of
platform-specific concrete programming models.

Consider two examples:

1. Programmers can use the XSL Transformations (XSLT) language [7] to implement
a service that converts the messages used by a “legacy” application to the XML
schema defined by an industry standard. The abstraction is portable (XSLT, service
invocation). Concrete infrastructures may choose to “compile” the XSLT in Java,
C, stored procedure languages, or use an XSLT interpreter.

2. BPEL4WS provides support for defining a service implementation that
choreographs and aggregates other services. BPEL4WS invoke activity and
partnerLinks provide a virtual calling mechanism. Other activity types provide
support for implementing the service. The programming model is virtual, and
specific infrastructures may interpret or compile BPEL4WS as needed.

Although SOA components are not native to any particular platform (.NET, J2EE),
applications developed for any platform are potentially SOA components. If the J2EE,
.NET, etc. components implement the SOA component model externals (protocols,
contracts), other SOA component implementations and solutions can call them.

The preceding examples reveal three aspects of a SOA virtual component and
programming model:

1. An abstract primitive for defining requirements on other services (e.g. BPEL4WS
partnerLink).

2. An abstraction for calling an operation on a service.
3. A portable abstraction for defining implementation logic (e.g. BPEL4WS, XSLT).

A SOA component model is introduced in Section 2. A virtual component model
also requires an abstraction for access to “data” or “information” from within a
component’s implementation. In the XSLT example, some of the transformations may
require table look-ups. The component is inextricably linked to a specific data access
model for data format without such an abstraction. Section 6 describes how Service
Data Objects (SDOs) provide this data virtualization layer.

36 F. Curbera et al.

Component Composition
The development of individual (or atomic 1) service components may rely on
platform-specific programming models and languages, or may use an atomic SOA
component type like a transform component. Programmers may choose to implement
base components using J2EE, PHP [8], etc. A core concern of SOA as a
programming model is the interaction of those components and their integration into
new composite components or applications. SOA composition may be achieved using
platform-specific models, such as a J2EE session bean that accesses back-end services
to provide a new service.

SOA-centric composition models, however, can also build directly on top of a
SOA component model without mapping into another programming model.
BPEL4WS is probably the best known SOA composition language, but different
composition models are possible. Most successful composition models will naturally
derive from current practice, incorporating proven integration approaches into a SOA
programming model.

There are two main perspectives on composition. Behavioral composition
describes the implementation of the composite; process-oriented composition (derived
from workflow models), and a state machine metaphor (such as UML State Diagrams
[9]) are good examples of this type of composition. A structural composition, on the
other hand, defines the assembly of a set of existing components into larger solutions.
We discuss composition paradigms in Section 3.

Flexibility and Customization
SOA aims to enable the wide reuse of service components. The composition model
allows programmers to find services having the desired interfaces and infrastructure
(QoS) policies, and aggregate them into new services and solutions. These new services
can themselves be composed. It is unlikely, however, that a service can be always be
reused “as is”, without configuration, customization or tailoring. When change is
needed, the current state of the art is source code modification. However, the ability to
deliver wide reuse of components depends heavily on the capability to adapt
components to the environment in which they are used. A SOA programming model
should enable building services and modules that “programmers” can customize without
source code modification. This is especially important when the programmer is in a
different organization than the programmers who built the components.

In Section 4 we discuss two possible mechanisms for supporting component
customization: adaptation though points of variability (POV) on the component’s
behavior, and mediation which focuses on processing in-flight messages.

Loose Coupling
Another benefit of a SOA programming model is the ability to substitute one
component for another at various times during the software lifecycle. This is enabled
by the late binding of declared interfaces to implementations supporting them. There
are many business reasons why substituting units of functionality is desirable. Most
important of these, perhaps, is to reduce the difficulty of managing change in a large

1 This use of the term atomic is different from the use in transaction processing. In this context,

we use atomic to mean a service that is not a composite or aggregate of other components.

 Toward a Programming Model for Service-Oriented Computing 37

enterprise. Being able to introduce change gradually, and limiting the impact of
change by adhering to defined interfaces, confers increased flexibility. It also
matches the loose coupling that is often characteristic of large human organizations.
This feature of a SOA programming model enables groups with different skills, needs
and timetables to work collaboratively in a way that maximizes the efficiency of
resources, and allows the business to respond more rapidly to change.

There are several elements to loose coupling:

1. Describing messages (operation parameters) using XML Schema makes services
less fragile in the face of message evolution. Messages can evolve, for example,
through reordering or by adding elements, without breaking existing service
implementations. Operation addition or reordering in WSDL does not break
existing callers.

2. Dynamic binding is inherently more flexible than existing approaches based on
program linking or class paths.

3. The mediation model allows message (request) routing and processing, expanding
on the flexibility of dynamic binding. Using routing mediations allows for addition
of new or alternate implementations of services, which can be selected during
operation invocation based on business logic or rules.

Paper Overview
The rest of this paper examines these aspects of the service oriented architecture from a
programming model point of view. Section 2 introduces the notion of SOA components
and component types, and discusses some of these component types. Section 3 presents
SOA composition models, focusing on structural and behavioral composition
paradigms. Section 4 discusses component customization, and in Section 5 we show
how data access virtualization is supported by Service Data Objects. Section 6 provides
an architectural perspective to the concepts of this paper. In Section 7 we discuss related
work and the Service Component Architecture, a recently released SOA programming
model. Finally, Section 8 summarizes the results of this paper.

2 SOA Components

Most literature on Web services, especially standards, focuses on the interoperability
protocols and service interfaces, and their use. This paper instead focuses on the
programming model for implementing services and assembling them into solutions. A
component model simplifies the process of building and assembling services. Here
we outline the design of a SOA component model. First, an important distinction
between a SOA component and a service must be made. A service is a visible access
point to a component. A component can offer multiple services, while at the same
time require, as part of its implementation, access to a number or external services.
With this distinction in mind, we distinguish three main elements in a SOA
component model: service specifications, the service component implementation, and
the service component.

A “service specification” defines an access channel to a SOA component. It is
defined by the following 3 groups of specifications.

38 F. Curbera et al.

• Interfaces, which are typically WSDL portTypes.
• Policies that document QoS properties like transactional behavior, security, etc.
• Behavioral descriptions, for example a BPEL4WS abstract process, or a UML2

state model. Callers can compute valid sequences of operations from the
abstract process or state model.

A service specification is different form a Web service in that it is not bound to a
network address. An address is assigned to the services provided by a specific
component instance, not to the service specifications.

A service component implementation is the definition of a particular kind of
component, which will in turn admit multiple realizations or instantiations as actual
service components. It is defined by 5 groups of specifications.

• Provided “service specifications” define the characteristics of the services that
components exposes to potential users.

• Required “service specifications” define the services that the component
requires from other service providers to function.

• Properties that may be set on the component to tailor or customize the behavior
of each instance of the implementation.

• “Container directives” (policies) that are invariant for all instances of the
implementation, including information of the kind typically encoded in J2EE
deployment descriptors.

• An implementation artifact (Java class, BPEL document, set of XSLT rules, etc)
that defines the implementation of the component.

Finally, a service component (instance) represents a component actually deployed
and accessible to other applications. It defined by the following.

• A component name.
• A service component implementation
• The values of any properties of the implementation that are being set to tailor

the instance
• The specification of any services that resolve the “required” service specifications

of the implementation. These may be “wires” that connect component instances or
a “query” that executes to find a component at runtime that implements an
interface, and has the right QoS policies and the required behavior (abstract
process, etc.).

There are two basic approaches to defining a SOA component. The first is a control
file: a document that, by reference, associates or joins all the parts of the component.
For example, the control file may reference the WSDL definition (interface provided),
the Java class that implements the component (implementation artifact), the associated
policy documents (policy assertions), etc. The control file format gathers several
individually-developed artifacts into a collection that, together, comprises the
component. Application development tools aid in defining the control file.

The second format uses pragmas: structured comments (e.g. XDoclet tags [10]) or
metadata language elements (as in JSR 175 [11]) specifying the same information, but
contained within the body of a single source file. There is evolving support in Java
[11] to make these annotations part of the language, but this approach does not

 Toward a Programming Model for Service-Oriented Computing 39

support other models like a set of SQL or XQuery statements. For example, structured
comments in a Java source file indicate which Java methods will become Web service
operations on the generated WSDL defining the component’s service interfaces. We
will illustrate this concept further in the discussion of individual component types.

2.1 Component Types

Because of the virtual nature of the SOA component model, many SOA components
naturally support multiple implementation technologies. On the other hand, different
implementation technologies are better suited for different tasks. To improve
transparency, we introduced the notion of service component types, each suited for a
developer with a given set of skills, performing a specific task, and using a certain
tool. For queries, the programmer implements a .SQL file and a file containing a set
of XQuery statements; for document conversion, XSLT style sheets, and so forth,
using tools optimized for that task. There is no need to know that a Web service,
Enterprise JavaBean (EJB) or other artifact is generated upon deployment, just that
the overall result will be exposed and made available as a generic SOA component.

Programmers build a specific type of component adapted to the task, concentrating
on the problem to be solved and the tool for doing so, not on the resulting artifacts.
SOA development tools should focus on the skills of the developer and the concepts
they understand. In the remainder of this section we take a brief look as some
component types. When necessary, references are made to IBM products supporting
the function being described.

Plain Old Java Object and Stateless SessionBeans
The most basic type of service component implementation is a “plain old Java object”
(a “POJO”). JSR 109 defines the model and architecture for implementing Web
services in J2EE [13, 14]. Tools like WebSphere Studio [15] can publish a Java class
through a Web service abstraction. The Java class runs in the Web container, and has
full access to the J2EE programming model’s facilities. The WebSphere tools and
runtime automate the conversion from SOA-encoded XML to the Java interface and
operations of the POJO, and vice versa. Programmers may also use Stateless
SessionBeans to implement services. WebSphere Studio tools automate publishing a
Stateless SessionBean through a WSDL/SOA abstraction.

WebSphere Rapid Deployment [12] is a tool that simplifies defining a service in
Java using the pragma format described previously. Using an editor, a programmer
annotates the Java source file with control tags derived from the XDoclet model [10].
These tags specify whether the component is a POJO or Stateless SessionBean, the
values for deployment descriptors (e.g. the transaction model), and the operations that
must become part of the remote interface and WSDL.

IMS Transactions
The IMS SOAP Gateway [17] adds the ability to seamlessly expose existing and
newly-created IMS application assets as Web services, in conjunction with the IMS
Connect capabilities in IMS version 9. The gateway supports synchronous SOAP
interactions over HTTP and HTTPS to enable the IMS application to receive inbound
service requests. Additional functions such as SOAP client outbound support and

40 F. Curbera et al.

additional Web service protocols such as WS-Security, WS-Atomic Transaction, and
WS-Addressing support are expected to be available in the near future.

The mapping of an IMS transaction to a Web service operation is defined by
several files: an XML-COBOL converter, a WSDL Web service interface definition,
and an XML correlator that relates the name of the application to the name of the
XML-COBOL converter and provides protocol details for the connection between the
SOAP runtime and IMS Connect. An XML Enablement utility in WebSphere Studio
Enterprise Developer generates these artifacts to repurpose IMS COBOL applications
as Web services.

SQL Statements
Products like the Websphere Information Integrator (WII) [18] enable databases to
consume Web services. WII can make data sources described by XML schema
accessible through standard SQL queries, the form familiar to DB2 programmers.
The tools and runtime convert XML data sources to relational tables. A set of
adapters provide a common WSDL-described interface for accessing XML
information from WII. The basic SQL SELECT, UPDATE, and INSERT commands
are integrated with compatible Web service operations. The DB2 database can invoke
operations on Web services, both in queries and stored procedures, from SQL.
Likewise, to publish enterprise information as Web services without programming, it
is possible to expose SQL queries, database stored procedures, and other database
artifacts as Web services.

3 Component Assembly and Customization

As has been mentioned before, composition is the core development task in a SOA
programming model. We focus in this section on two forms of component
composition that can be used to compose new services from existing ones. Each one
derives from well established models of application integration and assembly.

1. Structural composition is the assembly of modules and solutions from existing
components. Structural composition reflects the current practice of deploying
solutions by assembling and connecting (logically “wiring” together) a set of
existing components.

2. Behavioral or process-oriented composition describes the implementation of the
composite service, called a process, via a classic procedural programming
metaphor: what services to call, in what order, and how to aggregate the results.
Process-oriented composition, directly derived from the legacy of workflow-
oriented integration of applications [20] and human tasks, is one approach. Many
programmers will also approach behavior composition through a state machine or
{event, state, action} metaphor using, for example, UML State Diagrams [9].

Structural Composition
As we have seen, SOA components document the interfaces they need from other
services (imports), and the interfaces they offer (exports). In structural composition,

 Toward a Programming Model for Service-Oriented Computing 41

programmers wire the required interfaces of a component to interfaces that other
components or services provide. This wiring metaphor is similar to defining UML
collaboration diagrams. The “wires” represent the flow of messages from one
component’s required interface to an interface that another component implements.
Service composition can also connect a service’s exported interfaces to event driven
architecture (EDA) environments, allowing services’ operations to be driven by
subscriptions to events. Wiring can also connect imported interfaces, the interfaces
the service calls, to topics to generate events that drive other services or software. The
WS-Notification [31] family of specifications provides a model for integrate EDA
with SOA.

A collection of services wired together into a bundle is called a module. A module
can likewise declare imports and exports and be wired into a larger assembly, thus
supporting a recursive composition model, so modules can aggregate other modules.
Wires defined at assembly time are not satisfied until, at runtime, they are bound to
deployed component instances.

An important concept in structural composition is that of mediation services. A
mediation service defines the “behavior” of a wire, and is invoked by the SOA
infrastructure (such as an Enterprise Service Bus (ESB) [21, 22]) whenever a message
traverses the wire. Mediations typically do one of the following:

• Content based routing – Route the message to one or more alternative destinations
based on content.

• Transformation – Transform messages and map operations, adapting the required
interface to the implemented interface.

• Augmentation – Retrieve additional information to put the message into the form
expected by the target service.

• Side effect – Perform an extra operation needed by the infrastructure or by an
enterprise policy, beyond that specified in the data payload. For example, log
financial messages.

Mediations are first class services, with supporting tools. WebSphere Business
Integration Message Broker [23] for example supports powerful, complex mediations
including augmentation, transformation and routing mediations.

Behavioral Composition
BPEL4WS provides Web services centric process composition. A BPEL4WS process
is a directed graph2 of activity nodes representing a single business activity—for
example, a “quick loan” service in a banking business. Processes are classified as
short- or long-running. Short-running processes have a single transaction per process
and can be defined using basic process choreography. Long-running processes persist
their execution state in a database. They require advanced process choreography and
support transactionality at the activity level. They may include compensations to roll
back partially completed work in the event of a failure, for long lived processes that

2 BPEL4WS also supports other compound activities in addition to the directed graph model.

For example, there is a language construct for a sequence of more basic activities.

42 F. Curbera et al.

cannot rely on the resource locking mechanisms of transaction managers, or for
operations that lack transaction support.

A business state machine (BSM) is a service that aggregates other services and
business logic relying on state based behavior. Consider the example of a purchase
order processing service. The implementation of the cancelPurchaseOrder operation
may depend on the “state” of the purchase order. If the purchase order has been
entered, but not processed, there is one implementation of cancel. If, however,
purchase ordering processing is complete and the PO is shipping, there may be a
different implementation. A business state machine has one or more interfaces, which
in turn have operations. The business state machine instance has a current state, and
the state determines which operations are enabled.

4 Component Customization

A customizable component is one that can be tailored for reuse in a new context or
within an assembly, or adapted to evolving business policies, without changing the
source code. Our SOA programming model introduces two approaches to
customization: adaptation, and mediation. Adaptation is achieved by providing points
of variability (POV) on the component’s behavior and its contract, which allow
flexibility in the use of the component while not requiring any modification to the
component’s intrinsic implementation. The component provider declares points of
variability by documenting a required interface. Other programmers configure or
customize the component by providing a companion service that implements the
POVs. The documentation of POVs is a generalization of the Strategy Pattern [24].

Mediation (selection) is a model in which the infrastructure or new customization
logic processes in-flight messages. Processing can include routing to one of multiple
implementations.

Consider an example of a commerce (shopping) component.

1. Discount algorithms change over time, and change from one organization to
another. By declaring a POV computeDiscount(shoppingCart), the commerce
component provider role allows another programmer to tailor the component’s
behavior over time, changing the discount computation without affecting the
component’s intrinsic behavior or source code.

2. A commerce component may require access to an inventory management service.
The component provider cannot know which of several inventory systems a
particular enterprise will use. By mediating the interaction between the commerce
component’s required interface and implementing services, it is possible to route
and transform the messages for the proper inventory system.

5 Virtualization of Data Access

Service Data Objects (SDOs) [25] replace diverse data access models with a uniform
abstraction for creating, retrieving, updating, iterating through and deleting business
data used by service implementations. A SDOs data graph is a collection of

 Toward a Programming Model for Service-Oriented Computing 43

tree-structured objects that may be disconnected from the data source. Programmers
use the single data graph abstraction to access data available through heterogeneous
sources and technologies such as JDBC, the Java Messaging Service, Web services,
Java 2 Connectors, RMI/IIOP, etc.

To maintain this abstraction, applications don’t connect to a data source directly.
Instead, they access an intermediary called a data access service (DAS) and receive a
data graph in response. A DAS is an adapter that handles the technical details for a
particular kind of data source. It transforms the data into a SDO graph for the client.
To apply an update to the original data source, the application returns the updated
graph to the DAS, which in turn interacts with the data source.

SDO sidesteps technology churn -- the rewriting of applications to keep up with
shifting technology -- by encapsulating data access details to insulate business
applications from technology changes. For example, consider a Java web application
designed to read product descriptions from a database and display them as web pages.
To access product descriptions in the database, the application might use JDBC
heavily. Suppose that later the application topology changes, placing a web service
between the application and the database. Now the application can no longer use
JDBC to access the data and needs substantial rework to substitute a Web service data
access application programming interface (API) such as DOM or JAX-RPC. SDO
avoids this problem; an application written with SDO need not change.

6 Architectural Perspective

A runtime architecture supporting SOA and a SOA centric programming model
comprises two broad categories of artifacts: service endpoints and the message
transport fabric interconnecting them. A general architecture as provided by the IBM
family of runtimes (none of which individually is the sole delivery vehicle for SOA)
is illustrated in Figure 1.

At the core is an enterprise service bus (ESB) supplying connectivity among
services. The ESB is multi-protocol, and supports point-to-point and publish-
subscribe style communication between services, as well as being the container for
mediation services that process messages in flight.

There are three key insights into the ESB concept:

1. WSDL and WS-I protocols provide the conceptual model. A specific deployed
service may support additional optimized bindings, for example local calls or IIOP.
Service implementers and callers are isolated from the optimizations.

2. There is a point-to-point, wire model for connecting component instances, but
interfaces may also be connected to “topics” in a publish/subscribe infrastructure.

3. All calls may be mediated – The ESB is a logical concept, and may reside in
endpoints when services are co-resident in a container.

A SOA component resides in an abstract hosting environment known as a
container and provides a specific programming metaphor. The container loads the
service’s implementation code, provides connectivity to the ESB, and manages
service instances. Figure 1 shows how different component types typically reside in
different containers.

44 F. Curbera et al.

Enterprise Service Bus:

Transform, Route, Notify, Augment, Side Effect

Portal

Service

Workflow
Business

Activity

Business-to-Business

Interactions

Enterprise
Information

System Adapter

Script, POJO,

Stateless Session

Bean

Distinguished

Services

Information Mgmt

XML Database

Fig. 1. A general service-oriented architecture

7 Related and Previous Work

Service Oriented Architectures are a paradigm or model which many enterprises have
exploited for many years. The new concepts resonate with customers and have rapid
adoption because they map to existing enterprise scenarios.

A key aspect of SOA is well-defined interfaces decoupled from implementation.
There have been many previous systems employing this concept, most notably
CORBA [26] and COM [27]. These approaches typically implemented an RPC model
for connecting a caller to a component implementation, and supported a naming
service for binding to a component by “name.” J2EE [1] introduced a component
model tightly linked with the Java language. J2EE uses Java interfaces for the IDL,
supports declaring required interfaces through “ejbRefs” and “serviceRefs” and uses a
naming service to bind required interfaces to implemented interfaces. An explicit role,
the application assembler, manually connects the requested interfaces to deployed
components that implement the interface. J2EE also supports component “policies”
(deployment descriptors) for annotating a component with infrastructure requirements
like security or transactions. Many of these concepts derive from IBM’s Component
Broker [29].

The SOA component model and SOA/Web services in general introduce several
extensions or improvements to CORBA, J2EE, COM and other interface definition
models:

 Toward a Programming Model for Service-Oriented Computing 45

• Contract languages (XML Schema, WSDL) are programming language agnostic.
Even CORBA and COM IDL favored the C type space, while J2EE focuses on Java.

• XSD and WSDL are more tolerant of interface evolution. Element and operation
reordering and addition typically do not affect implementations using prior versions.

• SOA and Web services inherently support both a call-return model and an
asynchronous, one way messaging model. Previous systems either started with
message driven processing and added an RPC model, or started with an RPC
model and added asynchronous messaging. These approaches did not work well
over complex, multi-hop, fire-walled Internet scenarios.

• SOA components support richer contracts that include quality of service properties
and behavioral descriptions (using abstract processes) in addition to interface
definitions. The SOA components model also introduces mediations and
intermediaries.

Both J2EE and COM, and its evolution to .NET, provide some support for virtual
access to data. J2EE introduced the concept of container managed persistence (CMP)
for EntityBeans. COM and .NET also introduced the concept of ADOs [28], an
abstraction for data that can map to multiple back-ends systems. SOA component
models build on these approaches. The most noticeable improvement is linking the
“data object” concept with the SOA model. There are two well-defined contracts in
the SOA data object model: the contract between the component implementation and
the data object (similar to ADOs and CMP EntityBeans), and a well-defined, data
delivery and access service interface.

Finally, a key element of the SOA component model is the concept of “component
types.” J2EE introduced this concept with SessionBeans that implement the task
model, and EntityBeans that represent the “data” model. The SOA component model
we describe in this paper builds on this initial approach to introduce component kinds
that more closely match the intent or tasks that programmers have when
implementing a component/solution.

7.1 The Service Component Architecture

The Service Component Architecture (SCA) [30] is a common model for logic dealing
with business data. SCA and Web Services together provide a framework for delivering
SOA: SCA provides the common abstraction of implementation concerns and Web
Services provides the common abstraction of interoperability concerns. SCA provides
an implementation and assembly model for service oriented business applications. Here
we briefly review the main concepts of the SCA programming model.

An SCA “implementation” provides the business logic for one or more services.
Implementations can be written in many languages, such as Java, BPEL4WS, PHP, C,
COBOL, etc. Implementations define their requirement on other services in form of
“references”. Further, an implementation can define “properties” that allow for
configuration of its behavior. Both the services and references of an implementation
are typed by interfaces. SCA is open with respect to the interface type system used
(Java interfaces, WSDL portTypes, etc.) to type the services and references of the
implementation, but favors the simple single-input single-output pattern standardized
by WS-I [WSI] to promote interoperability among Web services.

46 F. Curbera et al.

Services, references, and properties define the configurable aspects of an SCA
implementation, and together determine the “component type” of the implementation.
An “SCA component” is defined in terms of a configured SCA implementation, by
setting the values of the implementation properties and resolving its references to other
SCA components via a “component wiring” specification. Finally, an “SCA module” is
the packaging mechanism for implementations and components. Components are
contained in the module assembly file that is part of the module package.

An SCA module can provide for the interaction between internal components and
external applications by defining “external services” and “entry points”. An external
service allows components inside the module to access services outside of it; entry
points are used to publish services of the module to external clients (outside of the
module). External services and entry points use “SCA bindings” to configure the
possible interaction mechanisms (Web services binding, stateless session EJB, etc.).
SCA supports quality of service policies at the binding level and implementation
level. Binding level policies are based on WS-Policy and define the quality of service
(e.g. security, transactions, reliability, and so on) of the interaction across module
boundaries. Implementation level policies are quality of service directives to the
container hosting the implementation.

8 Conclusion

To support SOA requirements, a SOA programming model should support
virtualization, multiple composition mechanisms, flexible component configuration,
and loose coupling. The discussion of SOA programming models rises above the
debate on the merits of different platform-specific technologies to a higher level of
abstraction, integration and synthesis that is only achievable through the use of
platform- and language-neutral standards. Standards are vital not only to insulate
individual developers (who may not be IT professionals) from technology churn and
enable them to utilize IT assets to perform their business duties. They are also vital to
enable conceptual simplification by abstracting the alarming proliferation of software
technologies, practices, tools, and platforms.

This article has described features of a new SOA programming model that can
enable persons with different skill levels and different roles in the enterprise, not
necessarily IT professionals, to create and use IT assets throughout every stage of the
software development lifecycle. The result can be dramatically improved business
agility for the on-demand enterprise.

References

1. Sun Microsystems, “Java 2 Platform, Enterprise Edition (J2EE),” java.sun.com/j2ee/1.4/
download.html#platformspec.

2. Sun Microsystems, “Java Server Pages”, http://java.sun.com/products/jsp/.
3. Sun Microsystems, “Java Servlets”, http://java.sun.com/products/servlet/.
4. Sun Microsystems, “JavaBeans”, http://java.sun.com/products/javabeans/.
5. “Web Services Description Language (WSDL) 1.1”, http://www.w3.org/TR/wsdl, March

2001.

 Toward a Programming Model for Service-Oriented Computing 47

6. “Business Process Execution Language for Web Services (BPEL4WS) v1.1,” http://www.
ibm.com/developerworks/library/ws-bpel/, May 2003.

7. “XSL Transformations (XSLT) Version 1.0”, http://www.w3.org/TR/xslt, November
1999.

8. R. Lerdorf and K. Tatroe, “Programming PHP”, O’Reilly, March 2002.
9. Object Management Group, “Universal Modeling Language 2.0 Superstructure FTF

convenience document”, http://omg.org/cgi-bin/doc?ptc/2004-10-02, Oct 2004.
10. R. Hightower, “Enhance J2EE Component Reuse With XDoclets,” http://www-106.ibm.

com/developerworks/edu/ws-dw-ws-j2x-i.html.
11. Sun Microsystems, “JSR 175: A Metadata Facility for the JavaTM Programming

Language”, http://www.jcp.org/en/jsr/detail?id=175.
12. IBM Corp., “WebSphere Application Server”, http://www-306.ibm.com/software/

webservers/appserv/was/.
13. IBM Corp., “Build Interoperable Web Services with JSR-109”, http://www-106.ibm.com/

developerworks/li brary/ws-jsrart/?ca=dnt-431, Aug 2003.
14. Sun Microsystems, “Java 2 Platform, Enterprise Edition (J2EE),” java.sun.com/j2ee/1.4/

download.html#platformspec.
15. IBM Corp., “Websphere Studio”, http://www-306.ibm.com/software/info1/websphere/

index.jsp?tab=products/studio.
16. S. Kim, “Java Web Start: Developing and Distributing Java Applications for the Client

Side,” http://www-106.ibm.com/developerworks/java/library/j-webstart/.
17. IBM Corp., “IMS SOAP Gateway”, http://www-306.ibm.com/software/data/ims/soap/.
18. IBM Corp., “IBM DB2 Information Integrator Application Developer’s Guide v8.2”.
19. “XQuery 1.0: An XML Query Language,” W3C working draft, http://www.w3.org/

TR/xquery/, February 2005.
20. F. Leymann and D. Roller, “Production Workflow. Concepts and Techniques”, Prentice

Hall, September 1999.
21. R. Robinson, “Understand Enterprise Service Bus scenarios and solutions in Service-

Oriented Architecture”, http://www-128.ibm.com/developerworks/webservices/library/ws-
esbscen/index.html.

22. D. Chappell, “Enterprise Service Bus”, O’Reilly, June 2004.
23. IBM Corp. “WebSphere Business Integration Message Broker”, http://www-306.ibm.com/

software/integration/wbimessagebroker/.
24. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley, January 1995.
25. B. Portier and F. Budinsky, “Introduction to Service Data Objects: Next-generation data

programming in the Java environment”, http://www-106.ibm.com/developerworks/java/
library/j-sdo/, September 2004.

26. M. Henning and S. Vinoski, “Advanced CORBA(R) Programming with C++”, Addison
Wesley, February 1999.

27. D. Box, “Essential COM”, Addison Wesley, December 1997.
28. D. Sceppa, “Microsoft ADO.NET (Core Reference)”, Microsoft Press, May 2002.
29. O. Gample, A. Gregor, S. B. Hassen, D. Johnson, W. Jonsson, D. Racioppo, H. Stöllinger,

K. Washida, and L. Widengren, “Component Broker Connector Overview”, IBM ITSC,
May 1997.

30. IBM Corp., “Websphere Integration Developer 6.0. Technical Product Overview”,
available at http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.
wbit.help.prodovr.doc/pdf/prodovr.pdf.

31. WS-Notification”, http://www.ibm.com/developerworks/library/specification/ws-pubsub.

Speaking a Common Language: A Conceptual
Model for Describing Service-Oriented Systems

Massimiliano Colombo1, Elisabetta Di Nitto1, Massimiliano Di Penta2,
Damiano Distante2, and Maurilio Zuccalà1

1 CEFRIEL – Politecnico di Milano,
Via Fucini 2, 20133 Milano, Italy

dinitto@elet.polimi.it, {mcolombo, zuccala}@cefriel.it
http://www.cefriel.it

2 RCOST – Research Centre on Software Technology,
University of Sannio, Department of Engineering,

Palazzo ex Poste, Viale Traiano, 82100 Benevento, Italy
{dipenta, distante}@unisannio.it
http://www.rcost.unisannio.it

Abstract. The diffusion of service-oriented computing is today heavily
influencing many software development and research activities. Despite
this, service-oriented computing is a relatively new field, where many as-
pects still suffer from a lack of standardization. Also, the service-oriented
approach is bringing together researchers from different communities or
from organizations having developed their own solutions. This introduces
the need for letting all these people communicate with each other using
a common language and a common understanding of the technologies
they are using or building.

This paper proposes a conceptual model that describes actors, ac-
tivities and entities involved in a service-oriented scenario and the re-
lationships between them. While being created for a European project,
the model is easily adaptable to address the needs of any other service-
oriented initiative.

1 Introduction

Service-oriented computing represents a conceptual approach and a set of tech-
nologies that are greatly contributing to radically change the perspective of
today’s software development. Services are an effective solution to let software
systems, developed by different organizations and spread across the world, in-
teroperate. One typical example is, for sure, the one of bioinformatics [1], where
services allow an easier integration of solutions developed by different research
groups, each one having different skills and using various development tech-
nologies. Also, services permit to parallelize computational-intensive tasks: Grid
Computing is probably the most relevant example in which parallel computing
can benefit from services.

Lately, interesting challenges such as automatic service discovery, composi-
tion, or verification, have pushed several researchers, coming from different fields

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 48–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Speaking a Common Language: A Conceptual Model 49

and communities, to put together their efforts. However, service-oriented com-
puting is still a relatively new field. There are too many different issues that
are not yet mature, lacking standardization or even full comprehension by re-
searchers. A significant example of these problems is ensuring trustworthiness [2]
between interacting parties. There are attempts to identify approaches solving
the issue under specific constraints, which usually imply the preliminary es-
tablishment of a service level agreement (SLA). However, the issue of offering
mechanisms to enable trust in a dynamically changing set of services is still open.

More in general, there is no common terminology nor common understanding
on the basic concepts of the service domain. For example, in some cases services
are assimilated to components, while in some others they appear to be a distinct
even if related concept. This introduces the need for a rationalization of activi-
ties, entities, and stakeholders involved in the service-oriented scenario, clearly
indicating their meaning and their relationships.

Working within the SeCSE European project [3] – which aims at developing
processes, methods and tools to develop service-oriented systems – we faced the
urgent need to provide a clear definition of the concept of service and of the re-
lated concepts concerning service publication, discovery, composition, execution,
and monitoring, as a common reference for partners involved in the project. As
we discuss in Sect. 5, although other conceptualization attempts have been pro-
posed in the literature, they focus on aspects that are different or complementary
to our goals.

This paper presents our conceptual model for service-oriented systems. Even
if it has been originally created to deal with the needs of the SeCSE project,
its main principles should fit any service-oriented scenario. The model describes
actors, entities, and activities relevant to the service domain, and the relation-
ships existing between them. The model is specified using UML class diagrams
complemented with a data dictionary. To properly ensure the model understand-
ing, we have instantiated it on a simple scenario. The remainder of the paper is
organized as follows. Sect. 2 presents the requirements for our conceptual model.
Sect. 3 presents the model itself describing the diagrams it is composed of. Sect. 4
introduces the scenario we use to exemplify the conceptual model. Sect. 5 sum-
marizes other attempts to conceptualize the world of service-oriented systems
and relates them to our approach. Sect. 6 concludes the paper.

2 Requirements for the Conceptual Model

The definition of our conceptual model has been driven by the need to provide a
common conceptual framework within the SeCSE project. The first two (meta)
requirements we faced were compactness – thus avoiding the redundancies and
inconsistencies we found in other models (see Sect. 5) – and extensibility – thus
enabling the possibility to add new concepts, relationships, and activities to the
model itself. Moreover, for the sake of generality, we decided to keep the model
independent of any technological choice or standard, even if the SeCSE project
is currently focusing on Web services as its main technology.

50 M. Colombo et al.

Such overall needs led to the following more specific requirements:

– To clarify the meaning of ‘service’. We have noticed that this term is being
used in quite different ways in various domains. For example, in the tech-
nical domain it is usually considered as a particular software system that
can be published, located, and invoked across the Internet. In the business
domain it has a much broader and abstract meaning, and it is defined as the
non-material equivalent of a good, while service provision is defined as an
economic activity that does not result in ownership; this is what differenti-
ates it from providing physical goods.

– To clarify the difference between a service and its public description. A ser-
vice is really available if information on how to access it is made public. In
some cases services are confused with their public descriptions. While this
is understandable from the service consumer viewpoint, we think that for
service developers and integrators it is beneficial to highlight differences and
relationships between those concepts.

– To clarify the distinction between ‘simple’ vs. ‘stateless’, and ‘composite’
vs. ‘stateful’ services. While in [4] there is no clear distinction between the
elements of these two pairs, we think that they are distinct if not orthogonal.
In particular, we argue that the term ‘stateful’ refers to the possibility for
a service to maintain a state between two consecutive operation requests,
while the term ‘stateless’ has the opposite meaning. Moreover, we feel that
the terms ‘simple’ and ‘composite’ are better used to mean, respectively,
services that do not rely on the execution of others, and services that do so.

– To identify the various stakeholders that exploit, offer, and manage services.
Various actors are involved in a service-oriented system. Besides the usual
roles of service consumers and providers, we have noticed that other im-
portant roles are the different mediators who compose or certify services,
support service discovery, etc. Indeed, we have also noticed that such roles
are increasingly played by automated agents, not only by human beings.

– To capture the relevant aspects concerning service discovery, composition,
publication, execution, and monitoring. These, in fact, are the main research
areas of the SeCSE project. More in detail, the project is structured in the
following research activities:

• Service engineering: extending the existing approaches to service and sys-
tem specification in order to include requirements capable of modeling,
from a service perspective, quality of service (QoS) specifications, and
to provide support for using these specifications within service discovery
and binding mechanisms. The project is also developing approaches and
tools for service testing.

• Service discovery: providing means to discover services in different phases
of the service life-cycle, from requirement analysis to run-time execution.

• Service delivery: focusing, at deployment and operation level, on tools
and techniques for the validation, testing and run-time monitoring of
services and service-centric systems.

Speaking a Common Language: A Conceptual Model 51

• System engineering: focusing on the analysis and development of archi-
tectural models for service-centric systems that accommodate services,
components, and their dynamic composition.

3 Conceptual Model Overview

The SeCSE conceptual model aims at providing a common terminology across
the project. It has been designed as a compact and extensible model that takes
into account all the service-related concepts that have been identified inside the
project. The model is specified using UML and is described by means of different
diagrams, each offering a view on a specific aspect of the service-oriented system
engineering process. Namely these diagrams are: Agent-Actors, Core, Service
Description, Service Discovery, Service Composition, Service Monitoring and
Service Publication. In the remainder of this section we briefly describe each
diagram (conceptual model items are capitalized and formatted in italic the first
time they appear). We only show the most interesting ones due to the limited
space available. The interested reader can find all the diagrams in the extended
technical report [5]. It is worth pointing out that any ontology-based language
could be used instead of UML for describing the model.

3.1 Agents and Actors

A very important aspect concerning the development and operation of any appli-
cation is to identify the stakeholders and the roles they play. This is particularly
important for service-oriented systems since in this case, as we have highlighted
in Sect. 2, the number of different stakeholders and roles can be quite high. We
use the term Agents to mean entities of the real-world, and Actors to indicate
roles that Agents may play. Agents include Person or Organization, Software
System, Service and Legacy System. Actors include Service Provider, Service
Developer, Service Integrator, Service Broker, Service Consumer, Service Moni-
tor, Service Certifier and System Engineer. In principle, an Agent can take any
of the roles identified by Actors (e.g., a Person can act as an Operation Provider),
and vice versa a role can be taken by any Agent (e.g., a Service Consumer can
either be a Person or a Service). Some of the identified Actors are represented
in the Core model in Fig. 1, while a complete diagram showing the hierarchy of
Agents and Actors can be found in [5].

3.2 Core Model

Fig. 1 depicts the main concepts that are part of the conceptual model, and
highlights the main Actors that interact with them. A Service is a particular
concrete Resource which is offered by a Software System.

A Service has a Service Description. In order to discover a Service, a Service
Consumer can express a Service Request that may match with zero or more

52 M. Colombo et al.

Fig. 1. Core model

Service Descriptions. After being discovered, a Service will serve the Service Re-
quest, i.e., it will be used by the Service Consumer that invokes its Operations.
Either a Service Request or a Service Description by itself can represent an Ab-
stract Service, i.e., the ‘idea’ of a service, a service that does not have a concrete
implementation (yet). An Abstract Service can be published, discovered, and
then concretized when needed in a (concrete) Service. A Composed Service is a
particular kind of Service, developed by a Service Integrator, which makes use
of other Services.

3.3 Service Description

An important aspect of services is their Service Description. In fact, it is through
such a description that they are known by the potential consumers. In our model
both aspects of a Service Description, i.e., Service Specification and Service
Additional Information, are expressed by means of Facets. Each Facet is the
expression of one or more Service Properties in some specification language. A
Service Specification is usually provided by the Service Provider and may include
both functional and non-functional information such as the service interface,
service behavior, information on service exceptions, test suites, or service QoS
attributes. The Service Additional Information is usually provided by actors
different from the Service Provider (e.g., by Service Consumers, or by Service

Speaking a Common Language: A Conceptual Model 53

Certifiers) and may include information such as user Ratings, Measured QoS,
Usage History, some measure of trustworthiness, etc.

3.4 Service Discovery

Service discovery can be performed in various phases of a service–oriented system
life cycle. It can be done when the requirements for a new system are gathered
(within the SeCSE project this is called ‘early discovery’), when the system is
being designed and new specific needs for services are identified (in SeCSE this is
called ‘Architecture-time discovery’), or when the system is running. Run-time
discovery has the goal of finding Services that can replace the ones that the
system is currently using or, also, part of the internal logic of the system itself.
Consistently with this classification, the conceptual model includes three types
of queries that are executed in the three cases described above.

3.5 Service Composition

Fig. 2 presents the classification of a Service with respect to its state (i.e., state-
less vs. stateful) and its compositeness (i.e., simple vs. composed), already dis-
cussed in Sect. 2. The diagram also shows the relationships existing between a
Composed Service and the adopted Composition Architectural Styles, the Roles
a Service can accordingly play, etc. In addition, the diagram links the concept

Fig. 2. Service composition

54 M. Colombo et al.

of Transaction and Work Unit with a Service: a Service performs Transactions,
which are composed of Work Units (these are atomic steps for which some prop-
erty applies, e.g., ACID). A Policy associated with a Transaction is a collection
of assertions that declare the semantics of the Transaction itself (e.g., ACID or
long-running, participants, coordination protocol, transaction faults and corre-
sponding actions to be performed, etc.).

3.6 Service Monitoring

Monitoring is very important in a service-oriented scenario where the services
being used within a system are not under the control of the system itself. Fig. 3
depicts the main concepts and the relationships involved in monitoring. A Service
can be monitored if the software system that features it offers some appropri-
ate monitoring mechanisms, i.e. the Monitoring Sockets. A Monitoring Socket
is able to produce some Monitoring Data that are then checked by some Mon-
itoring Rule, to verify some Monitored Constraints expressed over one or more
Quality Metrics. These, in turn, express some measure of some Service Prop-
erty (see Sect. 3.3). Service Properties can refer either to an entire Service (e.g.,
Mean Time Between Failure (MTBF) of 1 hour per week) or to one or more
Operations offered by the Service itself (e.g., operation ‘X’ has to feature some
transactional property). Monitoring Data can be collected in a History. In some
cases the Monitored Constraints check an entire History rather than a single
datum. Service monitoring is performed by a Service Monitor. The kind of prop-

Fig. 3. Service monitoring

Speaking a Common Language: A Conceptual Model 55

erties involved in a Monitored Constraint usually depends on the actual agent
that performs the monitoring and on its visibility on the service execution.

3.7 Service Publication

The service publication model addresses the fact that a Service Provider can
publish one or more Service Descriptions on a Service Registry. Service Reg-
istries can be organized in Federations resulting from an agreement made by
organizations running Service Registries to achieve a joint aim (e.g., being fo-
cused on a similar topic, having some trust relationship, etc.). Federations can
be used to propagate information (e.g., Service Requests or Service Descriptions)
among different Service Registries.

4 An Example Scenario: The Pizza Delivery System

In this section we exemplify the concepts composing the conceptual model pre-
sented in Sect. 3 by describing an example scenario. We firstly describe the
scenario from a service consumer viewpoint. Then, we provide a description of
the scenario from a behind-the-scenes perspective. Finally, we explicitly map
the conceptual model component elements over the scenario. Services are for-
matted in typewriter style, while in Sect. 4.3 conceptual model items are again
capitalized and formatted in italic the first time they appear.

4.1 Pizza Delivery System: The Service Consumer Viewpoint

James and his wife Sarah want to have pizza for dinner at home. Through his
PDA, James connects to the service directory of his Internet Service Provider
(ISP) and searches for ‘pizza’. He gets assorted results (pizza restaurants, pizza
parlors offering delivery or takeaway, supermarkets selling frozen pizzas, recipes
to prepare and bake pizza at home, etc.).

James refines his request searching for ‘pizza parlor and delivery’. Then he
selects one of the available parlors, taking into account criteria such as oven type,
price range, maximum delivery time and rating expressed by previous clients of
that service. The selected service is PizzaOverall.

James accesses the PizzaOverall service interface and orders two pizzas pro-
viding his and Sarah’s preferences as for topping and baking options (with pep-
peroni and crusty for James, with mushrooms and soft for Sarah) together with
other required information such as delivery address and time. He invokes the
proper service operations providing necessary input data.

James is also requested to select a payment method to complete the order. He
chooses to pay by credit card, so he has to provide further details such as card
company, card number, expiration date, etc. After this, the service invocation is
finished and James receives a receipt via e-mail with a detailed summary.

At 8 p.m., perfectly on time, a delivery boy knocks at James and Sarah’s door
and delivers their pizzas. James signs a delivery receipt on the delivery boy’s
PDA which records the delivery time and completes the payment transaction.

56 M. Colombo et al.

James and Sarah have a very nice dinner and at the end, since they are very
satisfied of the service received, they decide to recommend the service to other
Internet users.

4.2 Pizza Delivery System: Behind the Scenes

PizzaOverall, the service chosen by James, is a ‘virtual’ pizza parlor: it repre-
sents a service capable of dynamically discovering and combining actual services
in order to accomplish its task. In particular, PizzaOverall has to discover
and compose services such as an actual pizza parlor, a delivery service, and a
payment gateway service.

In order to discover other services, PizzaOverall relies on the ‘local’ registry
made available by its service provider. Through the discovery phase, Pizza-
Overall can find services that, once properly composed, can satisfy James’s
request and meet the related criteria (price range, delivery time, etc.).

PizzaOverall finds PizzaExpress, a pizza parlor which also offers deliv-
ery. The credit card transaction will be handled through PayBridge, as most
of PizzaOverall payment transactions. In this case there was no need to dy-
namically discover a payment gateway since PayBridge is a well-known service,
which, in addition, offers to its clients a price per transaction decreasing with
the number of processed transactions.

PizzaOverall forwards James’s order to PizzaExpress. PizzaExpress
starts to bake two pizzas as requested, but then it encounters a problem: its
drivers unexpectedly go on strike. PizzaOverall recognizes that PizzaExpress
will not be able to perform the delivery task, so a substitutive service has to be
found not to loose James’ order.

PizzaOverall searches the registry again, this time broadening the search
scope: this is possible because the local registry links to other external registries,
so service requests can be properly propagated to other registries (e.g., follow-
ing a topic-based approach). PizzaOverall discovers a delivery service, named
PizzaWherever, which is likely to solve the delivery issue. A delivery is booked
in order to pick up the pizzas baked by PizzaExpress and bring them to James’s
place all the same.

PizzaWherever has tens of delivery boys spread all over the city, driving bikes
or mopeds equipped with wireless devices that they use to receive delivery orders,
directions, and to communicate delivery status information to PizzaWherever’s
central logistic system.

One delivery boy is thus notified to pick up two pizzas at PizzaExpress’s
parlor at 7.45 p.m., and to promptly deliver them to James’s place. He reaches
James’s apartment at 8 p.m. sharp. PizzaWherever, and then PizzaOverall in
turn, are notified of the final delivery, as James signs the delivery receipt. All
the pending payment transactions are finalized as well.

Another service, named DeliveryMonitor, transparently to James and
Sarah, has followed the pizza order and delivery process, and is also notified
of the time of delivery, then stored in the service history.

Speaking a Common Language: A Conceptual Model 57

4.3 Explaining the Mapping Between the Example and the
Conceptual Model

James is a Person acting as a Service Consumer. He uses his PDA to query
his ISP Service Registry in order to discover Services and then invoke the
Operations they expose. James’s ISP is an Organization acting as a Service
Provider.

James’s Service Requests (e.g., ‘have pizza for dinner’) can be considered as
Abstract Services, i.e., they represent the description (more or less detailed) of
Services.

Through the discovery phase, James finds one or more Service Descriptions
of one or more abstract or concrete Services that match or are relevant to his
Service Requests. In particular, Service Requests are matched up with the Ser-
vice Properties. Service Properties may belong to the Service Specification (i.e.,
type of oven, price range) or to the Service Additional Information (e.g., ratings
expressed by previous customers) stored in the Service Registry by means of
Facet structures. The Service Specification and Service Additional Information
form the Service Description.

PizzaOverall, the Service James has chosen, is actually an Abstract Service,
i.e., it describes a Service which does not correspond to any fixed concrete imple-
mentation. Such an Abstract Service has been published by the ISP itself on its
own Service Registry, in order to globally represent a possible way to compose
some of the available concrete Services.

James’s choice to invoke PizzaOverall leads to the concretization of the
Service which will actually satisfy his request. PizzaOverall is concretized by
means of a Service Integrator, that is able to perform dynamic Composition of
Services, based on the goals to be achieved (i.e., pizza baking, delivery, and pay-
ment), and according to one or more specific Composition Architectural Styles
(e.g., peer to peer). The resulting process is annotated with assertions which
enable run-time monitoring. For example, the fact that PizzaExpress could
not perform the delivery corresponds to a violation of the postcondition of its
Operation ‘bake and delivery’, thus triggering a proper Recovery Action (i.e.,
federated discovery of a delivery service) leading to run-time discovery of a sub-
stitute Service. This time the discovery phase involves external Service Reg-
istries which are linked by the local registry and form with this a Federation of
Registries.

PizzaWherever’s central logistic system can be seen as a Legacy System, which
has been enabled to communicate with delivery boy’s wireless devices. PayBridge
is a Stateful Service, i.e., the results of its invocation depend also on its inner Cur-
rent Service State (e.g., number of previous invocations by the same
consumer).

The feedback provided by James and Sarah enriches the Service Additional
Information available for PizzaOverall. DeliveryMonitor, finally, is a Service
Monitor that tracks James’s order till the pizzas are delivered, and uses proper
Metrics to measure PizzaOverall service properties, such as delivery time, then
storing the Monitoring Data in the service History.

58 M. Colombo et al.

5 Related Work

Several attempts to conceptualize the world of services can be found in the
literature, and our work was initially inspired by some of them. In particular, our
core model is rooted in the Web Service Architecture (WSA) [6] drafted by the
W3C. The WSA conceptual model is structured in four parts each focusing on a
specific aspect, namely the service (Service Model), messages (Message Oriented
Model), resources (Resource Oriented Model), and policies that can constrain
resources and behaviors (Policy Model).

In general, the WSA model and our model can be seen as complementary
since we do not fully address the message oriented, resource oriented, and policy
models of the WSA, but we try to clarify and detail more than the WSA does
the concept of service, as well as all the concepts relevant to the service-related
activities (i.e., publication, discovery, composition, and monitoring). Also, we try
to clarify the relationships between the concepts of service description, semantics,
and service interface, while the distinction among these concepts is not evident
in the WSA. Moreover, we have choosen a different approach to characterize
agents and actors which allows us to express the fact that roles can be covered,
in principle, by any agent and vice versa.

Our model also has similarities with the Service-Oriented Solutions Approach
(SOSA) [7] proposed by Computer Associates International, Inc. technology ser-
vices department. The SOSA conceptual model is part of a method that aims to
maximize the potential of Web services and SOA within medium and large enter-
prises. Such method is based on best practices (e.g., tracks, techniques, work pack-
ages, and deliverables) for service-oriented development [7]. The SOSA model has
a complementary relationship to our model since it focuses more on service inter-
faces and business oriented issues, while it is less detailed with respect to other
aspects related, e.g., to the publication, discovery, and execution of services.

Our model is quite different in objectives and scopes to other works such
as OWL-S [4] and the Web Services Modeling Ontology (WSMO) [8]. A first
difference between our model and OWL-S stands in their different objectives.
Our model provides a common understanding for human readers about the main
actors, entities and artifacts that are somehow involved in the creation of a
service-centric system. On the contrary, the OWL-S ontology was created to
provide a computer-interpretable description of a service (particularly, web-based
services), to allow software agents to discover, invoke, compose, and monitor
Web resources offering services having particular properties. As a consequence,
the OWL-S ontology pursues a very detailed service description suitable for the
needs of software agents. On the other hand, our model tries to embrace a larger
application domain than OWL-S, i.e., the overall set of main actors and concepts
involved in the various steps of the service-centric system creation process.

The WSMO, in line with the Web Services Modeling Framework (WSMF) [9],
aims at providing a conceptual model for developing and describing Web services
and their composition by means of a language (Web Services Modeling Language,
WSML) and an execution environment (Web Services Modeling eXecution Envi-
ronment, WSMX). The WSMF consists of four different main elements: ontologies

Speaking a Common Language: A Conceptual Model 59

that provide the terminology used by other elements, goal repositories that define
the problems that should be solved by Web services,Web services descriptions that
define various aspects of a Web service, and mediators which bypass interoperabil-
ity problems. The WSMO extends these main elements by defining a set of cross-
wise non-functional properties named core-properties. WSMO mainly focuses on
service descriptions, i.e., pre and post-conditions, non-functional properties, etc.
Differently from our model, it does not provide a conceptual model of some key
activities of a service-centric scenario, such as discovery, delivery, and monitoring.

6 Conclusions

The aim of this work is to provide a conceptual model that is complementary to
the ones already presented in the literature, and is focused on the main issues
concerning the development and operation of service-oriented systems.

We are currently enacting the adoption of the model within the SeCSE project
as a unique reference for definitions and main concepts for the whole consortium.
We experimented the first release of the model by having the other project
partners check if their main ideas, requirements, and technical solutions fit into
it. All partners provided comments and inputs that will be included in the next
releases.

The model now plays a key role in the project, since it is used as a means
for exchanging ideas and results in a coherent framework, thus helping every
partner to better achieve the project goals (e.g., the development of a platform
supporting the life cycle of SOA-based solutions).

The interest of the project partners, their willingness to participate in our
discussions, and the number of debates we are still triggering convince us that
the model can evolve to become a good common language, not necessarily limited
to the SeCSE project.

Our model is already being exploited by the European Commission (Direc-
torate D – Network and Communication Technologies, Software Technologies)
as a framework to classify and explain the European projects related to service
development [10].

Acknowledgements

This work is framed within the IST European Integrated Project SeCSE (Service
Centric Systems Engineering) [3], 6th Framework Programme, Contract No.
511680. We thank all our partners in the project for their valuable comments
and proposals aiming at improving the conceptual model.

References

1. Hong Gao, T., Huffman Hayes, J., Cai, H.: Integrating Biological Research through
Web Services. IEEE Computer 38 (2005) 26–31

2. de Mes, A., Rongen, E.: Technical note: Web service credentials. IBM Systems
Journal 42 (2003) 532–537

60 M. Colombo et al.

3. SeCSE Website: http://secse.eng.it/ (2005)
4. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. W3C Member Submission (2004)

5. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a
Common Language: A Conceptual Model for Describing Service-Oriented Systems.
Technical report, RCOST (2005) http://www.rcost.unisannio.it/mdipenta/cm.pdf.

6. W3C: Web Services Architecture (WSA). W3C Working Group Note 11 February
2004. (2004)

7. Lefever, B.: Service-Oriented Solutions Approach (SOSA). Technical report, Com-
puter Associates International, Inc. (2005) http://www.ca.com/be/english/past-
events/lunch-s3/041209-sosa-lb-final-lefever.pdf.

8. de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., König-
Ries, B., Kopecky, J., Rubén, L., Oren, E., Polleres, A., Scicluna, J., Stollberg, M.:
Web Service Modeling Ontology WSMO (2005)

9. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications (2002) 113–137

10. Sassen, A.M., Macmillan, C.: The service engineering area: An overview of its
current state and a vision of its future. European Commission, Directorate
D – Network and Communication Technologies, Software Technologies (2005)
ftp://ftp.cordis.lu/pub/ist/docs/directorate d/st-ds/sota v1-0.pdf.

A Rule Driven Approach for Developing
Adaptive Service Oriented Business

Collaboration

Bart Orriens1, Jian Yang2, and Mike Papazoglou1

1 Infolab, Tilburg University,
PO Box 90153, 5000 LE Tilburg, The Netherlands

{b.orriens, mikep}@uvt.nl
2 Department of Computing, Macquarie University,

Sydney, NSW, 2109, Australia
jian@comp.mq.edu.au

Abstract. Current composite web service development and manage-
ment solutions, e.g. BPEL, do not cater for flexible and adaptive busi-
ness collaborations due to their pre-defined and inflexible nature that
precludes them accommodating business dynamics. In this paper we
propose a rule driven approach for adaptive business collaboration de-
velopment in which rules drive and govern the development process. We
introduce the Business Collaboration Development Framework (BCDF),
which provides enterprizes with the context to define their capabilities
and business collaboration agreements. Subsequently, we explain how
rules can drive and control the business collaboration development pro-
cess to develop complete, correct and consistent business collaboration
agreements that are conform the conditions under which parties wish to
cooperate.

1 Introduction

Nowadays enterprizes need to be dynamic and adaptive in order to stay compet-
itive. This has led to an increasing demand for providing business services that
can adapt to changes. Recently there has been increasing focus on service oriented
computing to deliver flexible and adaptable corporate business services by utiliz-
ing existing business services cross organizational boundaries, i.e. via business col-
laboration. Business collaboration here refers to a cooperation between multiple
enterprizes working together to achieve some common business-related goal.

In order to realize this vision enterprizes require an environment in which
they can: 1) easily define their business collaboration potential both from a
business and technical point of view; and 2) quickly establish the possibility to
cooperate with each other. If collaboration is possible, a business collaboration
agreement can eventually be negotiated. This type of negotiation also requires
that enterprizes can foresee how future changes like new legislative requirements
may influence their ability to cooperate with each other. In addition, enterprizes
need to be able to assess how such changes may affect existing collaborations,

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 61–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

62 B. Orriens, J. Yang, and M. Papazoglou

which moreover need be managed properly (i.e., defined, verified and versioned)
and deliver consistent results when executed [30].

Unfortunately, current composite web service development and management
solutions including the defacto standard BPEL4WS [11] are too narrowly fo-
cused and not capable of addressing the requirements of business collaboration,
which relies on agile and dynamic processes. As a result existing technologies
and standards to development business collaborations and agreements is very
difficult to manage. To address this problem, we propose a rule-based approach
where business rules are used to drive and constrain business collaborations.
Flexibility then comes from the fact that development of business collabora-
tions is governed by business rules, which further more can be chained and used
for making complex decisions and diagnoses. Adaptability can be achieved as
changes can be managed with minimum disruption to existing collaborations.

The ideas presented are illustrated using a complex multi-party, insurance
claim handling scenario [18]. The example outlines the manner in which a car
damage claim is handled by an insurance company (AGFIL). AGFIL cooperates
with several contract parties to provide a service that enables efficient claim set-
tlement. The parties involved are Europ Assist, Lee Consulting Services, Garages
and Assessors. Europ Assist offers a 24-hour emergency call answering service to
policyholders. Lee C.S. coordinates and manages the operation of the emergency
service on a day-to-day level on behalf of AGFIL. Garages are responsible for
car repair. Assessors conduct the physical inspections of damaged vehicles and
agree repair upon figures with the garages.

2 Business Collaboration Development Framework

Before we discuss how enterprizes can use rules to drive the process of coming to
a business collaboration agreement, we shall first explore the context of business
collaboration to determine the requirements for our approach. In order to capture
the context in which business collaboration development takes place, we have
developed the Business Collaboration Development Framework (BCDF). This
framework provides context by adopting a three dimensional view in order to
achieve separation of concern and modularization in the definition of business
collaborations. An overview is shown in Fig. 1.

The first dimension is collaboration aspects which place emphasis on the dif-
ferent behaviors of an enterprize in business collaboration; where the purpose
and target of development varies [15, 24, 29]: 1) before seeking partners to coop-
erate with an enterprize will first need to capture its private behavior in the
internal business process aspect (like e.g. [1, 8]); 2) Based on its internal behav-
ior the enterprize can then specify its capabilities in its exposed behavior (i.e.
its externally visible behavior) in the participant public behavior aspect (similar
to e.g. WSDL [10] and ebXML CPP [16]); 3) Subsequently, the enterprize can
start negotiating with other parties to establish a cooperation. If negotiation is
successful, the result will be the definition of an agreed upon behavior (i.e.
the externally observable behavior in a business collaboration) captured in the

Developing Adaptive Service Oriented Business Collaboration 63

Constraint Trigger ServiceEndpoint OperationMessageService

Rule EventActorUnitTaskDocument Operational

Goal Schedule StakeholderEnterprizeStepResourceStrategic

Motivation
(why)

Time
(when)

Resource
(who)

Location
(where)

Tasks
(how)

Structure
(what)

Fig. 1. Business Collaboration Development Framework (BCDF)

business conversation aspect; where the agreement is based on the participant
public behavior aspects of the parties involved (somewhat akin as the merging
of two CPPs to form a CPA in the ebXML architecture [16]). Note: the temporal
order implied above is illustrative for developing customized, complex business
collaborations like the AGFIL scenario. The order may be different when dealing
with standardized, simple collaborations (as defined e.g. by RosettaNet [25]).

When enterprizes try to cooperate they must take into consideration both
business and technical requirements as well as dependencies between them. This
is addressed in the second dimension levels, which identifies three different layers
of abstraction to allow separation of concern [20, 31]: 1) strategic level: at which
enterprizes describe their purpose and high level requirements for a business
collaboration, with the development process resulting in a strategic agreement
expressing shared objectives (like [6, 29]); 2) operational level: at which enter-
prizes depict the operational conditions under which they can cooperate, where
the result of development is an operational agreement capturing how set out
objectives will be realized in terms of concrete business activities (similar to
e.g. RosettaNet [25]); 3) service level: at which enterprizes define the technical
realization of their business activities, where negotiation amounts to an agree-
ment describing the interactions among the services from the different parties
(comparable to e.g. [7], [11]).

At each level of abstraction enterprizes need to consider many issues, for ex-
ample scheduling, resource usage and logistic optimization at the strategic level.
To reduce the complexity resulting from covering all these different issues, the
third dimension of facets achieves modularization in the definition of business
collaborations. This helps enterprizes describe the different contexts from which
a business collaboration can be observed at the different levels. The identified
facets are [12, 28, 31]: what facet emphasizing the structural view, how facet tak-
ing functional standpoint, where facet expressing geographical facet, who facet
concerning participants, when facet covering temporal aspect, and why facet con-
centrating on rationale. The facets provide a complete coverage for each individ-
ual level, where their semantics are dependent on the level that they modularize.

64 B. Orriens, J. Yang, and M. Papazoglou

Facet interactions reflect the relationships that exist among the different con-
texts, such as the interaction between the temporal context of a collaboration
and its control flow.

In summary, the main conclusion is that business collaboration is highly com-
plex; which in turn makes their development a very complex affair. An important
factor that contributes to this complication is that enterprizes must be able to
handle a diverse range of changes. In the current business environment changes
can occur anywhere, ranging from technological innovation to adoption of new
business strategies. Enterprizes need to be able to assess the effect of such changes,
both in terms of their potential to collaborate with others as well as regards the
consistency of their own behavior. Only in this way, can enterprizes effectively
and adequately deal with change in the business collaboration context.

3 Modeling in the BCDF

To capture the three dimensions of collaborations aspects, levels and facets
BCDF uses two types of model: meta models and models, both of which are
defined for individual levels. Meta models provide design guidelines in terms
of classes and their relationships, where depending on the collaboration aspect
being modeled additional constraints are placed on the meta-model. Models
represent a particular application design, and are derived by populating a meta
model’s classes. Every meta model consists of six classes, where each class cap-
tures a particular facet; i.e. for what, how, where, who, when and why facet.
Every class constitutes a set of logically related attributes. Associations connect
the classes expressing dependencies among facets. Mappings define dependencies
among levels by providing links between classes that describe the same facet at
different perspectives (illustrated by the arrows between facets at different per-
spectives in Fig. 1). Dependencies among collaboration aspects are expressed
using connections, which link the same meta model classes as they are applied
in different aspects.

Snippets of exemplary models for the AGFIL application are illustrated in
Fig. 2, showing its strategic, operational and service model respectively; where
the models are represented based on UML conventions. In order to distinguish
different development facets, we represent them in different shapes in their UML
models (see also legend in Fig. 2): what facet is shown as folded corners, how facet
as rounded rectangles, where facet as plaques, who facet as octagons, when facet
as hectagons, and why facet as diamonds. In the following we briefly discuss the
purpose of these models in relation to existing work (see [21] for more details).

At strategic level, strategic models like the AGFIL-BM in Fig. 2 capture
purpose and high level requirements of business collaborations, akin to require-
ments analysis [6, 29]. Participant public behavior aspect (all elements at border
of stakeholder like Lee C.S) specifies strategic capabilities of individual enter-
prizes such as consume car, whereas internal business process aspect (inside
particular stakeholders) identifies the private enterprize processes (e.g. handle
car) to realize these capabilities. When a strategic agreement is made, business

Developing Adaptive Service Oriented Business Collaboration 65

Fig. 2. AGFIL Application Models

conversation aspect (all modeling elements external to or on boundary of stake-
holders like garage owner) defines the exchange of resources like car repair
information between enterprizes to achieve shared strategic objectives.

At operational level, strategic models are concretized in operational mod-
els via mappings; where for example car repair information in AGFIL-BM
leads to car repair report in AGFIL-CM (see the dotted arrow in Fig. 2
labeled ’leadsTo’). Note that due to space limitations other mappings are not
discussed here. In terms of aspects, in participant public behavior aspect (e.g.
elements on border of garage repairer) the tasks an actor can perform are
depicted e.g. get estimate (like ebCPP [16]); whereas internal business process
aspect (elements within actor) is similar to e.g. BPML [8] or workflow [1], speci-
fying how and when activities such as estimate repair are conducted. Business
conversation aspect (all elements on or outside actor borders e.g. consultant)
captures operational agreements between enterprizes by defining the flow of in-
formation between actors; like specified by RosettaNet [25] or BPSS [16].

At service level, operational models are translated in service models where
specified activities are realized by services and their operations. Resembling in-
terface behavior in [15], the public participant behavior aspect is captured in
models formed by elements placed on the border of individual services like car
repair service depicting offered operations (akin to e.g. WSDL [10]). Within
a service the modeling elements depict internal business process aspect akin
to orchestration; where a service internally engages other services to realize its
functionality (not shown in Fig. 2). Finally, business conversation aspect (the el-

66 B. Orriens, J. Yang, and M. Papazoglou

ements on or outside the border of services) is akin to the notion of choreography
[24] defining the agreed upon exchange of messages among services.

4 Using Rules to Drive Business Collaboration
Development

We believe that business collaboration development and management is too com-
plex and dynamic to handle manually. We therefore submit that enterprizes need
a mechanism which assists them in the flexible development and adaptive man-
agement of business collaboration. We adopt a rule driven mechanism for this
purpose where the central notion is to let enterprizes explicitly specify the rules
under which 1) they conduct their private behavior, 2) are willing to coop-
erate and 3) are observing in factual business collaborations. These rules can
then be used to drive and constrain the process of defining and/or changing a
business collaboration agreement. Flexibility comes from the fact that business
collaboration development is governed by the rules, which are used for appropri-
ately chaining complex decisions and diagnoses; while adaptability is achieved
as changes can be managed with minimum disruption to existing collaborations.

4.1 Types of Rules

Rules in our approach are defined as ”precise statements that describe, constrain
and control the structure, operations and strategies of a business” [26]. Three
main types of rules are employed: development, management and derivation
rules. Development rules are employed to drive development expressing the
peculiarities, originality and values of individual enterprizes. Classified along col-
laboration aspect in internal business process aspect they depict internal guide-
lines and policies, in participant public behavior aspect stipulate cooperations,
whereas in business conversation aspect, they reflect the conditions agreed upon
by the parties involved.

Development rules are also classified along level and facet. Along level they are
sub-categorized to enable their usage at different levels of abstraction resulting
in a) strategic rules expressed in terms of goals, b) operational rules defined in
terms of business rules, and c) service rules specified in terms of constraints.
In order to achieve alignment of the different levels in BCDF the strategic,
operational and service rules of an enterprize must not contradict each other.
Along facet development rules are grouped in relation to the context in which
they are applied, resulting in a) structural rules in what facet, b) functional rules
in how facet, c) geographical rules in where facet, d) participant rules in who
facet; and e) temporal rules in when facet. As the different contexts interact with
one another, consistency among these five types of rules is required to define
coherent models.

Assurance of outlined forms of consistency is facilitated via management
rules, serving two purposes: firstly, consistency rules ensure semantical sound-
ness of models, i.e. that their meaning is consistent. Consistency rules are sub-
categorized in: a) individual rules dealing with consistency of individual models

Developing Adaptive Service Oriented Business Collaboration 67

(e.g. agreement at strategic perspective), b) alignment rules dealing with consis-
tency between models at different levels; and c) compatibility rules dealing with
consistency between models describing different collaboration aspects. Secondly,
completeness rules and correctness rules enforce syntactical soundness; where
the former ensure that models and relationships among models are complete,
and the latter ensure the correctness of these models and dependencies.

To partially automate the development process we employ so-called derivation
rules. These rules assist enterprizes by automatically deriving (parts of) mod-
els, where they fall in three categories: a) individual level enabling derivation
of links between elements (i.e. interactions between facets) in strategic, opera-
tional and service model, b) between levels facilitating derivation of mappings
between elements from models at different levels, and c) between aspects facil-
itating derivation of (skeleton) exposed behavior from private behavior as well
as (skeleton) agreements from exposed behavior of two parties.

4.2 Rule Specification

Specification of discussed types of development, management and derivation rule
is done in the context provided by the meta models and models introduced in
Sect. 3. Concretely, rules are grounded on the modeling description atoms (i.e.
elements, attributes, links, mappings and connections) that constitute the dif-
ferent BCDF models constraining their existence and/or value. To express rules
we adopt RuleML [27], an XML based standard for rule specification currently
under development. For conciseness we use its shorthand counterpart POSL [4]
(Positional-Slotted Language) here to express rules; whereas RuleML can be
used for communication with other parties and execution purposes.

To exemplify, suppose Garage Inc has a strategic security rule with regard
to car repair information in Fig. 2. Let us assume here that for high repair
cost estimates Garage Inc will want the estimate to be communicated without
it being modifiable. For this purpose Garage Inc includes the following goal
Gmodification (where the label ’G’ reflects the fact that it is a goal) in its public
participant behavior aspect model:

Gmodification: property(?ModProp modification,true,carRepairInformation) :-
element(carRepairInformation,resource)

In this Prolog like notation Gmodification states that if there is an element named
carRepairInformation its property ’modification’ must be set to ’true’.

Goals, business rules and constraints are all expressed in an uniform manner.
For example, operational rule BRintegrity (’BR’ indicating that it is a business
rule) states that for all car repair report files that contain a car repair value
greater than $1000, integrity must be guaranteed:

Rgarageintegrity: property(?IntProp integrity,true,carRepairReport) :-
element(?Element carRepairReport,document),

68 B. Orriens, J. Yang, and M. Papazoglou

link(?Link has,carRepairReport,carRepairReportValuePart), property(?ValueProp
value,?X,carRepairReportValuePart), greaterThan(?X,1000)

We can define the different kinds of management rule in a similar manner. For
example, MAPmodification states that for all resources that require modification
protections, all documents communicated to realize exchange of these resources
must use some form of integrity mechanism:

MRmodificationMapping: mappingConflict(leadsTo,?X,?Y) :- property(integrity,true,?Y)
∧ element(?X,resource) ∧ property(modification,true,?X) ∧ element(?Y,document) ∧
mapping(leadsTo,?X,?Y)

which states that if a resource X is mapped to a document Y, ’modification’ is
set to true for the resource and ’integrity’ to ’false’ for the document, a mapping
conflict exists. To conclude our discussion on rule specification the derivation rule
CDRmatchinteractions exemplifies that the rule language can express all types of
rule in a singular manner:

element(?Element document, ?ConversationModel) :- conversation(?Conversation-
Model), element(?Element document, ?ParticipantModelOne), link(?MyLink receives,
?Source, ?Element, ?ParticipantModelOne), link(?MyLink sends, ?Source, ?Element,
?ParticipantModelTwo), Naf(equal(?ParticipantModelOne,?ParticipantModelTwo)),
Naf(equal(?ConversationModel,?ParticipantModel)).

where the intuitive purpose behind this rule is to find all matching receive/send
pairs concerning communication of documents in the exposed behaviors of two
parties in order to derive a skeleton business collaboration agreement.

4.3 Developing Business Collaboration Agreements

In the previous subsections we introduced the different kinds of rule in our
approach, and discussed their specification in context of BCDF. Here we shall
explain how the development of business collaboration agreements is driven
by combining the development, management and derivation rules introduced
in Sect. 4. The development of such agreements constitutes the following: 1)
take the exposed behaviors of both parties and merge them into a business
conversation aspect model using derivation rules; 2) verify the model using
consistency rules; and 3) any detected inconsistencies can then be resolved,
where changes are verified against the exposed behaviors of both parties using
compatibility rules.

To illustrate, let us look at development of operational agreement between
garage repairer and consultant, where their exposed behavior is as depicted
in Fig. 2. That is, garage repairer can perform report estimate and receive
approval, whereas consultant can carry out get estimate and approve
repair. We merge these two behaviors using compatibility derivation rules such
as CDRmatchinteractions in subsection 4.2 to generate an initial, skeleton-like

Developing Adaptive Service Oriented Business Collaboration 69

agreement. Taking document car repair report in Fig. 2 as an example,
garage repairer has a link between this document and task report estimate
of type ’send’; whereas consultant has a link with its task get estimate. Ap-
plication of CDRmatchinteractions will result in finding a matching receive/send
pair, i.e. a feasible interaction between the two.

Once the initial model has been established, the development rules of both
parties are applied and checked. Assume that BRgarageintegrity from subsection
4.2 is part of Garage Inc’s exposed behavior at operational level stating that
Garage Inc. will send car repair report containing a car repair value greater
than $1000 using some integrity mechanism. Also assume that Lee C.S has
adopted a similar rule BRleecsintegrity , however, it expects car repair report
to be tamper proof if car repair value greater than $500. To detect such in-
consistencies rule consistency checking is performed using consistency rules like
CRpropertyConsistency , which states that if there are two properties of the same
type belonging to the same element but with different values, they are in conflict:

CRpropertyConsistency: propertyValueConflict(?Type, ?Element) :- property(?Prop1
?Type, ?Value1, ?Element), property(?Prop2 ?Type, ?Value2, ?Element), notEqual
(?Value1, ?Value2)

Through negotiation Garage Inc. and Lee C.S. agree to observe Rleecsintegrity .
Garage Inc. can ensure that it can accommodate this change as follows: firstly,
Garage Inc. updates its exposed behavior, where affected areas are identified
through compatibility rules like CORpropertyCompatibility :

CORpropertyCompatibility : propertyValueConflict(?Type, ?Element) :-
property(?Prop ?Type, ?Value, ?Element, ?Exposed), property(?Prop1 ?Type,
?Value1, ?Element, ?AgreedUpon), notEqual(?Value, ?Value1)

Then, by using similar compatibility rules governing the relation between its
private and exposed behavior, Garage Inc. can assess the affect and feasibility
of the change on its internal business process activities.

One type of rule not discussed so far concerns the alignment of agreements
at different levels. To illustrate their usage, suppose that at strategic level Lee
C.S. has goal Gmodification in its exposed behavior, stating that for all elements
of type ’resource’ named car repair information, their property ’modifica-
tion’ must be set to ’true’:

Gmodification: property(modification,true,carRepairInformation) :-
element(carRepairInformation,resource)

Now, car repair information at strategic level leads to car repair
report at operational level. Let us assume that earlier defined Rleecsintegrity ap-
plies to car repair report. Now goal GcarRepairInformation requires

70 B. Orriens, J. Yang, and M. Papazoglou

modification protection for all claims, whereas Rleecsintegrity does not mandate
integrity until claim value exceeds $1000). To detect the described inconsistency
MRmodificationMapping in subsection 4.2 can be used.

This works as follows: suppose we have car repair information with value
$750. Consequently we also have car repair reportwith document part ’value’
equal to $750. According to Gmodification we can conclude that ’modification’ is
set to ’true’; whereas from Rintegrity we can conclude that ’integrity’ is set to
’false. Based on these conclusions and the fact that car repair information
leads to car repair report, MmodificationMapping results in the conclusion of a
mapping conflict; as it states that when ’modification’ is ’true’, ’integrity’ must
be true for a mapped resource and document.

In the above we have briefly illustrated how rules can assist enterprizes during
the development of business collaboration agreements. Whereas the exact types
of rules used depend on the behavior being modeled (i.e. private, exposed or
agreed upon behavior) the combined usage of development, management and
derivation rules remains principally the same; where development rules ensure
that models are conform organizational policies, legislations, etceteras, man-
agement rules enforce that they are semantically and syntactically correct, and
derivation rules partially automate the development process.

5 Related Work

When it comes to service composition and business collaboration in general,
most work has focused on development without taking adaptability into too
much consideration. Current solutions like BPEL [11] and ebXML BPSS [16]
are pre-determined and pre-specified, have narrow applicability and are
almost impossible to reuse and manage. The same applies to works from
academia like from workflow [1, 5], system development [6, 29] and enterprize
modeling [31].

Relevant work in [3] and [19] describe a generic mechanism for defining WS-
Policy based policies (e.g. in [14]), but only web service based rule specification is
supported. Also, only rules in participant public behavior aspect are considered.
[2] describes a way to establish WS-Agreements between service providers and
requesters, but business and technical details are mixed. [9] presents a web service
management architecture, however, its metrics cannot capture high level business
requirements. [32] describes the rule inference framework DYflow, but there is
no clear separation between technical and business rules.

In comparison our work provides a systematic way of specifying development
rules for business collaboration in the BCDF context. The business collabora-
tion development process is driven by these development rules to capture the
different behaviors of enterprizes; where it is constrained by management rules
in terms of 1) conformance and consistency of models, 2) alignment of strategic,
operational and service models, and 3) compatibility among different models
describing private, exposed and agreed upon behavior; and where it is partially
automated by derivation rules.

Developing Adaptive Service Oriented Business Collaboration 71

6 Conclusions

Current standards in business collaboration design, due to their pre-defined and
inflexible nature, are precluded from accommodating business dynamics. The
challenge is thus to provide a solution in which business collaboration develop-
ment can be done in an flexible and adaptive manner.

In this paper we presented a rule driven approach for business collabora-
tion development. We introduced the Business Collaboration Design Framework
(BCDF), which gives context for business collaboration modeling. Subsequently
we explained how rules drive, control and further the design process to facilitate
flexible and adaptive business collaboration development.

Work for future research will foremost be focused on incorporation of payment,
quality of service and security details. A prototype for presented approach is
currently under development; where an early, partial implementation has been
reported in [22].

References

1. W. van der Aalst et al, Business Process Management: A Survey, Proceedings of
the International Conference on Business Process Management, 2003.

2. A. Andrieux et al, Web Services Agreement Specification (WS-Agreement),
http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-
agreement.pdf, June 2004

3. S. Bajaj et al, Web Services Policy Framework (WS-Policy), http://www-
106.ibm.com/developerworks/library/specification/ws-polfram/, September 2004

4. Harold Boley, Integrating Positional and Slotted Knowledge on the Se-
mantic Web?, http://www.cs.unb.ca/ bspencer/cs6795swt/poslintweb-talk-pp4.pdf,
September 2004

5. J. Bowers et al, Workflow from within and without, Proceedings of the 4th European
Conference on CSCW, 1995

6. P. Bresciani et al, Tropos: An Agent-Oriented Software Development Methodology,
Autonomous Agents and Multi-Agent Sytems, Vol. 8, No. 3, pp. 203-236, 2004

7. D. Burdett et al, Web Service Conversation Language http://www.
w3.org/TR/ws-chor-model/, March 24, 2004

8. Business Process Modeling Initiative, Business Process Modeling Language,
http://www.bpmi.org, June 24, 2002

9. F. Casati et al, Business-Oriented Management of Web Services, Communications
of the ACM, Vol. 46, No. 10, pp. 55-60, 2003

10. E. Christensen et al, Web Service Description Language, http://www.w3.
org/TR/wsdl, March 15, 2001

11. F. Curbera et al, Business Process Execution Language for Web Services,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, July 31,
2002

12. B. Curtis et al, Process Modeling, Communications of the ACM, Vol. 35, No. 9,
pp. 75-90, 1992

13. W. Deiters et al, Flexibility in Workflow Management: Dimensions and Solutions,
International Journal of Computer Systems Science and Engineering, Vol. 15, No.
5, pp. 303-313, September 2000

72 B. Orriens, J. Yang, and M. Papazoglou

14. G. Della-Libera et al, Web Services Security Policy, http://www-106.ibm.com/
developers/library/ws-secpol/, 2002

15. R. Dijkman et al, Service-oriented Design: A Multi-viewpoint Approach, Interna-
tional Journal of Cooperative Information Systems, Vol. 13, No. 4, pp. 337-368,
2004

16. ebXML, http://www.ebxml.org
17. D. Fensel et al, The Web Service Modeling Framework WSMF, Electronic Com-

merce Research and Applications, Vol. 1, No. 2, pp. 113-137, 2002
18. P. Grefen et al, CrossFlow: Cross-Organizational Workflow Management in Dy-

namic Virtual Enterprises, International Journal of Computer Systems Science &
Engineering, Vol. 15, No. 5, pp. 277-290, 2000

19. P. Nolan, Understand WS-Policy processing, http://www-106.ibm.com/
developerworks/webservices/library/ws-policy.html, 2004

20. Object Management Group, Model Driven Architecture, http://www.omg.org/
docs/ormsc/01-07-01.pdf, July 2001

21. B. Orriens et al, Establishing and Maintaining Compatibility in Service Oriented
Business Collaboration, Proceedings of the 7th International Conference on Elec-
tronic Commerce, Xi’an, China, August 2005

22. B. Orriens et al, ServiceCom: A Tool for Service Composition Reuse and Spe-
cialization, Proceedings of the 4th International Conference on Web Information
Systems Engineering, Rome, Italy, 2003

23. M. Papazoglou et al, Service-Oriented Computing, Communications of the ACM,
Vol. 46, No. 10, pp. 25-28, October 2003

24. C. Peltz, Web services orchestration: a review of emerging technologies, tools, and
standards, Hewlett Packard White Paper, January 2003

25. RosettaNet, http://www.rosettanet.org
26. R. Ross, Principles of the Business Rule Approach, Addison-Wesley, 2003
27. RuleML, http://www.ruleml.org
28. A. Scheer, Architecture for Integrated Information Systems - Foundations of En-

terprise Modeling, Springer-Verlag New York, Secaucus, NJ, USA, 1992
29. P. Traverso et al, Supporting the Negotiation between Global and Local Business

Requirements in Service Oriented Development, Proceedings of the 2d International
Conference on Service Oriented Computing, New York, USA, 2004

30. J. Yang, Web Service Componentization: Towards Service Reuse and Specializa-
tion, Communications of ACM, Vol. 46, No. 10, pp. 35-40, October 2003

31. J.A. Zachman, A framework for information systems architecture, IBM Systems
Journal, Vol. 26, no. 3, pp. 276-292, 1987

32. L. Zeng et al, Flexible Composition of Enterprise Web Services, Electronic Markets
- The International Journal of Electronic Commerce and Business Media, Vol. 13,
No. 2, pp. 141-152, 2003

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 73 – 86, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Pattern-Based Specification and Validation
of Web Services Interaction Properties

Zheng Li, Jun Han, and Yan Jin

Faculty of ICT, Swinburne University of Technology,
John Street, Hawthorn, Melbourne, Victoria 3122, Australia

{zli, jhan, yjin}@ict.swin.edu.au

Abstract. There have been significant efforts in providing semantic
descriptions for Web services, including the approach as exemplified by OWL-
S. Part of the semantic description in OWL-S is about the interaction process of
the service concerned, and adopts a procedural programming style. We argue
that this style of description for service interactions is not natural to publishing
service behavior properties from the viewpoint of facilitating third-party service
composition and analysis. In this paper, we introduce a declarative approach
that better supports the specification and use of service interaction properties in
the service description and composition process. This approach uses patterns to
describe the interaction behavior of a service as a set of constraints. As such, it
supports the incremental description of a service's interaction behavior from the
service developer's perspective, and the easy understanding and analysis of the
interaction properties from the service user's perspective. We also introduce a
framework and tool support for monitoring and checking the conformance of
the service's run-time interactions against its specified interaction properties, to
test whether the service is used properly and whether the service fulfils its
behavioral obligations.

1 Introduction

Service-Oriented Computing (SOC) is emerging as an important paradigm for IT
architectures and applications. A service provider publishes the interface description of
the service in a registry, through which a user may search and access the description to
locate the required services. The interface description of a Web service serves as the
contract of interaction with its consumers and is the place where a consumer can find
information about the service. In general, such a contract should cover issues beyond
interface signatures, including functionality, quality and interaction behavior of the
service. The more information about the service is provided, the more likely the service
will be properly understood and utilized. However, the current Web service description
standard - WSDL, only specifies the location and operation signatures of a service, but
lacks the mechanisms for capturing its behavioral properties. This may cause significant
problems regarding behavioral interoperability when the service is used. Without the
behavioral properties or knowledge of a service, the consumer may make incorrect
assumptions about the service, which may lead to interaction failure. As such, a rich

74 Z. Li, J. Han, and Y. Jin

service description model is needed to publish the observable behavior of Web services
in general and its interaction protocols in particular, so that the consumer can have a
better understanding of the service execution semantics and know how to interact with
the service in a proper manner [12].

OWL-S is a prevailing rich description model for Web services. Its service model
describes the interaction behavior of a service by viewing the service as a process. It
provides a set of control constructs such as sequence, split, split+join etc. to specify
the possible execution flow of a service’s operations. The service model employs a
procedural/imperative programming approach, and specifies step by step the process
that the service will perform to reach a particular result. Although this procedural
approach is suitable to certain situations, it has obvious limitations in characterizing
services with diverse behaviors because the resulting process model will become too
complex as part of the interface description. A complex interface description is
difficult to comprehend, process and therefore use.

We argue that a rule-based declarative approach provides a better choice as it
requires much simpler description, needing only one-third to one-sixth of the
statements required by the procedural approach, when representing the same behavior
[10]. In fact, a declarative style conveys the “what” rather than the “how” of the
procedural style, and is consistent with the intention of service (interaction)
description, i.e., “what” the service (interaction) behavior is. In addition, describing a
service in a declarative manner enables the consumer to use the service in ways that
the service designer does not foresee [11]. It also gives better support to automatic
reasoning-based validation of the composition of multiple services with diverse
behaviors [18]. For frequently changing services, adding and removing rules require
much less effort than modifying existing procedural definitions. This is a very useful
feature in the service design process, which always involves many iterations of
modification and revision on the service behavior definition.

In this paper, we introduce a declarative approach to specifying the interaction
behavior of Web services as interaction constraints. Each constraint states an occurrence
or sequencing properties of a service’s operation invocations, representing a partial view
of the service protocol on the invocations. As such, this approach allows incremental
specification of a service’s interaction protocol.

This approach is based on our previous research on interaction constraint
specification for software components [14, 15], which advocates the use of the
property specification pattern system proposed by Dwyer et al. in [9] in order to give
software practitioners easy access to the specification approach. As the basis for the
interaction constraint specification for Web services, we develop an OWL-based
ontology for the property patterns in this paper. We add this ontology to OWL-S as an
enhancement and an alternative to its procedural style definition of service interaction
behaviors.

We further introduce a framework and tool to monitor and check the conformance
of a service's run-time behavior against the specified service interaction constraints.
The framework employs finite state automata (FSA) to represent semantically an
interaction constraint, utilizes a SOAP message monitor to track the run-time
interactions of the service, and includes a validation module that checks the
interactions against the FSAs (i.e. interaction constraints) for error detection.

 Pattern-Based Specification and Validation of Web Services Interaction Properties 75

The remainder of the paper is structured as follows. In section 2, we give a
reference example as a basis for further discussion. Section 3 presents our constraint-
based approach to specifying service behavioral properties together with the ontology
for the interaction property patterns. Section 4 introduces the validation framework
and its implementation. We then discuss the related work in section 5 before drawing
some conclusions in section 6.

2 A Reference Example

Let us consider an auctioneer service that provides auction services on the Web. The
auctioneer publishes its interface description in WSDL and communicates with a
number of bidders and sellers by exchanging SOAP messages. The service is able to
accept registrations from new bidders/sellers and hold auctions among registered
bidders. It provides several operations to allow users to query the information of
auction items, register and un-register themselves to the service, login and logout the
service, bid or sell an item. The service also provides an operation allowing bidders to
retract their previous bids. Figure 1 shows an excerpt of the WSDL description for the
auctioneer.

Fig. 1. Excerpt of the Auctioneer Web Service Description in WSDL 1.1

76 Z. Li, J. Han, and Y. Jin

3 Pattern-Based Interaction Property Specification

In this section, we first introduce our pattern-based approach to specifying the
interaction behavior of Web services. We then define an ontology for the pattern system
to provide the semantic basis for such service behavior description. An example is given
to illustrate how the ontology is used to define service interaction constraints.

3.1 Property Specification Patterns

Our approach to defining interaction constraints for Web services builds on the
property Specification Pattern System (SPS) proposed by Dywer et al. in [9]. The SPS
patterns were originally developed as “high-level specification abstractions” to assist
practitioners to formally specify system properties. The authors showed in [9] that
SPS is able to cater for a majority of system properties.

In our approach, the SPS patterns and scopes are used to define basic and higher-
level operators used to specify the occurrence and sequencing rules about invocations
to a Web service. The introduction of SPS is aimed to facilitate the use of formal
methods by Web service developers in describing the service interaction constraints
or protocol. Precisely defined constraints are essential to ensure the proper use of the
services when composing business applications or processes. In Figure 2, we list the
basic pattern and scope operators used in our work as well as their usage, where op1,
…, and op4 are distinct operations and n is a natural.

op1 is absent

op1 exists [
leastat

mostat
 n times]

op1 precedes op2
op1 leads to op2

 ×

globally
before op3

after op3

after op3 until op4
between op3 and op4

Fig. 2. Pattern and Scope Operators

Specifically, for a Web service, we provide SPS patterns for specifying the
restrictions on both the occurrence of individual operations’ invocations and the order
(or sequencing) between different operation invocations. The occurrence patterns
include absence, existence, and bounded existence. In particular, the absence pattern
requires that invocations to the given operation not occur (within the given scope).
The existence pattern states that invocations to the given operation must appear. The
bounded existence pattern extends it with lower and upper bounds on the number of
invocations. For example, to control the overall system performance, the auction
service provider may want to set a limit on the number of bids that a bidder can make
during each session. This can be stated as:

opBid exists at most 3 times after opLogin until opLogout;

where the upper bound is 3 (see below for explanations of the “after-until” scope).
The sequencing patterns include precedence, response, precedence chain, and

response chain. For instance, a precedence property of the auctioneer service
“opRegister precedes opUnRegister” states that there must be at least one opRegister

 Pattern-Based Specification and Validation of Web Services Interaction Properties 77

invocation before any opUnRegister invocation. One may think opRegister enables
opUnRegister. A response property “opLogin leads to opLogout” states that an
opLogin invocation must eventually be followed by an opLogout invocation. In
essence, this specifies a cause-effect relationship between opLogin and opLogout.

To handle more complex properties, SPS patterns can be associated with various
scopes such as global, before, after, between-and, and after-until. Each scope
specifies a portion(s) of a service’s interaction history, in which the given pattern
takes effect. More specifically, the global scope refers to the entire history. The
before scope refers to the initial portion of the history up to the first occurrence of
an call message of the given operation. The after scope however states the inverse,
i.e. the portion after the first occurrence of a reply message of the given operation.
In the between-and scope, each portion is marked between consecutive occurrences
of two messages. The starting message is the reply message of the first given
operation, while the ending message is the call message of the second given
operation. The after-until scope is similar but allows the portion to be open ended.
That is, the given pattern continues to take effect after a reply to the first operation,
even if the second operation will never be invoked afterwards. In contrast, in the
between-and scope, the second operation has to be invoked in order for the given
pattern to be applicable.

In the above, we have assumed operations be the atomic unit of concern. To cope
with realistic services, however, one needs to consider the effect of different
parameter values on the service interaction logic. Therefore, we allow conditions to
be associated with each constraint specification to fine-tune the specified relationship.
For example, the earlier constraint on the upper bound of bids by each bidder can be
elaborated as:

opBid exists at most 3 times after opLogin until opLogout
where opBid.userInfo = opLogin.userInfo = opLogout.userInfo;

As detailed later, we make use of the Semantic Web Rule Language (SWRL) to state
such conditions.

Note that, in general, SPS patterns can be nested to describe complex constraints
[9]. For simplicity, we do not explicitly deal with pattern nesting in this paper. It is
however easy to accommodate them in our specification approach.

The following are two further example constraints for the auctioneer service:

opBid precedes opRetract after opLogin until opLogout
 where opBid.userInfo = opRetract.userInfo = opLogin.userInfo = opLogout.userInfo
 and opBid.bidRefNo = opRetract.bidRefNo;

 opSell precedes opBid where opSell.itemNo = opBid.itemNo;

The first constraint states that if a bidder is to retract a valid bid (opRetract), there
must be a preceding successful bid (opBid) by the same bidder in the same session.
The second constraint says that a bidder can only bid for items on sale.

3.2 An Ontology for Interaction Property Patterns

The patterns and scopes used to specify service interaction constraints are defined in
the ontology for Interaction Property Patterns (IPPs). It provides a common

78 Z. Li, J. Han, and Y. Jin

terminology for service developers to specify the interaction constraints of Web
services in a standard and formal way.

The IPP ontology is defined using OWL and is designed as an add-on to OWL-S as
a complement to the Service Model. More specifically, the topmost class defined in
this ontology, InteractionContract, serves as an alternative to OWL-S
CompositeProcess class. Figure 3 depicts the relationship between the IPP ontology
and OWL-S. As shown, InteractionContract is embedded in the Service Model and
uses the AtomicProcess class as the basic entities to define the interaction constraints
of Web services in a rule-based/declarative manner. Note that the Service Profile and
Service Grounding are not affected.

Figure 4 presents all the classes and their relationships as defined in the IPP
ontology, where classes are drawn as ovals and properties are depicted as arc labels.
Note that the shaded classes are not part of the IPP ontology, but are defined in OWL-S
or XML Schema.

Fig. 3. Relationship between the IPP ontology and OWL-S

Fig. 4. Classes in the IPP Ontology

 Pattern-Based Specification and Validation of Web Services Interaction Properties 79

Class InteractionContract. In the IPP ontology, InteractionContract is the topmost
concept denoting all the interaction constraints for a service. InteractionContract is
defined as a subclass of OWL-S ServiceModel. It has a hasIConstraint property,
specifying an InteractionConstraint instance.

Class InteractionConstraint. The InteractionConstraint class has three properties,
hasPattern, hasScope and hasCondition. The hasPattern property ranges over the
class PatternConstruct. Its value specifies an occurrence or sequencing rule over
some operations’ invocations. The hasScope property ranges over the class
ScopeConstruct. Its value indicates the scope over which the specified rule applies.
The hasCondition property specifies an SWRL-Expression (defined in the OWL-S) for
the condition governing operation parameter values.

Class PatternConstruct. PatternConstruct is the superclass of four pattern classes:
PatternIsAbsent, PatternExists, PatternPrecedes and PatternLeadsTo. Each of them
is used to express one specific type of the service behavior. PatternIsAbsent has one
property subject that names the operation of concern. The value of subject is an
instance of PatternOperand that can be of either type OWL-S AtomicProcess, or
PatternConstruct. The latter enables potential pattern nesting. The subject property of
PatternExists is similar. In addition, PatternExists has three cardinality properties:
maxOccurBound, minOccurBound and occurBound used to restrict the number of
invocations to the operation of interest. All these properties are of the XML schema
data type: xsd:nonNegativeInteger. Well-formedness rules about their occurrences are
straightforward and thus omitted here. Both PatternPrecedes and PatternLeadsTo
have two properties, firstOperand and secondOperand, ranging over PatternOperand.

Class ScopeConstruct. As noted earlier, the ScopeConstruct class is used to indicate a
portion of the interaction history over which the constraint must be satisfied. There
are five ScopeConstruct subclasses: ScopeGlobal, ScopeBefore, ScopeAfter,
ScopeBetween, ScopeAfterUntil. Each of these classes defines zero, one or two
delimiters, specifying the starting and ending operation invocations or replies. It is
worth noting that the scope within which the constraint is evaluated starts, if
applicable, after the reply message of the first operation is received, and finishes, if
applicable, before the call message of the second operation is received.

ClassSWRL-Expression. As noted above, we use the SWRL-Expression class to
specify conditions for interaction constraints. The detail of this class can be found in
OWL-S and is thus not repeated here.

3.3 Example

To illustrate the use of the IPP ontology, consider the auctioneer Web service. As
discussed earlier, assume that a user can only bid at most 3 times within each of his
logins. This means the opBid operation can only be invoked at most 3 times after the
user successfully invokes opLogin and before he invokes opLogOut. Figure 5 shows
the definition of this constraint according to the IPP ontology.

80 Z. Li, J. Han, and Y. Jin

Fig. 5. An Example Interaction Constraint Definition

4 Runtime Validation of Interaction Constraints

Explicit specification of Web service interaction constraints helps the service designer
and the service client to implement and use a service properly. Whether or not a
service is actually used correctly at run-time is a different question. Validation or
testing is often required. In this section, we introduce a framework and a tool that
allows us to validate the interactions with a Web service at run-time against its pre-
defined interaction constraints.

4.1 Validation Framework

Our validation framework and tool monitor and validate the messages received and
sent by a service against its interaction constraint specifications. Its message
monitoring and interception builds on Web service platforms and tools. Its validation
mainly makes use of the tool implementation of [14]. The monitoring and validation
process is fully automated at run time. Figure 6 shows the overall validation
architecture. The key techniques used include:

− Translating the constraint specifications into finite state automata (FSAs) that serve
as the constraints' internal representation for easy processing;

− Identifying and intercepting the run-time messages exchanged with a Web service;

 Pattern-Based Specification and Validation of Web Services Interaction Properties 81

Fig. 6. Validation Framework

− Advancing the effective constraint FSAs using the intercepted message, and
reporting violations, if any.
The monitoring framework consists of five components: Validation Manager

(VM), Constraint Specification Manager (CSM), FSA Validators (FVs), Message
Monitor (MM) and Pattern Library (PL), with VM coordinating all the other four
components. PL maintains all the patterns and scopes and their FSA semantics. CSM
reads the interaction constraint specifications embedded in the OWL-S service
description file, translates them into an internal format. MM observes the incoming
and outgoing SOAP messages of the Web service and intercepts the run-time
operation invocations. All the SOAP messages exchanged between the service and the
user are logged and forwarded to VM. Upon receiving a message, VM queries CSM
to get all relevant constraint specifications. If the corresponding FVs have not been
created, VM initialize them based on the used patterns and their FSA semantics stored
in PL. It then asks all the relevant FVs to check the intercepted operation invocation
message against their internal FSAs. If the message is not acceptable to any FSA, a
violation report is issued.

4.2 Constraint Representation

The semantics of interaction constraints is informally given in section 3. To enable
tool support, their semantics needs to be precisely defined. To do so, we choose FSAs
as their formal semantic representations. When involving no condition about
parameter values, in general, each interaction constraint has a corresponding FSA
representation where arc labels are sets of operation call or reply messages. Such a
FSA can be constructed prior to the first relevant message being identified. When a
“where” condition is stated, an interaction constraint corresponds to a number of
FSAs, each for a possible value combination of the parameters. Such an FSA is
dynamically instantiated only when a parameter value of interest is observed. Further
details about the FSA representation can be found in [13, 14]. We illustrate below the
FSA representation of constraints using the earlier example on the bounded existence
of bids (Figure 5).

Figure 7 shows the FSA corresponding to this example constraint, where b1opBid

denotes the set of all opBid call and reply messages exchanged with bidder b1 (i.e.,
opBid.userInfo refers to b1 as the ID). reply

b1opLogin is the set of opLogin reply messages

82 Z. Li, J. Han, and Y. Jin

Fig. 7. FSA for the Example Interaction Constraint of Figure 5

to b1.

call

b1opLogout is the set of opLogout call messages from b1. Note that we have

omitted all the other messages that can be received at every state for brevity. As
shown, opBid cannot be invoked when the FSA enters the rightmost state until b1 logs
out and re-logs in.

4.3 Validation Process

The validation process starts when the Message Monitor detects a SOAP
request/response message and forwards the message to the Validation Manager. Then
VM finds out from CSM all the interaction constraint specifications in which such a
message is of interest, and creates a FSA validator for each constraint using the
message’s parameter values, if such a FV does not already exist. VM then tries to
advance the state of each of these relevant FVs using the observed message. An error
or violation will be reported if the intercepted message is inhibited at the current state
of any FSA. That is, the message does not appear in any labeling set of any outgoing
arc of the current state. For example, an opBid call message received at the rightmost
state of Figure 7 represents a constraint violation. If there is no interaction constraint
in which an observed message is of interest, the message will be ignored by the
Validation Manager.

4.4 Implementation

Our implementation of the run-time monitoring framework is based on open source
platforms and tools. The reason behind this decision is that the source code is
available and new features can be added if required. For our implementation, Tomcat
5 and Apache Axis 1.2 are used to set up a web server to run Web services. Tomcat is
a lightweight HTTP server with all the features we need to run Web services. Axis
provides an implementation of the W3C SOAP standard. They constitute a reliable
and stable platform on which to implement Java Web Services.

In implementing the validation framework, we have reused the architecture of a
runtime validation tool developed in [14] for CORBA-based systems, including the
Pattern Library, Validation Manager and FSA Validator. However, these modules have
been enhanced to better deal with the full range of interaction property patterns. We
have also modified the Constraint Specification Manager module for processing the
XML-based specifications of service interaction constraints. A new addition in this

 Pattern-Based Specification and Validation of Web Services Interaction Properties 83

work is the Message Monitor that captures the SOAP messages (calls and returns)
exchanged between a service and its user(s), and analyzes them at run-time as to their
types, corresponding operations, etc. Part of it is a tool in the Axis package called SOAP
Monitor, providing a way to intercept the SOAP messages. The SOAP Monitor utility
adds one new handler to the global handler chain in the Axis architecture. As SOAP
requests and responses go in and out of the service, the SOAP messages are forwarded
to the SOAP Monitor service where it can be displayed using a web browser interface.

It is worth noting that our validation framework is not centralized. The Message
Monitor (MM) resides on each server hosting services. The other parts of the
framework can be deployed on the server, with the client or elsewhere. As long as the
MM on the server side is working, one or more validation applications can be
connected to MM, which enables multiple parties, such as service owner and users, to
monitor and validate service behavior simultaneously.

5 Related Work and Discussion

Some proposed Web service standards, such as BPEL [3] and WSCDL [16], are
composition languages in nature and specify service behavior from the service
composition or business process point of view [6].What they specify is the required
behavior for services rather than the behavior services actually provide.

Some ongoing research efforts recognize the needs for describing the behavior
properties of individual services, but use rather abstract notations that are not suitable
for service developers or users. [6-8] use a single finite state machine (FSM) to
describe the overall observable behavior of a service. [8] focuses on protocol
compatibility checking and [6, 7] extend FSMs by associating more properties to
transitions. Such a FSM-based approach is good at describing services with simple
behavior. However, when dealing with services with diverse behavior, this approach
does not scale well with the increase in the number of states and transitions. The
resultant FSMs can become difficult to understand and process. In contrast, our
divide-and-conquer specification approach scales well with the number of constraints.
On the other hand, [6, 7] deal with time-based service protocols. This can be
potentially integrated with our work emphasizing inter-message relationships,
resulting in more comprehensive service protocol descriptions.

[4, 19, 20] employ an ontological approach to specify interaction protocols. [4, 20]
define ontologies for FSMs. Like [6-8], they use a single FSM to model each service
behavior. Therefore, their approaches are subject to the same scalability limitation.
Whereas in our approach, the FSA is only used for run-time validation and we use
interaction property patterns for service behavior specification. Furthermore, we use
multiple constraints/FSAs to cover the full behavior of services, which offers
modularity and better scalability. [19] uses ontologies to represent service operation,
input, conditional/unconditional output, precondition, and conditional/unconditional
effect as the behavior constraint of a service. This approach is not capable of
expressing temporal sequencing interaction constraints.

A body of work on Web service monitoring has been reported. [17] proposes an
approach to specifying and monitoring Service Level Agreements. It focuses on Quality
of Service, and monitors such properties as performance and costs instead of interaction

84 Z. Li, J. Han, and Y. Jin

behavior. [5] aims to monitor service compositions at run-time to see whether services
satisfy the assertions specified in the service composition defined by BPEL. The
assertions are the requirements from the service consumer, rather than services’
properties. In contrast, our monitoring framework intends to assess whether a service’s
behavior conforms to its designer’s intent. In addition, our monitor attaches to the
service itself rather than to a service consumer such as the BPEL process.

Also related to our approach is the work based on patterns. [1] provides a rich set to
patterns that can be used to model workflow. The workflow patterns follow the
procedural approach to interaction specification and are very similar to the
ControlConstructs defined in OWL-S's Service Model. The approach we propose is
declarative in nature and is aimed at addressing the limitations of procedural approach
employed by OWL-S. The "Service Interaction Patterns" in [2] describes how an
individual message or a request/response message pair is transferred between two or
more parties, whereas our patterns describe the sequential order in which multiple
messages or operation invocations may occur. They mainly look at message exchanges
from a system point of view, while we primarily study message exchanges from an
individual service's point of view. As such, these two approaches have different focuses.

When putting our approach into practical use, the service designer needs to ensure
the consistency of all the interaction constraints of a service. Inconsistency among
constraints will leads to a situation where calls to an operation will always violate
some rules. This issue is discussed in [13] where consistency checking is done by
testing the non-emptiness of the language intersection of the interaction constraints
and proving that each operation has its role in the intersection.

6 Conclusion

In this paper, we have introduced a declarative constraint-based approach to speci-
fying the observable behavioral properties of Web services. The approach employs
intuitive patterns to help practitioners describe the interaction constraints of a Web
service. The constraints conjunctively determine the behavioral properties of the
service. We have defined an ontology for these patterns and embed it into the OWL-S
framework, enabling pattern-based interaction behavior description for Web services.

We have also presented a framework that supports the monitoring and validation of
the runtime interactions with Web services against their specified interaction
constraints. This provides a useful tool for adjudicating whether a service's behavior
conforms to its design and whether the service is being used properly. The tool is able
to identify and report any violations of such nature.

Our future work will include considering required operations of services and static
checking of interaction compatibility between services or between individual services
and the service composition specification.

Acknowledgement. This work is partially supported by the Department of Education,
Science and Training (DEST) grant (AU-DEST-CG060081) from the Innovation
Access Programme - International Science and Technology established under the
Australian Government's innovation statement, Backing Australia's Ability.

 Pattern-Based Specification and Validation of Web Services Interaction Properties 85

References

1. Workflow Patterns. www.workflowpatterns.com (2005)
2. Alistair Barros, M.D., Arthur ter Hofstede: Service Interaction Patterns. In Proc. 3rd

International Conference on Business Process Management (2005) 302-318, Eindhoven,
The Netherlands

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services version 1.1. http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/ (2003)

4. Ashri, R., Denker, G., Marvin, D., Surridge, M., Payne, T.R.: Semantic Web Service
Interaction Protocols: An Ontological Approach. In Proc. Third International Semantic
Web Conference, Vol. 3298 (2004) 304-319, Hiroshima, Japan

5. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In Proc.
International Conference on Service-Oriented Computing (2004) 193-202, New York City,
NY, USA

6. Benatallah, B., Casati, F., Skogsrud, H., Toumani, F.: Abstracting and Enforcing Web
Service Protocols. International Journal of Cooperative Information Systems Vol. 13 (4)
(2004) 413-440

7. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual Modeling of Web Service
Conversations. In Proc. Advanced Information Systems Engineering (CAiSE), Vol. 2681
(2003) 449-467, Klagenfurt/Velden, Austria

8. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
Composition of e-Services that Export their Behavior. In Proc. International Conference on
Service-Oriented Computing (2003) 43-58, Trento, Italy

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-
state Verification. In Proc. International Conference on Software Engineering (1999) 411-
420, Los Angeles, CA, USA

10. Gottesdiener, E.: Procedural versus declarative. Application Development Trends
Magazine (1997)

11. Guillaume, D., Plante, R.: Declarative Metadata Processing with XML and Java. In Proc.
Astronomical Society of the Pacific Conference Series, Vol. 238 (2001)

12. Han, J.: Interaction Compatibility: An Essential Ingredient for Service Composition. In
Proc. International Workshop on Grid and Cooperative Computing (2003) 59-66,
Shanghai, China

13. Jin, Y., Han, J.: Consistency and Interoperability Checking for Component Interaction
Rules. In Proc. Twelfth Asia-Pacific Software Engineering Conference (2005), Taipei,
Taiwan

14. Jin, Y., Han, J.: Runtime Validation of Behavioural Contracts for Component Software. In
Proc. Fifth International Conference On Quality Software (2005) 177-184, Melbourne,
Australia

15. Jin, Y., Han, J.: Specifying Interaction Constraints of Software Components for Better
Understandability and Interoperability. In Proc. International Conference on COTS-Based
Software Systems, Vol. 3412 (2005) 54-64, Orlando, Florida, USA

16. Kavantzas, N., Burdett, D., Ritzinger, G.: Web Services Choreography Description
Language Version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/ (2004)

17. Keller, A., Ludwig, H.: Defining and Monitoring Service-Level Agreements for Dynamic
e-Business. In Proc. Conference on Systems Administration (2002) 189-204, Philadelphia,
PA, USA

86 Z. Li, J. Han, and Y. Jin

18. Lara, R., Lausen, H., Arroyo, S., Bruijn, J.d., Fensel, D.: Semantic web services:
description requirements and current technologies. In Proc. International Workshop on
Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the Fifth
International Conference on Electronic Commerce (ICEC) (2003), Pittsburgh, PA, USA

19. Sriharee, N., Senivongse, T.: Discovering Web Services Using Behavioural Constraints
and Ontology. In Proc. International Conference on Distributed Applications and
Interoperable Systems, Vol. 2893 (2003) 248-259, Paris, France

20. Toivonen, S., Helin, H.: Representing Interaction Protocols in DAML. In Proc.
International Symposium on Agent Mediated Knowledge Management, Vol. 2926 (2003)
310-321, Stanford, CA, USA

Using Test Cases as Contract to Ensure Service
Compliance Across Releases

Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta,
Gianpiero Esposito, and Valentina Mazza

RCOST - Research Centre on Software Technology,
University of Sannio, Palazzo ex Poste,
Via Traiano 82100, Benevento, Italy

{marcello.bruno, canfora, dipenta, gianpiero.esposito,
valentina.mazza}@unisannio.it

Abstract. Web Services are entailing a major shift of perspective in
software engineering: software is used and not owned, and operation hap-
pens on machines that are out of the user control. This means that the
user cannot decide the strategy to migrate to a new version of a service,
as it happens with COTS. Therefore, a key issue is to provide users with
means to build confidence that a service i) delivers over the time the
desired function and ii) at the same time it is able to meet Quality of
Service requirements.

This paper proposes the use of test cases as a form of contract between
the provider and the users of a service, and describes an approach and
a tool to allow users running a test suite against a service, to discover if
functional or non-functional expectations are maintained over the time.
The approach has been evaluated by applying it to two case studies.

Keywords: Service Testing, Evolution of Service–Oriented Systems, Re-
gression Testing, Service Level Agreements.

1 Introduction

Service–oriented architectures are having a relevant impact on the development
of today’s software systems, and promise to become a major technology to even
enable the development of business–critical applications. This, however, requires
highly reliable and robust services. To this aim, it is necessary to perform service
testing. All in all, a service can be considered very similar to a component, and
thus testing approaches developed in Component–Based Software Engineering
(CBSE) can be adapted to services. Much in the same way, a complex service–
oriented system is a distributed system, thus, again, existing techniques can be
reused.

However, service–oriented architectures introduce some important issues that
need to be considered when performing software testing. In a service–oriented
scenario, users just invoke a service, instead of physically integrating it (as it hap-
pens for components). The service provider can decide to maintain the service,
and the user could not be aware of that. For example:

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 87–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

88 M. Bruno et al.

– new features can be added: despite that, the service provider could decide
not to advertise in the service interface the change performed, because the
input and output parameters are not affected. However, the change made
alters the service behavior, and alters the service non-functional properties
(e.g., the response time) as well;

– optimizations (e.g., changes in algorithmic solutions) can be performed: this
will, for sure, cause a variation in the service non-functional properties. As
a result, the Service Level Agreement (SLA) stipulated between the user
and the provider may or may not be violated. In fact, an optimization could
improve a non-functional property while worsening another, or even an im-
provement of some Quality of Service (QoS) attributes (e.g., the response
time) may not be desirable since it may cause unwanted effects in the whole
system behavior. Last but not least, any optimization could introduce faults,
thus varying the service functional behavior as well.

To deal with the aforementioned issues, this paper proposes the use of test
cases as a way to stipulate contracts between a service provider and service
users1. This calls for empowering users to perform regression testing [1] with
the aim of discovering if a new version of a given service is still in line with the
expectations and assumptions that led to the inclusion of the service in a system.

Test suites are published by the service provider as a part (facet) of the service
description. When a user acquires a service, s/he can use such test suites to check
whether the service behaves as desired. In addition, the user can add a further
test suite (this can be particularly important since the user may not completely
trust test cases delivered by the provider). If no deviation from the expected
behavior is noticed, the contract is stipulated, and the test suite specifies the
service behavior required to fulfill the contract. Then, the user can periodically
run the test suite to discover if changes made to the service implementation
entail the violation of any of the initial assumptions and expectations, either
functional or related to QoS.

This paper makes the following contribution:

– it proposes to support service consistency verification through evolution by
executing test suites contained in a XML–encoded facet attached to the
service;

– it presents a toolkit that allows to generate testing facets from JUnit test
suites, combining static and dynamic analysis, and to run them against the
service; and

– it discusses empirical data demonstrating the effectiveness of using test cases
as a contract between service providers and users.

The rest of the paper is organized as follows. Section 2 describes the proposed
approach and tool. Section 3 presents and discusses results from empirical studies
1 According to service–oriented architecture terminology, the term user is used here

to refer to the organization or individual engineer that integrates a service into a
service–oriented system, and not to the end user of the system itself, that is not
expected to test a service.

Using Test Cases as Contract to Ensure Service Compliance Across Releases 89

performed to assess the approach. Finally, after a discussion of the related work,
Section 5 concludes.

2 The Approach

The basic idea behind our approach is to provide a service with i) a set of test
cases and ii) a set of QoS assertions. This idea comes from component–based
software testing, where some authors proposed the idea of providing a test suite
together with the component [2, 3]. However, the fact that a service is executed
on the server machine and evolves independently from the systems using it, and
the need for a service to meet non-functional requirements established in the
SLA, introduce new issues that the approach has to fulfill.

When the user acquires a service, s/he is able to access the XML–encoded
test cases and QoS assertions hyperlinked to the service WSDL. These test cases
and assertions constitute a kind of “contract” between the user and the service
provider. By executing the test cases, the user can observe the service functional
and non-functional behavior. If satisfied, the user stipulates the contract. The
provider, on his/her own, agrees to guarantee such a behavior over a specified
period of time, regardless of any change that will be made to the service im-
plementation. If, during that period, the service evolves (i.e., a new release is
deployed), deviations from the agreed behavior would cause a contract violation.

Fig. 1 provides an overview of the whole test case generation and regression
testing process. The light gray area indicates what happens when the service

WEB
SERVICE

(release r)

Unit Test
Tool

(e.g. JUnit)

Test
Suites

Tester

User-developed
test suite

Static
Analysis

JUnit class
Instrumentation

Test suite
Execution

Dynamic
Analysis

XML test suite
generation

WSDL

Regression
Test Runner

QoS
Monitoring

Generation of
QoS Assertions

Generated
QoS

Assertions
n

WEB
SERVICE

(release r)
n+k

Regression
Test Runner

Tester

Test
Log

XML-ENCODED TEST SUITE GENERATION

Functional
Test Suite

DEPLOYED SERVICE

Developer

QoS
Monitoring

SLA

Fig. 1. Test generation and execution

90 M. Bruno et al.

is acquired (release rn). The dark gray area indicates what happens when the
service evolves (to release rn+k) and the user re-tests the service. When the
developer implements the service, s/he also provides for it a unit test suite.
By proper analysis and transformations, the test suite is XML-encoded and
attached to the service interface. The service is therefore published together
with the testing facet, comprising test cases (and, eventually, QoS assertions).
Subsequently, the service user can periodically re-execute the test suite against
the service to verify whether the service still exhibits the functional and non-
functional properties held when the service was acquired. The whole approach
is supported by a toolkit, developed in Java, composed of two modules:

– the testing facet generator that, as described in Section 2.2 supports the
generation of the XML-encoded testing facet. In the current implementa-
tion, the tool accepts JUnit2 test suites, although we plan to extend our tool
so to be able to accept as input test suites developed using other tools (and
for services written using different languages). JUnit supports the develop-
ment of a unit test suite as a Java class, containing a series of methods that
constitute the test cases. Each test case is composed of a sequence of asser-
tions checking properties of the class under test. The tool relies on JavaCC3

to perform Java source code analysis and transformation, on the Axis web
services framework4 on the Xerces5 XML parser.

– the test suite runner that permits the service consumer to execute the test
suite against the service and produces the test log.

After describing the approach’s assumptions, the next subsections thoroughly
describe the different phases of the test case generation and execution process.

2.1 Assumptions

In order to let the approach work properly, we need to make some assumptions,
and, in case they fail, proper countermeasures should be taken.

An user can test someone else’s service with the assumption that the test
case execution does not produce any side effect, but only a service response.
This is reasonable, for example, for services used for distributed computations
or in a grid environment. For example, services performing computations (e.g.,
image compressing, DNA microarray processing, or any scientific calculus) are
suitable. This is not the case, however, of services whose execution produces an
irreversible effect, such as services for hotel booking or book purchasing.

In the case of services with side effects, the approach is still feasible from the
provider’s side, after isolating the service from its environment (e.g., databases),
or even from the user side if the provider exports operations to allow users to
test the service in isolation.
2 http://www.junit.org/
3 https://javacc.dev.java.net/
4 http://xml.apache.org/axis/
5 http://xml.apache.org/xerces2-j/

Using Test Cases as Contract to Ensure Service Compliance Across Releases 91

Testing may become problematic for the provider if it is highly resource–
demanding or, for the user, if the service has not a fixed fee (e.g., a monthly–
usage fee) but the cost depends on the number of its invocations. These issues
are discussed in Section 5.

Finally, as explained in Section 2.2, the approach is able to generate asser-
tions for testing service non-functional properties. However, this is based on
monitoring data that can depend on the current configuration (server machine
and load, network bandwidth and load, etc.). While averaging on several mea-
sures can mitigate the influence of network/server load at a given time, changes
in network or machines may lead to completely different QoS values.

2.2 Step 1: Generating the XML–Encoded Test Suite

The testing facet generator XML–encodes a unit test suite provided with the
service. First, the service provider indicates to the tool the service class and
the JUnit class containing the test suite for the service–under–test. Then, the
tool starts analyzing both the service and the JUnit class. The translation of
the JUnit test suite into the facet is not straightforward: in general, any JUnit
assertion involves expressions of variables containing references to local objects,
and method invocations related to these objects. However, the XML–encoded
test suite needs to be executed from user–side. The service user can only access to
service operations. Any other expression needs therefore to be evaluated on server
side and thus XML–encoded as a literal. Expression evaluation is performed

Fig. 2. Test case generation tool

92 M. Bruno et al.

by executing an instrumented version of the JUnit test class from server–side.
The obtained dynamic information is then complemented with test suite static
analysis to generate the XML testing facet.

The tool shows to the user the list of test cases contained in the test suite
(“Choose test case” window in Fig. 2). The user can decide which JUnit test
cases should be encoded in XML. For the selected test cases, the user can select
(from the “Select analysis” window) two options:

1. automatic test case transformation: the tool automatically translates any
expression, but service operation invocations, in literals and generates the
XML–encoded test suite;

2. selective translation: the user can select which method invocations, corre-
sponding to service operations (see the “Method list” window) should be
evaluated and which should be left symbolic in the testing facet.

Finally, the service needs to be complemented with QoS assertions, that can
be used to verify whether the service is able to preserve its non-functional be-
havior over the evolution. These assertions can be automatically generated by
executing all test cases against the deployed service and measuring each time
the QoS attributes by means of a monitoring system. Supposing that each test
case contains an assertion involving a service operation, when the test case is
executed (and thus the operation invoked) QoS values can be measured. In the
current implementation, we are able to measure response time and throughput;
however, with the aid of external monitoring systems, even more complex QoS
measures can be used.

The measured values will constitute constraints that should hold in future
releases of the service. After obtained this set of constraints and encoded them
in XML (see Section 2.2), the service user will send the XML file to the provider.
Under some extents, these constraints can be part of the SLA. For example, if
the user acquires a service and, invoking one of its operation with a given set of
parameters (contained in the test case), observes a response time of 20 ms (over
a large number of runs), then the generated constraint should be something like:

ResponseT ime < 20ms + Δ (1)

where Δ represents a tolerance threshold for the expected response time, or

ResponseT ime < pi (2)

where pi is the ith percentile of the response time distribution as measured when
acquiring the service.

As an alternative of using QoS assertions, the service non-functional behavior
can be checked against any SLA document attached to the service. However,
while the assertions allow to check the QoS achieved for each test case, SLA can
only be used to check the average QoS values.

XML–Encoding of Test Suites. The testing facet generator produces a facet
organized in two levels:

Using Test Cases as Contract to Ensure Service Compliance Across Releases 93

Fig. 3. XML-encoding of a JUnit assertion

1. A first level, containing a Facet Description and a Test Specification. The
Facet Description contains general information such as the facet owner or
the creation date. The Test Specification Overview contains, for each test
suite enclosed in the facet, information such as the testing strategy adopted
(e.g., Functional or Structural) and the tool used to develop the test suite
(e.g., JUnit). Then, the Data section contains links to XML files containing
the test suite itself and QoS assertions.

2. A second level, comprising files containing XML–encoded test suites and
QoS–assertions.

Fig. 3 shows an example of how a JUnit test case can be mapped to a XML
file. The example is related to a service returning travel information for a given
location (i.e., closest airport and train station, plus distance to get to the air-
port and to the station). The left–side of the figure shows a portion of the JUnit
test case. The method setUp() creates an instance variable containing a Loca-
tion object (location1), while the testLocationInfo() method asserts that
location1 must match the result of the getLocationInfo operation when the
passed parameter is “Benevento”.

The right–side of Fig. 3 shows the XML mapping. In particular, it is worth
noting that:

– objects are serialized in XML (using the XStream6 serializer);
– the param tag has an attribute (evaluation) indicating whether the parameter

is a literal serialized in the XML, or whether it is symbolic (i.e., it is a service
operation that needs to be invoked). For the latter, actual parameters are
specified.

QoS assertions are XML–encoded using the WSLA schema [4]. While the
SLA poses general QoS constraints7 (e.g., “Throughput > 1 Mbps” or “Average
response time < 1 ms.”), QoS assertions indicate which will be the expected
service performance in correspondence of a given set of inputs (specified in the
test case). For example, when the input (as specified in the test case) of a MP3

6 http://xstream.codehaus.org/
7 That must hold for any service usage.

94 M. Bruno et al.

compression service is a 5 MBytes file, the QoS assertion may indicate a response
time of 30 s (that will clearly be different in case the input file is smaller or
bigger).

2.3 Step 2: Running the Test Suite

Once the test suite has been published together with the service, the tester
(either a user, a third-party or the provider) can:

1. download the test suite and the QoS assertions, hyperlinked to the service
WSDL interface;

2. run the test suite and get the test log: service operations contained in the
test suite are invoked, and assertions evaluated. A test log is generated,
indicating, for each test case, i) whether the test case has passed or failed
and ii) the differences between the expected and actual QoS values. Also in
this case, the QoS monitoring is used to measure actual QoS values, thus
permitting the evaluation of QoS assertions.

The service user can also provide, on his/her side, further test cases. This
is particularly important: the user might not trust the developer’s test suite;
on the contrary, s/he wants to develop an additional test suite as a contract
reflecting the intended service usage (that might have not been contemplated
by the provider). In a semi–structured environment (e.g., a service registry of
a big organization) the user can therefore publish this new test suite to the
service, and other users can eventually reuse it. On the contrary, this may not

Fig. 4. Test suite runner

Using Test Cases as Contract to Ensure Service Compliance Across Releases 95

be possible in an open environment, where the additional test suite is stored by
the user, and only serves to check whether future service releases still satisfy the
user requirements.

The decision on whether the user has to add further test case may be based on
the analysis of the provider’s test suite (e.g., characterizing the range of inputs
covered), and from the test strategy used by the provider to generate such a test
suite – e.g., the functional coverage criterion used – also advertised in the test
facet.

The trustability level of the provider’s test suite can be assessed, for instance,
by analyzing the domain in which the service inputs varies, and the functional
coverage criteria adopted.

Fig. 4 shows a screenshot of the test suite runner. As shown, after specifying
the service URL, it is possible to run the test cases against the service. The
window reports the log indicating whether the different assertions passed or
failed, and, each time an assertion uses a XML-serialized object, such an object
is shown in the window as well.

3 Empirical Study

To validate the proposed approach, we need to generate test cases and related
QoS assertions on a service release. Then, test cases need to be run again against
subsequent releases, to check whether the service “violates the contract”.

We published as web services five releases of two open source systems, dns-
java and InetAddressLocator. dnsjava8 is a Domain Name System (DNS) client
and server; in particular, for this study’s purpose, the dig (domain information
groper) utility has been wrapped with a web service. dig is used to gather infor-
mation from DNS servers, while InetAddressLocator9 is a utility that, given an
IP address, returns its geographical location.

The dig web service has five parameters: the domain to be solved (compul-
sory), the server used to solve the domain, the query type, the query class and an
option switch. The service answers with two strings: the query sent to the DNS,
and the DNS answer. The InetAddressLocator service interface is quite simple:
the input parameter is just the IP address to be located, while the output is a
string specifying the geographic location. For both services, we carefully checked
whether the response message contained values such as timestamps, increasing
id, etc., that could have biased the result, i.e., causing a failure for any test case
execution. Test case generation was guided by determining, for each input pa-
rameter, equivalence classes. The number of test cases was large enough (1000
for dnsjava and 2500 for InetAddressLocator) to cover any combination of the
equivalence classes. After services have been deployed, test cases are run against
all the releases of each system. For dnsjava, two different analyses of the test
execution logs have been performed:

8 http://www.dnsjava.org/
9 http://javainetlocator.sourceforge.net/

96 M. Bruno et al.

Table 1. dnsjava: % of failed test cases

strong check soft check
1.3.0 1.4.0 1.5.0 1.6.1 1.3.0 1.4.0 1.5.0 1.6.1

1.2.0 3% 74% 74% 74% 1% 7% 7% 7%
1.3.0 74% 74% 74% 9% 9% 9%
1.4.0 0% 0% 0% 0%
1.5.0 0% 0%

1. strong check, comparing both dnsjava response messages (i.e., the DNS query
and answer). This is somewhat representative of a “stronger” functional–
contract between the service user and the provider, that guarantees an exact
match of the whole service response over a set of releases;

2. soft check, comparing only the DNS answer, i.e., the information that often a
user needs from a DNS client. This is somewhat representative of a “weaker”
functional contract.

For InetAddressLocator, we simply compared the (single) response message.
Finally, for dnsjava we also measured two QoS attributes, i.e., the response time
and the throughput. To mitigate the randomness of these measures, the test case
execution was replicated 10 times, and average values considered10.

This section reports and discusses the results obtained analyzing test case
executions. The following subsections will discuss results related to functional
and non-functional testing.

Functional Testing. Table 1 reports the percentage of test cases that failed
when comparing different dnsjava releases, considering the strong check contract.
Rows represent the releases when the user could have acquired the service, while
columns represent the service evolution. It clearly appears that a large percentage
of failures (corresponding to contract violations) is reported in correspondence
of release 1.4. This is mostly explained by changes in the set of DNS types
supported by dnsjava.

All the users who bought the service before could have reported problems
in the service usage. User–side testing would have therefore noticed the user
of the change, while provider–side testing would have suggested to advertise
(e.g., updating the service description, although leaving the service interface
unaltered) the change made. Vice–versa, users who bought the services at release
1.4 experienced no problem when the service evolved towards releases 1.5 and 1.6.

Let us now consider the case in which the comparison is limited to the DNS
answer (soft check). As shown in Table 1, in this case the percentage of violations
in correspondence of release 1.4 is lower (it decreases from 74% to 7–9%). This
large difference is due to the fact that only the DNS query (compared with
the strong check) reports DNS types: here the comparison of just resolved IP
addresses did not produce a large percentage of failures. Where present, failures
10 According to what we verified, the standard deviation was below 10% of the average

value.

Using Test Cases as Contract to Ensure Service Compliance Across Releases 97

Table 2. InetAddressLocator: % of failed test cases

2.12 2.14 2.16 2.18
2.10 0% 1% 1% 5%
2.12 1% 1% 5%
2.14 0% 4%
2.16 4%

Fig. 5. dnsjava measured QoS over different releases

are mainly due to the different way subsequent releases handle exceptions. While
this happens in a few cases, it represents a situation to which both provider and
service users should pay careful attention.

Finally, Table 2 shows results for the InetAddressLocator software system.
Here the differences, mainly appearing in the last release (2.18) are mainly due
to updates in the location database. While in this case a different behavior may
be considered as a service improvement, it is worth noticing that this could still
lead to undesired behaviors from user’s side. For example, if the user expects
that the InetAddressLocator replies with the string Europe to a given set of IP
addresses, while the new release (more precise) returns the string Italy, then the
behavior of the system using the service may be affected.

Non-functional Testing. Fig. 5 reports average response time and throughput
values measured over the different dnsjava releases. A response time increase (or
a throughput decrease) may cause a violation in the SLA stipulated between the
provider and the user. Basically, the figure indicates that:

– except for release 1.6, the performance always improved;
– users who acquired the service at release 1.5 could have noticed a SLA vio-

lation, in case the provider guaranteed, for future releases, at least the same
performances exhibited by release 1.5;

– users who acquired the service at release 1.4 could have noticed, in corre-
spondence of release 1.6, a (slight) decrease of the response time, even if a
(slight) improvement in terms of throughput; and

– finally, all users who acquired the service before release 1.4 were fully
satisfied.

98 M. Bruno et al.

Overall, we thus noticed that the QoS always improved over its evolution,
but for release 1.6.5, where developers decided to add new features at the cost
of worsening the performances.

4 Related Work

As stated in Section 2, the idea of complementing web services with a support
for testing comes from the testing of component–based systems. As described
by Weyuker [3], Bertolino et al. [2] and Orso et al. [5, 6], components can be
complemented with a high–level specification, a built-in test suite, and also a
traceability map able to relate specifications to component interfaces and to test
cases. Weyuker [3] indicates that, especially for components developed outside
the user organization, the provider might not be able to effectively perform
component unit testing, because s/he is not aware of the target usage scenarios.
As a consequence, the component user is required to perform a more careful
re-test inside his/her own scenario. As discussed in Section 5, this is particularly
true for services. For this reason, developer’s test cases need to be complemented
with user’s test cases.

In literature there are plenty of approaches for regression testing. The state
of the art is presented by Harrold [7], explaining the different techniques and
issues related to coverage identification, test–suite minimization and prioritiza-
tion, testability etc. Regression test selection [8, 9, 10] constitutes an important
aspect aiming to reduce the cost of regression testing, that largely affects the
overall software maintenance cost [1]. Much in the same way, it is important to
prioritize test cases that better contribute to achieve a given goal, such as code
coverage or the number of faults revealed [11, 12].

Cost–benefits models for regression testing have also been developed
[13, 14, 15]. Although this is out of scope of the present paper, the issue of model-
ing, predicting and trying to reduce the testing cost is particularly important for
web service testing. Even when test cases are available, service testing consumes
network resources, and the provider might want to limit it (see Section 5).

5 Concluding Remarks

Regression testing, performed to ensure that an evolving service maintains the
functional and QoS assumptions and expectations valid at the time of integration
into a system, is a key issue to achieve highly–reliable service–oriented systems.
We have proposed the idea of test cases as a form of contract between a service
provider and a service user, and have shown an approach to publish test cases
as a facet of the service description, and using such a facet to regression test a
service over the time. Whilst the focus of the paper is on the user-side testing, the
approach proposed can also be useful for third-party-side testing and provider-
side testing, which, similarly to what happens for components [16], constitute
the three main perspectives when testing a service–oriented system:

Using Test Cases as Contract to Ensure Service Compliance Across Releases 99

1. provider/developer perspective: the service developer would periodically
check whether the service, after its maintenance/evolution, is still compliant
to the contract stipulated with the customers. To avoid affecting service per-
formance, testing can be performed off–line, possibly on a separate instance
(i.e., not the one deployed) of the service and on a separate machine;

2. user perspective: on his/her side, the user may periodically want to re-test
the service to ensure that its evolution, or even changes in the underlying
software/hardware do not affect the functional and non-functional behavior.
Particular attention needs to be paid from the provider’s side: service invo-
cation is supposed to have a cost and to consume resources. High–frequency,
massive testing of the service from many users would lead to a denial–of–
service. Proper countermeasures need therefore to be set from provider’s side,
limiting the number of service invocations per period of time, and maybe al-
lowing access during periods when the service workload is low;

3. certifier perspective: a certifier acts similarly to a user, with the aim of re-
peatedly testing the service, possibly on behalf of a user, to check whether
it is compliant to some functional and non-functional behavior specified in
the test suite.

Work–in–progress is devoted to enhance the tool and to integrate it in a com-
plex service–oriented development environment. We are also tackling issues such
as the automatic generation of test cases, starting from a service specification or
interface, with the aim of violating functional or non-functional contracts. Also,
supporting test case reuse and performing cost–benefits analysis are important
issues to be considered. Finally, the preliminary empirical studies performed need
to be replicated with larger, industrial service–oriented systems.

Acknowledgments

This work is framed within the IST European Integrated Project SeCSE (Service
Centric Systems Engineering) – http://secse.eng.it, 6th Framework Programme,
Contract No. 511680. Authors would like to thank Alberto Troisi for his work
the service regression testing tool.

References

1. Leung, H.K.N., White, L.: Insights into regression testing. In: Proceedings of IEEE
International Conference on Software Maintenance. (1989) 60–69

2. Bertolino, A., Marchetti, E., Polini, A.: Integration of ”components” to test soft-
ware components. ENTCS 82 (2003)

3. Weyuker, E.: Testing component-based software: A cautionary tale. IEEE Softw.
15 (1998) 54–59

4. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) language specification (2005)
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

100 M. Bruno et al.

5. Orso, A., Harrold, M., Rosenblum, D., Rothermel, G., Soffa, M., Do, H.: Using
component metacontent to support the regression testing of component-based soft-
ware. In: Proceedings of IEEE International Conference on Software Maintenance.
(2001) 716–725

6. Orso, A. Harrold, M., Rosenblum, D.: Component metadata for software engineer-
ing tasks. In: EDO2000. (2000) 129–144

7. Harrold, M.J.: Testing evolving software. J. Syst. Softw. 47 (1999) 173–181
8. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical

study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol.
10 (2001) 184–208

9. Harrold, M.J., Rosenblum, D., Rothermel, G., Weyuker, E.: Empirical studies of a
prediction model for regression test selection. IEEE Trans. Softw. Eng. 27 (2001)
248–263

10. Rothermel, G., Harrold, M.J.: Empirical studies of a safe regression test selection
technique. IEEE Trans. Softw. Eng. 24 (1998) 401–419

11. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family
of empirical studies. IEEE Trans. Softw. Eng. 28 (2002) 159–182

12. Rothermel, G., Untch, R.J., Chu, C.: Prioritizing test cases for regression testing.
IEEE Trans. Softw. Eng. 27 (2001) 929–948

13. Leung, H.K.N., White, L.: A cost model to compare regression testing strategies.
In: Proceedings of IEEE International Conference on Software Maintenance. (1991)
201–208

14. Malishevsky, A., Rothermel, G., Elbaum, S.: Modeling the cost-benefits tradeoffs
for regression testing techniques. In: Proceedings of IEEE International Conference
on Software Maintenance, IEEE Computer Society (2002) 204

15. Rosenblum, D.S., Weyuker, E.J.: Using coverage information to predict the cost-
effectiveness of regression testing strategies. IEEE Trans. Softw. Eng. 23 (1997)
146–156

16. Harrold, M.J., Liang, D., Sinha, S.: An approach to analyzing and testing
component-based systems. In: First International ICSE Workshop on Testing Dis-
tributed Component-Based Systems, Los Angeles, CA (1999) 333–347

Towards a Classification of Web Service Feature
Interactions

Michael Weiss1, Babak Esfandiari2, and Yun Luo1

1 School of Computer Science, Carleton University, Ottawa, Canada
{weiss, yluo}@scs.carleton.ca

2 Department of Systems and Computer Engineering, Carleton University
babak@sce.carleton.ca

Abstract. Web services promise to allow businesses to adapt rapidly
to changes in the business environment, and the needs of different cus-
tomers. The rapid introduction of new web services into a dynamic busi-
ness environment can lead to undesirable interactions that negatively
impact service quality and user satisfaction. In previous work, we have
shown how to model such interactions between web services as feature
interactions, and reason about undesirable side-effects of web service
composition. In this paper we present the results of subsequent research
on a classification of feature interactions among web services. Such a
classification is beneficial as we can then search for ways of detecting
and resolving each class of feature interaction in a generic manner. To
illustrate the interactions we use a fictitious e-commerce scenario.

1 Introduction

Feature interactions are interactions between independently developed features,
which can be either intended, or unintended and result in undesirable side-effects.
In previous work [9], we have shown how to model undesirable side-effects of web
service composition as feature interactions. The formal study of feature interac-
tions is known as the feature interaction problem. This problem has first been
investigated in the telecommunications domain [4]. It concerns the coordination
of features such that they cooperate towards a desired result at the application
level. However, the feature interaction problem is not limited to telecommuni-
cations. The phenomenon of undesirable interactions between components of a
system can occur in any software system that is subject to changes.

Interaction is certainly the very foundation of service-oriented architectures.
Web services must interact, and useful web services will “emerge” from the in-
teraction of more specialized services. As the number of web services available
increases, their interactions will also become more complex. Systems we build will
use third-party services, over whose implementation we have little control. Many
of the web service interactions will be intended, but others may be unintended
and undesirable, and we need to prevent their consequences from occurring. As
noted by [7], many of the side-effects are related to security and privacy.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 101–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 M. Weiss, B. Esfandiari, and Y. Luo

This paper builds on our previous work [9, 11] by providing a categorization
of feature interactions in web services by cause, following similar work in the
telecommunications domain [2]. We also now propose a unified, realistic, and
quite generic case study (the “Amazin” virtual bookstore) that illustrates all the
discussed causes while remaining technology-agnostic and easily translatable to
other domains. We believe that the case study can be used as a benchmark for
future studies in feature interactions in web services.

While in our previous work we had hand-crafted our examples in order to
highlight the potential for feature interaction, in this work we used a candid ap-
proach in which features were described individually, and without consideration
as to their possible participation in feature interactions. The feature interactions
that we can observe only arose from composing the services for the scenario in
the case study. We believe that this approach strengthens our claims with respect
to the pervasiveness of the feature interaction problem in web services.

The paper is organized as follows. We first provide more background on the
feature interaction problem as it applies to web services, and on modeling web
services as features. We then present our classification of web service feature
interactions. To illustrate the interactions we present our case study of a fictitious
virtual bookstore. This classification is followed a summary of related work. We
conclude with a discussion and an outlook on future research.

2 Feature Interaction Problem

The first generation of web services did not exploit the benefits of a web of
services. They were either of a simple, non-composite nature (often information
services, such as a stock quote lookup service), or provided access to application
functionality over pre-existing business relationships. By contrast, the current
generation of web services are typically composite (i.e., they are constructed
from other, more primitive web services), and offered by third-party service
providers, and thus not grounded in existing relationships.

Web services of the first generation were predicated on two implict assump-
tions: (1) that services developed in isolation would either be used in isolation,
or, if part of a composite service, would not interact in inadvertent ways, and (2)
that users had full control over the services they used, or there was a common
understanding of the operation, and side-effects of these services. We argue that
those assumptions are no longer valid for current web services.

Consider the example of a word-processing service that uses two third-party
services, spell-checking and formatting [9]. Assume that the user has set her
language preference for the word-processing service to UK English. However, let
us also assume that, hidden to the word-processing service, the formatting service
itself incorporates a spell-checking service. This time, the formatting service
does not specify a language preference to the spell checking service. Suppose
that the spell checking service uses a US English dictionary by default. The
result of the service composition is that the incorrect language option will be
applied.

Towards a Classification of Web Service Feature Interactions 103

This is a case of an undesirable feature interaction. The concepts of feature
and feature interaction originated in the telecommunication domain. A feature
is the minimum user-visible service unit in this domain [4]. Features are often
independently developed and deployed. A feature interaction occurs when a fea-
ture invokes or influences another feature directly or indirectly. Although many
of these interactions are, indeed, intended, undesirable side-effects as a result of
the interaction of features are referred to as feature interaction problem.

3 Modeling Web Services as Features

Our approach is to model features at the early requirements stage using the
User Requirements Notation (URN) [1]. These models allow us to reason about
feature interactions, and document detection and resolution strategies. In this
approach, the intent and side-effects of a feature are modeled as goals, and their
operation in the form of scenarios. The interaction of features is captured in the
form of links between goals. Finally, we can represent the allocation of features
to subsystems (known as actors or components in URN), and the relationships
between these actors. This section provides a brief overview of the approach.

3.1 User Requirements Notation

URN contains two complementary notations: Goal-oriented Requirements Lan-
guage (GRL) [3], and Use Case Maps (UCM) [8]. In GRL requirements are
modeled as goals to be achieved by the design of a system. The main elements
of the notation are summarized in Fig. 1. During the analysis, a set of initial
goals is iteratively refined into subgoals. These goals and their refinement re-
lationships form a goal graph that shows the influence of goals on each other,
and can be analyzed for goal conflicts. The perspectives of different stakeholders

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Dependency

Contribution

Correlation

Means-end

Decomposition

(d) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

OR

AND

(c) Link Composition

Goal

Softgoal

Belief

Actor

Actor

Boundary

Resource

(a) GRL Elements

Task

Fig. 1. Summary of the Goal-oriented Requirements Language (GRL)

104 M. Weiss, B. Esfandiari, and Y. Luo

…

…

…

…
[C1]

[C2]

[C3]

OR-Fork

& Guarding

Conditions

…

…

…

…
OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

Start

Point

End

Point

Path

… …
… … Responsibility

Direction Arrow

… … Timestamp Point

Failure Point… …

Shared Responsibility… …
(a) UCM Path Elements

Waiting Place

Trigger

Path

(asynchronous)

Waiting

Path

Continuation

Path

Timer

Timer

Release

(synchronous)

Waiting

Path

Continuation

Path

Timeout

Path

(e) UCM Waiting Places and Timers

… …IN1 OUT1 Static Stub &

Segments ID

Dynamic Stub
IN1 OUT1… …

S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins

Plug-in Map

(c) UCM Components

Team Agent

Fig. 2. Summary of the Use Case Map (UCM) notation

can also be described in GRL. For each stakeholder we model their goals, as
well as their dependencies on one another to achieve those goals. These goals of
one stakeholder can now also compromise the goals of other stakeholders. The
objective of the analysis is to determine the design alternative that resolves the
goal conflicts in a way that best satisfies all stakeholder’s initial goals.

The UCM notation provides a way of describing scenarios without the need
to commit to system components. The main elements of the notation are sum-
marized in Fig. 2. A scenario is a causally ordered set of responsibilities that
a system performs. Responsibilities can be allocated to components by placing
them within the boundaries of that component. This is how we will be modeling
feature deployment. With UCMs, different structures suggested by alternatives
that were identified in a GRL model can be expressed and evaluated by moving
responsibilities from one component (which is the UCM equivalent of a GRL
actor) to another, or by restructuring components. This perspective allows us
to refine the goals identified in a GRL model into greater detail, as necessary.
Generally, when creating these models we would iterate between both views.
That is, we cannot decide on the allocation of goals to actors simply within, eg,
a GRL model, but only after repeatedly refining both perspectives.

3.2 Feature Interaction Analysis

In our adoption of URN, we model features as goals, and service providers as
actors/components. The methodology proposed in [9] includes three steps:

1. Model the features to be analyzed as a GRL goal graph. Goal graphs allow
us to represent features, and to reason about conflicts between them.

Towards a Classification of Web Service Feature Interactions 105

2. Analyze the goal graph for conflicts. Conflicts point to possible feature in-
teractions, in particular, if a conflict “breaks” expected functionality.

3. Resolve the interactions. During this step, UCM models allow us to explore
the different alternatives suggested by the GRL models.

Examples of applying steps 1 and 2 will be provided in Section 5.

4 Classification of Feature Interactions

We propose to classify feature interactions among web services by their type,
and their cause. We thus position our classification in the tradition of exist-
ing classifications of feature interactions for the telecommuncations domain [2],
while emphasizing web service-specific aspects. A classification of web service
feature interactions is beneficial as it allows their avoidance, detection, and res-
olution in a generic manner for each type of interaction. Solutions for specific
feature interactions can then be generalized to other interactions of the same
category.

Our classification is an extension of the work by [2] for the telecommunications
domain. That work was based on the premise, even more important now with
web services, that service creation is no longer governed by a single organization.
It also discusses a categorization by nature of the interactions, which depended
on the nature of the features involved ,the number of users, and the number
of components in the network. However, some causes of feature interactions do
not carry over to the web services domain. So we have dropped “Limitations on
Network Support” as a cause, since explicit service invocation in web services
possibly avoids all signaling ambiguity.

Cause

Violation of

Assumptions

Invocation Order

Resource

Contention
Policy Conflict

Goal Conflict Deployment and

Ownership

Information

Hiding

Fig. 3. Classification by cause

In our classification, a first distinction is made between functional and non-
functional interactions with [9]. This distinction reflects that many of the side-
effects are, in fact, of a non-functional nature, that is, they affect service proper-
ties such security, privacy, or availability. What this paper adds is a classification
by cause shown in Fig. 3. It introduces two causes of interactions that we consider
specific to web services, and are not encountered in closed, centralized telecom-
munications systems: deployment and ownership, and information hiding.

106 M. Weiss, B. Esfandiari, and Y. Luo

Goal conflicts take the shape of conflicting (non-functional) goals. They often
occur as a result of unanticipated side effects, where in trying to achieve one
goal, we inadvertently negatively impact another goal. We can indicate side
effects in a GRL diagram by using a positive contribution link for the first, and
a negative correlation link for the second goal. Resource contention is the fact
that the use of some resource by a service makes it unavailable to another. It may
result in service availability issues. Deployment and ownership decisions (where
services are deployed, and who provides them) lead to performance, scalability
and quality assurance issues, as well as conflicts of interest.

Assumption violations are caused by services that make incorrect assumptions
about how another service works, and can, for example, be due to semantic
ambiguity (use of the same concepts in different ways), or the presence of different
versions of the same service. A result of information hiding is that service users
cannot control how a service is implemented. This can lead to duplication of
effort, inconsistencies, and even incorrect execution. Policy conflicts arise over
contradictory policies that govern the behavior of services. Finally, invocation
order is about features being invoked in a incorrect order, which may cause
features to become ineffective, or timing glitches causing intermittent errors.

5 Selected Examples of Interactions

In this section, we provide examples of interactions to illustrate the classification.
The context is a fictitious virtual bookstore, described in two parts:

1. We first describe the individual web services that will be used by the appli-
cation. These services are developed without knowledge of how they will be
composed later. Often they include third-party services that provide certain
supplementary functionality such as identity management or payment.

2. We then create a composite service for an virtual bookstore from these ser-
vices. We analyze the feature interactions that can occur as a result. As the
services have been implemented independently they may embody assump-
tions that cause unexpected behavior as the services are composed.

This purpose of this division is to reproduce the problems that can result in
the actual development of service-based applications. Each web service/feature
is implemented with developers making assumptions that are individually valid,
that is they faithfully implement the service interfaces. Feature interactions only
result when these services are composed, often in unanticipated ways.

5.1 Examples of Features

The following features have one aspect in common: they all focus on one narrow
type of service, and are usually employed in a supporting role. Examples of
such supplementary services are identity management, payment processing, or
shipping. In principle, any of these services could be provided by the requesting
actor, but usually at a significant development cost, or risk of poor quality.

Towards a Classification of Web Service Feature Interactions 107

Fig. 4. GRL model of the iPassport feature

iPassport. The first example is an identity management feature. Identity man-
agement simplifies authentication with multiple service providers. It allows ser-
vice requesters to authenticate themselves once with one service provider, and
to access other service providers related to the initial service provider through
a circle of trust. It simplifies the implementation of service providers, as well,
because they no longer need to provide their own authentication component.

Fig. 4 is a GRL model of the iPassport feature. It models the service as well as
each type of client as an actor (circle). As the diagram shows, iPassport mediates
between Requesters [Service] and Providers [Service], and acts thus as a kind
of broker. Requesters [Service] use iPassport to manage their profiles through
the Manage Profile service, while Providers [Service] can authenticate users and
access their profiles through the Authenticate and Access Profile services. Service
provisioning relationships are modeled as functional dependencies. Functional
requirements are represented as goals (rounded rectangle) that an actor wants
to achieve. As shown, the dependencies are not restricted to interfaces. They also
include non-functional and resource dependencies, for example, iPassport ensures

Requester [Service] iPassport Provider [Service]

access signIn performServiceaccessProfileOUT1

edit IN1 storeOUT1

signInOtherProvider

IN1
Authenticate

Update

Fig. 5. UCM model of the iPassport feature

108 M. Weiss, B. Esfandiari, and Y. Luo

the requester’s Legitimacy. Non-functional requirements are specified as softgoals
(clouds) that cannot be achieved in an absolute manner. Resources (rectangles)
represent physical or informational entities that must be available.

Internally, the iPassport feature is composed of an Authentication and a Pro-
file Management features, which is responsible for storing profiles, and giving
access to profile information. These features are shown as tasks (hexagons) that
specify ways of achieving a goal. They are related to the Identity Management
goal via decomposition links. More insight into behavioral and deployment as-
pects of a feature (how the tasks are performed) can be gained from a UCM
model.

Fig. 5 shows the UCM model for iPassport. Note that this is only a top-level
model with placeholders (also known as stubs) for submaps that define the Au-
thenticate and Update behaviors (not shown). For example, the diagram captures
(in the feedback loop with signInOtherProvider) that one Provider [Service] can
link to another outside of the user’s control. In the diagram crosses represent
responsibilities, filled circles start points, and bars end points of paths.

PayMe. Payment processing allows payers to make secure payments online, and
simplifies credit card processing for payees, while contributing to increased sales
for them. As shown in Fig. 6, the payment processing feature PayMe provides
two service interfaces: one to the Payer [Order] to Manage Accounts, and one to
the Payee [Order] to receive payment for an order. The Process Payment service
includes functionality to submit order details, as well as to cancel payments.

Fig. 6. GRL model of the PayMe service

Other Features. For reasons of space, we will sketch out the descriptions of
the other features. The ShipEx feature provides a Delivery service to the Ship-
per [Order] with functionality for initiating shipment of an order, and canceling
shipments, as well as a Tracking service for the Shippee [Order] to check on the
status of a shipment. The EvilAds feature is an advertisement placement ser-
vice, which provides a ClickAds service to any Host [Ad] that chooses to embed
ads into its services. Finally, the Shark proxy service provides a Caching ser-
vice through which a Provider [Service] can cache the results of popular service
requests.

We implemented prototypes of these features, and tested them independently.
However, space does not permit us to provide details of the implementation here,
and we limit ourselves to describing the analysis of the observed interactions.
Then we combined them into composite services, and analyzed the result for
feature interactions. The largest of these case studies is described next.

Towards a Classification of Web Service Feature Interactions 109

5.2 Composite Service: Virtual Bookstore

The actor diagram for the composite service is shown in Fig. 7. The diagram
models the Amazin virtual bookstore that gives Customers access to its vir-
tual catalog, and the option to order books from the catalog through its Or-
der Processing service. This service is composed from the features described
above.

Amazin relies on a number of Suppliers to fulfill customer orders. Customer
logins are handled through the iPassport identity management service, which
provides an Authenticate User and an Access Profile service. On receiving a cus-
tomer order, Amazin authenticates the customer, and accesses the customer’s
profile. It then selects a Supplier which stocks the ordered book and invokes its
Order Processing service, passing along the customer’s identity.

Fig. 7. GRL model of virtual bookstore Amazin

An internal structure of the Amazin service that fits this description is also
shown in Fig. 7. This design makes assumptions that, while in agreement with
service interfaces, may cause feature interactions. One potential source of inter-
actions is the following optimization: in addition to physical books, Amazin also
offers digital books for download, and it caches copies of popular orders.

The Supplier determines the availability of the ordered book, and, if successful,
obtains the customer’s payment and shipping preferences from the iPassport
service. It then invokes the Payment Processing service provided by the PayMe
financial service provider, and the Delivery service of Amazin’s ShipEx fulfillment
partner. Customers can track the progress of their orders via the Tracking service.
They can also manage their online profiles, and accounts through services.

110 M. Weiss, B. Esfandiari, and Y. Luo

If a Supplier cannot fulfill an order, it will attempt to satisfy it from its net-
work of Other Suppliers. Although omitted from the diagram, the chosen Other
Supplier will use the same payment and delivery services as Supplier. Finally,
some Suppliers choose to share selected customer information to an EvilAds ad-
vertisement agency via its ClickAds service as an additional source of revenue.

In the following we use this application to provide examples of the different
causes of interactions identified in Fig. 3, as well as their types.

5.3 Goal Conflict

One conflict arises between Manage Profile and Access Profile, and is of type
non-functional. As refined GRL model of the interaction is given in Fig. 8. The
Convenience and Privacy goals of the Customer conflict with one another, since
any iPassport member organization can access the profile, including those orga-
nizations with whom the customer has no trusting relationship.

While there is a trusting relationship between Customer and Amazin, the re-
lationships between Customers and Suppliers are untrusted, and there is no guar-
antee that a Supplier will adhere to Amazin’s privacy policy. Instead, it could
decide, as an example, to sell the profile information to the target marketer
EvilAds, which will then target the Customer with unsolicited ads.

Fig. 8. Goal conflict between Manage Profile and Access Profile

This interaction is an example of a goal conflict, but it can also be classified
as caused by deployment and ownership, information hiding, or a policy con-
flict. Deployment and ownership because at the root of the problem is one and
the same entity (iPassport) authenticates the Customer and controls access to its
profile. Profile information is shared between Amazin and its Suppliers without
involvement of the Customer (as the UCM model in Fig. 5 clearly shows). Infor-
mation hiding since the Manage Profile interface does not declare that profiles
will be shared with parties the customer does not trust directly. Policy conflict

Towards a Classification of Web Service Feature Interactions 111

because Suppliers are not bound to the same privacy policy as Amazin, whose
policy is the only one the Customer has accepted explicitly.

5.4 Resource Contention

When Amazin invokes the Order Processing service of one of its Suppliers, this
supplier will, in turn, place an order with one of its network of Other Suppliers, if
it does not have the requested book in stock. However, this can lead to a situation
where the order is sent back to Amazin itself, which is just an Other Supplier.
Fig. 9 shows a scenario where Amazin is both a client, as well as a supplier to a
given Supplier. If undetected, this can lead to an infinite loop of order requests,
which could cause all actors linked via the loop to become unavailable. The
dependencies at the source of the issue have been highlighted for emphasis.

This is a feature interaction between two implementations of the same feature,
Order Processing, as implemented by multiple actors.

PLAYS

Fig. 9. Resource contention between OrderProcessing and OrderProcessing

5.5 Violation of Assumptions

The Caching service used by the Amazin service to keep local copies of digi-
tal content, and the Payment Processing service interact as result of a violation
of assumptions. Caching digital content (in Shark, or another proxy) has the
potential of preventing that access to the content will be properly billed. The
Amazin service works correctly without caching, and thus an assumption may
have been built in that for every order, a respective order will be placed with
a supplier, and thus no internal accounting is required. If caching is added to
improve the performance of the service, there is a potential that the implica-
tions of this change (breaking this assumption) are not fully understood by the
designers.

112 M. Weiss, B. Esfandiari, and Y. Luo

Amazin

Supplier

Customer

PayMe

ShipEx

PlaceOrder [Digital

OrderCompleted

SubmitOrder

ProcessPayment

Ship

ProcessOrder

SelectSupplier
[!ProductInCache]

OrderCompleted [ProductInCache]

Fig. 10. Interaction between between Caching and Payment Processing–Delivery

The UCM model in Fig. 10 helps explain the situation. If ProductInCache is
true, the return path in the upper left of the diagram will be taken.

5.6 Invocation Order

There is a potential conflict between Payment Processing and Order Processing,
or Payment Processing and Delivery due to timing errors. The interaction can
result in either the customer getting charged without the product shipped, or
the customer getting the product for free. Both errors exploit timing glitches, for

Amazin

Supplier

Customer

PayMe

ShipEx

PlaceOrder

OrderCompleted

PlaceOrder

ProcessPayment

Ship

ProcessOrder

SelectSupplier

Cancel

Cancel

Cancel

Fig. 11. Interaction between between Payment Processing and Order Processing

Towards a Classification of Web Service Feature Interactions 113

example, when the customer cancels their order, it could be that payment still
gets processed (because Payment Processing was started before the order was
canceled) but Delivery is aborted. The cancellation request was sent just before
payment started, but arrived after Payment Processing has proceeded.

The UCM model in Fig. 11 provides the basis for understanding the cause
of the interaction. The ProcessPayment and Ship responsibilities are initiated in
parallel (the vertical bar after ProcessOrder indicates concurrency), and can exe-
cute in any order of one another. The Cancel requests to a component only take
effect, if the ProcessPayment and Ship requests have not been started yet. This
means that there are two successful cancellation scenarios, and two unsuccessful
ones (where one of these requests has already been performed).

6 Related Work

In our earlier work [9] we have provided additional examples of interactions, as
well as approaches for resolving them. By contrast this paper does not con-
sider resolution. The goal conflict scenario is based on our work on assess-
ing privacy technologies [10]. This paper also describes other privacy-caused
interactions.

Liu und Yu [5] describe work on discovering privacy and security problems in
P2P networks using GRL/i*. Although they do not refer to feature interactions,
they introduce a concept of conflict, and an extension to the GRL notation to
indicate sources of conflict, as well as potential threats in a GRL model. In future
work, we will integrate their results into our approach.

7 Conclusion

In this work we have presented work towards a classification of web service fea-
ture interactions. Our goal was to identify potential feature interactions in a
composite web service. While some of these interactions can clearly be antici-
pated by service designers from past experience, it is impossible to plan for all
circumstances during which interactions may occur, including interactions with
services that do not even exist when a service is developed.

In our example, we therefore did not try to anticipate possible interactions,
but focused on implementing the specified service interfaces. We can liken the
development of web services to an iceberg. When we view a web service through
its interface we only see the tip of the iceberg. While we can make the inter-
face more specific, there will always be elements of its operation that escape
the interface specification, just as the tip of the iceberg is no indication of its
size.

More work on the classification is required. Our vision is that once a stable
classification is in place we will be able to describe in a generic manner how
interactions of services that fit a certain type and cause can be detected and
resolved. Identifying and describing such patterns for detecting and resolving
different kinds of interactions will set the agenda for our future work.

114 M. Weiss, B. Esfandiari, and Y. Luo

References

1. Amyot, D., Introduction to the User Requirements Notation: Learning by Example.
Computer Networks, 42(3), 285–301, 2003.

2. Cameron, J., Griffeth, N., et al, A Feature Interaction Benchmark for IN and
Beyond, Feature Interaction Workshop, 1–23, 1994.

3. GRL, http://www.cs.toronto.edu/km/GRL, last accessed in June 2005.
4. Keck, D, and Kuehn, P., The Feature and Service Interaction Problem in Telecom-

munications Systems, IEEE Trans. on Software Engineering, 779–796, 1998.
5. Liu, L., Yu, E., and Mylopoulos, J., Analyzing Security Requirements as Rela-

tionships among Strategic Actors, Symposium on Requirements Engineering for
Information Security (SREIS), 2002.

6. O’Sullivan, J., Edmond, D., and ter Hofstede, A., What’s in a Service? Towards Ac-
curate Description of Non-Functional Service Properties, Distributed and Parallel
Databases, 12, 117–133, Kluwer, 2002.

7. Ryman, A., Understanding Web Services, http://www.software.ibm.com/wsdd/
techarticles/0307 ryman/ryman.html, 2003.

8. UCM, http://www.usecasemaps.org, last accessed in June 2005.
9. Weiss, M. and Esfandiari, B., On Feature Interactions among Web Services, Inter-

national Conference on Web Services (ICWS), 88–95, IEEE, 2004.
10. Weiss, M., and Esfandiari, B., Modeling Method for Assessing Privacy Technolo-

gies, in: Yee, G., Privacy in e-Services, Idea Books, 2006 (to appear).
11. Weiss, M., and Esfandiari, B., On Feature Interactions among Web Services, Inter-

national Journal on Web Services Research, 2(4), 21-45, October-December, 2005.

A High-Level Functional Matching
for Semantic Web Services

Islam Elgedawy, Zahir Tari, and James A. Thom

School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia

{elgedawy, zahirt, jat}@cs.rmit.edu.au

Abstract. Existing service matching techniques such as keyword-based
and ontology-based, do not guarantee the correctness of the matching
results (i.e. do not guarantee fulfilling user goals). This paper deals
with this problem by capturing the high-level functional aspects (namely
goals, contexts, and expected external behaviors) for both web services
and users in a machine-processable format, then matching these aspects
using the proposed functional substitutability matching scheme (FSMS).
Based on FSMS, this paper describes a direct matching technique in
which a user request is examined against one service description at a
time, such that web services match users requests when they have sub-
stitutable goals, contexts and expected external behaviors. The substi-
tutability semantics between the elements of application domains are
captured via the proposed substitutability graphs, which are used dur-
ing the matching process to mediate between users requests and web ser-
vices descriptions. Simulation results show that the proposed matching
approach succeeds in retrieving only the correct answers, while keyword-
based and ontology-based retrieval techniques could not eliminate the
appearance of false negatives and false positives.

1 Introduction

Existing matching techniques used in web service discovery, such as keyword-
based techniques and ontology-based techniques, fail to provide high matching
precision [4]. These techniques can be classified as “generic” as they are sup-
posed to work in all contexts and for all application domains. In a nutshell,
generic matching techniques examine the descriptions of web services by eliciting
the various concepts, including inputs, outputs and entities, from the descrip-
tions. Later, such concepts are matched using a keyword-based approach ([3]),
a more precise approach (which uses generic subsumption rules given via do-
main taxonomies [8]), a form of Logic ([1, 9]), or a combination of approaches.
Generic matching techniques are not suitable for web services as they do not
take into consideration additional semantics related to web services and users1,
such as goals, contexts and expected external behaviors, that are needed to ob-
tain correct results [4, 6, 7], as they provide information about (what a service
1 The term “user” is used to refer to humans and machines.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 115–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 I. Elgedawy, Z. Tari, and J.A. Thom

does/what a user wants) [4], the adopted constraints [6] and how the required
goal is going to be achieved[7]. To guarantee the correctness of the matching
results, we have identified the following requirements:

– User goals, contexts and expected external behavior should be semantically
captured in a machine understandable format so that the matchmaker can
understand them and later use them to find the correct answers.

– The high level functional aspects of web services, such as goals, contexts
and expected external behavior should be explicitly captured in a machine
understandable format so that the matchmaker can understand them and
use them to find the correct answers.

– The functional semantics of the application domain should be explicitly cap-
tured in a machine understandable format such that the matchmaker can
use them to mediate between the user request and web services descriptions.

– A formal matching scheme should use all these captured semantics (user
semantics, web service semantics, and application domain semantics) and
should guarantee the correctness of the matching results.

The G+ model we previously proposed in [4, 6] captures high-level functional
aspects (such as goals, functional contexts2, and expected external behaviors)
for both web services and users. Existing solutions for describing web services
(such as OWL-S[2]) do not have explicit representations for these high-level func-
tional aspects as they are described via text descriptions in the service profile.
Recently, WSMO [9] followed a similar approach to ours by providing an explicit
semantic representation for the high-level functional aspects such as goals, how-
ever it lacks explicit representation for web services behaviors (both internal and
external).

The matching scheme indicates what comparison aspect between the involved
elements is used, what matching rule is used, and how to judge the correctness
of the matching results. Therefore, this paper introduces the functional sub-
stitutability matching scheme (FSMS) that uses high-level functionality as the
comparison aspect, substitutability as the matching rule, and goal achievement
as the correctness criterion.

The proposed direct matching approach starts by filtering services that corre-
spond to different application domains and supports different domain roles. Then
checks the substitutability of the G+ models against user G+ model to find the
suitable set of services that fulfill user request. Substitutability between two
G+ models is determined according to the substitutability status between the
functional contexts and the operation sequences of the corresponding scenarios.
Functional context substitutability is determined according to the substitutabil-
ity of their pre, post and describing sets of constraints. Substitutability status
between two sets of constraints is determined by finding a sequence of consistent
transformations that transform the elements of the source set into the elements
of the target set using the proposed substitutability graphs. Substitutability of

2 A functional context describes the requirements for correct goal achievement, as
indicated in later sections.

A High-Level Functional Matching for Semantic Web Services 117

operation sequences is determined according to the substitutability of their cor-
responding behavior models. A behavior model is a sequence of states elicited
by tracing the transition points between the operations in the corresponding
operation sequence, such that a state is represented by the active constraints
at the corresponding transition point. Two states are matched according to the
substitutability status between their constraints.

This paper is organized as follows. Section 2 provides an overview of the
G+ model used to capture the high-level functional aspects. An overview of the
meta-ontology used is also provided. Section 3 introduces the functional substi-
tutability matching scheme. Section 4 provides details related to the proposed
direct matching approach between two given G+ models. Experiment results are
described in Section 5, and Section 6 concludes the paper.

2 The G+ Model

The G+ model [4, 6] is an extended goal model that provides an integration of
various concepts, including operational goals3, the corresponding functional con-
texts4, and the corresponding realization scenarios5. A functional context is rep-
resented by three sets of constraints6: pre-constraints (goal pre-conditions), post-
constraints (goal post-conditions), and describing-constraints. Table 1 provides
an example of a G+ instance, describing HotelReservationService, where Hotel-
Reservation, Submit-Room-Details, Submit-Payment-Details, Send-Confirmat-
ion are tourism domain operations defined in the used domain ontology.

Table 1. A G+ Example

Goal= “Hotel-Reservation”
FunctionalContext =〈 {CreditCard.Type = VISA, Hotel.Country = Australia},

{Payment.Status = OK, Confirmation.Status = Sent},
{Hotel.Function ∈ (Casino, Bank, Baby Setting, SPA, GYM)}〉

RealizationScenario=SubmitRoomDetails: SubmitPaymentDetails: SendConfirmation

As an application domain can be described by multiple ontologies, our ap-
proach uses a meta-ontology that acts as a schema for domain ontologies that in-
dicate what should be captured in an ontology and how. Hence during the match-
ing process, specific types of application domains’ elements and their semantics
will be used. The proposed meta-ontology consists of two layers: schematic layer
and a semantic layer. At the schematic layer, the types of the domain elements
are defined. At the semantic layer, the relations between the domain elements are
3 A goal that is represented by an application domain operation.
4 The requirements for correct goal achievements.
5 A scenario represents a sequence of application domain operations that tells one

story about how to achieve the goal.
6 Any constraint is formulated as Entity.Attribute Operator Value.

118 I. Elgedawy, Z. Tari, and J.A. Thom

Goal

Op2Op1

Op6Op5

Op8Op7

Op10Op9

Op12Op11

Op16Op15

O
p1

9

Op14Op13

Op22Op21

Op17Op18

Functional
Context

Has

Realized By
Followed By

Or

Fig. 1. An Example of a Scenario Network

captured. The proposed approach, however, restricts these relations to only one
type, namely the functional substitution relation, as FSMS uses substitutability
as the matching rule. The components of the schematic layer are concepts, op-
erations and roles. Concepts represent the domain entities, which are described
by a set of features. A feature is an attribute with its corresponding value. Op-
erations represent the domain legitimate transaction types. Every operation is
described by a set of features. Every operation has a set of input concepts and
a set of conditions over these concepts. Every operation has a set of output
concepts and a set of conditions over these concepts. Roles represent domain
legitimate actors. Every role is described by a set of features.

As many different scenarios can describe the achievement of a given goal, a
more complex G+ model can be defined by a scenario network allowing multiple
abstraction levels, showing how such a goal could be achieved. An example is
given in Figure 1. Tracing a goal scenario network from the goal node until a leaf
operation node represents one of the expected paths for achieving the goal. Such
a path is called Goal Achievement Pattern (GAP). A GAP describes a global
(end-to-end) snapshot of how a service goal is expected to be accomplished. This
snapshot provides information that helps the matchmaker to anticipate the ex-
ternal behavior of a service in a given context. In a nutshell, a GAP consists
of the following information: a functional context, a goal, and an operation se-
quence. A functional context represents the context of the corresponding service
defined in conjunction with any existing sub-contexts (that is the value cases of
the branching conditions along the path). Sub-contexts are added to the set of
pre-constraints that belongs to the functional context. An operation sequence is
a result of the tracing of a scenario network from the goal node till a leaf opera-
tion node. Formally, GAP = 〈Cntxt,G,OpSeq〉, where Cntxt is the GAP functional
context, G represents the GAP goal, and OpSeq is the GAP operation sequence.

A scenario network provides multiple abstraction levels for describing the
achievement of a given service goal (that is, an operation in a given scenario
could be described by another scenario network). So, we can extract multiple
abstraction level GAPs such that a group of GAPs will describe the same story
but at different levels of detail. This provides great flexibility to the matchmaker
to choose a suitable abstraction level to work on.

A High-Level Functional Matching for Semantic Web Services 119

3 The FSMS Matching Scheme

The following factors are used to judge the correctness of the results produced
by a the proposed matching approach. (i) A comparison aspect that indicates
which facts (about the involved entities) will be considered. (ii) A matching
rule that indicates how the comparison aspect will be examined. Finally, (iii)
a correctness criterion that validates the obtained results after applying the
matching rule. Any matching scheme should define its own comparison aspect,
matching rule and correctness criterion. This section describes a new matching
scheme, called Functional Substitutability Matching Scheme (FSMS), which uses
functionality as the comparison aspect, substitutability as the matching rule, and
goal achievement as the matching correctness criterion. A service’s functionality
is the service’s capability for achieving a given goal. This is captured using the
G+ model. In general, a goal G is considered achieved when transforming a
set of constraints Wi into another set of constraints Wj . This is denoted as
(Wi �−→G Wj), and its reads as “the goal G is achieved when transforming W1
into W2 using S”, where �−→ is the achievement operator. Adopting the G+

model, a goal is considered achieved when transforming the pre-constraint set
into the post-constraint set of the functional context using the defined GAP
(that is invoking the corresponding sequence of operations).

A user specifies both the request (in the G+ format) and the G+ models to
be published. The matchmaker succeeds in the matching of a service with the
user’s request when the service can achieve the request goal. For example, if the
request’s goal G is achieved when (W1 �−→G W2), and a service S achieves G
by transforming W3 into W4 (W3 �−→G W4), then S is considered a match for
the request when W1 ⇒ W3 (W1 can substitute W3) and W4 ⇒ W2 (W4 can
substitute W2). This enables the transformation of W1 into W2 by invoking S,
which means G is achieved. Constraint substitution via implication is restric-
tive as it leads to the appearance of false negatives. For example, the constraint
(City.Name=Cairo) implies the constraint (Country.Name= Egypt). However
this cannot be derived using implication as the two constraints have two differ-
ent scopes. To overcome this problem, we propose the concept of “constraints
semantics subsumption” that adopts the substitution semantics of application
domains; to find a transformation that transforms the source constraints into
the target constraints to determine the substitutability status between these
constraints. We propose to extend the meta-ontology to support use of substi-
tutability graphs.

Definition 1. (Substitutability Graph) A substitutability graph is a directed
graph, where a node is in the form of entity.attribute and an edge indicates the
substitutability direction. Every edge has the corresponding substitutability con-
ditions that must be satisfied in order to substitute a given entity’s attribute with
another entity’s attribute with respect to a given domain operation. Also every
edge has the corresponding conversion function between the attributes’ values.

As an entity could be a concept or a role, this implies for every domain two
substitutability graphs will be defined: a concept substitutability graph and a

120 I. Elgedawy, Z. Tari, and J.A. Thom

Concept

Concept

Operation

Substitutability
Constraints

+ Conversion
Function

At
tri

bu
te

s
Di

m
en

sio
n

iConcept jConcept

A Segment

Fig. 2. Concepts Substitutability Graph

role substitutability graph. Figure 2 shows how a concept substitutability graph
has been introduced: for every domain operation, and for every pair of concepts,
substitutability conditions are defined.

If no attributes are explicitly defined; this means all the concepts’ attributes
with the same name are substitutable with respect to such domain operation.
Their corresponding conversion functions will be a simple equality between the
attributes values. However if only specific attributes are substitutable, for ev-
ery pair of substitutable attributes an edge should be created such that the
corresponding substitutability constraints and conversion functions are defined.
For example, the attribute Rank of the concept Hotel can have the values in
the set {5,4,3,2,1}, which corresponds to the number of stars of the hotel,
while the attribute Class of the concept Accommodation can have values in
{Business,Economy}. For a hotel-reservation operation in the tourism domain,
the concept Accommodation could be substituted with the concept Hotel if the ac-
commodation type is temporary. Hence, the attribute Class could be substituted
by the attribute Rank using a specific conversion function, as indicated in Table 2.

Table 2. An Example of a Substitutability Graph Entry

Source Target Conversion Function Substitutability Conditions
Hotel.Rank Accommodation.Class If Hotel.Rank ≥ 3 Accommodation.Type=

Then Accommodation.Class = Business Temporary
Else
Accommodation.Class = Economy
End IF

A High-Level Functional Matching for Semantic Web Services 121

For instance (Hotel.Rank=4) and a service description (that indicates that
the service can book temporary business class accommodations), the match-
maker can return the service as a correct one if the other constraints in the
request are fulfilled. Formally, we introduce concepts substitutability graph
SGc as a directed graph such that SGc =

⋃n
i=1{〈Opi, Vc, Ec〉}, where Opi is

a domain operation, n is the number of operations in the domain, Vc is a set
of graph nodes such that Vc ⊆ Δc

⊗
ΔA that Δc is the set of all concepts

ΔA is the set of all attributes. Ec represents a set of graph edges such that
∀Ei ∈ Ec, Ei = 〈Va, Vb, Πab, Ψab〉. Πab is the set of substitution conditions that
must be satisfied in order for the concept.attribute represented by the node Va

(source node) to be substituted with the concept.attribute represented by the
node Vb (target node)7. Ψab is the conversion function that maps the value of the
source node into a value for the attribute in the target node. In a similar way, we
define role substitutability graph SGr. A substitutability graph is used to
determine if there exists a direct substitution (DS) between constraints’ scopes.

Definition 2. (Direct Substitution) Given two constraints Cni and Cnj and
two scopes A and B, such that A is the scope of Cni and B is the scope of Cnj,
a goal G, and a set of constraints W such that Cnj ∈ W , there exists a direct
substitution (DS) between A and B with respect to G and W iff there exists a
valid path P=L1, L2, ..., Ln between A and B in the corresponding substitutability
graph such that W ⇒ ∧i=n

i=1 ΠLi where Li is an edge between two scopes, and ΠLi

is the substitution constraints of edge Li
8.

When a matchmaker attempts to transform a constraint Cni (the source
constraint) into another constraint Cnj (the target constraint) with respect to
a given goal, first it checks if there exists a DS between their scopes. If so,
it uses the conversion function(s) to transform the source constraint Cni into
another constraint Cnk such that Cnk ⇒ Cnj

9. Otherwise the transformation
is considered not valid and the constraints cannot be substituted.

Two scopes are considered reachable if there exists a DS, or a sequence of DSs
between them. This sequence of DSs is the required transformation in order
to substitute the target constraint with the source one. When such a transfor-
mation exists, the source constraint is considered to semantically subsume the
target constraint with respect to the involved goal.

Definition 3. (Constraints Semantic Subsumption) Given two constraints Cni,
Cnj and a goal G, Cni semantically subsumes Cnj with respect to G (denoted
as Cni �→G Cnj) iff Cni and Cnj scopes are reachable with respect to G using a
transformation β, and Cni is transformed to Cnq using β such that Cnq ⇒ Cnj.

7 The correctness of the substitution conditions is the responsibility of the ontology
engineer.

8 A set of constraints is treated in implication as one constraint that is a conjunction
of the set elements.

9 It is important to note that Cnk and Cnj have the same scope.

122 I. Elgedawy, Z. Tari, and J.A. Thom

Adopting Definition 3, Cni matches Cnj when the involved transformation
does not violate the set of active constraints existed at the substitution time.

4 The Direct Matching Approach

Matching two web services based on their high-level functional aspects using
FSMS is determined according to the substitutability of their corresponding G+

models. We will first show how simple G+ models (represented by only one
GAP) are matched. Later we will show the same process on complex G+ models
(represented by a GAP forest).

Definition 4. (Direct G+ Matching) Given two simple G+ models G+
i and G+

j ,
G+

j can be substituted by G+
i , denoted as (G+

i � G+
j), iff (Opi = Opj) ∧ (Ctxti

�Opj Ctxtj) ∧ (GAPi �Opj GAPj), where Opi and Opj are the operations rep-
resenting the goals of G+

i and G+
j respectively. Ctxti and Ctxtj are the functional

contexts of G+
i and G+

j respectively. GAPi and GAPj are the goal achievement
patterns of G+

i and G+
j respectively.

Definition 4 indicates that G+
j matches G+

i when they are represented by the
same domain operation and the achievement requirements of G+

j (captured by
its functional context) are substitutable by the achievement requirements of G+

i .
So, the goal achievement pattern of G+

j is substitutable by the goal achievement
pattern of G+

i . The first step to realize Definition 4 is to illustrate how two
functional contexts are going to be matched in FSMS; later we will show how
two GAPs will be matched in FSMS.

Definition 5. (Functional Context Matching) Given two contexts Ctxti , Ctxtj
and a given goal G, Ctxtj can be substituted by Ctxti with respect to G (denoted
as Ctxti �G Ctxtj) iff ((CtxtPre

i �G CtxtPre
j) ∧ (CtxtPost

i �G CtxtPost
j)∧

(CtxtDesc
i �G CtxtDesc

j)).

Definition 5 indicates that a functional context Ctxtj matches Ctxti when its
constraints sets (pre, post and describing) are substitutable by the corresponding
constraints sets of Ctxti. More details about context matching can be found
in [6]. So, two GAPs are matched in FSMS as indicated in Definition 6.

Definition 6. (GAP Matching) Given two goal achievement patterns GAPi and
GAPj such that GAPi = 〈 Cntxti, Gi, OpSeqi 〉 and GAPj = 〈 Cntxtj , Gj,
OpSeqj 〉. GAPj can be substituted by (matches) GAPi denoted as (GAPi �
GAPj) iff (Gi = Gj) ∧ (Cntxti �Gj Cntxtj) ∧ (OpSeqi �Gj OpSeqj).

Definition 6 indicates that matched GAPs will be realizing the same goal
and will be having substitutable contexts and substitutable operation sequences.
Operation sequences could be matched syntactically, semi-semantically (adopts
1-to-1 state matching) or semantically (adopts many-to-many state matching).

A High-Level Functional Matching for Semantic Web Services 123

The semantic approach takes into consideration the effect of a group of opera-
tions on the external behavior of the service. The effect of invoking a sequence of
operations on (the external behavior of) a service resembles a sequence of state
transitions, where a state represents the (active) constraints at the correspond-
ing transition point. Every state corresponds to a specific set of user interactions
with the service (the external behavior). These user interactions are reflected
by the active constraints captured in the state. The state model corresponds to
the transition point between two operations (Opx and Opx+1) and differenti-
ates between the active and idle constraints, as the idle constraints do not have
any effects over the successor operation so they will be discarded during state
matching.

Definition 7. (State Definition) Given an operation sequence OpSeq = Op0,
Op1, . . . , Opn, a state Sx between the operations Opx−1 and Opx is defined as
〈fe

x, f i
x〉 such that fx = fe

x + f i
x, where fx is the set of active constraints at

transition point x, fe
x is the set of effective constraints, f i

x is the set of idle
constraints and + represents the union operator between two sets. fx, fe

x ,and
f i

x are computed as follows:(1) f0 = CtxtPre. (2)fx = f i
x−1 + OpPost

x−1 , where
1 ≤ x ≤ n+1. (3) f i

x = fx �G OpPre
x , where �G is the semantic difference between

two sets of constraints with respect to G.10 (4)fe
n+1 =fn+1. (5) f i

n+1 ={}.

Every state has a corresponding scope that is defined as the set of ele-
ment.attribute appearing as scopes in fe

x of the state. The following example
indicates how a state is automatically created.

Example 1. (State Creation) Let us consider two consecutive operations Submit-
Payment(Payment):Payment and Confirm-Order (Order, Payment): Order in a
given purchase online transaction. The pre-conditions of “Submit-Payment” op-
erations are {Payment.method = Null , Payment.details = Null }, while its post-
conditions are {Payment.method = Null, Payment.details = Null, Payment.status
= valid }. The pre-conditions of “Confirm-Order” are {Payment.status =
valid,Order.status = created }, while its post-conditions are {Order.status = con-
firmed }. According to Definition 7, the state that represents the transition point
between “Submit-Payment” and “Confirm-Order” will be as follows: Assuming the
independent set f i

x−1 = {Order.status = created}, hence fx is equal to
{Order.status =created , Payment.method = Null, Payment.details = Null, Pay-
ment.status = valid }, the effective constraints are the ones that imply the pre-
conditions of “Confirm-Order” operation and the rest of the constraints will be the
independent idle constraints as follows:

fe
x f i

x

{Order.status = created, {Payment.method �= Null,
Payment.status = valid} Payment.details �= Null}

10 A semantic difference between fx and OpPre
x is a subset of fx that has no reachable

scopes to elements of OpPre
x .

124 I. Elgedawy, Z. Tari, and J.A. Thom

The corresponding state sequence is created by applying Definition 7 at every
transition point, by tracing all the transition points in a given operation sequence.
After automatically constructing the state sequences from the involved operation
sequences, they are going to be matched using FSMS such that when the two state
sequences are matched, the corresponding operation sequences will be considered
matched. State sequences will be matched adopting many-to-many manner, in
which a group of states will be examined against another group of states.

Definition 8. (State Matching) Given two states Sx = 〈Se
x, Si

x〉, Sy = 〈Se
y , Si

y〉
and a goal G, Sy can be substituted by Sx with respect to G (denoted as Sx �G Sy)
iff (Se

x �G Se
y).

As the many-to-many approach is adopted, state merging is required to real-
ize such an approach. A state is represented by a set of constraints at a given
transition point. Merging two states means generating a new state that repre-
sents the set of constraints resulted after forming a virtual composite operation,
that is resulted from merging the operations following the transition points of
the merged states, as indicated in Figure 3.

0OpContext 1Op xOp yOp nOp

0OpContext 1Op

0S 1S

zOp

mS ZS

nOp
zOp

1 nS

mOp

ySxS

Corresponding Merged Operations

Merged States

The New Virtual
Operation

New Merged States

Fig. 3. Merging States

Opm should not affect any other state in the corresponding sequence. To
maintain this principle, both the pre/post conditions of Opm are defined as
follows: OpPre

m = OpPre
x + (OpPre

x+1 �G OpPost
x), and OpPost

m = OpPost
x+1 + (OpPost

x

�G OpPre
x+1) [5]. The new state resulting from the merge Sm will be created

according to the operator defined in Definition 7, adopting the values of Opm’s
pre/post conditions (see Definition 9).

Definition 9. (State Merge) Given two consecutive states Sx = 〈fe
x, f i

x〉, Sx+1
= 〈fe

x+1, f
i
x+1〉 and a goal G, the state Sm = 〈fe

m, f i
m〉 resulting from merging Sx

and Sx+1 with respect to G (denoted as Sm=Sx⊕GSx+1) is defined as follows:
f i

m = (f i
x �G fe

x+1). fe
m = (f i

x + fe
x) �G (f i

x �G fe
x+1).

Definition 10. (Expandable State) Given states Sx and Sy belonging to
StatSeqi and StatSeqj respectively and a goal G, Sx is expandable with respect to
Sy and G iff there exists a state Sq belonging to StatSeqi, x≤q, such that (Sw �G

Sy), where Sw is a new state resulting from merging the states from Sx to Sq.

A High-Level Functional Matching for Semantic Web Services 125

Definition 10 implies the expansion direction is “down”, however a state could
be expanded in “up” direction, meaning that this will be merged with its pre-
decessors. In order to realize the many-to-many matching approach, we need to
determine both the states in a given sequence that should be expanded as well as
the direction for the matching. We propose a transformation procedure, called

Fig. 4. Before and After Invoking SEQA

Start

Given
StatSeq1, StatSeq2,

and Cntxt

i=0; j=0;
S= StatSeq1[i]
T= StatSeq2[j]

BackTrackFlag= false

Does S match T?

Is T down expandable
w.r.t S?Yes

1- Expand T.
2- j=j + Expansion step.

Yes

1- Add S to the Augmented StatSeq1.
2- Add T to the Augmented StatSeq2.
3- Mark S matches T in the augmented sequences.
4- j = j+1.

No

 j > Length(StatSeq2) ?

End

1- T = StatSeq2[j].
2- i= i +1.

i > Length(StatSeq2) ?

S = StatSeq1[Length(StatSeq1)-1]. S = StatSeq1[i].

A

A

Yes

No

Yes No

Is S down expandable
w.r.t T?

No

1- Expand S
2- i=i +Expansion Step.

Yes

A

Is S up expandable
w.r.t T?

No

1- Merge the augmented states
of StatSeq1 located within the
S’s expansion step with S as
well as their matching peers in
StatSeq2 With T.

2- BackTrackFlag = false

Yes

A

1- BackTrack= i
2- BackTrackFlag=true
3- i= i +1.

i > Length(StatSeq2) ?

No

S = StatSeq1[i].

A

No

1- Mark T as Unmatched.
2- S= Statseq1[BackTrack].
3- 4- j = j+1.

Yes

 j > Length(StatSeq2) ?

End

Yes

No

A

Do not Overwrite BackTrack
when BackTrackFlag = True

If Scope of S is not part
of Scope of T, exclude
S from the merge such
that the merged states
are the states located
within the expansion

step

Fig. 5. SEQA Flow Chart

126 I. Elgedawy, Z. Tari, and J.A. Thom

sequence augmenter (SEQA), to decide which and when states will be merged
and the direction of merging. SEQA accepts two state sequences, a source se-
quence and a target sequence and the involved goal as its input, then returns
two augmented state sequences and their corresponding matching peers. Figure 4
shows how the sequence augmenter works.

Figure 5 depicts the flow chart of SEQA. StatSeq1 is the source sequence
and StatSeq2 is the target sequence. Let T represent the current target state
to be matched in StatSeq2 and S represent the current proposed matching
state in StatSeq1 that will be examined against T . Using Definition 8, SEQA
checks whether or not S matches T . If this holds, this will mean that Scope(S)
⊇ Scope(T), which gives an opportunity to check whether S also matches T ’s
successor when merged with T . If this is true, T will be down expanded, and
this process will be repeated until T is not down expandable. The current S is
added to the augmented source sequence and the current T (the expanded T if
so) is added to the augmented target sequence. Also, S and T are marked as a
matching peer. S may not match T , meaning either they have different scopes
or they have the same scope but the states’ conditions contradict, meaning they
will never match. However, having different scopes implies either (Scope(S) ⊂
Scope(T)) or (Scope(S) ∩ Scope(T) = ∅).

When Scope(S) ⊂ Scope(T), there is a chance for S to match T by down
expanding S. Even for the case of (Scope(S) ∩ Scope(T)= ∅) by down expand-
ing S, there may be a chance for the successors of S to match T . Hence, SEQA
will try to down expand S, marked as backtracking point. If S down expansion
fails, there is an opportunity for S to be up expandable with respect to T. If up
expansion succeeds, then the augmented sequences (source and target) should
be restructured. This happens by both merging all the states that lie within
the expansion step and merging their matching peers in the other augmented
sequence. If the up expansion procedure fails, this means the current S cannot
match the current state T . Therefore SEQA will try the S’s successor to match
it with T and also will check all the previous scenarios. If one of the previous
scenarios works and S matches T , SEQA prepares the next state in the tar-
get sequence to be matched. But if all the previous scenarios did not work for
all the successors of S, this implies that T cannot be matched with the given
source state sequence. Therefore T will be marked as unmatched, and SEQA
prepares the successor of T to be matched. It backtracks to the S’s state that
first tested with the unmatched T so as to give a chance for the successor of T to
be checked against this backtracked S. SEQA considers a source state sequence
is a match for a target state sequence, when every state in the target augmented
sequence must be substituted by an augmented state in the source in an order-
preserving manner. Complexity of SEQA is O(n3). The complexity of SEQA is
high as the worst case is every state in the target sequence must be examined
against the states of the source sequence for up and down state expansion, which
costs O(n2).

A High-Level Functional Matching for Semantic Web Services 127

5 Validation

The correctness of matching results can be judged through the F-measure met-
ric 11, as when having its value equal to one implies the matching results are
totally correct. Unfortunately, there are neither benchmarks nor standard data
sets for matching semantic web services. Hence we opted to use a random ap-
proach, where a random data set and queries are generated so as to validate the
devised matching techniques, following the same simulation experiments indi-
cated in [6] used for testing context matching. This section will therefore focus
on the evaluation of devised GAP matching techniques and compare them to
the semantic, semi-semantic and syntactic approaches.

Work-Load Generation. The proposed technique requires the existence of a
domain ontology that adopts the meta-ontology structure. The elements of the
conducted experiments are: a domain ontology (that includes concepts, opera-
tions, roles and the substitutability graphs); a data set of generic GAPs; and
a query set and its correct answers. We have generated a random number of
concepts, a random number of operations and a random number of roles to rep-
resent the domain elements. To make sure there are no contradicting conditions
when a new operation is generated, the following restrictions are followed when
generating the domain operations: (i) every operation has one distinct concept
as input parameter and it will be the operation output concept as well. (2) Ev-
ery operation has one pre condition over an attribute of the input concept, such
that the value of this attribute equals to its lower limit. (3) Every operation
has one post condition over the same attribute used in the pre conditions such
that the value of this attribute is less than its upper limit. Operation sequences
are generated by selecting a random number of operations from the generated
operations; in order to form our data set of generic GAPs.

Experiment Logic. We have generated a random data set of generic GAPs.
Then a query set is constructed by randomly selecting 10% of the data set.
Experiments are performed as follows. First, data and query sets are generated.
Second, ten mutated query sets are produced such that the first mutated query
set has the first 10% of the query set being mutated, the second mutated query
set has the first 20% of the query set being mutated, and so on until the tenth
mutated query set has 100% mutated queries. Third, all query sets are applied
to the semantic matching approach, the semi-semantic matching approach and
the syntactic approach. Fourth, the retrieval precision is calculated as indicated
before for all approaches. Finally, the above procedure is repeated 1000 times
and the final average result is computed.

Without a loss of generality, the mutation process is performed by merging
all the operations of a given GAP into one operation such that the new mutated
GAP will have only one operation. This operation is constructed as follows: (1)
Its input is a collection of the GAP operations’ inputs. (2) Its output is a col-
lection of the GAP operations’ outputs. (3) Its pre condition is a conjunction of
11 F-measure = 2×Precision×Recall

Precision+Recall
.

128 I. Elgedawy, Z. Tari, and J.A. Thom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mutation Percentage

F-
M

ea
su

re

1-to-1 Syntactic

1-to-1 Semantic

many-to-Many
Semantic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 1000 10000 100000

Data Set No Of Scenarios

Av
g

Q
ue

ry
 R

es
po

ns
e

in
 S

ec Syntactic

1-to-1 Semantic

many-to-many
Semantic

Fig. 6. A Comparison of GAP Matching Techniques

the GAP operations’ pre conditions. (4) Its post condition is a conjunction of
the GAP operations’ post conditions. The pre/post conditions of the new con-
structed operation are deliberately mutated to generate new sets of conditions,
so that the scopes of the original conditions are reachable from the scopes of
the mutated conditions using a randomly generated substitutability graphs. For
example, constraint (x>12) will be mutated into constraint (y>12) such that x
is reachable from y. Experiment results are shown in Figure 6.

As the original query set and the mutated query sets have the same answers,
the syntactic approach fails to answer the mutated queries. This is reflected by
the decrease of retrieval precision, as the percentage of mutated queries increases.
Also the semi-semantic approach fails to answer the mutated queries, except for
the cases that its GAP has only one operation. Therefore, the semi-semantic
approach could have the same behavior of the syntactic approach against the
mutated queries. This indicates that many-to-many matching approach should
be used instead of one-to-one approach when semantic matching is adopted.
However, precision is expensive as indicated in the figure but we believe there is
a good potential for performance enhancement as basic retrieval techniques are
used in these experiments.

6 Conclusion

This paper demonstrates that capturing the semantics of web services, users
and application domain in a machine-processable format is crucial for obtaining
correct matching results. This paper proposed an advanced matching scheme
for semantic web services, called Functional Substitutability Matching Scheme
(FSMS), which uses high-level functionality (as a comparison aspect), substi-
tutability (as a matching rule), and goal achievement (as a correctness criterion).
The application domain functional substitutability semantics are captured via
concept and role substitutability graphs. Adopting FSMS, we devised a direct
matching technique for semantic web services that is shown to provide correct
matching results (more details about other approaches are in [10]). Aggregate
service matching adopting FSMS is the future extension of this work (more de-
tails in [5]).

A High-Level Functional Matching for Semantic Web Services 129

Acknowledgment

This project is proudly supported by the ARC (Australian Research Council),
under the ARC Linkage project no. LP0347217.

References

1. J. Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. In Proceedings of Workshop on Application of Description Logics, Austria,
September 2001.

2. OWL Services Coalition. Owl S : Semantic markup for web services. http://www.
daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

3. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services. In Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB), pages 132–143. Morgan Kaufmann, 2004.

4. I. Elgedawy. A conceptual framework for web services semantic discovery. In
Proceedings of On The Move (OTM) to meaningful internet systems, pages 1004–
1016, Italy, 2003. Springer Verlag.

5. I. Elgedawy and Z. Tari. Aggregate high-level functional matching for semantic
web services. Technical Report TR-05-3, RMIT University, Australia, 2005.

6. I. Elgedawy, Z. Tari, and M. Winikoff. Exact functional context matching for web
services,. In International Conference on Service Oriented Computing (ICSOC),
November 2004.

7. I. Elgedawy, Z. Tari, and M. Winikoff. Scenario matching using functional substi-
tutability in web services. In Proceedings of the International Conference on Web
Information Systems Engineering (WISE), 2004.

8. P. Ganesan, H. Garcia Molina, and J. Widom. Exploiting hierarchical domain
structure to compute similarity. ACM Transactions on Information Systems,
21(1):64–93, January 2003.

9. U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and Dieter Fensel. Wsmo web
service discovery. http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112, 2004.

10. I. Elgedawy, Z. Tari, and M. Winikoff. Functional context matching for web ser-
vices. Technical Report TR-04-3, RMIT University, Australia, 2004.

Service Selection Algorithms for Composing
Complex Services with Multiple QoS Constraints

Tao Yu and Kwei-Jay Lin

Dept. of Electrical Engineering and Computer Science,
University of California, Irvine, California 92697-2625, USA

Abstract. One of the promises of the service-oriented architecture
(SOA) is that complex services can be composed using individual ser-
vices. Individual services can be selected and integrated either statically
or dynamically based on the service functionalities and performance con-
straints. For many distributed applications, the runtime performance
(e.g. end-to-end delay, cost, reliability and availability) of complex ser-
vices are very important. In our earlier work, we have studied the service
selection problem for complex services with only one QoS constraint. This
paper extends the service selection problem to multiple QoS constraints.
The problem can be modelled in two ways: the combinatorial model and
the graph model. The combinatorial model defines the problem as the
multi-dimension multi-choice 0-1 knapsack problem (MMKP). The graph
model defines the problem as the multi-constraint optimal path (MCOP)
problem. We propose algorithms for both models and study their per-
formances by test cases. We also compare the pros & cons between the
two models.

1 Introduction

Web services present a promising technology to compose complex service ap-
plications from individual (atomic) services. Using Web services, distributed
applications and enterprise business processes can be integrated by individual
service components developed independently. The service components may also
be upgraded or replaced dynamically at run time as system conditions change
or applications’ needs evolve. The enhanced service composability provides a
desirable flexibility and reusability in building distributed enterprise or grid so-
lutions. This is important for enterprise computing since the fast and dynamic
construction of business processes (for supply chain or service network) is essen-
tial for companies in order to adapt their operations to dynamic market condi-
tions. Similar needs exist in global transaction systems, health care and travel
industry.

However, the composition flexibility comes at the price of increased system
engineering complexity. The complexity of Web service composition includes
three main factors: (1) the large number of atomic services that may be available;
(2) the different possibilities of integrating atomic service components into a
complex service; (3) various performance requirements (e.g. end-to-end delay,

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 130–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Service Selection Algorithms for Composing Complex Services 131

service cost, server capability) of a complex service. Web service composition
thus creates a QoS engineering problem since the service selection must select
the best services to compose an efficient complex service.

In recent years, it has become a common practice for service providers to offer
different service levels so as to meet the needs of different customers. Companies
have offered different service qualities (e.g. first class vs. coach class, gold card
member vs. regular member) based on user qualifications or service costs. Simi-
larly, although many atomic services have a similar functionality (e.g. checking
market condition, making reservations, planning meetings, etc.), they differ from
each other by non-functional qualities, such as service time, transaction cost, and
system availability. The QoS of a Web service may be offered by different service
level agreements (SLA) between service providers and clients [5].

In our study, we have proposed a broker-based framework (QCWS) for QoS-
aware Web service composition [16]. In QCWS, Web service composition with
QoS assurance includes two steps: service planning and service selection, which
are are performed by the Composition Manager (CM) and Selection Manager
(SM) in the QoS broker, respectively. In [15], we study the service selection
problem for complex service with one QoS requirement. In this paper, we ex-
tend the system model to handle multiple QoS requirements. We study this
problem using two different models: the combinatorial model, by defining the
problem as a multi-dimension multi-choice 0-1 knapsack problem (MMKP) and
the graph model, by defining the problem as a multi-constraint optimal path prob-
lem (MCOP). The objective of service selection is to maximize a user-defined
utility function under the overall QoS constraints. The utility function definition
may include an extended set of system parameters to achieve some user specific
objective. We propose several service selection algorithms and report simulation
results to compare their performances.

The rest of this paper is organized as follows. Section 2 reviews some related
work. Section 3 presents the system model and assumptions for the Web ser-
vice composition with QoS assurance in our study. Section 4 discusses various
algorithms in both combinatorial and graph approaches, including heuristic and
optimal ones. Section 5 shows the performance evaluation and comparison of
different algorithms. The paper is concluded in Section 6.

2 Related Work

Web service composition has received much interest for supporting enterprise
application integration. Many industry standards have been developed, such as
BPEL4WS (Business Process Execution Language for Web Services) [4] and
BPML (Business Process Modelling Language) [2]. Many projects have studied
the Web service composition problem. The SWORD project [13] gives a simple
and efficient mechanism for offline Web service composition using a rule-based
expert system. SWORD is more focused on the service interoperability and no
QoS issue has been addressed. The eFlow project [3] provides a dynamic and
adaptive service composition mechanism for e-business process management. In

132 T. Yu and K.-J. Lin

eFlow, each service node contains a search recipe, which defines the service
selection rule to select a specific service for this node. The selection rule is based
on local criteria and does not address the overall QoS assurance problem of the
business process.

QoS guarantee for Web services is one of the main concerns of the SLA frame-
work [5]. The framework proposes differentiated levels of Web services using au-
tomated management and service level agreements (SLAs). The service levels
are differentiated based on many variables such as responsiveness, availability
and performance. An initial version of the framework was released as part of
the IBM Emerging Technologies Toolkit (ETTK) version 1.0 in April 2003. Al-
though it included several SLA monitoring services to ensure a maximum level
of objectivity, no end-to-end QoS management capability was implemented.

There are projects studying QoS-empowered service selection, such as [17]
and [1]. In [17], authors propose a quality driven approach to select compo-
nent services during execution of a composite service. They consider multiple
QoS criteria such as price, duration, reliability and take into account of global
constraints. [1] has studied a similar approach. Both of them use the integer
linear programming method to solve the service selection problem, which is too
complex for run time decisions.

3 System Model and Assumptions

We assume that the same service interface definition is used by all atomic service
candidates for a specific service component. So we are not concerned about the
compatibility issue among services and focus on the QoS service selection prob-
lem. In this study, we define the concept of service class. A service class (denoted
as S) is a collection of atomic Web services with a common functionality but
different non-functional properties (e.g. time, quality). A class interface param-
eter set (Sin, Sout) is defined for each service class. We also assume each atomic
Web service (denoted as s) in the service class can provide a service according
to the class interface.

Each atomic service may provide L different service levels; each level is associ-
ated with a QoS vector q(s, l) = [q1(s, l), .., qn(s, l)] (1 ≤ l ≤ L) which contains n
application-level QoS parameters such as service time, cost, reliability, availabil-
ity [5]. Each service level is a candidate in the service class for service selection.
Each service level also has an associated utility function F . The utility function
is defined by a set of system parameters including system load, cost and/or other
QoS attributes. The system load can be considered by a benefit function ([15]).
Definition 1 shows the utility function definition. Users can set the number of
QoS values to be considered as well as their weights according to their require-
ments. In our study each user has m QoS attribute constraints in their QoS
requirements: Qc = [Q1, .., Qm] (1 ≤ m ≤ n).

Definition 1 (Utility Function). Suppose there are α QoS values to be max-
imized and β QoS values to be minimized. The utility function for candidate k
in a service class is defined as:

Service Selection Algorithms for Composing Complex Services 133

User Requests

Process plan 1

Process plan 2

…………

Step 1: Service Planning

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
11

v
8

v
9

Service candidate

graph

F1 F2 F3 F4

F2
F5 F6

S1

S2 S3 S4

Function graph
…………

v1 v4 v6 v9

Executable complex service

Step 2: QoS Service Selection

v
10 v

12
S6S5

Fig. 1. QoS Web service composition model

F(k) =
α∑

i=1

wi ∗ (
qai(k) − μai

σai
) +

β∑
j=1

wj ∗ (1 − qbj(k) − μbj

σbj
)

where w is the weight for each QoS parameter set by a user (0 < wi, wj < 1,∑α
i=1 wi +

∑β
j=1 wj = 1, α + β = m). μ and σ are the average value & the

standard deviation of the QoS attribute for all candidates in the service class.

In our study, the QoS Web service composition is conducted in two steps: ser-
vice planning and service selection, as shown in Figure 1. For each user request,
the Composition Manager in the QoS broker first matches the request with one
or more process plan(s). Each of them is an abstract process that defines a flow
of component functions (F , each can be accomplished by a service class) as well
as their relationships. All potential process plans together constitute a function
graph. The Selection Manager then maps the function graph into a service can-
didate graph and constructs an executable complex service. The mapping from
a user request to process plans (step 1) only considers the functional require-
ments of the user request and does not handle the QoS requirement. It performs
the parametric consistency checking of service classes in order to integrate them
with each other. This problem has been addressed by several research work such
as [13, 6]. The mapping from a function graph to an executable complex service
(step 2) is decided by the distributed performance of services and a user’s QoS
requirements. Step 2 is the focus of this paper.

The QoS attributes of the complex service are decided by the QoS attributes of
its component services as well as their integration relationships, such as sequen-
tial, parallel, conditional or loop. In this paper, we only consider the sequential
composition model in which the QoS attribute and the utility of the complex
service is the sum of its component services’ QoS attributes and utilities at the
selected service level. If a QoS attribute is the product of its component QoS,
such as reliability and availability, we can apply a logarithm operation to con-
vert it into a summation relationship. For QoS attribute with convex/concave

134 T. Yu and K.-J. Lin

characteristic, it may be processed by a filter operation and is not considered in
this paper. Other composition models, such as parallel, conditional or loop, may
be reduced or converted to the sequential model.

4 Service Selection Algorithms

In this section, we present the service selection algorithms used by the QoS
broker for service composition with two or more QoS constraints. There are two
models to solve the problem: the combinatorial model and the graph model.

4.1 The Combinatorial Algorithm

The Multi-choice, Multi-dimension 0-1 Knapsack Problem (MMKP) [12] is de-
fined as follows: Suppose there are K groups, each has li (1 ≤ i ≤ K) items,
where each item has a profit pij and requires resource rij = (rij1, ..rijm). The
total amount of available resources in the knapsack are R = (R1, .., Rm). The
objective of MMKP is to select exactly one item from each group to be included
in the knapsack within the resource constraint while maximizing the total profit.

For a complex service that contains N service classes (S1, S2, ..., SN) in a
process plan and with m QoS requirements, the service selection problem can be
mapped to an MMKP as follows: (1) each service class can be viewed as a group
in MMKP; (2) every candidate in a service class represents an item in a group;
(3) the QoS attributes of each candidate are equivalent to the resources needed
by the item; (4) the utility a candidate produces is mapped to the profit of the
item; (5) a user’s QoS requirements are considered as the available resources
of the knapsack. The objective of service selection is to select one candidate
from each service class to construct a complex service that meets a user’s QoS
requirements yet maximize the total utility. The problem is formulated as:

Max

N∑
i=1

∑
j∈Si

Fijxij

Subject to

N∑
i=1

∑
j∈Si

qα
ijxij ≤ Qα (α = 1, .., m) (1)

∑
xij = 1

xij ∈ {0, 1} i = 1, ..., N, j ∈ Si

The MMKP problem is NP-hard [12]. [7] proposes a branch and bound algo-
rithm (BBLP) to find the optimal solution for MMKP. The branch and bound
method uses a search tree to find a solution. A node in the search-tree represents
a solution state where some classes are fixed (an item has been chosen in these
classes) and some others are free (no item has been selected). A node that has
free classes may be expanded to generate new nodes. BBLP has a very high

Service Selection Algorithms for Composing Complex Services 135

complexity and is not suitable for large size problems. The detailed description
about the BBLP algorithm can be found in [7].

A heuristic algorithm (HEU) for MMKP has been presented in [8]. The idea
of the algorithm is to find a feasible solution at first, then iteratively improve the
solution by replacing items with a low utility with items with higher utilities in
each group while keeping the solution feasible. If no such item can be found, it
tries to replace items with a higher utility in a group (which makes the solution
infeasible) followed by replacing items in other groups with a lower utility and
less resource requirements to keep the solution feasible. This method of upgrades
followed by downgrades may increase the total utility of the solution.

We modify HEU by always selecting a feasible solution (if one exists) at first
without considering those infeasible ones. (In HEU, an infeasible solution may
be picked at first and iterations are needed to make it feasible.) The modification
can shorten the algorithm execution time. The modified algorithm WE HEU is
presented in Algorithm 1. The algorithm is used to select services for one process
plan. If a user request can be matched with more than one process plans, we need
to apply the algorithm to every plan and produce several executable complex
services. Among them, the one with the highest utility is the final solution.

Algorithm 1. WS HEU

Step 1: Select item ρi from each group i (i = 1, 2, .., N), such that ρi =
minj{maxα{ qα

ij

Qα }}; if ∀α,
∑N

i=1 qα
iρi

≤ Qα, use it as the initial feasible solu-
tion and proceed to step 2 ; If no feasible solution exists, stop;

Step 2: Iteratively upgrade the current solution with another solution;
(a) For each item in the solution, find an item with a higher utility from the same
group under resource constraint with the highest �aij = (qiρi − qij) × C/ | C |,
where q = [q1, .., qm], C =

∑N
i=1 qiρi . C is the current resource usage;

(b) If no such item is found in group i, then select the item under resource
constraint that maximizes the value gain per unit of extra aggregate resource:
�pij = (Fiρi −Fij)/ � aij ;
(c) If no feasible upgrade is possible, go to Step 3 ;

Step 3: Upgrade the solution by using one upgrade followed by downgrades;

Step 3.1: Find a higher-utility item in any group with the highest value of
�p′ij = (Fiρi − Fij)/ � t′ij and �t′ij = (qiρi − qij)/(Q − C). Qc = [Q1, .., Qm]
indicates user’s QoS requirements;
Step 3.2: Find a lower-utility item in any group with the highest value of
�p

′′
ij = (Fiρi−Fij)/�t′′ij and �t′′ij = (qiρi−qij)/(C−Qc) while after downgrade,

the total utility is still higher than achieved in Step 2 ;
Step 3.3: If an item ρ

′
i is found in Step 3.2 and ρ

′
i satisfies the resource con-

straint, use ρ
′
i to replace ρ and go back to Step 2. If ρ

′
i is found in Step 3.2 but

violates the resource constraint, go back to Step 3.2 for another downgrade. If
no item can be found in Step 3.2, the algorithm stops.

136 T. Yu and K.-J. Lin

To include the network performance factor in the model, we could add the
network QoS attribute (such as transmission delay) to the sender service. That
is, if service a ∈ Si → b ∈ Sj (b = 1, 2, ...l), the corresponding network QoS
attribute can be set to q = 1

l

∑l
b=1 qα(a, b) (α = 1, ..m), and qα

a = qα
a + qα.

The utility of every candidate in a service class can be computed according to
Definition 1 after the network attributes are included.

4.2 The Graph Algorithm

Algorithms designed for the graph model can process more than one process
plans at a time to find the best solution, although they have a higher complex-
ity than the combinatorial algorithms. We first generate a candidate graph as
follows: (1) Each candidate item in the service class is represented by a node in
the graph, with a benefit value and several QoS attributes; (2) If service si is
connected to service sj , all service levels in si are connected to all service levels
in sj ; (3) Set the network QoS attributes of every links; (4) Add a virtual source
node vs and sink node vd. vs is connected to all nodes without incoming link
and vd is connected to all nodes without outgoing links. The QoS attributes of
these links are set to zero; (5) Add QoS attributes of the node to its incoming
link and compute the utility of every link according to Def. 1.

After these steps, we have a Directed Acyclic Graph (DAG), in which every
edge has a set of QoS attributes and a utility value. A service candidate graph
is shown in Figure 2. The selection problem is to find a path that produces
the highest utility from source vs to sink vd subject to the multiple constraints
Qc = [Q1, .., Qm]. This is the well-known multi-constraint optimal path problem
in the graph theory. Based on the CSP algorithm designed for one QoS constraint
[15], we propose the MCSP algorithm to solve the MCOP problem. Same as CSP,
during the execution of MCSP, each node needs to keep several paths from the
source to it.

MCSP is shown in Algorithms 2 and 3. One potential problem for MCSP is
that, for every intermediate node, the number of paths a node needs to keep may
be huge if none of them dominates each other. That may cause the algorithm to
run very slow. In order to speed up the algorithm and reduce the space needed,
we modify the MCSP algorithm by keeping only K paths on each node. This

v1
v2

v3

v4

v5

v6
v7

v11

v8
v9

S1
S2 S3 S4

v10 v12 S6
S5

vs vd

nFq ,..1, =>< αα

Fig. 2. Service Candidate Graph

Service Selection Algorithms for Composing Complex Services 137

Algorithm 2. MCSP
MCSP (G = (V, E), vs, vd, Qc)
// every node ν keeps L(ν)paths p(μ, q,F) from source to it that satisfy con-
straints requirements
1 Topologically sort nodes in G;
2 for each node μ, in topological order
3 for each ν ∈ adj[μ]
4 if (μ==s) then
5 qα:=qα(μ, ν) ∀α = 1, 2, ..., m
6 F := F(μ, ν)
7 MCSP RELAX(μ,ν,q,F)
8 else for each p ∈ L(μ)
9 qα=qα(p)+qα(μ, ν) ∀α = 1, 2, ..., m
10 F := F(p) + F(μ, ν)
11 MCSP RELAX(μ,ν,q,F)

12 p∗ ←∃ p∗ ∈ L(vd), ∀p ∈ L(vd), F(p∗)≥F(p)

Algorithm 3. MCSP RELAX
MCSP RELAX (μ, ν, q, F)

1 if (∃α, qα > Qα) then return;
2 for each p ∈ L(ν)
3 if F(p) > F and ∀α qα(p) ≤ qαthen return
4 if F(p) < F and ∀α qα ≤ qα(p) then
5 remove p from L(ν)
6 Add (μ, q,F) to L(ν)

heuristic algorithm is called MCSP-K. The K-path selection criteria are based
on the nonlinear cost function concept that is used to combine the multiple
constraints into one [9]. The cost function for any path p can be defined as:

gλ(p) � (
q1(p)
Q1)λ + (

q2(p)
Q2)λ + ... + (

qm(p)
Qm

)λ

where λ ≥ 1. qi(p) is the aggregated ith QoS attribute for path p . As λ → ∞,
g∗(p) � limλ→∞ gλ(p) is equivalent to the cost function

ξ(p) � max{(q1(p)
Q1), (q2(p)

Q2), ..., (qm(p)
Qm)}. The paths with K minimum gλ/ξ

values will be kept at each intermediate node. This ensures that MCSP-K will
never prune out a feasible path if there exists one.

Compared to MCSP, the only difference of MCSP-K lies on the relax function,
in which it needs to check the number of paths it has currently and remove the
path with the maximum gλ/ξ if the maximum number K is reached. The relax
function for MCSP-K is shown in Algorithm 4. MCSP-K drastically reduces the
space cost and speeds up the MCSP algorithm while keeps the result close to
the optimal. The simulation results and comparison of the two algorithms are
shown in the next section.

138 T. Yu and K.-J. Lin

Algorithm 4. MCSP-K RELAX
MCSP-K RELAX (μ, ν, q, F , λ)

1 if (∃α, qα > Qα) then return;
2 for each p ∈ L(ν)
3 if F(p) > F and ∀α qα(p) ≤ qαthen return
4 if F(p) < F and ∀α qα ≤ qα(p) then
5 remove p from L(ν)
6 Add (μ, q,F) to L(ν)
7 if size(L(ν)) > K then
8 if λ == ∞ then
9 remove p′ ∈ L(ν), ∀p ∈ L(ν), ξ(p′) ≥ ξ(p)
10 else
11 remove p′ ∈ L(ν), ∀p ∈ L(ν), gλ(p′) ≥ gλ(p)

5 Performance Study

For systems with only one process plan connected in a sequential flow model,
which contains N service classes and each class has l candidates, the worst-
case time complexity of BBLP using the simplex method [11] is an exponential
function 2Nl. Using WS HEU, suppose the number of QoS requirements is m,
the worst case time complexity is O(N2(l − 1)2m) [8]. The worst case time
complexity for MCSP is O(Nl2 + l2N−1) = O(l2N−1) and the maximum space
needed in vd to keep all feasible paths is O(lN). For MCSP-K, the maximum time
complexity is O(Nl2 + KlN−1) = O(KlN−1) and the maximum space needed
in vd is O(lK). Although the worst case complexity of MCSP and MCSP-K is
not a polynomial function, they perform very well in practice. In this section,
we study their performance by simulations.

5.1 Evaluation Methodology

We have compared the performance of BBLP, WS HEU, MCSP and MCSP-
K algorithms by extensive simulations. First, we use the degree-based Internet
topology generator Inet 3.0 [14] to generate a power-law random graph topology
with 4000 nodes to represent the Internet topology. Then we randomly select
25 ∼2500 (depends on different test cases) nodes as the service candidate nodes
and 2 other nodes as source and sink. In our study, we assume an equal-degree
random graph topology for the service candidate graph. For simplicity, we only
consider one process plan with the sequential composition model. The number
of service class and candidates in each service class involved in the process plan
range from 5 to 50.

For our evaluation we also need to generate the service and network QoS
attributes and utility. Suppose all QoS attributes have the summation properties.
Five QoS attributes are considered for each service/link, each is associated with a
randomly generated values: qk(μ,ν) (k = 1, 2, 3, 4, 5) with a uniform distribution
between [1,100]. We also generate the utility F(μ, ν) of each link as a random
value with a uniform distribution between [1,200]. For QoS attributes of each

Service Selection Algorithms for Composing Complex Services 139

service candidate, a base value is first generated with a uniform distribution
between [1,100]. Then an impact factor (ε) is multiplied to each service. We
consider two different situations with different network impact factors: (1) large:
network QoS value is comparable to services and varies; (2) small: network QoS
value is less than 1

10 of services. The ε is set to 2 and 200 for the two cases
respectively. The utility of each service is also generated as random value with
a uniform distribution between [1, 200].

For the combinatorial model, we compute the average value of QoS attributes
and utility for all outgoing links of a service and add to that service. For services
in the first class, it also needs to add the values of link from the source to it.
For the graph model, we add the QoS attributes and the utility of the service
candidate to every incoming link of it. The number of user’s QoS requirements
ranges from 2 to 5.

Our study includes two parts: (1) Optimal and heuristic algorithms compar-
ison; (2) The comparison of combinatorial and graph models. The metrics we
measure for Part 1 include run time, approximation ratio (heuristic utility vs.
the optimal value), memory usage (for the graph approach). The metric we
use for Part 2 is the provisioning success rate, running time and utility. We
compare two heuristic algorithms: WS HEU and MCSP-K. A composed service
provisioning is said to be successful if the generated result satisfies a user’s QoS
requirements. From the description of MCSP-K, we know its success rate is al-
ways 1 since it never prunes out the optimal path in all intermediate steps. But
for MMKP, since the network QoS attributes are only estimated, the generated
results may not meet a user’s requirements.

In our study, for each test case (representing different numbers of service
classes and service candidates combinations), we randomly generate 10 instances
and run 10 times for each instance. We then use the average value of the 100
rounds as the result for comparison.

5.2 Result Analysis

For performance evaluation about the MCSP-K and MCSP algorithms, 25 test
cases are used in the simulation (Table 1). The cases are divided into 5 groups;
each group has the same number of candidates. For each group, we test different
numbers of service classes (from 10 to 50). There are two parameters: λ is used
to compute the non-linear cost for MCSP-K and k is the number of paths each
intermediate node keeps. We conducted tests on λ = 5, 10, 15, 20, 25, 30,∞ and
k = 5, 10, 15, 20. We find that λ = ∞ always gets a better performance (in terms
of utility) than other values. So here we only report the results for λ = ∞ under
different k values.

Figures 3 and 4 show the running time and memory usage comparison of
MCSP-K and MCSP under 2 and 5 QoS constraints, respectively. For both
k values, MCSP-K can achieve a near optimal performance (producing utility
> 90% of MCSP). For the cases of 2 QoS constraints, MCSP-K is not attractive
since not much space can be saved and the running time is even longer than
MCSP in some cases (k = 10, 15, 20). The extra time is used to compute the

140 T. Yu and K.-J. Lin

Table 1. Test Cases

Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617181920 21 22 23 24 25
Test Group 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
No. Candidates 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50
No. Service Class 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Test case

R
un

 ti
m

e
(M

C
S

P
−

K
/M

C
S

P
)

QoS constraints = 2, λ = ∞

k = 5
k = 10
k = 15
k = 20

(a) QoS constraints = 2

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Test case
R

un
 ti

m
e

(M
C

S
P

−
K

/M
C

S
P

)

QoS constraints = 5, λ = ∞

k = 5
k = 10
k = 15
k = 20

(b) QoS constraints = 5

Fig. 3. Running time comparison (MCSP-K/MCSP)

0 5 10 15 20 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Test case

M
em

or
y

us
ag

e
(M

C
S

P
−

K
/M

C
S

P
)

QoS constraints = 2, λ = ∞

k = 5
k = 10
k = 15
k = 20

(a) QoS constraints = 2

0 5 10 15 20 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Test case

M
em

or
y

us
ag

e
(M

C
S

P
−

K
/M

C
S

P
)

QoS constraints = 5, λ = ∞

k = 5
k = 10
k = 15
k = 20

(b) QoS constraints = 5

Fig. 4. Memory usage comparison (MCSP-K/MCSP)

non-linear cost and decide the paths to be pruned out. As the numbers of service
classes and candidates in each class increase, MCSP-K outperforms MCSP. The
advantage of MCSP-K is more obvious in the cases of 5 constraints. Both running
time and space needed are significantly lower while the performance remains
nearly optimal (> 95% for k = 10, 15, 20). So if the process plan contains a large
number of service classes or there are many candidates in each service class, using
the heuristic algorithm MCSP-K can get a close to optimal solution quickly and
avoid the memory growth problem. λ = ∞ and k = 10 or 15 are the best setting
for MCSP-K.

Figure 5 shows the running time and utility comparison between BBLP and
WS HEU algorithms when the number of QoS constraints is from 2 to 5, re-
spectively. The number of service classes ranges from 5 to 50 and the number of

Service Selection Algorithms for Composing Complex Services 141

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

No. of service classes

R
un

 ti
m

e
(B

B
LP

/W
S

_H
E

U
)

(Candidates/class=5)

QoS constraints=2
QoS constraints=3
QoS constraints=4
QoS constraints=5

(a) Run time

0 5 10 15 20 25 30 35 40 45 50
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

No. of service classes

A
pp

ro
xi

m
at

io
n

ra
tio

(Candidates/class=5)

QoS constraints=2
QoS constraints=3
QoS constraints=4
QoS constraints=5

(b) Utility

Fig. 5. WS HEU vs. BBLP

10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

No. of service classes

R
un

 ti
m

e
(W

S
_H

E
U

/M
C

S
P

−
K

)

WS_HEU vs. MCSP−K (K = 10, λ = ∞) (QoS constraints=2)

Candidates/class=10
Candidates/class=20
Candidates/class=30
Candidates/class=40
Candidates/class=50

(a) Run time

10 20 30 40 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

No. of service classes

U
til

ity
 (

W
S

_H
E

U
/M

C
S

P
−

K
)

WS_HEU vs. MCSP−K (K = 10, λ = ∞) (QoS constraints=2)

Candidates/class=10
Candidates/class=20
Candidates/class=30
Candidates/class=40
Candidates/class=50

(b) Utility

Fig. 6. WS HEU vs. MCSP-K (K = 10, λ = ∞)

candidates in each service class is 5. We can see that the performance of WS HEU
is near optimal (> 98.5%) while the running time is dramatically reduced.

The heuristic algorithms in both models perform very well. To see which one
should be used for service composition, we test the provisioning success rate for
WS HEU under 2 and 5 constraints. (The provisioning success rate for MCSP-K
is 1). When the network factor is comparable to the service, the success rate of
WS HEU is very low (0.32 for 2 constraints and 0.04 for 5 constraints). If the
network impact factor is small, the success rate is high (0.96 in both cases). The
reason for the low success rate lies on that MMKP does a combinatorial selection
without the flow concept. Figure 6 shows the run time and utility comparison
of WS HEU and MCSP-K with k = 10 and λ = ∞ in the situation that the
network impact factor is small. It shows that WS HEU outperforms MCSP-K.
So the combinatorial approach should be used in the situation when the network
impact is small. It can also be used in the situation where the network condition
for all services is uniform, such as all are on the same LAN.

From our experiments, we can see that different algorithms should be used
under different system conditions. Table 2 presents a comparison of the four
algorithms presented in this paper and suggests when they should be used.

142 T. Yu and K.-J. Lin

Table 2. Comparison of Algorithms

BBLP WS HEU MCSP MCSP-K
Running Time very slow fast slow fast
Memory Usage low low high low
Optimality optimal near-optimal optimal near-optimal
Network Cost inaccurate inaccurate accurate accurate
Algorithm
Usage

very small size
problem, small
or uniform
network factor

large size prob-
lem, small or
uniform network
factor

small size
problem, net-
work factor
is large

large size
problem, net-
work factor
is large

6 Conclusions

In this paper, we study the problem of complex service composition with multiple
QoS constraints. Two problem models are proposed: the combinatorial model,
by defining the problem as an MMKP, and the graph model, by defining the
problem as an MCOP. The utility function may be defined by an extended set
of system parameters, including static server information (service level), client
QoS requirement (QoS constraint), dynamic server capacity (service benefit),
and network factor. We have presented various algorithms, both optimal and
heuristic, to compose and select services under multiple QoS constraints as well
as to achieve the maximum utility. We have also compared the pros & cons be-
tween the two models and suggested their usage context. We believe the proposed
models and algorithms provide a useful engineering solution to the end-to-end
QoS problem for building distributed complex services.

References

1. Aggarwal, R., et al.: Constraint driven Web service composition in METEOR-S.
Proc. of IEEE Conf on Service Computing (SCC’04), Shanghai, China, Sep. 2004

2. BPMI.org.: Business Process Modeling Language (BPML), Version 1.0,
http://www.bpmi.org/bpml.esp, November, 2002

3. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V. and Shan, M.: Adaptive and
dynamic service composition in eflow. Technical Report, HPL-200039, Software
Tech Lab, March 2000

4. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S. and Weer-
awarana, S.: Business Process Execution Language for Web services, Version 1.1.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel, May 2003

5. Dan, A. et al. : Web services on demand: WSLA-driven automated management,
IBM Systems Journal, Vol. 43, No. 1, 2004, pp. 136-158

6. Fu, X., Shi, W., Akkerman, A. and Karamcheti, V.: CANS: Composable, Adap-
tive Network Services Infrastructure. Proceeding of 3rd USENIX symposium on
Internet Technologies and Systems, March 2001

7. Khan, S.: Quality Adaptation in a Multisession Multimedia System: Model, Algo-
rithms and Architecture, Ph.D. Dissertation, Department of ECE, University of
Victoria, Canada, May 1998

Service Selection Algorithms for Composing Complex Services 143

8. Khan, S., Li, K.F., Manning, E.G. and Akbar, M.: Solving the knapsack problem for
adaptive multimedia systems, Studia Informatica Universalis, Volume 2, Number
1, September 2002, pp. 157-178

9. Korkmaz, T., Krunz, M.: Multi-Constrained Optimal Path Selection. Proceeding
of 20th Joint Conf. IEEE Computer & Communications (INFOCOM 2001), 2001,
pp. 834-843

10. Ludwig, H., Keller, A., Dan, A., King, R.P. and Franck, R.: Web Service Level
Agreement (WSLA) Language Specification, Jan. 2003, http://www.research.ibm.
com/wsla/WSLASpecV1-20030128.pdf

11. Maros, Istvn: Computational Techniques of the Simplex Method, Springer Pub-
lisher, December 2002

12. Martello, S. and Toth, P.: Algorithms for Knapsack Problems. Annals of Discrete
Mathematics, 31:70-79, April 1987

13. Ponnekanti, S.R. and Fox, A.: Sword: A developer toolkit for Web service compo-
sition. In 11th World Wide Web Conference, Honolulu, Hawaii, May 2002

14. Winick, J. and Jamin, S.: Inet 3.0: Internet Topology Generator. Tech Report UM-
CSE-TR-456-02 (http://irl.eecs.umich.edu/jamin/), University of Michigan, 2002

15. Yu, T. and Lin, K.J.: Service Selection Algorithms for Web Services with End-to-
end QoS Constraints., Journal of Information Systems and E-Business Manage-
ment, Volumn 3, Number 2, July 2005

16. Yu, T. and Lin, K.J.: A Broker-based Framework for QoS-Aware Web Service
Composition, Proceeding of IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE-05), Hong Kong, China, March 2005

17. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. and Sheng, Q.Z.: Quality
Driven Web Service Composition. Proceeding of 12th International World Wide
Web Conference (WWW), 2003

On Service Discovery Process Types

Peer Hasselmeyer

C&C Research Laboratories, NEC Europe Ltd.,
53757 Sankt Augustin, Germany
hasselmeyer@ccrl-nece.de

Abstract. With the growing adoption of service-oriented computing,
locating services becomes increasingly commonplace. Accordingly, a large
number of systems for service discovery have been developed. Although
all these systems perform the same function, they do it in lots of different
ways. Finding commonalities of and differences between these systems
can be hard due to the lack of criteria to compare and classify various
discovery schemes.

This paper identifies the processes of registration and look-up as a
distinguishing feature of the various discovery systems. It describes the
possible types of processes, shows how they are distributed across the
lifecycles of the involved entities and classifies existing service discovery
systems according to these criteria. Some hints are given on how the
process-based view can help guide the selection of a particular discovery
style for a problem at hand.

1 Introduction

The use of service-oriented computing and service-oriented architectures be-
comes increasingly prevalent. The main principle of service-oriented architec-
tures is the loose coupling between service providers and service users. Service
providers can be internal to an organization as well as third parties external to
the service user’s organization. In any case, the service user needs to know the
service’s location and communication protocol before he can access it. Accord-
ingly, all service-oriented architectures offer some facility for locating services.
Although the functionality of these facilities is always the same (i.e. finding
an access point to a desired service), its realizations vary significantly among
the available architectures. The systems have different methods for describing
services, they offer different query possibilities, they use different transport pro-
tocols, and they have different registration and query interfaces. The multitude
of these features can make comparing different architectures hard. Hidden be-
low these features are the processes for service registration and look-up. These
processes are usually not mentioned explicitly, although they make comparing
and classifying different architectures possible.

This paper analyzes the processes used for registration and look-up. It is
discovered that both processes have a static and a dynamic form. These forms
are distinguished by how the processes are spread across the lifecycles of the

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 144–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Service Discovery Process Types 145

components performing registration or look-up. It is described how the different
processes affect certain aspects of systems using service discovery, e.g. application
development. Existing discovery systems are classified according to their types
of processes. In addition, it is shown how a process-based view can guide the
selection of a discovery architecture.

The paper starts in section 2 with definitions of the terms used throughout the
paper. It continues in section 3 with a detailed description of the various types
of processes commonly found in service discovery systems. Section 4 describes a
number of systems providing a discovery facility and classifies them according
to the process types. Some advice on selecting a particular service discovery
system using the proposed process-based view is given in section 5. Related
work is discussed in section 6 and some conclusions are presented in section 7.

2 Definitions

There are many different understandings of the terms involved in service-oriented
architectures. For example, the term “service” means different things to different
people. It is therefore necessary to first define the terms used throughout this
paper to avoid ambiguity.

Service. A service is a component that provides a certain set of functions to
other entities over a communications network. Service instance is a synonym for
service.

Service Type. A service type names the functionality of a service. Services are
of a certain service type if they provide at least the set of functions referred
to by this type. The actual description of these functions is called service type
description. It is assumed that this is a syntactic (interface) description.

Service Description. Description of non-functional service attributes. Service
descriptions can be used in registrations as well as in queries. In registrations,
they provide information about actual service properties, while in queries, they
state desired service properties.

Service Metadata. The service metadata includes all the information a service
is registered with. It consists of the service type, the service description, and the
service’s endpoint.

Service Provider. An entity that operates one or more services.
Client. An entity acting in the role of a service consumer in a specific service

interaction. A client can be a “real” client, i.e., it only consumes services, or a
service that happens to be in the client role in this particular interaction but
provides services in other interactions.

Service-Oriented Architecture. A service-oriented architecture (SOA) is based
on services as the main entities. Services provide certain functions to other enti-
ties. These entities can be pure clients or services themselves. Services and their
functions are discovered using a service registry.

Service Discovery. The process of finding services and their endpoints. This
includes registration and look-up.

146 P. Hasselmeyer

Endpoint. A communication port at which a service can be contacted. Services
might offer multiple endpoints.

Service Registry (often just called registry). A service that provides references
to other services. It accepts requests for registration from services (or other
entities that act on behalf of a service) and relays registration information on
demand to clients.

Registration. Registries keep records of available services. The resources that
such a record consumes at a registry are called a registration. Also, the process
of having registries store information about a service is called registration.

Look-up. The process of mapping queries to service endpoints. Clients looking
for certain services send queries to service registries. The queries contain some
description of what kind of service clients are looking for. Registries return a
set of available services matching the query. Services are represented by their
endpoints.

3 Discovery Processes

Service discovery consists of two main processes: the registration process and the
look-up process. Registration is used by services or their operators to announce
service availability. Look-up is used by clients to find the endpoints of needed
services.

Different service discovery architectures employ different processes for reg-
istration and look-up. These will be described in the following sections. The
method for distinguishing them involves looking at how the individual steps in
the process are allocated to the stages in the lifecycles of the entities execut-
ing the process. The registration process is executed by services, the relevant
lifecycles therefore are the ones of the services. The look-up process is executed
by clients, the relevant lifecycles therefore are the ones of the clients. As both
services and clients are software components, they follow a software lifecycle.
The stages of that lifecycle that are relevant to the registration and look-up
processes are the development, the deployment, the operation, and the unde-
ployment phases.

3.1 Registration Process

The basic lifecycle of a registration is rather simple. The registry creates a reg-
istration when a service is registered. From that point on, the registry includes
the registered data in responses to matching queries. The registration is deleted
when a service is removed from a registry.

As registrations belong to registries, their lifecycles can be observed at reg-
istries. The process for performing registration is executed by services (or their
providers), though. For the registration process, only the lifecycle of the associ-
ated service is relevant. This is the lifecycle considered here. Two different types
of service registration processes can be identified: a static and a dynamic type.
Figure 1 presents an overview of these two types. Interactions with the registry
are shown as rounded rectangles while supplied information is shown as bubbles.

On Service Discovery Process Types 147

Fig. 1. Registration Process Types

Static Registration Process Type. In systems using static registrations,
services are registered once and stay registered for an extended period of time.
Registration and removal are usually initiated by human staff members of
the service’s provider. Registrations are rarely updated. Different parts of the
service’s metadata are supplied at different stages of the service’s lifecycle. The
service type is usually encoded in the implementation, i.e., it is supplied during
the development phase. The service endpoint is only known at deployment time
and is therefore supplied in the deployment phase. Some default values for the
service description and the service registry’s endpoint can be supplied in the de-
velopment phase, but they will likely be modified during the deployment phase.

The actual registration of a service following a static process type happens
when it is initially deployed. The registration is removed when the service is
discontinued. Between registration and removal no communication is going on
between the service (or its provider) and the registry. The exception to this
rule is a possible maintenance phase in which the service’s metadata is changed.
Obviously, the new metadata needs to be supplied to the registry which involves
communication between the service (provider) and the registry. A consequence
of the absence of communication is that static registrations do not contain any
current information, e.g. about the availability of services.

Dynamic Registration Process Type. Systems supporting a dynamic reg-
istration process type usually employ automated methods for service registra-
tion. Services or their supporting middleware initiate service registration upon
startup. Human intervention is not needed. Registries use soft-state (lease-based)
registrations [3]. Such registrations are valid for only a limited amount of time,

148 P. Hasselmeyer

most commonly minutes to hours. To stay registered, services must periodically
extend the lifetime of their registrations. Upon expiration, registrations are au-
tomatically removed from the registry. The system is therefore automatically
cleaned from stale registrations and can be considered self-managing. The man-
ual removal of services is nevertheless possible as well.

Service metadata is again supplied at different stages in the lifecycle. Service
type information is handled the same way as in the static case – it is supplied
during the development phase. The service description can be supplied in the
development, the deployment, and, contrary to the static case, in the operation
phase. Depending on the middleware used, the service endpoint is either supplied
at deployment time or run-time. With technologies like CORBA (Common Ob-
ject Request Broker Architecture) or Java RMI (Remote Method Invocation),
the endpoint will be supplied at run-time as it can change across restarts. Using
web service technologies, the endpoint may be supplied during the deployment
phase as it rarely changes. The registry location can, as in the static case, be
supplied during the deployment phase. Alternatively, as the actual registration
happens during the operation phase, supplying the registry location can be post-
poned to that phase. One popular solution for this is to use a multicast scheme
to discover the registry location at run-time.

3.2 Look-Up Process

Just as service registrations can be static or dynamic, so can be service look-up
process types. The two different types are shown in figure 2. Although the figure

Fig. 2. Look-up Processes

On Service Discovery Process Types 149

shows look-up as a single step, it might actually consist of multiple steps, e.g. if
some iterative method to slowly narrow down the selection is used. The look-up
method is independent of the use of a static or a dynamic look-up process type.

Static Look-Up Process Type. In a static environment it is common practice
to look up services during the application development phase and put their
locations in the code. Alternatively, a configuration file can be used and the
look-up process can be moved to the deployment phase. In this case, only the
service type is supplied during the development stage. The service description
(i.e. the query) as well as the registry’s endpoint only need to be known during
the deployment phase. In both cases, the registry is not accessed at application
run-time.

Dynamic Look-Up Process Type. In a dynamic system, services are as-
sumed to be volatile and those available during the development or deployment
phases might not exist during the operation phase. Applications in dynamic
environments therefore usually perform look-up at run-time to find currently
available services and their endpoints. Information supplied during the develop-
ment phase are the service type and the look-up algorithm. This algorithm is
rather simple in “traditional” discovery systems, but is an important part of the
discovery process in content addressable networks [8].

The registry endpoint and the service description can be supplied during the
deployment or the operation phase. During deployment, this information goes
into some configuration file. If the endpoint is supplied at run-time, it can be
retrieved via some multicast scheme or calculated with the help of the look-up
algorithm. The service description might be affected by user input and might
therefore only be available at run-time.

The choice of a static or dynamic look-up process type is not directly related to
the choice of a particular registration process type. A dynamic look-up style can
be used in conjunction with a static registry. A static look-up style is ill-suited for
a dynamic registry, though, as service information is expected to change during
the lifetime of the service client. It is therefore common to bundle static look-up
with static registration and dynamic look-up with dynamic registration.

3.3 Foreknowledge

To perform service registration or look-up, the endpoint of the registry needs to
be known. This information is called “foreknowledge” in [10]. Such information
is needed by all entities using the service registry, i.e. services as well as clients. It
is important to note that the information does not need to be available explicitly.
In content addressable networks the location of the registry can be derived from
registration metadata and look-up queries at run-time. The foreknowledge in
this case is embedded in the queries or the service metadata and the algorithm
mapping that information to the registry location. Another important observa-
tion is the fact that the foreknowledge does not need to exist in all phases of the
registration and look-up lifecycles. The knowledge needed and the lifecycle phase

150 P. Hasselmeyer

in which it is supplied are shown in Figures 1 and 2 in the form of bubbles. The
foreknowledge needed does not depend on whether a process’ type is static or
dynamic. Only the lifecycle phase in which it is used varies with the process type.

In a system using static registrations information about the registry is only
needed at development or deployment time. It is therefore sufficient that the hu-
man developer or deployer has access to the registry’s endpoint information. As
that data is not needed at run-time, it is not kept anywhere in a running client.

In a dynamic system, information on the registry’s endpoint must be available
at run-time. The required information can be supplied in different ways. It could
for example be read from some configuration file. A multicast scheme can be
employed when a local registry is used thereby reducing configuration effort to
a minimum.

3.4 Process Type Implications

The adoption of a particular type of process influences the functionality of reg-
istries, the development of entities using discovery, and the performance of a
service-oriented system as a whole.

Functionality. The functionality of a registry depends on the registration style.
In the dynamic case, it must support soft-state registrations and the associated
functionality which is not needed in the static case. Furthermore, lifetime ex-
tensions happen quite frequently and those changes to the registration database
need to be accommodated. In systems using a static registration process type,
registrations have to be made persistent as they occur only once. For systems
using a dynamic registration process type it is okay to forget all the registrations
every once in a while as services will eventually re-register.

Implementation. Entities that are using service discovery, i.e., services per-
forming registration and clients using look-up, are implemented in different ways
depending on the type of the registration and look-up processes. When using
static registrations, services do not need to care about the actual registration as
this is supposed to be done by human operators before the service’s operation
phase. In systems using dynamic registrations, services must register at run-time
and need to take care of their registrations. This job can be delegated to the
infrastructure, though. In that case, services do not need to care about registra-
tions and their renewal. In fact, they do not even need to be aware of what kind
of registration process is used.

The situation is a bit different for look-ups. There is a difference in the pro-
gram logic depending on when look-up is performed. If a static look-up process
type is adopted, the client code does not need to contact the registry at run-
time. With a dynamic look-up process type, though, some communication with
the registry has to occur at run-time. The program code therefore needs to be
different depending on the look-up type. It is nevertheless possible to always use
code that assumes a dynamic look-up style and let the infrastructure map this
to a static environment.

On Service Discovery Process Types 151

Performance. The registration and look-up process types also affect the per-
formance of systems using service discovery. Obviously, a static system has a
better run-time performance as no communication between services or clients
and the registry has to occur during the operation phase. Depending on what
kind of discovery technique is used, the run-time penalty of dynamic look-up
can be significant. On the other hand, using dynamic registration and look-up
improves a system’s failure resilience. If look-ups follow a static process type, the
disappearance of an endpoint to a particular service renders all clients unusable.
A dynamic look-up process type allows this failure to be masked by being able
to switch over to other instances/endpoints of services.

4 Classifying Discovery Systems

This section briefly describes a number of well-known service discovery systems.
The main part of each description deals with registration and look-up properties.
Each system is classified according to its use of static or dynamic registration
and look-up process types. The results of the analysis are shown in Figure 3.

4.1 UDDI

The Universal Description, Discovery and Integration (UDDI) specification [7]
is the most well-known service discovery standard for the web services world. It
defines a centralized registry service, the interface to access it, and a data model
to describe services. The UDDI registry is modeled after the telephone book.
It lists companies (“white pages”) and the services that they provide (“yellow
pages”). Sticking to the telephone book analogy, data in UDDI registries is stored

registration process type

lo
ok

-u
p

pr
oc

es
s

ty
pe

static dynamic

dy
na

m
ic

st
at

ic

UDDI

DNS

flooding
P2P

ordered
P2P

Jini

Fig. 3. Classification of Popular Service Discovery Systems

152 P. Hasselmeyer

once and stays in them until it is actively removed. UDDI registries obviously
employ a static registration lifecycle and therefore follow a static registration
process type.

Look-up in UDDI registries usually follows a static process type as well. The
structure of the data in the directory makes drill-down operations a convenient
way of finding a needed service. A common approach to finding services in UDDI
registries is looking at the list of companies, finding a few that are trusted and
presumably offer the needed service, have a look at their service offers, and then
choose one of them. As trust is a complicated concept for machines, the described
process is always done by human beings. Usually, the developer of a service client
is looking for an appropriate service, not the deployer. The reason for this is the
lack of standardized interfaces that would make exchange of services a simple
configuration option. Currently, more often than not, the program code needs
to be modified to accommodate a different service provider.

Although dynamically exchanging a service provider in a web-service-based
world is currently not widely practiced, performing look-up at run-time is still a
sensible option. In this case, it is not used to make the choice of a service provider
configurable or dynamic, it is used to automate locating the current endpoint of
a well-known service of a well-known provider. A service client would perform a
look-up with a predefined query that returns the current endpoint of the needed
service. With this scheme, a provider can change the location of his services
without explicitly telling his clients. Dynamic look-up can increase the looseness
of the coupling between service provider and service client.

Because UDDI-based systems can work with both static and dynamic look-up,
the system appears in both sections with a tendency towards the static side.

4.2 Jini

Jini [9] is a Java-based infrastructure for handling service discovery. Registries
can be statically configured, or found at run-time via a multicast-based proto-
col. Registrations contain service descriptions and, instead of the endpoint of a
service, a Java object that enables remote service access. Such proxy objects are
stored at the registry and copied to the service user’s address space at run-time.
There, they adapt local function calls to whatever communications protocol the
associated service uses. Information about the endpoint of a service is therefore
stored inside the proxy object and kept hidden from the service user.

Registrations in Jini are lease-based. Clients wanting to register a service ne-
gotiate the registration lifetime with the registry. Leases need to be renewed
in time for services to stay registered. Registrations therefore follow a strictly
dynamic process type. Due to the use of proxy objects, this method is the only
viable option. Most of the Jini services use the Java RMI mechanisms for remote
procedure calls. Proxy objects contain the remote stubs for performing invoca-
tions. These in turn contain references to the associated server object. As the
server object might change with every restart of the server, previously handed
out references become invalid. Registration data therefore needs to be updated
at the registry. With an automated update system (as used with dynamic reg-

On Service Discovery Process Types 153

istrations), this is no problem. Performing updates by hand is rather tedious,
though. A static model is therefore not an optimal solution.

Look-ups also follow a dynamic process type, basically for the same reason
why registrations are dynamic. Remote object references may change frequently.
Embedding fixed, static references in client code is no option. In addition to that,
Jini transfers around proxy objects. These consist of data (e.g. object references)
and code. Just as the data changes, the code might change as well. As the code is
supplied by the service provider, it is impractical to statically embed that code
in service clients.

4.3 DNS

The Domain Name System (DNS) [6] is the most commonly used method for
resolving human-readable internet host names. The DNS system translates those
names to machine-understandable Internet Protocol (IP) addresses. DNS can
store mappings for different types of services, e.g. for mail relays. It can therefore
be considered a service discovery system.

The assumption for the DNS is that internet host names and the correspond-
ing addresses do not change frequently. As a result, registrations follow a static
process type. New internet host and domain names are stored at designated
name servers. The mapping stays at the name server until it is removed.

DNS look-ups follow a dynamic process type. To find a host, clients send a
query to the DNS sub-system on the local host. Queries that cannot be answered
locally are passed on to DNS servers one level up in the hierarchy. The path
followed by a query is statically configured by the administrators of the involved
DNS servers. The location information of the registry (the next DNS server) is
therefore configured for a host, not an individual client.

4.4 Peer-to-Peer Systems

Peer-to-peer (P2P) systems are dynamic networks of entities that cooperate to
provide certain services to participants. At present, P2P system are aimed mostly
at locating content, usually media files, but the same concepts can be used to
locate arbitrary services. As the set of participants in a P2P system is dynamic,
the set of offered services (or content) is dynamic as well. Searching (i.e. look-up)
in P2P systems therefore always follows a dynamic process type.

Regarding registrations, two different kinds of peer-to-peer systems can be
distinguished. Most of the P2P systems popular today employ a flooding search
approach. They send queries to all (or at least a large subset of) the service
providers. Service providers also act as registries. Content files are registered
locally and they are usually registered implicitly by putting them in specific
places on the local file system. They are unregistered by removing the files from
that location. It is therefore a registration process of the static type.

As flooding is not a scalable query mechanism, a second type of P2P systems
uses a controlled search approach. Systems of this type designate responsibility

154 P. Hasselmeyer

for a subset of the whole search space to certain nodes in the system. A re-
sponsible node can be found at a predictable location by applying a well-known
algorithm to the service’s metadata. An example of such a system is described
in [2]. In such systems, all nodes act as registries, but each service is registered
with just a (small) subset of them. Registrations are constrained in the temporal
domain and therefore need to be renewed. This is necessary because not only
the set of service providers (and with it, the set of services) changes, but so does
the set of registries and therefore the set of registries responsible for a specific
service. Registrations therefore follow a dynamic process type.

5 Architecture Selection

Besides offering a method for classification, a process-based viewpoint can also
guide the selection of a particular discovery architecture for a given problem. For
selecting a discovery system, a large number of different criteria exist, including
description capabilities, performance, scalability, supported platforms, protocols
used, etc. Most of these are of a low-level, technical nature. The process-based
viewpoint proposed here is on a higher level of abstraction, working more on the
architectural level than the implementation level.

The guidelines given here are not necessarily the most important ones. De-
pending on the circumstances in which a discovery system is to be used, different
criteria have different priorities. Nevertheless, we think that looking at discov-
ery process types gives a hint on what kind of discovery system is suitable to a
given problem. As it works on a comparatively high level of abstraction, it might
actually be the first criterion to consider.

When thinking of discovery, the processes for registration and look-up are not
a natural starting point. And indeed, they are not the first thing to look at, as
they only exist in conjunction with the entities that enact them, i.e., the services
and clients.

Therefore, to select a discovery architecture, one should first analyze the ser-
vices that are to be found by discovery. If these services are rather volatile,
their registrations are as well. Dynamic process types for registration and look-
up are therefore appropriate. A matching service discovery system should be
chosen.

If the set of services is small and the services’ metadata is static, a system
using static registrations is sufficient. Whether to use a static or dynamic look-
up process type in this case is a delicate trade-off. Static look-ups require some
manual configuration effort when services migrate. Dynamic look-ups need some
additional infrastructure that usually causes some initial set-up costs. The de-
cision therefore depends on the estimate of how frequently service registrations
change and thereby cause additional configuration costs.

It is important to note that even if individual services are rather static, but
there is a large set of services, the set as a whole becomes volatile, because
some changes in the set of services and their metadata always occur. Such a
system would benefit from at least a dynamic look-up style. Making registrations

On Service Discovery Process Types 155

dynamic can be a good idea as well, because static registrations become stale
eventually and their removal or update is often forgotten [5].

6 Related Work

There is a host of literature that compares various discovery systems. Most of
this literature, e.g. [1, 4], compares systems primarily aimed at ubiquitous com-
puting, especially SLP, UPnP, Bluetooth, and Jini. Among the criteria used
for distinction are the network protocol used for communication, the type of
service description, and the functionality of the systems. None of these compar-
isons deal with higher level abstractions or give guidance on where to use which
architecture.

To the knowledge of the author, only one paper [10] compares service discovery
systems on a more abstract level. Vanthournout et al. introduce a taxonomy of
discovery systems distinguishing them by design aspects. They analyze discovery
systems with respect to their structure, their foreknowledge, their registration
behavior, their query routing, the supported resources, and resource naming.
Although these represent a large set of criteria, the registration and look-up
processes are neither mentioned nor evaluated. As described here, those processes
influence the architecture of service discovery systems as well as the design of
applications. In fact, some of the above mentioned design aspects are influenced
by the processes. Namely, these are the foreknowledge, the registration behavior,
and the supported resources.

7 Conclusion

In this paper, we have identified the registration and look-up processes as dis-
tinguishing aspects of service discovery systems. Registration as well as look-up
can be either static or dynamic. A particular choice for either the registration or
the look-up process type does not influence the choice of the other process type.
The only caveat is that a static look-up process type does not match a dynamic
registration scheme.

We showed that individual registration and look-up process steps are dis-
tributed differently across component lifecycle phases depending on the type of
process used. We classified a number of well-known discovery architectures ac-
cording to the process-based view and showed that for each viable combination
of processes an examplar exists. We also described how the choice of a particular
process type influences the functionality of the registry, the implementation of
the entities, the performance of the system as a whole, and how foreknowledge
is spread across the lifecycle phases.

We hope that the presented work makes developers adopting service-oriented
architectures aware of the discovery processes and their interaction with com-
ponent lifecycles. We think that a classification according to process types facil-
itates the selection of a particular style of discovery and therefore the selection
of a particular discovery architecture.

156 P. Hasselmeyer

Acknowledgements

This work has been supported by the NextGRID project and has been partly
funded by the European Commission’s IST activity of the 6th Framework Pro-
gramme under contract number 511563. This paper expresses the opinions of
the author and not necessarily those of the European Commission. The Euro-
pean Commission is not liable for any use that may be made of the information
contained in this paper.

References

1. Christian Bettstetter and Cristoph Renner. A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol. In: Proceedings
EUNICE Open European Summer School, Twente, Netherlands, September 2000.

2. Jun Gao and Peter Steenkiste. Design and Evaluation of a Distributed Scal-
able Content Discovery System. Journal on Selected Areas in Communications,
22(1):54–66, January 2004.

3. Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant Mech-
anism for Distributed File Cache Consistency. In: Proceedings of the 12th ACM
Symposium on Operating System Principles, pages 202–210, December 1989.

4. Sumi Helal. Standards for Service Discovery and Delivery. IEEE Pervasive Com-
puting, 1(3):95–100, July 2002.

5. Mike Clark. UDDI – The Weather Report, November 2001. http://www.
webservicesarchitect.com/content/articles/clark04.asp

6. Paul V. Mockapetris. Domain Names - Concepts and Facilities, November 1987.
Internet RFC 1034.

7. OASIS Open. UDDI Version 3.0.2, October 2004. http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A Scalable Content-Addressable Network. In: Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM 2001), pages 161–172, August 2001.

9. Sun Microsystems Inc. Jini Architecture Specification – Version 2.0, June 2003.
http://www.sun.com/software/jini/specs/jini2 0.pdf.

10. Koen Vanthournout, Geert Deconinck, and Ronnie Belmans. A Taxonomy for
Resource Discovery. Personal and Ubiquitous Computing Journal, 9(2):81–89,
February 2005.

SPiDeR: P2P-Based Web Service Discovery�

Ozgur D. Sahin, Cagdas E. Gerede, Divyakant Agrawal,
Amr El Abbadi, Oscar Ibarra, and Jianwen Su

Department of Computer Science,
University of California at Santa Barbara, Santa Barbara, CA 93106

{odsahin, gerede, agrawal, amr, ibarra, su}@cs.ucsb.edu

Abstract. In this paper, we describe SPiDeR, a peer-to-peer (P2P)
based framework that supports a variety of Web service discovery oper-
ations. SPiDeR organizes the service providers into a structured P2P
overlay and allows them to advertise and lookup services in a com-
pletely decentralized and dynamic manner. It supports three different
kinds of search operations: For advertising and locating services, service
providers can use keywords extracted from service descriptions (keyword-
based search), categories from a global ontology (ontology-based search),
and/or paths from the service automaton (behavior-based search). The
users can also rate the quality of the services they use. The ratings are
accumulated within the system so that users can query for the quality
ratings of the discovered services. Finally, we present the performance of
SPiDeR in terms of routing using a simulator.

1 Introduction

The adoption and evolution of the Web services technology continue to hap-
pen in many different domains from business environments to scientific applica-
tions. This technology promises to enable dynamic integration and interaction
of heterogeneous software artifacts, and thereby, to facilitate fast and efficient
cooperation among the entities in cooperative environments. Lately, there has
been a lot of attention drawn to this promising technology from both industry
and academia and it has been supported with various emerging standards and
proposals such as SOAP[1], WSDL[2], BPEL[3], and OWL-S[4]; accompanying
technologies such as IBM’s Web Sphere, Microsoft’s .NET, and Sun’s J2EE; and
several research efforts (see recent conferences such as [5, 6, 7, 8]).

Web services are “software applications identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as XML ar-
tifacts. A Web service supports direct interactions with other software agents us-
ing XML-based messages exchanged via Internet-based protocols”[9]. The main
research challenges services oriented computing poses include automated compo-
sition, discovery, invocation, monitoring, validation and verification[10]. Service
discovery, in particular, refers to the problem of how to search for and locate

� This research was supported in parts by NSF grants CNF 04-23336 and IIS 02-23022.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 157–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 O.D. Sahin et al.

services, the descriptions of which are usually considered lying in well-defined
service repositories.

Recently, a substantial progress has been done in this area thanks to sev-
eral research and industrial efforts including UDDI registries [11, 12], similarity
search [13], the query languages and indexing efforts [14, 15, 16], peer-to-peer
(P2P) discovery techniques [17, 18, 19, 20, 21], semantic web approaches and on-
tological matching [22, 23]. These solutions, however, are typically limited for 2
reasons:

1. They are usually centralized where there is a single central server (e.g.,
UDDI registry) that keeps track of all available services. Centralized ap-
proach has well-known limitations. It is not scalable since the server has to
keep information about all services and answer all queries. It is not fault
tolerant because the server is a single point of failure and if the server goes
down, the whole service discovery mechanism becomes unusable.

2. They usually offer limited search capabilities. There are different techniques
to increase the accuracy of service discovery including functional matching
(what a service does), behavioral matching (how a service performs), seman-
tic matching (the underlying semantics of a service) and ontological matching
(how a service relates to other services). Each of these provides a different
metric to measure the relevance among different services and therefore, each
one is important. Many existing approaches, on the other hand, concentrate
on a single one or a small subset of these techniques.

In this paper, we address above issues by introducing SPiDeR, a P2P based
Web service discovery framework that supports a rich set of search operations.
A subset of the participating service providers (those that have good resources)
are dynamically assigned as super peers and organized into a structured P2P
system. Due to its P2P based design, SPiDeR distributes the tasks of indexing
available services and resolving service lookups among the participants, thus pro-
viding decentralization, scalability, dynamicity, and fault tolerance. It supports
3 different types of search operations based on keywords, global service ontology,
and service behavior. It also has a reputation system component for assessing
the quality of the services based on the experiences of other services. The ratings
given to the services are stored in the system so that users can lookup for service
quality ratings when deciding which of the discovered services to use.

The rest of the paper is organized as follows. The related work is surveyed in
Section 2. Section 3 introduces SPiDeR, a P2P based distributed Web service
discovery framework. Section 4 describes how the different types of discovery
operations (keyword-based search, ontology-based search, and behavior-based
search) are supported in the framework. The quality rating scheme that enables
the ranking of discovered Web services is also explained in that section. In Sec-
tion 5, dynamic peer operations are discussed in detail. Those include installing
and refreshing service advertisements, performing composite lookups, and in-
dexing at the super peers. Additionally, an evaluation of SPiDeR in terms of
routing performance using a simulator is presented in Section 5.4. Finally, the
last section concludes the paper and outlines the future work.

SPiDeR: P2P-Based Web Service Discovery 159

2 Related Work

P2P Systems: P2P systems are a popular paradigm for exchanging data in a
decentralized manner. They distribute the data and load among the peers and
thus appear as a good alternative to the centralized systems. Early P2P systems,
such as Napster [24] and Gnutella [25], are mainly used for file sharing. These sys-
tems are referred to as unstructured P2P systems [26] since the overlay network
is constructed in a random manner and the data can be anywhere in the system.
As a result, search and routing in these systems tend to be inefficient. Structured
P2P systems, on the other hand, impose a certain structure on the overlay net-
work and control the placement of data. These systems provide desirable proper-
ties such as scalability, fault tolerance, and dynamic peer insertion and departure.
For example, Distributed Hash Tables (DHTs) [27, 28, 29, 30] partition a logical
space among the peers and assign each object to a peer dynamically by hashing
the object’s key onto the logical space. DHTs offer efficient routing and exact key
lookups, which are logarithmic or sublinear in the number of peers.

Web Service Discovery: There are several proposals to increase the accu-
racy and efficiency of service discovery mechanisms. [13] introduces Woogle, a
similarity search technique based on clustering the services according to the in-
formation gathered from their WSDL documents. It is a centralized approach
and do not allow behavioral search. In [17], the authors propose a behavioral
search mechanism on a P2P architecture where the service behaviors are repre-
sented as finite state automata and the services are indexed in the P2P system
with keys extracted from their service automata. It only provides behavior-based
search mechanism, but not the others.

SPiDeR shares similarities with [14, 15, 16]. In [14], services are represented as
finite state machines which are then transformed into a form that can be indexed
for efficient matching. [15] proposes an integrated directory system and a query
language. The matching and ranking of the services are done via matching and
ranking functions which can be customized by the users. In [16], the services
are represented as message-based guarded finite state machines and behavioral
signatures are used for discovering relevant services. The behavioral signatures
are represented using temporal logic statements. All three approaches mentioned
above consider a centralized index structure, whereas in our approach, the index
is distributed over a structured P2P system.

SPiDeR also has architectural similarities with [18, 19, 20, 21]. [18] uses
DAML-S (previous version of OWL-S) for service representation and uses
Gnutella P2P protocol for service discovery. [19] proposes a federation of service
registries in a decentralized fashion where federations represent service groups
of similar interests. Similarly, [20] and [21] consider a P2P infrastructure. While
[20] uses ontologies for publishing and querying purposes, [21] describes each
Web service with a set of keywords and then map the corresponding index to a
DHT using Space Filling Curves. SPiDeR differs from these proposals as it can
also consider the functionality and process behavior of services during discovery
and supports quality rating lookups.

160 O.D. Sahin et al.

In terms of use of ontologies and semantic matching, we also would like to
mention [22] and [23]. In [22], the authors integrate semantics and ontological
matching via domain-independent and domain-specific ontologies, and propose
an indexing method, namely attribute hashing. In [23], a federated registry archi-
tecture is proposed where ontologies are to provide a domain-based classification
of the registries.

3 SPiDeR Overview

SPiDeR allows distributed Web service discovery over a P2P system and sup-
ports a variety of different lookup operations (those operations will be discussed
in Section 4). It organizes the participants into a super-peer based structured
P2P overlay and allows them to advertise their own services as well as search for
other available services.1 Chord [28] is used as the underlying P2P overlay due
to its simplicity and robustness [31], though any other DHT could have been
used instead. In this section we briefly introduce the Chord system and then
describe the super-peer based architecture of SPiDeR.

3.1 Chord

Chord [28] is a P2P system that implements a DHT. It uses an m-bit identifier
ring, [0, 2m−1], for routing and locating objects. Both the objects and the peers
in the system are assigned m-bit keys through a uniform hash function and
mapped to the identifier ring. An object is stored at the peer following it on
the ring, i.e., its successor. Figure 1 depicts a 4-bit Chord system with 5 peers.
It shows the peers that are responsible for a set of keys with different IDs. For
example, key 15 is assigned to its successor P0, which is the first peer after ID
15 on the Chord ring in clockwise direction.

Routing and Lookup: Each peer maintains a finger table for efficient routing.
The finger table of a peer contains the IP addresses and Chord identifiers of
O(logN) other peers, i.e., its neighbors, that are at exponentially increasing
distances from the peer on the identifier ring, where N is the number of peers in
the system. The finger table for peer P3 is shown in Figure 1. Peers periodically
exchange refresh messages with their neighbors to keep their finger tables up to
date. Chord is designed for very efficient exact-key lookups. A lookup request
is delivered to its destination via O(logN) hops. At each hop, the request is
forwarded to a peer from the finger table whose identifier most immediately
precedes the destination point. In Figure 1, peer P3’s request for key 15 is
routed through P13 to 15’s successor P0, by following the finger pointers.

Peer Join and Departure: Chord is a dynamic system where peers constantly
join and leave the system. When a new peer wants to join, it is assigned an
identifier and it sends a join request toward this identifier through an existing
1 In the rest of the paper, the terms participants and peers will be used interchangeably.

SPiDeR: P2P-Based Web Service Discovery 161

K 15

P6
P6
P10
P13

P3+1
P3+2
P3+4
P3+8

Finger Table
of Node P3

K 12

K 2

K 5

K 7

Q 15

P13

P0

P3

P6
P10

Fig. 1. 4-bit Chord System

SP1

SP3

SP2

CPA

Super Peers

Chord Ring

Client Peers

route m

msg m

Fig. 2. Architecture of SPiDeR

peer. Thus the new peer locates its successor, from which it obtains the keys
it is responsible for. The affected finger tables are then updated accordingly.
Similarly, upon departure of a peer, its keys are assigned to its successor and
the affected finger tables are updated.

3.2 SPiDeR Architecture

Chord supports efficient exact key lookups. However dynamic peer join and
departure might be costly due to finger table updates and key transfers. Ad-
ditionally, Chord does not consider the heterogeneity of the peers and treats
each peer equally. Thus SPiDeR uses a super peer based overlay built on top of
Chord. Instead of inserting all participants into the Chord ring, only a subset of
the participants are assigned as super peers and join the Chord ring. The super
peers are selected among the peers that have good resources such as high avail-
ability, high computing capacity, etc. In this architecture, the super peers do all
the indexing and query routing. The remaining peers are called the client peers
and they use the system by connecting to a super peer. Each client peer forwards
its requests to its super peer, which processes the requests on its behalf.

The super peer overlay can be maintained dynamically without any central
control [32]. Each new peer joins the system as a client peer (except the initial
peer starting the system). Whenever a new super peer is required (e.g., an ex-
isting super peer leaves or gets overloaded), a super peer assigns one of its client
peers with good resources as a new super peer. The super peer based architecture
of SPiDeR provides the following advantages:

– Peer capabilities vary widely in terms of computing/storage resources, band-
width and availability/reliability. Peers with lots of resources will be desig-
nated as super peers and will do all the message routing and indexing. Client
peers, on the other hand, just ask queries and answer service requests.

– With less peers on the Chord ring, both the routing cost and join/leave over-
head are less. Client peers can join (leave) the system by simply connecting
to (disconnecting from) their super peers. Thus the system is more resilient
to high churn (frequent peer joins and departures).

Figure 2 depicts the architecture of SPiDeR. Note that the central UDDI
registry is replaced with the Chord ring in SPiDeR. Any peer in Figure 2 (super

162 O.D. Sahin et al.

or client) can be offering services, which are indexed within Chord by super
peers. Similarly, the lookup requests are resolved in a decentralized manner by
routing them to the corresponding super peer.

4 Distributed Discovery

SPiDeR organizes service providers into a structured P2P overlay that efficiently
supports exact key lookups. In this section we will discuss how this overlay is
used to support different types of discovery operations.

4.1 Web Service Description

Web services are software artifacts that consist of a set of operations. There
are several competing and complementary languages to describe Web services
such as WSDL[2], BPEL[3], OWL-S[4], WSDL-S[33], SWSL[34], and WSML[35].
Among these, WSDL defines the service interface by specifying the following:

– Service Information: Contains the address, name and the textual descrip-
tion of the service.

– Operation Information: Contains the name and the description of each
operation.

– Input/Output Information: Defines the names and the types of the op-
eration parameters.

The interface of a service describes how to access and invoke a service. WSDL-
S extends WSDL by supporting inline semantic annotation. The service behavior
(choreography), on the other hand, defines how to interact with the service, i.e.,
the possible interaction sequences the service can go through during a communi-
cation with other parties. BPEL, OWL-S, SWSL, and WSML are some examples
of complimentary languages to capture service behavior.

4.2 Keyword-Based Search

The first discovery method supported by SPiDeR is keyword search. In this
method, each service is advertised in the system with a set of keywords. Inter-
ested parties can then locate the services they are looking for by querying the
system with keywords. When keyword-based search is used, all services that are
advertised for the specified keyword will be returned.

Extracting Keywords: The keywords associated with a service can be ex-
tracted from its description, e.g., its WSDL document. Popular information re-
trieval tools such as Smart [36] can be used to automatically extract the tokens
from the description file. These tools can also be configured to remove stop words
and do stemming. The tokens that appear in name and description fields can
then be used as keywords. For more accuracy during keyword extraction from

SPiDeR: P2P-Based Web Service Discovery 163

P2

P1 P3

SPA

SP1 SP3

SP2

P , P , P1 2 3

PA

Associated services
rental W11, W12, W13, ...
museum
.

Keyword

W21, W22, ..., WA

Keyword List

Associated services

.

W51, W52, ..., WA
W61, W46, W63, ...,

Sequence
Behavior List

?reserveRequest−!checkAvailability−...
?searchRequest−!searchResponse

.

Associated services

W41, W42, W43, ...,
W31, W32, ..., WA

/TravelService/TransportationService/FlightService/...
/TravelService/AttractionService/MuseumService

Path
Ontology List

.
P2: ontologyAdvertise("/TravelService/AttractionService/MuseumService", WA)
P1: keywordAdvertise("museum", WA)

P3: behaviorAdvertise("?searchRequest−!searchResponse", WA)

(offers museum service WA)

Fig. 3. Advertising Services

tokens, a thesaurus can be used or common naming conventions can be consid-
ered. A detailed discussion of extracting keywords from service description files
can be found in [22].

Advertising Services: Once the keywords for advertising a service are deter-
mined, the peer offering the service sends a keywordAdvertise message into the
system for each keyword. This message contains the keyword and the necessary
information to contact the service (i.e., the address of the service). The key-
word string is used as the key, so that the super peer processing the message
hashes the keyword to determine its location on the Chord ring. The message is
then routed and the corresponding super peer stores the service in its keyword
list. For example, in Figure 3, peer PA advertises its service WA for keyword
museum by sending keywordAdvertise(‘museum’,WA) message P1 to its su-
per peer SPA. The message is then routed to SP1, which is responsible for the
key “museum”. SP1 stores the association (museum, WA) in its keyword list.

Locating Services: When the system is queried for a keyword, the message
is routed to the corresponding super peer PS by hashing the keyword. PS then
searches its keyword list and returns all matching services to the querying peer.

4.3 Ontology-Based Search

Another important search operation is category search, where the user wants to
find all services within a certain category.

Common Ontology: SPiDeR assumes that there is a common domain ontology
that is known by all peers in the system. This can be achieved by having each new
peer download the ontology from the peer it contacts during join. This ontology
identifies all possible categories for which the services can be advertised in the
system. Figure 4 shows an example domain ontology for a system composed of
travel related services.

164 O.D. Sahin et al.

TravelService

AttractionService

TransportationService

LogdingService

RailService

RentalVehicleService

FlightService

TruckRentalService

CarRentalService

MotorbikeRentalService

…

…

…

…

…

…

…

…

Fig. 4. Example Domain Ontology

Advertising Services: Service providers can advertise their services for each
related category from the domain ontology. For each selected category, an ontol-
ogyAdvertise message is sent to the system. In this case, the path from the root to
the corresponding node in the domain ontology is used as the key to determine
the message destination. The message is routed to the super peer responsible
for the path string. That peer then stores the corresponding information in its
ontology list (see advertise message P2 in Figure 3 for an example).

Locating Services: When ontology-based search is used, the path string is
hashed and the corresponding super peer returns all matching services from its
ontology list to the querying peer.

4.4 Behavior-Based Search

Considering Web services as simple method invocations might not be sufficient
in some cases. Web services can interact with other services, send and receive
messages, and perform a set of activities. Such service behaviors can be defined
by means of, for instance, process flow languages like BPEL. When this infor-
mation is available, it can be used to improve the accuracy of service discovery
by allowing users to specify the desired service behavior. For instance, Figure
5 illustrates a travel service. The automaton describes the message exchanges
between the service and a user. If we examine the service behavior, we can see
that the service allows its users to cancel their reservations and purchases until
it finalizes the transaction. Some users may look for such specific behaviors. A
behavior-based analysis can facilitate the system to differentiate among services
based on their behaviors and perform the service discovery more accurately.

Advertising Services: For a given finite state automaton representing the
service behavior of a Web service (such a finite automaton can be automatically
extracted from the service’s BPEL document[37]), we extract all the accepting
paths from the automaton. An accepting path starts from the initial state of
the automaton and ends in an accepting state without any loops (semantically
the path implies a sequence of activities successfully performed by the service).
Each accepting path is then advertised in the system using the path as a key. The
entire service automaton of the service is included in the advertise message and
stored in the behavior-list. For the service automaton given in Figure 5, two of the
accepting paths are <?searchRequest - !searchResponse> and <?reserveRequest -
!checkAvailability - !notAvailable>. The advertise message P3 in Figure 3 shows

SPiDeR: P2P-Based Web Service Discovery 165

Fig. 5. Example Service Automaton

how service WA is advertised for the first accepting path above. A detailed
discussion of the behavior-based search can be found in [17].

Locating Services: Users can ask behavior-based lookup queries for accepting
paths they are looking for. In this case, the super peer that is responsible for
that path will search through its behavior-list to find the service automata that
matches with the query path and return them.

Overview

SPiDeR allows peers to search for Web services in 3 different ways: keyword-
based, ontology-based, and behavior-based. All three of these techniques leverage
the basic exact key lookup functionality provided by the super-peer overlay, but
they incorporate different semantic meanings and thus enable SPiDeR to provide
a richer set of querying capabilities. For example, a user Px looking for services
related to museums might not be able to find a relevant service Sm using keyword
search just because the service is not advertised for the keyword(s) provided by
Px. However, if Sm is advertised based on ontology, Px can locate it by issuing
an ontology-based search on /TravelService/AttractionService/MuseumService.
Similarly, consider a user Py looking for flight booking services with express de-
livery option. If keyword-based or ontology-based search is used, Py will have
to investigate the set of returned services to determine the ones that have ex-
press delivery option. Instead, Py can use behavior-based search so that only the
services with express delivery option are returned.

166 O.D. Sahin et al.

4.5 Ranking Services

In addition to the above search methods, SPiDeR provides a rating discovery
mechanism. After using a Web service, a user can rate the quality of the service.
The user (PU) sends a message containing its own address, the address of the
service being rated (WS), and the corresponding score (a real value between 0
and 1, where 1 is the highest score). The message is then routed in the system
by hashing the address of the service being rated. The corresponding super peer
stores all ratings given to WS in its rating list.

The rating of a Web service then can be retrieved by querying for its address.
This query will return the average of all the scores the service had been given.
The quality ratings are useful for selecting the service to use once a list of
matching services are obtained.

5 Peer Operations in SPiDeR

In this section, we provide a more detailed discussion of some peer operations
such as advertising services, composite lookups, and indexing services. We also
show the routing performance of SPiDeR.

5.1 Advertising Services

After joining the system, each peer P periodically advertises the services it
provides. For advertising a service, Pn sends the necessary information to its
super peer (if it is not a super peer). This message specifies the address of the
service, advertisement type(keyword-based, ontology-based or behavior-based),
and the additional information (keyword, ontology path, service automaton).
The super peer then routes the corresponding message within the Chord so that
the responsible super peer stores the index information.

Peers periodically refresh their service advertisements to avoid stale index
entries (super peers remove the index entries that are not refreshed) and to
recover lost index information (if a super peer leaves without transferring its
index information to another super peer).

5.2 Composite Lookups

Peers can use any of the supported search methods to locate the services they
are looking for. The query message contains the address of the querying peer,
query type (keyword/ontology/behavior/rating), and the corresponding argu-
ments (keyword/ontology path/request automaton/service address, respectively).
The super peer responsible for the argument receives the message and searches
through the corresponding index. It then returns the list of matching services
to the querying peer. SPiDeR can also be used for composite lookups such as
searching for multiple keywords or for services with a keyword within a cate-
gory. In this case, the user can retrieve the result of each elementary lookup and
locally compute the intersection.

SPiDeR: P2P-Based Web Service Discovery 167

5.3 Indexing at Super Peers

In SPiDeR, super peers index the information about Web services they are as-
signed through Chord hashing. Each super peer keeps 4 different lists for support-
ing the corresponding discovery operations: keyword list, ontology list, behavior
list, and rating list. SPiDeR is flexible in the sense that each super peer can
individually choose the indexing methods it uses. For example, a peer might
choose to keep each list as a sequential file, which might not be very efficient.
More efficient index lookups can be achieved by using more efficient indexing
schemes. For keyword, ontology, and rating lists, hashtable-like indexing meth-
ods are desirable since these lists only require exact key lookups. For behavior
list, the matching regular expressions should be identified, so an RE-tree (Reg-
ular Expression tree) [38] might be suitable.

5.4 Routing Cost

We measured the performance of SPiDeR in terms of routing using a simulator
implemented in Java. To measure the routing cost, we measured the average
number of peers visited for routing a message in the super peer ring for different
number of peers. For each message, the initiating peer is selected uniformly at
random from the existing super peers and the message destination is set to a
random Chord identifier. Figure 6 shows the results, where each data point is
the average over 1000 runs. The routing cost is low and also increases gracefully
with increasing number of peers. For example, routing a message takes 3.7 overlay
hops on the average in a 50 peer system, whereas it takes 5.4 hops when the peer
number increases to 500. Note that the peer numbers shown on the graph are the
number of super peers and do not include the client peers. The actual number

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800 900 1000

R
ou

tin
g

C
os

t

Number of Super Peers

Fig. 6. Routing Performance of SPiDeR

168 O.D. Sahin et al.

of peers in the system can be much more than the number shown in the graph.
Thus we conclude that SPiDeR is both scalable and efficient in terms of routing.
Compared to a centralized service discovery system, SPiDeR is more robust and
scalable, and supports a richer set of discovery operations at the expense of a
little routing overhead.

6 Conclusion

With the proliferation of Web services technology and the increase in the number
of Web services, the service discovery problem gets more challenging. There are
different dimensions like functionality, behavior and semantics each describing a
service from a different perspective. In this paper, we proposed a structured P2P
framework which unifies these perspectives by means of providing different search
methods in a distributed environment without a central component. We believe
our results will contribute to the efforts towards comprehensive service discovery
systems. As future work, we plan to look into other possible perspectives that
users may be interested in and improve our system with the addition of new
search methods.

References

1. Simple Object Access Protocol (SOAP) 1.2: http://www.w3.org/TR/SOAP/ (2003)
2. Web Services Description Language (WSDL) 2.0: http://www.w3.org/tr/ (2001)
3. Business Process Execution Language (BPEL) 2.0: http://www.oasis-open.org/

committees/download.php/10347/wsbpel-specification-draft-120204.htm
(2004)

4. OWL-S 1.1: http://www.daml.org/services/owl-s/1.1/ (2004)
5. Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M., eds.: Proceedings of the

International Conference of Service Oriented Computing (ICSOC’04), November
15-19, 2004, New York City, NY, USA,. In Aiello, M., Aoyama, M., Curbera, F.,
Papazoglou, M., eds.: ICSOC, ACM Press (2004)

6. Proceedings of the IEEE International Conference on Web Services (ICWS), San
Diego, California, USA. (2004)

7. Proceedings of the IEEE International Conference on Services Computing (SCC),
Shanghai, China. (2004)

8. Ellis, A., Hagino, T., eds.: Proceedings of the 14th international conference on
World Wide Web, Chiba, Japan, May 10-14, 2005. In Ellis, A., Hagino, T., eds.:
WWW, ACM (2005)

9. Web Services Architecture Requirements: http://www.w3.org/tr/wsa-reqs (2004)
10. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-

tectures and Applications. Springer (2004)
11. Binding Point: http://www.bindingpoint.com/ (2005)
12. Web Service List: http://www.webservicelist.com/ (2005)
13. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for

web services. In: VLDB. (2004)
14. Mahleko, B., Wombacher, A., Frankhauser, P.: A grammar-based index for match-

ing business processes. In: ICWS. (2005)

SPiDeR: P2P-Based Web Service Discovery 169

15. Constantinescu, I., Binder, W., Faltings, B.: Flexible and efficient matchmaking
and ranking in service directories. In: ICWS. (2005)

16. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of International Conference on Services Computing. (2005)

17. Emekci, F., Sahin, O.D., Agrawal, D., El Abbadi, A.: A peer-to-peer framework
for web service discovery with ranking. In: ICWS. (2004) 192–199

18. Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using daml-s for p2p
discovery. In: ICWS. (2003) 203–207

19. Papazoglou, M.P., Kramer, B., Yang, J.: Leveraging web-services and peer-to-peer
networks. In: CAISE. (2003) 485–501

20. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based
p2p infrastructure for semantic web services. In: P2P. (2002) 104–111

21. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. In:
WWW. (2004) 211–229

22. Syeda-Mahmood, T., Shah, G., Akkiraju, R., Ivan, A., Goodwin, R.: Searching
service repositories by combining semantic and ontological matching. In: ICWS.
(2005)

23. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Inf. Tech. and Management 6 (2005) 17–39

24. Napster: (http://www.napster.com/)
25. Gnutella: (http://www.gnutella.com/)
26. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make gnutella scalable? In:

IPTPS. (2002) 94–103
27. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-

addressable network. In: SIGCOMM. (2001) 161–172
28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-

able peer-to-peer lookup service for internet applications. In: SIGCOMM. (2001)
149–160

29. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Middleware. (2001)

30. Zhao, Y.B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
University of California at Berkeley (2001)

31. Gummadi, P.K., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica,
I.: The impact of dht routing geometry on resilience and proximity. In: SIGCOMM.
(2003) 381–394

32. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: ICDE. (2003)
49–60

33. Web Service Semantics - WSDL-S: http://www.w3.org/2005/04/fsws/submissions/
17/wsdl-s.htm (2005)

34. Semantic Web Services Language - SWSL: http://www.daml.org/services/swsl/
(2005)

35. Web Service Modeling Language - WSML: http://www.wsmo.org/wsml/ (2005)
36. Buckley, C.: Implementation of the SMART information retrieval system. Technical

Report 85-686, Cornell University (1985)
37. Fu, X., Bultan, T., Su, J.: Wsat: A tool for formal analysis of web services. In:

International Conference on Computer Aided Verification. (2004)
38. Chan, C.Y., Garofalakis, M.N., Rastogi, R.: Re-tree: An efficient index structure

for regular expressions. In: VLDB. (2002) 263–274

An Approach to Temporal-Aware Procurement
of Web Services �

Octavio Martín-Díaz, Antonio Ruiz-Cortés,
Amador Durán, and Carlos Müller

Dpto. Lenguajes y Sistemas Informáticos,
ETS. Ingeniería Informática - Universidad de Sevilla,

41012 Sevilla (Spain - España)
{octavio, aruiz}@tdg.lsi.us.es
{amador, cmuller}@lsi.us.es

Abstract. In the context of web service procurement (WSP), temporal–
awareness refers to managing service demands and offers which are subject to
validity periods, i.e. their evaluation depends not only on quality of service (QoS)
values but also on time. For example, the QoS of some web services can be con-
sidered critical in working hours (9:00 to 17:00 from Monday to Friday) and
irrelevant at any other moment. Until now, the expressiveness of such temporal–
aware specifications has been quite limited. As far as we know, most proposals
have considered validity periods to be composed of a single temporal interval.
Other proposals, which could allow more expressive time–dependent specifica-
tions, have not performed a detailed study about all the underlying complexities
of such approach, in spite of the fact that dealing with complex expressions on
temporality is not a trivial task at all. As a matter of fact, it requires a special
design of the so–called procurement tasks (consistency and conformance check-
ing, and optimal selection). In this paper, we present a constraint–based approach
to temporal–aware WSP. Using constraints allows a great deal of expressiveness,
so that not only demands and offers can be assigned validity periods but also
their conditions can be assigned (possibly multiple) validity temporal subinter-
vals. Apart from revising the semantics of procurement tasks, which we previ-
ously presented in the first edition of the ICSOC conferences, we also introduce
the notion of the covering set of a demand, a topic which is closely related to
temporality.

Keywords: services, procurement, quality, temporality, constraint programming.

1 Introduction

Web service procurement (WSP)—including automated search and selection—of the
best web services according to their offered quality of service (QoS) is an activity which
is gaining importance in the development of enterprise–level systems with a service–
oriented architecture (SOA) [18, 24].

� This work has been funded by the Spanish Government under grant TIC2003-02737-C02-01,
AGILWEB project.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 170–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approach to Temporal-Aware Procurement of Web Services 171

Web services, as a particular case of software packages, must be selected according
to user requirements [3, 4]. On the one hand, these user requirements, to which we
refer to as demands, are usually specified using boolean expressions, i.e. conditions on
attributes describing the desired QoS of a service, for example1 MTTF ≥ 100. On
the other hand, web service providers usually guarantee the QoS of the service they
provide, i.e. their offers, for example 100 ≤ MTTF ≤ 120.

Procurement is the process of finding the best offer for a given demand [18]. Its
typical scenario is: (1) a provider advertises its offers in a repository, (2) a customer
asks its matchmaker for an offer to meet its demands, and (3) the matchmaker searches
for matching offers, returning a result which may be an optimal offer according to a
given customer criterion, or a failure message if no matching offer is found [21].

Temporality is an important aspect of WSP. If a demand or offer is subject to a
validity period, it is said to be temporal–aware. As an example, in order to specify a
(part of a) demand as “the MTTF of the web service at working hours (9:00 to 17:00,
Monday to Friday) should be (at least) of 99%, otherwise 90%”, we would require
to define multiple, periodical validity periods associated to concrete conditions of the
demand. Other temporal aspects to be taken into consideration are the granularity of
time points, periods and durations, and the different time zones in which demands and
offers (D&O) can be available.

Not only it is necessary to extend the current models in WSP in order to improve
their expressivess regarding temporality, but it is also needed to re–think the so–called
procurement tasks, i.e. consistency and conformance checkings, and optimal selec-
tion, because of the non-trivial, intrinsic semantics of temporal expressions. For ex-
ample, in a non-temporal-aware context we define the notion of pessimistic confor-
mance so that an offer is conformant to a demand iff all the quality values guaran-
teed by the offer satisfy the conditions imposed by the demand. Let imagine a dummy
demand and offer which were constituted by only a validity period, with no condi-
tions regarding any quality attribute. If the validity period of the offer were included
in the validity period of the demand, then such offer could be considered as con-
formant. But this is not the case, because the offer does not cover the validity pe-
riod of the demand, so the offer is not conformant. In general, if temporality is taken
into account, the notions of consistency, conformance, and optimal selection must be
revised.

Until now—to the best of our knowledge— proposals allow a demand or an of-
fer to have a validity period composed of only a single temporal interval. Only a few
of them allows more complex temporal expressions, but most of them have not pro-
vided a detailed study about the underlying complexities of operations due to temporal
semantics.

In this paper, we present an approach to temporal–aware WSP which is based on
constraint programming (CP). It is based on notions introduced in our previous non–
temporal–aware, constraint–based approach to WSP [15, 18]. Using CP for WSP en-
tails some advantages. First, D&O can be stated declaratively, endowing the symmetric
model with a very powerful expressiveness so that D&O can be specified with the same
expressiveness. Thus, offers are not limited to single parameter–value pairs. Moreover,

1 MTTF stands for mean time to failure.

172 O. Martín-Díaz et al.

guarantees {
 D4: HOST = SPAIN;
}

assessment {
 MTTF { importance = VERY_HIGH, {
 WORKING { (0,0), (80,0), (100,0.5), (120,1)
};
 HOME { (0,0), (60,0), (90,0.5), (120,1) }; }
 }
 MTTR { importance = LOW, {
 global { (0,1), (5,1), (10,0.5), (15,0) }; }
 }
}

// Service Demand for IVideoServer

using Reliability, Hosting;
product IVideoServer;

valid zone GMT +1 {
 global { during 01/JUN/2005..31/AGO/2005; }
 WORKING { from 9..17 on MON..FRI; }
 HOME { global except WORKING; }
 SEASON { during 15/JUL/2005..15/ AGO/2005;
}
}

requires {
 D1: MTTF ≥ 100 and MTTR ≤ 10 on WORKING;
 D2: MTTF ≥ 90 and MTTR ≤ 15 on HOME;
 D3: COST ≤ 10 on SEASON;
}

Fig. 1. An example of temporal-aware demand written in QRL

it is not necessary to write specific procedures for procurement tasks because they are
implemented by checking properties of D&O by means of a constraint solver.

Figure 1 shows an illustrative example of a temporal-aware demand. It is written
in QRL (Quality Requirements Language), which is a language specifically devised
for that purpose by one of the authors of this work as part of his PhD thesis [17].
This example is intended to be self–explanatory, in order to give an overview of the
expressiveness of our approach. First, the demand establishes the Central Europe time
zone (UTC/GMT+1). Then, it defines the global validity period (VP) together with
other validity periods. The working hours VP is composed of some periodical temporal
intervals, whereas the home hours VP is computed from the global VP and the previous
one. Another valididy period is season which is non-periodical.

Note the validity periods can be assigned to conditions of the demand, so that the
conditions on the same quality attributes are different at working hours or home hours.
The season VP indicates the dates between which the cost of using the service should
not be greater than 10 e. The demand’s host is always in Spain at any time of the
global VP.

Note also the assessment criteria include utility functions which depends upon time.
These functions are defined in a piecewise–like way. Each point is associated to the
corresponding utility value (between 0 and 1), so that two consecutive points form a
segment of the function. Utility functions are weighted by their grades of importance.

We also introduce the notion of covering. Since it is possible that none of the avail-
able offers were conformant to a given demand because they did not cover it, one could
think of selecting several offers which are grouped together, in order to build a confor-
mant offer which covers the validity period of the demand.

The rest of the paper is structured as follows. First, Section 2 introduces the theoret-
ical basis for interpreting the temporal-aware procurement tasks by means of CSP, so
that Section 3 presents our proposal to model them. Next, Section 4 provides a review
of the state–of–the–art. Finaly, Section 5 concludes the paper and presents the future
work.

An Approach to Temporal-Aware Procurement of Web Services 173

2 Constraint Programming in a Nutshell

Constraint programming (CP) is the study of computational models and systems based
on contraints. CP is becoming a very interesting alternative to the modeling of opti-
mization problems because of its potential to solve hard, real–life problems, and its
declarative nature. A problem expressed as a set of constraints is formalized as a con-
traint satisfaction (optimization) problem (CSP) [5, 7, 8].

2.1 Basic Definitions

In this section, we introduce CP as the underlying formalism of our approach for ex-
pressing D&O. The core of our proposal was a set of definitions used to rigorously
define the so–called procurement tasks.

Definition 1 (CSP). A CSP is a three–tuple of the form (V, D, C) where V = ∅ is a
finite set of variables, D = ∅ is a finite set of domains (one for each variable) and C is
a set of constraints defined on V .

For instance, for the following CSP ({x, y}, {[0..2], [0..2]}, {x+y < 4, x−y ≥ 1}),
the assignment σ = {x �→ 2, y �→ 0} is one of its solutions.

Definition 2 (Solution Space). Let ψ be a CSP of the form (V, D, C), its solution
space, denoted as sol(ψ), is composed of all its possible solutions.

sol(ψ) = { σ ∈ V → D | σ(C) }

where σ(C) holds iff each assignment in σ satisfies every constraint in C.

In the previous example the solution space is {{x �→ 1, y �→ 0}, {x �→ 2, y �→ 0},
{x �→2, y �→1}}.

Definition 3 (Satisfiability). Let ψ be a CSP of the form (V, D, C), ψ is said to be
satisfiable, denoted as sat(ψ), iff its solution space is not empty.

sat(ψ) ⇔ sol(ψ) = ∅

Definition 4 (Minimum Space and Value). Let ψ be a CSP of the form (V, D, C),
its minimum space with regard to an objective function O, denoted as minS(ψ, O), is
composed of all the solutions of ψ that minimize O. Its minimum value with regard to
O, denoted as minV (ψ, O), is the value the objective function takes on minS(ψ, O).

minS(ψ, O) = { σ ∈ sol(ψ) | ∀ σ′ ∈ sol(ψ) · O(σ) ≤ O(σ′) }
minV (ψ, O) = m ⇔ ∀ σ ∈ minS(ψ, O) · O(σ) = m

For instance, consider the CSP in the previous example and an objective function
defined as O(x, y) = x2y. In this case, minS(ψ, O) = {{x �→ 1, y �→ 0},
{x �→ 2, y �→ 0}}. The minimum value is 0.

174 O. Martín-Díaz et al.

2.2 Filters and Projections

In general, the solution space of a CSP can be restricted by means of intersecting a
second CSP.

Filters. A filter is a kind of selection, which allows to obtain a CSP whose solution
space has been restricted to those solutions containing a (possibly partial) assignment
over the variables.

Definition 5 (Filtering). Let ψ be a CSP of the form (V, D, C), and
σπ = {v1 �→ d1, . . . , vk �→ dk} an assignment defined over the k variables in π ⊆ V ,
the filtering of ψ on σπ , denoted as ψv1 �→d1,...,vk �→dk

, is another CSP defined on V and
D whose constraint set C′ is C wherein as many equality constraints as assignments in
σπ have been added.

C′ = C ∪
k⋃

i=1

{vi = di}

In the previous example, the filtering over σπ = {y �→ 0} results in a CSP whose
solution space is {{x �→ 1, y �→ 0}, {x �→ 2, y �→ 0}}.

Projections. A projection is another kind of selection, which allows to obtain those
values which take a set of variables whenever the CSP is satisfiable.

Definition 6 (Projection). Let ψ be a CSP of the form (V, D, C), and π a set of vari-
ables such that π ⊆ V , the projection of ψ over π, denoted as ψ⇓π , is another CSP
defined on π and Dπ whose solution space is composed of values of variables in π
which are part of any solution in sol(ψ).

sol(ψ⇓π) = { σπ ∈ π → Dπ | ∃ σ ∈ sol(ψ) · σπ ⊆ σ }
where Dπ ⊆ D is the set of domains of variables in π.

In the previous example, the projection of the solution space over π = {x} results in
{{x �→ 1}, {x �→ 2}}.

3 Temporal-Aware Procurement Using Constraint Programming

In [15, 18], we described how CP can help automating the procurement tasks, i.e. the
checking for consistency and conformance, and selection of optimal offers. The key
to automating the procurement tasks is to map D&O onto CSPs. In order to do so,
each attribute must be mapped onto a variable with its corresponding domain, and each
condition must be mapped onto a constraint.

In this section, we review these notions in order to make them temporal-aware. We
assume a linear, discrete time-structure based on natural numbers. Time elements are
point times and temporal intervals. A temporal interval is given by two time points
representing their extremes.

An Approach to Temporal-Aware Procurement of Web Services 175

x

1

2

3

4

8 τ

5

14

x

1

2

3

4

8 2014 τ

5

x

1

2

3

4

8 2014 τ

5

δ1 ≡ {τ ∈ [8..14] ⇒ x ≥ 2}ω1 ≡ {τ ∈ [8..13] ⇒ 3 ≤ x ≤ 4,
 τ ∈ [14..20] ⇒ 1 ≤ x ≤ 2}

δ2 ≡ {τ ∈ [8..14] ⇒ x ≥ 3,
 τ ∈ [16..20] ⇒ x ≥ 1}

16

ω1
T Tδ1

Tδ2

13

Fig. 2. Solution spaces of temporal-aware offers and demands

3.1 Demands and Offers

Demands assert the conditions the provider shall meet, whereas offers assert the con-
ditions a provider guarantees2. Regarding temporality, all D&O are considered as (by
default) temporal-aware, i.e. they all have a validity period and their inner conditions
can (optionally) establish time-dependent demand requirements or offer guarantees. If
a D&O does not have an explicit validity period, it will be supposed to have an infinite
temporal interval.

Let δ denote a demand, and ω denote an offer. Their corresponding CSP are denoted
as ψδ and ψω, respectively. Let α denote a demand or offer. Any demand or offer α has
an (implicit) temporal variable, denoted as τ , so that its domain Dτ corresponds to the
validity period. Inner conditions of D&O are based on QoS attributes and (eventually)
the temporal variable, so that distinct temporal subintervals can be assigned to them,
provided these subintervals are included in the validity period.

Tα stands for a CSP of the form (τ, Dτ , true) whose its solution space corresponds
to the validity period of α. Note τ ′ ∈ Tα is a shorthand for an assignment at time τ ′

which belongs to the validity period.
For instance, the following tuples denote an offer ω1 and two demands δ1 and δ2:

ω1 = ({x, τ}, {[0..5], [8..20]}, {τ ∈ [8..13] ⇒ 3≤x≤4, τ ∈ [14..20] ⇒ 1≤x≤2})
δ1 = ({x, τ}, {[0..5], [8..14]}, {τ ∈ [8..14] ⇒ x≥2})

δ2 = ({x, τ}, {[0..5], [8..14]∪[16..20]}, {τ ∈ [8..14] ⇒ x≥3, τ ∈ [16..20] ⇒ x≥1})

Their solution spaces are shown graphically in Figure 2. The offer ω1 has the tem-
poral interval [8..20] as validity period, representing the office hours of a day. Each
guarantee of this offer is assigned a temporal subinterval which is included in the valid-
ity period, covering the overrall temporal interval. The first guarantee of ω1 is valid at
times in [8..13]. The second guarantee of ω1 is valid at times in [14..20].

Note the “⇒” operator is the logic implication with its usual meaning.

2 For the sake of simplicity, we are assuming a one-way matchmaking, i.e. demands only require
something from offers, and offers only guarantee something to demands, but not viceversa. The
interested reader is referred to [18] wherein a two-way matchmaking is presented.

176 O. Martín-Díaz et al.

x

1

2

3

4

8 2014 τ

5

ω2

x

1

2

3

4

8 2014 τ

5

ω1

ω1 ω2
T T

a) Consistency b) Non-consistency

13 13 15

Fig. 3. Temporal-aware consistency

The first demand δ1 has a unique requirement whose temporal subinterval is regarded
to the overrall validity period [8..14]. This demand is not defined at any other time
of a day.

The second demand δ2 has a validity period composed of two subintervals [8..14]
and [16..20] so that each requirement is assigned to every subinterval.

3.2 Consistency

Checking a demand or offer for consistency allows to unveil whether they have inter-
nal contradictions or not along the times whenever it is defined. If temporality is taken
into account, consistency must also involve a checking of their validity periods. More-
over, since their requirements or guarantees can be also assigned one or more temporal
intervals, they should be included in the validity period in order to be considered as
consistent.

Note that it is also possible different demand requirements or offer guarantees have
to be fulfilled at the same time. Checking the consistency of conditions and validity
periods separately is not enough, but once validity periods have been checked, the con-
sistency of conjunction of all demands requirements or offer guarantees at any time of
the validity period has to be checked, as well.

Definition 7 (Consistency). A demand or offer α is said to be consistent iff the projec-
tion over time of its corresponding CSP ψα equals its non-empty validity period.

consistent(α) ⇔ sol(ψα⇓τ) = sol(Tα)

For instance, consider the offer ω1 in the previous example, and another offer ω2
defined on the same attributes and domains but with the following conditions:

{τ ∈ [8..14] ⇒ 3 ≤ x ≤ 5, τ ∈ [14..20] ⇒ 1 ≤ x ≤ 3}

Both of them are shown in Figure 3. Note that the offer ω1 is consistent (see Figure
3.a) because there are no contradictory conditions at any time in the validity period.
However, the offer ω2 is not consistent (see Figure 3.b) because at time τ = 14 (marked
with an arrow) there exist two contradictory conditions, so that the solution space of

An Approach to Temporal-Aware Procurement of Web Services 177

their conjuction at such a time is empty, and that point time is not included in the
projection. Therefore, since the projection does not equal the validity period, the offer
ω2 is not consistent.

3.3 Conformance

Checking if an offer conforms to a demand allows to know whether the values guaran-
teed by a party (the offer from a provider) meet the values required by the other party
(the demand of a client) whenever the demand is defined. A non-temporal-aware offer
ω and a non-temporal-aware demand δ is said to be pessimistic-conformant iff the so-
lution space of ψω is a subset of the solution space of ψδ . In terms of CP, this can be
expressed by means of Marriott and Stuckey expression [14]:

conformant(ω, δ) ⇔ ¬sat(ψω ∧ ¬ψδ)

If temporality is taken into account, this checking must be carried out at any time of
the validity period of the demand. In Section 1, we have introduced the need of revising
the conformance notion, so that if an offer and a demand were defined exclusively
by their validity periods, then they would be considered as conformant iff the validity
period of the offer covered the validity period of the demand.

Definition 8 (Conformance). An offer ω and a demand δ are said to be conformant iff
the validity period of ω covers the validity period of δ, and the projection over time of
the CSP representing those solutions of ω which are not a solution of δ is disjoint to the
validity period of δ.

conformant(ω, δ) ⇔ sol(Tδ) ⊆ sol(Tω)
∧ sol({ψω ∧ ¬ψδ}⇓τ) ∩ sol(Tδ) = ∅

For instance, consider the offer ω1 and the demand δ1 in the previous example, to-
gether with the demands δ3 and δ4 whose definitions are:

δ3 = ({x, τ}, {[0..5], [8..20]}, {τ ∈ [8..13] ⇒ x ≥ 3, τ ∈ [14..20] ⇒ x ≥ 1})
δ4 = ({x, τ}, {[0..5], [7..20]}, {τ ∈ [7..13] ⇒ x ≥ 3, τ ∈ [14..20] ⇒ x ≥ 1})

Their conformance relationships are shown in Figure 4. Note that the offer ω1 is
not conformant to the demand δ1 (see Figure 4.a) because at τ = 14 (marked with an
arrow) the solution space of the offer is not a subset of solution space of the demand.
Note this situation is detected by the above formula, because the time τ = 14 belongs to
the projection over time of those solutions of ω1 which are not included in the solution
space of the demand δ1, and it is also included in its validity period Tδ1 . The offer ω1 is
conformant to the demand δ3 (see Figure 4.b) because it is conformant at any time of its
validity period, covering it completely as well. Finally, the offer ω1 is not conformant
to the demand δ4 (see Figure 4.c) because it does not cover its validity period since it
does not supply anything at τ = 7 (marked with an arrow). The striped zones in Figure
4 represent the solution spaces of the negated CSP corresponding to the demands.

178 O. Martín-Díaz et al.

x

1

2

3

4

8 2014

δ1

τ

5

ω1

x

1

2

3

4

8 2014 τ

5

δ3

T
δ1

Tδ3
x

1

2

3

4

8 2014 τ

5

δ4

Tδ4

7

Tω1
Tω1

Tω1

a) Non-conformance due to conflict at τ = 14 b) Conformance c) Non-conformance due to conflict at τ = 7

13 13 13

ω1 ω1

Fig. 4. Temporal-aware conformance

3.4 Finding the Optimal Offers

The final goal of matchmaking is, given a demand, finding a conformant offer that
is optimal from the customer’s point of view. This task is interpreted as a contraint
satisfaction optimization problem (CSOP), which requires a preference order defined on
the offer set. It is usual to establish such an order by means of a weighted composition
of utility functions, whose general form is as follows:

U(a1, . . . , an) =
n∑

i=1

kiUi(ai) ki ∈ [0, 1]
n∑

i=1

ki = 1

where each ai denotes a quality attribute, each ki its associated weight, and each Ui its
associated utility function ranging over [0, 1] and describing how important the values
of attribute are for the client.

Definition 9 (Set of Optimal Offers). Let Ωδ be a set of conformant offers to the
demand δ, and U the assessment criteria given by an utility function, the set of optimal
offers, denoted as Ω∗

δ,U , is constituted of those offers in Ωδ which maximize U .

Ω∗
δ,U = {ω ∈ Ωδ | ∀ω′ ∈ Ωδ · U(ω) ≥ U(ω′)}

where U(ω) stands for the utility of the offer ω given U .

In a non-temporal-aware context, the utility of an offer corresponds to the worst case,
that is to say, the utility of those values which minimize the utility function:

U(ω) = minV (ψω,U)

If temporality is taken into account, utility functions can be dependent upon time, so
that quality attributes can have different utility values at distinct temporal intervals. The
utility of an offer is the average utility during the validity period of δ:

U(ω) =
1

|sol(Tδ)|
∑

τ ′∈Tδ

minV (ψω,τ �→τ ′ ,U)

where ψω,τ �→τ ′ stands for the CSP which corresponds to ω filtered at time τ = τ ′.

An Approach to Temporal-Aware Procurement of Web Services 179

x

U

0.2

0.4

0.6

0.8

8 20 τ

1

15

1
3

5

x

1

2

3

4

8 2014 τ

5

15

ω1

x

1

2

3

4

8 20 τ

5

ω3Temporal-aware utility function

13 14

Fig. 5. Optimal selection with temporal-aware utility functions and offers

For instance, consider the offer ω1 in the previous example, and another offer ω3
defined on the same attributes and domains but with the following condition
{τ ∈ [8..20] ⇒ 2 ≤ x ≤ 3}. Assume these offers are conformant to a demand δ
whose validity period is [8..20], so that the assessment criteria is given by the utility
function U in Figure 5. Note it gives different utility values for intervals τ ∈ [8..14] and
τ ∈ [15..20]. The set of optimal offers is Ω∗

δ,U = {ω3}, according to their utility values:

U(ω1) = 1
13{ 3

5 × 6 + 1
5 × 1 + 1

3 × 6} = 0.45
U(ω3) = 1

13{ 2
5 × 7 + 2

3 × 6} = 0.52

The utility of ω1 is computed in this way. Note that the number of time points which
belongs to Tδ is 13. If τ ∈ [8..13] (six time points) then x = 3 is given an utility of 3/5,
if τ = 14 (one time point) then x = 1 is given an utility of 1/5, and if τ ∈ [15..20]
(another six time points) then x = 1 is given an utility of 1/3. The utility of ω3 is
computed in a similar way.

3.5 Finding the Optimal Covering

Since it is possible that none of the available offers were conformant to a given demand
because they did not cover it, one could think of selecting several offers so that all
together are conformant to the demand, covering all the validity period. The covering
problem is to find such a set of offers, optimizing according to assessment criteria from
demand and other (optional) criteria, in order to adopt different strategies such as, for
example, to minimize the number of offers.

Definition 10 (Covering). Let δ be a demand and Ω a set of available offers3. Ω is
said to be a covering set of δ iff there exists (at least) a conformant offer in Ω at any
time of the validity period of the demand.

isCoveringSet(Ω, δ) ⇔ ∀τ ′ ∈ Tδ, ∃ω ∈ Ω · conformant(ωτ �→τ ′ , δτ �→τ ′)

where ωτ �→τ ′ and δτ �→τ ′ stand for the offer ω and the demand δ at time τ = τ ′, respec-
tively.

3 An offer is available iff it provides the functionality required by a demand.

180 O. Martín-Díaz et al.

x

1

2

3

4

8 τ

5

x

1

2

3

4

5

x

1

2

3

4

8 2014 τ

5

δ1 ω1

10

ω4

16 20 8 τ1510 20

ω5

15

Tδ1

Tω4
Tδ1

Tω1
Tδ1

Tω5

13 11 14 1411

δ1 δ1

10 11 13

covering set { ω1,ω5 }

15

Fig. 6. Covering and temporal-awareness

For instance, consider the demand δ1 whose valid period is Tδ1 = [8..15] and the
assessment criteria given by the utility function U , and the offer ω1 in the previous
example, together with the following offers ω4 y ω5 which are also defined on the same
attributes and domains as ω1, but with the following constraints:

Cω4 = {τ ∈ [8..10] ⇒ 1≤x≤3, τ ∈ [11..15] ⇒ 3≤x≤4, τ ∈ [16..20] ⇒ 1≤x≤3}
Cω5 = {τ ∈ [8..10] ⇒ 1≤x≤2, τ ∈ [11..20] ⇒ 4≤x≤5}

The demand and offers are shown in Figure 6. None of them is conformant to the
given demand, but if it were possible to join two (or more) of them, then one would be
able to build a conformant offer, i.e. the so-called covering set of a demand.

Figure 6 shows the covering set of δ1 which is constituted by the offers {ω1, ω5}
(marked with the arrows). It is a covering set because at any time of Tδ1 there exist (at
least) a conformant offer:

τ ∈ [8..10] → ω1; τ ∈ [11..13] → ω1, ω5; τ ∈ [14..15] → ω5

The sets of offers {ω1, ω4} and {ω1, ω4, ω5} also conform a covering set of the
demand. However, the set of offers {ω4, ω5} is not a covering set, because at time
τ ∈ [8..10] there is no offer conformant to the demand.

Among all the covering sets which can be conformed from a set of offers, one should
be able to select the best one. Therefore, we need to compute their utility according to
assessment criteria attached to a demand.

Let Ω be a covering set of the demand δ1, and U the utility function of δ1, the utility
of a covering set is given by the aggregation of maximum utilities at any time in the
validity period of δ1:

U(Ω) =
1

|sol(Tδ)|
∑

τ ′∈Tδ

max
ω ∈ Ωδ,τ �→τ′

{minV (ψω,τ �→τ ′ ,U)}

where Ωδ,τ �→τ ′ is the subset of offers in Ω which are conformant to δ at time τ = τ ′:

Ωδ,τ �→τ ′ = {w ∈ Ω | conformant(ωτ �→τ ′ , δτ �→τ ′)}

An Approach to Temporal-Aware Procurement of Web Services 181

For instance, consider the set of offers Ω = {ω1, ω4, ω5} available to the demand
δ1, whose assessment criteria is U , in the previous example, the utility values of the
covering sets of δ1 are:

U({ω1, ω4}) = 1
7{ 3

5 × 3 + 3
5 × 3 + 3

5 × 1 + 3
3 × 1} = 0.74

U({ω1, ω5}) = 1
7{ 3

5 × 3 + 4
5 × 3 + 4

5 × 1 + 1 × 1} = 0.86
U({ω1, ω4, ω5}) = 1

7{ 3
5 × 3 + 4

5 × 3 + 4
5 × 1 + 1 × 1} = 0.86

The utility of the covering {ω1, ω5} is computed in this way. Note that the number of
time points which belongs to Tδ is 7. If τ ∈ [8..10] (three time points) then the offer ω1
has the conformant value x = 3 which is given an utility of 3/5, if τ ∈ [11..13] (three
time points) then both offers are conformant, but the best one is ω5 because it offers a
conformant value x = 4 which is given an utility of 4/5 whereas ω1 has a conformant
value x = 3 which is given a worse utility of 3/5, if τ = 14 (one time point) then
the offer ω5 has the conformant value x = 4 which is given an utility of 4/5, and if
τ = 15 (another one time point) then the offer ω5 has the conformant value x = 4
which is given an utility of 1. The utility of the remaining coverings is computed in a
similar way.

Definition 11 (Set of Optimal Coverings). Let δ be a demand, U an utility function as
assessment criteria, and Ω+

δ the set of all coverings given a set of available offers. The
set of optimal coverings, denoted as Ω+

δ,U , is constituted of those covering sets which
maximize the utility function U .

Ω+
δ,U = {Ω ∈ Ω+

δ | ∀Ω′ ∈ Ω+
δ · U(Ω) ≥ U(Ω′)}

Given the offers and demand in the previous example, the set of optimal coverings
is {{ω1, ω5}, {ω1, ω4, ω5}}.

Note that these covering sets have the same utility, although the latter seems to be
redundant because values from ω5 override those from ω4. We can establish a pref-
erence order by means of any secondary assessment criteria, for example, by min-
imizing the number of offers. In this case, the optimal subset regarding min|Ω| of
{{ω1, ω5}, {ω1, ω4, ω5}} is {{ω1, ω5}}.

4 Related Work

Figure 7 shows a brief comparison among related proposals, showing their characteris-
tics on temporality at a first sight. Because of the limited extension of this paper, this
section is devoted solely to temporal–aware proposals. A broader outline, which also
includes the non–temporal–aware proposals, is available in [15, 18].

Note that our point of view is different from the perspective of service workflows,
which is interested in the problem of finding an optimal execution plan of services in
the context of a workflow [24]. We are interested in the procurement of web services
whose demands and offers are temporal–aware. Of course, the workflow issue is very
related to our problem, and they can be studied as a whole.

182 O. Martín-Díaz et al.

UDDIe

QRL

~

V

WSLA

WS-QoS

WSOL

WSML

OWL-TIME
N

on
-P

er
io

di
ca

l
V

P
E

nt
ire

 D
em

an
d/

O
ffe

r

M
ul

tip
le

 In
te

rv
al

s

P
er

io
di

ca
l V

P
In

ne
r

C
on

di
tio

ns

T
em

po
ra

l R
ea

so
ni

ng
 /S

ol
vi

ng
w

ith
 D

ec
id

ab
le

 S
at

is
fia

bi
lit

y

V

V

V

VV

V VV

V VV V

V

N
on

-P
er

io
di

ca
l V

P
In

ne
r

C
on

di
tio

ns

V

V

V

C
ov

er
in

g

V

Fig. 7. A comparison among temporal–aware proposals

4.1 Proposals Based on Ad-Hoc Formalisms

These proposals do not have any formalism for temporal specifications, such as the
UDDI Extension [20] and the WS-QoS ontology [22]. In general, they only allow to
define an unique validity period for an entire demand or offer.

Fortunately, other proposals do allow to assign a validity period to every condition of
a demand or an offer, such as the IBM WSLA Web Services Level Agreement language [6,
11] and the WSOL Web Service Offerings Language [23]. The HP WSML Web Services
Level Agreement Management language [19] allows to specify both a single validity
period for the entire agreement and also a periodic temporal interval to every condition.
Both WSLA and WSML languages allow validity periods to be composed of multiple
sub-intervals in distinct, limited ways as well.

4.2 Proposals Based on Semantic Web

These proposals are based on formalisms of the semantic web, having a much greater
deal of expressiveness. The OWL+TIME Ontology [9, 10] is a very expressive language
which is used by semantic-web-based approaches of WSP, such as the Web Ontology
Language - Services (OWL-S) [2, 13, 16].

However, having a greater deal of expressiveness leads to several computation prob-
lems of the Description Logics (DL) reasoners able to reason about such temporal speci-
fications. As a matter of fact, in logics there exist a tradeoff between expressiveness and
the computability of reasoning procedures [12], so the more expressive temporal DL
languages are known to be undecidable, that is to say, there is no algorithm for comput-
ing the satisfiability of a DL specification. Most of temporal DL reasoners overcome this
problem by making the language less expressive, or treating the time as a concrete do-
main in order to use hibrid reasoners so that temporal specifications are processed by ex-
ternal solvers, such as the CSP solvers. In general, both (1) the reasoning on less expres-
sive temporal DL specifications, or (2) solving a CSP, are known to be NP-complete [1].

An Approach to Temporal-Aware Procurement of Web Services 183

5 Conclusions and Future Work

In this paper, we have presented an approach to add temporal–awareness to WSP by
using CP, which endows our proposal with a declarative way to specify demands and
offers so that the procurement tasks can be carried out by means of constraint satisfac-
tion problems. We have introduced the notion of covering of a demand. We have also
shown the need to review the semantics of procurement tasks if temporality is taken
into account, and proposed a rigorous definition for them.

Our approach allows to specify a global validity period for a demand or an offer,
and other validity periods which can be periodical or not, or composed of multiple
intervals. These validity periods can be assigned to different conditions of the demand
or the offer. Utility functions can be temporal–aware too, so that different utility values
for a quality attribute can be defined at distinct time periods. The expressiveness of our
approach is similar to semantic web–based proposals, though their major drawback is
the undecidable nature of more complex temporal DL languages.

For future work, we are currently finishing the development of a proof–of–concept
implementation, by adapting the prototype introduced in [18] so that it becomes tempo-
ral–aware. At operational level, consistency, conformance, and optimality have not to
be computed at every time point of validity periods, just as they were defined in theory.
A pre–processing step is needed in order to get the concrete time intervals of interest,
then such tasks can be carried out on such time intervals.

Experiments need to be carried out in order to characterize the complexity of tempo-
ral–aware procurement tasks. As a result, it is expected to know what kind of tempo-
ral expressions to avoid because of their impact on the exponential behavior of CSP
solving.

References

1. A. Artale and E. Franconi. A Survey of Temporal Extensions of Description Logics. Annals
of Mathematics and Artificial Intelligence, 30(1-4):171–210, 2000.

2. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. Technical
report, DARPA, 2004. http://www.daml.org.

3. A. Finkelstein and G. Spanoudakis. Software Package Requirements and Procurement. In
Proc. of the 8th Int’l IEEE Workshop on Software Specification and Design (IWSSD’96).
IEEE Press, 1996.

4. X. Franch and J.P. Carvallo. Using Quality Models in Software Package Selection. IEEE
Software, 20(1):34–41, 2003.

5. E.C. Freuder and M. Wallace. Science and substance: A challenge to software engineers.
Constraints IEEE Intelligent Systems, 2000.

6. P. Grefen, H. Ludwig, and S. Angelov. A Three-Level Framework for Process and Data Man-
agement of Complex E-services. International Journal of Cooperative Information Systems,
12(1):455–485, December 2003.

7. P. Hentenryck. Constraint and Integer Programming in OPL. Informs Journal on Computing,
14(4):345–372, 2002.

8. P. Hentenryck and V. Saraswat. Strategic directions in constraint programming. ACM Com-
puting Surveys, 28(4), December 1996.

184 O. Martín-Díaz et al.

9. J. Hobbs and J. Pustejovsky. Annotating and Reasoning about Time and Events. In Proc.
of the AAAI Spring Symposium on Logical Formalization of Commonsense Reasoning, Stan-
ford, CA, March 2003.

10. J. Hobbs and J. Pustejovsky. An Ontology of Time for the Semantic Web. ACM Transactions
on Asian Language Processing, Special Issue on Temporal Information Processing, 3(1):66–
85, March 2004.

11. Y. Hoffner, S. Field, P. Grefen, and H. Ludwig. Contract-driven Creation and Operation of
Virtual Enterprises. Computer Networks, (37):111–136, 2001.

12. H.J. Levesque and R.J. Brachman. Expressiveness and Tractability in Knowledge Represen-
tation and Reasoning. Computational Intelligence, 3(2):78–93, May 1987.

13. L. Li and I. Horrocks. A Software Framework for Mathmaking based on Semantic Web
Technology. In Proc. of the 12th ACM Intl. Conference on World Wide Web (WWW’03),
pages 331–339, 2003.

14. K. Marriottt and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

15. O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, D. Benavides, and M. Toro. Automating the
Procurement of Web Services. In 1st Int.l Conf. on Service-Oriented Computing, volume
2910 of LNCS, pages 91–103, Trento, Italy, 2003. Springer Verlag.

16. F. Pang and J. Hobbs. Time in OWL-S. In Proc. of the AAAI Spring Symposium on Semantic
Web Services, pages 29–36, Stanford, CA, 2004.

17. A. Ruiz-Cortés. A Semiqualitative Approach for the Automatic Management of Quality Re-
quirements (in Spanish). PhD thesis, University of Seville, 2002.

18. A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro. Improving the Automatic Procure-
ment of Web Services using Constraint Programming. Int. Journal on Cooperative Informa-
tion Systems, 14(4):439–467, December 2005.

19. A. Sahai, V. Machiraju, M. Sayal, L.J. Jin, and F. Casati. Automated SLA Monitoring for
Web Services. Research Report HPL-2002-191, HP Laboratories, 2002.

20. A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker. UDDIe: An Extended Registry for Web
Services. In Proc. of the IEEE Int’l Workshop on Service Oriented Computing: Models,
Architectures and Applications at SAINT Conference. IEEE Press, January 2003.

21. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking among Agents
in Open Information Environments. SIGMOD Record, 28(1):47–53, 1999.

22. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A Concept for QoS Integration
in Web Services. In Proc. of the IEEE Int’l Web Services Quality Workshop (at WISE’03),
pages 149–155, 2003.

23. V. Tosic, K. Patel, and B. Pagurek. Reusability Constructs in the Web Service Offering
Language (WSOL). Research Report SCE-03-21, The Department of System and Computer
Engineering, Carleton University, Ottawa, Canada, 2003.

24. L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineering,
30(5):311–327, May 2004.

Approaching Web Service Coordination and
Composition by Means of Petri Nets. The Case

of the Nets-within-Nets Paradigm�

P. Álvarez, J.A. Bañares, and J. Ezpeleta

Department of Computer Science and Systems Engineering,
Instituto de Investigación en Ingenieŕıa de Aragón (I3A),

University of Zaragoza. Maŕıa de Luna 3, E-50015 Zaragoza (Spain)
{alvaper, banares, ezpeleta}@unizar.es

Abstract. Web service coordination and composition have become a
central topic for the development of Internet-based distributed comput-
ing. A wide variety of different standards have been defined to deal with
the composition of Web services (usually represented as workflows) and
the execution of coordination protocols. On the other hand, some relevant
research proposals have already pointed to the use of the same formalism
for both aspects, being Petri nets one of the adopted formalisms. In this
work we present a case study showing how the adoption of the Nets-
within-Nets paradigm helps in the modelling of complex coordination
protocols and workflows. We first propose a Petri net model for a Web
service peer able to run any workflow and to dynamically interpret the
coordination required protocols. The execution of these protocols allows
the peer to integrate functionalities offered by external peers. The Linda
communication model has been used to support the integration among
peers.

Keywords: Service Composition and Coordination, Formal Methods for
Service-Oriented Architectures, Petri nets, Nets-within-Nets paradigm.

1 Introduction

In service-oriented computing, Web services are the basic building blocks to cre-
ate new applications. Many efforts have been devoted to define some standards
to access Web services. As pointed in [1], some research should be done on how
to weave those services together and subsequently expose the resulting artifacts
as new Web services, namely, service coordination and composition (choreogra-
phy and orchestration terms are also used alternatively to refer to them). The
cornerstone of this style of building Web-based applications is a communication

� This work has been partially supported by the Spanish Ministry of Education and
Science through the project TIC2003-09365-C02-01 from the National Plan for Sci-
entific Research, Development and Technology Innovation.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 185–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 P. Álvarez, J.A. Bañares, and J. Ezpeleta

middleware able to glue Web services using new interaction models, more com-
plex than the provided by the client/server model (asynchronous, event-based
communication, etc.).

Service composition is an aspect related to the implementation of a Web ser-
vice whose internal logic involves the invocation of operations offered by other
Web services. From this definition, it is obvious that composition requires in-
teractions between different Web services: a Web service may require specific
dialogs (sequences of interchanged messages) in order to respond to a service
requested by another participant. A conversation is a dialog among two or more
Web services participating in these complex interactions, whereas a coordina-
tion protocol describes a set of accepted conversations (the external observable
behavior of involved Web services) [1].

Most coordination and composition standard initiatives have been launched
with industry-wide support. For Web service coordination, behavioral descrip-
tions (i. e., the set of protocols and their conversations) of Web services can be
defined using high-level declarative languages, such as WCSI [2], WS-CDL [3]
and OWL-S [4]. On the other hand, many composition tools are available in the
marketplace, most of them offering some type of modelling mechanism based
on the BPEL4WS specification [5]. In any case, despite all the efforts invested
in the standardization of coordination and composition languages and tools, an
important problem is the lack of a clear methodology to develop complex Web
services. Another interesting question refers to the fact that both, composition
and coordination, have quite similar aspects, which lead us to the question of
why not to use the same tool/formalism to work with them.

Different solutions can be adopted to deal with this last point, being Petri
nets a quite natural approach. Petri nets [6] are a well-known formalism in the
world of concurrent systems, which easily fits into Web service environments
to deal with composition and coordination aspects (see for instance [7, 8, 9, 10]).
The Petri net family of formalisms are of interest for the Web service community
because they provide a clear and precise formal semantics, an intuitive graphical
notation and many techniques and tools for their analysis, simulation and exe-
cution [7]. However, Petri nets are not the unique formalism that can be used
for that purposes: in [11, 12] alternative solutions can be found using automata-
based specifications of the peers’ behaviors, using queues as intermediate mes-
sage stores; and, in [13] is investigated the use of process-calculus techniques for
providing distributed protocols in a mobile agent-based environment.

In this paper we propose a formal model based on Petri nets to represent
a Web service peer able to run workflows representing composed services, to
dynamically interpret the coordination protocols required by them during the
execution and to communicate with other external peers via an abstraction of a
communication middleware. The use of Petri nets as the same formalism to rep-
resent together conversations and workflows and the adoption of the Nets-within-
Nets paradigm allow a natural integration of the coordination and composition
models, making their interactions easier. The model imposes a methodology for
avoiding the confusion between workflows and conversations, and provides a co-

Approaching Web Service Coordination and Composition 187

ordination space based on the Linda paradigm [14] to model the asynchronous
communications among peers. The choice of Linda is motivated because its com-
munication primitives are particulary well-suited for Web service environments
allowing an uncoupled communication and requiring a minimum prior knowledge
between the cooperating peers.

Our approach is similar to the one in [15]. Moldt et al. follow a more agent-
centric view to cope with adaptability for workflows in the Web service field.
They use Nets-within-Nets to deal with different aspects related with Web ser-
vices, such as the deployment of Web services into physical hosts, the service
container, and the internal and external service flows. Our proposal provides a
more concrete model based on a Linda-like communication model. This simpler
and narrower point of view allows us to provide a more detailed representation
of peers, recovering the explicit separation between protocols (workflows) and
conversations of agent models presented in [16].

The paper is organized as follows. Section 2 presents a brief introduction
to the Linda communication model and the Nets-within-Nets paradigm. These
formalisms constitute the framework for modelling Web service composition and
coordination. Section 3 introduces our view of a Web service peer able to execute
complex workflows involving complex conversations, which is then applied to the
development of a concrete example from [17]. Finally, Section 4 contains some
concluding remarks and future work directions.

2 Underlying Technologies: Linda and Nets-Within-Nets

Let us briefly introduce Linda and Nets-within-Nets as the underlying technolo-
gies used in the approach we are proposing.

2.1 Linda as the Communication Model

Linda is a coordination model based on generative communication. If two or more
processes need to communicate, they cooperate exchanging messages through a
shared memory. In Linda, messages are represented as tuples, while the common
tuple repository is called a tuple space [14]. Informally speaking, a tuple is a
list of untyped atomic values, as ("a string", 18), for instance. A few simple
operations have been defined to insert (withdraw) tuples into (from) the tuple
space: out places a tuple into the tuple space; rd returns a copy of a tuple
from the space that matches with a template tuple (a template is a query tuple
composed of values and wildcards, like ("a string", ???); the matching is free
for the wildcard and literal for the constant values); finally, in works like rd,
except that the matched tuple is removed from the space. If no matching tuples
are into the space, the rd and in operations block the calling process until a
convenient tuple appears (until a matching occurs). In this paper, the Linda
operations have been renamed according to the point of view of the external
processes: write (out), read (rd) and take (in).

The use of Linda in distributed and open environments is promising because it
allows for an uncoupled cooperation in space and time and a flexible modelling of

188 P. Álvarez, J.A. Bañares, and J. Ezpeleta

interactions among processes without adapting or announcing themselves. How-
ever, due to the fact that processes distributed over Internet communicate ex-
changing XML-encoded data, and the reading operations can involve long waits
if no matching tuple is available in the space, Linda must be extended for improv-
ing its data representation capabilities and the set of associated operations. In
this sense, the definition of tuple has been broadened to be able to represent data
according to the XML encoding-format by means of attribute/value pairs, and
new non-blocking reading operations inspired by an event-based communication
style have been added to coordinate Web services [18].

2.2 The Nets-within-Nets Paradigm

Assuming the reader knows about Petri nets, let us now briefly introduce the
class of Reference nets [19], which is a subclass of the Nets-within-Nets family
of Petri nets [20]. Nets-within-Nets are an extension of the Colored Petri net
formalism [21]. They fall into the set of object oriented approaches. In classical
Petri nets, the net structure is static, and tokens move inside the net. Nets-
within-Nets have a static part (the environment, also called system net) and a
dynamic part, composed of instances of object nets that move inside the system
net. These instances can be created in a dynamic way. Each object net can have
its own internal dynamic behavior and can also interact with the system net by
means of interactions. The system net can also move (transport) object nets by
its own.

[]

system net

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()
:i()

x

objectClass1

t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x

[]

:i()t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x

[]

:i()t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x :i()t2t1

x

x

x x

n n
t10

t12

t13

n: new objectClass1

x:i()

x
:i()t2t1

[]
[]

b)

d)c) e)

t11

x

a)

Fig. 1. a) A reference Net-within-Net example with the system net and an object net.
b) The previous systems once transition t10 has been fired. c) Evolution from the state
in Figure-b) when t11 fires (transport). d) Evolution from the state in Figure-b) when
t1 fires (autonomous object event). e) Evolution from the state in Figure-b) when the
synchronized firing of t12 and t2 occurs (interaction).

Approaching Web Service Coordination and Composition 189

Reference nets are a special subclass of Nets-within-Nets in which tokens in
the system net, instead of object nets, are references to object nets, so that
it is possible for different tokens to refer to the same object net. Figure 1-a)
depicts a system net and an object net class. Firing transition t10 creates two
references to a new instance of objectClass1, moving the system to the state
in Figure 1-b). In Nets-within-Nets three different types of transition firings
are possible. The first one corresponds to the case in which an object instance
executes an object autonomous action: in the state in Figure 1-b), transition
t1 of the object net is enabled, and can fire independently of the system net,
leading to the state in Figure 1-d). The second one corresponds to the initiative
of the system net: in the state in Figure 1-b), transition t11 of the system net
is enabled, and can fire moving the reference from the input place of transition
t11 to its output place, leading to the state in Figure 1-c) (notice that nothing
has changed in the internal state of the object net). This is the reason why
these firings are called transports. The last case corresponds to the synchronized
firing of a transition of the system net with a transition of an object: in the
state in Figure 1-b), transitions t12 and t2 can synchronize their firings (this is
indicated by the common part in their inscriptions, :i()), whose firing will give
the state in Figure 1-e). This way of firing is called an interaction. It is important
to remark that the mentioned inscriptions may optionally consist of a common-
separated list of parameters (e.g., :i(x,y,z)), which are used to communicate
values between the synchronized nets.

Reference nets have a powerful tool called Renew [22] that allows to execute
reference nets. It is developed in Java, and allows an easy integration of reference
nets and Java code associated to transitions (it is possible to access Java code
from the net, but also to access the net from Java code). This makes Renew to
become a very interesting and useful tool to work on Web services environments.

3 Nets-within-Nets for Web Services Composition and
Coordination

In this section we describe the architectural design of the approach we propose.
In order to introduce the way we propose to integrate Web service composition
and coordination, an example from the literature is developed.

3.1 The System Components

Figure 2 depicts the Petri net model we propose for a Web service peer. Basically,
a Web service peer has the following elements. First, it contains a work-space.
This is a kind of process space where the services in which the peer is involved
are being executed. These can be either simple (“atomic” services) or composite
services. Composite services are described by means of workflows where a com-
ponent is a service provided by either an external peer or the peer itself. On the
other hand, the interactions between the peer and other peers usually require the
execution of (simple or complex) interaction protocols (choreographies) whose

190 P. Álvarez, J.A. Bañares, and J. Ezpeleta

w:end()

w:begin()

w

w

[w,r,idC]

r:r(t);
coordSystem:r(t)

r:t(t);
coordSystem:t(t)

r:w(t);
coordSystem:w(t)

w

w

[w,r,idC]

[w,r,idC]

[conv,rol,idC]
[conv,rol,idC]

this:idConv(idC);
w: prepareConv(w,conv,rol,r,idC);
coordSystem:w({[conv,rol,idC],...})

w:prepareConv(w,conv,rol,r,idC)

[w,r,idC]

[w,r,idC]

w:execute(id,service,
 pars,results)

[w,r,idC]

[w,r,idC]

[w,r,idC]

w

w

w

w

w: new workFlow(...);

w:endConv(w,idC,XML);
r:end(w,idC,XML)

w:beginConv(w,idC,XML);
r:begin(w,idC,XML)

w:absCond(w,idC,XML);
r:absCond(w,idC,XML)

t1

t2

t3

t4

t5

t6

t7

t8 t11

t12

t13

t9

t10

coordSystem:r([conv,rol,idC]);
w: new workFlow(...)

conversation-space

work-space

Fig. 2. The general architecture of a Web service peer

possible executions correspond to possible conversations. Conversations may in-
volve two or more peers and, in each conversation, each peer has to execute a
given part (the peer must play a given “role”). The set of roles that a peer is
playing at a given moment stay in the conversation-space.

Adopting the Nets-within-Nets paradigm, Figure 2 corresponds to the “sys-
tem net”. Place work-space corresponds to the work space as described in the
precedent paragraph, while place conversation-space contains the active roles in
which the peer is involved in. Tokens inside these places will be Petri nets (object
nets in Nets-within-Nets terminology) corresponding to workflows and roles in
execution, respectively. Let us first take a closer look at the system net. Notice
that transitions t1 and t2 both contain the new workFlow(...) action; these
transitions are the way of starting the execution of new workflows. The main
difference is that t2 corresponds to the case of a new workflow generated by the
initiative of the peer itself, while transition t1 corresponds to the case of a work-
flow started in response to the requirement of a service initiated by another peer

tt t

:w(t) :r(t):t(t)

tuple space

commnication-space

t60 t62t61

Fig. 3. A Linda coordination system

Approaching Web Service Coordination and Composition 191

(accepting to participate in a conversation demanded by another peer requires
to be able to execute a given role of a conversation).

A workflow whose execution has started can execute a set of different actions,
corresponding to transitions around the work-space place:

– The workflow must execute a begin action (transition t3) as a first step after
creation and, once terminated, it must execute an end action (transition t4).

– The workflow may require the execution of inner services, this is the task of
transition t5. For that, a call to a local service or application is generated
with a set of input and output arguments. For instance, once a set of data
has been received, some local processing can be necessary before continuing
an active conversation.

– Transitions t6 and t7 are the ones that generate new conversations, which
are inserted into the conversation space. There are two different situations
in which insertion of new conversations can occur (in fact, new roles corre-
sponding to either a new conversation or an existing one): 1) the workflow
requires the new conversation and starts it (transition t7); this means that
a new conversation correlator idC is generated, a role (or set of roles) is
assumed by the initiating workflow and a set of peers are demanded putting
the corresponding service demands on the coordination system; 2) the work-
flow decides to meet the requirements of another peer to participate in an
started conversation, in which a required role is assumed (transition t6).

– Once a given in-execution workflow starts the execution of a role of a conver-
sation, some interactions are needed between the workflow and the conver-
sation (these typically involve the necessity of passing information between
the workflow and the role in order to be able to execute the conversation).
They must synchronize the conversation begin and end points (transitions
t10 and t9, respectively). On the other hand, the execution of a role of a
given conversation by a peer sometimes requires the invocation of proper
services, whose results may also be needed to continue the conversation (for
instance, to do some calculations, to take some decisions, etc.). This ap-
proach is similar, but more flexible, to abstract properties (WSCI notation
[2]) or variables (WS-CDL notation [3]) used by declarative XML-based co-
ordination languages for the evaluation of conditions against the internal
implementation of the service. This is the task of transition t8.

Obviously, Web services must interact, usually in an asynchronous way. This
means that some mechanism must be provided allowing Web services to inter-
act. Its asynchronous nature made interesting to adopt the Linda coordination
system [14]. In fact, independently of its implementation, a Linda system will
be considered along all the paper. Figure 3 is a model of a Linda coordination
space. The three transitions t60,t61,t62 correspond to the write, take and
read Linda operations, respectively, while place tuple space holds the tuples in-
serted into the Linda space. The peer will execute the communication operations
by firing transitions t11,t12,t13, which will synchronize with t62,t61,t60,
respectively.

192 P. Álvarez, J.A. Bañares, and J. Ezpeleta

Workflows and conversations have some common elements, which pushed us
to model both using the same formalism. Among other common elements, the
following can be considered: a) there may have some partial ordering to be
imposed (on the way services are composed and also on the way messages are
exchanged); b) the same way as some services can be satisfied in parallel, a peer,
inside a given conversation, can dialog with a set of involved peers (even if the
different dialogs would be executed in an interleaved way). This leads to the use
of Petri nets for both types of elements. Since these elements must live and evolve
inside a peer, to model them by means of object nets in the Nets-within-Nets
paradigm is a quite natural approach. Let us introduce in the next subsection
an example and to explain how it can be viewed from our perspective.

1:request

1.4:proposal

1.1:part_request

1.1.1:part_response

1.3:part_request

1.3.1:part_response

Buyer Agent Supplier1 Supplier2 Supplier3

1.2:part_request

1.2.1:part_response

Fig. 4. The case study sequence considered in [17]

[]

:begin()

[id,xml]

[id,service,pars]

[id,xml]

[id,service,pars]

:callService(id,service,pars)

:returnService(id,xml)

:execute(id,service,pars,xml)

[idC,id]

buyer: new buyerRol;
:prepareConv(this,"purchase","agent",buyer,idC)

[idC,id]

idCall
1

id

id+1
:idCall(id) :beginConv(this,idC,"theRequest")

this: idCall(id);
this: callService(id,"proposalDecision",XMLproposal)

:endConv(this,idC,XMLproposal)

t70

t71

t72

t73

t74

t75

t77

t80t79

...

t76

t78

WF_Buyer

[idC,XMLproposal]

this:returnService(id,decision);

[idC,decision]

[idC,decision]

order cancel

[idC,decision]

idC

idC

idC

idC

[idC,XMLproposal]

...

Fig. 5. The (partial) workflow of the buyer peer

Approaching Web Service Coordination and Composition 193

3.2 An Example

Let us use the same case study in [17] to show how Petri nets can be used for
composition and coordination, and how the Nets-within-Nets paradigm allows
a natural integration with the previously defined architecture. The case corre-
sponds to a PC manufacturer which needs to build a set of PC machines with
different configurations, and using a list of available component suppliers. In the
process, a buyer uses a purchasing agent to fulfill the inventory requests. The
purchasing agent communicates with a set of suppliers, each of them offering
specific components needed to build the PC machines. Once a complete configu-
ration can be build (using components of one or multiple suppliers), a proposal
is constructed and sent to the buyer, which can either place the parts order or
cancel the request. Figure 4 shows a possible view of the process just described.

Figure 5 is a Petri net model of the workflow a buyer executes (by now, do
not pay attention to the left small Petri nets in the figure: they are just technical
elements to get a unique local identifier for local service calls, the upper one,
and to implement the local service calls, the bottom one). Firing transition t2
in Figure 2 generates a new instance of this workflow, which is inserted into the
work-space place. The synchronized firing of transitions t3 and t70 makes the
execution of the workflow to start. The synchronized firing of transitions t7 and
t71 makes a lot of work. First, a net instance of the role "buyer" (left part of

[]

idC
idC

idC

idC

idC

XMLrequest

:absCond(this,idC,XMLproposal)

:begin()

XMLproposal

:endConv(this,idC,XMLproposal)

:absCond(this,idC,XMLrequest)

idC

:beginConv(this,idC,"")

idC

idC_AS

idC_AS

XMLpartResponse

XMLpartResponse

idC_AS

idC_AS

XMLrequest

idC_AS

idC_AS

XMLrequest

XMLpartResponse

XMLrequest

XMLpartResponse2

XMLrequest

idC_AS

XMLrequestidC

idC

:end()

t20

t21

t22

t23

t24

t25

t26

t27

t28

t32

t33

t34

t36

t36

t37

idC_AS

agent: new purchasingRol;
:prepareConv(this,"request",
"supplier",agent,idC_AS)

:beginConv(this,idC_AS,
"partRequest1")

:endConv(this,idC_AS,
XMLpartResponse)

idC_AS

agent: new purchasingRol;
:prepareConv(this,"request",
"supplier",agent,idC_AS)

:beginConv(this,idC_AS,
"partRequest2")

idC_AS

:endConv(this,idC_AS,
XMLpartResponse)

idC_AS

agent: new purchasingRol;
:prepareConv(this,"request",
"supplier",agent,idC_AS)

:beginConv(this,idC_AS,
"partRequest3")

idC_AS

XMLrequest

XMLpartResponse3XMLpartResponse1

XMLrequest

agent: new agentRol;
:prepareConv(this,"purchase","agent",agent,idC)

idC

t29

:endConv(this,idC_AS,
XMLpartResponse)

this:idCall(id);
this:callService(id,"createProposal",
 [XMLpartResponse1,
 XMLpartResponse2,
 XMLpartResponse3])

t31
id

id

t30
t38

XMLproposal

this:returnService(id,XMLproposal)

Fig. 6. The workflow of the agent peer

194 P. Álvarez, J.A. Bañares, and J. Ezpeleta

[]

[wf,idC,XMLinput]

[wf,idC,XMLproposal]

:end(wf,idC,XMLproposal)

:begin(wf,idC,"")

[wf,idC]

[wf,idC]

:absCond(wf,idC,XMLinput)

:absCond(wf,idC,XMLproposal)

[]

[wf,idC]

[wf,idC]

[wf,idC,XMLoutput]

[wf,idC,XMLoutput]

[wf,idC,XMLinput]

[wf,idC,XMLinput]

:end(wf,idC,XMLoutput)

[wf,idC]

[wf,idC]

[wf,idC,XMLinput]

[wf,idC,XMLproposal]

[wf,idC,XMLproposal]

[wf,idC,XMLproposal]

:begin(wf,idC,XMLinput)

t51

t52

t53

t54

t55

t56

t57

t58

t59

:t(["buyer","agent",idC,XMLinput])

:w(["agent","buyer",idC,XMLproposal])

:w(["buyer","agent",idC,XMLinput])

:t(["agent","buyer",idC,XMLoutput]);

t50

Fig. 7. A PN model of the buyer-agent interaction protocol (the "purchase" protocol).
The left part corresponds to the "buyer" role, while the right one to the "agent" role.

Figure 7) of the coordination protocol "purchase" is created (the buyer: new
buyerRol is executed); then the coordination protocol is prepared (a new cor-
relator, idC, is generated and associated to the pair (workflow,coordination
protocol)). The generated instance of the buyer role in the coordination pro-
tocol is then inserted into the conversation space. Finally, a request of the
form ["purchase","agent",idC] is sent to the coordination system, which
means that a peer playing the "agent" role of a coordination protocol of type
"purchase" is looked for. Firing transition t72 starts the execution of the buyer
role of the coordination protocol.

On the other side, Figure 6 is a Petri net model of the workflow an agent
must execute as the answer to the request just commented. Notice that firing
transition t21 prepares an instance of the agentRol; the conversation between
the buyer and the agent takes place while both roles are executing. Figure 7
is the communication protocol where transitions t51,t52, t55 and t58 execute
asynchronous communication operations on the Linda-like asynchronous com-
munication system.

Let us now concentrate on the agent workflow to remark some important
elements. Once the instance of the agent role net has been created, the syn-
chronized firing of transitions t10, t22 and t54 is possible, which means that
the agent part of the "purchase" conversation can start. When possible, the
synchronized firing of t9, t25 and t59 will terminate that conversation. But
previously, a lot of things must occur. The synchronized firing of t8, t23 and
t56 allows the agent role part of the "purchase" coordination protocol to pass to
the associated workflow, in form of an XML string/file, for instance, the descrip-
tion of the request. With this information, that workflow initiates, in parallel, a

Approaching Web Service Coordination and Composition 195

set of request coordination protocols with the three suppliers (transition t27).
Once the offers from the suppliers arrive (firing transition t31), the local service
createProposal is called, using the set of offers as parameter. By firing transi-
tion t24, the workflow of the agent peer communicates the proposal elaborated
from the set of offers to its role ("agent" role) of the current conversation. The
mentioned proposal is sent to the buyer by firing transition t58. The conversa-
tion between the buyer and the agent is then terminated, as well as the agent
workflow (synchronized firing of transitions t9, t25 and t59).

4 Conclusions

Most of the XML-based languages for modelling coordination protocols and
workflows are declarative and cannot, by itself, be executed. Moreover, differ-
ent languages are used as appropriate. In this work, Petri nets and the Nets-
within-Nets paradigm are used as the same formalism to deal with complex
coordination protocols and workflows. Its intuitive graphical notation, its formal
semantics and the possibility of doing some properties analysis offer interesting
advantages.

We have proposed a Petri net model for a Web service peer able to execute
workflows and dynamically interpret the required coordination protocols. This
proposal allows the development of complex Web based systems by the descrip-
tion of the workflows and protocols of the involved services, and subsequently,
their distributed execution over a set of physical hosts. The cooperation among
these distributed peers has been done by a Linda-like communication model,
which is orthogonal to the formalism in which it is embedded. The decision of
using a more concrete communication model, and a more concrete and delimited
view of a Web services architecture which, as a counterpart, looses generality
with respect to the proposal in [15], distinguishes our proposal from the approach
followed by Moldt et al.

At present, we have also implemented Linda as a Petri net of the class of the
Nets-within-Nets, so that we are able, using the Renew tool, to execute Web ser-
vice peers and Linda-like coordination primitives on distributed physical hosts.
We will study, in further work, the incorporation of some new functionalities
to use Renew as a well-adapted tool for the modelling and prototyping of Web
Services. It should include some important aspects as the automatic translation
OWL-S into Petri nets, as pointed in [16], the addition of some horizontal co-
ordination protocols, and the inclusion of transaction processing or time related
aspects, as timeouts, for instance.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Archi-
tectures and Applications. Springer Verlag (2004)

2. A. Arkin et al.: Web Service Choreography Interface (WSCI). Technical report,
World Wide Web Consortium (W3C) (2002)

196 P. Álvarez, J.A. Bañares, and J. Ezpeleta

3. N. Kavantzas et al.: Web Service Choreography Description Language (WS-CDL).
Technical report, World Wide Web Consortium (W3C) (2004)

4. D. Martin et al.: Bringing Semantics to Web Services: The OWL-S Approach.
Number 3387 in Lecture Notes in Computer Science. In: First International Work-
shop, SWSWPC 2004. Revised Selected Papers. Springer Verlag (2004) 26–42

5. T. Andrews et al.: Business Process Execution Language for Web Services
(BPEL4WS). Technical report, BEA Systems & IBM & Microsoft & SAP AG
& Siebel Systems (2003)

6. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of
IEEE. Volume 77. (1989) 541–580

7. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT
Press, Cambridge, MA, USA (2004)

8. M. Mecella, F.P. Presicce, B.P.: Modeling E-Service Orchestration Through Petri
Nets. Number 2444 in Lecture Notes in Computer Science. In: Proceedings of the
3rd VLDB International Workshop on Technologies for e-Services (VLDB-TES
2002). Springer Verlag (2002) 38–47

9. Hamadi, R., Benatallah, B.: A Petri net-based model for Web service composition.
In: CRPITS’17: Proceedings of the Fourteenth Australasian database conference on
Database technologies 2003, Darlinghurst, Australia, Australia, Australian Com-
puter Society, Inc. (2003) 191–200

10. Yi, X., Kochut, K.J.: Process Composition of Web Services with Complex Con-
versation Protocols: a Colored Petri Nets Based Approach. In: Proceedings of the
Design, Analysis, and Simulation of Distributed Systems Symposium (DASD’04),
Advanced Simulation Technology Conference 2004. (2004) 141–148

11. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: PODS ’03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, New York, NY, USA, ACM
Press (2003) 1–14

12. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL Web services. In: WWW
’04: Proceedings of the 13th international conference on World Wide Web, New
York, NY, USA, ACM Press (2004) 621–630

13. Fournet, C., Gonthier, G., Lévy, J.J., Maranget, L., Rémy, D.: A calculus of mobile
agent. In: Proc. of CONCUR’96. Volume 1119 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin (1996) 406–42

14. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32
(1989) 444–458

15. Moldt, D., Offermann, S., Ortmann, J.: Proposal for Petri Net Based Web Ser-
vice Application Modeling. Number 3140 in Lecture Notes in Computer Science.
In: Web Engineering: 4th International Conference, ICWE 2004. Springer Verlag
(2004) 93–97

16. Moldt, D., Ortmann, J.: A Conceptual and Practical Framework for Web-based
Processes. Unpublished manuscript (2004)

17. Peltz, C.: Web Service Orchestration and Choreography. A look at WSCI and
BPEL4WS. Web Services Journal (2003) 1–5

18. Álvarez, P., Bañares, J.A., Muro-Medrano, P.: An Architectural Pattern to Ex-
tend the Interaction Model between Web-Services: The Location-Based Service
Context. Number 2910 in Lecture Notes in Computer Science. In: First Interna-
tional Conference on Service Oriented Computing –ICSOC 2003. Springer Verlag
(2003) 271–286

19. Kummer, O.: Introduction to Petri Nets and Reference Nets. Sozionik Aktuell (1)

Approaching Web Service Coordination and Composition 197

20. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
Lecture Notes in Computer Science: 19th Int. Conf. on Application and Theory of
Petri Nets, ICATPN’98, Lisbon, Portugal, June 1998 1420 (1998) 1–25

21. Jensen, K.: Colored Petri nets: A high level language for system design and analysis.
In Rozenberg, G., ed.: Advances in Petri Nets 1990. Volume 483 of Lecture Notes
in Computer Science. Springer Verlag, Berlin (1991) 342–416

22. Kummer, O., Wienberg, F.: Renew - the reference net workshop. In: Tool Demon-
strations, 21st International Conference on Application and Theory of Petri Nets,
Computer Science Department, Aarhus University, Aarhus, Denmark (2000) 87–89

Modeling and Analyzing Context-Aware
Composition of Services

Enzo Colombo1, John Mylopoulos2, and Paola Spoletini1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione,
Via Ponzio 34/5, 20133, Milano, Italy
{colombo, spoleti}@elet.polimi.it

2 Dept. of Computer Science, University of Toronto,
40 St. George Street, Toronto, Canada M5S 2H4

jm@cs.toronto.edu

Abstract. Service-oriented modeling and analysis is a promising ap-
proach to manage context-aware cooperation among organizations be-
longing to the same value chain. Following this approach, a value chain
is modeled as a composition of services provided by different partners and
coordinated in a way that their interactions can be reorganized according
to changes in the environment. However, so far, most of the research work
in this area has been focused on the design of architectures handling ser-
vice discovery, compatibility and orchestration. Little attention has been
given to the specification and verification of context-aware composition
of services during the requirement engineering process. The goal of this
paper is to fill this gap through a methodological approach based on the
strict coupling between a social and a process model. The methodology
is discussed through a simple example.

1 Introduction

Industrial districts consist of a number of enterprises, often small-to-medium
(SME), that are physically close. These enterprises often collaborate through
short-term projects to deliver products and services. In such a setting, enter-
prises strive to exploit flexible forms of collaboration with their business part-
ners as a means to extend the boundaries of their planning activities, increase
performance through cooperation and reduce TCO (Total Cost of Ownership).
Industrial districts often include alliances, temporary or permanent, between two
or more legal entities that exist for the purpose of furthering business or social ob-
jectives without causing the participants to lose their autonomy. In general, this
cooperative environment is characterized by organizations that own heteroge-
neous information systems, with their own processes, procedures, data schemes,
internal roles and responsibilities.

As a consequence, industrial districts represent an ideal environment for the
implementation of a cooperative environment that supports the automation of
inter-organizational business processes through the logical composition of dis-
tributed services representing public views on organizations’ private workflows.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 198–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling and Analyzing Context-Aware Composition of Services 199

In this context, ebXML is an example of a stable architectural solution that
provides a specification language and an architecture shifting the logic of com-
position from information to service exchange [14].

However, ebXML does not support inter-organizational business processes
that are context-aware in the sense that they are run-time customizable, i.e.,
they can readily adapt their structure according to feedbacks from the envi-
ronment. For example, a previous agreement cannot be re-negotiated during
the execution of a collaborative activity and a partner cannot be automatically
replaced when cooperative goals are not fulfilled. In order to overcome these
limitations, researchers and practitioners have focused much effort on imple-
menting service-oriented architectures supporting context-aware collaborations
among organizations [17,10]. In such settings, an inter-organizational process
is implemented through a composition of services supplied over multiple chan-
nels by different actors. In particular, a composition of services describes the
relationships among cooperating organizations according to a global, neutral
perspective, in terms of valid control and coordination mechanisms. Moreover, a
service composition is usually public, since it specifies the common rules defining
a valid interaction among distributed business processes.

Unfortunately, the fruits of this research on context-aware applications does
not have counterparts in methods, models and tools supporting the requirements
engineering process. Indeed, according to [3], the conceptual modeling and anal-
ysis of context-aware composition of services is in its early stage even if this is
the phase where the most and costliest errors are introduced to a design.

The goal of this work is to present a methodological framework that supports
the conceptual modeling and formal analysis of requirements for context-aware
service compositions through a social and a complementary process perspective.
The paper also explores how modelers can analyze different process alternatives
complying with the same social specification. Finally, our approach supports the
formal verification of critical properties of a service composition (e.g., termina-
tion, structural soundness and achievement of shared goals). This work repre-
sents therefore a first step toward the design of service compositions aligned with
different requirements policies.

In the remainder of the paper, we first motivate this work in terms of the
state of the art. Then in Section 3, we define a set of different requirements
policies adopted from the autonomic computing literature [9,13] that modelers
can adopt during the requirements analysis and process specification. Section 4
discusses the requirements analysis process supporting the implementation of a
composition of services. Finally, Section 5 discusses an example highlighting how
our model formalizes service compositions with respect to different requirements.

2 Related Work

Most of the current work on context-aware composition of services is focused
on service orchestration, discovery and semi-automatic management of com-
positions. For example, a theoretical model supporting service orchestration

200 E. Colombo, J. Mylopoulos, and P. Spoletini

through colored Petri nets is proposed in [12]. In particular, this work pro-
poses a novel formal approach to the distribution of control responsibilities
among different actors.

Moreover, formal models of service compositions supporting e-service dis-
covery and composition are discussed in [1,18]. The work of Bultan et al. is
mainly focused on providing a model of compositions for detailed design. Under
this framework, individual services communicate through asynchronous messages
and each service maintains a queue for incoming messages. Moreover, a global
watcher keeps track of messages as they occur. However, this work pays little
attention to the problem of specifying and analyzing service compositions, even
though this is a key factor to improve collaboration among organizations. Notice
that these modeling techniques are particularly important within industrial dis-
tricts where the final output of a composition must comply with strategic goals
shared among different organizations. Moreover, the violation of goals requires
compensation actions aimed at leading the composition to a consistent state.

A promising starting point for a methodology supporting the specification of
context-aware composition of services is the adoption of a social model. Indeed,
this model facilitates goal refinement, the discovery of goal interactions, and the
identification of services that can contribute to their achievement. Moreover,
social models are consistent with coordination theory that constitutes the con-
ceptual background for modeling service compositions [11]. Requirements specifi-
cation through social models is discussed within the Tropos project, where the i*
model for early and late requirements analysis is discussed and formally defined.
The i* framework supports the modeling of social relationships among actors
and has been widely experimented within the context of Multi-Agent System
(MAS) development [3]. However, social specifications alone are inadequate for
modeling control and coordination mechanisms. In particular, they lack a formal
semantics to represent the standard and exceptional control flow for the actions
constituting a service composition. Accordingly, i* needs to be supplemented in
order to be adopted in our particular application domain.

3 Policies for Context-Aware Service Composition

In the following, we define a core set of policies that modelers should eval-
uate during the requirements engineering process associated with the specifi-
cation and verification of context-aware composition of services. This core set
involves a level of self error detection, i.e. controllability, that defines the strate-
gies to identify anomalous situations within a composition, and two levels of
self-management, flexibility and adaptability. Flexibility (also, self-repair) con-
cerns the management of problems repaired through the specification of ad-hoc
compensation flows, while adaptability (also, self-configuration) addresses coop-
eration scenario changes when the same problem occurs over time. It should be
noted that self-repair and self-composition are generally acknowledged as key
features of autonomic systems [13].

Modeling and Analyzing Context-Aware Composition of Services 201

Flexibility. Flexibility is referred to as the run-time management of service self-
repair intended to bring a composition in a consistent state at the lowest cost
and it is formalized according to three dimensions of analysis: automation level,
compensation classes and sparsity.

Automation level is concerned with the degree of human intervention in con-
ducting self-repair. We recognize three levels of intervention: automatic, manual
and semi-automatic. If the system can self-repair by itself in the presence of
anomalous events, the automation level is automatic, while if it only provides
monitoring capabilities the automation level is manual. Finally, if a system does
require some input to perform a compensation action, the automation level is
semi-automatic.

Compensation actions are distinguished into five classes that, as discussed in
[16], represent an exhaustive set of tasks that organizations may implement to
return a composition to a consistent state.

– Delay class calls for simply waiting a predefined time interval hoping that
the anomalous event is resolved; for example, missing information received
after waiting beyond the due date.

– Informative class calls for actions that communicate a particular anomalous
state of affair; for example a violation is notified to a business partner.

– Re-negotiatiation class involves either relaxation or tightening of goals and
constraints a result of process failures.

– Re-execution class involves the re-execution of one or multiple services, pos-
sibly starting the execution of the whole process.

– Re-transact class involves the re-execution of the entire composition with
other potential business partners. This kind of actions always involves the
failure of the current composition and, possibly, the replacement of one or
more process partners.

Sparsity formalizes where compensation actions take place with respect to
where the violation of goals occurs [2]. When the compensation is executed by the
business actor that detects the violation, the compensation is called centralized.
On the other hand, when the action is executed elsewhere it is called delegated.
A delegated compensation can be based on either a centralized or a delegated
decision. When the actor raising the anomalous event specifies the compensation
that its business partner should perform, the decision is centralized, otherwise
it is delegated. Moreover, a delegated compensation can be deterministic or not
depending on the knowledge of the identity of the business partners involved
in the composition. A typical example of non-determinism is the delegation of
a compensation action to any actor that plays a given role within the system.
Finally, a compensation is participative if it is performed by more than one ac-
tor. For example, re-negotiation is intrinsically participative since it requires to
establish a new agreement between two or more counterparts.

Controllability. During a service composition, anomalous events are detected
and communicated by control activities whose aim is to evaluate the fulfillment
of goals. Controllability concerns the level of visibility on the private business

202 E. Colombo, J. Mylopoulos, and P. Spoletini

process that implements a service, or the localization of control activities. Notice
that, in our environment, control activities typically monitor quality of service
goals (for example, service lead-time, productivity and use of resources).

Controllability is defined through two dimensions of analysis: service view
and control policy. In service compositions such as the purchase of commodities
by an occasional buyer, control is typically targeted to the end of the service
with no intermediate checks during service execution. This view can be seen
as black box since control is only possible when service outputs are delivered.
Conversely, when control is possible on different activities during service execu-
tion, the service provides a public view on the private production process (i.e.,
grey-box).

Moreover, three control policies can be implemented when a service composi-
tion takes place. If control activities are performed where operating activities are
executed, control is said to be centralized. On the other hand, control is delegated
when control activities are performed elsewhere. Finally, if control activities are
performed where operating activities are executed and repeated elsewhere, the
control policy is redundant.

Let us consider a scenario that involves a service supplier and an occasional
buyer. The former always monitors service lead-time since it have to guarantee
an high quality of service (a violation of this commitment reduces the reputa-
tion of the buyer). The latter monitors the same attribute since it does not trust
the supplier completely. This short-term relationship represent a simple case of
redundancy since control is repeated by the buyer. However, we note that these
two control activities could return different results if compared each other since
service lead-time measured by the supplier could not consider network delays.
As a consequence, redundant does not mean superfluous.

Adaptability is concerned with modifications of the standard and exceptional
behavior of a composited process depending on the environment within which
the composition is deployed. The environment is modeled through (i) the set of
organizations involved within a composition (i.e., stakeholders) and through (ii)
their goals over time.

In particular, adaptability is required when stakeholders’ goals are repeti-
tively violated over time. According to the stakeholder dimension, a designer
may want to model different compositions as a function of the actors partic-
ipating in the cooperative process. For example, when a business-to-consumer
relationship is deployed, a provider could require payment before service deliv-
ery. On the contrary, for business-to-business interactions, payment could be
required after delivery. We note that the specification of this adaptive behavior
requires the formalization of two roles, i.e., corporate and retail. A stakeholder
could be also modeled through either the channel or the device used during a
service composition and, as a consequence, the behavior of a composition may
vary accordingly. For example, a device could be a desktop, a laptop or a mobile
phone. A channel could be a Virtual Private Network (VPN), Internet, a Wire-
less LAN or the GSM network. For each channel a designer may want to consider

Modeling and Analyzing Context-Aware Composition of Services 203

the bandwidth and the level of security of the channel (e.g., low, medium, high).
Therefore, a composition may vary depending on channel since organizations
may decide that strategic information provided by a given service can be shared
on a VPN (high-security, high-bandwidth) but not when the same service is re-
quired over the Internet. Moreover, a composition with an information service
provided for a laptop (e.g., querying a warehouse to check the availability of a
product) can be simpler if compared with a composition modeled for a desktop.

As discussed before, adaptation is especially desired when stakeholders’ goals
are repetitively violated over time. In this context, modelers should identify dif-
ferent alternatives to adapt the composition in order to reduce the violation
of their goals. In our framework, we identify a main composition and a set of
alternatives corresponding to other configurations when a goal/softgoal is repet-
itively violated. As a consequence, a composition shifts from an alternative to
another depending on nature and number of violations. We note that viola-
tions can be either interleaved or not depending on the policy that we adopt for
counting anomalous events. If the counter is reset every time a desired behavior
is reached, the policy is not interleaved, otherwise it is.

4 Domain Requirements Analysis of Services
Composition

Figure 1 shows the methodological steps through which modelers can perform
the requirements modeling and analysis for a service composition. These steps
comply with coordination theory that provides a theoretical foundation [11].
In particular, the methodology consists of a social analysis, a process analysis
and a verification phase. In the following we present each step. We note that
a social representation of a composition could generate different scenarios with
different business rules and, as a consequence, different process models. These
alternatives are evaluated studying the impact of different specification policies
(see Sect. 3) on strategic goals. The evaluation process is performed adopting the
labeling notation proposed in the NFR framework. Labels are defined as follows:
satisfied (✓), weakly satisfied (W+), undecided (U), weakly denied (W−), denied
(✕), conflict (z) [5].

4.1 Social Analysis

The social specification of a service composition is organized in the following
steps:

– Step 1.1. Identification of market players and dependencies; this step de-
termines the organizations involved in the composition and their business
relationships;

– Step 1.2. Refinement of business relationships, i.e., the actual pruning of
intentional elements according to control and coordination policies.

204 E. Colombo, J. Mylopoulos, and P. Spoletini

Fig. 1. Methodological steps supporting the analysis and specification of a composition
of services

Our social analysis concerns a description of service composition that formal-
izes the strategy and the rationale of organizations interactingwithin a cooperative
environment (i.e., who, why and what). In particular, directors and decision mak-
ers receive feasibility analysis and define the general goals that the composition
should satisfy and the strategies through which these can be achieved. Then, gen-
eral strategies are refined into more operating goals and the corresponding services
fulfilling these goals are identified. The output of this step is an i* social model of
service composition and its level of detail is at the discretion of modelers.

In particular, our i* specification embeds intentional elements such as soft-
goals, goals, service (i.e., a task in the traditional i* notation) and information
resources [3,6]. Goals represent requirements to be fulfilled (�= goal); softgoals
are similar to goals but their fulfillment is not clearly defined (�= softgoal). A ser-
vice is a structured sequence of decisions and actions aimed at producing an added
value transformation of inputs into outputs (�= service) and, finally, information
resources represent inputs/outputs to services (�= resource).

Intentional elements are related to each other through Strategic Relationships
(SR) and Strategic Dependencies (SD). The SD model concerns with the speci-

Modeling and Analyzing Context-Aware Composition of Services 205

fication of social dependencies among organizations. In particular, an SD model
is a graph where each node represents an organization and each link between
two actors describes a dependency in terms of intentional entities. A dependency
formalizes an agreement between two organizations, i.e. a depender and a de-
pendee (depender –� – int. entity –� – dependee). The type of dependency
defines the nature of the agreement. In particular, a goal (or softgoal) depen-
dency represents the delegation of responsibility over the fulfillment of a goal
(or softgoal) from a depender to a dependee. A service dependency represents
the delegation of responsibility over the execution of a service from a depen-
der to a dependee. With respect to goal (or softgoal), a service dependency is
stronger since the depender also specifies how the service needed to fulfill a goal
(or a softgoal) must be implemented. Finally, a resource dependency represents
the need for an input that must be provided to a depender by a dependee. On
the other hand, the SR model supports the refinement process of stakeholder
goals through decomposition (—|–), contribution (→) and means-end (–�) links.
Directors and decision makers (see Figure 1) define their high-level goals and
strategies and then, following a refinement process, elicit the set of services (and
the corresponding resources) that should be performed to achieve their goals
(and softgoals).

4.2 Process Analysis

The process specification of a service composition is organized according to the
following steps:

– Step 2.1. Operationalization of intentional elements and specification of busi-
ness rules managing either goals fulfillment or violation.

– Step 2.2. Specification of the process model of composition complying with
both (i) the social model and (ii) the core set of policies that could be
adopted when modeling context-aware compositions (see Sect. 3).

Our process analysis describes the control and coordination mechanisms of a
service composition. In particular, decision makers receive a social model from
the previous step and, together with process analysts, define the business rules
modeling the standard and exceptional behavior of a service composition. Our
approach to the transformation of a social model into business rules has been
discussed in [6]. Moreover, business rules are specified according to ECA (event,
condition, action) rules complying with the following semantics [4]:

Events are only of two types End(sv), Begin(sv) where sv is a service, with
the natural meaning of beginning and end of the service passed as argument.

Let S be a set of symbols representing actors, RO a set of symbols represent-
ing roles played by actors in S, G a set of symbols representing strategic goals,
R a set of symbols representing information resources, Xt a set of discrete clocks
and CH and DV sets of symbols representing respectively channels and devices
used to supply a service in the conversation. A condition is a predicate p, that
can be categorized in the following classes:

206 E. Colombo, J. Mylopoulos, and P. Spoletini

1. If p has the form Achieved(g), g ∈ G, it is a goal condition.
2. If p has one of the forms Fulfilled(a) or Done(a), a ∈ A, p is called com-

pensation condition.
3. If p has one of the forms Actor(s), Role(s, ro), Device(dv), Channel(ch), p

is called user condition. Actor(s) is satisfied when the current actor is s ∈ S;
Role(s, ro) is satisfied when the actor s ∈ S plays the role expressed by
ro ∈ RO; Device(dv) is satisfied when the current device is dv ∈ DV and
Channel(ch) is satisfied when the current channel is ch ∈ CH.

4. If p is a conjunction of predicates of the form [ρ•c]t, where •∈{≤,≥,=, <,>},
ρ ∈ Xt is a discrete clock, c ∈ is a constant and the subscript t indicates
a time measurement unit, it is a temporal condition.

5. If p has the form (i) [ρ • c]t, where • ∈ {≤,≥,=, <,>}, ρ is a variable, c is a
constant and the square brackets with the index t denote that ρ and c are of
the same measurement unit t or (ii) Received(x, s, r)∧x ∈ X, where r ∈ R,
s ∈ S and X is a set of temporal conditions, p is a resource condition.

Actions can be composed by means of logical (i.e., ¬, ∨, ∧) and Sequence op-
erators. When actions are composed with ∨, the action to be enacted is selected
non-deterministically. The Sequence operator involves the execution of a finite
number of compensation actions in a sequence. However, compensation stops at
the first successful compensation action in the sequence. Moreover, compensa-
tion actions are grouped into classes (see Sect. 3), i.e. delay (e.g., wait for, delay,
. . .), informative (e.g., notify, urge,. . .), re-execute (e.g., re-execute, skip,. . .), re-
negotiate (e.g., relax, tighten,. . .) and re-transact (e.g. delegate execution,. . .).

For example, Wait_for([t0, t1], r) requires to wait for a resource within t0 and
t1 time units, Re_execute([t0, t1], sv) requires the re-execution of a service sv,
Urge([t0, t1], sv, r) urges to the service sv the delivery of a resource r and Relax
([t0, t1], sv, [ρ • c]m) requires to service sv the relaxation of the constraint [ρ • c]m.

Finally, business rules are then mapped into a process model, i.e. a particular
instance of statechart [7] where transitions are labeled by the set of business rules
defined so far and where states labels are defined as follows [4].

A state label lq is a 5-uple lq =< sv, {s1, . . . , sn} / {ro1, . . . , ron} , x, ch, dv >,
with sv ∈ SV , si ∈ S ∀i ∈ [1 . . . n], roj ∈ RO ∀j ∈ [1 . . . n], x ∈ X, ch ∈ CH,
dv ∈ DV . The initial state q0 has no label. Final state labels are modeled as
< [commit, abort, pending], null, null, null, null>.

We note that the symbol ξ in the action part of an ECA rule means that no
action is performed during the transition from a state to another.

4.3 Verification Phase

The verification phase is organized as follows:

– Step 3.1. Formalization of safety and liveness properties [15] related to our
process model.

– Step 3.2. Translation of the process model into the Promela language of the
SPIN model checker [8].

Modeling and Analyzing Context-Aware Composition of Services 207

This final step verifies that the process model is correct, or otherwise provides
a counter example that points to specification inconsistencies.

Properties are generally defined by process analysts on the basis of require-
ments and then specified as LTL logic formulas by engineers. Hence, the process
description of a composition of services C is accepted iff it satisfies a set of LTL
formulas. Formally, let ϕ the conjunction of all LTL formulas, the process model
is accepted iff C| = ϕ.

Our properties can be classified as follows:

– Structural properties, modeling the functional characteristics of a compo-
sition of services. Critical structural properties include the verification that
a composite system is deadlock-free (i.e., absence of invalid end-states), that
it does not embed infinite cycles and that each service belonging to the pro-
cess is invoked (i.e., total functional coverage). More in general, structural
properties model each functional expectation from a run of a composition
of services involving a particular sequence of invocations, the ownership of
each service and the device/channel used to deliver a service.

– Temporal properties, modeling time constraints of a composition. In par-
ticular, temporal requirements state that a service belonging to the compo-
sition can not be invoked in a time less then or equal to t. Moreover, we can
also require that a service is not invoked before t.

– Quality of Service (QoS) properties, modeling the quality requirements
of a composition. Critical QoS properties formalize strategic business goals
whose fulfillment depends from the satisfaction of Service Level Agreement
(SLA) parameters such as productivity, yield, price and throughput.

Accordingly, LTL formulas can formalize the following critical scenarios:

– a scenario involving a single property. For instance, we may require that
the process lead-time is always constrained below a given threshold (i.e.,
�(lead − time < threshold);

– a scenario involving dependencies among properties belonging to the same
class. For instance, we may require that when a particular quality require-
ment is not fulfilled, the overall price of the composition must be below a pre-
defined threshold (i.e., �[(throughput ≤ .5) –> �(price < InitialPrice)]);

– a scenario involving dependencies among properties belonging to different
classes. In particular, assertions relating either temporal and QoS proper-
ties with structural properties are useful to validate scenarios involving the
behavior expected from a composite system as a consequence of exceptions.
For instance, we may require that the violation of a quality requirement
always lead to a negotiation of the initial agreement and viceversa (i.e.,
�[(throughput ≤ .5) ⇔ �Done(negotiation)]).

Notice that verification is possible since we generate non-deterministically
all the possible values of temporal and QoS variables. These values are obtained
by discretizing the domain of each variable into a finite number of significant
values. In this way, we keep finite the number of alternatives. For sake of the

208 E. Colombo, J. Mylopoulos, and P. Spoletini

simplicity, the reader can assume that each state of the model is mapped into
a Promela process and that transitions among states are represented through
the exchange of messages between Promela processes. Under such sattings, the
non-deterministic generation of a temporal and QoS variable associated with a
service is implemented within its corresponding Promela process. An in-depth
discussion of the performances of our model checking technique has been pro-
vided in [4].

5 Example

This section illustrates how the social and process models proposed in Sect. 4
support the specification of a service composition according to different degrees
of flexibility, controllability and adaptability. Hence, our goal in this section is
threefold. First, we provide an intuitive use of our specification models through
a simple example. Second, we discuss how a single social specification can be
mapped into multiple alternative process models. Finally, we show how model
checking supports the identification of inconsistent behaviors in the process spec-
ification thus guiding modelers in their work.

Let us suppose that, within an industrial district, a buyer company buys lap-
top components on the market and supplies assembled laptops to a selected net-
work of retailers. Moreover, this buyer company decides to control components
before assembly since it aims at minimizing laptop malfunctions (i.e., errors). In
order to reduce total costs, the buyer also aims at minimizing the interaction
with the supplier. On the other hand, potential sellers within the district does
not provide any visibility on their production process. The production process
is thus private. However, during component delivery, they provide component
technical features required by the buyer to make quality control. We note that
this example precisely defines our requirements for controllability (i.e., control
delegation, black-box control). We note that control is considered delegated since
it is not implemented by the seller locally.

Fig. 2. Social model involving a buyer company and its laptop components supplier

Modeling and Analyzing Context-Aware Composition of Services 209

Table 1. Contribution of different alternatives on strategic goals (NFR Analysis)

Policy Result
Flexibility Controllability Subgoals Goal

1 ✕ black-box control ✓ delegated control ✓
minimize interac-
tions W+ Contain Cost W+

minimize errors
W−

2 centralized decision ✓ black-box control ✓ delegated control ✓
minimize interac-
tions ✕

Contain Cost W+

minimize errors ✓

3 delegated decision ✓ black-box control ✓ delegated control ✓
minimize interac-
tions U

Contain Cost ✓

minimize errors ✓

However, there are several possible choices with respect to flexibility that
need to be explored and compared during the design process. The social model
associated with this cooperating scenario is shown in Figure 2.

At this stage, the buyer may want to evaluate the impact of different policies
(see Sect. 3) on its high-level Contain Costs softgoal under the hypothesis that this
goal is decomposed into Minimize Errors and Minimize Interactions. Table 1 stud-
ies the impact of controllability and flexibility on these softgoals through the NFR
framework. In particular, flexibility impacts negatively on the Minimize Interac-
tion softgoal but, on the contrary, it contributes positively to Minimize Error.

First of all, let us consider the simplest specification scenario, i.e. flexibility
is not satisfied. This means that violations of the Guarantee QoS goal are not
managed. The analysis of the NFR three shows that this configuration weakly
satisfies the Contain Cost softgoal. In particular, the Minimize Interaction soft-
goal is weakly satisfied and the Minimize Error softgoal is weakly denied. If the
buyer is happy with the adoption of a strategy resulting in a weak satisfaction of
its high-level softgoal, the process model formalizing our cooperating scenario is
shown in Figure 3(a). This specification presents a black-box delegated control
where compensation is not implemented since when the QoS goal is violated the
composition automatically aborts.

The second alternative (see Table 1) is intended to specify a cooperating
scenario where the buyer wants to be sure that the compensation action raised by
violations of the Guarantee QoS goal brings the composition in a consistent state.
Accordingly, the buyer requires the implementation of a centralized decision,
but this requirement denies the Minimize Interactions softgoal. On the other
hand, the implementation of a centralized decision guarantees the satisfaction of
Minimize Errors. The final result is weak satisfaction of Contain Costs, as with
the first alternative. This means that the fulfillment of the Minimize Errors
softgoal balances the structural complexity derived by more interactions.

Figure 3(b) shows the process model associated with our second alternative.
With respect to the previous specification, from the perspective of controllability,
our scenario is unchanged since control is black-box and delegated. However,
the specification is a little bit more complex since compensation classes are in-
troduced together with sparsity. Figure 3(b) enriches the scenario described in
Figure 3(a) by allowing the re-execution of the production service when the QoS
goal is violated. Moreover, since re-execution is allowed exactly once, if the QoS

210 E. Colombo, J. Mylopoulos, and P. Spoletini

ProdProd

commitabort

End(QoS_Control)
[¬Achieved(QoS_goal)]|ξ

{seller}

End(QoS_Control)
[Achieved(QoS_goal)]|ξ

Beg(Production)
[Received(null, seller, order)]|ξ

{buyer}

End(Production)
[Received(null, buyer,
Technical Features)]|ξ

ConCon

ConCon

{buyer}

commit

abort

End(QoS_Control)
[¬Achieved(QoS_goal) ∧
Done(Re-execute(null, s, seller))]|ξ

{seller}

Beg(Production)
[Received(null, seller, order)]|ξ

End(QoS_control)
[¬Achieved(QoS_goal) ∧
¬(Done(Re-execute(null, prod,
seller))]|
Re-execute(null, prod, seller)

End(QoS_Control)[Achieved(QoS_goal)|ξ

End(Production)
[Received(null, buyer,
Technical Features)]|ξ

ProdProd

Prod

Con

{buyer}

commit

abort

End(Prod)
[¬Fulfilled(action)]|
Notify(null, seller, QoS_goal)

{seller}

Beg(Prod)
[Received(null, seller, order)]|ξ

End(Production)
[Received(null, buyer,
Technical Features)]|ξ

End(QoS_control)
[¬Achieved(QoS_goal)]|
Notify(null, seller, context)

End(QoS_control)
[Achieved(QoS_goal)|ξ

End(Prod)
[Fulfilled(action)]|ξ

Fig. 3. Poor flexibility (a), centralized decision (b), delegated decision (c)

goal is still violated the composition aborts. Re-execution is performed accord-
ing to the following guard condition: ¬Achieved(QoS_goal) ∧ ¬(Done(Re −
execute(null, s, seller)).

In summary, from the perspective of flexibility, this scenario is automatic, uses
re-execute compensation class and compensation is delegated with a centralized
decision. The compensation is delegated since it is executed by an actor different
from the one raising the exception, i.e. the seller. Moreover, decision is centralized

Modeling and Analyzing Context-Aware Composition of Services 211

since the compensation action is decided by the actor raising the exception (i.e.,
the buyer).

Finally, the third alternative in Table 1 studies the impact of flexibility on
high-level softgoals in case of delegated decision. According to this scenario, the
impact of flexibility on the Minimize Interaction softgoal improves from break to
hurt [5]. As a consequence, the Minimize Interaction softgoal is not denied but
undecided. Moreover, the Minimize Errors softgoal is still satisfied meaning that
the Contain Costs softgoal is satisfied as well. Hence, with respect to previous
two alternatives, this current alternative seems to capture a better compromise.

Figure 3(c) shows the process model associated with this third alternative. In
this case, a notification is provided to the seller that will perform a correspond-
ing compensation action. If the compensation fails the composition is aborted,
otherwise committed. Since the service view is black-box, the buyer is not aware
of the rules followed to compensate the violation. The buyer is only aware of the
behavior of the composition, independently of whether the compensation fails
or not.

Once the better policy has been identified, our last step is requirements
verification. Indeed, checking that the behavior of the compensation is consistent
with our requirements is a critical activity of our modeling process. Under this
scenario, we have two main vital requirements for our composition of services.

– An instance of the composition always terminates: ��(commit ∨ abort).
– The composition commits either if the QoS goal is fulfilled or if its violation

is successfully compensated:
∃qn ∈ F [ln = 〈commit, null, null, null, null〉 →
(∃a : Action, qs : QoSGoal(Achieved(qs) ∨ Fulfilled(a)))].

The analysis of the process model through model checking shows that Prod
is an invalid end state [8]. In particular, the generated counter-example shows
that the composition does not terminates into either commit or abort since our
specification does not model what happens when the order information resource
is not received. Hence, our model is enriched with a transition from Prod to
abort labeled as following:
Beg(Production)[¬Received(null, seller, order)]|ξ.

Moreover, a successive analysis shows the same problem for the Con state.
However, in this case Production has been already executed and modelers want
to avoid, if possible, an abort of the composition. As a consequence the process
model is completed as follows:

– A self-loop on the Prod state is added to urge the provisioning of Technical
Resources This transition is labeled as follows:
End(Production)[¬Received(null, seller, TechnicalFeatures)]|
Urge([1, 3], buyer, TechnicalFeatures).

– A pending state modeling that control is given to a human operator is added
to the composition to handle a failure of the Urge compensation action. The
transition from Prod to pending is labeled as follows:
End(Production)[¬Fulfilled(Urge([1, 3], buyer, TechnicalFeatures)]|ξ.

212 E. Colombo, J. Mylopoulos, and P. Spoletini

This new version of the original process model fully satisfies the two critical
requirements formalized for our composition of services.

6 Conclusion and Future Work

This paper has presented a methodological framework that supports the mod-
eling and formal analysis of service compositions extending the i* social model
adopted in Tropos [3] with a complementary process perspective. Moreover, this
work has discussed a set of policies that designers should consider when shifting
the attention from a social representation of the cooperative environment to one
of the possible process scenarios. In summary, our proposal represents the first
step toward the implementation of autonomic inter-organizational business pro-
cesses, i.e., business processes that can self-repair, self-configure and self-tune
on the basis of feedbacks from the environment [13]. Specifically, we envision
an environment where several service compositions exist, but one is selected for
execution. If there are problems with this execution, the system can self-repair
or self-reconfigure by shifting to an alternative composition to improve its per-
formance with respect to the fulfillment of stakeholder goals. Mechanisms for
changing the composition on the basis of different types of feedback have not
been studied yet in our work.

Future research direction will include the development of a theory of robust-
ness for service compositions. In particular, we will study techniques to ensure
that a composition behaves in a reasonable way even when part of the goals are
inconsistent, implausible or unrealizable with the resources available.

References

1. T. Bultan, X. Fu, R. Hull, and J. Su. Composition specification: a new approach
to design and analysis of e-service composition. In Proceeding of the International
Conference on the World Wide Web (WWW’03), ACM press, pages 403–410, 2003.

2. F. Casati and G. Pozzi. Modeling exceptional behaviours in commercial workflow
management systems. In Proceeding of the CoopIS/DOA/ODBASE 1999, LNCS,
pages 127–138, 1999.

3. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirement-driven information
systems engineering: the tropos project. Information Systems, 27:365–389, 2002.

4. A. Cherubini, E. Colombo, C. Francalanci, and P. Spoletini. A formal approach
supporting the specification and verification of business conversation requirements.
In Proceeding of the IADIS International Conference on Applied Computing, 2005.

5. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering Series, volume 5. Kluwer Internationale Series in Software
Engineering, 2000.

6. E. Colombo, C. Francalanci, and B. Pernici. Modeling cooperation in virtual dis-
tricts: a methodology for e-service design. International Journal of Cooperating
Information Systems, Special Issue on Service Oriented Modeling, 13(4):337–369,
2004.

7. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Trans.
on Soft. Eng. and Method., 5(4):293–333, 1996.

Modeling and Analyzing Context-Aware Composition of Services 213

8. G.J. Holtzmann. The SPIN Model Checker. Addison-Wesley, 2004.
9. J. Kephard, M. Parashar, V. Sunderam, and R. Das, editors. Proceedings of the

International Conference on Autonomic Computing, 2004.
10. Mais project. http://black.elet.polimi.it/mais/index.php.
11. T.W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM

Comp. Surveys, 26(1):87–119, 1994.
12. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling e -service orchestration

through petri nets. In Proceedings of the 3nd VLDB International Workshop on
Technologies for e-Services, pages 38–47, 2002.

13. R. Murch. Autonomic Computing. Prentice Hall, 2004.
14. ebxml project. www.ebXML.org.
15. A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,

13:45–60, 1981.
16. W. R. Scott. Organizations: Rational, Natural and Open Systems. Prentice Hall,

1992.
17. Vispo project. www.casaccia.enea.it/vispo.
18. A. Wombacher and B. Mahlenko. Finding trading partners to establish ad-hoc

business processes. In Proceeding of the CoopIS/DOA/ODBASE 2002, LNCS,
pages 339–355, 2002.

Towards Semi-automated Workflow-Based
Aggregation of Web Services

Antonio Brogi and Razvan Popescu

Computer Science Department, University of Pisa, Italy

Abstract. Service aggregation is one of the main issues in the emerg-
ing area of service-oriented computing. The aim of this paper is to con-
tribute to the long-term objective of lifting service aggregation from man-
ual hand-crafting to a semi-automated engineered process. We present
a methodology which, given a set of service contracts, tries to construct
an aggregation of such services. Service contracts include a description
of the service behaviour (expressed by a YAWL workflow), as well as an
(ontology-annotated) signature. The core aggregation process basically
performs a control-flow and an (ontology-aware) data-flow analysis of a
set of YAWL workflows to build the contract of an aggregated service.

1 Introduction

Service-oriented computing [18] is emerging as a new promising computing pa-
radigm that centres on the notion of service as the fundamental element for
developing software applications. In this scenario, two prominent issues involved
in the development of next generation distributed software applications can be
roughly synthesised as: (1) discovering available services that can be exploited to
build a needed application, and (2) suitably aggregating such services to achieve
the desired result. A typical example [16] of the need of aggregating services
is a client wishing to make all the arrangements necessary for a trip (flights,
hotel, rent-a-car, and so on). Such a client query may not be satisfied by a single
service, while it could be satisfied by composing several services. Complex Web
service interactions however require more than SOAP, WSDL and UDDI can
offer [7], and semi-automatic aggregation frameworks based on such standards
are not available yet.

The aim of this paper is to contribute to the long-term objective of lifting
service aggregation from manual hand-crafting to a semi-automated engineered
process. We present a methodology which, given a set of service contracts, tries
to construct an aggregation of such services. Service contracts include a descrip-
tion of the service behaviour (expressed by a YAWL [23] workflow), as well as
an (ontology-annotated) signature. The core aggregation process basically per-
forms a control-flow and an (ontology-aware) data-flow analysis of a set of YAWL
workflows to build the contract of an aggregated service. Technically, these anal-
yses are defined by first expanding the services’ workflows with dummy YAWL
flow constructs, and by exploiting ontology-matching mechanisms to perform

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 214–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Semi-automated Workflow-Based Aggregation of Web Services 215

a semantics-aware data-flow analysis. It is worth noting that the aggregation
process is parametric with respect to the type of semantic annotations and
the matching mechanism. Namely different ontology-matching mechanisms can
be plugged-in (e.g., [4, 5, 17]), including the “void” one for syntactic matching
(matching=identity) in absence of ontological information. The result of the ag-
gregation process is a YAWL workflow which describes the interplay among all
the services considered, namely all the control-flow and data-flow relationships
among them.

In this paper we will try to focus on the aggregation process, and directly
consider the problem of how to aggregate a given set of service contracts. We
will not describe here how service contracts can be generated from service im-
plementations. (A thorough analysis of how to transform BPEL [3] specifica-
tions into workflows can be found in [26].) We will not describe either how the
initial set of services is chosen. We may assume that it has been selected by
some matchmaking algorithm in response to some client query. For instance, the
composition-oriented matchmaking algorithm in [4] returns a candidate set of
services which may collectively satisfy a client query. It is worth observing that
the aggregation process is completely separated from the process of selecting the
initial set of services. For instance, the latter can be also performed by a user
browsing a (semantics-enabled) UDDI registry and selecting some services.

It is worth noting that the proposed aggregation process can accept both
black-box and glass-box queries to drive the aggregation. Black-box queries sim-
ply specify the sets of inputs and outputs that the aggregated service should
request and offer respectively. Glass-box queries specify instead a process be-
haviour (i.e., a workflow and not just inputs/outputs) and can be used to check
whether it can be aggregated together with a given set of services.

The description of the proposed aggregation process can by synthesised in
three main steps: (1) perform control-flow and data-flow analysis on the input
services to determine their aggregation, (2) generate the contract of the aggre-
gated service, (3) deploy the aggregated service. We will concentrate on steps
(1) and (2) in this paper, and it is worth stressing the importance of separating
the phase of contract generation from the deployment of the aggregated service,
thus allowing multiple deployments of the latter.

2 Aggregation Framework

2.1 Service Contracts

We consider services that are described by contracts [13], and we argue that con-
tracts should in general include different types of information: (a) Ontology-
annotated signatures, (b) Behaviour, and (c) Extra-functional proper-
ties. Following [16], we argue that WSDL signatures should be enriched with
ontological information (e.g., expressed with OWL [10] or WSDL-S [15]) to de-
scribe the semantics of services, necessary to automatise the process of overcom-
ing signature mismatches as well as service discovery and composition. Still, the

216 A. Brogi and R. Popescu

information provided by ontology-annotated signatures is necessary but not suffi-
cient to ensure a correct inter-operation of services. Following [13], we argue that
contracts should also expose a (possibly partial) description of the interaction
protocols of services. Indeed, such information is necessary to ensure a correct
inter-operation of services, e.g., to verify absence of locks. We argue that YAWL
[23] (see below) is a good candidate to express service behaviour as it has a well-
defined formal semantics and it supports a number of workflow patterns. Finally,
we argue that service contracts should expose, besides annotated signatures and
behaviour, also so-called extra-functional properties, such as performance, reli-
ability, or security. (We will not however consider these properties in this work,
and leave their inclusion into the aggregation framework as future work.)

We intend to build an aggregation framework capable of translating the be-
haviour of a service described using existing process/workflow modelling
languages (e.g., BPEL, OWL-S [16], etc.) into equivalent descriptions expressed
through an abstract language with a well-defined formal semantics, and vice-
versa. An immediate advantage of using such an abstract language is the pos-
sibility of developing formal analyses and transformations, independently of the
different languages used by providers to describe the behaviour of their services.
We consider that YAWL [23] is a promising candidate to be used as an abstract
workflow language for describing service behaviour. YAWL is a new proposal of
a workflow/business processing system, which supports a concise and powerful
workflow language and handles complex data, transformations and Web service
integration. YAWL defines twenty most used workflow patterns gathered by a
thorough analysis of a number of languages supported by workflow management
systems. These workflow patterns are divided in six groups (basic control-flow,
advanced branching and synchronisation, structural, multiple instances, state-
based, and cancellation).1 YAWL extends Petri Nets by introducing some work-
flow patterns (for multiple instances, complex synchronisations, and cancella-
tion) that are not easy to express using (high-level) Petri Nets. Being built on
Petri Nets, YAWL is an easy to understand and to use formalism. With respect
to process algebras, YAWL features an intuitive (graphical) representation of ser-
vices through workflow patterns. Furthermore, as illustrated in [22], it is likely
that a simple workflow which is troublesome to model for instance in π-calculus
may be instead straightforwardly modelled with YAWL. A thorough comparison
of workflow modelling with Petri Nets vs. π-calculus may be found in [22]. With
respect to the other workflow languages (mainly proposed by industry), YAWL
relies on a well-defined formal semantics. Moreover, not being a commercial lan-
guage, YAWL supporting tools (editor, engine) are freely available.

2.2 Aggregation Phases

As mentioned in the Introduction, a prerequisite of our framework is the set of
services to be aggregated which may be obtained either by manual selection or as

1 Space limitations do not allow us to illustrate these patterns. A thorough description
of them may be found in [24].

Towards Semi-automated Workflow-Based Aggregation of Web Services 217

output of a service discovery framework. It is worth noting that our aggregation
approach copes both with black-box and glass-box queries. On the one hand, a
black-box query specified only in terms of offered inputs and requested outputs
is transformed into an equivalent service which is then added to the registry
of matched services. On the other hand, one may submit services as glass-box
queries. By doing so one may also check whether the corresponding service can
be aggregated with a given set of services.

The semi-automated aggregation framework we propose can be synthesised
by the following phases:

0. Service Translation. This preliminary phase deals with translating real-
world descriptions (e.g., BPEL + semantics, or OWL-S, etc.) of the services
to be aggregated into equivalent service contracts using YAWL as an ab-
stract workflow language for expressing behaviour, and OWL for example
for expressing the semantic information. One may note that such a transla-
tion may be done off-line and hence it is not a burden for the aggregation
process. (A thorough analysis of how to transform BPEL specifications into
workflow patterns can be found in [26].)

1. Core Aggregation. During this phase YAWL processes are expanded with
explicit data- and control-flow (dummy) constructs, also called Input/
Output Control/Data enabler processes (or ICs/IDs/OCs/ODs for short).
We then express the initial control-flow connections in terms of the newly
added ICs and OCs. Next, we use data-flow dependencies (i.e., operation
and message mapping among the involved parties) provided by an ontology-
aware matching algorithm (e.g., [4, 5, 17]) to derive a data-flow mapping. We
express such mapping by suitably linking IDs and ODs.

2. Contract Generation. Firstly, we perform a basic check to see whether the
aggregated service does not have processes with unsatisfied inputs. Should
this be the case, we adequately eliminate unlinked ODs and other redundant
dummies introduced by the previous phase, and we cancel redundant control-
flow constructs. The ontology-annotated signature and behaviour we obtain
form the service contract of the aggregated service. The generated contract
can be further analysed (e.g., lock analysis) and optimised.

3. Service Deployment. Finally, the aggregated service can be deployed as a
real-world Web service (i.e., described using OWL-S, or BPEL + semantics,
etc.). Clients will hence see the aggregation as another Web service that can
now be discovered and further aggregated with other services. This operation
is the inverse of the operation done during the Service Translation phase.

As already mentioned in the Introduction, we will describe phases (1) and (2)
in the following, after introducing some definitions.

2.3 Definitions

We shall use the term “service” to denote the YAWL notion of “workflow spec-
ification”, “process” to denote a YAWL “task” as well as “start” and “end” to
denote YAWL “input condition” and “output condition”, respectively.

218 A. Brogi and R. Popescu

We consider a set or registry of service contracts to be aggregated, where
each contract corresponds to an original service implementation (e.g., described
with BPEL and OWL for semantics, etc.). A contract S consists of an ontology-
annotated signature (i.e., semantic information, Sem for short) and of a be-
haviour description (Beh).2

Sem specifies the set of processes (Procs) as well as the name (Sname) and
the type (Stype) of the service. Indeed we argue that services, processes as well
as parameters (i.e., messages) should be annotated with ontological information
describing their types. Such information can be used by discovery frameworks
to better match services. For example, considering ontologies for services, pro-
cesses and parameters, we may have for example a “stock quote” service type,
a “flight reservation” process type, or a “notebook computer” parameter type,
and so on. Procs consists of the m processes of S together with start and end,
which are two special dummy processes used to mark the entry end exit points,
respectively, of S. A process P contains the sets of input (I) and output (O)
parameters, its name (Pname) and type (Ptype). Similarly to services and pro-
cesses, a parameter exposes its name (Iname) and type (Itype). Note that the
matching concerns types — rather than names — of parameters, processes or ser-
vices3. Name matching should be employed in absence of ontology-annotations.
The start and end dummy processes are defined similarly to the other processes
P yet they do not have IOs and ontological values associated. They are named
“DummyStart of P” and “DummyEnd of P”, respectively.

Beh contains information about both the control-flow constructs used by pro-
cesses in Procs (PC), as well as information about the control-flow dependencies
among such processes (PD). PC associates one join and one split construct to
each process P . A join or split control construct may be one of the following:
AND, OR, XOR, or EMPTY. Intuitively, the join specifies “how many” processes
before P are to be terminated in order to execute P , while the split construct
specifies “how many” processes following P are to be executed. The EMPTY
join (split) is used when at most one process execution precedes (follows, respec-
tively) the execution of P . PD defines the control-flow of S by means of a set of
process pairs. A pair < P, Q > specifies that P must be executed before process
Q (i.e., Q may begin its execution provided P has finished its execution).

Consider the following example which will be used as a basis for presenting
the applicability of our methodology, and for enhancing the description of the
proposed approach. A youngster passionate about winter sports and computer
science, decides to publish on her homepage a Web service providing information
on the conditions of her favourite slope. Basically, she wishes that other winter

2 When necessary, indexes shall be used for disambiguation.
3 Roughly, service matching may restrict the set of services to be considered, while

process matching may help refining further the selection (e.g., matching a “com-
puter selling” process of an “e shop” service) to possibly aggregate sub-services
rather than whole services. Finally, parameter matching can provide the data-flow
information necessary to achieve the aggregation.

Towards Semi-automated Workflow-Based Aggregation of Web Services 219

WinterResort

ClimateSensor

WeatherMonitor

Report
WindState

Report
SnowState

Preliminary
Analysis

WaitFor
ResortDecision

Notify
BaseStation

ClearSlope&
StopCabin

ReopenSlope&
StartCabin

Basic
SlopeInfo

SendReportTo
BaseStation

sensorLocation&Warning

sensorLocation&Warning

dangerFlag clearFlag

danger

resortID

resortID

resortIDwindCondition

snowCondition

windState snowState

clearFlag
slopeClosedFlag

slopeOpenedFlag

resortReport

resortReport

windState snowState

start

end

P sj

control-flow

join
process

split

input

output

AND join
or

XOR split

XOR join
or

AND split

EMPTY join
or split

LEGEND

Fig. 1. Example registry with three services to be aggregated

sports enthusiasts like her may access her page in order to see whether the slope
is practicable and the cabin is working.

One may assume that she locates the ontologically-enriched WR4 service (see
Figure 15) from a (semantically anotated) UDDI registry. Next, she feeds this
service as a black-box query to a discovery framework (e.g., [9] or [5]). This may
lead to selecting the other two services in Figure 1.

It is important to note that the example is not supposed to present a software
masterpiece as we would like to underline the fact that different services written
by different persons with different programming styles and backgrounds may
present (aggregation) issues. It is likely that the selected services do not match
perfectly, or that the ensemble is not optimal, and so on. Redundancies (e.g.,
redundant outputs) may occur as well. The three services are as follows:

CS basically gathers data from sensors located on top of the mountain. Upon
invocation, it executes process NBS which outputs the sensor’s location and
the warning level for the slope it is monitoring sLW , as well as the snow’s
condition sS (e.g., indication of avalanche danger) and the wind’s condition wS
(e.g., strong wind leads to stopping the cabin). We may assume that CS runs
periodically (e.g., every hour).

WM (or BaseStation) centralises data gathered from various CSs. It firstly
performs a preliminary analysis (e.g., reasoning based on a history record over
the past X years) through the execution of PA. On the one hand it specifies
whether there is an avalanche danger by enabling dF or, on the other hand
whether the slope is safe (e.g., it may be (re)opened). In the latter case cF is
enabled. The AND split of PA indicates that both RWS and RSS are to be
executed after it. RWS makes its own prediction on the wind state based on the
rID input. Similarly, RSS sets the snow state based on its prediction. The AND
join construct of WRD states that WRD may be executed provided both RWS

4 Due to space limitations, we shall use abbreviations throughout the paper (e.g., WR
instead of WinterResort).

5 In addition to the representation of YAWL tasks (i.e., processes) we graphically
describe their parameters as well.

220 A. Brogi and R. Popescu

and RSS finished execution. WRD is in charge of waiting for a report from a
WR service (i.e., the decision of the latter on whether to close or to (re)open
the slope).

WR is a service that manages access to a slope and cabin. From a workflow
point of view, WR behaves differently from WM in the way that it uses a XOR
split in the BSI process and a XOR join in the SRBS process. The former
indicates that either CSSC or RSSC will be activated for execution, while the
latter indicates that SRBS will be invoked after each execution of either CSSC
or RSSC. BSI inputs the danger flag produced by the WM and it decides
either to clear the slope and stop the cabin (by executing the CSSC process), or
to (re)open the slope and (re)start the cabin (by executing the RSSC process).
Finally, SRBS sends a report to the WM service with its decision.

2.4 Core Aggregation

During this phase, all processes (except start and end ones) are expanded with
explicit control- and data-flow dummies. Then, a control-flow analysis expresses
the initial flow dependencies in terms of the newly added dummies. Last but not
least, a data-flow analysis coordinates processes of (possibly) different services
by taking into account a given data-flow mapping. The three steps are detailed
hereafter.

Process Expansion
Let us consider the empty (aggregated) service A. For each process P of each
service S, we generate the following five dummy processes:

– P ∗ corresponding to process P “stripped off” its join and split control con-
structs, and augmented with AND join and split constructs,

– an Input Control enabler IC P which inherits the initial join of P ,
– an Output Control enabler OC P which inherits the initial split of P ,
– an Input Data enabler ID P which is in charge of gathering all inputs needed

for the execution of P (if P has at least one input), as well as
– an Output Data enabler OD P which “offers” all outputs of P to other

processes (if P has at least one output).

With the exception of P ∗, all such processes lack IOs and ontological values.
Their purpose is to explicitly separate the control- and data-flow logic of P .
From a control-flow point of view, IC P and ID P are linked as inputs of P ∗

while OC P and OD P are linked as outputs. All added dummies as well as the
corresponding dependencies have to be added to BehA.

Initial PA
Expanded PA

OD_PA

IC_PA OC_PA

ID_PA
PA PA*

sLW

dF cF

sLW

dF cF

Fig. 2. Expansion of PA

Towards Semi-automated Workflow-Based Aggregation of Web Services 221

Figure 2 describes the process expansion step applied to process PA of service
WM . As one may note, PA∗ employs AND join and split constructs as, on the
one hand, both IC PA and ID PA have to finish execution before executing
PA∗ and, on the other hand, both OC PA and OD PA are to be executed
after PA∗ terminates. From a data-flow point of view, the AND join of ID PA
indicates that all inputs of PA must be available in order to execute PA. Dually,
the AND split of OD PA specifies that after PA finishes its execution, all its
outputs will be available to all processes requesting at least one of them as input.

Once all processes have been expanded, two more processes are introduced.
They are IC A and OC A corresponding to the input and the output control
enabler dummies of A. IC A has an AND split in order to activate ICs of all
services to be aggregated. Dually, OC A has an AND join in order to wait for
OCs of all services to finish execution. Links from start A to IC A as well as
from OC A to end A are added to BehA.

Control-Flow Analysis
During this step, control-flow dependencies of each service S are specified in
terms of the newly added ICs and OCs, as well as IC A and OC A, and then
added to BehA. The result of applying this step on the WM service may be
seen in Figure 3.6

Control-flow dependencies of WM

RWS*

RSS*

OC

WRD*PA*

ODID

OC

OD

IC

ID

OC

OD

IC

ID

OCIC

ID

IC_A OC_AIC

Fig. 3. Control-flow analysis for WM

For example, the initial link between PA and RWS has been translated to a
link between OC PA and IC RWS. Moreover, one should note that start WM
and end WM are now connected to IC A and OC A respectively. That is,
IC A enables (from the control-flow point of view) IC PA for execution. Du-
ally, OC WRD is connected to OC A and hence (from the control-flow point of
view) its execution is to be interpreted as the termination of WM .

Data-Flow Analysis
In order to derive data-flow information linking processes of (possibly) different
services, one has to match requested inputs with offered outputs. Our flexible
methodology allows for an ontology-based matching algorithm (e.g., [17, 5]) to
be plugged-in. “An input i of process P matches an output o of process Q if
and only if Itypei is in an exact or subsumes relation with Otypeo”. Dually, “an
output o of process Q matches an input i of process P if and only if Otypeo is
in an exact or plug-in relation with Itypei”. One should note that the notion of
6 All enabler dummies shall be abbreviated in figures from now onwards (e.g., IC

instead of IC PA, and so on).

222 A. Brogi and R. Popescu

Data-flow mapping for WM
Data-flow mapping for WR

OD_RWS

OD_NBS
ID_CSSC

OD_RSS

wS

sS

OD_NBS ID_PAsLW

OD_BSI ID_RWSrID

OD_BSI ID_RSSrID

OD_SRBS ID_WRDrR

OD_PA ID_BSId

OD_PA ID_RSSCcF

Fig. 4. Data-flow analysis for our example

“match” used in this paper is in line with the one defined in [17, 16]. We shall call
such a match a data-flow dependency and a set of them as data-flow mapping.

From a data-flow point of view, a process P must have all its inputs available
in order to be executable. In this paper we assume that such data-flow dependen-
cies are provided by the matching framework. A maximal such mapping can be
obtained by employing a one-to-one matching between all process parameters of
the services to be aggregated. One should note that the user should be allowed
to modify, cancel or add dependencies in the mapping. A data-flow mapping
can be expressed in terms of IDs and ODs as follows. If input x of process P
matches output(s) y of process(es) Q then we generate the following:

1. A dummy process P x7 with no IOs or ontological value. However, it is impor-
tant to note that such a dummy employs a XOR join and an EMPTY split.
This is due to the fact that values for x may be obtained from different ys, yet
only one is needed. Furthermore, a link from P x to ID P is added to BehA.

2. A link from OD Q to P x which is added to BehA for every matched y.

Figure 4 illustrates the data-flow mapping for our example. Due to space issues,
P x dummy names will be abbreviated to x in figures from now onwards. One
should note that the CS service is not depicted as its only process (NBS) does
not have inputs.

2.5 Contract Generation

During this phase, the algorithm employs an input-driven basic check and then
it cleans the aggregated service A of redundant constructs.

Basic Validation
We firstly assume that all services are “well defined” in the sense that each initial
process P has at least one incoming link (with the exception of “start”) and at
least one outgoing link (with the exception of “end”). This means that each IC
has at least one incoming link, and that each OC has at least one outgoing link.
At this point one may encounter two situations:
– All processes P have their inputs satisfied. In other words, every input x

of P has been matched with at least one output y of a process Q. This
7 For simplicity we assume here that all P x are unique.

Towards Semi-automated Workflow-Based Aggregation of Web Services 223

translates to the fact that the P x dummy process has at least one incoming
link. Should this be the case, we say that the aggregation is successful — in
the way that there are no unsatisfied data- (and control-) flow constraints.

– At least one process P is missing some inputs. In other words there exists an
input x of P which has not been matched to any output(s) y of process(es)
Q. This translates to the fact that the P x dummy process has no incoming
links. Should this be the case, we say that the aggregation has not succeeded
— in the way that there is at least one unsatisfied data-flow constraint. The
(additional) missing inputs must be provided by other services, hence either
a refined query can be launched or the needed services can be manually
added to the set of services to be aggregated.

We chose to consider as valid such a “closed” workflow (i.e., without unsatis-
fied inputs) in order to enforce a necessary yet not sufficient condition for the
execution of (all) processes. Given a valid service contract, one may use analy-
sis tools in order to verify (dead-)lock freedom for example. As YAWL is built
upon Petri Nets (PN), analysis tools for the latter can be exploited to check
properties of PN translations of the former. For example WofYAWL [25] is an
analysis tool for YAWL workflows. WofYAWL maps an input YAWL workflow
into a PN with inhibitor arcs, and then analyses semi-positive transitions in the
short-circuited net. If the net is bound, it performs a relaxed soundness check
in the regular net. Finally the results are mapped back into a YAWL workflow,
possibly annotating the output with warnings (e.g., in the case of unbounded
nets). Figure 5 describes the aggregation contract we have obtained so far for
our example.8 One should note that all ICs (e.g., IC PA and so on) have at
least one incoming link, as well as, all OCs (e.g., OC PA and so on) have at
least one outgoing link. Moreover, all process with the exception of OD CSSC
and OD RSSC have at least one incoming and one outgoing link. We can say
that the aggregation is successful as there are no unsatisfied data- (or control-)
flow constraints.

Eliminating Redundancies
As one may have noted, not all dummy constructs introduced during the Core
Aggregation phase are necessary. Given the aggregated service is valid, we
can (repeatedly) eliminate redundant items, that is, dummies and join/split
constructs. One obtains at the end of this step the final service contract of A.
We hereafter describe three elimination criteria.
Dummy Absorption. Assume a dummy (i.e., control or data process enabler,
or process added during the data-flow analysis) iD connected as input of an-
other process P such that the pair < joiniD, joinP > is one of the follow-
ing – {< EMPTY, EMPTY >, < EMPTY, α >, < α, α >} –, where α ∈
{AND, XOR, OR}. Then, we “absorb” iD into P which remains unchanged. If
< joiniD, joinP > is < α, EMPTY > then we absorb iD into P with the obser-
vation that P inherits the join of iD (i.e., joinP := joiniD). The scenario is dual

8 Due to its verbosity we chose not to represent dummies introduced during the Data-
Flow step – with the exception of wS and sS. Moreover, the full graphical form of
the workflow (i.e., including process parameters and so on) has been omitted.

224 A. Brogi and R. Popescu

 -- Aggregated service -- before optimisation

IC

OC

RWS*

RSS*

OC WRD*

NBS*

CSSC*

BSI*
SRBS*

PA*
ODID

OD

OC

OD

IC

ID

OC

OD

IC

ID

OC
IC

ID

OD
ID

OCIC

ID

OC

OD

RSSC*

OCIC

ID

wS

sS

IC_A

IC

OC_A

IC

IC

OC

OD

OD

Fig. 5. Service contract A (before eliminating redundancies)

for absorbing output dummies. Absorbing means eliminating iD and updating
BehA correspondingly.
Dummy Elimination. An OD P employing an EMPTY split construct and that
does not have at least one outgoing link to other join of an ID Q can be elimi-
nated together with its corresponding link (from P to OD P) from BehA. One
should note that the initial AND split of OD P should be cancelled first by the
following criteria.
Join/Split Elimination. A joinP = EMPTY has to be set to EMPTY provided P
has only one incoming link. The dual (i.e., the “reset” of splitP given P has at
most one outgoing link) is resolved in similar way.

-- Aggregated service -- after optimisation

OC

RWS*

RSS*

WRD*

NBS*

CSSC*

BSI*
SRBS*

PA*

RSSC*

wS

sS

IC_A

OC_A

Fig. 6. Final service contract A

Towards Semi-automated Workflow-Based Aggregation of Web Services 225

Let us come back to our example. Figure 4 indicates that all dummies in-
troduced during the data-flow analysis are redundant, except for wS (input of
CSSC) and sS (input of RSSC). The redundant joins are cancelled first and
then the respective redundant processes are absorbed into IDs and ODs. More-
over, the elimination criteria allow us to cancel almost all dummies introduced
during Process Expansion with the exception of OD CSSC, OD RSSC, and
OC BSI. The former two are tackled by the dummy elimination criterion. The
final version of A is given in Figure 6.

3 Concluding Remarks

The aim of this paper is to contribute to the long-term objective of lifting service
aggregation from manual handcrafting to a semi-automated engineered process.
We have presented the kernel of a semi-automated workflow based aggregation
framework of Web services. It consists of a methodology which, given a set of
service contracts, tries to construct an aggregation of such services.

We have synthesised three main phases of the proposed aggregation process:
(1) Core Aggregation – perform control- and data-flow analysis on the input
services to determine their aggregation, (2) Contract Generation – generate the
contract of the aggregated service, (3) Service Deployment – deploy an imple-
mentation of the aggregated service. While we concentrated on steps (1) and
(2) in this paper, it is worth stressing the importance of separating the phase of
contract generation from the deployment of the aggregated service, which allows
multiple deployments of the latter.

The main features of our approach are: (a) It can be used to aggregate services
written with different description languages (e.g., BPEL + semantics, OWL-S),
(b) It is (semi-)automatic – both with respect to service translation and co-
ordination (core aggregation and contract generation), (c) It allows a seamless
integration with service discovery systems (third-party matchmaking frameworks
can be straightforwardly plugged in), (d) It supports both black- and glass-box
queries (i.e., behaviour-less and behavioural queries), (e) It features composi-
tional aggregation (e.g., the aggregation of A, B, and C can be computed by
first aggregating A and B and then aggregating the obtained service with C),
and finally (f) It supports multiple deployments of the aggregated service.

Regrettably, space limitations do not allowa thoroughdiscussion of relatedwork
(e.g., manual [3, 28], semiautomatic [9, 12] or fully automatic approaches [2, 11,
19, 20, 21, 27]). Surveys on Web service composition can be found in [1, 6, 8, 14].
In manual Web service composition the requester acts as the service composer as
well. She has to browse the registry, find the desired service operations and model
their interactions into a flow structure. Fully automatic composition of services is
very difficult to achieve as the requester has to specify all input requirements of
registered service operations that make the composite service. Furthermore, pro-
cessing the request is a very time consuming process. A significant number of fully
automatic approaches employ planning techniques. A downside of planning is that
both the goal and the status are difficult to represent. Another issue is that all ser-

226 A. Brogi and R. Popescu

vices involved in the composition have to be known a priori. It is however worth
observing that, while some of the previously mentioned features ((a) – (f)) are con-
sidered in some existing approaches, our approach is the first — at the best of our
knowledge — that provides all of them in a single framework.

A key ingredient of our framework is the notion of service contract, which in-
cludes a description of the service’s behaviour (expressed by a YAWL [23] work-
flow), as well as an (ontology-annotated) signature.Contracts are the basis for link-
ing services throughdata-flowdependencies aswell as for overcoming signature and
behaviour mismatches. They also pave the way for aggregrating services written
in different languages and for multiple deployments of the aggregated service.

Further investigation will be devoted to extend the core aggregation process
in order to ensure stronger formal properties of computed aggregations, and to
account for the adaptation of signature and behavioural mismatches in contracts.
Future work will also be devoted to the development of the semi-automated
derivation of contracts from real service implementations (considering first BPEL
and OWL-S, and exploiting the techniques described in [26]), and of the service
deployment phase (again considering BPEL and OWL-S first).

References

1. W. Aalst, M. Dumas, and A. Hofstede. Web service composition languages: Old
wine in new bottles? In Proceedings of Euromicro ’03, pages 298–307. IEEE Com-
puter Society, 2003.

2. D. Berardi, G. D. Giacomo, M. Lenzerini, M. Mecella, and D. Calvanese. Synthesis
of underspecified composite e-services based on automated reasoning. In ICSOC
’04: Proceedings of the 2nd international conference on Service oriented computing,
pages 105–114, New York, NY, USA, 2004. ACM Press.

3. BPEL4WS Coalition. Business Process Execution Language for Web Ser-
vices (BPEL4WS), 2002. http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/.

4. A. Brogi, S. Corfini, and R. Popescu. Flexible Matchmaking of Web Services Using
DAML-S Ontologies. In P. Traverso and S. Weerawarana, editors, Proceedings of
Second International Conference on Service Oriented Computing (ICSOC04 - short
papers), IBM Research Report. NY, USA, pages 30–45, November 15-18 2004.

5. A. Brogi, S. Corfini, and R. Popescu. Composition-oriented Service Discovery.
In F. Gschwind, U. Assmann, and O. Nierstrasz, editors, Proceedings of Software
Composition ’05, LNCS, vol. 3628, pages 15–30, 2005.

6. Y. Charif and N. Sabouret. An Overview of Semantic Web Services Composition
Approaches. To appear in Proceedings of the International Workshop on Context
for Web Services 2005, Elsevier.

7. H.-P. Company. Web Services Concepts – a technical overview. http://www.
hpmiddleware.com/downloads/pdf/web services tech overview.pdf. Technical re-
port, 2001.

8. J. Koehler and B. Srivastava. Web Service Composition: Current Solutions and
Open Problems. ICAPS Workshop on Planning for Web Services, pp. 28-35, 2003.

9. Q. Liang, L. N. Chakarapani, S. Y. W. Su, R. N. Chikkamagalur, and H. Lam. A
Semi-Automatic Approach to Composite Web Services Discovery, Description and
Invocation. International Journal of Web Services Research, 1(4):64–89, 2004.

Towards Semi-automated Workflow-Based Aggregation of Web Services 227

10. D. McGuiness and F. van Harmelen (Eds). OWL Web Ontology Language
Overview. Web guide, February 2004. http://www.w3.org/TR/owl-features.

11. S. McIlraith and C. T. Son. Adapting Golog for composition of semantic Web ser-
vices. Proceeding of 8th Conference on Knowledge Representation and Reasoning
(KR’02), 2002.

12. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services
on the Semantic Web. The VLDB Journal, 12(4):333–351, 2003.

13. L. Meredith and S. Bjorg. Contracts and types. CACM, 46(10), 2003.
14. N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE

Internet Computing Online, 8(6):51–59, Dec. 2004.
15. J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and K. Sivashan-

mugam. WSDL-S: Adding Semantics to WSDL - White Paper. http://lsdis.cs.uga.
edu/library/download/wsdl-s.pdf.

16. OWL-S Coalition. OWL-S 1.1 release. http://www.daml.org/services/owl-s
/1.1/.

17. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matchmaking
of Web Services Capabilities. In I. Horrocks and J. Hendler, editors, First In-
ternational Semantic Web Conference on The Semantic Web, LNCS 2342, pages
333–347. Springer-Verlag, 2002.

18. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Commun.
ACM, 46(10):24–28, 2003.

19. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for building com-
posite Web services. Computer Science Department, StanfordUniversity, 2002.
http://www2002.orgCDROM/alternate/786/.

20. S. Thakkar, A. C. Knoblock, and L. Ambite. A view integration approach to
dynamic composition of Web services. Proceedings of the ICAPS ’03 Workshop
on Planning for Web Services, Italy, 2003.

21. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into
Executable Processes. In International Semantic Web Conference, pages 380–394,
2004.

22. W. M. P. van der Aalst. Pi calculus versus Petri nets: Let us eat humble pie rather
than further inflate the Pi hype, 2004. Available from http://tmitwww.tm.tue.
nl/staff/wvdaalst/pi-hype.pdf.

23. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Technical report, Queensland Univ. of Technology, FIT-TR-2003-04,
2003.

24. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

25. E. Verbeek. WofYAWL Version 0.3. Technical report available online at http://
home.tm.tue.nl/hverbeek/wofyawl03.pdf.

26. P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In I.-Y. Song,
S. W. Liddle, T. W. Ling, and P. Scheuermann, editors, Proceedings of the 22nd
International Conference on Conceptual Modeling, volume 2813 of Lecture Notes
in Computer Science, pages 200–215. Springer, 2003.

27. D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic Web services
composition using SHOP2. Proceedings of the ICAPS ’03 Workshop on Planning
for Web Services (P4WS ’03), 2003.

28. J. Yang and M. P. Papazoglou. Service components for managing the life-cycle of
service compositions. Information Systems, 29(2):97–125, 2004.

Choreography and Orchestration:
A Synergic Approach for System Design�

Nadia Busi, Roberto Gorrieri, Claudio Guidi,
Roberto Lucchi, and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy
{busi, gorrieri, cguidi, lucchi, zavattar}@cs.unibo.it

Abstract. Choreography and orchestration languages deal with busi-
ness processes design and specification. Referring to Web Services tech-
nology, the most credited proposals are WS-CDL about choreography
and WS-BPEL about orchestration. A closer look to such a kind of lan-
guages highlights two distinct approaches for system representation and
management. Choreography describes the system in a top view manner
whereas orchestration focuses on single peers description. In this paper
we define a notion of conformance between choreography and orchestra-
tion which allows to state when an orchestrated system is conformant
to a given choreography. Choreography and orchestration are formal-
ized by using two process algebras and conformance takes the form of a
bisimulation-like relation.

1 Introduction

In the design and deployment of service oriented applications two different and
opposite features should be taken into account. On the one hand, it is important
to program single peers services, which could be involved in different systems
at different times, preserving their composionality, and on the other hand, it
is fundamental to guarantee overall systems functionalities. Orchestration and
choreography deal with such a kind of issues where the former focuses on single
peers description whereas the latter describes a system in a top view manner.

In this paper we present a notion of conformance between two simple formal
languages we have developed for representing choreography and orchestration.
They are inspired by Web Services technical specifications as WS-CDL [W3C]
and WS-BPEL [OAS]. Here we intend to give a mathematical liaison between
the two different approaches of choreography and orchestration in order to give a
powerful mechanism for designing systems where peers behaviours and systems
functionalities are developed together in a complementary fashion.

The choreography language has been presented in our previous works [BGG+]
[GGL05] whereas the orchestration one is introduced in this work. They are based
both on basic Web Services interaction mechanisms, the so called operations,
defined in WSDL specifications. Briefly, we remind that an operation contains
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 228–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choreography and Orchestration: A Synergic Approach for System Design 229

the definition of an incoming message for a service and, when used, the definition
of the response one.

The orchestration language takes inspiration from WS-BPEL. More precisely
we have been inspired by the abstract non-executable fragment of WS-BPEL
used to specify the observable behaviour of services abstracting away from inter-
nal details. Abstract WS-BPEL exploits opaque variables (i.e. variables without
a specified content) to indicate which state variables could influence a choice
taken from a service, without specifying the internal decision procedure of the
service. In our language, all variables are opaque; this permits us to focus on
interaction mechanisms and data flow abstracting away from variable values.

The choreography language is named CLP and is used to describe the be-
haviour of a system by defining the involved roles and their interactions whereas
the orchestration language is called OL and it allows to program communicating
behaviours of the single peers which can be composed for obtaining an orches-
trated system. We define the semantics of such languages by using two different
labelled transition systems and we present a notion of conformance based on a
bisimulation between them with some similarities with branching bisimulation
[vGW96]. In particular, we define a so called joining function in order to associate
the orchestrators of the orchestrated system to the roles of the choreography and
we construct the definition of conformance on a bisimulation which exploits such
a function in order to compare the labels of the two different labelled transition
systems.

In section 2 we present the choreography language whereas in section 3 we
present the orchestration one. Then in section 4 we present the joining function
and we give the notion of conformance. Furthermore, in section 5, an example
is reported and in section 6 conclusions are presented.

2 A Formal Model for Choreography

In this section we introduce the formal model for representing choreographywhich
is based on a declarative part and on a conversational one. The former deals with
roles, operations and variables whereas the latter deals with a language for de-
scribing the conversations (interactions composition) among the roles.

Declarative Part. Here we explain the declarative part of our choreography
formal model which is based on the concept of role. A role represents the be-
haviour that a participant has to exhibit in order to fulfill the activity defined
by the choreography. Each role can store variables and exhibit operations.

As far as variables are concerned, we associate to each role a set of variables
which represent the information managed by the role and which will be used in
the interactions between roles. In this model we abstract away from the values
and we consider variables as names which are exploited for representing the data
flow among the roles.

As far as operations are concerned, each role is equipped with a set of opera-
tions it has to exhibit which essentially represent the access points that will be

230 N. Busi et al.

used by the other roles to interact with the owner one. Operations can have one
of the following interaction modalities: One-Way or Request-Response. Indeed,
in WSDL specifications, the most significant types of operations are the One-
Way, where only the incoming message is defined, and the Request-Response,
where both the incoming message and the response one are defined.

Let us now introduce the formalization of roles, variables and operations.
Let V ar be the set of variables ranged over by x, y, z, k. We denote with x̃

tuples of variables, for instance, we may have x̃ = 〈x1, x2, ..., xn〉.
Let OpName be the set of operation names, ranged over by o, and OpType =

{ow, rr} be the set of operation types where ow denotes a One-Way operation
whereas rr denotes the Request-Response one. An operation is described by its
operation name and operation type. Namely, let Op be the set of operations
defined as follows where each operation is univocally identified by its name.

Op = {(o, t) | o ∈ OpName, t ∈ OpType}

A role is described by a role name, the set of operations it exhibits and by a set
of variables. Namely, let RName be the set of the role names, ranged over by ρ.
The set Role, containing all the possible roles, is defined as follows:

Role = {(ρ, ω, V) | ρ ∈ RName, ω ⊆ Op, V ⊆ V ar}

Conversational Part. The conversations among the roles are defined by using
the following grammar:

CP ::= 0 | μ | CP ; CP | CP |CP | CP + CP

μ ::= (ρA, ρB, o, x̃, ỹ, dir)

In the following we use CLP , ranged over by Con, to denote the set of conversa-
tions of such a language. CP denotes a conversation which can be the null one (0),
the interaction μ, the sequential composition (CP ; CP), the parallel composition
(CP | CP) or the choice one (CP +CP). (ρA, ρB, o, x̃, ỹ, dir) means that an inter-
action from role ρA to role ρB is performed. In particular, o is the name of the
operation (o, t) ∈ Op on which the message exchange is performed. Variables x̃
and ỹ are those used by the sender and the receiver, respectively. They represent
that after the interaction the information stored in x̃ are assigned to the variables
ỹ. Finally, dir ∈ {↑, ↓} indicates whether the interaction is a request (↑) or a
response (↓) one. Choreography well-formedness rules can be found in [BGG+].

Semantics of CLP . The semantics of CLP is defined in terms of a labelled
transition system [Kel76] which describes the evolution of a conversation. Let
ActC be a set of parameterized actions (ρA, ρB, o, x̃, ỹ, dir) ranged over by μ.
CP

μ→ C′
P means that the conversation CP evolves in one step in a configuration

C′
P performing the action μ. We define →⊆ CLP × ActC × CLP as the least

relation which satisfies the axioms and rules of Table 1 and closed w.r.t. ≡,
where ≡ is the least congruence relation satisfying the axioms at the end of
Table 1. The structural congruence ≡, which equates the conversations whose

Choreography and Orchestration: A Synergic Approach for System Design 231

Table 1. Semantics of CLP conversations

(Interaction)

μ
μ→ 0, μ = (ρA, ρB , o, x, y, dir)

(Sequence)

CP
μ→ C′

P

CP ; DP
μ→ C′

P ; DP

(Parallel)

CP
μ→ C′

P

CP | DP
μ→ C′

P | DP

(Choice)

CP
μ→ C′

P

CP + DP
μ→ C′

P

(Struct)

C′
P ≡ CP , CP

μ→ DP , DP ≡ D′
P

C′
P

μ→ D′
P

(Structural Congruenge)

0; CP ≡ CP CP | 0 ≡ CP CP + 0 = CP

CP + DP ≡ DP + CP CP | DP ≡ DP | CP

(CP + DP) + EP ≡ CP + (DP + EP) (CP | DP) | EP ≡ CP | (DP | EP)

behavior cannot be distinguished, expresses that (CP , +) and (CP , |) are abelian
monoids where 0 is the null element. Furthermore, the rule 0; CP ≡ CP means
that when a conversation completes then the other one which follows in sequence
can be performed.

The description of axioms and rules follows. The axiom Interaction de-
scribes that an interaction μ, which is a request or a response one depending
on the value of dir, is performed. When a request is performed (dir =↑) the
information contained in the variables x̃ within the sender role ρA are passed
to the variables ỹ within the receiver role ρB exploiting the operation o of the
role ρB. When a response is performed (dir =↓) the information contained in
the variables ỹ within the request receiver role ρB are passed to the variables
x̃ within the request sender role ρA exploiting the operation o of the role ρB.
Response must be performed always after a request interaction from ρA to ρB.
The rules Sequence, Parallel, Choice and Struct are standard.

Now we are ready to define a choreography. A choreography, denoted by C,
is defined by a pair (Con, Σ) where Con ∈ CLP and Σ ⊆ Role with Σ finite.

3 A Formal Model for Orchestration

In this section we introduce a formal language for orchestration called OL. An
orchestrator can be seen as a process, associated to an identifier, that can ex-
change information, represented by variables, with other processes. Our model
takes inspiration from the abstract non-executable fragment of WS-BPEL and
abstracts away from variables values focusing on data-flow. Let V ar be the set
of variables used for choreography ranged over by x, y, z, k and ID be the set of
possible identifiers ranged over by id. We denote with x̃ tuples of variables. The
language syntax follows:

P ::= 0 | o | ō | o(x̃) | ō(ỹ) | o(x̃, ỹ, P) | ō(x̃, ỹ) | P ; P | P + P | P | P
E ::= [P]id | E ‖ E

232 N. Busi et al.

An orchestrated system E is a pool of named processes. An orchestrator [P]id
is a process P identified by id. Informally the idea is that orchestrators are
executed on different locations, thus they can be composed by using only the
parallel operator (‖). Processes can be composed in parallel (|), sequence (;)
and alternative composition (+). 0 represents the null process. Communication
mechanisms model Web Services One-Way and Request-Response operations.
In particular, we have three kinds of primitives for synchronization, one for
the internal synchronization and two for the external one. The former simply
consists of a channel o that different threads of the process running in parallel,
can use to coordinate their activities. In this case no message is exchanged; this
is because the orchestrator variables are shared by any processes running on
that orchestrator. The primitives for external synchronization, that is between
different orchestrators, are the following ones: o(x̃) and ō(ỹ) represent the input
and the output of a single message whereas the primitives o(x̃, z̃, P) and ō(ỹ, k̃)
represent coupled messages exchanges. In particular we have that o(x̃) represents
a One-Way operation whose name is o where the received information are stored
in the tuple of variable x̃ of the receiver. ō(ỹ) represents a One-Way invocation
whose name is o and the sent information are stored in the tuple ỹ of the sender.
o(x̃, z̃, P) represents a Request-Response operation whose name is o. In this case
the process receives a message and stores the received information in x̃ then it
executes the process P and, at the end, sends the information contained in z̃ as
a response message to the invoker. Finally, ō(ỹ, k̃) represents the invocation of a
Request-Response operation whose name is o. The process sends the information
contained in ỹ as a request message and stores the information of the response
message in k̃.

Semantics of OL. The semantics of OL is defined in terms of a labelled transition
systems which describes the evolution of an orchestrated system. We define →
as the least relation which satisfies the axioms and rules of Table 2. Let ActOL ={
ō, o, ō(ỹ), o(x̃), ō(ỹ, k̃)(n), o(x̃, z̃)(n), ōn(ỹ), on(x̃), σ, τ

}
, ranged over by γ, be

the set of actions. σ is a parameterized action of the form (id, id′, o, x̃, ỹ, dir)
where id, id′ are orchestrators ids, o is an operation name, x̃, ỹ are tuples of
variables and dir ∈ {↑, ↓}.

Table 2 is divided into two parts describing the rules and structural con-
gruence for processes and orchestrated systems respectively. In, Out, One-
WayOut, One-Way-In, Req-Out, Req-In, Resp-Out, Resp-In are axioms
where it is important to note the behaviour of the Req-In one. It stands that
after the reception of a request on a Request-Response operation the process P
must be executed before sending the response. Rule Int-Sync deals with inter-
nal synchronization whereas Par-In and Choice ones deal with internal parallel
and choice respectively. Seq describes the behaviour of sequentially composed
processes. CongrP deals with internal structural congruence denoted by ≡P .

Rule One-WaySync deals with the synchronization on a One-Way operation
between two orchestrators whereas the rules Req-Sync and Resp-Sync deal
with that on a Request-Response one. Rule Req-Sync exploits a fresh label
n which is generated in order to univocally link the response synchronization

Choreography and Orchestration: A Synergic Approach for System Design 233

Table 2. OL operational semantics

(Rules over P)

(In)

o
o→ 0

(Out)

ō
ō→ 0

(One-WayOut)

ō(ỹ)
ō(ỹ)→ 0

(One-WayIn)

o(x̃)
o(x̃)→ 0

(Req-Out)

ō(x̃, ỹ)
ō(x̃,ỹ)(n)→ on(ỹ)

(Req-In)

o(x̃, ỹ, P)
o(x̃,ỹ)(n)→ P ; ōn(ỹ)

(Resp-Out)

ōn(ỹ)
ōn(ỹ)→ 0

(Resp-In)

on(x̃)
on(x̃)→ 0

(Int-Sync)

P
o→ P ′ , Q

ō→ Q′

P | Q
τ→ P ′ | Q′

(Par-Int)

P
γ→ P ′

P | Q
γ→ P ′ | Q

(Seq)

P
γ→ P ′

P ; Q
γ→ P ′; Q

(Choice)

P
γ→ P ′

P + Q
γ→ P ′

(CongrP)

P ≡P P ′ , Q′ ≡P Q , P ′ γ→ Q′

P
γ→ Q

(Structural Congruenge over P)

P + 0 ≡P P P | 0 ≡P P 0; P ≡P P (P + Q) ≡P (Q + P)
(P | Q) ≡P (Q | P) (P + Q) + R ≡P P + (Q + R) (P | Q) | R ≡P P | (Q | R)

(Rules over E)

(One-WaySync)

[P]id
ō(x̃)→ [P ′]id , [Q]id′

o(ỹ)→ [Q′]id′

[P]id ‖ [Q]id′
σ→ [P ′]id ‖ [Q′]id′

, σ = (id, id′, o, x̃, ỹ, ↑)

(Req-Sync)

[P]id
ō(z̃,k̃)(n)→ [P ′]id , [Q]id′

o(x̃,ỹ)(n)→ [Q′]id′

[P]id ‖ [Q]id′
σ→ [P ′]id ‖ [Q′]id′

, n fresh, σ = (id, id′, o, z̃, x̃, ↑)

(Resp-Sync)

[P]id
on(k̃)→ [P ′]id , [Q]id′

ōn(ỹ)→ [Q′]id′

[P]id ‖ [Q]id′
σ→ [P ′]id ‖ [Q′]id′

, σ = (id, id′, o, k̃, ỹ, ↓)

(Par-Ext)

E1
γ→ E′

1

E1 ‖ E2
γ→ E′

1 ‖ E2

(CongrE)

E1 ≡ E′
1 , E′

2 ≡ E2 , E′
1

γ→ E′
2

E1
γ→ E2

(Int-Ext)

P
γ→ P ′

[P]id
γ→ [P ′]id

(Structural Congruence over E)

P ≡P Q

[P]id ≡ [Q]id
E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

234 N. Busi et al.

defined in rule Req-Resp. Considering the axiom Req-Out and Req-In in-
deed, the Request-Response primitives will be transformed into two One-Way
(invocation and reception) identified by the label n which is unique and uni-
vocally determined during the synchronization. It is worth noting that all the
synchronizations which are performed between different orchestrators are la-
belled with an action σ. This fact will be fundamental for the definition of the
conformance notion presented in the next section. Par-Ext deals with external
parallel composition and CongrE is for external structural congruence denoted
by ≡. Int-Ext expresses the fact that an orchestrator behaves accordingly with
its internal processes.

4 Conformance Between Choreography and Orchestration

Our proposal defines a conformance notion based on a bisimulation-like relation
between the labelled transition system of choreography and the labelled tran-
sition system of the orchestrated system where orchestrators are associated to
roles. Such a kind of machinery allows us to test if all the interactions performed
by the orchestrated system are coherent with the conversations expressed in the
choreography. Furthermore, it guarantees, by exploiting the fact that the name
of the variables must be the same, that the data flow of the orchestrated system
is conformant with that expressed by choreography conversations. In particular,
let C be a choreography where Con represents the conversation rules and let E
be an orchestrated system. We define a joining function, named Ψ , for associ-
ating the orchestrators of E to the roles of C and we test the conformance, up
to Ψ , of E and C by using a bisimulation-like relation where the σ labels of the
former are compared with the μ ones of the latter.

Definition 1 (joining function). A joining function is an element of the set
{Ψ | Ψ : ID → RName ∪ {⊥}} containing functions which associate to each or-
chestrator identifier id a choreography role ρ or the ⊥ value.

Given a joining function Ψ and an action σ = (id, id′, o, x̃, ỹ, dir) of a given
orchestrated system where id and id′ are orchestrator identifiers, o is an op-
eration, x̃ and ỹ are tuples of variables and dir ∈ {↑, ↓}, we denote with
Ψ [σ] = (Ψ(id), Ψ(id′), o, x̃, ỹ, dir) the renaming of the orchestrator identifiers
with the joined roles.

Now we introduce the conformance notion, namely conformability bisimula-
tion, between an OL system and a CLP one. It is based on a relation which
resembles branching bisimulation and it tests that, given a joining function Ψ ,
all the conversations σ produced by the OL system are equal to the μ produced
by the CLP one excluding τ actions.

Definition 2 (Conformability bisimulation). Let Ψ be a joining function.
A relation RΨ ⊆ (CLP × OL) is a conformability bisimulation if (C, E) ∈ RΨ

implies that for all μ ∈ ActC and for all σ ∈ ActOL:

Choreography and Orchestration: A Synergic Approach for System Design 235

1. C
μ→ C′ ⇒ E

τ→∗
E′ ∧ E′ σ→ E′′ ∧ (C′, E′′) ∈ RΨ ∧ Ψ [σ] = μ

2. E
τ→ E′ ⇒ (C, E′) ∈ RΨ

3. E
σ→ E′ ⇒ C

μ→ C′ ∧ (C′, E′) ∈ RΨ ∧ Ψ [σ] = μ

We write C �Ψ E if there exists a conformability bisimulation RΨ such that
(C, E) ∈ RΨ .

Such a kind of notion is not enough for defining conformance because it is pos-
sible that there exist synchronizations between orchestrators on operations which
are not considered in choreography. Furthermore, there could be orchestrators
which are not joined with the roles of the choreography (this case corresponds
to those identifiers that Ψ maps in ⊥) and which are used for coordinating the
others. To the end of conformance, only the interactions which are performed on
the operations within the choreography roles and which involve only orchestra-
tors joined with roles must be considered relevant (i.e. observable). The following
definition defines the notion of conformance between a choreography and an OL
system exploiting a hiding operator which makes observable those interactions
which contain operations included in the choreography and orchestrators joined
with roles.

Definition 3 (Conformance Notion). Given a choreography C = (Con, Σ),
an orchestrated system E ∈ OL and a joining function Ψ such that Im(Ψ) =
Σρ ∪{⊥}1 where Σρ is the set of role names contained in Σ, let ωC be the set of
the operations involved within the choreography C, let ωo be the set of operations
exhibited by the processes of E and let EOP = ωo\ωC be the set of operations
exhibited by E and which do not appear within the roles of C. Let E⊥ be the
set of orchestrator identifiers id of E for which Ψ(id) = ⊥. We say that E is
conformant to C if the following condition holds:

C �Ψ E/EOP //E⊥

where /EOP is a hiding operator which hides (replaces with τ moves) all the
transitions which contain operations contained in EOP and //E⊥ is a hiding
operator which hides all the transitions which contain orchestrators not joined
with any role.

5 Example

Here we reason about the meaning of conformance by using an example. Let
us now consider a business scenario where a customer invokes a store service in
order to buy a good and where, depending on the customer’s credit card type,
the store service will invoke the respective payment service. In order to define
the choreography let us consider four roles: ρC which represents the customer
behaviour, ρS which represents the store service, ρV which represents the VISA

1 Im(Ψ) = {Ψ(id) | id ∈ ID}.

236 N. Busi et al.

payment service and ρAE which represents the American Express payment ser-
vice. For each role we define the following operations:

ωC = {(RECEIPT, ow)}, ωS = {(BUY, rr)},
ωV = {(PAY-VISA, rr)}, ωAE = {(PAY-AE, rr)}.

Referring to the role definitions described in Section 2 the role ρC exhibits a One-
Way operation named RECEIPT whereas the other roles exhibit a Request-
Response operations (respectively BUY, PAY-VISA, PAY-AE).

Let typeC and typeS be the variables which hold the credit card type of role
ρC and ρS respectively, let d̃C , d̃S , d̃V and d̃AE be the tuples of variables repre-
senting the customer data respectively owned by each role and let ackC , ackS ,
ackV and ackAE be the variables used for modelling the response information
into the Request-Response operations. We denote with ◦ (e.g. d̃C ◦ typeC) the
concatenation of tuples. We define the variable sets of each role in the follow-
ing way:

VC =
{
typeC , d̃C , ackC

}
, VS =

{
typeS, d̃S , ackS

}
,

VV =
{
d̃V , ackV

}
, VAE =

{
d̃AE , ackAE

}
Let Σ be the set of roles defined in the following way:

Σ = {(ρC , ωC , VC), (ρS , ωS , VS), (ρV , ωV , VV), (ρAE , ωAE, VAE)} .

Let Con be the following conversation:

Con ::= CustBuyReq;
(V isaPay; CustBuyResp ; V isaReceipt
+
AEPay; CustBuyResp ; AEReceipt)

CustBuyReq ::= (ρC , ρS ,BUY, d̃C ◦ typeC , d̃S ◦ typeS, ↑)
CustBuyResp ::= (ρC , ρS ,BUY, ackC , ackS , ↓)
V isaPay ::=

(ρS , ρV ,PAY-VISA, d̃S , d̃V , ↑); (ρS , ρV ,PAY-VISA, ackS , ackV , ↓)
V isaReceipt ::= (ρV , ρC ,RECEIPT, d̃V , d̃C , ↑)
AEPay ::=

(ρS , ρAE ,PAY-AE, d̃S , d̃AE , ↑); (ρS, ρAE ,PAY-AE, ackS , ackAE , ↓)
AEReceipt ::= (ρAE , ρC ,RECEIPT, d̃AE , d̃C , ↑)

In Fig. 1 are graphically represented the interactions among the roles set by
Con without showing the order they are performed. The circles are the roles
with their own variables depicted inside, the bold segments are the operations
and the arrows are the interactions. CustBuyReq is the request interaction from
the customer to the store service for purchasing a good. Depending on the in-
formation held by the variable typeS the Visa payment interaction V isaPay or
the American Express one AEPay, will be enabled. After the payment is per-
formed the store service can send the response to the customer (CustBuyResp).

Choreography and Orchestration: A Synergic Approach for System Design 237

Fig. 1. Interactions among the roles

At the end the receipt from the credit card agency can be sent to the customer
(V isaReceipt or AEReceipt). We consider the choreography C = (Con, Σ).

In the following we present two possible orchestrated systems where the for-
mer is not conformant with the choreography C and the latter satisfies the notion
given in the previous section.

1. We consider an orchestrated system E1 with four orchestrators: C, S, V
and AE whose definition follows:

E1 ::= C ‖ S ‖ V ‖ AE
C ::= [BUY(d̃C ◦ typeC, ackC) | RECEIPT(d̃C)]C
S ::= [BUY(d̃S ◦ typeS, ackS , Payment)]S

Payment ::= (PAY-VISA(d̃S , ackS) + PAY-AE(d̃S , ackS))
V ::= [PAY-VISA(d̃V , ackV);RECEIPT(d̃V)]V
AE ::= [PAY-AE(d̃AE , ackAE);RECEIPT(d̃AE)]AE

We consider a joining function Ψ where C, S, V and AE embody roles ρC , ρS , ρV

and ρAE , that is:

Ψ(C) = ρC , Ψ(S) = ρS , Ψ(V) = ρV , Ψ(AE) = ρAE ,
Ψ(id) = ⊥ for id /∈ {C, S, V, AE} .

Analysing system E1 is possible to note that it is not conformant with the
choreography C because of the RECEIPT operation. Indeed, there exist some
paths where the interaction on the RECEIPT operation is performed before
the response interaction on the BUY operation. Such a kind of behaviour is
in contrast with that of choreography C where the receipt interaction must be
performed after the response interaction on the BUY operation. For this reason
the conformance notion is not satisfied. 2. We consider a system E2 where there

238 N. Busi et al.

is an additional orchestrator whose identifier is B which is not joined with any
role of the choreography and which is a bank service. The store service invokes
the bank service when it has performed the credit card request (PAY-VISA
or PAY-AE) for charging its transactions. The bank service will invoke the
respective credit card service for charging the purchase order of the customer
whose behaviour is the same of previous case E1 as well as for the Payment
process. At the end the credit card service will send the receipt to the customer.

E2 ::= C ‖ S ‖ V ‖ AE ‖ B

S ::= [BUY(d̃S ◦ typeS, ackS , Payment);CHARGE(d̃S)]S
V ::= [(PAY-VISA(d̃V , ackV);CH-VISA(d̃V);RECEIPT(d̃V)]V
AE ::= [PAY-AE(d̃AE , ackAE);CH-AE(d̃AE);RECEIPT(d̃AE)]AE

B ::= [CHARGE(d̃B); (CH-VISA(d̃B) + CH-AE(d̃B))]B

We consider the same joining function Ψ of the example above. E2 is conformant
to the choreography C. Indeed, differently from E1, the receipt interaction always
follows the response on the BUY operation. This condition is guaranteed by
the fact that the receipt interactions from the two credit card orchestrators are
blocked by the CH-VISA and the CH-AE operations which are performed after
the CHARGE operation in B. Indeed, the CHARGE operation in S is invoked
after the response on the BUY operation.

It is important to note that the operations CHARGE, CH-VISA and CH-
AE are not described in the choreography C. Considering the conformance no-
tion given at Section 4 all the interactions which involve such a kind of op-
erations are hidden in τ actions by using the operator /E2OP where E2OP =
{CHARGE,CH-VISA,CH-AE}. In the same way, all the interactions which
involve the orchestrator B must be hidden by using the operator /E2⊥ where
E2⊥ = {B}. Thus we can write that: C �Ψ E2/E2OP /E2⊥.

6 Conclusions

In this work we have formalized a notion of conformance between choreography
and orchestration. To this end we have exploited previous work where the chore-
ography language CLP were defined, and we have introduced here a language for
orchestration equipped with a formal semantics. Choreography abstracts away
from some aspects (e.g., coordination activities that should be performed by
roles to preserve the conversation rules) while orchestrated systems can be seen
as a further development step of systems described by choreography which must
take into account also coordination activities between roles. We consider that
the usage of a bisimulation-like technique, of the hiding operators and of the
joining function between orchestrator identifiers and roles permits to capture
such a relationship.

The notion of conformance between the choreography and the orchestration
languages we introduce in this paper provides a methodology to approach both
the system design and the development phase which allows us to verify whether

Choreography and Orchestration: A Synergic Approach for System Design 239

the implementation, that is the orchestrated system, behaves accordingly with
the conversation rules of the choreography. As future work we intend on one
hand to extend the two languages by introducing the notion of variables state
and, on the other hand, to investigate how to capture the conformance between
choreographies and more structured solutions at the level of orchestrated sys-
tems. Variables states can be used to express behaviours depending on the values
stored in the variables and, on the orchestration side, to be closer to executable
languages and in particular with the executable fragment of WS-BPEL. As for
the conformance we intend to refine the notion in order to perform conformance
tests also in cases where, for instance, more orchestration processes embody a
certain role, or viceversa.

While there are several works which separately deal with services orchestra-
tion or choreography that we list below, to the best of our knowledge the only
related work is [BBM+05] where, by means of automaton, defines a conformance
notion which allows us to test whether interoperability is guaranteed. Such a no-
tion is limited to systems involving only two peers.

Papers [BMM05, BHF04, LZ05, ML04] investigate mechanisms for supporting
long running transactions in orchestration languages and security issues have
been investigated in [BFG04]. Another aspect related with orchestration is the
correlation sets mechanism (used, e.g., by WS-BPEL) which provides a mean
for correlating some interactions between services; such a mechanism have been
formalized in an orchestration language in [Vir04]. Besides our work on choreog-
raphy we have mentioned in the paper, here we cite [BCPV04] where the Web
Service Choreography Interface (WSCI) language is modeled.

References

[BBM+05] M. Baldoni, C. Badoglio, A. Martelli, V. Patti, and C. Schifanella. Ver-
ifying the conformance of web services to global interaction protocols: a
first step. In Proc. of Web Services and Formal Methods Workshop (WS-
FM’05), volume 3670 of LNCS, pages 257–271. Springer-Verlag, 2005.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web ser-
vices choreographies. In M. Bravetti and G. Zavattaro, editors, Proc. of 1st
International Workshop on Web Services and Formal Methods (WS-FM
2004), volume 105 of ENTCS. Elsevier, 2004.

[BFG04] K. Bhargavan, C. Fournet, and A.D. Gordon. A semantics for web services
authentication. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages 198–209.
ACM, 2004.

[BGG+] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards
a formal framework for Choreography. In Proc. of 3rd International
Workshop on Distributed and Mobile Collaboration (DMC 2005). IEEE
Computer Society Press. To appear. [http://www.cs.unibo.it/%7Elucchi/
papers/dmc.pdf].

[BHF04] Michael Butler, C. A. R. Hoare, and Carla Ferreira. A trace semantics for
long-running transactions. In 25 Years Communicating Sequential Pro-
cesses, pages 133–150, 2004.

240 N. Busi et al.

[BMM05] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for
compensations in flow composition languages. In POPL ’05: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 209–220, New York, NY, USA, 2005. ACM
Press.

[GGL05] R. Gorrieri, C. Guidi, and R. Lucchi. Reasoning on the interaction patterns
in choreography. In Proc. of Web Services and Formal Methods Workshop
(WS-FM’05), volume 3670 of LNCS, pages 333–348. Springer-Verlag, 2005.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commun.
ACM, 19(7):371–384, 1976.

[LZ05] C. Laneve and G. Zavattaro. Foundations of Web Transactions. In Proc.
of International Conference on Foundations of Software Science and Com-
putation Structures (FOSSACS’05), volume 3441 of LNCS, pages 282–298,
2005.

[ML04] M. Mazzara and R. Lucchi. A Framework for Generic Error Handling in
Business Processes. In M. Bravetti and G. Zavattaro, editors, Proc. of 1st
International Workshop on Web Services and Formal Methods (WS-FM
2004), volume 105 of ENTCS. Elsevier, 2004.

[OAS] OASIS. Web Services Business Process Execution Language Version
2.0, Working Draft. [http://www.oasis-open.org/committees/download.
php/10347/wsbpel-specification-draft-120204.htm].

[vGW96] Rob J. van Gabbeek and W. Peter Weijland. Branching time and abstrac-
tion in bisimulation semantics. J. ACM, 43(3):555–600, 1996.

[Vir04] M. Viroli. Towards a Formal Foundation to Orchestration Languages. In
M. Bravetti and G. Zavattaro, editors, Proc. of 1st International Work-
shop on Web Services and Formal Methods (WS-FM 2004), volume 105 of
ENTCS. Elsevier, 2004.

[W3C] W3C. Web Services Choreography Description Language Version 1.0.
Working draft 17 December 2004. [http://www.w3.org/TR/2004/WD-ws-
cdl-10-20041217/].

PerfSONAR: A Service Oriented Architecture
for Multi-domain Network Monitoring

Andreas Hanemann1, Jeff W. Boote2, Eric L. Boyd2, Jérôme Durand3,
Loukik Kudarimoti4, Roman Łapacz5, D. Martin Swany6,

Szymon Trocha5, and Jason Zurawski6

1 German Research Network (DFN), c/o Leibniz Supercomputing Center,
Barer Str. 21, D-80333 Munich, Germany

hanemann@lrz.de
2 Internet2, 1000 Oakbrook Drive, Suite 300, Ann Arbor, MI 48104, USA

{boote,eboyd}@internet2.edu
3 GIP Renater, 151 Boulevard de l’ Hôpital, 75013 Paris, France

Jerome.durand@renater.fr
4 DANTE, 126-130 Hills Road, Cambridge CB2 1PG, United Kingdom

loukik.kudarimoti@dante.org.uk
5 Poznan Supercomputing and Networking Center, Noskowskiego 12/14,

61-704 Poznan, Poland
{romradz,szymon.trocha}@man.poznan.pl

6 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716, USA

swany@cis.udel.edu,zurawski@eecis.udel.edu

Abstract. In the area of network monitoring a lot of tools are already available
to measure a variety of metrics. However, these tools are often limited to a single
administrative domain so that no established methodology for the monitoring of
network connections spanning over multiple domains currently exists. In addi-
tion, these tools only monitor the network from a technical point of view without
providing meaningful network performance indicators for different user groups.
These indicators should be derived from the measured basic metrics.

In this paper a Service Oriented Architecture is presented which is able to per-
form multi-domain measurements without being limited to specific kinds of met-
rics. A Service Oriented Architecture has been chosen as it allows for increased
flexibility and scalability in comparison to traditional software engineering tech-
niques. The resulting measurement framework will be applied for measurements
in the European Research Network (GÉANT) and connected National Research
and Education Networks in Europe as well as in the United States.

1 Introduction

The administrators of a network domain can currently make use of a lot of available
tools to monitor a variety of metrics. However, the situation gets much more compli-
cated if information about the performance of a connection involving different admin-
istrative domains is requested. Besides of examples like transnational videoconferences

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 241–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 A. Hanemann et al.

the monitoring of multi-domain connections is especially interesting for Grid projects
which are currently being deployed across Europe and elsewhere.

The subproject Joint Research Activity 1 of the GN2 project [4] aims at providing a
framework for performing multi-domain measurements in the European Research Net-
work (GÉANT) and the connected National Research and Education Networks
(NRENs). It is carried out in close cooperation with Internet2’s End-to-End piPEs [6]
initiative and will result in a common system called PerfSONAR (Performance focused
Service Oriented Network monitoring ARchitecture). The name reflects the choice of a
Service Oriented Architecture for the system implementation.

A survey performed in the requirement phase of the project showed the diversity
of measurements that are currently applied in different networks together with the de-
mand for a common framework. The survey has also been useful to derive a list of
metrics being of common interest. These metrics can be retrieved by active and pas-
sive measurement methodologies as well as by requesting SNMP variables. Metrics of
primary interest for the users include round-trip time and one-way delay as well as its
variation (aka jitter), round-trip and one-way packet loss ratio, bandwidth utilization, IP
available bandwidth, and interface errors/drops. For each metric a differentiation can be
made between IPv4 and IPv6, unicast and multicast, different classes of service as well
as between different time-scales ranging from short-term for performance debugging to
long-term for trend observation. The metric definition in the project is done in accor-
dance with current recommendations (such as those from IETF IPPM (IP Performance
Metrics) and IPFIX (IP Flow Information Export)). Currently, most public networks
provide information about the core network topology, link bandwidth, and current uti-
lization data (sometimes with some limitations), while information about other metrics
is hardly provided.

The rest of the paper is organized as follows. In Section 2 requirements from different
user groups concerning the networking monitoring functionality are motivated. Related
Work is examined in Section 3 which includes the examination of previous projects
and different software architectures interesting for the framework implementation. Our
Service Oriented Architecture is presented in Section 4, while the current status of its
prototypical implementation is subject to Section 5. Conclusion and future work can be
found in the last section.

2 Requirements

The multi-domain monitoring framework that is addressed in the project should be able
to fulfill the requirements of different user groups.

NOC/PERT: For the Network Operation Center (NOC) or people from the Perfor-
mance Emergency Response Team (PERT) the framework shall provide a multi-domain
perspective on the networks and juxtapose a variety of metrics. This is needed to link
several information sources in order to allow for a better understanding of performance
degradations in the network.

Network Managers: The framework should also allow for different kinds of policies
with regard to user groups and metrics. An example policy could be that the access to

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 243

interface packet drops is only allowed for NOC and PERT staff. Therefore, it should be
easy for the network managers to apply their network policies for information filtering
to the framework.

Projects: A dedicated view is required for projects spanning over multiple adminis-
trative domains to show to each partner the performance of the underlying backbone
network. This information complements the end-to-end view of the projects gathered
by their own systems (e.g. DataGrid WP7 software [5]) to gain a better understanding of
the network behavior and its impact for application tuning. Furthermore, special kinds
of metrics have to be offered for the project links, e.g. an aggregated metric showing
the performance of the connections to important partners.

End Users: For end users the framework shall provide a view of the backbone net-
works which allows to easily track whether a problem is located in the backbone or is
supposed to be present in the user’s local area network. This is a major improvement
in comparison to the current situation (see Figure 1). Today, a user who experiencies
a network performance problem is often able to get information about the local area
network, but it is hardly possible to get timely information about the performance of
the national research backbone and of Geant. The use of simple test tools like ping

no information
available

information available
on demand

information
available

user A user B

Local area network Local area network

NRENNREN

GEANT

Fig. 1. Network transparency today

no information
available

information available
on demand

information
available

user A user B

Local area network Local area network

NREN

GEANT

NREN

Fig. 2. Network transparency after PerfSONAR deployment

244 A. Hanemann et al.

and traceroute cannot be regarded as satisfactory. The aim in the project is to provide
an edge-to-edge view of the research backbones facilitating the easy identification of
problems in the networks for the user (see Figure 2).

3 Related Work

This section deals with monitoring projects related to the purpose of JRA1. In addition,
the different possibilities for the realization of the PerfSONAR framework using the
Service Oriented Architecture paradigm are evaluated.

3.1 Monitoring Projects

One of the issues of the EU-funded INTERMON [10] project was inter-domain QoS
monitoring. The modeling in the project is based on abstractions for traffic, topology,
and QoS parameter patterns. This allows to run simulations for network configuration
planning. To fulfill these goals, the project has based its entire design on a huge cen-
tralized and complex database for topology, flow, and test information, collecting all
network data in a single location. However, such model is not acceptable in a multi-
domain environment. It is not conceivable that an entity supersedes the others and has
a complete control of other networks. Also, while INTERMON centralizes the collec-
tion of pre-defined measurements, JRA1 provides an architecture where any entity can,
based on authentication and authorization rules, schedule new types of measurements
and run tests over the multi-domain network. JRA1 has a more focused goal and has
real production constraints from NOCs, requesting data for day-to-day operation of the
networks. There are also many constraints for allowing distributed policies among the
different networks, for exchange of monitoring data and access to on-demand test tools.

The MonALISA project [13] has also provided a framework for distributed moni-
toring. It consists of distributed servers which handle the metric monitoring for each
configured host at their site and for WAN links to other MonALISA sites. JRA1 shares
the idea of servers acting as a dynamic service system and providing the functionality
to be discovered and used by any other services or clients that require such information.
Even though MonALISA has similar concepts to our approach, JRA1 details its ap-
plication to multi-domain environments with mechanisms for measurements spanning
independently managed domains, especially with respect to metrics concatenation and
aggregation. The MonALISA system relies on JINI (see Section 3.2) for its discovery
service.

The PlanetLab [15] initiative is also related to our work. It is a huge distributed plat-
form over currently 568 nodes, located in 271 different sites. It enables people being
members of the consortium to access the platform (or a part of it) to run networking
experiments. Most of the projects which run over the PlanetLab infrastructure deal with
network monitoring and management in general. Those tests aim at properly design-
ing services at a large scale. The architecture is similar to PerfSONAR - resources are
made available through designed architecture services. In PlanetLab a node manager
(i.e. access interface for each node) has been proposed which just allocates local re-
sources based on a policy enforced by the infrastructure service. Even though analogies

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 245

between the components defined in the two projects can be identified, the PlanetLab
infrastructure service is centralized and relies on a single database. Similar to INTER-
MON it can therefore not be applied as is to a multi-domain environment.

The Enabling Grids for E-SciencE (EGEE) project, which has been launched in April
2004 and is funded by the European Commission, continues the work of the DataGrid
project [5]. The project aims at network service deployment for the Grid community.
This includes the development of network interfaces and the use of network services like
performance measurements and advance reservations. The task of its subactivity JRA4
[7] is to retrieve network measurements from a set of domains by using Web Services.
The measurement services being accessed can be divided into end-to-end measurements
(host-to-host) and backbone measurements using dedicated monitoring equipment.

EGEE JRA4 has in total designed and developed three prototypes which communi-
cate with both kinds of measurement services. The third protoype communicates with
PerfSONAR instances located in different domains to retrieve backbone measurements
for capacity, bandwidth utilization, and available bandwidth. It decides on the correct
service end point to contact by using a discovery functionality which is currently stat-
ically configured. The transportation layer of EGEE being implemented as a Web Ser-
vice translates between different versions of the GGF NMWG schema [14].

3.2 Implementation Options

In JRA1 it has been decided to realize the network monitoring framework by adopting
the Service Oriented Architecture (SOA) paradigm. This new paradigm in software
engineering proposes to use independent pieces of software (called “services”) which
can be orchestrated to collaborate in order to reach a common goal.

A SOA has several advantages in comparison to traditional software architectures.
A large task can be split into independent services which helps to avoid monolithic
software blocks being difficult to maintain. At runtime, the services can be dynamically
added/dropped which results in an increased flexibility and robustness. Furthermore,
different implementations of a SOA design do not have to realize all services if only a
part of the functionality is needed.

The most common technology for the realization of a SOA are Web Services. From
the evolving Web Service standards WS-Notification is of particular interest for the
project and is going to be adapted in multiple scenarios. It deals with the communication
between services using publish/subscribe mechanisms and therein supports two data
flow models: Direct notifications (WS-BaseNotification) from service to client, where
the service itself maintains a list of interested clients, and brokered notifications (WS-
BrokeredNotification), where a client can act as a broker and can have several clients
of his own. The specification contains standardization of message exchanges and XML
schema specifications.

In JRA1 several options have been considered for the implementation of the frame-
work using a SOA. Besides of Web Services are also other possibilities as described in
the following.

JINI. One possibility to implement a distributed Service Oriented Architecture is to
apply JINI [11] which is provided by Sun Microsystems under an open source licence.

246 A. Hanemann et al.

It is a set of Java APIs and runtime conventions that facilitate the building and deploying
of distributed systems. JINI itself is fully implemented in Java and uses its integral
mechanisms such as remote method invocation (RMI).

Applications using JINI are treated as a set of cooperating distributed services. There
is one specialized service called Lookup Service where other services can register and
client applications can fetch information about required services.

The default communication between services is done in RMI offering remote pro-
cedure calls, but also any other protocol offering message passing is allowed (one can
choose UDP or TCP on transport level and any protocol on application level). The dis-
covery of the Lookup Service depends on the existence of multicast in the network.
Without multicast the address(es) of Lookup Service(s) need to be well-known.

Even though some mechanisms like the lookup procedure are interesting for the
project, it has been decided not to use JINI because of its tight Java coupling and limi-
tations like the necessity to use multicast.

JXTA. Sun Microsystems also promotes the open source peer-to-peer software archi-
tecture JXTA [12] which can be regarded as complementary to JINI. The basic entities
defined by JXTA are peers which can interact by using defined protocols. These proto-
cols deal with peer discovery, peer information exchange, peer-to-peer routing, and the
establishing of communication channels (called pipes).

A variety of different types of low-level message transport protocols, such as HTTP,
TCP/IP, and TLS (Transport Layer Security) can be used in the current reference im-
plementation of JXTA. One of the JXTA protocols enables the communication between
peers connected to different low-level network types.

There is a reference implementation of the architecture in Java, but other implemen-
tations in C, Ruby, Phyton, or Perl are also available. Like in other P2P architectures
peers can be added/dropped at any time. To allow for a service provisioning change
using other resources, no physical network addresses are used, but a JXTA addressing
scheme is applied.

JXTA is supposed to be suitable for peer-to-peer applications, even though only few
information about successful JXTA-related projects can be found best to our knowl-
edge. The measurement framework in JRA1 cannot be classified as a true peer-to-peer
scenario as we have different classes of service in our framework (see Section 4). There-
fore, JXTA would have to be combined with JINI or Web Services.

Apache Axis. For the implementation of Web Services Apache Axis [1] which is a pop-
ular Simple Object Access Protocol (SOAP, [18]) implementation has been examined.
Axis is mainly a Java platform for creating and deploying Web Services. A C/C++ ver-
sion of Axis is available as well. The Axis package also provides an application called
SOAPMonitor to view and debug SOAP communications received and replied to by
deployed Web Services. A web-based interface for viewing and managing services is
also part of the package. Application servers such as Tomcat [19] are required to use the
Java version of Apache Axis. The C/C++ version needs a Web Server (such as Apache)
and uses Xerces C++ [20] to parse SOAP. The examination of Axis in the project has
focused on the Java version.

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 247

Deploying services can be done in many ways with all of them requiring the use of
Web Service Deployment Descriptors (WSDD). It can work with or without server side
stubs and can also create service descriptions in Web Service Description Language
(WSDL) at run time. It is also possible to have clients without stubs thus making it
easier to have dynamic invocations.

In the Axis case, a client connects to the web (application) server and feeds a SOAP
message, which conforms to the service WSDL definition. Axis converts the SOAP
message to proper method calls of the classes that implement the service (business
logic). Axis is therefore called a SOAP proxy. A Document Type/Literal Style of Web
Service, which uses an XML document as input in the request, can be deployed by using
Axis. Information required by the service to handle and satisfy the request (including
the operation name) are “derived” from this XML Document.

The use of SOAP, WSDLs and the possibility to use Document Type/Literal Style of
Web Services makes it easy to deploy services without worrying about how the clients
are built (using Java/C++/Perl/Python/etc.). The clients only need to build acceptable
XML documents (conformant to a defined schema) and use the standard SOAP protocol
in order to make use of the service. The operating system or the platform used on the
client side bears no importance or effect on the entire process. Consequently, the use of
Web Services (and hence Axis, which provides an “easy-to-use” Web Service (SOAP)
implementation) has an edge over its competitors.

Globus Toolkit. The Globus Toolkit 4.0 [9] has evolved from a Web Services-based
reimplementation of a software suite from the Grid community. It is based on Axis,
but has build several modules on top of it which can be used independently. Its mod-
ules include implementations of the Grid Resource Allocation Manager (WS-GRAM),
Replica Location Service, Monitoring and Discovery Service (MDS), etc.

It intends to implement a stable reference implementation of the Web Services Re-
source Framework (WSRF, refactoring of the Open Grid Services Infrastructure speci-
fication, OGSI) in Java, C, and Python. The management of stateful resources provided
by WSRF is interesting, as stateful resources like links are encountered in the JRA1
context.

The Globus Toolkit is much more difficult to deploy than Axis. Even though some
modules are application agnostic so that they are supposed to be suitable for network
monitoring, it needs to be examined whether it makes sense to incorporate some Globus
Toolkit modules in the framework or to implement some more lightweight functionali-
ties for the JRA1 purpose on top of Axis directly. A sophisticated module of Globus is
the implementation of the Grid Security Infrastructure which is hard to deploy due to
the needed certificates which have to be provided and managed.

Summary. In the project it has been chosen to implement the monitoring framework
by using Web Services. Web Services provide a lot of flexibility in the client program-
ming as these only have to be conformant to an XML description, i.e. there are no
dependencies from operating systems or programming languages. The communication
can happen via the easy-to-use SOAP. Our examination of Apache Axis showed that it
is a mature open source tool for implementation. Some modules of the Globus Toolkit
could be adopted in later stages of the project.

248 A. Hanemann et al.

4 Multi-domain Monitoring Framework and Service Oriented
Architecture

The monitoring framework which is designed by JRA1 as well as JRA1’s PerfSONAR
system being applied for the middle layer of the framework are outlined in this section.

4.1 Monitoring Framework

The general monitoring framework which is explained in detail in the following is de-
picted in Fig. 3.

The Measurement Points are the lowest layer in the system and are responsible for
measuring and storing network characteristics as well as for providing basic network in-
formation. The measurements can be carried out by active or passive monitoring tech-
niques. The Measurement Point Layer of a domain consists of different monitoring
components or agents deployed within the domain. A monitoring agent provides infor-
mation on a specific metric (e.g., one-way delay, jitter, loss, available bandwidth) by
accessing the corresponding Measurement Points. Each network domain can, in princi-
ple, deploy Measurement Points of its choice.

The Service Layer is the middle layer of the system and consists of administrative
domains. It allows for the exchange of measurement data and management informa-
tion between domains. In each domain, a set of entities (services) is responsible for the
domain control. Each of them is in charge of a specific functionality, like authentica-
tion and authorization, discovery of the other entities providing specific functionalities,
resource management, or measurement of network traffic parameters. The interaction
of the entities inside a domain as well as the access to the Measurement Point Layer
or other domains may not be visible to the end user. Some of the entities contain an
interface which can be accessed by the User Interface Layer.

metric 2
measurement point

type 2

Measurement
Point
Layer

User
Interface

Layer

metric 1
measurement point

metric 2
measurement point

type 1

Service
Layer

domain A −
services

domain B −
services

domain C −
services

user interface 1 user interface 2

domain Cdomain Bdomain A

Fig. 3. JRA1 architecture proposal

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 249

The User Interface Layer consists of visualization tools (user interfaces) which adapt
the presentation of performance data to be appropriate for the needs of specific user
groups. In addition, they may allow users to perform tests using the lower layers of the
framework. From the user interface perspective, the Service Layer provides an addi-
tional level of abstraction to hide the differences between Measurement Points deployed
in the different domains.

The design aim is to provide the main functionalities in the Service Layer as inde-
pendent entities to allow for an increased flexibility of the system: existing elements
may be easily replaced or new ones inserted. Even if the number of entities is large
each one can be identified and invoked using discovery functionalities.

4.2 Service Oriented Architecture

There are three general categories of performance measurement data, i.e., active and
passive measurement results as well as network state variables (SNMP variables) that
can be thought of as data producers and are provided by the Measurement Point Layer.
From the user or network administrator point of view, analysis tools, threshold alarms,
and visualization graphs can be thought of as data consumers which are contained in
the User Interface Layer. Between data producers and data consumers is a pipeline of
aggregators, correlators, filters, and buffers, which can be regarded as data transform-
ers and data archives. Data producers, consumers, transformers, and archives are all
resources that need to be discovered and (possibly) protected from over-consumption
using authentication and authorization.

A services-based measurement framework implements each of these roles as an in-
dependent service: Lookup (LS), Authentication (AS), Measurement Archive (MAS),
Transformation (TS), and Resource Protector (RPS). These services form the Service
Layer. The Measurement Point Layer is also regarded as it contains Measurement Point
Services (MPS).

Users of any service, whether they are end user applications or other services, are
specified as clients. Providers of any service are denoted as servers. Therefore, many
services can be both client and server, depending upon the context. To achieve this,
all data providers implement a publisher interface and all data consumers implement a
subscriber interface. When a data flow is requested, the consumer provides a handle to a
subscription interface if it wants a push interaction. If it does not provide a subscription
handle, the data producer creates a publisher interface that the consumer can poll.

The service interactions are depicted in Fig. 4 and are referenced at the end of the de-
scription of each service. In [2] use case examples for the application of the framework
can be found.

Measurement Point Service (MPS). The Measurement Point service creates and pub-
lishes measurement data by initiating active measurements or querying passive mea-
surement devices [3]. A common interface to these capabilities is required for ease
of integration into the monitoring system as a whole. MPSs use a measurement setup
protocol to allow the user to request measurements to be made for a specified set of
parameters and then publish the results of these measurements to one or more sub-

250 A. Hanemann et al.

Measurement
Point Service

Transformation
Service

Resource
Protector Service

Authentication
Service

Measurement
Archive Service

Lookup
Service

Client

service interactions interactions with other
services of the same typeinteractions with LS

Fig. 4. Interactions of Services

scriber interfaces. Legacy capabilities (e.g., existing active measurement tools, Netflow,
SNMP) can be wrapped within an MPS.

When acting as a server, the MPS accepts measurement requests and uses a push
method for data publishing. In this case the client has to provide in advance one or
more subscriber handles to send the results directly to it. It is also possible to send data
indirectly via a TS (see below). When acting as a client, the MPS registers its own
presence with an LS and publishes measurement data to subscribers. The MPS may
send resource availability and authorization requests to the Resource protector service.

Lookup Service (LS). Services register their existence and capabilities, subject to
locally-determined policies and limits, with a Lookup Service. The registration is per-
formed using a join protocol. A service may register for a limited period of time or
leave without disrupting the interaction of other services. Clients discover needed ser-
vices by querying an LS using the lookup protocol. The first LS is found by one of
several approaches, including multicast, well-known servers, or internal configuration.
Once an LS is found, additional LSs are identified by querying the first one. LSs register
themselves with other LSs and are organized using peer-to-peer distribution techniques.

The lookup protocol of the service network defines the kinds of queries a client can
make when looking for a resource. The LS is not a simple name-based directory ser-
vice. Queries about the services are based upon attributes such as service type, required
authentication attributes, and service capabilities, as well as more complex constructs,
such as network location or community affiliations. It is expected that the information in
the LS will be much more expansive than a typical UDDI directory, although this could
be one way to implement the LS information store. It is likely a more generic store will
be put in place to allow for more targeted service specific information to be registered.
This could be implemented using a direct XML database with XQuery capabilities.

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 251

When the service acts as a server the LS accepts requests for service-related infor-
mation, registration and deregistration requests (including advertisements from other
LSs announcing their existence), and keep-alive requests. When acting as a client, the
LS registers its own presence to other LSs. The service can also work in peer-to-peer
networks where an LS shares directory information with other LSs.

Measurement Archive Service (MAS). The Measurement Archive service stores mea-
surement data in database(s) optimized for the corresponding data type and publishes
measurement data produced by MPSs and/or TSs. In addition to providing a histori-
cal record for analysis, the MAS serves to reduce queries to the MPS by effectively
offloading the publication to multiple clients. MAS makes use of a set of protocols:
storage setup protocol which is used to setup the MAS to accept and store measure-
ment data from a publisher, e.g. MPS and measurement data retrieval protocol to get
measurement data from MAS by the client.

In case the MAS is perceived as a server, it accepts and stores setup requests as well
as publication requests. The publication request includes a subscription handle and the
results are sent directly to the client (or indirectly via a TS). As a client, the MAS
registers its own presence with an LS, subscribes to an MPS, other MAS, or TS, and
publishes measurement data to subscribers. The MAS may send resource availability
and authorization requests to the RPS.

Authentication Service (AS). The Authentication service provides the authentication
functionality for the framework as well as an attribute authority. The AS supports clients
with multiple identities, including individual identities that represent different roles at
different times. Role-based authentication using attribute assertion style authorization
protects the privacy of the user [17]. This typically means a handle is created to provide
additional information about the attributes of that user and that resources can use that
handle to make queries about the user subject to the privacy policy. Communities of
multiple administrative domains that accept each other’s authentication can be formed
by federating ASs. Federation details are held solely in the AS and are hidden from other
services within a given administrative domain. In other words, the trust relationship
within a domain is between the domain’s services and the local AS domain, while the
trust relationship between any two federated domains is managed by the ASs.

When acting as a server, the AS accepts authentication requests and attribute requests
via its interfaces. As a client, it registers its own presence with an LS and may query
other ASs for attributes of a federated identity.

Transformation Service (TS). The Transformation service performs a function (e.g.,
aggregation, correlation, filtering, or translation) upon measurement data. The TS sub-
scribes to one or more servers and publishes to one or more clients, making it a key
component of a data pipeline within the measurement framework. For example, a TS
might compress datasets from more recent, high-resolution data to less recent, low-
resolution data and publish that data to an MAS. A TS also might read from multiple
data publishers to create a specific correlation. A very simplistic data analysis example
would be a threshold detection operation that then pushed data out for the purposes of

252 A. Hanemann et al.

triggering a Network Operations Center alarm. For the Alarm Notification Service (a
type of TS) the WS-Notification standard is going to be applied for distributing alarms.

When considering the TS as a server, it accepts publication requests. If the request
includes a subscription handle, the results are sent directly. If no subscription handle
is included, the TS returns a publisher handle to the client which is then responsible
for initiating dataflow. When TS acts as a client, it registers its own presence with an
LS, subscribes to one or more MPs, MAs, or TSs, and publishes measurement data
to subscribers. The TS may send resource availability and authorization requests to
the RPS.

Topology Service (ToS). The Topology service is a specific example of a TS used to
make topological information about the network available to the framework. It collects
topological information from a variety of sources (i.e. multiple MPSs) and uses algo-
rithms to derive the network topology. The ToS also reflects multiple network layers.
That is, the topology can be described on the domain level through network elements,
but also by wavelengths representing the physical level. Understanding the network
topology is necessary for the measurement system to optimize its operation. For ex-
ample, the LS relies on the ToS to determine MPS that are “closest to” interesting
network locations (e.g. routers). Thus, in the same way that a host may ask for an MPS
instance that has a particular set of properties, a service component can also request
information about node proximity. Additionally, the Topology service may be used for
overviews/maps that illustrate the network with relevant measurement data.

Resource Protector Service (RPS). The Resource Protector service is used to arbi-
trate the consumption of limited resources, such as network bandwidth. This service is
distinct from the individual MPSs to allow the consumption of resources that are com-
mon across multiple types of MPSs to be tracked in a single place. (For example, a
one-way latency test would be adversely effected by a throughput test going over the
same network interface.) The RPS also has a scheduling component to deal with the
consumption of time-dependent resources. When measurement activities are involved,
resources may be related to the measurement infrastructure or real network resources.
The RPS can allocate portions of a resource based upon configuration rules and can
schedule the time-dependent resources. Services that consume resources contact the
associated RPSs to allocate them. Because RPSs reduce scheduling flexibility, RPSs
should only be deployed to protect limited resources. In other words, some MPSs do
not have to contact an RPS at all.

Authenticated requests provide a way of making attribute assertion queries back to
the authenticating entity. A handle is included within the Authentication Token that
is sent with the request. This makes it possible for the RPS to determine whether a
particular resource requestor has the right to access a given resource without being
completely aware of the identity of the requestor.

If the RPS acts as a server, it accepts authorization and resource availability requests.
If it acts as a client, the RPS registers its presence with an LS. The RPS may request
authorization and resource availability for other resources from other RPSs. The RPS
may request additional attribute information about an authenticated identity from an AS.

PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring 253

5 Prototypical Implementation

This work is based upon lessons learned from many European and international ini-
tiatives and deployed measurement frameworks, including DANTE’s perfmonit project
[4] and Internet2’s piPEs project [6]. The work is also carried out with respect to ef-
forts of the GGF Network Measurement Working Group [14] to develop schemas for
interoperable measurement frameworks.

A prototypical implementation is currently carried out to realize the model as Web
Services aiming at the retrieval of link utilization data from several networks. The focus
of this implementation is to validate the framework design and the service interactions.

Simplified versions of the services are applied to reduce the complexity of the archi-
tecture at the first stage. The number of services and their complexity will increase over
time by adding additional modules, features, and measurement types. The initial ser-
vice is the Lookup Service which is needed to locate other services (in this case MAS
and MPS). The crucial portion of the prototype system is the MAS, which is initially a
wrapper around Round Robin Databases (RRD) [16] and provides link utilization statis-
tics. in the beginning, several MASs have been deployed in multiple domains, making
use of different RRD collections already performed in these networks and providing
a picture of a few research networks’ utilization both from Europe (e.g. GÉANT) and
North America (e.g. ESnet [8]). As mentioned before, the prototypical implementation
is already used by EGEE [7] to retrieve link utilization data for enabling its own Grid
network monitoring.

Two other phases are targeted in the prototype. The first extension will be to add
auto-registration capabilities to the LS, so that any service coming into live could reg-
ister its capabilities and will automatically be known by the LS. It is also intended to
add new measurement capabilities like packet loss and interface errors to the MAS. It
is considered to replace user scripts with intuitive graphical interface for test setup, data
retrieval and presentation.

6 Conclusion and Future Work

In this paper a motivation has been given for the necessity of a multi-domain network
monitoring framework. Due to the deficits of existing frameworks with respect to flex-
ibility and the disregard of organizational boundaries such a framework is subject to
the JRA1 project. The examination of different implementation options has resulted in
choosing a Web Services approach using Apache Axis and maybe some modules of the
Globus Toolkit.

While the project primarily aims to provide a monitoring framework for the involved
research networks, the open source tool development will also make it feasible to apply
the framework to other multi-domain network monitoring scenarios.

Acknowledgments

The authors wish to thank Nicolas Simar (DANTE) and Thanassis Liakopoulos (GR-
NET) for the collaboration in the project and their valuable comments on previous ver-
sions of the paper.

254 A. Hanemann et al.

References

1. Apache Axis. http://ws.apache.org/axis.
2. J. Boote, E. Boyd, J. Durand, A. Hanemann, L. Kudarimoti, R. Lapacz, N. Simar, and

S. Trocha. Towards multi-domain monitoring for the european research networks. In Pro-
ceedings of the Tenera Networking Conference 2005 (TNC 2005), Poznan, Poland, June
2005. TERENA.

3. T. Chen and L. Hu. Internet performance monitoring. Proceedings of the IEEE, 90(9):1592–
1603, September 2002.

4. DANTE homepage including information about GÉANT, performit and GN2 projects.
http://www.dante.net/.

5. Wp7 - network services, DataGrid project. http://ccwp7.in2p3.fr.
6. E2Epi performance evaluation system (piPEs), Internet2, End-to-End Performance Initiative.

http://e2epi.internet2.edu/.
7. Joint Research Activity 4, Enabling Grids for E-SciencE (EGEE) project. http://egee-

jra4.web.cern.ch/EGEE-JRA4/.
8. Energy Sciences Network. http://www.es.net.
9. Globus toolkit, version 4.0. http://www.globus.org/.

10. INTERMON project. http://www.intermon.org/.
11. JINI network technology, Sun Microsystems. http://www.sun.com/software/jini and

http://www.jini.org.
12. JXTA, Sun Microsystems. http://jxta.org/.
13. MONitoring Agents using a Large Integrated Services Architecture (MonALISA), California

Institute of Technology. http://monalisa.caltech.edu/.
14. Network measurements working group (NMWG), Global Grid Forum. http://www-

didc.lbl.gov/NMWG.
15. PlanetLab project. http://www.planet-lab.org/.
16. Round robin database tool homepage. http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/.
17. Specification of the general architecture, protocolas, and message formats of the shibbo-

leth mechanism. http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-arch-protocols-
06.pdf.

18. Simple Object Access Protocol, World Wide Web consortium. http://www.w3.org/-
2000/xp/Group.

19. Apache Tomcat, Apache Jakarta project. http://jakarta.apache.org/tomcat/.
20. Xerces xml parser, c++ version, Apache project. http://xml.apache.org/xerces-c/.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 255 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DySOA: Making Service Systems Self-adaptive

Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, and Dieter Hammer

Department of Computing Science, University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands

{b.i.j.siljee, i.e.bosloper, j.a.g.nijhuis,
d.k.hammer}@rug.nl

Abstract. Service-centric systems exist in a very dynamic environment. This
requires these systems to adapt at runtime in order to keep fulfilling their QoS.
In order to create self-adaptive service systems, developers should not only
design the service architecture, but also need to design the self-adaptability
aspects in a structured way. A key aspect in creating these self-adaptive service
systems is modeling runtime variability properties. In this paper, we propose
DySOA (Dynamic Service-Oriented Architecture), an architecture that extends
service-centric applications to make them self-adaptive. DySOA allows
developers to explicitly model elements that deal with QoS evaluation and
variable composition configurations. Having the DySOA elements explicit
enables separation of concerns, making them adaptable at runtime and reusable
in next versions. We demonstrate the use of DySOA with an example.

1 Introduction

Building systems from services has been emerging as a software paradigm [1], [2].
Service-centric systems consist of multiple services, possibly from different service
providers, working together to perform some functionality. A service implemented by
combining the functionality provided by other services is a composite service [3], and
the way a composite service is structured and behaves is the service composition.

Service-centric computing provides new techniques that allow for greater runtime
flexibility. Services are located, bound, and executed at runtime using standard
protocols such as UDDI, WSDL, and SOAP [4]. Because services are loosely-coupled
and have an explicit interface, it is relatively easy to integrate third-party services, and
to substitute one service for another at runtime.

Although the techniques for runtime adapting service systems are available, it
currently happens seldom. The reason is that no standards exist for self-adaptation,
the process where the service system autonomously makes decisions on when and
what to change and autonomously enacts the changes. Because technologies for self-
adaptation still miss, the burden for adaptation would fall on service users or service
providers. But users just want to use the service system, without being bothered with
collecting and composing the right services to make up the system. And service
providers might provide service systems that have thousands of users, making manual
adaptation an impossible task. This results in service-centric systems that, once
bound, will always call the same services.

256 J. Siljee et al.

Having such “static” service systems would not provide any problems, if nothing
changes during the period that a user makes use of the service system. Unfortunately,
this is not the case. Almost every service system exists in a very dynamic
environment that makes it nearly impossible to keep delivering the quality of service
(QoS) that the user pays for. The QoS that the service system has to deliver is often
formalized in a Service Level Agreement (SLA), and not fulfilling these QoS
requirements may result in penalties, e.g. the provider has to pay a fine or will loose
customers. Examples of the dynamics that service systems are confronted with are:

• Unreliable third-party services: third-party services are not controlled by the
service system provider and can fail unexpectedly.

• User changes: a service composition may serve multiple users, with each a
different SLA and thus different QoS requirements. These QoS requirements
can change when the user’s context changes, for example because the user
moves or starts using the same service on a different device. An example is a
changing security requirement, caused by a user leaving the office building
and going out on the street. Data transfer should then be better encrypted and
limited to non-secure documents.

• Network irregularities: available network bandwidth and throughput rates
between distributed services vary over time, potentially causing services to
be unreachable.

The dynamic context of service systems requires them to adapt to context changes
in order to keep fulfilling the QoS requirements. Service systems should be self-
adaptive, because, as explained earlier, manual adaptations by users or service
providers are not a feasible solution. In order for service systems to be self-adaptive,
they must be able to self-detect when and what to change and make this change
autonomously. This ability requires, among other things, runtime evaluating if the
current QoS fulfills the QoS requirements, and knowing the runtime variability
options. In this paper, we focus on modeling the possible configurations (i.e. the
variability) in self-adaptive service systems.

1.1 Design of Self-adaptive Systems

A software architecture provides a global perspective on the software system in
question. Architecture-based design of large-scale software systems provides major
benefits [5]. Designing the architecture for a software system shifts the focus away
from implementation issues towards a more abstract level. This enables designers to
get a better understanding of the big picture, to reason about and analyze behavior,
and to communicate about the system with others.

Part of a service architecture is the service composition, which can be described
with languages like BPEL and UML. Many other Web Service standards are used to
describe other aspects of the system. Each standard allows developers to specify a
certain part of self-adaptive service systems, but no approach exists for developers to
design variability options of these systems. This void results in ad-hoc solutions at the
implementation level, which hinders the development, reuse and evolution of systems.

In this paper we present DySOA, a Dynamic Service-Oriented Architecture.
DySOA extends service applications to make them self-adaptive in order to guarantee

 DySOA: Making Service Systems Self-adaptive 257

the QoS, despite the dynamic context of service systems. DySOA structures the
elements that deal with self-adaptation and variability, making them easier for
developers to model and reason about. DySOA provides explicit components that deal
with QoS evaluation and composition variability. Having all major self-adaptation
elements first-class makes it easier to develop them, to runtime update them, and to
reuse them for other systems.

The remainder of this paper is structured as follows. We describe the DySOA
architecture in section 2. We show the use of DySOA with an example in Section 3.
Section 4 covers related work and Section 5 concludes the paper.

2 DySOA

DySOA stands for Dynamic Service-Oriented Architecture, and is an architectural
extension for service-based application systems. DySOA provides a framework for
monitoring the application system, evaluating acquired monitoring data against the
QoS requirements, and adapting the application at runtime.

The purpose of DySOA is to assist the service application system in maintaining its
QoS. At design time, an application developer designs a system that is targeted to
fulfill the requirements. However, some of the QoS requirements are only known at
runtime (e.g. negotiated in an SLA), and service systems live in dynamic
environments, of which the properties cannot always be foreseen at design time. In
order to keep delivering the QoS requirements, the application system should be able
to self-adapt when necessary.

Many different aspects need to be taken into consideration for the development of a
self-adaptive system. It is very difficult to address all concerns in one model, and this
one model would be hard to evolve. The complexity can be reduced by splitting the
process from monitoring to reconfiguration into several steps. The different concerns
are then addressed in different components and models within each step. Having
explicit, separate models for the different aspects allows better communication between
different stakeholders (e.g. service providers or service users) and independent evolution
of the aspects. Furthermore, in order to evolve at runtime, the specific models have to be
available at runtime. In the next sections we describe the architectural model of DySOA
and the relation with service-based applications.

2.1 The DySOA Adaptation Process

Figure 1 shows the activity diagram of the DySOA runtime adaptation process. First,
monitors collect data about the application context. From the collected monitoring
data the QoS is determined. Some QoS attributes are directly measurable (e.g.
response time), but the values of many QoS attributes cannot be directly monitored
and need to be inferred from other context information. The determined QoS is
compared with the QoS requirements. If the result of this evaluation indicates the QoS
is good enough, then monitoring continues. If the QoS is not good enough, a new
configuration is chosen that will satisfy the QoS requirements. Finally, the changes
are enacted in the application. Possible changes are substituting a bound service for an
alternative service or changing the structure and the flow of the service composition.

258 J. Siljee et al.

Fig. 1. Activity diagram of the DySOA monitoring and adaptation process

configuration

<< component >>

VariationModelManager

<< component >>

TransitionFacilitator<< component >>

SystemManipulator

<< component >>

Configurator

<< component >>

Verifier

evaluation

<< component >>

Evaluator

analysis

<< component >>

QoSCalculator

<< component >>

QoSEstimator

<< component >>

ContextEstimator

monitoring

<< component >>

Monitor

<< component >>

Collector

application

<< component >>

Application

DySOA

Fig. 2. Overview of the DySOA component architecture

2.2 Overview of the DySOA Architecture

Figure 2 shows an overview of the DySOA architecture. It consists of four component
packages: the Monitoring component, the Analysis component, the Evaluation
component, and the Configuration component. The Application component does not
belong to the DySOA architecture, but refers to the service-based application system
that DySOA monitors and configures. Next we describe the functionality of each
component and its subcomponents.

2.2.1 Monitoring
The Monitoring component deals with acquiring information about the running
application and its environment. The Collectors gather the data necessary to

 DySOA: Making Service Systems Self-adaptive 259

determine the current application QoS. A Collector can, for example, intercept and
inspect service messages, or monitor a system resource. The kind of data collected
depends on the application domain and the QoS requirements itself, but it typically
involves data about individual services in the application (e.g. response times, failure
rates, exceptions), the execution environment (e.g. network bandwidth, processor
load), and the context of the application users (e.g. user GPS coordinates).

Collectors are runtime created, deployed and removed by the Monitor, which does
not interfere or deal with monitoring data itself, but manages the Collectors based on
a list of collectors needed per QoS attribute. Upon application reconfiguration the
Monitor re-evaluates the list and removes or deploys Collectors where necessary. The
Collectors provide the monitoring data to the QoSCalculator.

2.2.2 Analysis
The QoSCalculator uses monitoring data to determine the current QoS of the running
application. The determination may be executed in two steps; this depends on whether
QoS attribute information can be monitored directly. We distinguish three cases:

1) The QoS can be directly monitored, and the QoSCalculator just sends the
monitoring data on to the Evaluator. For instance, response time is directly
measurable.

2) The monitoring data contains information on the application or user context,
and has to be combined with e.g. information on the current application
configuration to determine the current QoS. In this case the QoSCalculator
sends the monitoring data to the QoSEstimator for QoS determination. The
result is provided to the Evaluator.

3) Again, the monitoring data only contains information on the application or
user context, but of such a low level that first a better understanding of the
context is necessary before the QoSEstimator can be used. In this case the
QoSCalculator transforms the monitoring data with the ContextEstimator.
The returned context information is used by the QoSEstimator to determine
the QoS sent to the Evaluator. For example, the GPS-coordinates of the user
location first need to be translated to country and corresponding language.

The ContextEstimator determines the context by analyzing the monitoring data. A
context model is used to associate monitoring data with context situations. A context
model can be based on a table or ontology (e.g. OWL [6]), and may be designed by
experiments. In the example of the GPS-coordinates, the context model associates
them with a language.

The QoSEstimator determines the QoS of the application, based on the context
information or the monitoring data. For example, to determine the availability of the
entire application system, the down-times of the individual services making up the
application are monitored. Because the overall availability depends on the workflow
between several services (e.g. parallel or in series), to determine the overall
availability the monitoring data is combined with a representation of the dynamic
structure of the application.

The QoSEstimator may use a composition model, containing the current
configuration of the application and QoS metrics, to calculate the QoS from the
monitoring data. Another option is a number of formulas to calculate the QoS.
Distinguishing between ContextEstimator and QoSEstimator allows both to be

260 J. Siljee et al.

adapted separately: the former when the context interpretation has to be changed and
the latter when the translation to QoS has to be changed.

2.2.3 Evaluation
The Evaluator determines if the current QoS satisfies the application QoS
requirements. For this purpose, it uses the QoS information provided by the
QoSCalculator, and uses a model containing the QoS requirements. The Evaluator
compares the QoS information to the QoS requirements; if the current QoS does not
satisfy, a reconfiguration is needed. The Evaluator sends this evaluation, including a
description of how well each QoS requirement is fulfilled and (expected) reasons of
failure, to the Configurator.

2.2.4 Reconfiguration
The Configurator is responsible for determining new application configurations.
Configuring the application is only possible if the configuration options are known.
Furthermore, the system should be able to determine if a configuration is valid. Also,
the Configurator should be able to enact a new configuration in the application
system. Having these features, Dysoa can reconfigure the service system.

Configuration Variability
In DySOA, designers can model the runtime variability of the self-adaptive service
system in a variation point view; a view that can be used as a supplement to other
design views. Variation points have been recognized as elements that facilitate
systematic documentation and traceability of variability, assessment, and evolution
[7]. Thus, variation points are perfectly suited as central elements in managing
variability, which holds for runtime variability as well. The variation model behind
this view is available at runtime, and is used by the Configurator. Our variation point
view is largely based on the one presented in [8]. In this paper, we have altered some
aspects to tailor the variation point view to self-adaptive software.

Variation Model
A variation point is uniquely identified by its name, and contains a description of the
variability it provides. This description can be informal or formal, as long as the
software developers can describe and understand the rationale behind each variation
point. A variation point identifies a location where variation occurs, and is therefore
associated with one or more variants. The variants of a variation point are, for
example, several services that provide the same functionality but with different QoS
characteristics, or several composition fragments: sets of services organized in
different process flows (e.g. BPEL activities).

An intrinsic variation point constraint restricts the variant selection of one variation
point. An extrinsic variation point constraint restricts the selection of two or more
variants from different variation points. The selection of variant a for variation point
vp1 might, for instance, demand the selection of variant b of variation point vp2, or it
might prohibit the selection variant c of variation point vp3.

Part of the specification of a variant is the realization, which can be described as a
recipe with instructions for realizing the binding of the variant dynamically. The
current bindings of a variation point are its currently bound variants.

 DySOA: Making Service Systems Self-adaptive 261

vp1a vp1b vp1c

vp2a

vp2b

Constraint
dependency

forbids
selection

vp1 vp2

a b c ba

(a) (b)

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

name
realization
Quality
attributes

...

Fig. 3. (a) Two variation points. (b) The VariationModel containing the set of possible
configurations of the associated variants. The VariationModel does not contain configuration
(vp2a, vp1c) because an extrinsic constraint forbids its selection.

Furthermore, service systems often have open variation points: variants can be
added to or removed from an existing variation point while the system is running. For
service compositions this means that at runtime newly discovered services can be
added to the composition.

The VariationModel of a set of variation points vps is the set of possible
configurations of the variants belonging to vps, together with the (possibly estimated)
QoS attribute values of the variants. A DySOA VariationModel only represents
configurations possible at runtime. Furthermore, if an intrinsic or extrinsic constraint
forbids a certain configuration, then that configuration is not part of the
VariationModel. For example, Figure 3 (a) shows two variation points: vp1 and vp2.
vp1 has three variants, vp1a, vp1b, and vp1c, and vp2 has two variants, vp2a and vp2b.
An extrinsic constraint forbids the selection of both vp1c and vp2a. Each variant has an
explicit realization and quality attributes. Figure 3 (b) shows the corresponding
VariationModel. Five possible configurations exist, as the selection of (vp2a,vp1c) is
forbidden by the extrinsic constraint.

The VariationModel is not static; new services can be automatically discovered at
runtime or inserted by the user or provider of the service system. Additionally, the
QoS characteristics of a variant are not static and should be updatable as well. New
QoS values can be determined by monitoring, or a service provider can publish a new
QoS specification of its services. The VariationModelManager manages all the
runtime variability options of the application. The VariationModelManager is
responsible for keeping the available variability options up-to-date, e.g. by using
service discovery techniques to update the available services (e.g. UDDI).

Configuration Verification
The Verifier checks the correctness of new configurations proposed by the Configurator.
Examples of checks include variability constraints and deadlock detection.

Configuration Realization
When a new configuration has been verified, the SystemManipulator deploys the new
configuration in the running system, e.g. by deploying a new orchestration in the BPEL
engine of the application system or by reconfiguring a service proxy. The

262 J. Siljee et al.

SystemManipulator makes sure that application state and transactions are managed safely
by using the TransitionFacilitator. This component can for instance make sure that no
transactions are running during configuration, by postponing the start of new transactions.
A different approach is to interrupt transactions, send the appropriate exceptions, and
execute rollback- or compensation-actions. The state of the running business process (e.g.
contained in variables) is copied to the new application state if necessary.

Configuration Selection
Now we are able to deploy new application configurations safely, the Configurator
should be able to choose a new configuration, based on the results of the Evaluator.
There are several strategies to deal with evaluation results. The Configurator could
optimize, by always looking for a better configuration, handle pro-actively: switching
the configuration when danger for QoS failure appears, or recover: only choose a new
configuration if the QoS fails. Also, the timing for dealing with insufficient QoS is
variable; instead of immediate action, it might be allowable to wait for a while to see
if the QoS failure is not temporary. Additionally, choosing a new configuration can be
based on a formal trade-off of quality attributes (e.g. linear programming), a random
choice (in case no quality characteristics of variants are available in the
VariationModel) or anything in between. For instance, if time is no issue, the
Configurator can test many different configurations before making a decision.

These aspects are specified in the Strategy, a data structure that explicitly
represents how to act on the Evaluation results. The Configurator bases the decision
process on the currently chosen Strategy.

To summarize: the Configurator uses information from the Evaluator, the Strategy,
and the VariationModel to determine a new configuration, and uses the Verifier to
verify the correctness of the new configuration.

3 Example

In this section we show how to use DySOA to make a service application self-
adaptive. The service application is a video-on-demand service, consisting of third-
party services. In order to provide the user with the best QoS for his video stream, the
service application needs to be self-adaptive.

The Streaming Video Service (SVS) offers different kinds of streaming video:
movies and television series. Users contact the SVS on the internet and select a movie
or series episode to watch. For the actual delivery of the video, the SVS uses services
from video content suppliers. Each content supplier offers a certain set of streaming
video, in several resolutions, and with specific quality characteristics. The SVS
discovers the available video suppliers at runtime using a registry.

The SVS automatically binds to a video supplier service that provides the required
video content. For the actual streaming, the SVS invokes a proxy service that handles
the network connection between the video supplier and the user. The proxy buffers
the video stream, in order to protect against short discontinuities and to provide the
capability to rebind to another supplier without the user noticing. See Figure 4 for an
overview of the streaming video system. Below we show how the components and
data structures of the DySOA architecture are instantiated.

 DySOA: Making Service Systems Self-adaptive 263

Streaming
Video

Service

Video
Supplier

4

Video
Supplier

1

Video
Supplier

2

Video
Supplier

3

Proxy
service

Fig. 4. Service composition of the SVS application

Qos Requirements
Because of space limitations, we do not specify DySOA for all QoS requirements that
can trigger adaptations, like performance or cost. Here, we concentrate on two
requirements:

• Req 1: continuous availability of the video stream. The video should not stop
unless the user explicitly turns it off.

• Req 2: best possible video quality for the user. This is related to the user’s
display resolution, bandwidth and available streams from video suppliers.

Figure 5 shows the requirements representation.

Monitoring
The quality attributes referred to in the requirements cannot be directly measured. In
order to be able to evaluate whether the system fulfills these two requirements,
DySOA inserts the following collectors:

Fig. 5. The QoS Requirements

<wsp:Policy>
 <wsp:All>
 <qos:Policy

serviceName=”VideoProxy”>
 <qos:QoS name=”Availability”>
 <qos:Value>

 <qos:Min>0.95</qos:Min>
 <qos:Pref>1</qos:Pref>
 </qos:Value>

 </qos:QoS>

 <qos:QoS name=”VideoQuality”>
 <qos:Value>
 <qos:Min>0.8</qos:Min>
 <qos:Pref>1</qos:Pre>
 </qos:Value>
 </qos:QoS>
 </qos:Policy>
 </wsp:All>
</wsp:Policy>

264 J. Siljee et al.

1. A collector monitoring the output bit rate of the proxy video stream sent to
the user.

2. A collector monitoring the number of dropped packets on the proxy-to-user
connection. From time to time, the collector sends a small burst of packets to
estimate the available bandwidth.

3. A collector at the proxy monitoring the user video resolution. The streaming
protocol defines that if the video is resized, the collector is notified.

Analysis
Req 1 specifies availability of the video stream at the user playback device. The
measured proxy bit rate does not directly define this video stream availability; we
need to relate measured data to the video stream availability at the playback device.
For this example, the ContextEstimator uses a context model based on the simple
heuristic that the bit rate at the playback device is equal to the bit rate at the proxy
output. The advantage of having this rule explicit is that it is possible to adapt this
heuristic when it turns out to be incorrect.

The ContextEstimator returns the bit rate to the QoSCalculator. The latter sends
this information, together with the estimated bandwidth and resolution, to the
QoSEstimator, which calculates the availability and video quality.

The QoSEstimator is implemented by several functions that relate the data coming
from the QoSCalculator with the QoS requirements on availability and video quality.
The availability is specified in terms of the Mean Time To Failure (MTTF) and the
Mean Time To Repair (MTTR) of the video stream at the user, see Table 1. The
MTTF is determined from the bit rate as follows:

Let B be the bit rate at the playback device. A failure Fi refers to the event that the
bit rate drops to 0, where Fi (B) refers to failures in B. Ri (Fi) is the repair time after Fi.

If n is the number of failures during time t, then:

=

=
n

i
i BF

t
MTTF

1

)(

=

=
n

i
i

ii

BF

FR
MTTR

1

)(

)(

The video quality is determined from the bit rate B, the available bandwidth A and

the horizontal resolution of the offered stream (offeredR) and of the playback

device userR , see Table 1.

Table 1. Table with the functions for estimating the QoS attributes

QoS Attribute Function
Availability

MTTRMTTF

MTTF

+

VideoQuality

A

AB

R

RR

user

useroffered −
−

−
−1

 DySOA: Making Service Systems Self-adaptive 265

The data flow in the Analysis is as follows; the QoSCalculator sends the collector
monitoring data to the ContextEstimator, which returns context information on the
playback device’s bit rate. The QoSCalculator sends the context information and
monitoring data to the QoSEstimator. After the QoSEstimator has determined the
current QoS for availability and video quality, the QoS values are sent back to the
QoSCalculator, who provides it to the Evaluator.

Evaluation
The Evaluator compares the determined QoS values from the QoSCalculator with the
QoS requirements. In our example, the Evaluator checks if the current Availability
value is higher than 0.95, and if the current VideoQuality is higher than 0.8. The
results of this evaluation specify how each QoS requirement performs, and this is sent
to the Configurator. In this example we do not include possible causes for the failure
in the message.

Configuration
The VariationModel contains two variation points; a sup variation point for choosing
between movie suppliers, and a res variation point for choosing the video resolution
(see Figure 6). The VariationModelManager initially creates the list of variants for
sup by discovering available services that fulfill the functional requirements (i.e.
provide the selected movie). Each variant has a realization that specifies how to
invoke the variant. A supplier variant is realized by binding to the video supplier, and
a resolution variant is realized by passing the right parameters during binding.

These variation points cannot be configured independently, as not every supplier
provides all resolutions. Choosing a supplier can therefore rule out the choice for a
certain resolution. The VariationModel also models these dependencies.

When a QoS requirement is violated, a new configuration is chosen. In this case
the Strategy is a recovery strategy that acts immediately if the required QoS is not
met. The Configurator asks the VariationModelManager to look up alternative
variants, and to update the VariationModel with the observed QoS properties of the

Variant

Variation pointvp

a

Realization
relationship

...
..
.

Variant
properties

legendsup

supplier
1

supplier
2

supplier
3

name: stream2
realization: http://stream2/

bitrate: 320
quality

...

stream1/
name:
realiza

bitrat
qual

res

resolution 1 resolution 2

name: large
realization:
 <res>640x480</res>

name: small
realization:
 <res>320x240</res>

Fig. 6. The SVS VariationModel; the sup variation point has discovered video suppliers as
variants. The resolution variation point has two variants.

266 J. Siljee et al.

failing variant. The Strategy is configured to select the variants that best match the
QoS requirements. The selected variants are bound as described by their realizations,
and the SystemManipulator is implemented by calling a management method on the
proxy to switch the variant.

In this example we have shown how DySOA is instantiated for a simple example.
Because all data structures and components that deal with the self-adaptation of
DySOA are explicit in the architecture, it is relatively easy to runtime adapt these
elements, and to reuse the design for new service applications.

4 Related Work

Most methods for developing runtime self-adaptive systems concentrate on a specific
application domain or only on the implementation mechanisms for runtime change.
This related work discussion is limited to the more general development approaches
at the architectural level.

Some research focuses on a specific part of a dynamic architecture. Yang [9] for
example proposes a modeling method for a dynamically extendable adaptation kernel
that monitors whether changes should be made. The “adaptation rules” are composed
of a condition, which determines when to change, and an action, which specifies how
and what to change. The Lasagne framework [10] models runtime variability with
“extension identifiers” and provides composition policies attached to a component to
change its (messaging) behavior. Tsai [11] presents a framework and tool to specify
constraints and audit these constraints at runtime. Service providers register their
services at the framework, which tests the service to verify the constraints. Services
that pass the tests are available to incorporate in service compositions. Tsai’s
approach enables quality assurance beforehand, but limits the amount of services that
can be used by requiring testing every service before it is published, as not all services
and all quality constraints can be tested.

Architecture description languages (ADLs) are used to formally describe a
software architecture [12], and several ADLs support dynamism with specific first-
class language elements. Dynamic Wright [13] allows defining a variation model by
having explicit definitions of variable components. A “configuror” enacts changes
and contains a rule block that specifies when to exchange certain components for
other components. Weaves [14] provides explicit elements called “instruments” to
collect context information. “Observers” are modeled to evaluate this information.
“Actors” support enacting change by translating high-level to low-level changes.

Software construction methodologies go beyond modeling and additionally define
how to implement dynamic software. Bapty [15] presents an overall design approach
called Model Integrated Computing (MIC) for the development of a domain-specific
dynamic system. The models of a dynamic system are defined in “multi-aspect
domain-specific modeling environments”. To create a resulting implementation, the
MIC defines a development approach for “system synthesis tools” to turn the created
models into executable artifacts, and describes how to create the “runtime execution
environment”.

The architecture of a dynamic system can systematically be evaluated. Brusilovsky
[16] presents a layered evaluation framework for dynamic systems, designed to

 DySOA: Making Service Systems Self-adaptive 267

determine what parts of the architecture should be adapted if the dynamic behavior
does not resemble the required dynamic behavior. The framework separates the
responsibilities in the architecture of a dynamic system in two layers. The “adaptation
decisions” layer focuses on the architecture for reconfiguration, and the “interaction
assessment” layer describes the part of the architecture that monitors environment
data and transforms it into information.

5 Conclusion

Designing self-adaptive service systems is a major undertaking and requires software
engineering modeling methods and tools. The dynamic context of service systems
requires them to adapt to context changes in order to keep fulfilling the QoS
requirements. Current standards and techniques for service system engineering
typically provide an implementation-level solution for a single aspect of the dynamic
behavior. DySOA combines, at the architecture level, the necessary components and
data structures for the entire process. This allows separation of concerns and enables
developers to manage the complexity of the self-adaptive behavior.

The DySOA architecture can be used to develop service systems that
autonomously and dynamically adapt to a changing context and changing user
requirements. We demonstrated how the runtime variability is modeled in the
architecture for a self-adaptive service application example. Currently we are working
on the implementation of DySOA.

Acknowledgements

This research has been sponsored by SeCSE (Service-Centric System Engineering)
under contract no. IST-511680.

References

 1. Microsoft, Service-Oriented Architecture: Implementation Challenges, http://msdn.
microsoft.com/library/en-us/dnmaj/html/aj2soaimpc.asp (2004)

 2. Schmelzer R., "Service-Oriented Process Foundation Report", ZTR-WS108, ZapThink
(2003)

 3. Alonso G., Casati F., Kuno H., Machiraju V., Web Services - Concepts, Architectures and
Applications, Springer Verlag (2004)

 4. Tsai W. T., Song W., Paul R., Cao Z., Huang H., "Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing", COMPSAC 2004,
Hong Kong (2004) 554-559

 5. Shaw M., Garlan D., Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, New Jersey (1996)

 6. W3C Recommendation, OWL Web Ontology Language Overview, Recommendation,
http://www.w3.org/TR/REC-owl-ref-20040210 (2004)

 7. Bosch J., Design & Use of Software Architectures - Adopting and Evolving a Product
Line Approach, Addison-Wesley, Boston (2000)

268 J. Siljee et al.

 8. Sinnema M., Deelstra S., Nijhuis J., Bosch J., "COVAMOF: A Framework for Modeling
Variability in Software Product Families", The Third Software Product Line Conference
(SPLC 2004), Boston, USA (2004)

 9. Yang Z., Cheng B., Stirewalt K., Sadjadis M., Sowell J., Mckinley P., "An Aspect-
Oriented Approach to Dynamic Adaptation", Proceedings of the Workshop on Self-
Healing Systems (WOSS'02), ACM SIGSOFT, Charleston, SC (2002)

10. Truyen E., Vanhaute B., Nørregaard Jørgensen B., Joosen W., Verbaeten P., "Dynamic
and selective combination of extensions in component-based applications", IEEE,
Toronto, Ontario, Canada (2001) 223-242

11. Tsai W. T., Song W., Paul R., Cao Z., Huang H., "Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing", Hong Kong (2004)
554-559

12. Allen R., Douence D., Garlan D., "Specifying and analyzing Dynamic Software
Architecture", Springer-Verlag (1998) 21-37

13. Magee J., Kramer J., "Dynamic Structure in Software Architectures", Fourth Symposium
on the Foundation of Software Engineering (FSE 4), ACM SIGSOFT (1996) 24-27

14. Gorlick M. M., Razouk R. R., "Using Weaves for Software Construction and Analysis",
13th International Conference on Software Engineering (ICSE 13) (1991) 23-34

15. Bapty T., Scoot J., Neema S., Sjtipanovits S., "Uniform Execution Environment for
Dynamic Reconfiguration", IEEE Conference and Workshop on Computer-Based
Systems, Nashville, Tenessee (1999)

16. Brusilovsky P., Karagiannidis C., Sampson D., "The benefits of layered evaluation of
adaptive applications and services", Workshop on Empirical Evaluation of Adaptive
Systems, Sonthofen, Germany (2001)

Towards Dynamic Monitoring of WS-BPEL Processes

Luciano Baresi and Sam Guinea

Dipartimento di Elettronica e Informazione - Politecnico di Milano,
Piazza L. da Vinci 32, I-20133 Milano, Italy

{baresi, guinea}@elet.polimi.it

Abstract. The intrinsic flexibility and dynamism of service-centric applications
preclude their pre-release validation and demand for suitable probes to monitor
their behavior at run-time. Probes must be suitably activated and deactivated ac-
cording to the context in which the application is executed, but also according to
the confidence we get on its quality. The paper supports the idea that significant
data may come from very different sources and probes must be able to accommo-
date all of them.

The paper presents: (1) an approach to specify monitoring directives, called
monitoring rules, and weave them dynamically into the process they belong to;
(2) a proxy-based solution to support the dynamic selection and execution of
monitoring rules at run-time; (3) a user-oriented language to integrate data acqui-
sition and analysis into monitoring rules.

1 Introduction

The flexibility and dynamism of service-centric applications impose a shift in the vali-
dation process. Conventional applications are thoroughly validated before deployment,
and testing is the usual means to discover failures before release. In contrast, service-
centric applications can heavily change at run-time: for example, they can bind to differ-
ent services according to the context in which are executed or providers can modify the
internals of their services. New versions of selected services, new services supplied by
different providers, and different execution contexts might hamper the correctness and
quality levels of these applications. Testing activities cannot foresee all these changes,
and they cannot be as powerful as with other applications: we need to shift validation
to run-time, and introduce the idea of continuous monitoring.

Runtime monitors [6] are the “standard” solution for assessing the quality of running
applications. Suitable probes can control functional correctness, and also the satisfac-
tion of QoS parameters, but web services introduce some peculiar aspects. Functional
correctness can be easily monitored by analyzing the data exchanged among services,
but service-centric applications also require that the many QoS aspects be monitored
with data that can be collected at different abstraction levels. We can analyze the SOAP
messages exchanged between client and provider, trace the events generated during
execution, and collect data from external metering tools. All these options must be ac-
commodated in a general framework that lets designers choose the values of interest
and the way they want to collect them.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 269–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 L. Baresi and S. Guinea

Current technology for executing (composed) services, like the WS-BPEL engines
available in these days, does not support monitoring. It only allows designers to inter-
twine the business logic with special-purpose controls at application level, thus hamper-
ing the separation between the definition of the application (i.e., the WS-BPEL process)
and the way it can be monitored. Designers must be free to change monitors without af-
fecting the application, and the actual degree of control must be set at run-time. In fact,
since monitoring impacts performance, the user must be able to change the amount
of monitoring while the application executes to adjust the ratio between control and
performance.

In this context, the paper presents an approach towards the dynamic monitoring of
WS-BPEL processes. It proposes external monitoring rules as means to dynamically
control the execution of WS-BPEL processes. This separation allows different sets of
rules to be associated with the same process. Monitoring rules abstract Web services
into suitable UML classes, and use this abstraction to specify constraints on execution.
Assertions are specified in WS-CoL (Web Service Constraint Language), a special-
purpose assertion specification language that borrows its roots from JML (Java Model-
ing Language [11]), and extends it with constructs to gather data from external sources
(i.e., to interact with external data collectors).

Besides constraining the execution, monitoring rules provide parameters to govern
the degree of run-time checking. After weaving selected rules into the process at de-
ployment time, the user can set the amount of monitoring at run-time by means of these
parameters (see Sections 3 and 4). The weaving introduces a proxy service, called moni-
toring manager, which is responsible for understanding whether a monitoring rule must
be evaluated, interacting with the external services, and calling known data analyzers
(monitors) to evaluate specified constraints. This solution can be seen as a feasibility
study (proof of concept) before embedding the manager in a WS-BPEL engine and
letting monitoring rules become part of the execution framework.

The approach is demonstrated on a simple example taken from [8]. Even if the pro-
posal is suitable for checking both functional and non-functional constraints, here we
only address QoS related monitoring rules since functional aspects were already studied
in [7].

This paper is the natural continuation of the work already presented in [7], and its
novel aspects are: (1) the idea of monitoring rules, (2) WS-CoL to specify constraints
on execution, (3) the capability of setting the degree of monitoring at run-time, and (4)
the proxy-based solution to enact the monitoring rules.

The rest of the paper is organized as follows. Section 2 introduces the monitoring
approach, while Section 3 describes monitoring rules and Section 4 introduces the mon-
itoring manager. Section 5 surveys similar proposals and Section 6 concludes the paper.

2 Monitoring Approach

The ideas behind the monitoring approach presented in this paper come from assertion
languages, like Anna (Annotated Ada [4]) and JML (Java Modeling Language [11]),
which let the user set constraints on program execution by means of suitable comments
added to the source code. Similarly, we propose monitoring rules to annotate WS-BPEL

Towards Dynamic Monitoring of WS-BPEL Processes 271

processes and constrain their executions both in terms of functional correctness and
satisfiability of the QoS agreements set between the client, which runs the WS-BPEL
specification, and the providers, which supply the services invoked by the WS-BPEL
process.

Monitoring rules are blended with the WS-BPEL process at deployment-time. The
explicit and external definition of monitoring rules allows us to keep a good separation
between business and control logics, where the former is the WS-BPEL process that
implements the business process, and the latter is the set of monitoring rules defined to
probe and control the execution. These rules also comprise meta-level parameters that
allow for run-time tailoring of the degree of monitoring activities. This separation of
concerns lets designers produce WS-BPEL specifications that only address the problem
they have to solve, without intertwining the solution and the way it has to be checked.
Different monitoring rules (and/or monitoring parameters) can be associated with the
same WS-BPEL process, thus allowing the designer to tailor the degree of control to
the specific execution context without any need for reworking the business process.
Moreover, a good separation of concerns allows for a neater management of monitor-
ing rules, and it is an effective way to find the right balance between monitoring and
performance.

Besides separation of concerns, the approach was conceived with the goal of reusing
existing technology to ease the acceptability of the approach and foster the adoption of
monitoring techniques.

All these reasons led to the monitoring approach summarized in Figure 1. It starts as
soon as a WS-BPEL process exists (or the designer starts working on it):

– Monitoring rules are always conceived either in parallel with the business process
or just after designing it. These rules are associated with specific elements (for
example, invocations of external services) of the business process, and are stored in
monitoring definition files.

– When the designer selects the rules to use with a specific execution, BPEL2 instru-
ments the original WS-BPEL specification to make it call the monitoring manager.

A

B

C

NET

WS A

WS B

WS C

Monitoring
Definition File

BPEL

MM
Setup

A

MM NET

WS A

WS B

WS C

Monitoring
Manager

MM

C

2

MM
Release

WS-BPEL Process

Instrumented WS-BPEL Process

Monitor

Fig. 1. Our Monitoring Approach

272 L. Baresi and S. Guinea

Fig. 2. The monitoring manager’s interface

– When the instrumented WS-BPEL process starts its execution, it calls the monitor-
ing manager whenever a monitoring rule has to be considered. The actual invoca-
tion of the monitor, that is, the actual analysis of execution/QoS data depends on
the current status of the manager. For example, if a rule has priority lower than the
current one, the manager skips its execution and calls the actual service directly.

– The designer has a special-purpose user interface (see Figure 2) to interact with the
monitoring manager and change its status. This happens when the designer wants
to change the impact of monitoring at run-time without re-deploying the whole
process.

– If some constraints are not met, that is, if some monitoring rules are not satisfied,
the monitoring manager is in charge of letting the WS-BPEL process know. It could
also activate recovery actions specified in the monitoring rules, but this topic is not
part of this paper, and recovery actions are still work in progress.

2.1 Weaving

Code weaving is performed by the BPEL2 pre-processor. Its job is to parse the monitor-
ing rules associated with a particular process and to add specific WS-BPEL activities to
the process in order to achieve dynamic monitoring . If the rule embeds a post-condition
to the invocation of an external web service, BPEL2 substitutes the WS-BPEL invoke
activity with a call to the monitoring manager (Figure 3), preceded by WS-BPEL as-
sign activities that prepare the data that have to be sent to the monitoring manager, and
followed by a switch activity which checks the monitoring manager’s response. The
monitoring manager is then responsible for invoking the web service that is being mon-
itored and for checking its post-condition with the help of an external data analyzer.

Towards Dynamic Monitoring of WS-BPEL Processes 273

Invocation of
Service A

BPEL2

PostCondition
Assign activities in

preparation of monitoring
manager invocation

Monitoring Manager
invocation

Throw BPEL exception
Assertion
verified

Assertion
not verifiedSwitch

Monitoring
Manager

Monitor

WS A

WS A

Fig. 3. The effects of weaving

Depending on the response it receives from the monitoring manager, the process flow
can either continue or stop (see Figure 3). Pre-conditions are treated the same way, ex-
cept that the monitoring manager first checks the pre-condition, and only if it is verified
correctly does it then proceed to invoke the web service being monitored.

If the rule represents an invariant on a scope, BPEL2 translates it as a post-condition
associated with each of the WS-BPEL activities defined in the scope. If the rule is a
punctual assertion then a single call to the monitoring manager is added, together with
the corresponding WS-BPEL assign and switch activities.

BPEL2 always adds to the WS-BPEL process an initial call to the monitoring man-
ager to send the initial configuration such as the monitoring rules and information about
the services it will have to collaborate with (see MM Setup in Figure 1). BPEL2 also
adds a ”release” call to the monitoring manger to communicate it has finished execut-
ing the business logic (see MM Release in Figure 1). This permits the monitoring
manager to discard any configurations it will not be needing anymore. Every call to the
monitor manager (which is not a setup or a release call) is also signed with a unique
incremental identifier. This is used for matching the manager call to the specific rules
and the data stored in the monitoring manager during setup.

This solution does not require any particular tool to run and monitor WS-BPEL pro-
cesses. Once the weaving of rules has been performed, the resulting process continues
to be a standard WS-BPEL process which simply calls an external proxy service to
selectively apply specified monitoring rules.

3 Monitoring Rules

Monitoring rules reflect the ”personal” monitoring needs that single users of WS-BPEL
processes may have. Every time a WS-BPEL process is run, different monitoring ac-
tivities should be enacted, depending on ”who” has invoked the process. This requires
the ability to define and associate monitoring activities to a single WS-BPEL process
instantiation, or execution. These definitions are conceived by producing a monitoring
definition file.

The monitoring definition file follows the structure illustrated in Figure 4. The infor-
mation it provides is organized into three main categories: General Information, Initial

274 L. Baresi and S. Guinea

General Information

Initial Configuration

Monitoring Rules

Monitoring Rule #1

Monitoring Location

Monitoring Parameters

Monitoring Expression

Fig. 4. Monitoring Definition

Configuration, and Monitoring Rules. The first part provides generic data regarding the
WS-BPEL process to which the monitoring rules will be attached. The second part con-
tains values that are associated with the process execution as a whole and can impact the
amount of monitoring activities that will be performed at run-time. This concept will
be further analyzed in Section 4. The third part, the monitoring rules, represent the core
of the monitoring definition. They are organized in Monitoring Location, Monitoring
Parameters, and Monitoring Expressions.

The first element indicates the exact location in the WS-BPEL process in which the
monitoring rule must be evaluated. The second element contains a set of monitoring
parameters, meta level information that define the context of the monitoring rule itself.
These parameters influence the actual evaluation of the rule, and can even impede its
run-time checking. Since we envisage the existence of multiple external monitors, the
type of monitor that should be used for the given rule is an important parameter. Besides
this, we currently consider three parameters (but many others could easily be added in
the future1). The three parameters considered so far are:

Priority. It is a number between one and five indicating the level of importance that
is associated with the rule. A priority level of one indicates a very low priority level,
while a priority level of 5 indicates a very high priority level. The idea is that a process
can run at various levels of priority. Given a process priority, any monitoring rule with a
priority level inferior to this threshold would not be considered at run-time. This makes
it possible to execute the same business logic with different degrees of monitoring.

1 The context could be more complex and address the physical location in which the process is
executed, or interact with the device on which the process executes through interfaces such as
WMI (Windows Management Instrumentation).

Towards Dynamic Monitoring of WS-BPEL Processes 275

Validity. The user defining the monitoring rules can decide to associate a time-frame
with a monitoring rule. Every time a process execution occurs within this time-frame,
the monitoring rule is checked; while, should it occur outside the time-frame, it would
be ignored. This can be useful when a service invocation must be initially monitored
for a certain amount of time before deciding that it can be trusted.

Certified Providers. It is a list of providers that gives us a way of indicating that the
monitoring activity does not have to be executed if the actual service is supplied by one
of the providers in the list. This is because we envisage monitoring playing a key role
in systems living in highly dynamic environments, and for this reason we imagine that
a specific service with which to do business could be chosen dynamically. We are never
entirely sure of ”who” will really be providing that service at run-time. In fact, even
when a service has been chosen statically, it can still need to be substituted at run-time
in the wake of erroneous situations.

The third and last element, the monitoring expression, states the constraint that has
to be evaluated.

The monitoring definition file is mainly a container for the definition of the moni-
toring rules that are to be executed at run-time and of the conditions at which they can
be ignored. Obviously, this leads to the need of specific languages for identifying the
locations and for defining the expressions embedded in the rules.

3.1 Locations

In our approach we want to monitor pre- and post-conditions associated with the invo-
cations of external web services, invariants that can be attached to WS-BPEL scopes,
and punctual assertions indicating a property that must hold at a precise point of execu-
tion. While defining locations, we specify two things: the kind of condition we want to
monitor, and in which point of the process definition we want to monitor it. For the first
part, we use a keyword indicating whether the monitoring rule specifies a pre-condition,
a post-condition, an invariant, or an assertion. For the second part, we use an XPATH
query capable of pointing out where the rule has to be checked in the process, inde-
pendently of the fact that the run-time checking could later be dynamically switched
off. In the first two cases (pre- and post-conditions) the XPATH query indicates the
WS-BPEL invoke activity to which we associate the rule, in the case of an invariant it
indicates the WS-BPEL scope to which we associate it, and in the case of an assertion
it indicates any point of the WS-BPEL process (in this case we indicate the WS-BPEL
activity prior to which the assertion must hold). Regarding pre- and post-conditions,
we are only interested in attaching monitoring rules to WS-BPEL activities that can in
some way modify the contents of the process’ internal variables. We are not interested
in attaching monitoring rules to activities that are used by WS-BPEL to define the pro-
cess topology. Therefore, we assume that pre- and post-conditions can be attached to
WS-BPEL invoke activities, post-conditions to receive activities, and pre-conditions to
reply activities. We also assume that post-conditions can be associated with onMessage
branches in WS-BPEL pick activities. The reason for this is that although pick activities
contribute to the process topology, they also help define the internal state of the process,
and therefore should be monitored.

276 L. Baresi and S. Guinea

For example, recalling the Futuristic Pizza Delivery example presented in [8], if
we want to define a post-condition on the invocation of the operation named getMap
published by the MapWS web service and linked to the WS-BPEL process through
partnerlink MapServicePartnerLink, we would define the location as2:

type = "post-condition"
path = "//:invoke[@partnerLink="lns:MapServicePartnerLink" and

@operation="getMap"]"

3.2 Expressions

For monitoring expressions, we propose to reason on an abstraction of the WSDL def-
initions of the services the WS-BPEL process does business with. Depending on the
degree of dynamism, these could be the actual services used by the application, or ab-
stract descriptions of the services the process would like to bind to (dynamic binding is
not treated in this paper). To do this we use a tool based on Apache AXIS WSDL2Java
[2]. The tool permits us to reason on stereotyped class diagrams that represent the
classes that are automatically extracted from a WSDL service description. In the tool,
a web service becomes a #service$ class that provides one public method for each
service operation and no public attributes. Similarly, for each message type defined in
the WSDL a #dataType$ class is introduced, containing only public attributes and
no methods. Figure 5 shows a MapWS#service$ class that provides a single method
called getImage. The exposed method takes a GetImageRequest#dataType$
as input and produces a GetImageResponse#dataType$ as output. This way we
can state our pre- and post-conditions by referring to these classes. If we want to express
an invariant, we can only express conditions on variables visible within the WS-BPEL
scope to which the invariant is attached. Since internal WS-BPEL variables are struc-
tured as simple or complex XSD types, the automatic translation to stereotyped class
diagrams can still be achieved. The same holds for expressions that are punctual as-
sertions. The only difference lies in the visibility of the variables the expression can
refer to.

Expressions are defined using WS-CoL , inspired by the light-weight version of JML
(Java Modeling Language [11]). WS-CoL further simplifies it and introduces a set of
instructions for specifying how we can retrieve data that are external to the process.
This may be the case in which the monitoring rule defines a relationship that must hold
between data existing within the process in execution and data that can be obtained by
interacting with external data collectors.

WS-CoL does not make use of keywords \old and \result3. The first is not
useful because services are black-boxes that take input messages and produce output
messages. Therefore, it is never necessary to refer to the value a certain ”variable” pos-
sessed prior to the invocation of the operation. The second keyword is useless because
we can refer to returned messages with their names.

2 This is what the system produces but the user defines locations by pointing to the specific
WS-BPEL elements directly in the graphical editor, and by choosing the annotation type.

3 Lack of space does not allow us to thoroughly introduce the language, but JML uses \old
to refer to old values in post-conditions, and \result to identify the value returned by a
method.

Towards Dynamic Monitoring of WS-BPEL Processes 277

<<service>>
MapWS

+ getImage(GetImageRequest) : GetImageResponse

<<dataType>>
GetImageRequest

HCoord : long
VCoord : long

<<dataType>>
GetImageResponse

GetImageReturn : byte[]

Fig. 5. The MapWS Web Service

WS-CoL adds a set of keywords that represent ways of obtaining data from external
data collectors. A different extension is introduced for each of the standard XSD types
that can be returned by external data collectors: \returnInt, \returnBoolean,
\returnString, etc. Therefore, while defining a monitoring expression, we can use
these extensions. All follow the same design pattern. They take as input all the informa-
tion necessary for interacting with the external data collector, such as the URL location
of its WSDL description, the name of the operation to be called upon it, the parameters
to be passed to the data collector service, etc (see Section 4).

For example, if we want to specify a post-condition for the getImage operation in
Figure 5 and state that the returned map must have a resolution less than ”80x60” pixels
we would define the expression as:

@ensures \returnInt(wsdlLoc, getResolution,
’image’, GetImageResponse.GetImageReturn,
HResolution) <= 80 &&
\returnInt(wsdlLoc, getResolution, ’image’,
GetImageResponse.GetImageReturn, VResolution) <= 60;

In this example, a getResolution operation is invoked on a service that publishes
its interface at the URL wsdlLoc. The array of bytes GetImageReturn (see Fig-
ure 5) is passed as an input value and mapped onto the image message part defined at
wsdlLoc. HResolution and VResolution, on the other hand, are the message
parts defined in the output message at wsdlLoc that should be returned as integers.
These returned values are compared with the desired resolution (80 pixels for the hori-
zontal dimension and 60 pixels for the vertical dimension).

4 Monitoring Manager

The Monitoring Manager is the key component of our proxy-based solution for dy-
namic monitoring. This section illustrates its architecture and how it can be used by a
WS-BPEL process that requires monitoring. We also analyze how its structure impacts
the transformation produced by the BPEL2 pre-processor.

278 L. Baresi and S. Guinea

Monitoring Manager

CLiX
Monitor
Plugin

Monitor
Plugin

Monitor
Plugin

External
Monitors
Manager

Configuration
Manager

Invoker

Rules
Manager

Monitor
Manager
Interface

Plugin Interface

Plugin Interface

Plugin Interface

Fig. 6. The Monitoring Manager

The manager, whose architecture is shown in Figure 6, is capable of interpreting
monitoring rules, of keeping trace of the configuration with which a user wants to run
a process, of interacting with external data collectors to obtain additional data for mon-
itoring purposes, and of invoking external monitor services.

We illustrate its use in the case of monitoring of pre- and post-conditions; its usage
for the other cases is similar. To evaluate pre-conditions, the manager is used in substi-
tution to the services which have rules associated with them. In fact, it is called instead
of the service to be monitored. When called, it decides if the rule is to be evaluated
by looking at its associated monitoring parameters and if it is, it proceeds to evaluate
it. If the condition is verified correctly, it then invokes the original web service being
monitored. Post-conditions are evaluated in the same way.

The manager is constructed to keep a configuration table for each process execu-
tion. These configurations are managed by the Configuration Manager. In particular,
the manager needs to know: the initial overall process configuration (contained in the
monitoring definition file), the monitoring rules, and all the information necessary for
interacting with external services (the service being monitored, the external data collec-
tors, and the external monitor service). Most of these data can be sent to the manager
at the beginning of the process by invoking the setup method published by the man-
ager (see Figure 1). In particular, everything except the input/output values that will
be exchanged at run-time can be sent at the beginning of the process, before starting
to perform the real business logic. This solution is preferable, with respect to sending
all the data every time the process needs to interact with the manager, since an initial
slowdown is certainly better than slowing down all the intermediate steps. All the in-

Towards Dynamic Monitoring of WS-BPEL Processes 279

Fig. 7. The Monitoring Manager

formation sent during the setup phase is stored in the Configuration Manager and is
associated with a process execution through the unique identifier produced by the WS-
BPEL engine. Similarly, at the end of a process execution the manager is warned to free
itself of the burden of keeping the corresponding configuration table.

The manager also supplies a graphical interface to the user. It permits the run-time
consultation and modification of the values contained in the configuration table. For
example, it is possible to modify the priority level at which a process is being run or
to add a new provider to the list of certified providers that are associated with a given
monitoring rule.

Figure 7 shows the step by step interaction of the components that cooperate to
execute the service presented in Section 3 and to check its post-condition4. Initially, the
BPEL process sends the data that will be necessary to the manager (Step 1). Since no
pre-condition needs to be checked, the Rules Manager asks the Invoker to go on and
invoke the external web service (in our case service MapWS) (Steps 2 and 3). When the
RulesManager receives the results of the service invocation (Steps 4 and 5), it interacts
with the Configuration Manager to retrieve the monitoring rule (i.e. the post-condition)
that has to be checked (Step 6). By examining the monitoring parameters attached to
the rule, the Rules Manager dynamically decides if the rule is to be checked or not. For
example, if we consider the expression presented in Section 3, we could imagine the

4 More complete running examples are available at : http://www.elet.polimi.it/
upload/guinea.

280 L. Baresi and S. Guinea

associated priority parameter to be 4. If the process is then run with a priority value
of 3, the rule would be checked since its priority parameter is higher than the value
associated with the process.

Then, Rules Manager decides whether additional data are required from external
data collectors. If this is the case, it calls the Invoker to obtain them (Step 7). This
component is built around Apache WSIF (Web Service Invocation Framework [3]) and
is capable of invoking a web service without previously creating client-side stubs but
by dynamically interacting with the service through its WSDL description. The Invoker
can be used to invoke any service provided it knows: the URL of the WSDL of the
service to be invoked, the name of the operation that is to be invoked on that service,
a list of keys that help map the operation’s input values onto the operation’s message
parts as defined in the WSDL description, a list of input values for the operation to
be invoked, and a list of keys for indicating the parameters (as indicated in the output
message parts contained in the WSDL description) we want to receive as output. The
Invoker can also be called when an expression uses a WS-CoL to obtain additional
monitoring data from external data collectors. In this case, the list of output keys is
reduced to a single key that corresponds to a part of the output message as described in
the WSDL description of the service (see the expression given in Section 3.1).

Once all the data necessary have been obtained (Steps 8, 9, and 10), the RulesMan-
ager begins its interaction with the External Monitors Manager (Step 11). This com-
ponent is responsible for managing the different kinds of external monitors that the
manager is capable of working with. In particular, it manages the set of plugins that
contain the logic necessary for converting the WS-CoL syntax used for defining the
monitoring expressions into the proprietary syntax used by each external monitor. The
monitor plugin also prepares the data that must be sent to the monitor by formatting
them in a way that the monitor is capable of interpreting (Step 12). In this paper, we
use a monitor built around XlinkIt [1]. For this monitor the WS-CoL expressions
must be re-written as CLiX rules and the data expressed as XML fragments. When the
External Monitors Manager has finished adapting the monitoring data and the monitor-
ing rules (Steps 13 and 14), the Invoker is called once again for invoking the external
monitor (Step 15). If the monitor responds with an error, meaning the condition is not
satisfied, the Rules Manager communicates it to the WS-BPEL process by returning a
standard fault message, as published in the WSDL description of the manager. If the
monitor’s response is that the condition is satisfied, the manager can then proceed to
return the original service response to the WS-BPEL Process (Step 19).

5 Related Work

The research initiatives undertaken in the field of web service monitoring share the
common goal of discovering erroneous situations during the execution of services. They
differ, although, in a number of ways: degree of invasiveness, abstraction level at which
they work, reactiveness or pro-activeness.

For example, Spanoudakis and Mahbub [9] developed a framework for monitor-
ing requirements of WS-BPEL-based service compositions. Their approach uses event-
calculus for specifying the requirements that must be monitored. Requirements can be

Towards Dynamic Monitoring of WS-BPEL Processes 281

behavioral properties of the coordination process or assumptions about the atomic or
joint behavior of deployed services. The first can be extracted automatically from the
WS-BPEL specification of the process, while the latter must be specified by the user.
Events are then observed at run-time. They are stored in a database and the run-time
checking is done by an algorithm based on integrity constraint checking in temporal
deductive databases. Like our approach, it supports reactive monitoring since erroneous
situations can be found only after they occur, but it is less intrusive since it proceeds
in parallel with the execution of the business process. This leads to a lesser impact on
performance but also to a lesser responsiveness in discovering run-time erroneous situ-
ations. The approach also proposes a lower abstraction level, placing therefore a heavier
burden on the designer.

Lazovik et al. [10] proposes another approach based on operational assertions and
actor assertions. The first can be used to express properties that must be true in one state
before passing to the next, to express an invariant property that must hold throughout all
the execution states, and to express properties on the evolution of process variables. The
second can be used to express a client request regarding the entire business process, all
the providers playing a certain role in the process execution, or a specific provider. The
system then plans a process, executes it, and monitors these assertions. This approach
shares with ours the fact of being assertion-based. Once the assertions are inserted, it
is completely automatic in its setup and monitoring. It lacks although the possibility of
dynamically modifying the degree of monitoring. It also lacks adoptability since it is
based on proprietary solutions.

Our approach must also be compared with the proposals that integrate Aspect Ori-
ented programming and WS-BPEL. An example can be found in the work by Finkel-
stein et al. [5]. It exploits the semantic analyzers present in their development toolkit
(called SmartTools) to implement a WS-BPEL engine as an interpreter. Abstract syntax
trees are built for each process and are then traversed by the semantic analyzer that im-
plements the visitor design pattern. These methods facilitate aspect oriented adaptation.
The approach concentrates more on weaving at the engine level and less at the process
level, which is where our approach works.

6 Conclusions and Future Work

The paper has presented an approach to support the dynamic monitoring of WS-BPEL
processes. It is an evolution and refinement of the ideas already presented in [7]. The
proxy-based solution is dictated by the wish of using available technology, instead of
inventing new non standard executors, but this proposal can also be seen as a feasi-
bility study to better understand the different pieces of the approach, and evaluate the
possibility of embedding them in an existing WS-BPEL engine.

Our future work will concentrate on further studying the possibility of embedding the
monitoring manager into a WS-BPEL engine, on experimenting with new data collec-
tors and data analyzers, on extending the language to support other types of monitoring
(e.g., the capability of predicating on histories instead of concentrating on punctual val-
ues), and on providing real-world results of the performance ”overhead” that can be
introduced by our approach.

282 L. Baresi and S. Guinea

References

1. XlinkIt: A Consistency Checking and Smart Link Generation Service. ACM Transactions
on Software Engineering and Methodology, pages 151–185, May 2002.

2. AXIS. Apache AXIS Web Services Project, 2005. http://ws.apache.org/axis/.
3. Web Service Invocation Framework. Apache WSIF Project, 2005. http://ws.apache.

org/wsif/.
4. D.C. Luckham. Programming with Specifications: An Introduction to Anna, A Language for

Specifying Ada Programs. Texts and Monographs in Computer Science, Oct 1990.
5. C. Courbis and A. Finkelstein. Towards Aspect Weaving Application. In Proceedings of the

25th International Conference on Software Engineering, 2005.
6. N. Delgado, A.Q. Gates and S. Roach. A Taxonomy and Catalog of Runtime Software-Fault

Monitoring Tools . IEEE Transactions on software Engineering, pages 859-872, December,
2004.

7. L. Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Composed Services. In Proceedings
of the 2nd International Conference on Service Oriented Computing, 2004.

8. L. Baresi, C. Ghezzi and S. Guinea. Towards Self-healing Service Compositions. In Pro-
ceedings of the First Conference on the PRInciples of Software Engineering, 2004.

9. K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of Service
Based Systems. In Proceedings of the 2nd International Conference on Service Oriented
Computing, 2004.

10. A. Lazovik, M. Aiello and M. Papazoglou. Associating Assertions with Business Processes
and Monitoring their Execution. In Proceedings of the 2nd International Conference on
Service Oriented Computing, 2004.

11. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A Be-
havioral Interface Specification Language for Java. Department of Computer Science, Iowa
State University, TR 98-06-rev27, April, 2005.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 283 – 295, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Template-Based Automated Service Provisioning –
Supporting the Agreement-Driven Service Life-Cycle

Heiko Ludwig2, Henner Gimpel1, Asit Dan2, and Bob Kearney2

1 Universität Fridericiana zu Karlsruhe (TH), Englerstrasse 14,
76131 Karlsruhe, Germany

gimpel@iw.uni-karlsruhe.de
2 IBM T.J. Watson Research Center, 19, Skyline Drive,

Hawthorne, NY, 10025, USA
{hludwig, asit, firefly}@us.ibm.com

Abstract. Service Level Agreements (SLAs) are a vital instrument in service-
oriented architectures to reserve service capacity at a defined service quality
level. Provisioning systems enable service managers to automatically configure
resources such as servers, storage, and routers based on a configuration specifi-
cation. Hence, agreement provisioning is a vital step in managing the life-cycle
of agreement-driven services. Deriving detailed resource quantities from arbi-
trary SLA specifications is a difficult task and requires detailed models of algo-
rithmic behavior of service implementations and capacity of a – potentially het-
erogeneous – resource environment, which are typically not available today.
However, if we look at, e.g., data centers today, system administrators often
know the quality-of-service properties of known system configurations and
modifications thereof and can write the corresponding provisioning specifica-
tions. This paper proposes an approach that leverages the knowledge of existing
data center configurations, defines templates of provisioning specifications, and
rules on how to fill these templates based on a SLA specification. The approach
is agnostic to the specific SLA language and provisioning specification format
used, if based on XML.

1 Introduction

Agreements, particularly Service Level Agreements (SLAs), play an important role
in the binding process of service-oriented architectures. They are used for the reser-
vation of service capacity at defined service levels for a specific customer. Agree-
ments enable a service provider to learn about future demand in advance – as stated
in the agreements – and provision the required resources for the agreed service
capacity.

The use of agreements to reserve and bind to services is relevant for various types
of services. Agreements are used for reserving capacity of software-as-a-service, e.g.,
Customer Relationship Management services, for scheduling Grid jobs, and also for
resource-level services within a complex system such as storage capacity, network
bandwidth, computing nodes, and memory. Furthermore, the mechanism of binding to
services by agreement is applied within an organization and across organizational
boundaries – with changing security requirements, though.

284 H. Ludwig et al.

Traditionally, SLAs have been used primarily between organizations in a, mostly,
paper-based process. SLA creation was then followed by a phase of service provision-
ing that could take once more a significant amount of time, depending on the degree
of automation of the design of the resource infrastructure that provisions the service
and of the provisioning process.

Recently, however, a number of efforts were undertaken to streamline the creation
and monitoring of SLAs for service-oriented architectures by representing SLA con-
tents in a machine-readable format and using electronic (Web services) interactions to
negotiate and sign them. WSOL [15] and WSLA [12] are research approaches propos-
ing agreement representations. SNAP is a proposal for an agreement negotiation pro-
tocol [4]. WS-Agreement [1] is a specification of the Global Grid Forum that stan-
dardizes a top-level agreement structure, a simple negotiation protocol and a
compliance monitoring interface. Standardized representations of agreements and ne-
gotiation processes enable dynamic service acquisition processes for capacity-aware
service clients. However, to be effective in practice, they also demand automation of
the provisioning process of service providers, which is the subject of this paper.

Provisioning is the act of deploying, installing and configuring a service [9]. It is
an important aspect of management of data centers and networks. Provisioning typi-
cally involves the following steps:

1. Identifying the target system state that delivers the service as intended; this in-
volves the derivation of the system’s topology, the configuration of firewalls,
application servers, database servers and the like, as well as the quantification
of those resources, i.e. how many servers of each type.

2. Deriving a process that transitions the system from its current state to the tar-
get state, often referred to as change management [10];

3. Executing the process consistently, usually driven by a workflow or script sys-
tem accessing instrumentation on those resources.

The term provisioning is applied to both, low-level provisioning of servers or other
raw resources, i.e. installing and configuring operating systems, as well as to high-
level application provisioning, installing, updating and configuring applications on re-
sources that underwent low-level provisioning earlier. Given the complexity of the
steps of the provisioning process listed above, particularly steps 1 and 2, a generic so-
lution for automating the end-to-end service provisioning process is a daunting task.
While some approaches address partial aspects such as deriving a service topology [6]
and deriving and optimizing a provisioning workflow [9], no generic, derivative pro-
visioning solution is available as of now.

The approach presented here tackles exactly this problem, i.e. the automation of
end-to-end service-provisioning based on agreement terms. More precisely, we pro-
pose a template mechanism that automatically handles service requests: it derives re-
source types and quantities necessary to guarantee quality requirements, it determines
the resource configuration and assembly, and acquires resources from heterogeneous
resource managers.

To make provisioning work in practice, service providers capture the experience of
their system administrators in provisioning process templates and rules of thumb for
capacity planning, an approach that is often pragmatic. The approach proposed in this
paper leverages this pragmatic approach for agreement-driven provisioning. It

 Template-Based Automated Service Provisioning 285

provides a formal representation for templates of an executable provisioning process
and an executable way of defining how to fill in these templates based on content of a
formal agreement, which we call the Agreement Implementation Plan Template (IP
Template). These templates are predefined parametric examples of how to provision
services of a given basic structure. Thus, the presented mechanism does not go against
the administrators’ rules of thumb or best practices on a general basis, but embraces
them in providing an automatically executable process, and thus more appropriate if
time is a crucial factor. The approach enables dynamic acquisition of service capacity
in a service-oriented environment in a pragmatic way.

To this end, the remainder of the paper is structured as follows: Section 2 estab-
lishes relevant terminology by defining a model of provisioning in the service live-
cycle. Section 3 outlines the problem definition in more details, presents a sample
scenario where the proposed mechanism is applicable, and points out the major re-
quirements. Section 4 presents the proposed template structure along with the proc-
essing of agreement offers to derive resource requirements and trigger provisioning.
Finally, Section 5 reviews related work and concludes.

2 Provisioning in the Agreement-Driven Service Life-Cycle

The life-cycle of any electronic service goes through at least four broad stages:

1. a high level service modeling stage for mapping a business problem to a ser-
vice description,

2. a design and implementation stage where the service technology, usually the
application code is developed in support of the above service description,

3. a resource mapping and deployment stage, where a specific set of resources,
its topology and quantity, is defined on which the service is deployed, and

4. a runtime monitoring and management stage for managing resources deliver-
ing the service.

Supporting performance-related quality of service as part of an agreement requires
additional activities throughout these four life-cycle stages. At the modeling stage, in
addition to the service definition, associated qualities of service are defined. The ser-
vice implementation must be implemented in a way that it can be deployed on a vari-
able set of resources. The resource mapping and deployment stage, the service provi-
sioning as defined here, must be able to derive the set of resources required to achieve
a given performance level and at runtime, the instrumentation of the service must al-
low us to assess QoS compliance and adjust resource allocations.

2.1 Provisioning in an Agreement-Driven Service-Oriented Architecture

This life-cycle is managed in the context of an agreement-driven service-oriented ar-
chitecture (ADSOA). In this ADSOA, the agreement-related interaction between ser-
vice provider and customer precedes, and is orthogonal to, the service interaction tak-
ing place between service and service client [1]. In an implementation architecture,
the Service Delivery layer, which exists in any service-oriented architecture, is driven
by the Agreement Management layer through Agreement Delivery Management as
outlined in Figure 1.

286 H. Ludwig et al.

Fig. 1. Provisioning in an Agreement-Driven Service Architecture

The Service Delivery layer addresses the implementation of a service on a set of re-
sources. In Figure 1, a CRM service is implemented by resources from two pools,
storage and servers (dotted lines). It can be accessed by one or more clients. Re-
sources are configured for a particular service using a provisioning engine, which
executes provisioning plans, acquiring resources from resource pools and executing
provisioning workflows. Resources can be shared between services or be exclusive.
The Service Delivery layer per se is independent of agreements and is present in any
non-trivial SOA implementation architecture.

The Agreement Management layer manages the portfolio of agreements and enters
new agreements by exchanging offers. It also exposes the current state of the agree-
ment, according to the WS-Agreement model.

The Agreement Delivery Management layer relates the Service Delivery and Agree-
ment Management. Offers and Agreements are input to a Provisioning Planner, which
creates a Provisioning Plan, comprising the set of resources required and the provision-
ing workflow. This Provisioning Plan can be used by the Agreement Management layer
to assess an agreement offer or it can be passed on to the Provisioning Engine of the
Service Delivery layer. Mapping the state of the Service Delivery layer to the state of
compliance of an agreement is also part of this layer but not the focus of this paper [11].

2.2 Use of Templates

In an ADSOA, service capabilities can be published by an agreement provider as
agreement templates, potentially in addition to and complementing other forms such
as policy-annotated UDDI entries. WS-Agreement defines a template format that con-
tains a partially completed agreement, a definition of named locations where an

Agreement
Initiator

Agreement
Provider

Provisioning
Planner

Service
Client

CRM Service

NAS1

NAS2

NAS3

Storage Pool

CRM Service

Service
Consumer

Service
Provider

Agree
ment

Provisioning Plan

Offer

Server

Server

Server

Server Pool

Agreement
Management

Service
Delivery

Agreement
Delivery

Management

Provisioning
Engine

 Template-Based Automated Service Provisioning 287

agreement initiator can fill in agreement content, i.e. the “fields”, and constraints that
limit what can be filled in [1]. In the context of a CRM Web service, for example, a
field could be the value for the response time of an operation and a constraint could
limit the choice to one, two or five seconds. The use of agreement templates, particu-
larly their constraint mechanism, enables service providers to advertise services only
at performance levels whose resource implications they have experience with and un-
derstand. A service can be advertised using multiple agreement templates.

To capture the provisioning expertise of system administrators, these agreement
templates can be associated with agreement implementation plan templates. An
agreement implementation plan template contains a partially filled provisioning plan,
corresponding to the agreement template approach, and a definition how to fill these
fields depending on content of agreements. The details of this approach are described
in Section 4. Agreement implementation plan templates can be changed independ-
ently of agreement templates but must be adapted if agreement templates change.
Hence, the joint use of agreement templates and agreement implementation plan tem-
plates enables a service designer to anticipate the decision-making of the first three
stages of the service life-cycle and automate the execution of provisioning planning
for particular agreements in the life-cycle.

3 Problem Definition

The use of agreements in managing service interactions, and hence, agreement-based
provisioning is required in all scenarios where service configurations need to be custom-
ized based on client requirements. As mentioned earlier, the use of customer-specific
SLAs is equally applicable for configuring a business service between enterprises or for
managing interactions across resource managers in a complex distributed environment,
e.g., having a storage manager, workload manager, cluster manager, etc. The complex-
ity of an agreement driven provisioning process in different scenarios depends on the
service and the complexity of customization. For example, in an agreement-based job
submission, where the agreement specifies a preference of resources over which the job
is to be run, the Provisioning Planner simply invokes the scheduling system with the in-
formation on resource preferences. In this case, the agreement implementation plan
template specifies the end-point of the scheduling system and how to extract resource
preference information to be passed to the scheduling system. Similarly, incremental
provisioning for setting up a shared application/web service with a client specific ser-
vice level objective on average response time simply requires passing the service level
objective information to the workload manager managing this service. Again, the asso-
ciated agreement implementation plan template consists of the end-point of the work-
load manager and how to extract service level objective information.

3.1 Use Case

A more complex example of agreement-based provisioning may involve multiple
steps of deriving information to be passed to one or more provisioning services and/or
multiple methods to be invoked. Consider, setting up a CRM software-as-a-service
hosted by an application service provider. Also, assume the agreement includes many

288 H. Ludwig et al.

details such as how to upload client data, application isolation, firewall and other se-
curity requirements, performance and availability requirements, requirement on stor-
age size and data back up, network connectivity requirements, details of metering and
billing, etc. Clearly, provisioning such a service requires interaction with many com-
ponents and deriving resource configuration parameters to be used.

3.2 Requirements

The previous discussion leads to a set of requirements to be addressed by an agree-
ment-driven provisioning approach:

• The approach must not be specific for a single service or a class of services,
like, for example, a CRM application service. It should generically enable
SLAs for a wide range of services, from resources to business services.

• The approach must deal with a variety of provisioning engines, including schedulers.
• Agnosticism to the specific SLA language is desirable as there is no unique way

to specify SLAs and this reduces re-implementation and adaptation.
• The approach must provide means for capturing externalized know-how of sys-

tem administrators.
• The overall provisioning process should be automatically executable, the main

motivation for automatic provisioning.
• The approach has to provide functionality for deriving resource types and

quantities for a given SLA.
• Furthermore, there has to be a detailed plan of the necessary resource configu-

ration and assembly for provisioning these resources.
• Allowing for the acquisition of resources from a resource pool is an integral

step in provisioning.
• Finally, the mechanism has to be adaptive to the resource load and availability,

as the system state is non-constant.
• Finally, it might be favorable if the system is able to simultaneously cope with

heterogeneous resource pools like, for example, different data centers; at its
best, this works across organizational boundaries.

Manually provisioning an infrastructure that delivers a service as defined in a SLA
fulfills all functional requirements outlined above but the automation. However,
automation opens up the potential of speeding up the provisioning process. To fore-
stall its properties one can say that it satisfies all above requirements. One more point
about the agnosticism to the SLA language is noteworthy: the examples presented in
this paper assume SLAs specified according to the WS-Agreement specification and
the template itself is exemplified via XML. However, the general components and
processes are as well applicable to other languages by adapting the location pointers
used in the implementation plan template.

4 Template-Based Agreement Provisioning Framework

Addressing the detailed requirements defined in the previous section, this section intro-
duces the template-based agreement provisioning framework, specifically addressing

 Template-Based Automated Service Provisioning 289

provisioning planning of the agreement delivery layer of the ADSOA. This framework
comprises two elements, a representation for Agreement Implementation Plan Tem-
plates and a Definition of the Provisioning Planning process based on these templates.

4.1 Agreement Implementation Plan Templates

The framework aims at determining the resources required to provision a given SLA
which might, for example, be specified as a WS-Agreement for the above-mentioned
CRM application service. To this end, the framework’s core element is the agreement
implementation plan template (IP template for short). The IP template contains a de-
scription how to create a complete provisioning plan from a given agreement offer.
To this end, an IP template comprises four sections:

1. Agreement parameter identifiers,
2. Partial provisioning plan,
3. Instance completion description,
4. Provisioning engine invocation section.

The components of an IP template are sketched in Figure 2 and discussed in more de-
tail in the following.

Agreement Parameter Identifiers. The purpose of the agreement parameter identifi-
ers section is to relate the IP template to agreements to which it can be applied. When
designing the IP template one has to relate it to a class of potential agreements that
follow a similar structure, potentially being created according to an agreement tem-
plate, as, for example, the WS-Agreement specification draft suggests. However, this
is an example and the IP template itself and the process that uses it are agnostic to the
semantics of agreements, if based on XML. The section contains an arbitrary number
of agreement parameter identifiers – each of which having a unique name and a loca-
tion pointer. The location pointer points to exactly one location in an agreement, re-
ferred to as agreement part. Agreement parts can be any clearly identified substructure
of an agreement. The pointer concept is sketched in Figure 2.

In the CRM application service example agreement parts might be performance re-
quirements like response time and throughput, the pricing scheme, and the firewall
configuration. If the agreement is specified in an XML data structure, the XPath for-
mat can be employed to represent location pointers; the author of such an XPath ex-
pression has to make sure that it resolves to one and only one single location in an
agreement document. A corresponding agreement parameter identifier using XPath is
exemplified below:

…
<AgreementParameterIdentifiers>
 <ParameterIdentifier name=”AverageResponseTime”>
 <LocationPointer>
 //wsag:GuaranteeTerm[@wsag:Name=’resTime’]/*Value
 </LocationPointer>
 </ParameterIdentifier>
 …
</AgreementParameterIdentifieres>
…

290 H. Ludwig et al.

Agreement Implementation
Plan Template

Partial Provisioning Plan

Agreement Parameter Identifiers

Provisioning Engine
Invocation Details

Resource Type
Definition

Resource
Assembly

Instance Completion Description

Agreement Offer

Agreement Part

Agreement Part

Agreement Part

Parameter Identifiers

Name

Location Pointer

Field Description

Location Pointer

Field Value
Algorithm

Fig. 2. Pointer structure in agreement implementation plan templates

Partial Provisioning Plan. The partial provisioning plan has a format that is inter-
preted by a provisioning engine. The plan has open or modifiable fields that will be
filled in with values as described in the instance completion description. Most provi-
sioning systems today have their proprietary format but some standards are under de-
velopment such as CDDLM [2] or IUDD [16]. The presented approach only relies on
an XML representation.

We present a simple proprietary example language that we use for provisioning
prototypes; in a productive environment, CDDLM or IUDD can easily be used, as the
overall mechanism is agnostic to the specific XML language employed. The descrip-
tion comprises the definition of resource types and one or more definitions of resource
assembly which are alternatives and among which can be chosen depending on re-
source availability and cost considerations. Different alternatives might for example
be whether to employ a mainframe or a cluster for the CRM application service ex-
ample. The definition of resource types contains the information to uniquely identify
the type of resources to a resource pool, e.g., the cluster management system of a data
center, to query the resources availability. The following XML listing exemplifies the
definition:

 Template-Based Automated Service Provisioning 291

…
<PartialProvisioningPlan>
 <ResourceTypeDefinitions>
 <ResourceType name=”P-Series”>
 <HostType description=”pSeries550”>
 <HostArchitecture>
 <CPUCount>4</CPUCount>
 </HostArchitecture>
 …
 </HostType>
 </ResourceType>
 …
 </ResourceTypeDefinition>
 …
</PartialProvisioningPlan>
…

The definition of resource assembly comprises resource quantity definitions, indicat-
ing how many resources for which type are needed for this assembly. Furthermore,
the assembly contains a definition how and in which order the resources will be con-
figured and provisioned. This definition might be written in a script language such as
Unix shell script or Perl, or in a workflow language such as BPEL4WS.

Instance Completion Description. The instance completion description section of
the IP template defines what parts will be filled in and substituted in the partial
provisioning plan. For this, the instance completion description comprises a set of
field descriptions, each of which explains how to create a value for a specific part of
the partial provisioning plan. Such a field description is made up of a location
pointer and an algorithm for deducing the field value. The location pointer is
analogous to the above-mentioned location pointer. The algorithm is represented in
a format that can be automatically interpreted – any such format is possible; the
PMAC Expression Language [8], for example, is a suitable representation, as the
following code illustrates:

…
<InstanceCompletitionDescription>
 <FieldDescription>
 <LocationPointer>
 //ProvisioningProcessDescription/*NumberOfServers
 </LocationPointer>
 <FieldValueAlgorithmDescription>
 <exp:Plus>
 <exp:FloatConstant>
 <Value>02.000</Value>
 </exp:FloatConstant>
 <exp:Divide>
 <exp:FloatConstant>
 <Value>01.000</Value>
 </exp:FloatConstant>
 <exp:Variable name=”AverageResponseTime”/>

292 H. Ludwig et al.

 </exp:Divide>
 </exp:Plus>
 </FieldValueAlgorithmDescription>
 </FieldDescription>
 …
</InstanceCompletitionDescription>
…

 In this example the number of servers to be provisioned increases the shorter the
average response time is chosen. The desired response time is extracted from the
agreement, i.e. the SLA, via the parameter identifier, as shown in the example above.
The deduced number of servers is filled in the partial provisioning plan. Besides the
sketched expression language, a field value algorithm can contain a call to an external
algorithms, functions, and programs performing more complex estimations for the re-
source requirements.

Provisioning Engine Invocation. The fourth section of the IP template gives details
on the provisioning engine to use. This enables environments with multiple provision-
ing engines by defining the endpoint reference to which a complete provisioning plan
instance is sent. An example in the simplest case is:

…
<ProvisioningEngineInvocationDetails>
 <wsa:EndpointReference>
 http://manamgement.ibm.com:8080/provisioning
 </wsa:EndpointReference>
</ProvisioningEngineInvocationDetails>
…

4.2 Provisioning Process

The outlined template mechanism (1) identifies the parts of a SLA which are relevant
for supplying resources, (2) derives quantities for different resource types, determines
and outlines alternative resource assemblies that might be used, and (3) compiles a
provisioning plan detailing the required resources, their configuration, and their pro-
visioning. The processing of such an IP template is implemented by the Provisioning
Planner; the provisioning itself is carried out be the Provisioning Engine.

Provisioning Planner: Upon receiving an agreement, the Provisioning Planner ana-
lyzes it and checks its syntactic correctness. Subsequently, a set of implementation
plan templates associated with the agreement offer is retrieved from a template re-
pository and is subsequently used to devise a provisioning plan.

The first applicable template is chosen and processed up to a provisioning plan.
The provisioning engine then executes this provisioning plan – it acquires and config-
ures the respective resources and reports the result of this provisioning process back
to the agreement provisioning planner. In case of failure, the agreement provisioning
planner can devise an alternative provisioning plan from the next IP template re-
trieved from the repository.

 Template-Based Automated Service Provisioning 293

Processing a single IP template involves the following:

1. Verify for each location pointer of each parameter identifier if it points to
one and only one location in the received agreement.

2. Retrieve values from the agreement as specified by the parameter identifi-
ers and store them indexed by their respective names.

3. Write a copy of the provisioning process description.
4. For all field descriptions in the instance completion description:

a. Execute the field value algorithm.
b. Insert the value returned in the provisioning plan instance at the loca-

tion given by the field description’s location pointer.

With completion of these steps – possibly for several IP templates if there might be
failures – the algorithm yields a complete and executable instance of the provisioning
plan. Hence, there is no need for the Provisioning Planner to understand the semantics
of the provisioning plan as the semantics, e.g., a system administrator’s knowledge on
how many servers are to utilize to meet a given response time goal, is captured in the
IP template itself.

Provisioning Engine. The Provisioning Engine interprets the output of the Provision-
ing Planner. Although our approach can work with different engines, we illustrate the
workings of the provisioning engine along a simple prototypical implementation.

When one of the IP templates results in a complete provisioning plan, the provi-
sioning planner retrieves endpoint reference of the provisioning engine to be used
from the provisioning engine invocation details in the IP template. It sends the com-
pleted provisioning plan to this provisioning engine which proceeds with the follow-
ing steps:

1. Select the first resource assembly within the provisioning plan.
2. Check whether the resources can be acquired from the resource pool in

the quantity indicated by the resource quantity definition of the respective
resource assembly.
If not, this step is repeated with the next resource assembly, if any. If there
is no resource assembly left, a failure notice is returned the provisioning
planner and the process is terminated here.

3. Acquire resources in the desired quantity, as step 2 assured that they are
available.

4. Execute the assembly provisioning plan to configure the assembly.

If step four completes, the provisioning is complete and the service can be used.
The provisioning engine reports the successful resource acquisition back to the provi-
sioning planner which in turn informs the service client that presented the service of-
fer in the first place. The service management then starts the service by making it
available to the service client.

Heterogeneous Resource Pools. Up to now, the nature of resource pools and the spe-
cific acquisition mechanism was not addressed. The template-based approach is ap-
plicable to different resource pools: it can equally be applied for provisioning of re-
sources within a single host, within one data center, across different data centers run

294 H. Ludwig et al.

by the same organization, and to inter-organizational resource acquisition. The crucial
factor is that the provisioning engine has to be able to communicate with the re-
sources or resource providers respectively. The easiest way is direct access to the
scheduler; a more sophisticated acquisition – which might be applied across organiza-
tional boundaries and maybe even within a single data center – might be market-
based. The provisioning engine could, for example, negotiate with several resource
providers as outlined by Czajkowski et al. [4] and Gimpel et al. [7] or it could acquire
the resources on a structured marketplace as presented by Buyya et al. [3] and
Schnizler et al. [14]. With this, a service provider might become a service broker and
distributor, potentially operating without putting forth own resources.

5 Summary and Conclusion

In this paper, we proposed a template-based agreement-driven service provisioning
process to facilitate automated service provisioning and by that enable an agreement-
driven service-oriented architecture providing dynamic service capacity acquisition.
In the template-based agreement provisioning framework introduced in this paper, an
agreement implementation plan template is associated with an agreement template. It
defines a partially filled provisioning plan with a description how to fill the variable,
incomplete elements with input from an agreement. A processor for agreement im-
plementation plans is also defined, implementing a template-based provisioning plan-
ner. The provisioning planner has been implemented using Java and tested with a set
of agreement templates defined using the WS-Agreement standard.

Provisioning planning is very complex and hard to solve with derivative ap-
proaches in the general case. However, the proposed approach based on an agreement
implementation plan templates associated with agreement templates can capture the
experience of system administrators and, hence, solve the provisioning planning prob-
lem pragmatically for service delivery environments in which the relationship of typi-
cal customer performance requirements and resource capacity is well understood. The
proposed approach is also agnostic to the specific agreement language and the lan-
guage of the provisioning plan, as both can vary depending on the application domain.

In future work, we will investigate how this template-based approach can be com-
bined with derivative approaches for specific application, leveraging the strength of
different approaches.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,
Tuecke, S., Xu, M.: Web Services Agreement Specification. Version 1.1, GGF GRAAP
working Group Draft 18, May 14, 2004.

2. Bell, D., Kojo, T., Goldsack, P., Loughran, S., Milojicic, D., Schaefer, S., Tatemura, J.,
Toft, P.: Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Foundation Document. January 2003, http://forge.gridforum.org/projects/cddlm-wg.

3. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource man-
agement and scheduling in grid computing. The Journal of Concurrency and Computa-
tion: Practice and Experience, 14(13-15), pp. 1507–1542, 2002.

 Template-Based Automated Service Provisioning 295

4. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for
Negotiation of Service Level Agreements and Coordinated Resource Management in Dis-
tributed Systems. Job Scheduling Strategies for Parallel Processing: 8th International
Workshop (JSSPP 2002). Edinburgh, 2002.

5. Dan, A., Dumitrescu, C., Ripeanu, M.: Connecting client objectives with resource capa-
bilities: an essential component for grid service management infrastructures. Service-
Oriented Computing - ICSOC 2004, Second International Conference, New York, NY,
USA, Proceedings, pp. 57-64, ACM 2004.

6. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G.: Reducing the Complexity of Ap-
plication Deployment in Large Data Centers. Proceedings of the 9th International
IFIP/IEEE Symposium on Integrated Management (IM 2005), IEEE Press, 2005.

7. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying Policies for Auto-
mated Negotiations of Service Contracts. Service Oriented Computing – Proceedings of
ICSOC 03, Springer LNCS 2910, pp. 287-302, 2003

8. IBM Corporation: PMAC Expression Language Users Guide. Alphaworks PMAC distri-
bution, www.alphaworks.ibm.com, 2005.

9. Keller, A., Badonnel, R.: Automating the Provisioning of Application Services with the
BPEL4WS Workflow Language. Proceedings of DSOM 2004, Davis, CA, USA, 2004.

10. Keller, A.: Automating the Change Management Process with Electronic Contracts. Pro-
ceedings of the First IEEE International Workshop on Service oriented Solutions for Co-
operative Organizations (SoS4CO '05), IEEE Computer Society Press, 2005.

11. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of WS-Agreements. Service-Oriented Computing - ICSOC 2004, Second In-
ternational Conference, New York, NY, USA, Proceedings, pp. 65-74, ACM 2004.

12. Ludwig, H., Keller, A., Dan, A., King, R.: A Service Level Agreement Language for Dy-
namic Electronic Services. Proceedings of WECWIS 2002, Newport Beach, 2002.

13. Ludwig, H.: A Conceptual Framework for Electronic Contract Automation. IBM Research
Report, RC 22608. New York, 2002.

14. Schnizler, B., Neumann, D., Weinhardt, C.: Resource Allocation in Computational Grids –
A Market Engineering Approach, Proceeding of the WeB 2004, Washington, 2004

15. Tosic, V., Pagurek, B., Patel, K.: WSOL - A Language for the Formal Specification of
Classes of Service for Web Services. Proceedings of ICWS 2003, pp. 375-381, CSREA
Press 2003.

16. Vitaletti, M., Draper, C., George, R., McCarthy, J., Poolman, D., Miller, T., Middlekauff,
A., Montero-Luque, C.: Installable Unit Deployment Descriptor Specification Version 1.0.
W3C Member Submission, 12 July 2004. http://www.w3.org/Submission/2004/SUBM-
InstallableUnit-DD-20040712/

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 296 – 309, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Proactive Management of Service Instance Pools
for Meeting Service Level Agreements

Kavitha Ranganathan and Asit Dan

IBM T J Watson Research Center,
19 Skyline Drive, Hawthorne, NY, 10025, USA

{kavithar, asit}@us.ibm.com

Abstract. Existing Grid schedulers focus on allocating resources to jobs as per
the resource requirements expressed by end-users. This demands detailed
knowledge of application behavior for different resource configurations on the
part of end-users. Additionally, this model incurs significant delay in terms of
the provisioning overhead for each request. In contrast, for interactive work-
loads, services are commonly pre-configured by an application server according
to long-term steady-state requirements. In this paper, we propose a framework
for bridging the gap between these two extremes. We target application services
beyond simple interactive workloads, such as a parallel numeric application. In
our approach, end users are shielded from lower-level resource configuration
details and deal only with service metrics like average response time, expressed
as SLAs. These SLAs are then translated into concrete resource allocation de-
cisions. Since demand for a service fluctuates over time, static pre-
configurations may not maximize utility of the common pool of resources. Our
approach involves dynamic re-provisioning to achieve maximum utility, while
accounting for overheads incurred during re-provisioning. We find that it is not
always beneficial to re-provision resources according to perceived benefits and
propose a model for calculating the optimal amount of re-provisioning for a
particular scenario.

1 Introduction

Existing Grid [1,3,4] scheduling technologies – as described in commercial products
[5,12], prototypes [15,7,8], requirement specifications [13,14] and papers [11, 16,17,
9] – have primarily focused on allocation of resources to incoming jobs as per the re-
source requirements expressed directly by end users. An experienced end-user of an
application, say a scientist submitting a numerically intensive application, is quite
knowledgeable of the application execution behavior over different resource configu-
rations. Thus the scientist is able to manually translate the requirements on timeliness
and data size into a set of requested resources over which the application is to be run.
Current resource provider capabilities do not permit a client to use high level objectives
such as a deadline or desired throughput. Note that a service could be an invocation of
an interactive workload or a longer running numeric intensive application. As pointed
out in [2], to bridge the gap between a high level client request and the resource pro-
vider capabilities to make available any requested resources, an intermediate layer

 Proactive Management of Service Instance Pools 297

must translate high level objectives to detailed resource requirements based on appli-
cation execution profiles.

To illustrate a long running parallel application service, consider a financial appli-
cation for portfolio risk evaluation consisting of two phases as described in [2]. The
first phase invokes a service that solves a large system of linear equations, and is im-
plemented as a parallel, tightly-coupled, compute and network intensive computation.
The result of this phase along with new input is used to compute the risk profiles of a
set of trades in the second phase. The computation of this phase is organized as a mas-
ter-worker interaction: each worker node independently computes the risk profile for
a set of trades, and the master assembles the information received from workers into
the final result. The overall computation must be completed by a fixed deadline (say
7:00 AM of each trading day). The client application breaks down the overall objec-
tive, by setting service level goals (such as completion time or number of trade risk
computation per second) for each phase of the portfolio computation.

Setting up a service instance with the required resource configuration involves ac-
quiring the required set of resources, starting up a (parallel) application on these
nodes, and finally after execution, shutting down the application and releasing allo-
cated nodes. To avoid delay and overheads associated with provisioning resources on
a per-request basis, an application service instance can be reused for serving another
user request with similar requirements; as is done when managing interactive work-
loads. Note that an available pre-configured application instance may not always
match the resource requirements of a new user request. Hence, the new user request
may have to wait until a matching application instance is available. If no such in-
stance has been pre-configured or existing instances are insufficient, a new instance
could be created on-demand. The resources for the new instance may be obtained by
destroying one or more less frequently used pre-configured instances. Once an appli-
cation instance is acquired by an end-user, it is either used to run a single (long run-
ning) request, or is used to invoke a series of short operations by the end-user. The
end-user therefore, expresses an SLA that not only translates to resource configura-
tion requirements of an instance, but also defines service level objectives like the wait
time to acquire a matching service instance.

In this paper, we propose a layered framework for managing application level SLA
objectives for all types of services (not just interactive workloads), including invoca-
tion of parallel applications. The framework addresses the translation of end-user
SLA requirements into concrete resource requirements to be used for configuring a
service instance based on a prior application execution profile. It also addresses (1)
scheduling user requests to matching available pre-configured service instances, (2)
pro-active management of a pool of pre-configured service instances for meeting SLA
objectives on waiting time, (3) allocation and de-allocation of physical resources to
service instances, and (4) provisioning and de-provisioning of service instances.

We then explore key issues and strategies in pro-active management of service in-
stance pools, taking into account SLA objectives. We incorporate the provisioning
overhead - often ignored in steady state analysis – as well as gauge the effect of dif-
ferent user request arrival patterns. We find that it is not always beneficial to re-
provision resources according to perceived benefits. In fact, in certain cases the re-
provisioning overheads make it detrimental to adapt service pools according to user
request arrival patterns. We hence propose a model for calculating the optimal amount

298 K. Ranganathan and A. Dan

of re-provisioning for a particular scenario. Preliminary simulation results also show
that we are able to effectively manage service instance pools, based on user defined
SLAs. Additional experimental results are described in [18].

The rest of this paper is organized as follows. Section 2 proposes a layered frame-
work for managing application level end-user SLA and scheduling user service re-
quests. Section 3 provides details on dynamic management of service pools, including
SLAs and workloads used, algorithm tested, and a model for calculating the optimal
level of re-provisioning. Section 4 contains the experimental setup, parameters and
simulation results. We conclude in Section 5.

2 Overview of the Architecture for Service Instance Scheduling
and Management

We now detail the proposed layered architecture for managing application level SLAs
using pre-configured service instances (See Figure 1). Before invoking a service, a
client application establishes a SLA with the service provider, that expresses not only
the capabilities of the service instance to be assigned, but also timeliness in receiving
a service instance. The SLA for service capabilities can be expressed either as a dead-
line or as the number of transactions per unit time supported by such an instance.

The primary components of this architecture and their interactions are detailed below.

Application Service Level Manager (ASLM): A service client interacts with the
ASLM for establishing a new SLA, and subsequently monitors the status of the SLA.
Our prototype supports the WS-Agreement protocol [10] for the above interactions,
which additionally includes customizing predefined agreement templates to create a
new SLA.

In addition to establishing the SLA, the ASLM translates higher level SLA objec-
tives into detailed resource requirements to be used for configuring a service instance
in support of this SLA. To estimate required resource configurations, the ASLM
maintains an application execution profile consisting of multiple observed perform-
ance points for various resource configurations. The focus of this paper is not on this
translation method, and hence, details of how to obtain the execution profile, bound-
ing the number of observations to be obtained for defining execution profile, etc. are
not discussed here. We mention in passing that the execution profile captures only
the effects of changes in key resource attributes, such as the number of nodes, proces-
sor MIPS, and memory size per node.

Service Instance Request Scheduler (SIRC): Once an SLA is established, a service
client requests a service instance that is configured according to the SLA. Depending
on the type of a service, this request may be explicit or implicit. If the service instance
is to be used for a single invocation (e.g., a long running application), the request for a
service instance can be combined with the service invocation request, i.e., assignment
of service instance is implicit. Alternatively, a client may request a binding to an ex-
plicit service instance, and perform multiple service invocation on this instance (as in
the second phase of the financial application example, discussed in Section 1).

 Proactive Management of Service Instance Pools 299

Fig. 1. Layered architecture for service Instance scheduling and management

The SIRC assigns a matching service instance to an incoming service instance re-
quest, if such an instance is available. Otherwise, it queues the incoming request, and
prioritizes requests in the queue to meet SLA waiting time objectives. The service in-
stance pool manager monitors the queuing delay, and possible SLA violations, and
pro-actively signals provisioning of new service instances.

Service Instance Pool Manager (SIPM): The SIPM makes dynamic decisions on the
number of services instances to be maintained for each service type. Multiple SLAs
may specify the same set of service objectives, referred to as a service type. The de-
cision is based on the business values associated with SLA objectives, required re-
source configuration for each service instance derived by ASLM and the current state
of objectives. Following this decision, the SIPM creates and/or destroys service in-
stances of different service types by invoking the two components discussed next, the
Physical Resource Manager and the Service Instance Provisioner. The focus of the
current paper is on the strategy of managing service instance pool, and we will pro-
vide more details in Sections 3 and 4.

Physical Resource Manager (PRM): The PRM manages allocation of nodes to ser-
vice instances, and is invoked by the SIPM to allocate nodes for a new service in-
stance to be created or to release nodes when a service instance is destroyed. Upon
destruction of a service instance, the nodes are made available for reallocation.

Service Instance
Pool Manager

Service instance
allocation

Client SLA creation

SLA derived service
instance specific resource
requirement

Pool&
Queue Info.

Service
instance
request &
Subsequent
invocations

Application Service
Level Manager

 Service
 Instance
 Request
 Scheduler

Client

Nodes/
Resource pool

Create/destroy
Service
instance

Physical Resource

Manager

Service Instance
Provisioner

Request
Queue

Service Pools
with Service
Instances

Provisioning
operations

Resource
status

Node Allocation
/de-allocation
request

SLA information

300 K. Ranganathan and A. Dan

Service Instance Provisioner (SIP): Actions involved in provisioning a service in-
stance depends on the type of the service, as well as differences across services shar-
ing the same resource pool. For a relatively simple scenario, this involves merely
starting up an application on one or more nodes. For a parallel application this may
involve synchronization with the master node. In a more complex scenario, where dif-
ferent applications require different execution environments (e.g., J2EE version), a
completely new software stack needs to be loaded for reassigning a node to another
application. In all scenarios, once a service instance is created, the SIRC is notified of
this new instance.

3 Service Instance Pool Management

We now discuss issues involved with the dynamic management of service pools. The
characteristics of the service request streams (henceforth referred to as the workload)
and SLAs used play a key role in the implementation and effectiveness of dynamic
service instance pool management. We then propose an algorithm that is used by the
SIPM to manage these service instance pools. Other key issues explored are the over-
heads involved in re-provisioning service instances i.e. moving nodes across service
pools – and the extent of adaptability for the SIPM.

3.1 Request Workloads, SLAs and Key Issues

Workload Characteristics: If requests for each particular service-type arrive at a
steady rate (say according to a uniform or Poisson distribution) then it is relatively
easier to decide the number of service instances to be instantiated per service, to meet
the SLA goals. Many systems today assume steady-state parameters to calculate re-
source allocation. However, in many cases, the workload may change over time, ei-
ther gradually or suddenly (for example, there might be a sudden spike in demand for
one particular service) warranting the increase in the number of instances of certain
service types. A successful adaptation technique should be able to detect the changes
in the workload and re-provision instances accordingly.

We look at both cases in our experiments: (1) a steady-state scenario where re-
quests for different services may arrive at different rates but follow Poisson distribu-
tions and (2) when the workload varies over time.

Higher Level SLA Objectives: The Service Level Agreements between the provider
and client could take a number of forms [10]. In this paper we assume business values
associated with objectives are defined as explicit utility functions, where a client
specifies how much utility is gained (or in other words, how much she is willing to
pay) for a certain response time for acquiring the service instance. The same utility
function also applies to the scenario of how much penalty should be assessed for de-
viations from the specified goal.

Key Issues in Dynamic Adaptation: Often, there might be inherent costs associated
with re-provisioning a node. At one extreme, the overheads might be negligible if
switching from one service to another just involves linking different libraries. On the
other extreme, it may involve, draining the node of current jobs and software, I/O op-

 Proactive Management of Service Instance Pools 301

erations to load the software for the new service and extensive re-configuration. Thus
the “dead time” defined as the time when the node is unavailable for any service,
could be substantial in many cases of re-provisioning. Moreover, re-provisioning
might require I/O or other operations which access bottleneck resources like the net-
work or shared disk access. Thus, the time to re-provision ‘k’ nodes may not be the
same as the time to re-provision one node. Depending on how costly the re-
provisioning step is, and the relative increase in utility it may actually be disadvanta-
geous to re-provision more than a certain number of nodes at a time. Our proposed
model for estimating these costs is described later.

3.2 Algorithm for Incremental Adaptation

We now describe the algorithm employed by the SIPM to make decisions regarding
the number of service instances to maintain for each service pool. Since the SIPM has
access to the different utility functions for each service type, it can make re-
provisioning decisions with the aim of maximizing utility (henceforth called revenue)
across all resources it controls. We assume that we know how long a particular ser-
vice instance will be used by a client (This can be derived either by employing predic-
tive techniques or by requiring that the user submit an estimate of the usage time).

We first establish some terms that will be used in the algorithm. As explained ear-
lier, the revenue acquired by a service is a function of the response time (as defined in
the SLA). Hence the revenue gained for time interval t0-t1 is captured in the follow-
ing expression:

Revenue(t0-t1) = Number of requests fulfilled in t0-t1 * utility_function(average re-
sponse time for fulfilling requests in t0-t1)

Thus, given a request queue for a particular service type, the number of service in-
stances (i.e. the size of the service instance pool) and the estimated run-time for each
request in the queue; the predicted average response-time to obtain a service instance,
can easily be calculated. This can then be used to derive the predicted revenue.

Predicted Revenue = function of (Size of Service Instance Pool, Run time estimates of
Requests in Queue).

Thus, if a Service Instance was added to a pool that already had s Service Instances,
the advantage of adding that new Instance (the ‘Incremental Revenue’ gained) could
be calculated as follows :

Incremental Revenue = (Predicted Revenue with s+1 instances) – (Predicted Revenue
with s instances).

The algorithm for incremental adaptation is then a simple calculation to maximize
revenue, as the following pseudo code describes :

At each time period (the periodicity factor is discussed in the next section):

1) Each service instance pool donates at-least ‘k’ nodes to a common virtual pool.
If a certain service instance pool does not contain enough resources to contribute ‘k’
nodes to the common pool, it does not contribute nodes in that iteration, but is how-
ever considered a candidate to receive nodes. Note that nodes are not de-provisioned
at this stage (The size of ‘k’ is discussed shortly).

302 K. Ranganathan and A. Dan

2) Now the SIPM calculates how best the nodes in the common pool could be re-
distributed across service instance pools. Assume here that each service instance re-
quires one node. Variations are discussed below.

 For each node (n) in the common pool :
 For each Service Instance Pool (p):
 Calculate ‘Incremental Revenue’ gained if node n is added to Service In-

stance Pool p
 Assign node n to Service Instance Pool with maximum ‘Incremental Revenue’
 Update size of that Service Instance Pool
Record new assignments

Note that if each service type requires more nodes than one, then instead of one node,
groups of nodes of the required size, are considered at each iteration.

3) Re-provision nodes according to the new assignment that was calculated. (Note
that actual re-provisioning only happens in Step 3).

The incremental adaptation algorithm, reassigns nodes to where they might be most
useful, but at the same time, ensures that this re-assignment is gradual. Temporary
variations in the request workload may cause a small number of service instances to
be re-provisioned. Massive re-structuring can only occur if there is a sustained change
in external parameters like SLAs or service demand.

3.3 Model for Estimating Optimal Amount of Simultaneous Re-provisioning

A key factor for dynamic adaptation is that while a node is being re-provisioned, it is
unavailable for providing any service. These so called “dead times” could be signifi-
cant. Moreover, as discussed earlier, concurrently re-provisioning multiple nodes
could lead to larger dead-times than when only one node is re-provisioned. Hence this
cost has to be factored in when deciding the adaptation algorithm parameter of how
many nodes to consider for re-provisioning in each iteration of the algorithm. The fol-
lowing model aims to estimate this parameter, by calculating the loss in revenue
caused by the dead times and the gain in revenue, resulting from running a different
service on the nodes.

Assume there are two service types, s1 and s2, which currently generate revenue
r1_old and r2_old per time interval t. There are n service nodes in the system and they
are initially partitioned into the two service types (x1 nodes provide service s1, and x2
provide service s2). Suppose we now want to re-provision k nodes from serving s1 to
serving s2 and the new revenues that will be generated by each are r1_new and
r2_new per time interval. (To recall, the revenue generated is a function of the aver-
age response time, which will change when the number of instances per service type
changes).

Now the cost of moving k nodes from service type s1 to service type s2, is at the
very least the revenue lost by not serving s1, for the duration of the dead time of those
k nodes. Assume that if it takes T seconds to re-provision one node, it will take T +
delta * (k-1) to re-provision k nodes, where delta is the simultaneous re-provisioning
cost factor. Hence the dead time for one node = T where as the dead time for k nodes
is kT + k(k-1)*delta . Thus the revenue lost if k nodes are re-provisioned = (kT + k(k-
1) * delta) * r1_old.

 Proactive Management of Service Instance Pools 303

The benefit gained by the re-provisioning can be quantified as the increase in reve-
nue, that is Revenue(old) – Revenue(new). We assume here, that there is enough de-
mand to use up all nodes. Suppose, the time-interval for periodically adapting is Ta.
The revenue made by the nodes for the non-adaptive case: Revenue(old) = (r1_old *
s1 + r2_old * s2) * Ta. The Revenue made in the adaptive case: Revenue(new) can be
split into 2 stages T1 and T2 where Ta = T1 + T2. T1 is the time for the re-
provisioning to occur [which was earlier calculated as = T + delta * (k-1)] and T2 is
the time when the re-provisioning has already succeeded.

During T1, there are x1-k nodes serving s1, x2 nodes serving s2 and k nodes un-
available.

Therefore, Revenue(T1) = ((x1-k) * r1_new + x2 * r2_old) * T1
Similarly, Revenue (T2) = ((x1-k) * r1_new + (x2 + k) * r2_new) * T2

Hence, the increase in revenue for a particular k can be calculated as Revenue(T1) +
Revenue(T2) – Revenue(old) . The optimal value for k can be derived by calculating
the maxima of this resulting function. Figure 3 plots the revenue gain for some sample
values of x1, x2, utility curves and delta. It is clear from the figure that for a given
delta, there is a certain range for k, when it is most beneficial to re-provision those
many nodes simultaneously. Re-provisioning more nodes than this value leads to a
steady decline in revenue and even to losses.

Frequency of Adaptation: Closely related to the overheads of re-provisioning is the
frequency with which adaptation occurs. In our architecture the SIPM periodically re-
calculates if nodes need to be re-provisioned. If this frequency is too high, then minor
fluctuations from the steady state may cause unnecessary re-provisioning; if too low,
then the adaptive machinery may be too slow to react to genuine surges.

We tackle this issue by using an incremental adaptation process. At each time-
period (which is relatively short) only a certain number of nodes are considered for
re-provisioning. If the surge that triggered the re-provisioning was small or short-
lived, this adaptation is corrected in the next time interval. If however the surge is a
genuine one, and has lasted beyond a couple of time-periods, subsequent adaptations
further create the necessary services.

-50

0

50

100

150

200

1 6 10 14 18 22 26 30 34 38 42 46 50

num of nodes re-provisioned

R
ev

en
u

e
g

ai
n

ed

0.1

0.14

0.16

0.18

0.2

Fig. 2. Revenue gained for different values of Delta. Total nodes = 100, r1 old and r1 new = 2,
r2 old and r2 new = 4, T =1 and Ta = 10.

304 K. Ranganathan and A. Dan

This incremental adaptation has a twofold advantage: (1) temporary aberrations to
the steady-state workload don’t falsely trigger a huge amount of costly re-
provisioning (2) by re-provisioning smaller batches of nodes at a time (around the op-
timal value of k as explained earlier), we decrease the dead times of nodes and hence
maintain higher revenues.

4 Experiments and Results

To test the effectiveness of our dynamic adaptation algorithm, we simulate a cluster
of nodes providing different services. Our in-house simulation program generates
various service requests, and allocates and executes them on the services running on
the cluster. We then use the prototype we have built for incremental-adaptation; the
SIPM, to manage the service instances provided on this simulated cluster. We meas-
ure both the net revenue gained by adaptation and improvement in performance in
terms of response time.

4.1 Experimental Setup

In the start of each experiment, all the nodes in the cluster are equally pre-divided into
two logical service instance pools. There is a fixed utility function associated with
each service type, and we assume here that both service types run on the same number
of nodes. Client requests for a service are generated according to a Poisson distribu-
tion. Each service instance pool has an associated queue of requests waiting to acquire
a service instance from that pool, and incoming requests are added to this queue as the
simulation progresses. Requests are allocated to service instances by the Service In-
stance Request Scheduler, using a FIFO (First In First Out) algorithm.

The Service Instance Pool Manager (SIPM) kicks in periodically to re-provision ser-
vice instances if needed. The input to the SIPM consists of the size of each service in-
stance pool, the size of request queues for each service instance pool and the respective
utility functions. The SIPM then calculates the desired size of each service instance pool,
so as to maximize revenue. The Service Instance Provisioner then re-provisions nodes, so
as to meet the new assignment. Note that nodes do not physically belong to certain pools,
but form logical pools on the basis of the type of service instance they belong to.

The experimental parameters used are provided in Table 1.

Table 1. Parameters used in simulations

Experimental Parameter Value
Total number of nodes in cluster 100 - 200
Number of requests per service type varies by experiment ; 250-1000
Job run time 60 seconds
Nodes per service instance 5
Periodical adaptation Varies; typically 200 seconds
Time to re-provision one node Varies; 5 – 100 seconds
Delta : factor that determines over-
head of re-provisioning n nodes
simultaneously

Varies; 0.5 - 20

 Proactive Management of Service Instance Pools 305

4.2 Simulation Results

We first want to compare our incremental-adaptation approach against the case were
no adaptation takes place, to ascertain whether dynamic adaptation does result in
higher revenues for the provider. We then go on to study parameters like workload
variations and cost of re-provisioning, that might impact the algorithm. The results are
an average of three runs, where the varying factor in each run was the generated
workload. We did not find significant variations between runs.

Effectiveness of Incremental Adaptation
We first consider the case of two services types, S1 and S2, each offering 10 service
instances each. We test two cases (1) where both services have the same utility func-
tion but different request arrival rates and (2) where they have the same request arri-
val rate but different utilities.

(A) Heterogeneous Request Arrival Rates: We specify the same utility function for
both services but different request arrival rates. Maximum revenue is gained if re-
quests for a service instance do not incur any delay. If the response time goes beyond
40 seconds, then there is a penalty associated with that request. The request arrival
rates for the two services differ by a factor of two. Requests for S1 arrive twice as of-
ten as requests for S1 (Poisson inter-arrival time for S1 = 5, S2= 10).

Table 2. Performance comparison of static provisioning and SIPM’s dynamic re-provisioning
for heterogeneous request arrival rates

 Avg. Response Time (secs) Revenue ($)

 Static SIPM Static SIMP
S1 578 31 -2662 44
S2 02 14 95 63
Total na na -2567 107

Table 2 contains the average response time (the time it takes to allot a particular
service instance to a request) and net revenue gained when the above utility function
is used, for both the static case when no adaptation takes place, and the dynamic case
where the SIPM re-provisions service instances to increase revenue gained. As seen,
in the static case, the average response time for S1 in very high, leading to a large
penalty imposed on the provider. When the SIPM is used, the response times for S1
are effectively brought down to 91 seconds whereas the response time for S2 goes up
slightly, resulting in positive revenues. Note that the revenue numbers are entirely de-
pendant on the utility function used to interpret the gains, but the average response
times are independent of whatever utility function is used.

These results can be explained as follows: since there are many more outstanding
requests for S1 than S2, the SIPM successfully detects this, re-provisions nodes serv-
ing S2 to serve S1 and decreases wait-times for S1 requests.

(B) Heterogeneous Utility Functions: For this experiment, requests for both services
arrive at the same rate, but the services have different utility functions as shown

306 K. Ranganathan and A. Dan

in Figure 3(left). S2 is a relatively more critical application than S1 and hence the
client offers higher revenues if the ideal response time is met for S2. Thereafter, the
utility curve for S2 decreases more rapidly than for S1. If the response time for S2 is
greater than 100 seconds, the provider incurs a penalty. We model the same request
arrival rate for both services: a Poisson arrival rate with inter-arrival time of 6
seconds.

Table 3 provides the results of this experiment for both the static and SIPM cases.
As the results show, the SIPM is able to effectively increase net revenue earned, as
compared to the static node distribution case. Figure 3(right) shows the number of
service instances as the simulation progresses, for one particular run. Initially, the
SIMP re-provisions some nodes to serve S2, since the revenue gained from S2 is
higher. As the simulation progresses, the request queue for S1 grower longer (as
lesser nodes now serve S1), effectively making it more lucrative to switch some nodes
back to S1. The SIPM also detects small bursts in traffic and adapts slightly, bringing
down the average response time considerably.

Effect of Workload Variations
To test how the SIPM reacts to a sudden increase in requests for one service type, we
generated a workload where after a short while, requests for S2 start arriving more
frequently. Requests for S1 have a constant inter-arrival time of 6 throughout the
workload, where as after 500 seconds, S2 requests start arriving much faster (with an
inter-arrival time of 2 seconds). S2 jobs cease arriving at time 1150.

-10

-5

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

Response Time

R
ev

en
ue

 (
$/

10
0)

S1

S2

4

5

6

7

8

9

10

11

12

13

0 400 800 1200 1600 2000 2400
time (seconds)

N
um

be
r

of
 s

er
vi

ce
 in

st
an

ce
s

s1

s2

Fig. 3. (left) Utility functions used for re-provisioning and (right) number of service instances
as simulation progresses

Table 3. Performance comparison of static provisioning and SIPM’s dynamic re-provisioning
for heterogeneous utility functions

 Avg. Response Time (secs) Revenue ($)

 Static SIPM Static SIMP
S1 178 66 -98 41
S2 165 39 -56 18
Total na na -154 59

 Proactive Management of Service Instance Pools 307

0
2
4
6
8

10
12
14
16
18

0 600 1200 1800 2400
Time (secs)

N
um

be
r

of
 p

op
ul

ar
 S

I

230

235

240

245

250

255

260

265

270

275

2 4 6 8 10 12 14
k : Number of service instances considered for

Re-provisioning

R
ev

en
ue

($
10

0)

Fig. 4. (left) Number of service instances as simulation progresses for an unstable workload
(right) Revenue generated as the amount of simultaneous re-provisioning increases

Figure 4(left) shows the number of service instances for S2 as the simulation pro-
gresses (the remainder of a total of 20 instances are S1 instances). As can be seen, the
SIPM is quickly able to detect the surge in S2 requests (at time 600) and increases
service instances of S2. However, once most S2 requests are met, nodes are switched
to S1 instances (starting at time 1600), to better respond to S1 requests.

Effect of Cost of Re-provisioning
While we have ascertained that the SIPM is able to re-provision nodes according to
workload fluctuations and utility definitions, we want to study the effect of the over-
heads of re-provisioning.

The next experiment quantifies the effect of simultaneously re-provisioning in-
stances, the k factor, as explained in Section 3.3. Each service type in this experiment
starts off with 20 instances each, and k instances (that is k/2 from each service in-
stance pool) are periodically considered by the SIPM for re-provisioning. One service
type is defined as having consistently higher returns than another, prompting the
SIMP to re-provision as many nodes as permitted by the value of k. Figure 4(right)
plots the revenue gained as the number of instances being simultaneously re-
provisioned (k) is increased.

As can be seen from the figure, there is a distinct advantage in increasing k to a
certain point. The adaptation process succeeds in generating higher revenues. But be-
yond the threshold value (k = 6 in this case) it is less advantageous to re-provision
more nodes simultaneously. This is because, as explained in our model in Section 3.3,
the loss in revenue caused by the dead-times over-weigh whatever increase in revenue
the new service type generates. It should be noted here that the value of delta deter-
mines the cost of simultaneous re-provisioning. In future work, we plan to run ex-
periments on a real test-bed to obtain realistic ranges for delta.

5 Conclusions and Future Work

Existing scheduling solutions require end-users to express exact resource require-
ments for each request in the form of a job submission. We have proposed a frame-
work where end-users need not be aware of specific resource configurations needed to

308 K. Ranganathan and A. Dan

realize their service level objectives. Our framework translates high-level end-user
service level objectives like desired response-time to specific resource scheduling and
provisioning actions based on application execution profiles. Since configuring a new
service instance, especially for parallel applications, can incur both delay and over-
head, the proposed framework furthermore, reuses existing pre-configured service in-
stances in serving a new user. An end-user first establishes a SLA, and receives a
service instance configured to meet SLA objectives, which is then used for subse-
quent invocations. To avoid a long delay in acquiring a service instance, SLAs also
specify response time objectives in acquiring a new instance.

Additionally, our framework also enables dynamically re-provisioning nodes to
meet SLAs provided by users. To this end, we put forth an incremental adaptation al-
gorithm for dynamically re-provisioning services and an analytical model for estimat-
ing the optimal amount of re-provisioning. Initial simulation results to evaluate our
prototype show that not only is it successful in adapting service instance pools, for
maximizing utility, but also that the optimal amount of adaptation depends on the cost
of provisioning.

In future work, we plan to run more experiments on test-beds using real workloads
to better quantify the overheads of simultaneously re-provisioning nodes.

Acknowledgements. The authors would like to acknowledge the contributions of and
thank Cait Crawford, Liana Fong, Kevin Gildea, Alan King, H. Shaikh, and Annette
Rossi on the broader formulation of reusable parallel application service instances.

References

1. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration," Globus Project 2002.

2. A. Dan, C. Dumitrescu, and M. Ripeanu, “Connecting Client Objectives with Resource
Capabilities: An Essential Component for Grid Service Management Infrastructures”, 2nd
International Conference on Service Oriented Computing (ICSOC), November 2004, New
York, NY.

3. A. S. Grimshaw and W. A. Wulf, "The Legion Vision of a Worldwide Virtual Computer,"
Communications of the ACM, vol. 40, pp. 39-45, 1997.

4. I. Foster, "The Grid: A New Infrastructure for 21st Century Science," Physics Today, vol.
55, pp. 42-47, 2002.

5. I.B.M Corporation. IBM LoadLeveler: User’s guide. Technical report, IBM, September
1993.

6. H. Ludwig, A. Keller, A. Dan, and R. King, "A Service Level Agreement Language for
Dynamic Electronic Services," presented at 4th IEEE International Workshop on Ad-
vanced Issues of E-Commerce and Web-based Information Systems (WECWIS'02), New-
port Beach, California, USA, 2002.

7. R. Raman, M. Livny, and M. Solomon, "Matchmaking: Distributed Resource Management
for High Throughput Computing", Proceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing, July 28-31, 1998, Chicago, IL

8. The Globus Resource Allocation and Management
http://www.unix.globus.org/toolkit/docs/3.2/gram/ws

9. C Liu, L Yang, I Foster, D Angulo, “Design and Evaluation of a Resource Selection
Framework for Grid Applications”, HPDC, Edinburgh, July 2002.

 Proactive Management of Service Instance Pools 309

10. A. Andrieux, C. Czajkowski, A. Dan, K. Keahey, H.Ludwig, J. Pruyne, J. Rofrano, S.
Tuecke, M. Xu., Web Services Agreement Specification (WS-Agreement). Version 1.1,
Draft 20, June 6th 2004.

11. D.Feitelson, L Rudolph and U Schwiegelshohn, Proceedings of the Job Scheduling Strate-
gies for Parallel Processing, 10th International Workshop, JSSPP 2004, New York, NY,
USA, June 13, 2004.

12. C Smith, “Open Source Metascheduling for Virtual Organizations with the Community
Scheduler Framework (CSF) , White Paper, Platform Computing Inc.

13. The JSDL Specification https://forge.gridforum.org/projects/jsdl-wg/document/draft-ggf-
jsdl-spec/en/21

14. The Globus Resource Specification Language RSL v1.0:
http://www-fp.globus.org/gram/rsl%5Fspec1.html

15. The NorduGrid Project. http://www.nordugrid.org
16. J. Gehring and A. Reinefeld. MARS - a framework for minimizing the job execution time

computing environment. Technical report, Paderborn Center for Parallel Computing, Jan
1995.

17. G. Allen, D. Angulo, I. Foster, G. Lanfermann, and C. Liu. “The Cactus Worm: Experi-
ments with dynamic resource discovery and allocation in a Grid environment”, Interna-
tional Journal of High Performance Computing Applications, 15(4),Jan 2001.

18. K. Ranganathan and A. Dan, “Proactive management of Service Instance Pools for meet-
ing Service Level Agreements”, Technical Report, I.B.M - RC23723, September 2005.

Adaptive Component Management Service in
ScudWare Middleware for Smart Vehicle Space

Qing Wu and Zhaohui Wu

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, China, 310027

{wwwsin, wzh}@cs.zju.edu.cn

Abstract. Due to the complexities of increasing prevalence of ubiq-
uitous computing, it poses a large number of challenges for middleware
and component technologies. We believe that service-oriented component
adaptation provides a principled means to achieve the flexibility and scal-
ability required. The focus of this paper regards an adaptive component
management service in the ScudWare middleware architecture for smart
vehicle space. The contribution of our work is twofold. First, an adaptive
component management service framework, including a resource abstract
framework, is put forward to implement adaptive mechanism. Second, a
component hook proxy is proposed in detail for adaptation. In addition,
this service is validated by a series of experimental results.

1 Introduction

In recent years, many kinds of smart devices come into our life such as PDAs,
mobile phones, and smart cameras. The physical world and information space
integrate seamlessly and naturally. The computation is becoming embedded and
ubiquitous [1], which provides more facilities for people. This computing envi-
ronment demands plenty of computation resources for functional requests and
performance requirements. However, the computation resources in environments
are limited in terms of CPU computation capabilities, network bandwidth, mem-
ory size, and device power, etc. As a result, sometimes it cannot provide enough
resources to execute applications successfully. In addition, changes of the het-
erogeneous contexts including people, devices, and environments are ubiquitous
and pervasive. Therefore, it results in many problems in software middleware
design and development. We consider ”adaptation” is the key issue for software
systems and applications to meet the different computing environments and
the diverse run-time context. On the other hand, component-based and service-
oriented software (CBSOS) architecture provides a novel infrastructure and a
development platform for ubiquitous computing. Components are abundant, het-
erogeneous, autonomic, and multiple categories. Because ubiquitous computing
aims at building a human-centric ideal world, all entities should communicate
and cooperate with each other transparently and spontaneously. The CBSOS
system provides a flexible and adaptive computing framework. Taking into ac-
count the influence of dynamic changes on computation adequately, we use the
service-oriented, context-aware, and component-based methods for adaptation.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 310–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adaptive Component Management Service in ScudWare Middleware 311

Vehicles play an important role in our daily life. People require more safety,
comfort, and facilities in vehicles. We select a vehicle space[2] as a representa-
tive scene to study ubiquitous computing. Cho Li Wang[3] has proposed five
types of software adaptation, consisting of data adaptation, network level adap-
tation, energy adaptation, migration adaptation, and functionality adaptation.
Our current work focuses at the design-time and run-time adaptation including
the computation resource, logic behavior semantic, and run-time context adap-
tation. We emphasize on adaptive component management at design-time and
run-time in the ScudWare[4] middleware for smart vehicle space. An experiment
prototype called ”mobile music system” is built to demonstrate the feasibility
and reliability of our methods and techniques. The paper brings forward the
ScudWare middleware platform and an adaptive component management ser-
vice framework. In addition, we have made experiments to test the performance
of this service.

The rest of the paper is organized as follows. Section 2 describes the ScudWare
middleware platform including smart vehicle space, CCM (CORBA Component
Model) [5] specification overview, and the ScudWare middleware architecture.
Then an adaptive component management service framework is proposed in
Section 3. Specially, a resources abstract framework and the functions of this
service are presented particularly. Section 4 gives a run-time component hook
proxy mechanism. In Section 5, we give experiments study and evaluate the
efficiency and performance of the service. Next, some related work is stated in
Section 6. Finally, we draw a conclusion in Section 7.

2 ScudWare Middleware Platform

To implement smart vehicle space naturally and adaptively, we have built the
ScudWare middleware platform conformed to the CCM (CORBA Component
Model) specification. We use the ACE (Adaptive Communication Environment)
[6] and the TAO (The ACE ORB) [7]. TAO is a real-time ORB (Object Re-
quest Broker) developed by Washington University. According to the applica-
tion domain of smart vehicle space, we reduce the TAO selectively and add
some adaptive services such as adaptive resource management service, context
service, and notification service. ScudCCM, a part of ScudWare, is responsible
for adaptive component management comprising component package, assembly,
deployment, and allocation at design-time, and run-time component monitoring.
As following, we introduce smart vehicle space, CCM specification and ScudWare
architecture briefly.

2.1 Smart Vehicle Space

In recent years, a lot of developers have applied embedded, AI, and biology au-
thentication technologies to vehicles. The drive capability, dependability, com-
fort, and convenience of the vehicle are improved greatly. When people go into
smart vehicle space, they find many intelligent devices and equipments around

312 Q. Wu and Z. Wu

Centralized Processing System

Context Acquisition System

Sensors Cameras
Sound

Receivers

Context Reasoning System

Ontology Context

Auto Controlling System

Steering Security Navigation Entertainment Communication

Fig. 1. Smart Vehicle Space

them. They communicate with these tools naturally and friendly. It forms a har-
monious vehicle space where people, devices, and environments co-operate with
each other adaptively.

Figure 1 describes the structure of smart vehicle space, which has four parts
and is defined as SVS=(CA, CR, AC, CP). CA is a context acquisition sys-
tem. CA = ((ΔState(pe, de, en), (sen, cam, sou)) aims at sensing status changes
of people, devices, and environments in the vehicle, including sensors, cameras,
and sound receivers. CR is a context repository reasoning system. CR=(context,
ontology, domain, inference) uses the correlative contexts and application do-
main ontology to make the manipulating strategy for adaptation. AC is an auto
controlling system. AC=(ste, com, ent, nav, sec) consists of steering, communi-
cation, entertainment, navigation, and security subsystem. CP is a centralized
processing system. Particularly, CP is the kernel of smart vehicle space, which
controls above third parts co-operating effectively.

2.2 CCM Specification Overview

CORBA (Common Object Request Broker Architecture) is one of software mid-
dlewares, which provides language and operating system independences. CCM is
an extension to CORBA distributed object model. CCM prescribes component
designing, programming, packaging, deploying and executing stages.

CCM specification defines component attributes and ports. Attributes are
properties employed to configure component behavior. Specially stated, compo-
nent ports are very important, which are connecting points between components.
There are four kinds of ports: facets, receptacles, event sources, and event sinks.

Adaptive Component Management Service in ScudWare Middleware 313

Facets are distinct named interfaces provided by component for client interac-
tion. Receptacles are connection points that describe the component’s ability to
use a reference supplied by others. Event sources are connection points that emit
events of a specified type to one or more interested event consumers, or to an
event channel. Event sinks are connection points into which events of a specified
type may be pushed.

In addition, CCM specification defines component home, which is a meta-type
that acts as a manager for component instances of a specified component type.
Component home interfaces provide operations to manage component lifecy-
cle. CIF (Component Implementation Framework) is defined as a programming
model for constructing component implementations. CIDL (Component Imple-
mentation Definition Language), a declarative language, describes component
implementations of homes. The CIF uses CIDL descriptions to generate pro-
gramming skeletons that automate many of the basic behaviors of components,
including navigation, identity inquiries, activation, state management, and life-
cycle management. The component container defines run-time environments for
a component instance. Component implementations may be packaged and de-
ployed. A CORBA component package maintains one or more implementations
of a component. One component can be installed on a computer or grouped
together with other components to form an assembly.

2.3 ScudWare Middleware Architecture

As Figure 2 shows, ScudWare architecture consists of five parts defined as
SCUDW = (SOSEK, ACE, ETAO, SCUDCCM, SVA). SOSEK denots SMART
OSEK [8], an operating system of vehicle conformed to OSEK [9] specification de-
veloped by us. ACE denotes the adaptive communication environment, providing
high-performance and real-time communications. ACE uses inter-process com-
munication, event demultiplexing, explicit dynamic linking, and concurrency. In
addition, ACE automates system configuration and reconfiguration by dynami-
cally linking services into applications at run-time and executing these services
in one or more processes or threads. ETAO extends ACE ORB and is designed
using the best software practices and patterns on ACE in order to automate
the delivery of high-performance and real-time QoS to distributed applications.
ETAO includes a set of services such as the persistence service and transaction
service. In addition, we have developed an adaptive resource management ser-
vice, a context service and a notification service. Specially, the context service is
based on semantic information [10]. SCUDCCM is conformed to CCM specifi-
cation and consists of adaptive component package, assembly, deployment, and
allocation at design-time. Besides, it comprises component migration, replace-
ment, updating, and variation at run-time. In addition, the top layer is SVA
that denotes semantic virtual agent [11]. SVA aims at dealing with application
tasks. Each sva presents one service composition comprising a number of meta
objects. During the co-operations of SVA, the SIP(Semantic Interface Protocol)
[11] set is used including sva discovery, join, lease, and self-updating protocols.
Due to the limited space, we don’t detail SVA in this paper.

314 Q. Wu and Z. Wu

Adaptive Communication Environment

ETAO

SMART OSEK

J1939 CAN-Open TCP/IP Wireless

TransactionPersistence Context Notification

Adaptive Resource Management

ScudCCM

Semantic Virtual Agent

Adaptive Component Management Service

AssemblyPackage Deploy Allocation

ReplacementMigration Updating Variation

Fig. 2. ScudWare Architecture

3 Adaptive Component Management Service Framework

In this section, we describe the architecture of the adaptive component man-
agement service in a structural method. Because the component management is
resource-constrained, we firstly give a resource abstract framework, and then we
details this service.

3.1 Resource Abstract Framework

As Geoff Coulson [12] said, the goal of the resource abstract model is to support
component adaptation. In refining this goal, two additional requirements have
been identified. First, the framework must be extensible to capture diverse types
of resources at different levels of abstraction, including CPU processing resources
(e.g., threads, virtual processors), memory resources (e.g., ram, disk storage),
communication resources (e.g., network bandwidth, transport connections), OS
resources (e.g., Windows, Linux, Unix) and component container resource (e.g.,
CCM, EJB, .Net). Second, the framework must provide maximum control to
applications according to resource adaptation.

A resource is a run-time entity that offers a service for which one needs to
express a measure of quality of service. In ubiquitous computing environments,
various smart devices provide amount of resources on deferent level. On the other
hand, a large number of components are distributed on these devices, consuming
computation resources when executing tasks. Due to the joinment and departure

Adaptive Component Management Service in ScudWare Middleware 315

Adaptive Component Management Service

Task Management

Resource Management

Lifecycle

Lifecycle

DecomposingSemanticScheduling

QoS ContextAllocation

Lifecycle Quantity AllocationType

Device Management

Lifecycle UPNP EnergyType

Resources Layer

Component Container

Operating System

Hardware Infrastructure

Fig. 3. Resource Abstract Framework

of the smart devices and components are dynamic, it forms a relationship be-
tween the producer and consumer based on computation resources. For instance,
when a new smart device d goes into a system s, the components in s can use the
resources provided by d. In addition, when a new component c enters a system s,
it will be decided that how to allocate c automatically and adaptively. Specially,
component c can migrate from the one device to another device.

The resource abstract framework RAF = (DM, RM, CM, TM, PS) shows in
Figure 3. DM is a smart device manager that monitors the device lifetime, type,
and energy. In addition, it provides a mechanism for devices to UPNP (Univer-
sal Plug and Play). RM is a resource manager, administering resource lifecycle,
type, quantity, and allocation. CM is an adaptive component management ser-
vice, which is responsible for component lifecycle, allocation, QoS, and context
management. To emphasize CM, we will give a detailed description in Section 3.2.
TM is a task manager. When an application comes, TM will decompose it into
several tasks based on semantic information. TM monitors tasks lifetime and
schedules them in an adaptive way. Besides, PS is a set of management policy
sets for these four parts, which can be well defined and reconfigured dynamically.

3.2 Adaptive Component Management Service

In terms of the resource abstract framework, we have developed an adaptive
component management service. According to the different run-time contexts,

316 Q. Wu and Z. Wu

this service is responsible for allocating and re-allocating the components in an
appropriate way. In addition, it monitors component lifetime and is responsible
for the QoS of component execution. Importantly, this service uses a run-time
component hook proxy, described in Section 4.

In one component lifecycle, there are two kinds of key behaviors: compo-
nent migration and component replication. These two behaviors are essential for
adaptive component management. Because the components are distributed in
such dynamic and discrete system, this service should adaptively take measures
about when and how to migrate or replicate components.

Components are installed in different smart devices. On on hand, component
migration means moving one component from one device to another device. The
former device will not hold that component, and the latter device becomes the
new resource carrier for that component. Emphatically stated, the latter device
should have suitable resources for that component, including necessary hardware
resources, OS resources, and component container resources. On the other hand,
component replication means copying one component from one device to another
device. In component replication, different from component migration, the for-
mer still has that component. As a result, there are two same components in
two different devices. In the same way, two different devices should have same
suitable resources for that component. To illustrate two behaviors, we give the
cases shown in Figure 4. At first, component c1 is distributed in smart device
d1, and d1 also has other components such as c2 and c3. Assume that c2 is exe-

Adaptive Component Management Service

Lifecycle QoS ContextAllocation

C
n

C
k

leave

d
2

C1 Migration

d1

d3

d4

C4 Replication

C
6

join

Ci

C
j

C
9

C
8

C
7C

1

C
3

C2

C
1

X

C4

C5

C4'

Run-time Component Hook Proxy

Fig. 4. Adaptive Component Management Service

Adaptive Component Management Service in ScudWare Middleware 317

cuting and occupies more hardware resources of d1, it induces that c1 cannot be
executed for hardware resources limited when one invocation comes. Under this
condition, component management service will decide to migrate c1 to another
device d2. Next, in one appropriate time, the component migration of c1 will take
place. Following that, c1 will execute on d2 successfully. Here is another case of
component replication. At beginning, c4 is distributed in smart device d3. Differ-
ent form the former case, the number of invocations of c4 is very large. For load
balance, the component manger will decide to copy c4 to another device. Assume
that d4 is satisfied with resource demands of c4 and is not busy at that time, c′4,
the backup of c4, will be distributed in d4 to decrease the invocations of c4 in d3.

4 Run-Time Component Hook Proxy Mechanism

In the framework of adaptive component management service, we introduce a
proxy mechanism called run-time component hook proxy that plays an impor-
tant role in component management. This section firstly presents a component
interdependence graph, and then proposes an architecture of this hook proxy.

4.1 Component Interdependence Graph

During component management, the relationships among components are very
important. In order to describe the interdependent relationships among compo-
nents, we introduce a component interdependence graph composed of component
nodes and link paths.

For each component, we associate a node. In addition, the link paths are
labelled with a weight. We define the component interdependence graph Aig =
(CN, LP, W). (1) CN = {cni}i=1..n denotes a set of component nodes. (2) LP =
{li,j}i=1..n,j=1..m denotes a set of component links, describing the dependent tar-
gets. li,j is the link between the nodes cni and cnj. (3) W = {wi,j}i=1..n,j=1..m

denotes a set of interdependent weight. wi,j is a non-negative real number, which
labels li,j . In addition, wi,j reflects the importance of the interdependence be-
tween the associated components. These weights used, for instance, to detect
which links becomes too heavy or if the systems rely too much on some com-
ponents. In terms of this weight, we can decide which component should be
allocated preferentially. Extremely, this graph changes according to the different
contexts. Therefore, this interdependence is not static. It can be modified when
a new component is added, or one component disappears. Moreover, based on
the different application domain contexts and the run-time environments, the
interdependent relationships will change.

For example, Figure 5 shows a case of the component interdependence graph.
The dependence weight of component c2 on component c5 is 0.8, and compo-
nent c5 on component c2 is 0.6. We call component c2 and c5 are mutual and
direct component interdependent. Besides, we can also calculate indirect com-
ponent dependent weight by decomposing each direct dependent relationship. In
this case, we can conclude the indirect dependence weight of component c1 on

318 Q. Wu and Z. Wu

C1 C2 C3

C4 C5 C6

C7 C8 C9

0.2 0.5

0.5
0.7

0.8 0.6

0.2

0.1(0.3)

0.9 0.5 0.3

Fig. 5. A case of Component Interdependence Graph

component c7 is a sum of weight of component c1 on component c4, and weight
of component c4 on component c7. As a result, the weight is 0.7. In addition,
we can also see dependence weight of component c3 on component c6 is 0.1 in
one context, while this weight changes to 0.3 in another context. Therefore we
should consider the effect of context variety on component interdependence in
component allocation design.

4.2 Run-Time Component Hook Proxy Architecture

In the large and complex ubiquitous computing environments, the multiple re-
sources are restricted. Software components are distributed, and connected with
each other. They compute and communicate frequently under different condi-
tions. As a result, they are interdependent. However, some relationships are
casually and others are perpetual, which means the components do not always
depend on special components for co-operations. Therefore, we use the compo-
nent interdependence graph to describe run-time component self-adaptation. In
executing time, the dynamic interdependence graph is generated automatically
by the components hook proxy that is responsible for acquiring information to
analyze and update interdependence graph to manage the components lifetime.
Under the changes of the contexts, the components hook proxy uses the different
strategies. Here gives a simple example. For a mobile music program, there are
four components: c1, c2, c3, c4. c1 is responsible for acquiring music information.
c2 is responsible for playing music with stereo tune. c3 is responsible for play-
ing music with mono tune. c4 is responsible for outputting the music. At first,
the network bandwidth is enough, the component hook proxy selects c1, c2, c4
to deal with this task, and forms a component interdependence graph. How-
ever, when the component hook proxy finds the network bandwidth is scarcity,
and cannot to transmit stereo track successfully, it will stop the actions of c2,

Adaptive Component Management Service in ScudWare Middleware 319

Component Hook

Proxy

Resource Context

CPU
Computation

Network
bandwidth

Memory Size

 Control
Message
Interdependence

Context
1

C2

C
4

C1

Context 2

C
3

C4

C
1

Fig. 6. A case of Component Hook Proxy

and then choose c3 to work. As a result, the component interdependence graph
changes. Figure 6 shows this case.

5 Experiment Study and Evaluation

We have made some preliminary experiments using the adaptive component
management service to build the mobile music system of smart vehicle space. A
large number of components are distributed on the various platforms to acquire,
play, transmit, and output the music information. These components interact
with the request and reply process. If one component sends the request for some
music information, the component management service will select one appro-
priate component to work and reply to the demander. Since the context of the
application is very dynamic, the strategy of component allocation should be done
automatically and dynamically. Our experiments are tested on the following plat-
forms, as shown in Table 1. The iPAQ is connected to the PC via the wireless
LAN using 802.11b protocol. The middleware platform uses the ScudWare.

Mobile music system runs on some PDAs and PCs. Many components are
distributed on the PDAs and PCs randomly. The functions of these components
consist of acquiring the music source information, transmitting the music, and
playing the music. To illustrate this, we give a case. First, the playing component
c1 on the PDA1 is playing the music with stereo tune. When the component hook
proxy finds the network bandwidth is not enough, it will stop the component c1.

320 Q. Wu and Z. Wu

Table 1. Experiment Test Bed

HP iPAQ Pocket PC H5500 Personal Computer

CPU 400 MHz Intel, XScal-PXA255 Intel Pentium IV 2.4G
Memory 128 MB RAM + 48 MB Flash ROM 256 MB RAM
Network Wireless LAN 802.11b LAN 100MB/s
OS Familiar Linux v0.8.0-rc1 RedHat Linux 9.0 (2.4.20)
Middleware ScudWare ScudWare
Dev-Language g++, QT g++

Then the proxy finds another music playing component c2 on the PDA2, which
plays music with mono tune and adapts to low network bandwidth. Because the
current playing frame is No. 168, it will start the component c2, and play music
from the No. 168 frame with the mono tune. In this way, the system can continue
successfully without more delays and provide comparative satisfaction for users.

In order to test the performance of the adaptive component management
service, we have made many simulations and evaluations. The results show that
our method is flexible and has little negative influence to the systems.

Due to adaptive component migration and replication, it must induce the
execution performance cost through component manager monitoring. As a result,
we focus on the performance test for measuring the cost. Because components in
ubiquitous computing environments form a large, complex and rich world, the
number of components in the tests is a key issue. In our tests, we choose the
component number n in this way: the first value is 50, the last is 500, and the

Fig. 7. Performance Cost

Adaptive Component Management Service in ScudWare Middleware 321

step is 50. We have done the experiments 10 times, and each time we use n/25
PCs and n/50 iPAQs. As shown in Figure 7, the average execution time for each
n is given about two kinds: one is a mobile music system without the component
hook proxy monitoring, and the other is with it. As a whole, the difference is
small and the execution time is acceptable.

6 Related Work

Service-oriented adaptive middleware plays an important role in software en-
gineering. It has the large potential for enhancing the system’s flexibility and
reliability to a very wide range of factors. Many efforts are put in this research
area. For instance, Philip K. Mckinley has made a lot of research on adaptive
software. He considers the compositional adaptation enables software to modify
its structure and behavior dynamically in response to changes in its execution
environment. He also gives a review of current technology comparing how, when,
and where re-composition occurs [13]. In addition, he describes Petrimorph [14],
a system that supports compositional adaptation of both functional and non-
functional concerns by explicitly addressing collateral change. Kurt Wallnau and
Judith Stafford [15] discuss and illustrate the fundamental affinity between soft-
ware architecture and component technology. They mainly outline criteria for the
component integration. Jiri Adamek and Frantisek Plasil [16] discuss the problem
of defining a composition operator in behavior protocols in a way, which would
reflect false communication of the software components being composed. Besides,
we have proposed a semantic and adaptive middleware for data management in
smart vehicle space [2]. In component adaptation, we should consider both the
task decomposing completely at design-time and the executing effectively and re-
liably at run-time [17]. However, many researches consider incompletely, ignoring
some aspects. Additionally, it needs an integrated computation model to describe
adaptive component management. The goal of our research is to overcome this
deficiency. Smita Bakshi and Daniel D. Gajski [18] present a cost-optimized algo-
rithm for selecting components and pipelining a data flow graph, given a multiple
implementation library. This method focuses on performance analysis, which is
short of the run-time adaptive mechanism. Belaramani and Cho Li Wang [3]
propose a dynamic component composition approach for achieving functionality
adaptation and demonstrate its feasibility via the facet model. However, they
do not integrate the design-time adaptation to form a synthetical computation
model. Shige Wang and Kang G. Shin [19] give a new method for component al-
location using an informed branch-and-bound and forward checking mechanism
subject to a combination of resource constraints. Nevertheless, their method is
static, and focuses on design-time instead of runtime adaptation.

7 Conclusions and Future Work

Now, adaptive component management is playing a more important role in ubiq-
uitous computing environments, which is a significant research issue. In this

322 Q. Wu and Z. Wu

paper, we firstly analyze the problem area caused by dynamic characters of
ubiquitous computing, and give a short introduction of the software adaptation.
Next, we mainly present an adaptive component management service, which is
integrated into the ScudWare middleware. In addition, we have made a large
number of experiments to test the performance cost of this service.

Our future work is to improve the adaptive component management service
including some algorithm analysis. In addition, we will take other methods to
realize more component management flexibility and reliability both at design-
time and run-time.

Acknowledgments

This research was supported by 863 National High Technology Program under
Grant No. 2003AA1Z2080, 2003AA1Z2140 and 2002AA1Z2308.

References

1. Weiser M: The Computer for the 21st Century. Scientific American, pp.94-100
(1991)

2. Qing Wu, Zhaohui Wu, Bin Wu, and Zhou Jiang: Semantic and Adaptive Mid-
dleware for Data management in Smart Vehicle Space. In proceedings of the 5th
Advances in Web-Age Information Management, LNCS 3129, pp. 107-116 (2004)

3. Nalini Moti Belaramani, Cho-Li Wang, and Francis C.M. Lau: Dynamic Com-
ponent Composition for Functionality Adaptation in Pervasive Environments. In
proceedings of the Ninth IEEE Workshop on Future Trends of Distributed Com-
puting Systems, (2003)

4. Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, and Mingde Zhao: Scud-
Ware: A Context-aware and Lightweight Middleware for Smart Vehicle Space. In
proceedings of the 1st International Conference on Embedded Software and Sys-
tem, LNCS 3605, pp. 266-273 (2004)

5. http://www.omg.org/technology/documents/formal/components.htm (2005)
6. http://www.cs.wustl.edu/ schmidt/ACE.html (2005)
7. http://www.cs.wustl.edu/ schmidt/TAO.html (2005)
8. Mingde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, and Wei Chen: SmartOSEK:

A Dependable Platform for Automobile Electronics. In proceedings of the first
International Conference on Embedded Software and System, LNCS 3605, pp.
437-442 (2004)

9. OSEK/VDX: OSEK/VDX Operating System Specification Version 2.2.2.
http://www.osek-vdx.org (2005)

10. Qing Wu and Zhaohui Wu: Integrating Semantic Context Service into Adaptive
Middleware for Ubiquitous Computing. In ”Advances in Computer Science and
Engineering Series”, Imperial College Press, London, UK, to appeare (2005)

11. Qing Wu and Zhaohui Wu: Semantic and Virtual Agents in Adaptive Middleware
Architecture for Smart Vehicle Space. In proceedings of the 4th International Cen-
tral and Eastern European Conference on Multi-Agent Systems, LNAI 3690, pp.
543-546 (2005)

12. Hector A. Duran-Limon, Gordon S. Blair, Geoff Coulson: Adaptive Resource Man-
agement in Middleware : A Survey. IEEE Distributed System 5(7), (2004)

Adaptive Component Management Service in ScudWare Middleware 323

13. Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, Betty H.C. Cheng:
Comosing Adaptive Software. IEEE Computer Society, pp. 56-64 (2004)

14. E.P. Kasten, P.K.McKinley: Perimorph: Run-time Composition and State Man-
agement for Adaptive Systems. In proceedings of the 4th International Workshop
on Distributed Auto-adaptive and Reconfigurable Systems, pp. 332-337 (2004)

15. Kurt Wallnau, Judith Stafford, Scott Hissam, Mark Klein: On the Relationship of
Software Architecture to Software Component Technology. In proceedings of the
6th International Workshop on Component-Oriented Programming (2001)

16. Jiri Adamek, Frantisek Plasil: Component Composition Errors and Update Atom-
icity : Static Analysis. Journal of Software Maintenance and Evolution: Research
and Practice (2005)

17. Qing Wu and Zhaohui Wu: Adaptive Component Allocation in ScudWare Mid-
dleware for Ubiquitous Computing. In proceedings of the 2005 IFIP International
Conference on Embedded And Ubiquitous Computing, LNCS, to appeare (2005)

18. Smita Bakshi, Daniel D.Gajski:A component Selection Algorithm for High-
Performance Pipelines. In proceedings of the conference on European design au-
tomation, ACM, pp. 400-405 (1994)

19. Shige Wang, Jeffrey R. Merrick, Kang G. Shin: Component Allocation with Multi-
ple Resource Constraints for Large Embedded Real-time Software Design. In pro-
ceedings of the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (2004)

Semantic Caching for Web Services�

Stefan Seltzsam1, Roland Holzhauser2, and Alfons Kemper1

1 TU München, D-85747 Garching, Germany
〈first name〉.〈last name〉@in.tum.de

2 Universität Passau, D-94030 Passau, Germany
holzhaus@fmi.uni-passau.de

Abstract. We present a semantic caching scheme suitable for caching
responses from Web services on the SOAP protocol level. Existing se-
mantic caching schemes for database systems or Web sources cannot
be applied directly because there is no semantic knowledge available
about the requests to and responses from Web services. Web services are
typically described using WSDL (Web Service Description Language)
documents. For semantic caching we developed an XML-based declar-
ative language to annotate WSDL documents with information about
the caching-relevant semantics of requests and responses. Using this in-
formation, our semantic cache answers requests based on the responses
of similar previously executed requests. Performance experiments—based
on the scenarios of TPC-W and TPC-W Version 2—conducted using our
prototype implementation demonstrate the effectiveness of the proposed
semantic caching scheme.

1 Introduction

Service-oriented architectures (SOAs) based on Web services are emerging as
the dominant application on the Internet. Mission critical services like business-
to-business (B2B) or business-to-consumer (B2C) services often require more
performance, scalability, and availability than a single server can provide. Server
side caching, e.g., [1, 2], and some kind of cluster architecture alleviate some of
these problems. A major drawback remains: all clients must still access the Web
service directly over the Internet, which is possibly resulting in high latency,
high bandwidth consumption, and high server load.

There are many Web services characterized by read-mostly interactions, e.g.,
B2C and B2B services offering query-like interfaces to access product catalogues.
Such services are also used in standard benchmarks like TPC-W [3] and TPC-W
Version 2 [4]. Another important category of Web services includes information
services like stock quote services, news services, weather services, etc., which
typically offer read-only access. There are Web services with different access
patterns but since the Web service categories described above are very common
and important, this paper focuses on them.
� This research is supported by the Advanced Infrastructure Program (AIP) group of

SAP and the German National Research Foundation under contract DFG Ke 401/7-2.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 324–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Caching for Web Services 325

Our generic approach to achieving higher performance and scalability is
called Semantic SOAP Protocol Level Cache (SSPLC). The performance in-
crease is based on semantic caching of responses from Web services in re-
quest/response message exchange patterns on the SOAP [5] protocol level.
Clients are not directly accessing the origin service anymore; instead they are
accessing instances of SSPLC. As long as requests can be answered based on
cached data, the origin server hosting the Web service is not involved any-
more. Therefore, the load at the origin server is reduced, bandwidth consump-
tion is diminished, and latency is reduced. The advantage of a semantic cache
is that it reuses the responses to prior requests to answer similar requests, not
only the exact same requests. Thus, if request R1 retrieves all books writ-
ten by “Rowling” and afterwards a request R2 retrieves all books written by
“Joanne Rowling”, a semantic cache reuses the response to R1 to answer the
more selective request R2.

Our proposed cache can be used like traditional HTTP proxies, i.e., SSPLC
instances need not be hosted by service providers themselves, but can easily
be run by, e.g., companies and universities, just like HTTP proxies nowadays.
However, SSPLC can also be used as reverse-proxy cache or edge server cache.
with the additional advantage that server-driven cache consistency techniques
are applicable.

Our approach relies on service provider cooperation. All instructions to control
the SSPLC are embedded by the provider of a service in SOAP result documents
and in the WSDL [6] description of a service. The SOAP results are augmented
with information about cache consistency. This is the only modification to a
Web service required for the use of SSPLC. The effort necessary to generate
these annotations depends on the consistency strategy and the complexity of
the application logic and is subject to further investigations. Simple annotations,
e.g., TTL values, can be inserted by the SOAP-engine in a post-processing step
without modifications of the Web service. More complex annotations demand
some coding effort. Additionally, the WSDL document of the service is annotated
with information about the caching-relevant semantics of a service. This is done
manually using an XML-based declarative language because automatic reasoning
about the semantics normally results in a very conservative caching behavior.
Writing these annotations is considered to be quite easy for the developers of a
Web service as they already have the required knowledge. Altogether, we assume
that the additional effort for the provider to make a Web service cachable is
clearly outweigh by its benefits.

The remainder of the paper is organized as follows: In Section 2 we present
background information and introduce an example Web service used as running
example. Several basic design decisions are described in Section 3. A detailed
description of SSPLC, the embedded control instructions of service providers,
and some sophisticated features of the SSPLC are presented in Section 4. Exper-
imental results follow in Section 5. Section 6 surveys related work and Section 7
presents our conclusions.

326 S. Seltzsam, R. Holzhauser, and A. Kemper

2 Background Knowledge and Running Example

2.1 Fundamentals of Semantic Caching

Semantic caching is a client-side caching technique introduced in the mid 90s
for DBMSs to exploit the semantic locality of queries [7, 8]. A semantic cache is
managed as a collection of semantic regions which group together semantically
related objects. Regions are composed of region descriptor and region content.
The descriptor basically contains a predicate (like ’author = “Joanne Rowling” ’)
describing the region content. The content stores the objects related to a region
descriptor. Access history is maintained and cache replacement is performed at
the granularity of semantic regions.

Every query sent to a semantic cache is split into two disjoint parts: a probe
query and a remainder query. The probe query extracts the relevant portion of
the result already available in the cache while the remainder query is sent to
the origin server to fetch the missing, i.e., not cached, part of the result. If the
remainder query is empty, the cache does not interact with the origin server.
In the context of DBMSs or Web sources, all participating components have
been full-fledged DBMSs. Since Web services normally have a more constrained
query interface, semantic caching must be adapted to these limitations (see
Section 4).

2.2 Running Example

Amazon offers a SOAP-based Web service interface which is very similar to their
broadly known HTTP interface. Since Amazon is in fact a “real-world implemen-
tation” of the TPC-W benchmark, we use parts of their interface for our example
and the TPC-W benchmark scenario as basis for performance experiments con-
ducted using our prototype implementation. Our example service is called Book
Store Light and is a slim version of Amazon. The relevant operation of this ser-
vice is a search for books written by certain authors (author search). The XML
documents used by Amazon are too large to be presented entirely in this pa-
per. We shortened and simplified them to a reasonable degree and removed all
namespaces and types from the presented documents for better readability and
a more concise presentation.

2.3 The Communication Protocol SOAP

SOAP [5] is an XML-based communication protocol for distributed applications.
The root element of a SOAP message is an Envelope element containing an op-
tional Header element for SOAP extensions and a Body element for the payload.
SOAP is designed to exchange messages containing structured and typed data
and can be used on top of several different transfer protocols like HTTP, SMTP,
and FTP. The usage of SOAP over HTTP is the default in the current landscape

Semantic Caching for Web Services 327

of Web services. Figure 3 shows an example SOAP response corresponding to
the request shown in Figure 1.

2.4 The Description Language WSDL

WSDL (Web Service Description Language) [6] is an XML-based language to
describe the technical specifications of a Web service, in particular the operations
offered by a Web service, the syntax of the input and output documents, and
the communication protocol to use for communication with the service. The
exact structure of a WSDL document is complex and out of the scope of this
paper, but we will give a brief overview of the WSDL standard. At first, a
service in WSDL is described on an abstract level and afterwards bound to a
specific protocol, network address (normally a URL), and message format. On
the abstract level port types are defined. A port type is a set of operations (like
author search). Every operation has a number of input and output messages
associated defining the order and type of the messages sent to/received from the
operation. The messages themselves are assembled from several typed parts. The
types are defined using XML Schema.

On the non-abstract level, port types are bound to concrete communication
protocols and concrete formats of the messages using so-called bindings. At last,
a service in WSDL is defined as a set of ports, i.e., bindings with associated
network addresses (normally URLs).

Since SSPLC is currently mainly based on annotations at the ab-
stract level we will focus on this level. Figure 4 shows a fragment of a
WSDL document defining the port type of the Book Store Light service
(BookStoreLightPort) having one operation (AuthorSearchRequest). This op-
eration expects an AuthorSearchRequest message as input and produces an
AuthorSearchResponse message as an output document. These messages are
defined just above the portType element. Messages are composed of several
part elements. As shown in the figure, the request message has one part of type
AuthorRequest and the response message has one part of type ProductInfo.
These types are defined using XML Schema in another fragment of the WSDL
document, shown in Figure 2. An element of type AuthorRequest has the ele-
ments author and levelOfDetail, both of type string, in its content. In our
example, levelOfDetail can be “heavy” or “lite” and influences the level of
detail of the result. Figure 1 shows an example SOAP message requesting the
most important information about books written by “Joanne Rowling”.

An element of type ProductInfo contains the two subelements TotalResults
and DetailsArray. The former is of type int, whereas DetailsArray is, in
short, an array of Details elements. Details is another type defined inside the
WSDL document, having the three subelements Asin, Title, and Authors. The
first two subelements are of type string, the last one is of type AuthorArray
which is an array of strings representing the authors of the book. For our
example, we assume that Asin is only present in a result if levelOfDetail was
“heavy”.

328 S. Seltzsam, R. Holzhauser, and A. Kemper

<Envelope encodingStyle="http://...">
<Body>
<AuthorSearchRequest>
<AuthorSearchRequest>
<author>Joanne Rowling</author>
<levelOfDetail>lite</levelOfDetail>

</AuthorSearchRequest>
</AuthorSearchRequest>

</Body>
</Envelope>

Fig. 1. Example SOAP Request

<types><schema>
<complexType name="AuthorRequest"><all>
<element name="author" type="string" />
<element name="levelOfDetail"

type="string" />
</all></complexType>
<complexType name="ProductInfo"><all>
<element name="TotalResults" type="int" />
<element name="DetailsArray"

type="DetailsArray" />
</all></complexType>
<complexType name="DetailsArray">
<complexContent>
<restriction base="Array">
<attribute ref="arrayType"

arrayType="Details[]" />
</restriction>

</complexContent></complexType>
<complexType name="Details"><all>

<element name="Asin" type="string" />
<element name="Title" type="string" />
<element name="Authors"

type="AuthorArray" />
</all></complexType>
<complexType name="AuthorArray">
<complexContent>
<restriction base="Array">
<attribute ref="arrayType"

arrayType="string[]" />
</restriction>

</complexContent></complexType>
</schema></types>

Fig. 2. Type Definitions

<Envelope encodingStyle="http://...">
<Body>
<AuthorSearchRequestResponse>
<return>
<TotalResults>200</TotalResults>
<DetailsArray arrayType="Details[200]">
<Details>
<Title>
Harry Potter and the Sorcerer’s Stone

</Title>
<Authors arrayType="string[2]">
<Author>Joanne K. Rowling</Author>
<Author>Mary GrandPré</Author>

</Authors>
</Details>
<!-- 199 more Details elements -->

</DetailsArray>
</return>

</AuthorSearchRequestResponse>
</Body>

</Envelope>

Fig. 3. Example SOAP Response

<message name="AuthorSearchRequest">
<part name="AuthorSearchRequest"

type="AuthorRequest" />
</message>
<message name="AuthorSearchResponse">

<part name="return" type="ProductInfo" />
</message>
<portType name="BookStoreLightPort">

<operation name="AuthorSearchRequest">
<input message="AuthorSearchRequest" />
<output message="AuthorSearchResponse" />

</operation>
</portType>

Fig. 4. Messages and Port Types

<CacheControlHeader>
<CacheConsistency>
<TTL>P0Y0M0DT12H00M00S</TTL>
</CacheConsistency>

</CacheControlHeader>

Fig. 5. Cache Consistency Information
<binding name="BSLBinding" type="BookStoreLightPort">
<binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="AuthorSearchRequest">

<operation soapAction="BookStoreLight" />
<!-- ...mappings of input and output message... -->
<OperationCacheControl>
<fragmentationXPath>
/Envelope/Body/AuthorSearchRequestResponse/return/DetailsArray/Details
</fragmentationXPath>
<reassemblingXQuery> <!CDATA[

let $details := ##RESULT_FRAGMENTS##
return
<Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<Body>
<AuthorSearchRequestResponse>
<return type="ProductInfo">
<TotalResults type="int">##COUNT_RESULT_FRAGMENTS##</TotalResults>
<DetailsArray arrayType="Details[##COUNT_RESULT_FRAGMENTS##]" type="Array">
{$details}
</DetailsArray>

</return>
</AuthorSearchRequestResponse>

</Body>
</Envelope>]]>

</reassemblingXQuery>
</OperationCacheControl>

</operation>
</binding>

Fig. 6. Annotation of the AuthorSearchRequest Operation

Semantic Caching for Web Services 329

3 Basics of the Web Service Cache

We will now discuss our design decisions on several basic caching aspects. These
concerns are not the main focus of our work so we used existing solutions as far
as possible and adapted existing work where necessary.

3.1 Replacement Policy

Since cache memory is a limited resource, the cache may have to discard some
regions to free memory for new regions. After experimenting with some differ-
ent replacement strategies, we decided to use our own modified version of the
2Q strategy [9], which is a low overhead approximation to LRU-2. Empirically,
standard 2Q is a smart choice because of good replacement decisions and low
CPU overhead, but this algorithm is designed to handle objects of uniform size.
As semantic regions can be of different size, we had to modify the standard 2Q
strategy by introducing a simple but efficient cost-to-size ratio. More details on
our modifications of 2Q can be found in the extended version of this paper [10].

3.2 Distribution Control/Cache Consistency

SSPLC gives providers exclusive control over distribution and cache consistency
using a SOAP header extension. Since cache consistency mechanisms are not the
focus of this work, we assume service-specific TTL in the following discussion.
If a provider allows caching, it must explicitly state some cache consistency
information. For example, the CacheControlHeader element shown in Figure 5
allows caching and states that the response is fresh for at least the given
duration (12 hours). After this duration, the cached version of the response
must be removed from the cache.

3.3 Physical Storage of Semantic Regions

Using a cache requires a large amount of memory to be able to serve lots of
clients based on a reasonably large number of semantic regions. Since disks are
considerably larger and cheaper than main memory, it is obviously a good idea
to use them for the storage of semantic regions. Since it is orthogonal to the
issues discussed in this paper whether the cache is based on main memory, disk,
or both, we assume for the rest of the paper that the cache is only based on
main memory. Our prototype system is main memory-based as well.

4 Semantic Caching in SSPLC

Basically, semantic caching in SSPLC is done by annotating WSDL documents
with information about the caching-relevant semantics of services using the lan-
guage presented in the next section. This information is used for mapping SOAP
requests to predicates, for fragmenting responses, and for reassembling responses.
Thus, adapted semantic caching algorithms can be applied.

330 S. Seltzsam, R. Holzhauser, and A. Kemper

4.1 WSDL Annotations

Our language is designed both to cover common capabilities of existing Web
service interfaces and to preserve efficient solvability of the query containment
problem, which is intrinsic to semantic caching. The annotation of WSDL docu-
ments is done using XML Schema annotation elements and WSDL extensibility
elements. Thus, compatibility to the original WSDL document is preserved, be-
cause applications which cannot handle the annotations ignore them.

Fragmentation and Reassembling. Since Web services deliver monolithic
XML documents rather than tuple-oriented responses, SSPLC needs some infor-
mation about how to fragment such documents to obtain fine-granular response
units comparable to tuples in database caching. These units are called fragments.
We use an XPath-expression to specify the fragmentation. Additionally, SSPLC
needs further instructions regarding the generation of a complete response doc-
ument based on fragments of prior requests. This information is specified using
the XQuery language. Both the XPath-expression and the XQuery, are provided
using an additional element (OperationCacheControl) inside the binding el-
ement of the WSDL document of a service because it depends on the actual
coding of the messages.

Figure 6 gives an example for our Book Store Light. The marked region de-
picts the annotated information for the SSPLC while the rest of the document
constitutes a standard SOAP binding. Referring to our book store example,
we are interested in the individual books, i.e., Details elements, contained in
a response document of our example service. The XPath-expression inside the
fragmentationXPath element in Figure 6 fragments a response document ac-
cordingly. The XQuery to reassemble a response is shown in the figure inside
the reassemblingXQuery element. The macros ##COUNT RESULT FRAGMENTS##
and ##RESULT FRAGMENTS## are expanded by the SSPLC before evaluating the
XQuery and represent exactly the fragments (respectively their number) which
should be reassembled to a complete response document. Since an introduction
to XQuery lies outside the scope of this paper, we will not explain the XQuery
shown in the figure. It should be obvious that the result of the XQuery is a
SOAP response like the one shown in Figure 3.

Predicate Mapping. We need predicates to describe the fragments stored
in a region. Thus, we need some information about the semantics of requests.
Moreover, we want to be able to filter semantic regions, e.g., if we are looking for
all books written by “Joanne Rowling” in a region storing all books written by
“Rowling”. Therefore, we need to know how to access the individual “attributes”
(elements) of a tuple (fragment). This information is annotated to the type
definitions of requests in WSDL documents.

We will explain the annotations using our Book Store Light example. The orig-
inal type definition of AuthorRequest, which is the request type of our service,
is shown in Figure 2. Currently, we assume that if there are several parameters
defined in a request, i.e., levelOfDetail and author, they are combined by an

Semantic Caching for Web Services 331

<complexType name="AuthorRequest"><all>
<element name="author" type="string">
<annotation><appinfo>

<CacheControl context="AuthorSearchRequest"
bindingContext="BSLBinding">

<StringParameter>
<required>true</required>
<fragmentXPath>
Authors/Author/text()

</fragmentXPath>
<implicitOperator>contains_wwo</implicitOperator>
<caseSensitive>false</caseSensitive>
<operators>
<and> </and><and>,</and>

</operators>
</StringParameter>

</CacheControl>
</appinfo></annotation></element>

<element name="levelOfDetail" type="string">
<annotation><appinfo>

<CacheControl context="AuthorSearchRequest"
bindingContext="BSLBinding">

<StringParameter>
<required>true</required>
<implicitOperator>equals</implicitOperator>
<caseSensitive>true</caseSensitive>
</StringParameter>

</CacheControl>
</appinfo></annotation></element>

</all></complexType>

Fig. 7. Annotated WSDL Type Definition

Disjoint Match

Contained Match Overlapping Match

Containing MatchExact Match

No Matching
Result is requested from remote server

Exact and Extended Matching
Result can be generated autonomously

Semantic Region S
(available in the cache)

Result of new Request
based on one CP

Fig. 8. Match Types

AND operator. Thus, the request shown in Figure 1 means that we are looking
for all books written by “Joanne Rowling” and we are only interested in the most
important facts of the books. Additionally, we assume that if there are several
elements inside an array, the elements are logically ANDed together, too. This
is also true for responses (see the Author elements inside the Authors element
shown in Figure 3). The annotated version of the AuthorRequest type is shown
in Figure 7.

We annotate every parameter of the request using one or more CacheControl
elements. It is necessary to specify some context information because a parame-
ter can be used for several operations having different semantics. Also, if another
binding is used, the coding of the parameter might be different, requiring some
modifications inside the CacheControl element. Thus, the context information
given by the attributes of CacheControl defines when to use the information
inside the CacheControl element. A StringParameter element defines that the
parameter is of type string. The content of this element gives more detailed infor-
mation about how to handle this string parameter. We also defined elements for
other parameter types, e.g., an IntegerParameter element. Each of these ele-
ments contains further information (e.g., operators) depending on the parameter
type.

Looking at the example in Figure 7, we observe that the author parameter
is mandatory (required element). If a parameter is optional, a default value of
the parameter that is used in case of absence of the parameter in a request must
be specified using a default element (not available in the example document).
The fragmentXPath element specifies how to extract the information from result
fragments that correspond to this parameter (compare Figure 3). For example,

332 S. Seltzsam, R. Holzhauser, and A. Kemper

if we ask for books written by an author, the fragmentXPath can be used to find
the authors in the result fragments. If, as in our example, an XPath is specified,
the cache can inspect the fragments to look up the actual author(s) of a book.
This information can be used to filter all fragments contained in a semantic
region. If there is no XPath specified, the cache is not able to do such filtering
because it is constrained to the information obtained from the request.

The element implicitOperator defines the operator of the parameter. Cur-
rently, we support the following operators (for appropriate parameter types):
>, ≥, <, ≤, = (or equals), contains, contains wwo, starts with, and ends with.
In our example, the operator is contains wwo which is a contains operator that
looks for “whole word only” occurrences of the given pattern in a string, i.e.,
“Joanne Rowling” does not contain wwo “Rowl”, but contains wwo “Rowling”.
The comparison of strings is case insensitive as defined by the caseSensitive
element.

Additionally, we support the logical operators AND and OR to support com-
plex predicates. We also support parentheses for precedence control. Currently,
we are not supporting the ¬ operator (logical NOT operator) because there are
virtually no Web services offering this operator and we are interested in keeping
the query containment problem efficiently solvable. The operators element in
Figure 7 defines two AND operators for the author parameter: a space character
and a comma.

The second parameter is levelOfDetail. This is also a mandatory string
parameter. The implicit operator is a case sensitive “equals”. There is no
fragmentXPath defined because in the response document of our Web service no
explicit information about whether it is a “heavy” or a “lite” result is contained.
As this information is stored as part of the region predicate, this information is
not lost.

Using these annotations SSPLC can figure out the semantics of a request and
is able to extract relevant elements from fragments. Also, it is able to generate
a predicate from a request. The request shown in Figure 1 is mapped to the
following predicate:

author contains wwo case insensitive “Joanne”∧
author contains wwo case insensitive “Rowling” ∧

levelOfDetail equals case sensitive “lite”

4.2 Matching and Control Flow

Using our annotations we are now able to understand the caching-relevant
semantics of requests and responses. We will now describe how this information
is used for caching. First of all, a SOAP request R is mapped to a predicate P
as described above. Although the Book Store Light does not offer a logical OR
operator for the author parameter, we will use the following predicate P (op-
erator names are shortened) for demonstration purposes throughout this section:

Semantic Caching for Web Services 333

(author contains “Rowling” ∨ author contains “GrandPré”) ∧
levelOfDetail = “lite”

After the mapping, P is transformed into disjunctive normal form (DNF)
and split into conjunctive predicates (CPs), i.e., predicates only containing
simple predicates connected by logical AND operators. If there is no logical OR
in a request, P is processed as is. The transformation of our example predicate
P results in:
CP1 : author contains “Rowling”∧ levelOfDetail = “lite”
CP2 : author contains “GrandPré”∧ levelOfDetail = “lite”

All CPs are processed in parallel. First, match types of a CP with all semantic
regions are determined, i.e., the correlation between every semantic region S and
the result of CP is determined. There are five different match types as shown in
Figure 8. The best match type for a CP and a semantic region S is, of course,
the exact match. The next best match type is a containing match because we
only have to filter S by eliminating all fragments fulfilling the region predicate
but not CP to get the fragments for the response. The other three match types
require server interaction because we do not have all fragments cached to an-
swer the request. Since most Web services do not have adequate interfaces to
be able to process complicated remainder requests, we handle all three match
types as disjoint match. Thus, we are sending a request generated from the CP
to the Web service even though there already might be some relevant fragments
available in the cache. Even if a Web service can process complicated remain-
der requests, processing of such complex requests is likely to be costly. As one
of the goals of SSPLC is to reduce processing demands of the central servers,
usage of complex remainder requests could be counterproductive. The response
of the Web service is fragmented and afterwards stored in the cache. If there
are already regions in the cache that are a subset of the response (i.e., in the
case of a contained match), these semantic regions are replaced with the new
(larger) semantic region. In all other cases, the fragmented response is inserted
as a new semantic region using CP as the region predicate. After all CPs have
been processed, SSPLC calculates the result of P as the union of the results
of all CPs. By default, duplicates are eliminated, i.e., SSPLC implements the
very common set semantics. Alternatively, SSPLC calculates the result without
duplicate elimination. This behavior is controlled by an optional distinct el-
ement inside the OperationCacheControl element (not shown in the example
document). Fragments are considered equal if their contents are equal or if keys
are defined, their keys are equal. Keys can be defined via a key element inside
the OperationCacheControl element using the standard XML Schema syntax
for keys. Usage of keys considerably speeds up duplicate elimination. We do not
further investigate keys in the scope of this paper. The result of P is (concep-
tually) written to an XML document D. After that, the reassemblingXQuery
is evaluated with the macro ##RESULT FRAGMENTS## expanded to D and the
macro ##COUNT RESULT FRAGMENTS## expanded to |D|. Finally, the response is
sent back to the client.

334 S. Seltzsam, R. Holzhauser, and A. Kemper

4.3 Sorting and Generalization

Since the order of elements can be important in XML documents, SSPLC is aware
of it. XML documents are inherently ordered by the sequence of the elements
(document order). As long as the document order generated by a Web service
offers no real added value (e.g., lexicographical order by title), it does not matter
in which order the fragments emerge in the response. Also, as long as we are
using fragments of only one semantic region (filtered or not), order is abided and
we can generate correctly ordered results as in the Book Store Light example.

If a Web service orders fragments using some information available in the
response, there are two possibilities to establish the same order even if we are
merging fragments of several semantic regions to generate the response. First,
if the order is fixed, i.e., always the same, the reassemblingXQuery can be
modified to do the sorting using the order by clause of XQuery. Second, if the
order depends on a request parameter, we can annotate this parameter using
a SortParameter element. This element contains a mapping from the service’s
sorting facilities to order by clauses of XQuery. For example, if a Web service has
a parameter sort and the value “+title” means “sort by title”, a mapping to
XQuery could look like “order by $fragment/Title”. The appropriate order
by clause is inserted into reassemblingXQuery before evaluation. The value of
a sorting parameter is stored in the region descriptor because it is relevant for
determining the match types.

Another enhancement of our semantic caching scheme is the usage of gener-
alization for better decisions on the query containment/predicate subsumption
problem. Our SSPLC supports two different types of generalization. First, tree-
structured containment relations for values of parameters can be defined. For
example, if there is a parameter defining whether we are interested in paper-
back, hardcover, or both, we are able to annotate this parameter to point out
that “hardcover ⊆ both” and “paperback ⊆ both”. This information is used
during match type computation and for filtering of semantic regions. The sec-
ond type of generalization can be seen in our example. There is a parameter
levelOfDetail that influences the level of detail of the response. Since “heavy”
fragments simply contain some extra elements, it is possible to define an XQuery
filter to transform “heavy fragments” to “lite fragments” by removing the sur-
plus elements like the Asin elements in our example. This information is also
used during match type computation and region filtering.

5 Performance Evaluation

We implemented a prototype of SSPLC for the service platform ServiceGlobe [11]
using Java and conducted several performance experiments based on the scenar-
ios of TPC-W [3] and TPC-W Version 2 [4].

5.1 Benchmark Scenario 1 (TPC-W)

The first scenario is related to the online bookstore scenario of the TPC Web
commerce benchmark (TPC-W). Because TPC-W does not aim at SOAP Web

Semantic Caching for Web Services 335

services and semantic caching, but instead at traditional Web servers and back-
end servers, major modifications to TPC-W (system architecture as well as data
generation) are necessary to adjust the benchmark to the context of our SSPLC
in a reasonable way. Thus, we decided to model our benchmark scenario on the
SOAP interface of Amazon, just as the scenario of TPC-W is modeled on the
HTTP interface of Amazon. We chose to use Amazon’s author search request for
our benchmarks because this search functionality is also addressed in TPC-W.

Experimental Setup. Due to space restrictions, we only present a survey of
the experimental setup of benchmark scenario 1. A detailed description can be
found in the extended version of this paper [10].

To show the effectiveness of our semantic cache, we implemented a simulation
service rather than using Amazon directly because Amazon delivers its results
page-wise (i.e., 10 books per SOAP response), which is an unusual behavior for
Web services. The requests and responses of our simulation service are identical
to those of the Amazon service despite the fact that our service delivers all
results to a request in one response. For that purpose, we materialized some of
the data of Amazon to be able to work with real data. Since our simulation
service delivers these materialized results extremely fast, we are delaying results
to simulate processing time of a Web service. We conducted some experiments to
assure that SSPLC is able to deliver its results as fast or faster on average than
the origin Web service. Since these results depend heavily on the performance
of the origin server and of the machine running SSPLC, we do not present
quantitative results.

Our benchmark scenario is based on several top-300 bestseller lists (top selling
science books, top selling sports books, ...) of Amazon. We used these different
bestseller lists to generate different traces as described below and we always
present the average of all performance experiments conducted using these dif-
ferent traces. If an author’s book is present on the bestseller list, people will be
interested in other books published by the same author, too. Thus, an author
search request is more likely for authors whose books are ranked high on the best-
seller list. Since studies [12] have found that the request characteristics of many
Internet applications are adequately modeled through a Zipf-like distribution,
we use such a distribution (with parameter theta (θ) set to 0.75) on the top-300
bestseller lists to select books. Using the names of the authors of a book, we
generate a request for our simulation service. We randomly choose which names
(surnames, first names) are used for the request. Every request contains at least
one surname of an author. This is done to challenge semantic caching. We gener-
ated traces of 2000 requests each for the performance experiments. Additionally,
we conducted some experiments using traces of 10000 requests showing similar
results.

Some of the requests produce very large response documents containing up
to 32000 fragments. Since the size of such documents is about 40 MB, it is
very likely that Web services do not generate such large responses. Rather, they
generate a fault response informing the caller that there are too many results
and that the request has to be refined. Thus, our simulation service sends fault

336 S. Seltzsam, R. Holzhauser, and A. Kemper

27.1% 28.8% 34.0% 37.8% 37.0%
43.4%

16.4%

56.5%
71.3%

43.1%

62.2%

36.9%

56.6%

26.2%
22.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

Small Standard Large

Cache Size

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

23
4

M
B

20
2

M
B

18
2

M
B

21
5

M
B

17
7

M
B

15
9

M
B

29
8

M
B

29
8

M
B

0

50

100

150

200

250

300

No Cache Small Standard Large

Cache Size

T
ra

ns
fe

r
V

ol
um

e
(M

B
)

NSC

SSPLC

Fig. 9. Match Distribution (Left) and Transfer Volume (Right) Varying Cache Size

messages for results containing more than 2000 fragments. SSPLC caches these
fault messages because they are marked cachable in the SOAP header.

We conducted several performance experiments varying different parameters
and we present the results in this section. For the experiments in this section, the
TTL of responses was set to 30 minutes, if not explicitly stated differently. The
maximum size for responses to be cached was set to about 1000 fragments (1.2
MB). Larger responses were fetched from the remote Web service and forwarded
to the client without caching. We conducted the experiments using three different
cache sizes: small (10% of the data volume of the unique-trace3), standard (20%),
and large (30%). The cache was warmed up by running every trace twice and
measuring the second one, although there are only minor differences between
the two runs.

Experimental Results. Due to space restrictions, we only present the core
results of benchmark scenario 1. Detailed experimental results are presented in
the extended version of this paper [10].

The main goal of the SSPLC is to improve scalability of Web services. Figure 9
shows4 that already the smallest semantic cache is able to answer 43.5% (exact
matches + containing matches) of all requests using data stored in the cache,
reducing processing demands on the central servers significantly. A traditional
(non-semantic) cache (NSC) achieves much smaller hit rates (28.8%). The bigger
the caches are, the better the hit rates become even though the increase rate
is not linear with the cache size increment. This is due to the fact that already
the standard cache size is large enough to cache most of the hot spot responses.
The only advantage of a larger cache is that it is able to additionally store some
of the less frequently requested responses. SSPLC benefits more from a larger
cache than NSC because SSPLC can exploit the semantics of the requests.

3 The term unique-trace refers to a trace where all duplicates are removed.
4 Please note that the sum of exact matches, containing matches, and other matches

is not always exactly 100% due to rounding errors.

Semantic Caching for Web Services 337

22.8% 24.5%
34.0% 37.8% 40.5%

46.8%
13.4%

22.9%

26.7%

63.9%
75.6%

43.1%

62.2%

32.8%

53.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

5 min 30 min (Standard) infinite

Time-To-Live

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Fig. 10. Match Distribution Varying TTL

0.
0%

0.
0%

0.
1%

0.
1%

0.
4%

0.
6%

1.
0%

7.
7% 13

.8
% 23

.3
%

37
.1

% 44
.5

% 52
.6

%

4.
4%

0%

10%

20%

30%

40%

50%

60%

0.5 0.6 0.7 0.8 0.9 0.95 0.99999

Theta

P
er

ce
nt

ag
e

of
 C

ac
he

 H
it

s

NSC

SSPLC

Fig. 11. Cache Hits Varying Theta

Figure 9 demonstrates the reduction of bandwidth consumption. Running
the trace without cache results in the transfer of 298 MB across the network.
The smallest semantic cache reduces the transfer volume by approximately 28%,
the standard semantic cache by approximately 41%. The large semantic cache
reduces the transfer volume even more, but the difference is not linear with
the cache size increment due again to the reasons above. The increased hit rate
of SSPLC does not 1:1 translate into equally large bandwidth savings in this
scenario. For example, the hit rate of SSPLC is about 19% higher compared
to NSC using the standard cache size. This hit rate increment translates into
about 14% bandwidth savings. The correlation between hit rate increment and
bandwidth savings depends on the size of the cached semantic regions and the
traces. Nevertheless, the transfer volume of NSC is on average more than 12%
larger than that of SSPLC.

Figure 10 shows results for varying time-to-live periods. Of course, the longer
the TTL period is, the more effective the caches are. Depending on the TTL,
SSPLC performs about 43% to 50% better than NSC.

5.2 Benchmark Scenario 2 (TPC-W 2)

The Transaction Processing Performance Council published a first draft of
TPC-W Version 2 (TPC-W 2) for public review. This new version of TPC-W
is aiming at Web services. Thus, we decided to conduct some additional perfor-
mance experiments based on TPC-W 2. Due to incomplete specifications and
time constraints, we did not implement the full benchmark. Rather, we chose
the “product detail Web service interaction” of TPC-W 2 to conduct our exper-
iments. The data was generated conforming to the rules of TPC-W Version 2,
i.e., 100000 books were generated and stored in the DBMS. We configured our
remote business emulator (RBE) to run 8 emulated businesses (EB) concur-
rently. The TTL was set to 5 minutes5 and a total of 3000 requests were sent to
the SSPLC. The cache was able to store about 2500 books. Every request asked
5 Every benchmark run lasted for about 20 minutes.

338 S. Seltzsam, R. Holzhauser, and A. Kemper

for detailed information about a randomly chosen number (1 to 10) of books.
According to the TPC-W 2 specifications, the books should be selected using
a given non-uniform random distribution, but this distribution generates values
which are distributed too uniformly for any cache. Therefore, we used a Zipf-like
distribution to select the books.

If a client requests product details for, e.g., book 2 and book 8, SSPLC trans-
lates the request to the predicate “book = 2 ∨ book = 8”. Thus, SSPLC splits
up the request into two CPs, as described above, and generates a request for
every single book if not available in the cache. For this reason, there are only
exact matches and disjoint matches in this scenario. If not all books of a request
are available in the cache, the SSPLC rates the request as exact match and dis-
joint match according to the ratio of books available in the cache to books not
available in the cache. For example, if a client requests details about eight books
and six books are available in the cache, the request is rated as 0.75 exact match
and 0.25 disjoint match.

Figure 11 shows the exact matches for the benchmark varying theta of the
Zipf-like distribution. A non-semantic cache (NSC) is virtually useless in this
scenario because the cache hits are less than 1%, even if θ = 0.99999. This is
because NSC can only answer requests from the cache if two requests are exactly
the same, i.e., the number of product details requested must be the same, the
books must be the same, and the order of the books must be the same. SSPLC
works very well for sufficient large θ, even though the cache size is small (about
5% of the data volume available at the origin server) and the TTL is short. For
a realistic θ, i.e., greater or equal to 0.8, the SSPLC is able to answer more than
23% of the requests.

6 Related Work

Caching in the context of Web services has been addressed, e.g., by the usage
scenarios S032 and S037 of the World Wide Web Consortium [13]. The proposed
approaches are either described very abstractly, or are limited to a more or
less straightforward store-and-resend of SOAP responses. Our approach differs
in that it takes advantage of the fact that query-style requests can be cached
more efficiently using semantic caching. Thus, this paper proposes an alternative
solution which is more flexible and powerful.

A solution for a similar but simpler problem in the area of Web sources
and respectively Web databases, was presented by [8]. They focus on wrap-
per6 level caching. Therefore, they are able to take advantage of the semantics
of the declarative query language SQL, i.e., they automatically deduce region
predicates from SQL queries. In the area of Web services, no such standardized
declarative language exists. Due to our declarative language for the annotation
of WSDL documents with information about caching-relevant semantics, we are
able to apply semantic caching to Web services in, e.g., B2B and B2C scenarios.
Additionally, we investigate sorting and generalization issues. Thus, our solution
6 Wrappers are used to extract data from Web sources.

Semantic Caching for Web Services 339

is more comprehensive and more flexible. The basic techniques of both SSPLC
and [8] are based on prior work on semantic caching, e.g., [7].

A different usage of caching for Web services is presented in [14]. They use
caching techniques for reliable access to Web services from, e.g., PDAs or similar
unreliably connected mobile devices. The authors use one representative service
to demonstrate the benefits of a Web service cache and expose a number of
issues in caching Web services. They do not present a generic solution, but they
do conclude that extensions to WSDL are needed to support cache managers.
We think that the language presented in this paper constitutes a good base for
such extensions.

7 Conclusions and Future Work

We presented the semantic cache SSPLC that is suitable for caching responses
from Web services on the SOAP protocol level. We introduced an XML-based
declarative language to annotate WSDL documents with information about the
semantics of services. We demonstrated the validity of our proposed caching
scheme by performing a set of experiments.

We plan to investigate some ideas on how SSPLC can be further improved.
The declarative language can be extended to integrate additional semantic
knowledge like fragment inclusion dependencies [8] to transform as many over-
lapping or contained matches as possible into exact or containing matches. Fur-
thermore, we intend to improve our caching scheme by taking advantage of richer
interfaces of services.

References

1. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching Strategies for Data-
Intensive Web Sites. In: Proceedings of the International Conference on Very Large
Data Bases (VLDB), Cairo, Egypt (2000) 188–199

2. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent Mid-Tier Database
Caching in SQL Server. In: Proceedings of ICDE, Boston, MA, USA (2004) 177–
189

3. Transaction Processing Performance Council: TPC Benchmark W Version 1.8
(2002) http://www.tpc.org/tpcw/spec/tpcw V1.8.pdf.

4. Transaction Processing Performance Council: TPC Benchmark W Version 2.0r
(2003) http://www.tpc.org/tpcw/spec/TPCWV2.pdf.

5. Box, D., et al.: Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP11 (2000)

6. Christensen, E., et al.: Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 (2001)

7. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic Data
Caching and Replacement. In: Proceedings of VLDB, Mumbai (Bombay), India
(1996) 330–341

8. Lee, D., Chu, W.W.: Towards Intelligent Semantic Caching for Web Sources.
Journal of Intelligent Information Systems (JIIS) 17 (2001) 23–45

340 S. Seltzsam, R. Holzhauser, and A. Kemper

9. Johnson, T., Shasha, D.: 2Q: A Low Overhead High Performance Buffer Manage-
ment Replacement Algorithm. In: Proceedings of VLDB, Santiago de Chile, Chile
(1994) 439–450

10. Seltzsam, S., Holzhauser, R., Kemper, A.: Semantic Caching for Web Ser-
vices – Extended Version. http://www-db.in.tum.de/research/publications/
techreports/SemCachingExtended.pdf (2005)

11. Keidl, M., Seltzsam, S., Kemper, A.: Reliable Web Service Execution and Deploy-
ment in Dynamic Environments. In: Proceedings of the International Workshop
on Technologies for E-Services (TES). Volume 2819 of Lecture Notes in Computer
Science (LNCS)., Berlin, Germany (2003) 104–118

12. Adamic, L., Huberman, B.: Zipf’s Law and the Internet. Glottometrics 3 (2002)
143–150

13. He, H., Haas, H., Orchard, D.: Web Services Architecture Usage Scenarios.
http://www.w3.org/TR/ws-arch-scenarios (2004)

14. Terry, D.B., Ramasubramanian, V.: Caching XML Web Services for Mobility.
ACM Queue 1 (2003) 70–78

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 341 – 352, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ODEGSG Framework, Knowledge-Based Annotation
and Design of Grid Services

Carole Goble1, Asunción Gómez-Pérez2, Rafael González-Cabero2,
and María S. Pérez-Hernández3

1 Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

2 Ontology Engineering Group, Universidad Politécnica de Madrid,
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

3 DATSI, Facultad de Informática, Campus de Montegancedo s/n,
Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

{asun, rgonza, mperez}@fi.upm.es

Abstract. The convergence of the Semantic Web and Grid technologies has
resulted in the Semantic Grid. The great effort devoted in by the Semantic Web
community to achieve the semantic markup of Web services (what we call
Semantic Web Services) has yielded many markup technologies and initiatives,
from which the Semantic Grid technology should benefit as, in recent years, it has
become Web service-oriented. Keeping this fact in mind, our first premise in this
work is to reuse the ODESWS Framework for the Knowledge-based markup of
Grid services. Initially ODESWS was developed to enable users to annotate,
design, discover and compose Semantic Web Services at the Knowledge Level.
But at present, if we want to reuse it for annotating Grid services, we should carry
out a detailed study of the characteristics of Web services and Grid services and
thus, we will learn where they differ and why. Only when this analysis is
performed should we know how to extend our theoretical framework for
describing Grid services. Finally, we present the ODESGS Framework, which is
the result of having applied the extensions identified to the aforementioned
Semantic Web Services description framework.

1 Introduction

The Semantic Grid is the result of the convergence of the Semantic Web and the Grid
technologies. Its definition of is created by modifying the Semantic Web definition
given in [1]. The Semantic Grid is defined thus as an extension of the current Grid, in
which information and services are given well-defined meaning for better enabling
computers and people to work in cooperation. The requirements and research
challenges of the Semantic Grid are identified in an unimpeachable manner in [2] and
updated in [3], of which the most related to the knowledge-based markup are a)
process descriptions that allow the (semi)automatic composition of services; b)
annotation of all the contents in the system (resources, services, provenance data,
etc.), which allows automatic discovery and must be done by means of an agreed
interpretation (i.e. ontologies); c) context-aware decision support, or the context of the

342 C. Goble et al.

Grid environment that must be annotated ; and d) the communities that users should
be able to form, maintain and disband (this community term correspond with the Grid
idea of Virtual Organization (VO) to be analyzed later) .

In addition to these requirements, the Semantic Grid should also be service-
oriented, as the Grid is since the emergence of OGSA (Open Grid Service
Architecture) [4]. Grid resources are wrapped with services and exposed via a WSDL
file (i.e. a set of operations written in a standard XML language). OGSA redefines
the concept of VO, a key element for Grid computing. They were considered a group
of organizations and/or individuals that share resources in a controlled fashion [5].
Now VOs are considered to be the set of services that these organizations and/or
individuals operate on and share [4] (plus some security policies). This idea of
service-oriented VO, mixed with agent-oriented and dynamic view, is also described
in [3]; in that paper, VOs are considered dynamic agents marketplaces. All these ideas
of service orientation have became even more relevant since the appearance of GT41
and WSRF [6] which make Grid environments compliant with the most widely
accepted Web services standards and technologies (WSDL, SOAP, etc.).

The Semantic Grid may reuse all the emerging technologies related to Semantic
Web Services (i.e. IRS [7], OWL-S [8], ODESWS [9], WSMO [10], WSDL-S [11],
etc.). These technologies and initiatives should not be considered as off-the-shelf
technologies for the Semantic Grid because of the different nature of a Web service
and a Grid service, and therefore between a Semantic Web Service (SWS) and a
Semantic Grid Service (SGS).

In this paper we present the ODESGS Framework, an ongoing work carried out in
the Ontogrid Project2 (FP6-511513), which is the adaptation of the ODESWS
Framework developed in the context of the EU project Esperonto3 (IST-2001-34372);
which was developed for annotating and creating complex SWSs, working at the
Knowledge Level [12] thus enabling their discovery and (semi)automatic
composition. As we have mentioned, we will start this paper enumerating the
differences between SWS and SGS. Then, we will present the ODESGS Framework,
which contains all the extensions that we have identified as necessary. This
description of the ODESGS Framework comprises an enumeration of its design
elements and a detailed description of a stack of ontologies used to describe SGSs.
This stack will be called the ODESGS Ontology.

2 From SWSs to SGSs: Minding the Gap

As we have stated, one of the main points for the convergence of the Semantic Web
and the Semantic Grid may lie in their service-oriented view. Before reusing the
SWSs technology in the Grid, we should analyze the different nature of a Grid service
(GS) and a Web service (WS). This analysis will help to clarify the terminology used.

A Web Service is an interface that describes a collection of operations that are
network-accessible through standardized Web protocols whose features are described
using a standard XML-based language [13][14]. Although there are other ways of

1 http://www.globus.org/toolkit/
2 http://www.ontogrid.net
3 http://www.esperonto.net/

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 343

defining a WS, in this paper we adopt the aforementioned definition because it is the
one that best captures the interface nature of what a WS is (and where its benefits
come from). Other definitions consider WSs as modules or components, but these
definitions break the low coupling principle that motivated the creation of WSs. In
short, “It’s not the components, it’s the interfaces” [15].

SWSs, in the context of the Semantic Web, are the markup of WSs that will make
them computer-interpretable, use-apparent and agent-ready [16]. This definition raises
a simple but important question. Should SWSs be constrained with all the
characteristics and limitations that the WS definition imposes (i.e. stateless interfaces,
XML compliant, etc.)? Depending on our answer to this question we will distinguish
between Semantic (Web Services) or (Semantic Web) Services. More precisely:

• A Semantic (Web Service) (S(WS)) retains all the characteristics of a WS, adding
just semantic annotations to its domain, its inputs and outputs, and describing its
functional properties (precondition, postconditions, etc.). However, It says nothing
about the internal structure of the service, its state, etc. (as it remains being an
interface). It is just a WSDL file plus some semantics (a clear example of this is
WSDL-S [11]). S(WS)s have the great advantage of being upgraded easily from
current technology to a semantically enhanced one.

• A (Semantic Web) Service ((SW)S) it is not constrained by the nature of a WS, as it
can be a WS, an agent or anything that provides a service-oriented functionality for
the Semantic Web. The description of a (SW)S goes far beyond the idea of an
interface since we may find internal reasoning process descriptions, explicit lifecycle,
state handling, and many other elements. Therefore, they can be considered a
superset of S(WS)s.

Current SWSs initiatives are closer to the idea of (SW)Ss, because most of them
describe, at least, the internal structure of complex SWSs (thus, they fall outside the
semantic description of a simple net-work accessible interface).

Once we have briefly defined WSs and SWSs, let us see what GSs are. As we
stated in the introduction, the service-oriented view of the Grid appeared in OGSA
[4], where a service is defined as a network-enabled entity that provides some
capability. GSs serve to achieve the virtualization (i.e. encapsulation independent of
the implementation of physical resources such computational resources, storage
resources, networks, programs, data-bases, etc.) of the shared resources.

Thus, by analogy with the aforementioned definition of SWS [16], a SGS is the
markup of a GS that makes it computer-interpretable, user-apparent and agent-ready.
Note that due to the more generic definition of what a GS is, we are less constrained
in the markup of a GS than in the markup of a WS (remember the S(WS) and (SW)S
differentiation that we stated above). A GS is not defined as an interface at all, which
makes a big difference. However, and for the sake of completeness, we will also
introduce a differentiation between Semantic (Grid Services) and (Semantic Grid)
Services. Note that this differentiation is made by considering other terms than the
S(SW)/(SW)S one.

Thus, we propose the following definitions:

• A Semantic (Grid Service) is just a “conventional” GS annotated to achieve its
design, discovery, invocation and composition in a (semi)automatic way. In other
words, a knowledge-aware GS.

344 C. Goble et al.

• A (Semantic Grid) Service is a grid compliant knowledge service, a GS situated in
the Knowledge Layer [3] that provides any kind of information, which is
understood as knowledge that can be applied to achieve a goal, to solve a problem
or to enact a decision. Possible examples could be a service that provides
ontologies, a SGSs discovery service, a reasoner, etc.

From these definitions and after analyzing the nature of WSs SWSs, GSs and SGSs
we have identified the following key features of a SGS not described by a SWS:

• VO. This is the first and, perhaps, the most important concept to remember.
Despite trendy words like services and virtualization, Grid is about sharing
resources under a certain set of rules. We should provide a formal and explicit
description of a) the institution that is created by the sum of these services; b) the
rules that govern the interaction between the entities involved; and c) the entities
themselves (i.e. providers, consumers, and all the other roles that may coexist in a
VO). The concept of VO does not exist in the SWSs field; SWSs are considered as
isolated elements.

• Non-functional Properties. Non-functional properties are especially important in
Grid environments. This is because a) discovery and composition is usually
performed manually and depend on them; and b) many issues such as trust, quality
of service and workload distribution are dependant on non-functional properties,
and have much more importance in the Grid environment than in the Web
environment. SWSs focus mainly on functional properties currently. Both types of
information (functional and non-functional) should be handled (and therefore
annotated).

• Provenance. Provenance information gives the origin and metadata information of
a concrete enactment of a GS. With this information we are able to interpret the
enactment results. Provenance seems to be very important in Grid environments,
since Grid applications often deal with experiments where knowing which data and
services are used to generate the results is very important.

• Complex Interactions. Interactions for SWSs tend to composed by the pair
invoker/invoked-service (a refurbished XML version of the classic client/server
interaction). In a Grid environment we should permit more complex interactions,
i.e., defining more complex message exchanges and defining the different roles of
the participants. These interactions plus the context of the enactment of the
services can also be seen as service contracts [3].

• Resources. Although GSs hide resources, they should be also annotated and
considered first-class citizens in a SGS description. Additionally, the handling of
resources plus the nature of Grid environments clarify the definition of the real
world, which is defined as the set of Grid resources that a SGS handles. In SWSs
descriptions, the concept of the real world and the concept of the domain model (the
abstract and formal representation of the world) are often confusing and confused.

• Transient GS Instances. This is one of the trickiest differences between SWSs and
SGSs. The discovery, creation, and invocation of transient SGSs instances are a
must. The possibility of specifying a concrete instance of a SWS, or even an
scheduled invocation of one of its operations is not contemplated by current SWSs
orchestrations and descriptions. SWSs work at a “class of services” level while
SGSs should allow working at an “instance of service” level instead.

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 345

3 The ODESGS Framework

ODESGS Framework is a theoretical framework for annotating, discovering and
composing SGSs in a (semi)automatic way. Its main assumptions are: the use of Problem-
Solving Methods (PSMs) and ontologies for describing GSs in a formal and explicit way;
thus the design and implementation phases of a SGS are clearly separated; VOs will be
defined as the sum of SGSs plus some additional information about the hierarchy of roles
of each SGS inside the VO; and some security and provenance related issues.

Ontology
ODESGS
Ontology
ODESGS

Fig. 1. ODESGS Framework design elements

This framework (see Figure 1) should provide a) service and stateful resource
ontologies, rich enough to express the semantics required for service discovery and
composition in a Grid environment; b) a set of rules to check whether the proposed
design (for complex SGSs and VOs) is correct; and c) a way to translate from this
design into a concrete implementation once the SGS has been designed. According to
all these requirements, the following elements have been identified:

• ODESGS Ontology. To describe the features of VOs, SGSs, Grid resources, etc. a
set of ontologies will be used. Ontologies are useful to represent their features in a
formal and explicit way, which we will use in order to reason about them. This set
of ontologies will be described in detail later.

• Instance Model. To design SGSs or VOs means to instantiate each of the ontologies of
the stack and its relations. Each instance constitutes a model that specifies a SGS and VO.

• Checking Model. Once the instance model has been created, it is necessary to
guarantee that such model does not present inconsistencies. Design rules will be
needed to check this, particularly when ontology instances have been created
automatically (as in the case of (semi) automatic composition). A set of design
rules will be used to check both the SGSs annotated and designed by the user, and
the different VOs created by aggregating these SGSs.

• Translation Model. Although SGSs and VOs are modelled in a high level of
abstraction, they must be specified in different representational languages to enable

346 C. Goble et al.

programs and external agents to access their capabilities. Therefore, once the
instance that describes the SGS is created and checked, it should be automatically
translated into any of the existing SGS or Grid service representational language.

4 ODESGS Ontology

Our aim is to come up with a service and data ontology, rich enough to express the
semantics required for VOs formalization and SGSs discovery and composition. This
means that VOs and service features should be explicitly and formally described. For
this task, the use of ontologies seems to be the most appropriate solution. We propose
a stack of ontologies that will complement each other in annotating all the features of
a SGS. The stack is composed of the following ontologies a) one that describes VOs;
b) another that describes the upper-level concepts that define the features of a SGS; c)
a third ontology that describes the PSM to be used for representing both the internal
structure and functional features of a SGS and the domain in which the service will be
used (and, consequently, the domain of the VO); d) an ontology that defines the
knowledge representation entities used to model a SGS and the domain ontology; and,
finally, e) an ontology that describes the data types to be used in the domain ontology.
Each of these ontologies is explained in the following sections.

4.1 SGS Ontology

The SGS ontology presumes that a SGS is decomposed in a set of operations. Each of
these operations will be related to its corresponding Choreography, Model and Profile. Let
us see each of these elements in detail and how they are related to elements of the PSM
Description Ontology (which appears in Figure 2 and is fully explained below):

SGS Ontology

PSM Ontology

DT

KRKR

PSM
SGSSGS Choreography

Semantic Grid
Service Operation

has
*

VOVO

Fig. 2. Stack of ontologies main concepts and relations

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 347

• Profile. The profile stores both functional and non-functional properties of the SGS
operation. We have identified a set of useful non-functional properties such as
authors, description, accuracy, quality of service, performance, robustness, trust,
etc. For describing the functional properties, the profile concept establishes
relationships (hasTask) with the Task concept of the PSM ontology.

• Model. The Model concept defines a relationship (hasMethod) with the concept
Method of the PSM Ontology. This means that a service operation will be
described by a method, which solves or decomposes the task associated with the
profile of the service operation. Moreover, the consistency in the relationships
among the concepts of Task, Method, and SGS Operation are guaranteed; if a SGS
operation is functionally described by a task, and executed by a method, there must
be a relationship between this task and this method, being this method one of the
set of methods that can solve this task.

• Choreography. The choreography of the operation describes the interaction that
should be made to invoke its addressed operation in a formal way. Choreography
describes both the messages inter-changed and the roles of those sending and
receiving those messages. We will use those formalisms to those presented in [17] to
formalize Web services choreographies and their concept of module replaceability,
but we will extend it in some ways: a) we will use -calculus [18] instead of CSS
[19] (due to the changing and dynamic nature of the Grid); b) we will add semantic
annotation to the messages exchanged, using the domain ontologies; and c) we will
map the different actors appearing in the choreography with the roles that we have
defined in the VO Roles Model (we will define them later).

4.2 PSM Ontology

Our approach for describing SGSs is based on the Problem-Solving Method paradigm.
To decouple the functional features of a service from its internal specification, we
propose to apply PSMs [20][21] when modelling SGSs (following the same approach
that we did for describing SWSs in ODESWS [9]. A PSM is defined as a domain-
independent and knowledge-level specification of the problem solving behaviour that
can be used to solve a class of problems [21]. Our ontology for the description of PSM
is based on the Unified Problem-solving Method Language (UPML) [23]. The UPML
language was developed in the context of the IBROW project [23] with the aim of
enabling the (semi) automatic reuse and composition of PSMs distributed throughout
the Web. This objective seems to be similar to that of composing services; thus, it can
be considered that the IBROW project highlights the close relation between PSMs and
SWSs [24] (and SGSs by analogy since OGSA apparition).

• Task. It describes an abstract operation of independent domain to be solved,
specifying the input/output parameters and the task competence; This task
competence is composed of 1) preconditions and postconditions, which are
logical expressions about the abstract representation of the domain (how this
domain should be before and after the execution of the operation, respectively);
and 2) assumptions and effects, which are logical expressions about the state of the
real world (how the world should be for this operation to be applicable and how
will be after the execution of the operation, respectively), being the real world the
set of available Grid resources. Note that this task description is independent of the

348 C. Goble et al.

method used for solving the task and that the PSM paradigm distinguishes between
what we want to solve and how we are going to solve it.

• Method. It details the abstract reasoning process which is domain independent to
achieve a task, describing both the decomposition of the general tasks into sub-
tasks and the coordination of those sub-tasks to reach the required result. Note that
we based our PSMs descriptions on UPML, and it does not define nor impose a
language for describing the reasoning processes carried out by the methods. We
propose to add a minimal set of programming primitives to describe the operational
description of a composite method, a combination of which allows us to derive
several basic workflow-like patterns [25]. The formalism that we will use beneath
this workflow representation will be Kripke Structures and their translation to
temporal logic (see [26] for a complete reference).

• Adapter. It specifies mappings among the knowledge components of a PSM,
adapting a task to a method and refining tasks and methods to generate more
specific components [27]. Therefore, adapters are used to achieve the reusability,
since they bridge the gap between all the elements of a PSM.

• Domain Model. Domain Model introduces domain knowledge, and by means of
adapters it is attached to the methods and tasks in order to represent a concrete
description of an operation in a concrete domain (task and methods are domain
independent, as defined before).

4.3 VO Ontology

VOs were originally defined in [5] as a set individuals/institutions defined by a set of
resource sharing rules (these sharing rules specify what is shared, who is allowed to
share, and the conditions under which sharing occurs). When OGSA appeared, VOs
became defined by the services that they operate on and share and this was due to the
wrapping of resources by means of Grid services. So, our VOs descriptions will
initially be a set of SGSs descriptions. But there are still open issues that an additional
formalism should solve. One of these challenges appearing in [28] is to make
automatic decisions about which services could be in a VO and what should be their
roles these services should have in the VO. We will try to solve this challenge by
formalizing what VOs are. One advantage of formalizing VOs is the possibility of
discovering VOs; we may think of several VOs and a user wanting to know which
VO fits his/her expectations better. We will decompose a VO in:

• Metadata Properties. Additional non-functional information about the VO
(security and trust information, geographical issues, date of creation, involved
“real world” institutions, etc.).

• Roles Model. We will define the roles of SGSs in the VO by means of role
taxonomies and a set of restrictions for each role.

− Each VO will have a set of role taxonomies linked by subsumption
relationships. This tree-shaped structure (or structures) contains the possible
roles of the services (or external agents) that may interact or belong to the VO.

− A set of different restrictions for belonging to a role will be defined for each of
them. These restrictions will cover different aspects of what SGSs are in our
definition. We will distinguish between: non-functional restrictions, which

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 349

constraint SGSs non-functional properties; competence restrictions, i.e., functional
properties that a role membership imposes; choreography restrictions, (a role may
impose certain message interchange compliance to the SGS just by defining an
abstract choreography and a type of relationship (bisimulation, strong
bisimulation, weak simulation, etc.) that the choreography of the service should
have (see [18] for a definition of them); and method restrictions (we may impose
certain restrictions to the orchestration/dataflow of a complex SGS).

With all these roles and restrictions, we may be able to a) know if a SGS can be
added to a certain VO; b) know, in case that a service may belong to a certain VO,
which of the different roles the SGS may play inside the VO; and c) use these
roles to annotate the actors that appear in each SGS choreography, relating thus
the interaction of a concrete service with the other SGSs that compose the VO.

• Provenance Model. We will initially follow the ideas formulated in myGrid
Project4 (for a detailed explanation we remit the reader to [29]). Provenance
information provides the origin as well as and metadata information of a concrete
enactment of a Grid service so as to be able to interpret the results.

4.4 KR Ontology and DT Ontology

The Knowledge Representation (KR) Ontology describes the primitives of the KR
model, which contains descriptions about the knowledge and data used by the SGS.
We have selected the WebODE knowledge model [30] as KR ontology. The KR
Ontology is constructed on top of an ontology that describes the types of the concepts
and attributes. This ontology will be based on the XML Schema Datatypes (XSD).

5 A Simple Example

Due to the lack of space we have chosen a very simple example to illustrate how a
SGS description is defined, and how it is seamlessly included in the context of a
semantically enhanced VO.

Let us suppose that we have a Grid portal that offers some functionality in some
given domain. Before accessing any of the services that belong to the portal, the client
(user, service, agent, whatever) should provide its identification and some kind of key
that guarantees its identity. Note that we suppose that this must be done always before
the invocation of any operation of the offered services in the portal.

Needless to say, the first step is the creation of all the ontologies that will be used
for the definition of all the elements and models of the VO and all the SGSs that may
fit in it. We suppose that in these ontologies, at least, concepts such us Key,
Credential, Identification are defined, as top level concepts. We also assume that they
are also refined, in order to achieve finer grained descriptions of these concepts.

Our very simple VO will comprise the set of GSs that are invoked from outside
the portal to obtain some functionality, and some services that are used for
authenticating and finding the privileges of the invokers. Therefore, we will define a
very simple Roles Model, in which we define two roles, Authentication Services and

4 http://www.mygrid.org.uk/

350 C. Goble et al.

Offered Services. How are we going to characterize each of them? We may define
them by setting restrictions on their operations and in their choreographies. An
Authentication Service will be defined as a service that should have at least an
authenticate operation, and this operation should receive, in its invocation process,
first an instance of the Identification concept and then an instance of the Key concept,
giving as a result a Credential instance. An Offered Service in our VO could be any
service that works in its domain. We just impose that the first action performed by
each of its operations Choreography is to invoke the authenticate operation of an
Authentication Service belonging to the VO.

Once we have defined this simple VO (we left out the Provenance Model and all
the Metadata information for the sake of simplicity), we are going to show how to
describe two SGSs that belong to the VO. We already know, thanks to the
aforementioned Role Model constraints, that an Authentication Service should have at
least one authenticate operation. In this example we will show how to describe this
authenticate operation of two services. One of them is a simple service called
SimpleSignIn, which authenticate operation receives a user name and its password
(both as a string of characters). The other is SequreSignIn (a complex SGS that
invokes other SGSs), whose authenticate operation receives more complete
identification information, and an X.509 digital certificate as its key.

In both services operations, the inputs are instances of concepts subsumed by the
concepts Identification and Key and the output in both cases is a credential, so both
operations can be described using the same abstract high level task, that we will call
Authenticate, even thought their methods may be completely different.

Once we have defined the Authenticate task, we have described what the
authenticate operation does. But how does the Authenticate task achieve its results?
We define that by means of methods. We build two methods, an atomic method called
SimpleAuthenticationProcess, and a complex method called ComplexAuthentication
Process. Atomic method means that it does not decompose the task into subtasks, as
the complex method does. Because of that, the complex method should define a) what
are the subtasks in which ComplexAuthenticationProcess decompose the Authenticate
task; b) how they interchange data between them, i.e. the dataflow; and c) how they are
orchestrated, i.e. the controlflow. Figure 3 shows how the ComplexAuthenticationProcess
is defined, by means of a dataflow diagram and a workflow.

Check
Key

id

key

check_result

Check
Key

checking_result=fault?
Search

Credential
trueCreate

Credential
false

Search
Credential

credential

Dataflow

Controlflow

Create
Credential

Fig. 3. Dataflow and Controlflow of the ComplexAuthenticationProcess method

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 351

Authenticate

SimpleAuthentication
Process

Authenticate

Identification Key

Credential

Adapter1

Adapter2

Create
Credential

ComplexAuthentication
Process

Choreography

Profile

Models

Identification

Key

Credential

au
th

en
ti

ca
te

Search
Credential

Check
Key

SecureSignIn

SimpleSignIn

authenticate

Fig. 4. The different elements that describe the authenticate operation

These methods will be glued to the Authenticate task by means of adapters.
Adapters will also be used to glue the tasks and methods to the domain knowledge.

To sum up, the semantic description of the model of the authenticate operation of
the SimpleSignIn GS will be the Authenticate task, the SimpleAuthenticationProcess
method and all the assumptions and mappings that Adapter1 may contain. The
semantic description of the model of the SequreSignIn authenticate operation will be
also the Authenticate task, the ComplexAuthenticationProcess method and all the
assumptions and mappings that Adapter2 may state.

Figure 4 shows a simplified summary of how both autenthicate operations are
described, defining their Choreography, Profile (that we have supposed to be equal)
and respective Models.

Acknowledgements

This work has been partially financed by the Ontogrid Project (FP6-511513) and by a
grant provided by the Comunidad Autónoma de Madrid (Autonomous Community of
Madrid).

References

1. Hendler, J. 2001. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37.
2. De Roure D., Jennings N. R., and Shadbolt N. R.,(2001) Research Agenda for the

Semantic Grid: A Future e-Science Infrastructure, NeSC, Edinburgh, UK UKeS-2002-02.
3. De Roure, D., Jennings, N. R. and Shadbolt, N. R. (2005) The Semantic Grid: Past,

Present and Future. Procedings of the IEEE.
4. Foster I., C. Kesselman, J. N., and Tuecke S., (2002) Grid Services for Distributed System

Integration Computer, vol. 35.

352 C. Goble et al.

5. Foster I., Kesselman C., and Tuecke S. (2001) The anatomy of the Grid: Enabling scalable
virtual organi-zations. Lecture Notes in Computer Science 2150

6. Czajkowski K., Ferguson D.F., Foster I., Frey J., Graham S., Sedukhin I., Snelling D.,
Tuecke S., Vam-benepe W., (2003) The WS-Resource Framework

7. Motta, E., Domingue, J., Cabral, L., Gaspari, M.:(2003) IRS-II: A Framework and
Infrastructure for Semantic Web Services. ISWC 2003. LNCS Vol. 2870. Springer-Verlag

8. OWL Services Coalition (2004), OWL-S 1.1 Release: Semantic Markup for Web
Services”, Available: http://www.daml.org/services/owl-s/1.0/owl-s.pdf

9. Gómez-Pérez, A., González-Cabero, R., and Lama, M. (2004), A Framework for Design
and Composing Semantic Web Services”, IEEE Intelligent Systems, vol. 16, pp. 24–32

10. WSMO Working Group, (2004) http://www.wsmo.org/2004/d2/v1.0/
11. Akkiraju, R., Farrell, J. Miller J. Nagarajan M.(2005) WSDL-S Technical NoteVersion 1.0

Web Service Semantics
12. Newell, A.(1982) The knowledge level Artificial Intelligence., vol. 18, pp. 87--127.
13. Kreger, H. (2001) Web Services Conceptual Architec-ture. http://www.ibm.com/software/

solutions/webservices/pdf/WSCA.pdf
14. Curbera, F.; Nagy, W.A.; and Weerawana, S. (2001). Web Service: Why and How?. In

Proceedings of the OOPSLA-2001 Workshop on Object-Oriented Ser-vices. Tampa, Florida.
15. Kayne D. (2003) Loosely Coupled, The Missing Pieces of Web Services Rds Associates Inc
16. McIlraith, S.; Son, T.C. and Zeng, H. (2001) Semantic Web Services. IEEE Intelligent

Systems, 16(2):46–53.
17. Brogi A.,Canal C.,Pimentel E.,and Vallecillo A..(2004) Formalizing WS choreographies.

In Proc. of First International Workshop on Web Services and Formal Methods
18. Milner R., (1999) Communicating and Mobile Systems: the Pi-Calculus Cambridge

University Press ISBN: 0521658691
19. Milner, R., Communication and Concurrency (1989) Prentice Hall. ISBN: 0131149849
20. Benjamins, V.R., and Fensel, D. eds. (1998). Special Issue on Problem-Solving Methods.

International Journal of Human-Computer Studies, 49(4): 305–313.
21. Motta, E. (1999), Reusable Components for Knowledge Modelling, IOS Press
22. Fensel D., Motta E., van Harmelen F., Benjamins V.R., Crubezy M., Decker S., Gaspari

M., Groenboom R., Grosso W., Musen M., Plaza E., Schreiber G., Studer R., and Wielinga
B. (2003), The Unified Problem-Solving Method Development Language UPML.
Knowledge and Information Systems (KAIS): An International Journal

23. Benjamins, V.R.; Wielinga, B.; Wielemaker, J.; and Fensel, D. (1999). Brokering
Problem-Solving Knowledge at the Internet. In Proc. (EKAW-99): Springer-Verlag.

24. Benjamins, V.R. (2003), Web Services Solve Problems, and Problem-Solving Methods
Provide Services. IEEE Intelligent Systems, 18(1):76–77.

25. van der Aalst, W.P.; ter Hofstede, A.H.; Kiepuszewski, B.; and Barros, A.P.. Workflow
patterns. Distrib-uted and Parallel Databases, 14(2):5–51.

26. Clarke E. M., Grumberg O., Peled D.A., (2000), Model Checking The MIT Press ISBN:
0262032708

27. Fensel, D. (1997), The Tower-of-Adapter Method for Developing and Reusing Problem-
Solving Methods. In Proc. of the 7thKnowledge, Modeling and Management Workshop,
97–112: Springer-Verlag.

28. Foster I., Jennings N. R., and Kesselman C (2004) Brain meets brawn: Why grid and
agents need each other. In Proc. 3rd Int. Conf. on Autonomous Agents and Multi-Agent
Systems, New York, USA

29. Zhao J., Stevens R., Wroe C., Green-wood M. and Goble C. (2004) The Origin and
History of in silico Experiments In Proc. of the UK e-Science All Hands Meeting.

30. Arpírez J.C., Corcho O., Fernández-López M., and Gómez-Pérez A (2003).: WebODE in a
nutshell. AI Magazine.

Implicit Service Calls
in ActiveXML Through OWL-S

Salima Benbernou, Xiaojun He, and Mohand-Said Hacid

LIRIS,University Claude Bernard Lyon 1,
43 bld du 11 Novembre 1918, 69622 Villeurbanne-France
{sbenbern, x-he04, mshacid}@bat710.univ-lyon1.fr

Abstract. In this paper, we present a framework for implicit service
calls in data centric Peer to Peer Active XML language. Active XML is a
language devoted to the management of distributed data by embedding
Web service calls into XML document. The aim of implicit calls is to
allow dynamic data sources discovey through dynamic services discovery
and composition. Implicit service calls are based on the use of ontologies
for describing the domain and functionality of services to call and an
Active XML engine for calls evaluation. The evaluation process deals
mainly with dynamic service composition. It consists in matching OWL-
S descriptions contained in a query with service descriptions in a peer-to-
peer network. Such a network is structured in such a way that peers with
similar functionalities are grouped together and each peer makes itself
acquainted with matching relationships between its inputs/outputs and
those of other peers.

1 Introduction

Web services can be viewed as a programming paradigm that extracts and in-
tegrates data from heterogeneous information systems by providing interface
standards [7]. They can be described, published, located, invoked, and can even
operate with other services to form a new, composed service over a network.
When they are used to manage data on the Web, services bring new features :
(1) the discovery of Web services based on their functionality leads to the dis-
covery of data sources that contains expected data (i.e., retrieval of dynamic
data sources) ; (2) the dynamic composition of Web service allows to retrieve
dynamic data; (3) the invocation of web services on demand allows retrieval of
dynamic data.

Our work deals with the integration of the two first tasks into Active XML
framework which is a language for Web-scale data integration by embedding
calls to Web services into XML document [1]. Active XML allows retrieval of
dynamic data by including features in XML documents to indicate the location
of the service to be called, and to control three elements: the timing of the
service invocation , the lifespan of data and the extensional and intensional data
exchange. A service call which explicitly makes reference to a service location is
called explicit call.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 353–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 S. Benbernou, X. He, and M.-S. Hacid

In order to enable dynamic data source discovery and dynamic data retrieval
(i.e., when an update on data source occurs) by means of dynamic service com-
position in Active XML, we introduce implicit service calls. By resorting to
ontologies, we provide a way to specify service domain and service functionality
with Active XML documents.

The rest of the paper is organized as follows: Section 2 presents our motivation
through examples. Section 3 briefly describes Active XML. Section 4 presents our
framework for incorporating implicit service calls within Active XML documents.
Section 5 describes an Active XML architecture with implicit calls. We conclude
in Section 6.

2 Motivating Examples

1. Dynamic data sources discovery. Let us consider a scenario where we
want to make an inventory of books stored in city libraries. We assume
that each library has an Active XML peer with a service offering its own
book inventory. The implementation and the outputs of the services can be
different.

Now we want to make an inventory of the books stored in all the local
libraries of the ”GuangZhou” city. By means of explicit service calls, we
have to be aware of locations of all relevant services and then invoke an
explicit service call. Figure 1 shows an explicit call for book inventory. A
drawback with this method is that it is not resilient to changes. If Web
services locations change, then we have to manually encode the changes (by
modifying service calls).

With implicit service calls, it is sufficient to be aware of the service domain
(service category) of the data that we can offer (inputs of service) and of the
data that we expect to be returned (outputs of service). In our example, the
required service belongs to the Book domain, it has no data offered but a
list of books is expected as output. Figure 2 shows an implicit call. When
it is decided to activate this implicit service call drawn up by using these
descriptions, the evaluation of the required service location is launched and
terminates after a period of time. Then the user can decide which discovered
services he would like to invoke later. Finally, the chosen services are invoked.
As a result, we obtain the book inventories of the cities in spite of the
dynamism of the data sources. The other motivation of implicit service calls
is that we can invoke the relevant service without any knowledge regarding
its location.

2. Dynamic data retrieval. We want to build up a personal Portuguese-
Chinese dictionary. With explicit service call, we need to be aware of the
Portuguese-Chinese dictionary service location and invoke the service. In the
case a Portuguese-Chinese service does not exist, while two other dictionary
services – Portuguese-English and English-Chinese– exist and are locatable,
we will not expect an answer to the explicit call. However, with an implicit
service call by composing services through input and output descriptions,
the call will return an answer.

Implicit Service Calls in ActiveXML Through OWL-S 355

<?xml version="1.0" encoding="UTF-8" ?>
- <Inventory>

Inventory of the books of city libraries
- <city name="GuangZhou">

<sc>zhongshan.com/getBooks()</sc>
<sc>GuangZhou.com/Books()</sc>

</city>
</Inventory>

Fig. 1. Explicit call

<?xml version="1.0" encoding="UTF-8" ?>
- <Inventory>

Inventory of the books of city libraries
- <city name="GuangZhou">
- <sc serviceCat="hierachicalProfile.owl#book">

<output param_data_type="Concepts.owl#booklist" />
</sc>

</city>
</Inventory>

Fig. 2. Implicit call

Instead of describing how to obtain the data, an implicit service call de-
scribes the domain, the inputs and outputs of a required service based on
ontologies (here we use OWL-S). In our example, the required services in the
translator domain have a Portuguese word as input and a Chinese word as
output. The evaluation process of the implicit call is launched in the same
way as in the previous example.

3 Background

Active XML is a declarative language for distributed information management
and an infrastructure to support the language in a peer-to-peer framework. It
has two fundamental components: Active XML documents and Active XML
service [1, 13, 12].

ActiveXml document. Active XML documents are based on the simple idea
of embedding calls to Web services within XML documents. An XML syntax
is defined to denote service calls and the elements conforming to this syntax
are allowed to appear anywhere in an Active XML document. The presence
of these elements makes the document intensional, since these calls represent
some data that are not given explicitly, but intensionally, by providing means
to acquire the corresponding data when necessary. Active XML documents may
also be seen as dynamic since the same service called at different times may
give different answers if, for example, the external data source changed. So an
active XML document is capable of reflecting world changes, which means that
it has different semantics at different times. Figure 3 is an example of an Active
XML document that represents databases of books. This document contains
some extensional information such as records of the publishers and one record
of a book The Economics of Technology and Content for Digital TV, and at the
same time some intensional information: a service call to get the books published
by the publisher described by Xpath.

Service call elements in ActiveXML. The Service Call(sc) element is defined
in the special namespace mentioned above and has a set of attributes and children
XML elements defining:

– The Web service to call which is defined by serviceURL, serviceNameSpace,
methodName, and useWSDLDefinition.

356 S. Benbernou, X. He, and M.-S. Hacid

<?xml version="1.0" encoding="UTF-8" ?>

- <Inventory axml:docName="Inventory" xmlns:axml="http://www-

rocq.inria.fr/verso/AXML">

<publisher>Addison-Wesley</publisher>

<publisher>Morgan Kaufmann Publishers</publisher>

- <books>

- <book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>

- <editor>

<last>Gerbarg</last>

<first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

- <axml:sc frequency="every 3600000" methodName="GetBooksByPublisher"

mode="replace" serviceNameSpace="GetBooksByPublisher"

serviceURL="http://lirispbu.univ-

lyon1.fr:8080/axml/servlet/AxisServlet">

- <axml:params>

- <axml:param name="publisher">

<axml:xpath>../../publisher/text()</axml:xpath>

</axml:param>

</axml:params>

</axml:sc>

</books>

</Inventory>

Fig. 3. Active XML document: Inventory of books

– The attributes that provide information on how and when to invoke the
service call

– the attributes that influence the behaviors imposed on the results,
– parameters that are accepted by the web service.
– frequency states when the Web service should be instantiated and the validity

of the returned results.

Frequency attribute has two modes: (1) immediate mode, means that service
calls have to be activated as soon as they expire (2) Lazy mode, means that a
service call will be activated only when its result is useful to the evaluation of a
query or when the instantiation of a service Call parameter, defined through an
XPath expression is necessary. The presence of lazy calls may cause dependencies
among call activations.

According to the expression of parameters, we distinguish two kinds of service
calls:(1) a concreteservice call is one whose parameters do not include XPath
expressions (2) a non-concrete service call is one whose parameters do include
at least one XPath expression.

Service Call Evaluation. The notion of task is introduced to track the eval-
uation of each particular service call. Since the service call is concrete or non
concrete, tasks can be concrete or non-concrete. There are two types of evalu-
ation for each invoked mode: (1) service call with immediate mode, where the
evaluation is done first by selecting the service calls and processing the selected
service call; (2) Service call with lazy mode, where the evaluation is performed

Implicit Service Calls in ActiveXML Through OWL-S 357

by first evaluating the dependencies between calls through a dependency graph
i.e. before instantiating XPath parameters, it is necessary to know which call is
affected by some updates in a node, and selecting the service that can be acti-
vated according to the attribute frequency and dependency graph, and finally
processing the selected service call by the algorithm for the non-concrete task.

4 Implicit Calls in ActiveXML Documents

As we have seen previously, the service call defined in Active XML is explicit
since the service to call is indicated explicitly in the element axml:sc by a set of
attributes that specify ”the service to call”. It requires a user to be aware of its
exact location. However, we expect to call a relevant service by its description
(service query), i.e. implicit service call, instead of its identification (location).
In order to realize an implicit service call, we have to know how to integrate the
automated service discovery and composition [9] [6] in Active XML. At first
glance, we describe how to add the semantic description in the service call and
then how to obtain the query based on these descriptions that are used for the

<?xml version="1.0" encoding="UTF-8"?>
<Inventory axml:docName="Inventory"
 xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
 <publisher>Addison-Wesley</publisher>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <books>
 <book year="1999">
 <title>The Economics of Technology and Content for Digital TV</title>
 <editor>
 <last>Gerbarg</last><first>Darcy</first>
 <affiliation>CITI</affiliation>
 </editor>
 <publisher>Kluwer Academic Publishers</publisher>
 <price>129.95</price>
 </book>

<axml:sc serviceCat=
"http://lirispbu.univ-lyon1.fr/services/hierarchicalProfile.owl#Book"
frequency="every 3600000" mode="replace" >

 <axml:params>
 <axml:param name="publisher"

param_type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Input"
param_data_type=
"http://lirispbu.univ-lyon1.fr/services/Concepts.owl#publisher">
 <axml:xpath> ../../publisher/text()</axml:xpath>

 </axml:param>
 <axml:param name="booklist"

param_type=
"http://www.daml.org/services/owl-s/1.1/Process.owl#Output"
param_data_type=
"http://lirispbu.univ-lyon1.fr/services/Concepts.owl#booklist">
 <axml:value />

 </axml:param>
 </axml:params>

 </axml:sc>
 </books>
</Inventory>

Fig. 4. Active XML document with implicit service call

358 S. Benbernou, X. He, and M.-S. Hacid

service discovery and composition. Then, we describe how to answer a query
by peer-to-peer composition in a network. Finally, we present how to evaluate
implicit service calls.

4.1 Implicit Calls and OWL-S Queries

Figure 4 shows the syntax of an implicit service call which is different from the
explicit service call in two respects.

1. The implicit service call does not specify the attributes (serviceURL,
serviceNameSpace, methodName, signature, and useWSDLDefinition) that
identify the service to be called, but a new attribute serviceCat allows to
specify the domain of a service. In our example, the domain of the query is
http://lirispbu.univ-lyon1.fr/services/hierarchicalProfil.owl#Book;

2. It adds two attributes param type and param data type to the param ele-
ment. Param type specifies the type (Inputs, Outputs) of a parameter.

Param data type describes the class the values of the parameter through
a concept belong to. In our example, we want to call a service that provides
a list of books based on the publisher’s name. The implicit service call is
defined as having two parameters:
(1) publisher being the input of the service whose value is of type
http://lirispbu.univ-lyon1.fr/services/Concepts.owl#publisher;
(2)booklist being the output of the service whose value is of type
http://lirispbu.univ-lyon1.fr/services/Concepts.owl#booklist.

4.2 Data Model for Implicit Service Calls

An implicit service call can be represented by a tuple < p, f, x1, ..., xn >,

– p : the peer that contains the expected service. It has to be evaluated by
Active XML. Initially, it has NULL as default value since we do not know
which service will be invoked.

– f : the domain of the expected service.
– x1, ..., xn : the inputs and outputs annotated by concepts of the expected

service.

Based on the description of the implicit call, a query represented as an OWL-S
profile description [3, 4] is generated for the service discovery and composition.
The benefit of this representation is that the service discovery can be accom-
plished by performing matching between service profiles.

4.3 Peer-to-Peer Composition for Query Answering

Once the query is formalized with OWL-S profile, the discovery and composition
tasks can take place.

Implicit Service Calls in ActiveXML Through OWL-S 359

1. The choice of the peer-to-peer composition
There are two computing types for service discovery and composition: cen-
tralized computing [10, 14, 4, 11] and distributed computing [8, 5, 2].

In the former case, a centralized registry exists; every Web service com-
ing on line advertises its existence and eventually its functionalities and
thereafter, every service requester has to contact the registry to discover
a particular service or to compose services and gather information about
them. Whereas such a structure is effective since it guarantees the discovery
of services it has registered, it suffers from problems such as performance
bottlenecks, single points of failure, and timely synchronization between the
providers and registries (i.e. by updating the changes of service availability
and capabilities) [8].

Alternatively, distributed computing allows the registry to be converted
from its centralized nature to a distributed one. In the current Active XML
context, each peer in the network provides the other peers with its own data
as Web services using XQuery queries raised over the Active XML documents
in their repository. Hence, changes are frequent and numerous in the service
availability and functionalities in an Active XML peer. Furthermore, we
envision that the number of implicit service calls is enormous. As we have
seen previously, centralized computing is not suitable for such a situation,
while the distributed computing can resolve the availability, reliability and
scalability problems in this environment.

2. A composition network
In order to reduce the complexity of the peer-to-peer composition, we sug-
gest to compute it in a network, structured into two dimensions based on
the one proposed in [2]. In this network, each peer can provide some web
services dealing with particular domains. The peers that provide services for
the same domain are grouped together. Each peer is a member of at least
one domain. Each domain has both a master peer and a backup peer. The
master peer in each domain maintains two lists: (1) the list of master and
backup peers of other domains and (2) the list of all peers within the master
peer domain together with the services they provide as well as the input and
output parameters they accept and generate respectively. The backup peers
have a replica of these lists. Furthermore, each peer maintains its master,
backup peer and the predecessor-successor lists for its respective services. A
predecessor of a service means the outputs match the inputs of this service,
while a successor of a service has the inputs matching the outputs of this ser-
vice. So, discovery of peers that can participate in the composition through
these predecessor-successor relationships, starts from the peer(s) providing
the query’s outputs, up to those accepting the inputs (provided by the query)
required for the composition.

3. SearchService:The peer-to-peer composition structure
A peer-to-peer composition service component in ActiveXML system,
namely searchService, should be defined in order to achieve the service dis-
covery and composition task for implicit service call in the network described
previously. Its structure is based on WSPDS [5]. WSPDS (Web services

360 S. Benbernou, X. He, and M.-S. Hacid

XQuery
processor Evaluator

query

AXML
service

definitions

read
update

read
update

consults

SOAP
wrapper

SOAP

AXML peer S2

SOAP

AXML peer S3

SOAP
service

SOAP client

AXML peer S1

service call service result

AXML storage

Communication
engine

Local query
engine

storage

consults

Descriptions of services

Process DBQuery DB

Peer DB

Master DB
storage

Fig. 5. Architecture for Active XML with implicit service calls

peer-to-peer discovery service) is a distributed discovery service implemented
as a cooperative service.

SearchService is composed by two engines: the communication engine and
the local query engine. Figure 5 depicts the proposed structure for search-
Service:
(a) The communication engine: It provides the interfaces to the Active

XML evaluator, to the user and to the other peers. It is responsible for
the following tasks:
– Receiving service queries from evaluator, answering the queries by

local query (through the local query engine) and global query (via
the other peers) based on the query phase, merging the different
answers in order to allow the user to choose the services (particular
or composite) to be invoked, and finally delivering to the evaluator
the list of locations of chosen services;

– Receiving queries from the other peers in the peer-to-peer network,
resolving the queries by local query engine, and sending the response
to the caller as well as forwarding to the candidate peers the query
whose lifetime is not yet over (TTL > 0). The parameter TTL (Time
To Live) is used to restrict the dissemination of a query in the net-
work and to control the depth of the composition. For example, we
can suppose the value for TTL to be 7, and then the query can be
propagated in the network with only a depth of 7.

(b) The local query engine: It answers the query received by the commu-
nication engine to the local peer. It contains three modules: ServiceCat,

Implicit Service Calls in ActiveXML Through OWL-S 361

the Outputs and the Inputs which are respectively responsible of the
service domain, outputs matching , and inputs matching between the
OWL-S profile description of the query and those of existing services.

4. Composition algorithm used by searchService The Algorithm 1 de-
scribes the process of discovery and composition in searchService. When a
peer’s searchService receives the query from its evaluator, it forwards the

Algorithm 1 sketch-Composition Algorithm – searchService

Require: LQD – Location of Query in OWL-S profile Description
QP – Query Phase: toMaster, choiceMaster, choicePeer, choiceComponent
TTL – Time To Live

Ensure: SLLD – Service (composite or simple) Location List with matching Degree
if Query comes from the evaluator, i.e. QP = toMaster then

Transmit this query with choiceMaster phase to its master and communicate the
result(SLLD) returned with the user

else
if QP = choiceMaster then

Transmit this query with choicePeer phase to the masters whose services are in
the same domain of the query
Fusion the results(SLLD) received and range the services in the results(SLLD)
based on their matching degrees

else
if QP = choicePeer then

if ∃query ∈ QueryDB is similar to this query then
Return the results of the similar query as the responds

else
Transmit the query with choiceComponent phase to the member peers that
provides the services whose outputs match those of the query
Calculate the matching degree for each composition returned and add the
composition returned in SLLD
Save the query with the results(SLLD) obtained in its Data bases of query

end if
else

Reduce the TTL of the query
if the inputs of candidate service match those of the query then

Generate a composition that contains the service matched with its matching
degree and add it to the local composition list SLLD

else
if ∃predecessors for the candidate service and the TTL <> 0 then

Transmit this query to its predecessors
Add the candidate service to the compositions in the list SLLD returned
by its predecessors

end if
end if
Fusion the local composition list with those returned by their predecessors

end if
end if

end if

362 S. Benbernou, X. He, and M.-S. Hacid

query to the master in its domain, communicates its master’s response with
the user and returns the list of compositions selected by a user to the eval-
uator. The master of the initiator peer determines the candidate domains
for the query and then relays the request to the master peers of these do-
mains. It orders the compositions by the matching degree and returns the
result to the initiator, when the master peers return the result. To respond to
the query, the masters then consult their proper Query DB to find whether
some of the existing queries match this query. If such queries exist, an an-
swer is sent. Otherwise, they search in their Peer DB to determine which
services in their domain provide all the expected outputs of the query and
transmit the query to the hosts of these candidate services. When these host
peers return the list of compositions, the master peers compute the match-
ing degree for each composition based on the output matching degree, the
input matching degree and the number of its components. Then the master
peers update their own Query DB and return the list of compositions. To
answer the query, the host determines whether the service requires inputs
that can be provided by the query inputs. If they match, the host adds the
service to the list of compositions. Otherwise, it relays this query to the peer
providing the predecessor of this service and waits for an answer from its
predecessor peer.

4.4 Evaluation of Implicit Service Calls

We have seen that in the case where an Active XML document contains the
service call in a lazy mode, the service call evaluation consists in three steps:
(1) evaluating a dependency graph for each non-concrete service call; (2) selecting
the service call that can be executed based on the frequency attribute and the
dependency graphs; and (3) processing the selected service.

However, for the implicit call, the evaluation of the service location is neces-
sary. Then the , in the evaluation process, the third step deals with the evaluation
of the evaluation of the service location and processing of the selected service.

Algorithm 2 describes the processing of an implicit non-concrete task t. A
local process queryGenerator that takes the parameters annotated as inputs will
produce a query based on OWL-S profile description and will return the address
of the query. A local service searchService takes as parameters, the location of
the OWL-S query, the query phase (QP), the TTL and the service name as
inputs to achieve this task. Then, it returns the locations of services fulfilling
the query. When the evaluation of the service location is completed, the XPath
parameters that are not annotated as ”output” of the service call are evaluated.
Once the evaluation is done, each pi has the value of an Active XML forest
fi. Then the implicit non-concrete service call is unrolled into explicit concrete
calls. Each service candidate has to be called and takes as parameters each el-
ement in the cartesian product of the forest f. The processing of t will end
when all these concrete tasks complete their execution. Similarly, the process-
ing of a concrete call can be adapted to accomplish the processing of implicit
concrete calls.

Implicit Service Calls in ActiveXML Through OWL-S 363

Algorithm 2 peer P , implicit non-concrete task t(d, Pf , f, p1, p2, ..., pn)
if Pf = NULL then

LQD ←− queryGenerator(Pf , f, p1, p2, ..., pn) – Location of OWL-S Query De-
scription
QP ←− toMaster – Query Phase
TTL ←− 7
servieN ←− NULL – service Name
SLL ←− call local service searchService(LQD,PQ, TTL, serviceN). – Services’
Location List

else
SLL ←− (Pf , f)

end if
evaluate the XPath parameters p1, p2, ..., pm – the parameters annotated as input.
for all pi ∈ (p1, p2, ..., pm) do

let fi be the value obtained for xi (an AXML forest)
end for
for all (Pf ′

1
, f ′

1), ..., (Pf ′
t
, f ′

t) ∈ LSL do
for all x = x1, x2, ..., xm ∈ f1 × f2 × ... × fm do

create tx(t.root, Pf ′
1
, f ′

1, (t.root, Pf ′
2
, f ′

2, (...(Pf ′
t
, f ′

t , x1, x2, ..., xm)...)))
insert tx in W

end for
end for
suspend until all tx finish

5 Architecture

In this section, we propose a new architecture for Active XML in order to take
into account the implicit service call. Figure 5 depicts the internal architecture of
Active XML with implicit service call. We add two new modules to the original
structure:

1. searchService. It contains two components: the communication engine and
the local query engine. It is in charge the reception of the query from the
evaluator.

2. The storage. It maintains the components describing its own peer. Each
peer in the network contains two components in the storage:
(a) Description of services, is a registry of OWL-S descriptions of the services

provided by the peer. These service descriptions will be compared to the
service query by the local query engine.

(b) Process DB is a database maintaining the predecessor-successor rela-
tions dealing with the services provided by the peer. The directed graph
with input/output compatibility provided by Process DB can reduce the
computing complexity of the composition.

The master peers and backup peers contain three additional components
in the storage:
(a) Peer DB contains the peers providing the services of the community

presented by the master.

364 S. Benbernou, X. He, and M.-S. Hacid

(b) Master DB contains the master peers and backup peers of the other
domains. This database is necessary for the query propagation between
different domains.

(c) Query DB maintains the query, together with its solution.

6 Conclusion

In this paper, we have presented the benefits of embedding implicit service calls
in Active XML and its realization by the discovery and composition of services.
The introduction of implicit service calls in Active XML leads to dynamic data
sources discovery by which we can obtain the expected data without knowl-
edge on the data location. To enable implicit service calls, we integrate some
techniques in the Active XML framework: (1) OWL-S is used to draw up the
query based on the annotation in the implicit service call, (2) A peer-to-peer
composition service is defined to be used in a structured network.

References

1. Omar Benjelloun. Active XML: A data centric perspective on Web services. PhD
thesis, Paris XI university, 2004.

2. Boanerges Aleman-Meza Budak Arpinar, Ruoyan Zhang and Angela Maduko.
Ontology-driven web services composition platform. e-Commerce Technology,
2004. CEC 2004. Proceedings. IEEE International Conference, July 2004.

3. The OWL Services Coalition. Owl-s: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/, November 2004.

4. James Hendler Evren Sirin and Bijian Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in ICEIS 2003, Angers, France, April 2003.

5. Ching-Chien Chen Farnoush Banaei-Kashani and Cyrus Shahabi. Wspds: Web
services peer-to-peer discovery service. International Symposium on Web Services
and Applications(ISWS’04), Nevada, June 2004.

6. Anupriya Ankolekar Katia Sycara, Massimo Paolucci and Naveen Srinivasan. Au-
tomated discovery, interaction and composition of semantic web services. Journal
of Web Semantics, 1(1), September 2003.

7. Stuart Madnick Mark Hansen and Michael Siege. Data integration using web
services. MIT Sloan Working Paper, May 2002.

8. Takuya Nishimura Massimo Paolucci, Katia Sycara and Naveen Srinivasan. Using
daml-s for p2p discovery. Proceedings of the International Conference on Web
Services, 2003.

9. Terry R. Payne Massimo Paolucci, Takahiro Kawamura and Katia P. Sycara. Se-
mantic matching of web services capabilities. in Proceedings of the First Interna-
tional Semantic Web Conference, 2002.

10. Marie desJardins Mithun Sheshagiri and Tim Finin. A planner for composing
services described in daml-s. AAMAS Workshop on Web Services and Agent-Based
Engineering, 2003.

11. Christophe Rey Mohand-Sad Hacid, Alain Leger and Farouk Toumani. Dynamic
discovery of e-service. the proceedings of the 18th French conference on advanced
databases. Paris, 2002.

Implicit Service Calls in ActiveXML Through OWL-S 365

12. Omar Benjelloun Serge Abiteboul and Tova Milo. The active xml project:
an overview. ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-331.pdf,
2004.

13. Omar Benjelloun Serge Abiteboul and Tova Milo. Positive active xml. In Proc. of
ACM PODS, 2004.

14. Evren Sirin, Bijan Parsia, and James Hendler. Composition-driven filtering and
selection of semantic web services. In AAAI Spring Symposium on Semantic Web
Services, 2004.

Semantic Tuplespace

Liangzhao Zeng1, Hui Lei1, and Badrish Chandramouli2

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
{lzeng, hlei}@us.ibm.com

2 Duke University, Durham, North Carolina 27708-0129
badrish@cs.duke.edu

Abstract. The tuplespace system is a popular cooperative communication
paradigm in service-oriented computing. Tuple matching in existing tuplespace
systems is either type-based or object-based. It requires that both tuple writers and
readers adhere to the same approach of information organization (i.e., same termi-
nologies or class hierarchy). Further, it examines the value of the tuple contents
only. As such, these tuplespace systems are inadequate for supporting commu-
nication among services in heterogeneous and dynamic environments, because
services are forced to adopt the same approach to organizing the information ex-
changed. In order to overcome these limitations and constraints, we propose a
semantic tuplespace system. Our system uses ontologies to understand the se-
mantics of tuple contents, and correlates tuples using relational operators as part
of tuple matching. Therefore, by engineering ontologies, our system allows dif-
ferent services to exchange information in their native formats. We argue that a
semantic tuplespace system like ours enables flexible and on-demand communi-
cation among services.

1 Introduction

The tuplespace paradigm is a simple, easy to use, and efficient approach for supporting
cooperative communication among distributed services. Typically, a tuplespace system
contains three roles: (i) tuple writers, who write tuples into sharespace, (ii) tuple read-
ers, who read/take tuples that they are interested in, by specifying templates, and (iii)
the tuplespace server, who is responsible for managing the sharespace and routing the
tuples from writers to readers. The earliest tuplespace systems were type-based. A tu-
ple in Linda [4] is a series of typed fields. For example, a tuple can be t(’Sports
Car’, 400,000). Tuple matching is based on a template that consists of a se-
ries of typed fields or type definitions. For instance, a template can be ϕ(〈’Sports
Car’〉, 〈?float〉), where typed field (e.g., 〈’Sports Car’〉) requires value iden-
tical matching (e.g., string that is the same as ’Sports Car’); while the type defi-
nition (e.g., 〈?float〉) only concerns the type matching (e.g., any float value). Obvi-
ously, such systems have limitations on specifying filtering criteria: either exact value
or type matching. For above example, any tuples with type float in the second field can
satisfy the template’s requirement on second field, regardless of the value of the field.

Consequently, as an improvement to type-based solutions, object-based tuplespace
systems have been proposed [10]. Instead of exact type matching, these systems

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 366–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Tuplespace 367

enable object compatibility based type matching. Further, these systems allow tu-
ple readers to specify queries on fields, which provides the flexibility of choos-
ing filtering criteria along multiple dimensions. For example, the template in the
vehicle dealer example may be refined as ϕ

′
(〈SportsCar〉, 〈CarInsurance,

CarInsurance.premium < 2000〉). This template indicates that those tu-
ples that first field’s type is SportsCar or descendent of SportsCar (e.g.,
USSportsCar, if USSportsCar is a descendent class of SportsCar in the im-
plementation of the class hierarchy) and the second field’s type is CarInsurance or
descendent of CarInsurance and the premium is less than 2000, will be delivered
to the reader.

Considering the adaptability and flexibility requirements from services that operate
in dynamic environments, we argue that both type-based and object-based tuplespace
systems are not sufficient in two aspects:

– Value-based matching. Currently, in object-based tuplespace systems, the type
matching is based on object compatibility, wherein the relationship among the ob-
jects is deduced from the implementation of the class hierarchy. Without semantic
support to understand the meaning of the field, the matching algorithm assumes
that both tuple writers and readers share the same implementation of class hierar-
chy. Such an assumption is hard to enforce when the relationship of tuple writers
and readers is dynamically formed.

– One-to-one matching. Presumably, services read multiple tuples in a transaction
as no single tuple can provide all the necessary fields, when they interact with a
collection of partner services. However, in current tuplespace systems, correlation
of interrelated tuples is not supported, which requires custom implementation by
application programmers. The implementation of tuple correlation is often a chal-
lenging and involving task. Further, it requires that the application programmers
be aware of all the tuples that are provided by partner services in advance at de-
velopment time. Such a requirement is impractical when a service has a dynamic
collection of partners.

In this paper, we introduce a semantic tuplespace system. Our system enables se-
mantic tuple matching, wherein semantic knowledge is maintained in ontologies. This
releases the constraints in object-based tuplespace systems that writers, readers and the
server must share the same implementation of class hierarchy. Unlike traditional tu-
plespace systems, tuple correlation in our system is performed by the tuplespace server,
which is transparent to tuple readers. Therefore, services in dynamic environments be-
come easier to develop and maintain as tuple semantic transformation and correlation
can be provided as part of the tuplespace system. In a nutshell, the salient features and
contributions of our system are:

1. Efficient semantic tuple matching. A naive approach to enabling semantic tuple
matching is term generation, in which more generic fields (i.e., objects) are gener-
ated based on ontologies. For example, from an object of sportsCar, the system
can generate a more generic object about car. Such an approach is clearly very in-
efficient, since it generates unnecessary redundant tuples. In our framework, instead
of adopting term generation approach, the system enables semantic tuple routing by
rewriting templates, wherein no redundant tuples need to be generated.

368 L. Zeng, H. Lei, and B. Chandramouli

2. Semantic-based, correlation matching. With ontology support, it is possible for the
system to conduct tuple correlation based on tuple content semantics using rela-
tional operators. For example, two tuples in a sharespace can be correlated to one
by the join operator and then delivered to tuple readers. We extend tuple matching
in traditional tuplespace systems with two kinds of correlation matchings, namely
those based on common fields across tuples and those based on attribute depen-
dence. Correlation matching can automatically search available tuples which can
only provide partial information required by a read/take template, and correlate
them to one tuple that contains all the fields required by the template.

The remainder of this paper is organized as follows: Section 2 introduces some im-
portant concepts and presents the overview of the semantic tuplespace system. Sec-
tion 3 and 4 discuss two main features of the proposed system. Section 5 illustrates
some aspects of the implementation. Finally, Section 6 discusses some related work
and Section 7 provides concluding remarks.

2 Preliminaries

In this section, we first introduce some important concepts in ontology, and then present
the proposed system architecture of the semantic tuplespace system. Finally, we outline
the tuple matching algorithm.

2.1 Ontology

In our system, we adopt an object-oriented approach to the definition of ontology, in
which the type is defined in terms of classes1 and an instance of a class is consid-
ered as an object. In the subsection, we present a formal description of class and ob-
ject. It should be noted that this ontology formulation can be easily implemented using
OWL [11] framework. We will present details on how to use ontology to perform se-
mantic matching and correlation matching in following sections.

Definition 1 (Class). A class C is defined as the tuple C =〈N, S, P, R, F 〉, where

– N is the name of the class;
– S is a set of synonyms for the name of class, S = {s1, s2, ..., sn} ;
– P is a set of properties, P = {p1, p2, ..., pn}. For pi ∈ P , pi is a 2-tuple in form

of 〈T, Np〉, where T is a basic type such as integer, or a class in an ontology, Np is
the property name.

– R is a set of parent classes, R = {C1, C2, ..., Ck};
– F is a set of dependence functions for the properties, F = {f1, f2, ..., fl}. Each

function is in form of fj(p
′
1, p

′
2, ..., p

′
m) and associated with a predicate c, where

the output of fj is a property pi of class C and p
′
i is property from a class other

than C and the predicate c is used to correlate p
′
i. �

1 Some notations used in this paper are summarized in Table 1.

Semantic Tuplespace 369

C

Cn1 Cni CnmC11 C1i C1m

f1
fi fn

p1 pi pn

Fig. 1. A Dependence Tree of the Class C

In the definition of class, the name, synonyms, and properties present the con-
notation of a class; while parent classes and dependence functions specify rela-
tionships among the classes, i.e., present the denotation of a class. In particular,
dependence functions provide information for searching candidate tuples for corre-
lation. A class may have parent classes for which it inherits attributes. For example,
class sportsCar’s parent class is Car, so the class sportsCar inherits all the
attributes in class Car.

Other than inheritance relationships, different classes may have value depen-
dence on their properties. In our framework, dependence functions are used to in-
dicate the value dependence among the different classes’ properties. For exam-
ple, we have three classes ShippingDuration, Arrival and Departure.
In ShippingDuration, the attribute duration has a dependence func-
tion minus(Arrival.timeStamp, Departure.timeStamp), where the pred-
icate is ShippingDuration.shippingID = Arrival.shippingID =
Departure.shippingID.

Based on dependence functions, a dependence tree can be constructed for each
class. Assuming that the class C has a set of dependence functions F , a dependence
tree can be generated as in Figure 1. There are three kinds of nodes in a depen-
dence tree, namely class node, operator node and dependant class node. It should
be noted that the depended class node may also have its own dependence tree (e.g.,
C11). A class C’s complete dependence set (denoted as DC) is defined as a collec-
tion of depended classes that can be used to calculate the value of the property. For
example, the set {C11, C12, ..., C1m} is a complete dependence set of the class C’s
property p1.

Once a class is defined, instances of the class can be created as objects (See 2). In
the definition, the ID is the universal identifier for an object, while V gives values of
attributes in the object.

Definition 2 (Object). An object o is a 3-tuple〈ID, Nc, V 〉, o is an instance of a class
C, where

– ID is the id of the object;
– Nc is the class name of C;
– V = {v1, v2, ..., vn}, are values according to the attributes of the class C. For

vi ∈ V , vi is a 2-tuple in form of 〈Np, Vp〉 , where Np is the property name, Vp is
the property value. �

370 L. Zeng, H. Lei, and B. Chandramouli

Ontology Engine

TupleSpace

Server

write read/take
Tuple Writer Tuple Reader

Sharespace

Ontology Repository

Tuple Tuple

Fig. 2. Semantic Tuplespace System Architecture

Table 1. Notations

Notation Definition

C a class
C a set of classes
pi a class property
fi a dependency function

DC a complete dependence set for class C
o an object

t(o1, o2, ..., on) a tuple
Ct the set consists of all t’s field classes
T a set of tuples

CT the set consists of all field classes of tuples in T

ϕ(t1, t2, ..., tn) a read/take template
Cϕ the set consists of all the field classes required by template ϕ
qi a query predicate

ti=〈Ci, qi〉 a formal field in template

2.2 System Architecture

Our semantic tuplespace system (see Figure 2) consists of an ontology repository, an on-
tology engine, tuple writers, tuple readers, sharespace and a tuplespace server. A tuple
in the semantic tuplespace system is denoted as t(o1, o2, ..., on), where each field in a
tuple is an object oi

2 and the class is Ci. An example of a tuple can be ts(sportsCarA,
carInsuranceB, carFinanceC), which contains three objects.

As in the traditional tuplespace system, the basic operations in semantic tuplespace
include write, read and take. For tuple providers, the write operation is used to save
tuples into the sharespace. For tuple consumers, the operations can be either read or
take. The difference between read and take is that after a take the tuple is removed
from the sharespace, while read leaves the tuple object in sharespace.

When performing a read/take operation, a template ϕ(t1, t2, ..., tn) that defines tu-
ple matching conditions is specified . For each ti in ϕ, it can be either formal or non-
formal field. A formal field is specified as a pair 〈Ci, qi〉, where the Ci specifies the
class of the field and the qi is a query predicate (a boolean expression of attributes in
class Ci). A non-formal field is specified as 〈oi〉 that indicates expecting an identical

2 In the rest of the paper, we use term object and field interchangeably.

Semantic Tuplespace 371

Table 2. Examples

Entity Example

template ϕs(〈 Car, Car.price.amount< 5000 〉,
〈carInsuranceB〉, 〈CarFinance, null〉)

candidate tuple t(sportsCarA, carInsuranceB, carFinanceC)
tuple set Tk={t1 , t2}, where

t1(sportsCarA, sportsCarInsuranceB),
t2(sportsCarA, carFinanceC)

generated template for t1 ϕ1(〈SportsCar, SportsCar.price.amount<5000 〉,
〈carInsuranceB〉)

generated template for t2 ϕ2(〈SportsCar, SportsCar.price.amount<5000 〉,
〈CarFinance, null〉)

tuple set Tf ={t1 , t2, t3, t4 }, where
t1(sportsCarA, licenceB), t2(licenceB, carOwnerC),
t3(carOwnerC, carInsuranceD), t4(sportsCarA, carFinanceE)

object as oi is contained in matched tuples. There are two options in read/take oper-
ation: all or any. Option all returns all the matched tuples, while option any only
returns one of the matched tuples. In the rest of the paper, for sake of presentation, we
only discuss option all; however, in our design, we support both options.

An example of template can be ϕs (see Table 2). In this example, the first field
required by the template is an object of class Car, where the associated query
predicate is Car.price.amount<5000. The second field is non-formal: object
carInsuranceB, indicating that the tuples need to provide identical information as
specified in the object. Actually, the non-formal field 〈oi〉 can be converted to a formal
field as 〈C′,

∧n
j=0(C

′.pj = oi.pj)〉, where object oi’s class is C′ that has n properties
pj . As such, in the rest of this paper, we only discuss the case of formal field.

2.3 Tuple Matching in Semantic Tuplespace System

By introducing ontologies into tuplespace system, other than exact matching, we extend
the tuple matching algorithm with two extra steps: semantic matching and correlation
matching. Therefore, three steps are involved in our matching algorithm:-

– Step 1. Exact Matching. The first step is to find exact matches, which returns
tuples that have exactly the same field classes as the template;

– Step 2. Semantic Matching. The system searches tuples that have field classes
which are semantically compatible with the template and delivers tuples if the tu-
ples’ contents can satisfy the filtering conditions;

– Step 3. Correlation Matching. The system searches a set of tuples and correlates
them to one tuple, in order to match all required fields of the template.

It is worth noting that the type-based tuplespace system only performs step 1. The
object-based tuplespace systems perform another step of matching that is based on ob-
ject compatibility, which is different from semantic matching in step 2. In object-based
tuplespace system, the object compatibility is deduced from the implementation of class
hierarchy. In our semantic tuplespace systems, the relationships among the objects are

372 L. Zeng, H. Lei, and B. Chandramouli

declaratively defined by ontologies. As such, the steps 2 and 3 are unique to our seman-
tic tuplespace system. In this paper, we assume that both readers and writers use the
same ontology for a domain. If a tuple writer and a tuple reader use different ontolo-
gies for a domain, then a common ontology can be created for both writer and reader.
Detailed discussion on creating a common ontology is outside the scope of the paper.
Therefore, by engineering ontologies, our system allows different services to exchange
information using their native information format to construct tuples. The cost of en-
gineering ontologies is much less than that of developing object adaptors for object-
based tuplespace systmes as ontologies are declaratively defined. Further, ontologies
are reusable. Details of semantic and correlation matching are presented in the follow-
ing sections.

3 Semantic Matching

As an extension of object-based tuplespace system, semantic matching is used to de-
termine whether a tuple in the sharespace satisfies a tuple retrieval request (read/take).
The difference between object-based matching and semantic matching comes from the
adopted approaches that determine the relation among the objects. As discussed ear-
lier, object-based matching tuple matching is based on object compatibility, where the
subclass relation is deduced from the implementation of class hierarchy. This requires
all the tuplespace users to adopt the same implementation of class hierarchy. In our
semantic matching, we adopt the notion of semantic compatibility (see 3), wherein
the semantic knowledge of synonyms and subclasses can be declaratively defined in
ontologies.

Definition 3 (Semantic Compatibility). Class Ci is semantically compatible with class
Cj , denoted as Ci

s= Cj , if in the ontology, either (i) Ci is the same as Cj (same name
or synonym in an ontology) , or (ii) Ci is a superclass of Cj . �

By adopting the definition of semantic compatibility, we say a class C semantically
belongs to a class set C (denoted as C ∈s C) if ∃Ci ∈ C, C

s= Ci. Using the notion
of semantic compatibility, we define a candidate tuple (see 4) as a tuple that contains
all the fields that are semantically compatible with the fields required by a read/take
operation. In the definition, each of the fields of the tuple needs to be semantically
compatible with the corresponding field of the template. For example (see Table 2),
with regard to the template ϕs, the tuple t can provide all the fields required in ϕs since
the first field sportsCarA ”is a” Car (semantic compatibility) and the rest two fields
are exactly matched. Therefore, t is a candidate tuple for ϕs.

Definition 4 (Candidate Tuple). t is a tuple in tuplespace where Ct is the set that con-
tains all the field classes in t; ϕ is the template for read or take operation, where the
feild class set is Cϕ. t is a candidate tuple for ϕ iff: ∀Ci ∈ Cϕ, Ci ∈s Ct. �

It should be noted that a candidate tuple may not be able to satisfy the filtering con-
dition given in templates. Further examination of the contents of the tuple is required,
in order to determinate whether the tuple should be delivered to tuple readers.

Semantic Tuplespace 373

In our system, when inspecting the contents of tuples, in most cases, the tuplespace
server needs to rewrite fields in the template, except when all the field classes in the
candidate tuple are exactly the same as those of the template, i.e., Ct = Cϕ. Therefore,
each 〈Ci, qi〉 in ϕ, assuming the class type of candidate tuple is C′ for the corresponding
field, should be rewritten as 〈C′, q

′
i〉, where q

′
i is transformed from qi by replacing

property references of class type C with C′.

4 Correlation Matching

As a further extension of object-based tuple matching, our system also enables correlat-
ing multiple tuples for a template. In the following subsections, we first present how to
search a collection of tuples that are correlatable and are able to provide all compatible
fields for read/take operation. This is followed by details on composing results from a
collection of tuples.

4.1 Searching Correlatable Tuple Set for Read/Take Operation

In our framework, multiple tuples in the sharespace can be correlated to one that can
provide all the necessary fields required by a template, wherein the correlation can be
done by the join operator. Correlation can be either based on common fields and/or
attribute dependence functions. In this subsection, we discuss the case of field-based
correlation first, and then illustrate the case of attribute dependence function correlation.

Field-Based Correlation. Obviously, multiple tuples can be correlated using the join
operator to one if they contain same field. For example, two tuples t1 and t2 in Tk (see
Table 2) can be correlated using the join operator as they both have field sportsCarA.
Therefore, when the tuplespace server performs the correlation matching, in order to
compose tuples that can provide all the fields that are required by the template, it first
searches a key-based correlation tuple set, i.e., a set of tuples that are correlatable by a
key field that is specified by the template and can provide all the fields required by the
template. The formal definition of key-based correlation tuple set is as follows.

Definition 5 (Key-based Correlation Tuple Set Skc). T (T = {t1, t2, ..., tn}) is a set
of tuples in tuplespace, Cti is the set that consists of all the field classes in tuple ti and
CT(CT = ∪n

i=1Cti) is aggregation of all the field classes in T ; ϕ is the template for
read/take operation, Ck is the key field’s class type and Cϕ is the set that consists of all
the field classes of ϕ. T is a Key-based Correlation Tuple Set of ϕ iff:

1. ∀C ∈ Cϕ, C ∈s CT;
2. ∀Cti , ∃C

′
k ∈ Cti , Ck

s= C
′
k, and ok

1 = ok
2 = ... = ok

n, where ok
i is the field with

class C
′
k in ti;

3. ∀Cti , ∃C, C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)) and C ∈s Cϕ. �

In this definition, three conditions need to be satisfied when considering a set of tu-
ples as a correlation tuple set for a read/take template: (i) Condition (1) indicates for

374 L. Zeng, H. Lei, and B. Chandramouli

each field class required by the template, there is at least one tuple that contains a com-
patible field class, which is a necessary condition of the definition. (ii) Condition (2)
implies all the field classes are correlatable by the key field. (iii) Condition (3) evinces
any tuples in the set contributes at least one unique field. It should be noted that con-
dition (2) and (3) are the sufficient conditions for the definition. Using above example,
the aggregation of t1 and t2 provides all the required fields in template, which satisfy
condition (1), and they can be correlated as they share the field sportsCarA that is
the descendant for the key field Car in template ϕs. Also, t1 (resp. t2) provides unique
field carInsuranceB (resp. carFinanceC). Therefore, t1 and t2 compose a key-
based correlation tuple set for the template.

Actually, by releasing the constraint that correlating is based on key field only, our
system enables more generic tuple correlation, wherein tuple correlations can be based
on any fields. In such a generic correlation, we adopt the notion of Correlatable
Class (see 6). In this definition, two field classes are correlatable in a set of tuples
if either they appear in the same tuple, or when these two classes do not appear in the
same tuple and belong to two tuples tx and ty respectively, then either (i) tx and ty at
least have one field that is identical; or (ii) there are a sequence tuples in the set that
are correlatable ”step by step” and aiming for correlating tx and ty in the end. Actually,
if we consider tx and ty are entities in ER model, then these tuples between tx
and ty in the sequence are relationships: in order to joint two entities without
common attributes, a collection of relationships [tx+1, tx+2, ... ty−1] are required. For
example, class SportsCar and CarInsurance are correlatable in Tf (see Table 2),
as class SportsCar and CarInsurance appear in t1 and t3 respectively; and t2 is
considered as a relationship to bridge SportsCar and CarInsurance.

Definition 6 (Correlatable Class). Class Ci, Cj are correlatable in tuple set T (T =
{t1, t2, ..., tn}), iff either

– Ci and Cj appear in same tuple (i.e., ∃tx ∈ T, both Ci and Cj ∈ Ctx); or
– Ci and Cj do not appear in same tuple (i.e., �t ∈ T, where Ci and Cj ∈ Ct), then
∃tx, ty ∈ T, x = y, Ci ∈ Ctx , Cj ∈ Cty , and either:
• ∃ox from tx and ∃oy from ty, ox = oy; or
• there is a correlation tuples sequence [tx, tx+1, tx+2, ... ty−1, ty] in T, and

for any ti, ti+1 in the sequence, ∃ oi from ti and ∃oi+1 from ti+1, so that
oi = oi+1. �

Definition 7 (Field-based Correlation Tuple Set Sfc). T (T = {t1, t2, ..., tn}) is a set
of tuples in tuplespace, Cti is the set that consists of all the field classes in tuple ti and
CT(CT = ∪n

i=1Cti) is aggregation of all the field classes in T ; ϕ is the template for
read/take operation, and Cϕ is the set that consists of all the field classes of ϕ. T is a
Field-based Correlation Tuple Set of ϕ iff:

1. ∀C ∈ Cϕ, C ∈s CT;
2. for ∀ C

′
i , C

′
j ∈ Cϕ, i = j, ∃ Ci, Cj ∈ CT, C

′
i

s= Ci, C
′
j

s= Cj , and Ci and Cj are
correlatable in T;

3. ∀ti ∈ T, at lease one of the following is true:
– ∃C ∈ (Cti − (∪i−1

j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ;

– ti appears in tuple consequences in condition (2) of this definition. �

Semantic Tuplespace 375

Using the notion of correlatable class, we can define the concept of Field-based Cor-
relation Tuple Set (see 7). In the definition, there are also three conditions that need to
be satisfied when considering a set of tuples as a correlation tuple set for a read/take
template: (i)The same as key-based correlation, condition (1) indicates for each field
class required by the template. (ii) Different from key-based correlation, instead, Con-
dition (2) implies correlation can be on any fields. (iii) Condition (3) evinces any tuples
in the set contributes at least one unique field, either contributes to the required fields
by the template, or appearers in tuple sequence for correlation.

Attribute-Dependence Correlation. Other than field-based, multiple tuples can be
correlated using dependence functions, in case some required fields can not be pro-
vided by any available tuples. Assuming that an absent field’s class Ci has a depen-
dence function, the tuplespace server can compute the value for the absent field from
the tuples that provide elements in the dependence set. For example, if the class type
ShippingDuration is required by the template but not provided by any tuples,

as ShippingDuration’s dependence set is {Departure, Arrival}, the
system can search tuples that contain Departure or/and Arrival and correlate
these tuples and compute the value for ShippingDuration. Again, we first limited
the correlation on key field only, wherein Key-based Attribute-dependence Correlation
Tuple Set can be defined as:

Definition 8 (Key-based Attribute-dependence Correlation Tuple Set Ska). T (T =
{t1, t2, ..., tn}) is a set of tuples in tuplespace, Cti is the set that consists of all the field
classes in tuple ti and CT (CT = ∪n

i=1Cti) is aggregation of all the field classes in
T; ϕ is the template for read/take operation, the key field’s class is Ck and Cϕ is the
set that consists of all the field classes in ϕ. T is an Key-based Attribute-dependence
Correlation Tuple Set of the template ϕ iff:

1. ∀Ci ∈ Cϕ, either
– if Ci ∈s CT, i.e., ∃ C

′
i ∈ CT, Ci

s= C
′
i ; or

– if Ci /∈s CT, then CT contains a complete dependence set DCi of Ci.
2. ∀Cti , ∃C

′
k ∈ Cti , Ck

s= C
′
k , and ok

1 = ok
2 = ... = ok

n, where ok
i is the field with

class C
′
k in ti;

3. ∀ti ∈ T, at lease one of the following is true:

– ∃C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ or C ∈ DCi;

– ti appears in tuple consequences in condition (2) of this definition. �

In condition (1) of above definition, unlike field-based correlation tuple set, a field
required by the template may not appear in any tuple, however, its properties can be
computed using dependence functions (See 2). Like field-based correlation in tuple set,
the condition (2) concerns whether tuples can be correlated by the key field. The condi-
tion (3) states that each tuple in the set contributes at least one unique attribute. Again,
we can release the constraint that correlation is based on key-field only . Therefore,
the more generic Attribute-dependence Correlation Tuple Set can be defined (see 9). In
particular, the condition 2 of the definition indicates that correlation can be done based
on any fields.

376 L. Zeng, H. Lei, and B. Chandramouli

Definition 9 (Attribute-dependence Correlation Tuple Set Sac). T (T =
{t1, t2, ..., tn}) is a set of tuples in tuplespace, Cti is the set that consists of all
the field classes in tuple ti and CT (CT = ∪n

i=1Cti) is aggregation of all the field
classes in T; ϕ is the template for read/take operation; Cϕ is the set that consists of
all the field classes in ϕ. T is an Attribute-dependence Correlation Tuple Set of the
template ϕ iff:

1. ∀Ci ∈ Cϕ, either
– if Ci ∈s CT, i.e., ∃ C

′
i ∈ CT, Ci

s= C
′
i ; or

– if Ci /∈s CT, then CT contains a complete dependence set DCi of Ci.
2. Assuming C

′
is the class set for all the C

′
i in condition 1 of this definition, also

assuming D =
⋃
DCi for all Ci /∈s CT, and C = C

′ ⋃
D, then for ∀ Ci, Cj ∈ C,

Ci and Cj are correlatable in T;
3. ∀ti ∈ T, at lease one of the following is true:

– ∃C ∈ (Cti − (∪i−1
j=1Ctj

⋃∪n
j=i+1Ctj)), C ∈s Cϕ or C ∈ DCi;

– ti appears in tuple consequences in condition (2) of this definition. �

4.2 Relationship Among Four Kinds of Correlation Tuple Sets

The relationship among the above four kinds of correlation tuples sets is shown in Fig-
ure 3. In particular, the relationship can be summarized as:

– {Skc} ⊆ {Sfc}
Proof: Condition (1) in Skc and Sfc are same. Further, the tuple set can satisfy
condition (2) and (3) of Skc can also satisfy condition (2) and (3) in Sfc.

– {Sfc} ⊆ {Sac}
Proof: Condition (1) in Sfc is the first situation of condition (1) in Sac. Condition
(2) in in Sfc is same as Condition (2) in Sac when D = ∅, i.e., all the field classes
in the template do not have any attribute dependence function. Condition (3) in both
Sfc and Sac is same.

– {Skc} ⊆ {Ska}
Proof: Condition (1) in Skc is the first situation of condition (1) in Ska. Condition
(2) in in Skc is same as Condition (2) in Ska when D = ∅, i.e., all the field classes
in the template do not have any attribute dependence function. Condition (3) in Skc

is the first situation in condition (3) in Ska.
– {Ska} ⊆ {Sac}

Proof: Condition (1) and (3) in Ska and Sac are same. Further, the tuple set can
satisfy condition (2) of Ska can also satisfy condition (2) in {Sac} as ok

1 = ok
2 =

... = ok
n can guarantee all the required field classes are correlatable in tuple set.

Skc: key-based correlation tuple set
Sfc: field-based correlation tuple set

Sac: attribute-dependence correlation tuple set
Ska: key-based attribute-dependence correlation tuple set

{Skc}{Sfc}

{Sac}

{Ska}

Fig. 3. Relationship Among Four Kinds of Correlation Tuple Sets

Semantic Tuplespace 377

4.3 Template Generation for Correlation Matching

From the above discussion we know that both types of correlatable tuple sets can only
guarantee that the fields required for the template can be provided or computed. How-
ever, further inspection of the contents of tuples is required, in order to determine
whether the filtering conditions given in templates can be satisfied. In our solution,
this is realized by generating a template for each tuple in the set and then using the
generated templates to inspect the contents of each tuple individually.

Assuming there are n tuples ti in the correlation set T (ti ∈ T), We distinguish two
types of fields in T: unique and non-unique fields: unique fields are the fields that are
required by the template ϕ and only appear in one tuple in the tuple set (Cu

T denotes
the collection of all the unique fields), while non-unique fields appear in more than one
tuple in the set. From the definition of correlation tuple set, ∀C ∈ Cu

T, ∃C′ ∈ Cϕ, C′

either is the same as C or super class of C. Therefore, for each 〈C′, q′〉 in a template,
in the case of C′ = C, then in the template ϕi for tuple ti, 〈C′, q′〉 is used without any
changes; while in the case of C′ is super class of C, 〈C′, q′〉 need to be transformed to
〈C, q〉, where query predicate q is transformed from q′ by replacing referenced property
of C′ with property in C.

For example, considering the tuple set Tk for the template ϕs, two tem-
ples ϕ1 and ϕ2 are generated respectively (see Table 2). In particular, the
query predicate SportsCar.price.amount<5000 in ϕ1 is transformed from
Car.price.amount<5000 in ϕ, where Car is replaced by SportsCar.

Once a template ϕi is generated for each ti in T, the tuplespace server needs to test
the query predicates for fields in each template and correlate tuples. In the case of field-
based correlation tuple set, when inspecting the tuple using the generated template, the
false result of query predicate on any tuple in the set will result in discarding the whole
tuple set from further correlation processing. After testing all templates, if the tuple set
is not discarded, the tuple set is correlated to one tuple. Again, we differentiate two dif-
ferent kinds of fields. For unique field, it can be selected from a tuple. For non-unique
field, the tuplespace server prefers a tuple which has same type of field as template re-
quired. By selecting each field required by the template, a tuple is created and delivered
to the reader.

In the case of attribute-dependence correlation tuple set, another step is required on
the correlated tuple: applying the dependence functions to compute the field value and
testing the associated query predicate to determinate whether the generated tuple should
be delivered to the reader.

5 Implementation Aspects

In this section, we discuss the implementation of the proposed tuplespace server (see
Figure 4), which consists of four components: Write Manager, Runtime Store, Persistent
Datastore and Read/Take Manager.

Our tuplespace server supports tuple correlation. This requires the tuplespace server
to persist tuples when they are writing into sharespace, for possible correlation opera-
tion on them thereafter, as it is unlikely that the main memory can store all the tuples in
the sharespace. Further, persistent support also allows tuplespace server restores from

378 L. Zeng, H. Lei, and B. Chandramouli

Tuplespace Runtime Store

(Main Memory) Tuplespace Datastore
Write Manager

(RDBMS)Read/Take Manager

Fig. 4. System Architecture of Tuplespace Server

UIDDirectory

Datapage(tuple object)

UID UID UIDUID UID

Fig. 5. Hash Index in Runtime Store

runtime failure, which is a key requirement for mission critical applications. There-
fore, in our design, the Tuple Writer manages both Runtime Store in main memory and
Persistent Datastore in Relational Database. When Tuple Writer receives a write tuple
request from users, it saves the tuple object in both the Runtime Store and the Persis-
tent Datastore. In case the main memory is full, it needs to remove some tuples from
Runtime Store, wherein First In First Out update algorithm is adopted. In our
design, tuples in the Runtime Store as objects have unique object IDs. As the runtime
store is considered as a cache for the tuplespace datastore, we create a tuple ID-based
hash index, where the unique object ID is used to locate the tuple object. Therefore,
when the tuple writer receives a tuple, it saves the tuple with the unique object ID, and
then invokes hash functions to update the hash index. When the tuple writer saves a
tuple object in runtime store, it also persists the tuple object in tuplespace Datastore.
This cache improves the system performance on retrieving tuple contents when tuple
UIDs are identified.

The datastore provides persistent storage of tuples. When considering the imple-
mentation of datastore, the intuitive choice is adopting object store (i.e., persist tuples
as objects). However, it is very costly when inspecting tuples’ contents for tuple match-
ing: entire tuple objects need to be deserialized in the memory. In fact, in most cases,
tuple matching may only concern some attributes of tuples. For the sake of performance
and scalability, instead of adopting object store, relation database is used to implement
Persistent Datastore. Therefore, when conducting tuple matching, the inspection can
only focus on the attributes that are concerted by the templates, without deserialization
of entire tuple objects.

When adopting relational approach to persist tuples, mapping between tuple objects
and relation tables is required. As user operations on tuples do not explicitly declare
the data schema of the tuple (i.e., declaration of tuple schema is not required by the
tuplespace system), a tuple can not be stored as a record in a predefined table. In our
solution, the tuplespace server separates the data organization of tuple and contents
of tuples (see Figure 6), wherein one table FieldTypes is used to store the class
type information for each field in tuples, while another table TupleValues is used
to store the contents of tuples. It should be noted that both class type information and
the content of the tuples are stored vertically in these tables. In particular, for table

Semantic Tuplespace 379

1..

∗

∗

0.. 11.. ∗

1.. ∗

1..

1 1

1

tupleID bigint

fieldTypeID bigint

itemName varchar

dimensionID bigint

stringValue varchar

dimensionID bigint

tupleTypeID bigint

 dimensionOrder integer

sequenceID integertypeName varchar

typeID integer

doubleValue double

1 1

tupleTypeID bigint

fieldTypeID bigint

dimensions integer

ontologyName varchar

classTypeName varchar
serializationClass varchar

deserializationClass varchar

tupleTypeID bigint

classTypeName varchar

TupleTypes
FieldTypes

Type

Dimensions

TupleValues

Fig. 6. ER diagram for Persistent Datastore

FieldTypes, each field in a tuple occupies a row. For each tuple in tuplespace a
unique tupleTypeID is assigned for each type of tuple. In table TupleValues,
each elementary element in a field has a record in the table and tupleID is unique for
each tuple in tuplespace. Using tupleID and fieldTypeID, the records in the table
can be correlated to individual tuples. Table Dimensions (D for short) is used
to store the dimension information when there exists any array type of data elements in
fields. By specifying dimensionOrder and sequenceID, the datastore can store
any dimension array of data in a tuple. Further, the table Types gives type information
in tuplespace.

The Read/Take Manager handles tuple read/take requests from users. When it re-
ceives read/take requests, it searches for a single tuple that can match the template first.
In case there are no single tuple matching the template or users required, the Read/Take
Manager searches a correlation tuple set for the temple. In our solution, both semantic
and correlation matching is done by generating queries on persistent data store. Details
on design of query generation are omitted due to space reasons.

6 Related Work

An effort to provide semantic support in communication paradigm is given in [15],
wherein we introduce ontologies into the publish/subscribe systems to understand event
contents. This relaxes the constraint in prior content-based pub/sub systems that pub-
lishers and subscribers must share the same event schemas. It supports semantic-based,
automatic event correlations of multiple event sources for subscriptions, which also
overcomes the limitation of relational publish/subscribe systems [8] that requires event
consumers to explicitly specify the correlation of event sources. In this paper, we apply
the same idea to the tuplespace system, i.e., providing flexibility and adaptability in
communication paradigm by leveraging data semantics. Unlike publish/subscribe sys-
tems, the tuplespace system does not require the explicit declaration of the data schema
when reading and writing tuples, which imposes new challenges when introducing se-
mantic support.

The tuplespace system is a very active area of research and development. Early tu-
plespace systems [4,7] can be considered as a software implementation of a shared

380 L. Zeng, H. Lei, and B. Chandramouli

distributed memory. The sharespace appears as a single shared blackboard where tuples
can be deposited. Readers are notified when the values of tuples match templates. In
this way information can be shared and tuples can be passed among services. As a fur-
ther development for supporting coordination among services, reactivity was added into
tuplespace [3], where local policies could be specified for interactions among the tuple
readers and writers. However, in the above systems, expression power of specifying the
matching template is very limited for both data type and exactly value matching.

ObjectSpace [12] and T Space [10] added object-orientation to the tuplespace sys-
tem, wherein a template and a tuple match if the type of the tuple is an instance of the
type in the template. The limitation is that object-compatibility assumes both tuple writ-
ers and readers adhere to the same implementation of class hierarchy. In our semantic
tuplespace system, we externalize the semantic of tuples, wherein ontology is used to
understand the content of tuples in matching algorithm. On the other aspect, in order
to enhance the tuple retrieval power, PLinda [1] added database functionalities (query
predicates, join operator and transaction) into tuplespace systems. In our semantic tu-
plespace, not only are the database functionalities fully supported, but the join operation
is also transparent to tuple readers when correlating multiple tuples for tuple matching.

Triple Space [6,2] provides an asynchronous communication mechanism that
supports the four types of autonomy: time, space, reference, and data schema. The data
schema is implemented using RDF [13] to understand the communication contents,
which is similar to semantic matching in semantic tuplespace system. It should be
noted that with the persistent data store, our system also supports these four types
autonomy. In additional, our system provides correlation autonomy, i.e., automatic
tuple correlation.

An initial effort to provide semantic support for tuplespace matching is given in sTu-
ple [9], which relaxes the constraints in object-based tuplespace that readers and writers
must share the same implementation of class hierarchy. However, it only considers one
tuple and one template matching. This is similar to the case of semantic matching in
our system. Our system proposes a comprehensive schematic tuplespace system. In
particular, it supports semantic-based, automatic correlations of multiple tuples for tu-
ple matching, which also overcomes the limitation of PLinda system that requires tuple
readers to explicitly specify the correlation of tuples.

Semantic matching is widely adopted to solve the service matching problem in the
semantic Web [5,14]. The basic idea of semantic matching is to determine the semantic
distance between co-existent terms within shared ontologies, where service queries and
descriptions are based on pre-defined schema. However, the semantic matching that en-
ables tuple routing in our tuplespace system is conducted without the user’s declaration
of data schema when writing and reading tuples.

7 Conclusion

In this paper, we propose a semantic tuplespace system, which is another step forward in
the development of current tuplespace systems. We introduce semantics to understand
the tuple contents. Our system not only considers single tuple for read/take operation,
but also automatically correlates multiple tuples using relational operators based on

Semantic Tuplespace 381

templates. Unlike object-based tuplespace systems, the tuple correlation in our system is
transparent to the tuple reader. We argue that the proposed tuplespace system is essential
to enable cooperative service communication in service-oriented computing. Our future
work includes optimization of semantic tuple matching and tuple correlation, and a
scalability and reliability study of the system.

References

1. B. Anderson and D. Shasha. Persistent Linda: Linda + transactions + query processing, 1991.
2. C. Bussler. A minimal triple space computing architecture. In 2nd WSMO Implementation

Workshop, Innsbruck, Austria, June 2005.
3. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple spaces for mobile agent coordina-

tion. Lecture Notes in Computer Science, 1477, 1998.
4. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.
5. D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreggie: Semantic service discovery

for m-commerce applications, 2001.
6. D. Fensel. Triple-space computing: Semantic web services based on persistent publication

of information. In IFIP Int’l Conf. on Intelligence in Communication Systems 2004, pages
43–53.

7. Y. S. Gutfreund, J. Nicol, R. Sasnett, and V. Phuah. Wwwinda: An orchestration service for
www browsers and accessories. In WWW Conference ’94: Mosaic and the Web, 1994.

8. Y. Jin and R. Strom. Relational subscription middleware for internet-scale publish-subscribe.
In 2nd international workshop on Distributed event-based systems, San Diego, California,
pages 1–8, 2003.

9. D. Khushraj, O. Lassila, and T. Finin. sTuples: Semantic Tuple Spaces. In First Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston,
Massachussets, USA, August 22 - 26, 2004.

10. T. J. Lehman, S. W. McLaughry, and P. Wycko. T spaces: The next wave. In HICSS, 1999.
11. OWL, 2005. http://www.w3.org/TR/owl-ref/.
12. A. Polze. Using the Object Space: a Distributed Parallel Make. In The 4th IEEE Workshop

on Future Trends of Distributed Computing Systems, Lisbon, September, 1993.
13. RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer/.
14. K. Sycara, S. Wido, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among heteroge-

neous software agents in cyberspace, 2002.
15. L. Zeng and H. Lei. A semantic publish/subscribe system. In CEC-EAST ’04: Proceedings

of the E-Commerce Technology for Dynamic E-Business, IEEE International Conference on
(CEC-East’04), pages 32–39, Washington, DC, USA, 2004. IEEE Computer Society.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 382 – 395, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Trust-Based Secure Workflow Path Construction

M. Altunay, D. Brown, G. Byrd, and R. Dean

North Carolina State University, Raleigh, 27695, USA
{maltuna, debrown, gbyrd, ralph_dean}@ncsu.edu

Abstract. Security and trust relationships between services significantly govern
their willingness to collaborate and participate in a workflow. Existing
workflow tools do not consider such relationships as an integral part of their
planning logic: rather, they approach security as a run-time issue. We present a
workflow management framework that fully integrates trust and security into
the workflow planning logic. It considers not only trust relationships between
the workflow requestor and individual services, but also trust relationships
among the services themselves. It allows each service owner to define an upper
layer of collaboration policies (rules that specify the terms under which
participation in a workflow is allowed) and integrates them into the planning
logic. Services that are unfit for collaboration due to security violations are
replaced at the planning stage. This approach increases the services owners’
control over the workflow path, their willingness for collaboration, and avoids
run-time security failures.

1 Introduction

Workflow management tools, making use of available services created by the SOC-
based communities, play a focal role in dissecting complicated user applications into
smaller tasks, assigning each task to a suitable service, and orchestrating the workload
among these services. Workflow management, requiring disparate services to
collaborate and interact on demand, raises important security and trust issues. At the
planning stage, a workflow engine must evaluate the trust relationships among the
services as well as the trust relationships between the end user and individual services.
The trust relationships among the services may be driven by factors such as industry-
specific regulations, existing business partnership agreements, and competition among
the services. Moreover, the identities of the workflow requestor and collaborating
services, along with the prospective benefits from participation in a workflow, should
have an impact on the willingness of a service to join a workflow. Orchestrating
services without modeling such complicated trust relationships may result in security
violations and reluctance of services for participation.

OGSA [1] and its implementation Globus Toolkit [2] are one of the most
significant service-based efforts that provide the necessary middleware to support
autonomous inter-organizational sharing of resources and services. Currently, the
grid’s primary administrative entity, the Virtual Organization (VO) [3], defines a
community of users and imposes an “all-or-nothing” style of authentication and
authorization. While resource administration is performed locally, in each owner’s

 Trust-Based Secure Workflow Path Construction 383

domain, the identities and roles of VO members are determined by VO-wide
credentials and/or policies, thus making a resource’s access control policies conform
to the trust model established by the VO. Such uniformity of access eases the
problems of resource discovery and selection, and allows the user to form workflows
or pipelines of resources to solve complex problems.

The establishment of this community, however, requires infrastructure that can be
cumbersome in a more dynamic environment characterized by short-lived
collaborations and relationships. The grid-oriented VO requires pre-established trust
relationships among the member organization. Service-oriented applications, on the
other hand, rely on short-term ad hoc collaborations. These collaborating services
may not share common goals – rather, they spontaneously collaborate on behalf of a
third party, the workflow requestor. Such loose collections of web services may
include resources owned by rival companies, be separated by corporate firewalls,
otherwise be inhibited from working collaboratively, even on behalf of a third party
(the end user) that is authorized for each resource individually. The data, the
computations involved, and even the databases and queries used, can all be sensitive
and proprietary, due to competitive and regulatory constraints. This style of “co-
opetition” is not likely to happen under the VO model – a more dynamic,
decentralized collaborative trust model is required.

Based on the characteristics of these new heterogeneous and dynamic
environments, we have identified the following list of security requirements for
workflow management. Throughout this paper, a workflow participating entity (WPE)
is any resource (e.g., web service, computational resource, or storage site) that may be
chosen to participate in a workflow. An execution path is the specific set of
interactions among workflow entities that satisfies the requirements of the workflow.
A workflow requestor is the end user on behalf of whom the workflow is executed.

• Recognition of collaboration requirements among workflow participating entities.
Complex workflows may require a resource owner to interact and collaborate with
many other WPEs on behalf of the workflow requestor. Trust models of these
WPEs may prevent them from joining a given workflow due to interactions with
other participants or the workflow requestor. Ignoring trust relationships between
parties during the planning stage may result in security failures (e.g. access denials
or firewall failures).

• A decentralized workflow authorization model. It is highly likely that WPEs
constituting a workflow will have domain-specific security policies and
requirements that are confidential [16]. Thus, workflow engines should have
decentralized access control models that leave the final access decision to each
WPE. Moreover, the workflow engine should not assume any knowledge about
the internal security policies of each WPE.

• Context-based, collaboration-aware access control mechanisms. Classical identity-
based models or the families of role-based (RBAC) [4] and task-based (TBAC) [5]
access control models assume that a resource owner has prior knowledge of the
user. This assumption is not adequate for today’s highly dynamic, market oriented
web services paradigm, wherein the services are offered to anyone with the
necessary credentials. Proposed access control models based on trust management
[6] address this problem. However, trust management-based access control models

384 M. Altunay et al.

still need to be incorporated with a high level abstraction that encompasses trust
and collaboration policies, as described in Section 2. These policies will allow a
resource owner to evaluate incoming access requests based on the context of a
workflow and the established trust relationships among the WPEs.

Below, Figure 1 illustrates the workflow path construction throughout the planning
stage. The planning engine starts with finding sets of candidate services that are
functionally capable of performing the workflow tasks (candidate services are shown
in curly brackets in Figure 1). Then each task is mapped to a service, and the
workflow path is sent to the execution stage. We propose that the workflow planning
engine needs to recognize, identify, and evaluate the complex trust relationships
between WPEs during the planning stage. Modeling and evaluating trust relationships
during planning stage is requisite if the above requirements are to be met. Thus, the
workflow planning engine should (1) identify prospective collaborating parties from a
given path, (2) orchestrate the trust evaluations among these parties, and (3) have a
robust selection algorithm for building a secure and reliable workflow path from
given candidate resources.

 (a) (b)

Fig. 1. (a) The tentative workflow path at the beginning of planning stage. (b) The workflow
path at the end of the planning stage.

To support such environments, we present a workflow management framework
(Section 3) that incorporates collaborative trust and security models at the workflow
planning stage. Our framework provides an organizational model rather than an
architectural specification. The primary component of this framework is a workflow
engine that can identify and evaluate complex trust relationships among workflow
entities. It provides a decentralized authentication and authorization model, in which
each workflow entity is responsible for creating and enforcing its own access control
policies. Our framework increases the availability of complex and trusted distributed
environments for application communities that are unable or reluctant to create formal
virtual organizations. It also provides the tools that support the complex trust
relationships that already exist in these domains, allowing new opportunities for
collaboration and scientific discovery.

 Trust-Based Secure Workflow Path Construction 385

2 New Workflow Paradigm: Collaboration-Based Secure
Workflow Path Formation

Conceptually, during the execution of a typical workflow, the data transfer and
control flow defined by the workflow engine specifies the neighboring relationships
among arbitrary resources. The interactions occurring between WPEs in a workflow
path can be examined in two categories: bilateral and indirect.

Any interaction between two WPEs that are immediate neighbors of each other is a
bilateral relationship, even when the flow of interaction seems to be one-sided. To
illustrate this, the simple collaboration scenario shown in Figure 2 seemingly involves a
one-sided relationship: Service A presents an input file to Service B and Service B
determines if it trusts Service A. However, there are actually two relationships: (1)
Service A determines that it trusts Service B and agrees to share a copy of its result file,
and (2) Service B determines that it trusts Service A to access with the specified input file.
Both of these actions involve risk: from Service A’s perspective, Service B could be a
rival company that is not willing to share its results (i.e. application logic); from Service
B’s perspective, Service A could be a malicious user who sends a Trojan horse.

Indirect interactions occur between WPEs that are not immediate neighbors of each
other, such as A and C in Figure 2. The interaction between such WPEs occurs through
intermediate services. Based on the level of interaction, a service owner may want to put
restrictions on the identities of its non-immediate neighbors. Moreover, the identities of
such neighbors may significantly affect the willingness of a WPE to participate in a
workflow. There are several reasons why such indirect trust relationships must be
carefully evaluated. (1) Confidential documents or the results of a sensitive algorithm are
typically passed among several WPEs throughout an execution path; thus even a non-
immediate neighbor might have access to confidential data. (2) Industry-specific and
government-based regulations [21] place important restrictions on the identity of
collaborating partners, even when such collaborations are indirect. In industries such as
health care and bioinformatics, every individual organization is held accountable for their
direct and indirect collaborators with whom they exchange data. (3) Existing partnership
agreements and competition among businesses prevent them from doing business with
some certain organizations. Even when such interactions are safe from a security
standpoint, the higher-level business logic forbids them.

Current workflow management systems ignore bilateral and indirect interactions,
and only apply unilateral security checks, merely checking credentials of the
workflow requestor against
each WPEs. Two scenarios
arise where our proposed
framework provides a
distinctive advantage over
existing workflow planning
systems. Presume that the
user has authorized access to
all WPEs, and has delegated
his access rights to them.

In the first scenario, a
desired interaction cannot

Fig. 2. Collaboration scenario

386 M. Altunay et al.

occur and this is not determined until run-time. For example, Service B needs to access a
file from Service A but security policies, perhaps a firewall rule set, deny the interaction.
This fault will require a costly run-time re-evaluation of the planning algorithm.

In the second scenario, a desired interaction occurs that, due to higher-level
business policies, ought not be allowed. Given the current difficulty in setting up fine-
grained, dynamic VO’s and the costly nature of security related run-time failures,
many installations are overly permissive. For example, Service B’s business logic
prevents it from interacting with Service A due to its partnership agreement with
another business, but since the WPEs are using delegated rights, Service B is unable
to recognize its interaction with Service A.

Our framework realizes the evaluation of bilateral and indirect trust relationships,
and requires every WPE to express its security requirements through an upper layer of
collaboration policies. These policies allow a service owner to explicitly communicate
its trust requirements for bilateral and indirect interactions occurring in a workflow.
By harnessing such requirements, collaboration policies express the conditions under
which a WPE is willing to participate in a workflow and the allowed actions during
the workflow execution.

2.1 Collaboration Policies

Collaboration policies define a set of requirements and rules that must be met for
participating in a workflow. These policies define trust requirements of neighboring
services for collaboration, the propagation of access rights throughout the execution
path (delegation policies), and the trust requirements from a workflow requestor. Each
collaboration policy is comprised of four attributes: (1) authorization rules for
neighboring WPEs, (2) the radius of the partial workflow path that a WPE needs to
evaluate in terms of security, (3) the delegation of credentials throughout a workflow,
and (4) the trust relationship with the workflow requestor. Separate collaboration
policies for upstream and downstream neighbors may be defined.

Authorization rules for neighbor WPEs: The level of interaction between WPEs is
determined by the position of services in the execution path. The immediately
neighboring services are expected to exchange documents, executables and other
arguments directly, whereas non-immediate neighbors interact with each other
through intermediate services. A service owner may have different security
requirements based on the level of interaction required with each WPE. A
collaboration policy must express how all these different requirements combined
together and an overall authorization decision is made for a given path.

For example, an immediate neighbor (service B in Figure 2) may be required to
have the proper authorization rights to invoke service C, whereas, a non-immediate
neighbor (service A in Figure 2) may be applied to a weaker set of authorization rules
that covers only a partial set of required authorization attributes such as country
location, company information or a reputation value.

At the policy writing time, each service owner must decide (1) the size of the
partial workflow path that needs to be examined (i.e. the distance between the service
owner and the WPEs that security checks must be applied), and (2) the set of access
rules that should be applied to the entities within the partial path. Note that the size of
the partial workflow path that should be examined is independent of a specific

 Trust-Based Secure Workflow Path Construction 387

workflow instance — rather it is dependent on the sensitivity of the resource being
offered and the local regulations governing this resource. For example, a service,
which is only interested in checking its immediate upstream and downstream
neighbors, has a partial workflow path of two nodes. No matter which specific
workflow instance this service participates in, it will only examine two WPEs that
happen to be at the specified distances from the service owner.

In order to ease writing such policies, we define two security functions, S and A,
where S denotes strong authorization requirements and A denotes lighter attribute-
based requirements. Both S and A define the access control rules based on the
interaction level between entities. We use the distance between WPEs as an indicator
of interaction level, which is defined as follows:

Distance (WPE1, WPE2): x, where there are x number of hops between WPE1 and
WPE2 for each linear path between them.

S(WPE, obj), where obj denotes the object access is being requested, and WPE
denotes the workflow entity requesting access. One way to express a neighbor WPE is
by using direction:distance pairs. The direction:distance pairs identify the WPE for
which this policy rule is applied. Direction could be either upstream (up) or
downstream (down). S shows that the requesting WPE must be applied to the same
security policies that are applied when the access is requested by this WPE
individually (without being part of a workflow).

A(WPE, attr, obj), where obj and WPE are used in the same manner as used in the S
function. Attr denotes a list of attribute-based requirements. This list of required
attributes for authorization does not constitute the full set of attributes that are
required when the access is requested individually. Rather, these attributes are geared
towards internal business rules and industrial restrictions such as checking the
geographical origin of an organization or the rivalry information.

For example, the below sample policy shows that as long as one of the two
upstream neighbors are strongly authorized and they are not a certain rival company,
the access for this upstream path is allowed, whereas for the downstream path, only
the country information of the immediate neighbor is needed.

CP: {((S(up:1, obj1) ∧ A(up:2, Organization Name, obj1)) ∨ (S(up:2, obj1) ∧
A(up:1, Organization Name, obj1))) ∧
A(down:1, country information, obj2)}

The delegation of credentials throughout the workflow path: During the execution
of a workflow, the delegation of credentials from WPEs or workflow requestor may
be necessary. Each WPE, before joining a workflow, must express its delegation rules
in its collaboration policy. Such rules define (1) if delegated credentials are accepted
for authorization, (2) whether the downstream delegation of WPEs’ credentials are
allowed in case workflow execution requires such an action, and if so the trust
requirements from the delegated parties, (3) whether the WPE accepts delegated
credentials (delegated from an upstream neighbor) in order to invoke another service
or to propagate them to another WPE.

The above rules are necessary for a number of reasons. (1) A WPE or a workflow
requestor may be willing to delegate their credentials to a second party in order to
complete a job without carefully contemplating the security consequences. The WPE

388 M. Altunay et al.

that receives a request with delegated credentials must be able to distinguish such
credentials and apply appropriate security policies. Current grid execution
environments (Globus Toolkit) do not allow discrimination of delegated credentials
from the original ones, due to the usage of proxy credentials that provide single sign-
on. Our framework, by allowing a WPE to evaluate its direct and indirect neighbors’
credentials, enables a WPE to determine if delegated credentials are used in an
execution chain. Armed with such information, a WPE may refuse to allow access to
a delegation chain. (2) During workflow execution, WPEs shares their resources on
behalf of a workflow requestor. These shared resources may involve a WPE’s
credentials. Before joining a workflow, each WPE should define their rules for
allowing downstream delegation. Once such information is made available to the
workflow engine at the planning stage, a more efficient but non-secure path may later
be discovered to be suitable, thus increasing the performance of the workflow. (3) A
WPE may need to accept delegated credentials from an upstream neighbor either to
propagate them along the execution path or to invoke another downstream service.
Even though, acceptance of delegated credentials seems relatively safer than
delegating one’s own credentials, a WPE must carefully analyze the consequences of
accepting such credentials.

In order to ease writing collaboration policies, we define three delegation
functions:

Du(distance, obj, conditions), where distance shows how many downstream hops
the delegated credentials has traveled, obj denotes the object that is being requested,
and conditions defines the rules that must be satisfied for accepting access with
delegated credentials. Conditions define the authorization requirements in terms of
combination of S and A functions. Du communicates under which conditions access
to an object with delegated credentials is accepted.

Dd(credential, distance, conditions), where distance shows how many hops of re-
delegation is allowed, conditions hold the same meaning as in Du. Credential denotes
the credential being delegated downstream. Dd communicates whether this WPE is
willing to allow downstream delegation of its credentials.

Dt(credential, distance, transient/final, conditions), where all attributes hold the
same meaning as above except transient/final. Transient/final denotes whether the
credentials should be passed onto another WPE for the final service invocation or the
receiving WPE will perform the downstream service invocation with the delegated
credentials. Dt communicates the conditions under which a delegated credential is
accepted so that these credentials either be propagated to another WPE or used for a
downstream service invocation.

The radius of partial workflow graph for security examination: Based on its
collaboration policy, a WPE may require examining a partial graph of the workflow.
The radius for such a sub-graph is calculated from the collaboration policy and
communicated to the workflow engine. Depending on the policy, the number of
neighbors that should be evaluated in the downstream and upstream directions may be
different, thus requiring two radii, one calculated for each direction.

The trust relationship with the workflow requestor: In addition to defining the
required access rules for its neighboring WPEs’, a WPE may also need to define
access rules for the workflow requestor. The functions defined previously, S and A,

 Trust-Based Secure Workflow Path Construction 389

can be used to state such rules with the special keyword requestor instead of
direction:distance pairs. Note that the distance between a WPE and the workflow
requestor is dependent on the specific workflow path instance; however, the
collaboration policies must be expressed independent of any specific workflow
instances. Therefore, at the policy writing time, the location of the workflow
requestor is unknown, and must be signaled by the keyword requestor in S and A.

2.2 Collaboration Policy Semantics

A flexible yet expressive collaboration language is needed to express the
collaboration policies. XACML allows a resource owner to express access control
policies for a resource. Due to its richness and flexibility, we decided to express our
collaboration policies in XACML. Collaboration policies, combining existing lower
level access control policies with additional constraints, require an extensible
language that allows defining new attributes and subject groups easily.

We have also examined several other languages. BPEL4WS is widely accepted as
the de-facto flow language for workflow management systems. However, security is
not a major concern in the BPEL4WS – rather, BPEL4WS provides a facility to
exchange messages between collaborating organizations, and assumes that underlying
standards such as WS-SecureConversation and WS-Security would provide the
necessary security extension. WS-SecureConversation and WS-Security standards
provide “message-level” security on top of the SSL layer by specifying needed
security tokens in a SOAP message (Kerberos tickets, X509 credentials, or SAML
assertions). However, neither expresses the “business-level” interactions and
security/trust requirements among the collaborating partners.

WS-Trust and its allied standards support security token interoperability and
traditional bi-partite trust relationship. It does not explicitly model business level trust
relationships between entities when they are acting on behalf of a third party.

3 Secure Workflow Management Framework

Typically, workflow planning engines retrieve a list of suitable resources from the
discovery service (MDS) [7] [8], and map each task to a resource. During the
mapping process, the planning engines evaluate several constraints such as resource
availability, current load, wait time, data locations and the cost associated with each
resource [18, 19, 20]. For example, The Pegasus [18] planning engine selects
resources that are closer to the required data locations. If no resource is particularly
close, then a random decision is made. The Nimrod/G [19] planning engine evaluates
the computational costs and selects resources within workflow requestor’s price
range. The GridFlow [20] planning engine focuses on time management. The
estimated execution times for each candidate resource is evaluated, and an optimal
workflow path is built that can satisfy the time restrictions. Security and trust is of
little or no consideration during the mapping process. Rather, classical systems defer
authorization and trust evaluation to the execution stage.

The workflow planning logic must evaluate the existing trust relationships, and
dynamically build alternative execution paths when a functionally desirable execution

390 M. Altunay et al.

Fig. 3. Secure Workflow Framework, operating with the Globus Toolkit. The dark components
indicate the proposed additions to the frameworks. The light gray boxes are the documents
exchanged among the components.

path discovered to be infeasible from the security standpoint. To accomplish this, we
extend the workflow planning stage with a Collaboration Locator Module (CLM) and
the Authorization Management Module (AMM) (see Figure 3).

3.1 Collaboration Locator Module

The Collaboration Locator Module (CLM) is responsible for locating the WPEs that
collaborate with each other. Each WPE communicates the required radiuses of partial
workflow graphs to CLM. Based on the radius information, the CLM determines the
partial graphs that need to be sent to each WPE, and also determines the security checks
among the WPEs. Based on these checks, each WPE initiates the security evaluations.
(Note that WPE collaboration policies need not be communicated to the CLM.)

The sample scenario shown in Figure 2 is accompanied with the following
collaboration policies for each of the WPEs.

CPd(A):{S(down:1, document A); Dd(X.509, 2, Condition1: {S(down:1,
credential) for one hop delegation}, Condition2: {(S(down:1,credential) ∧ S(down:2,
credential)) for two hops delegation}; radius:2; S(requestor, service A)},

CPu(B):{S(up:1, service B); Dt(X.509, up:1, final, none); radius:1; S(requestor,
service B)}

CPd(B):{S(down:1, document B); none; radius: 1}

 Trust-Based Secure Workflow Path Construction 391

CPu(C): {((S(up:1, service C)) ∨ (S(up:2, service C) ∧ A(up:1, Organization
Name (X.509 DN), service C) ∧ Du(2, service C, none))) ; none; radius: 2;
S(requestor, service C)}

A’s collaboration policy indicates that the strong authorization of an immediate
downstream neighbor (expressed by S(down:1, document A)) and the workflow
requestor are required (expressed by S(requestor, service A)). Downstream delegation
of service A’s credentials are allowed under two conditions (expressed by Dd(X.509,
2, Condition1, Condition2)): (1) either the immediate downstream neighbor is
strongly authorized and the credentials are delegated for one hop distance (expressed
by Condition1: {S(down:1, credential) for one hop delegation}), or (2) two
subsequent downstream neighbors are strongly authorized, and the delegation of
credentials for distance of two is allowed (Condition2: {(S(down:1,credential) ∧
S(down:2, credential)) for two hops delegation}). Finally, the radius of upstream
workflow graph that needs to be evaluated is two (expressed by radius:2). Note that
the radius is two due to the conditions for the delegation rule.

B’s collaboration policy consists of two parts: upstream and downstream policies.
Both policies can be expressed together, however separation eases the job of policy
writer. The upstream policy requires the immediate upstream neighbor and the
workflow requestor to be strongly authorized ((S(up:1, service B) and S(requestor,
service B)). In case of an upstream delegation, B accepts the delegated credentials if it
would be the final entity for downstream service invocation (Dt(X.509, up:1, final,
none)). B’s downstream policy does not allow delegation of B’s credentials and
indicates that it should strongly authorize its immediate downstream neighbor
(S(down:1, document B)).

C’s collaboration policy indicates that an upstream path is only authorized if (1) the
immediate neighbor is strongly authorized or (2) the non-immediate neighbor at
distance 2 must be strongly authorized and should allow downstream delegation of its
credentials, and the immediate neighbor must not be a rival company ((S(up:2,
service C) ∧ A(up:1, Organization Name (X.509 DN), service C) ∧ Du(2, service C,
none))). C requires strong authorization of the workflow requestor (S(requestor,
service C)), and does not allow downstream delegation.

Having only received the radius information from the above collaboration policies,
CLM decides that following security checks among the WPEs are necessary.

A C for service C; B C for service C; C B for document B; B A for
document A; A B for service B, and C A for service A. CLM also prepares
partial graphs of the workflow and sends those to each WPE. Finally, CLM passes the
list of required security checks to AMM, which orchestrates the communication
among WPE and replaces insufficient pairs with matching ones.

3.2 Authorization Management Module

The AMM performs two functionalities: it orchestrates the trust evaluations between
WPEs, and based on the access decisions, it finds alternative execution paths.

A key point of AMM is the decentralized authorization framework. Each WPE
evaluates the access requests from its candidate neighbors. Based on the results of security
checks, each WPE determines whether or not to participate in the workflow and the
conditions under which the participation may take place. WPEs send their decisions and

392 M. Altunay et al.

conditions on the partial workflow path. AMM examines the WPEs’ decisions and checks
if the conditions are met. Note that AMM only serves to orchestrate authorization, rather
than making the final access control decisions on behalf of resources.

In order to ease the communication between AMM and WPEs, we provide a
simple message format.

(WPE, path): {decision, conditions: (required upstream delegation distance,
(allowed upstream delegation distance, transient/final), allowed downstream
delegation distance)}. Decision denotes if a given partial workflow map is authorized
by this WPE. The list of conditions shows if the approval of this partial path is
dependent on delegation of credentials. The list, respectively, shows how many hops
of upstream delegation is required for authorization (corresponds to Du), how many
hops of upstream delegation is accepted along with a transient or final flag
(corresponds to Dt), and the number of hops allowed for downstream delegation of
this WPE’s credentials (corresponds to Dd).

Re-visiting the sample scenario from Figure 2, CLM triggers services A, B and C to
start trust evaluations among each other. Assume A is strongly authorized for service C,
whereas B is not. However, B’s company information indicates that it is not part of a
rival organization. Also, B and C are both strongly authorized to A, and finally, A and C
are strongly authorized to B. The following messages would be created:

(C, 1): {approved, conditions: (1, 0, 0)}. This message shows that C is willing to
authorize this path, but it requires upstream delegation of distance one: neighbor (B)
must use the delegated credentials from its immediate upstream neighbor (A)
(indicated by 1 in the message). C neither authorizes any downstream delegation nor
accepts transient delegation of upstream credentials.

(A, 1): {approved, conditions: (0, 0, 2)}. This message shows that A is only willing
to allow downstream delegation of its credentials up to distance of 2.

Note that the authorization of C to A seems like an unnecessary operation for this
specific partial graph. However, consider the following scenario: there is a
subsequent downstream service, say D, that accepts upstream delegated credentials
from distance of two. In the case that C does not have the required credentials for
access, the workflow engine would immediately know that this path is still feasible by
looking at the message from A indicating that A may delegate its credentials to C (of
course given that A is authorized to D). Also note that requirement for authorization
of A to D is indicated in D’s upstream collaboration policy which would state that
credentials delegated up to distance of two are accepted.

(B, 1): {approved, conditions: (0, (1,final), 0)}, which shows that B accepts the upstream
delegation of credentials from A to invoke service C (indicated by (1, final)); however it
neither allows downstream delegation, nor requires upstream delegation.

Having looked at all the messages, AMM starts checking the conditions on the
path. C’s conditional approval (shown by (1,0,0)) depends on A’s willingness to
delegate (which holds true as shown in (0,0,2)) and B’s willingness to accept the
delegated credentials (which holds true as shown by (0, (1, final), 0)). Therefore,
AMM concludes that the required conditions for this path have been achieved and a
feasible path is found.

 Trust-Based Secure Workflow Path Construction 393

The second important function of AMM is to suggest alternative execution paths in
case a chosen path turns out to be infeasible from security standpoint. AMM must select
which WPE to replace in a given infeasible path. There could be several WPEs that do
not mutually trust each other on a complicated workflow path. Therefore, the algorithms
for selecting which WPE to replace become crucial. There are several important issues
to consider while replacing an unfit WPE and locating a new one for that task. (1) The
number of neighbors of the WPE. A high number of neighbors indicates that
replacement is going to cause many re-evaluations of trust relationships. Therefore, it is
safer to replace a WPE that has few neighbors. (2) The collaboration policy of a WPE.
Replacing a WPE that has a relatively light collaboration policy (i.e. accepts and allows
delegation, small radius, does not require strong authorization) with a WPE that has
more restrictive requirements may cause more trust re-evaluations. (3) The number of
neighbors that do not authorize this specific WPE. In some cases, a WPE may be found
to be unfit by only one other WPE, while the rest of the WPEs authorize it. In most
cases, it is safer to replace a WPE that is found unfit by the majority. However, a robust
selection algorithm must always re-visit issues (1) and (2).

4 Related Work

There are several workflow security frameworks that target the needs of large
organizations [9][10][11]. They focus on synchronizing the access to required
privileges to execute a task with the progression of a workflow. These approaches
require a central workflow authority to have the access rights associated with each
workflow subject and transfer these rights to the subjects based on the workflow
progress. In a heterogeneous environment, objects and subjects may be web services
belonging to different organizations. Therefore, the ownership of such access rights
by the central authority becomes impossible, thus making them insufficient for
heterogeneous dynamic environments.

Other approaches by Bertino [12], Tan [13], and Hung [14] use authorization
constraints to extend RBAC models. A security policy designed by a workflow
requestor may express constraints such that the resulting execution path must
conform. These efforts approach the authorization problem from the workflow
requestor’s perspective, and allow her/him to express trust requirements sought from a
candidate resource to perform a job. However, this approach does not touch upon the
other side of the authorization problem: the authorization of workflow requestor to the
candidate resources and the trust relationships among the resources.

Kang [15], Koshutanski [16], and WAS framework [17] recognize the inter-
organizational, heterogeneous nature of new-generation workflows. Kang requires
each participating organization to map its entire role structure to the role domain of
the workflow. The WAS framework focuses on deciding the required rights in order
to run a task through different domains, and on providing restricted delegation by
using source-code analysis of tasks. Both approaches require a central authority,
with access to the internal policies of each WPE, that can assign each task with a pool
of privileges and roles. The main drawback of this model is that it does not allow
building dynamic workflows, where the workflow engine assumes no knowledge
about the internal security policies of a participating organization.

394 M. Altunay et al.

Koshutanski’s framework focuses on providing authorization mechanisms between
a workflow requestor and WPEs. Instead of revealing access policies, each
organization sends a mobile process to the end user. Upon executing the mobile
processes on the user side, an access control decision is made. The reliance on mobile
processes introduces other security issues, such as how the end user can verify the
code, and how the code should identify the credentials required to make the
authorization decision. Moreover, this framework does not consider the trust
relationships among WPEs.

5 Conclusion

Construction of heterogeneous and dynamic workflows requires collaboration and
interaction among disparate services on demand; necessitating expression and
evaluation of trust relationships at the planning stage. Unfortunately, no current
workflow tool considers such relationships during the planning stage: rather, they
assume homogeneous execution communities where each party shares common long-
term goals and implicit trust. Our framework differentiates itself by defining a
security architecture for heterogeneous and short-lived collaboration environments. It
introduces collaboration policies that express the conditions to enter a workflow and
allowed actions during execution, by harnessing existing lower level access control
policies and additional workflow-oriented constraints. As a result, workflow entities
are assured to abide by their internal security policies, and infeasible execution paths
are replaced with suitable service pairs that are willing to collaborate at the planning
stage. Our framework, by providing the tools to support complex trust relationships,
increases the willingness of services for collaboration where creating formal
homogeneous communities are expensive.

References

1. Foster I., Kesselman C., Nick J., Tuecke S.: Open Grid Service Infrastructure WG, Global
Grid Forum (2002)

2. Foster I., Kesselman C.: Globus: A Metacomputing Infrastructure Toolkit. Intl J.
Supercomputer Applications (1997) 11(2):115-128

3. Foster I., Kesselman C., Tuecke S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Intl. J. Supercomputer Applications (2001) 15(3)

4. Sandhu R.: Role-Based Access Control Models. IEEE Computer (1996) 29(2):34-47
5. Thomas R.K., Sandhu R..: Towards a Task-based Paradigm for Flexible and Adaptable

Access Control in Distributed Applications. ACM SIGSAC New Security Paradigms
Workshop (1992-93) 138-142

6. Blaze M., Feigenbaum J., Ioannadis J., Keromytis A. D.: The role of trust management in
distributed systems security. In Secure Internet Programming: the Security Issues for
Mobile and Distributed Objects. Springer-Verlag (1999) 185-210

7. Raman R., Livny M., Solomon M.: Matchmaking: Distributed Resource Management for
High Throughput Computing. Seventh IEEE Intl. Symp. on High-Performance
Distributed. Computing (HPDC) (1998)

 Trust-Based Secure Workflow Path Construction 395

8. Czajkowski K., et al.: Grid Information Services for Distributed Resource Sharing. 10th
IEEE Intl. Symp. on High-Performance Distributed Computing (HPDC-10) (2001)

9. Atluri V., Huang W-K.: An Authorization Model for Workflows. Fifth European Symp. on
Research in Computer Security (1996) 44-64.

10. Knorr K.: Dynamic access control through Petri net workflows. 16th Conf. on Computer
Security Applications (ACSAC’00) (2000) 159-167

11. Huang W-K., Atluri V.: SecureFlow: A Secure Web-enabled Workflow Management
System. 4th ACM Workshop on Role-based Access Control (1999)

12. Bertino E., Ferrari E., Atluri V.: The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. ACM Trans. on Information and System
Security (1999) 2(1):65-104

13. Tan K., Crampton J., Gunter C. A.: The Consistency of Task-Based Authorization
Constraints in Workflow Systems. 17th IEEE Computer Security Foundations Workshop
(CSFW’04) (2004) 155-169

14. Hung P.C.K., Karlapalem K.: A secure Workflow Model. Australasian Information
Security Workshop Conference (2003) 33-41

15. Kang M.H., Park J. S., Froscher J. N.: Access-Control Mechanisms for Inter
Organizational Workflow. Sixth ACM Symp. on Access Control Models and
Technologies (2001) 66-74

16. Koshutanski H., Massacci V.: An Access Control Framework for Business Processes for
Web Services. ACM Workshop on XML Security (2003) 15-24

17. Kim S-H., Kim J., Hong S-J., Kim S.: Workflow-based Authorization Service in Grid.
Fourth Intl. Workshop on Grid Computing (GRID’03) (2003) 94-100

18. Deelman E., Blythe J., Gil Y., Kesselman C., Mehta G., Patil S., Su M-H., Vahi K., Livny
M.: Pegasus: Mapping Scientific Workflow onto the Grid. Across Grids Conference
(2004) 11-20

19. Buyya R., Abramson D., Giddy J.: Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid. Fourth Intl.
Conference On High Performance Computing in Asia-Pacific Region (HPC ASIA’00)
(2000) (1): 283-289

20. Cao J., Jarvis S. A., Saini S., Nudd G. R.: GridFlow: Workflow Management for Grid
Computing. Third IEEE/ACM Intl. Symposium on Cluster Computing and the Grid
(CCGRID’03) (2003) 198-205

21. Standards for Privacy of Individually Identifiable Health Information (HPR). 45 CFR
164.C. Federal Register (2003) 68(34):8334 – 8381

Reputation-Based Service Level Agreements
for Web Services

Radu Jurca and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Artificial Intelligence Laboratory, CH-1015 Lausanne, Switzerland

{radu.jurca, boi.faltings}@epfl.ch

Abstract. Most web services need to be contracted through service level
agreements that typically specify a certain quality of service (QoS) in
return for a certain price.

We propose a new form of service level agreement where the price is
determined by the QoS actually delivered. We show that such agreements
make it optimal for the service provider to deliver the service at the
promised quality. To allow efficient monitoring of the actual QoS, we
introduce a reputation mechanism. A scoring rule makes it optimal for
the users of a service to correctly report the QoS they observed.

Thus, we obtain a practical scheme for service-level agreements that
makes it uninteresting for providers to deviate from their best effort.

1 Introduction

Service oriented computing systems represent an attractive paradigm for the
business world of tomorrow. User requests ranging from trip reservations to
complex optimization problems, are no longer atomically treated by monolithic
organizations, but rather decomposed into smaller components that are sep-
arately addressed by different service providers [17]. While the advantages of
such a scenario are clear (simplicity, ease of management and customization,
fault tolerance and scalability), the fact that services are delivered by indepen-
dent, self-interested providers poses new challenges.

We assume a scenario where services are contracted through Service Level
Agreements (SLAs) that specify a certain quality of service (QoS) in return
for a certain price. Independent monitoring of QoS is expensive and technically
difficult. Without proper monitoring, selfish service providers can increase their
revenues by cheating: they advertise high quality but do not invest the necessary
effort to provision the service. Anticipating this behavior, rational clients will not
trust the providers, and therefore, will decrease to a minimum the amounts they
are willing to pay for the service. Such a market is very inefficient, and will drive
away trustworthy providers.

In this paper, we consider scenarios where a group of customers are treated
identically by the provider using the same service level agreement. In this case,
the SLA can be based on the service provided to them as a group. The first result
of this paper is that given correct information about the QoS, such agreements

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 396–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reputation-Based Service Level Agreements for Web Services 397

make it optimal for the service provider to deliver at least the advertised quality
to each participant.

This leaves the problem of monitoring this quality of service. As a second
main result, we show that independent monitoring can actually be replaced by a
reputation system where monitoring is done by the customers themselves. This
raises the problems of (a) eliciting honest feedback from clients and (b) prevent-
ing collusion. We show how a reputation mechanism can use side-payments (i.e.
clients get paid for submitting feedback) to make it rational for all clients to
truthfully share their feedback. Moreover, when a reputation mechanism has a
small number of “trusted” reports (i.e. feedback that is true with high probabil-
ity) we prove that rational clients will not collude in order to artificially decrease
the reputation of a service provider.

This paper thus describes a practical mechanism that eliminates incentives for
selfish service providers to cheat while greatly reducing the QoS monitoring bur-
den on the market. The scheme is safe against strategic lying and bad-mouthing1

collusion. Section 2 formally describes the setting and the assumptions behind
our results, Section 3 describes in detail the service level agreements and their
properties while Section 4 addresses the problem of truthful reporting. Section
5 evaluates our mechanism, followed by related work and a conclusion.

2 The Setting

We consider an online market pictured in Fig. 1 where service providers re-
peatedly offer the same service to the interested clients, in exchange for money.
The transactions between service providers and clients are regulated by a Ser-
vice Level Agreement (SLA) that defines (among others) quality parameters of
the delivered service (i.e. the QoS) and the dependence of price on the actual
QoS. When there are several QoS parameters, we assume that the SLA can be
split into separate agreements for each parameter such that the price is the sum

Market of Services

SLA

Provider
Client

SLA

Provider SLA

Provider

Client

Client

Client

Reputation Mechanism

Client

exchange service

for money

s
u

b
m

it
fe

e
d

b
a

c
k s

id
e

p
a

y
m

e
n

t

re
p

u
ta

tio
n

in
fo

rm
a

tio
n

re
p

u
ta

tio
n

in
fo

rm
a

tio
n

penalty

Fig. 1. A market of web services

1 Strategic denigration of a provider’s reputation through false negative feedback.

398 R. Jurca and B. Faltings

of the prices in the individual SLAs. A precise definition of the SLA for our
mechanism is given in Section 3, Definition 1. A practical framework supporting
such interactions is described in detail by Dan et al. [3].

We assume there is a large enough group of clients that share the same QoS
and SLA during a predefined period of time. Note that a provider can have sev-
eral customer groups (e.g. silver/gold/platinium customers), as far as all clients
in a certain group are treated identically. Therefore, the average satisfaction rate
of the customers in a given group, in a given period of time, can be used to es-
timate the real QoS delivered by the provider. We denote by Q the set of all
possible values for the QoS.

We assume that clients have two degrees of satisfaction: they either perceive
high quality or low quality service. High quality service, for example, is perceived
when the answer to the service request is received before a specified deadline.
This binary model can be easily extended to finer grained quality levels and
multiple quality parameters.

The market has an independent reputation mechanism (RM) that collects
binary feedback from clients. ”1“ denotes positive feedback and signals the fact
that the client has observed a high quality service. Likewise, ”0“ denotes negative
feedback and signals low quality service. Feedback is collected at the end of each
time period, when all transactions are assumed completed. The reputation of a
provider is computed by the RM as the percentage of positive reports submitted
by the members of a particular customer group, in a given period. Reputation,
therefore, equals the average QoS delivered to a given customer group in a given
period.

Clients can make involuntary mistakes when submitting feedback. When q
percent of the clients perceive high quality, the reputation of the provider equals
q + ηr; the noise ηr is assumed normally distributed around 0 with variance σ2

r .
We further assume that the RM can (a) pay clients for submitting reports,

and (b) obtain a limited number of trusted reports that are true with high
probability. Trusted reports can be obtained from specialized agents2 hired to
anonymously test the service delivered by the provider. In Section 4 we show
how side payments and trusted reports can be used to elicit honest feedback
from rational clients, and prevent collusion.

Service providers differ in their ability and knowledge to provide qualitative
services. For example, the time required to successfully answer a service invo-
cation (up to some random noise) depends on the available infrastructure (e.g.
hardware, software, network capacity) and on the number of requests accepted
by the provider in a given time window.

The infrastructure is assumed fixed and defines the type of the provider. Two
providers have the same type if they have exactly the same capabilities for pro-
viding service. Formally, the set of possible types is denoted by Θ, and members
of this set are denoted as θ.

2 Sites like Keynote Systems (www.keynote.com) and Xaffire Inc. (www.xaffire.com)
offer such services.

Reputation-Based Service Level Agreements for Web Services 399

The number of accepted requests, on the other hand, can be strategically
decided by the service provider. Given the available infrastructure (i.e. a type),
the provider needs to limit the number of accepted requests in order to deliver
the required answers before the deadline, with high probability. Providing high
QoS requires effort (e.g. limiting requests and giving up revenue), and hence,
has a cost.

Let c(θ, e) be the cost incurred by a provider of type θ when exerting effort e
in a given period of time. The cost function is private to each provider type, and
usually concave (i.e. higher quality demands increasingly more effort). However,
our results are independent of the form of the cost function.

The provider’s type (e.g. available infrastructure) and effort (e.g. number of
accepted requests) determine the actual QoS provided to clients. If we denote by
E the set of possible effort levels, and by Q the set of possible quality levels, let
the function φ : Θ × E → Q defines the mapping between type, effort and QoS.
External factors and noise also influence the QoS. A type θ provider will there-
fore deliver quality φ(θ, e) + ηn when exerting effort e. ηn is assumed normally
distributed around 0 with variance σ2

n.

3 Reputation-Based Service Level Agreements

The idea behind the SLA we propose in this paper is to make higher, untruthful,
advertisements of QoS unprofitable for service providers. For that, our SLA
follows the framework proposed in [3] and specifies a monetary penalty that
must be paid by the provider to each client at the end of a given period of
time. The penalty is directly proportional to the difference between promised
and delivered QoS, such that the total revenue of a provider declaring higher
QoS (i.e. the price of the advertised QoS minus the penalty for providing lower
QoS) is lower than the price obtained from truthfully declaring the intended
QoS in the first place. The novelty of our approach is that we use reputation
information to compute the penalties paid by providers.

Definition 1. A reputation-based Service Level Agreement states the following
terms:

– per_validity: the period of validity. Time is indexed according to a discrete
variable t;

– cust_group: the intended customer group (e.g. silver/gold/platinium cus-
tomers);

– QoS (denoted as q̄t ∈ Q): the quality of service (e.g. the average probability
of delivering high quality service);

– price (denoted as pt) : the price of service;
– penalty: the reputation-based penalty to be paid by the provider to the client

for deviating from the terms of the SLA. The penalty λt : Q×Q → R+ is a
function of advertised QoS (i.e. q̄t) and delivered QoS (i.e. the reputation,
Rt). λt(q̄t, Rt) = 0 for all Rt ≥ q̄t and strictly positive otherwise.

400 R. Jurca and B. Faltings

The SLA is defined by the service provider prior to the period of time, t, when
the SLA is valid. The provider chooses (a) the advertised QoS (i.e. q̄t), (b) the
price charged for service (i.e. pt), (c) the penalty function (i.e. λt(·, ·)), and (d)
the exerted effort (i.e. et). The first three choices are made public through the
SLA (we therefore use the shorthand notation: slat = (q̄t, pt, λt)) while the forth
one is kept private.

As a first result we derive sufficient constraints on the penalty function such
that service providers of all types find it optimal to deliver at least the promised
QoS. As expected, these constraints are related to the market price of QoS.

Proposition 1. Let the function u : Q → R define the market price clients
pay for a given QoS. When (1) clients truthfully submit feedback, and (2) the
penalty function satisfies: ∂λ(q, R)/∂q ≥ 2u′(q), for all q and R, the reputation-
based SLA makes it rational for all service provider types to deliver at least the
advertised QoS.

Proof. Consider a type θ provider advertising slat = (q̄t, pt, λt) in period t. If
the provider exerts effort level et, his expected revenue is:

Vt(et, q̄t) = Nt ·
(
pt − E[λ(q̄t, Rt)]

) − c(et, θ); (1)

where Rt is the reputation of the provider at the end of time period t, Nt is the
number of services sold in period t, c(et, θ) is the cost of effort, and the expected
penalty is computed with respect to possible values of Rt. Vt does not depend
on any past or future decisions of the provider. By individually maximizing the
sequence of payoffs, a rational provider also maximizes his life-time revenue.

When the provider exerts effort et, the quality of the service equals φ(θ, et)+
ηn, where ηn is normally distributed around 0 with variance σ2

n. Clients truth-
fully report their observations, however, they make mistakes. Assuming that the
number of reports is big enough, the value of the reputation Rt = φ(θ, et)+ηn+ηr

is normally distributed around φ(θ, et) with the variance σ2 = σ2
n + σ2

r .
Let (e∗, q∗) = argmax(et,q̄t) E

[
Vt(et, q̄t)

]
be the optimal effort level and ad-

vertised QoS. Assuming the provider asks the maximum price for the advertised
quality (i.e. pt = u(q̄t)), the first order condition on q∗ becomes:

1
Nt

∂Vt

∂q̄t
(e∗, q∗) = u′(q∗) − E

[∂λ

∂q̄t
(q∗, φ(e∗) + η)

]
= u′(q∗) −

∫
q<q∗

normpdf(q|φ(e∗), σ)
∂λ

∂q̄t
(q∗, q)dq = 0;

where normpdf(q|φ(e∗), σ) is the normal probability distribution function with
the mean φ(e∗) and variance σ2.

By replacing the condition on λ, we get:∫
q<q∗

normpdf(q|φ(e∗), σ)dq ≤ 0.5 (2)

i.e. the cumulative probability distribution Pr[q < q∗|φ(e∗)] ≤ 0.5. For a normal
distribution, this is only true if q∗ ≤ φ(e∗). In other words, all provider types
deliver at least the promised QoS. %&

Reputation-Based Service Level Agreements for Web Services 401

Clients can check the constraint on the penalty function by analyzing the
previous transactions concluded in the market. For every previously negotiated
slai = (q̄i, pi, λi), clients infer that the market price corresponding to q̄i must be
higher than pi: i.e. u(q̄i) ≥ pi. Previous interactions thus establish a lower bound
on the real market price that can be used to safe-check the validity of the penalty
function. Please note that the proof above does not make any assumptions about
the market price or the cost function of the providers. Reputation-based SLAs
can thus be used for a variety of settings.

All service providers have the incentive to minimize the penalty function spec-
ified by the SLA. This happens when the constraint in Proposition 1 is satisfied
up to equality. As an immediate consequence, all service providers advertise
exactly the intended QoS (Equation 2).

The mechanism assumes that (1) clients submit honest feedback, (2) they
are able to submit feedback only after having interacted with the provider,
and (3) they submit only one feedback per transaction. The first assumption
can be integrated into the broader context of truthful feedback elicitation. The
problem can be solved by side-payments (i.e. clients get paid by the reputation
mechanism for submitting feedback) and will be addressed in more details in
Section 4.

The second and third assumptions can be implemented through cryptographic
mechanisms based on a public key infrastructure. As part of the interaction,
providers can deliver signed one-time certificates that can later be used by clients
to provide feedback. A concrete implementation of such a security mechanism
for reputation mechanisms is presented in [7].

4 Truthful Reporting

Reporting honest feedback (as required by the proof of Proposition 1) is not
exactly in the best interest of rational clients. By reporting false negative feed-
back (when she actually experienced a successful service) a client decreases the
reputation of the provider, and consequently decreases the overall price (i.e.
price minus penalty) she needs to pay for the service. Actually, it is always in
the clients’ best interest to report negative feedback. Unless this strategic bias
can be eliminated, rational clients will consistently downrate providers who will
eventually quit the market.

Side-payments (i.e. clients get paid for submitting feedback) can be designed
to encourage rational clients to report the truth. This is possible because the
observation of a client (i.e. the fact that the service delivered to her had high
or low quality) slightly changes the client’s belief regarding the experience of
future clients. Take a client having experienced a low quality service (e.g. a
request failure). The client will infer that the present invocation failure is likely
to be caused by a problem affecting the general infrastructure of the provider.
Future clients will probably be affected by the failure as well, and therefore,
the average QoS experienced by the next clients is slightly lower than expected
(prior to observing the failure).

402 R. Jurca and B. Faltings

S(0, 0)
2(1 − q̄t)(1 − 2q̄t + q̄2

t + σ2) − (q̄t − q̄2
t − σ2)2 − (1 − 2q̄t + q̄2

t + σ2)2

(1 − q̄t)2

S(1, 0)
2(1 − q̄t)(q̄t − q̄2

t − σ2) − (q̄t − q̄2
t − σ2)2 − (1 − 2q̄t + q̄2

t + σ2)2

(1 − q̄t)2

S(0, 1)
2q̄t(q̄t − q̄2

t − σ2) − (q̄t − q̄2
t − σ2)2 − (q̄2

t + σ2)2

q̄2
t

S(1, 1)
2q̄t(q̄2

t + σ2) − (q̄t − q̄2
t − σ2)2 − (q̄2

t + σ2)2

q̄2
t

Fig. 2. Side-payments for reputation reports, depending on the advertised QoS (q̄t)
and noise (σ2)

Similarly, a high quality service testifies for the well functioning of the
provider’s infrastructure and encourages more optimistic estimates regarding
the QoS observed by future clients. This asymmetry in the beliefs regarding the
experience of future clients can be exploited by side-payments that make truthful
reporting optimal.

Concretely, we adapt the mechanism described by Miller et al. [13] to our
setting. The basic idea behind the mechanism is to use the feedback of a future
client (referred to as rater) to rate (and compute the payment for) a submitted
report. The present report is used to update a probability distribution for the
report of the rater. The payment for the report is then computed by comparing
the likelihood assigned to the rater’s rating with the rater’s actual rating.

The payment scheme is the following:

– all reports submitted during the same period of time are attributed a unique
sequence number, i ∈ {0, . . .N}. N is the total number of collected reports
(in a period).

– the feedback ri is compared against feedback ri+1, and is paid S(ri+1, ri)
defined according to Fig. 2:

The side payments depend on (a) the advertised QoS, and (b) on the variance
σ2 = σ2

n + σ2
r of the observed QoS. The first is specified in the SLA. The second

can be approximated by the reputation mechanism from the reputation record of
the provider (e.g. the reputation Ri is a noisy approximation of the same intended
QoS). The side payments are computed and made public by the reputation
mechanism at the beginning of each time period.

To prove that rational clients have the incentive to tell the truth we have to
consider their beliefs. Given the SLA (q̄t, pt, λt), every client believes that the
actual QoS is normally distributed around q̄t with variance σ2

n. Having observed
a successful service or a failure, the client updates her prior beliefs (described by
the pdf3 f(q)) according to Bayes’ Law into the posterior pdfs: f(q|1), respec-
tively f(q|0):

f(q|1) =
Pr[1|q] · f(q)

Q Pr[1|q]f(q)dq
; f(q|0) =

(1 − Pr[1|q]) · f(q)
1 − Q Pr[1|q]f(q)dq

;

3 Probability distribution funtion.

Reputation-Based Service Level Agreements for Web Services 403

where Pr[1|q] is the probability of observing 1 given a service with quality q,
and

∫
Q Pr[1|q]f(q)dq = q̄t is the overall probability of observing high quality.

Consequently, the likelihood assigned by the client to the next client’s rating is
described by:

Pr[ri+1 = 1|ri = 1] =
Q

Pr[1|q]f(q|1)dq =
q̄2

t + σ2

q̄t
;

Pr[ri+1 = 1|ri = 0] =
Q

Pr[1|q]f(q|0)dq =
q̄t − q̄2

t − σ2

1 − q̄t
;

(3)

It is easy to verify that Pr[1|1]S(1, 1) + Pr[0|1]S(0, 1) ≥ Pr[1|1]S(1, 0) +
Pr[0|1]S(0, 0) and Pr[1|0]S(1, 0)+Pr[0|0]S(0, 0)≥Pr[1|0]S(1, 1)+Pr[0|0]S(0, 1).
In other words, when the next client reports the truth, the expected payment of
a true report is always greater than the expected payment of a false report. This
makes truthful reporting a Nash equilibrium. The side payments can be scaled
to be always positive and budget balanced (details in [13]).

Every negative report decreases the price a client has to pay by λ(q̄t, Rt −
1/N) − λt(q̄t, Rt). The client cannot benefit from submitting a false negative
report if the loss due to lying outweighs the price cut. This can be achieved by
multiplying the values in Fig. 2 with the constant4:

M =
λt(q̄t, Rt − 1/N) − λt(q̄t, Rt)

E(1, 1) − E(0, 1)
(4)

where E(ri, oi) denotes the expected payment of client i given that she has
observed oi ∈ {0, 1} and reports ri ∈ {0, 1}.

4.1 Enforcing the Truthful Reporting Strategy

The truthful equilibrium defined above is unfortunately not unique. Clients, for
example, can always report negative feedback without suffering side payment
losses (i.e. always reporting 0 is also a Nash equilibrium strategy). In [8] we
suggest the use of trusted reports in order to eliminate such undesired equilibrium
strategies. Trusted reports can be obtained from specialized agents hired to test
the service of a provider.

The truthful equilibrium becomes unique when the feedback from clients is
rated (as explained in the previous section) only against trusted reports. It is
desirable, however, to minimize the number of trusted reports needed in order
to enforce the uniqueness of the truthful equilibrium.

We modify the rating scheme from Section 4 such that all client reports are
rated against one trusted report, randomly chosen from a small set of available
trusted reports. In the extreme case the set could contain only one report; how-
ever, the right tradeoff between robustness (against the mistakes of specialized
agents) and cost can be achieved by having several trusted reports.

4 Multiplication or addition with a constant does not influence the truthful reporting
Nash equilibrium of the side payment mechanism.

404 R. Jurca and B. Faltings

In [8] we show that it is not necessary to have trusted reports for every time
period. Using the side-payments defined above, we conclude that the truthful
reporting equilibrium is very stable. It takes a big proportion (e.g. 20%) of lying
agents in order to shift the reporting equilibrium, and make it rational for the
other agents to lie as well. As a consequence, trusted reports need only be used
in the first periods of time in order to coordinate the clients on the truthful
equilibrium. Once the truthful strategy is enforced, the market can do a passive
monitoring of the reporting strategy and buy new trusted reports only when a
deviation is observed. In this way, the overall number of trusted reports needed
by the market becomes insignificant.

4.2 Collusion

Collusion happens when two or more clients conspire to artificially decrease the
reputation of a provider, and thus decrease the price they have to pay for the
service. The reputation side-payments do not make it interesting for one client
to submit negative feedback, however, when several clients form a coalition and
adopt a negative reporting strategy, the price-cut is cumulative and every agent
benefits from the action of the group.

The use of trusted reports (as described in Section 4.1) also deters collusion.
When clients are self-interested and external punishments cannot be inflicted
on them, we prove that any feedback-reporting coalition is unstable, and hence,
irrational.

Proposition 2. The reputation-based Service Level Agreements are feedback-
reporting collusion proof.

Proof. The intuition behind this proof is that any coalition of clients (colluding
to submit false feedback) is unstable. As member of such a coalition, a rational
client finds it more profitable to report the truth rather than stick to the colluding
strategy. Clients are free to maximize their revenue, so they will quit the coalition
and choose to report truthfully.

Formally, take a subset of clients colluding on a lying strategy, and let the
client c, part of the coalition, be expected to lie when submitting feedback. Client
c exists, since otherwise all colluding agents report the truth. c can stick to the
colluding strategy and lie: she thus benefits from the advantages of collusion,
however, expects a loss due to reputation side-payments. On the other hand, c
can deviate and report the truth: she thus optimizes her expected payment from
the reputation mechanism but the result of collusion is less effective.

The side-payments multiplied by the factor in Equation (4) guarantee that
the loss in reputation payment is always greater than the price-cut obtained
from one false report. Therefore, it is rational for c to leave the coalition. The
same argument can be applied to any colluding client; hence feedback-reporting
collusion is not rational. %&

Please note that stronger forms of collusion are still possible. If one client
controls multiple online identities (the sybil attack) she can coordinate false

Reputation-Based Service Level Agreements for Web Services 405

reporting in order to decrease the price of service. This type of collusion should
be addressed by security and social mechanisms that closely connect online and
physical identity.

5 Experimental Evaluation

The use of reputation information greatly reduces the independent monitoring
required by markets of web services. In this section we compare the mechanism
described in this paper (mechanism A) with an alternative mechanism (mecha-
nism B) where the market only uses trusted reports (i.e. independent monitoring)
to compute the penalty to service providers for QoS degradation.

We first investigate the quality of monitoring of the two mechanisms. The
precision of the monitored QoS value directly impacts the revenue of service
providers. When the monitored QoS value is exactly equal to the delivered QoS,
service providers do not have to pay any penalty and thus obtain their maximum
payoff. However, practical monitoring schemes always provide noise approxima-
tions of the delivered QoS. The noise thus introduced, translates into a non-zero
expected penalty that decreases the total utility of service providers. The poorer
the approximation offered by the monitoring system, the greater the utility loss
of service providers.

The second criterion we employ is the monitoring cost required by the two
mechanisms. While general analytical results can be obtained, we believe it is
more informative to compare the two mechanisms on a realistic (however sim-
plified) example.

Consider a web service providing closing stock quotes. A reputation-based
SLA is advertised every morning and specifies the price of service, the QoS (e.g.
the quote is obtained within 5 minutes of the closing time with probability q̄) and
the penalty function λ. Interested clients request the service, and then wait the
answers from the service provider. They experience high quality if the answers is
received before the deadline (i.e. 5 minutes after the closing time) or low quality
if the answer is late or not received.

The probability of successfully answering the clients’ requests depends on the
available infrastructure and on the number of accepted requests. For a given
provider, Fig. 3 plots the relation (experimentally determined) between the ex-
pected QoS (i.e. φ(n)), and the number of accepted requests. The QoS actually
provided to the clients is normally distributed around φ(n) with variance σ2

n.
We assume that the closing stock quotes represent mission-critical information

for the clients present in the market. Late or absent information attracts supple-
mentary planning costs and lost opportunities. Therefore, the market price func-
tion, (i.e. u(q)) is assumed convex, corresponding to risk-averse clients. When q̄
is the advertised QoS, n is the number of accepted requests, q̂ is the QoS per-
ceived by the market, and C denotes the fixed costs, the expected revenue of the
provider is:

V (n, q̄) = Eq̂

[
n · (u(q̂) − λ(q̄, q̂)

) − C
]
;

406 R. Jurca and B. Faltings

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of requests

Q
oS

Fig. 3. The QoS as a function of
the number of requests accepted by a
provider (Experimentally determined)

0 500 1000 1500 2000
−100

−50

0

50

100

150

200

250

300

350

400

number of requests

R
ev

en
ue

Fig. 4. The revenue function of the
provider depending on the number of ac-
cepted requests

By using the mechanism A, the market perceives a QoS equal to: q̂A =
φ(n) + ηn + ηr where ηr is the noise introduced by reporting mistakes, normally
distributed around 0 with variance σ2

r . For a price function u(q) = q2, the fixed
cost C = 100, the standard deviations σn = 3%, σr = 4%, and a penalty func-
tion λ(q̄, q̂) = 2

(
p(q̄)−p(q̂)

)
, Fig. 4 shows the optimal revenue of the provider as

a function of n. The optimal value of the payoff function is reached for nt = 681,
when q̄ = 0.858 = φ(681), as predicted by Proposition 1. Mechanism B satisfies
the same optimality and incentive-compatible properties for the service provider.
Different price functions or quality functions generate different optimal param-
eters, however, they do not modify the qualitative properties of the mechanism:
providers deliver at least their declared QoS, and clients have the incentives to
report the truth.

The average, per-client, utility loss of a service provider is defined as the
expected penalty a provider has to pay as a consequence of an inaccurate ap-
proximation of the delivered QoS (as computed by the monitoring mechanisms).
When q̂A and q̂b are the monitored QoS values provided by the two mechanisms,
the utility losses caused by the two mechanisms are:

UtilLossA = Eq̂A

[
λ(q̄, q̂A)

]
; UtilLossB = Eq̂B

[
λ(q̄, q̂B)

]
;

computed at the optimal QoS, q̄. A higher variance of q̂ increases the utility
losses of providers. Typically, mechanism B has less information than mechanism
A about the delivered QoS and therefore generates higher losses for providers.
The difference in the average utility loss per client generated by the two mecha-
nisms is shown in Fig. 5, as a function of the number of trusted reports employed
by mechanism B. To reach the same performance, mechanism B needs approxi-
mately 75 trusted reports, i.e. 11% of the number of service requests.

The administrative costs of the mechanism A consist of (a) the reputation
side-payments and (b) the cost of trusted reports. The cost of mechanism B
consists only of trusted reports. The cost of a trusted report is assumed equal

Reputation-Based Service Level Agreements for Web Services 407

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

number of trusted reports

av
er

ag
e

ut
ili

ty
 lo

ss

Fig. 5. The difference in client utility
loss caused by using only trusted reports

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

number of trusted reports

m
on

ito
rin

g
co

st

cost with reputation information
cost without reputation information

Fig. 6. The monitoring cost of not using
reputation information

to (1 + δ) times the price of service (e.g. the monitoring agent buys the service
and receives a commission δ). We take δ = 0.1.

For the same parameter values as above, the reputation side-payments given
in Fig. 2 (properly scaled to be positive and multiplied with the correction factor
defined by Equation 4) become: S(1, 1) = 2.3%, S(0, 1) = 0, S(1, 0) = 1.6% and
S(0, 0) = 1.7% of the price of the perfect service (i.e. u(1)). Fig. 6 plots the differ-
ence in monitoring costs between the mechanisms A and B for different number
of trusted reports employed by mechanism B. For similar performance (i.e. 75
trusted reports) mechanism B has monitoring costs that are 4 times higher.

Please note that the utility loss in Fig. 5 is for every client. When mechanisms
A and B have the same monitoring cost (i.e. mechanism B uses approximately
20 trusted reports) a service provider looses on the average approx. 4.5% more
utility for every customer as a consequence of not using reputation-based moni-
toring. This apparently insignificant amount, multiplied by the number of total
clients (i.e. 681), generates significant losses for the provider.

6 Related Work

Our work can best be situated at the confluence of two lines of research in service-
oriented computing: electronic contract enforcement and reputation-based selec-
tion of services.

The legal system is seen as inappropriate for e-commerce disputes [2] and
therefore alternative dispute resolution mechanisms have been proposed to avoid
the escalation of disputes to the legal stage. Electronic contract enforcement
covers both non-discretionary approaches (e.g. preventive security mechanisms)
as well as discretionary ones (e.g. different control mechanisms that are applied
when contract rules are breached). Concrete progress has been made in the areas
of e-contract formal models ([19], [18]), contract performance monitoring([19],
[14], [11]), mediation of services through trusted third parties ([15], [16]) and
security infrastructures for safe service delivery([6], [5]).

408 R. Jurca and B. Faltings

Reputation mechanisms have emerged as efficient tools for service discovery
and selection [17]. When electronic contracts cannot be enforced, users can pro-
tect themselves against cheating providers by looking at past behavior (i.e. the
provider’s reputation). Lie et al. [10] present a QoS-based selection model that
takes into account the feedback from users as well as other business related
criteria. The model is extensible and dynamic. In the same spirit, [9] proposes
verity, a QoS measure that takes into account both reputation and the terms of
the SLA. [12] and [1] propose concrete frameworks for service selection based on
provider reputation.

An interesting approach is proposed by Deora et al. in [4]. The authors argue
that the expectations of a client greatly influence the submitted feedback, and
therefore both should be used when assessing the QoS of a provider.

Our work is novel in three main aspects. First, client feedback becomes a
first-class citizen of the interaction model. Reputation has a clear semantics and
is used to compute monetary penalties for deviations from the advertised QoS.
This makes it possible to rigourously analyze the strategies of rational service
providers and give theoretical proofs regarding the properties of the mechanism:
e.g. truthful declaration of QoS, low monitoring cost. Second, our model is free
from any probabilistic assumptions about the behavior of clients and providers.
Clients and providers are assumed to be self interested and free to maximize
their revenues. Third, we present a practical mechanism for ensuring truthful
feedback from clients that also deters collusion.

7 Conclusion

Without proper monitoring of the delivered QoS, self-interested providers have
the incentive to cheat by promising a higher than intended QoS. In this paper
we present a new form of SLAs where the final price paid by clients depends on
the actual quality delivered by the service provider, as computed by a reputation
mechanism. When clients honestly submit feedback, a reputation mechanism is
efficient in monitoring the real QoS and makes it rational for all service providers
to keep their promises.

As a second contribution we show how a side-payment scheme can be used in
a market of web services to elicit honest feedback from rational clients. Moreover,
a small number of trusted reports can prevent collusion and enforce truth-telling
as a unique strategy. In a previous paper we prove that only few trusted reports
are temporarily needed in order to coordinate the clients on the truthful strategy.
After this initial phase, the truthful strategy is quite stable (i.e. it takes a large
group of agents to change the reporting strategy of the whole community) and
the market should only assume a passive, monitoring role. Our mechanism there-
fore generates significantly lower cost than traditional monitoring mechanisms.

We thus describe a simple, robust mechanism that eliminates incentives for
selfish providers to cheat, at a much lower cost. The assumptions behind the
mechanism are fairly general, making it a candidate for many practical settings.

Reputation-Based Service Level Agreements for Web Services 409

References

1. B. Alunkal, I. Veljkovic, G. Laszewski, and K. Amin. Reputation-Based Grid
Resource Selection. In Proceedings of AGridM, 2003.

2. A. Carblanc. Privacy protection and redress in the online environment: Fostering
effective alternative dispute resolution. In In Proceedings of the 22nd International
Conference on Privacy and Personal Data Protection, Venice, 2000.

3. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youseff. Web services on demand: WSLA-driven automated
management. IBM Systems Journal, 43(1):136–158, 2004.

4. V. Deora, J. Shao, W. Gray, and J. Fiddian. A Quality of Service Management
Framework Based on User Expectations. In Proceedings of ICSOC, 2003.

5. R. Handorean and G. Roman. A framework for requirements monitoring of service
based systems. In Proceedings of ICSOC, 2003.

6. Y.-J. Hu. Trusted Agent-Mediated E-Commerce Transaction Services via Digital
Certificate Management. Electronic Commerce Research, 3, 2003.

7. R. Jurca and B. Faltings. An Incentive-Compatible Reputation Mechanism. In
Proceedings of the IEEE Conference on E-Commerce, Newport Beach, CA, USA,
2003.

8. R. Jurca and B. Faltings. Enforcing Truthful Strategies in Incentive Compatible
Reputation Mechanisms. In Proceedings of the Workshop on Internet and Network
Economics (WINE), Hong Kong, China, 2005.

9. S. Kalepu, S. Krishnaswamy, and S. Loke. Verity; A QoS Metric for Selecting Web
Services and Providers. In Proceedings of WISEW, 2003.

10. Y. Liu, A. Ngu, and L. Yeng. QoS Computation and Policing in Dynamic Web
Service Selection. In Proceedings of WWW, 2004.

11. K. Mahbub and G. Spanoudakis. A framework for requirements monitoring of
service based systems. In Proceedings of ICSOC, 2004.

12. E. M. Maximilien and M. P. Singh. Toward Autonomic Web Services Trust and
Selection. In Proceedings of ICSOC, 2004.

13. N. Miller, P. Resnick, and R. Zeckhauser. Eliciting Informative Feedback: The
Peer-Prediction Method. Forthcoming in Management Science, 2005.

14. Z. Milosevic and G. Dromey. On expressing and monitoring behaviour in contracts.
In Proceedings of EDOC, Lausanne, Switzerland, 2002.

15. G. Piccinelli, C. Stefanelli, and D. Trastour. Trusted Mediation for E-service Pro-
vision in Electronic Marketplaces. Lecture Notes in Computer Science, 2232:39,
2001.

16. R. Shuping. A Model for Web Service Discovery with QoS. ACM SIGecom Ex-
changes, 4(1):1–10, 2003.

17. M. P. Singh and M. N. Huhns. Service-Oriented Computing. Wiley, 2005.
18. Y.-H. Tan and W. Thoen. A Logical Model of Directed Obligations and Permissions

to Support Electronic Contracting. International Journal of Electronic Commerce,
3(2), 1999.

19. L. Xu and M. A. Jeusfeld. Pro-active Monitoring of Electronic Contracts. Lecture
Notes in Computer Science, 2681:584–600, 2003.

Handling Faults in Decentralized Orchestration
of Composite Web Services

Girish Chafle, Sunil Chandra, Pankaj Kankar, and Vijay Mann

IBM India Research Laboratory, New Delhi, India
{cgirish, csunil, kpankaj, vijamann}@in.ibm.com

Abstract. Composite web services can be orchestrated in a decentral-
ized manner by breaking down the original service specification into a set
of partitions and executing them on a distributed infrastructure. The in-
frastructure consists of multiple service engines communicating with each
other over asynchronous messaging. Decentralized orchestration yields
performance benefits by exploiting concurrency and reducing the data
on the network. Further, decentralized orchestration may be necessary
to orchestrate certain composite web services due to privacy and data
flow constraints. However, decentralized orchestration also results in ad-
ditional complexity due to absence of a centralized global state, and
overlapping or different life cycles of the various partitions. This makes
handling of faults arising from composite service partitions or from the
failure of component web services, a challenging task.

In this paper we propose a mechanism for handling faults in decen-
tralized orchestration of composite web services. The mechanism includes
a strategy for placement of fault handlers and compensation handlers,
and schemes for fault propagation and fault recovery. The mechanism
is designed to maintain the semantics of the original specification while
ensuring minimal overheads.

1 Introduction

A composite web service is created by aggregating the functionality of existing
web services (which act as its components) and can be specified using XML based
languages like BPEL4WS [1], WSIPL [9], WSCI [3], etc. Typically, a composite
service is orchestrated by an orchestrator node in a centralized manner. The or-
chestrator node receives the client requests, invokes the component web services
and makes the required data transformations as per the service specification. We
refer to this mode of execution as centralized orchestration. In this mode, all
data is transferred between the various components via the orchestrator node
instead of being transferred directly from the point of generation to the point of
consumption. This leads to unnecessary traffic on the network resulting in poor
scalability and performance degradation at high loads. Furthermore, centralized
orchestration may not be feasible in scenarios where component web services
place constraints on access to the data they provide or on the source from which
they can accept data.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 410–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Handling Faults in Decentralized Orchestration of Composite Web Services 411

We have been investigating decentralized orchestration in our prior work
[6,7,15,16] in order to overcome the above mentioned limitations imposed by
centralized orchestration. In decentralized orchestration [15], the composite
web service specification is analyzed for data and control dependencies, and
broken down into a semantically-equivalent set of partitions known as topology.
The partitions execute independently without any centralized control and inter-
act with each other directly by transferring data using asynchronous messaging.
Our decentralization algorithm [15] reduces the data on the network by sending
it directly from its point of generation to point of consumption.

The benefits of decentralization come with the added complexity of the system
as decentralization involves partitions which execute independently and interact
with each other directly using asynchronous messaging. The global state of the
original composite service is now distributed across different partitions. A fault
occurring in one partition does not get noticed by other partitions or the client
issuing the request. Fault propagation (even in absence of fault recovery) be-
comes essential so that - a) a fault occurring in one partition does not lead to
any other partition waiting indefinitely for an input from the erroneous parti-
tion , and b) a client issuing a request is notified about the fault occurring in a
partition. Absence of fault propagation in decentralized orchestration will lead
to degradation of system performance with increasing load as resources get held
up. This is hardly an issue in centralized orchestration as faults are generated
locally on the centralized node and the client can be notified easily. Fault re-
covery, on the other hand, is required in order to correct the effects of partial
changes to the state of the system and restore the system to an error free state.

A mechanism for fault handling, has to be designed such that it does not
degrade the system performance under normal execution and at the same time
be as efficient as possible in case of a fault. However, designing such a mechanism
for decentralized orchestration is non trivial because of the following challenges:

– In contrast to centralized orchestration, there is no centralized global state
as different partitions execute on different nodes.

– When a composite service specification is partitioned, the fault and com-
pensation handlers have to be placed appropriately amongst the partitions
in order to maintain correct semantics of the original service specification.
Furthermore, the partitions need to be augmented with additional code to
correctly forward and handle faults.

– Composite service languages such as BPEL4WS define “scope” activity to
associate fault handlers and compensation handlers with a fault handling
and recovery context. However, in decentralized orchestration, a single scope
might get partitioned across various partitions and the partitioned scopes
might execute at different times and have either overlapping or different life-
cycles. No single context exists that can store the data of already completed
scopes which is needed to compensate them while recovering from a fault.

In this paper we propose a mechanism for handling faults in decentralized
orchestration of composite web services.The mechanism includes a strategy for
placement of fault and compensation handlers and schemes for fault propagation

412 G. Chafle et al.

and fault recovery. The mechanism is designed to maintain the semantics of the
original service specification while ensuring minimal overheads.

2 Background and Related Work

Lot of work has been done in the area of fault handling in distributed systems.
Two types of approaches have been proposed for fault recovery - backward error
recovery and forward error recovery [14]. Forward error recovery is based on the
use of redundant data that repairs the system by analyzing the detected fault
and putting the system into a correct state. In contrast, backward error recov-
ery returns the system to a previous (presumed to be) fault-free state without
requiring detailed knowledge of the faults.

Various fault handling models for flat and nested workflow transaction hier-
archies have also been proposed in literature [8,18]. BPEL4WS uses a fault
handling model that supports nested transactions and allows inner transac-
tions (or sub-transactions) to make their results visible externally (referred to
as open nested transactions [18]). In this paper we adhere to the fault han-
dling model used by BPEL4WS and propose mechanisms that help conforming
to the BPEL4WS fault handling model during decentralized orchestration of
BPEL4WS composite services.

Application partitioning systems (JOrchestra [17], Coign [11], etc) that re-
place local method calls by remote method calls make use of various forms of
forward or backward error recovery scheme as the control for the application
remains centralized and there exists a single context in which faults are handled.

Various workflow systems (including systems that employ workflow partition-
ing) relied heavily on backward error recovery, (although forward error recovery
can also be used here) as most of the underlying resources were usually under
the control of a single domain. These are specified using proprietary languages
and usually do not handle nested scopes [10,13].

Fault recovery becomes a little more complex for composite web services as
component web services may be distributed across different autonomous do-
mains. Transactions (which fall under backward error recovery mechanisms),
which have been successfully used in providing fault tolerance to distributed
systems, are not suited in such cases because of following reasons:

– Management of transactions that span across web services deployed on dif-
ferent domains requires cooperation among the transactional systems of in-
dividual domains. These transactional systems may not be compliant with
each other.

– Locking resources until the termination of the embedding transaction is in
general not appropriate for such web services, still due to their autonomy,
and also to the fact that they potentially have a large number of concurrent
clients that will not stand extensive delays.

Forward error recovery is extensively used in composite web services in order
to handle errors. For instance, BPEL4WS provides support for fault handling

Handling Faults in Decentralized Orchestration of Composite Web Services 413

to recover from expected as well as unexpected faults, and compensation to
“undo” already committed steps by providing user defined fault handler and
compensation handler constructs. Apart from the compensation handlers in
BPEL4WS, lot of other efforts are also underway for providing transactional
support for composite web services (BTP [2], and WS Transaction [4]). Other
related work includes Web Service Composition Action (WSCA) [12]. WSCA is
an extension of the Coordinated Atomic Action (CA Action) for web services,
and is used for handling concurrent exceptions.

Decentralized orchestration of composite web services further complicates
fault handling as discussed earlier. In addition to augmenting the existing for-
ward error recovery mechanisms, additional fault propagation and data collection
schemes are needed. Not much work has been done in this area.

3 Proposed Fault Handling Mechanism

As discussed in section 2, forward error recovery mechanisms are used for com-
posite web services. The proposed mechanism is also based on the same. It is de-
signed to maintain the semantics of original centralized specification and handles
only those faults which are handled either explicitly or implicitly in the original
centralized specification. The overall mechanism is based on correct partitioning
of the input service specification, such that the fault handlers and compensation
handlers are placed appropriately amongst the different partitions, and on aug-
menting the partitions with additional code that aids in fault propagation, data
collection and fault recovery. The fault handling mechanism consists of three
runtime phases when a fault occurs. The first phase ensures the propagation of
a fault to a partition where its corresponding fault handler resides. The second
phase consists of collecting the data, that is needed to initiate fault recovery,
from different partitions. The third phase consists of handling the fault in the
appropriate fault handler and initiating forward recovery by invoking compen-
sation handlers of already completed inner scope(s). These phases are described
in detail in the following subsections with the help of BPEL4WS constructs.

3.1 Placement of Fault Handlers and Compensation Handlers

BPEL4WS specification defines “scope” activities to associate fault handlers
and compensation handlers with a fault handling and recovery context . Every
BPEL4WS process has an implicit scope of its own. An explicit “scope” activity
or an implicit scope can consist of many activities, each of which could itself be
a “scope” activity, thereby resulting in nested scopes. Since, any activity may
generate a fault, the control may flow from any activity to the fault handlers.
Further, a fault handler may completely handle the fault or may re-throw it to
the outer scope. If a fault handler handles a fault, the execution in the outer scope
resumes normally. However, any scope, whose associated fault handler has been
invoked, is not considered to be completed normally and compensation is not
enabled for it and can not be called on it from an outer scope. Compensation is

414 G. Chafle et al.

Fig. 1. Partitioning of scope and placement of fault and compensation handlers

enabled only for those scopes that have completed normally and a compensation
handler is always invoked from a fault handler or a compensation handler of the
outer scope.

In decentralized orchestration, activities inside a scope may get arbitrarily
partitioned and thus placement of fault and compensation handlers requires
special attention. The overall decentralization algorithm presented in [15] works
as follows. In the proposed solution, the decentralization algorithm partitions a
scope in such a manner that the start and end of each scope reside in the same
partition (which is referred to as the root partition of that scope) and the rest
of the activities of the scope are placed as per the algorithm described in [15].
We anchor the fault handlers and compensation handlers to the end of scope
(refer figure 1). This means that the fault handlers and compensation handlers
for a scope always reside in the root partition of that scope. Theoretically, the
end of each scope can reside on a partition that is the last partition in the
control flow of a particular scope. Thus, the start and end can reside on different
partitions. The end of the scope partition will then host the fault handlers and
compensation handlers according to the scheme given in this paper. However,
this will require creation of a logical “scope” that is different from the physical
“scope” activity in BPEL4WS. Furthermore, state information will have to be
transferred from the start of scope partition to the end of scope partition. To
avoid this complexity, the start and end of each scope are placed together. In
case of conditional activities like while and switch, the root partition is the
partition that contains the condition itself.

Handling Faults in Decentralized Orchestration of Composite Web Services 415

The algorithm given in [15] has been modified to ensure that the fault han-
dlers and the compensation handlers are anchored to the root partition of a
scope. We prepare the Control Flow Graph (CFG) preserving the fault handlers
and compensation handler. A fault handler may have various Catch blocks for
handling different faults and a CatchAll block for handling any fault. A control
flow edge is added from every activity to the first activity under CatchAll since
control can flow from any activity to the fault handlers. For all the other fault
handlers, a separate control flow edge is added from all those activities which can
throw the fault handled by this handler to the first activity of the handler. Simi-
larly, a control flow edge is added from the last activity of the scope to the start
activity of the compensation handler because as per BPEL4WS specification,
the compensation handler, if invoked, will see a frozen snapshot of all variables,
as they were when the scope being compensated was completed. After that we
run the Reaching Definitions algorithm [5] to generate all the data flow edges
to discover data dependencies between activities and corresponding activities of
the fault and compensation handlers. These data flow edges are used to deter-
mine what data needs to be propagated to the root partition during the data
collection phase, which is subsequently used during fault handling and recovery.

The data flow edges getting in or out of the fault handlers and compensation
handler are marked as fault edges as these are different from the normal data
flow edges between activities of the scope. Before we construct the Control De-
pendent Graph (CDG) we cut the sub-trees corresponding to fault handlers and
compensation handler from their scopes. After this the Merge algorithm (given
in [15]) runs on the modified CDG in the normal fashion, ignoring the fault data
flow edges. Since, the sub-trees corresponding to fault handlers and compensa-
tion handler are absent from the CDG given to Merge algorithm, the algorithm
will not create partitions for the activities of these handlers. After creating all the
partitions, these handlers are added to the their respective scopes during code
generation, thereby ensuring that the fault handlers and compensation handlers
reside in the root partition.

3.2 Fault Propagation

Since a fault may occur in any partition and the corresponding fault handler
resides in the root partition, the fault needs to be propagated to the root parti-
tion. A partition forwards a fault, that has either occurred within that partition
or it has been received from another partition as part of the fault propaga-
tion scheme, to one of the following partitions (at the same level in PDG [15]),
whichever comes first, in the control flow path

– Root partition of the given scope: All the fault handlers and compensation
handlers associated with a scope reside in the root partition of the given
scope (shown in figure 1) and all faults occurring within a scope are eventu-
ally routed to the root partition (shown in figure 2).

– Next join partition (a partition having more than one incoming links): If
there is a join partition (shown in figure 2) in between the given partition

416 G. Chafle et al.

Fig. 2. Fault Propagation Scheme

and the root partition, then the fault is sent to the join partition because
a join partition expects input messages from all the incoming links (which
execute in parallel legs) and it will continue to wait forever for a message from
the leg in which a fault has occurred in one of the partitions. To prevent this
condition, the fault is sent to the join partition. The join partition, in turn,
upon receiving all the incoming messages (including the fault), forwards the
fault to the next partition as per the fault propagation algorithm.

– Next fork partition (a partition having more than one outgoing links): If
there is a fork partition (shown in figure 2) in between the given partition and
the root partition, then the fault is passed to the fork partition which then
forwards the fault on all the outgoing links according to the fault propagation
algorithm. A fork partition results in more than one outgoing links and these
links may join at some other partition (which becomes a join partition) in
the control flow. This join partition will expect an input message from all its
incoming links, some of which are the outgoing links of the fork partition.
Therefore a fork partition needs to forward a fault on all its outgoing links.

During code generation, all partitions except root partition of the process
scope, are inserted with additional fault handlers (shown as inserted fault han-
dler in figure 2) that help in fault propagation. These fault handlers are inserted
in the outermost scope (which is there implicitly as all partitions consist of a

Handling Faults in Decentralized Orchestration of Composite Web Services 417

BPEL4WS process activity and a process has an implicit scope of its own)
of each partition. One handler (a BPEL4WS Catch clause) is inserted for each
type of fault handled in the original specification. If the original specification
does not have a CatchAll fault handler, one such handler is inserted to catch
other unknown faults which may be generated and need to be propagated to
the root of the scope. These fault handlers pack the fault name and fault data
associated with the handler and forward it. The fault handlers then wait for a
control message to forward data (a snapshot of BPEL4WS variables) required
for fault recovery. The receive activities in all partitions, to which a fault can
be propagated (i.e., root partitions of all scopes, fork partitions and join parti-
tions), are replaced by pick activities during code generation. A pick activity
allows reception of one of n possible incoming messages. Out of these n possible
incoming messages, one is an actual input message and the rest n-1 incoming
messages correspond to the n-1 fault messages which a partition can receive
due to n-1 types of faults handled in that scope in the original specification.
In order to receive these n possible messages, a new operation is added to the
same port type (which existed for the actual incoming message) as part of a
new OnMessage activity inside pick, for each of the n possible messages. Upon
receiving a fault message, a partition throws a fault (representing the input fault
message), which is then caught by the inserted fault handlers in the inserted im-
plicit scope in case of fork partitions and join partitions, which then propagate
the fault according to the fault propagation scheme. In case of a root partition
the fault is caught and handled by the actual fault handlers associated with the
given scope. If a fault handler re-throws a fault, it is automatically caught by the
inserted fault handler that is associated with the implicit outer scope of the par-
tition in which the inner scope resides. The inserted fault handler is augmented
with code to propagate the fault to the root partition of the outer scope using
the fault propagation scheme explained above.

3.3 Data Collection

The second phase of the proposed mechanism consists of collecting the data
that is required to recover from a fault. All partitions that complete successfully,
wait for a control message. If the composite service completes successfully, the
root partition of the top level scope(i.e., the client facing partition) sends a
NormalComplete control message along the path traversed by request. All the
partitions exit normally on the receipt of this message. In case of a fault, the fault
handler of the root partition of the scope in which the fault occurred, sends a
DataCollection control message to its next partition(s) according to the control
flow (see figure 3). The message flows along the path traversed by the request till
it reaches the partition where the fault occurred. From there, it flows along the
path traversed by the fault (as per the fault propagation scheme). Each partition
upon receiving the DataCollection control message, appends its variables i.e., the
data to the payload of the message as a message part. The data that needs to
be appended is determined using the modified decentralization algorithm given
in section 3.1. The root partitions of all the scopes except the top level scope for

418 G. Chafle et al.

Fig. 3. Flow of control messages in case of a fault

the composite service, now enter a state where they wait for a Compensation or
NoCompensation control message from their outer scope.

In implementation, a set of extra activities are added at the end of each parti-
tion. This includes a pick to receive either a DataCollection or a NormalCompl-
ete control message from previous partitions, a set of assign activities to pack
the data to be sent for fault handling and compensation and a set of invoke(s)
to send the control messages to next partitions in the control flow path. A similar
set of activities are also added at the end of the inserted fault handlers (associ-
ated with the inserted implicit scope) in all the partitions. The only difference
is that instead of a pick, a receive activity is added as it will never receive a
NormalComplete control message and can receive only DataCollection control
message, as a fault has already occurred in that scope.

3.4 Fault Recovery

Once the fault is propagated to the root partition of a scope, the corresponding
fault handler, if provided, is triggered. If no fault handler is provided, default
semantics are provided by the BPEL4WS engine hosting the root partition. The
data collected during the second phase is used by the root partition for recovering
from faults in its scope or faults thrown by its inner scopes. The fault handler

Handling Faults in Decentralized Orchestration of Composite Web Services 419

associated with the root partition first executes the activities that are specified
in the original specification to handle the given fault.

Normally completed scopes may need to be compensated, if a fault occurs in
the outer scope or if the outer scope is being compensated. If a fault or compen-
sation handler is provided in the original service specification that consists of ex-
plicit compensate activities targeted at inner scopes, then these compensate ac-
tivities are replaced with invoke(s) that send a Compensation control message
to the root partitions of all such inner scopes. For all other inner scopes (which
don’t serve as targets for any explicit compensate activity), a NoCompensation
control message is sent to their root partitions. If there is no fault handler or com-
pensation handler provided in the original service specification, a Compensation
message is sent to the root partitions of all the inner scopes in the reverse order
of their occurrence. This is shown in figure 3, where the outer scope - Scope A,
has two inner scopes - Scope B and Scope C, that execute in parallel. Scope B
finishes successfully, while a fault occurs in Scope C, which is first propagated
to the root partition of Scope C. The root partition of Scope C initiates a data

Start
(Fault Occurs in a partition)

Fault Caught by Inserted fault handler

Forward fault to next fork/join
partitions on all outgoing links

Receive fault on fork/join node

Forward fault to root partition of this scope

The fault is received by the corresponding
root partition

Execute the activities inside the Catch Clause

Replace compensate activity by sending the control message
Compensation to the partition containing the corresponding scope

and send No Compensation to remaining inner scopes

Invoke compensation handler of all
inner scopes by sending

Compensation control message

Throw the fault to the immediate
outer scope using fault propagation

End of fault recovery for this scope

Are there fork/join partitions
on the outgoing links of this partition

in this scope?

Is there a matching Catch Clause

Is there a compensate activity

Yes

Yes

Yes

No

No

No

Gather Data required by the fault and the
Compensation handler by sending the

Data Collection control message

The fault is thrown by the scope and is caught
by the inserted fault handler in the root partition

Fault is handled by the CatchAllclause

Fault is handled by the matching Catch Clause

Send No Compensation control message
to all partitions containing inner scopes

Start
(Fault Occurs in a partition)

Fault Caught by Inserted fault handler

Forward fault to next fork/join
partitions on all outgoing links

Receive fault on fork/join node

Forward fault to root partition of this scope

The fault is received by the corresponding
root partition

Execute the activities inside the Catch Clause

Replace compensate activity by sending the control message
Compensation to the partition containing the corresponding scope

and send No Compensation to remaining inner scopes

Invoke compensation handler of all
inner scopes by sending

Compensation control message

Throw the fault to the immediate
outer scope using fault propagation

End of fault recovery for this scope

Are there fork/join partitions
on the outgoing links of this partition

in this scope?

Is there a matching Catch Clause

Is there a compensate activity

Yes

Yes

Yes

No

No

No

Gather Data required by the fault and the
Compensation handler by sending the

Data Collection control message

The fault is thrown by the scope and is caught
by the inserted fault handler in the root partition

Fault is handled by the CatchAllclause

Fault is handled by the matching Catch Clause

Send No Compensation control message
to all partitions containing inner scopes

Fig. 4. Flowchart for fault propagation, data collection and fault recovery

420 G. Chafle et al.

collection phase for its scope and then throws the fault to the outer scope - Scope
A, as there is no matching fault handler in Scope C. Scope A then initiates the
data collection phase for Scope B and Scope C and once the data collection
finishes, it compensates Scope B.

The Compensation (or the NoCompensation) control message is received by
the root partition of inner scopes (refer figure 3). During decentralization, an
additional fault handler is inserted in the top level implicit scope of each root
partition, since compensation handler can be invoked only from a fault handler
or a compensation handler of the immediately outer scope. When the root par-
tition receives the Compensation message, it throws a specific “Compensation”
fault which is caught by this inserted fault handler. This fault handler simply in-
vokes the compensation handler of the inner scope by using explicit compensate
activity as shown in figure 3.

Partitions containing while or switch blocks require further attention. The
switch block maintains information about the case that was chosen, so that
same leg is chosen for data collection and compensation phases. A while block
can result in a number of iterations each leading to an instance of all the parti-
tions that are part of that block. This raises issues related to the timing of data
collection and fault recovery. We are working on augmenting our scheme with
all these considerations for while loops.

All the code required for the mechanism is automatically generated by the
decentralization tool, so that developer of the original composite service specifi-
cation is not burdened with its complexity. The flowchart for the overall fault
handling mechanism is shown in figure 4.

4 An Example Scenario

In this section we explain the proposed fault handling mechanism with the help
of an example. To highlight all the important aspects of the scheme we created a
composite service specification which includes a switch, an inner scope and few
fork and join points. There are a total of 22 invokes, a switch in the outer scope,
and an inner scope. The arrangement of various activities in the BPEL4WS
code leads to a decentralized topology that helps us in explaining the scheme in
its full generality. We exclude the input BPEL4WS specification due to space
constraints.

4.1 Fault Propagation

The fault propagation scheme is shown in action for the example scenario in
figure 5. Four different requests resulting in four faults originating at different
partitions are shown in the figure.

In the first request, fault F1 occurs in P17, which then forwards it to the next
join partition P13. Partitions P18 (and the inner scope) and P19 are skipped
and do not get instantiated. The other leg forked at P12 proceeds as usual
and reaches the join partition P13. After receiving the two messages (the fault

Handling Faults in Decentralized Orchestration of Composite Web Services 421

P15

P10

P11

P12

P20

P17

P18

P22

P23

P21

P13

P7

P19

P4

P5

P9

P8

P6

P14

P3

P1

P2client

Fault

propagation of fault F1

h

propagation of fault F2

propagation of fault F3

propagation of fault F4

F1

F 2

F 3

F4

switch loop

inner scope

Partition

Root partition of
scope

Fig. 5. Fault propagation in an example decentralized topology

message from P17 and a normal input message from P21), partition P13 sends
the fault to the end of the scope, P10. Remaining partitions after P13 in the
control flow are skipped and do not get instantiated for this request.

In the second request, fault F2 occurs in the inner scope at fork partition P5.
P5 sends two fault messages to the next join partition P6, one for each outgoing
leg. Partition P6 then sends the fault to the root partition of the inner scope,
P18, where it is handled. Partitions P7, P8, and P9 of the inner scope are not
instantiated for this particular request.

In the third request, fault F3 occurs in partition P21 which forwards it to the
next join partition P13. The other leg forked at P12 including the inner scope
completes normally. After receiving the two messages,(the fault message from
P21 and a normal input message from P19), partition P13 sends the fault to
the root partition the scope, P10. Remaining partitions in the control flow after
P13 are skipped for this particular request.

In the fourth request, fault F4 occurs inside the switch block in the outer
scope at P1, is sent to the root partition of the switch block P14, and is forwarded
to the root partition of the outer scope, P10. Partitions P2, P3, and P15 are
not instantiated for this particular request. The partitions preceding the switch
block in control flow, get completed before the fault occurs and may need to be
compensated by the compensation handlers present in the outer scope.

4.2 Data Collection

We demonstrate data collection phase for the second request which results in
fault F2, occurring inside the inner scope and for the fourth request which results
in fault F4, occurring inside the switch block, as explained above.

For the second request, the fault F2 reaches the root partition of the inner
scope P18, which then sends the DataCollection control message to first par-
tition (P4) in the control flow. The message then travels along the control flow
path till partition P5 where the fault occurred. After that it follows the fault
propagation path. On receiving the message, each partition appends its variables

422 G. Chafle et al.

i.e., the data that are required for executing the fault handlers and compensa-
tion handlers, to the payload of the message as a message part, and forward the
message to the next partition and exit. The collected data finally reaches the
root partition, P18 which invokes the fault handler for this scope.

For the fourth request, the fault F4, reaches the root partition P10 of the
outer scope, which then sends the DataCollection control message to its first
partition (P11) in the control flow. The message then travels along the normal
control flow covering all partitions which were instantiated (all partitions except
P2, P3, and P15) during the course of execution of this particular request. These
partitions wait for the data collection message. On receiving the control message,
each partition appends its variables i.e., the data that are required for executing
the fault handlers and compensation handlers, to the payload of the message as
a message part, and forwards the message to the next partition and exits. When
the root partition of the inner scope, P18, gets the DataCollection message, it
collects the variables that are local to the inner scope as well as those belonging to
the outer scope. The variables local to the inner scope are stored at P18 and those
belonging to the outer scope are appended to the DataCollection message,
which is then forwarded to partition P19. The collected data finally reaches the
root partition of the outer scope P10. All the partitions except the root partition
of inner scope P18 exit after forwarding the data collection message.

4.3 Fault Recovery

The third phase of the scheme consists of execution of the activities inside a
fault handler for a given scope in which a fault has occurred and compensating
completed inner scopes. It makes use of the data collected during the second
phase. For fault F2, the root partition of the scope P18 executes the fault
handlers and the fault is not re–thrown to the outer scope.

For fault F4, the completed inner scope (root partition P18) needs to be
compensated while executing the fault handler associated with the root partition
of the outer scope - P10. The root partition P10 sends a Compensation control
message to partition P18 which executes the compensation handlers for the inner
scope using the data collected during the second phase and exits.

5 Conclusions

In this paper we have proposed a mechanism for handling faults in decentral-
ized orchestration of composite web services. We adhere to the fault handling
model used by BPEL4WS which employs forward error recovery (through com-
pensation) and supports open nested transactions. The mechanism is designed to
maintain the semantics of the original service specification while ensuring mini-
mal overheads. We have implemented the fault propagation part of our scheme
in the decentralization tool that we have developed and are currently working
on the implementation of the rest of the scheme. We did not touch upon per-
formance or complexity analysis of the proposed mechanism in this paper and

Handling Faults in Decentralized Orchestration of Composite Web Services 423

plan to investigate it in the near future. The fault management scheme proposed
in this paper is centralized as fault handlers and compensation handlers for a
scope reside in the root partition. This has been done to keep the scheme simple
as the complexities associated with a decentralized fault management scheme
might not be worth its benefits. We are going to further explore decentralized
fault management in near future.

References

1. Business Process Execution Language for Web Services Version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel/.

2. OASIS Business Transaction Protocol, Committee, Specification 1.0.
http://www.oasis-open.org/business-transaction.

3. Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci.
4. Web Services Transaction (WS-Transaction). http://www-106.ibm.com/

developerworks/webservices/library/ws-transpec/.
5. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.
6. G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized Orchestration

of Composite Web Services. In Proceedings of WWW, 2004.
7. G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Orchestrating Composite

Web Services Under Data Flow Constraints. In Proceedings of IEEE International
Conference on Web Services, Orlando, USA, July 2005.

8. Q. Chen and U. Dayal. Failure Handling for Transaction Hierarchies. In Proceedings
of International Conference on Data Engineering (ICDE), 1997.

9. David W. Cheung, Eric Lo, C. Y. Ng, and Thomas Lee. Web Services Oriented
Data Processing and Integration. In Proceedings of WWW, 2003.

10. Dickson K.W. Chiu, Qing Li, and Kamalakar Karlapalem. ADOME-WFMS: To-
wards Cooperative Handling of Workflow Exceptions. Lecture Notes in Computer
Science, (2677):271–288, 2001. Advances in exception handling techniques.

11. G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. In
Proceedings of OSDI, February 1999.

12. V. Issarny, N. Levy, A. Romanovsky, and F. Tartanoglu. Coordinated Forward
Error Recovery for Composite Web Services. In Proceedings of SRDS, 2003.

13. Mohan U. Kamath and Krithi Ramamritham. Pragmatic Issues in Coordinated
Execution and Failure Handling of Workflow Control Architectures. Computer
Science Technical Report 98-28, University of Massachusetts, August 1998.

14. P.A. Lee and T. Anderson. Fault Tolerance Pinciples and Practice, volume 3 of
Dependable Computing and Fault Tolerant Systems. Springer-Verlag, 1990.

15. M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing Execution of Composite
Web Services. In Proceedings of OOPSLA, 2004.

16. M. G. Nanda and N. Karnik. Synchronization Analysis for Decentralizing Com-
posite Web Services. In Proceedings of SAC, 2003.

17. E. Tilevich and Y. Smaragdakis. J-Orchestra - Automatic Java Application Parti-
tioning. In Proceedings of ECOOP 2002, June 2002.

18. G. Weikum and H. Schek. Concepts and applications of multilevel transactions and
open nested transactions. Transaction Models for Advanced Database Applications,
1992.

What’s in an Agreement?
An Analysis and an Extension of WS-Agreement

Marco Aiello1, Ganna Frankova1, and Daniela Malfatti2

1 Dept. of Information and Communication Technologies,
University of Trento, Via Sommarive, 14, 38100 Trento, Italy

{marco.aiello, ganna.frankova}@unitn.it
2 Corso di Laurea in Informatica

University of Trento, Via Sommarive, 14, 38100 Trento, Italy
daniela.malfatti@studenti.unitn.it

Abstract. Non-functional properties of services and service composi-
tions are of paramount importance for the success of web services. The
negotiation of non-functional properties between web service provider
and consumer can be agreed a priori by specifying an agreement. WS-
Agreement is a recently proposed and emerging protocol for the speci-
fication of agreements in the context of web services. Though, WS-
Agreement only specifies the XML syntax and the intended meaning
of each tag, which naturally leads to posing the question of “What’s in
an Agreement?” We answer this question by providing a formal defini-
tion of an agreement and analyzing the possible evolution of agreements
and their terms. From our analysis we identify ways in which to make
an agreement more robust and long lived by proposing two extensions
to the specification and supporting environment.

1 Introduction

Web Services (WS) are a set of technologies that allow the construction of mas-
sively distributed and loosely coupled applications. One of the most thought
provoking issues in web services is that of automatically composing individual
operations of services in order to build complex added-value services. The re-
search on composition is well under way, but most of the focus is on functional
properties of the composition, that is, how does one automatically compose? How
does one enrich the services with semantic self-describing information? How does
one discover the available services to use for the composition? If, on the one hand,
this is crucial, on the other one, it is not enough. Non-functional properties of
the composition are also of paramount importance in defining the usability and
success of a composed service. Think for instance of desiring a service that per-
forms a biological computation composing the services offered by a number of
web service enabled machines. If the user knows that the composition is correct
with respect to his goal, he will be satisfied with the answer he receives, but if the
answer takes 3 years to be delivered to the user, the correctness is of little use.
Therefore, the quality of a composed service is very important when interacting
with an asynchronous system built out of independent components.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 424–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 425

With the term Quality of Service (QoS) we refer to the non-functional proper-
ties of an individual service, or a composition of services. The term is widely used
in the field of networking. Usually it refers to the properties of availability and
performance. In the field of web services, the term has a wider meaning. Any non-
functional property which affects the definition and execution of a web service
falls into the category of QoS, most notably, accessibility, integrity, reliability,
regulatory, and security [15]. Dealing with QoS requires the study of a number of
problems. One, the design of quality aware systems. Two, the provision of quality
of service information at the level of the individual service. Three, ensuring that
a promised quality of service is actually provided during execution. In [2], we
addressed the first issue by using the Tropos design methodology, and the second
one by resorting to WS-Policy to describe QoS properties. In this paper, we
consider the second and third issues; in particular, we show how to provide a
framework to negotiate the provision of a service according to a predefined QoS,
and how to handle changes during the interactions of web services, and how to
prevent the QoS conditions failure.

WS-Agreement is an XML based language and protocol designed for adverti-
sing the capabilities of providers and creating agreements based on initial offers,
and for monitoring agreement compliance at run-time. The motivations for the
design of WS-Agreement stem out of QoS concerns, especially in the context of
load balancing heavy loads on a grid of web service enabled hosts [10]. However,
the definition of the protocol is totally general and allows for the negotiation of
QoS in any web service enabled distributed system. If, on the one hand, the pro-
posal of WS-Agreement is a step forward for obtaining web service based systems
with QoS guarantees, on the other hand, the protocol proposal is preliminary.
The current specification [3] defines XML syntax for the language and protocol,
and it gives a vague textual overview of the intended semantics, without defin-
ing a set of formal mathematical rules. Furthermore, a reference architecture is
proposed to show how WS-Agreement are to be handled, [13]. Nevertheless, a
formal analysis of what an agreement is still missing.

In this paper, we address the question What’s in an Agreement? In parti-
cular, we provide a formal analysis of WS-Agreement by resorting to finite state
automata, we provide a set of formal rules that tie together agreement terms
and the life-cycle of an agreement. From the analysis, some shortcomings of the
protocol become evident. Most notably, there is no checking of how close a term
to being violated and, even more, breaking one single term of the agreement
results in terminating the whole agreement, while a more graceful degradation
is desirable. Therefore, we propose an extension of the protocol for which we
provide appropriate semantics, that allows for providing warning before the vio-
lation of an agreement and eventually the renegotiation of running agreements
by tolerating the break of a term.

Web service QoS issues are gaining attention and have been addressed in a
number of recent works. Some approaches are based on the extension of the
Web Service Description Language (WSDL) to define not only functional, but
also non-functional properties of the service, e.g., [11]. The main idea of the

426 M. Aiello, G. Frankova, and D. Malfatti

approach is simple: provide syntax to define terms which refer to non-functional
properties of operations. The problem with this kind of approach is that the QoS
definition is tied to the individual operation, rather than with the service as a
whole; furthermore, there is no run-time support. Once a quality is defined, it
can not be changed at execution time.

In [18], the authors propose to define WS QoS by using XML schemata that
both service consumers and service providers apply to define the agreed QoS
parameters. The approach allows for the dynamic selection of WS depending
on various QoS requirements. On the negative side, the life-cycle of agreements
is not taken into account, and it is not possible to define an expiration for
a negotiation. The feasibility of using constraint programming to improve the
automation of web services procurement is shown in [16]. A semantic web ap-
proach, in which services are searched on the basis of the quality of semantically
tagged service attributes is presented in [17]. A predictive QoS model for work-
flows involving QoS properties is proposed in [6]. In [9], the authors propose
a model and architecture to let the consumer rate the qualities of a service.
In addition, the industry has proposed a number of standards to address the
issue of QoS: IBM Web Service Level Agreement (WSLA) and HP’s Web Ser-
vice Management Language (WSML) are examples of languages used to describe
quality metrics of services, [12]. A recent proposal is the specification of a new
WS protocol, called Web Services Agreement Specification [3]. In [7], it is pre-
sented the Agreement-Based Open Grid Service Management (OGSI-A) model.
Its aim is to integrate Grid technologies with Web Service mechanisms and to
manage dynamically negotiable applications and services, using WS-Agreement.
The WS-Agreement protocol proposal is supported by the definition of a mana-
ging architecture: CREMONA–An Architecture and Library for Creation and
Monitoring of WS-Agreement [13]. The Web Services Agreement Specification
defines the interaction between a service provider and a consumer, and a proto-
col for creating an agreement using agreement templates. The above approaches
show that frameworks for QoS definition and management are essential to the
success of the web service technology, but there are a number of shortcomings
that still need to be addressed. First, no one has worked out a formal definition
of what the semantics of a QoS negotiation should be. Second, the frameworks
should be more flexible at execution time because actual qualities of services
may change over time during execution.

The remainder of the paper is organized as follows. In Section 2, we present the
WS-Agreement protocol defined in [3]. In Section 3, we propose a formal defini-
tion of an agreement and of its life-cycle. Section 4 is devoted to the presentation
of an extension of WS-Agreement with the goal of improving the duration and
tolerance of an agreement in execution. Preliminary experimental results are in
Section 5. Concluding remarks are summarized in Section 6.

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 427

2 WS-Agreement

In order to be successful, web service providers have to offer and meet guaran-
tees related to the services they develop. Taking into account that a guaran-
tee depends on actual resource usage, the service consumer must request state-
dependent guarantees from the service provider. Additionally, the guarantees on
service quality must be monitored and service consumers must be notified in case
of failure of meeting the guarantees. An agreement between a service consumer
and a service provider specifies the associated guarantees. The agreement can
be formally specified using the WS-Agreement Specification [3].

A WS-Agreement is an XML-based document containing descriptions of the
functional and non-functional properties of a service oriented application. It con-
sists of two main components that are the agreement Context and the agreement
Terms. The agreement Context includes the description of the parties involved
in the agreement process, and various metadata about the agreement. One of
the most relevant components is the duration of the agreement, that is, the time
interval during which the agreement is valid.

Functional and non-functional requirements are specified in the Terms section
that is divided into Service Description Terms (SDTs) and Guarantee Terms.
The first provides information to define the services functionalities that will be
delivered under the agreement. An agreement may contain any number of SDTs.
An agreement can refer to multiple components of functionalities within one
service, and can refer to several services. Guarantee Terms define an assurance on
service quality associated with the service described by the Service Description
Terms. An agreement may contain zero or more Guarantee Terms.

In [8] a definition for guarantee terms in WS-Agreement is specified and a
mechanisms for defining guarantees is provided. An agreement creation process
starts when an agreement initiator sends an agreement template to the con-
sumer. The structure of the template is the same as that of an agreement, but
an agreement template may also contain a Creation Constraint section, i.e., a
section with constraints on possible values of terms for creating an agreement. In
[4] enabling of customizations of terms and attributes for the agreement creation
is proposed. After the consumer fills in the template, he sends it to the initiator
as an offer. The initiator decides to accept or reject the offer depending on the
availability of resource, the service cost, and other requirements monitored by
the service provider. The reply of the initiator is a confirmation or a rejection.

An agreement life-cycle includes the creation, termination and monitoring of
agreement states. Figure 1 shows a representation of the life-cycle. When an
agreement is created, it does not imply that it is monitored. It remains in an
not observed state until a service starts its execution. The semantics of the

NOTOBSERVED OBSERVED FINISHED

Fig. 1. The life-cycle of a WS-Agreement

428 M. Aiello, G. Frankova, and D. Malfatti

states is as follows: not observed: the agreement is created and is in execution,
but no service involved in the agreement is running; observed: at least one
service of the agreement is running; and finished: the agreement has terminated
either successfully or not.

3 What’s in an Agreement?

The WS-Agreement specification provides XML syntax and a textual explana-
tion of what the various XML tags mean and how they should be interpreted.
Thank to the syntax, it is possible to prepare machine readable agreements, but
a formal notion of agreement is missing. In this section, we formalize the notion
of agreement by defining its main components.

Definition 1 (Term). A term t is a couple (s, g) with s ∈ S and g ∈ G, where
S is a set of n services and G is a set of m guarantees. T ⊆ S × G is the set of
the terms t.

In words, a term involves the relationship between a service s and a guarantee g,
not simply a specific tag of the agreement structure. If the service s appears in
the list of services, which the guarantee g is applied to, it means that the couple
(s, g) is a term. The number of terms varies between 0 and n ·m, where 0 means
that there is no association between services and guarantees, and n ·m indicates
the case where each guarantee is associated with all services.

Definition 2 (Agreement). An agreement A is a tuple 〈S, G, T 〉, where S is
a set of n services, G is a set of m guarantees, and T is the set of the terms t.

In the following analysis, it is more convenient to consider the agreement as
a set of Terms rather than a set of related services and guarantees. From the
definition of WS-Agreement, we say that an agreement can be in one and only
one of three states: not observed, observed and finished.

Definition 3 (External State). The external state Aes of an agreement A is
an element of the set {not observed, observed or finished}.
We call the above state external, as it is the observable one. We also define
an internal state of an agreement, which captures the state of the individual
terms.

Definition 4 (Internal State). The internal state Ais of an agreement A is
a sequence of terms’ states ts1, . . . , tsp of maximum size n · m, where tsi =
(ssj , gsk) represents the state of gk guarantee with respect to the state of the sj

service. Service and guarantee states range over the following sets, respectively:

– ssj ∈{not ready, ready, running, finished}, and
– gsk ∈{not determined, fulfilled, violated}.
From the definition of Term, we see that services and guarantees are related

and we can define the internal state of an agreement, but it is necessary to

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 429

terms are in state state of the agreement transitions
(A) (1) not observed (B)
(B) (1)(2) not observed (C) (E)
(C) (1)(2)(3) observed (D)(E)(F)(G)
(D) (1)(2)(3)(5) observed (F)(G)
(E) (1)(2)(4) observed (F)(H)
(F) (1)(2)(3)(4)(5) observed (H)
(G) (5) finished
(H) (1)(2)(3)(4)(5)(6) finished

Fig. 2. Transition table for the relation between internal and external states

distinguish between terms that have the same service and terms that have the
same guarantee.

Proceeding in our goal of answering the question of what is in an agreement,
we define the relationship between the internal and external state of an agree-
ment A. First, we note that not all state combinations make sense. For instance,
it has no meaning to say that a guarantee is violated, when a service is in a
not ready state. The only admissible combinations are the following ones.

(1) (not ready, not determined) (2) (ready, not determined)
(3) (running, fulfilled) (4) (running, violated)
(5) (finished, fulfilled) (6) (finished, violated)

In theory, there are 63 possible combinations of states in which terms can be.

That is,
∑6

i=1

(
6
i

)
all terms could be in state (1), or in state (2),. . . or in state

(6); there could be terms in states (1) and (2), (1) and (3), and so on. But again,
considering the definition of WS-Agreement in [3], one concludes that not all
63 combinations make sense. Furthermore, it is possible to extract the possible
evolutions of these aggregated internal states.

When an agreement is created its external state is not observed, while all
services are not ready and all guarantees are not determined, i.e., state (1). In
the next stage some services will be ready while others will still be not ready,
i.e., there will be terms in state (1) and (2). In this case, the external state
is also not observed. Proceeding in this analysis, one can conclude that there
are 8 situations in which terms can be. We summarize these in the table in
Figure 2. In the table, we also present the relation between the internal states
and the external states, and the set of transitions to go from one set of states
to another. The latter transitions are best viewed as an automaton (which is
illustrated in [1]).

4 Extension of WS-Agreement

From the semantics and formal analysis presented in Section 3, inspecting the
automaton provided, we note that if the agreement arrives into the states (E)

430 M. Aiello, G. Frankova, and D. Malfatti

or (F) there is a non recoverable failure, and consequently an agreement termi-
nation. Even if one single term is violated, the whole agreement is terminated.
Furthermore, when an agreement is running there is no consideration on how
the guarantee terms are fulfilled. Our goal is to provide an extension of WS-
Agreement and of its semantics in order to make agreements more long-lived,
and robust to individual term violations. In [14] we provide appropriate XML
syntax to implement the proposed extension, while an example of using a subset
on a concrete case study (DeltaDator Spa, Trento) of the proposed extension
can be found in [1].

We propose two extensions to WS-Agreement. The first is used to (i) anti-
cipate violations, while the second is devoted to the (ii) run-time renego-
tiation. (i) WS-Agreement considers guarantees of a running service as fulfilled
or violated. Nothing is said about how the guarantee is fulfilled. Is the guarantee
close or far to being violated? Is there a trend bringing the guarantee close to
its violation? We propose to introduce a new state for the agreement in which a
warning has been issued due to the fact that one or more guarantees are likely to
be violated in the near future. By detecting possible violations, one may inter-
vene by modifying the run-time conditions or might renegotiate the guarantees
which are close to being violated. (ii) The WS-Agreement specification does not
contemplate the possibility of changing an agreement at run-time. If a guaran-
tee is not fulfilled because of resource overload or faults in assigning availability
to consumers, the agreement must terminate. For maintaining the service and
related supplied guarantees, it is necessary to create another agreement and ne-
gotiate the QoS again. This approach wastes resources and computational time,
and increases network traffic. The goal of negotiation terms is to have the chance
to modify the agreement applying the negotiation terms rather than respecting
the original agreement. Applying the negotiation terms means that the services
included in the agreement will be performed according to the new guarantees.

4.1 Life-Cycle and Semantics for the Extended Agreement

To obtain the desired extensions, we expand the set of states in which an agree-
ment and a guarantee term can be and thus update the transition system. More
precisely, the definition of an agreement does not change with respect to Defi-
nition 2, the difference lies in the fact that the set of terms T is now extended
with special negotiation terms. These terms are defined as in Definition 1, but
have a different role, i.e., they specify new conditions that enable modification
of guarantees at run-time.

To account for the new type of terms, we need to extend the definition of
external and internal state of an agreement. The external states of an extended
agreement are enriched by the warned state, checked state, the revisited
state, and the denied state. We say that an agreement can be in one of seven
states. not observed, observed and finished have the same meaning as in
WS-Agreement, Figure 1. An Agreement is in state checked when the monitor-
ing system is checking its services and guarantees. From the checked state the
agreement can go to five different states: to finished if the agreement finishes

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 431

Fig. 3. The life-cylce of the WS-Agreement extension

its life-cycle; to denied if the agreement is violated and no negotiation terms can
be applied, the agreement must terminate; to warned if the monitoring system
has issued at least one warning for at least one term; back to observed if the
agreement is fulfilled; to revisited if the agreement is fulfilled or violated and
a negotiation term can be applied.

to finished if the agreement finishes its life-cycle;

Definition 5 (Extended External State). The extended agreement external
state Axes of an agreement A is an element of the set {not observed, observed,
warned, checked, revisited, denied or finished}.

The transitions between states are illustrated by the automaton in Figure 3,
which is an extension of the one presented in Figure 1. The automaton represents
the new evolution of an agreement where a guarantee can be modified during the
processing of a service or a warning can be raised. When a guarantee is violated
we have two situations: the first presents a recoverable violation which implies
the chance to apply a negotiation term and so the agreement is in a revisited
state, the second presents a non recoverable violation which implies that there
is no suitable negotiation term for the current violated guarantee and so the
agreement must terminate. Otherwise, if a warning is raised, this can be ignored
or the agreement can go in a renegotiation state by ending in the revisited state.
Also, when a guarantee is fulfilled, it is possible to change the current agreement
configuration, applying a negotiation term that changes the QoS.

The internal state definition for the extended agreement is similar to the
internal state definition stated before, but a new state for the services is added
and two for the guarantees. A new state is stopped and is needed to define a
state of a service where its associated guarantee is unrecoverable violated and the
service must terminate or the guarantee can be revisited. It is an intermediate
state. A guarantee can also be warned if it is close to being violated in a given
time instant. Other state for a guarantee is the non recoverable violated state
in which a guarantee is violated and it has no related negotiation terms for the
current violation.

432 M. Aiello, G. Frankova, and D. Malfatti

Definition 6 (Extended Internal State). The extended internal state Axis

of an agreement A is a sequence of terms’ states ts1, . . . , tsp of maximum size
n · m, where tsi = (ssj , gsk) represents the state of gk guarantee with respect
to the sj service. Service and guarantee states range over the following sets,
respectively:

– ssj ∈{not ready, ready, running, stopped, finished}, and
– gsk ∈{not determined, fulfilled, warned, violated,

non recoverably violated}.
As for Definition 4, one notes that not all the state combinations make sense. The
only possible ones are the combinations itemized in Section 3 plus the following
four: (7) (stopped, fulfilled)

(8) (stopped, violated)
(9) (stopped, non recoverably violated)
(10) (running, warned)

The state combinations (7), (8) and (9) determine the states when a service is
stopped because a guarantee is violated or is being modified. In state (7) a gua-
rantee is fulfilled and we try to improve it applying a positive negotiation term. In
(8) and (9) a guarantee is currently violated. In (8) the service is stopped and the
guarantee is violated but it is possible to apply a negotiation term and to preserve
the agreement again. In (9), instead, the guarantee is irrecoverably violated and
the agreement must terminate, there are not any suitable negotiation terms.
State (10) represents the fact that a warning has been raised for a running
service guarantee.

The relation between internal and external states of an extended agreement
is an extension of the one presented in the table in Figure 2, and it is presented
in Figure 4. The table respects the original agreement evolution and presents
some new transitions.

terms are in state state of the agreement transitions
(A) (1) not observed (B)
(B) (1)(2) not observed (C)
(C) (1)(2)(3) observed (D)(E)(F)(G)
(D) (1)(2)(3)(5) observed (F)(G)(I)
(E) (1)(2)(4) checked (F)(H)(I))
(F) (1)(2)(3)(4)(5) checked (H)(I))(J)(K)(L)
(G) (5) finished
(H) (1)(2)(3)(4)(5)(6) finished
(I) (1)(2)(3)(4)(5)(7) observed (D)(E)(F)(G)
(J) (1)(2)(3)(4)(5)(8) revisited (D)
(K) (1)(2)(3)(4)(5)(9) denied (F)(H)
(L) (1)(2)(3)(5)(7)(10) warned (C)(D)(H)(I)(J))

Fig. 4. Extension of the transition table for the relation between internal and external
states

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 433

4.2 Framework

The proposed extension to WS-Agreement must be handled by an appropriate
framework that allows for monitoring and provides run-time renegotiation.

On the one hand, there must be rules specifying when and how to raise a
warning for any given guarantee. These rules should be easy to compute to
avoid overloading of the monitoring system and be fast to provide warnings. In
addition they should provide good performance in detecting as many violations
as possible generating the minimum number of false positives. A forecasting
method which enjoys this characteristics is the linear least squares method [5].
The method of linear least squares requires a straight line to be fitted to a set
of data points such that the sum of the squares of the vertical deviations from
the points to the line is minimized. By analyzing such a parameter of the line as
a slope ratio, it is possible to predict a change over time.

On the other hand, to allow for renegotiation of guarantee terms at run-
time the parties involved in the agreement need to be able to decide whether
a renegotation has been agreed upon. Before execution it must be possible to
specify negotiation terms. This can be done by using appropriate templates in
the spirit of the original work in [13].

5 Preliminary Experimental Results

We have conducted preliminary experimentation to show the feasibility of the
warning strategy. We used synthetic data. We generated a sequence of 1100 el-
ements considered as a service guarantee for a single operation over a continu-
ous time interval (for instance the cost of a service which should be below the
value 10). The data set and the complete results of the experiments are avail-
able at http://www.dit.unitn.it/~frankova/ICSOC05_Exp/. The points were
generated by a function that returns a random number greater or equal to 6.00
and less or equal to 14.00, evenly distributed. We split the data set into two
subsets. The first part of the data set was used to decide the size of the time
window and of the threshold values to be used for prediction. The rest of the
data was used for evaluating the system.

To evaluate the method we consider the following performance measures:
Precision is the ratio of the number of true warnings (i.e., warnings thrown
to notify violation points) to the number of total warnings (i.e., true warnings
and false warnings). Recall is the ratio of the number of warned violations (i.e.,
violation points for which a warning is issued) to the number of total violation
points. Total violation points include warned violations and missed violations.

The following table summarizes the results of the experimentation:

Warnings Violations
True False Warned Missed
303 11 156 13

Total 314 169
Precision 96.50%
Recall 92.31%

434 M. Aiello, G. Frankova, and D. Malfatti

Fig. 5. Experimental results for 100 points

The number of true and false warnings is shown in the first column. The diffe-
rence in the number of total warnings and violations is due to the fact that more
than one warning in the same time window may refer to the same violation. The
number of warned and missed violations is reported in the second column of the
table. The total sum of warnings and violations is in the ”Total” row. The last
two rows present the precision and recall of the method.

The results of experimentation on the first 100 points of the data set is shown
in Figure 5. In the figure, two types of warnings, true and false, are marked by
diamonds and crosses, respectively. A warning is thrown if the cost and tangent of
the cost curve are higher then the threshold (8 for cost and 0.1 for the tangent
differences). Squares represent warned violation points, while circles indicate
missed violation points.

The method shows good performance when the increase in cost is smooth
(points 8, 9, and 10), a case that normally takes place during web services exe-
cution. If the change in values is abrupt then the method fails to generate warn-
ings, e.g., points 43 (cost is 6.36) and 44 (cost is 10.63). It is difficult to find
a violation point if the point is in the very beginning of the process, within or
just after the first time window (point 7). The latter cases should be considered
exceptional, in fact those occur only 13 times in the whole experiment.

In the experimentation using the method, more than 92% of violation points
are warned in advance, and 96.5% of thrown warnings are true warnings. Us-
ing bigger time windows does not improve performances, see http://www.dit.
unitn.it/~frankova/ICSOC05_Exp/.

6 Concluding Remarks

Describing and invoking an individual functionality of a web service is becoming
more and more common practice. One of the next steps is moving from functional

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 435

properties of basic services to non-functional properties of composed services.
The non-functional properties need to be specified by the services, but also to
be negotiated among services.

WS-Agreement is a protocol that defines a syntax to specify a number of
guarantee terms within an agreement. We looked into the protocol specification
with the goal of providing a formalization of the notion of an agreement and
proposing a formal representation for the internal and external states in which
an agreement can be. From this analysis we discovered that an agreement can
be made more long-lived and robust with respect to forecoming violations. We
presented the details of the proposed extension in formal terms and provided
some preliminary experimentation on synthetic data.

This work prods for more investigation of agreements and of their mana-
gement. In the next future, we plan to dive into the details of a framework
implementing the extended agreement version and then to experiment on real
data coming from an actual case study.

Acknowledgments

Marco thanks Asit Dan and Heiko Ludwig for useful discussion on
WS-Agreement while visiting IBM TJ Watson.

References

1. M. Aiello, G. Frankova, and D. Malfatti. What’s in an agreement? A formal
analysis and an extension of WS-Agreement. Technical Report DIT-05-039, DIT,
University of Trento, 2005.

2. M. Aiello and P. Giorgini. Applying the Tropos methodology for analysing web
services requirements and reasoning about Qualities of Services. CEPIS Upgrade -
The European journal of the informatics professional, 5(4), 2004.

3. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement).
Technical report, Grid Resource allocation Agreement Protocol (GRAAP) WG,
2004.

4. A. Andrieux, A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Negotiability con-
straints in WS-Agreement. Technical report, Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group Meetings, 2004.

5. Rudolf K. Bock. The data analysis : briefbook. Springer: Berlin [etc.], 1998.
6. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for

workflows and web service processes. Journal of Web Semantics, 2004. To appear.
7. K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-based Grid

Service Management (OGSI-Agreement). Technical report, Global Grid Forum,
GRAAP-WG Author Contribution, 2003.

8. A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Guarantee Terms in WS-
Agreement. Technical report, Grid Resource Allocation Agreement Protocol
(GRAAP) Working Group Meetings, 2004.

9. V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. A quality of service management
framework based on user expectations. In Service-Oriented Computing (ICSOC),
pages 104–114. LNCS 2910, Springer, 2003.

436 M. Aiello, G. Frankova, and D. Malfatti

10. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed
system integration. IEEE Computer, 35(6), 2002.

11. D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
QoS and provision price. In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

12. H. Ludwig. Web services QoS: External SLAs and internal policies or: How do we
deliver what we promise? In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

13. H. Ludwig, A. Dan, and R. Kearney. CREMONA: an architecture and library for
creation and monitoring of ws-agreements. In M. Aiello, M. Aoyama, F. Curbera,
and M. Papazoglou, editors, ICSOC, pages 65–74. ACM, 2004.

14. D. Malfatti. A framework for the monitoring of the QoS by extending WS-
Agreement. Master’s thesis, Corso di Laurea in Informatica, Università degli Studi
di Trento, 2005. In Italian.

15. A. Mani and A. Nagarajan. Understanding quality of service for web services,
2002. http://www-106.ibm.com/developerworks/library/ws-quality.html .

16. O. Martn-Daz, A. Ruiz Corts, A. Durn, D. Benavides, and M. Toro. Automating
the procurement of web services. In Service-Oriented Computing (ICSOC), pages
91–103. LNCS 2910, Springer, 2003.

17. M. P. Singh and A. Soydan Bilgin. A DAML-based repository for QoS-aware
semantic web service selection. In IEEE International Conference on Web Services
(ICWS 2004), 2004.

18. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for QoS
integration in web services. In 1st Web Services Quality Workshop (WQW2003)
at WISE, 2003.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 437 – 449, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SOA in the Real World – Experiences

Manoj Acharya, Abhijit Kulkarni, Rajesh Kuppili, Rohit Mani,
Nitin More, Srinivas Narayanan, Parthiv Patel,

Kenneth W. Schuelke, and Subbu N. Subramanian

Tavant Technologies, 3101 Jay Street, Suite 101, Santa Clara, CA 95054

Abstract. We discuss our experiences in building a real-world, mission-critical
enterprise business application on a service-oriented architecture for a leading
consumer lending company. The application is composed of a set of services
(such as Credit Report Service, Document Management Service, External Ven-
dor Service, Customer Management Service, and Lending Lifecycle Service)
that communicate among themselves mainly through asynchronous messages
and some synchronous messages with XML payloads. We motivate the choice
of SOA by discussing its tangible benefits in the context of our application. We
discuss our experiences at every stage of the software development life cycle
that can be uniquely attributed to the service oriented architecture, list several
challenges, and provide an insight into how we addressed them in real-life.
Some of the hard design and development challenges we faced were related to
modeling workflow interactions between services, managing change analysis,
and contract specification. In addition, SOA architecture and asynchronous
messaging introduces fresh challenges in the area of integration testing (e.g.
how do we test a system whose interface points are asynchronous messages)
and in testing the robustness of the system (e.g. how do we deal with out of or-
der messages, duplicate messages, message loss?). To address these challenges,
we built a tool called SOA Workbench. We also discuss the techniques we
adopted to address scenario-based validation that go beyond traditional docu-
ment-centric validation based on XML Schema. Monitoring and error recovery,
two key aspects of any mission-critical system, pose special challenges in a dis-
tributed SOA-based, asynchronous messaging setting. To address these, we
built a tool called SIMON. We discuss how SIMON helps error detection and
recovery in a production environment. We conclude by listing several opportu-
nities for further work for people in both academia and industry.

1 Introduction

Many mission critical enterprise applications share some common characteristics –
they comprise of a variety of functionalities, feature complex interactions among
them, should be easy to manage, need to be fault tolerant, and should be isolated in
failure. In addition, constant evolution required to keep pace with the ever changing
business requirements and distributed ownership of the functionalities spread across
several teams are two other crucial characteristics of such systems. The challenge of
building and maintaining such systems is not very different from the challenge of

438 M. Acharya et al.

building a system comprising of complex subsystems (for example a car or a com-
puter) that are products by themselves, have their own product life cycle, and have
clearly defined services that are exposed via agreed upon contracts. In this paper, we
discuss our experiences in building such an enterprise application for a large con-
sumer lending corporation.

1.1 The Consumer Lending Application

In this section, we briefly introduce the consumer lending application. The application
handles the entire lending life cycle that begins with the procurement and manage-
ment of millions of potential prospective customers (called leads). The application
has the ability to scrub large amounts of lead data, classify the leads according to
various categories, and distribute the leads based on various criteria to the company’s
sales force. The sales functionalities include ability to make calls to potential custom-
ers and keep track of the progress of the conversation and follow-ups via reminders,
real-time management visibility to sales force performance, ability to quickly assimi-
late data critical to the loan offering (such as income, property details, appraisal etc)
real-time while the sales person is on the phone with the customer, and the ability to
order and instantly receive the customer’s credit report. The sales functionalities also
include the ability to capture the desires of the customer and perform what-if scenario
analysis to offer the loan product that optimally matches the customer’s desire. On
successful completion of the sales activities, the system has a set of fulfillment capa-
bilities, also called loan processing capabilities, that involves validating the data ob-
tained from the customer during the sales cycle (such as income verification, appraisal
verification, title verification etc). These verifications during the loan processing stage
are performed either via supporting paper documentations obtained from the customer
such as W2’s and income statements or via automated verifications performed
through specialized electronic services (such as credit report services or appraisal ser-
vices) provided by external vendors. The loan processing stage also involves dealing
with exceptions that may arise during the verification phase and performing an analy-
sis of their impact on the loan product. Other crucial functionalities in the consumer
lending application include (1) a pricing module that given a set of inputs such as the
borrower’s credit score, income, and property value generates a loan product with the
rate, points, and fees information (2) a compliance module that ensures that the loan
product does not violate any of the state, federal, and corporation-specific compliance
laws (3) a document service that manages storage and retrieval of electronic docu-
ments, and (4) a task management service that keeps track of the list of activities (and
their statuses) that need to be performed to take the loan application from one stage to
the next along its life cycle. Finally, the system has the ability to take a validated and
approved loan through a funding process that involves electronic transfer of funds be-
tween financial institutions.

1.2 Motivation for SOA

As can be observed, the consumer lending application consists of a set of distinct, re-
lated set of functionalities. Not surprisingly, the consumer lending corporation has
departments that specialize in these functions. For example, there is a marketing

 SOA in the Real World – Experiences 439

department that owns the lead acquisition and related functions, a sales department
that owns the sales functionalities, and a loan processing department that owns the
fulfillment functions. Besides taking ownership, these departments also want the abil-
ity to evolve their functions and related IT capabilities independent of the others,
manage the applications and data, and not be affected by glitches in the other systems.
Naturally, the scalability and service level agreement needs of the functions are also
different. For example, the marketing functionality is used by a handful of users in the
corporate office where as the sales functionality supports thousands of field agents
with an expectation of sub-second response time. In addition, there is a need for func-
tionalities to be reused across multiple applications. For example, the document ser-
vice related functionalities are required by several sales, marketing, and fulfillment
applications.

The above set of requirements lend themselves to a natural organization of the
software artifacts that comprise of this application as a set of independently deployed
components that expose a set of services that can be invoked via predefined messag-
ing protocol – in other words an architecture based on SOA.

Note that the core functional requirements of our lending application can be real-
ized in a traditional, monolithic, non-soa architecture. Indeed, prior to our system,
there existed a basic version of the application built on a client-server platform. How-
ever, such a tightly-coupled system would not support several critical features such as
independent evolution and scaleability of components, isolated deployment and man-
ageability, efficient reusability of common features, and isolated failure.

2 Application Architecture

Figure 1 captures the application architecture of our lending application. Each com-
ponent (e.g. appraisal service, credit service) is an independently deployable,

Fig. 1. Application Architecture

440 M. Acharya et al.

maintainable “product” and exposes a set of services related to their specialization
that can be invoked by other components that require them in the context of some
business workflow. The services can be accessed asynchronously via message inter-
change on an Enterprise Service Bus (ESB) [1] or synchronously via webservice calls.

As illustrated in the figure, the ESB forms the hub of the messaging infrastructure.
At a basic level, the ESB provides a reliable messaging infrastructure (we use a com-
mercial ESB product from a third party vendor) that is based on JMS [4]. In addition,
it acts as a message router that delivers messages to the appropriate services based on
some well-defined routing rules. In order to realize a business transaction, the services
communicate among one another via messages that are exchanged on the ESB. In or-
der to standardize the message format and facilitate understanding across teams, we
adopted the definition of messages in the form of Business Object Documents
(BODs) as defined by The Open Applications Group Integration Specification
(OAGIS) [6]. BOD messages are named using a pair consisting of a standardized verb
(such as Get, Show, Process) and a business relevant noun (such as loan, credit).

2.1 Usecase Illustration – Credit Pull

Figure 2 illustrates the realization of a sample business process flow in our architec-
ture. One common usecase in the context of the lending application is the “Credit
Pull” workflow – i.e. the functionality that allows a loan sales person to obtain the
electronic credit report of a customer in real-time. The lending life cycle service initi-
ates the credit pull as a response to a user request on the UI by sending a credit re-
quest message to the credit service. The credit service listens to this message, registers
its activity with the task management service, and passes the request to the external
vendor service which in turn places a request with the credit vendor. The external
vendor service obtains the credit report from the right vendor using vendor selection
rules (based on established business agreements, service level agreements etc). Once

Fig. 2. Credit pull sequence

 SOA in the Real World – Experiences 441

the vendor responds with the credit report, it is imaged and stored in the document
service. The credit report is also sent to the credit service which stores it locally and
returns it to the lending life cycle service which performs some local processing and
renders the credit report on the UI.

All the service interactions are achieved via asynchronous message interchange on
the ESB. Also, the message requests and their names adhere to the OAGIS BOD
standards. For example, the lending life cycle service initiates the credit pull request
by dropping a ProcessCredit message on the ESB.

3 Design Time Challenges

In this section, we motivate the need for new design time tools for SOA applications
and describe the SOA Workbench tool that addresses these issues. The central ele-
ments of the Consumer Lending application described earlier is the notion of “work-
flows” or “sequences” that is a construction of a higher business services by compos-
ing various individual services in interesting ways (e.g., the Credit Pull described in
Section 2.1). We need a way to describe such sequences along with their meta-data in
a structured way including the details about all its steps, the communication mecha-
nism used for a given step (synchronous via web services or other protocols, or asyn-
chronous via messaging), the structure of the information exchanged (e.g., XML
schema info), and several other details specific to the integration between these ser-
vices. In earlier applications, such information was specified just through design
documents. The SOA Workbench is a tool that captures the sequence metadata de-
scribed above at design time. It then uses this information to do other interesting tasks
during the design, test, and production monitoring phases. Additional metadata related
to data validation can also be added and is described in the following sections.

3.1 Content Validation

Since the interactions in the sequence are between loosely coupled systems that are
usually developed by different teams, it is critical to capture as much information as
possible on the validity of the documents exchanged between the services. While
some structural and semantic constraints can be expressed in the XML schema, there
is a need for validation constraints that cannot be expressed in the schema. For exam-
ple, the same documents (i.e. same schemas) can be used in different sequences (or
even in different steps within a sequence) and the validation constraints may different
across these sequences (or across the steps within a sequence). A typical case is that
some elements in the schema are mandatory in one sequence but not in another. As
discussed in Section 2, we have embraced the OAGIS style of defining documents
where key business entities are represented as “nouns” and an XML schema can em-
bed one or more of these nouns within it. Often the same noun is embedded in differ-
ent schemas that represent different uses of it. For example, we have a Credit noun
representing credit information that is used in both ProcessCredit as well Process-
CreditOrder steps in the Credit Pull sequence (Credit noun is also used in several
other sequences). The ProcessCredit step mandates some elements within the Credit
noun to be present whereas the ProcessCreditOrder mandates a different subset of

442 M. Acharya et al.

elements within the Credit noun. The SOA workbench supports such validations by
allowing the user to specify mandatory data elements for each step of the sequence.
When the communication is asynchronous, our application also uses several custom
JMS properties [4] to communicate – the ESB uses the JMS properties to route the
message. The SOA workbench tool allows the user to list the JMS properties used in
each step and specify whether they are mandatory.

3.2 Advanced Content Validation

XML schemas and the additions described in the previous section about specifying
required elements that are sequence-step specific still only validate the message from
a structural perspective. The SOA workbench goes further in addressing how one can
validate the content of an element (i.e., the value of an XML element) as well. In our
application, as is typical of many enterprise applications, the data elements in the
XML messages are related to or derived from data stored in a database. Services usu-
ally consume a message, update the database and generate more messages in re-
sponse. The content of these generated messages are derived from data in a database.
In such scenarios, we need the ability to specify validation checks on the content of
the XML messages by validating it against its corresponding data in the database. The
tool allows us to specify such validations for each step in the sequence. The XML
element to be validated is usually specified via an XPath expression1. The tool allows
the user to write SQL queries against the database and add a validation that checks if
the result of the XPath expression is the same as the result of a SQL query. For exam-
ple, in the Credit Pull scenario, the Lending Lifecycle Service sends a ProcessCredit
document to the Credit Service with borrower’s name, social security number (SSN)
and address. The Credit Service stores the name and SSN data in its database, but
does not have a need to persist the address in its database. It then generates a Proc-
essCreditOrder document with the borrower name, SSN and address (the address
element is just transferred from the ProcessCredit document) and sends it to the Ex-
ternal Vendor service. We may want to add a validation constraint that the borrower
name and SSN in the Credit Service database is the same as the borrower name and
SSN in the ProcessCreditOrder document. SOA workbench allows for specifying
such validations.

Notice how the address field was just transferred by the Credit Service from the in-
coming XML document to the outgoing XML document. In our application, such
transient flows of information across XML documents in the sequence are fairly
common. It would be useful during testing to validate that the address field in the
ProcessCreditOrder document is the same as the address field in the ProcessCredit
document. SOA workbench allows to specify whether an XPath expression on a
document at a certain step in the sequence has the same value as an XPath expression
run on a previous step in that sequence.

1 Ideally, these should be XQueries instead of XPaths as that makes it easier to express more

complex validations on the whole document instead of at an element by element basis. This is
a simple extension to the current tool and is planned for a future release.

 SOA in the Real World – Experiences 443

3.3 Reviews, Approval and Impact Analysis

The SOA workbench also allows the interactions to be reviewed and approved by
each of the participants in the service. In a loosely coupled system, such review and
approval processes are essential to communicate changes and to get all parties to
agree to the proposed design.

Another big advantage of laying out the sequences in SOA workbench is its ability
to deal with changes. In our applications, we frequently face the need to make
changes to the XML schemas for various reasons. Prior to the SOA workbench, it was
extremely difficult to manage these changes. A change to a specific element could
impact certain sequences and the person making the schema change was not able to
easily identify the affected sequences. To address this, the SOA workbench offers a
feature by which the person making the schema change can do an impact analysis and
identify all the sequences and the specific steps within the sequence where a BOD is
used. Furthermore, if a change to a specific element is made, the tool can identify the
sequences as well as the exact steps where the changed element is listed as a manda-
tory element. This will help the user to deal with changes in a more controlled man-
ner. In a future version, we plan to add a change request workflow to the tool where a
user can propose a change to a schema and all the owners of the services impacted by
that change would be required to approve such changes before it is published.

3.4 Comparison with Workflow Tools

It is useful to compare the SOA Workbench to existing Workflow (BPM) tools in the
industry. SOA Workbench is similar to BPM tools in that it helps in designing work-
flows composed of many services and interactions. Workflow systems focus on the
ability to change workflows dynamically whereas the SOA workbench primarily
deals with the problem of defining sequences across loosely coupled services and
managing the design contracts (specifications that help answer questions such as what
are the required data elements in a XML schema or required JMS properties in each
specific interaction, what constitutes a valid document in the context of a specific step
in a sequence, how should elements be validated against data in a database etc.),
monitoring, and testing of these services. Recently, BPEL[7] has emerged as a poten-
tial standard that provides a portable language for coordinating the flow of business
process services. BPEL builds on the previous work in the areas of BPM, workflow,
and integration technologies. There are a few commercial implementations of BPEL.
Weblogic Integration [8] is one such tool that originally focused a lot on integration
and workflow capabilities with proprietary ways of defining workflows (called Java
Process Definitions) and more recently starting to offer better support for BPEL.

While BPEL and several commercial implementations address the issue of process
definition and execution in a distributed SOA environment, they mainly focus on inte-
gration and orchestration of services. In particular, they do not address critical aspects
associated with design contract definition. The BPEL tools also do not address other de-
sign time activities such as reviews and approvals. Furthermore, they also do not deal
with the challenges in testing and monitoring as explained in Sections 4 and 5.

Another recent trend is the emergence of tools providing ESB functionality. As ex-
plained in Section 2, we use a commercial ESB tool that provides reliable messaging

444 M. Acharya et al.

and acts as a message router. Some ESB vendors also provide value added features
for service orchestration on top of the basic ESB. Again, in our experience, such fea-
tures do not focus on specifying design contracts to the level of detail that we have
described and also do not sufficiently address the monitoring and testing needs of a
SOA application.

We also wish to point out that the work we have done in the areas of design con-
tract specification, testing, and monitoring in the context of SOA are complementary
to the current efforts on BPEL and related commercial tools. In fact our work can be
easily integrated into the standards or commercial tools as valuable extensions.

4 Challenges in Testing

The main challenges we faced in testing our SOA application were in the areas of
checking conformance to contracts specified at design time, automating tests for sys-
tems with asynchronous interfaces, testing robustness of applications built based on
asynchronous messaging, and testing services in isolation. We now describe the fea-
tures that we built in the SOA workbench to address each of these challenges.

4.1 Auto-validation During Manually Triggered Tests

In Sections 3.1 and 3.2, we described how a user could add validation criteria to the
steps in a sequence at design time. The SOA workbench also provides additional fea-
tures that enforce these validation rules at runtime, which can be leveraged for the
testing of the application. The tester would trigger business sequences from the appli-
cation -- for example, request a Credit Pull for a borrower from the application. This
would exercise the entire sequence. All the messages exchanged at each step (includ-
ing the JMS properties and the payload) are recorded in a Central Logging Database
through a tool called SIMON (see Section 5.1). Through the SOA workbench, the
tester can then query for the instance of the credit pull sequence that she just triggered
(the query can be based on an application specific property such as say the Bor-
rower’s Social Security Number) and then “validate” that instance of that sequence.
During validation, SOA workbench queries the Central Logging Database for all the
messages that are part of that instance of the sequence, and then validates the message
at each step against the Content Validation definitions that were specified at design
time – i.e., it tests whether the message at each step has all the required elements, and
tests the advanced content validations such as checking if the values in the document
match the result of the specified queries in the database or if they match the value of
an element from a previous step etc. Notice that while this mode of testing automates
whether each step in the sequence adhered to its contracts, it still relies on a user to
manually start the sequences through the application and to explicitly use the SOA
workbench to validate each instance of the sequence. It does not provide a fully auto-
mated regression testing mechanism.

4.2 Fully Automated Regression Test Suites

For web-based applications, there are several testing tools that can be used to auto-
mate the user interaction to create automated regression tests. Such tools are not

 SOA in the Real World – Experiences 445

common for message-driven applications. To address this, SOA workbench allows a
user to create “scenarios” for a sequence each of which represents a test case for that
sequence, and then attach sample input messages for the first step in the sequence. An
automated test runner just publishes the message to the service that is the message
consumer of the first step in the sequence. After the sequence completes, the test run-
ner validates the messages at each step as described in the previous section.

4.3 Proxy ESB Router

The SOA workbench also provides an additional feature by which it can act as a
proxy ESB router whereby it routes the messages to the various services instead of
letting it happen via the real ESB. This provides the benefit of being able to inspect
and validate the messages immediately when the messages go through the proxy ESB
as and when the services publish them, instead of waiting for the entire sequence to
finish. This feature also eliminates the dependency on other tools (such as SIMON
and the Central Logging Database) for SOA workbench to do its testing.

4.4 Robustness Testing – Duplicate, Lost and Out of Order Messages

The proxy ESB feature of the SOA workbench is a key component for executing ro-
bustness tests. An application built around messaging has to deal with issues such as
lost or timed out messages, duplicate messages, messages arriving out of order or in
orders that the application did not normally expect (this can happen because the speed
of consumption and processing times of queues can vary dramatically causing events
to happen in an order that a programmer didn’t imagine in the “normal” flow). While
the messaging infrastructure may provide certain guarantees about their quality of
service with respect to duplicate and lost messages, some of these issues have to be
dealt with by the application in any case. For example, the messaging infrastructure
can go down causing messages to not arrive in time, or an application that we cannot
control can send a messages twice, or a message may arrive in an order that does not
conform to the programmers normal flow of thought. The SOA workbench allows
such cases to be simulated in the testing cycle by injecting such behavior (such as los-
ing a message, sending a message twice, or routing messages in different orders) dur-
ing the routing of messages. Such tests are crucial in creating a robust application that
can deal with such situations when they happen in real environments. The proxy ESB
makes these tests easy to create which would otherwise be extremely hard to simulate.

4.5 Testing Services in Isolation

Testing a service or groups of services independent of the rest of them is important
because (a) not all services may be available at the same time due to different devel-
opment lifecycles (b) logistical problems can cause services to be unavailable in some
environments and (c) it is easier to test a large system by incrementally assembling
subsystems and testing them. To facilitate this, the SOA workbench allows the user to
attach sample messages for each scenario to the intermediate and last steps in a se-
quence. When a service is unavailable, the ESB proxy uses these messages as re-
placements for the real message that would have been produced by the real service.
This allows the sequence to be tested even when some services within it are unavail-

446 M. Acharya et al.

able. A common example in our application is testing the Credit Pull when the Exter-
nal Vendor Service is unavailable (it is difficult to coordinate availability of the Ex-
ternal Vendor Service for testing because of external dependencies).

5 Monitoring and Error Recovery

So far we have described the challenges during development and testing phases of
building SOA applications. We now describe the challenges that arise when the appli-
cation is deployed on a production environment. In particular, we discuss the chal-
lenges in the areas of monitoring and recovering from error scenarios in a production
environment.

5.1 Monitoring

As described earlier, a sequence representing a business process involves interactions
with several different services that are deployed independently. A distributed system
such as this makes it hard to monitor the application. For example, if the Lending
Lifecycle Service initiated a Credit Pull and has not received the credit report back
within an estimated time, the problem could have been in any of the several services
involved in the sequence. We built a tool called SIMON that makes it easy to monitor
the sequences and report on their activity and performance. The architecture of
SIMON is illustrated in the figure below.

Each service registers an event when it sends a request to another service and when
it processes a request from another service. These events are recorded in a database
(called Central Logging Database) on a central server that we call the Central Logging
Server. SIMON allows the user to define SLAs (service-level agreements) for the
completion time for the various sequences. It then runs a background task periodically
(the frequency of which can be configured) that looks at all the sequences that have
started and whether they all have completed within the defined SLA time period. If
some sequences have gone past the SLA time and are still incomplete, SIMON can
identify them as exceptions and raise alerts (such as sending an email to the produc-
tion support team). The level of alerts can be also configured based on the percentage

Fig. 3. SIMON Architecture

 SOA in the Real World – Experiences 447

of occurrence of failures. For example, if less than 1% of the sequences fail, the alert
could be a warning, whereas if more than 20% fail, the alert can be made critical.
SIMON can also report on the overall performance of the sequences by providing re-
ports such as the average time it took for sequences to complete and also provide re-
sponse time breakdowns for each step in the sequence. Such reports are very useful to
understand the performance of the overall SOA application and to determine the
source of bottlenecks within it.

5.2 Error Recovery

Many errors in a production environment can be attributed to (1) services that are
down for unexpected reasons, (2) services that didn’t produce the correct message as
per the contract, or (3) services that didn’t consume the message properly due to de-
fects in the code. If a sequence is stuck in the middle because of such problems, we
need a way to recover from them. Temporary problems such as intermittent server
crashes are usually fixed by using the redelivery features of messaging providers - a
message can be delivered a certain number of times if there are failures in processing
them. However, some problems such as defects in the code take longer to fix and the
design of most messaging systems don’t permit messages to be kept in them for a
long time. Also, sometimes, we have to fix the message itself to recover from the
problem. To deal with these situations, we built a utility that moves messages that
have been tried multiple times from the queues into a database. An application allows
users to query these messages in the database and move them back to the queue
(which will be done once the defects are fixed and the service is redeployed). Also, if
the problem is in the content of the message itself, it allows one to transform the mes-
sage by applying XSL transformations to it before sending it back to the queue. Hav-
ing these failed messages stored in a database also gives us the flexibility to query for
messages related to a specific customer. For example, if a particular customer's credit
pull sequence failed and the business wants the business flow for that customer to be
completed first, we can query for all the failed messages for that customer and move
them back to the queue so that they get processed first.

6 Learnings and Conclusion

SOA architecture offers promise in its ability to integrate loosely coupled systems. How-
ever, the principles underlying the design of applications based on SOA are not well estab-
lished yet. In this section, we discuss the learnings from our experiences with SOA.

A key issue is defining a service at the right level of granularity. Our original archi-
tecture started out with defining services around every domain object (noun). For exam-
ple, in addition to the services discussed earlier, nouns such as insurance and address
were modeled as services in our original architecture. However, we quickly realized that
a system based on such fine grained services will have unwanted development, deploy-
ment, and performance overhead. What we have learnt is that a service should represent
the right abstraction that both IT and business care about. Importantly, it is something
that the company wants to manage independently. Other factors that defines a ser-
vice are does it need to be released separately from other components, does it provide
services to many different and varying systems, should its down time not affect other

448 M. Acharya et al.

systems, does it have different hardware/scalability requirements, is there unique licens-
ing requirements etc. There is extra cost to managing something as a service and it
should be backed by a strong business justification and business ownership.

The area of tools for building SOA applications needs further attention. While the
solutions we described in this paper suit most of our needs, there is scope for further
improvement. We would like to see more tools that use different approaches to ad-
dress the challenges in the design, testing and monitoring of SOA applications. We
also expect existing workflow and integration tools to start addressing some of these
challenges. An interesting area of work is the simplification of the entire development
lifecycle by utilizing higher level tools that are fundamentally aware of SOA. As an
example, model-driven architectures (MDA [2]) around SOA is an interesting area of
study. Another important area of work is the development of systems that intelligently
manage schema versioning in SOA.

Adoption of an event driven SOA where back-end services drive events is a diffi-
cult challenge for architects and programmers accustomed with the classic UI-driven
(e.g. Web) application development. In the web application paradigm, users drive sys-
tem events by clicking buttons or hyperlinks. The underlying application(s) wait and
process individual requests as they arise. Errors are typically handled by raising ex-
ceptions that are relayed back to the users, and relying on users to resubmit requests
after correcting data and other input problems. In the event driven SOA paradigm,
back-end services essentially replace human users. Thus, the back-end systems must
be programmed to handle unreliable services, ensure data integrity up-front, resubmit
requests, manage transactions etc. This problem is compounded by the fact that ser-
vices inherently do not have knowledge of the business transaction in which they are
a participant. The tools discussed in this paper describe some of means used to miti-
gate these issues. True defense in depth for the enterprise may require additional au-
dits and batch processing "underneath" the event driven SOA.

Finally, application developers expend valuable time dealing with and designing
for failure modes consciously during development (see Section 4.4). Besides the large
amount of effort involved, it is difficult to ensure that the developers have thought
through the failure scenarios for every use case in the application. It is an imperative
to have better programming models and/or more integrated tools that can address
these issues in an easier way that removes the burden from the application developers.

Acknowledgements: We would like to acknowledge Fabio Casati for his review of
an earlier draft of the paper that has helped improve its quality. We also would like to
thank the many members of the Tavant team who helped realize the concepts and fea-
tures discussed in this paper.

References

[1] Enterprise Service Bus. David Chappell. O’Reilly 2004.
[2] MDA Guide Version 1.0.1 Joquin Miller and Jishnu Mukerji. <http://www.omg.org/

docs/omg/03-06-01.pdf>, 2003
[3] Java Business Integration JBI 1.0 http://java.sun.com/integration/1.0/docs/sdk/

introduction/introduction.html
[4] Java Messaging Service Specification version 1.1 http://java.sun.com/products/jms/docs.html

 SOA in the Real World – Experiences 449

[5] XML Schemas http://www.w3.org/XML/Schema
[6] OAGIS Open Applications Group Integration Specification
 http://www.openapplications.org/downloads/oagis/loadform.htm
[7] BPEL.The BPEL4WS 1.1 Specification.
 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
[8] Weblogic Integration http://e-docs.bea.com/wli/docs85/index.html

Appendix -- SOA Workbench Data Model

Figure 4 shows a simplified UML class diagram for the internal object model of the
SOA workbench. The class IntegrationSequence represents the notion of sequences
(such as the Credit Pull) described earlier. Each IntegrationSequence consists of several
steps that is represented by IntegrationSequenceStep. As described in Section 3.1, the
data elements used in an IntegrationSequenceStep and whether they are mandatory for
that step is represented by the class DataElement. Each DataElement is internally repre-
sented as an XPath expression on the XML schema used for that IntegrationSe-
quenceStep. The JMS properties associated with a IntegrationSequenceStep is repre-
sented by the class JMSProperty. The ValidationDataSource represents the more
complex data validations described in Section 3.2. The class DBValidationDataSource
represents the fact that the data element needs to be validated against the result of some
query which is represented by the class ValidationQuery. The class ConstantValida-
tionDataSource validates the data element against a constant value. The class XPath-
ValidationDataSource validates the data element against the result of another XPath ex-
pression on a previous IntegrationSequenceStep within the same IntegrationSequence.
In the interest of space, we have omitted illustrating the classes for other parts of the
SOA workbench such as those related to Reviews and Approvals etc.

Service-Oriented Design: The Roots

Tiziana Margaria1, Bernhard Steffen2, and Manfred Reitenspieß3

1 Service Engineering for Distributed Systems, Universität Göttingen, Germany
margaria@cs.uni-goettingen.de

2 Chair of Programming Systems, Universität Dortmund, Germany
steffen@cs.uni-dortmund.de

3 Director Business Development, RTP 4 Continuous Services,
Fujitsu Siemens Computers, Munich, Germany
Manfred.Reitenspiess@fujitsu-siemens.com

Abstract. Service-Oriented Design has driven the development of tele-
communication infrastructure and applications, in particular the
so-called Intelligent Network (IN) Services, since the early 90s. A service-
oriented, feature-based architecture, a corresponding standardization of
basic services and applications in real standards, and adequate program-
ming environments enabled flexibilization of services, and dramatically
reduced the time to market. Today the current trend toward triple-play
services, which blend voice, video, and data on broadband wireline and
wireless services builds on this successful experience when reaching for
new technological and operational challenges. In this paper, we review
our 10 years of experience in service engineering for telecommunication
systems from the point of view of Service-Oriented Design then and now.

1 Motivation

Service-Oriented Design has driven the development of telecommunication in-
frastructure and applications, in particular the so-called Intelligent Network (IN)
Services, since the early 90s: IN services are customized telephone services, like
e.g., ‘Free-Phone’, where the receiver of the call can be billed if some conditions
are met, ‘Virtual Private Network’, enabling groups of customers to define their
own private net within the public net, or credit card calling’, where a number
of services can be billed directly on a credit card account. The realization of
new IN services was quite complex, error prone, and extremely costly until a
service-oriented, feature-based architecture, a corresponding standardization of
basic services and applications in real standards, and adequate programming en-
vironments came up: they set the market, enabled flexibilization of services, and
dramatically reduced the time to market. Today the current trend moves toward
triple-play services, which blend voice, video, and data on broadband wireline
and wireless services. It builds on this successful experience when reaching for
new technological and operational challenges.

In this paper, we review our 10 years of experience in service engineering for
telecommunication systems from the point of view of Service-Oriented Design

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 450–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Service-Oriented Design: The Roots 451

then and now. In particular, we aim at establishing a link to the notions used
by the service-oriented programming (SO) community.

The central observation is that both communities pursue the same goals,
a coarse granular approach to programming, where whole programs serve as
elementary building blocks. However, they have quite a different view on what
a service is and how it is organized. In the terminology of the SO-community,
a service is a ”nugget” of functionality (essentially a building block) that is
directly executable and can be published for use in complex applications. In
the telecommunication world, such elementary components are called Service-
Independent Building blocks (SIBs), and the notion of service is typically used for
the resulting (overall) application. In addition, in the telecommunication world
the notion of feature is used to denote substructures of services (applications)
that impose additional functionality (like e.g. call forwarding, or blacklisting)
on the generic basic telecommunication functionality. In the IN-architecture, the
basic functionality was POTS (plain old telephony service), and feature were
typically only executable in the context of POTS.

It was always our point of view that some of these distinctions would dis-
appear as soon as one lives in a fully hierarchical context, where services may
themselves be regarded as elementary building blocks at a higher level of abstrac-
tion. In this scenario, which is supported by MetaFrame, our service definition
environment, the notion of service capture the corresponding notions of both
the SO- and the telecommunication communities. Moreover, the notion of SIB
simply characterizes services which cannot be refined, and the notion of feature
characterizes subservices that cannot be executed on their own. The remainder of
this paper is written from this unifying perspective and it focusses on the impact
on formal methods to improve the service development process. This concerns in
particular the idea of incremental formalization, which allows users to already
exploit very partial knowledge about the service and its environment for verifi-
cation. In turn, this enables a division of labour, which in particular enables the
application expert to directly cooperate in the service definition process.

In the following, Sect. 2 introduces the traditional concept of services in an
Intelligent Networks Architecture, Sect. 3 describes the current telecommunica-
tion perspective, and Sect. 4 presents a unifying feature-oriented description of
services that goes beyond the IN understanding. Finally, Sect. 5 summarizes our
conclusions.

2 Services in an Intelligent Networks Architecture

By integrating telecommunication and computer technology, the Intelligent Net-
work concept (see [10] for an overview) helps (network) providers to make new
and flexible telecommunication services available for their customers. Particu-
larly complex examples of such services are Universal Personal Telecommuni-
cation (UPT), that combines personal mobility with the access to and from
telecommunication over a unique number and account, and Virtual Card Call-
ing (VCC), that allows subscribers to make calls from every private or public

452 T. Margaria, B. Steffen, and M. Reitenspieß

telephone charging their own VCC account. Widely used IN services are Free-
Phone (FPH, the family of 0180- or 800-services), Televoting (VOT, e.g. for
selection of Saturday night movies via telephone or for the winner of the Euro-
pean song context), Universal Access Number (UAN, where service subscribers
can be reached from anywhere under a unique universal, network-independent
directory number), Premium Rate Service (PRM, which enables the service sub-
scriber to supply any information under a unique number and against a usage
fee), and Virtual Private Network Service (VPN, which allows subscribers to
define a private number plan based on a public telephone exchange).

The underlying intelligent networks are composed of several subsystems that
together implement the intended functionality. They form complex distributed
systems, which require the cooperation of central computers, of databases, of
the telephone network, and of a huge number of peripherals under real-time
and performance constraints. In particular, the design of new services must take
into account requirements imposed by the underlying intelligent network: e.g.,
system-dependent frame conditions must be obeyed in order to guarantee reliable
execution of the new services. Figure 1 shows an abstract functional decomposi-
tion of an intelligent network, which comprehends management, control, switch
and service creation units. A more detailed description of IN components and
their functions can be found in [3,9].

Data Communication
Network (DCN)

CCS No. 7

SCEP Service Definition

Service Control Point

SCP

Service
Administration

Data
Transmission

Service
Control

Signalling
Transfer

Service
Access

SMP

Service Management Point

Data Communication
Network

Service Switching Point

SSP IP

(A-Party) (B-Party)

Telephone network/ISDN

Intelligent
Peripheral

SCEP
Customer Service Control

SCEP
Service Customisation

Fig. 1. Global Architecture of an Intelligent Network

Service-Oriented Design: The Roots 453

– The Service Management Point (SMP) serves as the central component for
the creation, customization and management of services and service sub-
scribers/users. Based on a database system and on an advanced authoriza-
tion system, the SMP allows the installation and administration of services
and service customers by service subscribers and providers using the associ-
ated interfaces (Service Creation Environment, SCE). The SMP also provides
interfaces for statistic raw data and for mass data entry.

– The Service Control Point (SCP) controls the Service Switching Point ac-
cording to the control parameters provided by the SMP. The SCP also com-
piles statistical information of the calling activities and other call-related
data and makes them available via the SMP for further processing. Infor-
mation between SCP and SSP is exchanged via the INAP communication
protocol.

– The CCS7 network is used to exchange the signalling information between
the SCP and the Service Switching Point (SSP). The SSP sets up the call
between the calling party and the called party in conjunction with the un-
derlying telephone network (mobile or public exchange). An Intelligent Pe-
ripheral (IP) can be attached to the SSP for playing announcements or for
other automatic voice services.

– The Service Creation Environment Point (SCEP) provides Customer Service
Control (CSC), Service Customization (SC) and Service Definition (SD).
• The Customer Service Control component supports the handling of the

subscriber-specific service data such as parametrization of a subscribed
service, modification and adaptation of service logic and statistics in-
quiries.

• The Service Customization process serves to define which service func-
tions and features the service subscribers are allowed to use according
to their needs.

• The aim of Service Definition is to establish the logic of a service and the
parameters which control the processing of the service. The definition of
a service begins with the creative process of detailed service specification,
in which various aspects such as market requirements, technical perfor-
mance (load criteria) and serviceability must be taken into account.

The complexity of the new services and the complexity of the distributed environ-
ment in which they must correctly function under strict real-time requirements
of availability and performance currently make service definition intricate and
error prone. In a pure direct programming based approach, the introduction of
new complex services like the ones mentioned above used to take several expert
years for development and testing.

A model-driven Service Definition approach has supplanted the programming
style already in the ’90s, supporting a reliable service design and development
tailored to the specifica of the intelligent network. This has led to a much shorter
time to market (days instead of months), with shortened development and testing
phases. It has enabled low-cost development of high-quality services, boosting
the differentiation of services to the richness we experience today.

454 T. Margaria, B. Steffen, and M. Reitenspieß

2.1 The MetaFrame Environment for Service Definition

The implementation of the Service Design Environment was based on the
MetaFrame R© environment [29]. At that time, the service-oriented terminol-
ogy was not yet defined, and the IN community defined and standardized own
names for the entities they were working with. In the following we stick to that
original terminology. The parallel to the modern SO-world is astonishing.

Behaviour-Oriented Development: Application development consists in the be-
haviour-oriented combination of Service Independent Building Blocks (SIBs) on
a coarse granular level. SIBs are software components with a particularly sim-
ple interface. This kind of interface enables one to view SIBs semantically just
as input/output transformations. Additional interaction structures can also be
modelled, but are not subject to the formal synthesis and verification methods
offered by the MetaFrameenvironment. SIBs are here identified on a functional
basis, understandable to application experts, and usually encompass a num-
ber of ‘classical’ programming units (be they procedures, classes, modules, or
functions). They are organized in application-specific collections. In contrast to
(other) component-based approaches, e.g., for object-oriented program develop-
ment, MetaFrame focusses on the dynamic behaviour: (complex) functionalities
are graphically stuck together to yield flow graph-like structures called Service
Logic Graphs (SLGs) embodying the application behaviour in terms of control.
This graph structure is independent of the paradigm of the underlying program-
ming language, which may, e.g., well be an object-oriented language: here the
coarse granular SIBs are themselves implemented using all the object oriented
features, and only their combination is organized operationally. In particular,
we view this flow-graph structure as a control-oriented coordination layer on top
of data-oriented communication mechanisms enforced e.g. via RMI, CORBA
or (D)COM. Accordingly, the purely graphical combination of SIBs’ behav-
iours happens at a more abstract level, and can be implemented in any of these
technologies.

Incremental Formalization: The successive enrichment of the application-specific
development environment is two-dimensional. Besides the library of application
specific SIBs, which dynamically grows whenever new functionalities are made
available, MetaFrame supports the dynamic growth of a hierarchically organized
library of constraints, controlling and governing the adequate use of these SIBs
within application programs. This library is intended to grow with the experience
gained while using the environment, e.g., detected errors, strengthened policies,
and new SIBs may directly impose the addition of constraints. It is the possible
looseness of these constraints which makes the constraints highly reusable and
intuitively understandable. Here we consciously privilege understandability and
practicality of the specification mechanisms over their completeness.

Library-Based Consistency Checking: Throughout the behaviour-oriented devel-
opment process, MetaFrame offers access to mechanisms for the verification of

Service-Oriented Design: The Roots 455

libraries of constraints by means of model checking. The model checker individu-
ally checks hundreds of typically very small and application- and purpose-specific
constraints over the flow graph structure. This allows concise and comprehen-
sible diagnostic information in the case of a constraint violation, in particular
as the information is given at the application rather than at the programming
level.

These characteristics are the key towards a well-functioning distribution of
labour, according to the various levels of expertise. The groups that crystallized
were

– Programming Experts, responsible for the software infrastructure, the
runtime-environment for the compiled services, as well as the programming
of SIBs.

– Constraint Modelling Experts, who are experts of the protocols and
frame conditions of the underlying infrastructure formulate the correctness
conditions for services to properly run and interact.

– Application Experts, who develop concrete applications, by graphically
combining SIBs into coarse-granular flow graphs. These graphs can be imme-
diately executed by means of an interpreter, in order to validate the intended
behaviour (rapid prototyping). Model checking guarantees the consistency
of the constructed graph with respect to the constraint library.

– End Users may customize a given (global) service according to their needs
by parametrization and specialization [6].

The resulting overall lifecycle for application development using MetaFrame
is two-dimensional: both the application and the environment can be enriched
during the development process.

Consistency Rules

IN-Service

View Executable Prototype

Synthesis

Compilation

Abstraction

Concretization

Modification Control Control

Service Logic
Libraries

Selection

Fig. 2. The Service Creation Process

456 T. Margaria, B. Steffen, and M. Reitenspieß

2.2 Service Definition in Practice

The Service Definition Environment is constructed for the flexible and reli-
able, aspect-driven creation of telephone services in a ‘divide and conquer’ fash-
ion [34,4]. As shown in Fig. 2, initial service prototypes are successively modified
until each feature satisfies the current requirements. The entire service creation
process is supported by thematic views that focus on particular aspects of the
service under consideration. Moreover, the service creation is constantly accom-
panied by on-line verification: the validity of the required features and of the
executability conditions for intermediate prototypes are checked directly at de-
sign time. Design decisions that conflict with the constraints and consistency
conditions of the intended service are immediately detected via model checking.

The novelty of this SD environment is due the impact of formal verification
and abstract views on service creation [33,32]. In fact,

– Formal verification allows designers to check for global consistency of each
design step with implementation-related or service-dependent frame condi-
tions. Being based on model checking techniques [28], it is fully automatic
and does not require any particular technical knowledge of the user. This
simplifies the service design since sources for typical failures are detected
immediately.

– Abstract or thematic views concentrate on the required global context and
hide unnecessary details. They allow the designer to choose a particular
aspect of interest, and to develop and investigate the services under that
point of view. This supports a much more focussed service development,
which concentrates on the design of the aspect currently under investigation.
Of particular interest are error views that concentrate on the essence of a
detected error.

– SIBs and reusable services are classified typically according to technical cri-
teria (like their version or specific hardware or software requirements), their
origin (where they were developed) and, here most importantly, according to
their intent for a given application area. The resulting classification scheme
(called taxonomy, [32,30,20]) is the basis for the constraint definition in terms
of modal formulas.

– Both formal verification and abstract views are fully compatible with the
macro facility of the environment. This allows developers to define whole
sub-services (usually called features) as primitive entities, which can be used
just as SIBs. Macros may be defined on-line and expanded whenever the
internal structure of a macro becomes relevant: this way the SDE supports
a truly hierarchical service construction [35].

The design of the taxonomies goes hand in hand with the definition of aspect-
specific views, since both are mutually supportive means to an application spe-
cific structuring of the design process.

IN services soon reached sizes and complexities which demand for automated
support for error detection, diagnosis, and correction. The IN-MetaFrame en-
vironment encourages the use of the new methods, as they can be introduced

Service-Oriented Design: The Roots 457

incrementally: if no formal constraints are defined, the system behaves like stan-
dard systems for service creation. However, the more constraints are added, the
more reliable are the created services [31].

To allow verification in real time, we use finite-state model checkers [28,23]
optimized for dealing with large numbers of constraints. The algorithms verify
whether a given model satisfies properties expressed in a modal logic called the
modal mu-calculus [18]. In the SD-IN setting:

– the properties express correctness or consistency constraints the target IN
service is required to respect. They are expressed in a natural language-
like macro language, internally based on the temporal logic SLTL (Semantic
Linear Time Logic, cf. [30]). This is a linear-time variant of Kozen’s mu-
calculus [18], which comes together with efficient verification tools;

– the models are directly the Service Logic Graphs, where SIB names corre-
spond to atomic propositions, and branching conditions correspond to action
names in the SLTL formulas.

Model checking a service, as shown in [35] on a concrete case, may lead to the
discovery of paths in the graph that violate some constraints. When the model
checker detects such an inconsistency, a plain text explanation of the violated
constraint appears in a window. To ease the location and correction of the error,
an abstract error view is automatically generated, which evidences only the
nodes which are relevant to the error detection [5]. Errors can be corrected
directly on the error view, and the subsequent view application transmits the
modifications to the concrete model. Examples have been already discussed in
previous papers [33,32].

3 The Current Telecommunication Perspective

During the last 10 years, smooth but steady transition has taken place from the
switch-based IN-Architecture described in the previous section to Computer-
Telephony Integrated solutions [12], and more recently to the integrated, open
IT-based architectures that are being developed and deployed today as high-
availability service solutions [26,24], or as distributed service integration and
collaboration platforms [20]. The internet has supplanted the ISDN backbone
as basis network, and the picture has reversed: cutting edge telecommunication
services are being provided on an IP basic infrastructure.

The transition from the pure telecommunication scenario (which was still
dominating the IN architecture) to a holistic service-oriented attitude, that in-
cludes also middleware and applications, has been actively pursued in the past
years and it starts paying off. An example of this trend are the Open Specifi-
cations for Service AvailabilityTM, a collection of specifications spanning from
hardware interfaces to the application level, which are available from the SAFo-
rum webpage [27]: they are increasingly influencing the way 3G telecommunica-
tion services are built. As such, they are a new success story for the feasibility
and readiness of adoption of guidelines (a de facto standard) in shaping service

458 T. Margaria, B. Steffen, and M. Reitenspieß

Fig. 3. The Service-Oriented Architecture and the Web Services Standards Stack

interfaces with the aim of granting interoperability also in the software applica-
tion domain!

The Service Availability Forum itself is a consortium of industry-leading com-
munications and computing companies working together to develop and publish
high availability and management software interface specifications. Member com-
panies include e.g. Fujitsu Siemens Computers, IBM, Intel, Motorola, Oracle,
Veritas Software, and a large number of smaller companies that offer solution
that need to interwork with the platforms of the global players. The goal of the
SAForum is to create complete and robust specifications to manage complex,
highly-available platforms, with a specific focus on supporting high availability
services. The SA Forum then promotes and facilitates specification adoption by
the industry.

It is widely perceived by the participating companies that this goal by far
exceeds the current aims of the SOA community: the SOA interaction structure
establishes a simple, but very generic way of communication shown in Fig.3(a),
and there are a number of layers for specific SOA architectures which are object
of standardization efforts. SOAP [11] is a standard for XML messaging, the Web
Services Description Language [8](WSDL) for service descriptions and UDDI
for service repositories are de-facto standards for today’s most popular imple-
mentation of service orientation: Web services [1]. The Web Services Standards
Stack is summarized in Fig.3(b). A Web services implementation aims at allow-
ing loose coupling between business partners. Since all the needed interactions
can be automated, it allows also just-in-time queries to find available services.

Still, the standardization in Web services concerns interface programming lan-
guages (WSDL), data description languages (XML and derivatives like OWL-S),
behaviour composition languages (BPEL4WS) and mechanisms (WSMO [37]),
but not services. In other words, it tackles formats - not content, syntax - not
semantics. A catalogue of service behaviours that

– service providers in one domain must provide,
– which must satisfy a given standard, but whose implementation might differ,

e.g. resorting to different technologies or platforms, and

Service-Oriented Design: The Roots 459

– which must be capable of interoperation, in the sense that they are guaran-
teed to be interchangeable,

is not yet in sight. Only such (domain-specific) standardizations will realize the
full potential of service orientation in the sense of a major shift of development
paradigm.

This is far away from what is customary in the telecommunication world,
as described in the previous sections, and far weaker. The concept of concrete
sets of Features and of Services as objects of standardization, which is natural
and well accepted in the telecommunication world, is in fact still extraneous
to the SOA community. For specific industrial sectors, names for categories and
services are slowly becoming established and agreement is building up. Ontology-
based approaches are one of the emerging technologies that are being intensively
investigated within the semantic web paradigm to handle this. But they are still
insufficient since they are island-solutions, not accepted standards. In the IN
world, and consequently in the MetaFrame environment, this standardized way
of thinking was already realized in the ’90s.

4 Feature-Oriented Service Description Beyond IN

There are many definitions of features, depending heavily on their context and
their use. Although we too learned to know and appreciate the concept and the
use of features in the context of Intelligent Networks [14,15,35], our notion of
features is meanwhile more general in order to also capture a more general class
of services like online, financial, monitoring, reporting, and intelligence services:

Definition 1 (Feature).

1. A feature is a piece of (optional) functionality built on top of a base system.
2. It is monotonic, in the sense that each feature extends the base system by an

increment of functionality.
3. The description of each feature may consider or require other features, ad-

ditionally to the base system.
4. It is defined from an external point of view, i.e., by the viewpoint of users

and/or providers of services.
5. Its granularity is determined by marketing or provisioning purposes.

In the IN setting, the base system was a switch that offered POTS (plain
old telephone service) functionality, and the features were comparatively small
extensions of that behaviour. Instead, today we tend to have a lean basis ser-
vice that deals with session, user, and role-rights management, and a very rich
collection of features. Complex internet services with a strongly CSCW-oriented
character and online decision support systems like the Online Conference Service
described in [17], have been entirely developed this way. This brings a different
perspective on the role and purpose of features.

Features were traditionally understood as local modifiers of the basic service:
they were individually executed, i.e. a single feature was triggered by some event,

460 T. Margaria, B. Steffen, and M. Reitenspieß

executed, and it retuned upon termination to the basic service. This is no longer
sufficient: in order to account for complex evolutions of services, we allow in to-
day’s SD a multilevel organization of features, whereby more specialistic features
build upon the availability of other, more basic, functionalities.

In order to keep this structure manageable and the behaviours easily under-
standable, we restrict us to monotonic features, which are guaranteed to add
behaviour. Restricting behaviour, which is also done via features in other con-
texts (e.g. [13]), is done in an orthogonal way in our setting, via constraints at
the requirements level.

Additionally, we distinguish between features as implementations and prop-
erties of feature behaviours. Both together give the feature-oriented description
of services enforced in the ABC.

Definition 2 (Feature-Oriented Description).

1. A feature-oriented service description of a complex service specifies the be-
haviours of a base system and a set of optional features.

2. The behaviour of each feature and of the basic system are given by means of
Service Logic Graphs (SLGs) [15].

3. The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

4. The feature-oriented service description includes also a set of abstract re-
quirements that ensure that the intended purposes are met.

5. Interactions between features are regulated explicitely and are usually ex-
pressed via constraints.

6. Any feature composition is allowed that does not violate any constraint.

The library of SIBs for IN services was itself standardized [16], thus leading to
a well-defined set of capabilities that ensured interoperation between function-
alities offered by the different vendors.

In contrast to the proposal by [7], which is still close to the IN point of view,
we distinguish the description of the feature’s behaviour from that of the legal
use of a feature. Restrictions to behaviours are in fact expressed at a different
level, i.e. at the requirements level, and they are part of an aspect-oriented
description of properties that we want to be able to check automatically, using
formal verification methods.

As we successively discovered, the INXpress SDE was already largely orga-
nized that way, since it was strongly influenced by more complex IN-services,
which themselves were built from a combination of pre-existing individual ser-
vices. Examples of such leading-edge IN services are the already mentioned UPT
and VCC.

– The UPT service examined in [35] combines personal mobility with the ac-
cess to and from telecommunication over a unique number and account.
Using a personal identifier, a service subscriber can access telecommunica-
tion services at any terminal and use those services provided by the network
which are defined in their own service profile. Personal mobility involves the

Service-Oriented Design: The Roots 461

capability to identify the location of the terminal currently associated with
the subscriber. Incoming UPT calls must be routed to the current destina-
tion address, and the associated charge may be split between the calling line
and the UPT subscriber. Subscribers can use any terminal in the network for
outgoing UPT calls, which are charged to their accounts. This requires user
identification and authentication on a per-call basis. The use of the optional
follow-on feature allows one authentication procedure to continue to be valid
for subsequent calls or procedures. The service package can be tailored to
the subscriber’s requirements selecting from a comprehensive service feature
portfolio.

– The VCC service allows subscribers to make calls from every private or
public telephone charging their own VCC account. VCC calls are free of
charge for the originating telephone line, so that cash or cards are no more
needed at public telephones. After dialling the defined access code, VCC
subscribers have to identify themselves by entering their virtual card number,
used by the VCC service provider to determine the subscriber’s account for
billing purposes, and a Personal Identification Number (PIN) for personal
authorization. If the virtual card number and the PIN are valid and match,
the VCC user can dial the desired destination number and will be connected.

5 Conclusions

The INXpress Service Development Environment (SDE), the Siemens solution to
Advanced Intelligent Networks that came out of our cooperation in 1995-1996,
is a commercial product that shaped the state-of-the-art of IN-service defini-
tion in the late ’90s. Presented at various international fairs (e.g. CeBIT’97), it
was installed at a number of early-adopter customers (e.g. Deutsche Telekom,
South Africa’s Vodacom, Finnland’s RadioLinja), while a number of further key
contracts followed, where our SDE was a key factor for the decision of chang-
ing to Siemens technology. The success of the IN services since then has clearly
demonstrated the validity and adequacy of the service-oriented way of thinking.

The same approach to service definition, composition, and verification has
been meanwhile successfully applied in other application domains. With the ABC
(Application Building Center) and the jABC (Java ABC)1 we have meanwhile
built internet based distributed decision support systems [19], an integrated test
environment for regression test of complex CTI systems [25], a management in-
frastructure for remote intelligent configuration of pervasive systems [2], as well
as many other industrial applications in e-business, supply chain management,
and production control systems. In the area of internet-based service orchestra-
tion and coordination we have developed since 1997 the Electronic Tool Integra-
tion Platform, ETI [30], and its Web services based successor, jETI [21]. jETI
is unique in providing (1) lightweight remote component (tool) integration by
rregistration, (2) distributed component (tool) libraries, (3) a graphical coordi-

1 The ABC and the jABC are the successors of the MetaFrame environment.

462 T. Margaria, B. Steffen, and M. Reitenspieß

nation environment, and (4) a distributed execution environment. Currently its
application focus is on tools for program analysis, verification and validation.

The current challenge is to enhance this approach to today’s Telecommuni-
cation scenarios, e.g. to 3G VoIP solutions, that blend voice, video, and data on
broadband wireline and wireless services, and even beyond, reaching to the full
range of unified communication and data management scenarios. This should
encompasses correctness, interoperability, security, and other aspects which are
not yet sufficiently supported by the standards and by the service design and
validation environments. In particular, the security issue is new in this dimen-
sion to the telecommunication culture, since these concerns have been brought
in by the transition to IP-based networks.

Service-level standardization efforts are still going to be the approach of choice
in the telecommunication domain. Back then, the IN application consortia of
competing vendors like FINNET Group, CSELT/STET, Deutsche Telekom AG,
France Tlcom, Swiss Telecom PTT, Telecom Eireann, Telecom Finland Ltd.,
Telecom Portugal S.A. had joined forces into EURESCOM, and set the (still
valid) standard of services and features in that specific domain.

This way of standardizing services and features according to their content is
still infant in the area of Web services. Here the accent is still on the applica-
tion indepedent infrastructure, as in the METEOR-S project [22], with initial
catalogues of concrete services being developed (see e.g. the UN/SPSC service
taxonomy).

We are convinced that combined approaches, that blend the flexibility of the
current SO-scenario with the rigour and semantic standardization culture of the
telecommunication community can be the key to the new generation of personal-
ized, secure, and available ”triple play” services. Incremental formalization and
automatic verification techniques may be again the key to achieving confidence
and reliability for services that interact and interoperate on a large distributed
scale.

References

1. Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services - Con-
cepts, Architectures and Applications. Springer Verlag.

2. M. Bajohr, T. Margaria: MaTRICS: A Management Tool for Remote Intelligent
Configuration of (Pervasive) Systems, Proc. ICPS 2005, IEEE Int. Confer-ence on
Pervasive Services, 11-14.July 2005, Santorini, Greece, pp. 457-460, IEEE Com-
puter Society Press, 2005.

3. J. Biala: “Mobilfunk und Intelligente Netze,” ISBN 3-528-15302-4, Vieweg, Braun-
schweig (D), 1995.

4. F.-K. Bruhns, V. Kriete, T. Margaria: “Service Creation Environments: Today and
Tomorrow” tutorial, 4th Int. Conf. on Intelligent Networks (ICIN’96), Nov. 1996,
Bordeaux (France).

5. V. Braun, T. Margaria, B. Steffen, H. Yoo: Automatic Error Location for IN Service
Definition, Proc. AIN’97, 2nd Int. Workshop on Advanced Intelligent Networks,
Cesena, 4.-5. Juli 1997, in “Services and Visualization: Towards User-Friendly De-
sign’, LNCS 1385, Springer Verlag, März 1998, pp.222-237.

Service-Oriented Design: The Roots 463

6. V. Braun, T. Margaria, B. Steffen, H. Yoo, T. Rychly: Safe Service Customiza-
tion, Proc. IN’97, IEEE Communication Soc. Workshop on Intelligent Network,
Colorado Springs, CO (USA), 4-7 May 1997, IEEE Comm. Soc. Press.

7. J. Bredereke: On Feature Orientation and Requirements Encapsulation, in ”Ob-
jects, Agents, and Features”, pp. 26-44, Springer Verlag, LNCS 2975 (2004)

8. Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., and Weerawarana,
S. (2004). Web Services Description Language (WSDL) version 2.0.
http://www.w3.org/TR/wsdl20/.

9. B.E. Christensen, D. Underwood: “Kommunikationsnetze werden intelligenter,”
Telecom Report 14 (1991), Heft 5, pp. 262-265.

10. J. Garrahan, P. Russo, K. Kitami, R. Kung: “Intelligent Network Overview,” IEEE
Communications Magazine, March 1993, pp. 30-37.

11. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H. F. (2003)
SOAP Version 1.2 Part 1: Messaging Framework. http://www.w3.org/TR/soap12-
part1/. W3C Recommendation 24 June 2003.

12. A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, H.-D. Ide: Efficient Regres-
sion Testing of CTI-Systems: Testing a Complex Call-Center Solution, in Annual
Review of Communication, Int. Engineering Consortium Chicago (USA), Vol. 55,
pp.1033–1039, IEC, 2002.

13. H. Harris, M. Ryan: Theoretical Foundations of Updating Systems. ASE 2003, 18th
IEEE Int. Conf. on Automated Software Engineering, IEEE-CS Press, 2003.

14. ITU: General recommendations on telephone switching and signaling intelligent
network: Introduction to intelligent network capability set 1, Recommendation
Q.1211, Telecommunication Standardization Sector of ITU, Geneva, Mar. 1993.

15. ITU-T: Recommendation Q.1203. ”Intelligent Network - Global Functional Plane
Architecture”, Oct. 1992.

16. ITU-T: Recommendation Q.1204. ”Distributed Functional Plane for Intelligent
Network Capability Set 2: Parts 1-4”, Sept. 1997.

17. M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-
Reconfigurable Decision Support Service, WWV’05. 1st Int’l Workshop on Auto-
mated Specification and Verification of Web Sites, Valencia, Spain, March 14-15,
2005, – Post Workshop Proc. appear in ENTCS.

18. D. Kozen: “Results on the Propositional μ-Calculus”, Theoretical Computer Sci-
ence, Vol. 27, 1983, pp. 333-354.

19. Tiziana Margaria: Components, Features, and Agents in the ABC. In Objects,
Agents, and Features, Revised and Invited Papers from the International Semi-
nar on Objects, Agents, and Features, Dagstuhl Castle, Germany, February 2003,
LNCS 2975, pp. 154-174, Springer Verlag, 2003

20. T. Margaria: Web Services-Based Tool-Integration in the ETI Platform, SoSyM,
Int. Journal on Software and System Modelling, Springer Verlag, (available in
Online First, DOI: 10.1007/s10270-004-0072-z).

21. T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Verifi-
cation Tools in jETI Proc. ECBS 2005, 12th IEEE Int. Conf. on the Engineering
of Computer Based Systems, April 2005, Greenbelt (USA), IEEE Computer Soc.
Press, pp. 431-436.

22. METEOR-S: see the project site at lsdis.cs.uga.edu/projects/meteor-s/
23. M. Müller-Olm, H.Yoo: MetaGame: An Animation Tool for Model-Checking

Games, Proc. TACAS 2004, LNCS N. 2988, pp. 163-167.
24. J. Neises: Benefit Evaluation of High-Availability Middleware, Proc. ISAS 2004,

1st Int. Service Availability Symposium, LNCS N. 3335, pp.73-85, Springer Verlag,
2005.

464 T. Margaria, B. Steffen, and M. Reitenspieß

25. O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, H.-D. Ide: Library-Based
Design and Con-sistency Checking of System-Level Industrial Test Cases, Proc.
FASE 2001, Int. Conf. on Fundamental Approaches to Software Engineering, Genoa
(I), April 2001, LNCS 2029, pp. 233-248, Springer-Verlag.

26. M. Reitenspieß: High-Availability and Standards - The Way to Go! Proc. ARCS
Workshop 2004 - Organic and Pervasive Computing, Workshops Proceedings,
March 26, 2004, Augsburg, Germany. LNI Volume 41, pp. 12-18 - Gesellschaft
für Informatik.

27. The Service Availability Forum - http://www.saforum.org .
28. B. Steffen, A. Claßen, M. Klein, J. Knoop. T. Margaria: “The Fixpoint Analysis

Machine”, (invited paper) to CONCUR’95, Pittsburgh (USA), August 1995, LNCS
962, Springer Verlag.

29. B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service De-
sign, In Correct System Design – Issues, Methods and Perspectives, LNCS 1710,
Springer Verlag, 1999, pp. 390-415.

30. B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration platform: con-
cepts and design, [36], pp. 9-30.

31. B. Steffen, T. Margaria, A. Claßen, V. Braun: “Incremental Formalization: A Key
to Industrial Success ”, In “SOFTWARE: Concepts and Tools”, Vol. 17, No 2, pp.
78-91, Springer Verlag, July 1996.

32. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß: “A Constraint-
Oriented Service Creation Environment,” Proc. PACT’96, Int. Conf on Practical
Applications of Constraint Technology, April 1996, London (UK), Ed. by The Prac-
tical Application Company, pp. 283-298.

33. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß: “An Environment
for the Creation of Intelligent Network Services”, invited contribution to the book
“Intelligent Networks: IN/AIN Technologies, Operations, Services, and Applica-
tions – A Comprehensive Report” Int. Engineering Consortium, Chicago IL, 1996,
pp. 287-300 – also invited to the Annual Review of Communications, IEC, 1996,
pp. 919-935.

34. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß, H. Wendler: Ser-
vice Creation: Formal Verification and Abstract Views, Proc. 4th Int. Conf. on
Intelligent Networks (ICIN’96), Nov. 1996, Bordeaux (F).

35. B. Steffen, T. Margaria, V. Braun, N. Kalt: Hierarchical Service Definition, Annual
Review of Communic., Int. Engineering Consortium, Chicago, 1997, pp.847-856.

36. Special section on the Electronic Tool Integration Platform, Int. Journal on Software
Tools for Technology Transfer, Vol. 1, Springer Verlag, November 1997

37. Web Service Modeling Ontology (see www.wsmo.org).

A Service Oriented Architecture for Deploying
and Managing Network Services

Victor A.S.M. de Souza and Eleri Cardozo�

Department of Computer Engineering and Industrial Automation,
School of Electrical and Computer Engineering,

State University of Campinas,
13083-970, Campinas, So Paulo, Brazil
{vsouza, eleri}@dca.fee.unicamp.br

Abstract. New generation network services must be deployed and man-
aged according to the customers’ specific requirements. In this context,
service providers must devise a way to design network services with near
zero development time and high degrees of customization and evolution.
Customization is necessary to fit the service according to the customers’
requirements, while evolution is necessary to adapt the service as soon as
these requirements change. In addition, customers are demanding the abil-
ity to manage the service in order to keep the usage, configuration, and
evolution under their control. This paper presents an approach based on
service oriented architecture (SOA) for developing network services able to
fulfill the requirements of rapid deployment, customization, and customer-
side manageability. The approach considers the network service as a set of
interacting elements implemented as Web Services. The service logic is ex-
pressed in terms of Web Services orchestration. Two services for the man-
agement of connections in optical networks are presented as a case study.

1 Introduction

New network services differ from the present ones in many aspects. Firstly, the
development time of the new services must be kept close to zero. In other words,
the time between the service design and its effective use must be very short (ide-
ally zero, no more than few hours in special cases). Secondly, the service must
take into account the exact customers’ requirements (and expectations) such as
aspects related to configuration, pricing, and quality. Finally, customers are de-
manding the ability to manage the main aspects of the service in order to take
advantage of their business peculiarities, e.g., traffic patterns and end-user pro-
files. Of course, price is always an important variable that can be reduced as long
as the complexities of service creation, deployment and management decrease.

In this scenario, network providers must devise new ways of designing, deploy-
ing and managing network services. We strongly believe that service composition
is the key toward this objective. A network service can be created by composing
a set of primitive services. This recurrent definition is important in the sense that

� The authors would like to thank Ericsson Brazil for its support.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 465–477, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

466 V.A.S.M. de Souza and E. Cardozo

it allows a more complex service be built above a set of already existing services
such as back-end, resource management, and network management services. For
instance, a Virtual Private Network (VPN) service can be built by composing a
connection service, an authentication service, a fault management service, and a
resource management service. These composed services are distributed through-
out the service provider’s enterprise, some of them running on the central office
and others running close to the transport network.

Actually, there is a gap between the software entities at the business level
and at the network level. Entities at the network level are based on low level
signaling protocols such as RSVP-TE (Resource Reservation Protocol - Traffic
Engineering) and OIF’s UNI (Optical Internetworking Forum’s User-to-Network
Interface). The access to these protocols are performed via operator’s interface,
network management protocols (e.g., SNMP - Simple Network Management Pro-
tocol), or proprietary application programming interfaces (APIs). The entities
at the business level, on the other hand, rely on high level software artifacts such
as enterprise components (e.g., Enterprise Java Beans, COM+) and web compo-
nents (e.g., Java Server Pages, Active Server Pages). Clearly, the gap between the
control and management entities at network level and the entities at the business
level is a complicating factor when a network service with high level of automa-
tion and integration must be designed and deployed in a short period of time.

Service oriented computing (SOC) is an attractive solution to narrow this gap
in the sense that it offers a good level of automation, integration, customization,
and flexibility in service creation, deployment, and management. This paper
proposes a service oriented architecture (SOA) for management and deployment
of services in a connection oriented network. The architecture assumes that all
the composed services are Web Services and composition is governed by Web
Services orchestration and choreography techniques. In this architecture, service
creation consists in the edition of an orchestration script while the service de-
ployment consists in the installation of this script in an appropriated software
engine. Service management is described via Web Services choreography, an in-
teraction agreement between different organizations or independent processes,
in our case service user and service provider. The edition of the orchestration
script can be assisted by specialized service creation tools, general purpose text
editors or even by software engineering modeling tools.

This paper is organized as follows. Section 2 presents a brief introduction to
SOC. Section 3 presents the proposed SOA-based architecture for service cre-
ation, deployment, and management focusing on connection oriented networks.
Section 4 presents the services developed for assess the proposed architecture.
Section 5 discusses some related and recently published works. Finally, Sect. 6
presents some closing remarks.

2 Service Oriented Computing

Service oriented computing is considered by many a step forward in the distrib-
uted computing field. Distributed computing, mainly distributed objects and,

A SOA for Deploying and Managing Network Services 467

most recently, components, provide high cohesion, lower coupling, and modu-
larity to the applications. As a consequence, software reuse and evolution are
favored, with reduction of development and maintenance costs. Several open
standards for distributed computing such as CORBA (Common Object Request
Broker Architecture) and CCM (CORBA Component Model) from OMG (Ob-
ject Management Group), RMI (Remote Method Invocation) and EJB (Enter-
prise Java Beans) from the Java Community are mature and well accepted.
Software platforms supporting these standards are available, both commercially
and as open source software.

Unfortunately, these standards and platforms have not been used across enter-
prises. Security and interoperability issues are the most relevant reasons. Proto-
cols such as IIOP (Internet Inter-ORB Protocol) employed in CORBA and RMI
are not “firewall friendly”, while the interoperability between different standards
has never been completely addressed. Moreover, loose-ends on the standards may
result in interoperability problems between platforms implementing the same
standard.

It was in this context that SOC emerged, providing a way to interoperate
large software entities, independently of software platforms and systems em-
ployed by each enterprise. Service oriented computing is defined as “the com-
puting paradigm that utilizes services as fundamental elements for developing
applications” [1]. Using orchestration mechanisms we can build a more com-
prehensive service that can itself be part of a higher level composition [2]. The
service workflow is defined in orchestration scripts that is processed by an or-
chestration engine.

Some relevant characteristics of SOC reported in the literature are summa-
rized below:

– Interoperability - achieved through the use of an independent transport pro-
tocol.

– Composability - services can be composed to form another service, providing
a flexible, rapid and low cost way of creating new services.

– Reusability - being a modular unit of software, services generally can be
reused, reducing the time and effort to build new applications.

– Ubiquity - services can be accessed from anywhere at any time.
– Granularity - services presents higher granularity when compared with ob-

jects and components, facilitating the development of complex systems.
– Coupling - loose coupling is achieved in different levels:

– Just real dependencies among software elements are implemented as long
as each service has its own defined interface;

– Using registering and discovering mechanisms no coupling is made to the
service location;

– Platform and language coupling can be avoided using a platform inde-
pendent transport protocol;

– Synchronism due to the request-response invocation style can be atten-
uated using asynchronous message exchange.

468 V.A.S.M. de Souza and E. Cardozo

As mentioned in Sect. 1, our objective is to enable a quick and flexible develop-
ment of new network services in connection oriented networks by addressing in-
teroperability and high coupling issues both inside and outside an administrative
network domain. The mentioned SOC characteristics fullfill these requirements.
The most relevant consequence of employing SOC in this field is a complete
integration of the network and business layers. This integration was proposed
more than a decade ago in the scope of TMN (Telecommunication Management
Network). However, TMN never achieved such an integration due to the need
of gateways (mediation and adaptation functions in TMN) to connect software
entities at different layers.

3 The Service Oriented Control and Management
Architecture

3.1 Architecture Overview

In SOA every logical entity is seen as a service. Services are built from scratch or
from legacy software by adding appropriated wrappers. These existing services
can be classified into two levels, the business and the network levels. Services at
the business level relate to the enterprise itself (e.g., subscription), while services
at the network level relate to the transport network (e.g., routing). As stated
before, there is a gap between services located into these two levels in terms of
software entities the services are based on. A common approach is to employ a
gateway software that converts the high level business decisions to the low level
network signaling. This is not a good solution as gateways are always bottlenecks
for interoperability, reliability and performance. Moreover, this approach ties
too hard the business and network layers, compromising service automatization,
customization and evolution.

In order to avoid gateways, we propose to enhance the network elements such
as routers and switches with a service interface. In our architecture, every net-
work element offers control and management functions through Web Services.
Since the network element already hosts a web server, extending this server to-
ward a Web Service engine is a minor step without significant impact to the
equipment final cost. In addition, to allow a smooth integration between the
business and network layers, the service interface of the network equipments
may eliminate the need of complex network protocols. In our case, the connec-
tion establishment protocol (usually RSVP-TE) is replaced by a much simpler
orchestration script. In this way we build a single service-based bus of communi-
cation, where one central orchestrated service is responsible for receiving client
requests and coordinate all calls to the composed services. This architecture is
presented in Fig. 1. The orchestrated service exposes a Web Service interface to
the service client.

3.2 Service Management

Once installed, the network service provides the client the ability to manage
the service, for instance, to alter the topology of a Virtual Private Network.

A SOA for Deploying and Managing Network Services 469

Fig. 1. Proposed architecture

The network service can be accessed via user interfaces (e.g., web interfaces) or
via programatic interfaces where the service is accessed by other applications.
This allows the composition of end-to-end service over multiple domains, e.g.,
VPN services, Voice-over-IP (VoIP) services or Virtual LAN (VLAN) services.
In this context, it is necessary to precisely and unambiguously describe the
collaborations between the client and the service provider. This is exactly what
the choreography mechanism proposes [3]. As such, the service interface provided
to the client will have their interaction contract described by a choreography
script as shown in Fig. 2.

3.3 Service Creation

Service creation is a matter of composing the services with specific functions
available at the business and the network levels. The hardest way to create
an orchestrated network service is by manually editing an orchestration script.

470 V.A.S.M. de Souza and E. Cardozo

Fig. 2. Proposed client architecture

Another possibility is to employ a general modeling language such as UML
(Unified Modeling Language) to specify the interactions among the composed
service, using, for instance, an UML activity diagrams [4]. For this, it is necessary
to specify a new UML profile in order to represent the particular domain of
interest. It is also necessary to use model transformations to translate the UML
model to the target orchestration language.

The most convenient way to create services is to use a Service Creation En-
vironment (SCE), a software designed specially to this task [5, 6]. SCEs employ
dedicated graphical interfaces with terms, icons, and diagrams known to the net-
work engineer. The output of the SCE is exactly the orchestration script ready
to execute in an orchestration engine. In any of the presented possibilities, ser-
vice composition leads to a reduction in the service development time, a major
issue in today’s dynamic business environments.

3.4 Service Deployment

Using orchestration, the service deployment consists simply in the installation
of the script in the orchestration engine. This can be performed via programatic
interfaces (e.g., invoked by the SCE) or manually, via a graphical user interface
provided by the orchestration engine.

A SOA for Deploying and Managing Network Services 471

4 Implementation Description

The architecture proposed in the Sect. 3 is general enough to deploy network
services of arbitrary complexity. As a case study, we have developed two optical
network services based on the proposed architecture: an Optical Connection
Service (OCS) and a Fault Management Service (FMS).

As in any connection oriented network, in optical networks it is necessary to
establish a connection before the traffic can be sent over the network. In optical
networks, connections are lightpaths that may transverse a number of optical
switches. The objective of the Optical Connection Service is to enable network
clients to create, manage and destroy lightpaths. The Fault Management Service
is aimed at restoring failed connections by setting up protection lightpaths.

Each optical switch in the domain will expose a cross connection service,
enabling the composition engine to set up the connections across the domain.
As the time required to setup a cross connection inside an optical switch is
high (order of ms) it is expected that the Web Service does not introduce a
considerable overhead in the connection establishment time.

All other necessary services to provide the connection service could be in-
stalled anywhere in the network, even on a third party domain (e.g., the billing
service could be provided by a credit card operator).

4.1 Composed Services

We identified the following composed services necessary to implement the Optical
Connection Service and the Fault Management Service:

– Optical Switch Service (OSS): a service exposed by the optical switch used
to cross connect ports (fibers), wavelengths or wavebands.

– Resource Management Service (RMS): a service responsible for storing data
about installed lightpaths, available resources, and Service Level Agreements
(SLAs). It also stores protection information associated to a lightpath.

– Routing Service (RS): a service responsible for computing a route inside the
optical network, given an ingress node, an egress node, and the available re-
sources on the network. It is also responsible for finding a disjoint route for
protection paths. The service must run a Routing and Wavelength Assign-
ment (RWA) algorithm over a topology discovered with the aid of a routing
protocol such as Open Shortest Path First - Traffic Engineering (OSPF-TE).

– Authentication Service (AS): a service responsible for authenticating the
network users.

– Accounting Service (AcS): a service responsible for keeping track of the re-
sources effectively used by a client for accounting and billing purposes.

– Logging Service (LS): a service responsible for logging errors and any other
relevant information.

4.2 Implementation Details

In our system, the OSS, RMS, RS, AS, and LS composed services as previously
described were implemented from scratch. In a service provider environment,

472 V.A.S.M. de Souza and E. Cardozo

most of the composed services already exist, although not as Web Services. To
expose an existing service as a Web Service, the developer can take advantage of
many existing software tools. For instance, some EJB platforms generate Web
Service interface for existing enterprise beans (components).

We chose the Business Process Execution Language for Web Services (BPEL)
[7], as it is the most mature standard language for orchestration and choreog-
raphy (through the use of BPEL’s Executable Processes and Business Protocols,
respectively). As orchestration engine we chose ActiveBPEL [8] because it is
open source and implements all the BPEL 1.1 specification including the full
complement of BPEL activities.

Using the compensation mechanism provided by the BPEL language we are
able to support rollback in connection establishment. This mechanism defines
how individual or composite activities within a process are to be compensated
in cases where exceptions occur during service invocations. When an optical
switch in the connection path, for any reason, cannot install the cross connec-
tion as required, the previous switches that have already set their internal cross
connections need to undo the action previously taken. The orchestration en-
gine is in charge of coordinating the compensation actions that must be taken
(connection release in this case).

All the topology information about the optical network is stored in a database.
We have implemented a web interface where the network administrator can set
the physical network topology, including nodes, fibers, wavelengths per fiber,
cost of fiber, switching capacity, among other informations. This web interface
is shown in Fig. 3. In a real optical network this information could be discovered
using a routing algorithm such as OSPF-TE, but this is not relevant for the
evaluation of the connection and fault management services.

The RMS is in charge of keeping this database up-to-date. Before any re-
sources can be effectively used the RMS must be notified. This is necessary in
order to keep the network state up-to-date. The RS is capable of finding a route
inside the network, running a Shortest Path First (SFP) algorithm. It chooses
the path with lower cost, where the cost can be any parameter the network ad-
ministrator defines. After that, it runs a RWA based on the first-fit approach.
The RS is also capable of finding a disjoint lightpath for protection purposes.
Both RMS and RS were implemented in Java, using Axis Java as SOAP engine
and Apache Tomcat as web container.

The AS receives an username and password and verifies if this pair is valid.
The LS stores any informations passed to it in a file, with the time that event
occurred. In our case we are logging system exceptions and failure informations
for statistical purposes. These services are also implemented in Java.

The optical network element was emulated using a modified Linux kernel.
This kernel is Multiprotocol Label Switching (MPLS) capable and we used an
MPLS label table entry to emulate an optical cross connection. Wavelengths
are emulated using MPLS labels. We could use a range of labels to emulate a
waveband switching and a whole network interface to emulate a fiber switching.
For fiber switching emulation, using a packet filter (as provided by iptables) it

A SOA for Deploying and Managing Network Services 473

Fig. 3. Web interface of the Network Editor

is possible to redirect a packet arriving at a given network interface to another
interface, no matter the packet contents. This is summarized in Fig. 4.

In our emulated scenario the Optical Switch Service must set the MPLS label
table at the Linux kernel via system calls. As such, this service must be capable
of performing low level actions at the kernel. In a real scenario, this service must
run in the optical switch’s internal processor (or in an adjunct processor such
as a desktop). As a result, the service must be efficient and work with limited
resources. Due to these reasons we decided to code this service in C++, as it is
an efficient and compact object oriented programming language that still enables
low level interactions.

Apache HTTP server and Axis C++ were used to develop this service. We
decided to use a document literal wrapped style for all SOAP (Simple Object
Access Protocol) bindings, as SOAP encoding is being not recommended for
interoperability reasons. SOAP messages using document literal wrapped can
be totally validated, as the body part does not contain any type encoding info
and the message must be compliant with an agreed XML Schema [9, 10]. More-
over, the method name is present in the SOAP message, what simplifies the
dispatching of the message at the server side to the right method implementa-
tion. Indications that the industry is abandoning SOAP encoding can be seen
from its omission from the WS-I Basic Profile [11].

Using all these composed services the OCS is capable of establishing a con-
nection inside the network. The interaction with the optical switches is accom-
plished concurrently, i.e., all the switches in the lightpath are cross connected
almost at the same time. This can produce a good performance improvement

474 V.A.S.M. de Souza and E. Cardozo

eth 1 = fiber 1
eth 2 = fiber 2

eth n = fiber n

eth 1 = fiber 1
eth 2 = fiber 2

eth m = fiber m

label1 −> label2
label3 −> label4
label5 −> label6

Optical Switch Service

WSDL Interface

MPLS Kernel Module

label = wavelenght

MPLS Label Table

Fig. 4. Emulated optical switch

when compared to signaling protocols where the cross connection are performed
sequentially.

When any link failure occurs or is cleared in the network the FMS must be
notified. Currently we have implemented the 1:1 and 1:n protection levels. On a
failure the FMS acts on the ingress node, firstly dropping the failed connection
and then adding the protection connection. The procedure is analogous when a
fault is cleared. The FMS only acts on the ingress node because the rest of the
lightpath is already set up.

Finally, all the traffic between the network client and the orchestration engine
is transmitted over a secure channel, using Secure Socket Layer (SSL). This aims
to protect user’s authentication and exchanged data.

4.3 Tests and Evaluation

To test the implemented system we developed a command line client program
to interact with the orchestrated service. The language used to code the client
software is not relevant, since the SOAP messages exchanged with the service
are XML Schema compliant. In our case we used Java language and Axis Java
as SOAP engine. The following tests were performed to evaluate the OCS and
FMS:

– Lightpath creation;
– Lightpath dropping;
– Fault restoration;
– Clear fault event.

In order to evaluate the performance impact of SOA in network services we
focused on response times. As response time we have considered the time between
a request message being sent and the response message arrival in client’s machine.
Further, in these tests we have not emulated the delay to set the cross connection

A SOA for Deploying and Managing Network Services 475

inside the optical elements and, as the cross connections are set concurrently,
there was no significant difference when varying the number of nodes in the
lightpath. The results of 100 measurements are shown in Table 1.

Table 1. Response time

Test Response Time (ms) Standard Deviation (ms)
Lightpath creation 122 13
Lightpath dropping 101 6
Fault restoration 125 5
Clear Fault 136 8

As optical connections generally have long duration the response time for
lightpath creation is acceptable. It is important to remember that it includes
the time of all processing needed to establish the connection, even those related
to the business layer (e.g., logging). Depending on the kind of application, no-
tably phone connections, the restoration response time can be very restrictive.
The response time of the FMS for these kind of applications can be considered
inadequate if compared to restoration times performed at Layer-2 (such as on
Synchronous Optical Networks - SONET). The performance obtained by the
FMS is adequate for applications with less stringent recovering requirements
such as web browsing and video on demand.

The lightpath dropping and clear fault times are not important issues except
in the case where the network is overloaded (all possible lightpaths are installed)
and there is need for new connections. Even in these cases, the times obtained
are very satisfactory.

The objective of our architecture is to provide quick and flexible development
of new network services. With the aid of specialized tools and appropriated
languages we consider we achieved our objective. The solutions are simple and
robust, and the implementation validates completely the proposed architecture.

5 Related Work

An important related work is being developed under the Canarie [12] User Con-
trolled LightPath (UCLP) Research Program [13], implemented and tested in the
Canadian research network CA*Net4. UCLP allows end-users, either people or
software applications, to treat network resources as software objects, provisioning
and reconfiguring them within a single domain or across multiple, independently
managed domains. This research explores new features and enhancements to the
current implementation of UCLP through the use of Web Services workflow
and orchestration to create “Articulated Private Networks”. The main design
features of this architecture are [14]:

– All network software, hardware, lightpaths and cross connects are exposed
as Web Services;

476 V.A.S.M. de Souza and E. Cardozo

– Web Services workflow are employed to build a universal control plane across
instruments, lightpaths, cross connects, networks and software systems.

Different from UCLP approach, we have not allowed the client interact di-
rectly with the network elements inside a domain for security reasons. In our
architecture a contractual interface for each administrative domain is exposed in
order to provide services for the client, creating a layer over the services offered
by the domain. This is more likely to happen, as network providers have serious
restrictions in opening their networks for full signaling or management of net-
work elements. Furthermore, using the recurrent service construction provided
by SOA we can provide end-to-end services in a very structured way.

The work presented in [15] proposes Web Services as an embedded technology
for home appliances. The work argues that this is not an unrealistic assumption
as the price and capacity of embedded processors are becoming reasonable for
this application. This current work proposes the use of Web Services inside
network devices, based on the same arguments.

Similarly to the proposals presented in references [13] and [16] our architecture
give the customer the ability to manage a set of service parameters considering
customers’ specific needs. Moreover, reference [16] gives the customers the abil-
ity to build dynamically their application using a service trader. This could
improve the level of automation of our architecture and we are now considering
a similar approach, but employing UDDI (Universal Description, Discovery and
Integration) instead.

6 Closing Remarks

This paper proposes a service oriented architecture for deployment and manage-
ment of services in connection oriented networks. This architecture brings to the
network service provider a higher level of automation, integration and flexibility
in the design, deployment, and management of network services. These activi-
ties are performed by orchestration scripts executing in standard orchestration
engines. Two implementation instances of this architecture in the field of opti-
cal networks were developed in order to evaluate the feasibility of the proposed
architecture.

One advantage of using composition to build services over an heterogeneous
network is the elimination of interoperability bottlenecks. Instead of implement-
ing complex and sometimes poorly standardized protocols, network equipment
vendors can implement Web Service interfaces to control and manage their equip-
ments. By publishing this interface, network operators and third party software
vendors can control and manage network equipments by incorporating these
interfaces into composition scripts. Contrary of network protocols, the Web Ser-
vice interface need not to be fully standardized (they need only to expose similar
functionalities).

As a future work we are considering the incorporation of policies into the
orchestrated service in order to adapt the service use and management according
to user privileges and profiles.

A SOA for Deploying and Managing Network Services 477

Finally, we believe that Web Services is a practical way to integrate different
network domains. Network operators do not allow network signaling to cross
their network boundaries due to stability and security reasons. The offering of
inter-domain services via Web Services composition is more feasible and simpler
as network providers have full control over the information exchanged in the
inter-domain borders.

References

[1] Mike P. Papazoglou and Dimitris Georgakopoulos. Service-oriented computing:
Introduction. Communications of the ACM, 46(10):24–28, October 2003.

[2] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weer-
awarana. The next step in web services. Communications of the ACM, 46(10):29–
34, 2003.

[3] World Wide Web Consortium (W3C). Web Services Choreography Description
Language Version 1.0, December 2004. Working Draft.

[4] Keith Mantell. From UML to BPEL. http://www-128.ibm.com/developerworks/
webservices/library/ws-uml2bpel/, September 2003.

[5] ActiveWebflow Professional. http://www.active-endpoints.com/.
[6] Oracle JDeveloper 10g. http://www.oracle.com/.
[7] BEA Systems, International Business Machines Corporation, Microsoft Corpora-

tion, SAP AG, Siebel Systems. Business Process Execution Language for Web
Services Version 1.1, May 2003.

[8] ActiveBPEL. http://www.activebpel.org/.
[9] Russell Butek. Which style of WSDL should I use? http://www-128.ibm.com/

developerworks/webservices/library/ws-whichwsdl/index.html, May 2005.
[10] Tim Ewald. The Argument Against SOAP Encoding. http://msdn.microsoft.

com/library/default.asp?url=/library/en-us/dnsoap/html/argsoape.asp, October
2002.

[11] Web Services Interoperability Organization. Basic Profile Version 1.1, August
2004. http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

[12] Canarie Inc. http://www.canarie.ca.
[13] Bill St. Arnaud, Andrew Bjerring, Omar cherkaoui, Raouf Boutaba, Martin Potts,

and Wade Hong. Web Services Architecture for User Control and Management of
Optical Internet Networks. Proceedings of the IEEE, 92(9):1490–1500, September
2004.

[14] Bill St. Arnaud. Web Services Workflow for Connecting Research Instruments and
Sensors to Networks. http://www.canarie.ca/canet4/uclp/UCLP Roadmap.doc,
December 2004.

[15] Masahide Nakamura, Hiroshi Igaki, Haruaki Tamada, and Ken ichi Matsumoto.
Implementing integrated services of networked home appliances using service ori-
ented architecture. In ICSOC ’04: Proceedings of the 2nd international conference
on Service oriented computing, pages 269–278, New York, NY, USA, 2004. ACM
Press.

[16] Dirk Thissen. Flexible Service Provision Considering Specific Customer Needs.
In Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing (EUROMICRO-PDP’02), pages 253–260. IEEE, 2002.

Dynamo: Dynamic Monitoring of WS-BPEL Processes

Luciano Baresi and Sam Guinea

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza L. da Vinci 32, I-20133 Milano, Italy

{baresi, guinea}@elet.polimi.it

Abstract. Dynamo advocates that pre-deployment validation and testing are in-
trinsically inadequate for tackling the ephemeral and rapidly changing context in
which service oriented applications are deployed. Validation must be shifted to
run-time and continuous monitoring must be introduced. We propose a simple ar-
chitecture that, through specific and simple annotations, allows for the automatic
creation of instrumented WS-BPEL processes. These processes interact with a
special-purpose proxy that enacts the monitoring activities and permits us to dy-
namically set the level of monitoring through use of a web-based interface.

1 Introduction

Run-time monitoring of functional and non-functional behavior is becoming an im-
portant and researched topic in the context of service-based systems. The extreme dy-
namism in service provisioning (services can change in a great number of ways) makes
it difficult to grasp an overall knowledge of the system. This is why testing cannot fore-
see all the possible variations that may occur during execution, why validation must
be shifted towards run-time, and why the idea of continuous monitoring must be intro-
duced.

In [2], we propose a proxy-based solution for dynamic monitoring of WS-BPEL
processes. Here we demonstrate such solution through its supporting framework called
Dynamo. Within this work we introduce the idea of Monitoring Rules. These define run-
time constraints on WS-BPEL process executions and are expressed using a specific
language called WSCoL, inspired by the lightweight version of JML [3]. These rules
are kept purposely separate from the process definition in order to avoid mixing the
business logic with the monitoring logic. This is done because it helps the designer
concentrate on solving the business problem without having to contemporarily tackle
monitoring, and in order to allow different monitoring directives to be associated with
a single process and therefore realize “personalized” monitoring. The monitoring rules
are kept external to the WS-BPEL process definition up until deployment time, when
they are weaved into the process. The result is an instrumented process which is capable
of collaborating with our monitoring proxy (called monitoring manager) in order to
verify the monitoring rules at run-time.

The monitoring manager is responsible for providing dynamic monitoring. We be-
lieve it to be of paramount importance to be able to tailor the degree of monitoring
after a process has been deployed and, more specifically, at run-time. This is why we
associate meta-level parameters to the single monitoring rules. These parameters are

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 478–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamo: Dynamic Monitoring of WS-BPEL Processes 479

consulted at run-time by the monitoring manager to decide if a monitoring activity is
to be performed or ignored. They can also be modified at run-time through a specific
graphical interface. Therefore, the real degree of monitoring depends on the values
these parameters assume during the execution of the process, which in turn depend on
the context of execution (when, where, and by whom the process is performed).

Since data can originate both within the process and outside the process, the mon-
itoring manager is built modularly with respect to the data collectors it can use for
collecting data at different levels of abstraction, and to the data analyzers it can use
for verifying the monitoring rules. In this demo we make use of a data analyzer imple-
mented using xlinkit [1], and of a dynamic invoker component that can be used as
a data collector capable of retrieving data from any source that exposes a web service
interface.

2 Context

This demo is based on a slightly modified version of the Pizza Delivery Company ex-
ample originally proposed in [5].

Suppose that a client wants to eat pizza. With a WAP enabled mobile phone, the
client dials the Pizza Company and, after suitable identification (Authenticate
Service), his/her profile (Profile Service) determines which kinds of pizza
the client likes. The Pizza Catalog Web Service then offers the client four
kinds of pizza; after selecting the favorite one (Double Cheese), the client provides
his/her credit card number (included in the client’s profile) which is validated by the
Credit Card Validation Service. If everything is okay, the client’s account
is debited and the pizza company’s account is credited. Meanwhile, the pizza baker is
alerted to the order, because after the selection the pizza appears in his browser, which
is integrated with his cooking gear. Using the address contained within the user’s pro-
file, the GPS Service is called to get the coordinates of the delivery point. These
coordinates are then passed onto a Map Service, which processes them and sends a
map with the exact route to the pizza delivery boy on his PDA. The boy then only needs
to deliver the pizza. In the mean time the client is sent an SMS text message on his/her
mobile phone to alert about the delivery of the pizza within 20 minutes. This is done
using the SMS Service.

To demonstrate the actual capabilities of Dynamo, we present two simple exam-
ples of monitoring rules and briefly explain their meaning. The first example is a post-
condition to the operation getCoord published by the GPS Service. This opera-
tion receives an address as input and returns a UTM (Universal Transverse Mercator)
set of coordinates. The set of coordinates comprises a number indicating the zone to
which they refer, and two string coordinates called respectively easting and northing.
Both are a seven character string made up of six numbers and one character. The final
character is either an E or a N, depending if it represents and easting or a northing. The
postcondition is that the easting and northing be syntactically correct . The following
rule excerpt only checks the easting. Northings are checked in a similar way.

Location:
type = "post-condition"

480 L. Baresi and S. Guinea

path = "pathToInvokeActivity"
Parameters:

priority = 2
Expression:

@ensures easting.length()==7 &&
easting.charAt(6)==’E’;

The above states that the easting must be seven characters long and that it must end with
a capital ’E’. A priority of 2 is associated with the post-condition. The meaning is that
every time the process is executed with a global priority of 2 or less the post-condition
is verified. On the other hand, if the global process priority is higher than or equal to 3
then the post-condition is ignored.

The second example is a post-condition to the operation getMap published by the
Map Service. This operation takes a UTM set of coordinates and returns a JPEG
image of the location. Since the map must be used on the pizza boy’s small portable
device, the resolution of the map that is returned must not be higher than 80 by 60
pixels. The following rule only presents the horizontal resolution constraint, while the
vertical constraint is defined in a similar way.

Location:
type = "post-condition"
path = "pathToInvokeActivity"

Parameters:
priority = 4

Expression:
@ensures \returnInt(wsdlLoc, getResolution, ’image’,
GetImageResponse.GetImageReturn,
HResolution) <= 80;

The above makes use of a special keyword \returnInt which can be called to
interact with external collectors which are seen as web services. This makes it possi-
ble to write assertions that require information that is not obtainable from the process
but that must be searched for elsewhere. In this case an external service is used to
calculate the horizontal resolution of the map returned by the service. The operation
getResolution is called on the service published at wsdlLoc and the returned
HResolution is checked against the desired horizontal resolution of 80 pixels. A
priority of 4 is associated with the post-condition.

3 Scenario

Dynamo works as follows1:

– The first step is to design the unmonitored version of the process. This can be done
using one of the many visual design tools already available on the market. In our

1 In the following, we will use the concept of priority as a simplified version of our monitoring
parameters.

Dynamo: Dynamic Monitoring of WS-BPEL Processes 481

demo we will use Oracle’s BPEL Designer [4] which is available as an Eclipse
Plugin.

– The next step is to import the unmonitored WS-BPEL process into Dynamo’s Vi-
sual Annotation Tool (see Figure 1). By clicking on invoke activities (visualized as
boxes), the tool provides information on the partnerlinks established between the
process and the external web services. By clicking on the small black dots posi-
tioned above and below WS-BPEL invoke activities, it is possible to define either
pre- or a post-conditions respectively. After all the monitoring rules have been de-
fined, the tool creates the monitoring definition file automatically. The tool also
requires that some initial global process parameters be added. They are used at run-
time to determine what should be monitored and what not. In the demo, we will
start by associating an initial global process priority of 4 to the monitored process.
The priorities associated with the example monitoring rules are presented in the
previous section.

Fig. 1. Annotating the WS-BPEL process

– The third step consists in having Dynamo’s BPEL2 weave the rules contained in
the monitoring definition file into the process, thus creating the monitored version
of the WS-BPEL process. For each service invocation that has to be monitored (be
it a pre- or a post-condition), the instrumented process calls the Monitoring Man-
ager instead. This monitoring manager decides wether a monitoring rule has to be
checked by confronting its monitoring parameters with the global process parame-
ters. In our simple example, since the global process priority is 4, all monitoring
rules with a lower priority are ignored. In this case the post-condition on operation
getCoord is ignored and only the operation getMap is checked. In the demo we
will show that the process does not terminate correctly because of an error aris-
ing somewhere during the execution. However, some of our monitoring activities
are not being run due to the global process priority being too high. By changing
the global process priority, we can re-activate some monitoring activities that are
switched off and discover where the problem lies.

– The global process priority of the process in execution can be changed by re-
instrumenting the process or by accessing the monitoring manager at run-time

482 L. Baresi and S. Guinea

Fig. 2. Monitoring Manager Run-Time Interface

Fig. 3. Error in post-condition at run-time

through a web based interface. In the latter case (see Figure 2), we can choose
the process from the list on the left, and set the new global process priority to 2 in
order to activate the monitoring of the post-condition on operation getCoord.

Dynamo: Dynamic Monitoring of WS-BPEL Processes 483

– Re-running the process, we notice that the process once again does not complete.
This time, though, it behaves differently. An error occurs while checking the post-
condition on operation getCoord. The reason is that the easting returned by the
operation is malformed. The process terminates in a more graceful manner and
presents us with an error message that explains what is going wrong (see Figure 3).

4 Conclusions

This short demo briefly presents the main capabilities of Dynamo, our toolset for run-
time monitoring of WS-BPEL processes. During the demo sessions, the framework
will be presented in its entirety by means of the proposed pizza delivery scenario and
more monitoring rules. Dynamo is available for download at http://www.elet.
polimi.it/upload/guinea.

References

1. XlinkIt: A Consistency Checking and Smart Link Generation Service. ACM Transactions on
Software Engineering and Methodology, pages 151–185, May 2002.

2. L. Baresi, and S. Guinea. Towards Dynamic Monitoring of WS-BPEL Processes. In Proceed-
ings of the 3rd International Conference on Service Oriented Computing, 2005.

3. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A Behav-
ioral Interface Specification Language for Java. Department of Computer Science, Iowa State
University, TR 98-06-rev27, April, 2005.

4. Oracle. Oracle BPEL Process Manager. 2005. http://www.oracle.com/
technology/products/ias/bpel/index.html.

5. IBM T.J. Watson Research Center. The Futuristic Pizza Company Example. 2004.
http://researchweb.watson.ibm.com.

WofBPEL: A Tool for Automated Analysis of
BPEL Processes�

Chun Ouyang1, Eric Verbeek2, Wil M.P. van der Aalst1,2, Stephan Breutel1,
Marlon Dumas1, and Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang, sw.breutel, m.dumas, a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{h.m.w.verbeek, w.m.p.v.d.aalst}@tm.tue.nl

1 Introduction

The Business Process Execution Language for Web Service, known as BPEL4WS,
more recently as WS-BPEL (or BPEL for short) [1], is a process definition lan-
guage geared towards Service-Oriented Computing (SOC) and layered on top of
the Web services technology stack. In BPEL, the logic of the interactions between
a given service and its environment is described as a composition of communi-
cation actions. These communication actions are interrelated by control-flow de-
pendencies expressed through constructs close to those found in workflow defini-
tion languages. In particular, BPEL incorporates two sophisticated branching and
synchronisation constructs, namely “control links” and “join conditions”, which
can be found in a class of workflow models known as synchronising workflows for-
malised in terms of Petri nets in [3].

In the field of workflow, it has been shown that Petri nets provide a suitable
foundation for performing static verification. Workflow verification engines such
as Woflan [7] are able to analyse Petri net-based workflow models for various pur-
poses such as soundness verification. Therefore, by translating BPEL processes
to Petri nets and applying existing Petri net analysis techniques, we can perform
static analysis on BPEL processes.

To provide tool support for the analysis of BPEL processes, we developed
WofBPEL, and a companion tool BPEL2PNML. BPEL2PNML translates BPEL
process definitions into Petri nets represented in the Petri Nets Markup Language
(PNML). WofBPEL, which is built using Woflan, performs static analysis on the
output produced by BPEL2PNML. Currently it supports three types of analy-
sis: detection of unreachable actions, detection of conflicting message-consuming
activities, and metadata generation for garbage collection of unconsumable mes-
sages, as detailed in Sect. 2.2.

As part of the design of BPEL2PNML, we formally defined a mapping from
BPEL to Petri nets. This mapping is described in [5] and compared with other

� Supported by an Australia Research Council (ARC) Discovery Grant (DP0451092).

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 484–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

WofBPEL: A Tool for Automated Analysis of BPEL Processes 485

formalisations of BPEL (see [5]). When surveying previous formalisations of
BPEL, we found that none of them had led to a publicly available tool that
could be used to perform the types of analysis targeted by WofBPEL over the full
set of BPEL control-flow constructs. We also found that previous formalisations
of BPEL in terms of Petri nets [4, 6] map control links and join conditions to
high-level Petri nets, which are usually less suitable for static analysis of control
flow properties than plain Petri nets due to complexity issues. Accordingly, we
extended the approach previously sketched in [3] to fully capture control links
and join conditions in terms of plain Petri nets. This resulted in a detailed
and comprehensive mapping that is more detailed and suitable for the types of
analysis targeted by WofBPEL than previous proposals.

WofBPEL and BPEL2PNML are available under an open-source license at
http://www.bpm.fit.qut.edu.au/projects/babel/tools.

2 Tool Description

2.1 Architecture

Fig. 1 depicts the role of WofBPEL and BPEL2PNML in the analysis of BPEL
processes. The BPEL process code may be manually written or generated from a
BPEL design tool, e.g. Oracle BPEL Designer. BPEL2PNML takes as input the
BPEL code and produces a file conforming to the Petri Net Markup Language
(PNML) syntax. This file can be given as input to WofBPEL which, depending
on the selected options, applies a number of analysis methods and produces an
XML file describing the analysis results. It may also be used as input to general-
purpose Petri net analysis tool, e.g. PIPE.1 In addition, the PNML file obtained
as the output from BPEL2PNML also includes layout information, and can thus
be used to generate a graphical view of the corresponding Petri nets.

2.2 Automated Analysis

Below we describe the three types of analysis that are currently supported by
WofBPEL.

Reachability analysis. Consider the BPEL process definition in Fig. 2 where
both the XML code and a graphical representation are provided. During the
execution of this process, either A1 or A2 will be skipped because these two
activities are placed in different branches of a switch activity and in any execution
of a switch only one branch is taken. Thus, one of the two control links x1 or
x2 will carry a negative token. On the other hand, we assume that the join
condition attached to activity A3 (denoted by keyword “AND”) evaluates to
true iff both links x1 and x2 carry positive values. Hence, this join condition will
always evaluate to false and activity A3 is always skipped (i.e. it is unreachable).

1 https://sourceforge.net/projects/petri-net

486 C. Ouyang et al.

analysis result

BPEL2PNML

BPEL code

BPEL Design Tool
(e.g. Oracle BPEL Designer)

WofBPEL

XML Browser

(e.g. PIPE editor, DOT)

Petri net
Graphical Visualiser

(e.g. PIPE Analyzer)

Petri net Analysis Tool
General−purpose

(with layout info)
PNML

(XML documents)

Fig. 1. Analysing BPEL processes using WofBPEL/BPEL2PNML

WofBPEL can detect unreachable activities in a BPEL process such as the
one in the previous example. To perform this “unreachability” analysis, Wof-
BPEL relies on two different methods, namely relaxed soundness and transition
invariants. The former is complete but more computationally expensive than the
latter. Relaxed soundness [2] takes into account all possible runs to get from an
initial state (represented by the marking with one token in the designated input
place) to the desired final state (represented by the marking with one token in
the designated output place). Every transition which is covered by any of these
runs is said to be relaxed sound. On the other hand, transitions that are not
covered by these runs are called not relaxed sound. If we assume that the goal
of the Petri net is to move from the initial state to the desired final state, then
transitions that are not relaxed sound clearly indicate an error, because they
cannot contribute in any way to achieving this goal.

However, to check for relaxed soundness we need to compute the full state
space of the Petri net, which might take considerable time, especially given the
fact that our mapping will generate a lot of parallel behaviour (note that even
switch and pick activities are mapped onto parallel behaviour, as the unchosen
branches need to be skipped). Therefore, computing relaxed soundness might be
a problem.

To alleviate this state space problem, we can replace the relaxed soundness by
another property known as transition invariants. Basically, a transition invariant
is a multiset of transitions that cancel out, that is, when all transitions from the
multiset would be executed simultaneously, then the state would not change. It
is straightforward to see that any cycle in the state space has to correspond to
some transition invariant. However, not all transitions in the state space will be
covered by cycles. For this reason, we add an extra transition that removes a

WofBPEL: A Tool for Automated Analysis of BPEL Processes 487

Basic Activity

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>
<invoke name = "A3">
 <targets>
 <joinCondition>
 bpws:getLinkStatus(’x1’) and bpws:getLinkStatus(’x2’)
 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 <source linkName="x2"/> </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

<process name="unreachableTask"

Fig. 2. Example of a BPEL process with an unreachable activity

token from the designated output place and puts a token into the designated
input place. As a result, every run from the initial state to the final state will
correspond to a transition invariant, and we can use transition invariants instead
of relaxed soundness to get correct results. However, the results using transition
invariants are not necessarily complete, because transition invariants might exist
that do not correspond to runs in the Petri net. This discrepancy is due to the fact
that transition invariants totally abstract from states, they more or less assume
that sufficient tokens exist to have every transition executed the appropriate
number of times.

A summary of the output of WofBPEL for the above example follows:
<net file="controlLink03PNML.xml">

<structure ...
<Node ... label="inv25 {name=A3}"/>

</structure>
<behavior ...
<Node ... label="inv25 {name=A3}"/>

</behavior>
...

</net>

The “structure” element contains the output of the unreachability analysis
using the relaxed soundness technique, while the “behavior” element contains the
output using the transition invariant technique. In this example, both techniques
detect the same set of unreachable nodes in the net, one of which is labelled
“inv25 name=A3” (indicating that this node is an “invoke” activity named A3
in the original BPEL process). In fact, we are not aware of any BPEL process
definition where the relaxed soundness technique detects unreachable activities
that are not detected by the transition invariant technique.

488 C. Ouyang et al.

Competing message-consuming activities. The BPEL specification [1]
states that “a business process instance MUST NOT simultaneously enable two
or more receive activities for the same partnerLink, portType, operations and
correlation set(s).”2 In other word, activities that can consume the same type of
message may not be simultaneously enabled, where a message type is identified
by a combination of a partner link, a port type, an operation, and an optional
correlation set. Using the state space-based technique mentioned before, we can
check this requirement in a straightforward way. Activities that handle events
are receive activities, pick activities, and event handlers. Fig. 3 depicts an ex-
ample of a process which involves two conflicting receive activities, namely rcv1
and rcv3.

</process>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

<sequence>
 <invoke name="A1" partnerLink="pl1" portType="pt1" operation="op2"/>
 <receive name="rcv1" partnerLink="pl2" portType="pt2" operation="op2"/>
</sequence>
<sequence>
 <receive name="rcv2" partnerLink="pl2" portType="pt2" operation="op3"/>
 <receive name="rcv3" partnerLink="pl2" portType="pt2" operation="op2"/>
</sequence>
</flow>

<flow suppressJoinFailure="yes">

<process name="competingMessages01"

Fig. 3. An example of conflicting receive activities

This property can only be checked if the full state space has been generated.
For this property, we could alleviate the possible state space problem by using
well-known Petri net reduction rules. Except for the transitions that model the
receipt of a message, we could try to reduce every place and every transition
before generating the state space.

A summary of the output of WofBPEL for the above example follows:
<net file="competingMessages02PNML.xml">

<structure noftransitions="0"></structure>
<behavior noftransitions="0"></behavior>
<error description="...">
<events>

<event name="rec34 {pL=pl2,pT=pt2,op=op2,name=rcv1}"/>
<event name="rec37 {pL=pl2,pT=pt2,op=op2,name=rcv3}"/>

</events>
<state> ... </state>
<path> ... </path>

</error>
...

</net>

This XML document extract indicates that no unreachable tasks were found
but two conflicting message-consuming activities were found. The document pro-
vides details of a state (i.e. a Petri net marking) in which a conflict occurs and
of a path (i.e. a sequence of states) leading to the problematic state.
2 For the purposes of this constraint, onMessage branches of a pick activity and event

handlers are equivalent to a receive activity.

WofBPEL: A Tool for Automated Analysis of BPEL Processes 489

Garbage collection of queued messages. Again using the full state space,
we can compute for each activity a in a BPEL process a set of message types
MTa such that a message type mt is in MTa iff it is possible in the state space
to consume mt after execution of a. In other words, each basic activity a is
associated with a set of message types MTa such that for each mt ∈ MTa, there
exists a run of the process where an activity that consumes a message of type mt
is executed after a. Now, consider the situation where activity a has just been
executed, a message m is present in the queue, and the type of m is not in MTa.
Then message m cannot be consumed anymore (by any activity). Thus, it can
be removed from the queue (i.e. it can be garbage collected).

By computing this set for every activity in the BPEL process model, and
piggy-backing it in the process definition that is handed over to a BPEL engine,
the engine can use this information to remove redundant messages from its queue,
thus optimising resource consumption. Specifically, the output of the analysis
would be an annotated BPEL process where each basic activity is associated with
a set of message types (identified by a partner link, a port type, an operation
and optionally a correlation set). After executing an activity a, the BPEL engine
could compare the set of message types (MTa) associated to a with the current
set of messages in the queue (Mq) and discard all messages in Mq\MTa.

About the demonstration. The demonstration will show how BPEL pro-
cesses are mapped to Petri nets using a few representative examples, and will
illustrate the above three types of analysis that WofBPEL can perform.

References

1. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu, editors. Web Services Business Process Ex-
ecution Language Version 2.0. WS-BPEL TC OASIS, May 2005. Available via
http://www.oasis-open.org/committees/download.php/12791/.

2. J. Dehnert. A Methodology for Workflow Modelling: from Business Process Mod-
elling towards Sound Workflow Specification. PhD thesis, Technische Universität
Berlin, Berlin, Germany, August 2003.

3. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of control flow in workflows. Acta Informatica, 39(3):143–209, 2003.

4. A. Martens. Verteilte Geschäftsprozesse - Modellierung und Verifikation mit Hilfe
von Web Services (In German). PhD thesis, Institut für Informatik, Humboldt-
Universität zu Berlin, Berlin, Germany, 2003.

5. C. Ouyang, H.M.W. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas,
and A.H.M. ter Hofstede. Formal semantics and analysis of control flow in
WS-BPEL. Technical Report BPM-05-15, BPMcenter.org, 2005. Available via
http://www.bpmcenter.org/reports/2005/BPM-05-15.pdf.

6. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s thesis,
Humboldt University, Berlin, Germany, 2004.

7. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnozing workflow
processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 490 – 494, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OpenWS-Transaction: Enabling Reliable Web
Service Transactions

Ivan Vasquez, John Miller, Kunal Verma, and Amit Sheth

Large Scale Distributed Information Systems, Department of Computer Science,
The University of Georgia,

415 Graduate Studies Research Center, Athens, GA 30602-7404 USA
{vasquez, jam, verma, sheth}@cs.uga.edu

http://lsdis.cs.uga.edu

Abstract. OpenWS-Transaction is an open source middleware that enables
Web services to participate in a distributed transaction as prescribed by the WS-
Coordination and WS-Transaction set of specifications. Central to the frame-
work are the Coordinator and Participant entities, which can be integrated into
existing services by introducing minimal changes to application code.
OpenWS-Transaction allows transaction members to recover their original state
in case of operational failure by leveraging techniques in logical logging and
recovery at the application level. Depending on transaction style, system recov-
ery may involve restoring key application variables and replaying uncommitted
database activity. Transactions are assumed to be defined in the context of a
BPEL process, although other orchestration alternatives can be used.

1 Introduction

OpenWS-Transaction is a middleware framework based on WS-Coordination (WS-C)
and WS-Transaction (WS-T) that enables existing services to meet the reliability
requirements necessary to take part in a coordinated transaction. For transactions
following WS-AtomicTransaction (WS-AT), it features an innovative recovery facil-
ity that applies logical logging to restore operations on the underlying data, extending
system recovery to include uncommitted database activity. For transactions following
WS-BusinessActivity (WS-BA), it presents a straightforward scheme to automate the
invocation of user-defined compensating actions. In contrast to existing implementa-
tions, OpenWS-Transaction aims to minimize the implementation impact in existing
applications with regards to both performance and code changes.

The framework has been implemented as part of the METEOR-S project, which
deals with adding semantics to the complete lifecycle of Web services and processes
[1]. As a prototype implementation of transactional Web processes, it is particularly
focused on integrating BPEL, WS-C and WS-AT/WS-BA [2, 3], which already enjoy
wide acceptance.

The next section explains the framework’s architecture. Section 3 describes an ex-
ample scenario where OpenWS-Transaction enables reliable transactional business
processes. Section 4 provides implementation and evaluation details, while section 5
summarizes this demonstration.

 OpenWS-Transaction: Enabling Reliable Web Service Transactions 491

2 Architecture

OpenWS-Transaction applies concepts from the reference specifications as well as
from existing work on fault tolerant systems [4, 5]. Fig. 1 illustrates the interaction
between a BPEL process, the Coordinator, and other services that benefit from the
Participant framework entity. Any activities performed within the transactional scope
are guaranteed to complete consistently.

Fig. 1. Entities and their interaction in a transactional business process

Coordinators are dedicated services responsible for delineating new transactions,
activating participant services and enforcing transactional behavior according to some
coordination type. To support recovery, they also record key events throughout the
transaction’s lifespan using the logging schema shown in Fig. 2. Besides the opera-
tions prescribed by WS-C, WS-AT and WS-BA, the recover operation restores the
state of pending transactions when interrupted by an operational failure.

Many services are the result of evolved applications that have defined an addi-
tional layer exposing select functionality to business partners. To take part in a dis-
tributed transaction, conventional services can use the features provided by the Par-
ticipant framework entity. Among such features is the ability to intercept and record
operation details, guaranteeing a precommit behavior regardless of the underlying
database system. Using the schema in Fig. 3, their recover operation enables transac-
tion participants to go back to the state immediately previous to a failure.

492 I. Vasquez et al.

Transactions

PK txID

status

MessagePart

PK seq
PK,FK1 txID

partName
partType
value

Participants

PK,FK1 txID
PK endpoint

Operations

PK txID
PK operation
PK endpoint

outcome
sql

SqlParams

PK,FK1 txID
PK,FK1 operation
PK,FK1 endpoint
PK seq

dataType
direction
value

Fig. 2. Coordinator log schema Fig. 3. Participant log schema

3 Example of a Transactional Process

We use a variation of the well-known travel agency use case. The process encom-
passes three services: A flight reservation system, a hotel reservation system and a
banking system. The process is triggered from a Web application in which the user is
given options for an immediate purchase (WS-AT) or a long-running process (WS-
BA) that increases the chance of finding a suitable itinerary.

In the process definition, service invocations are enclosed by beginTransaction
and endTransaction calls to the coordinator, which delimit the transaction’s scope.
Before performing any work, participants register with the coordinator by providing
their endpoint address, which is logged to stable storage to support system recovery.

As soon as participants fulfill their part of the process, the framework logs the op-
eration’s name and outcome. For WS-AT, it also logs associated database calls and
their parameters, critical to restore uncommitted activity in case of failure. Once op-
erations are recorded, participants report their outcome to the coordinator.

Process execution continues until the endTransaction operation is invoked. This
causes the coordinator to decide the transaction’s final outcome, which depends on
participant votes and current coordination type: For WS-AT, all steps of the process
must succeed. For WS-BA, we assume that just reserving the flight and processing its
payment is enough to consider it successful; however, because of its nature, services
must supply an appropriate compensating operation for every business operation.

Following outcome determination, the coordinator updates its transaction log re-
cord and confirms or cancels each operation. Participants then forget about the trans-
action and the process engine communicates its outcome to the client application.

Responding to Operational Failures. Next, we modify the above scenario by intro-
ducing an operational failure (Fig. 4) after the transaction outcome has been deter-
mined. Assuming a positive outcome and WS-AT coordination type, participants are
responsible to commit despite failures. However, these failures cause volatile state
information to vanish and, because applications are unaware of the global process,
local transactions are implicitly rolled back.

 OpenWS-Transaction: Enabling Reliable Web Service Transactions 493

Fig. 4. A failed transactional process where one of its participants crashed

If that is the case, OpenWS-Transaction’s coordinator attempts to contact the failed
service for a configurable number of times and retry interval. Assuming it becomes
available on time, the coordinator first invokes the participant’s recover operation,
which restores key application variables such as transaction identifier, coordination
type and operation outcomes. Additionally, recovery also restores the participant’s
database connection and replays database activity for uncommitted operations
(Fig. 5), leaving it ready to accept the final decision.

Fig. 5. Participant replaying a database procedure as part of system recovery

Yet another recovery scenario is one in which the coordinator itself goes down in
the middle of a process, leaving pending operations at multiple participants. Upon
restart, the coordinator scans its log records forward in time, looking for unfinished
transactions. State is then restored by polling registered participants on their prepare
operation. If a participant is not available or does not seem to know about the transac-
tion, it is asked to recover beforehand.

The framework takes into account the effects of network failures. Before perform-
ing recovery, participants check whether it is really needed by verifying the local

494 I. Vasquez et al.

coordination context. An additional check is done by validating participant registra-
tion at the coordinator, so recovery can not occur as the result of erroneous or mali-
cious requests.

4 Implementation and Evaluation

The framework was implemented in Java and relies exclusively on open source pro-
jects. Web services run on Apache Axis and Tomcat. Transaction logging is based on
BerkeleyDB, an embedded database system. Sample processes are deployed in Ac-
tiveBPEL. Web services access data on PostgreSQL and MySQL; other JDBC-
accesible sources like Oracle and SQL Server have also been tested successfully.

Evaluating the impact on existing services, we found that the framework can be in-
tegrated into existing services by introducing changes to as few as a couple lines of
code. Because protocol operations are invariably the same, developers of new applica-
tions can remain focused on their business logic.

Experimentation has shown that, even without logging optimizations, the addi-
tional overhead results in an average 7.5% increase over the operations’ original exe-
cution times.

5 Conclusion

OpenWS-Transaction is a framework that facilitates the implementation of Web ser-
vice-based processes requiring transactional behavior. Example scenarios demonstrate
its transactional support under normal and operational failure conditions, achieved by
providing the necessary protocol operations and by restoring the state of failed ser-
vices.

References

1. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. Proceedings of the 1st International Conference on Web Services (2003)

2. Tai, S., Khalaf, R., and Mikalsen, T.: Composition of Coordinated Web Services. Proceed-
ings of the 5th ACM/IFIP/USENIX intl. conf. on Middleware (2004)

3. Papazoglou, M.: Web Services and Business Transactions. World Wide Web: Internet and
Web Information Systems, Tilburg University (2003)

4. Lomet, D. and Tuttle, M.: Logical Logging to Extend Recovery to New Domains. Proc. of
the 1999 ACM SIGMOD intl. conf. on Management of Data (1999)

5. Salzberg, B. and Tombroff, D.: Durable Scripts Containing Database Transactions. IEEE
International Conference on Data Engineering (1996)

ASTRO: Supporting Composition and Execution
of Web Services�

Michele Trainotti1, Marco Pistore1, Gaetano Calabrese2, Gabriele Zacco2,
Gigi Lucchese2, Fabio Barbon2, Piergiorgio Bertoli2, and Paolo Traverso2

1 DIT, University of Trento, Via Sommarive 14, 38050, Trento, Italy
2 ITC-irst, Via Sommarive 18, 38050, Trento, Italy

Abstract. Web services are rapidly emerging as the reference paradigm
for the interaction and coordination of distributed business processes. In
several research papers we have shown how advanced automated plan-
ning techniques can be exploited to automatically compose web services,
and to synthesize monitoring components that control their execution. In
this demo we show how these techniques have been implemented in the
ASTRO toolset (http://www.astroproject.org), a set of tools that extend
existing platforms for web service design and execution with automated
composition and execution monitoring functionalities.

1 Introduction

Web services are rapidly emerging as the reference paradigm for the interaction
and coordination of distributed business processes. The ability to automatically
plan the composition of web services, and to monitor their execution, is therefore
an essential step toward the real usage of web services.

In previous works [1, 2, 3], we have shown how automated planning techniques
based on the “Planning via Model Checking” paradigm can effectively support
these functionalities. More precisely, the algorithms proposed in [1, 2, 3] are based
on web service specifications described in BPEL4WS, a standard language that
can be used both for describing existing web services in terms of their interfaces
(i.e., of the operations that are needed to interact with them) and for defining
the executable code that implements composite services.

Automated web service composition starts from the description of a num-
ber of protocols defining available external services (expressed as BPEL4WS
specifications), and a “business requirement” for a new composed process (i.e.,
the goal that should be satisfied by the new service, expressed in a proper goal
language). Given this, the planner must synthesize automatically the code that
implements the internal process that, exploiting the services of the external part-
ners, achieves the business requirement. This code is then emitted as executable
BPEL4WS code.
� This work is partially funded by the MIUR-FIRB project RBNE0195K5, “Knowl-

edge Level Automated Software Engineering”, and by the MIUR-PRIN 2004 project
“Advanced Artificial Intelligence Systems for Web Services”.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 495–501, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

496 M. Trainotti et al.

The automated synthesis techniques provided by the “Planning via Model
Checking” framework can be also exploited to generate process monitors, i.e.,
pieces of code that detect and signal whether the external partners behave consis-
tently with the specified protocols. This is vital to detect unpredictable run-time
misbehaviors (such as those that may originate by dynamic modifications of the
partners’ protocols), or other events in the executions of the web services that
need to be reported and analyzed.

Notice that these problems require to deal with nondeterminism (since the
behavior of external services cannot be foreseen a priori), partial observability
(since their status is opaque to the composed service), and extended goals (since
realistic business requirements specify complex expected behaviors rather than
just final states). By tackling the problem of composing and monitoring web
services, we have shown the capabilities of the “Planning via Model Checking”
approach in realizing such a complex planning task.

In this demo we show how these techniques can extend existing commer-
cial platforms for web service design and execution. More precisely, we describe
the ASTRO toolset (http://www.astroproject.org), which implements automated
composition and monitor generation functionalities as extensions of the Active
WebFlow platform. Active WebFlow (http://www.activebpel.org/) is a commer-
cial tool for designing and developing BPEL4WS processes which is based on the
Eclipse platform. It also provides an open-source BPEL4WS execution engine,
called Active BPEL. By implementing automated composition and monitoring
within Active WebFlow, these advanced functionalities can be combined with
the other “standard” functionalities provided by the platform (such as inspect-
ing BPEL4WS code, writing or modifying business processes, deploying these
processes and executing them) and become integral part of the life cycle of busi-
ness process design and execution.

2 A Service Composition Scenario

The demo is based on a classical web service composition problem, namely that of
the Virtual Travel Agency (VTA). It consists in providing a combined flight and
hotel booking service by composing two separate, independent existing services:
a Flight booking service, and a Hotel booking service.

The Hotel booking service becomes active upon a request for a room in a
given location (e.g., Paris) for a given period of time. In the case the booking is
not possible (i.e., there are no available rooms), this is signaled to the request
applicant, and the protocol terminates with failure. Otherwise, the applicant is
notified with information about the hotel (e.g., Hilton), cost of the room, etc.
and the protocol stops waiting for either a positive or negative acknowledgment.
In the first case, an agreement has been reached and the room is booked. In the
latter case, the interaction terminates with failure.

The protocol provided by the Flight booking service is similar. It starts upon
a request for flights that guarantee to stay in a given location (e.g., Paris) for
a given period of time. This might not be possible, in which case the appli-

ASTRO: Supporting Composition and Execution of Web Services 497

cant is notified, and the protocol terminates failing. Otherwise, information on
the flights (carrier, cost, schedule...) are computed and returned to the appli-
cant. The protocol suspends for either a positive or negative acknowledgment,
terminating (with success or failure resp.) upon its reception.

The expected protocol that the user will execute when interacting with the
VTA goes as follows. The user sends a request to stay in a given location during a
given period of time, and expects either a negative answer if this is not possible
(in which case the protocol terminates, failing), or an offer indicating hotel,
flights and cost of the trip. At this time, the user may either accept or refuse
the offer, terminating its interaction in both cases.

Of course several different interaction sequences are possible with these ser-
vices; e.g., in a nominal scenario, none of the services answers negatively to
a request; in non-nominal scenarios, unavailability of suitable flights or rooms,
as well as user refusals, may make it impossible to reach an agreement for the
trip. Taking this into account, the business requirement for the composed ser-
vice is composed of two subgoals. The “nominal” subgoal consists in reaching
the agreement on flights and room. This includes enforcing that the data com-
municated to the various processes are mutually consistent; e.g., the number of
nights booked in the hotel depends on the schedule of the selected flights. The
“recovery” subgoal consists in ensuring that every partner has rolled back from
previous pending requests, and must be only pursued when the nominal subgoal
cannot be achieved anymore.

By automated composition of the VTA process, we mean the automated gen-
eration of the code that has to be executed on the VTA server, so that requests
from the user are answered combining the Flight and Hotel services in a suitable
way. This composition has to implement the two sub-goals described above. After
the VTA process has been generated, its executions must be monitored, in order
to detect problems in the interactions with the other partners participating to
the scenario. Properties to be monitored include “correctness” checks (e.g., the
partners obey the declared protocols; the flight schedules are compatible with
the requests...). It is also possible to monitor “business” properties, e.g., the fact
that, when an offer for a trip is sent to the user, this offer gets accepted or not.

3 The ASTRO Toolset

This section presents a general overview of the ASTRO toolset. It consists of the
following tools: WS-gen, WS-mon, WS-console and WS-animator.

WS-gen is responsible for generating the automated composition. It consists
in a back-end layer and a front-end layer. The back-end layer takes as input the
BPEL4WS specifications of the interaction protocols that the composite service
has to implement, a “choreographic” file describing the connections between the
composition’s partners, and a goal file defining the composition requirement. It
consists of two applications (see Fig.1): BPELTranslator converts the BPEL4WS
specification files and the choreography file in an intermediate (.smv) file which is
adequate for representing “Planning via Model Checking” problems; WSYNTH

498 M. Trainotti et al.

Fig. 1. WS-gen architecture

Fig. 2. WS-gen front end

takes as input the problem domain, computes the plan which fulfills the require-
ments, and emits the plan in BPEL4WS format. The front-end (see Fig.2) is
responsible for controlling the composition process and for managing the gen-
erated BPEL4WS specification; it has been implemented as an Eclipse plugin,
and is hence integrated in the Active WebFlow environment.

WS-mon is responsible for generats the Java code implements the monitors for
the composed process and deploying them to the monitor framework. Similar to
WS-gen, it consists in a back-end layer and a front-end layer. The back-end takes
as input BPEL4WS specifications and a “choreographic” file, while the goal file
is replaced by a file specifying the properties to by monitored. The back-end layer
consists in three applications (see Fig.3): BPELTranslator, which is in common
with WS-gen, converts the BPEL4WS specification files and the choreography
file in a .smv file which describes the problem domain; WMON takes as input the
problem domain, computes the plan which fulfills the monitoring requirements,
and emits this plan in Java format; and the DEPLOYER compiles the Java class
and deploy them to the monitor framework. The front-end (see Fig.4), which is
responsible for controlling the monitor generation process, has been implemented
as an Eclipse plugin, and is hence integrated in the Active WebFlow environment.

ASTRO: Supporting Composition and Execution of Web Services 499

Fig. 3. WS-mon architecture

Fig. 4. WS-mon front end

Fig. 5. Monitor framework architecture

The run-time monitor framework is responsible for executing the monitors
associated to a given process every time an instance of that process is executed.
It is also responsible for reporting the status of these monitors to the user in a
convenient way. It consists of a back-end layer and a front-end layer (see Fig.5).
The back-end layer has been implemented as an extension of the Active BPEL

500 M. Trainotti et al.

Fig. 6. WS-console

Fig. 7. WS-animator

execution engine; the main goal is to sniff the input/output messages directed to
the process that has to be monitored and to forward them to the Java monitors
instances. The front-end implementation, WS-console, extends the Active BPEL
administration console in order to present the status of the monitors associated
with each process instance. In this way, violations of the monitored properties
are easy to be checked by the user (see Fig.6).

Finally, WS-animator (see Fig.7) is another Eclipse plugin, which gives the
user the possibility to “execute” the composite process (in our case, the VTA).
More precisely, it allows the user to play the roles of the actors interacting with
the composite process, while the Active WebFlow engine executes it.

ASTRO: Supporting Composition and Execution of Web Services 501

References

1.[1] Pistore, M.; Barbon, F.; Bertoli, P.; Shaparau. D.; and Traverso, P. 2004. Planning
and Monitoring Web Service Composition. In Proc. AIMSA’04.

2.[2] Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated Composition of Web
Services by Planning in Asyncronous Domains. In Proc. ICAPS’05.

3.[3] Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005. Automated Composition
of Web Services by Planning at the Knowledge Level. In Proc. IJCAI’05.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 502 – 507, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Demonstrating Dynamic Configuration and Execution
of Web Processes

Karthik Gomadam, Kunal Verma, Amit P. Sheth, and John A. Miller

Large Scale Distributed Information Systems Lab,
Department of Computer Science,

University of Georgia
{karthik, verma, amit, jam}@cs.uga.edu

Abstract. Web processes are next generation workflows on the web, created
using Web services. In this paper we demonstrate the METEOR-S
Configuration and Execution Environment (MCEE) system. It will illustrate the
capabilities of the system to a) Discover partners b) Optimize partner selection
using constraint analysis, c) Perform interaction protocol and data mediation. A
graphical execution monitor to monitor the various phases of execution will be
used to demonstrate various aspects of the system.

1 Introduction

The service oriented architecture [6] envisions a dynamic environment where
software components could be integrated on the fly based on their declarative
descriptions. So far, most of the work in standards of Web services (WS) has been on
syntactic standards based on XML, which limits the amount dynamism possible in the
such systems. METEOR-S seeks to use semantics in all aspects a Web process
lifecycle, especially to support dynamic execution features. Its approach consists of
comprehensive modeling and use of semantics that are divided into four types: data
(such as that required for input and output message contents), functional (concerning
the domain specific capabilities), non-functional (including QoS) and execution (such
as that needed for exceptional handling and correctness of execution). MCEE follows
the METEOR-S philosophy of using semantics at various stages during the lifecycle
of Web processes and is discussed in detail in [1]. This paper demonstrates a real
world scenario which is presented in [5]. The rest of the paper is organized as follows.
The MCEE architecture is presented in section 2. Section 3 describes the
demonstration scenario. Section 4 outlines the unique features of the system. A
summary is presented in section 5.

2 MCEE Architecture

In this section, we provide a brief overview of MCEE [1]. We will present the design
overview and then implementation details.

 Demonstrating Dynamic Configuration and Execution of Web es 503

10

WS

9

12

Web Process

Process Manager Proxy

MCEE Framework

Execution Environment Configuration Module

Discovery
Manager

Constraint
Analyzer

Data
Mediator

Protocol
Mediator

WS
Invoker

1

2
3

4

7
11

6

7

13

5
14

2.1 Design Overview

The architecture of our system is illustrated in Figure 1. The different components of
the system are:

1. Process manager
2. Proxy
3. Configuration module
4. Execution environment

We discuss each component briefly in rest of this section.

Fig. 1. Architectural overview of MCEE

The configuration module is responsible for process configuration. The
configuration module can be called by the process manager during a) process
configuration b) process reconfiguration. During both cases the configuration module
performs Web service discovery and constraint analysis. Web service discovery is
realized by the Discovery manager component in the configuration module. Service
discovery is based on the data, functional and non-functional descriptions of the
service requirements captured in the semantic template using the annotations with
respect to the corresponding ontologies. The constraint analyzer component helps in
creating a set of candidate Web services that satisfy the process constraints. Integer
Linear programming is used for solving quantitative constraints and SWRL is used
for non-quantitative constraints. A detailed discussion of our earlier work in Web
service Quality of Service is presented in [3].

Process

504 K. Gomadam et al.

The execution environment handles the execution requests initiated by the proxy.
The capabilities of the execution environment include a) Data Mediation b)
Protocol mediation and c) Web service invocation. The execution environment replies
to the proxy with the service output or service exception in the event of service
failure. Data mediation is necessary to address issues due to data heterogeneities
between the target Web service and the semantic template. WSDL-S allows for
specifying data transformations using XSLT or XQuery [2]. The data mediator
component is responsible for realizing these data transformations. Interaction protocol
heterogeneities are handled by the interaction protocol mediator. The interaction
protocol handler in framework is explained in detail in [1].

Proxies are Web services generated from the semantic templates for the partner.
The proxies initiate the binding request, when they are invoked by the process. The
process manager replies to the binding request by returning the service discovered for
the template. The proxy then sends an execution request to the execution
environment. If the service cannot be successfully executed, the proxy initiates the
reconfiguration request. The execution request is illustrated in messages 8 and 9 in
Figure 1.

The process manager is a Web service that handles three different requests a)
Configuration request, b) Binding request and c) Reconfiguration request.
Configuration requests are initiated by the Web process execution engine and are sent
to the process manager. It forwards the configuration requests to the configuration
module which configures the Web process. Binding requests are initiated by the proxy
and are sent to the process manager, to get the binding information about the Web
services discovered. Reconfiguration requests are initiated by the proxy and are sent
to the process manager, to notify of service failure. The process manager then
reconfigures the process, by halting the execution of other proxies and by forwarding
the reconfiguration request to the configuration module. The reconfiguration
algorithm is discussed in detail in [1]. Messages 1, 2, 3 and 4 in Figure 1 are
configuration requests. Messages 6 and 7 in Figure 1 are binding requests. Messages 9
and 10 in Figure 1 are reconfiguration requests.

2.2 System Information

The system is implemented using JDK 1.4.2. Web services are written using Java and
are deployed in Apache Axis 1.2RC. The discovery module is implemented using
jUDDI and UDDI4J. The Web process is orchestrated using the IBM BPWS4J engine
and is written in WS-BPEL. Tomcat version 4.1.29 is used for BPWS4J engine and
Apache Axis. Tomcat 5.1.3 was used for jUDDI. The system uses the current WS
technologies and infrastructure. This allows for interoperability between semantic
Web services and Web services as they exist today.

3 Demonstration Scenario

We demonstrate a real world use case from the domain of agricultural marketing in
India. The scenario is discussed in detail in [5]. The current marketing system has

 Demonstrating Dynamic Configuration and Execution of Web es 505

farmers selling their produce to either a) an Agriculture Produce Market Committee
(APMC) b) merchants associated with APMCs or c) brokers associated with APMCs.
In rest of the discussion, a farmer is a seller and a buyer can either be an APMC,
merchant or broker. In this scenario, we demonstrate the value and utility of dynamic
Web processes. This also will demonstrate the capability of the system demonstrated
to support and execute such processes. Figure 2 shows an abstract process created to
realize this scenario.

Fig. 2. Screen shot of Process Execution Monitor Fig. 3. Web Process demons-
tration scenario

The seller captures the product(s) to be sold, the input and the output types and his

constraints in a semantic template. In the demonstration example the seller wants to
sell rice and wheat. Constraints on part of the seller could include a) Payment must be
made on the same day as the transaction b) Payment must be in cash c) the
transportation company must guarantee delivery. Proxy Web services are created
from the semantic templates and a Web process with proxies and the process manager
as a partner is deployed. The above three mentioned illustrative constraints will be
used in the demonstration of the system.

When the Web process is executed the process sends a configuration request to the
process manager. The process manager then discovers potential buyers and chooses a
set of buyers who satisfy the constraints of the seller.

The constraints of a buyer must also be considered in choosing buyers. Buyer
constraints may include a) Payment will be made only by check b) the transportation
company will provide insurance only if shipment is greater than a certain minimum
amount.

Each proxy when invoked by the Web process sends a binding request to the process
manager. The process manager responds with details of the buyer corresponding to the

Process

506 K. Gomadam et al.

semantic template that was used to create the proxy. The proxy then sends an execution
request to the execution environment. The execution environment performs data and
protocol mediations as needed before invoking the buyer Web service.

We demonstrate how adding dynamism to such a Web process helps a seller
optimize his profit. This also ensures that for both the buyer and seller the most
compatible business partner is chosen.

The Web process is deployed and executed with a set of ten Web services for each
partner. Fig. 3 is a screen shot of the METEOR-S web process execution monitor.

4 Innovative Features in the System and Demo

1. We have demonstrated the use of MCEE by using it in a real world scenario.
2. Unique capabilities of MCEE include ability to perform discovery, constraint

analysis, data and interaction protocol mediation.
3. The system implementation is agnostic to both Web process language (like BPEL)

and Web service implementation language.
4. The demonstration gives an insight for using the WSDL-S specification for

creating more dynamic processes.

5 Summary

We have demonstrated MCEE and have shown how it is used in configuring dynamic
Web processes. While using semantics is a critical aspect of METEOR-S, we also
seek to build upon existing standards related to Web services and the Service Oriented
Architecture. Our aim is to preserve existing investment in Web services technology
and tools; this is shown by the reuse of existing WS tools like BPEL process engine
and Apache Axis to create our system. The MCEE system can be seen as layer over
the current WS infrastructure, which handles the semantic information added through
the extensibility capabilities. Our goal is seamless operation of WS and SWS. For this
purpose, we have proposed the WSDL-S specification in collaboration with IBM, and
have used it in our system as the basis of semantic annotation.

References

1. Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, Zixin Wu, The METEOR-
S Approach for Configuring and Executing Dynamic Web Processes, LSDIS Technical
Report, 2005.

2. R. Akkiraju, J. Farrell, J.A.Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, Web
Service Semantics - WSDL-S, Position Paper for the W3C Workshop on Frameworks for
Semantics in Web Services, Innsbruck, Austria, 2005.

3. Rohit Aggarwal, Kunal Verma, John A. Miller, William Milnor "Constraint Driven Web
Service Composition in METEOR-S", Proceedings of IEEE International Conference on
Services Computing (SCC 2004), Shanghai, China, September 2004 , pp. 23-30.

 Demonstrating Dynamic Configuration and Execution of Web es 507

4. Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth, Discovery of Web Services in a
Federated Registry Environment, Proceedings of IEEE Second International Conference on
Web Services, June, 2004, pp. 270-278.

5. Vikram Sorathia, Zakir Laliwala, Sanjay Chaudhary, Towards Agricultural Marketing
Reforms: Web Services Orchestration Approach, Proceedings of IEEE International
Conference on Services Computing, Orlando, Florida, July 2005, pp 260-267.

6. Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana,
The Next Step In Web Services, Communications of the ACM, 2003

Process

Programming and Compiling Web
Services in GPSL

Dominic Cooney, Marlon Dumas, and Paul Roe

Queensland University of Technology, Australia
{d.cooney, m.dumas, p.roe}@qut.edu.au

Abstract. Implementing web services that participate in long-running,
multi-lateral conversations is difficult because traditional programming
languages are poor at manipulating XML data and handling concurrent
and interrelated interactions. We have designed a programming language
to deliberately address these problems. In this paper we describe how to
use this language to consume a popular web service, and discuss the
compiler, including the kinds of semantic checks it performs, and the
runtime environment.

1 Introduction

Web services are used increasingly to integrate applications within and between
organizations. Implementing simple request-response interactions between stat-
ically known participants using traditional middleware and programming lan-
guages is reasonably straightforward, but implementing long-running conversa-
tions among large and changing sets of participants is difficult. Web services
present some serious implementation challenges: prevalent XML data, explicit
boundaries, concurrent messages, and process awareness.
XML data: The data model of web services is XML InfoSet. InfoSet is an open
data representation with no notion of behavior. Object-oriented programming
prizes data encapsulation by marrying data and behavior. To address the mis-
match object-oriented (OO) programming languages variously model InfoSet
with objects, map between objects and InfoSet, or support InfoSet directly via
language extensions. In all these solutions object models are indirect, mappings
are incomplete, and language extensions are redundant in their OO data model.
Explicit boundaries: Unlike components in a virtual machine, or processes in
an operating system, there is no supervising infrastructure between services.
Because implementation technologies vary, or because organizational boundaries
entail secrecy, the internal logic of other services may be completely opaque.
Programming languages with global models of interacting services are useful for
abstractly modeling service oriented architectures, but implementers are limited
to purely local phenomena, such as messages, and can not rely on a global view.
Concurrent messages: Messages link distributed nodes, all processing concur-
rently. For basic scalability web services must handle concurrent messages.
Implementers must be cautious of race conditions, deadlocks, and live-locks—all
problems that mainstream object-oriented languages make tedious to solve.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 508–513, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Programming and Compiling Web Services in GPSL 509

Process awareness: Web services often correspond to business functionality, and
so are likely to be part of long-running interactions driven by explicit process
models. They may engage in conversations with a dynamically changing set of
partners and a large number of events that may occur in many orders.

BPEL1 addresses some of these problems, but it turns out that coding com-
plex multi-lateral interactions in BPEL, especially those that require partial
synchronization and one-to-many correlation can be cumbersome [1].

We addressed the above issues in the design of Gardens Point Service Lan-
guage (GPSL) [2] with the following features:

– Embedded XQuery. XQuery is a functional language for querying and
synthesizing XML data [3], with a data model close to XML InfoSet. GPSL
supports the manipulation of XML data via embedded XQuery expressions.

– Services, contracts, and explicit message sending. GPSL has explicit
service and contract language elements. Lexical scoping ensures services rely
on purely local data. Services exchange data by explicit message sending.

– Join calculus-style concurrency [4]. GPSL simplifies forking, joining,
and concurrent operations with declarative rules. At a low level of abstraction
these rules facilitate the manipulation of concurrent messages; at a higher
level they support the modeling of complex processes with state machines.

The feature set of GPSL is unique, yet GPSL belongs to a small set of service-
oriented programming languages [5, 6, 7]. In this paper we focus on writing ser-
vice consumers, which is important for implementing services that aggregate
other services. We also present the compiler and runtime system.

2 GPSL by Example

GPSL is primarily for developing services, and an important aspect of imple-
menting a service is interacting with other services. In this example we describe
how to use GPSL to consume the Amazon queue service. The Amazon queue
service is a SOAP document/literal style service that supports inserting XML
data into a queue; reading from a queue, with time-outs; and managing queues.

First we declare an XQuery XML namespace for data used by the service:

declare namespace sqs =
’http://webservices.amazon.com/AWSSimpleQueueService/2005-01-01’;

. . . where sqs is a mnemonic for simple queue service.
Next we write the service contract. The Amazon queue service uses a pattern

where all operations have the same SOAP action and the behavior is controlled
by the data in the body of the message, so the contract declaration is simply:

declare interface SimpleQueueService {
declare operation SQSOp webmethod action = ’http://soap.amazon.com’

}

1 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

510 D. Cooney, M. Dumas, and P. Roe

SimpleQueueService and SQSOp are identifiers we use to refer to the operation.
webmethod nominates this operation as synchronous SOAP-over-HTTP. This
piece of metadata governs the behavior of the runtime system, but to the pro-
grammer in-out SOAP operations via a pair of asynchronous messages and syn-
chronous webmethod operations appear uniformly as asynchronous operations.

Now we bind some constant values: the endpoint of the Amazon queue service,
and our subscriber ID, which we have to include in every message. We could, of
course, vary these with parameters if desired.

(: URI of the Amazon
Simple Queue Service :) let $sqs :=
’http://webservices.amazon.com/onca/soap?Service=AWSSimpleQueueService’in
(: Amazon Web Services subscription ID :) let $subscriptionID :=
’...’ in

Performing an interaction, e.g. to create a queue, involves constructing a
request, sending it, and processing the response:

let $request :=
element sqs:CreateQueue {

element sqs:SubscriptionId { $subscriptionID },
element sqs:Request {

element sqs:CreateQueueRequest {
element sqs:QueueName { ’My queue’ },
element sqs:ReadLockTimeoutSeconds { 10 }

}
}

} in
def Process($response) { } in
$sqs: SQSOp($request, Process)

This sequence of element constructors produces XML like the following:

<sqs:CreateQueue xmlns:sqs=
"http://webservices.amazon.com/AWSSimpleQueueService/2005-01-01">
<sqs:SubscriptionId>...</sqs:SubscriptionId>
<sqs:Request>

<sqs:CreateQueueRequest>
<sqs:QueueName>My queue</sqs:QueueName> ...

The def construct is used to introduce a new internal label, Process, and an
associated block to execute when a message is produced on that label. In this
example, sending a message to Process would do nothing as the block labeled
Process is empty. The line $sqs: SQSOp($request, Process) actually sends the
message. The prefix argument $sqs is the endpoint to send to. Recall that $sqs is
bound to the endpoint of the Amazon queue service in a previous let statement.
This is how GPSL supports invoking services dynamically—for example, we
could have bound $sqs, not to a constant value, but to data in a previous message.

SQSOp is the operation declared in the SimpleQueueService contract, which
provides the SOAP action and operation style (webmethod, in this case) meta-
data. The $request argument supplies the body of the SOAP message; this is the

Programming and Compiling Web Services in GPSL 511

fragment of XML we just constructed. Finally, the Process argument supplies
the label to send SOAP replies to. Because SQSOp is declared as a webmethod,
we must provide some way to handle replies.

This approach to message sending, though direct, is inconvenient if we need to
create more than one queue. The GPSL def construct is very convenient for small-
scale abstraction building such as the following CreateQueue label definition:

def CreateQueue($queue-name, $timeout, create-reply) {
let $request :=

element sqs:CreateQueue {
element sqs:SubscriptionId { $subscriptionID },

element sqs:Request {
element sqs:CreateQueueRequest {

element sqs:QueueName { $queue-name },
element sqs:ReadLockTimeoutSeconds { $timeout }

}
}

} in
$sqs: SQSOp($request, create-reply)

} in
def Ignore($response) { } in
CreateQueue(’My queue’, 10, Ignore)

The defs statements can introduce nested defs that extract data from the
response and forward the distilled result to create-reply:

def CreateQueue($queue-name, $timeout,
create-reply) {
let $request := (: same as above :) in
def Unpack($response) {

let $queue-id := $response//QueueId/text() in
create-reply($queue-id)

} in
$sqs: SQSOp($request, Unpack)

} in ...

3 The GPSL Compiler

The GPSL compiler operates in traditional parsing, analysis, and code generation
phases. The parser must handle XQuery for expressions. For our prototype we
found ignoring XQuery direct constructors—the angle-brackets syntax for syn-
thesizing XML which require special handling of whitespace—greatly simplifies
parser development. Because syntactically simpler computed constructors can
do the job of direct constructors, the expressive power of XQuery is unimpeded.

The analysis phase of the compiler is dominated by resolving identifiers and
reporting undeclared variables or on passing too few or too many parameters.
This phase includes a Hindley-Milner style type inferencer for labels. This is be-
cause we must prevent labels leaking into XML values. Syntax trivially prevents
labels appearing in XQuery expressions, because variables bound to XML values

512 D. Cooney, M. Dumas, and P. Roe

are always prefixed with a $, whereas labels and variables bound to labels are
not. However sending a message on a label could pass a label where an XML
value was expected. The types from our inference let the compiler guarantee
statically that this does not happen.

If a label could escape into a larger XML value, we would have to track the
reference to that label in order to keep the closure it refers to alive; in the worst
case if the label escapes from the service we must set up the SOAP messaging
machinery to marshal messages into the closure. Of course, when the programmer
supplies a label as the reply-to parameter of an operation, that label is reified as
an XML value. So the determined programmer can work around the restriction
by sending a SOAP message to the service itself.

The last semantic check of the analysis phase is that in, in-out and webmethod
operations obey the convention of a parameter for the SOAP body and a pa-
rameter for the reply channel (in the in-out and webmethod case.) These lead
to a limited set of types that are used to generate code that marshal between
SOAP messages and messages on internal labels. In principle, schema validation
of messages could be incorporated.

The code generator produces Microsoft Intermediate Language (MSIL), which
is similar to Java byte code although differs in many details. Most of the com-
plexity in the code generator is in creating closures and delivering messages on
internal labels. For each def we create a class with a method for each concur-
rency rule, a field for each captured variable, and a method and field for each
label. This field holds a queue of pending messages; the method takes a message
to that label, tests whether any rules are satisfied, and if so, calls the method
for the rule. We perform the rule testing on the caller thread and only spawn a
thread when a rule is satisfied, which avoids spawning many threads.

We do not compile XQuery expressions because implementing an XQuery
compiler is a daunting task. Instead we generate code to call an external XQuery
library at runtime. One critical criterion for the programming language imple-
menter integrating an XQuery implementation is how that XQuery implemen-
tation accepts external variables and provides results. GPSL requires access to
expression results as a sequence of XQuery data model values—which is dis-
tinctly different from an XML document—to behave consistently with XQuery
when those values that are used later in subsequent expressions. We use an in-
teroperability layer over the C API of Galax2, which has exactly the kind of
interface for providing external values and examining results that we want. Our
biggest complaint about Galax is that evaluating expressions must be serialized
because Galax is non-reentrant.

GPSL programs also depend on the Microsoft Web Services Extensions3

(WSE) for SOAP messaging. WSE has a low-level messaging interface which
is sufficient for GPSL’s needs, but it has major shortcomings too: WSE does not
support SOAP RPC/encoded, and we have to include some bookkeeping to make
SOAP over synchronous-HTTP work using this low-level messaging interface.

2 http://www.galaxquery.org
3 http://msdn.microsoft.com/webservices/building/wse

Programming and Compiling Web Services in GPSL 513

4 Conclusion

We have presented code samples in GPSL illustrating the use of features related
to SOAP messaging and XQuery. Because of limited space we have not illustrated
the join calculus-style concurrency features of GPSL, however the GPSL compiler
and further examples are available online.4

GPSL’s features for messaging, concurrency, and XML data manipulation in-
tegrate cohesively. Examples of the cohesive fit are the interplay between sending
messages and spawning concurrent threads and receiving messages and synchro-
nising threads, and the consistent treatment of inter- and intra-service messages.
GPSL could be extended to address other aspects of services that are tricky to
implement, such as transactions and faults. The current implementation of GPSL
is also lacking in automatic resource management, expected by programmers fa-
miliar with languages such as Java or C# but complicated by the heterogeneous,
distributed setting. We expect the key in these areas is to leverage the messag-
ing/concurrency features, for example, by surfacing faults as messages or by
recovering automata from concurrency patterns and reclaiming resources when
a service can no longer reach a state where it can respond to certain messages.

Acknowledgment. The second author is funded by a fellowship co-sponsored
by Queensland Government and SAP.

References

1. Barros, A., Dumas, M., Hofstede, A.: Service interaction patterns. In: Pro-
ceedings of the 3rd International Conference on Business Process Manage-
ment, Nancy, France, Springer Verlag (2005) Extended version available at:
http://www.serviceinteraction.com.

2. Cooney, D., Dumas, M., Roe, P.: A programming language for web service devel-
opment. In Estivill-Castro, V., ed.: Proceedings of the 28th Australasian Computer
Science Conference, Newcastle, Australia, Australian Computer Society (2005)

3. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML query language. W3C Working Draft (2005)

4. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join cal-
culus. In: Twenty-third ACM Symposium on Principles of Programming Languages
(POPL). (1996) 372–385

5. Onose, N., Siméon, J.: XQuery at your web service. In: Thirteenth international
conference on World Wide Web, New York, NY, USA, ACM Press (2004) 603–611

6. Florescu, D., Grünhagen, A., Kossmann, D.: XL: A platform for Web services.
In: Conference on Innovative Data Systems Research (CIDR), Asilomar, CA, USA
(2003)

7. Kistler, T., Marais, H.: WebL – A programming language for the web. In: Pro-
ceedings of the 7th International conference on World Wide Web, Amsterdam, The
Netherlands, The Netherlands, Elsevier Science Publishers B. V. (1998) 259–270

4 http://www.serviceorientation.com

Semantic Management of Web Services

Daniel Oberle1, Steffen Lamparter1, Andreas Eberhart2, and Steffen Staab3

1 Institute AIFB, University of Karlsruhe, Germany
lastname@aifb.uni-karlsruhe.de

2 Hewlett-Packard, Waldorf, Germany
andreas.eberhart@hp.com

3 ISWeb, University of Koblenz-Landau, Germany
staab@uni-koblenz.de

Abstract. We present semantic management of Web Services as a paradigm that
is located between the two extremes of current Web Services standards descrip-
tions and tools, which we abbreviate by WS*, and Semantic Web Services. On
the one hand, WS* does not have an integrated formal model incurring high costs
for managing Web Services in a declarative, but mostly manual fashion. On the
other hand, the latter aims at the formal modelling of Web Services such that
full automation of Web Service discovery, composition, invocation, etc., becomes
possible — thereby incurring unbearably high costs for modelling. Based on a set
of use cases, we identify who benefits from what kind of semantic modelling of
Web Services, when and for what purposes. We present how an ontology is used
in an implemented prototype.

1 Introduction

Different Web Service standards, we refer to them as WS*, factorize Web Service man-
agement tasks into different aspects, such as input/output signatures, workflow, or se-
curity. The advantages of WS* are multiple and have already benefited some industrial
cases. WS* descriptions are exchangeable and developers may use different implemen-
tations for the same Web Service description. The disadvantages of WS*, however, are
also visible, yet: Even though the different standards are complementary, they must
overlap and one may produce models composed of different WS* descriptions, which
are inconsistent, but do not easily reveal their inconsistencies. The reason is that there
is no coherent formal model of WS* and, thus, it is impossible to ask for conclusions
that come from integrating several WS* descriptions. Hence, solving such Web Service
management problems or asking for other kinds of conclusions that derive from the in-
tegration of WS* descriptions remains a purely manual task of the software developers
accompanied by little to no formal machinery.

Researchers investigating Semantic Web Services have clearly articulated these short-
comings of WS* standardizations and have been presenting interesting proposals to
counter some of them [1, 2]. The core of their proposals lies in creating semantic stan-
dards. Their principal objective is a wide-reaching formalization that allows full au-
tomation of the Web Service management tasks such as discovery and composition. The
potential advantage is the reduction of management efforts to a minimum; the disadvan-
tages, however, are also apparent: Neither is it clear, what kind of powerful machinery
could constitute a semantic model that would allow for full automation, including all

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 514–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Management of Web Services 515

aspects of all web services that might matter in some way, nor does it appear to be pos-
sible that real-world developers could specify a semantic model of Web Services that
would be fine-grained enough to allow for full automation anytime soon.

Therefore, we postulate that semantic management of Web Services should not try
to tackle full automation of all Web Service management tasks as its objective. We
claim that the full breadth of Web Service management requires an understanding of
the world that is too deep to be modelled explicitly. Instead, we foresee a more passive
role for semantic management of Web Services. One that is driven by the needs of the
developers who must cope with the complexity of Web Service integration and who
could use valuable tools for integrating previously separated aspects.

It is the contribution of this paper to clarify what kind of objectives could and
should be targeted by semantics modelling of Web Services and to present a prototype
that implements this framework. The kind of objectives that are to be approached are
constrained by a trade-off between expending efforts for managing Web Services and
expending efforts for semantic modelling of Web Services. At the one end, the ob-
jective of full automation by semantic modelling will need very fine-grained, detailed
modelling of all aspects of Web Services — essentially everything that an intelligent
human agent must know. Thus, modelling efforts skyrocket at the end of fine-grained
modelling. At the other end, where modelling is very coarse and little modelling facili-
tates management, management efforts of distributed systems soar as experiences have
shown in the past.

In this paper we try to approach the trade-off by identifying promising use cases. The
use cases demonstrate that some management tasks can be facilitated by a justifiable
amount of semantic modelling (section 2). For each use case, we identify who benefits
from what kind of semantic modelling of Web Services, when and for what purposes.
In addition, the use cases allow us to derive a set of modelling requirements for an
appropriate management ontology which has been presented in [5]. We describe our
implemented prototype, and detail how one of the use cases is realized by this system
(cf. section 3) before we conclude.

2 Use Cases

This section discusses three use cases that trade off between management and modelling
efforts (an extensive survey of use cases is given in [4]). That means, they propose to
facilitate some of the typical Web Service management tasks by a justifiable amount of
semantic descriptions (i.e., metadata in terms of an ontology). They try to approach the
trade-off point by answering the following questions:

Question 1. Who uses the semantic descriptions of Web Services?

We see two major groups of users constituted by (i) software developers and (ii)
administrators. These two groups of users have the need to predict or observe how Web
Services interact, (might) get into conflict, (might) behave, etc. It will be very useful
for them to query a system for semantic management of Web Services that integrates
aspects from multiple WS* descriptions — which has not been possible so far, but is
now allowed by the approach and system we present here.

516 D. Oberle et al.

Question 2. What does he/she/it use the semantic descriptions of Web Services for?

There is a large number of use cases where the integration of semantic descriptions
may help the developer or administrator. Hence, the list below is neither exhaustive nor
are the individual use cases mutually exclusive. The reader may note that it is germane
to semantic descriptions to state what there is and not how it is to be combined and what
is its sole purpose.

Question 3. When does he/she/it use the semantic descriptions of Web Services?

We consider development time, deployment time and runtime.

Question 4. Which aspects should be formalized by our ontology?

The answers to the last questions let us derive a set of modelling requirements for a
suitable ontology.

Detecting Loops in Interorganizational Workflows. Web Services based applications
usually make use of asynchronous messaging, bringing upon quite complex interaction
protocols between business partners. Current workflow design workbenches only visu-
alize the local flow and leave the orchestration of messages with the business partners
up to the developer. Enough information is available in machine-readable format such
that a tool can assist the developer in this task. For instance, the structure of the local
flow can be combined with publicly available abstract flows of the partners in order to
detect loops in the invocation chain that would lead to non-termination of the system.
As shown in the bioinformatics domain [3], automated composition of workflows is
likely to be inappropriate in most cases. Hence, we propose to support the developers
in their management tasks and not to replace them.

Who: Developer When: Development time
What for: Code debugging Which aspects: Workflow information (plans)

Policy Handling. Policies play an increasing role, as demonstrated by the recent WS-
Policy proposal. The idea of a policy is to lay out general rules and principles for service
selection. Thus, rather than deciding whether an invocation is allowed on a case by
case basis at runtime, one excludes services whose policy violates the local policy at
development time. The major benefit is that policies can be specified declaratively. This
use case does not aim at fully automated policy matching at run time, as we think
that the full generality of policy matching imposes further problems that remain to be
solved. Let alone the lack of WS-Policy engines so far. Instead we propose to apply
semantic modelling in order to make policy handling more convenient for the developer.
As our running example, we consider a large WS-BPEL workflow where checking for
external task service invocations which are associated with a policy remains a tedious
and manual task.

Who: Developer, System What for: Excluding unsuitable services
When: Development time Which aspects:Policies

Aggregating Service Information. Services will often be implemented based on other
services. A service provider publishes information about its service. This might include
service level agreements indicating a guaranteed worst-case response time, the cost
of the service, or average availability measures. The service requestor, in this case a

Semantic Management of Web Services 517

composite service under development, can collect this information from the respective
service providers. In turn, it offers a service and needs to publish similar measures. The
semantic management must support the administrator supports the administrator by pro-
viding a first cut of this data by aggregating the data gathered from external providers.
Similar to the statements given in [3], we argue that full automatic generation of such
data will probably yield unwanted and inappropriate results. We see the computation
results as an estimate which can be overridden manually by the administrator.

Who: Administrator What for: Suggestion for deployment parameters
When: Deployment time Which aspects: Quality of service

The answers to Which aspects? give us a clear indications of what concepts a suitable
management ontology must contain. The organization of these concepts into our Core
Ontology of Web Services is described in [5].

3 KAON SERVER

This section presents our prototype for semantic management of Web Services, called
KAON SERVER.1 We first discuss its architecture and demonstrate how it realizes our
policy handling use case.

3.1 Overview

KAON SERVER is based on the open-source application server JBoss2 and applies the
tools of the KAON ontology toolsuite for reasoning and querying with the various as-
pects of Web services according to our Core Ontology of Web Services [5]. KAON
SERVER obtains semantic descriptions from existing WS* descriptions, programme
code, performance measurements, code reflection and modelling tools already in use.
Obtaining comprises: i) parsing the XML documents, ii) extraction of relevant tags and
iii) addition of the extracted information as instances to the ontology. The Metadata
Collector component of the KAON SERVER carries out this task by taking the URLs
of WS* descriptions as input. Runtime information stemming from monitoring compo-
nents can be integrated, too. Another advantage of our approach is that the application
logic (servlets, EJBs) may exploit the inference engine by reflection techniques in order
to reflect on its own status. Finally, the developer might query the inference engine by
using the admin console which is essentially an ontology browser with query interface.

3.2 Realizing the Policy Handling Use Case with the KAON SERVER

In this section we demonstrate how we have realized the policy handling use case by
applying KAON SERVER. As an example for a conclusion derived from both a WS-
BPEL and WS-Policy description, consider the following scenario. Let’s assume a web
shop realized with internal and external Web Services composed and managed by a
WS-BPEL engine. After the submission of an order, we have to check the type of the

1 Available at http://kaon.semanticweb.org/server
2 http://www.jboss.org

518 D. Oberle et al.

...
<process name="checkAccount"> <wsp:Policy>
<switch ...> <wsp:ExactlyOne>
<case condition="getVariableData <wsse:SecurityToken>

(’creditcard’)=’VISA’"> <wsse:TokenType>
<invoke partnerLink="toVISA" wsse:Kerberosv5TGT
portType="visa:CCPortType" </wsse:TokenType>
operation="checkCard"...> </wsse:SecurityToken>

</invoke> <wsse:SecurityToken>
</case> <wsse:TokenType>
<case condition="getVariableData wsse:X509v3
(’creditcard’)=’MasterCard’"> </wsse:TokenType>
<invoke partnerLink="toMastercard" </wsse:SecurityToken>
portType="mastercard:CCPortType" </wsp:ExactlyOne>
operation="validateCardData"...> </wsp:Policy>

</invoke>
...

Fig. 1. WS-BPEL example on the left and WS-Policy example on the right hand side

customer’s credit card for validity depending on the credit card type (VISA, MasterCard
etc.). We assume that credit card providers offer this functionality via Web Services. The
corresponding WS-BPEL process checkAccount thus invokes one of the provider’s
Web Services depending on the customer’s credit card. The left hand side of Figure 1
below shows a snippet of the WS-BPEL process definition.

Suppose now that the Web Service of one credit card provider, say MasterCard,
only accepts authenticated invocations conforming to Kerberos or X509. It states such
policies in a corresponding WS-Policy document, such as the one sketched on the right
hand side in Figure 1. The invocation will fail unless the developer ensures that the
policies are met.

Applying KAON SERVER, checking for the existence of external policies boils
down to simply querying the inference engine (cf. [5] for the complete example). Both
the WS-BPEL process and the WS-Policy document are obtained by the metadata col-
lector of KAON SERVER. That means, the documents are retrieved, parsed, relevant
tags are extracted and added as instances to the ontology. WS-BPEL information and
WS-BPEL processes are represented by means of the ontology. Note that for this ex-
ample it suffices to model the existence of a policy and not the policy itself.

The developer can employ a simple query to find out whether an external service
requires compliance with a specific policy. Without our approach the developer would
have to collect and check this information manually by analyzing WS-BPEL and WS-
Policy documents.

As we may recognize from this small example, it is desirable to pose a query rather
than manually checking a complex set of process definitions. Without KAON SERVER,
the developer would have to check all WS-BPEL nodes for external invocations and cor-
responding WS-Policy documents manually at development time. We encounter more
sophisticated examples where we query for particular policy constraints or where we
have large indirect process cascades.

As mentioned in the policy handling use case in section 2, we do not aim at fully
automated policy matching at run time, as we think that the full generality of policy
matching imposes further problems that remain to be solved. In addition, there are no
WS-Policy engines available so far.

Finally, Table 1 shows the benefit of our approach by comparing the effort with and
without semantic management for the running example. While using the paradigm of

Semantic Management of Web Services 519

Table 1. Effort comparison for the running example

Effort Without semantics Using semantic management
Management For each process in the WS-BPEL document: One query to retrieve

Check for external Web service invocation and external Web service processes
check for existence of WS-Policy document with attached policies

Modelling creating and maintaining the Same as without semantics
WS-BPEL and WS-Policy documents because semantic descriptions

are automatically obtained

semantic management of Web Services reduces management efforts, no additional mod-
elling efforts are required because KAON SERVER obtains the semantic descriptions
automatically from WS* documents.

4 Conclusion

We have shown in this paper what semantic management of Web Services may con-
tribute to Web Service management in general. We have described use cases for seman-
tic management of Web Services that can be realized with existing technology and that
provide immediate benefits to their target groups, i.e. software developers and adminis-
trators who deal with Web Services. Through the use cases we have shown that semantic
descriptions may play a fruitful role supporting an integrated view onto Web Service
definitions in WS*. At the basis of the integration we have put our Core Ontology of
Web Services.

While we have implemented a prototype as proof-of-concept of our approach, in the
long run the viability and success of semantic descriptions will only be shown in their
successful use of integrated development and runtime environments. The development
of the corresponding paradigm of Semantic Management of Web Services through use
cases, ontologies, prototypes and examples is an important step into this direction.

Acknowledgements. This work was financed by WonderWeb, an EU IST project, by
SmartWeb, a German BMBF project and by ASG (IST-004617), an EU IST project.

References

1. V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Srivastava. A
service creation environment based on end to end composition of web services. In Proceedings
of WWW 2005, pages 128–137. ACM, 2005.

2. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma. Web
Service Semantics - WSDL-S. Technical report, University of Georgia, Apr 2005.

3. P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble, and L. Stein.
Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. In
3rd Int. Semantic Web Conference, volume 3298 of LNCS. Springer, 2004.

4. D. Oberle, S. Lamparter, A. Eberhart, and S. Staab. Semantic management of web services.
Technical report, University of Karlsruhe, 2005.

5. D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi. Towards ontolo-
gies for formalizing modularization and communication in large software systems. Technical
report, University of Karlsruhe, 2005.

Composition of Services with
Nondeterministic Observable Behavior

Daniela Berardi1, Diego Calvanese2,
Giuseppe De Giacomo1, and Massimo Mecella1

1 Università di Roma “La Sapienza”, Italy
lastname@dis.uniroma1.it

2 Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Abstract. In [3] we started studying an advanced form of service composition
where available services were modeled as deterministic finite transition systems,
describing the possible conversations they can have with clients, and where the
client request was itself expressed as a (virtual) service making use of the same
alphabet of actions. In [4] we extended our studies by considering the case in
which the client request was loosen by allowing don’t care nondeterminism in
expressing the required target service. In the present paper we complete such a
line of investigation, by considering the case in which the available services are
only partially controllable and must be modeled as nondeterministic finite transi-
tion systems, possibly because of our lack of information on their exact behavior.
Notably such services display a “devilish” form of nondeterminism, since we
want to model the inability of the orchestrator to actually choose between differ-
ent executions of the same action. We investigate how to automatically perform
the synthesis of the composition under these circumstances.

1 Introduction

Service Oriented Computing (SOC) [1] is the computing paradigm that utilizes Web
services (also called e-Services or, simply, services) as fundamental elements for re-
alizing distributed applications/solutions. In particular, when no available service can
satisfy client needs, (parts of) available services can be composed and orchestrated in
order to satisfy such a request. In recent research [7, 8, 10, 15, 6, 9] a notion of “seman-
tic service integration” is arising, especially to facilitate automatic service composition
(but also discovery, etc.).

Among the various proposals, the one in [3, 4] distinguishes itself by considering
also the process of the services. Specifically, the client is offered a set of virtual build-
ing blocks so that he can design complex services of interest in terms of these. The
building blocks are actions described in an abstract and formal fashion; by making use
of such virtual blocks the client can write its own service as a sort of high-level pro-
gram, i.e., abstractly represented as a deterministic finite transition system (i.e., deter-
ministic finite state machine)1. The virtual blocks are not be implemented directly, but

1 Transition systems here are used to formalize the possible conversations that a service can have
with its clients – including the orchestrator in the case the service is involved in a composition
– describing the possible interactions of the service.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 520–526, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Composition of Services with Nondeterministic Observable Behavior 521

made available through the system: the actual services that are available to the system
are themselves be formally described in terms of deterministic finite transition systems
built out of such virtual blocks. Such a description can be considered as a sort of map-
ping from the concrete service to the virtual blocks of the integration system. The idea is
to exploit the reverse of such a mapping to automatically get the client service request.
In [3, 4], however, available services are modeled as deterministic transition systems
because it is assumed that they are fully controllable by the orchestrator through ac-
tion requests: an available service, by performing an action in a state, reaches exactly a
single state.

In this paper we extend the approach of [3, 4] so as to address automatic composition
synthesis when available services are not not fully controllable by the orchestrator. We
model such a partial controllability by associating to available services (finite) transition
systems that are nondeterministic (in a “devilish” sense, see later). Using nondetermin-
ism we can naturally model services in which the result of each interaction with its
client can not be foreseen. Just as an example, consider a service allowing to buy items
by credit card; after invoking the operation, the service can be in a state payment OK,
accepting a payment, or in a different state payment refused, if, e.g., the credit
card is not valid. Considering that the transition system of the available service is in
fact a mapping that describes the real service in terms of the actions of the community,
it is natural to assume that although the orchestrator does not have full control on the
available services, it has full observability: after executing the operation, it can observe
the status in which the service is and therefore understand which transition, among the
ones that are nondeterministically possible in the previous state, has been undertaken
by the service2. The main contribution of our work is to show how one can synthesize
a composition in this setting.

2 Services with Partially Controllable Behavior

Formally, we consider each available service as a nondeterministic3 finite transition
system S = (Σ, S, s0, δ, F) where Σ is a common alphabet of actions shared by all
available services of a community, S is a finite set of states, s0 ∈ S is the single ini-
tial state, δ ⊆ S × Σ × S is the transition relation4, and F ⊆ S is the set of final
states (i.e., states in which the computation may stop, but does not necessarily have to
– see [3, 4]).

The client service request, as in [3], is expressed as a target service, which represents
the service the client would like to interact with. Such a service is again modeled as fi-
nite transition system over the alphabet of the community, but this time a deterministic
one, i.e., the transition relation is actually functional (there cannot be two distinct transi-

2 The reader should observe that also the standard proposal WSDL 2.0 has a similar point of
view: the same operation can have multiple output messages (the out message and various
outfault messages), and the client observes how the service behaved by receiving a
specific output message.

3 Note that this kind of nondeterminism is of a devilish nature, so as to capture the idea that the
orchestrator cannot fully control the available services.

4 As usual, we call the Σ component of such triples, the label of the transition.

522 D. Berardi et al.

tions with the same starting state and action). Notice that the target service is obviously
deterministic because we assume that the client has full control on how to execute the
service that he/she requires5.

s20
S2

display

s20
S2

display

s10 s11

search

display

S1

search

return

s10 s11

search

display

S1

search

s10s10 s11

search

display

S1

search

return

(a) Available Services

s00 s01
search

display

s00 s01
search

display

S0

(b) Target Service

sP0P

sP2

search, 1

display, 1
sP1

s10
s20

search, 1

s10
s20

s11
s20

display, 2

sP0sP0P

sP2

search, 1

display, 1
sP1

s10
s20

search, 1

s10
s20

s11
s20

display, 2

(c) Composition

Fig. 1. Composition of nondeterministic services

Example 1. Figure 1(a) shows a community of services for getting information on
books. The community includes two services: S1 that allows one to repeatedly (i) search
the ISBN of a book given its title (search) then, (ii) in certain cases (e.g., if the record
with cataloging data is currently accessible), it allows for displaying the cataloging data
(such as editor information, year of publication, authors, copyrights, etc.) of the book
with the selected ISBN (display), or (iii) simply returns without displaying informa-
tion (return); S2 allows for repeatedly displaying cataloging data of books given the
ISBN (display), without allowing researches. Figure 1(b) shows the target service
S0: the client wants to have a service that allows him to search for a book ISBN given
its title (search), and then display its cataloging data (display). Note that the client
wants to display the cataloging data in any case and hence he/she can neither directly
exploit S1 nor S2.

Next, we need to clarify which are the basic capabilities of the orchestrator. In [3, 4],
the orchestrator had only the ability of selecting one6 of the services, and requiring it to
execute an action. Here, we equip the orchestrator with a further ability: the orchestrator
can query (at runtime) the current state of each available service. Technically such a
capability is called full observability on the states of the available services. Although
other choices are possible [15, 2], full observability is the natural choice in this context,
since the transition system that each available service exposes to the community is
specific to the community itself (indeed it is expressed using the common alphabet
of actions of the community), and hence there is no reason to make its states partially
unobservable: if details have to be hidden, this can be done directly within the transition
system, possibly making use of nondeterminism.

5 In fact we could have a client request that is expressed as a nondeterministic transition system
as in [4]. In this case, however, the nondeterminism has a don’t-care, aka angelic nature.

6 For simplicity we assume that the orchestrator selects only one service at each step, however
our approach and results easily extend to the case where more services can be selected at each
step.

Composition of Services with Nondeterministic Observable Behavior 523

3 Composition

We are now ready to define composition: an “orchestrator program” (indeed a skele-
ton specification) that the orchestrator has to execute in order to orchestrate the avail-
able services so as to offer to the client the target service. Let the available service be
S1, . . . ,Sn each with Si = (Σ, Si, si0, δi, Fi), and the target service S0 = (Σ, S0, s00,
δ0, F0). A history is an alternating sequence of the form h = (s0

1, . . . , s
0
n) ·a1 · (s1

1, . . . ,
s1

n) · · · a� · (s�
1, . . . , s

�
n) such that the following constraints hold:

– s0
i = si0 for i ∈ {1, . . . , n}, i.e., all services start in their initial state;

– at each step k, for one i we have that (sk, ak+1, sk+1
i) ∈ δi, while for all j = i we

have that sk+1
j = sk

j , i.e., at each step of the history, only one of the service has
made a transition (according to its transition relation), while the other ones have
remained still.

An orchestrator program is a function P : H × Σ → {1, . . . , n, u} that, given a
history h ∈ H (where H is the set of all histories defined as above) and an action
a ∈ Σ to perform, returns the service (actually the service index) that will perform it.
Observe that such a function may also return a special value u (for “undefined”). This
is a technical convenience to make P a total function returning values even for histories
that are not of interest or for actions that no service can perform after a given history.

Next, we define when an orchestrator program is a composition that realizes the tar-
get services. First, we observe that, since the target service is a deterministic transition
system its behavior is completely characterized by the set of its traces, i.e., by the set of
infinite sequences of actions that are faithful to its transitions, and of finite sequences
that in addition lead to a final state7. Now, given a trace t = a1 · a2 · · · of the target
service, we say that an orchestrator program P realizes the trace t iff for each non-
negative integer � and for each history h ∈ H�

t , we have that P (h, a�+1) = u and H�+1
t

is nonempty, where the sets H�
t are inductively defined as follows:

– H0
t = {(s10, . . . , sn0)}

– H�+1
t is the set of all histories such that, if h ∈ H�

t and P (h, a�+1) = i (with
i = u), then for all transitions (s�

i , a, s′i) ∈ δi the history h ·a�+1 · (s�+1
1 , . . . , s�+1

n),
with s�+1

i = s′i, and s�+1
j = s�

j for j = i, is in H�+1
t .

Moreover, if a trace is finite and ends after f actions, we have that all histories in Hf
t

end with all services in a final state. Finally, we say that an orchestrator program P
realizes the target service S0, if it realizes all its traces.

In order to understand the above definitions, let us observe that intuitively the or-
chestrator program realizes a trace if it can choose at every step an available service to
perform the requested action. However, since when an available service executes an ac-
tion it nondeterministically chooses what transition to actually perform, the orchestrator
program has to play on the safe side and require that for each of the possible resulting
states of the activated service, the orchestrator is able to continue with the execution of

7 Actually, the behavior captured by a transition system is typically identified with its execution
tree, see [3]. However, since the target service has a deterministic transition system, the set of
traces is sufficient, since one can immediately reconstruct the execution tree from it.

524 D. Berardi et al.

the next action. In addition, before ending a computation, available services need to be
left in a final state, hence we have the additional requirement above for finite traces.

Example 1 (cont.) Figure 1(c) shows an orchestrator program P (in this case with finite
states) for available services S1 and S2 in Figure 1(a), that realizes the target service
S0 in Figure 1(b). Essentially, P behaves as follows: it repeatedly delegates to S1 the
action search (notice that both transitions labeled with this actions are delegated to
S1); then it checks the resulting state of S1 and, depending on this state, it delegates the
action display to either S1 or S2.

Observe also that the orchestrator program has to observe the states of the available
services in order to decide which service to select next (for a given action requested by
the target service). This makes such orchestrator programs akin to an advanced form of
conditional plans studied in AI [12]. Observe also that, in the above definition we allow
orchestrator program to have infinite states in general. But obviously it is of interest to
understand in what circumstances composition may be realized through an orchestrator
program that has only a finite number of state.

4 Composition Synthesis

It turns out that in spite of the additional complexity of dealing with nondeterminism,
one can still devise a reduction from the problem of checking the existence of a com-
position to satisfiability in Propositional Dynamic Logic (PDL) [5] as in [3, 4]. The
reduction is much more subtle in this case but still polynomial. As a result, we have
that composition synthesis can be performed in EXPTIME. Moreover from each model
of the resulting PDL formula one can directly extract an orchestrator program, and,
considering the finite model property of PDL, this in turns implies that an orchestrator
program that has only a finite number of states exists whenever a composition exists.

Actually, it comes quite as a surprise that in dealing with partial controllability one
can still use a PDL encoding instead of directly working with automata on infinite
trees [13]. And this finding is particularly welcome considering that certain operations
on automata on infinite trees (e.g., the notorious Safra’s complementation step) have
proved to be almost impossible to implement in an efficient way. PDL satisfiability,
instead shares the same basic algorithms behind the success of the description logics-
based reasoning system used for OWL, and hence its use is quite promising.

5 Conclusion

In this paper we studied how to synthesize a composition to realize a client service
request expressed as a target service a la [3, 4], in the case where available services are
only partially controllable (modeled as devilish nondeterminism) but fully observable
by the orchestrator. Such an approach to deal with nondeterministic available services
can be extended in several directions. As an example, by introducing a set of variables
shared among the available services and the client that encode some basic information
that is exchanged between the services, and that the client acquires while executing the

Composition of Services with Nondeterministic Observable Behavior 525

target service. Once we introduce shared variables, we can use them to guard transitions
in both the target and the available services.

The result can be also easily extended to the case where the client request is ex-
pressed as a nondeterministic transition system as in [4]. Note that in this case the non-
determinism has a don’t-care, aka angelic, nature: the client is not fully specifying the
target service he/she requires, and allows some degree of freedom to the composer in
providing him/her with one, by choosing among the nondeterministic transitions which
one to actually implement. Such a form of nondeterminism can be still tackled through
a reduction to satisfiability in PDL.

It should be noted that our approach, in which the orchestrator at each step sends an
execution request to available services and these then send back to the orchestrator their
states, is a form of control that is communication intensive8. In fact, if communication
is of concern, our model is too coarse. Indeed we should distinguish between actions
that affect the state of affairs and messages for sending (either contents or control)
information. Suggestions on tackling such a distinction are presented in [2].

Finally we want to stress that composition, especially in rich dynamic settings as
those studied in this paper, is essentially a form of (reactive) program synthesis, and
tight relationships exist with the literature on that field [11, 14, 16]. Although that liter-
ature often does not offer off-the-shelf results for composition, it certainly offers tech-
niques and general approaches that can be profitably used to tackle subtle issues, as, for
example, partial observability, which becomes an issue when the distinction between
actions and messages is taken into account.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Architectures and
Applications. Springer, 2004.

2. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic composition
of transition-based semantic web services with messaging. In Proc. of VLDB 2005, 2005.

3. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic com-
position of e-services that export their behavior. In Proc. of ICSOC 2003.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Synthesis of
underspecified composite e-Services based on automated reasoning. In Proc. of ICSOC 2004.

5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
6. R. Hull and J. Su. Tools for design of composite web services. In Proc. of ACM SIGMOD,

pages 958–961, 2004.
7. U. Kuter, E. Sirin, D. Nau, B. Parsia, , and J. Hendler. Information gathering during planning

for web service composition. In Proc. of Workshop on Planning and Scheduling for Web and
Grid Services, 2004.

8. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services. In
Proc. of KR 2002, pages 482–496, 2002.

9. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services on the
semantic web. VLDB Journal, 12(4):333–351, 2003.

8 Actually we had essentially the same amount of control communication in [3, 4]: indeed even
if states were not sent back to the orchestrator, at least some feedback to signaling the readiness
to accept further commands should have been sent back.

526 D. Berardi et al.

10. M. Michalowski, J. L. Ambite, C. A. Knoblock, S. Minton, S. Thakkar, and R. Tuchinda.
Retrieving and semantically integrating heterogeneous data from the web. IEEE Intelligent
Systems, 19(3):72–79, 2004.

11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of POPL’89, pages
179–190, 1989.

12. J. Rintanen. Complexity of planning with partial observability. In Proc. of the 14th Int. Conf.
on Automated Planning and Scheduling (ICAPS 2004), pages 345–354, 2004.

13. W. Thomas. Languages, automata, and logic. In Handbook of Formal Language Theory,
volume III, pages 389–455. 1997.

14. W. Thomas. Infinite games and verification. In Proc. of CAV 2002, volume 2404 of LNCS,
pages 58–64. Springer, 2002.

15. P. Traverso and M. Pistore. Automated composition of semantic web services into executable
processes. In Proc. of ISWC 2004, volume 3298 of LNCS, pages 380–394. Springer, 2004.

16. M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis. In Proc. of
CAV’95, volume 939 of LNCS, pages 267–292. Springer, 1995.

Efficient and Transparent Web-Services Selection

Nicolas Gibelin and Mesaac Makpangou

INRIA, Regal Project, B.P. 105, 78153 Le Chesnay Cedex, France
firstname.lastname@inria.fr

Abstract. Web services technology standards enable description, pub-
lication, discovery of and binding to services distributed towards the
Internet. However, current standards do not address the service selec-
tion issue : how did a consumer select the service that matches its func-
tional (e.g. operations’ semantics) and non-functional (e.g. price, rep-
utation, response time) properties ? Most projects advocate automatic
selection mechanism, advising adaptation or modification of the web-
services model and its entities (UDDI, WSDL, Client, Provider). These
proposals also do not take advantage of distributed-systems’ state of the
art, mainly with respect to the collection and the dissemination of ser-
vices’ QoS. This paper presents an extension of the initial model that
permits automatic service selection, late binding and collection of met-
rics that characterize the quality of service. The extension consists on a
web-service access infrastructure, made of web service proxies and a peer
to peer network of QoS metrics repository (the proposal does not impose
modification on UDDI registries or services). The proxies interact with
common UDDI registries to find suitable services for selection and to
publish descriptions. They collect QoS metrics and store them on a p2p
network.

1 Introduction

The World Wide Web (WWW) has been used to store, exchange and provide
static data. Over the time, new emerging technologies appeared. A broader va-
riety of resources are increasingly being made available as Web services. For
instance, in E-commerce applications, the WWW enables applications to appli-
cations (a2a) connection through multiple devices without being concerned with
framework or languages heterogeneity. The basis of Web services like XML and
WSDL for the service’s description, UDDI and SOAP for services registry, dis-
covery and communication, contribute toward making Web services a workable
and broadly adopted technology.

The basic model specifies how to describe services and its interfaces, pub-
lish and discover methods. This initial model also provides abstractions to sup-
port multiple programming languages and run-time environments. However this
model presents some drawbacks. First, it doe not support automatic selection of
service when more than one of them satisfy the consumer functional properties
With the growing popularity of Web services, finding relevant services become
an important issue. This decision is left to the consumer who will handle it

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 527–532, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

528 N. Gibelin and M. Makpangou

manually. Secondly, there is no mean to capture and/or exploit non-functional
properties, such as quality of service, to help select the service that best suit
consumer preferences. Another important drawback is the lack of a coherency
mechanism that could guarantee the accuracy of information maintained by a
UDDI Registry. It is reported in [1] that 48% of the production of UDDI registry
have links unusable. Though this report dated back to 2001, we believe that the
problem remains.

A number of authors have already identified some of these drawbacks [2, 3, 4,
5, 6, 7]. The solutions that were proposed either introduce modifications of com-
ponents of the initial model or do not address the global picture. Modifications
need to be agreed and integrated by all participants, which is almost impossible
to achieve. In the other hand, solving part of the problem, for instance expecting
the providers to provide the QoS, is not enough. Another consideration to keep
in mind is the overall performance and efficiency of the solution.

To leverage the drawbacks of the initial web service model while letting its
basic components functioning unchanged, we propose to extend the initial model
with a web service selection and binding infrastructure that take care of at
least the following functions: (1) automatic detection of broken web services
references; (2) automatic collection of quality of service metrics for consumers;
(3) consumers support of functional and non-functional properties for selection.

This paper is structured as follow: Section 2 describes in detail the new web
service model, while Section 3 draws some conclusions.

2 Extended Model

We propose to extend the initial web service model with a selection and bind-
ing infrastructure, while leaving the UDDI Registry unchanged. Figure 1 shows
where new components are located and the way they cooperate with existing
components and within one another.

The proposed binding and access mechanism is achieved thanks to the intro-
duction of two new components : web service proxy and p2p network of QoS
metrics repository. In this section, we only focus on proxy mechanism.

A web service proxy offers: (1) to services’ providers an interface to publish
their descriptions to the UDDI registry, (2) to services’ consumers an interface

UDDI registry

WS
proxy

WS
proxy

WS
Consumer

WS
Provider

Register
(Publish
WSDL)

Find
(Retrieve
WSDL)

Find
(Retrieve
WSDL)

Locally
Register
(Publish
WSDL)

Locally

response
request

response
request

Metrics
Store

Metrics
Store

Metrics
Store

store/retrieve
metrics

store/retrieve
metrics

Response/Request

consumer machine provider machine

storage network

Fig. 1. Extended Web services model

Efficient and Transparent Web-Services Selection 529

to request the selection of services that best suit their functional properties and
QoS requirements. With this new architecture, the requests of a consumer are
forwarded to the selected service by the local proxy. The local proxy of the con-
sumer cooperates with the local proxy of the provider to send request/response
among the network. Overall, a group of cooperative web service proxies stand
aside the consumers and providers and cooperate to relay (possibly modified)
requests and responses to their final destinators which may be services or UDDI
registries.

The set of cooperative web service proxies take advantage of their position
(in between providers, registries, services and consumers) to observe ongoing
activities and to collect information that can help evaluate various metrics char-
acterizing the quality of the service offered to consumers. The collected metrics
are stored in the p2p network of QoS metrics. The metrics’ repository servers
are in charge of the storage and the dissemination of the connected measures.

In the remaining of this section, we first specify what metrics we are considering
to characterize the quality of service, as well as the means to collect these metrics.
Then we discuss the main functions provided by the web service proxy. Finally,
we present the selection algorithm that is implemented by web service proxies.

2.1 Quality of Service Metrics

In the extended model, we distinguish three categories of QoS metrics, depend-
ing mainly on the source of their measures. These are : service access metrics,
feedback metrics, and service delivery metrics. The former class of metrics char-
acterize the conditions for accessing the service. The metrics used by providers
to characterize the conditions for accessing their services may vary from one
provider to another; the measures for each service are supplied by its provider
and may vary over the time. The feedback metrics measure the satisfaction or
unsatisfaction of consumers. Finally, the service delivery metrics characterize the
quality of the service offered by the underlying computation infrastructure. The
metrics of the latter case can be computed automatically, while for metrics of
the former two categories we need basics measures from end users.

Service Delivery Metrics. Unlike other extensions advocating automatic
monitoring of Web Service QoS [3, 4, 8], we do not modify the provider or the
consumer service. The monitoring is performed by web service proxies which can
globally cooperate to obtain measurements for the following metrics: (1) service
Load (average number of simultaneous; connections or requests to this service
for some period of time) (2) response time (between consumer and provider);
(3) service latency; (4) service throughput (average number of requests that the
service can serve within a period of time); (5) service reliability (ability of a
service to perform its required functions under stated conditions for a specified
period of time. In our case, we monitor Mean Time between failure (MTBF) and
Mean Time to Failure (MTF)).

All these metrics will be monitored and collected automatically thanks to the
collaboration of web service proxies attached to providers and consumers. They

530 N. Gibelin and M. Makpangou

intercept all exchanges between the four entities that interact within the tradi-
tional web service models: providers, consumers, UDDI Registries and services.

Extracting Service Access Metrics. To permit a provider to supply the
measures of the service access metrics defined for its service, we propose an
extension of the classical (”portType, message, types, binding”) common Web-
Service Description Language (WSDL). For instance, the provider can specify
service price, service resiliation penality, maximal delay before the service stop,
compensation rate This article does not provide an exhaustive list of service
access metrics that the provider can use to characterize its service. Figure 2
sketches the basic language constructions used to extend WSDL in order to
specify provider-supplied service access metrics. This example defines two new
metrics (standard to our model). The first, servicePrice describes the price a
consumer must pay to access the service. In more complex cases, a provider can
indicate the price on a per operation basis (described in the <wsdl:operation>
section of WSDL). The second access metric of the example is serviceDelay;
it measures the maximum activity time of the service. After that delay, the
consumer must pay an other slice of time, or will be denied the use of the
service. This example is not a full XML description of the proposed extension
(no domain name is used), however it provides the basics keywords and language
constructions a provider must use to describe its metrics.

<qos><metric name="servicePrice">
<metricvalue name="price" value="200" type="int"/>
<metricvalue name="currency" value="dollar-us" type="string"/>

</metric>
<metric name="serviceDelay">

<metricvalue name="activitydelay" value="10" type="int"/>
<metricvalue name="unitofmeasure" value="minutes" type="string"/>

</metric></qos>

Fig. 2. WSDL extension example

Consumer Preference for QoS. The web-service user can specify preferences
to contribute to the selection mechanism. For instance, it will be able to specify
metrics like “the least expensive service which exists”, ”the maximum price he
accepts to pay for the service”, or ”the maximum response time he wants the
service can satisfy”. For that, the user sends an extended request specifying its
preferences, to the proxy which store them. The proxy parses the request to
extract consumer preferences and then clean the request to forward it to the
traditional UDDI registry.

2.2 Web Service Proxy

The web service proxies are located on both provider and consumer side, provid-
ing classical retrieve/publish mechanism. The proxies are UDDI compliant, thus
consumers and providers never directly contact the registries. In the sections
below, we depict the extended retrieve and publish mechanism.

Efficient and Transparent Web-Services Selection 531

New Retrieve Procedure. In the first step, the proxy forwards the consumer
request to a public UDDI register to find all the serviceKey matching the
request and wait for the UDDI registry response (which may contain more than
one service reference)

The second really important step checks if services are available. The proxy
requests the UDDI registry to retrieve the localisation of all services, and then
cooperate with monitoring network to determine wheather service remain avail-
able, eliminating no longer accessible or unavailable services.

Then, the proxy retrieves the available QoS of each service, using the ser-
viceKey as hash key in the store network and starts the selection algorithm for
each service to compute the QoS value of services. The algorithm returns a list
of matching services in the order of best-matching first. The proxy then retrieves
the service WSDL description.

Finally, the proxy sends a fake localisation to the service consumer (http://
localhost:port/serviceKey/). The consumer can now communicates with the dis-
tant service, but all requests are forwarded by the proxy. As we will see, with
this mechanism, we can provide transparent QoS measurements.

New Publish Procedure. From the provider side the publication procedure
does not really change. When the proxy receives a publication request containing
the service description WSDL, it first parses the description to extract provider
supplied QoS information (Figure 2); then, it requests QoS monitoring network
to store the extracted metrics. With this mechanism, we can follow the evolution
of the price of the services such as to enable the selection of the cheapest service.
Once the analysis is carried out and the QoS information propagated in the
network, the proxy forwards the publication request and the WSDL description
to the UDDI registry indicated by the provider.

2.3 Selection Mechanism

The selection algorithm is used to rank services. For each potential service, the
protocol compute a rank value used to sort services. We can now describe the
selection algorithm applied when a consumer sends a binding request to the
proxy.This mechanism comprises the steps summarised below: (1) the consumer
sends a request to the proxy with its preferences; (2)the proxy extracts the
preferences and forwards the request to one or more UDDI registry indicated by
the consumer; (3) the UDDI registry respond with a server list of potentials
matching services (4) the proxy then retrieves QoS metrics of all the listed
services, (5) finally, the proxy computes the algorithm and send back the response
to the consumer.

3 Conclusion and Discussion

The paper proposed an extension of the web services model to enable automatic
and transparent selection and binding to services that best suit the consumers

532 N. Gibelin and M. Makpangou

functional and non-functional requirements. This extension is built thanks to the
web service proxy facility and a P2P network of QoS metric repository. Web ser-
vices proxies associated with services providers and consumers offer standarized
interfaces to permit them to interact with UDDI registries and Services, and take
advantage of their position to collect measures for QoS metrics. Unlike most pro-
posals that address the quality-based selection issue, the solution described in
this paper does not require change on the UDDI registry or Services. It does not
even require specific contribution from the services providers and consumers, but
service access conditions for providers and annotations for consumers.

To access the benefits of the proposed selection and binding infrastructure,
we plane to conduct a complete evaluation. Based on the results of some basic
experimentation, we believe that this mechanism can improve the quality of the
service experienced by the consumers. We also believe that this mechanism will
help improve considerably the consistency of UDDI Registries as perceived by
consumers.

References

1. Clark, M.: Uddi - the weather report.
http://www.webservicesarchitect.com/content/articles/clark04.asp (2001)

2. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, New York, NY, USA,
ACM Press (2004) 66–73

3. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4 (2003) 1–10
4. Day, J., Deters, R.: Selecting the best web service. In: CASCON ’04: Proceedings of

the 2004 conference of the Centre for Advanced Studies on Collaborative research,
IBM Press (2004) 293–307

5. Mukhi, N.K., Plebani, P.: Supporting policy-driven behaviors in web services: expe-
riences and issues. In: ICSOC ’04: Proceedings of the 2nd international conference
on Service oriented computing, New York, NY, USA, ACM Press (2004) 322–328

6. Maximilien, E.M., Singh, M.P.: Reputation and endorsement for web services. SIGe-
com Exch. 3 (2002) 24–31

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW ’03: Proceedings of the 12th international
conference on World Wide Web, New York, NY, USA, ACM Press (2003) 411–421

8. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, New York, NY, USA, ACM Press (2004) 212–221

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 533 – 538, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach to Parameterizing Web Service Flows

Dimka Karastoyanova 1, Frank Leymann 1, and Alejandro Buchmann2

1 IAAS, Universität Stuttgart, Germany
{karastoyanova, leymann}@informatik.uni-stuttgart.de
2 Computer Science Department, Technische Universität Darmstadt, Germany

buchmann@informatik.tu-darmstadt.de

Abstract. The flexibility and reusability of Web Service flows (WS-flows) are
limited especially by the fact that portType and operation names are hard-coded
in the process definition. In this paper we argue that through parameterization
and substitution WS-flows flexibility can be improved, while reusability is
enhanced. We introduce a meta-model extension to enable run time evaluation
of parameter values and thus discard the need to predict any possible partner
service types during process modeling. The extension enables also run time
changes in portType values. We show how the approach can be mapped to
BPEL. We discuss prototypical implementation for the extended functionality
and present conclusions and ideas for future work.

1 Introduction

The advances of the Web Service (WS) technology facilitate platform and
programming language independent application integration. The technology has
matured in the last years at a great pace. In this work we concentrate on making
compositions of WSs (also called Web Service Flows or WS-flows) more flexible and
also more reusable. We present an approach for creating flexible WS-flows by
introducing additional degree of freedom with respect to the partners’ portTypes and
operations, in particular to their names. It not only boosts the reusability of process
models but also decreases model complexity, increases their flexibility and minimizes
the process maintenance effort. The approach boils down to the concept of
parameterized processes – essentially presenting portTypes and operations using
parameters and defining run time parameter substitution policies. Parameterized
processes (section 2) are flexible because process definition independence of concrete
portTypes and operations is achieved. To be able to execute such process models
parameters’ values must be resolved at run time using an evaluation strategy that
specifies what mechanism has to be executed to return parameter values (section 2).
We also show how the concepts can be mapped to BPEL [2] (section 3).

Despite being viewed as very flexible, WS-flows definitions still hard code
participants’ types in terms of portTypes and operations (names). Hard-coding
presumes precise knowledge of the naming of portTypes and operations. In fact,
while it is possible in practice to agree and standardize messages sent and received, it
turns out to be very difficult or impossible to agree on grouping such operations in
portTypes and their naming. This implies several deficiencies of existing WS-flows.

534 D. Karastoyanova, F. Leymann, and A. Buchmann

Process models need to accommodate the fact that types of participants in a
process are identified by their portType/operation names and that equivalent
functionalities can be potentially exposed under different names. Modeling alternative
control flow paths reflecting alternative portTypes/participants [6], [4] is one way to
tackle his issue. This increases the complexity of process models significantly. On the
other hand, one needs to make a decision as of which concrete providers would exist
at the time of process execution, which in a long-running setting is impractical and
impossible. This decision must be postponed till execution time of every process
instance, so that the process would be able to appreciate for unknown services.

Having a model (Fig. 1) with portType names of two suppliers of hard disk drives
(HDD) fixed means the process owner has decided on the set of providers to be
invoked alternatively in any of the instances of the process model; the instances of
this process model invoke only instances of either of those WS types. Such decision
neglects all providers that could get exposed as WSs at a later point in time (e.g.
portType called WS_pT3). To involve any other WS types requires modification of
the process model and redeployment, which is deemed inflexible for long-running
processes, unless the decision on the type of participants is postponed till run time.

HDD type=B

Assemble data

Send Shipment notice

HDD type=A

WS_pT1,
instanceID=WS_pT1_m

WS_pT2,
instanceID=WS_pT2_x

Assemble data

Send Shipment notice

WS_pT2,
instanceID=WS_pT2_y

WS_pT1,
instanceID=WS_pT1_n

order

WS_pT1WS_pT2

order

Assemble/
collect data

Send
Shipment

notice

Process Model
Process Instances

Receive order
(for a hard disc

drive)

HDDType=BHDDType=A

Receive order Receive order

WS_pT1

HDD type=B

Assemble data

Send Shipment notice

Receive order

WS_pT1

WS_pT2

HDD type=A

Assemble data

Send Shipment notice

Receive order

WS_pT2

Fig. 1. State-of-the-art WS-flow

Existing WS-flows exhibit limited reusability because of insufficient support for
loose-coupling, and hard-coding of partner WSs. Indeed there is complex, sometimes
industry-specific, functionality carried out in a similar way but companies cannot
always directly reuse a process model with the service providers coded, because they
might need or wish to interact with providers discovered at run time.

2 Parameterized WS-Flows

We observe similarity in processes such as credit approval, payment, order placement,
and so on and in some parts they differ only in the identifiers of the performing

 An Approach to Parameterizing Web Service Flows 535

services. These processes also include alternative paths that are only there because of
the differently named providers of same functionality, e.g. the scenario in Fig. 1.

To benefit from loose coupling and enable process model reusability we need to
ensure that portTypes and/or operations are interchangeable from the process
viewpoint and can be exchanged. Therefore we use parameters to substitute only
portType names and operation names of WSs a process interacts with. It is also
possible to represent other process model elements in parameterized form [3] (e.g.
transition conditions, message types and parts, activity types, data manipulation
activities); it is out of the scope of this work. Our approach here takes upon
parameterizing portType and operation names in process activities standing for an
interaction with partners (called interaction activities [7]).

Parameterized processes are defined as WS-flows having one or more interaction
activities’ portType and/or operation names substituted by parameters.

A parameterized WS-flow is presented in Fig. 2. Unlike the example scenario in
Fig. 1 the portType and operation names of the two alternative HDD suppliers
(WS_pT1 and WS_pT2) have been substituted by a parameter (WS_pT=X). We
observe that when executed the parameterized process instances are not only able to
involve the service types used in the initial example but rather there are also instances
that could interact with other types of services (e.g. WS_pT-N) even if they were
unknown at the time of process modeling. This imposes the need to compute the
parameter values at run time.

Fig. 2. Parameterized process and its instances

Run time evaluation of parameter values is performed on per process instance basis
and is in general an algorithm that selects a WS type out of a set of WS types that
meet a set of imposed requirements. The set of compliant service types varies from
one process instance to another, because of the potentially different initial data. Once
a parameter value is calculated it is substituted in the activity which then initiates an
interaction with the WS. In our current work we assume that the messages constrain
the choice of appropriate portType/operation values, i.e. messages are part of the
search criteria.

Each parameterized activity must have the computing capability to resolve the
values of the parameters; otherwise the process instances will be blocked waiting

536 D. Karastoyanova, F. Leymann, and A. Buchmann

because of unknown values or result in engine faults to be repaired by an
administrator.

The four major alternatives (or strategies) we specify for obtaining the value of a
portType/operation parameter in an interaction activity are: (i) static provision of
portTypes and operations, (ii) prompt (the user) strategy, (iii) query and (iv) from
variable. These alternatives define in a declarative manner how a service is to be
discovered and what is required from the service, and neglect any reference to name
of the portType (and operation). Selection of a compliant service type must be
followed by a step of binding to a concrete port [4], [5].

The static strategy specifies concrete parameters values, which can be supplied
during process modeling or upon process deployment (for completeness only).

The “prompt (the user)” allows users to provide a process instance with parameter
values. This and the rest of the strategies involve instantiation of parameterized WS-
flows. Prompts can be issued to users at the time of process instantiation for all
parameterized activities, or may be signaled to the user every time the execution of a
process instance reaches an activity with unknown service type.

The “query” strategy uses in-lined or referenced query definitions which are to be
executed against a WS discovery component [7]. Queries contain service type
selection criteria including the messages it must accept and return, semantics, and
QoS. Since it is unrealistic to obtain a single compliant portType/operation pair the
result of a query is a ranked, non-empty list of compliant portTypes/operations. One
of the service types returned is used in the concrete WS-flow instance.

The “from variable” strategy postulates that the value for a parameter is to be
copied from a variable defined in the process. The values stored in this variable may
be obtained from a partner in a previous message exchange.

Strategies can be combined to ensure parameter values are resolved. This can be
implemented either on engine/infrastructure level or on process model level (using
fault handlers).

3 Parameterized Processes in BPEL

In this section we show how parameterized processes can be defined in BPEL. The
current BPEL specification [2] involves neither portType nor operation parameters.
All portTypes and operations of participating WSs are coded in the activities defining
interaction with WSs. In BPEL these activities are the <invoke>, <receive> and
<reply> activities; portType and operation names are specified by activity attribute
values. Since BPEL definitions are representation of a WS-flow model in text and all
portTypes and operations are also strings, it is only natural to be able to substitute any
attribute value with any string. Such processes that include parameterized attributes
are not executable for the simple reason that there is no way to provide the process
instances with these missing values. Therefore we introduce an extension to the BPEL
meta-model that accommodates the needed parameter values evaluation – the one
described in the previous section. For this reason we define an extension to the
standard elements section of the <invoke> activity. The <evaluate> extension is the
meta-model element that corresponds to the mechanism to compute parameter values.
The code in Listing 1 presents an example.

 An Approach to Parameterizing Web Service Flows 537

The attributes of the <evaluate> element are as follows:

− activated - has the values of “yes” or “no” and states whether the evaluation is
enabled; “yes” means that the calculation has to be performed.

− changeType – specifies the evaluation strategy.
− substitute – used for passing input/output parameter values for strategy

computation mechanism.

<process name=“Process_name"> …
<invoke name=“activity" partnerLink=“partnerLink" portType=“portType"
operation=“operation" inputVariable=“…" outputVariable=“…">
 <evaluate activated=“yes|no” changeType = "static |
 portType/operation | query | fromVariable” substitute="value"/>
</invoke> …
</process>

Listing 1. An example representation of the <evaluate> extension in BPEL

A summary the mapping of the evaluation strategies on BPEL is shown in Table 1.
We do not recommend the use of a static strategy directly mapped to the changeType
attribute in BPEL. Having the evaluate element though, allows us to enforce another
type of strategy at run time [4]; appropriate tooling (for process instance monitoring)
is needed.

Table 1. Mapping the evaluation strategies to BPEL constructs – an overview

Strategy activated changeType substitute
“no” Any alternative substitute value for another alternative Static
“yes” “static” Concrete portType and operation

Prompt “yes” "portType/
operation"

portType, operation names provided by
user

Query “yes” “query” Query identifier / In-line query (string)
From
variable

“yes” “fromVariable” Expression pointing to variable
containing parameter values

We have extended the open-source engine ActiveBPEL [1] to implement the
<evaluate> extension. For each strategy type an on-purpose mechanism has been
implemented. Additional data structures have been defined for each parameterized
activity and get populated with parameter values at run time after a strategy has been
executed. A special-purpose invocation handler has been implemented; it generates
dynamically a call to one of the ports implementing the discovered
portType/operation [5]. Other implementation additions are: an extended parser for
BPEL processes containing the <evaluate> element and the strategies, data structures
storing data related to each process instance and its parameterized activities,
portTypes and operations names, port locations, strategy. A monitoring tool has been
implemented to track the execution of all process instances. It is instrumental
especially for the “prompt” strategy; the tool is used to prompt users to supply the
required parameter values. Currently our implementation relies on a simple

538 D. Karastoyanova, F. Leymann, and A. Buchmann

component for executing the query strategy because of missing standardized approach
to describing WS semantics and QoS.

4 Conclusions and Future Work

Parameterized processes aim at standardization of process models and improve
process flexibility and reusability. Flexibility by adaptation and flexibility by avoiding
change [4] are supported by the proposed approach.

Parameterization simplifies WS-flow models. The simplified control flow (reduced
number of activities and eliminated need for Dead Path Elimination [6]), yields
performance improvement. Fault handling and compensation in parameterized
processes require special care. Fine tuning of WS-flows is possible by adjusting
parameter values’ evaluation criteria. Missing semantic description standard and
incomplete QoS models affect the search and discovery of WS types and impair a
full-fledged application of the approach. It is possible to model both synchronous and
asynchronous communication modes with parameterized activities. The asynchronous
communication mode faces difficulties due to the insufficient capabilities to express
guaranteed delivery of functionality on behalf of the partner as a combination of two
one-way operations. The partner WS can return a result using the ReplyTo field [7] of
the messages sent by the process, the operation name exposed by the process for the
return call, and other correlation data.

Our future work includes experimenting with parameterizing other activity types,
variables, transition conditions, and the corresponding infrastructure implementation.

References

1. Active BPEL. August 2004. http://www.activebpel.org/
2. Curbera, F. et al.: BPEL4WS Specification Version 1.1. May 2003.
3. Karastoyanova, D., Buchmann, A.: Automating the development of Web Service

compositions using templates. In Proc. of GPA Workshop, Informatik2004, 2004.
4. Karastoyanova, D., Buchmann, A.: Extending Web Service Flow Models to Provide for

Adaptability. In Proc. BPMSOA Workshop, OOPSLA '04, October 2004.
5. Karastoyanova, D., Leymann, F., Buchmann, A.: Extending BPEL for Run Time

Adaptability. In Proc. of EDOC’05, 2005.
6. Leymann, F., Roller, D.: Production Workflow. Concepts and Techniques. Prentice Hall

Inc., 2000.
7. Weerawarana, S. et al.: Web Services Platform Architecture. Prentice Hall 2005.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 539 – 544, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Policy Management on Business Performance
Management Architecture

Teruo Koyanagi1, Mari Abe1, Gaku Yamamoto1, and Jun Jang Jeng2

1 IBM Tokyo Research Laboratory,
Yamato-shi, Kanagawa-ken, Japan

{teruok, maria, yamamoto}@jp.ibm.com
2 IBM T.J. Watson Research Center,

Yorktown Heights, New York, United States
jjjeng@us.ibm.com

Abstract. Business performance management (BPM) is a new approach for an
enterprise to improve their capabilities for sensing and responding to business
situations. In a diverse and fast-changing business environment, an enterprise
needs to adapt itself to any unexpected changes. For BPM, such changes imply
changes of the models and services that support BPM. This paper discusses an
implementation of BPM with the focus on dynamically adapting its services.
We will present the motivation, concept and architecture of the dynamic change
mechanisms. First we define a set of configurations as a policy, and also define
its consistency through an application context. Then we propose an architectural
overview including a policy management service as an implementation of
consistency management.

1 Introduction

Business performance management is a new approach for an enterprise to improve
their capabilities of sensing and responding to business situations [1]. Its functionality
covers data capturing, metric realization, situation detection, decision making, action
rendering and business analytics. Business performance management evolves from
business process management that is aimed to capture enterprise behavior in a
canonical form and to automate encoded operations as much as possible. Business
processes themselves are realized utilizing service based process modeling languages,
such as BPEL4WS [2]. While business process management is focused on operational
aspects, business performance management puts more emphases on improving the
quality of an organization. In this paper, we use the BPM to refer business
performance management. Similar to business process management systems, BPM
systems can be implemented in many ways. We have found Service Oriented
Architecture (SOA) [3] is particularly suitable for building management services and
BPM systems.

In a diverse and fast-changing business environment, an enterprise needs to adapt
itself to any unexpected changes and make corresponding adjustment in the areas
such as processes, IT systems etc. For the area of BPM, such changes imply the
dynamic changes of the models and services that support BPM. Consequently, BPM
system is expected to cope with the changes and change itself correspondingly. The

540 T. Koyanagi et al.

characteristics of SOA such as modularity and adaptivity make itself a good
architectural principle upon which the BPM system can be built.

The concepts of dynamic change management are discussed in previous works [4,
5, 6, 7]. They include the idea of maintaining consistency during changes. Their
concepts of consistency are considered to be guaranteed if the modified component is
not included in the execution of any transaction context. Most of these works define
their consistency criteria on the basis of explicit inter-component interactions, and
then propose management methods of dynamic software evolution to maintain the
consistencies. However, the fact that it is difficult to maintain consistency among a
number of configurations within an application context hinders most efforts. Such
difficulties would come from the loosely-coupled services which do not have the
explicit interaction that has been defined among them although those services may
have semantic relationships through the application context.

In this paper, we would like to describe the mechanism of using policies to manage
BPM systems. We use the BPM as our focus area in this paper although the
technology itself is generic. It can be applied to another service-oriented computing
platform [8] that is aimed to maintain its consistency while changing configurations
of services without stopping the system.

Firstly, we briefly introduce a dynamic reconfiguration for a BPM architecture in
Section 2. Then we explain concepts of dynamic policy management in the BPM
architecture in Section 3. The architectural overview of managing the consistencies of
BPM services is shown in Section 4 and we conclude this paper in Section 5.

2 Dynamic Reconfiguration for a BPM Architecture

A BPM system is built as an SOA with supporting functions such as monitoring for
business metrics and for detecting situations, and abilities to perform actions. All of
the BPM services can be configured dynamically based on new change requirements
from the business demands. Also, a lot of application contexts are generated to
monitor various points of views of business situations. In this section, an example and
the concept of dynamic reconfiguration of BPM applications based on policies are
described.

Let us consider an order process that needs inventory management as an example,
such as a PC order process from the Web. Stock for each model of PC is prepared
based on how many PCs are ordered in certain interval. In this application, as shown
in Fig. 1, three components of the services are used. Monitor is the component to
observe the counts of the ordered items. Forecast Provider is also a key performance
indicator (KPI) calculator to predict consumption for a given strategy. Inventory
Manager provides an action to keep sufficient stocks to respond to the predicted
consumption.

Initially, all orders from customers are considered with equal weight of service
level for preparing stock. Therefore, the Monitor records all customers’ orders into
one set of counts, and the Forecast Provider gives one set of predictions. However, in
fact, customers are categorized into two different types: the gold customers who
request high-performance machines and the regular customers who request low-cost
machines.

 Dynamic Policy Management on Business Performance Management Architecture 541

Monitor
Forecast
Provider

Inventory
Manager

How to record order counts Forecasting Strategy

order shipskip assembling if stock exists

assemble verify ship

Stock
Keeper

Business
Process

BPM Services

Configurations

customer

Monitor
Forecast
Provider

Inventory
Manager

How to record order counts Forecasting Strategy

order shipskip assembling if stock exists

assemble verify ship

Stock
Keeper

Business
Process

BPM Services

Configurations

customer

Fig. 1. An example of a BPM system: a PC order process

To respond to the gold customers’ demands to be prioritized, it is necessary to
change the monitoring method and the forecasting strategy to be biased for gold
customers. However, the change must be applied without stopping the system,
because the service should be provided 24 hours a day, 365 days a year. Additionally,
even though both services are provided independently, their configurations are
dependent on the application context, in which the order counts is observed and
consumption is predicted based on the counts.

This is a typical case in which an external management function, called dynamic
policy management, is required to maintain consistency among configurations.

3 Dynamic Policy Management

In the previous section, BPM applications are customized to respond to business
policies. Such a customization consists of a number of configurations which are
deployed into actual components of services. It implies that the BPM system is
desired to support functions to handle such a configuration set dynamically.

One of the desired functions to dynamically adapt BPM applications to business
policies is a runtime consistency management. For instance, it is the case of
inconsistent that an event is issued after changing its producer to introduce a new
format before its consumers have not changed yet for the new one. Basically, when a
configuration is changed, it is necessary to avoid activating of the changed component
during transition. In addition, we need to consider cases that configurations of
multiple components are changed. In such case, the dependent configurations must be
applied atomically for the application context which employs them.

In this section, we present a dynamic policy management function that maintains
the consistency of configurations by categorizing them into three levels of a runtime
application context.

A policy is a general rule about how to operate a BPM application in accordance
with a business demand [1]. It is broken down into a set of configurations of the BPM
services used in the application. It is important that the configuration set is defined
externally as a policy. BPM services are provided by corresponding components in
the BPM system.

A configuration is a component which is executed to changes a set of parameters
or externalized logics of another component (called customized component).
Configurations are identified by names which are associated with customization

542 T. Koyanagi et al.

points of components, and they are also labeled with versions to identify them in the
change history. A consistency version set includes versions of configurations to
specify which changes need to apply consistently.

The application context is an execution path including the sequence of service
employments which provide a function to business users based on a business policy.
To be consistent with policy, the customized components which provide the services
in an application context have to be configured with the same configuration set.
Therefore the consistency among a set of configurations is defined by considering the
ranges of the application context.

While applying configurations, the states of the customized components must be
guaranteed not to be executing in any application contexts. Because changing a
configuration in the middle of the context provides a chance to change the dependent
artifacts of the rest of execution. It causes a malfunction behavior.

In addition, the relationships among configurations must be also guaranteed in an
application context. In the BPM architecture, these relationships come from business
policies. Thereby, in this paper, we categorize the consistency into three cases by the
level of expansion range of the application context, as shown in Fig. 2

Configuration
sets

Customized
components

Application
contexts

a) component-local b) context-wide c) inter-context

Configuration
sets

Customized
components

Application
contexts

a) component-local b) context-wide c) inter-context

Fig. 2. Types of consistency of configuration sets

For a), component-local-consistency is guaranteed if a configuration transaction is
completed while the configuration is not currently executing in any application
context. This level of consistency is mandatory for dynamic reconfiguration, and b)
and c) are the options used to preserve application semantics.

For b), context-wide-consistency is guaranteed if component-local-consistency is
maintained for each configuration used in the application context, and based on it, a
set of configurations which implements a policy is used together in an application
context. In this case, consistency is represented by a configuration set which is
provided externally. This is necessary, for example, the set of configuration which
includes the Monitor's configuration and Forecasting strategy must be used together
during an application context which is an interval of stock preparation described in
Section 2.

For c), inter-context-consistency is guaranteed if context-wide-consistency is
maintained for each context, and in addition, the entire application context that is
running concurrently is configured with the same set of configurations. In the
example of the PC order process, it is assumed that there is an interval for each model
of PCs. Because the configuration change invoked by a drastic policy change, such as
adding a new axis of customer type, affects all the application contexts, the changes
must be applied to them synchronously.

 Dynamic Policy Management on Business Performance Management Architecture 543

4 Architectural Overview

As described in the previous section, a consistency version set represents a set of
constrained configurations that must be applied to the components executed in the
same application context. It is defined at design time, but at runtime it does not
depend only on the static component structures, but also on the dynamic
characteristics of the application context as described in the previous section. In this
section, a framework to maintain consistency of the consistent version set within an
application context is described. This can be considered as a hybrid method between
dynamic relationship management in application contexts, and atomic configuration
deployment that maintains the consistency of the configuration set.

The policy management service provides a runtime management function for
configuration sets. This service consists of the following components: session factory,
configuration registry, and version coordinator, as shown in Fig. 3.

BPM Application (application context)

Configuration RegistryVersion CoordinatorSession Factory

Session Bound Version Consistent Version Set Configuration

BPM Service

Policy Management Service

BPM Application (application context)

Configuration RegistryVersion CoordinatorSession Factory

Session Bound Version Consistent Version Set Configuration

BPM Service

Policy Management Service

BPM Application (application context)

Configuration RegistryVersion CoordinatorSession Factory

Session Bound Version Consistent Version Set Configuration

BPM Service

Policy Management Service

Fig. 3. Architectural overview of the dynamic policy management

The application which employs the customized components creates a session for
each application context correspondingly. According to the sessions, the right
configurations are provided to the customized components in the context.

The configuration registry maintains registered information of the consistent
version sets which represent a kind of dependencies defined at design time. As a
function of the configuration registry, the new configurations and consistent version
sets can be registered in the registry without stopping the system. Retaining the
current versions is another responsibility of the configuration registry. The
configuration registry provides an administrative interface to deploy configuration
sets and to specify current versions.

When a configuration is used in the session firstly, the current version of the
configuration and its constrained versions are associated with the session. When the
other configuration is used after that, at first it is searched from the associated
versions. If it does not exist, it is requested to the configuration registry. The version
coordinator maintains association between the session and versions of configurations.

5 Conclusion

In a diverse and fast-changing business environment, an enterprise needs to adapt
itself to any unexpected changes. In the areas of BPM, in order to adapt already-
deployed BPM applications to such business environments, it is imperative to provide
dynamic reconfiguration capabilities. The BPM system is build as an SOA with

544 T. Koyanagi et al.

supporting functions for tasks such as monitoring business metrics, detecting
situations, and performing actions. Therefore an application in the BPM system is
customized to adapt to a business policy by configuring each service component.

In this paper, a policy is defined as a configuration set, which is deployed into
actual components. Consistency management of the configuration set is a key to
realize the dynamic reconfiguration, thereby we categorized the consistency into three
cases based on the level of expansion range of the application context; component-
local, context-wide and inter-context. Then we proposed an architectural overview
including a policy management service as an implementation of consistency
management.

To allow business users to change business policies, it is necessary for BPM
system not only to provide the runtime mechanisms but also to support designing and
deploying business policies. In the future work, we will investigate what kind of
supporting method can be provided.

References

1. Jeng, J.J., Chang, H., Bhaskaran, K.: On Architecting Business Performance Management
Grid for Adaptive Enterprises. In Proceedings of the 2005 Symposium on Applications and
the Internet (SAINT 05). (2005) 110–116

2. Thatte, S. et al.: Process Execution Language for Web Services Version 1.1. ftp://www6.
software.ibm.com/software/developer/library/ws-bpel.pdf (2003)

3. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Directions.
In Proceedings of the Fourth International Conference on Web Information Systems
Engineering, IEEE Computer Society (2003)

4. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Management.
IEEE Transactions on Software Engineering 16 (1990) 1293–1306

5. Warren, I., Sommerville, I.: A Model for Dynamic reconfiguration which Preserves
Application Integrity. In Proceedings of the 3rd International Conference on Configurable
Distributed Systems (ICCDS’96), IEEE Computer Society (1996) 81–88

6. Chen, X., Simons, M.: A Component Framework for Dynamic Reconfiguration of
Distributed Systems. In Proceedings of the IFIP/ACM Working Conference on Component
Deployment. Volume 2370. (2002) 82–96

7. Truyen, E. et al.: Dynamic and Selective Combination of Extensions in Component-Based
Applications. In Proceedings of the 23rd International Conference on Software Engineering
(ICSE’01). (2001)

8. Lazovik, A., Aiello, M., Papazoglou, M.: Associating Assertions with Business Processes
and Monitoring their Execution. In Proceedings of International Conference on Service
Oriented Computing (ICSOC’04). (2004) 94–104

A Lightweight Formal Framework for
Service-Oriented Applications Design

Aliaksei Yanchuk, Alexander Ivanyukovich, and Maurizio Marchese

Department of Information and Communication Technology,
University of Trento, I-38050 Povo (Tn), Italy

aliaksei.yanchuk@gmail.com, a.ivanyukovich@dit.unitn.it,
maurizio.marchese@unitn.it

Abstract. Leveraging service oriented programming paradigm would
significantly affect the way people build software systems. This paper
contributes to the above goal proposing a lightweight formal framework
capable of capturing the essential components of service-oriented pro-
gramming paradigm.

1 Introduction

The increasing complexity of the software systems has constantly led to the evo-
lution of new programming paradigms: from functional, to object-oriented, to
component-oriented, to service-oriented to name a few. Typically each successive
paradigm has introduced new design approaches at an higher level of abstrac-
tion, encapsulating and sometime adjusting underlying levels. Service-oriented
programming paradigm has naturally focused on the next level of abstraction
over object- and component-oriented ones [1]. Established and mature paradigms
are supported by well-defined analysis and design methodologies (e.g. UML no-
tation) and supporting tools (e.g. Rational Rose). Such methodologies and tools
have emerged and have become highly usable and effective due to a signifi-
cant effort towards the formalization of the underlying fundamental concepts of
object-oriented and component-oriented paradigms, together with an evolving
and shared understanding of the abilitating technologies.

Although, some foundational concepts of service-oriented design are starting
to be addressed, [2, 3, 4], proper mathematical foundations and service-oriented
formalized principles and concepts are still lacking. We think that such formal-
ization is crucial for the identification of suitable software design methodologies
and supporting tools capable to meet the specific challenges of service oriented
applications, e.g. composability, adaptability and platform independence.

This paper contributes to the above effort by proposing a lightweight formal
framework capable of capturing the essential components of service-oriented pro-
gramming paradigm. Our approach is based on the critical assessment of existing
design formalization techniques, mainly in the object and component oriented
programming domains. Formalization in these software paradigms covers aspects
mainly related to system refinement (such as modules composition techniques,

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 545–551, 2005.
© Springer-Verlag Berlin Heidelberg 2005

546 A. Yanchuk, A. Ivanyukovich, and M. Marchese

operations parallelism and analysis of intrinsic constraints in distributed sys-
tems. Such formalization is grounded on refinement calculus [5] through the use
of refinement techniques to the most used methods for monotonic composition
of programs (namely procedures), parallel composition and data encapsulation
[6]. Parallel actions in software systems were modelled in [6] by their atomic
representations, allowing to utilize methods originally developed for sequential
systems. A mathematical foundation for object-oriented paradigm is presented
in [7], where message-based automata for modelling object behavior in terms
of cleanroom software engineering methodology [8] is presented. There software
refinements is approached through a mathematical description of all possible
transformations, capable to ensure refinement correctness with respect to other
software objects.

In[9], a descriptive functional semantic for the component-oriented design is
proposed and used for the definition of a formal model for the interfaces of the
components. This work investigates the relationships between compositional op-
erators for synchronous and parallel components designs and system refinement
techniques. In contrast to previously referenced works, this component-oriented
design approach operates with a black-box interface view on the system’s com-
ponents. Further research in component-based design [10] has led to precise defi-
nition of components through their behavioral characteristics as well as to the in-
troduction of parallel composition techniques with feedbacks, enabling modelling
of concurrent execution and interaction. However, functional time dependency
introduced in [9, 10] does not take into account possible temporal execution of
the functionality specified within the interfaces’ contracts, but rather limits it-
self to input/output interrelations. It is important to note that the support for
such temporal execution sequences is particularly important in service-oriented
applications.

The present paper leverages from the above research on software design for-
malization approaches and aims to extend them to service-oriented programming
paradigm. The structure of the paper is organized as follows. In Section 2 we
briefly discuss existing approaches to Service-Oriented Architectures (SOA) and
their main components. We then propose formal definitions SOA main compo-
nents, namely: service, service-oriented environment,service-oriented application.
Further elaboration of these models with respect to data transition properties
allowed us to introduce a classification scheme for service-oriented applications
in Section 3. Conclusions and future work close the paper.

2 Formal Foundation for Service-Oriented Applications
Design

Service-Oriented Architectures (SOAs) [1, 11, 12] are emerging to support the
specificity of service oriented applications. In a SOA, the software resources are
considered ”services,” which are well defined, self-contained, and are indepen-
dent of the state or context of other services. Services have a published interface
and communicate with each other. The basic SOA defines an interaction between

A Lightweight Formal Framework for Service-Oriented Applications Design 547

software agents as an exchange of messages between service requesters and ser-
vice providers. This interaction involve the publishing, finding and binding of
services. The essential goal of a SOA is to enable general-purpose interoperabil-
ity among existing technologies and extensibility to future purposes and archi-
tectures. Simply put, an SOA is an architectural style, inspired by the Internet
and the Web, for enabling extensible interoperability. In our opinion, the “ba-
sic SOA trinity” of a service, broker, and client doesn’t display enough features
to capture all service-orientation features . It is rather a platform pattern, that
is used to design robust, essentially distributed applications and environments.
Complimentary to the platform pattern, a service orientation principle may be
formulated as “a set of computing capabilities of a service-oriented environment
for any given moment τ , determined by the kind of the dynamically available
(deployed) services”. Particular set of conventions for software designed for such
environment makes up particular Service-Oriented Architectures.

From the above reasoning, we propose that:

SOA = Principle + Platform (1)

The importance of this statement emerges in the context of Enterprise Ap-
plication Integration in large organization: in fact it is practically impossible
to provide a universal platform that would strike a perfect fit for all tasks. On
the other hand, the service orientation principle enables different products to be
designed independently but ensuring their potential integration viability. We be-
lieve that in order to fully exploit SOA the following entities must be considered
on the same importance level in a conceptual framework for service orientation:
individual services, service-oriented environments, and service-oriented applica-
tions. In the next sub-sections, we provide a formal definition for the proposed
entities in our conceptual framework.

2.1 Logical Service, Service-Oriented Environment and
Service-Oriented Application

In our framework, a given logical service i is deployed into an environment to
provide the useful functionality fi, expressed as a programmatic interface Ii. Im-
portant feature of a service is its capability to interact dynamically, in the given
environment, with other services and non-service entities (such as end users).

Logical service’ implementation is thus a set of coordinated and interacting
processes:

Si =< P i
1, P

i
2 , . . . , P

i
n, Λ >, (2)

where Si — logical service instance, P i
k — kth process implementing the logical

service functionality fi through the programmatic interface Ii , and Λ — network
communication function between individual processes.

Service-oriented environment consists of a finite countable set of all accessible
logical services implementation for the given moment of time τ :

Envτ =< S1, S2, . . . , Sn >, (3)

where n — number of logical services deployed in the environment.

548 A. Yanchuk, A. Ivanyukovich, and M. Marchese

Overall functionality F of a service-oriented application A is determined by
the logical services involved in the provision of the application in a given envi-
ronment for a given moment of time τ :

FA =< S1A, SA
2 , . . . , SA

n >Envτ (4)

Moreover, we introduce the Application Functionality directing graph, defined
as:

VA = (FA, G) (5)

having vertexes from the FA set and verge set G formalizing the coordination
between individual logical services of the FA set.

Finally, the Service-Oriented application A may be formalized as the set:

A =< FA, VA > (6)

The defined service-oriented application A is characterized by the following
properties:

– to achieve computation goal, at least two logical service must be involved
(otherwise SOA degrades to client-server architecture);

– services involved in the application must “coordinate” their work to solve
the computational problem. Here, we mean “coordination” as any kind of
interaction between involved services that aims to achieve the application
goal. Coordination may be implemented by different means, including but
not limited to, exchanging data, exchanging messages, service provisioning,
service control, service monitoring etc.

The presence of the coordination capability is required in a service-
oriented application due to the fact that a consistent implementation of
a service must be designed to be context-invariant [12]: i.e., particular ser-
vice must not have knowledge about the application it participates in. In
our framework, the Application Functionality directing graph, VA, defined
in equation 5, is the formalization of such capability. In concrete application,
VA may be expresses with existing implementation frameworks for capturing
services processes, such as BPEL 1 and WS-Coordination. 2

3 The Application Class Concept

In order to ground a service-oriented design methodology on our proposed frame-
work, the following steps must be considered: first application requirements are
collected to drive functionalities definition; then application’s functionalities are
decomposed into individual services; thus the appropriate Application Function-
ality graph is created; finally to realize a concrete application A, both service
functionality and directing graph must be implemented.
1 http://www-106.ibm.com/developerworks/library/ws-bpel/
2 http://www-106.ibm.com/developerworks/library/ws-coor/

A Lightweight Formal Framework for Service-Oriented Applications Design 549

In the following, we introduce the concept of the service-oriented application
”class” in order to capture general properties of A and to support the system
architect to devise appropriate design strategies (i.e. design patterns, implemen-
tation templates, etc..).

In general, the computational task of a given service-oriented application is
to process all incoming requests (tuples) from a set Tin in such a way that
processing will comply with requirements determined by specified Quality of
Service agreement set, QoS [13]. The feasibility of a given QoS requirements set
depends on the implementation of the individual services involved in the service-
oriented application A, on the implementation of the Application Functionality
graph VA and on the global service environment Envτ .

In our opinion the structure as well as the access method of the application’s
memory plays a major role in determining the types and sub-types of a specific
application. For any service-oriented application, A, there is a data space, T̂A,
containing all data of the application

T̂A = MA ∪ TA ∪ ψA (7)

where MA — tuple set capturing temporary application memory, TA — persis-
tent application memory, and ψA — virtual tuple set, encapsulating all tuples
that were deleted from temporary and persistent memories. TA includes all those
tuples that were delivered to the A, except for those that left it (passed on fur-
ther or discarded), having durable state — a state having impact on business
processes. Data integrity [14] implies that, during application runtime, the in-
coming tuples Tin set is reflected on entire set T̂A, that is:

∀ti ∈ Tin : t̂j ∈ T̂A, ti → t̂j (8)

For any application A, one or more data entry and data exit3 points may
be established. To implement the specified functionality of the service-oriented
application A, the following two main scenarios are possible and we use then to
define the basis classes of a service-oriented application:

– Each tuple ti should pass a handling path through number of services. To
achieve this, it is sufficient that the service-sender would be able to pass the
tuple ti to service-recipient. These type of applications constitutes the flow
class service-oriented application.

– Each tuple ti is saved in a shared data space where it is simultaneously ac-
cessible to all services that would be involved in the tuple handling; in this
case, the key task of such cooperation class service-oriented application is
establishing unambiguous access sharing to the ti tuple and mutual coordi-
nation.

Some real applications may find it necessary to combine features of both
classes. With such application, fork and join points may be established in the
3 Except for the cases where application is designed to retain data indefinitely — see

accumulating applications as defined in [15].

550 A. Yanchuk, A. Ivanyukovich, and M. Marchese

Application Functionality graph. Fork point is transfer of tuple from exclusive
service’ memory into shared data space, and join point is tuple transfer from
shared tuple space into service’ exclusive memory.

4 Conclusions

In this paper we have extended the definition of SOA and we have proposed
a lightweight formal framework capable of capturing SOA main components.
This formalization allows us to explore the structure of a SOA and to introduce
a service-oriented application classification schema. In particular tuple access
methods (exclusively owned/ shared) lead to establishing two main classes of
service-oriented application: the flow-class and the cooperation-class. However
much more work must be done and is currently in progress. In particular, in-
depth exploration of the introduced classification, class topologies patterns, QoS
aspects of SOA, patterns for SOA. A more exhaustive report on current work
can be found in [15].

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services
Concepts, Architectures and Applications. Springer, 2004.

2. Mike P. Papazoglou and Jian Yang. Design methodology for web services and
business processes. In TES ’02: Proceedings of the Third International Workshop
on Technologies for E-Services, pages 54–64, London, UK, 2002. Springer-Verlag.

3. R.M. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint ap-
proach. International Journal on Cooperative Information Systems, 13(14):338–
378, December 2004.

4. Dick Quartel, Remco Dijkman, and Marten van Sinderen. Methodological support
for service-oriented design with isdl. In ICSOC ’04: Proceedings of the 2nd interna-
tional conference on Service oriented computing, pages 1–10, New York, NY, USA,
2004. ACM Press.

5. R. J. R. Back. Correctness preserving program refinements: Proof theory and
applications, 1980.

6. K. Sere and R. J. R. Back. From action systems to modular systems. In M. Bertran
M. Naftalin, T. Denvir, editor, FME’94: Industrial Benefit of Formal Methods,
pages 1–25. Springer-Verlag, 1994.

7. B. Rumpe and C. Klein. Automata describing object behavior, 1996.
8. D. Craigen, S. Gerhart, and Ralston T.J. An international survey of industrial

applications of formal methods. Technical report, National Technical Information
Service, Springfield, VA, USA, 1993.

9. Manfred Broy. Towards a mathematical concept of a component and its use.
Software - Concepts and Tools, 18(3):137–, 1997.

10. Manfred Broy. Compositional refinement of interactive systems modelled by rela-
tions. Lecture Notes in Computer Science, 1536:130–149, 1998.

11. Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and
directions. In WISE ’03: Proceedings of the Fourth International Conference on
Web Information Systems Engineering, page 3, Washington, DC, USA, 2003. IEEE
Computer Society.

A Lightweight Formal Framework for Service-Oriented Applications Design 551

12. by Douglas K. Barry. Web Services and Service-Oriented Architecture: The Savvy
Manager’s Guide. Morgan Kaufmann Publishers, 2003.

13. James Webber Ph.D. Sandeep Chatterjee Ph.D. Developing Enterprise Web Ser-
vices: An Architect’s Guide. Prentice Hall PTR., 2003.

14. Robert W. Taylor and Randall L. Frank. Codasyl data-base management systems.
ACM Comput. Surv., 8(1):67–103, 1976.

15. A. Yanchuk, A. Ivanyukovich, and M. Marchese. Technical report dit−05−059: To-
wards a mathematical foundation for service-oriented applications design. Techni-
cal report, Department of Information and Communication Technology, University
of Trento, http://eprints.biblio.unitn.it/, 01 July, 2005.

A MDE Approach for Power Distribution
Service Development

Cristina Marin, Philippe Lalanda, and Didier Donsez

Equipe Adele, Laboratoire LSR, 220 rue de la Chimie,
Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, France

first name.last name@imag.fr

Abstract. The integration of business and operational processes is to-
day of major importance in a wide range of industries. The challenge is to
seamlessly integrate software applications supporting business activities
and field devices belonging to the plant floor. It requires to build Internet-
scale distributed systems in complex, heterogeneous environments char-
acterized by stringent requirements regarding security and evolution in
particular. In order to meet these requirements, distributed architectures
based on the service-oriented paradigm have been proposed. This paper
argues that the service-oriented development is too technology-driven.
We propose a reusable MDE approach for service development in power
distribution industry where the developer focuses on application logic.
The approach is currently tested for a service-platform based on the
OSGi technology.

1 Introduction

The integration of business and operational processes is today of major impor-
tance in a wide range of industries, from the manufacturing industry to the
utilities one. The challenge is to seamlessly integrate software applications that
support business activities and field devices belonging to the plant floor. The
emergence of the Internet and the proliferation of small communicating devices
permit to consider a stronger coupling between previously autonomous processes.
This is the next wave of e-business for it opens the way to creation of innovative
value-added e-services based on data regularly gathered from such devices.

This last point is strongly investigated today. Many companies are today
struggling to provide innovative e-services to their customers in order to dif-
ferentiate themselves and improve their satisfaction and loyalty. For instance,
in the power management domain, electrical manufacturers are now providing
their customers with e-services for analyzing power consumption, power quality,
power devices maintenance.

However, it is clear that this goal of seamless integration is far from easy
to achieve. It requires to build Internet-scale distributed systems in complex,
heterogeneous environments characterized by stringent requirements regarding
security and evolution in particular. In order to meet these requirements, innov-
ative distributed architectures have been recently proposed [1]. They rely on the

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 552–557, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A MDE Approach for Power Distribution Service Development 553

notion of software services [2] used at different architectural levels and generally
running on heterogeneous platforms.

Service-oriented architectures are indeed very promising: they actually pro-
vide the level of flexibility and scalability required to build industrial e-services.
However, service-oriented computing is today essentially technology-driven.
Most available platforms focus on the technology allowing to publish and com-
pose services and to make them communicate. Few works have been initiated on
tools and techniques supporting the design of service-oriented applications [3] [4].

This paper introduces a service development environment for the power distri-
bution domain. The solution proposed uses a Model-Driven Engineering (MDE)
approach [5] [6]. The interest is twofold. First, by applying this approach, we ob-
tain a service design environment independent of any service-technology. Then,
the MDE’s model transformation techniques help to automate the service devel-
opment by taking into account a target technology.

The paper is organized as follows. Section 2 introduces our motivating prob-
lems. Section 3 presents our proposition. Finally, section 4 concludes the paper
and presents the perspectives of our work.

2 Industrial e-Services

The remote exploitation of industrial data embedded in smart devices represents
today a major field of investigation in diverse domains like automation, building
management or power distribution [7]. Manufacturers actually intend to leverage
data embedded in their devices in order to provide innovative e-services to their
customers and so to differentiate themselves from their competitors. This trend
is made possible by two important technological evolutions. First, devices rely
more and more on software and can be connected to an intranet network or to
the Internet. The second major enabler is the Internet development which offers
simple and inexpensive connections to most industrial sites in the world.

Industrial e-services are based on data that are regularly collected in the
plant floor. Data generally supports mediation operations (aggregation, trans-
formation, formatting operations, etc.) before being used by business-oriented
applications [8] [9]. Integrating disparate information sources in a timely man-
ner is a complex activity. In the power distribution domain, this is complicated
by the environments heterogeneity (in terms of topology, network and security
policies) and by their dynamic nature.

Current architectures designed to gather field devices data are organized into
three tiers. The first one corresponds to field devices. The second tier is made
of gateway platforms that perform device’s data gathering, a first data media-
tion treatment. Finally, the last tier is made of powerful Internet servers. These
architectures are very heterogeneous. Gateways may, for instance, run an OSGi
service-platform (see www.osgi.org), especially designed for small communicat-
ing platforms. At the Internet server level we may deal with a J2EE platform
with powerful treatment abilities.

554 C. Marin, P. Lalanda, and D. Donsez

Service-oriented computing turns out to be very beneficial in this context.
In particular, the late-binding property of services brings the flexibility that is
needed in extremely dynamic environments.

We consider that the development and administration activities for data-
gathering e-services are not well supported today. For instance, current OSGi
platforms provide a basic technology to describe services (usually through XML
forms), publish, compose them and allow interactions [10]. But there is no tool
to facilitate the use of this technology (which is arguably difficult to master)
and no support regarding the design of service-oriented (OSGi-oriented in that
case) applications. The result is that, as it is the case in other computing areas,
applications are hard to develop, test and maintain. This paper presents a MDE
approach for such service development environment.

3 SOA for Power Distribution e-Service

As previously said, service development is strongly influenced by the decision
of using a given technology. In our case, this is a performance trade-off when
it comes to develop rapidly e-services for the power distribution domain. Our
experience in the development of such services has convinced us of the following
things:

– the developer cannot handle all the technologies needed to develop the ap-
plication;

– the developer should concentrate more on the application logic and not on
the technologies needed to publish, discover and compose services.

We consider thus that it is important to provide developers with software tools
to build and compose software services.

To do so, we have applied a Model Driven Engineering (MDE) approach to
build an effective design environment. MDE is becoming a widely accepted ap-
proach for developing complex distributed applications. It advocates the use of
models as the key artifacts in all phases of development, from system specifica-
tion and analysis, to design and testing [11]. Thus models are no longer contem-
plative artifacts but really productive ones. Separation of concerns is met in the
separation of the business logic from the underlying platform technology. Each
model usually addresses one concern, independently from the rest of the issues
involved in the construction of the system. Models transformations provide a
chain that enables the automated implementation of a system right from the
different models defined for it.

First, we have built a domain metamodel (figure 1) that contains the business
logic for our domain of interest. It is composed of five concepts that we consider
to be key concepts for the electrical domain.

The Driver abstracts concepts needed to interact with field devices (for in-
stance specific interaction protocols), to receive, optimize and redirect requests
to the concerned equipments. The Device is the simplified representation of the
industrial equipment. It sends requests via the Driver to the actual equipment

A MDE Approach for Power Distribution Service Development 555

Fig. 1. Domain metamodel

from the plant floor. It also defines a data-collection strategy for acceding to the
equipment that permits him to synchronize with this one. A Mediator is a high
level concept used to transform (aggregate, integrate) data coming from one or
more devices . The high level concept is the BusinessService. His functionality
resides on device gathered data or aggregated data from mediators. For instance,
in our domain a business service may be a power consumption forecast service.
All these concepts interact through Communication Channels. For instance, a
communication channel may define the data transmission protocol used to send
data from one level (concept) to another.

Figure 2 illustrates the MDE process we have adopted to build the service
development environment. For that, we have successively built two metamodels:

– The first one, SOA MM in the figure, is a general metamodel for service-
oriented architectures. It contains common concepts of available service tech-
nologies. In the meantime, it is totally platform independent, thus allowing
to describe a service-oriented architecture at a high level of abstraction.
This metamodel does not make the object of our paper but, if interested,
the reader can find additional information at (www-adele.imag.fr/SOA).

– The second one, SOA Application MM for Power Distribution, has been
obtained by manually combining the previous metamodel describing gen-
eral service-oriented architectures with the domain metamodel. It describes
service-oriented architectures tailored for the electrical domain. It extends
the previous SOA metamodel and specializes it to take into account the
domain concepts. This former metamodel remains also platform indepen-
dent but it includes now the domain business logic. Thus, we express our
four basic concepts as services and integrate the communication channel as
a connector concept. We have introduced three important communication
channels according to domain specific interaction paradigms: the classical
one corresponding to the client/server interaction (RequestResponse-
Connector), the event communication abstracted by the EventConnector
and the most interesting connection type - PublishSubscribeConnector -
used to publish data from a service to another.

556 C. Marin, P. Lalanda, and D. Donsez

Fig. 2. MDE Approach for e-service power distribution development

The last metamodel was used as a starting point for the development of the
service environment. Furthermore, it was to a large extent automatically ob-
tained using the Eclipse’s EMF project (see www.eclipse.org/emf). The so ob-
tained environment can be used to describe a domain specific application model
(SOA Application Model in our figure) using only metamodel terms. This de-
scription of an application is nevertheless abstract because we are not yet con-
sidering a specific service technology. We consider that this makes our solution
reusable because even if the service technology is changed the application model
will remain the same.

Fig. 3. Domain specific SOA metamodel

Then, the application model enters a code generation phase where a ser-
vice technology is at last taken into consideration. The generated code can be
then packaged and deployed on the target platform. The design environment
is currently tested in real settings in the domain of power distribution for an
OSGi-based e-services. The developer’s job is considerably leveraged because all
the OSGi-specific code is generated and he has to deal only with his application
logic.

A MDE Approach for Power Distribution Service Development 557

4 Conclusions and Perspectives

This paper presents an innovative approach for the development of e-services. It
relies on the MDE technology that uses models to automate the code generation.
The benefit we take from using the MDE approach is multiple. First, MDE
permitted us to automatically obtain from a UML schema (our metamodel) a
service development environment independent of any service technology. Then,
another code generation phase helps us to automatically obtain the technology
specific code of the described application. This leverages considerably the domain
expert’s work which in our vision is not necessarily a technology expert.

The approach is currently validated for OSGi based e-service development
and in the future will be validated against the J2EE platform residing at the
Internet server level of the presented data gathering architecture.

References

1. P. Lalanda. E-Services Infrastructure in Power Distribution. IEEE Internet Com-
puting, May-June 2005.

2. M. N. Huhns and M. P. Singh. Service-Oriented Computing: Key Concepts and
Principles. IEEE Internet Computing, 9:75–81, 2005.

3. D. Quartel et al. Methodological support for service-oriented design with ISDL.
In 2st International Conference on Service-Oriented Computing, 2004.

4. M.Tich and H. Giese. Seamless UML Support for Service-Based Software Archi-
tectures. In FIDJI2003, pages 128–138, 2003.

5. C. Atkinson and T. Kuhne. Model-driven Development: A Metamodeling Founda-
tion. IEEE Software, pages 36–41, 2003.

6. B. Selic. The Pragramatics of Model -Driven Development. IEEE Software, pages
19–25, 2003.

7. I. F. Akyildiz et al. A Survey on Sensor Network Applications. IEEE Communi-
cation Magazine, 2002.

8. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):3849, 1992.

9. P. Lalanda et al. An asynchronous mediation suite to integrate business and op-
erational processes. submitted to IEEE Internet Computing, 2005.

10. H. Cervantes and R.S. Hal. Autonomous Adaptation to Dynamic Availability
Using a Service-Oriented Component Model. In Proceedings of the International
Conference on Software Engineering, 2004.

11. E. Seidewitz. What Models Mean. IEEE Software, pages 26–32, September 2003.

Semantic Web Services for Activity-Based
Computing

E. Michael Maximilien, Alex Cozzi, and Thomas P. Moran

IBM Almaden Research Center,
650 Harry Road, San Jose, CA 95120, USA

{maxim, cozzi, tpmoran}@us.ibm.com

Abstract. Semantic Web services promise the addition of semantics
annotations to Web services in a manner that enables automatic dis-
covery, usage, and integration of services as part of every day processes.
IBM’s unified activity management (UAM) implements activity-centric
computing concepts by representing human work in terms of activities
that relate to each other using semantic information from the various
contexts in which the activities are used. In this paper we explore how,
using common domain-specific ontologies, we can make use of the se-
mantic annotations added to Web services and our UAM environment,
to produce dynamic and richer Web applications widgets and services.

1 Introduction

Human-based activities are best represented as informal loosely structured and
semantically rich processes. Even when work activities are well-structured, for
instance, using workflow systems, human realization of such workflows typically
results in many variations of the different steps, while the same objectives are
achieved. This is due to the executing context, which is difficult to predict or
capture in workflows. Additionally, the loose realization is also simply due to
human behaviors and work patterns which, unless humans are forcefully con-
strained, are typically loose and malleable [3].

Previous activity-based systems typically organize activities as shared tasks
that can be easily modified and arranged to meet work patterns [4]. In addi-
tion to distributed task sharing capabilities, IBM’s unified-activity management
(UAM) [7, 8] computing environment incorporates the loose and malleable char-
acteristics of human activities by representing activities as first-class OWL [5]
instances that are interconnected using a semantic network of relationships rep-
resenting the context and evolution of the activities.

As the majority of knowledge workers’ activities involve some form of Web-
based application, system, or services, it’s easy to see that a UAM-based applica-
tions will necessarily use Web resources or be themselves completely Web-based.
The addition of semantics to Web resources and Web services [2, 6] enables op-
portunities for creating semantically rich UAM-based applications and the ability
to automate some parts of these applications (and the activities) using software
agents. In this paper we investigate the initial use of semantic Web services
(SWS) [6] with our UAM environment.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 558–563, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Web Services for Activity-Based Computing 559

2 Scenario: Use Case

To motivate how our UAM environment can benefit from SWSs we describe a
use case scenario based on a simplified activity domain: reading group activities.
Our domain involves a set of individual human actors (e.g., knowledge workers,
researchers, or students) involved in sharing reading items. The reading items
are varied; they are comprise books, book sections, articles, Web pages, and so
on; they are contributed by all members of the group, which are assigned to read
these items, comment on the contents, prioritize them, rate them, relate them,
and make recommendations for new readings that can complement a particular
reading item. An implicit goal of such reading group activities is to create new
insights from the group’s collaboration that otherwise would not be possible had
the readings been done individually and separately.

3 Framework

IBM’s UAM environment comprises a RDF datastore which keeps OWL in-
stances for all activities, artifacts, actors, and their relationships according to
the UAM upper and domain specific ontologies. To expose a services API to
UAM that maintains the domain-specific semantics, we created a UAM operator
ontology which allows the definition and generation of Web services representing
the operations to create, add, modify, and find UAM objects.

The services parameters are typed using the domain-specific activity ontology.
We maintain the semantics of the domain by creating OWL-S [9] Profile and
partial Process descriptions for the generated services that are annotated with
a domain ontology and a domain-specific activity ontology.

As an example, for our Reading Group Activity ontology we expose SWS
with operations to createReadingActity(), addBookReadingItem(), modifyReadin-
gItem() passing attributes such as author, description, and so on, according to
ontologies for the domains Reading Document and Reading Group Activity. The
generated services connect to an operator API exposed by the UAM environ-
ment which allow programmatic access and manipulation of the OWL instances
in the datastore.

3.1 Activity Ontology

Figure 1 illustrates our UAM upper ontology. It constitutes the key concepts
and relationships of every UAM-based application. This ontology is typically
extended by domain-sepecific concepts and relationships that constitute the
activities in that domain. The upper ontology defines three main concepts:
(1) uam:Activity represents an activity—activities have subactivities, have arti-
facts, and involve actors; (2) uam:Artifact represents all non-agent (non-actor)
resources—they are the passive resources that are part of activities; and (3)
uam:Actor represents all active resources involved in an activity—these include
human and software agents.

560 E.M. Maximilien, A. Cozzi, and T.P. Moran

Fig. 1. UAM upper ontology

Activities have other predefined upper-level relationships to represent an ac-
tivity’s description, status, priority, results, and input. Further, every activity
can be related to some other activity. Finally, as in real-life activities all activ-
ities have the notion of completeness and start out with this value as false. We
leave it to the domain to specify when an activity transitions to the completed
status state.

3.2 Operator Ontology

The UAM operator ontology specifies the necessary concepts and relationships
for the definitions of the operations on the UAM environment. The operations
enable external actors to operate on the UAM environment. We use the opera-
tor ontology as input to the generation of our semantic services. The operator
ontology defines four primary concepts.

– uam-op:Operator represents a particular action on the domain’s concepts.
Every operator operatesOn a domain specific concept.

– uam-op:Function represents the active part of the operator. For instance a
Create function represents operators whose actions result in newly created
concept instances in the UAM datastore. Every function also associates with
the necessary parameters that it requires.

– uam-op:OperatorService combines a series of operator instances into a ser-
vice. This concept maps one-to-one to a SWS.

– uam-op:OperatorCode represents the procedural attachment of the code that
gets executed in the UAM datastore when the operator is executed.

4 Demonstration

To demonstrate our UAM SWS, we created an application in a simple domain for
which we could discover related SWS on the Web. This showed the feasibility of
the system, resulted in a UAM lower ontology for the domain, and an approach
to integrate SWS related to the domain. The domain in question is a simplified
version of reading group activity. We discussed the primary use case scenario in
Section 2.

To create our UAM lower ontology for the domain and annotate available Web
services with the domain semantics, we created a Reading Document ontology.
The main concepts of this ontology are as follows.

Semantic Web Services for Activity-Based Computing 561

Fig. 2. Reading document ontology; showing only the concepts and reified relationships
that are of concerns to Book-type documents

– reading:ReadingItem represents any physical or electronic item that can be
read by human agents. This includes Web sites or Web pages as well as some
printed materials, e.g., magazines.

– reading:Book represents a printed book. This does not include electronic
versions (eBook) or audio versions of books. These could be modeled as
subclasses of the generic Book concept.

– reading:BookSection represents a section of a book. This is an important
concept in a reading group activity since members of the activity could
agree to just read sections of a book (e.g., a page or a chapter).

– reading:Article represents a printed article or section of a magazine or a
journal. We differentiate Web articles from articles since their properties are
typically different. In particular, an article is part of a journal with a volume
and issue number, has a publisher, has page numbers, has a title, and has a
list of authors.

– ListPrice represents the price for the reading item. For a book this list price
is the value and the currency that is usually listed on the back of the book.

– Image represents the cover art picture of the reading item (if any).

Figure 2 shows these concepts along with a reified list of the properties and
their OWL types. A complete ontology of reading documents would encompass
a lot more concepts and some further refinements of the current concepts. We
chose to keep the ontology simple to achieve an end-to-end example since we
believe the value of our demonstration is in showing how, with limited number
of concepts, we can achieve value-add to our activity applications.

The next step in demonstrating our approach and following our use case sce-
nario, is to create a simple UAM lower ontology for the domain. The intent is
to define the semantics of reading group activities. Two of the main concepts
and properties are: (1) uam-reading:ReadingArtifact which is a holder for one
reading item. An artifact could be rated, have comments associated with it, re-
late to other artifacts, be recommended by an actor, and have a reading deadline

562 E.M. Maximilien, A. Cozzi, and T.P. Moran

associated with it; and (2) uam-reading:ReadingActivity which represents a read-
ing activity that involves human actors and reading artifacts. A human actor
can participate in many reading activities which have a title and a start date.
All human actors can be assigned to a reading artifact, comment on them, rate
them, recommend them, and relate artifacts to each other.

4.1 Dynamic Discovery and Integration

Since there are not many SWS are currently publicly available, we decided to
overlay existing Web services that deal with reading documents with our seman-
tics. We chose the Amazon.com E-Commerce Services (Amazon ECS) since it
allows access to the contents from the book department of Amazon’s Web site
along with the various information collectively gathered from the Amazon com-
munity. We created simplified versions of the Amazon ECS specifically exposing
capabilities related to our reading document ontology.

Fig. 3. Simplified BookService with partial OWL-S annotation. Heavy dashed gray
lines show which part of the service the semantic annotation refers to. The ovals rep-
resent the OWL-S concepts and domain-specific annotations.

Figure 3 shows parts of our simplified SWS overlayed with a partial OWL-
S descriptions. We only show a subset of the OWL-S Profile and portions of
the Process description for one of the service’s methods. The remaining meth-
ods would also be described likewise. In addition a Grounding instance is also
attached to the Service instance to point to the WSDL for the service.

Similar to the simplified BookService SWS, the generated UAM SWS are
overlaid with the appropriate OWL-S descriptions. For instance, we deploy a
service to query and retrieve the ReadingActivity and ReadingArtifact instances,
and these have OWL-S descriptions annotated with the Reading Group Activity
lower ontology and the Reading Document ontology. The discovery process is
realized by matchmaking the annotations of UAM SWSs with that of the Book-
Service. We created a matchmaking agent that runs an algorithm that is similar
to [10]. The algorithm looks for Process descriptions from SWS for which the
Input semantically matched the Output from the UAM SWS.

Semantic matching either means that the Input class is the same as the Output
class or that the Output class is subsumed by the Input class, e.g., the Output

Semantic Web Services for Activity-Based Computing 563

class is a subclass of the Input class. A concrete example is to discover that
the BookService getCoverArt can be passed a reading:Book instance from the
UAM SWS to generate an Image instance which contains the image URI for the
cover art. In addition, the matchmaking also looks for cases where the discov-
ery can take multiple Process method invocations. For instance, using a read-
ing:Book instance reading:authors and reading:title properties the agent can de-
termine the book’s reading:isbnNumber which can in turn be used to retrieve the
book’s rating.

5 Future Work

We are constantly expanding the capabilities of our UAM environment. Cur-
rently our SWS generation requires the wiring of the operation definition to an
existing Java class on the UAM server that operates on the datastore. We would
like to eventually bypass this step by having generic Java operators that would
operate on different domains and therefore not require specializations when new
domains are supported. This could be achieved if the generic operators use the
domain ontology as an abstract definition of the operands and the types that are
passed as arguments to the operator definitions. We are also looking into using
other, simpler, more lightweight SWS approaches, such as WSDL-S [1] as well
as expanding our use cases to richer activity domains.

References

1. R. Akkiraju et al. Web Services Semantics: WSDL-S. http://lsdis.cs.uga.edu
/library/download/WSDL-S-V1.html, Apr. 2005.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 501(5):28–37, May 2001.

3. P. Dourish. Process Descriptions as Organisational Accounting Devices: The Dual
Use of Workflow Technologies. In Proc. of the ACM Conf. on Supporting Group
Work, Boulder, CO, Sept. 2001.

4. T. Kreifelts, E. Hinrichs, and G. Woetzel. Sharing To-Do Lists with a Distributed
Task Manager. In Proc. of 3rd European Conf. on Computer-Supported Cooperative
Work, Milan, Sept. 1993.

5. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/, Feb. 2004.

6. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, Mar. 2001.

7. T. P. Moran. Activity: Analysis, Design, and Management. In Proc. from the
Symp. on the Foundations of Interaction Design, pages 12–13, Italy, Nov. 2003.

8. T. P. Moran and A. Cozzi. Unified Activity Management: Supporting People in
eBusiness. Communications of the ACM, Dec. 2005. To appear.

9. OWL-S. OWL-Service Ontology 1.1. http://www.daml.org/services/owl-s/1.1/,
Nov. 2004.

10. K. Sycara et al. Automated Discovery, Interaction, and Composition of Semantic
Web Services. Journal on Web Semantics, 1(1):27–46, Sept. 2003.

The Price of Services

Justin O’Sullivan, David Edmond, and Arthur H.M. ter Hofstede

Business Process Management Program,
Faculty for Information Technology,

Queensland University of Technology,
GPO Box 2434,

Brisbane QLD 4001, Australia
justin@service-description.com

Abstract. If we accept that service providers and service users all op-
erate with autonomy in some form of market place, then a necessary pre-
requisite for service discovery and engagement is the description of the
non-functional properties of a service. Price acts as one of the key non-
functional properties used in choosing candidate services. Conventional
services describe prices using several approaches (e.g. fixed price, price
ranges, proportional pricing, dynamic price mechanisms). Furthermore,
there are associated concepts such as price matching, price granularity,
taxes and reward schemes that might need to be taken into consideration.
This paper offers a discussion of the non-functional property of price.
By incorporating some information about price, service descriptions will
move away from the narrow distributed computing view of web services,
enabling greater reasoning with respect to service descriptions.

1 Introduction

Through media such as newspapers, letterbox flyers, corporate brochures and
television we are regularly confronted with descriptions for conventional ser-
vices. These representations vary in the terminology utilised, the depth of the
description, and the aspects of the service that are characterised. Existing service
catalogues provide little relief for service requestors from the burdensome task of
discovering, comparing and substituting services. Add to this environment the
rapidly evolving area of web services with its associated surfeit of standards, and
the result is a considerably fragmented approach to the description of services.
It leaves the vision of the Semantic Web [1] somewhat clouded.

We have previously claimed that non-functional properties are an essential
component of the characterisation of any service [2]. In [3] we present a dis-
cussion of many non-functional properties that can be used to improve dis-
covery, comparison and service substitution. The non-functional properties we
capture include availability (both temporal and locative), payment, price, dis-
counts, obligations, rights, penalties, trust, security, and quality. This content
has been published on the Web as a set of navigable models (http://www.
service-description.com/). To develop these models we undertook a signifi-
cant analysis of services from numerous domains. We have extracted hundreds

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 564–569, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Price of Services 565

of non-functional related properties that have been subjected to criteria before
inclusion in our models. This work is an attempt to narrow the void between the
functionally focused web service description standards and the non-functional
description of services. It is our opinion that the semantic richness of the non-
functional properties of services is not being exploited. We refer to this as “se-
mantic myopia” [4].

The rest of the paper is structured as follows. In section 2 we provide an in-
sight into our motivations whilst also positioning our work with respect to other
research. Next, in section 3, we present a discussion of the non-functional prop-
erty of price. Finally, we present our conclusions in section 4. We are unable to
portray our entire formal taxonomy within the space considerations of this paper.
See http://www.service-description.com/ for the complete taxonomy.

2 Motivations

Our primary motivation is to provide a necessary pre-requisite to automated
service discovery, service selection and service substitution. We propose some
sample questions that we put to existing web service description standards as a
means of highlighting our concerns. What percentage deduction does the service
provider offer when they are willing to match the price of an equivalent service
from another service provider? How many reward scheme points are acquired
when paying a particular price for a service? These are terms that service re-
questors (i.e. people, organisations) currently utilise when discovering services.
Are web services so different from conventional services? Removing the “tun-
nel vision” of service descriptions to include both web and conventional services
results in the ability to compare both types of services. We prefer not to dis-
tinguish between conventional services and web services. We are motivated to
ensure that the criteria used to evaluate conventional services are also available
for web services.

To achieve these benefits, a service description technique is required that is
capable of expressing the functional and non-functional aspects of services. We
subscribe to the notion that non-functional properties are constraints over the
functionality [5]. Existing semantic web services initiatives, whilst offering the
ability to capture the non-functional properties, have lacked the depth of de-
scription that we advocate. The OWL web service ontology (OWL-S) [6] offers
placeholders for the description of non-functional service properties, along with
a minimal number of specific non-functional properties. The Web Services Mod-
elling Ontology (WSMO) [7] uses Dublin Core metadata and a version number
as the core properties, then extends these to include web service specific cat-
egories of non-functional properties (e.g. performance, security, financial). Our
approach to the description of non-functional properties is complementary to
both OWL-S and WSMO. We now offer our discussion of the non-functional
property of price.

566 J. O’Sullivan, D. Edmond, and A.H.M. ter Hofstede

3 Price

We interchangeably refer to price as cost: cost being mostly the view from a
service requestor perspective, whilst price is the view from the service provider
perspective. Within this paper we refer to price as the amount being charged for
a service. We believe that the pricing of a service is an obligation of the service
provider, one of many obligations involved with service request and provision.
We refer to it as a pricing obligation since there are costs involved in supplying
the service to the requestor and therefore the provider would normally attempt
to recoup these costs (plus a margin).

Examples of price descriptions include:

– Carpet cleaning: a carpet dry cleaning service offers 3 rooms cleaned for $89
AUD (where the maximum room size is 13 sq m, and subject to inspection of
the carpet condition). They also offer 2 rooms for $69 AUD with additional
rooms $25 AUD per room. Four rooms cost $110 AUD.

– Newspaper delivery: a newsagent offers home delivery of newspapers daily
for $7.20 AUD per week (i.e. 7 days for $7.20 AUD).

– Accommodation: a hotel in Surfers Paradise is offering a room for $82.50
AUD per adult twin share.

From these examples we can see that prices are complex entities. They are
not always easily captured as a simple dollar value in a certain currency. Prices
become quite domain specific when granularities (e.g. per room) are applied.
Certain complex conditions may also surround the eligibility of a service re-
questor to receive the advertised price. To this end we consider that a pricing
obligation can be considered to wrap the price of a service with many other
important non-functional properties. These may include:

– Price validity - this provides a where and when scoping of the price’s avail-
ability. Using our temporal models (defined in [3]) the temporal validity can
be specified as an anchored or recurring interval, an instant or a date. We
also capture the location as the pricing obligation may be specific to a limited
number of the locations where a service can be requested from. For example,
an online retailer may offer a priority shipping service as an alternative to
standard shipping. For each region within a particular country, the retailer
would be able to state the price that is available for a particular timeframe.

– Conditions - these relate to any specific requirements or restrictions to the
price, or to the refund for the price paid for a service. Conditions are com-
plex entities that require a concrete representation. We prefer to identify
conditions through URL referrals. Refund conditions are common for trans-
portation services such as plane tickets where they state that a ticket may
not be refundable, or may only be refunded within a particular timeframe.

– Refund procedure - associated with the specifying of refund conditions it
may also be necessary for a service provider to state a refund procedure.
This procedure is used by service requestors to enact the refund process. We
consider procedures to be a sequence of steps that are followed to achieve an
outcome.

The Price of Services 567

– Negotiability - sometimes the service provider may advertise a price but be
willing to accept a lesser amount. Our model allows the provider to state
that they are willing to negotiate on price.

– Price customisation - this allows the provider to explain that its service
is highly customisable, and therefore the actual price cannot be expressed
(e.g. a landscaping service may not be able to express the price until they
have an understanding of the requestor’s block of land and their objectives).
This does not reduce the usefulness of the service description as the service
provider is still capable of expressing the other pricing obligation related
properties within this list.

– Relationship obligation - this allows the service provider to state that a re-
lationship is required before they will commit to a price and its surrounding
non-functional properties (e.g. conditions, discounts). It is possible within
our model to specify an obligation that refers to the need to have a relation-
ship with the service provider to receive the service output.

– Payee discounts - we provide an in-depth discussion of discounts in [3] but
provide a link within our pricing obligation model to one specific type of
discount, those related to who the payee is. This might include a person
from a particular age group (e.g. the elderly), those with membership to a
particular body, or even a shareholder of a company.

We consider that the pricing obligation of the service provider, in conjunction
with the price, produces a new entity that we refer to as the “ServicePrice”.
We attach further information to this entity later in this section (e.g. tax, price
granularity, price modifier). We also consider that after stating a price (e.g. 10
nights at $150 USD per night) the service provider might attach the price for
additional invocations (e.g. each extra night is $100 USD per night). We assert
that every price is one of the following kinds:

– Absolute price - this contains a specific amount and a currency. For example
$10 AUD represents ten (10) Australian dollars.

– Proportional price - this represents a percentage value with respect to a
certain item. For example, the price of entering a managed fund might be
2.5% of the value being invested into the fund.

– Ranged price - Ranged prices are further subdivided into one of two types:
• Ranged absolute - a ranged absolute price contains a from and to value

that are both absolute prices. For example, a service provider may prefer
to provide a ranged price rather than a specific price (e.g. $150,000 USD
- $175,000 USD).

• Ranged proportional - a ranged proportional price contains a from and to
value that are both proportional prices. For example, a service provider
may state the cost of its service as a range between 1.5% and 3% of the
final sale price.

– Dynamic price - this form of pricing captures mechanisms like auctions,
where the price is determined by a market’s natural supply and demand.
We capture the type of mechanism (such as English auction, Dutch auction
etc), the conditions associated with using the mechanism, the location and

568 J. O’Sullivan, D. Edmond, and A.H.M. ter Hofstede

temporal availability of the mechanism, and a reserve price (as either an
absolute or proportional price). We provide a link to the provider of the
dynamic pricing mechanism (e.g. eBay). An example of a service that could
be auctioned is advertising space on web sites.

Price also includes an item granularity that is applicable to all types of prices
(e.g. per person per night). The granularity of the item reflects one or more
units of measure. We foresee the use of common granularities such as time
(hour, minute, second, day, month, year, night, week, fortnight), weight (gram,
kilogram, tonne), volume (cubic metre), area (metres squared, square metres),
length (millimetre, centimetre, metre, kilometre), byte (kilobyte, megabyte, gi-
gabyte), and person (adult, child, infant, pensioner, senior). These granularities
could be extended further to support notions such as a room. This caters for
services such as our carpet dry cleaning or accommodation examples.

All prices have a modifier that quantifies the price being specified. In using
the term “quantify” we are referring to it in a logical sense rather than in an
arithmetic sense. We have provided four example modifiers: exact, limited to
(the price will not go higher than the amount specified), inclusive (intended for
ranges of values) and from (the price starts at this amount and will go higher
depending on how the service is configured by the requestor). Prices may include
a component that is tax related. Service providers can choose to state their price
as inclusive or exclusive of a tax item. If a tax item is captured, then a tax
percentage is attached. For example, Australians are taxed at a rate of 10% on
the majority of goods and services they purchase under the Goods and Services
Tax (GST). Similar taxes include the Value Added Tax (VAT). Tax is applicable
to a particular region.

Some services offer a price based on the criterion that the service requestor
also requests the use of another service. An example is that the carpet cleaning
service provider will offer their carpet protection service only when addition
cleaning services are purchased. A service price may also provide either the
service requestor or the service provider with one or more rights with respect
to the service. Rights are outlined in more depth in [3]. We provide a price
matching facility within our price model. Some service providers advertise that
they are willing to match or better the price of another competitor. For this
type of service provider we allow the attachment of a percentage which indicates
what they are willing to improve competitor offers by (e.g. 5%).

Some service providers choose to reward service requestors using loyalty
schemes. We attach to the price of a service the possibility of accumulating
rewards under a reward scheme. Reward schemes can be provided by the service
provider or by a third-party. Our model allows a service to attach a number of
reward points to the invocation of the service, based on the service price that
is paid (remembering that prices have a temporal and a locative availability).
Reward points are only available during certain temporal intervals, or on a par-
ticular date, as well as being surrounded by some conditions. In a complementary
manner we allow the service provider to state that they accept rewards scheme
points as payment for a service.

The Price of Services 569

4 Conclusions

Our approach seeks to offer a domain-independent method for describing the
non-functional properties of both conventional and web services. Due to space
limitations we have presented only part of the non-functional property of price.
Our recent work [3] provides the same level of descriptive depth for other non-
functional properties such as availability (temporal and locative), payment, obli-
gations, rights, discounts, penalties, trust, security and quality. We feel that this
approach is complementary to existing semantic web service initiatives such as
WSMO and OWL-S.

The non-functional properties of services introduce complexity to the descrip-
tion of services but their inclusion is crucial to the automation of service discov-
ery, comparison and substitution. We have stated in this paper our belief that
two challenges confront the future of service description - overcoming web ser-
vice tunnel vision and overcoming semantic myopia. That is, choosing to ignore
both the rich history of conventional services, and the non-functional proper-
ties of services (perhaps through deferring to domain specific ontologies, or by
a continued functional focus). Our work provides an opportunity for express-
ing the non-functional properties of services using a single technique for both
conventional and web services, whilst also addressing our stated concerns.

References

1. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax (1998) Available from http://www.ietf.org/rfc/rfc2396.txt, ac-
cessed on 19-Jun-2001.

2. O’Sullivan, J., Edmond, D., Hofstede, A.t.: What’s in a service?: Towards accurate
description of non-functional service properties. Distributed and Parallel Databases
Journal - Special Issue on E-Services 12 (2002) 117–133

3. O’Sullivan, J., Edmond, D., Hofstede, A.H.t.: Formal description of non-
functional service properties. Technical FIT-TR-2005-01, Queensland University of
Technology, Brisbane (2005) Available from http://www.citi.qut.edu.au/about/
research pubs/technical/non-functional.jsp , accessed on 15-Feb-2005.

4. O’Sullivan, J., Edmond, D., Hofstede, A.H.t.: Two main challenges in service de-
scription: Web service tunnel vision and Semantic myopia. In: W3C Workshop on
Frameworks for Semantics in Web Services, Innsbruck, Austria (2005)

5. Chung, L.: Non-Functional Requirements for Information System Design. In Ander-
sen, R., Bubenkor, J.A., Sølvberg, A., eds.: Proceedings of the 3rd International Con-
ference on Advanced Information Systems Engineering - CAiSE’91. Lecture Notes
in Computer Science, Trodheim, Norway, Springer-Verlag (1991) 5–30

6. OWL-S Coalition: OWL-S Web Service Ontology (2004) Available
from http://www.daml.org/services/owl-s/1.1/ , accessed on 21-Nov-2004.

7. Bruijn, J.d., Bussler, C., Fensel, D., Kifer, M., Kopecky, J., Lara, R., Oren, E.,
Polleres, A., Stollberg, M.: Web Services Modeling Ontology (WSMO) - Working
Draft 21st November 2004 (2004) Available from http://www.wsmo.org/2004/d2/
v1.1/20041121/, accessed on 22-Nov-2004.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 570 – 575, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Managing End-to-End Lifecycle of Global
Service Policies

Daniela Rosu and Asit Dan

IBM T.J. Watson Research Center, 19, Skyline Drive, Hawthorne, NY, 10532, USA
{drosu, asit}@us.ibm.com

Abstract. Enterprise business services are often deployed over complex envi-
ronments, managed by multiple service-management products. For instance, a
business service may be configured as a three-tier environment with multiple
services that run on different resource domains and span one or more tiers, and
comprising service-management products such as workload managers, business
resiliency managers, and resource arbiters. The objective policies of the enter-
prise business service, henceforth called Global Service Policies, determine the
runtime policies used by the various management products. The lifecycle man-
agement of global service policies, including the deployment and enforcement
stages, inherits the complexity of the enterprise IT environment. This paper
proposes a novel framework for efficiently managing the deployment and en-
forcement lifecycle stages. The framework enables the complete automation of
dissemination and translation of global policy for all service managers, for a
low-cost, correct policy deployment. Also, the framework enables the runtime
customization of resource arbitration components for using the actual business
value models of the enterprise objectives global, for a high quality of policy en-
forcement. The proposed framework is prototyped and integrated with several
IBM service-management products.

1 Introduction

In a service-oriented architecture, policies associated with business services define the
business objectives under which the services are to be managed. Business objectives
may be derived from Service Level Agreements (SLAs) [1, 2] established between
provider and its customers. For instance, an SLA regarding a web-based application
identifies the types of requests to be issued by the customer and the associated re-
sponse time and availability objectives.

A typical enterprise business service consists of multiple software components, de-
ployed over a complex environment managed by several independent service-
management products. For example, a business service might be deployed as a three-
tier configuration in an environment comprising web servers, application servers and
data servers (see Fig. 1). Sample service-management products in this environment
include i) workload managers [5] that prioritize and distribute service invocations in
order to meet response time and throughput objectives, ii) business resiliency manag-
ers [4] that manage the backup nodes, and perform appropriate service reconfigura-
tion in response to node failures such to satisfy recovery time and availability objec-

 Managing End-to-End Lifecycle of Global Service Policies 571

tive, iii) resource arbiters [3] that dynamically change allocation of server nodes
across tiers such that the service managers can satisfy their objectives. Therefore,
multiple service-management components manage the same set of services under a
common set of service level objective policies, referred to as Global Service Policies.

Fig. 1. Architecture of sample enterprise IT infrastructure

There are many challenges faced today in managing services in such an environ-
ment based on enterprise business objectives. Many challenges stem from the lifecy-
cle management of Global Service Policies. The foremost challenge is the difficulty
of deploying the enterprise business objectives in a consistent manner across all man-
agement components. The difficulty stems from multiple factors. First, the runtime
policies used by each of these components are expressed in specific format which,
most often, mixes business objectives with deployment details such as the domain in
which the service is deployed, and groupings of service objectives into service classes
used for management. Ensuring consistency is difficult because, many often, the con-
ceptual elements expressed via policies do not match across these components. For
example, a workload manager may manage service level objectives associated with a
service endpoint, i.e., url or WSDL operation, while a resource arbiter may manage
objectives associated with a node or cluster. As a result, existing solutions to policy
deployment for complex SOA environments use manual, error-prone operations, in-
volving multiple component-specific tools/GUIs.

Another challenge is the consistent enforcement of Global Service Policies across
all service managers. Most prominent is the limitation of resource arbitration prod-
ucts to make decisions based on the actual business value model (i.e., value types and
expressions) of the Global Service Policies and the related resource-allocation optimi-
zation objectives. Existing arbitration solutions use fixed value models and optimiza-
tion objectives, such as a value model defined by component priority and an optimiza-
tion model suitable for providing differentiated services [3]. However, many
enterprises might use different value models, such as a benefit-driven model, based on

SLA

HTTP
Server
Group

Database
Management
System

Legacy
Transaction
Processing
System

End-To-End
Workload Manager A

Resiliency
Manager

Resource Arbiter

Node Pool Node Pool

App
Server
Group

Service
Offerings

…
Hardware

Software
Products

Service
Management
Products

Business Service
Management

SLA
SLA

Service
Offerings

572 D. Rosu and A. Dan

service fees and penalties for objective violations. Therefore, the actual models must
be translated into the arbiter’s model. Most often the translation results in an ap-
proximation of the actual models, leading to inconsistent policy enforcement.

Supporting a SOA demands novel solutions for lifecycle management of global
service policies, which enable complete process automation and compliance with the
actual enterprise business service model. Towards this end, we propose a novel
framework for global policy management. The framework comprises an infrastructure
for fully automated global policy dissemination and transformation into the runtime
artifacts used by the individual service-management products. The infrastructure en-
ables runtime, low-cost updates of the service infrastructure based on separation of
business service model from service deployment and implementation details. Also,
the framework includes a novel infrastructure for customization of the resource arbi-
tration process for using the actual enterprise business service value models. The in-
frastructure uses the novel “optimization value model” abstraction that describes the
relationship between orchestration objectives and the business value models of global
policies and has methods that the arbiter can invoke in its decision procedures.

A large body of research has addressed the use of SLAs for the management of
complex IT environments, composed of Web Services and computational grids. A de-
tailed discussion of related work can be found in [6]. Our proposal distinguishes from
related work in several ways. First, we consider the problem of SLA dissemination in
which the service and objective specifications are decoupled from the service de-
ployment details, which is a necessity in SOA environments. Second, we address the
problem of resource arbitration for a dynamic business service environment, in which
both SLA and optimization objectives can change at runtime, and require immediate,
fully compliant, low cost integration. In the following, we briefly present the pro-
posed infrastructure. For an extensive presentation see [6].

2 Automated Global Policy Dissemination

Enterprise business service management components produce Global Service Policy
specifications used for the configuration of all of the service-management products in
the IT environment. These specifications represent customer SLAs, enterprise-
specific orchestration policies, and other types of policies. Global Policy specifica-
tions are described as XML documents, e.g, WS-Agreement schema, which can in-
clude policies that relate to multiple service managers (see Appendix A). In the policy
dissemination process, one has to extract the related policy specifications for each of
the service managers, transform the content to manager specific runtime artifacts, and
deploy them according to policy qualifying conditions.

The proposed infrastructure for automated global policy dissemination builds on
the separation of the business service model from the service deployment and imple-
mentation details. Namely, a Policy Disseminator (Fig. 2) performs policy filtering
and distribution to service managers based on a generic global policy model, and
manager-specific Global Policy Adapters perform transformation and deployment of
these specifications as service manager-specific runtime artifacts based on the de-
ployment and implementation details.

 Managing End-to-End Lifecycle of Global Service Policies 573

Fig. 2. Architecture for global policy dissemination

The global policy filtering is based on service manager capabilities, which are
registered with the Policy Disseminator, and describe the manager’s service scope
and management objectives. The service scope identifies the set of enterprise ser-
vices that the manager controls. The management objectives identify the type of
SLO that the manager can enforce for a particular service. For filtering global pol-
icy specifications, one identifies the XML elements in the specification that define
service scope and management objectives and matches them against the registered
manager capabilities. For WS-Agreement specifications, these XML elements result
from the content of wsag:ServiceReference and wsag:ServiceLevelObjective,
respectively (see Appendix A).

The transformation of global policies into manager-specific runtime artifacts per-
formed by Global Policy Adapters is based on (1) manager and service specific de-
ployment information available in databases or configuration files, and (2) manager-
specific rules for transformation of global policy abstractions. Adapters account for
all of the global policy documents received from disseminator and for the related pol-
icy qualifying conditions, e.g., time interval when policy is applicable. Adapters han-
dle various policy management elements, such as qualifying conditions, when the re-
lated service managers cannot handle them.

3 Customizable Resource Arbitration for Policy Enforcement

The proposed infrastructure for customizable resource arbitration is based on the
novel “optimization value model” (OVM) abstraction. An OVM identifies an enter-
prise objective for optimization of resource allocation, such as “minimize the overall
penalty value” or “maximize number of fulfilled objectives, in importance order”.
OVMs are defined by business service management components as orchestration pol-
icy. They are deployed at runtime to resource arbiters, which use them to customize

Resource
Arbiter

Workload
Manager B

Policy Disseminator

Capabilities and
scope of service
management
products

Workload
Manager A

Lookup
Capabilities

Resiliency
Manager

Manager-specific
global policy adapters

Deployment
info & rules

Global Policy

Load manager
specific info

Manager-specific policies

Global Policy
Repository

574 D. Rosu and A. Dan

the decision method based on actual set of active policies. Multiple OVMs may be de-
fined concurrently, each with specific qualifying conditions. The resource arbiter de-
termines which OVM is applicable for a decision instance and uses the associated im-
plementation in the decision process. Fig. 3 illustrates the main OVM components.

Fig. 3. OVM Model

An OVM is defined by a set of methods used by the arbiter for assessing which of
the candidate allocation states is better to select for deployment, and a set of “metrics”
used in this assessment, which can include global policy business value types, like
penalty and importance, and arbitration-related service KPIs, such as ‘distance from
goal’. These methods enable the hierarchical aggregation of an allocation state
“value” based on the values of the OVM “metrics” for each of the active global policy
objectives in the given allocation state. The values of service objective metrics used in
the aggregation of a state value are computed by the arbiter by interpreting the objec-
tive business value expressions extracted from global policy specifications, and using
the service KPI values predicted by service managers or their adapters for the particu-
lar allocation state. The type of values produced by the OVM aggregation methods is
specific to the OVM implementation. For instance, the value can be an array of pairs
of objective importance level and maximum ‘distance from goal’, as needed for an
optimization that maximizes objective compliance in importance order.

4 Conclusions

This paper introduces a novel framework for managing the lifecycle of global service
policies in complex IT environments. The framework comprises novel architectures
and techniques for performing global policy dissemination and transformation, and
for enforcing global policy by enterprise-level resource arbiters. As a result, the de-
ployment and enforcement stages of the global policy lifecycle can be fully automated
while ensuring compliance with the enterprise business service objectives across
changes related to the service deployment architecture, service objective business
value models, and orchestration objectives. The prototype implementation integrated
with IBM workload management and resource arbitration products demonstrates the
feasibility of our proposals.

OVM Descriptor: qualifying time and resource pool,
 set of metrics (business value types and service KPIs)

OVM Method Function
aggregateServiceForManager Aggregate all objectives of a service

managed by a service manager
aggregateServiceAcrossManagers Aggregate all manager-level aggre-

gates related to a service
aggregateAcrossServices Aggregate all service-level aggregates

related to analyzed allocation state
compareStateValue Compare state-level aggregates

 Managing End-to-End Lifecycle of Global Service Policies 575

References

1. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S.
Tuecke, M. Xu: Web Services Agreement Specification. Version 1.1, Draft 18, submitted to
the Global Grid Forum, May 14, 2004.

2. A. Sahai, A. Durante, V. Machiraju: Towards Automated SLA Management for Web Ser-
vices. Hewlett-Packard Research Report HPL-2001-310 (R.1). Palo Alto, 2002.

3. IBM Tivoli Intelligent Orchestrator http://www-306.ibm.com/software/tivoli/products
/intell-orch.

4. BMC Software:
http://www.bmc.com/products/proddocview /0,2832,19052_19429_31452409_ 124990,00.html

5. searchdomino.com: IBM Enterprise Workload Manager: http://searchdomino.techtarget.
com/whitepaperPage/0,293857,sid4_gci1012290,00.html

6. D. Rosu and A. Dan: Managing End-to-End Lifecycle of Global Service Policies, IBM Re-
search Report RC23661, July 2005.

Appendix A: Sample WS-Agreement-Based SLA

<wsag:AgreementOffer …>…
 <wsag:Terms>..
 <wsag:ServiceReference wsag:Name="Service0Ref" wsag:ServiceName="Catalog">
 <wsa:EndpointReference><wsa:Address>/CatalogShopping</wsa:Address>…
 <wsag:GuaranteeTerm wsag:Name="Goal-Performance">
 <wsag:ServiceScope wsag:ServiceName="Catalog" />
 <wsag:QualifyingCondition><aspNS:PeriodName>Primetime</PeriodName>...
 <wsag:ServiceLevelObjective> <aspNS:ResponseTimeObjective>
 <TimeSecs>2.0</TimeSecs> <Percentile>98</Percentile></aspNS:ResponseTime..>
 <wsag:BusinessValueList>
 <wsag:Penalty> …
 <wsag:ValueUnit>USD</wsag:ValueUnit>
 <wsag:ValueExpression>
 <acel:Product>
 <acel:Minus><acel:PropertySensor name="aspNS:TransactionCnt" />
 <acel:PropertySensor name="aspNS:OnTimeTransCnt"/></acel:Minus>
 <acel:FloatConstant><Value>1.00</Value></acel:Float…>
 </acel:Product> …
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="Goal-Availability">
 <wsag:ServiceScope wsag:ServiceName="Catalog" />
 <wsag:QualifyingCondition />
 <wsag:ServiceLevelObjective> <aspNS:AvailabilityObjective>
 <AccumulationIntervalDays>365</AccumulationIn…
 <PercentageAvailability>99.99</PercentageAvailability>
 </aspNS:AvailabilityObjective></wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:ValueUnit>Thousand USD</wsag:ValueUnit>
 <wsag:ValueExpression>
 <acel:Product>
 <acel:Max>
 <acel:FloatConstant><Value>0</Value></acel:FloatConstant>
 <acel:Minus><acel:PropertySensor name="aspNS:Downtime" />
 <acel:PropertySensor name= "aspNS: DowntimeObjective"/>
 </acel:Minus></acel:Max>
 <acel:FloatConstant><Value>1000.00</Value></acel:Flo…></acel:Prod..>
 </wsag:Penalty>
 <wsag:CustomBusinessValue><aspNS:RelativeImportance>High</aspNS..
 </wsag:BusinessValueList> …

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 576 – 581, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying a Web Engineering Method to
Design Web Services*

Marta Ruiz, Pedro Valderas, and Vicente Pelechano

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia,

Camí de Vera s/n, Valencia-46022, Espana
{mruiz, pvalderas, pele}@dsic.upv.es

Abstract. Probably one of the most difficult tasks in the development of a
Service Oriented Architecture (SOA) is how to obtain well designed Web
Services. Some Web Engineering methods provide support to introduce Web
services in the software development process but do not give support to the
systematic design and implementation of them. In this work, we present an
extension of a Web Engineering method (called OOWS) to provide a
methodological guide for designing Web Services. This allows identifying and
designing the operations and arguments of Web Services following a model-
driven approach, taking the OOWS conceptual models as a source. To
document our approach, we apply our ideas to the design of the Amazon Web
Service and compare our proposal with the solution provided by Amazon.

1 Introduction

The emerging Web Engineering discipline is being worried on how to develop well
designed Web services. A web service should provide public operations with an
appropriate granularity level in order to provide flexibility and to facilitate its
connection and integration into distributed business processes over the Internet.

Some Web Engineering methods are extending their proposals to introduce Web
services into their web conceptual modelling approaches (OOHDM [1], WebML [2]
and UMLGuide [3]). Those approaches introduce some kind of syntactic mechanisms
to include web service calls into the navigational model. However, these approaches
do not give support to the design and development of Web services.

The OOWS [4] approach proposes a model driven approach to develop web
applications. The OOWS method integrates navigational design with a classical OO
conceptual modelling providing systematic code generation (following the strategy
proposed in OO-Method [5]). The present work is an initial effort to introduce SOA
and the Web services technology in the OOWS method. The main contribution of our
proposal compared to other Web Engineering methods is the definition of a
methodological guide that allows systematically identifying a set of functional groups
that define public operations in a SOA.

* This work has been developed with the support of MEC under the project DESTINO

TIN2004-03534 and cofinanced by FEDER.

 Applying a Web Engineering Method to Design Web Services 577

The structure of the paper is the following: section 2 presents an overview of the
OOWS approach, introducing the steps and the models provided by the development
method. Section 3 presents the methodological guide to obtain the operations that
constitute the functional groups. Section 4 compares the operations that are obtained
following our strategy with those published by Amazon. Finally, we present some
conclusions and further work in section 5.

2 The OOWS Approach. An Overview

In this section, we present a brief overview of the OOWS method [4]. In order to
build a web application OOWS introduces a development process that is divided into
three main stages: User identification, Task description and Conceptual modelling.

In the user identification step, a User Diagram is defined to express which kind of
users (roles) can interact with the system, providing a role-based access control
(RBAC [6]).

In the task description step, a Task Diagram (see Fig. 1-A) is defined for each
kind of user. In this diagram, we describe in a hierarchical way which tasks the user
can achieve by interacting with the Web application.

In the conceptual modelling step, we define a web conceptual schema that gives
support to the tasks identified above. The navigational aspects of a Web application
are described in a navigational model [4].

<< context >>

Product
«context»

Home

«context»
Product
Category

«context»

Shopping
Cart

Navigational
Context

Exploration
Link

«context»

Product

Link

Index

ATTRIBUTE INDEX ProductIndex
ATTRIBUTES Name, Price
LINK ATTRIBUTES Name
DISTINCT VALUES

FILTER Product
ATTRIBUTE Name
TYPE APROXIMATE

Index

Search
Filter

+Add_to_Cart()
+cc()

-Name
-Price
-Commnetary
-Image

Product

-Songs

CD

-Edition
-Pages

Book

-Year
-Duration

DVD

-Name
-Surname

Artist

-Name
-Surname

Author

Sequence

[Shooping Cart]

Service
Link

Similar Products

-Name
-SnapShot

Product

Product

Similar
Product

Product

Class Diagram
Views

«context»

Customer
Comentaries

«context»

Sellers

«context»

Whish List

Client

«context»

Client

Purchase
Products

CheckoutCollect Items

Select
Product

[]>> Add Product to
Shopping Cart

Fill Shopping
Cart

|>

[]>>

Inspect
Shopping

Cart

*

*
Login Handle

Payment

[]>>

Consult
Shopping

Cart

Manage
Shopping

Cart

Modify Item Delete Item

[]>>

[]

A B C

Fig. 1. OOWS models

The OOWS navigational model is defined from a set of navigational maps that
describe the navigation allowed for each kind of user (specified in the user diagram).
Each navigational map (see Fig. 1-B) is represented by a directed graph whose nodes
are navigational contexts and its arcs denote navigational links.

A navigational context (see Fig. 1-C) (represented by an UML package stereotyped
with the «context» keyword) defines a view on the class diagram that allows us to
specify an information recovery. There are links of three kinds: (1) Exploration links
(represented by dashed arrows) that are defined from the root of the navigational map
(depicted as a user) and ends in a navigational context; (2) Sequence links
(represented by solid arrows) that represent a reachability relationship between two
contexts; (3) Operation links that represent the target navigational context that the

578 M. Ruiz, P. Valderas, and V. Pelechano

user will reach after an operation execution. Furthermore, for each context, we can
also define: (1) Search filters that allow us to filter the space of objects that retrieve
the navigational context. (2) Indexes that provide an indexed access to the population
of objects.

3 A Methodological Guide for Designing Web Services

In this section we present the main contribution of our proposal: a methodological
guide that allows us to obtain the operations that implement the requirements of a
Web application in a SOA. These operations are obtained in a systematic way from
the OOWS models. Analyzing these models and taking into account the kind of
requirements that they capture, our proposal identifies a set of functional groups (fg)
that define the public operations in a SOA. We identify four fg: User Management,
Information Retrieval, Application Logic and Navigation Support. These fg constitute
the public interface of the designed Web service.

3.1 User Management Group

The User Management (UM) group provides the operations for the authentication,
authorization and management of the potential users that interact with the application.
The operations of this group can be detected using the OOWS user diagram.
Afterwards, the operations of this service are detected from both the user diagram and
the RBAC model [6] and are classified into three types: (1) Those that provide support
for the user identification: loginUser, logoutUser, obtainRol, changeRol
and remindPassword. (2) Those that give support for the generic user
administration: newUser, modifyUser, deleteUser. (3) Those that only can be
executed by an Administrator user: newRol, deleteRol, addUserToRol,
removeUserToRol, addPermission and removePermission inherited from
the RBAC model [6].

3.2 Information Retrieval Group

The Information Retrieval (IR) group defines operations to retrieve the information that
must be shown in each navigational context (see Fig. 1-C) (a web page in the running
example): (1) The retrieveViewName(id_sesion, [attributeID])
operation allows us to obtain the information specified in the navigational context
views. The operations detected from the navigational context Product (see Fig. 1-C)
are: retrieveProduct and retrieveSimilarProducts. (2) The
getIndexedIndexName (id_sesion, attributes) operation gives
support for the index mechanisms defined in a navigational context. The operation
getIndexedProductIndex is identified from the index of the context Product.
(3) The searchFilterName(id_sesion, attribute, value) operation
gives support to the filter mechanisms defined in a navigational context. The operation
searchProduct is detected from the filter defined in the context Product.

 Applying a Web Engineering Method to Design Web Services 579

3.3 Application Logic Group

The Application Logic (AL) group provides operations to implement functional
requirements of a Web application.

The operations that constitute this group are obtained from both the task diagram
and the class diagram: (1) The task diagram is used to determine the public
operations that must be offered. For each leaf task we define an operation. In the task
diagram of the Amazon example (see Fig. 1-A), we define the following public
operations: SelectProduct, AddProductShoppingCart, ConsultShoppingCart, Modify-
Item, DeleteItem and HandlePayment. The Login operation is not offered in this group
because it is an operation of the UM group. (2) The class diagram is used to obtain
the arguments of each operation. We detect each class that participates in an operation
achievement and then its/their attributes define the operation arguments.

3.4 Navigation Support Group

The Navigation Support (NS) group provides operations to implement the navigation
defined in the navigational model. The NS moves the navigational logic to the
interaction tier facilitating both the implementation of adaptation and personalization
mechanisms of web applications. This group has three operations: (1) The
explorationLink(id_sesion) operation gives support to the implementation
of the exploration links. (2) The sequenceLink(id_sesion, context) gives
support to the implementation of the sequence links. (3) The operationLink-
(id_sesion, service) operation gives support to the implementation of the
operation links.

Fig. 2 shows the implementation (Web page) of the Product context (see Fig. 1-C).
In this figure we can see the use of some operations shown in this work.

loginUser

addProductShoppingCart

searchProduct

getIndexedProductIndex

retrieveProduct

explorationLink

operationLink

Fig. 2. Web page of the Product context

580 M. Ruiz, P. Valderas, and V. Pelechano

4 Evaluation of Our Proposal

In this section, we compare the operations that are obtained following our strategy to
those published in Amazon1. Our intention is to identify some weak points of our
proposal in order to improve our method.

Amazon web service offers 18 operations while we offer 27 operations (14 from
the UM group, 4 from the IR, 6 from the AL and 3 from the NS group). Next, we
show the comparative between the Amazon and our operations:

(1) BrowseNodeLookUp: this operation is supported by retrieveCategory
detected from a view defined in the Product Category context.

(2) Help: it is not supported because we have not captured this requirement in our
web conceptual model. This operation just provides a user manual.

(3) CustomerContentLookup: we implement it with
retreiveClientCo-mentaries detected from a view defined in the
Client Commentaries context.

(4) CustomerContentSearch: this operation is supported by
retreiveClient detected from a view defined in the Clients context.

(5) ItemLookup: we support it with retrieveProduct detected from the
Product view defined in the Product context.

(6) ItemSearch: This operation is supported by searchProduct detected
from the filter defined in the Product context.

(7) SimilarityLookup: it is implemented by retrieveSimilarProducts
detected from the Similar Products view defined in the Product context.

(8) ListLookup: this operation is supported by getIndexedProductIndex
detected from the index defined in the Product context

(9) ListSearch: it is implemented by searchWhishList detected from a
filter defined in the Whish List context

(10) CartAdd: we support it with addProductShoppingCart detected from
the task diagram.

(11) CartClear: is not supported because in the Amazon web conceptual model,
this functionality has been indirectly modelled through the task Delete Item. we
have considered that if the user wants to clear the cart he/she must delete all the
items.

(12) CartCreate: this operation is implicitly implemented in our
addProductShoppingCart operation.

(13) CartGet: we implement it with consultShoppingCart detected from
the task diagram.

(14) CartModify: this operation is implemented by two of our operations:
modifyItem and deleteItem (detected from the task diagram).

(15) SellerLookup: this operation is supported by retrieveSeller
detected from a view defined in the Sellers context.

(16) SellerListingLookup and (17) SellerListingSearch: these
operations are related to the integration of Amazon with Third Party systems
which is out of the scope of this work. Information about this can be found in [7].

1http://www.amazon.com/gp/browse.html/102-0679965-?%5Fencoding=UTF8&node=3435361

 Applying a Web Engineering Method to Design Web Services 581

(18) TransactionLookup: it is not supported because we have not considered
information about financial operation in the web conceptual model
specification.

Furthermore, our approach provides additional operations that do not exist in the
Amazon web service. These operations are those presented in the UM and NS groups,
in addition to handlePayment of the AL group.

As a conclusion, we can see that our proposal provides a good enough solution that
is closer to the functionality provided by Amazon and it also includes additional
functionality that can be used to provide user authentication mechanisms, giving an
extra control of the navigation requirements and allows to support adaptation and
personalization mechanisms of web applications.

5 Conclusions and Further Work

In this work, we have presented an approach to introduce SOA and the Web services
technology in the OOWS method. We have presented a methodological guide to
obtain the operations that define the Web service from the OOWS models. This
methodological guide can be generalized to other Web Engineering Methods, because
the OOWS method shares with them the most common models and primitives taken
as source to obtain the Web services.

We are working on providing mechanisms that facilitate the integration of Web
applications with Third party systems (tps) at the conceptual level [7]. When tps
supply us their functionality as Web services, we apply Web services composition to
achieve integration.

References

[1] D. Schwabe, G. Rossi and D.J. Barbosa, “Systematic Hypermedia Application Design with
OOHDM“. Proc. ACM Conference on Hypertext. pp.166. 1996.

[2] S. Ceri, P. Fraternali and A. Bongio, “Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites”. In WWW9, Vol. 33 (1-6), pp 137-157. Computer
Networks, 2000

[3] P. Dolog, “Model-Driven Navigation Design for Semantic Web Applications
with the UML-Guide”. In Maristella Matera and Sara Comai (eds.), Engineering
Advanced Web Applications. 2004

[4] J. Fons, V. Pelechano, M. Albert and O. Pastor, “Development of Web Applications from
Web Enhanced Conceptual Schemas”. Springer-Verlag, Lecture Notes in Computer
Science. Proc. Of the International Conference on Conceptual Modelling, 22nd Edition,
ER'03, pp 232-245. Chicago, EE.UU, 13 - 16 October 2003.

[5] O. Pastor, J. Gomez, E. Insfran and V. Pelechano, “The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to
Automated Programming”. Information Systems 26, pp 507–534 (2001)

[6] ANSI. Incits 359 2004. American National Standard for Information technology. Role-
Based Access Control, 2004.

[7] V. Torres, V. Pelechano, M. Ruiz, P. Valderas, “A Model Driven Approach for the
Integration of External Functionality in Web Applications. The Travel Agency System”. In
Workshop on Model-driven Web Engineering (MDWE 2005) at ICWE July 2005, Sydney,
Australia. Accepted for publication.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 582 – 587, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Architecture for Unifying Web Services
Authentication and Authorization

Robert Steele and Will Tao

Faculty of Information Technology, University of Technology, Sydney,
P.O. BOX 123 Broadway N.S.W. Australia 2007
{rsteele, wtao}@it.uts.edu.au

Abstract. Security issues are one of the major deterrents to Web Services adop-
tion in mission critical applications and to the realization of the dynamic e-
Business vision of Service Oriented Computing. Role Based Access Control
(RBAC) is a common approach for authorization as it greatly simplifies com-
plex authorization procedures in enterprise information systems. However, as
most RBAC implementations rely on the manual setup of pre-defined user-ID
and password combinations to identify the particular user, this makes it very
hard to conduct dynamic e-Business as the service requestor and service pro-
vider must have prior knowledge of each other before the transaction. This pa-
per proposes a new Web Services security architecture which unifies the au-
thorization and authentication processes by extending current digital certificate
technologies. It enables secure Web Service authorization decisions between
parties even if previously unknown to each other and it also enhances the trust-
worthiness of service discovery.

1 Introduction

As a key factor in the adoption of e-Business, security is an important concern for
Web Services adoption [1]. As a new computing paradigm, Web Services applications
present security requirements different from those of traditional applications. The
challenge in Web Services security is that Web Services applications need to provide
controlled disclosure of information rather than the traditional all-or-nothing ap-
proach; the authorization procedure is more interactive and complex than the classic
user-ID and password combination approach.

2 Unifying Authentication and Authorization in Web Services

2.1 Motivation

In Web Services applications, to carry out a real time, global e-Business transaction, it
will be extremely valuable to have a unified architecture to allow service requestors to
acquire appropriate privileges automatically and dynamically without necessarily
having prior knowledge or relationship with the service provider. And it is also highly
desirable that only trusted services can be retrieved in the central registry by service
requestors.

 An Architecture for Unifying Web Services Authentication and Authorization 583

A new architecture is proposed in this paper for unifying authentication and au-
thorization in Web Services by extending certificate technologies. The architecture
allows the service provider to simply define rules to group a large number of current
or potential service requestors into appropriate roles, and assigns privileges to service
requestors according to the role list, i.e. the architecture utilizes Role Based Access
Control (RBAC) in part. Furthermore, before conducting the transaction, the service
requestor can decide whether to send a request message or not by checking the service
provider’s business credentials.

2.2 Overview of the Proposed Architecture

There are several core elements in this new architecture to unify the authentication
and authorization in Web Services applications, which are:

1. WS -Business Policy (WSBP)
2. eXtended CA (ECA)
3. eBusiness Passport (EBP)

All new elements are shown in Fig. 1 and the following sections discuss how these
elements inter-operate to build a global trustworthy Web Services platform.

Fig. 1. Overview of Architecture

2.3 WS-Business Policy

WSBP is an important new element in the architecture. It is a standard for describing
and evaluating business entities based on their backgrounds and performances. It has
a rich set of criteria to enable a fine grained description and evaluation result. All
evaluation data is described in XML and constrained by the WSBPXML Schema.

584 R. Steele and W. Tao

The WSBP has two parts, which are:

1. WS Business Policy-Common (WSBP-C)
2. WS Business Policy-Industry (WSBP-I).

WSBP-C is used to describe the common attributes of all business entities, such as
registration date, number of employees and credit rating. The WSBP-I is industry
sector specific evaluation criteria, where all criteria are tightly bound as evaluation
criteria relevant to that particular industry.

The reasons for making WSBP into two parts are:

1. It is hard to evaluate all business entities which can be from all different locations
and industries by using only common universal criteria.

2. It is not unusual that one business entity covers multiple industries. In this case, the
business can be evaluated with one WSBP-C and multiple WSBP-I.

An evaluation result must have only one WSBP-C result and at least one WSBP-I.
The criteria of WSBP are globally unified. The key role of WSBP is to provide a
globally agreed set of criteria/ factors for evaluating business entities by a unified
standard. Fig. 2 shows a potential WSBP instance - a real case might be more com-
prehensive and detailed.

<?xml version="1.0" encoding="UTF-8"?>
<WSBP xmlns="http://it.uts.edu.au/xml/ns/wsbp">
 <WSBP-C Name=" UTD Sydney Pty Ltd">
 <Type>Private</Type>
 <RegisteredLocation>Syd,AU</RegisteredLocation>
 <NumberOfEmployees>122</NumberOfEmployees>
 <Credit rating="8.5" rater="RoyalUnion" />
 <Certificate standard="ISO9000" />
 </WSBP-C>
 <WSBP-I Sector="Tech" Industry="ICP&ISP">
 <RegisteredUsers>5033051</RegisteredUsers>
 <GooglePageRank>8</GooglePageRank>
 <PageViews>10343305</PageViews>
 </WSBP-I>
 </WSBP>

Fig. 2. Potential WSBP Instance

By having a global standard for business evaluation (Fig. 1 Step 1) and if the re-
sults of such an evaluation can also be authoritatively certified, providers will be able
to assign certain provider-specific roles to a requestor, even a previously unseen ser-
vice requestor, based on the particular business characteristics of the requestor that
have been certified. Due to the global standard, providers will be able to design map-
pings in advance that map requestors presenting certain certified business criteria to
access roles through their knowledge of the criteria provided by WSBP.

 An Architecture for Unifying Web Services Authentication and Authorization 585

2.4 ECA and EBP

An extended CA, the ECA does not only issue digital certificates but also evaluates
business entities according to WSBP. In practical operation, the ECA’s job might
actually be more like a proxy as the ECA may only convert the certified paper docu-
ments into electronic form. For example, the documents may have actually been certi-
fied by a relevant government authority. After checking these stamped documents
which are provided by business entities (Fig.1 Step 2), the ECA represents the evalua-
tion results in electronic form against WSBP, along with the business entities’ public
key, all digitally signed by the ECA’s private key. The signed evaluation results are
named an e-Business Passport (EBP) (Fig.1 Step 3). The EBP is a special form of
digital certificate which carries business entities activities and performance, also with
their public key. As such it does not just provide authentication as a normal certificate
does but also contains information to drive authorization decisions, allowing all busi-
ness entities to be virtually connected. Because an EBP is digitally signed by the
ECA’s private key, it can be verified by the ECA’s public key and no one can tamper
with the data in the EBP, also, as the public key of the particular business entity has
been signed in the EBP, the sender of the EBP can be easily authenticated. This en-
sures an EBP can not be forged and as long as the ECA is trusted, the information
inside the EBP is trustworthy. An EBP will expire after a certain time to provide bet-
ter trust and security and it is also renewable.

2.5 ECA and Service Providers

The ECA also allows service providers to register their services into a central registry
to overcome some shortcomings in UDDI such as lack of access control and trustwor-
thy service discovery [3] [4].

The service provider applies for an EBP based on relevant WSBP as Fig.1 Step 1
and 2 indicate. If the provided documents are qualified, the ECA will issue an EBP to
the service provider (Fig.1 Step 3), and register this service provider’s service into the
central registry along with their EBP and all other necessary information such as
WSDL (Fig.1 Step 4). If the EBP expires; the service will be removed from the cen-
tral registry automatically to keep the registry a store of more current service informa-
tion. A service provider can renew the EBP to prevent its expiration.

In current UDDI, there is no effective way to decide which service is reliable and
trustworthy. For our architecture, only trusted services can be registered in the central
registry and no longer certified and trusted services are removed immediately, allow-
ing the central registry to always maintain fresh and trusted services.

3 Unified Authentication and Authorization

EBP is the key enabler to apply provider-side rules to achieve dynamic authorization
as it carries with it certified WSBP criteria about the requestor business. However, as
when a requestor carries out a transaction with a service provider, certain sensitive
information may be passed in service requests, the service requestor also needs to
determine whether they wish to invoke services from a particular provider. This can
be achieved by requestor-side rules (Fig. 1 Step 5). The service requestor can check

586 R. Steele and W. Tao

the provider’s EBP at service discovery time and pass the provide EBP through the
requestor-side rule engine. The risk in the requestor-side has been greatly decreased
by pre-checking the providers’ EBP. The SOAP request will only be made when the
requestor finds the provider which meets the service requestor’s requirements.

If the service requestor decides to conduct the transaction with a particular service
provider, the service requestor will send its EBP to the provider in the SOAP header,
as Fig.1 Step 6 indicates. After receiving the EBP, the service provider uses the
ECA’s public key to verify the EBP, the public key of the requestor inside the EBP to
verify the sender and all other WSBP related information for determination of what
privileges to grant. If the EBP is valid, the provider-side rule engine parses the XML
document and the service requestor will be granted appropriate roles or be rejected
automatically, depending on the provider’s rules (Fig. 1 Step 7). After finishing the
processing, the rule engine generates the highly secured tokens for maintaining the
session with the requestor, encrypts the information by the requestor’s public key,
puts the encrypted information into the SOAP header and sends it back to the service
requestor. Fig. 3 provides an example of simple pseudo-code to demonstrate provider-
sides rules and how a mapping from WSBP criteria contained in the EBP to roles
might work. The important point is that every service-provider will have its own spe-
cific implementation and provider-specific roles, and the implementation and roles are
totally de-coupled from the service requestor. As such the service requestor does not
need to know how the service provider implements its EBP rule mapping, and the
rules can be very complex to meet real business requirements.

if (credit > 8)
 addRoles(requestor,GOLD)
else (credit between {5 to 8} && city==MY_CITY)
 addRoles(requestor,GOLD)
else
 addRoles(requestor,SILVER)

Fig. 3. Potential rules for mapping from WSBP criteria contained in an EBP to access roles

To accelerate the procedure of conducting real time business, service requestors are
supposed to be recognized globally by only presenting their EBP. However, in the
complexity of real world business transactions, exceptions will always occur. So in
our architecture, the current user-ID and password based RBAC system still can be
used to catch these exceptions. When the transaction can not simply use the EBP to
allocate privileges, the service requestor can still be assigned the user-ID and pass-
word to get privileges manually. So the architecture will not lose any flexibility by
adding the new functionalities described.

4 Related Work

There are already many standards and research activities for enhancing the security
aspects in Web Services. All the standards, WS-Trust, WS-Federation, Shibboleth,
SAML etc still build on the assumed token model, i.e. that the possible values inside

 An Architecture for Unifying Web Services Authentication and Authorization 587

the claim of a security token are not standardized or enumerated. To overcome this,
we have proposed WSBP as a standard for even the possible “wording” of claims in
our tokens, which is the EBP. This allows rules to be designed for a service in ad-
vance, referencing standard WSBP terms. Such rules can be applied to even previ-
ously unknown clients.

Smart certificates [2], is the closest research work to our proposed architecture, as
it extends X.509 certificate for enabling flexible RBAC for web servers. However, as
this work does not entail the proposal of a standard for the certificate contents, it
doesn’t enable the type of dynamic e-Business we are addressing and this work has
not been extended into the Web Services domain.

5 Conclusion

The architecture utilizes and extends the digital certificate concept to introduce the
idea of an e-Business Passport and a unified business policy to enable fine grained
authorization for any business transaction partners where the service requestor and
service provider do not necessarily need any previous negotiations before transaction.
Also, it greatly enhances the trustworthiness in service look up, both for service re-
questors and service providers. The architecture can be used to boost trustworthiness
in global dynamic e-Business. Our current ongoing research work includes finalizing
a complete WSBP-C schema and implementing a prototype system.

References

1. Ciganek, A. P., Haines, M. N. & Haseman W.D.: Challenges of Adopting Web Services:
Experiences from the Financial Industry, Proceedings of the 38th Annual Hawaii Interna-
tional Conference on System Sciences (2005)

2. Park, J.S. & Sandhu, R.S.: RBAC on the Web by Smart Certificates, Proceedings of the
fourth ACM workshop on Role-based access control (1999) 1-9

3. Steele, R., Dai, J., UDDI Access Control for the Extended Enterprise: Proceedings of the
International Conference on Web Information Systems and Technologies(2005)

4. Yang, S.J.H., Hsieh, J.S.F., Lan, B.C.W & Chung, J.Y,: Composition and evaluation of
trustworthy Web Services, Proceedings of the IEEE EEE05 international workshop on Busi-
ness services networks(2005)

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 588 – 593, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Specifying Web Service Compositions on the Basis of
Natural Language Requests

Alessio Bosca1, Giuseppe Valetto2, Roberta Maglione2, and Fulvio Corno1

1 Politecnico di Torino, Torino, Italy
{alessio.bosca, fulvio.corno}@polito.it

2 Telecom Italia Lab, Torino, Italy
{roberta.maglione, giuseppe.valetto}@tilab.com

Abstract. The introduction of the Semantic Web techniques in Service-oriented
Architectures enables explicit representation and reasoning about semantically
rich descriptions of service operations. Those techniques hold promise for the
automated discovery, selection, composition and binding of services. This paper
describes an approach to derive formal specifications of Web Service composi-
tions on the basis of the interpretation of informal user requests expressed in
(controlled) Natural Language. Our approach leverages the semantic and onto-
logical description of a portfolio of known service operations (called Semantic
Service Catalog).

1 Introduction

The recent introduction of Semantic Web [1] ideas and results in the field of service-
oriented computing has originated a vision of Semantic Web Services [6, 7], founded
on machine understandability of the nature of operations made available as Web Ser-
vices. The linguistic and ontological means for representing the properties and the ca-
pabilities of Web Services, and thus enhancing the ability to reason about the tasks
they perform, seem particularly appealing for the support, based on operation seman-
tics, of highly dynamic service selection and composition, which is an important goal
of the Web Service paradigm. A major outstanding challenge to reach that goal is how
to map the requirements describing a complex, composite service-oriented application
(sometimes called a Value-Added Service, or VAS) to a multiplicity of simple,
atomic Web Service operations, as well as to an overall service logic that coordinates
their interactions.

We present an approach for the automatic generation of a high-level VAS specifi-
cation (Abstract Composition in the remainder) on user demand, that is, starting from
informal user requests. Our approach leverages semantic information about the opera-
tions exposed by a portfolio of Web Services and targets simple requests that can be
expressed in (restricted) Natural Language, covering a range of workflows that can be
modeled according to a set of modular logic templates. The Abstract Composition
generated from the interpretation of a user request can be translated into an executable
flow, and maps the user needs and intentions – as inferred from the original request -
to known Web Service operations that can satisfy them, in a “task-oriented” way [5].

 Specifying Web Service Compositions on the Basis of Natural Language Requests 589

We employ OWL-S annotations to provide a formal representation of service and
operation semantics, as well as a classification of the Web Services in the portfolio.

2 Approach Overview

Our approach for the specification of service compositions at run-time has two start-
ing points: the user request, which is processed and interpreted on the fly, to elicit
functional requirements as well as a high-level view of the composition logic implied
in the request; and a repertoire of well-known services that are described by rich se-
mantic meta-data. Those two elements are, respectively, the Request Interpreter and
the Service Catalog, displayed in Figure 1 together with other elements of our
prototype.

This technique follows from two major assumptions: user requests are relatively
simple and concise, in structure and terminology, to be expressed with a controlled
subset of natural language; furthermore, a common ontological vocabulary can be es-
tablished, and is consistently applied to all entries in the Service Catalog. While the
latter assumption is unfeasible in a context, in which Web Services over the Internet
at large and owned by multiple parties should be summoned in response to the user
request, it seems reasonable and manageable in the context of a limited set of Web
Services that are kept under the control of a single entity, like in the case of a provider
or operator that offers value-added services to its customer base.

Fig. 1. System overview

Besides being used for the annotation of Web Services included in the Catalog, we
exploit OWL-S also in the Request Interpreter, to support NLP techniques and our
approach also includes mechanisms to transform that abstract service specification
into a concrete one: the Service Generator. Although, functionally speaking, the role
of the Service Generator – as shown in figure 1 – is simply to translate Abstract Com-
positions into a notation that can be executed over a service-oriented runtime of
choice, its task is multifold and its structure complex, therefore a complete discussion
of our solution, detailing its internal architecture, mechanisms and algorithms is not
feasible here due to space limitations, and is outside the scope of this paper.

Request
Interpreter

Service
Generator

Semantic
Service
Catalog

Natural
Language
Request

Abstract Composition

Knowled
ge Base

Executable
Service

590 A. Bosca et al.

3 A Semantic Service Catalog in OWL-S

OWL-S is a framework to describe services from several perspectives: more precisely
it characterizes services through a set of sub-ontologies. We have recognized the need
for models and algorithms to select services on the basis of semantic annotations
stored not only in their profile (as proposed for example in [2]), but also in their IO-
PEs (see [3, 4]). We also propose to exploit IOPEs as a means to drive composition.

In order to enable the selection of service operations that satisfy some user re-
quests or needs our modeling approach promotes the description of Effects in terms of
the computing task that is performed by each atomic operation exposed by each ser-
vice in our Catalog. To this end, we have implemented an ad hoc ontology called Ef-
fects (see bottom of Fig. 2). Additionally, we focus on I/O parameters semantics re-
ferring to a set of concepts collected in another ad hoc ontology called IOtypes. In
order to reason on inputs and outputs for the automatic, semantic-based composition
of operations, we extended the OWL-S model with a couple of bi-directional proper-
ties that allow us to link processes to their I/O parameters and parameter to processes
that can produce or consume them (see Fig. 2).

Place

owl:subClassOf

Parameter
cinema

Effect

Find

Send

Connect

Locate

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

Purchase
owl:subClassOf

owl:subClassOf FindShow

FindInformation

owl:subClassOf

AtomicProcess
findCinema

Parameter
city

Parameter
title

xowls:hasInput

xowls:actAsInput

xowls:hasInput

xowls:actAsInput

xowls:hasOutput

xowls:actAsOutput

FindInformation
FindCinema

process:hasEffect

rdf:type

Cinema Theatre

Entertainment
Education

Job-Work

IOTypes

xowls:hasSemanticType

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

Fig. 2. Atomic Process: findCinema

4 Request Interpreter

Starting from a user request expressed in Natural Language (NL) the Request Inter-
preter is in charge of decomposing the sentence in order to isolate expressions that

 Specifying Web Service Compositions on the Basis of Natural Language Requests 591

can be semantically associated to Effects listed in the Semantic Service Catalog, and
hence mapped onto specific service functionality provided by atomic operations. At
that end, the Request Interpreter translates the NL request into an Abstract Composi-
tion document, that is, a formal VAS specification. That specification includes a lat-
tice of logic templates, describing how they relate to and can be composed with each
other into the global VAS flow; moreover, it includes a list of Effects, which act as
generic, semantic placeholders for operations that must be invoked along that flow.

Rather than completely parsing the sentence and interpreting each single fragment,
we chose a simpler algorithmic approach that in a first step decomposes the request
into fragments according to a proper logic template (if then, while do, sequence..).
Then it leverages the dictionary in order to search for lexical patterns within the frag-
ments and consequently infer the user’s intention and eligible parameters.

4.1 An Instrument for Request Interpretation: The SSC Dictionary

As stated before, the dictionary contains lexical elements related to some entities
within OWL-S ontology and includes pure lexical resources (as lists of verbs or
preposition grouped by their role or meaning), as well as more complex ones, related
to the sentence structure and its verbal governance (the Sentence Constructions List
and the Recognizer Catalog).

The Sentence Constructions List is the main resource within the dictionary and it
models the distinct expressive ways through which it is possible to request a service
identified by a given Effect concept (see Fig. 2 for the relation between AtomicProc-
esses and Effects). For each Effect present in the SSC a set of thematic keywords and
a list of eligible constructions are reported, each construction specifying a group of
verbs and a set of parameters.

The Recognizer Catalog is the other key resource within the dictionary and models
the different information the system should be able to recognize as potential parame-
ters. It focuses on the different IOTypes present in the SSC and specifies for each of
them a set of features which enable the isolation and recognition of a given IOType
within a free text. Such features both concern how the data appears and which value
it holds; the recognition process in fact relies on data format, on the presence of a
keyword or on the candidate parameter’s occurrence within a given list.

4.2 The Request Interpretation Process

This section details the various phases of the interpretation process and describes how
it exploits the lexical resources within the dictionary.

The first operative step consists in recognizing the logic flow behind the request
and coupling it to one of the logic templates supported in the system (if then, if then
else, while do, sequence). A set of parsers properly tailored to the aforementioned
templates process the request by trying to validate it against their own sentence model
and if it matches, extract the distinct sentence blocks tagging them as conditions or
actions. The result of this phase thus consists in the identification of the logical tem-
plate and of the distinct clauses.

After this parsing procedure, we assume that different propositions have been iden-
tified and that each sentence block is constituted by only one clause with a principal

592 A. Bosca et al.

verb and a set of objects. The following steps (2, 3 in Fig. 3) consist then in the inter-
pretation of any individual action or condition retrieved in the precedent phase.

The presence within the clause of a thematic keyword (recorded in the dictionary)
provides hints about the user’s intention and focuses the algorithm’s attention on a set
of services, considered as potential solutions and therefore inserted into a list of eligi-
ble Effects. By taking in exam the advices contained in the Sentence Constructions
List, the system guesses the information to look for and if a suitable verbal form is
found, a search is triggered over the sentence block for values that fit the parameters
reported in the dictionary. A proper recognizer is thus tuned according both to the
functional features reported in the parameters’ description (as the introductive prepo-
sitions) and to the semantic ones reported in the correspondent IOType element of the
dictionary, and it accordingly tries to identify a block of text as eligible information.

Fig. 3. Request Interpretation

If the functional information about where we expect to find the parameter and its
“appearance” (the format of the data) are both verified as well as the semantic coun-
tercheck (the presence of a proper keyword in the same sentence chunk or the occur-
rence of the data in a list of known values), then a strong “found” is triggered, other-
wise, a weak one. Once all eligible parameter values are found, the textual fragments
identified as weak founds are evaluated in order to be promoted or rejected.

The analysis of each sentence block generates an Interpreted Sentence reporting
the Effect id, the verbal form found, the list of the recognized parameters and the
conditional expression, if present. These Interpreted Sentences are gathered into a
list of candidate solutions and processed by a selection algorithm that constitutes
the final step (phase 4) of the Request Interpretation. The algorithm works under the
hypothesis that an interpretation holding more information should constitute a better
solution, thus it simply assigns a score to the Interpreted Sentences for each element
found (verbs, parameters, conditions) and then selects the ones with the highest
rank.

The structural information concerning the logical flow of the request, retrieved
from the template parsing (phase 1), and the distinct Interpreted Sentences, obtained
in the followings (phases 2-4), are then unified into an AbstractComposition docu-
ment.

Select by
Keywords
presence

Search for Verbs,
Parameters &
Conditions

Dictionary

Weight & Se-
lection Algo-
rithm

Request Interpretation

32

Template Parsing List of eligi-
ble Effects 1

4

List of candidate In-
terpreted SentencesSentence

Blocks

 Specifying Web Service Compositions on the Basis of Natural Language Requests 593

5 Conclusions

We presented an approach that allows the specification of Web Services Composi-
tions starting from user requests expressed in Natural Language. This paper shows
how, under the assumptions stated in Section 2, it is possible to establish a synergy
between the semantic service descriptions and the interpretation of user requests
through a common ontology and consistent vocabulary. We have presently deployed a
prototypal version of the system, provided with a semantic Service Catalog in OWL-
S, comprising several tenths entries, and with a limited set of logic templates able to
capture a range of simple workflow constructs. Our preliminary experiments with the
system are encouraging, since they already enable to express and synthesize signifi-
cant service compositions on demand.

We are currently working to expand the Service Catalog with a wealth of informa-
tion, communication and e-commerce services in order to constitute a wider source of
information, thus increasing the stress and the overall noise in the recognizing and se-
lection procedures. At the same time, we are developing a test set of user requests that
focus on our SSC servicing scope, in order to establish a validation resource for prov-
ing and tuning the algorithm.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific American,
2001, 284(5): 34–43.

2. D. Mandell, and S. McIlraith, “Adapting BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation”, Proceedings of the Second International Seman-
tic Web Conference, 2003.

3. K. Sivashanmugam, K. Verna, A. Sheth and J. Miller, Adding Semantics to Web Services
Standards, Proceedings of the International Conference on Web Services, 2003.

4. E. Sirin, B. Parsia, and J. Hendler, Composition-driven filtering and selection of semantic
web services, AAAI Spring Symposium on Semantic Web Services, 2004.

5. Y. Ye and G. Fisher. Supporting Reuse by Delivering Task-Relevant and Personalized In-
formation, Proceedings of the 24th International Conference on Software Engineering,
2002.

6. DAML-S, “Semantic Wes Services”, http://www.daml.org/services/.
7. WSMO, “Web Services Modeling Ontology”, http://www.wsmo.org/.

Author Index

Abbadi, Amr El 157
Abe, Mari 539
Acharya, Manoj 437
Agrawal, Divyakant 157
Aiello, Marco 424
Altunay, M. 382
Álvarez, P. 185

Bañares, J.A. 185
Barbon, Fabio 495
Baresi, Luciano 269, 478
Benbernou, Salima 353
Berardi, Daniela 520
Bertoli, Piergiorgio 495
Boote, Jeff W. 241
Bosca, Alessio 588
Bosloper, Ivor 255
Boyd, Eric L. 241
Breutel, Stephan 484
Brogi, Antonio 214
Brown, D. 382
Bruno, Marcello 87
Buchmann, Alejandro 533
Busi, Nadia 228
Byrd, G. 382

Calabrese, Gaetano 495
Calvanese, Diego 520
Canfora, Gerardo 87
Cardozo, Eleri 465
Chafle, Girish 410
Chandra, Sunil 410
Chandramouli, Badrish 366
Christie, Marcus 21
Colombo, Enzo 198
Colombo, Massimiliano 48
Cooney, Dominic 508
Corno, Fulvio 588
Cozzi, Alex 558
Curbera, Francisco 33

Dan, Asit 283, 296, 570
Dean, R. 382
De Giacomo, Giuseppe 520
de Souza, Victor A.S.M. 465

Di Nitto, Elisabetta 48
Di Penta, Massimiliano 48, 87
Distante, Damiano 48
Donsez, Didier 552

508Dumas, Marlon 484
Durán, Amador 170
Durand, Jérôme 241

Eberhart, Andreas 514
Edmond, David 564
Elgedawy, Islam 115
Esfandiari, Babak 101
Esposito, Gianpiero 87
Ezpeleta, J. 185

Faltings, Boi 396
Fang, Liang 21
Ferguson, Donald 33
Frankova, Ganna 424

Gannon, Dennis 21
Gerede, Cagdas E. 157
Gibelin, Nicolas 527
Gimpel, Henner 283
Goble, Carole 341
Gomadam, Karthik 502
Gómez-Pérez, Asunción 341
González-Cabero, Rafael 341
Gorrieri, Roberto 228
Guidi, Claudio 228
Guinea, Sam 269, 478

Hacid, Mohand-Said 353
Hammer, Dieter 255
Han, Jun 73
Hanemann, Andreas 241
Hasselmeyer, Peer 144
He, Xiaojun 353
Holzhauser, Roland 324
Huang, Yi 21

Ibarra, Oscar 157
Ivanyukovich, Alexander 545

,

596 Author Index

Jeng, Jun Jang 539
Jensen, Scott 21
Jin, Yan 73
Jurca, Radu 396

Kandaswamy, Gopi 21
Kankar, Pankaj 410
Karastoyanova, Dimka 533
Kearney, Bob 283
Kemper, Alfons 324
Koyanagi, Teruo 539
Kudarimoti, Loukik 241
Kulkarni, Abhijit 437
Kuppili, Rajesh 437

Lalanda, Philippe 552
Lamparter, Steffen 514
�Lapacz, Roman 241
Lei, Hui 366
Leymann, Frank 12, 533
Li, Zheng 73
Lin, Kwei-Jay 130
Lucchese, Gigi 495
Lucchi, Roberto 228
Ludwig, Heiko 283
Luo, Yun 101

Maglione, Roberta 588
Makpangou, Mesaac 527
Malfatti, Daniela 424
Mani, Rohit 437
Mann, Vijay 410
Marchese, Maurizio 545
Margaria, Tiziana 450
Marin, Cristina 552
Marru, Suresh 21
Mart́ın-Dı́az, Octavio 170
Mazza, Valentina 87

Mecella, Massimo 520
Miller, John A. 490, 502
Moran, Thomas P. 558
More, Nitin 437
Müller, Carlos 170
Mylopoulos, John 198

Nally, Martin 33
Narayanan, Srinivas 437
Nijhuis, Jos 255

Oberle, Daniel 514
Orriens, Bart 61
O’Sullivan, Justin 564
Ouyang, Chun 484

Pallickara, Sangmi Lee 21
Papazoglou, Mike 61
Patel, Parthiv 437
Pelechano, Vicente 576
Pérez-Hernández, Maŕıa S. 341
Pistore, Marco 495
Plale, Beth 21
Popescu, Razvan 214

Ranganathan, Kavitha 296
Reitenspieß, Manfred 450
Roe, Paul 508
Rosu, Daniela 570
Ruiz-Cortés, Antonio 170
Ruiz, Marta 576

Sahin, Ozgur D. 157
Schuelke, Kenneth W. 437
Seltzsam, Stefan 324
Sheth, Amit P. 1, 490, 502
Shirasuna, Satoshi 21
Siljee, Johanneke 255
Simmhan, Yogesh 21
Slominski, Aleksander 21
Spoletini, Paola 198
Staab, Steffen 514
Steele, Robert 582
Steffen, Bernhard 450
Stockton, Marcia L. 33
Su, Jianwen 157
Subramanian, Subbu N. 437
Sun, Yiming 21
Swany, D. Martin 241

Tao, Will 582
Tari, Zahir 115
ter Hofstede, Arthur H.M. 484, 564
Thom, James A. 115
Trainotti, Michele 495
Traverso, Paolo 495
Trocha, Szymon 241

Valderas, Pedro 576
Valetto, Giuseppe 588
van der Aalst, Wil M.P. 484
Vasquez, Ivan 490

Maximilien, E. 558Michael

Author Index 597

Verbeek, Eric 484
Verma, Kunal 1, 490, 502

Weiss, Michael 101
Wu, Qing 310
Wu, Zhaohui 310

Yamamoto, Gaku 539
Yanchuk, Aliaksei 545

Yang, Jian 61
Yu, Tao 130

Zacco, Gabriele 495
Zavattaro, Gianluigi 228
Zeng, Liangzhao 366
Zuccalà, Maurilio 48
Zurawski, Jason 241

	Frontmatter
	Vision Papers
	Autonomic Web Processes
	The (Service) Bus: Services Penetrate Everyday Life
	Service Oriented Architectures for Science Gateways on Grid Systems

	Service Specification and Modelling
	Toward a Programming Model for Service-Oriented Computing
	Speaking a Common Language: A Conceptual Model for Describing Service-Oriented Systems
	A Rule Driven Approach for Developing Adaptive Service Oriented Business Collaboration

	Service Design and Validation
	Pattern-Based Specification and Validation of Web Services Interaction Properties
	Using Test Cases as Contract to Ensure Service Compliance Across Releases
	Towards a Classification of Web Service Feature Interactions

	Service Selection and Discovery
	A High-Level Functional Matching for Semantic Web Services
	Service Selection Algorithms for Composing Complex Services with Multiple QoS Constraints
	On Service Discovery Process Types
	SPiDeR: P2P-Based Web Service Discovery
	An Approach to Temporal-Aware Procurement of Web Services

	Service Composition and Aggregation
	Approaching Web Service Coordination and Composition by Means of Petri Nets. The Case of the Nets-Within-Nets Paradigm
	Modeling and Analyzing Context-Aware Composition of Services
	Towards Semi-automated Workflow-Based Aggregation of Web Services
	Choreography and Orchestration: A Synergic Approach for System Design

	Service Monitoring
	PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring
	DySOA: Making Service Systems Self-adaptive
	Towards Dynamic Monitoring of WS-BPEL Processes

	Service Management
	Template-Based Automated Service Provisioning -- Supporting the Agreement-Driven Service Life-Cycle
	Proactive Management of Service Instance Pools for Meeting Service Level Agreements
	Adaptive Component Management Service in ScudWare Middleware for Smart Vehicle Space

	Semantic Web and Grid Services
	Semantic Caching for Web Services
	ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services
	Implicit Service Calls in ActiveXML Through OWL-S
	Semantic Tuplespace

	Security, Exception Handling, and SLAs
	Trust-Based Secure Workflow Path Construction
	Reputation-Based Service Level Agreements for Web Services
	Handling Faults in Decentralized Orchestration of Composite Web Services
	What's in an Agreement?An Analysis and an Extension of WS-Agreement

	Industrial and Application Papers
	SOA in the Real World -- Experiences
	Service-Oriented Design: The Roots
	A Service Oriented Architecture for Deploying and Managing Network Services

	Demo Papers
	Dynamo: Dynamic Monitoring of WS-BPEL Processes
	WofBPEL: A Tool for Automated Analysis of BPEL Processes
	OpenWS-Transaction: Enabling Reliable Web Service Transactions
	ASTRO: Supporting Composition and Execution of Web Services
	Demonstrating Dynamic Configuration and Execution of Web Processes

	Short Papers
	Programming and Compiling Web Services in GPSL
	Semantic Management of Web Services
	Composition of Services with Nondeterministic Observable Behavior
	Efficient and Transparent Web-Services Selection
	An Approach to Parameterizing Web Service Flows
	Dynamic Policy Management on Business Performance Management Architecture
	A Lightweight Formal Framework for Service-Oriented Applications Design
	A MDE Approach for Power Distribution Service Development
	Semantic Web Services for Activity-Based Computing
	The Price of Services
	Managing End-to-End Lifecycle of Global Service Policies
	Applying a Web Engineering Method to Design Web Services
	An Architecture for Unifying Web Services Authentication and Authorization
	Specifying Web Service Compositions on the Basis of Natural Language Requests

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

