
Efficient Manipulation of Disequalities

During Dependence Analysis

Robert Seater and David Wonnacott

Haverford College, Haverford, PA 19041
davew@cs.haverford.edu

http://www.cs.haverford.edu/people/davew/index.html

Abstract. Constraint-based frameworks can provide a foundation for
efficient algorithms for analysis and transformation of regular scientific
programs. For example, we recently demonstrated that constraint-based
analysis of both memory- and value-based array dependences can often
be performed in polynomial time. Many of the cases that could not be
processed with our polynomial-time algorithm involved negated equality
constraints (also known as disequalities).

In this report, we review the sources of disequality constraints in ar-
ray dependence analysis and give an efficient algorithm for manipulating
certain disequality constraints. Our approach differs from previous work
in that it performs efficient satisfiability tests in the presence of disequal-
ities, rather than deferring satisfiability tests until more constraints are
available, performing a potentially exponential transformation, or ap-
proximating. We do not (yet) have an implementation of our algorithms,
or empirical verification that our test is either fast or useful, but we
do provide a polynomial time bound and give our reasons for optimism
regarding its applicability.

1 Introduction

Constraint-based frameworks can provide a foundation for efficient algorithms for
analysis and transformation of “regular scientific programs” (programs in which
the most significant calculations are performed on arrays with simple subscript
patterns, enclosed in nested loops). For example, the detection of memory-based
array data dependences is equivalent to testing the satisfiability of a conjunction
of constraints on integer variables. The individual constraints may be equalities
(such as i = j + 1), inequalities (such as 1 ≤ i ≤ N), and occasionally dise-
qualities (such as i �= j). (For a discussion of the Omega Test’s constraint-based
approach to both memory-based (aliasing) and value-based (dataflow) depen-
dence analysis, see [1,2].)

Satisfiability testing of a conjunction of inequality constraints on integer
variables (“integer linear programming”) is NP-complete [3], and value-based
dependence analysis introduces the further complexity of negative constraints.
One might not expect that the constraint-based approach to dependence analy-
sis could yield an efficient algorithm, but empirical tests (such as [1]) have found
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these techniques to be efficient in practice. We recently investigated the rea-
sons for this efficiency [2], and found that most constraints come from a simpler
domain for which polynomial-time satisfiability testing is possible.

While it is possible to construct an arbitrarily complicated integer linear
programming problem via memory-based dependence analysis [4], almost all of
the problems that arise are conjunctions of equality and inequality constraints
from the LI(2)-unit subdomain. An inequality constraint is said to be in the
LI(2) subdomain if it can be expressed in the form ai + bj + c ≥ 0. It is said to
be in LI(2)-unit if a, b ∈ {−1, 0, 1}. The existing Omega Library algorithms [5]
perform satisfiability testing of conjunctions of LI(2)-unit inequality and equality
constraints in polynomial time.

Negative constraints, even within the LI(2)-unit subdomain, can also cause
exponential behavior of the Omega Library. However, almost all of the conjunc-
tions of constraints that are negated during value-based dependence analysis are
so redundant (with respect to other constraints) that the Omega Test can re-
place them with a single inequality (for example, 1 ≤ i ≤ N ∧ ¬(i = 1 ∧ 1 ≤ N)
will be converted to 1 ≤ i ≤ N ∧ ¬(i ≤ 1), and then to 2 ≤ i ≤ N ). As long
as each negated conjunction can be replaced with a single inequality (and the
individual constraints are still LI(2)-unit), the Omega Test performs value-based
dependence testing in polynomial time.

Many of the cases that could not be processed with our polynomial-time
algorithm involved conjunctions of disequalities (negated equality constraints).
Disequalities can be produced by disequalities in if statements, by equality tests
in if-else statements, during the negation step of value-based analysis, or when
an uninterpreted function symbol is used to represent a non-linear term.

Disequalities can be converted into disjunctions of inequalities (α �= β ⇔
(α < β ∨ α > β)). However, when this is followed by conversion to disjunc-
tive normal form, the size of the problem increases exponentially. Lassez and
McAloon [6] observed that, for constraints on real variables, disequalities are
independent. That is, if no one disequality eliminates all solutions, there is no
way for a finite number of disequalities to add up and together make the system
unsatisfiable. Unfortunately, it is in general possible for disequalities to add up
for constraint systems with integer variables. We have developed an algorithm
to identify disequalities that cannot add up despite our use of integer variables.
We call such disequalities inert, and use the term ert for disequalities that can
add up. Satisfiability testing of r inert disequalities can be handled with 2r sat-
isfiability tests of conjunctions of inequalities, rather than the 2r needed for ert
disequalities.

This paper is organized as follows: Section 2 provides formal definitions of
inert and ert disequalities, and gives the (very simple) algorithm for satisfiability
testing. Section 3 gives our inertness test, and Section 4 discusses the impact it
would have on the data structures used in the Omega Library. Section 5 gives
the reasons why we believe the test would be useful during dependence analysis.
Section 6 discusses related work, and Section 7 presents our conclusions.
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2 Inert (and Ert) Disequality Constraints

From this point on, we consider satisfiability testing of a conjunction of m in-
equalities and k disequalities on n integer variables. In practice, we may manip-
ulate a mixture of equality, inequality, and disequality constraints, but we ignore
equalities here in the interest of simplicity (we could, in principle, convert each
equality into a conjunction of inequalities).

Any disequality constraint α �= β can be treated as a disjunction of in-
equalities (α < β ∨ α > β). However, a satisfiability test of a conjunction of m
inequalities and k disequalities using this approach involves 2k satisfiability tests
of conjunctions of m + k inequality constraints (after conversion to disjunctive
normal form).

Lassez and McAloon [6] observed that, for constraints on real variables, dis-
equalities are independent. That is, if no one disequality eliminates all solutions,
there is no way for a finite number of disequalities to add up and together make
the system unsatisfiable. Thus, satisfiability testing of a conjunction of m in-
equalities and k disequalities on real variables can be treated as 2k satisfiability
tests of m + 1 inequalities.

Unfortunately, disequality constraints on integer variables can add up. For
example, the three disequalities shown (as dashed lines) in Figure 1a together
eliminate all integer solutions in the grey region bounded by the three inequal-
ities (solid lines). In Figure 1b, a collection of four disequalities parallel to the
bounding inequalities could eliminate all integer solutions. However, no finite
set of disequalities can add up to eliminate all integer solutions in Figure 1c,
and disequalities that are not parallel to the bounding inequalities cannot be
important in eliminating all integer solutions in Figure 1b. Thus, the opportu-
nity for disequalities to add up depends on the nature of the inequalities and
disequalities.

c) All Disequalities must be Inerta) No Disequalities can be Inert b) Some Disequalities are Inert

Fig. 1. Inertness of Disequalities on Integer Variables
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We therefore give the following definitions:

Given a feasible conjunction of inequalities C and relevant disequality d,

We say d is inert in C if, for any finite conjunction of disequalities D,
C ∧ d ∧ D is satisfiable ⇔ both C ∧ d and C ∧ D are satisfiable.

Otherwise, we say that d is ert in C.

Note that inertness is not defined when C is infeasible or d is not relevant
(in the sense used by Lassez and McAloon [6], i.e. d is relevant if C ∧ ¬d is
satisfiable). Our algorithm for satisfiability testing of a conjunction of inequality
and disequality constraints follows immediately from this definition:

1. Let C be the inequality constraints and D the disequalities.
2. Test C for satisfiability. If C is unsatisfiable, C ∧ D must be unsatisfiable,

so return false.
3. Optionally, test each d ∈ D for relevance (by testing satisfiability of C∧¬d),

and discard irrelevant disequalities. Note that irrelevant disequalities may
be treated as either inert or ert without affecting the result.

4. Test each d ∈ D for inertness.
5. For each inert disequality i ∈ D, test the satisfiability of C ∧ i. If C ∧ i is

unsatisfiable, C ∧ D must be unsatisfiable, so return false.
6. Let E be the conjunction of all ert disequalities in D. Test C ∧ E for satis-

fiability by treating each e ∈ E as a disjunction of inequalities. Return the
result of this test (if D contains no ert disequalities, return true).

Thus, if we can perform polynomial-time tests for (a) the inertness of a
disequality (in Step 4), and (b) the satisfiability of a conjunction of inequalities
(in Steps 2, 3, and 5), the overall algorithm is polynomial in the number of
inequalities and inert disequalities. The test is still exponential in the presence
of ert disequalities (due to Step 6), but we will have reduced the exponent:
for i inert disequalities and e ert disequalities, the number of satisfiability tests
of conjunctions of inequalities is 2i + 2e rather than 2i+e. Since our existing
polynomial-time test requires constraints from LI(2)-unit subdomain, we seek a
quick test for inertness within this domain.

Our algorithm for testing inertness is made of two tests that formalize, and
generalize for higher dimensions, two insights that are evident from Figure 1.
The “closure test” is based on the observation that all disequalities are inert if
the set of inequalities is “closed”, as in Figure 1a. The “parallel test” finds cases
in which parallel inequalities bound an open prism, as in Figure 1b; in this case
disequalities that are parallel to the boundaries are ert.

Note that there may be other approaches to polynomial-time satisfiability
testing for systems of constraints in the LI(2)-unit subdomain, but our approach
follows the philosophy of the Omega Test: produce an algorithm that is effi-
cient in the common cases, but general enough to handle the full logic. This
lets us apply a single algorithm to fully LI(2)-unit systems, systems with a few
constraints that are slightly more complex, or arbitrarily complex systems of
constraints (the last of which may, of course, require unacceptable amounts of
memory or time).
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3 A Complete Inertness Test for LI(2) Constraints

In this Section we describe a general algorithm for determining inertness of an
LI(2) disequality d in a conjunction of m LI(2) inequalities C on n variables. We
assume that C is known to have at least on integer solution.

We begin, in Subsection 3.1, by stating a theorem about inertness and out-
lining an informal proof (so far, our attempts at a full proof have clearly been
beyond the scope of this paper). In Subsection 3.2, we give a motivation for
the Closure Test and an intuitive understanding of how and why it works. In
Subsection 3.3 we give detailed pseudocode for the algorithm. In Subsection 3.4,
we give and prove upper bounds for the time complexity and space complexity
of the algorithm. In Subsection 3.5, we prove the accuracy of the closure test
algorithm. In Subsection 3.6, we describe the Parallel Test which covers some
additional cases which are not accounted for by the closure test. These two tests
are the key components to the algorithm to determine inertness. In fact, the
proof of correctness (given in 3.7) is just a proof that those tests are sufficient
to completely determine inertness.

3.1 Inertness and Non-parallel Rays

Inertness testing can be viewed as the search for rays contained in C that are
not parallel to the hyperplane defined by ¬d.

Theorem 1. Given C, a feasible conjunction of inequalities with integer (or
rational) coefficients, and d, a disequality relevant to C, d is inert in C iff ∀ rays
r ⊆ sol(C), r ‖ d.

If all rays contained in C are parallel to d, C must be either closed or open
in a direction parallel to d, and d is ert in C (recall Figure 1a and the slanted
disequalities in Figure 1b).

If C contains a ray r that is not parallel to d, d must be inert in C: Since C is
convex, any ray parallel to r with an origin within C contains only points in C.
Consider the set of rays R that are parallel to r and originate from the integer
solutions to C ∧ ¬d. Each ray in R must contain an infinite number of integer
points in C (assuming that r is defined, like all our constraints, with integer
coefficients). For d to be ert when C ∧ d is satisfiable (which must be the case if
C contains a ray not parallel to d), there must be some set of disequalities D for
which C ∧ d ∧D is unsatisfiable and C ∧D is satisfiable. C ∧ d ∧D can only be
unsatisfiable if every integer solution in C, including those on R, is eliminated by
some disequality. Since each ray Ri in R contains an infinite number of integer
points, there must be at least one disequality in (D ∧ d) that eliminates all the
points in Ri. Since d �‖ r, d cannot eliminate any Ri, and D eliminates all points
in R, including all integer solutions to C∧¬d. Thus, C∧D must be unsatisfiable,
and d cannot be ert in C.
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3.2 Closure Test: Overview and Motivation

The Closure Test determines whether or not each of the variables in d is bounded
both above and below. To determine whether or not a variable v is bounded
above, we could compute the transitive closure of the “upper bound” relation
among the variables (and a single node representing constants). That is, y is an
upper bound of x if there exists a constraint ax ≤ by + c). x is bounded above iff
it has a path to the constant node or to both y and −y for some variable y. Recall
that in LI(2), there are no bounds of the form ax ≤ by + dz + c. We actually use
a “sloppy” variation on transitive closure that only guarantees accurate bound
on the variables in d, to gain a slight reduction in complexity.

It may be tempting to think of determining the boundedness of each variable
as equivalent to determining boundedness of C, but that is not the case, and the
distinction is important. Any closed region can be trivially made to be open by
adding an irrelevant variable which is not mentioned in any of the constraints.
For instance, adding z ≥ 0 to C, where z is not mentioned anywhere else in C,
will make C open even if it was closed beforehand. However, as far as inertness
is concerned, we don’t care about the irrelevant variables. This is because d will
be extruded infinitely far (without being bounded by C) along each of those
variables. Therefore, any ray which “escapes” only along irrelevant variables
is necessarily parallel to d. Recall that rays parallel to d do not give us any
information about the inertness of d, and that we are only concerned with the
existence of non-parallel escaping rays. For these reasons, it is very important
that our test treat regions which are only open along irrelevant variables as
being closed. In summary, we really want to determine the boundedness of the
variables of C which are relevant to d.

3.3 Closure Test: The Algorithm

In this section, we describe the actual algorithm for performing a closure test on
a set of variables (namely those in d).

For each variable x in d, we will determine if x is bounded above and if
−x is bounded above. Since the lower bound of x ∈ d is the same as the
upper bound of −x, we will determine both upper and lower bounds of each
variable. However, framing the question entirely as upper bounds will make
the algorithm more readable and will make storing and retrieving the informa-
tion easier.

We will need the following additional storage space to run the algorithm:

a boolean array of length n, recording if a variable has been reached or not.
a boolean table of indirect upper bounds

one row per variable and per negative of each variable
one column per variable and per negative of each variable
one “constant bound” column
one “modified” column
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Pseudocode for the algorithm is as follows:

Indirect_Bound(integer x)
mark x as ‘‘reached’’ // prevent infinite recursion
look at all upper bounds on x and set the appropriate

column in the row for x to true
set the ‘‘modified’’ column for x iff any columns were set
if no constant bound and no +y/-y pair is checked for x
foreach single variable bound on x which is not ‘‘reached’’
call this Indirect_Bound recursively on it
set (to true) the column for each variable returned

// note that there are no multi-variable bounds in LI(2)
return the list of bounds on x (the true entries in x’s row)

We run this algorithm on each variable in d, and on the negative of each
variable in d. After doing so, we need to do some post-processing:

(1) If any variables in d are entirely unbounded (0 entries in the “modified”
column), the the region is unbounded. Otherwise, run the next test.

(2) For each variable in d, check to see if it is either bounded by a constant or
bounded by y and −y for some variable y. If each variable is bounded in this
manner, then the region is bounded. Otherwise, the region is bounded.

Interpret the results of the algorithm as follows:

If the region is bounded, the d is ert.
If the region is unbounded, then d might still be ert, so we run the Parallel
test.

If we were not working over the LI(2) (or LI(2)-unit) domain, then there
would also be the possibility of a multiple variable bound.

3.4 Closure Test: Time Complexity

Pre-processing and initializing the table will take O(n2) time.
Post-processing takes O(m) in order to scan the relevant entries in the table,

since the density of the constraints is bounded to 2.
Naively examined, the recursive function will take O(m2n) time, however

amortized analysis reveals that the test actually takes O(mn) time. That is, by
recording our progress in the table, we save a linear amount of time by consulting
the table instead of re-deriving some of the information.

The functions is called at most once on each of the n variables. At each call,
each of the (up to m) upper bounds has to be examined. Each of those might
return as many as m upper bounds which have to be merged with the existing
upper bounds. However, the total number of upper bounds is at most m, since
each equation only provides one bound on x. The algorithm takes advantage of
this fact by not returning previously visited bounds, and thus the total amount
of work spent on returning upper bounds in O(m). Thus, the total amount of
work done over all n recursive calls is O(nm). Consequently, the overall time
complexity is O(n2 + mn).
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3.5 Closure Test: Accuracy

Recall that the quadratic time complexity is achieved because we don’t return
upper bounds which have already been encountered. However, this means that
the bound in question has already been returned to the original variable we are
testing, so it is already accounted for. Of course, the upper bounds recorded in
the table may be incomplete for the variables which don’t appear in d, but we
still get accurate information on the variables in d.

Intuition If is x is eventually bounded by y and −y, then we can use back
substitution to create two constraints of the form

x + y + c1 ≥ 0
x − y + c1 ≤ 0

Solving for the intersection of those two lines gives us a (constant) bound on x
(although not necessarily a tight one).

3.6 The Parallel Test

The Parallel Test is based on the fact that if there are two parallel inequalities,
one on each side of d, then d will not be inert. For some disequality of the form

a1x1 + ... + anxn �= c0

we look for a pair of inequalities of the form

a1x1 + ... + anxn ≤ c1,
a1x1 + ... + anxn ≥ c2

with c2 ≤ c0 ≤ c1. If such constraints are present in C, then d is ert in C.
The Omega Library uses a hash table to facilitate identification of parallel

constraints, so this test should take constant time. Even without this hash table,
it would only take O(m) time to scan the m constraints.

Note that outside of the LI(2) subdomain, it is possible to have a case in
which d is contained in a “prism” with sides that are not parallel to d. Thus
our parallel test is not sufficient to identify all ert disequalities if C includes
constraints outside of this subdomain.

3.7 Combining the Two Tests

In this section, we bring together the closure and parallel tests to create a single
tests which will completely determine inertness.

Conjecture: Let d and C be LI(2) (or LI(2)-unit). If d is ert in C, then either
the closure test or the parallel test will identify it as such. If d is inert, then
neither the Closure Test nor the Parallel test will identify it as ert.

That is, the Closure and Parallel tests completely determine inertness. We
will validate this conjecture by proving the following theorem.
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Definition: Consider a hyperplane (in our case d) and a conjunction of linear
constraints C. Let r be a ray which originates on d. If r is completely contained
within C but does not intersect the boundary of C, then r is said to escape C
from d.

For the following theorem and proof, we will use ”d” to denote the hyperplane
defined by the negation of the disequality d.

Theorem 2. If there are not two non-redundant constraints parallel to d and
there exists some ray r such that

(a) r is not bounded by C,
(b) the initial point of r satisfies C and lies on d, and
(c) r ‖ d,

then there must exist a ray r′ such that

(a) r is not bounded by C,
(b) the initial point of r satisfies C but not d, and
(c) r �‖ d.

Remark: The theorem exactly says that d is inert in C only if both tests fail to
return “ert”. Proving this theorem will also validate the completeness conjecture.

Proof: Since there are not two constraints parallel to d, at least one of the two
half spaces defined by d doesn’t contain a constraint parallel to d. Consider that
half space (or one of them if both fit the criteria). By “down” we will mean
directly towards d and by “up” we will mean directly (perpendicularly) away
from d. Angles will be implicitly measured from the plane d “upwards”.

We will prove that, if all non-parallel rays are blocked by C, then all rays
are blocked by C. Thus we will have proven the converse of the theorem and the
theorem will follow.

By assumption, there must be some ray, r′, which is

(1) parallel to d, and
(2) has initial point on d and within the bounds of C
(3) which is not bounded by C.

If not, then we will construct a valid r′ with the following algorithm, begin-
ning it with n = 0.

Algorithm: We are given a ray rn. If it is not bounded by C, then stop. We
have found a valid r′. If so, then there are three ways for rn to be bounded by
(intersect with) a constraint in C.

(a) A constraint that is parallel to d.
(b) A constraint c such that rn points into d. That is, the angle of rn up from

the projection of rn onto d is positive.
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(c) A constraint c such that rn does not point into d. That is, the angle of rn

up from the projection of rn onto d is negative.

The Theorem gives us that (a) is not the case.
If (c) is the case then that constraint must also block rp. This result is a

contradiction with our assumption that rp is not blocked by C and thus cannot
occur.

If (b) is the case, then consider a new ray, rn+1, of smaller angle, which is
not blocked by the same constraint. Run the algorithm on this new ray. Since
there are only a finite number of constraints in C, then eventually a ray will be
produced which is blocked by one of the other two cases. Since we are given that
case(a) does not occur, we know that eventually we will produce a ray which is
not bounded by C.

Consequently, if both the Parallel Test and the Closure Test do not return
“ert”, then a non-parallel ray must escape – making d inert in C.

3.8 Generalizations

The algorithms above work when all inequalities and disequalities are in the
LI(2) subdomain. If a formula contains a small number of disequalities outside
of this subdomain, we can safely (if expensively) treat them as ert. However,
if a formula contains one non-LI(2) inequality, we must (in the absence of an
inertness test) treat all disequalities as ert.

We are currently investigating extensions of our inertness test, focusing on the
use of linear programming techniques to perform a direct test for the existence
of a ray r that is not parallel to d: we simply determine if an objective function
that is perpendicular to d is unbounded. However, it is not clear that the overall
complexity of this approach can be made low enough to make it helpful in
dependence testing.

We could also try to identify the extreme rays of C, and then determine
whether or not any of them are not parallel to d. However, if a system has many
extreme rays and few disequalities, this might prove to be much slower than our
approach.

It is also worth noting that any disequality that contains a variable that does
not appear in any inequality (or equality) constraint can trivially be satisfied (es-
sentially by treating the disequality as an equality, solving for the new variable,
and then setting it to some other value).

4 The Representation of “Simplified” Relations

As the Omega Test and Omega Library [5] served as the foundation for our prior
work on polynomial time array dependence analysis, it is the obvious framework
for implementation of the algorithms presented here. Such an implementation
would involve major modifications to the Omega Library’s core data structures.
The library is designed to transform relations defined by arbitrary Presburger
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Formulas [7], possibly with certain uses of uninterpreted function symbols [8],
into a “simplified form”. This transformation happens automatically during sat-
isfiability testing and at other times; it prevents redundant analysis, and thus
presumably provides a great speed advantage over a system that evaluates every
query based on an unsimplified relation.

The simplified form is a variant of disjunctive normal form in which indi-
vidual “conjuncts” (conjunctions of equality and inequality constraints, possibly
with local existentially quantified variables) are connected by disjunction (∨).
Depending on the query performed, this simplified form may or may not include
redundant conjuncts, equalities, or inequalities.

Note that simplification may not always be beneficial, and deferring it to
the proper point is an important strategy for getting good performance from
the Omega Library. For example, consider queries for value-based dependence
analysis, which have the form C0 ∧ ¬C1 ∧ ¬C2 ∧ ... ∧ ¬CN , where the Ci’s are
conjuncts. The Omega Library uses information in C0 to reduce the cost of
negating the other conjuncts. If we were to simplify each negated conjunct and
then combine the results with ∧, the cost would be dramatically higher for many
cases (see [1] for details).

Even if our polynomial-time disequality algorithm has proven that a system
of constraints is satisfiable, converting it into simplified form can increase its size
exponentially, since each non-redundant disequality will be converted into a dis-
junction. We could solve this problem by allowing disequality constraints within
the individual conjunct data structures. This approach would have benefits even
if all disequalities where ert: except in cases where redundancy is to be removed,
the Omega Library could stop testing for satisfiability as soon as it has proven a
relation is satisfiable. The current algorithms produce the entire disjunction and
then test each conjunct for satisfiability. This could provide some part of the
speedup shown under “privatization analysis” in [9, Table 13.2], but in a more
generally applicable context.

An equivalent approach would be to simply allow negated equality constraints
in simplified relations. This approach could be taken even further, to allow more
general negated constraints, or other formulas that cannot be handled efficiently
(or at all). The current Omega Library can (in principle) handle arbitrary Pres-
burger Formulas when it is not restricted to our provably polynomial subdo-
main. However, when faced with certain uses of uninterpreted function symbols,
or when restricted to provably polynomial cases, the Omega Library replaces
any set of constraints that it cannot handle with a special constraint identified
simply as unknown.

It might be possible to modify this algorithm to annotate each unknown with
the unsimplified formula that produced it, in case later manipulation of the re-
lation provides information that lets the library handle the offending constraint.
However, without extensive empirical testing, it is hard to know whether the
overhead involved in this approach would be worthwhile.

The above changes have the potential to improve the accuracy, speed, and
ease of use of the Omega Library, since polynomial-time simplifications could
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be performed early without causing a decrease in later accuracy (this approach
would also make the efficiency less sensitive to the timing of simplifications).

5 Implementation Status and Future Work

We do not currently have an implementation of our algorithms, and thus we do
not have empirical verification that they are either fast or effective in practice.
Given the nature of the changes discussed in the previous section, we do not
expect to have an implementation any time soon.

However, we do have reason to hope that our algorithms will be applicable
during dependence analysis. Our studies of the constraints that arise in practice
[1,2] suggest that disequalities often involve loop index variables used in if
statements or in subscripts. For programs with scalable parallelism, some or all
loops are bounded by symbolic constants (typically program parameters), which
are not themselves bounded above. In this case, we expect the disequalities to
be inert. When all disequalities are inert and the constraints obey the other
conditions given in [2], memory- and value-based dependence testing can be
done in polynomial time.

Before undertaking any implementation effort, we plan to investigate algo-
rithms for projection and gist in the presence of disequalities. It may be the case
that some of the insights of Imbert [10] can be combined with our definition of
inertness in some useful way.

6 Related Work

Most other work on handling negated constraints during dependence analysis
focuses on producing approximate results or deferring satisfiability tests until
more constraints are available. The Omega Library’s negation algorithms [11,9]
and the algorithms for manipulating “Guarded Array Regions With Disjunction”
(GARWD’s) in the Panorama compiler [12] are examples of the deferral approach
(the proposals at the end of Section 4 were directly inspired by the GARWD
algorithms). The drawback with deferring negation is, of course, that we will be
forced to choose some other approach if we do not get any helpful constraints
before we must answer a satisfiability query.

Our work with identifying inert disequalities complements this approach,
and there should be no problem with combining the two. When disequalities are
inert, they can be tested directly; when they are not, satisfiability testing should
be delayed as long as possible.

We do not know of any other work on polynomial-time satisfiability testing
of disequalities on integer variables. Our work on identifying inert disequalities
on integer variables was driven by a frustrated desire to apply the work of Lassez
and McAloon [6], which is relevant only to real (or rational) variables.
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7 Conclusions

Disequality constraints can cause exponential behavior during dependence analy-
sis, even when all constraints are in the otherwise polynomial LI(2)-unit domain.
We have developed a polynomial-time algorithm to identify certain inert dise-
qualities within this domain, in which case satisfiability testing is polynomial in
the number of inequalities and inert disequalities, but exponential in the number
of ert disequalities.

The integration of our algorithms into the Omega Library would require
a redefinition of the central data structure representing a “simplified” problem,
and would thus be a major undertaking. However, it might provide opportunities
for improving the speed and accuracy with which the Omega Test handles other
queries.
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