

Lecture Notes in Computer Science 2481
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Bill Pugh Chau-Wen Tseng (Eds.)

Languages and Compilers
for Parallel Computing

15th Workshop, LCPC 2002
College Park, MD, USA, July 25-27, 2002
Revised Papers

13

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Bill Pugh
Chau-Wen Tseng
University of Maryland, Department of Computer Science
College Park, MD 20814, USA
E-mail: {pugh, tseng}@cs.umd.edu

Library of Congress Control Number: 2005937164

CR Subject Classification (1998): D.3, D.1.3, F.1.2, B.2.1, C.2.4, C.2, E.1

ISSN 0302-9743
ISBN-10 3-540-30781-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30781-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11596110 06/3142 5 4 3 2 1 0

Preface

The 15th Workshop on Languages and Compilers for Parallel Computing was
held in July 2002 at the University of Maryland, College Park. It was jointly
sponsored by the Department of Computer Science at the University of Mary-
land and the University of Maryland Institute for Advanced Computer Studies
(UMIACS). LCPC 2002 brought together over 60 researchers from academia and
research institutions from many countries.

The program of 26 papers was selected from 32 submissions. Each paper
was reviewed by at least three Program Committee members and sometimes by
additional reviewers. Prior to the workshop, revised versions of accepted papers
were informally published on the workshop’s website and in a paper proceedings
that was distributed at the meeting. This year, the workshop was organized into
sessions of papers on related topics, and each session consisted of two to three
30-minute presentations. Based on feedback from the workshop, the papers were
revised and submitted for inclusion in the formal proceedings published in this
volume. Two papers were presented at the workshop but later withdrawn from
the final proceedings by their authors.

We were very lucky to have Bill Carlson from the Department of Defense
give the LCPC 2002 keynote speech on “UPC: A C Language for Shared Mem-
ory Parallel Programming.” Bill gave an excellent overview of the features and
programming model of the UPC parallel programming language.

LCPC workshop presentations were held on campus in a spacious 140-person
auditorium in the newly constructed Computer Science Instructional Center
(CSIC). Workshop participants also enjoyed an afternoon excursion downtown
to the Smithsonian’s National Museum of Natural History, followed by a banquet
held in the wine room of the D.C. Coast restaurant.

The success of LCPC 2002 was due to many people. We would like to thank
the Program Committee members for their timely and thorough reviews, and
the LCPC Steering Committee (especially David Padua) for providing invaluable
advice and continuity for LCPC. We wish to thank Lawrence Rauchwerger and
Silvius Rus for providing scripts and templates for formatting the proceedings.
We appreciate the hard work performed by Cecilia Khullman, Christina Beal,
and Johanna Weinstein (from UMIACS) handling local arrangements and work-
shop registration. Finally, we would like to thank all the LCPC 2002 authors for
their patience in waiting for the long overdue publication of the formal workshop
proceedings.

July 2005 Bill Pugh
Chau-Wen Tseng

Organization

The 15th Workshop on Languages and Compilers for Parallel Computing was
hosted by the Department of Computer Science at the University of Maryland
and the University of Maryland Institute for Advanced Computer Studies (UMI-
ACS).

Steering Committee

Utpal Banerjee Intel Corporation
David Gelernter Yale University
Alex Nicolau University of California at Irvine
David Padua University of Illinois at Urbana-Champaign

General and Program Co-chairs

Bill Pugh University of Maryland
Chau-Wen Tseng University of Maryland

Program Committee

Hank Dietz University of Kentucky
Manish Gupta IBM T.J. Watson Research Center
Sam Midkiff Purdue University
Jose Moreira IBM T.J. Watson Research Center
Dave Padua University of Illinois at Urbana-Champaign
Bill Pugh University of Maryland
Lawrence Rauchwerger Texas A&M University
Chau-Wen Tseng University of Maryland

Table of Contents

Memory-Constrained Communication Minimization for a Class of
Array Computations

Daniel Cociorva, Gerald Baumgartner, Chi-Chung Lam,
P. Sadayappan, J. Ramanujam . 1

Forward Communication Only Placements and Their Use for Parallel
Program Construction

Martin Griebl, Paul Feautrier,
Armin Größlinger . 16

Hierarchical Parallelism Control for Multigrain Parallel Processing
Motoki Obata, Jun Shirako, Hiroki Kaminaga, Kazuhisa Ishizaka,
Hironori Kasahara . 31

Compiler Analysis and Supports for Leakage Power Reduction on
Microprocessors

Yi-Ping You, Chingren Lee, Jenq Kuen Lee . 45

Automatic Detection of Saturation and Clipping Idioms
Aart J.C. Bik, Milind Girkar, Paul M. Grey,
Xinmin Tian . 61

Compiler Optimizations with DSP-Specific Semantic Descriptions
Yung-Chia Lin, Yuan-Shin Hwang,
Jenq Kuen Lee . 75

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse
Tiling

Michelle Mills Strout, Larry Carter, Jeanne Ferrante,
Jonathan Freeman, Barbara Kreaseck . 90

A Hybrid Strategy Based on Data Distribution and Migration for
Optimizing Memory Locality

I. Kadayif, M. Kandemir, A. Choudhary . 111

Compiler Optimizations Using Data Compression to Decrease Address
Reference Entropy

H.G. Dietz, T.I. Mattox . 126

Towards Compiler Optimization of Codes Based on Arrays of Pointers
F. Corbera, R. Asenjo, E.L. Zapata . 142

X Table of Contents

An Empirical Study on the Granularity of Pointer Analysis in C
Programs

Tong Chen, Jin Lin, Wei-Chung Hsu,
Pen-Chung Yew . 157

Automatic Implementation of Programming Language Consistency
Models

Zehra Sura, Chi-Leung Wong, Xing Fang, Jaejin Lee,
Samuel P. Midkiff, David Padua . 172

Parallel Reductions: An Application of Adaptive Algorithm Selection
Hao Yu, Francis Dang,
Lawrence Rauchwerger . 188

Adaptively Increasing Performance and Scalability of Automatically
Parallelized Programs

Jaejin Lee, H.D.K. Moonesinghe . 203

Selector: A Language Construct for Developing Dynamic Applications
Pedro C. Diniz, Bing Liu . 218

Optimizing the Java Piped I/O Stream Library for Performance
Ji Zhang, Jaejin Lee,
Philip K. McKinley . 233

A Comparative Study of Stampede Garbage Collection Algorithms
Hasnain A. Mandviwala, Nissim Harel, Kathleen Knobe,
Umakishore Ramachandran . 249

Compiler and Runtime Support for Shared Memory Parallelization of
Data Mining Algorithms

Xiaogang Li, Ruoming Jin, Gagan Agrawal . 265

Performance Analysis of Symbolic Analysis Techniques for Parallelizing
Compilers

Hansang Bae, Rudolf Eigenmann . 280

Efficient Manipulation of Disequalities During Dependence Analysis
Robert Seater, David Wonnacott . 295

Removing Impediments to Loop Fusion Through Code Transformations
Bob Blainey, Christopher Barton,
José Nelson Amaral . 309

Near-Optimal Padding for Removing Conflict Misses
Xavier Vera, Josep Llosa, Antonio González . 329

Table of Contents XI

Fine-Grain Stacked Register Allocation for the Itanium Architecture
Alban Douillet, José Nelson Amaral, Guang R. Gao 344

Evaluating Iterative Compilation
G.G. Fursin, M.F.P. O’Boyle, P.M.W. Knijnenburg 362

Author Index . 377

Memory-Constrained Communication Minimization
for a Class of Array Computations

Daniel Cociorva1, Gerald Baumgartner1, Chi-Chung Lam1,
P. Sadayappan1, and J. Ramanujam2

1 Department of Computer and Information Science,
The Ohio State University, Columbus, OH 43210, USA

{cociorva, gb, clam, saday}@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering,

Louisiana State University, Baton Rouge, LA 70803, USA
jxr@ece.lsu.edu

Abstract. The accurate modeling of the electronic structure of atoms and mole-
cules involves computationally intensive tensor contractions involving large mul-
tidimensional arrays. The efficient computation of complex tensor contractions
usually requires the generation of temporary intermediate arrays. These inter-
mediates could be extremely large, but they can often be generated and used in
batches through appropriate loop fusion transformations. To optimize the perfor-
mance of such computations on parallel computers, the total amount of inter-
processor communication must be minimized, subject to the available memory
on each processor. In this paper, we address the memory-constrained communi-
cation minimization problem in the context of this class of computations. Based
on a framework that models the relationship between loop fusion and memory
usage, we develop an approach to identify the best combination of loop fusion
and data partitioning that minimizes inter-processor communication cost with-
out exceeding the per-processor memory limit. The effectiveness of the devel-
oped optimization approach is demonstrated on a computation representative of
a component used in quantum chemistry suites.

1 Introduction

The development of high-performance parallel programs for scientific applications is
usually very time consuming. The time to develop an efficient parallel program for a
computational model can be a primary limiting factor in the rate of progress of the sci-
ence. Our overall goal is to develop a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a class of scientific computa-
tions encountered in quantum chemistry. The domain of our focus is electronic structure
calculations, as exemplified by coupled cluster methods [4], in which many computa-
tionally intensive components are expressible as a set of tensor contractions. We are
developing a synthesis system that will transform an input specification expressed in a
high-level notation into efficient parallel code tailored to the characteristics of the target
architecture.

A number of compile-time optimizations are being incorporated into the program
synthesis system. These include algebraic transformations to minimize the number

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 D. Cociorva et al.

of arithmetic operations [8,13], loop fusion and array contraction for memory space
minimization [13,12], tiling and data locality optimization [1,2], space-time trade-off
optimization [3], and data partitioning for communication minimization [9,10]. Since
the problem of determining the set of algebraic transformations to minimize operation
count was found to be NP-complete, we developed a pruning search procedure [8] that is
very efficient in practice. The operation-minimization procedure results in the creation
of intermediate temporary arrays. Often, these intermediate arrays that help in reducing
the computational cost create a problem with the memory required. Loop fusion was
found to be effective in significantly reducing the total memory requirement. However,
since some fusions could prevent other fusions, the choice of the optimal set of fusion
transformations is important. So we addressed the problem of finding the choice of fu-
sions for a given operator tree that minimizes the space required for all intermediate
arrays after fusion [12,11].

We have also previously addressed the problem of communication optimization in
the context of the operator trees [9,10]. An efficient polynomial-time dynamic pro-
gramming algorithm was developed for the determination of optimal distributions of
the various arrays through the evaluation of the operator tree so as to minimize inter-
processor communication overhead. However, that model did not consider the effects
of loop fusion for memory minimization. As we elaborate later with examples, it is not
feasible to simply apply the previously developed loop fusion algorithm and the previ-
ous communication minimization algorithm (in either order) to optimize for the parallel
context when memory size constraints are severe. For many computations of interest to
quantum chemists, the unoptimized form of the computation could require in excess of
hundreds of terabytes of memory. Therefore, the following optimization problem is of
great interest: given a set of computations expressed as a sequence of tensor contrac-
tions (explained later on), an empirically derived measure of the communication cost
for a given target computer, and a specified limit on the amount of available memory on
each processor, re-structure the computation so as to minimize the total execution time
while staying within the available memory. In this paper, we present a framework that
we have developed to address this problem. The memory-constrained communication
minimization algorithm we develop here will be incorporated into the synthesis system
being developed.

The computational structures that we target arise in scientific application domains
that are extremely compute-intensive and consume significant computer resources at
national supercomputer centers. They are present in various computational chemistry
codes such as ACES II, GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In par-
ticular, they comprise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and molecules [14,15].
Computational approaches to modeling the structure and interactions of molecules, the
electronic and optical properties of molecules, the heats and rates of chemical reac-
tions, etc., are very important to the understanding of chemical processes in real-world
systems.

There has been some recent work on using loop fusion for memory reduction for
sequential execution. Fraboulet et al. [5] use loop alignment to reduce memory require-
ment between adjacent loops by formulating the one-dimensional version of the prob-

Memory-Constrained Communication Minimization 3

lem as a network flow problem; they did look at the effect of their solution on cache
behavior or communication. Song et al. [17,18] present a different network flow for-
mulation of the memory reduction problem and they include a simple model of cache
misses as well. They do not consider trading off memory for recomputation or the im-
pact of data distribution on communication costs while meeting per-processor memory
constraints in a distributed memory machine. There has been much less work investi-
gating the use of loop fusion as a means of reducing memory requirements [6,16]. To
the best of our knowledge, loop fusion transformation for memory reduction, in com-
bination with data partitioning for communication minimization in the parallel context,
has not been previously considered.

The paper is organized as follows. In the next section, we elaborate on the compu-
tational context of interest and the pertinent optimization issues. Section 3 presents our
multi-dimensional processor model, discusses the interaction between distribution of
arrays and loop fusion, and describes our algorithm for the memory-constrained com-
munication minimization problem. Section 4 presents results from the application of the
new algorithm to an example abstracted from NWChem [7]. Conclusions are provided
in Section 5.

2 Elaboration of Problem

In the class of computations considered, the final result to be computed can be expressed
as multi-dimensional summations of the product of several input arrays. Due to com-
mutativity, associativity, and distributivity, there are many different ways to obtain the
same final result and they could differ widely in the number of floating point operations
required. Consider the following example:

S(t) = ∑
i, j,k

A(i, j, t)× B(j,k, t).

If implemented directly as expressed above, the computation would require 2NiNjNkNt

arithmetic operations to compute. However, assuming associative reordering of the op-
erations and use of distributive law of multiplication over addition is acceptable for the
floating-point computations, the above computation can be rewritten in various ways.
One equivalent form that only requires NiNjNt +NjNkNt +2NjNt operations is as shown
in Fig. 1(a).

Generalizing from the above example, we can express multi-dimensional integrals
of products of several input arrays as a sequence of formulae. Each formula produces
some intermediate array and the last formula gives the final result. A formula is either:

– a multiplication formula of the form: Tr(. . .) = X(. . .)×Y(. . .), or
– a summation formula of the form: Tr(. . .) = ∑i X(. . .),

where the terms on the right hand side represent input arrays or intermediate arrays
produced by a previously defined formula. Let IX , IY and ITr be the sets of indices in
X(. . .), Y (. . .) and Tr(. . .), respectively. For a formula to be well-formed, every index
in X(. . .) and Y (. . .), except the summation index in the second form, must appear in
Tr(. . .). Thus IX ∪ IY ⊆ ITr for any multiplication formula, and IX −{i} ⊆ ITr for any

4 D. Cociorva et al.

T 1(j,t) = ∑
i

A(i, j,t)

T 2(j,t) = ∑
k

B(j,k,t)

T 3(j,t) = T 1(j,t)×T 2(j,t)

S(t) = ∑
j

T 3(j,t)

(a) Formula sequence

A(i, j,t) B(j,k,t)

∑i ∑kT 1 T 2

�
��

�
��

×T 3

∑ jS

(b) Binary tree representation

Fig. 1. A formula sequence and its binary tree representation

summation formula. Such a sequence of formulae fully specifies the multiplications and
additions to be performed in computing the final result.

A sequence of formulae can be represented graphically as a binary tree to show
the hierarchical structure of the computation more clearly. In the binary tree, the leaves
are the input arrays and each internal node corresponds to a formula, with the last for-
mula at the root. An internal node may either be a multiplication node or a summation
node. A multiplication node corresponds to a multiplication formula and has two chil-
dren which are the terms being multiplied together. A summation node corresponds to
a summation formula and has only one child, representing the term on which summa-
tion is performed. As an example, the binary tree in Fig. 1(b) represents the formula
sequence shown in Fig. 1(a).

The operation-minimization procedure discussed above usually results in the cre-
ation of intermediate temporary arrays. Sometimes these intermediate arrays that help
in reducing the computational cost create a problem with the memory capacity required.
For example, consider the following expression:

Sabi j = ∑
cde f kl

Aacik ×Bbe f l ×Cd f jk ×Dcdel

If this expression is directly translated to code (with ten nested loops, for indices
a − l), the total number of arithmetic operations required will be 4N10 if the range of
each index a− l is N. Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

Sabi j = ∑
ck

(
∑
d f

(
∑
el

Bbe f l ×Dcdel

)
×Cd f jk

)
×Aacik

This corresponds to the formula sequence shown in Fig. 2(a) and can be directly
translated into code as shown in Fig. 2(b). This form only requires 6N6 operations.
However, additional space is required to store temporary arrays T1 and T2. Often, the
space requirements for the temporary arrays poses a serious problem. For this example,

Memory-Constrained Communication Minimization 5

T 1bcd f = ∑
el

Bbe f l ×Dcdel

T2bc jk = ∑
d f

T 1bcd f ×Cd f jk

Sabi j = ∑
ck

T 2bc jk ×Aacik

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l[
T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k[
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k[
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1f = 0; T2f = 0
for d, f⎡
⎢⎢⎣
for e, l[
T1f += Bbefl Dcdel

for j, k[
T2fjk += T1f Cdfjk

for a, i, j, k[
Sabij += T2fjk Aacik

(c) Memory-reduced
implementation (fused)

Fig. 2. Example illustrating use of loop fusion for memory reduction

abstracted from a quantum chemistry model, the array extents along indices a − d are
the largest, while the extents along indices i− l are the smallest. Therefore, the size of
temporary array T 1 would dominate the total memory requirement.

We have previously shown that the problem of determining the operator tree with
minimal operation count is NP-complete, and have developed a pruning search proce-
dure [8,9] that is very efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic operations, its im-
plementation will require the use of temporary intermediate arrays to hold the partial
results of the parenthesized array subexpressions. Sometimes, the sizes of intermediate
arrays needed for the “operation-minimal” form are too large to even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the
computation is to view it in terms of potential loop fusions. Loop fusion merges loop
nests with common outer loops into larger imperfectly nested loops. When one loop
nest produces an intermediate array which is consumed by another loop nest, fusing the
two loop nests allows the dimension corresponding to the fused loop to be eliminated
in the array. This results in a smaller intermediate array and thus reduces the memory
requirements. For the example considered, the application of fusion is illustrated in
Fig. 2(c). By use of loop fusion, for this example it can be seen that T1 can actually be
reduced to a scalar and T2 to a 2-dimensional array, without changing the number of
arithmetic operations.

For a computation comprised of a number of nested loops, there will generally be a
number of fusion choices, that are not all mutually compatible. This is because different
fusion choices could require different loops to be made the outermost. In prior work,
we have addressed the problem of finding the choice of fusions for a given operator tree
that minimizes the total space required for all arrays after fusion [13,12,11].

A data-parallel implementation of the unfused code for computing Sabi j would in-
volve a sequence of three steps, each corresponding to one of the loops in Fig. 2(b).
The communication cost incurred will clearly depend on the way the arrays A, B, C, D,
T 1, T 2, and S are distributed. We have previously considered the problem of minimiza-
tion of communication with such computations [13,9]. However, the issue of memory
space requirements was not addressed. In practice, many of the computations of in-
terest in quantum chemistry require impractically large intermediate arrays in the un-
fused operation-minimal form. Although the collective memory of parallel machines is

6 D. Cociorva et al.

very large, it is nevertheless insufficient to hold the full intermediate arrays for many
computations of interest. Thus, array contraction through loop fusion is essential in
the parallel context too. However, it is not satisfactory to first find a communication-
minimizing data/computation distribution for the unfused form, and then apply fusion
transformations to minimize memory for that parallel form. This is because 1) fusion
changes the communication cost, and 2) it may be impossible to find a fused form that
fits within available memory, due to constraints imposed by the chosen data distribution
on possible fusions. In this paper we address this problem of finding suitable fusion
transformations and data/computation partitioning that minimize communication costs,
subject to limits on available per-processor memory.

3 Memory-Constrained Communication Minimization

Given a sequence of formulae, we now address the problem of finding the optimal
partitioning of arrays and operations among the processors and the loop fusions on
each processor in order to minimize inter-processor communication and computational
costs while staying within the available memory in implementing the computation on
a message-passing parallel computer. Section 3.1 introduces a multi-dimensional pro-
cessor model used to represent the computational space. Section 3.2 discusses the com-
bined effects of loop fusions and array/operation partitioning on communication cost,
computational cost, and memory usage. An integrated algorithm for solving this prob-
lem is presented in Section 3.3.

3.1 Preliminaries: A Multi-dimensional Processor Model

A logical view of the processors as a multi-dimensional grid is used, where each ar-
ray can be distributed or replicated along one or more of the processor dimensions. As
will be clear later on, the logical view of the processor grid does not impose any re-
striction on the actual physical interconnection topology of the processor system since
empirical characterization of the cost of redistribution between different distributions is
performed on the target system.

Let pd be the number of processors on the d-th dimension of an n-dimensional
processor array, so that the number of processors is p1 × p2 × . . . × pn. We use an n-
tuple to denote the partitioning or distribution of the elements of a data array on an
n-dimensional processor array. The d-th position in an n-tuple α, denoted α[d], corre-
sponds to the d-th processor dimension. Each position may be one of the following: an
index variable distributed along that processor dimension, a ‘*’ denoting replication of
data along that processor dimension, or a ‘1’ denoting that only the first processor along
that processor dimension is assigned any data. If an index variable appears as an array
subscript but not in the n-tuple, then the corresponding dimension of the array is not
distributed. Conversely, if an index variable appears in the n-tuple but not in the array,
then the data are replicated along the corresponding processor dimension, which is the
same as replacing that index variable with a ‘*’.

As an example, suppose 128 processors form a 4-dimensional 2 × 2 × 4 × 8 array.
For the array B(b,e, f , l) in Fig. 2(a), the 4-tuple 〈b,e,∗,1〉 specifies that the first and the

Memory-Constrained Communication Minimization 7

second dimensions of B are distributed along the first and second processor dimensions
respectively (the third and fourth dimensions of B are not distributed), and that data
are replicated along the third processor dimension and are assigned only to processors
whose fourth processor dimension equals 1. Thus, a processor whose id is Pz1,z2,z3,z4 will
be assigned a portion of B specified by B(myrange(z1,Nb, p1),myrange(z2,Ne, p2),1 :
Nf ,1 : Nl) if z4 = 1 and no part of B otherwise, where myrange(z,N, p) is the range
(z− 1)× N/p + 1 to z× N/p.

We assume the data-parallel programming model and do not consider distributing
the computation of different formulae on different subsets of processors. A child array
(or a part of it) is redistributed before the evaluation of its parent if their distributions
do not match. For instance, suppose the arrays B(b,e, f , l) and D(c,d,e, l) have distri-
butions 〈b,e,∗,1〉 and 〈c,d,∗,1〉 respectively. If we want T 1 to have the distribution
〈c,d, f ,1〉 when evaluating T 1(b,c,d, f) = ∑e,l B(b,e, f , l)×D(c,d,e, l), B would have
to be redistributed from 〈b,e,∗,1〉 to 〈∗,∗, f ,1〉 because the two distributions do not
match. But since for D(c,d,e, l), the distribution 〈c,d,∗,1〉 is the same as 〈c,d, f ,1〉, D
is not redistributed.

3.2 Interaction Between Array Partitioning and Loop Fusion

The partitioning of data arrays among the processors and the fusions of loops on each
processor are inter-related. Although in our context there are no constraints to loop fu-
sion due to data dependences (there are never any fusion preventing dependences), there
are constraints and interactions with array distribution: (i) both affect memory usage,
by fully collapsing array dimensions (fusion) or by reducing them (distribution), (ii)
loop fusion does not change the communication volume, but increases the number of
messages, and therefore the start-up communication cost, and (iii) fusion and commu-
nications patterns may conflict, resulting in mutual constraints. We discuss these issues
next.

(i) Memory Usage and Array Distribution. The memory requirements of the com-
putation depend on both loop fusion and array distribution. Fusing a loop with index t
between a node v and its parent eliminates the t-dimension of array v. If the t-loop is not
fused but the t-dimension of array v is distributed along the d-th processor dimension,
then the range of the t-dimension of array v on each processor is reduced to Nt/pd . Let
DistSize(v,α, f) be the size on each processor of array v, which has fusion f with its
parent and distribution α. We have

DistSize(v,α, f) = ∏i ∈ v.dimens DistRange(i,v,α,Set(f))

where v.dimens = v.indices−{v.sumindex} is the array dimension indices of v before
loop fusions, v.indices is the set of loop indices for v including the summation index
v.sumindex if v is a summation node, Set(f) is the set of fused indices for fusion f , and

DistRange(i,v,α,x) =

⎧⎪⎨
⎪⎩

1 if i ∈ x

Ni/pd if i �∈ x and i = α[d]
Ni if i �∈ x and i �∈ α

In our example, assume that Na = Nb = Nc = Nd = 1000, Ne = Nf = 70, and Nj =
Nk = Nl = 30. These are index ranges typical of the quantum chemistry calculations

8 D. Cociorva et al.

C(i,k) = ∑ j A(i, j)×B(j,k)
E(i, l) = ∑k C(i,k)×D(k, l)

(a) Formula sequence

for i = 1, Ni⎡
⎣ for k = (z-1) * Nk/4 + 1, z * Nk/4[

for j = 1, Nj[
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <l>=<*>
for i = 1, Ni⎡
⎣ for l = (z-1) * Nl/4 + 1, z * Nl/4[

for k = 1, Nk[
E(i,l) += C(i,k) * D(k,l)

for i = 1, Ni⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Initialize C(k) to zero
for k = (z-1) * Nk/4 + 1, z * Nk/4[
for j = 1, Nj[
C(k) += A(i,j) * B(j,k)

Redistribute C(k) from <k> to <l>=<*>
for l = (z-1) * Nl/4 + 1, z * Nl/4[
for k = 1, Nk[
E(i,l) += C(k) * D(k,l)

(b) Before loop fusion (c) After loop fusion

Fig. 3. An example of the increase in communication cost due to loop fusion

of interest, and are used elsewhere in the paper in relation to this example. If the array
B(b,e, f , l) has distribution 〈b,e,∗,1〉 and fusion 〈b f 〉 with T2, then the size of B on
each processor whose fourth dimension equals one would be Ne/2 × Nl = 1050 words,
since the e and l dimensions are the only unfused dimensions, and the e dimension is
distributed onto 2 processors. Note that if array v undergoes redistribution from α to β,
the array size on each processor after redistribution is DistSize(v,β, f), which could be
different from DistSize(v,α, f), the size before redistribution.

(ii) Loop Fusion Increases Communication Cost. The initial and final distributions
of an array v determines the communication pattern and whether v needs redistribution,
while loop fusions change the number of times array v is redistributed and the size of
each message. Let v be an array that needs to be redistributed. If node v is not fused
with its parent, array v is redistributed only once. Fusing a loop with index t between
node v and its parent puts the collective communication code for redistribution inside
the loop. Thus, the number of redistributions is increased by a factor of Nt/pd if the
t-dimension of v is distributed along the d-th processor dimension and by a factor of
Nt if the t-dimension of v is not distributed. In other words, loop fusions cannot reduce
communication cost. Instead, the number of messages increases with loop fusion, while
the total volume of communication stays the same. Therefore, the communication cost
increases, due to higher start-up costs. Consider the computation sequence presented in
Fig. 3(a), where the array C(i,k) is first “produced” from A(i, j) and B(j,k), and then
“consumed” to produce E(i, l). For this simple example, we assume that the computa-
tion is executed in parallel on 4 processors, with a one-dimensional logical processor
view. Figure 3(b) shows the pseudo-code in the absence of fusion: the array C(i,k) is
re-distributed from 〈k〉 to 〈l〉 only once. In the presence of fusion, where the i-loop is
the outermost loop, the dimensionality of the array C is reduced to C(k), but the re-
distribution is performed Ni times. The pseudo-code in Fig. 3(c) illustrates this effect.

(iii) Potential Conflict Between Array Distribution and Loop Fusion. Solution of
the Conflict by Virtual Partitioning. For the fusion of a loop between nodes u and v to
be possible, the loop must either be undistributed at both u and v, or be distributed onto

Memory-Constrained Communication Minimization 9

for i = 1, Ni⎡
⎣ for k = (z-1) * Nk/4 + 1, z * Nk/4[

for j = 1, Nj[
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <i>
for i = (z-1) * Ni/4 + 1, z * Ni/4⎡
⎣ for l = 1, Nl[

for k = 1, Nk[
E(i,l) += C(i,k) * D(k,l)

for i = (z-1) * Ni/4 + 1, z * Ni/4⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for ii = 1, 4⎡
⎣ for k = (z-1) * Nk/4 + 1, z * Nk/4[

for j = 1, Nj[
C(ii,k) += A(i + (ii-1) * Ni/4,j) * B(j,k)

Redistribute C(ii,k) from <k> to <i>=<ii>
for l = 1, Nl[
for k = 1, Nk[
E(i,l) += C(1,k) * D(k,l)

(a) Before virtualization (b) After virtualization

Fig. 4. An example of the increase in loop fusion due to a virtual process view

k k

p0 p1 p2 p3

p0

p1

p2

p3

redistribute
i

partitions
virtual

produce C(i,k) consume C(i,k)

Fig. 5. Virtual partitioning of an array

the same number of processors at u and at v. Otherwise, the range of the loop at node u
would be different from that at node v, preventing fusion of the loops. Let us consider
again the computation given in Figure 3(a), with a different distribution of the array
C(i,k) at the two nodes: assume that we have a 〈k〉 distribution at the first node, and a 〈i〉
distribution at the second node. The pseudo-code for this computation on 4 processors
is presented in Fig. 4(a). Fusion of the i-loop is no longer possible, due to the different
loop ranges at the two nodes. However, we can overcome this problem by taking a
virtualized view of the computation on a larger set of virtual processors, mapped onto
the actual physical processors. Consider a virtual partitioning of the computation and
split the i-loop into two loops, i and ii. (see the pseudo-code in Fig. 4(b)). With this
modification, the outermost i-loop can be fused, and the size of the array C is reduced
from Ni × Nk to 4Nk.

This transformation of the i-loop is presented graphically in Fig. 5. At the first node
(where it is produced), the array C is distributed among the 4 processors along the k
dimension (〈k〉 distribution, or vertical partitioning in the Figure). In addition, each
physical processor can be further viewed as 4 “virtual processors”, as showed by the
horizontal virtual partitioning lines in Fig. 5. The purpose of the virtual partitioning
along the i dimension at the first (produce) node is to match the actual i partitioning
at the second (consume) node and allow for fusion of the i-loop. Fusion of the i-loop
no longer produces a one-dimensional C(k) array in this case. Each processor stores

10 D. Cociorva et al.

the equivalent of 4 such arrays, corresponding to the 4 virtual processors. In Fig. 5,
the elements stored on processor P0, before and after re-distribution, are represented by
shaded areas.

In general, the virtual partitioning of the computation depends on the distribution
at the nodes involved. Let u and v be two nodes in the operator tree T that have a
common loop index t. The t-loop is distributed onto pu processors at node u and onto
pv processors at node v. Let pvirtual be lowest common multiple of pu and pv. With these
notations, the t-loop can be virtually partitioned by a factor of pvirtual/pu at the u node,
and by a factor of pvirtual/pv at the v node. The resulting virtual partitions along the t
dimension at the u and v nodes become identical, allowing for loop fusion.

Virtual partitioning is essential for the success of our combined loop fusion — data
distribution approach. Since both fusion and distribution impose constraints on the array
dimensions, the potential for conflict is enormous. In practice, unless we allow virtual
partitioning, we often find that optimal array distribution for minimizing inter-processor
communication precludes effective memory reduction by fusion. The number of com-
patible loop fusion and array distribution configurations is very limited. Virtual parti-
tioning relaxes the mutual constraints imposed by the loop fusion and data distribution,
allowing for the optimal solution(s) to be found.

3.3 Memory-Constrained Communication Minimization Algorithm

In this section, we present an algorithm addressing the communication minimization
problem with memory constraint. Previously, we have solved the communication mini-
mization problem but without considering loop fusion or memory usage [9]. In practice,
the arrays involved are often too large to fit into the available memory even after par-
titioning among the processors. We assume the input arrays can be distributed initially
among the processors in any way at zero cost, as long as they are not replicated. We do
not require the final results to be distributed in any particular way. Our approach works
regardless of whether any initial or final data distribution is given.

The main idea of this method is to search among all combinations of loop fusions
and array distributions to find one that has minimal total communication and compu-
tational cost and uses no more than the available memory. A dynamic programming
algorithm for this purpose is given in this section.

Let Mcost(localsize,α,β) be the communication cost in moving the elements of
an array, with localsize elements distributed on each processor, from an initial dis-
tribution α to a final distribution β. We empirically measure Mcost for each possible
non-matching pair of α and β and for several different localsizes on the target parallel
computer. Let MoveCost(v,α,β, f) denote the communication cost in redistributing the
elements of array v, which has fusion f with its parent, from an initial distribution α to
a final distribution β. It can be expressed as:

MoveCost(v,α,β, f) = MsgFactor(v,α,Set(f))×Mcost(DistSize(v,α,Set(f)),α,β) where

MsgFactor(v,α,x) = ∏i ∈ v.dimens LoopRange(i,v,α,x) and

LoopRange(i,v,α,x) =

⎧⎪⎨
⎪⎩

1 if i �∈ x

Ni/pd if i ∈ x and i = α[d]
Ni if i ∈ x and i �∈ α

Memory-Constrained Communication Minimization 11

Let CalcCost(v,γ) be the computational cost in calculating an array v with γ as
the distribution of v. Note that the computational cost is unaffected by loop fusions.
For multiplication and for summation where the summation index is not distributed, the
computational cost for v can be quantified as the total number of operations for v divided
by the number of processors working on distinct parts of v. In our example in Fig. 2(a),
if the array T 1(b,c,d, f) has distribution 〈c,d, f ,1〉, its computational cost would be
Nb × Nc × Nd × Ne × Nf × Nl/p1/p2/p3 = 9.1875 × 1012 multiply-add operations on
each participating processor. Formally,

CalcCost(v,γ) = ∏i ∈ v.indices Ni

∏γ[d] ∈ v.dimens pd

For the case of summation where the summation index i = v.sumindex is distributed,
partial sums of v are first formed on each processor and then either consolidated on
one processor along the i-dimension or replicated on all processors along the same
processor dimension. We denote by CalcCost1 and MoveCost1 the computational and
communication costs for forming the sum without replication, and by CalcCost2 and
MoveCost2 those with replication.

Finally, we define Cost(v,α) to be the total cost for the subtree rooted at v with dis-
tribution α. After transforming the given sequence of formulae into an expression tree
T (see Section 2), we initialize Cost(v,α) for each leaf node v in T and each distribution
α as follows (where NoRep(α) is a predicate meaning α involves no replication.):

Cost(v,α) =
{

0 if NoRep(α)
minNoRep(β){MoveCost(v,β,α, /0)} otherwise

For each internal node u and each distribution α, we can calculate Cost(u,α) according
to the following procedure:

Case (a): u is a multiplication node with two children v and v′. We need both v and v′
to have the same distribution, say γ, before u can be formed. After the multiplication,
the product could be redistributed if necessary. Thus,

Cost(u,α) = min
γ

{Cost(v,γ)+Cost(v′,γ)+CalcCost(u,γ)+MoveCost(u,γ,α, /0)}

Case (b): u is a summation node over index i and with a child v, which may have any
distribution γ. If i ∈ γ, each processor first forms partial sums of u and then we either
combine the partial sums on one processor along the i dimension or replicate them on all
processors along that processor dimension. Afterwards, the sum could be redistributed
if necessary. Let Calc Move Cost1(u,γ,α, /0) be CalcCost1(u,γ)+MoveCost1(u,γ,α, /0),
and Calc Move Cost2(u,γ,α, /0) be CalcCost2(u,γ)+ MoveCost2(u,γ,α, /0). Thus,

Cost(u,α) = min
γ

{Cost(v,γ)+ min(Calc Move Cost1(u,γ,α, /0),Calc Move Cost2(u,γ,α, /0))}

With these definitions, the bottom-up dynamic programming algorithm proceeds as
follows: At each node v in the expression tree T , we consider all combinations of array
distributions for v and loop fusions between v and its parent. If loop fusion of the same
index t between v and its parent is not possible because of different distribution ranges,
then a virtual processor view is considered in order to allow the fusion. The array size,
communication cost, and computational cost are determined according to the equations

12 D. Cociorva et al.

in Sections 3.1 and 3.3. If the size of an array before and after redistribution is different,
the higher of the two should be used in determining memory usage. At each node v,
a set of solutions is formed. Each solution contains the final distribution of v, the loop
nesting at v, the loop fusion between v and its parent, the total communication and
computational cost, and the memory usage for the subtree rooted at v. A solution s is
said to be inferior to another solution s′ if they have the same final distribution, s has
less potential fusions with v’s parent than s′, s.totalcost ≥ s′.totalcost, and the memory
usage of s is higher than that of s′. An inferior solution and any solution that uses more
memory than available can be pruned. At the root node of T , the only two remaining
criteria are the total cost and the memory usage of the solutions. The set of solutions is
ordered in increasing memory usage and decreasing cost. The solution with the lowest
total cost and whose memory usage is below the available memory limit is the optimal
solution for the entire tree.

4 An Application Example

In this section, we present an application example of the memory-constrained com-
munication minimization algorithm. Consider again the sequence of computations in
Fig. (2(a)), representative of the multi-dimensional tensor contractions often present in
quantum chemistry codes. The sizes of the array dimensions are chosen to be com-
patible with the dimensions found in typical chemistry problems, where they represent
occupied or virtual orbital spaces: Ni = Nj = Nk = Nl = 40, Na = Nb = Nc = Nd = 1000,
and Ne = Nf = 70.

As an example, we investigate the parallel execution of this calculation on 32 pro-
cessors of a Cray T3E, assuming 512MB of memory available at each node, and on
16 processors of an Intel Itanium cluster, assuming 2GB of memory available at each
node. The best partitioning of the algorithm depends on the number of processors and
the amount of memory available. It also depends on the empirical characterization data
that we use to describe the communication costs of a given machine. We generated this
data by measuring the communication times for each possible non-matching pair of ar-
ray distributions and different array sizes for both the Cray T3E and the Itanium cluster.
Although generating the characterization is somewhat laborious, once a characteriza-
tion file is completed, it can be used to predict, by interpolation or extrapolation, the
communication times for arbitrary array distributions and sizes.

Tables 1 and 2 present the solutions of the memory-constrained communication
minimization algorithm on the Cray T3E and Itanium cluster, respectively. For the
system of 32 processors of the Cray T3E, the optimal logical view of the processor
space is found to be a two-dimensional 4 × 8 distribution. Table 1 shows the full four-
dimensional arrays involved in the computation, their reduced (fused) representations,
their initial and final distributions, their memory requirements, and the communication
costs involved in their re-distribution. The final distribution is defined in the same way
for both input and intermediate arrays: it is the distribution at the multiplication node at
which the array is used or consumed. The initial distribution is defined differently for
input and intermediate arrays: it is the distribution at the leaf node for an input array,
and the distribution at the multiplication node where the array is generated, or produced,

Memory-Constrained Communication Minimization 13

Table 1. Loop fusions, memory requirements and communication costs on 32 processors of a
Cray T3E for the arrays presented in Fig. 2(a)

Full array Reduced array Initial dist. Final dist. Memory/processor Comm. cost

D(c,d,e, l) D(c,e, l) 〈c,e〉 〈∗,∗〉 22.4MB 552.8 sec.
B(b,e, f , l) B(b,e, f , l) 〈b, f 〉 〈b, f 〉 49.0MB 0
C(d, f , j,k) C(f , j,k) 〈 j, f 〉 〈∗,∗〉 0.9MB 362.3 sec.
A(a,c, i,k) A(c, i,k) 〈i,c〉 〈∗,∗〉 12.8MB 460.9 sec.

T 1(b,c,d, f) T 1(b,c, f) 〈b, f 〉 〈b,c〉 17.5MB 791.8 sec.
T 2(b,c, j,k) T 2(b,c, j,k) 〈b,c〉 〈b, j〉 400.0MB 20.5 sec.
S(a,b, i, j) S(b, i, j) 〈b, j〉 〈b, j〉 0.4MB 0

for an intermediate array. The total memory requirement of an array is defined as the
largest memory usage of the two distributions (initial and final).

The optimal solution has the a and d loops fused, each across its own range: the
fusion of the d-loop reduces C, D, and T1 to three-dimensional arrays, while the fu-
sion of the a-loop reduces A and S to 3-dimensional arrays as well. Notice that B and
T 2 are the only four-dimensional arrays left, and, consequently, they have the largest
storage requirements of all arrays: 49MB per processor and 400MB per processor, re-
spectively. The total memory requirements for the solution of the example are 503MB
per processor, within the imposed limit of 512MB. Notice that further memory reduc-
tion is possible, for example, by partially fusing the c-loop and collapsing D and T 1 to
two-dimensional arrays. However, this is unnecessary, as the communication cost of the
computation would increase, and nothing can be gained by further memory reduction.

Based on the empirical characterization data of the Cray T3E, the total commu-
nication cost for this example is 2188 seconds, or 0.61 hours. Most of this load can
be attributed to the re-distribution of the arrays A, C, D, and T 1. Since they are col-
lapsed onto three dimensions for better memory management, they have to be partially
re-distributed at each iteration of the fused loop, resulting in large message-passing
start-up costs.

Table 2 presents the solution of the algorithm for a system of 16 processors on the
Itanium cluster. The optimal logical view of the processor space is found to be a two-
dimensional 4×4 distribution. The total memory requirement of the optimal solution is
1.77GB per processor, which is within the 2GB memory limit. The total communication
cost is 3076 seconds, or 0.85 hours. The optimal distributions of the arrays are different
for the two cases presented here (see Tables 1 and 2).

It is important to note that a decoupled approach of first performing loop fusion
followed by array distribution fails to provide a feasible solution in this example. In
particular, minimizing the communication cost without taking memory usage into ac-
count produces a final distribution 〈a,b〉 = 〈∗,∗〉 for the array T2(b,c, j,k). The array
T 2 would be replicated on all processors, resulting in a memory usage of 12.8GB per
processor. Reduction from this amount is possible by fusion, but the constraints im-
posed by the communication-optimal solution do not permit effective memory reduc-
tion. In this example, starting from the unfused communication-optimal solution, no

14 D. Cociorva et al.

Table 2. Loop fusions, memory requirements and communication costs on 16 processors of an
Intel Itanium cluster for the arrays presented in Fig. 2(a)

Full array Reduced array Initial dist. Final dist. Memory /processor Comm. cost

D(c,d,e, l) D(c,e, l) 〈e, l〉 〈∗,∗〉 22.4MB 704.8 sec.
B(b,e, f , l) B(b,e, f , l) 〈 f ,b〉 〈 f ,b〉 98.0MB 0
C(d, f , j,k) C(f , j,k) 〈 j, f 〉 〈∗,∗〉 0.9MB 389.7 sec.
A(a,c, i,k) A(c, i,k) 〈c,k〉 〈∗,∗〉 12.8MB 546.0 sec.

T1(b,c,d, f) T 1(b,c, f) 〈 f ,b〉 〈c,b〉 35.0MB 1391.7 sec.
T 2(b,c, j,k) T 2(b,c, j,k) 〈c,b〉 〈 j,b〉 800.0MB 43.9 sec.
S(a,b, i, j) S(a,b, i, j) 〈 j,b〉 〈 j,b〉 800.0MB 0

loop fusion structure exists that can bring the memory usage under the limit. Only an
integrated approach to memory reduction and communication minimization is able to
provide a solution.

5 Conclusion

In this paper we have addressed a compile-time optimization problem arising in the con-
text of a program synthesis system. The goal of the synthesis system is the facilitation of
rapid development of high-performance parallel programs for a class of computations
encountered in computational chemistry. These computations are expressible as a set of
tensor contractions and arise in electronic structure calculations.

We have described the interactions between distributing arrays on a parallel ma-
chine and minimizing memory through loop fusion. We have presented an optimization
approach that can serve as the basis for a key component of the system, for minimiz-
ing the communication cost on a parallel computer under memory constraints. The ef-
fectiveness of the algorithm was demonstrated by applying it to a computation that is
representative of those used in quantum chemistry codes such as NWChem.

Acknowledgments. We thanks the support of the National Science Foundation through
the Information Technology Research program (CHE-0121676 and CHE-0121706),
and NSF grants CCR-0073800 and EIA-9986052.

References

1. D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sadayappan, J. Ramanujam. Loop
Optimizations for a Class of Memory-Constrained Computations. In Proc. 15th ACM Intl.
Conf. on Supercomputing, pp. 103–113, Sorrento, Italy, June 2001.

2. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen,
D. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-Performance Codes
for Electronic Structure Calculations: Data Locality Optimization. Proc. of the Intl. Conf. on
High Performance Computing, Lecture Notes in Computer Science, Vol. 2228, pp. 237–248,
Springer-Verlag, 2001.

Memory-Constrained Communication Minimization 15

3. D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bern-
holdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of Electronic Struc-
ture Calculations. Proceedings of ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2002.

4. T. D. Crawford and H. F. Schaefer III. An Introduction to Coupled Cluster Theory for Com-
putational Chemists. In Reviews in Computational Chemistry, vol. 14, pp. 33–136, Wiley-
VCH, 2000.

5. A. Fraboulet, G. Huard and A. Mignotte. Loop alignment for memory access optimization. In
Proc. 12th International Symposium on System Synthesis, pages 71–77, San Jose, California,
November 1999.

6. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contraction.
In Languages and Compilers for Parallel Processing, New Haven, CT, August 1992.

7. High Performance Computational Chemistry Group. NWChem, A computational chemistry
package for parallel computers, Version 3.3, 1999. Pacific Northwest National Laboratory,
Richland, WA 99352.

8. C. Lam, P. Sadayappan, and R. Wenger. On optimizing a class of multi-dimensional loops
with reductions for parallel execution. Parallel Processing Letters, Vol. 7 No. 2, pp. 157–168,
1997.

9. C. Lam, P. Sadayappan, and R. Wenger. Optimization of a class of multi-dimensional in-
tegrals on parallel machines. In Proc. Eighth SIAM Conference on Parallel Processing for
Scientific Computing, Minneapolis, MN, March 1997.

10. C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. Wilkins. Performance optimiza-
tion of a class of loops involving sums of products of sparse arrays. In Proc. Ninth SIAM
Conference on Parallel Processing for Scientific Computing, San Antonio, TX, March 1999.

11. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal evaluation of
expression trees involving large objects. In Proc. International Conference on High Perfor-
mance Computing, Calcutta, India, December 1999.

12. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Optimization of memory usage
requirement for a class of loops implementing multi-dimensional integrals. In Languages
and Compilers for Parallel Computing, San Diego, August 1999.

13. C. Lam. Performance optimization of a class of loops implementing multi-dimensional inte-
grals. Ph.D. Dissertation, Ohio State University, Columbus, August 1999. Also available as
Technical Report No. OSU-CISRC-8/99-TR22, Dept. of Computer and Information Science,
The Ohio State University.

14. T. Lee and G. Scuseria. Achieving chemical accuracy with coupled cluster theory. In S.
R. Langhoff (Ed.), Quantum Mechanical Electronic Structure Calculations with Chemical
Accuracy, pages 47–109, Kluwer Academic, 1997.

15. J. Martin. In Encyclopedia of Computational Chemistry. P. Schleyer, P. Schreiner, N.
Allinger, T. Clark, J. Gasteiger, P. Kollman, H. Schaefer III (Eds.), Wiley & Sons, Berne
(Switzerland). Vol. 1, pp. 115–128, 1998.

16. V. Sarkar and G. Gao. Optimization of array accesses by collective loop transformations.
In Proc. ACM International Conference on Supercomputing, pages 194–205, Cologne, Ger-
many, June 1991.

17. Y. Song, R. Xu, C. Wang and Z. Li. Data locality enhancement by memory reduction. In
Proc. of ACM 15th International Conference on Supercomputing, pages 50–64, June 2001.

18. Y. Song, C. Wang and Z. Li. Locality enhancement by array contraction. In Proc. 14th Inter-
national Workshop on Languages and Compilers for Parallel Computing, August 2001.

Forward Communication Only Placements and
Their Use for Parallel Program Construction

Martin Griebl1, Paul Feautrier2, and Armin Größlinger1

1 FMI, University of Passau, Germany
{griebl, groessli}@fmi.uni-passau.de

2 INRIA, Unité de Recherche de Rocquencourt, France
Paul.Feautrier@inria.fr

Abstract. The context of this paper is automatic parallelization by the
space-time mapping method. One key issue in that approach is to adjust
the granularity of the derived parallelism. For that purpose, we use tiling
in the space and time dimensions. While space tiling is always legal, there
are constraints on the possibility of time tiling, unless the placement is
such that communications always go in the same direction (forward com-
munications only). We derive an algorithm that automatically constructs
an FCO placement – if it exists. We show that the method is applicable
to many familiar kernels and that it gives satisfactory speedups.

1 Introduction

In the field of automatic parallelization the question of selecting the right gran-
ularity is still not completely solved. Especially for imperfectly nested loops or
non-uniform dependences (not to talk about irregular programs) many questions
remain open.

In this paper, we present a method that allows to freely choose the granularity
of the parallelism – if possible. Note that it is not the focus of this paper to find
the optimal granularity for a given program and actual machine parameters,
but to offer a technique that yields a parallel program in which the desired
granularity can be set freely.

Our parallelization framework is space-time mapping, based on the polytope
model [7, 9, 16]. It is designed for automatic parallelization of imperfect loop
nests, and has been extended so as to be widely applicable, e.g., to non-uniform
dependences, or, sometimes, with a slight loss in efficiency, even to irregular
programs. The main idea is that every instance of every statement is mapped
to a virtual point in time (schedule) and to a virtual processor (placement). In
other words, the space-time mapping distributes all computations of the source
program to as many processors as required. In order to map the parallel program
on a machine with a fixed number of physical processors, we must apply standard
tiling techniques.

Note that the initial idea and the technical basis of tiling in our setting is the
same as in traditional tiling, namely coalescing iterations, but its application is
different: we do not discover parallelism by tiling (this is the task of the preceding

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 16–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Forward Communication Only Placements and Their Use 17

logical time

virtual processors
processors
aggregating

Fig. 1. Target space before tiling the time dimension

2 4 8 16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Without partitioning time

execution time

speedup

efficiency

number of processors

Fig. 2. Execution times, speedup and efficiency after tiling space dimensions only

scheduling phase), but we limit parallelism to the physically possible amount by
applying tiling techniques.

When running the resulting parallel programs on distributed memory sys-
tems, we usually find that (even for few physical processors) the granularity is
still too fine for being efficient. The reason is that typically there are communi-
cations after every single virtual time step.

Example 1. Consider the program fragment

for k=0 to m
for i=1 to n-1

A[k,i] = (A[k,i-1] + 2 * A[k-1,i]) /3
end

end

After space-time mapping and tiling (partitioning) the one-dimensional proces-
sor space, we obtain a space-time mapped iteration domain as in Figure 1. The
black arrows represent communications.

18 M. Griebl, P. Feautrier, and A. Größlinger

The execution times, speedups and efficiency for (n, m) = (393216, 128) are
given in Figure 2. The speedups for 2, 4, 8, and 16 processors are 0.94, 1.0,
1.05, and 1.13, which gives poor efficiency values of 0.47, 0.25, 0.13, and 0.07,
respectively.

Our solution is to add another tiling phase, which adapts the granularity of the
parallelism by coalescing virtual time steps. The idea behind this partitioning of
time is (in the setting of distributed memory machines) to postpone and collect
all send operations within a time partition and to execute the communications
only at the end of the partition. Obviously, this reduces the number of communi-
cations. On the other hand, the larger the time partition, the longer the receiver
has to wait for its data, i.e., the longer the receiver is delayed. The optimal size
for the time partitions depends on the program and on the machine parameters.

Example 2. If we apply this idea to the space-time mapped iteration domain
of Figure 1, we obtain the iteration domain in Figure 3, which shows the re-
duced number of communications and also the increased latency for the upper
processor. The efficiency for the same problem size as above and for different
values of the width of the time partitions is depicted in Figure 4. The presence
of a maximum in the efficiency curve clearly points to a trade-off between fewer
communications and less latency.

The problem is that time tiling may generate deadlocks: suppose that some
operation in tile t1 generates data for a later operation in t2 while an operation
in t2 generates data for t1. It is clear that no deadlock can occur if the time is not
tiled (since we need at least two operations with different schedules in each tile)
or if all communications roughly go into the same direction (e.g. from t1 to t2
but not the reverse). A formal definition and proof are given in Section 2. We call
this property forward communications only (FCO). A placement satisfying this
constraint allows any size for the time partitions [10]. (Note that this constraint
is not necessary but sufficient.)

Using FCO placements is not a novel idea. It has been suggested many times
as a sure way of avoiding deadlocks. Our aim here is not to advocate the use of
FCO placements, but to give an automatic method for building them.

processors
aggregating

virtual processors

logical time

aggregating time

Fig. 3. Target space after partitioning time

Forward Communication Only Placements and Their Use 19

131072

65536

16384

4096

1024

256

64 16 4 2 1 w
/out

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example 1

2

4

8

16

number of time steps per tile

ef
fic

ie
nc

y # procs.

Fig. 4. Execution times after partitioning time

The rest of this paper is organized as follows. Section 2 sets the formal back-
ground and derives the FCO placement algorithm. Sections 3 and 4 discuss
variants of this algorithm: Section 3 uses a different placement approach, and
Section 4 points out some future extensions. Section 5 discusses related work.
Section 6 shows some preliminary experimental results and Section 7 concludes.

2 Forward Communication Only Placement

In the presence of loops, every statement S in the body has several instances at
run-time. We call them operations and denote them by 〈i, S〉 where the iteration
vector i is the vector of all loop indices surrounding S. The set of all instances
of a given statement S is called the index set of S.

In order to use efficient mathematical tools, we require the loop bounds to be
affine functions in surrounding loop indices and structure parameters, i.e., sym-
bolic constants [7, 16]. (A method avoiding this restriction is given elsewhere [9].)

In our mathematical notation, we often use the homogeneous representation
of index vectors: we join the l-vector i of surrounding loops indices and the
m-vector n of structure parameters in order to obtain the d-dimensional ho-
mogeneous index vector. Note that the m-vector of structure parameters shall
always contain one entry for the constant 1.

In the affine setting, the c bounds of the loops surrounding a statement S
can be expressed as a system of linear inequalities and represented as a c × d
matrix DS with

DS .

(
i

n

)
≥ 0 (1)

where i is the iteration vector of S, and n is the vector of all structure parameters.
For consistency, we take care that the trivial inequality 1 ≥ 0 is always included
in DS .

20 M. Griebl, P. Feautrier, and A. Größlinger

A computation placement π is a function which maps every operation to an
integer vector that represents a virtual processor. Again, we require placements
to be affine in the loop indices and the structure parameters. Hence, the place-
ment of every statement S, πS , can be represented by a p×d matrix ΠS where p
is the number of processor dimensions, and d = l+m, i.e. d is the dimensionality
of the index set of S plus the number of symbolic parameters:

πS(i, n) = ΠS .

(
i

n

)
(2)

Similarly, a data placement maps array elements to virtual processors. For
each array A, we express this placement as:

πA(a, n) = ΠA.
(a

n

)
(3)

where a is the vector of A subscripts and n is as above.
Lastly, we need a schedule function θ, which maps operations to (virtual)

time. Schedules are assumed to be affine in the loop indices and the structure
parameters, as this is necessary for subsequent target code generation.

In general, each operation 〈i, S〉 both reads and writes memory. Our basic
assumption is that these accesses are to array cells. Let A be one of the arrays
accessed by S. We assume that we have been able to extract from the program
text a subscript function fAS such that the cell of A accessed by S is A[fAS(i, n)].
Here again we suppose fAS to be affine: there exists a matrix FAS such that:

fAS(i, n) = FAS .

(
i

n

)
. (4)

In Example 1, the F matrix for the rightmost reference to A is
(

1 0 0 0 −1
0 1 0 0 0

)
.

Let A[fAS(i, n)] be a read reference to A in S. If this array cell is not on the
same processor as operation 〈i, S〉, a communication is necessary. This commu-
nication will be forward if:

πA(fAS(i, n), n) ≤ πS(i, n). (5)

On the other hand, if the distinguished reference is a write, it will be forward if:

πS(i, n) ≤ πA(fAS(i, n), n). (6)

These inequalities are to be understood component-wise. They are to be veri-
fied everywhere in the index set DS of S. The conjunction of these properties
for all references in the program defines a forward communication only (FCO)
placement. (Note that the definition of the direction is arbitrary: we can always
reorder processors independently in each dimension).

A tile is a set of operations which are executed atomically by one processor.
Operations of a tile are executed sequentially. In this paper, we use a very simple

Forward Communication Only Placements and Their Use 21

tiling scheme. Let T be the tile size in time and B be the tile size in space1.
Operation 〈i, S〉 is executed by physical processor πS(i, n)÷B in its θS(i, n)÷T -
th time step.

Arrays are tiled according to the same scheme: cell A[x] is in the memory
of physical processor πA(x, n) ÷ B. The communication graph has the tiles as
vertices; there is an edge from tile a to b if a sends data to b.

Theorem 1. Any space/time tiling according to an FCO placement is valid.

Proof. For easier understanding, the proof will be written as if the schedule and
placement were one-dimensional. Extension to several dimensions is trivial.

A tiling is valid if there are no cycles in the communication graph. Let us
suppose a contrario that such a cycle exists. For k = 0, . . . , � − 1, tile (tk, pk)
sends data to tile (tk+1, pk+1) and tile (t�, p�) sends data to tile (t0, p0). For
each communication, there is an emitter x (a memory cell or an operation)
and a receiver y (an operation or a memory cell), each one having a placement
function πe (resp. πr). The FCO condition implies:

πe(x) ≤ πr(y),

from which follows:

pe = πe(x) ÷ B ≤ πr(y) ÷ B = pr,

where pe (resp. pr) is the name of the (real) processor executing (or holding) x
(resp. y). Furthermore, the inequality is strict, since there actually is a commu-
nication.

We have just proved that pk < pk+1 for k = 0, . . . , � − 1 and p� < p0 which
is impossible since < is an order.

Let us now consider one of the FCO conditions, (5) for instance. It can be
rewritten as:

∀
(

i

n

)
: DS .

(
i

n

)
≥ 0 ⇒ ΠS .

(
i

n

)
− ΠA.FAS

(
i

n

)
≥ 0. (7)

Farkas’ lemma [20] shows how such an affine inequation system can be trans-
formed into an equivalent equation system by adding non negative variables.
Thus, (7) is equivalent to:

ΠS − ΠA.FAS = λASDS. (8)

where the Farkas multipliers λAS are non negative. In this equation, the ΠS , ΠA

and λAS are unknowns, while FAS and DS can be deduced from the source
program. Similar considerations apply to (6).

Let Π be the vector obtained by concatenating the ΠA and ΠS in some
order, and λ be the vector obtained by concatenating the λAS . (The fact that
1 When the schedule and/or placement are multidimensional, T and B become vectors,

the integer division operator ÷ being extended componentwise.

22 M. Griebl, P. Feautrier, and A. Größlinger

the entries of Π and λ are p-vectors themselves is irrelevant for the following
reasoning.) It is clear that there exist matrices C and D such that the FCO
condition is equivalent to:

C.Π = D.λ, (9)
λ ≥ 0. (10)

The set of solutions of this system (i.e. the set of valid FCO placements) is a
cone C (it is closed both by addition and by multiplication by a non-negative
constant). Let 〈Π, λ〉 be such a solution; let us consider a specific reference to A
in S. There is a part of λ which corresponds to λAS in (8). If this part is null, then
the distinguished reference entails no communication. Let 〈Π1, λ1〉 and 〈Π2, λ2〉
be two solutions. It is clear that 〈Π1 + Π2, λ1 + λ2〉 is another solution whose
residual communications are the union of the residual communications of the
two initial solutions. This leads us to consider only extremal solutions, which
cannot be obtained as a weighted sum of other solutions.

Any cone can be characterized [20] by its extremal rays r1, . . . , rs and its
lines l1, . . . , lt in such a way that:

C = {
∑

xkrk +
∑

yklk | xk ≥ 0}. (11)

There are well known algorithms for finding the rays and lines of a cone, and at
least one efficient implementation, the Polylib [21].

Let us now consider a line lk = 〈Πk, λk〉. Since lk is a line, 〈−Πk, −λk〉 is
also in C. By (10) we obtain λk ≥ 0 and −λk ≥ 0 which implies λk = 0.

Conversely, if 〈Πk, λk〉 is a ray with λk = 0, then 〈−Πk, −λk〉 is also a
solution and the ray is a line. It follows that lines correspond to communication-
free placements, and that rays correspond to FCO placements with residual
communications. Furthermore, an analysis of the null components of the λ part
of a ray allows one to identify residual communications. If we assign a weight
to each reference (e.g. an estimate of the number of transmitted values), we
can associate a weight to each ray and select the one with minimum weight
(remember that in this context, lines will show up as zero weight solutions).

However, we still have to consider parallelism. Let ΠS be the part of a solution
which corresponds to statement S. While up to now we have considered ΠS as a
vector, it is in fact a matrix with p rows, where p is the dimension of the processor
grid. The set of active processors is the image of the index set of S by ΠS . In
order to preserve efficiency, we want this set to have the same dimension as the
processor grid (however, this dimension cannot be higher than the dimension of
S index set). Finding the dimension of the set of active processors is a simple
rank computation.

We can thus propose the following algorithm:

– Build the matrices C and D from the source program.
– Build the rays and lines of the cone C associated to C and D.
– Filter out rays and lines which do not satisfy the rank condition above.

Forward Communication Only Placements and Their Use 23

– Compute the weight of each remaining ray or line.
– Select the ray or line with the smallest weight.

If a line has survived the filtering process, it has zero weight and will be se-
lected, giving a communication free placement. If the selectee is a ray, it will give
an FCO placement with minimum communication volume. Lastly, if there are no
survivors, then the problem has no FCO placement of the required dimension.

We cannot claim that the placement we find in this way is the best one,
in the sense of giving the best speedup. However, if the weights we assign to
communications are estimates of the communication volumes, then our algorithm
is a greedy solution to the problem of finding a minimum communication FCO
placement.

Let us note that the severity of the filtering increases with the dimension
of the processor grid. Hence, we can always try again with a grid of a smaller
dimension. In general, the higher the dimension, the higher the volume of resid-
ual communications, but also the higher the bandwidth of the communication
network. Since the relative importance of these two opposite factors depends on
details of the architecture, the best choice can only be found experimentally.

3 Another Approach: Dependence Driven Placements

The presented placement algorithm computes one computation placement per
statement and one data placement per array. However, there also exists other
approaches for the computation of placements. We show how our basic FCO
placement algorithm can be adapted accordingly.

One possibility is to drop the notion of ownership and assume that every
processor holds the data it computes, and that it sends the data directly to every
consumer. We call such a placement method dependence driven, in contrast to
the original method which we call ownership driven.

Note that we have a very strong notion of dependences in this context: we use
direct dependences for this approach. On the one hand, this requires a precise
dataflow analysis, e.g. [2, 4]. On the other hand, the result is as precise as if
we had converted the program to single assignment form: we can tell, for every
operation, where the accessed data is located – because we know the source of
the direct dependence, i.e., the producer in the case of flow dependences.

Note that if some array element A[x] is re-assigned, the new producer holds
the new value and, as written above, sends it to those processors that need this
new value. Thus, we cannot say that A[x] is owned by some processor, because
the “ownership” for A[x] changes. In this aspect, the dependence driven approach
is more flexible than the ownership driven approach.

On the other hand, the implicit owner of every element (provided that it
exists, e.g., because the program is single assignment) is its producer. There is
no possibility that the producer stores the value at some different processor if
this would be beneficial. So, in this aspect the ownership driven approach is more
flexible [8] .

24 M. Griebl, P. Feautrier, and A. Größlinger

DO i=0,n-1

S: C[i] = 42;

DO j=0, n-1

T: A[i,j] = A[i,j-1] + C[i]

END DO

END DO

DO l=1,n-1

DO k=0, n-1

U: B[l,k] = A[l,k] + C[l-1]

END DO

END DO

Fig. 5. A source program that needs redistribution

The construction of a dependence driven FCO placement can be achieved
along the same lines as above. There is one placement constraint per dependence
in the program.

A dependence d is given as a relation from the source index set to the desti-
nation index set:

{〈i, n, S〉 → 〈j, n, T 〉 | Rd .

(
i
j
n

)
≥ 0},

in which we have assumed that the dependence is representable as one polyhe-
dron. For every such dependence, we require the FCO property:

πS(i, n) ≤ πT (j, n). (12)

This can be rewritten as

∀i, j, n : Rd .

(
i
j
n

)
≥ 0 ⇒ ΠT .

(
j

n

)
− ΠS .

(
i

n

)
≥ 0. (13)

From then on, the algorithm follows the same lines as above. We eliminate
quantifiers with the help of Farkas lemma, then find the rays and lines of the
solution cone, and select the best one.

4 On the Use of Redistribution

The ownership driven approach has the drawback that an array has only one
placement for all the execution of a program. This is unsatisfactory: many pro-
grams can be divided in successive phases with differing access patterns to ar-
rays. Hence, we need the ability to freely determine a data placement, but also
to change this data placement during program execution. Let us discuss this on
an example.

Example 3. Consider the source program in Figure 5. There, we can avoid any
communication due to the two-dimensional (hence, most important) accesses to

Forward Communication Only Placements and Their Use 25

arrays A and B by the following mapping: A[x, y] �→ x and 〈i, j, T 〉 �→ i (this
eliminates the dependences cycle inside T), and B[l, k] �→ l and 〈l, k, U〉 �→ l
(this eliminates the dependence from T to U due to A and enables a local store
of B).

Furthermore, we map 〈i, S〉 �→ i and C[z] �→ z in order to eliminate commu-
nications due to accesses of C in S and T . This solution is optimal if we allow
one mapping per array and per statement – even if every of the n2 accesses to
C[l − 1] in U causes a communication.

A much better solution would be if we could re-map array C between its uses
in T and U . If we re-map C[l−1] to l before executing U , then there are no com-
munications caused by U . The cost for the redistribution is one read/re-store per
element of C, i.e., the redistribution causes only linearly many communications.

How can we modify our placement algorithm in order to find this solution?
The first step is to split the first loop. We then add redistribution points in
the source program, i.e., technically, we add artificial statements that read all
elements of the array to be redistributed and copy them to a new array (and
update the subsequent accesses to the new array). This scheme has the added
advantage of limiting the complexity of each elementary placement problem,
thus improving the scalability of our approach.

After inserting redistribution points for array C between the loops on S
and T , and also between the loops on T and U , and applying our placement
algorithm, we obtain:

– between S and T : C′[z] �→ z
– between T and U : C′′[z] �→ z+1

This means that we should not redistribute C between S and T , but between T
and U – the expected result.
The central question for this approach is where to insert redistribution points,
and for which arrays. One heuristics is to try redistribution along the edges
of the acyclic condensation of the statement dependence graph. On the one
hand this allows redistribution between different phases of an algorithm (where
redistribution might be most important); on the other hand it guarantees that
the expensive re-mapping is not executed too often, esp. not executed repeatedly
back and forth, since it forbids redistribution inside dependence cycles. Of course,
other strategies can be imagined as well.

In addition, there are other possibilities to make placement algorithms more
flexible (e.g., to allow replication of arrays or even redundant computations, or
to deal with piecewise affine placements, e.g., via index set splitting [12]). We
leave this for our ongoing work.

5 Related Work

Tiling has many applications in program optimization. We will not consider
here its use for locality improvement in sequential programs as in the work of

26 M. Griebl, P. Feautrier, and A. Größlinger

Wolfe [23] or Xue et. al. [26]. Tiling may be used as a parallelization method.
This approach was first proposed by Triolet [15]. The shape of the tile is first
chosen in such a way that deadlocks are avoided. The parallel program is then
constructed by a simple application of the hyperplane method. Lastly, the size
of the tiles is adjusted for minimum run time [1, 13, 14, 18, 19, 24,25].

Another approach consists of applying tiling after parallelization in order
to adjust the grain of parallelism [22]. This has lead to the definition of fully
permutable loop nests. The present paper belongs to this category. It differs from
previous proposals in that we do not apply tiling either to arrays or to index
sets, but to time and space. In a previous work [11], the first author explained
in more detail why the parallelization procedure described in Section 1 can be
superior to the traditional tiling approach. The most important reasons are a
wider applicability and, at the same time, a possibly better quality of the result.

There also exist multiple papers about placement functions, some of them
using the same framework as this paper [3, 6, 17]. However, to the best of our
knowledge, this is the first time that automatic construction of FCO placements
is considered. In Lim and Lam terminology [17], our methods apply when con-
stant parallelism is not sufficient for taking benefit of all processors.

The use of Farkas lemma for quantifier elimination in formulas like (7) has
been first proposed by the second author [5], however in a different application
area.

6 Experiments

Our placement algorithm has been implemented as an extension to the LooPo
parallelizer and tested on about ten kernels, some real and some artificial. These
kernels are available on demand from the authors. We found FCO placements
for all examples, and even some communication free placements. The largest
examples where “burg” (a signal processing kernel with 22 lines of code) and
“LCZOS” (a Lanczos iteration with 60 lines). The algorithm has removed 31
communications out of 44 in the first case and 62 out of 64 in the second case.

We then tested the performances of our target code on an SCI-connected
network of 32 nodes, every node (board) with two Pentium 3 processors at 1
GHz and 512 MB of main memory. In order to avoid effects due to the shared
memory on the boards, we only used one processor per node. We took gcc-2.96
-O2 for the compilation and SCAMPI as communication library.

Our first experiments show that tiling time is necessary for some cases. As
a rule of thumb, these cases arise for loop nests where one dimension goes to
space and all other dimensions are covered by the schedule. In this situation,
we must reduce the number of communication phases which, before tiling time,
take place at every iteration of the sequential loops.

We use the programs in Figure 6. The SOR algorithm has uniform, the
LUBKSB (LU Backward Substitution) non-uniform but affine dependences; the
complex array indices in LUBKSB result from loop normalization (in the initial
program, the loops are counting backward). The schedules for SOR and the three

Forward Communication Only Placements and Their Use 27

DO J=1,M

DO I=2,N-1

A(I)=(A(I-1)+

A(I+1))/2.0

END DO

END DO

SOR 1-dimensional

DO k=0, n-1

sum[n-k] = b[n-k]

DO l=0, k-1

sum[n-k]=sum[n-k]-

a[n-k][n-l]*b[n-l]

END DO

b[n-k]=sum[n-k]/a[n-k][n-k]

END DO

LUBKSB

Fig. 6. Example programs that need partitioning of time

524 288
262 144
131 072
655 36
327 68
163 84
819 2
409 6
204 8
102 4
512
256
128
32 16 8 4 2 10

10

20

30

40

50

60

SOR−1dim

2

4

8

16

32

width of time partitions

ex
ec

ut
io

n
tim

e # procs.

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SOR - 1dim

524288
1

opt

number of processors

ef
fic

ie
nc

y

tile width

Fig. 7. Execution time and efficiency for SOR

statements of LUBKSB are 2∗J +I−4 and 0, 2∗ l+2, 2∗k+1, and the FCO
placements generated by our algorithm are J and k, k, k, respectively. We give
the execution time and speedup for different numbers of processors and different
widths of the time partitions in Figures 7 and 8.

For the SOR experiment, we set M to 6144 and N to 1048576; the resulting
original sequential execution time was 180.5 seconds. Due to cache effects, the
optimized parallel program on one processor needed only 71.4 seconds. This is an
important collateral benefit: the aim of placement algorithms is to improve lo-
cality. This results not only in less communications, but also in less cache misses.
Figure 7, right, shows the efficiency (with respect to this improved sequential
time). We can see that the efficiency for the optimal time partitioning is about
15 to 30 % higher than without partitioning time, i.e., with time partition width
of 1. On the other end of the spectrum, long time partitions (width = 524288)
give up nearly all parallelism and so do not scale at all. Note that for the chosen
value for parameter M , the 32 processors are not fully used; this becomes better
for larger M (but at the same time the importance of partitioning time decreases
for the smaller number of processors).

In the LUBKSB experiment we use N = 10240 and obtain a sequential
execution time of 19.81 seconds. The parallel version executes in 20.69 seconds
on a single processor. We do not observe a speedup due to cache effects here since

28 M. Griebl, P. Feautrier, and A. Größlinger

4096

2048

1024

256

128

64 32 16 8 4 2 1

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

LUBKSB

2

3

4

5

6

7

width of time partitions

ex
ec

ut
io

n
tim

e

procs.

2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LUBKSB

128

16

1

number of processors

ef
fic

ie
nc

y width

Fig. 8. Execution time and efficiency for LUBKSB

both programs access the array a in a cache friendly way. Figure 8 shows that
we achieve the highest speedup with tile sizes between 16 (on 7 processors) and
128 (on 2 processors). This example does not scale as well as the SOR example,
because the iteration space is triangular, hence the work is distributed unevenly
among the processors. A possible solution is to build tiles with variable size, but
we have not worked out all the details of this technique.

7 Conclusions

As we have seen in Section 6, partitioning in the time direction is important
in order to obtain good speedups for some kinds of algorithms. However, par-
titioning time is not always legal. A sufficient condition for legality is that all
communications of the parallel program go forward in every dimension (FCO).
This condition is also necessary in one dimension.

The main theme of this paper has been the development of an algorithm for
the automatic construction of FCO placements. This algorithm has been imple-
mented as an extension to the LooPo parallelizer and used for all the examples in
this paper. Experiments show that the transformed programs have satisfactory
performances on a cluster of PC, although better load balancing is needed in
some cases.

Although we have not emphasized the point, the method can be generalized to
handle programs beyond the strict polytope model: modulo and integer division
in the subscripts, min and max operators in the loop bounds, tests on the loop
indices, union of polytopes in the dependence descriptions, and even infinite
iteration domains as in signal processing.

We intend to pursue this work in several directions:

– Analyze the FCO placement algorithm. Can its complexity be reduced? Find
examples in which no FCO placement can be found.

Forward Communication Only Placements and Their Use 29

– Build a rough cost model for the tiled program, in order to help the selection
of a good tile size. Can this model help in the construction of programs with
tiles of varying size?

– Compare the ownership driven and the dependence driven approaches as to
applicability, complexity and efficiency.

– Explore the redistribution approach, with a view of improving the scalability
of the compiler.

Acknowledgments

The first author would like to thank Michael Classen for his support with the
experiments, and Max Geigl for his fruitful comments on a draft version of this
paper.

All authors acknowledge the help of the French-German exchange program
PROCOPE (grant 02969TB on the French side).

References

1. Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling?
INTEGRATION, 17:33–51, 1994.

2. Jean-François Collard and Martin Griebl. A precise fixpoint reaching definition
analysis for arrays. In Larry Carter and Jeanne Ferrante, editors, Languages and
Compilers for Parallel Computing, 12th International Workshop, LCPC’99, LNCS
1863, pages 286–302. Springer-Verlag, 1999.

3. Michèle Dion and Yves Robert. Mapping affine loop nests: New results. In Bob
Hertzberger and Giuseppe Serazzi, editors, High-Performance Computing & Net-
working (HPCN’95), LNCS 919, pages 184–189. Springer-Verlag, 1995.

4. Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel
Programming, 20(1):23–53, February 1991.

5. Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part I.
One-dimensional time. Int. J. Parallel Programming, 21(5):313–348, 1992.

6. Paul Feautrier. Toward automatic distribution. Parallel Processing Letters,
4(3):233–244, 1994.

7. Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René
Perrin and Alain Darte, editors, The Data Parallel Programming Model, LNCS
1132, pages 79–103. Springer-Verlag, 1996.

8. Paul Feautrier. Automatic distribution of data and computation. Tech-
nical Report 2000/3, Laboratoire PRiSM, Université de Versailles, URL:
http://www.prism.uvsq.fr/rapports/2000/abstract 2000 3.html, March 2000. English
translation of TSI vol. 15 pp 529–557, 1996.

9. Martin Griebl. The Mechanical Parallelization of Loop Nests Containing while
Loops. PhD thesis, Fakultät für Mathematik und Informatik, Universität Passau,
January 1997. Technical Report MIP-9701.

10. Martin Griebl. On the mechanical tiling of space-time mapped loop nests. Technical
Report MIP-0009, Fakultät für Mathematik und Informatik, Universität Passau,
August 2000.

30 M. Griebl, P. Feautrier, and A. Größlinger

11. Martin Griebl. On tiling space-time mapped loop nests. In Thirteenth annual ACM
symposium on parallel algorithms and architectures (SPAA 2001), pages 322–323,
July 2001.

12. Martin Griebl, Paul A. Feautrier, and Christian Lengauer. Index set splitting. Int.
J. Parallel Programming, 28(6):607–631, 2000.

13. Edin Hodžić and Weijia Shang. On time optimal supernode shape. In Eighth Int.
Workshop on Compilers for Parallel Computers (CPC 2000), pages 367–379, Boca
Raton,FL, 2000. CRC Press.

14. Karin Högstedt, Larry Carter, and Jeanne Ferrante. Selecting tile shape for mini-
mal execution time. In 11th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’99), pages 201–211. ACM Press, June 1999. Also available
with proofs as UCSD Tech Report CS99-616.

15. François Irigoin and Remi Triolet. Supernode partitioning. In Proc. 15th Ann.
ACM Symp. on Principles of Programming Languages (POPL’88), pages 319–329,
San Diego, CA, USA, January 1988. ACM Press.

16. Christian Lengauer. Loop parallelization in the polytope model. In Eike Best,
editor, CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

17. Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchro-
nization with affine partitions. Parallel Computing, 24(3–4):445–475, May 1998.

18. Daniel A. Reed, Loyce M. Adams, and Merrell L. Patrick. Stencils and problem
partitionings: Their influence on the performance of multiple processor systems.
IEEE Trans. on Computers, C-36(7):845–858, July 1987.

19. Robert Schreiber and Jack J. Dongarra. Automatic blocking of nested loops. Tech-
nical Report CS-90-108, University of Tennessee, Computer Science, May 1990.

20. A. Schrijver. Theory of Linear and Integer Programming. Series in Discrete Math-
ematics. John Wiley & Sons, 1986.

21. Doran K. Wilde. A library for doing polyhedral operations. Technical Report 785,
IRISA, December 1993.

22. Michael Wolf and Monica Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE Trans. on Parallel and Distributed Systems, 2(4):452–
471, October 1991.

23. Michel Wolfe. Iteration space tiling for memory hierarchies. In Gary Rodrigue,
editor, Proc. of the 3rd conference on Parallel Processing for Scientific Computing,
pages 357–361. SIAM, 1989.

24. Jingling Xue. Communication-minimal tiling of uniform dependence loops. J. Par-
allel and Distributed Computing, 42(1):42–59, April 1997.

25. Jingling Xue. On tiling as a loop transformation. Parallel Processing Letters,
7(4):409–424, 1997.

26. Jingling Xue and Chua-Huang Huang. Reuse-driven tiling for improving data
locality. Int. J. Parallel Programming, 26(6):671–696, December 1998.

Hierarchical Parallelism Control for Multigrain
Parallel Processing

Motoki Obata1,2, Jun Shirako1, Hiroki Kaminaga1,
Kazuhisa Ishizaka1,2, and Hironori Kasahara1,2

1 Dept. of Electrical, Electronics and Computer Engineering, Waseda University
{obata, shirako, kaminaga, ishizaka, kasahara}@oscar.elec.waseda.ac.jp

2 Advanced Parallelizing Compiler Reserch Group
http://www.apc.waseda.ac.jp

Abstract. To improve effective performance and usability of shared
memory multiprocessor systems, a multi-grain compilation scheme, which
hierarchically exploits coarse grain parallelism among loops, subroutines
and basic blocks, conventional loop parallelism and near fine grain par-
allelism among statements inside a basic block, is important. In order
to efficiently use hierarchical parallelism of each nest level, or layer, in
multigrain parallel processing, it is required to determine how many pro-
cessors or groups of processors should be assigned to each layer, according
to the parallelism of the layer. This paper proposes an automatic hierar-
chical parallelism control scheme to assign suitable number of processors
to each layer so that the parallelism of each hierarchy can be used effi-
ciently. Performance of the proposed scheme is evaluated on IBM RS6000
SMP server with 8 processors using 8 programs of SPEC95FP.

1 Introduction

As a parallel processing scheme on multiprocessor systems, loop level paral-
lelism has been widely used by automatic parallelizing compilers[1,2]. As ex-
amples of loop parallelizing research compilers, Polaris compiler[3,4,5] exploits
loop parallelism by using inline expansion of subroutine, symbolic propaga-
tion, array privatization[4,6] and run-time data dependence analysis[5] and SUIF
compiler[7,8,9] parallelizes loops with inter-procedure analysis, unimodular
transformation and data locality optimization [10,11]. Effective optimization of
data locality is more and more important because of the increasing gap be-
tween memory and processor speeds. Currently, many researches for data local-
ity optimization using program restructuring techniques such as blocking, tiling,
padding and data localization, has been proceeded for high performance com-
puting and single chip multiprocessor systems [10,12,13,14].

However, by those research efforts, the loop parallelization techniques are
reaching maturity. In light of this fact, new generation parallelization techniques
like multigrain parallelization are desired to overcome the limitation of the loop
parallelization.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 31–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 M. Obata et al.

OSCAR FORTRAN compiler realizes multigrain parallelization [15,16,17]
which uses coarse grain task parallelism [15,16,17,18,19,20,21] among loops, sub-
routines and basic blocks and near fine grain parallelism[22,23] among state-
ments inside a basic block in addition to conventional loop parallelism among
loop iterations. Also, NANOS compiler[24,25] based on Parafrase2 has been try-
ing to exploit multi-level parallelism including the coarse grain parallelism by
using extended OpenMP API. PROMIS compiler[26,27] hierarchically combines
Parafrase2 compiler[28] using HTG[29] and symbolic analysis techniques[30] and
EVE compiler for fine grain parallel processing.

Based on OSCAR compiler, Advanced Parallelizing Compiler (APC) project
[31] was started in Fiscal Year of 2000 to improve the effective performance,
ease of use and cost performance of shared memory multiprocessor systems as
a part of Japanese Government Millennium Project IT21 with industries and
universities.

In the coarse grain parallelization in OSCAR multigrain compiler, a sequen-
tial program is decomposed into three kinds of Macro-Tasks, namely Block of
Pseudo Assignment statements (basic block), Repetition Block (loop) and Sub-
routine Block. Earliest Executable Condition analysis is applied to the generated
macro-tasks and generates a macro-task graph. A macro-task graph expresses
coarse grain parallelism among macro-tasks. A sequential Repetition Block with
a large loop body part or Subroutine Block is decomposed into coarse grain tasks
hierarchically as shown in Fig.2. By these hierarchical definition of coarse grain
tasks, OSCAR compiler can exploit more parallelism in a program in addition
to the loop parallelism.

However, compiler must decide which layer should be parallelized and how
many processors should be used for the layer. This decision is very difficult for
the ordinary users since analysis of hierarchical parallelism and examination of
the combination of hierarchical parallelism are very hard. This paper proposes
an automatic determination scheme of the number of processors to be assigned
to each program layer.

2 Coarse Grain Task Parallel Processing

This section describes a coarse grain task parallel processing scheme to decom-
pose a sequential code to coarse grain tasks hierarchically and to generate hier-
archical macro-task graph.

The macro-tasks on a macro-task graph are assigned to processor clusters
(PC) or processor elements(PE) by a static or dynamic task scheduling method.

2.1 Generation of Coarse Grain Tasks

In the coarse grain task parallelization, a Fortran source program is decomposed
into three kinds of macro-tasks, namely, Block of Pseudo Assignment statements
(BPA), or Basic Block(BB), repetition Block(RB), or an outermost natural loop
in the treated hierarchy, and Subroutine Block(SB). RBs composed of sequential

Hierarchical Parallelism Control for Multigrain Parallel Processing 33

Data Dependency
Extended Contorol Dependency
Conditional Branch

OR
AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(a) MFG (b) MTG

Fig. 1. A macro flow graph (MFG) and a macro-task graph (MTG)

loops having large processing cost and SBs to which inline expansion can not be
applied effectively, are hierarchically decomposed into macro-tasks as shown in
Fig.2.

2.2 Exploitation of Coarse Grain Parallelism

After the generation of macro-tasks in each layer, or each nest level, control
and data flow among macro-tasks are analyzed. A macro flow graph in each
layer is generated as shown in Fig.1(a). In the figure, nodes represent macro-
tasks, solid edges represent data dependencies among macro-tasks and dotted
edges represent control flow. A small circle inside a node represents a conditional
branch inside the macro-task. Though arrows of edges are omitted in the macro-
flow graph, it is assumed that the directions are downward.

Then, compiler analyzes Earliest Executable Condition[15,18,19] of all
macro-task to exploit coarse grain parallelism among macro-tasks. This condi-
tion shows parallelism among macro-tasks considering both data dependency and
control dependency. Earliest executable condition of each macro-task is shown as
macro-task graph in Fig.1(b). In the macro-task graph, nodes represent macro-
tasks. A small circle inside nodes represents conditional branches. Solid edges
represent data dependencies. Dotted edges represent extended control dependen-
cies. Extended control dependency means ordinary normal control dependency
and the condition on which a data dependent predecessor of a macro-task is not
executed.

2.3 Processor Clusters and Processor Elements

In the coarse grain parallelization, macro-tasks on hierarchical macro-task graphs
are assigned to processor clusters, or groups of processors. OSCAR compiler

34 M. Obata et al.

MTG0

MT3
(BB)

(BB)

(RB) (BB)

(BB)

(BB)

(BB)
(SB)(BB)

(BB)

(RB)(SB)
MT1MT2

MTG1

MT1−1

MT1−3 MT1−2

MTG2

MT2−1

MT2−2

MT2−2−1

MT2−2−2

MT1−2−2

MT1−2−1

MTG1−2

MTG2−2

1st layer 2nd layer 3rd layer

Fig. 2. Hierarchical macro-task graph

PC0−3
(1PE)

PC0−2
(1PE)

PC0−1
(1PE)

PC0−0
(1PE)

PC1−1−1
(1PE)

PC1−1−0
(1PE)

8PE

PC0(4PE) PC1(4PE)

PC1−0(2PE) PC1−1(2PE)

1PE 1PE 1PE 1PE 2PE

Program

1st layer

2nd layer

3rd layer

(4PC,1PE)

(2PC,4PE)

(2PC,2PE) (2PC,1PE)

Fig. 3. Hierarchical definition of processor clusters and processor elements

groups processor elements(PE) into processor clusters(PC) logically, and assigns
macro-tasks in a macro-task graph to PCs. If a hierarchical macro-task graph
is defined inside a macro-task as shown in Fig.2, processors are also grouped
by software logically into PCs hierarchically as shown in Fig.3. Fig.3 shows 8
processors are grouped into 2 processor clusters PC0 and PC1 having 4 processor
elements respectively in the first layer. In the second layer, 4 processors in PC0
are grouped into 4 processor clusters PC0-0∼PC0-3. On the other hand, PC1
is decomposed hierarchically to 2 processor clusters PC1-0 and PC1-1 having
2 processor elements respectively in the second layer. Again, PC1-1 having 2
processor elements is grouped hierarchically into 2 processor clusters PC1-1-0
and PC1-1-1 each of which has one PE in the third layer.

Compiler must decide how many PCs should be assigned to each layer of
macro-task graphs to exploit full hierarchical parallelism efficiently. Next section
handles this problem.

3 Automatic Determination of Parallel Processing Layer

This section describes how to decide the number of PCs to be assigned to each
layer of macro-task graph (MTG). The parallel processing in the upper layer
reduces overheads for synchronization and scheduling because the upper layer

Hierarchical Parallelism Control for Multigrain Parallel Processing 35

tasks usually have larger processing cost compared with overheads. The proposed
scheme allows us to use coarse grain task parallelism and loop level parallelism.

3.1 Estimation of Macro-task Execution Cost

First, the compiler estimates processing cost of each macro-task. Sequential cost
of each macro-task graph is the sum of sequential cost of macro-tasks considering
control flow. If a macro-task is a DO-loop with undefined number of loop itera-
tions and arrays with loop index are accessed in the loop, the compiler estimates
the loop processing cost using the dimension size of arrays as the number of
loop iterations. However, when the array appeared in the loop doesn’t have any
relationship with loop index or the number of iterations, the compiler assigns
the all PE to the outermost parallelism. If conditional branches are included in
a macro-task graph, execution cost is calculated by using branch probability. In
this paper, since it is assumed that the compiler doesn’t use execution profiles,
the cost of macro-tasks is estimated using equal branch probability of 50% for
the both conditional branch directions. However, if execution profile can be used,
the cost of macro-tasks can be estimated more precisely. The compiler estimates
sequential execution cost of each macro-task graph by using the hierarchical sum
of inner macro-tasks.

3.2 Calculation of Parallelism of Each Layer of MTG

Coarse grain task parallelism of each macro-task graph(MTG) is calculated by
sequential execution cost and critical path length of each MTG. Coarse grain
task parallelism Parai of MTGi is defined as

Parai = Seqi/CPi (1)

where CPi is critical path length and Seqi is a sequential execution cost
in MTGi. Therefore, �Parai� shows the minimum number of processor clus-
ters(PC) to execute MTGi in CPi.

Next, Para ALDi (Para After Loop Division) is defined as total paral-
lelism of coarse grain and loop iteration level parallelism. In the proposed deter-
mination scheme of parallel processing layer, Tmin is defined as a minimum task
cost for loop parallelization considering overheads of parallel thread fork/join
and task scheduling on each target multiprocessor system. This scheme assumes
that parallelizable RB in MTGi is divided into sub RBs having larger cost than
Tmin. However, if the cost of iteration of RB is larger than Tmin, the maximum
number of decomposed tasks is the number of loop iterations of the RB. This
task decomposition is considered for only calculation of Para ALD and real task
decomposition isn’t performed at this phase. Critical path length after the tem-
porary task decomposition is represented as CP ALDi. Therefore, Para ALD
is defined by using Seqi and CP ALDi.

Para ALDi = Seqi/CP ALDi (2)

36 M. Obata et al.

MT2−1
(BB)
50

MT1
(DOALL)

MT3
(BB)
100

60000

MT2
(SB)
30000

MTG0 MTG2

(Seq. loop) (SB) (Seq. loop)
9500 850011950

CP_ALD0 = 30100
CP0 = 60100
Seq. cost0 = 90100

Para_max0 = Para_ALD0 x Para_max2
= 9

Para_max2 = 3 x 1 = 3

Seq. cost2 = 30000

MT2−2 MT2−3 MT2−4

CP2 = 12000
CP_ALD2 = 12000

Para_max more_inner= 1

Para0 = 1.5
Para_ALD0 = 3.0

Para2 = 2.5
Para_ALD2 = 2.5

Fig. 4. Calculation of Para,Para ALDPara max

If MTi including MTGi as a loop body is parallelizable loop, it is necessary
to reflect loop parallelism of MTi itself in Para ALDi hierarchically. In this
case, Para ALDi is the product of the inner Para ALD of MTGi and the
number of task decomposition of MTi, where the generated macro-tasks by the
decomposition of MTi have larger cost than Tmin. �Para ALDi� is the total
number of processors which is necessary to execute MTGi in CP ALDi and
shows the suitable number of processor clusters to balance execution cost among
processor clusters. If more processors than �Para ALDi� were assigned to the
MTG, possibility of processors being idle is high.

Also, as the enough number of processors for using all parallelism in lower
layers of MTGi, Para maxi is defined as the following equation:

Para maxi = �Para ALDi� × �Para maxinner� (3)

where Para maxinner is the maximum Para max among macro-tasks in
MTGi. However, if RB is a parallelizable loop, the proposed scheme assumes
that the loop is divided by �Para ALDi� and Para max of the parallelizable
loop in MTGi is calculated by considering the loop decomposition of paralleliz-
able loop. Practically, after the number of processor clusters is determined, the
actual number of decomposed tasks of a parallelizable loop is determined in
the later stage of compilation by considering the number of processor clusters or
cache size. In this phase calculating maximum parallelism, it is assumed that the
parallelizable loop in MTGi is divided by �Para ALDi� which is the number of
necessary processors in MTGi.

As an example, Para, Para ALD and Para max in Fig.4 is shown. In Fig.4,
“DOALL” shows parallelizable loop, “Seq. loop” shows un-parallelizable loop,
namely sequential loop. Thick edges show critical path and numbers within nodes
are sequential execution costs. Here, Tmin, which is the minimum cost to re-
alize efficient loop parallel processing, is defined as 10000. To explain simply,
it is assumed that there are no parallelism in the body of MT1(DOALL) in
MTG0, MT2-2, MT2-3 and MT2-4 in MTG2 which is inner macro-task graph of
MT2(SB). Though hierarchical macro-task graphs can be generated inside these
macro-tasks practically, the inner macro-task graphs of MT1, MT2-2, MT2-3 and

Hierarchical Parallelism Control for Multigrain Parallel Processing 37

Seq.cost = 150000

Para2 = 1.2
Para_ALD2 = 3.0

MT2−3
(SB)
30000

MT2−2
(Seq.loop)

MT2−1
(DOALL)

20000100000

Para_max2 = 3 x 4 = 12

CP2 = 130000
CP_ALD2 = 50000

MT2−2−2

MT2−2−1
Seq.cost = 20000
CP2−2 = 20000
CP_ALD2−2 = 20000
Para2−2 = 1
Para_ALD2−2 = 1
Para_max2−2 = 1

MT2−3−1

MT2−3−2

Seq.cost = 30000
CP2−3 = 30000
CP_ALD2−3 = 30000
Para2−3 = 1
Para_ALD2−3 = 1
Para_max2−3 = 1

MT1 MT2
(SB)

150000
(Seq.loop)

150000

Para0 = 2
Para_ALD0 = 2
Para_max0 = 2 x 12 = 24

Navail_PE = 8
Npc0 = 2
Npe0 = 4

Navail_PE2 = 4
Npc2 = 4
Npe2 = 1

Seq.cost = 300000
CP0 = 150000
CP_ALD0 = 150000

Navail_PE2−2,2−3 = 1
Npc2−2,2−3 = 1
Npe2−2,2−3 = 1

MTG2−3

MTG2−2MTG2
MTG0

Fig. 5. Determination of NPC and NPE

MT2-4 are omitted in this example. First, Para, CP , Para ALD, CP ALD and
Para max are calculated from the deepest layer of a program. Since macro-task
graphs within MT2-2, MT2-3 and MT2-4 don’t have any parallelism as men-
tioned above, Para = Para ALD = Para max = 1 for these loops.

Sequential cost of MTG2 is 30000 and CP2, CP ALD2 are 12000. Therefore,
Para2 and Para ALD2 of MTG1 are Para2 = 30000/12000 = 2.5,
Para ALD2 = 30000/12000 = 2.5 Also, since Para max = 1 in MT2-2, MT2-3
and MT2-4 of MTG2 and Para max2 = �Para ALD2�×Para maxmore inner =
3 × 1 = 3, the suitable number of processors which is assigned to MTG2 is 3.

Also, parallelizable loop MT1 (DOALL) can be divided into 6 (60000/10000)
sub macro-tasks. Therefore, Para1 = 1, Para ALD1 = 6 for MT1(DOALL).
Then, each parameter in MTG0 is calculated. In Fig.4, Seq0 = 90100 and
CP0 = 60100. CP ALD0 = 30100 is the sum of sequential cost of MT2(SB)
and MT3(BB) if MT1(DOALL) is divided into 6 tasks (60000/10000). There-
fore, Para0 = 90100/60100 = 1.5, Para ALD0 = 90100/30100 = 3.0. For
Para max0, macro-tasks within MTG0 are MT1 through MT3 and it is assumed
that MT1 is divided by Para ALD0 = 3. Para max2 = 3 of MT2(SB) which
has MTG2 as mentioned above. Though original Para max of MT1(DOALL)
before task division is Para max = 6, Para max = 6/3 = 2 in one of di-
vided MT1(DOALL) since MT1(DOALL) is divided by Para ALD0 = 3. There-
fore, MT having maximum Para max in MTG0 is MT2 and Para max0 =
�Para ALD0� × Para max2 = 9.

3.3 Determination Scheme of PC and PE Assignment to Each
Layer

This section describes an automatic determination scheme of PC and PE assign-
ment to each layer is described by using parameters obtained in section 3.2.

Step 1 Since execution costs of tasks in an upper layer are larger than tasks in a
lower layer in a program in general, relative overheads of task scheduling and

38 M. Obata et al.

synchronization are relatively small. Thus, the proposed scheme tries to use
more parallelism in an upper layer. Let’s assume the number of processors
which can be used in MTGi is NAvail PEi. The number of processor clusters
and processor elements are denoted as NPCi and NPEi. Relationship between
Parai and NPCi should be Parai ≤ NPCi to fully use coarse grain task
parallelism. Furthermore, if the number of processor clusters is larger than
Para ALDi, the some processor clusters may become idle. Therefore, the
combination of [NPCi, NPEi] is defined as follows:

Parai ≤ NPCi ≤ Para ALDi (4)

NPCi × NPEi = NAvail PEi (5)

If Parai = Para ALDi, the number of processor clusters NPCi for MTGi is
selected as the minimum number which satisfies Parai ≤ NPCi and NPCi ×
NPEi = NAvail PEi to use coarse grain task parallelism in MTGi as much as
possible. If Parai ≥ NAvail PEi, the combination of processor clusters and
processor elements will be NPCi = NAvail PEi and NPEi = 1.

Step 2 MaxNPEi is defined as the maximum Para max among macro-tasks
which are not parallelizable loop in MTGi. MaxNPEi means an upper limit
of the number of processors which can be assigned to lower layer of MTGi,
namely the upper limit of NPEi. If NPEi > MaxNPEi is used, possibility
of unnecessary synchronization and number of overheads of task scheduling
are high since excessive processor elements are assigned to a lower layer. To
avoid such case, NPEi = MaxNPEi is chosen in this step.

Step 3.a If all of the macro-tasks in MTGi is not parallelizable loops, current
NPCi is chosen as the number of processor clusters assigned to the MTGi.

Step 3.b If MaxNPEi is smaller than current NPEi, NPEi is set to MaxNPEi

in Step 2. However, when MTGi has parallelizable loops and NPCi×NPEi <
NAvail PEi is satisfied, possibility of lack of available processors to parallelize
these loops effectively is high. In this case, NPCi × MaxNPEi is set to be
over the upper limit of the number of processors in MTGi MaxNPCPEi =
Para maxi. MaxNPCPEi means an upper limit of total number of proces-
sors which are assigned to MTGi and its lower layer. Therefore, the proposed
scheme chooses the minimum NPCi which satisfies NPCi × MaxNPEi ≥
MaxNPCPEi. However, if NPCi × MaxNPEi > NAvail PEi, the proposed
scheme chooses the maximum NPCi which is NPCi × MaxNPEi ≤
NAvail PEi.

These steps are started from highest layer in a program to lower layers until
NAvail PEi = 1.

Fig.5 explains the processor assignment scheme. Fig.5 consists of 4 hierarchi-
cal macro-task graphs, namely the highest, or the first, level MTG0, the second
level MTG2 and the third level MTG2-2 and MTG2-3. Sequential cost, CP, Para
and so on are shown in Fig.5. It is assumed that MTG2-2 and MTG2-3 have no
parallelism and no lower layers. Therefore, Para = Para ALD = Para max =
1. The number of available processors is eight, namely NAvail PE0 = 8. For

Hierarchical Parallelism Control for Multigrain Parallel Processing 39

MTG0, since NPC0 = 2 from Para0 = 2 ≤ NPC0 ≤ Para ALD = 2 in
Fig.5 , the combination of [NPC0, NPE0] is [2PC, 4PE] from Step 1. Also,
MaxNPE0 = Para max2 = 12 since MT1 and MT2 in MTG0 aren’t paral-
lelizable loops. Therefore, the proposed scheme understands that the lower layer
of MTG0, or MTG2, needs 4 processors, and determines NPE0 = 4 from Step 2.
The combination [NPC2, NPE2] is determined. Since NPE0 = 4, NAvail PE2 = 4
in MTG2. Here, the possible combinations of [NPC2, NPE2] are [1, 4], [2, 2] and
[4, 1]. NPC2 = 2 is satisfied Para2 = 1.2 ≤ NPC2 ≤ Para ALD2 = 3.0 in Fig.5
and available combinations of [NPC2, NPE2] from Step 1. Though NPE2 = 2,
MaxNPE2 = Para max2−2,2−3 = 1. Thus NPE2 = 1 from Step 2. By Step 3b,
since MaxNPCPE2 = 12 in Fig.5, NPC2 which satisfies NPC2 × MaxNPE2 ≤
MaxNPCPE2 = 12 is NPC2 = 4, thus [NPC2, NPE2] = [4PC, 1PE]. Here, the
process of assignment of PC and PE is ended since NAvail PE2−2,2−3 = 1.

Therefore, the proposed scheme determines [NPC0, NPE0] = [2PC, 4PE],
[NPC2, NPE2] = [4PC, 1PE] and [NPC2−2,2−3, NPE2−2,2−3] = [1PC, 1PE].

4 Performance Evaluation

This section evaluates the performance of the proposed parallelism control
scheme for multigrain parallel processing on IBM RS6000 SP 604e High Node
8 processors SMP server. This scheme was implemented in OSCAR multigrain
parallelizing compiler.

4.1 Evaluation Environment

In this evaluation, OSCAR compiler with the proposed scheme is used as a
parallelizing pre-processor and generates a coarse grain task parallel program
with OpenMP API. This OpenMP program uses the “one time single level thread
generation” scheme which can minimize thread generation overhead by forking
and joining parallel threads at the beginning and the end of the program only
once and realize hierarchical coarse grain task parallel processing [32,33].

The generated OpenMP program is compiled by IBM XL Fortran for AIX
Version 7.1 and executed on IBM RS6000 SP 604e High Node. This machine is a
SMP server having 8 Power PC 604e processors (200MHz). Each processor has
32 Kbytes instruction / data L1 cache respectively and 1 MB unified L2 cache.
A size of shared main memory is 1 GB.

In this evaluation, the best compile options, by which XL Fortran compiler
gave us minimum processing time for sequential and parallel execution respec-
tively, are used. However, the other parameter tuning for OS and runtime library
isn’t performed to only evaluate the pure performance of compilers.

4.2 Evaluation Result of SPEC95FP

In this evaluation, 8 programs from SPEC95fp, such as SWIM, TOMCATV,
MGRID, HYDRO2D, SU2COR, TURB3D, APPLU and FPPPP, are used and

40 M. Obata et al.

Table 1. Execution time(seconds) of SPEC95FP on 8 processors IBM RS6000 SP 604e
High Node

Benchmark SWIM TOMCATV HYDRO2D MGRID
Sequential 549.1 636.8 987.7 592.0

XLF for 8PEs 130.6 1180.5 620.7 344.8
XLF minimum (PE) 112.6(6) 373.0(3) 426.2(4) 193.0(4)

OFC for 8PEs 64.4 107.2 116.7 93.6
Benchmark SU2COR TURB3D APPLU FPPPP
Sequential 517.2 649.0 707.4 505.9

XLF for 8PEs 941.9 2071.9 489.9 506.3
XLF minimum (PE) 197.9(4) 649.0(1) 489.9(8) 505.9(1)

OFC for 8PEs 120.1 197.9 423.7 506.0
*OFC: OSCAR FORTRAN COMPILER, XLF: XL Fortran
(): the number of PEs giving the minimum time

the performance of OSCAR compiler and XL Fortran compiler is compared.
Compilation options for native XL Fortran compiler are “-O3 -qsmp=noauto
-qhot -qarch=ppc -qtune=auto -qcache=auto -qstrict” for OpenMP programs
generatedbyOSCARcompiler, ”-O5 -qsmp=auto -qhot -qarch=ppc -qtune=auto -
qcache=auto”forautomaticparallelizationbyXLFortrancompilerand”-O5-qhot-
qarch=ppc-qtune=auto-qcache=auto”forsequentialexecution.Fortwoprograms,
such as SU2COR and TURB3D, manual restructuring, such as inline expansion,
array renaming, loop distribution were made to avoid OSCAR compiler’s bugs
and the same restructured programs are used for sequential execution, automatic
loop parallelization and coarse grain parallelization.

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00
SWIM TOMCATV HYDRO2D MGRID SU2COR TURB3D APPLU FPPPP

OSCAR proposed
XL Fortran max
XL Fortran 8PE

S
p

e
e

d
 u

p
 r

a
ti

o

Programs

Fig. 6. Speedup ratio of SPEC95FP using 8 processors

Hierarchical Parallelism Control for Multigrain Parallel Processing 41

Execution time of SPEC95FP is shown in Table 1. Also, Fig.6 shows speedup
ratio of each SPEC95FP program by 8 processors against sequential execution
time. In Table 1, the sequential processing time by XL Fortran, the automatic
loop parallel processing time by XL Fortran using 8 processors, the shortest
execution time by XL Fortran using up to 8 processors and the coarse grain task
parallel processing time by OSCAR compiler using 8 processors are shown for
each SPEC95FP programs.

In SWIM on Table 1, the sequential execution time was 549.1 seconds and
the shortest parallel processing time by automatic loop parallelization by XL
Fortran was 112.6 seconds. OSCAR compiler using the proposed scheme was 64.4
seconds and gave us 8.53 times speedup against the sequential time as shown
in Fig.6. OSCAR compiler’s “one time single level thread generation” with the
parallelism control could boost up 1.75 times the maximum performance of XL
Fortran though XL Fortran suffered from large thread management overhead.

In TOMCATV and HYDRO2D, sequential execution times for TOMCATV
and HYDRO2D were 636.8 and 987.7 seconds. OSCAR compiler’s execution
times were 107.2 seconds for TOMCATV and 116.7 seconds for HYDRO2D as
shown in Table 1. The shortest execution time by automatic loop paralleliza-
tion of XL Fortran was 373.0 seconds for TOMCATV using 3 processors and
426.2 seconds for HYDRO2D using 4 processors. OSCAR compiler gave us 5.94
times speedup for TOMCATV and 8.46 times speedup for HYDRO2D compared
with the sequential execution as shown in Fig.6 and boosted up 3.48 times for
TOMCATV and 3.65 times for HYDRO2D the maximum performance of XL
Fortran. Though TOMCATV and HYDRO2D consists of parallelizable loops,
the proposed parallelism control scheme could find parallelizable loops which
should not be processed in parallel.

In MGRID of Table 1, sequential execution time was 592.0 seconds and the
shortest automatic loop parallel processing time by XL Fortran was 193.0 sec-
onds. OSCAR compiler gave us 93.6 seconds, or 6.32 times speedup against the
sequential execution as shown in Fig.6. The proposed scheme assigns all proces-
sors to the outermost parallelism in MGRID as section 3.1 because this program
uses adjustable array and change array dimension in subroutines and function
calls.

In SU2COR of Table 1, sequential execution time was 517.2 seconds. Though
the execution time of loop parallelization by XL Fortran was 197.9 seconds,
OSCAR compiler obtained 120.1 seconds, or 4.31 times speedup against the
sequential execution as shown in Fig.6. Therefore OSCAR compiler boosted up
1.65 times the performance of XL Fortran. XL Fortran compiler used loop level
parallelism in the deepest nest level with relatively small cost. On the contrary,
the proposed scheme could find coarse grain task parallelism in the upper layer
which is the inside of loop block “DO 400” in subroutine LOOPS. Since this
layer has Para = 1.90, Para ALD = 3.00, the proposed scheme determines the
combination of PC and PE [2PC, 4PE] and can use coarse grain parallelism
effectively.

42 M. Obata et al.

In TURB3D of Table 1, execution time by XL Fortran was 649.0 seconds
for sequential execution time and the shortest time by loop parallel processing
using up to 8 processors. The OpenMP code generated by OSCAR compiler
gave us 197.9 seconds, and boosted up 3.28 times the performance of XL For-
tran as shown in Fig.6. In TURB3D, coarse grain parallelism was extracted and
Para = 5.98 was calculated by OSCAR compiler in RB of subroutine TURB3D.
Therefore, the proposed scheme chooses the combination of [8PC, 1PE] since
Para ≤ NPC , and gave us better performance.

In APPLU of Table 1, sequential execution time was 707.4 seconds. Though
automatic loop parallel processing time by XL Fortran was 489.9 seconds, coarse
grain parallel processing time by OSCAR compiler was 423.7 seconds, or 1.67
times speedup against sequential execution time as shown in Fig.6. APPLU
has five subroutine including parallelizable blocks having large execution cost,
namely JACLD, JACU, RHS, BUTS and BLTS. Current OSCAR compiler uses
parallelism in subroutines JACLD, JACU and RHS and can not parallelize sub-
routine BUTS and BLTS. As the results, the proposed parallelism control scheme
parallelizes the inside of subroutine JACLD, JACU and RHS automatically.

Finally, in FPPPP, execution time by XL Fortran and OSCAR compiler was
the same 506 seconds as shown in Table 1. XL Fortran compiler and OSCAR
compiler found no parallelism in FPPPP. However, there is statement level near
fine grain parallelism in subroutine FPPPP and the parallelism can be exploited
by OSCAR multigrain compiler on OSCAR chip multiprocessor[23].

5 Conclusions

This paper has proposed the automatic determination scheme of parallel process-
ing layer and the number of processors to be assigned to each layer of macro-task
graph for multigrain parallel processing. The performance evaluation of OSCAR
compiler with the proposed scheme using SPEC95FP on IBM RS6000 SP 604e
High Node 8 processors SMP server showed OSCAR compiler gave us 8.53 times
speedup for SWIM, 5.94 times speedup for TOMCATV, 8.46 times speedup for
HYDRO2D, 6.32 times speedup for MGRID, 4.31 times speedup for SU2COR,
3.28 times speedup for TURB3D, 1.67 time speedup for APPLU and 1.00 times
speedup for FPPPP compared with the sequential execution by XL Fortran
for AIX Version 7.1. Also, OpenMP coarse grain task parallel code generated
by OSCAR compiler boosted up the performance of XL Fortran 1.75 times for
SWIM, 3.48 times for TOMCATV, 3.65 times for HYDRO2D, 2.06 times for
MGRID, 1.65 times for in SU2COR, 3.28 times for TURB3D and 1.16 times
for in APPLU. From these results, it was confirmed the proposed scheme could
find suitable or un-suitable layer for parallel processing and assign the suitable
number of processors to each layer of macro-task graph without performance
degradation with the increase processors.

Currently, the authors are researching on a chip multiprocessor[23] which
supports the multigrain parallel processing and performance evaluation of the
OSCAR compiler on larger scale multiprocessor systems.

Hierarchical Parallelism Control for Multigrain Parallel Processing 43

Acknowledgment

A part of this research has been supported by Japan Government Millennium
Project METI/NEDO Advanced Parallelizing Compiler Project
(http://www.apc.waseda.ac.jp) and Waseda University Grant for Special Re-
search Projects No.2000A-154.

References

1. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley
(1996)

2. Banerjee, U.: Loop parallelization. Kluwer Academic Pub. (1994)
3. Polaris: (http://polaris.cs.uiuc.edu/polaris/)
4. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the

perfect benchmarks. IEEE Trans. on parallel and distributed systems 9 (1998)
5. Rauchwerger, L., Amato, N.M., Padua, D.A.: Run-time methods for parallelizing

partially parallel loops. Proceedings of the 9th ACM International Conference on
Supercomputing, Barcelona, Spain (1995) 137–146

6. Tu, P., Padua, D.: Automatic array privatization. Proc. 6th Annual Workshop on
Languages and Compilers for Parallel Computing (1993)

7. Hall, M.W., Murphy, B.R., Amarasinghe, S.P., Liao, S., , Lam, M.S.: Interproce-
dural parallelization analysis: A case study. Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing (LCPC95) (1995)

8. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.W.,
Bugnion, E., Lam, M.S.: Maximizing multiprocessor performance with the suif
compiler. IEEE Computer (1996)

9. Amarasinghe, S., Anderson, J., Lam, M., Tseng, C.: The suif compiler for scalable
parallel machines. Proc. of the 7th SIAM conference on parallel processing for
scientific computing (1995)

10. Lam, M.S.: Locallity optimizations for parallel machines. Third Joint International
Conference on Vector and Parallel Processing (1994)

11. Lim, A.W., Lam., M.S.: Cache optimizations with affine partitioning. Proceedings
of the Tenth SIAM Conference on Parallel Processing for Scientific Computing
(2001)

12. Yoshida, A., Koshizuka, K., Okamoto, M., Kasahara, H.: A data-localization
scheme among loops for each layer in hierarchical coarse grain parallel process-
ing. Trans. of IPSJ (japanese) 40 (1999)

13. Rivera, G., Tseng, C.W.: Locality optimizations for multi-level caches. Super
Computing ’99 (1999)

14. Han, H., Rivera, G., Tseng, C.W.: Software support for improving locality in
scientific codes. 8th Workshop on Compilers for Parallel Computers (CPC’2000)
(2000)

15. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-
grain parallelizing compilation scheme on oscar. Proc. 4th Workshop on Languages
and Compilers for Parallel Computing (1991)

16. Okamoto, M., Aida, K., Miyazawa, M., Honda, H., Kasahara, H.: A hierarchical
macro-dataflow computation scheme of oscar multi-grain compiler. Trans. of IPSJ
(japanese) 35 (1994) 513–521

44 M. Obata et al.

17. Kasahara, H., Okamoto, M., Yoshida, A., Ogata, W., Kimura, K., Matsui, G.,
Matsuzaki, H., H.Honda: Oscar multi-grain architecture and its evaluation. Proc.
International Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems (1997)

18. Kasahara, H., Honda, H., Iwata, M., Hirota, M.: A macro-dataflow compilation
scheme for hierarchical multiprocessor systems. Proc. Int’l. Conf. on Parallel Pro-
cessing (1990)

19. Honda, H., Iwata, M., Kasahara, H.: Coarse grain parallelism detection scheme of
fortran programs. Trans. IEICE (in Japanese) J73-D-I (1990)

20. Kasahara, H.: Parallel Processing Technology. Corona Publishing, Tokyo (in
Japanese) (1991)

21. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on smp using openmp. Proceedings of the 13th International Workshop on
Languages and Compilers for Parallel Computing (LCPC2000) (2000)

22. Kasahara, H., Honda, H., Narita, S.: Parallel processing of near fine grain tasks
using static scheduling on oscar. Proc. IEEE ACM Supercomputing’90 (1990)

23. Kimura, K., Kato, T., Kasahara, H.: Evaluation of processor core architecture for
single chip multiprocessor with near fine grain parallel processing. Trans. of IPSJ
(japanese) 42 (2001)

24. Martorell, X., Ayguade, E., Navarro, N., Corbalan, J., Gozalez, M., Labarta, J.:
Thread fork/join techniques for multi-level parllelism exploitation in numa multi-
processors. ICS’99 Rhodes Greece (1999)

25. Ayguade, E., Martorell, X., Labarta, J., Gonzalez, M., Navarro, N.: Exploiting
multiple levels of parallelism in openmp: A case study. ICPP’99 (1999)

26. PROMIS: (http://www.csrd.uiuc.edu/promis/)
27. Brownhill, C.J., Nicolau, A., Novack, S., Polychronopoulos, C.D.: Achieving multi-

level parallelization. Proc. of ISHPC’97 (1997)
28. Parafrase2: (http://www.csrd.uiuc.edu/parafrase2/)
29. Girkar, M., Polychronopoulos, C.: Optimization of data/control conditions in task

graphs. Proc. 4th Workshop on Languages and Compilers for Parallel Computing
(1991)

30. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic Analysis for Parallelizing
Compliers. Kluwer Academic Publishers (1995)

31. : (http://www.apc.waseda.ac.jp/)
32. Kasahara, H., Obata, M., Ishizaka, K.: Coarse grain task parallel processing on a

shared memory multiprocessor system. Trans. of IPSJ (japanese) 42 (2001)
33. Obata, M., Ishizaka, K., Kasahara, H.: Automatic coarse grain task parallel pro-

cessing using oscar multigrain parallelizing compiler. Ninth International Workshop
on Compilers for Parallel Computers(CPC 2001) (2001)

Compiler Analysis and Supports for Leakage
Power Reduction on Microprocessors�

Yi-Ping You, Chingren Lee, and Jenq Kuen Lee

Department of Computer Science,
National Tsing Hua University,

Hsinchu 300, Taiwan
{ypyou, crlee}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

Abstract. Power leakage constitutes an increasing fraction of the to-
tal power consumption in modern semiconductor technologies. Recent
research efforts also indicate architecture, compiler, and software partic-
ipations can help reduce the switching activities (also known as dynamic
power) on microprocessors. This raises interests on the issues to employ
architecture and compiler efforts to reduce leakage power (also known
as static power) on microprocessors. In this paper, we investigate the
compiler analysis techniques related to reducing leakage power. The ar-
chitecture model in our design is a system with an instruction set to
support the control of power gating in the component levels. Our com-
piler gives an analysis framework to utilize the instruction to reduce the
leakage power. We present a data flow analysis framework to estimate
the component activities at fixed points of programs with the consid-
eration of pipelines of architectures. We also give the equation for the
compiler to decide if the employment of the power gating instructions
on given program blocks will benefit the total energy reductions. As
the duration of power gating on components on given program routines
is related to program branches, we propose a set of scheduling policy
include Basic Blk Sched, MIN Path Sched, and AVG Path Sched mecha-
nisms and evaluate the effectiveness of those schemes. Our experiment is
done by incorporating our compiler analysis and scheduling policy into
SUIF compiler tools [32] and by simulating the energy consumptions
on Wattch toolkits [6]. Experimental results show our mechanisms are
effective in reducing leakage powers on microprocessors.

1 Introduction

The demands of power-constrained mobile and embedded computing applica-
tions increase rapidly. Reducing power consumption hence becomes a crucial
challenge for today’s software and hardware developers. While maximization of

� The work was supported in part by NSC-90-2218-E-007-042, NSC-90-2213-E-007-
074, NSC-90-2213-E-007-075, MOE research excellent project under grant no. 89-E-
FA04-1-4, and MOEA research project under grant no. 91-EC-17-A-03-S1-0002 of
Taiwan.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 45–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 Y.-P. You C. Lee, and J.K. Lee

battery life is an obvious goal, the reduction of heat dissipations is important as
well. The reduction of power consumptions is also with the similar objective as
the reduction of heat dissipations. Minimization of power dissipation can be con-
sidered at algorithmic, architectural, logic and circuit levels [11]. Studies on low
power design are abundant in the literature [3,4,15,19,27,29,37] in which various
techniques were proposed to synthesize designs with low transitional activities.

Recently, new research directions in reducing power consumptions have be-
gun to address the issues on the aspect of architecture designs and on software ar-
rangements at instruction-level to help reduce power consumptions
[5,12,20,24,25,33,34,35]. The architecture and software efforts to reduce energy
consumptions in the recent attempt have been primarily on the dynamic com-
ponent of power dissipation (also known as dynamic power). The energy, E,
consumed by a program, is given by E = P × T , where T is the number of exe-
cution cycles of the program [25] and P the average power. The average power
P is given by P = 1

2 · C · V dd2 · f · E, where C is the load capacitance, V dd
the supply voltage, f the clock frequency, and E the transition count. In or-
der to reduce the dynamic power, several research works have been proposed
to reduce the dissipations. For example, software re-arrangements to utilize the
value locality of registers [12], the swapping of operands for booth multiplier [25],
the scheduling of VLIW instructions to reduce the power consumption on the in-
struction bus [24], gating clock to reduce workloads [20,34,35], cache sub-banking
mechanism [33], the utilization of instruction cache [5], etc.

As transistors become smaller and faster, another mode of power dissipation
has become important. This is static power dissipation or the leakage current in
the absence of any switching activities. For example, consider two Intel’s Pentium
III processors manufactured on 0.18μm process, the Pentium III 1.0 GHz and
the Pentium III 1.13 GHz [21]. The datasheet lists the 1.0 GHz processor has
a total power dissipation of 33.0 Watts and a deep sleep (i.e., static) power
of 3.74 Watts while the maximum power dissipation at 41.4 Watts and the
static power at 5.40 Watts for the 1.13 GHz one. The static power is up by
44% and comprises 13% of the total power dissipation while the total power is
increased by only 25%. Figure 1 and Figure 2 show the growing ratio of static
power among the total power [14,36]. Figure 1 gives the growing trend of static
power. It’s growing in a fast paste. Figure 2 again shows the the growing trend
of static power in terms of temperatures in the hardware devices. This raises
the importance of reducing static power dissipations. Recently, academic results
have tried to characterize the engineering equation and cost model for analyzing
static powers [14,36]. This is important, as the architecture designers and system
developers can then deploy the architecture and software designs to reduce the
static power according to the cost model. Previously, the availability of the cost
equation for dynamic powers have prompted fruitful research results in the efforts
to reduce dynamic power. The recent result in characterizing static power has
the following equation. Pstatic = VCC ·N ·kdesign · Îleak, where VCC is the supply
voltage, N is the number of transistors in design, kdesign is the characteristic of

,

Compiler Analysis and Supports for Leakage Power Reduction 47

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.0 0.8 0.6 0.35 0.25 0.18
Technology Generation (um)

P
ow

er
 (

W
at

ts
)

Active Leakage

Fig. 1. Trends in Active and Leakage Power
Dissipation (From Thomopson et. al.)

6% 9% 14% 19%
26%

33%
41%

49%

56%

0

10

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100 110

Temperature (C)

P
ow

er
 (

W
at

ts
)

Dynamic Static

0.1um, 15mm die, 0.7V

Fig. 2. Leakage Power Trend in Tempera-
ture (From De et. al.)

an average device, Îleak is the technology parameter describing the per device
subthreshold leakage [8].

In this paper, we investigate the compiler analysis techniques to reduce the
number of devices, N , in the static power equation above to try to ease the
problem of leakage powers. The architecture model in our design is a system
with an instruction set to support the control of power gating in the compo-
nent levels. From the viewpoints of engineering equation for static power, we
attempt to reduce the number of devices by turning them off when they are
unused. Our work provides compiler solutions in giving analysis and scheduling
for the power gating control at component levels. Our compiler gives an analysis
framework to utilize the instruction to reduce the leakage power. A data-flow
analysis framework is given to estimate the component activities at fixed points
of programs with the consideration of pipelines of architectures. We also give
the equation for the compiler to decide if the employment of the power gating
instructions on given program blocks will benefit the total energy reductions.
As the duration of power gating on components on given program routines is
related to program branches, we propose a set of scheduling policy including Ba-
sic Blk sched, MIN Path Sched, AVG Path Sched mechanisms and evaluate the
effectiveness of those schemes. Basic Blk Sched mechanism schedules the power
gating instructions according to the component activities in a given basic block.
MIN Path Sched mechanism schedules the power gating instructions by assum-
ing the minimum length among plausible program paths. AVG Path Sched sched-
ules the power gating instructions by assuming the average length among plausi-
ble program paths. MIN Path Sched and AVG Path Sched mechanisms proposed
in our work are based-on a depth-first traversal scheme to look up the interval
in inserting power gating intsructions for components to reduce static power.
Our experiment is done by incorporating our compiler analysis and scheduling
policy into SUIF compiler tools [31,32] and by simulating the energy consump-
tions on Wattch [6] toolkits. Experimental results show our mechanisms are
very effective in reducing leakage powers on microprocessors. This work is also
a part of our efforts in DTC (design technology center) of our university to de-
velop compiler toolkits[24,17,39,18,38,10,9] for high-performance and low-power
micro-processors and SoC designs.

48 Y.-P. You C. Lee, and J.K. Lee

Power Gating Control
Register (64bits)

P
C

P
C

 - 4

P
C

 + 4

P
C

 + 8

...

Instruction
Decoder

Instruction Bus
(32bits)

Integer
Multiplier

Floating
Point

Multiplier

Floating
Point

Divider

Floating
Point Adder

Integer Registers
(64bits x 32)

Integer
ALU/Normal

Operation

Floating Point Registers
(64bits x 32)

Program Counter

Micro Codes

Constant
Supplying

Voltage

Input/Output
(64bits)

32bits

Input/Output
(64bits)

Input/Output
(64bits)

Fig. 3. Machine Architecture Model with Power Gating Control

2 Machine Architecture

The architecture model in our design is a system with an instruction set to sup-
port the control of power gating in the component levels. Figure 3 shows an
example of our target machine architecture on which our optimization is based.
We focus on the reduction of the power consumption of the certain function
units by invoking the “Power Gating” technology. Power gating is analogous to
clock gating; power gating turns off devices by switching off their supply voltage
rather than the clock. It can be done by forcing transistors to be off or us-
ing multithreshold voltage CMOS technology (MTCMOS) to increase threshold
voltage [8,22,30].

We build the experimental architecture within the Wattch simulation envi-
ronment [6]. In the simulation environment, we can measure every CPU compo-
nents’s power consumption of the whole experimental program. Basically, this
architecture is compatible with the DEC Alpha 21264 processor [13]. The length
of an instruction in our experimental architecture is 32 bits. Memory addressing
is byte address. As Alpha is a 64-bit processor and uses 64-bit data bus, our
experimental architecture has 32 integer registers (R0 through R31), and each
is 64 bits wide. The major difference of these two architectures is the additional
“power gating” design in our experimental architecture.

Those power-gated function units in our experimental architecture are In-
teger Multiplier, Floating Point Adder, Floating Point Multiplier, and

,

Compiler Analysis and Supports for Leakage Power Reduction 49

Floating Point Divider. The power gating of each function unit can be con-
trolled by the “Power Gating Control Register” (“PGCR” for short). The PGCR
is a 64-bit integer register. In this case, the only lowest 4 bits of this register
can affect the power gating status. The 0th bit of the lowest 4 bits of the PGCR
controls the power gating of the Integer Multiplier. Setting of the bit will cause
the Integer Multiplier to be turned on. Clearing of the bit will turn off the cor-
responding function unit in the immediately following clock. The 1st bit of the
4 bits is for Floating Point Adder, the 2nd bit is for Floating Point Multiplier,
and the 3rd bit of the 4 bits is for the Floating Point Divider. Worth to mention,
the Integer ALU unit within architecture also takes response to execute general
operation. And, it performs the data movement to the PGCR, too. As a result
of the Integer ALU is always required, this function unit is always turned on. In
addition, we invoke a new instruction in the simulation environment to specify
the access direction of PGCR. This instruction can operate those 4 power gated
function units at once by move a proper value from a general purpose register
to the PGCR.

Figure 3 is also the architecture model on which we carry out our experiments
later in Section 5.

3 Component-Activity Data-Flow Analysis

In this section, we investigate the compiler analysis techniques to ease the prob-
lem of leakage powers. We present a data-flow analysis framework [2] for a com-
piler to analyze the inactive states of components on a microprocessor. The pro-
cess collects the information of the utilization of components at various points in
a program. We first construct basic blocks and control flow graphs of given pro-
grams. We then try to develop a data flow equation for the summary of compo-
nent usages at given program points. To gather the data-flow information, we de-
fine comp gen[B], comp kill[B], comp in[B], and comp out[B] for each block B.

We say a component-activity c is generated at a block B if a component is
required for this execution, symbolized as comp gen[B], and it is killed if the
component is released by the last request, symbolized as comp kill[B]. We then
create two groups of equations shown below. The first group of equations follows
from the observation that comp in[B] is the union of activities arriving from all
predecessors of B. The second group is the activities at the end of a block that
are either generated within the block, or those entering at the beginning but not
killed as control flows through the block. We have the data flow equation for
these two groups below,

comp in[B] =
⋃

P a pred−
essor of B

comp out[P]

comp out[B] = comp gen[B] ∪ (comp in[B] − comp kill[B]).

We use an iterative approach to compute the desired results of comp in and
comp out after comp gen have been computed for each block. The algorithm is

50 Y.-P. You C. Lee, and J.K. Lee

Input A control flow graph in which each block B contains only one instruction;
a resource utilization table.

Output comp in[B] and comp out[B] for each block B.

Begin
for each block B do begin

for each component C that will be used by B do begin /* computation of comp gen */
RemainingCycle[B][C] := N ,

where N is the number of cycles needed for C by B;
comp gen[B] := comp gen[B] ∪ C;

end
comp in[B] := comp kill[B] := ∅;
comp out[B] := comp gen[B];

end
while changes to any comp out occur do begin /* iterative analysis */

for each block B do begin
for each component C do begin /* computation of comp kill */

RemainingCycle[B][C] := MAX(RemainingCycle[P][C]) − 1,
where P is a predecessor of B;

if RemainingCycle[B][C] = 0 then comp kill[B] := comp kill[B] ∪ C;
end
/* computation of comp in */
comp in[B] :=

⋃
comp out[P], where P is a predecessor of B;

/* computation of comp out */
comp out[B] := comp gen[B] ∪ (comp in[B] − comp kill[B]);

end
end

End

Fig. 4. Data-Flow Analysis Algorithm for Component Activities

sketched in Figure 4. This is an iterative algorithm for data flow equations [2]
with the additions of resource management strcutures. A two-dimension array,
called RemainingCycle, is used to maintain the number of required cycles to
achieve requests for each component and block. In addtion, a resource utilization
table is adopted to give the resource requirement for each instruction of given
processors. The resource utilization table can be used to give the initial values of
RemainingCycle. The remaining cycles of a component will be decreased by one
for each propagation. Initially, both comp in and com kill are set to be empty.
The iteration goes until the comp in (and hence the comp out) converges. As
comp out[B] never decreases in size for any B, the algorithm will eventually halt
while all comp out are steady. Intuitively, the algorithm propagates activities of
components as far as they will go by simulating all possible executing paths of
the program. This algorithm gives the state of utilization of components for each
point of programs.

4 Leakage Power Reduction

In this section, we present a cost model for decisions if power gating control
should be applied and a set of scheduling policies to place power-gating instruc-
tion sets for given programs.

4.1 Cost Model

With the utilization of components obtained from last section, we can insert
power gating instructions into programs at proper points, the head/tail of an

,

Compiler Analysis and Supports for Leakage Power Reduction 51

inactive block, to turn off/on useless components. This can reduce the leakage
power. However, both shutdown and wakeup procedures take additional penalty,
especially for wakeup process due to peak voltage. The following gives our cost
model for deciding if the insertions of energy instructions will profit in energy
consumptions.

Eturn off(C) + Eturn on(C) ≤ BreakEvenC ∗ Pleak saving(C),

where Eturn off(C) is the penalty of energy for shutting down component C,
Eturn on is the penalty of energy for waking up component C, BreakEvenC is
the break-even cycle for component C, and Pleak saving(C) is the leakage power
saving of component C per cycle by employing power gating controls. The left-
hand side of the equation shows the energy consumed by shutdown and wakeup
procedures, and the right-hand side shows the leakage energy consumed for a
certain cycles. It will save power for power gating control only if the amount of
power of shutdown and wakeup is less than the one at RHS.

While employing power gating, there is another thing we should note. It’s
the latency to turn a component on. Due to the high capacitance on the circuits,
several clock cycles will be needed to bring the component back to the normal
operating state. Butts et al. also illustrated that it takes about 7.5 cycles at 1
GHz to charge 5 nF to 1.5 V with 1A [8]. With this consideration, we enforce
power gating on a component only when the size of its inactive block, i.e. the
idle region, is larger than its break-even cycle and its latency to recover. Our
cost model after incorporating latency issue is now as follows.

ThresholdC = MAX(BreakEvenC,LatencyC),

where LatencyC is the power gating latency of component C. In addition, we
will try to insert the on operations of the power-gating control to be ahead of
the time for the use of the corresponding components to avoid the delay in the
programs due to wakeup latency.

4.2 Scheduling Policies for Power Gating

With the component activity information gathered and the cost model for decid-
ing if the power-gating instructions should be employed, we now give the schedul-
ing mechanisms to place the power gating instructions for given programs. As
the duration of power gating on components is related to conditional branches
in programs, we propose a set of scheduling policy including Basic Blk Sched,
MIN Path Sched, and AVG Path Sched to schedule power gating instructions.
The details are given below.

A naive mechanism to control the power-gating instruction set will set the
on and off instructions at each basic block according to the component activities
gathered by the data flow equation in the previous section. We call this scheme
as Basic Blk Sched.

52 Y.-P. You C. Lee, and J.K. Lee

Next, an inactive block of a component may cross over more than two adja-
cent basic blocks. We use a depth-first-traveling algorithm to traverse all possible
executing paths. In general, an inactive block will be turned off while the crite-
ria reached. In the case of conditional branches occurred in the inactive block,
there should be an another consideration to take action of power gating. This
is because the size of the two inactive blocks, which are targets that the branch
instruction points to, may be different. There may be a situation that one of the
branchings benefits for power gating while the other doesn’t. It will be against
power reductions if we take control of power gating considering only one branch
but the other branch is taken. Hence, we propose a MIN Path Sched policy to
ensure that power gating control would be activated only if the inactive lengths
of both branching paths exceed the power gating threshold, that is, the minimum
length of those paths reaches the criteria for power gating.

Figure 5 presents the details for MIN Path Sched algorithm. Given a con-
trol flow graph annotated with component utilizations, we define a integer vari-
able, Count, to maintain the inactive length so far. It is passed around from
parent blocks to successors and increased for each passing. The algorithm is
recursive to guarantee the accuracy of Count and to ensure all paths being
traversed. The algorithm is divided into four parts to handle conditions when
encountering/non-encountering a conditional branch while the analyzing com-
ponent is active/inactive.

1) A conditional branch reaches and the component is inactive: under this con-
dition, current traveling will halt until both two branches having done their
travelings. And then, it makes a judgement on power gating when no branch
encountered before and return the minimum inactive length of two branch-
ings.

2) A conditional branch reaches and the component is active: under this condi-
tion, it takes control of power gating if necessary, starts two new travelings
for both branchings, and finally returns the current inactive length.

3) Any statement except conditional branches reaches and the component is
inactive: under this condition, it only continues the current traveling, that
is, it only increases Count for passing and returns.

4) Any statement except conditional branches reaches and the component is
active: like condition 2, it takes control of power gating if necessary and
starts a new traveling for its successor. And finally, it returns Count.

Note that cares have to be taken for recursive boundaries to reach the backward
edges for a loop. As a depth-first search algorithm can find out the loop, the cycle
situation can be known in our algorithm. In a cycle situation, if the the whole in-
structions used in the cycle of a program fragment does not use the component in
the search, we will assume the loop cycle is executed for once with the minimum
path scheduling policy. If some instructions in the backward edge of a program
fragment does use the component in the search, the the backward edge extend
to that instruction will be counted for the program path. In addition, since our
proposed algorithm is based on the depth-first-traveling, the complexity of our
approach is O(N) where N is the size of nodes in a control flow graph.

,

Compiler Analysis and Supports for Leakage Power Reduction 53

Input A control flow graph annotated with component utilizations.
Output A scheduling for power gating instructions.

MIN Path Sched(C, B, Branched, Edge, Count)
Begin

if block B is the end of CFG or Count > MAX COUNT then return Count;
if block B has two children then do

/* condition 1; conditional branch, inactive */
if C /∈ comp out[B] then do

Count := Count + 1;
if left edge is a forward edge then

l Count := MIN Path Sched(C, left child of B, TRUE, FWD, Count);
else

l Count := MIN Path Sched(C, left child of B, TRUE, BWD, Count);
if right edge is a forward edge then

r Count := MIN Path Sched(C, right child of B, TRUE, FWD, Count);
else

r Count := MIN Path Sched(C, right child of B, TRUE, BWD, Count);
if MIN(l Count, r Count) > ThresholdC and !Branched then

schedule power gating instructions at the head and tail of inactive blocks;
return MIN(l Count, r Count);

/* condition 2; conditional branch, active */
else

if Count > ThresholdC and !Branched then
schedule power gating instructions at the head and tail of inactive blocks;

if Edge = FWD then
if right edge is a forward edge then

MIN Path Sched(C, left child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, left child of B, FALSE, BWD, Count);
if left edge is a forward edge then

MIN Path Sched(C, right child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, right child of B, FALSE, BWD, Count);
end
return Count;

end;
else

/* condition 3; statements except conditional branches, inactive */
if C /∈ comp out[B] then do

Count := Count + 1;
if edge is a forward edge then

return MIN Path Sched(C, child of B, Branched, FWD, Count);
else

return MIN Path Sched(C, child of B, Branched, BWD, Count);

/* condition 4; statements except conditional branches, active */
else

if Count > ThresholdC and !Branched then
schedule power gating instructions at the head and tail of inactive blocks;

if Edge = FWD then
if the edge pointing to child of B is a forward edge then

MIN Path Sched(C, child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, child of B, FALSE, BWD, Count);
end
return Count;

end
end

End

Fig. 5. MIN Path Sched Algorithm Based on Depth-First-Traveling for Power Gating

54 Y.-P. You C. Lee, and J.K. Lee

Next, as the behavior of program branches depends on the structure and the
input data of programs, some branches may be taken rarely or even not taken. To
accomodate this issue, we propose an eclectic policy, called AV G Path Sched,
to schedule power gating instructions. The only difference between AV G Path
Sched and MIN Path Sched is the judgements made in condition 1 above.
AV G Path Sched returns the average length of two branchings instead of the
minimums. With this scheme, it will take advantage of power reduction if a
unusual-taken branch returns a small value of Count which causes power gat-
ing mechanism inactivated. AV G Path Sched mechanism can be approximately
done by assuming the probabilities of all branches are 50%, by assinging branch
probabilities at compiler time by programmers or compilers or by incorporating
path profiling schemes to examine the probabilities of all branches.

5 Experimental Results

5.1 Platform

We use an Alpha-compatible architecture with power gating control and in-
struction sets described in Figure 3 of Section 2 as the target architecture for
our experiments. The proposed data-flow analysis and scheduling policies are
incorporated into the compiler tool with SUIF [32] and MachSUIF Library [31]
and evaluated by Wattch simulator [6]. Figure 6 shows the structure of the
framework including compilation and simulation parts. In the compilation part,
we use the SUIF library to perform compiler optimization for performances
and the MachSUIF Library to perform machine-dependent optimizations for Al-
pha processors. After those optimizations having been done, we then analyze
component activities with our proposed data-flow equation and schedule power
gating instructions to reduce leakage dissipation. Finally, the compiler gener-
ates the Alpha assembly code with power gating instructions. To be recognized
by Alpha assembler and linker, power gating instructions are replaced by an
instruction sequence within the Alpha instruction set with annotation informa-
tion to simulators. We then use the Wattch power estimator, which is based
on the SimpleScalar [7] architectural simulator, to simulate power dissipation
and to evaluate our approach. The SimpleScalar is a simulator that provides
execution-driven and cycle-accurate simulations for various instruction set ar-
chitectures (include our target architecture, Alpha ISA). Both SimpleScalar and
Wattch are now widely used for simulations to evaluate performance and power
dissipation [6]. We also do refinements on the Wattch estimator to catch the
instruction sequences for power gating control.

5.2 Results

The test suits in our experiment are the common benchmarks listed in FAQ of
comp.benchmarks [1]. Figure 7 and Figure 8 illustrate the power results for the
simulations of power gating control over Floating Point Adder and Floating Point

,

Compiler Analysis and Supports for Leakage Power Reduction 55

MachSUIF

Low Power Optimization

SUIF

Classical Optimization

High SUIF to Low SUIF

.c Source Code

Alpha Code Generation

CFG construction

Pseudo Code Elimination

Register Allocation

Stack Frame HouseKeeping

Representation Translation

.s Alpha Assembly Code

Alpha Assembler & Liner

Alpha Executable Code

Wattch Simulator

Power Results

Component-Activity Data-Flow Analysis

Power Gating Scheduling

Compilation

Simulation

Fig. 6. Our Experimental Framework

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Clock Gating 8 16 32 64

BreakEven Cycle

P
ow

er
 (

W
at

ts
)

BASIC_BLK_Sched
MIN_Path_Sched

AVG_Path_Sched

Fig. 7. Results of Floating Point Adder for
nsieve

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clock Gating 8 16 32 64

BreakEven Cycle

P
ow

er
 (

W
at

ts
)

BASIC_BLK_Sched

MIN_Path_Sched
AVG_Path_Sched

Fig. 8. Results of Floating Multiplier for
nsieve

Multiplier for nsieve application, respectively. In these figures, the X-axis repre-
sents the break-even cycle for our scheduling criteria and the Y-axis represents
the power consumption. The leftest bar shows the power dissipated by function

56 Y.-P. You C. Lee, and J.K. Lee

units while no power gating control being employed. This is the results of tradi-
tional clock gating mechanism provided by the Wattch power estimator. This is
the version we use as the base version for comparison. The clock gating mech-
anism gates the clocks of those unused resources in multi-ported hardware to
reduce the dynamic power. However, there is still static power leaked. Wattch as-
sumes that clock-gated units dissipate 10% of their maximum power, rather than
drawing zero power. For example, the clock gating mechanism reduces about
30% of total power consumption against the one without clock gating for several
SPECint95 and SPECfp95 benchmarks [6]. The rest bars of the figures give the
power gating results for the proposed scheduling policies with different break-
even cycle. The results show that the power gating mechanism reduces a large
amount of leakage power even if the penalty of power gating control is high (i.e.,
large break-even cycle). Note that we have incorporated the penalty of inserting
power gating instructions into our power simulator, Wattch. In our experimental
data, it also indicates the MIN Path Sched and the AV G Path Sched schedul-
ing algorithms always perform better results than the Basic Blk Sched. This
is because the Basic Blk Sched algorithm schedules power gating instructions
within basic blocks while the other two schedule those beyond branches. It will
extend the possible inactive lengths for components while the MIN Path Sched
or the AV G Path Sched is employed. The AV G Path Sched mechanism used
in our implementation is an approximation by assuming the probabilities of
all branches are 50%. We think a more accurate model by incorporating path
profiling schemes can further improve the results. The reduction of the power
consumed by the Floating Point Adder is from 30.11% to 70.50%, 30.36% to
77.01% and 31.36% to 77.68% for the Basic Blk Sched, MIN Path Sched and
AV G Path Sched, respectively. And that of the Floating Point Multiplier is
from 28.28% to 39.58%, 89.67% to 91.41% and 89.67% to 91.25%, respectively.

Figure 9 and Figure 10 give the power consumption of the Floating Point
Adder and the Floating Point Multiplier for various benchmarks while employ-
ing the power gating mechanism with break-even cycle 32. Once again, it is
observed that the AV G Path Sched benefited the most power reduction while

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

hanoi heapsort nsieve queens tfftdp eqntott-
test1

eqntott-
test2

eqntott-
test3

eqntott-
test4

Floatint Point Adder

P
ow

er
 (

W
at

ts
)

Clock_Gating Power_Gating, BASIC_BLK_Sched
Power_Gating, MIN_Path_Sched Power_Gating, AVG_Path_Sched

Fig. 9. Power Gating on Floating Point Adder for miscellaneous benchmarks
(BreakEven = 32)

,

Compiler Analysis and Supports for Leakage Power Reduction 57

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

hanoi heapsort nsieve queens tfftdp eqntott-
test1

eqntott-
test2

eqntott-
test3

eqntott-
test4

Floating Point Multiplier

P
ow

er
 (

W
at

ts
)

Clock_Gating Power_Gating, BASIC_BLK_Sched
Power_Gating, MIN_Path_Sched Power_Gating, AVG_Path_Sched

Fig. 10. Power Gating on Floating Point Multiplier for miscellaneous benchmarks
(BreakEven = 32)

the MIN Path Sched came second and the Basic Blk Sched finished third.
However, they always have better results than the one without power gating (and
hence only clock gating employed). Figure 9 shows that the Basic Blk Sched
policy has an average 23.05% reduction for all benchmarks while the
MIN Path Sched and the AV G Path Sched have 76.93% and 82.84%, re-
spectively. In the case of hanoi benchmark, which is an integer program, it
even reduces 99.03% of power for the Basic BlkSched and 99.69% for the
MIN Path Sched and AV G Path Sched. Similar results can also be summa-
rized in Figure 10.

6 Related Work

Several research groups have proposed and developed hardware techniques to
reduce dynamic and static power dissipation in recent. Recent work by Powell
et al. architectural and circuit-level techniques to reduce the power consumption
in instruction caches [26]. The cache miss rate is used to determine the working
set size of the application relative to that of the cache. Leakage power is then
removed from the unused SRAM cells using gated-Vdd transistors. Kaxiras et
al. also attacks leakage power in cache memories. Policies and implementations
for reducing cache leakage by invalidating and turning off cache lines when they
enter a dead period are4 discussed [23]. This leads to power savings in the cache.
Recently, we found the research work done by Zhang et al. giving a compiler ap-
proach which exploits schedule slacks in VLIW architectures to optimize leakage
and dynamic energy consumption [40]. Gupta et. al gave experimental results in
using software for power gating [28]. Those two work are concurrent work to our
research work in compiler solutions for leakage power reduction. Note that a key
part of our solution in analyzing the component activities filed a patent in Tai-
wan by us dated back to the year of 2000. Comparing with those two concurrent
work, we have speciality in providing data flow analysis for component activities
of programs. Our analysis crosses the boundary of basic blocks. In addition, we
provide a family of scheduling policies in inserting energy instructions.

58 Y.-P. You C. Lee, and J.K. Lee

7 Conclusions

In this paper, we investigated the compiler analysis techniques related to re-
ducing leakage power. The architecture model in our design is a system with
an instruction set to support the control of power gating in the component
levels. We presented a data flow analysis framework to estimate the component
activities at fixed points of programs with the consideration of pipelines of archi-
tectures. A set of scheduling policy including Basic Blk Sched, MIN Path Sched,
and AVG Path Sched mechanisms were proposed and evaluated. Experimental
results show our mechanisms are effective in reducing leakage powers on micro-
processors.

References

1. Al Aburto, collections of common benchmarks of FAQ of comp.benchmarks
USENET newsgroup, ftp site: ftp.nosc.mail/pub/aburto.

2. A. Aho, R. Sethi, J. Ullman, Compilers Principles, Techniques, and Tools, Addison-
Wesley, 1985.

3. M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low Power,” Proc. of
ICCAD-94, pp. 74-81, 1994.

4. Luca Benini and G. De Micheli, “State Assignment for Low Power Dissipation,”
IEEE Journal of Solid State Circuits, Vol. 30, No. 3, pp. 258-268, March 1995.

5. Nikolaos Bellas, Ibrahim N. Hajj, and Constantine D. Polychronopoulos, “Architec-
tural and Compiler Techniques for Energy Reduction in High-Performance Micro-
processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 317-326, June 2000.

6. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a Framework for Architectural-
Level Power Analysis and Optimizations,” Proc. 27th. International Symposium
on Computer Architecture, pp. 83-94, June 2000.

7. D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Computer
Architecture News, pp. 13-25, June 1997.

8. J. Adam Butts and Gurindar S. Sohi, “A Static Power Model for Architects,”
Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 191-201, December 2000.

9. R. G. Chang, T. R. Chuang, Jenq-Kuen Lee. “Efficient Support of Parallel Sparse
Computation for Array Intrinsic Functions of Fortran 90,” ACM International
Conference on Supercomputing, Melbourne, Australia, July 13-17, 1998.

10. Rong-Guey Chang, Jia-Shing Li, Tyng-Ruey Chuang, Jenq Kuen Lee. “Proba-
bilistic inference schemes for sparsity structures of Fortran 90 array intrinsics,”
International Conference on Parallel Processing, Spain, Sep. 2001.

11. A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital
Design,” IEEE Journal of Solid-State Circuits, Vol. 27, No.4, pp. 473-484, April
1992.

12. Jui-Ming Chang, Massoud Pedram, “Register Allocation and Binding for Low
Power,” Proceedings of Design Automaton Conference, San Francisco, USA, June
1995.

13. Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference
Manual, EC-RJRZA-TE, (July 1999).

,

Compiler Analysis and Supports for Leakage Power Reduction 59

14. V. De and S. Borkar, “Technology and design challenges for low power and high
performance,” Proc. of Int. Symp. Low Power Electronics and Design, pp. 163-168,
1999.

15. G. Hachtel, M. Hermida, A. Pardo, M. Poncino and F. Somenzi, “Re-Encoding
Sequential Circuits to Reduce Power Dissipation,” Proc. of ICCAD’ 94, pp. 70-73,
1994.

16. G. Hadjiyiannis, S. Hanono and S. Devadas. “ISDL: An Instruction Set Description
Language for Retargetability,” Design Automation Conference, June 1997

17. Yuan-Shin Hwang, Peng-Sheng Chen, Jenq-Kuen Lee, Roy Ju. “Probabilistic
Points-to Analysis,” LCPC ’2001, Aug. 2001, USA.

18. Gwan-Hwan Hwang, Jenq Kuen Lee, Roy Dz-Ching Ju. “A Function-Composition
Approach to Synthesize Fortran 90 Array Operations,” Journal of Parallel and
Distributed Computing, 54, 1-47, 1998.

19. Inki Hong, Darko Dirovski, et.al., “Power Optimization of Variable Voltage Core-
Based Systems,” Proc. of 35th DAC, pp. 176-181, 1998.

20. M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” Pro-
ceedings of the 1994 IEEE Symposium on Low Power Electronics, pp. 8-11.

21. Intel corporation, “Pentium III Processor for the SC242 at 450 MHz to 1.13 GHz
Datasheet,” pp. 26-30.

22. J. T. Kao and A. P. Chandrakasan, “Dual-threshold voltage techniques for low-
power digital circuits,” IEEEJournal of Solid-state circuits, 35(7):1009-1018, July
2000.

23. S. Kaxiras, Z.Hu and M.Martonosi, “Cache Decay: Exploiting Generational Behav-
ior to Reduce Cache Leakage Power,” Proc. of the Int’l Symposium on Computer
Architecture, pp.240-251, 2001.

24. Chingren Lee, Jenq Kuen Lee, TingTing Hwang, and Shi-Chun Tsai, “Compiler
Optimization on Instruction Scheduling for Low Power,” Proceedings of the 13th
International Symposium on Systems Synthesis, pp. 55 - 60, September 2000.

25. Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, Masahiro Fujita, “Power Analy-
sis and Minimization Techniques for Embedded DSP Software,” IEEE Transactions
on VLSI Systems, Vol. 5, no. 1, pp. 123-133, March 1997.

26. M.D. Powell, S-H. Yang, B. Falsa, K. Roy, and T.N. Vijaykumar, “Gated-
Vdd: a Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memo-
ries,” ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED), 2000.

27. S. C. Prasad and K. Roy, “Circuit Activity Driven Multilevel Logic Optimization
for Low Power Reliable Operation,” Proceedings of the EDAC’93 EURO-ASIC ,
pp. 368-372, Feb., 1993.

28. S. Rele, S. Pande, S. Onder, and R. Gupta, “Optimizing Static Power Dissipa-
tion by Functional Units in Superscalar Processors,” International Conference on
Compiler Construction (CC), Grenoble, France, April 2002.

29. K. Roy and S. C. Prasad, “SYCLOP: Synthesis of CMOS Logic for Low Power
Applications,” Proceedings of the ICCD, pp. 464-467, 1992.

30. K. Roy, “Leakage Power reduction in Low-Voltage CMOS Designs,” IEEE Inter-
national Conference on Circuits and Systems, Vol. 2, pp. 167-173, 1998.

31. Michael D. Smith, “The SUIF Machine Library”, Division of of Engineering and
Applied Science, Harvard University, March 1998.

32. Stanford Compiler Group, “The SUIF Library”, Stanford Compiler Group, Stan-
ford, March 1995.

60 Y.-P. You C. Lee, and J.K. Lee

33. Ching-Long Su and Alvin M. Despain, “Cache Designs for Energy Efficiency,” Pro-
ceedings of the 28th Annual Hawaii International Conference on System Sciences,
pp. 306 -315, 1995.

34. V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez, “Dynamic Power Management
for Microprocessors: A Case Study,” Proceedings of the 10th International Confer-
ence on VLSI Design, pp. 185-192, 1997.

35. V. Tiwari, D.Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing
Power in High-Performance Microprocessors,” Proceedings of the Design Automa-
ton Conference, pp. 732-737, 1998.

36. Scott Thompson, Paul Packan, and Mark Bohr, “MOS Scaling: Transistor Chal-
lenges for the 21st Century,” Portland Technology Development, Intel Corp. Intel
Technology Journal, Q3 1998.

37. C.Y. Tsui, M. Pedram, and A.M. Despain, “Technology Decomposition and Map-
ping Targeting Low Power Dissipation,” Proc. of 30th Design Automaton Conf.,
pp.68-73, June 1993.

38. J. Z. Wu, Jenq-Kuen Lee. “A bytecode optimizer to engineer bytecodes for perfor-
mances,” LCPC 00, Aug. 2000, USA (Also in LNCS 2017).

39. Yi-Ping You, Ching-Ren Lee, Jenq-Kuen Lee, Wei-Kuan Shih. “Rea-Time Task
Scheduling for Dynamically Variable Voltage Processors,” IEEE workshop on
Power Management for Real-Time and Embedded Systems, May 2001.

40. W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y. Tsai.
“Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction,”
Proceedings of the Thirty-Fourth Annual International Symposium on Microarchi-
tecture (MICRO-34). pp. 102-113. Austin, TX. December 2001.

,

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 61 – 74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Detection of Saturation and Clipping Idioms

Aart J.C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian

Intel Corporation, 2200 Mission College Blvd. SC12-301,
Santa Clara, CA 95052, USA
aart.bik@intel.com

Abstract. The MMX™ technology and SSE/SSE2 (streaming-SIMD-
extensions) introduced a variety of SIMD instructions that can exploit data par-
allelism in numerical and multimedia applications. In particular, new saturation
and clipping instructions can boost the performance of applications that make
extensive use of such operations. Unfortunately, due to the lack of support for
saturation and clipping operators in e.g. C/C++ or Fortran, these operations
must be explicitly coded with conditional constructs that test the value of oper-
ands before actual wrap-around arithmetic is performed. As a result, inline-
assembly or language extensions are most commonly used to exploit the new
instructions. In this paper, we explore an alternative approach, where the com-
piler automatically maps high-level saturation and clipping idioms onto effi-
cient low-level instructions. The effectiveness of this approach is demonstrated
with some experiments.

1 Introduction

The MMX™ technology and SSE/SSE2 (streaming-SIMD-extensions) feature instruc-
tions that operate simultaneously on packed data elements, i.e. relatively short vectors
that reside in memory or registers. The MMX™ technology [8,11,12,18,22], for exam-
ple, supports instructions on eight packed bytes, four packed words or two packed
dwords. The Pentium® III and Pentium® 4 Processors introduced SSE [12,26,28] and
SSE2 [10,12], respectively, supporting instruction on four packed single-precision and
two packed double-precision floating-point numbers, and 128-bit wide packed integers.
Since a single instruction processes multiple data elements in parallel, these SIMD
extensions can be used to utilize data parallelism in numerical and multimedia applica-
tions. Hand-optimizing an application to exploit data parallelism, however, can be a
tedious task and means to do this exploitation automatically has been well studied in
the past [2,3,14,15,19,21,24,29,30]. Some of this research dates back to the early days
of supercomputing when, with a traditional focus on Fortran code, converting serial
loops into vector instructions was essential to fully exploit the pipelined functional
units of a vector processor. In previous work [7], we have shown how similar tech-
niques are used by the high-performance Intel® C++/Fortran compiler to automatically
convert serial code into a form that exploits the SIMD instructions of the MMX™
technology and SSE/SSE2. We refer to this process as intra-register vectorization to
contrast it from vectorizing for traditional vector processors.

In this paper, we focus on a particular challenge arising in intra-register vectoriza-
tion, namely, the effective use of saturation and clipping instructions. Saturation and

62 A.J.C. Bik et al.

clipping operations are typically used in multimedia applications to avoid certain
anomalies that may arise with standard wrap-around arithmetic, such as making bright
pixels dark instead of brighter. Due to the lack of saturation and clipping operators in
popular programming languages like C/C++ or Fortran, such operations have to be
explicitly coded in a relatively obscure way, where conditional constructs test the
value of operands before actual wrap-round arithmetic is performed (C++’s operator
overloading [27] can hide these implementation details from the programmer, but
ultimately such details are visible to the compiler). As a result, low-level saturation
and clipping instructions are most commonly exploited by means of inline-assembly
or language extensions (like the “saturation” attribute in SWARC [9]). Although these
approaches can be quite effective, in this paper we explore an alternative approach
taken by the Intel® compiler, where saturation and clipping idioms are detected
automatically prior to intra-register vectorization. We present a step-wise methodol-
ogy to bridge the semantic gap between high-level saturation and clipping constructs
on one hand, and the low-level instructions for these idioms on the other hand. For
clarity, we mainly focus on C, although other languages are handled quite similarly.
Furthermore, although we focus on saturation and clipping instructions provided by
the MMX™ technology and SSE/SSE2, the methodology can be easily adapted for
other multimedia instruction sets. We demonstrate the effectiveness of this approach
with a number of experiments.

2 Preliminaries

This section provides some preliminaries that are used throughout this paper.

2.1 Types, Operators and Expressions

This paper is concerned with the following integral types T={u8,s8,u16,s16,u32,s32}.

typedef unsigned char u8; /* Vu8 = {0, …, 255} */

typedef signed char s8; /* Vs8 = {-128, …, 127} */

typedef unsigned short u16; /* Vu16 = {0, …, 65535} */

typedef signed short s16; /* Vs16 = {-32768, …, 32767} */

typedef unsigned int u32; /* Vu32 = {0, …, 4294967295} */

typedef signed int s32; /* Vs32 = {-2147483648, …, 2147483647} */

As suggested by the names, we assume that char, short and int data types are 8, 16,
and 32 bits wide, respectively. The qualifier signed or unsigned defines whether bit
patterns are interpreted as numbers in (using two’s complement encoding) or
(using ordinary binary encoding). The finite precision implies that an expression with
type t T can only have values in one of the sets Vt given above. For operands with
types in T, the C standard [13] states that if either operand of a binary arithmetic op-
erator has type u32, then the other is converted into u32 as well, or else both operands
are converted into s32 (this implies that shorter unsigned types alone do no propagate
the unsigned property to the result). The conversion of an expression with type t T

 Automatic Detection of Saturation and Clipping Idioms 63

into u32 or s32 is implemented with zero extension for t {u8,u16}, sign extension for
t {s8,s16}, and no operation for t {u32,s32}.

The implementation of the 32-bit relational operators must distinguish between
unsigned and signed operands to obtain correct results (the Intel® architecture uses
conditional codes like “GE” or “AE” to make this distinction). We make this distinc-
tion between unsigned and signed relational operators explicit with a subscript “u” or
“s” (e.g. “<u” and “<s”). A similar distinction is made for the 32-bit additive opera-
tors (e.g. “+u” and “+s”). The implementation of these operators (ADD/SUB in the
Intel® architecture), however, does not distinguish between signed or unsigned oper-
ands. Instead, the outcome is merely defined by the interpretation of bit patterns after
wrap-around arithmetic, where higher order bits of results that would require more
than 32 bits are simply truncated. For example, the first addition shown below gives
rise to an unsigned wrap-around interpretation 4294967295+1=0 or signed interpreta-
tion -1+1=0. The second addition has an unsigned interpretation
2147483647+1=2147483648 or a signed wrap-around interpretation 2147483647+1=-
2147483648.

 0xFFFFFFFF 0x7FFFFFFF
 0x00000001 0x00000001
 ---------- + ---------- +
 0x00000000 0x80000000

We will use the notation (x,V) to denote the condition that the compiler can prove
that an expression “x” can only have values in the set V. In the context of this paper,
the following rules are useful as a basic implementation of the -condition.

1. (c,V) holds for a constant c V.
2. ((t’)y, V) holds for a type cast of expression “y” with type t T into type

t’ T where Vt V, if either (a) t’=u32 and t {u8,u16}, or (b) t’=s32 and
t {u8,u16,s8,s16}.

For example, ((int)c, {0,255}) holds for a variable “c” of type u8, independent of the
program context in which this expression appears. Clearly, this basic implementation
can be enhanced by adding more rules or even using the program context of an ex-
pression to derive stricter conditions on the possible values of this expression (this
would require a third parameter to the -condition to define this context). In this pa-
per, we only explore the former kind of enhancement.

2.2 Saturation and Clipping Instructions

In this paper, we focus on the instructions of the MMX™ technology and SSE/SSE2
that are given in Table 1. The additive instructions in Table 1 differ from the common
ADD/SUB instructions in three ways: (a) the instructions operate in SIMD fashion on
packed data elements rather than on scalars, (b) the instructions operate in a lower 8-
bit (byte) or 16-bit (word) precision rather than in 32-bit (dword) precision, and (c)
the instructions perform saturation arithmetic rather than the wrap-around arithme-
tic explained earlier. In this kind of arithmetic, values that would wrap-around are
saturated to the maximum or minimum value for the particular precision. For un-
signed additions PADDUSB/PADDUSW, this means that each individual result that

64 A.J.C. Bik et al.

would exceed the range of an unsigned byte or word is saturated to the value 0xFF or
0xFFFF, respectively. For unsigned subtractions PSUBUSB/PSUBUWS, this implies
that each individual result that would become negative is saturated to the value 0x00
or 0x0000. All signed instructions PADDSB/PSUBSB/PADDSW/PSUBWS saturate
individual results to the minimum value 0x80 or 0x8000 or maximum value 0x7F or
0x7FFF.

Table 1. Instructions for saturation arithmetic

Instruction Description

PADDSB/PSUBSB Add/Subtract signed packed bytes from source to destination and saturate

PADDSW/PSUBSW Add/Subtract signed packed words from source to destination and saturate

PADDUSB/PSUBUSB Add/Subtract unsigned packed bytes from source to destination and saturate

PADDUSW/PSUBUSW Add/Subtract unsigned packed words from source to destination and saturate

PMINUB/PMAXUB Compute minimum/maximum of unsigned packed bytes in source and destina-

tion

PMINSW/PMAXSW Compute minimum/maximum of signed packed words in source and destina-
tion

Below, for example, we illustrate the execution of “paddusb xmm0, xmm1”. The
individual unsigned bytes are saturated to 0xFF on overflow. As for all arithmetic
SIMD instructions, there is no interaction (like a carry or borrow) between individual
data elements.

xmm0: | 0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8 |
xmm1: | 0x01, 0x01, 0x01, 0x01, 0x05, 0x05, 0x05, 0x05 |
 -- +
xmm1: | 0xFF, 0xFF, 0xFE, 0xFD, 0xFF, 0xFF, 0xFE, 0xFD |

The MIN/MAX instructions given in Table 1 provide a convenient way to compute the
minimum or maximum of a number of unsigned packed bytes or signed packed words
in parallel. We generically refer to such operations as clipping. Unfortunately, the
instruction set is not fully orthogonal (signed bytes and unsigned words are not sup-
ported).

3 Automatic Detection of Saturation and Clipping Idioms

The methodology used by Intel® compiler to map saturation and clipping idioms onto
efficient SIMD instructions is organized into four steps: (A) MIN/MAX operators are
recognized in the intermediate representation of the original source program, (B)
additive operators are moved into MIN/MAX operators, (C) saturation and clipping
idioms are detected and marked, and finally (D) this information is used during intra-
register vectorization. All steps are combined with traditional compiler optimizations
like constant/copy propagation, forward substitution, constant folding, and expression
simplification [1,5,20].

 Automatic Detection of Saturation and Clipping Idioms 65

3.1 Detection of MIN/MAX Operators

The intermediate representation used by the Intel® compiler supports integral
MIN/MAX operators in 32-bit precision. Just like the relational operators, a distinc-
tion between unsigned and signed operators must be made (e.g. “MAXu” and
“MAXs”). Because the operators are not directly supported in the source language, the
first step focuses on detecting conditional constructs that implement MIN/MAX op-
erations and converting the intermediate representation of these constructs accord-
ingly. This conversion into MIN/MAX operators, making a program more amenable
for analysis and enabling the code generator to select an efficient implementation for
the operators, is driven by a number of rewriting rules. An example of a rule for un-
signed operands is shown below. Here, xt denotes an arbitrary expression1 with type
t T and identical symbols must be bound to equivalent expressions.

if (xu32 >u yu32) then
 yu32 = xu32 yu32 = MAXu(xu32, yu32)
endif

A rule for signed operands on a conditional construct with two branches is shown
below.

if (xs32 <=s ys32) then
 ts32 = xs32
else ts32 = MINs(xs32, ys32)
 ts32 = ys32
endif

Other rewriting rules account for the fact that relational operators on 8-bit or 16-bit
operands are done in 32-bit precision, which gives rise to type conversions in the
conditionals. An example of such a rule is shown below.

if ((s32)xs16 <u (s32)ys16) then
 ys16 = xs16 ys16 = (s16) MINs((s32)xs16,
(s32)ys16)
endif

Some other rewriting rules specifically test properties of constants to allow the detec-
tion of MIN/MAX operators that would otherwise remain unrecognized. An example
of such a rule that helps to find nested MIN/MAX operators is shown below, where
the comparison between c and d must be done unsigned.

if (d <u xu32) then
 tu32 = d
else if c <u d tu32 = MINu(MAXu(xu32,
c), d)
 tu32 = MAXu(xu32, c)
endif

An example to detect an unsigned MIN operator in an arithmetic expression is given
below.

1 All rewriting rules given in this paper assume that expressions are free of side-effects.

66 A.J.C. Bik et al.

if (c >u xu32) then
 tu32 = d +u xu32
else if e == d +u c tu32 = d +u MINu(xu32,
c)
 tu32 = e
endif

Although similar rewriting rules like the five rules shown above are required to deal
with all combinations of types, type conversions, alternative operators, conditional
constructs, and with the commutativity of operators, these rules can be expressed
quite compactly by separating a few general patterns from a number of conditions
under which they become applicable. Furthermore, the Intel® compiler represents
conditional expressions (viz. “(x) ? y : z”) as if-then-else constructs, which reduces
the number of required rewriting rules. A pass is made over the intermediate represen-
tation during which matches for the general patterns are found. If the associated con-
ditions hold, the matching expression is replaced with the appropriate MIN/MAX
operator. This process is repeated until no further replacements occur. As stated ear-
lier, traditional compiler optimizations (including some specific MIN/MAX optimiza-
tions) are used to simplify the resulting expressions.

As an example, repetitive application of the rewriting rules discussed in this sec-
tion recognizes a nested MIN/MAX operation in the following conditional expres-
sions for variables “a”, “b”, and “c” of type s32.

 a = (10 < ((b*c > 20) ? 20 : b*c))
 ? ((b*c > 20) ? 20 : b*c) : 10; … a = MAXs(
MINs(b*c, 20), 10);

3.2 Additive Operator Movement

The second step focuses on moving additive operators into MIN/MAX operators if it
is useful (potentially exposing a saturation operation) and valid (preserving the se-
mantics of the original code). The following rewriting rules for signed operands may
be useful if the new constant d±c is equal to 127, 255, 32767 or 65535 for a resulting
MIN operator, or –32768, -128 or 0 for a resulting MAX operator. A conservative
(but practical) validity test is to combine the usefulness test with the tests –65535 d

 65535 and (xs32, Vu16 Vs16).

d +s MINs(xs32, c) MINs(d +s xs32, d +s c)
d +s MAXs(xs32, c) MAXs(d +s xs32, d +s c)
d -s MINs(xs32, c) MAXs(d -s xs32, d -s c)
d -s MAXs(xs32, c) MINs(d -s xs32, d -s c)

These conditions, with the -condition as defined in Section 0, avoid a change in
semantics that would occur if wrap-around could occur (for example,
“1+MINs(x,0x7FFFFFFF)” always yields “1+x” whereas “MINs(x+1,0x80000000)”
simply evaluates to the second argument). Allowing constant d to go all the way
down to –65535 may expose unsigned saturation subtractions in signed arithmetic
operations, as we will see in the next section.

An unsigned addition is moved into an unsigned MIN operator, as shown below, if
the new constant d+c is either 255 or 65535 and, additionally, d Vu16 and (xu32, Vu16).

d +u MINu(xu32, c) MINu(d +u xu32, d +u c)

 Automatic Detection of Saturation and Clipping Idioms 67

The other rewriting rules are slightly more elaborate, because negative results would
wrap-around before they are involved in the unsigned comparison. Therefore, such
operations are rewritten into signed operators as shown below. These rewriting rules
are applied if the new constant is equal to 255 or 65535 for a resulting MIN operator,
or 0 for a resulting MAX operator and, additionally, d Vu16 and (xu32, Vu16) to en-
sure the validity of the rewriting rule.

MAXu(xu32, c) -u d (u32) MAXs((s32)xu32 -s d, c -s d)
d -u MINu(xu32, c) (u32) MAXs(d -s (s32)xu32, d -s c)
d -u MAXu(xu32, c) (u32) MINs(d -s (s32)xu32, d -s c)

After these rewriting rules (and similar rules that deal with commutativity) have been
applied, the first step may be repeated to see if more rules become applicable.

3.3 Detection of Saturation and Clipping Idioms

In the next step, the compiler examines the intermediate representation of a program
to detect saturation and clipping idioms. To separate the concerns of this idiom recog-
nition from the details of the actual code generation that is done during intra-register
vectorization, in this step the compiler merely marks operators in the intermediate
representation as candidates that could potentially be implemented using the instruc-
tions shown in Table . Below, we discuss the conditions under which MIN/MAX op-
erators are marked as candidates for (1) unsigned saturation, (2) signed saturation and
(3) signed and unsigned clipping, respectively.

(1) Unsigned Saturation. Unsigned saturation addition and subtraction idioms typi-
cally arise in single clippings, as shown below for type u8 (with similar rules for
commutativity). Note that both signed and unsigned MIN operators can be mapped
onto unsigned saturation additions. Making the sign of a negative constant explicit
(viz. x+c where -255 c<0 can be expressed as x-|c|) increases the likelihood of find-
ing unsigned saturation subtractions in signed MAX operators.

 Mark MINu(xu32 +u yu32, 255u) as sat-addu8(xu32, yu32) if (xu32, Vu8)
(yu32, Vu8)

 Mark MINs(xs32 +s ys32, 255) as sat-addu8(xs32, ys32) if (xs32, Vu8)
(ys32, Vu8)

 Mark MAXs(xs32 -s ys32, 0) as sat-subu8(xs32, ys32) if (xs32, Vu8)
(ys32, Vu8)

The –conditions ensure that the 32-bit operations that are implied by the language
definition may actually be implemented with lower precision saturation instructions
without changing the original semantics. Similar rules can be given to mark sat-
addu16 or sat-subu16 candidates using the constants 65535u, 65535 and 0 and simi-
lar -conditions.

(2) Signed Saturation. Signed saturation addition and subtraction idioms typically arise
in double clippings, as shown below for type s8 (with similar rules for commutativity).

 Mark MAXs(MINs(xs32 +s ys32, 127), -128) as sat-adds8(xs32, ys32) if (xs32,

Vs8) (ys32, Vs8)
 Mark MAXs(MINs(xs32 -s ys32, 127), -128) as sat-subs8(xs32, ys32) if (xs32,

Vs8) (ys32, Vs8)

68 A.J.C. Bik et al.

The -conditions ensure that implementing the 32-bit operations with lower precision
saturation instructions preserves the original semantics. Under certain conditions,
illustrated in Fig. 1, the idioms also arise in single clippings, as shown below (with
similar rules for commutativity).

 Mark MINs(c +s xs32, 127) as sat-adds8(c, xs32) if (xs32, Vs8) 0 <
c 127

 Mark MAXs(c +s xs32, -128) as sat-adds8(c, xs32) if (xs32, Vs8) -128
c < 0

 Mark MINs(c –s xs32, 127) as sat-subs8(c, xs32) if (xs32, Vs8) 0 <
c 127

 Mark MAXs(c -s xs32, -128) as sat-subs8(c, xs32) if (xs32, Vs8) -128
c < 0

Similar rules for double and single clip operations can be given to mark sat-adds16 or
sat-subs16 candidates using the constants –32768 and 32767 and similar -
conditions.

Fig. 1. Singed saturation in single clipping

(3) Signed and Unsigned Clipping. The detection of clipping idioms is straightfor-
ward. Below the rules to mark clipping idioms for type s16 are shown.

 Mark MINs(xs32, ys32) as mins16(xs32, ys32) if (xs32, Vs16) (ys32, Vs16)

 Mark MAXs(xs32, ys32) as maxs16(xs32, ys32) if (xs32, Vs16) (ys32, Vs16)

Similar rules can be given to mark signed and unsigned MIN/MAX operators in the
intermediate representation as a candidate for minu8 or maxu8. For example, both
operators “MINu((u32)zu8, 100u)” and “MINs((s32)zu8, 100)” can be marked as minu8
candidate (for bindings xu32=(u32)zu8 and yu32=100u, and xs32=(s32)zu8 and ys32=100,
respectively), even though the operators perform unsigned and signed arithmetic,
respectively.

Once an expression has been marked as saturation or clipping candidate for a cer-
tain type, the compiler uses this information during evaluation of other -conditions.
This enhancement (alluded to in Section 2) enables the detection of nested idioms, as
shown in the next section.

3.4 Intra-register Vectorization

In the fourth and final step, the information computed in the previous step affects
instruction selection during the automatic conversion of serial loops into SIMD

 Automatic Detection of Saturation and Clipping Idioms 69

instructions. For a detailed discussion of intra-register vectorization, we must refer to
previous work [7]. In essence, if the compiler can prove that a countable loop can be
implemented in SIMD fashion without violating data dependences [6,29,30] or affect-
ing the final required precision, then the loop is converted into instructions that are
provided by either the MMX™ technology or SSE/SSE2. If during this conversion, an
operator is encountered that has been marked as saturation or clipping candidate with
a compatible data type, then the instruction selection is affected accordingly.

Consider the following fragment.

u8 a[256], b[256];
…
for (i = 0; i < 256; i++) {
 int x = (a[i] < 200) ? a[i]+55 : 255;
 if (x > b[i]) b[i] = x;
}

During the first step (A), the MIN and MAX operator performed in this fragment are
recognized as shown below (where all type conversions have been made explicit).

for (i = 0; i < 256; i++) {
 int x = 55 + MINs((s32)a[i], 200);
 b[i] = (u8) MAXs(x, (s32)b[i]);
}

During the second step (B), the constant 55 is moved into the MIN operator. Com-
bined with traditional forward substitution this eventually yields the following rewrit-
ten fragment.

for (i = 0; i < 256; i++) {
 b[i] = (u8) MAXs(MINs((s32)a[i]+55, 255) , (s32)b[i]);
}

The third step (C) marks the MIN operator as sat-addu8 candidate. Since the -
condition for data type u8 holds for such an idiom, subsequently the MAX operator is
marked as maxu8 candidate. Eventually, the Intel® compiler uses this information
during intra-register vectorization in step (D) to generate the following assembly in
which the nested idiom has been fully exploited.

Back: ; xmm1 is preloaded with
|55,…,55|
 movdqa xmm0, a[eax] ; load 16 bytes from a
 paddusb xmm0, xmm1 ; add 16 bytes and saturate
 pmaxub xmm0, b[eax] ; max 16 bytes from b
 movdqa b[eax], xmm0 ; store 16 bytes into b
 add eax, 16 ;
 cmp eax, 256 ;
 jl Back ; looping logic

4 Experiments

In this section, we demonstrate the effectiveness of the presented methodology with
experimental results for some small kernels and a larger application. All experiments
have been conducted with version 7.0 of the Intel® compiler on a 2GHz. Pentium® 4
Processor system with 256MB.

70 A.J.C. Bik et al.

4.1 Saturation and Clipping Kernels

Consider the following saturation kernel taken from [23], which represents a typical
time consuming part of an embedded application. The Intel® compiler recognizes the
saturation arithmetic in this fragment, which eventually results in the selection of the
instruction “paddsw” during intra-register vectorization.

s16 tab1[N], tab2[N], dest[N];
…
for (i = 0; i < N; i++) {
 int temp = tab1[i] + tab2[i];
 dest[i] = (temp > 32767) ? 32767 : (temp < -32768) ? –32768 :
temp;
}

In Fig. 2, we show the execution time for varying values of N for a serial (SEQ) and
vector (VEC) version of this fragment together with the corresponding speedup (S).
Implementing the conditional flow-of-control without any branch instructions yields a
clear performance gain for the deeply pipelined Intel® NetBurstTM micro-architecture
of the Pentium® 4 Processor. Most programmers implement saturation arithmetic in a
form that strongly resembles the example given above.

For example, the application GSM in the MediaBench suite [17] defines saturation
arithmetic with the following macros.

#define MAX_WORD (32767)
#define MIN_WORD ((-32767)-1)
#define GSM_ADD(a, b)((ltmp = (int)(a) + (int)(b)) >= MAX_WORD \
 ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
#define GSM_SUB(a, b)((ltmp = (int)(a) - (int)(b)) >= MAX_WORD \
 ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)

A typical use like the one shown below, where all arrays have type s16, is easily rec-
ognized by the step-wise methodology as a loop that can be implemented with the
instruction “paddsw” (or “psubsw”).

for (i = 0; i <= 39; i++)
 dp[i] = GSM_ADD(e[5 + i], dpp[i]);

0
5

10
15
20
25

8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K

E
xe

c.
 T

im
e

0
2
4
6
8
10
12

S
p

ee
d

u
p

SEQ VEC S

Fig. 2. Execution time for 16-bit saturation kernel ((in microseconds)

 Automatic Detection of Saturation and Clipping Idioms 71

Likewise, take the following clipping kernel that operates on an array with type s16.

for (i = 0; i < N; i++) {
 if (dest[i] > 100) dest[i] = 100;
}

The Intel® compiler implements this loop with the “minsw” instruction. In Fig. 3, we
show the serial execution time (SEQ), vector execution time (VEC) and correspond-
ing speedup (S). For comparison, we also studied the performance obtained by a more
general method for vectorizing conditional constructs, namely IF-conversion
[3,4,29,30]. This method removes branches from a program by replacing the state-
ments in this program with an equivalent set of guarded statements. This effectively
converts all control dependences into data dependences and allows for a straightfor-
ward translation of guarded statements into vector code for vector processors that
provide hardware support for conditional vector instructions. Although SSE/SSE2
does not directly support conditional execution, in [7] we have shown that IF-
conversion can be easily implemented by means of bit-masking. For the example
above, bit-masking results in SIMD instructions that compute the bit-wise OR of (a)
the value 100 masked by the outcome of the comparison and (b) the elements of the
array masked with the negation of this outcome. The execution time (MSK) and cor-
responding speedup (S-MSK) for this version are also shown in Fig. 3. Although
vectorization by means of IF-conversion improves performance compared to serial
execution, the highest performance is clearly obtained with the clipping instructions.

0

5

10

15

8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K

E
xe

c.
 T

im
e

0
2
4
6
8

S
p

ee
d

u
p

SEQ VEC MSK S S-MSK

Fig. 3. Execution time for16-bit clipping kernel (in microseconds)

4.2 Data (de)Compression Application

To demonstrate the impact of idiom recognition on a real-world application, we report
some performance results for 164.gzip, a data (de)compression program in the indus-
try-standardized CPU-intensive benchmark suite SPEC CPU2000 (see
http://www.spec.org/). Enabling intra-register vectorization for this benchmark results
in the conversion of two loops of the form shown below into an SIMD form that ex-
ploits the “psubusw” instruction.

72 A.J.C. Bik et al.

u16 head[N];
…
for (i = 0; i < N; i++) {
 u32 m = head[i];
 head[i] = (m >= 32768 ? m-32768 : 0);
}

In Table 2, we show the speedups compared to a default-optimized version (O2) for
an aggressively Pentium® 4 Processor specific optimized version without intra-
register vectorization (OPT) and a similarly optimized version with intra-register
vectorization enabled (OPT+VEC). This data shows that the Intel® compiler obtains
an improvement of 30% over a default-optimized version of this application, roughly
8% of which is due to intra-register vectorization (viz. 1.30/1.21).

Table 2. Speedups for164.gzip

 O2 OPT OPT+VEC

164.gzip 1.00 1.21 1.30

5 Conclusions

In this paper, we have presented a step-wise methodology to bridge the semantic gap
between high-level saturation and clipping constructs on one hand, and low-level
instructions for these idioms on the other hand. The rewriting rules that drive the steps
are simple, so that the validity of each individual rule can be easily verified. The rules
allow for a compact representation and provide a clean separation of concerns be-
tween idiom recognition and the actual code generation. The fine granularity of the
rewriting rules makes this approach more flexible than an ad-hoc pattern matching
approach to idiom recognition because traditional compiler optimizations can be ap-
plied at all times (possibly exposing opportunities for further rewriting) and new rules
can be easily added to the methodology as a whole (for example, to rewrite certain
difficult constructs into a form that is handled by the already existing rules). The use
of rewriting rules, although currently hard-coded in a separate module of the high-
performance Intel® C++/Fortran compiler, makes the methodology very suited for
parameterized systems that easily adapt to new multimedia instruction sets, such as
the system proposed [23]. Although there are other compilers that target the instruc-
tion sets of multimedia extensions [9,16,23,25], to our knowledge this paper provides
the first in-depth presentation of a methodology to bridge the semantic gap between
high-level saturation and clipping idioms and low-level instructions. The results of a
number of experiments on small kernels and a real-world application have been in-
cluded to validate the effectiveness of this approach.

More information on intra-register vectorization in the high-performance compilers
for the Intel® Architecture can be found in the upcoming book: The Software Vectori-
zation Handbook. Applying Multimedia Extensions for Maximum Performance. Intel
Press, June, 2004 (see http://www.intel.com/intelpress/sum_vmmx.htm).

 Automatic Detection of Saturation and Clipping Idioms 73

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. Randy Allen and Ken Kennedy. Automatic Translation of Fortran Programs to Vector
Form. ACM Transactions on Programming Languages and Systems, 9:491—542, 1987.

3. Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco, 2002.

4. Randy Allen, Ken Kennedy, Carrie Porterfield and Joe Warren. Conversion of Control
Dependence to Data Dependence. ACM Symposium on Principles of Programming Lan-
guages. 177—189, 1983.

5. Andrew Appel. Modern Compiler Implementation in C. Cambridge University Press,
1998.

6. Utpal Banerjee. Dependence Analysis. Kluwer, Boston, 1997. A Book Series on Loop
Transformations for Restructuring Compilers.

7. Aart J.C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. Automatic intra-register
vectorization for the Intel® Architecture. International Journal on Parallel Processing,
2001.

8. David Bistry et.al. The Complete Guide to MMX™ technology. McGraw-Hill, Inc. New
York, 1997.

9. R.J. Fisher and H.G. Dietz. Compiling for SIMD within a Register. 1998 Workshop on
Languages and Compilers for Parallel Computing, University of North Carolina at Chapel
Hill, North Carolina, August 7-9, 1998.

10. Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan Kyker, and
Patrice Roussel. The Microarchitecture of the Pentium® 4 Processor. Intel Technology
Journal, 2001, http://intel.com/technology/itj/.

11. Intel Corporation. Intel Architecture MMX™ technology – Programmer’s Reference Man-
ual. Intel Corporation, Order No. 243007-003, available at http://developer.intel.com/,
1997.

12. Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 1: Basic Ar-
chitecture. Intel Corporation, available at http://developer.intel.com/, 2001.

13. Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

14. David J. Kuck. The Structure of Computers and Computations. John Wiley and Sons, New
York, 1978, Volume 1.

15. Leslie Lamport. The Parallel Execution of DO Loops. Communications of the ACM,
83—93, 1974.

16. Samuel Larsen and Saman Amarasinghe. Exploiting Superword Level Parallelism with
Multimedia Instruction Sets. In Proceeding of the SIGPLAN Conference on Programming
Language Design and Implementation, Vancouver, B.C., June, 2000.

17. Chunho Lee, Miodrag Potkonjak and William H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Systems.

18. Oded Lempel, Alex Peleg and Uri Weiser. Intel’s MMX™ Technology – A New Instruc-
tion Set Extension. Proceedings of COMPCON, 255—259, 1997.

19. John M. Levesque and Joel W. Williamson. A Guidebook to Fortran on Supercomputers.
Academic Press, San Diego, 1991.

20. Steven S. Muchnick. Advanced Compiler Design and Implementation Morgan Kaufmann,
1997.

74 A.J.C. Bik et al.

21. David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for Supercom-
puters. Communications of the ACM, 29:1184—1201, 1986.

22. Alex Peleg and Uri Weiser. MMX Technology Extension to the Intel Architecture. IEEE
Micro, 42-50, 1996.

23. Gilles Pokam, Julien Simonnet and Fran ois Bodin. A Retargetable Preprocessor for Mul-
timedia Instructions. In Proceedings of the 9th Workshop on Compilers for Parallel Com-
puters, 291—301, June, 2001.

24. Constantine D. Polychronopoulos. Parallel Programming and Compilers. Kluwer, Boston,
1988.

25. N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia extensions. In-
ternational Journal on Parallel Processing, 2000.

26. Srinivas K. Raman, Vladimir Pentkovski, and Jagannath Keshava. Implementing Stream-
ing SIMD Extensions on the Pentium III Processor. IEEE Micro, 20(4):47—57, 2000.

27. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.
28. Shreekant Thakkar and Tom Huff. Internet Streaming SIMD Extensions. IEEE Computer,

32:26--34, 1999.
29. Michael J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,

1996.
30. Hans Zima. Supercompilers for Parallel and Vector Computers. ACM Press, New York,

1990.

Compiler Optimizations with DSP-Specific
Semantic Descriptions

Yung-Chia Lin1, Yuan-Shin Hwang2, and Jenq Kuen Lee1

1 Department of Computer Science, National Tsing Hua University,
Hsinchu 300, Taiwan

2 Department of Computer Science, National Taiwan Ocean University,
Keelung 202, Taiwan

Abstract. Due to the specialized architecture and stream-based in-
struction set, traditional DSP compilers usually yield poor-quality ob-
ject codes. Lack of an insight into the DSP architecture and the specific
semantics of DSP applications, a compiler would have trouble select-
ing appropriate special instructions to exploit advanced hardware fea-
tures. In order to extract optimal performance from DSPs, we propose
a set of user-specified directives called Digital Signal Processing Inter-
face (DSPI), which can facilitate code generation by relaying DSP spe-
cific semantics to compilers. We have implemented a prototype compiler
based on the SPAM and SUIF compiler toolkits and integrated the DSPI
into the prototype compiler. The compiler is currently targeted to TI’s
TMS320C6X DSP and will be extended to a retargetable compiler toolkit
for embedded systems and System-on-a-Chip (SoC) platforms. Prelim-
inary experimental results show that by incorporating DSPI directives
significant performance improvements can be achieved in several DSP
applications.

1 Introduction

Since high-throughput data stream processing is required to deliver voice, mul-
timedia, and data access in real-time, many embedded systems employ pro-
grammable Digital Signal Processors (DSPs) as their core components. As DSP
applications rapidly grow more complex, high-level development tools are vital
to speedy software implementation [18]. However, this approach tends to fail to
extract the optimal performance from DSPs owing to the fact that conventional
code generation by DSP compilers produces very inefficient results in either speed
or code size [20,8]. Those compilers cannot automatically discover the best ways
to utilize the specific architecture features and to unleash proper optimized code

1 The work was supported in part by NSC-90-2218-E-007-042, NSC-90-2213-E-007-
074, NSC-90-2213-E-007-075, MOE research excellent project under grant no. 89-E-
FA04-1-4, and MOEA research project under grant no. 91-EC-17-A-03-S1-0002 of
Taiwan.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 75–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

composed of custom-built instructions for DSP operations without intervening
from the programmers.

This paper proposes a DSP programming model with a set of user-specified
directives called the Digital Signal Processing Interface (DSPI). The key idea
is to transform common high-level DSP operations into code of well-regulated
vendor-specific instructions. Moreover, we have constructed a prototype com-
piler targeted to TI’s TMS320C6X [16] based on the SUIF [10] and SPAM [9]
compiler toolkits, and we are integrating the compiler support for processing the
DSPI directives into the compiler. Furthermore, partial support for our objected-
oriented architectural description framework (ORISAL) is being incorporated
into the prototype compiler as well. Preliminary experimental results show that
by incorporating DSPI directives significant performance improvement can be
attained in several DSP applications. This work is also a series of our research
work to attempt to develop high-performance and low-power compiler toolkit
for DSP and SoC environments [15,14,22,23,6,5].

The rest of this paper is organized in the following. Section 2 discusses the
background of the problems of DSP compilation and several related issues. Sec-
tion 3 details the concepts of DSPI specification and optimization schemes that
are furnished to the compiler. Section 4 briefly mentions our DSP compiler con-
structions and our ADL-based retargetable system toolkit. Experimental results
are presented and analyzed in section 5. Section 6 compares the related work
and Section 7 concludes this paper.

2 Portability and Optimization Issues for DSP
Programming

The market for embedded and SOC systems with DSPs as the central processors
has been expanding substantially over the past few years. Whereas there always
is a need for greater product differentiation and innovation, there is also an
increasing pressure to shrink design cycles by means of streamlining the compli-
cated development process. With an eye to the unceasing upgrades and options
of hardware technologies, software development tools should highlight source
code portability jointly with the emphasis on target code quality.

Most software development toolkits are designed upon high-level program-
ming languages to insulate programmers from the complexities of DSP archi-
tecture. None the less, high-level development tools seldom produce efficient
software that can extract the best performance from the advanced hardware.
Consequently, most decisive DSP applications are hand-coded in the low-level
assembly languages.

Programming DSP applications in assembly languages is fine only when small
kernels are required to be executed on a DSP. Today complicated DSP software
is required to handle modern applications. Therefore, a procurable DSP soft-
ware design can be achieved only by means of high-level development tools that
can translate high-level languages into efficient object code. In addition, only
the restricted features of traditional DSP architecture could make it easy for

Compiler Optimizations with DSP-Specific Semantic Descriptions 77

programmers to hand-optimize code to achieve the desired speed, size, or low-
power. As more specialized architectures have been incorporated into current
DSP processors, manually performing optimizations is getting exceedingly ardu-
ous. For above reasons, there is a great demand for more effective technologies
for compiler optimizations of high-level languages. In this paper, we address
the direction to develop high-level languages for efficiency. Our approach is to
employ DSP-specific semantic descriptions to be annotated on top of high-level
languages by DSP programmers. This information can also be picked up by
compilers to perform optimizations.

3 Optimizations by DSP Specific Semantics

In order to facilitate the compilers to generate efficient object code which can
take advantage of the DSP advanced hardware features, we propose a set of
directives to allow programmers specifying information-rich descriptions. Our
DSPI specification covers more general intrinsic operations than existing DSP
directives. In the DSPI specification, each directive is specified by the following
syntax:

#pragma dspi directive-name [clause[[,]clause]...] new-line

Every directive starts with #pragma dspi, avoiding conflicting with other pragma
directives. The remainder of the directive conforms to the conventions of the C
and C++ standards for language directives. DSPI directives are classified into
four categories:

– Environment Depiction
– Operation Intention
– Data Storage Characterization
– Parallelism Commentary

3.1 Environment Depiction

For each code segment based on the semantic of source code, programmers should
specify directives to guide compiler optimizations or to specify user-controlled
options. For example, any program following the first directive in Fig. 1 will be
translated into a fixed-point code, while statements and variables preceded by
the second directive in Fig. 1 will be converted to floating-point instructions and
data formats.

In addition to specifying the data precision, the same code running on differ-
ent DSP processors may actually be compiled with integers of different lengths.
Therefore, we need some annotations to assist the compiler in generating code
in a bit-accurate way from the portable source. Fig. 2 shows an example. The
second directive in Fig. 2 will direct the compiler to load a separate file which
contains a sequence of DSPI directives.

78 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

#pragma dspi algorithm_type fxp

/* indicating the algorithm is designed for fixed point arithmetics */

#pragma dspi algorithm_type fop

/* indicating the algorithm is designed for

floating point arithmetics */

Fig. 1. Environment Depiction Example 1

#pragma dspi int_type 32bit

/* assume that length of type int in the code is designed for 32bit */

#pragma dspi include filename.def

/* include a prepared file of DSPI directives

at this position in the source code */

Fig. 2. Environment Depiction Example 2

3.2 Operation Intention

Directives of operation intention provide several levels of comprehensive descrip-
tions to specify DSP-specific computations, essentially ensuring that a compiler
will have sufficient knowledge to generate efficient code. By providing those de-
notational equations or descriptions, different levels of optimizations could be
applied, including low-level smart intrinsic instructions substituting, middle-
level smart intrinsic function synthesizing, and high-level architectural prefab
function embedding as well as possible library-level optimizations.

The general format of the operation intention directives is defined as:

#pragma dspi op [label:][enum] [&] operation-clause [[;]

clause]... new-line

Two additional directives op b and op e are defined to let programmers specify
the starting and end points of operations respectively, if they cannot be easily
determined by the compiler:

#pragma dspi op b label

#pragma dspi op e label

op b and op e DSPI descriptions should be added to demarcate effective bound-
aries where the semantics of the operation can apply to. Otherwise, the DSPI
description op will automatically match the following neighboring block struc-
ture such as a function or loop if neither op b nor op e is annotated with label.
The optional enum is an enumeration that can be used for supplying more than
one alternative solution on the same specified source code. Multiple operator
clauses in the same line are separated by semicolons and are operated in se-
quence by default if they have operand dependencies. Putting a character &
before clauses means that the current line is parallelizable.

Compiler Optimizations with DSP-Specific Semantic Descriptions 79

#pragma dspi fxp a:=<16:16>

#pragma dspi fxp b:=<16:16>

#pragma dspi fxp sadd:=<16:16>,saturated

#pragma dspi op sadd:=a.ADD

int sadd(int a, int b)

{

#pragma dspi fxp result:=<16:16>,saturated

int result;

#pragma dspi op saddop: result:=a.ADD

#pragma dspi op_b saddop

result = a + b;

if (((a ^ b) & 0x8000) == 0) {

if ((result ^ a) & 0x8000) {

result = (a < 0) ? 0x8000 : 0x7fff;

}

}

#pragma dspi op_e saddop

return (result);

}

Fig. 3. Operation Intention Example

The most common operations we have seen from studying many kernel rou-
tines and DSP-operation emphatic applications such as standard vocoders, which
follow the European Telecommunications Standards Institute (ETSI), can be
grouped into two levels of semantic operations. The low-level math operators
comprise ordinary arithmetic operators such as .ADD, .SUB, .NEG, .MUL,
and bit-wise manipulation like .SHL, .SHR. Operator symbol := is used for
assigning values, as .SET is for setting values between right clause’s operands
or initializing operands with some values. Rotation operators .ROR and .ROL
are indigenously supported in contrast to original C or C++ because most pro-
cessors could carry out such operations by built-in hardware implementation.
For describing the iterative operations concisely in the inner loops, we introduce
the delay operator .DLY<interval> which could be applied to give the previous
value of the operand before an interval.

Fig. 3 shows an example of a math operation known as the saturated addition,
which can not be easily expressed in C without DSPI directives. In addition, this
example shows that multiple descriptions with different boundaries could exist
on some overlapped regions as well. Such a style of redundant semantics could
be endowed with selectable optimizations if a compiler is able to utilize it.

Other DSP related basic operators are listed in Table 1.
It is straightforward to express critical DSP processing by these lower-level

basic operators. All ETSI specific math functions can be described through one

Table 1. Low-level Math Operators

.ABS absolute value

.RND round

.NRM normalize bit number

.XHL<source operand> extract lower half to upper half

.XLH<source operand> extract upper half to lower half

.MUH<multiplier> multiply upper half

.MAC<multiplier, addend> multiply & accumulate

.MSU<multiplier, subtrahend> multiply & subtract

.EXT<pattern> partition and extract section (depend on pattern)

.PAK<pattern, operand, ...> pack multiple operands into one (depend on pattern)

80 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

Table 2. High-level Vector Operators

.CONV<vector> convolve two vectors

.CCRR<vector> cross correlate two vectors

.ACRR autocorrelate a vector

.RVRS reverse a vector

.SCAL <scaling value> scale a vector to range

.SUMM sum a vector

.SQUR square a vector

.CLRF <vector> generic linear filtering with coefficients

.FIRF <vector> regular FIR filtering operation

.IIRF <vector, vector> regular IIR filtering operation

Table 3. High-level Matrix Operators

.KRONT <matrix> Kronecker tensor product

.INVRT inverting a square matrix

.LUFAC compute LU factorization of a matrix

.TRACE compute the trace of a matrix

.DETRM compute the determination of a matrix

.EIGEN compute the eigenvalue of a matrix

or two directives. Furthermore, when directives operate on vectors, they properly
manifest simple procurable results despite complex looped source code.

The high-level operation intentions model the familiar DSP actions that could
not be directly mapped into hardware instructions but each of them has an uni-
tary thought on vector or matrix operands. One practical example is convolution,
which is the same operation as multiplying the polynomials whose coefficients are
the elements of two vectors. Several of these high-level DSP operators working
on vectors and matrixes are listed in Table 2 and Table 3, respectively.

3.3 Data Storage Characterization

Some DSP-customary fixed-length data types such as 24-bit and 40-bit integers
are not defined in the ANSI/ISO C/C++ standard, and hence extra care must
be taken in order to process these data types efficiently. Therefore, the compiler
needs more information of data storage in the source code to process the com-
putation and output the accurate data if using the optimized target machine
instructions.

Other data storage characterizations which could let the compiler generate
codes that benefit from the specific architectural ability are called accessing
features. The accessing features for scalar numbers include saturated, several
rounding types, etc. Vector or matrix data storage could be additionally ap-
pended with accessing conventions like interleaved, divided, circular, and so on.
There is also a special accessing feature called temp, which is used to specify a
temporary storage location. Suchlike temporary value is just applied to above
operation intention directives. The format of data storage characterization is

#pragma dspi type id :=[feature[[,]feature]...] new-line

Compiler Optimizations with DSP-Specific Semantic Descriptions 81

#pragma dspi fxp a:=<24:16>

int a;

/* declare that int a is actually a fixed-point number

of bit-width 24 with integer word-length 16 */

#pragma dspi fop b:=<16>,saturated

float b;

/* declare that float b is a 16bit length

saturated floating-point number */

#pragma dspi cfxp c:=<24:16>,real=cr,image=ci

int cr, ci;

/* declare a temporal complex number c, which consists

of a real part cr and an imaginary part ci, could be used

with DSPI operators in representing the semantics */

#pragma dspi fxp d:=<24:16>,circular

int d[160];

/* declare that vector d will be accessed in a circular manner */

Fig. 4. Data Storage Characterization Examples

Bit-width feature is described as 〈width:width〉 for fixed-point numbers and
〈width〉 for floating-point numbers. Interleaved or divided feature must append a
〈number〉 to characterize the accessing distance. Fig. 4 presents some examples.

Moreover, data storage characteristics can also be specified to the return
values of functions in C or C++ language, as shown in Fig. 3.

3.4 Parallelism Commentary

DSP applications are practically massive data computations. Accordingly, most
DSP processors are built as data flow engines, accompanied by a RISC or CISC
processor, and consequently they are multiprocessors by default. From these
perspectives, the directives defined in this group will allow users to create and
enhance DSP programs with possible compiler optimizations when the programs
running on an ILP-aware DSP processor or an SIMD-aware DSP processor. In
addition, a system with multiple DSP processors may also be improved with
those directives if the compiler is designed with suitable optimizations. The
directives extend the C and C++ sequential programming model with data
parallelism constructs and simultaneous operation semantics [13].

The directive parallel region is designed to specify a parallel region, which
is a part of the program that could be executed in parallel if the hardware
architecture permits. This directive explicitly directs the compiler to generate
parallel code, as shown in Fig. 5. Variables listed in the shared clause are accessed

#pragma dspi parallel_region [shared:=var1, [var2[,...]]]

{

/* block of codes */

}

Fig. 5. Parallelism Commentary 1

82 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

#pragma dspi parallel_for [schedule:=chunksize]

for(...;...;...)

{

/* loop body */

}

Fig. 6. Parallelism Commentary 2

static void Fast_Autocorrelation P2((s, L_ACF),

word * s, /* [0..159] IN/OUT */

longword * L_ACF) /* [0..8] OUT */

{

...

#pragma dspi op s_f:=s

#pragma dspi parallel_for

for (i = 0; i < 160; ++i)

sf[i] = s[i];

#pragma dspi op f_L_ACF:=sf.ACRR.EXT<0:8>

for (k = 0; k <= 8; k++) {

register float L_temp2 = 0;

register float *sfl = sf - k;

#pragma dspi parallel_for

for (i = k; i < 160; ++i)

L_temp2 += sf[i] * sfl[i];

f_L_ACF[k] = L_temp2;

}

scale = MAX_LONGWORD / f_L_ACF[0];

#pragma dspi op L_ACF:=f_L_ACF.SCAL<scale>

#pragma dspi parallel_for

for (k = 0; k <= 8; k++) {

L_ACF[k] = f_L_ACF[k] * scale;

}

}

Fig. 7. Code Fragment from LPC Analysis in GSM

in the same area in parallel, so that the compiler should take a consideration
about the data-path conflicting in the specific hardware.

Another fundamental parallelism is shown in Fig. 6. It specifies that the
iterations of the loop could be executed in parallel if possible.

The optional clause of schedule:=chunksize will be used to guide the compiler
to generate codes that iterations are divided into chunks of the specified size.
Fig. 7 shows a code fragment of LPC analysis with parallelism commentary and
other DSPI directives.

4 Compiler Framework

This section describes the current status of our compiler environment. It will
also give a glance at the involved retargetability technology of architectural de-
scription language that we are developing for the embedded system and SoC
systems. At present, our prototype compiler is based on the SPAM compiler
developed by Princeton University [9]. The front-end of the SPAM compiler is
actually using the SUIF1 [10]. SPAM focuses on back-end optimizations and has
only a limited set of back-end support for target architectures. In our work, we

Compiler Optimizations with DSP-Specific Semantic Descriptions 83

Source Program

Directive
Preprocessor

SUIF Front-end

SUIF IR

Architectural Code
Generator

Low-level IR

Optimization Layers

Target Code

Specified
Transformations

Target Machine
Specification

Architecture-Reform-Interphase

Fig. 8. Compiler Infrastructures

expand the SPAM to support TI TMS320C6 DSP processors. We exert the olive
code generator-generator included in the SPAM back-end to perform instruction
selections. In addition, we are in the process of incorporating compiler optimiza-
tions to fully support the DSPI directives to optimize DSP programs. The code
generating procedures and our compiler infrastructures are illustrated in Fig. 8.

In addition to the attempt of supporting compiler optimizations with DSP-
specific semantic descriptions specified from DSP programmers, our system is
also incorporating a framework of architectural description languages in expecta-
tion to provide fast prototype and retargeting of toolkits for DSP processors. Our
architecture description language is called (ORISAL) denoting Object-oriented
Reconfigurable Instruction Set Architecture Language. ORISAL is represented by
a Java-like syntax. From the internal design of the core library in the ORISAL
framework, there are several layers of abstraction that concern the issues of com-
piler construction and retargeting. One of the components is a uniform semantic
behavior interface that is used by both physical components and software compo-
nents, providing the coherence of operation selection which the compiler or other
development tools could use to match maximal architectural features. Among
the predefined sets of behaviors of operations, there is one called canonical-
semantics that is treated as the fundamental and the least operational interface
acknowledged by instructions and hardware components. All operations except
canonical-semantics must be applied with at least one self-evident identical op-
eration semantics composed of canonical ones, thus these identical operations
could provide multiple cost evaluation of different approaches or decomposed
sub-operations that could be scheduled to utilize maximum hardware capabil-
ity. The rules of completing one operation are configurable from several default
built-in operations or user-defined methods. In order to determine the multiple

84 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

selections of instructions or operation semantics, there are also several ways to
reference the related cost functions. The cost of one operation can be chosen from
accompanying hardware factors, instruction factors or user-defined compositions.
While comparing with other existing ADLs [11] [24] [12], our ORISAL frame-
work has several specialties which could improve the off-the-shelf design process
of hardware and associated software development toolkits. ORISAL emphasizes
on supporting cycle-accurate simulation, multiple IP descriptions, energy infor-
mation, and the instruction set architecture for compiler toolkit optimizations.

5 Experimental Results

To evaluate the effects of DSPI descriptions for optimization in retargetable com-
piler construction, we embed DSPI in the DSPstone kernel benchmarks [25] and
evaluate the performance. The DSP benchmark suite used in this experiments
is described in Table 4.

Experiments will be performed on two sets of object programs. The first set
of object programs will be generated by compiling the benchmark programs by
the compiler in the TI TMS320C6201 development toolkits with option ”-O3”.
In other words, this set is comprised of the optimized object code of the bench-
mark programs generated without DSPI directives. The performance of this set
of object programs will be used as the baseline measurement. The other set
of object programs is generated from the benchmark programs with embedded
DSPI directives. The prototype compiler tries to select the TMS320C6 intrinsic
instructions whenever possible based on the semantics of DSPI directives. As
we are still in the early stage of compiler implementations, our software infras-
tructures are fragile and we manually perform code generation of statements
specified by certain DSPI directives for compiler work when our system fails to
do that in this early stage. However, we expect the performance will be at least
the same when we have the automatic system done, as many of the optimiza-
tions with directives are quite syntactic transformations. Both sets of object
programs are converted to VLIW code through the TI TMS320C6 assembly
optimizer, and then executed on the TI TMS320C6201 software simulator and
hardware evaluation module under different settings of data sizes and quality.

Table 4. DSP Benchmark suite used in this work

Benchmark name Description

convolution This function behaves as the convolution operation. This is a modified n lags version.
matrix1x3 This program multiplies a 3 by 3 matrix with 1 by 3 vector to generate and store a 3

by 1 vector
lms(least mean square) This adaptive filter performs a finite impulse response filtering where the tap coeffi-

cients are adapted iteratively
fir One of common kernel operations inside the central applications using DSPs. The

FIR benchmark multiplies an array of state variables by an array of coefficients and
accumulates the result in the output variable

iir biquad N sections Another intensively used digital filters in DSP applications. It inputs values through a
biquad infinite impulse response filter. The IIR benchmark consists of N serial, second
order subsystems named biquads, so that the output of each biquad corresponds tt
the input of next biquad

n complex updates This benchmark multiplies n complex numbers with n complex numbers, then adds
other n complex numbers, and accumulates the results with n complex numbers up-
dates

Compiler Optimizations with DSP-Specific Semantic Descriptions 85

Table 5. DSP Benchmark Testsuite 1 (32bit)

Name of benchmark convolution matrix1x3 lms fir iir biquad N sections

Original code cycles 417447 21984 110110 55184 36296
DSPI code cycles 352808 18284 106094 48706 34917

Table 6. DSP Benchmark Testsuite 2 (16bit)

Name of benchmark matrix1x3 iir biquad N sections n complex updates

Original code cycles 19376 24776 94284
DSPI code cycles 15273 23722 54162

Table 7. DSP Benchmark Testsuite 3 (4x Quantity)

Name of benchmark lms fir iir biquad N sections n complex updates

Original code cycles 413400 194745 82305 371604
DSPI code cycles 374056 150441 60778 194466

The performance of both sets is measured by the the TMS320C6201 profiler.
Table 5 and Table 6 list the numbers of cycles are executed for both sets of
object programs with the data sizes of 32 bits and 16 bits, respectively. Table 7
presents the execution times when a quadruple of the data is manipulated for
the benchmarks, the first two of which use the 32-bit data size and the last two
use 16 bits.

The DSPI directives applied on these benchmark programs are concisely de-
scribed below. Except that using basic operation intentions to construct the
fundamental semantics, we use the DSPI data characteristics to indicate the

B e n c h m a r k T e s t s u i t e 1 (3 2 b i t)

0 . 0 0 %

2 0 . 0 0 %

4 0 . 0 0 %

6 0 . 0 0 %

8 0 . 0 0 %

1 0 0 . 0 0 %

1 2 0 . 0 0 %

c o n v m a t 1 x 3 l m s f i r i i r

Ex
ec

ut
io

n
Ti

m
e

o r ig in a l
D S P I

B e n c h m a r k T e s ts u ite 2 (1 6 b i t)

0 .0 0 %

2 0 .0 0 %

4 0 .0 0 %

6 0 .0 0 %

8 0 .0 0 %

1 0 0 .0 0 %

1 2 0 .0 0 %

m a t1 x 3 i i r n _ c o m p le x

Ex
ec

ut
io

n
Ti

m
e

o r ig in a l
D S P I

B e n c h m a r k T e s ts u i te 3 (4 x Q u a n t i ty)

0 .0 0 %

2 0 .0 0 %

4 0 .0 0 %

6 0 .0 0 %

8 0 .0 0 %

1 0 0 .0 0 %

1 2 0 .0 0 %

lm s f i r i i r n _ c o m p le x

Ex
ec

ut
io

n
Ti

m
e

o r ig in a l
D S P I

Fig. 9. DSP Benchmark Testsuite Performance Comparison

86 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

Table 8. Large Application Benchmark (G.723.1 Codec)

Name of benchmark Coder 6.3K Coder 5.3K Decoder 6.3K Decoder 5.3K

Original code cycles 8323070 11751868 850180 812517
DSPI code cycles 1298805 1565469 93190 89884

0

2000000

4000000

6000000

8000000

10000000

12000000

Cycles

Coder 6.3K Coder 5.3K

Original
DSPI

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

Cycles

Decoder 6.3K Decoder 5.3K

Original
DSPI

Fig. 10. Full G.723.1 Codec Benchmark Performance Comparison

applied vector and matrix operations. Besides, in convolution, matrix1x3,
and n complex updates, we use parallelism commentary directives to anno-
tate the loops; in n complex updates, we insert complex number feature to
precisely define the data type; in the iir biquad N sections, we make use of
special storage addressing by circular buffer. These tables show that we can get
some notable improvement by embedding the DSPI directives. Fig. 9 depicts the
performance improvement over normalized baseline execution times.

In addition to DSP kernel program benchmarks, we also take a large applica-
tion program to test the DSPI optimizations. The application is the full G.723.1
codec from ITU-T, and is compiled with both portions of rate 6.3kbit/s and rate
5.3kbit/s into single object program to simulate the condition that complex and
large code could not entirely reside in the DSP core memory. The performance
of coder and decoder in each rate is listed in Table 8. The comparison figures are
illustrated in Fig. 10 and they reveal significant improvements gained by DSPI
descriptions.

6 Related Works

Several methods are currently used for DSP optimizations. First, it uses the
support of libraries for those frequent computation-intensive kernel procedures

Compiler Optimizations with DSP-Specific Semantic Descriptions 87

include FIR filters, IIR filters, FFTs, DCTs, and so on. Another way for DSP
optimizations is to use intrinsics for describing specific instructions available in
an architecture [2,3,7]. Rudimentary intrinsics is like the assembly statement
but have the appearance of macro-usage in C/C++ source code. These words
are transformed to natively supported instructions during compilation and are
rewarded for some tier of optimizations. The third method is modifying the lan-
guage itself to force programmers explicitly writing DSP architectural data types
and expressions of DSP functionalities. Language extensions for this purpose are
designed with enhanced constructs like fixed-point types, saturation types, par-
ticular memory addressing types, simultaneous execution model, etc [17,19,21].
These additions often denote special compilers that accept these none-standard
dialects of C/C++ language. This decreases the portability of the programs.
Our compiler directive approach is similar to HPF [4] and OpenMP [1] for the
methodology, but specialized in DSP optimizations.

7 Conclusion

In this paper, we offered the possible solution with DSPI, a set of DSP specific
semantics directives, which could make the compiler produce more optimized
codes but persist source-level compatibility. We also have briefed the on-going
research works of our proposed retargetable toolkit framework of SoC, ORISAL,
in which the DSPI could be entailed to perform a retargetable optimization
layer of the compiler and may benefit with both portability and optimizations.
Preliminary experiments reveal the promising prospects of continuation in this
research work.

References

1. Eduard Ayguade, Xavier Martorell, Jesus Labarta, Marc Gonzalez, and Nacho
Navarro. Exploiting multiple levels of parallelism in openmp: A case study. In
International Conference on Parallel Processing, pages 172–180, 1999.

2. D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and P. D’Arcy. A new approach
to dsp intrinsic functions. In Proceedings of the Hawaii International Conference
on System Sciences, pages 908–918, January 2000.

3. D. Batten, S. Jinturkar, J. Glossner, M. Schulte, R. Peri, and P. D’Arcy. Interaction
between optimizations and a new type of dsp intrinsic function. In Proceedings of
the International Conference on Signal Processing Applications and Technology
(ICSPAT’99), November 1999.

4. Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S.Ranka. Fortran 90d/hpf com-
piler for distributed memory mimd computers: design, implementation and per-
formance results. In Proceedings of Supercomputing ’93, pages 351–360, Novem-
ber 1993.

5. R. G. Chang, T. R. Chuang, and Jenq-Kuen Lee. Efficient support of parallel
sparse computation for array intrinsic functions of fortran 90. In Proceedings of
ACM International Conference on Supercomputing, July 1998.

88 Y.-C. Lin, Y.-S. Hwang, and J.K. Lee

6. Rong-Guey Chang, Jia-Shing Li, Tyng-Ruey Chuang, and Jenq Kuen Lee. Prob-
abilistic inference schemes for sparsity structures of fortran 90 array intrinsics. In
Proceedings of the 2001 International Conference on Parallel Processing, Septem-
ber 2001.

7. D. Chen, W. Zhao, and H. Ru. Design and implementation issues of intrinsic func-
tions for embedded dsp processors. In Proceedings of the ACM SIGPLAN Interna-
tional Conference on Signal Processing Applications and Technology (ICSPAT’97),
pages 505–509, September 1997.

8. Naji Ghazal, Richard Newton, and Jan Rabaey. Predicting performance potential
of modern dsps. In Proceedings of IEEE/ACM Design Automation Conference
(DAC), June 2000.

9. SPAM Research Group. SPAM Compiler User’s Manual, September 1997.
http://www.ee.princeton.edu/spam/.

10. Stanford Compiler Group. The SUIF Library, 1994.
http://suif.stanford.edu/suif/suif1/docs/suif toc.html.

11. G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: An instruction set description
language for retargetability. In Proceedings of ACM/IEEE Design Automation
Conference, October 1997.

12. Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and
Alex Nicolau. Expression: A language for architecture exploration through com-
piler/simulator retargetability. In Proceedings of Design, Automation, and Test in
Europe conference (DATE), 1999.

13. Gwan-Hwan Hwang, Jenq Kuen Lee, and Dz-Ching Ju. Integrating automatic
data alignment and array operation synthesis to optimize data parallel programs.
In Proceedings of the 10th International Workshop on Languages and Compilers
for Parallel Computing (LCPC’97), Augest 1997.

14. Gwan-Hwan Hwang, Jenq Kuen Lee, and Roy Dz-Ching Ju. A function-
composition approach to synthesize fortran 90 array operations. Journal of Parallel
and Distributed Computing, 54:1–47, 1998.

15. Yuan-Shin Hwang, Peng-Sheng Chen, Jenq-Kuen Lee, and Roy Ju. Probabilistic
points-to analysis. In Proceedings of the 15th International Workshop on Languages
and Compilers for Parallel Computing (LCPC’01), August 2001.

16. Texas Instruments Incorporated. TMS320C62x/C67x CPU
and Instruction Set. Texas Instuments Incorporated, 1998.
http://www.ti.com/sc/psheets/spru189d/spru189d.pdf.

17. M. Jersak and M. Willems. Fixed-point extended c compiler allows more efficient
high-level programming of fixed-point dsps. In Proceedings of the International
Conference on Signal Processing Applications and Technology (ICSPAT’98), Octo-
ber 1998.

18. J.Glossner, D. Routenberg, E. Hokenek, M. Moudgill, M. Schulte, P. Balzola, and
S. Vassiliadis. Towards a very high bandwidth wireless handheld device. Technical
report, Sandbridge Technologies, Inc., 2001. White Paper.

19. B. Krepp. Dsp-oriented extension to ansi c. In Proceedings of the International
Conference on Signal Processing Applications and Technology (ICSPAT’97), pages
658–664, 1997.

20. Ashutosh K. Kulkarni and Aditya Dube. Benchmarking code generation method-
ologies for programmable digital signal processors. April 1997.

21. K. Leary and W. Waddington. Dsp/c: a standard high level language for dsp aad
numeric processing. In Proceedings of the International Conference on Acoustic,
Speech, and Signal Processing, pages 1065–1068, 1990.

Compiler Optimizations with DSP-Specific Semantic Descriptions 89

22. Chingren Lee, Jenq Kuen Lee, TingTing Hwang, and Shi-Chun Tsai. Compiler
optimization on instruction scheduling for low power. In Proceedings of the 13th
International Symposium on System Synthesis, pages 55–60, September 2000.

23. Yi-Ping You, Ching-Ren Lee, Jenq-Kuen Lee, and Wei-Kuan Shih. Real-time task
scheduling for dynamically variable voltage processors. In Proceedings of IEEE
Workshop on Power Management for Real-Time and Embedded Systems, May 2001.

24. V. Zivojnovic, S. Pees, and H. Meyr. Lisa – machine description language and
generic machine model for hw/sw co-design. In Proceedings of IEEE Workshop on
VLSI Signal Processing, October 1996.

25. V. Zivojnovic, J.M. Velarde, C. Schlager, and H. Meyr. Dspstone, a dsp-oriented
benchmarking methodology - final report. Technical report, Aachen University,
Germany, August 1994. Technical Report.

Combining Performance Aspects of Irregular
Gauss-Seidel Via Sparse Tiling

Michelle Mills Strout, Larry Carter, Jeanne Ferrante, Jonathan Freeman,
and Barbara Kreaseck

University of California, San Diego,
9500 Gilman Dr. La Jolla, CA 92093-0114

mstrout@cs.ucsd.edu

Abstract. Finite Element problems are often solved using multigrid techniques.
The most time consuming part of multigrid is the iterative smoother, such as
Gauss-Seidel. To improve performance, iterative smoothers can exploit paral-
lelism, intra-iteration data reuse, and inter-iteration data reuse. Current meth-
ods for parallelizing Gauss-Seidel on irregular grids, such as multi-coloring and
owner-computes based techniques, exploit parallelism and possibly intra-iteration
data reuse but not inter-iteration data reuse. Sparse tiling techniques were de-
veloped to improve intra-iteration and inter-iteration data locality in iterative
smoothers. This paper describes how sparse tiling can additionally provide par-
allelism. Our results show the effectiveness of Gauss-Seidel parallelized with
sparse tiling techniques on shared memory machines, specifically compared to
owner-computes based Gauss-Seidel methods. The latter employ only parallelism
and intra-iteration locality. Our results support the premise that better perfor-
mance occurs when all three performance aspects (parallelism, intra-iteration,
and inter-iteration data locality) are combined.

1 Introduction

Multigrid methods are frequently used in Finite Element applications to solve simulta-
neous systems of linear equations. The iterative smoothers used at each of the various
levels of multigrid dominate the computation time [3]. In order for iterative smoothers
to improve performance, the computation can be scheduled at runtime to exploit three
different performance aspects: parallelism, intra-iteration data reuse, and inter-iteration
data reuse.

Figure 2 shows the iteration space graph for two commonly-used smoothers, Gauss-
Seidel and Jacobi. The iteration space graph in figure 2(a) visually represents the com-
putation and data dependences for the Gauss-Seidel pseudocode in figure 1. The x
and y axes suggest that the unknowns of the simultaneous equations might lie in a
2-dimensional domain; however, the unknowns are indexed by a single variable i. The
iter axis shows three convergence iterations (applications of the smoother). Each it-
eration point < iter, i > in the iteration space represents all the computation for the
unknown ui at convergence iteration iter. The dark arrows show the data dependences
between iteration points for one unknown ui in the three convergence iterations. At
each convergence iteration iter the relationships between the unknowns are shown by

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 90–110, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 91

the lightly shaded matrix graph. Specifically, for each non-zero in the sparse matrix A,
aij �= 0, there is an edge <i, j > in the matrix graph.

GaussSeidel(A,u,f)
for iter = 1, 2, ..., T

for i = 1, 2, ..., R
ui = fi

for all j in order where (aij �= 0 and j �= i)
ui = ui − aijuj

ui = ui/aii

Fig. 1. Gauss-Seidel pseudocode

In Gauss-Seidel, each iteration point < iter, i > depends on the iteration points of
its neighbors in the matrix graph from either the current or the previous convergence
iteration, depending on whether the neighbor’s index j is ordered before or after i. In
Jacobi (figure 2(b)), each iteration point <iter, i> depends only on the iteration points
of its neighbors in the matrix graph from the previous convergence iteration.

Tiling [35, 20, 14, 34, 8, 24] is a compile-time transformation which subdivides the
iteration space for a regular computation so that a new tile-based schedule, where each
tile is executed atomically, exhibits better data locality. However, sparse matrix compu-
tations used for irregular grids have data dependences that are not known until run-time.
This prohibits the use of compile-time tiling. Instead, sparse tiling techniques use iter-
ation space slicing [27] combined with inspector-executor [30] ideas to dynamically
subdivide iteration spaces induced by the non-zero structure of a sparse matrix (like
those shown in figure 2). In the case of Gauss-Seidel, it is necessary to reorder the un-
knowns to apply sparse tiling. The fact that we can apply an a priori reordering requires
domain-specific knowledge about Gauss-Seidel.

There are two known sparse tiling techniques. Our previous work [33] developed
a sparse tiling technique which in this paper we call full sparse tiling. Douglas et. al.
[12] described another sparse tiling technique which they refer to as cache blocking
of unstructured grids. In this paper, we will refer to their technique as cache block
sparse tiling. Figures 3(a) and 3(b) illustrate how the full sparse tiling and the cache
block sparse tiling techniques divide the Gauss-Seidel iteration space into tiles. Exe-
cuting each tile atomically improves intra- and inter-iteration locality. Intra-iteration
locality refers to cache locality upon data reuse within a convergence iteration, and
inter-iteration locality refers to cache locality upon data reuse between convergence
iterations.

This paper describes how sparse tiling techniques can also be used to parallelize it-
erative irregular computations. To parallelize cache block sparse tiled Gauss-Seidel, the
“pyramid”-shaped tiles are inset by one layer of iteration points at the first convergence
iteration. Then all of the pyramid-shaped tiles can execute in parallel. This however still
leaves a large final tile which must be executed serially and which, because of its size,
may exhibit poor inter-iteration locality. To parallelize full sparse tiled Gauss-Seidel
it is necessary to create a tile dependence graph which indicates the dependences be-
tween tiles. Independent tiles can be executed in parallel. We have implemented both

92 M.M. Strout et al.

iter

x

y

(a) Gauss-Seidel Iteration Space with 3 convergence itera-
tions

iter

x

y

(b) Jacobi Iteration Space with 3 convergence iterations

Fig. 2. The arrows show the data dependences for one unknown ui. The relationships between
the iteration points are shown with a matrix graphs.

sparse tiling techniques within the same framework, therefore, we can compare their
effectiveness.

Other methods take advantage of the ability to a priori reorder the unknowns in order
to parallelize Gauss-Seidel. Multi-coloring is the standard way to parallelize irregular
Gauss-Seidel [5]. It works by coloring the matrix graph so that adjacent nodes have
different colors. Having done so, all nodes of a given color within one convergence iter-
ation can be executed in parallel. The number of colors is the minimum number of serial

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 93

iter

y

x

(a) Sparse tiled Gauss-Seidel iteration space using the full
sparse tiling technique. Notice that the seed partition is at the
middle convergence iteration.

iter

x

y

(b) Sparse tiled Gauss-Seidel iteration space using the cache
block sparse tiling technique. The iteration points which are
not shaded belong to a tile which will be executed last. The
seed partition is at the first convergence iteration.

Fig. 3. A visual comparison of the two sparse tiling techniques

steps in the computation. Owner-computes methods use coloring at a coarser granular-
ity. The nodes in the matrix graph are partitioned and assigned to processors. Adjoining
partitions have data dependences. Therefore, a coloring of the partition graph can de-
termine which cells in the partitioning can legally be executed in parallel. Adams [2]
developed an owner-computes method called nodal Gauss-Seidel, which renumbers the

94 M.M. Strout et al.

unknowns so that good parallel efficiency is achieved. Both of these techniques require
synchronization between convergence iterations.

The main difference between these techniques for parallelizing Gauss-Seidel and
sparse tiling techniques is that the former do not directly result in intra-iteration and
inter-iteration locality. It is relatively easy to adjust the nodal Gauss-Seidel [2] tech-
nique for intra-iteration locality, but neither multi-coloring nor owner-computes based
techniques like nodal Gauss-Seidel take advantage of inter-iteration data reuse.

Sparse tiling techniques explicitly manage all three aspects of performance: par-
allelism, intra-iteration locality, and inter-iteration locality. Although current compilers
are not able to analyze a Gauss-Seidel solver and automatically incorporate sparse tiling
due to the need for domain specific knowledge, we believe that it will eventually be pos-
sible with the help of user-specified directives.

Section 2 describes sparse tiling from a traditional tiling perspective. In section 3, we
describe how to create a parallel schedule for full sparse tiling and show experimental
results for parallel executions of full sparse tiled and cache block sparse tiled Gauss-
Seidel. In section 4, we qualitatively evaluate methods of parallelizing Gauss-Seidel,
including multi-coloring, owner-computes methods, and parallel full sparse tiling, in
terms of their intra- and inter-iteration data locality and parallel efficiency. Owner-
computes methods are only unable to provide inter-iteration data locality, so we quan-
titatively compare owner-computes methods with full sparse tiling to investigate the
importance of inter-iteration locality. Section 5 discusses future plans for automating
sparse tiling techniques, further improving the parallelism exposed by full sparse tiling,
and implementing parallel full sparse tiling on a distributed memory machine. Finally,
we discuss related work and conclude.

2 A Simple Illustration

Although the focus of this paper is on irregular problems, we would like to introduce
our techniques in a simplified setting, using a regular one-dimensional problem as an
example.

Suppose we have a vector u of N unknowns and want to solve a set of simultaneous
equations, Au = f . If the unknowns u correspond to some property of points in a
suitable one-dimensional physics problem, the matrix A will be tri-diagonal, i.e. the
only non-zeros will be in the major diagonal and the two adjacent diagonal. In this
case, the following code corresponds to applying three iterations of a Jacobi smoother
(assuming we have initialized u[0]=u[N+1]=0):

for iter = 1 to 3
for i = 1 to N

newu[i] = (f[i]-A[i,i-1]*u[i-1]
-A[i,i+1]*u[i+1]) / A[i,i]

for i = 1 to N
u[i] = newu[i]

Under certain assumptions about the matrix A, after each iteration of the iter loop,
u will be a closer approximation to the solution of the simultaneous equations (hence
the term, “convergence iterations”.)

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 95

Our goal is to parallelize this computation and to improve the use of the computer’s
memory hierarchy through intra- and inter-iteration locality. The simplest method of
parallelizing it for a shared-memory computer is to partition the u and newu vectors
among the processors. Then for each convergence iteration, each processor can compute
its portion of newu in parallel. Next, the processors perform a global synchronization,
copy their portion of newu to u, resynchronize, and proceed to the next convergence
iteration. On a distributed memory machine, the two synchronizations are replaced by
a single communication step.

In this example, the resulting code will have decent intra-iteration locality. Specif-
ically, the elements of u, newu, and A are accessed sequentially (i.e., with spatial
locality). Further, in the i loop, each element u[i] is used when calculating u[i-1]
and u[i+1], which results in temporal locality.

However, there is no inter-iteration locality. During each convergence iteration, each
processor makes a sweep over its entire portion of A, u and newu, and then a sec-
ond sweep over u and newu. Since these data structures are typically much larger
than caches, there is no temporal locality between convergence iterations. Such local-
ity is important because even with prefetching, most processors cannot fetch data from
memory as fast as they can perform arithmetic.

Tiling provides a method of achieving inter-iteration locality. The rectangle in fig-
ure 4 represents the 3 × N iteration space for the example code - each point in the
rectangle represents a computation of newu[i]. To simplify the exposition, we ignore
the storage-related dependences and the copy of newu to u, but note in passing that
this is a sophisticated application of tiling involving two loops, that neither tile bound-
ary is parallel to the iteration space boundary, and that the tiling could benefit from the
storage-savings techniques of [33].

i
1

3

N

iter

T1 T2 T4 T5 T6T3

1

Fig. 4. Tiling the two-dimensional iteration space corresponding to a simple one-dimensional reg-
ular stencil computation. The dashed lines illustrate how the trapezoidal tiles arise from a regular
parallelogram tiling of a conceptually infinite space. The arrows in tile T5 show the dependences
between iterations.

In figure 4, there are six tiles labeled T1 to T6. For any of the odd-numbered tiles,
all of the computations in the tile can be executed without needing the results from any
other tiles. After all the odd-numbered tiles are completed, then the even-numbered tiles
can be executed in parallel. Furthermore, assuming the tiles are made sufficiently small,

96 M.M. Strout et al.

each tile’s portions of the three arrays will remain in cache during the execution of the
tile. Thus, tiling can achieve parallelism as well as intra- and inter-iteration locality for
a simple regular computation. Unfortunately, tiling requires that the dependences be
regular. If we replace the tridiagonal matrix A by an arbitrary sparse matrix then the
implementation will use indirect memory references and non-affine loop bounds and
tiling will no longer be applicable.

We now illustrate how sparse tiling achieves parallelism, as well as intra- and iter-
iteration locality. Sparse tiling is a run-time technique that partitions the newu vector
into cells that can conveniently fit into cache, then chooses an order on the cells, and
then “grows” each cell into the largest region of the iteration space that can be computed
consistent with the dependences and the ordering on the cells. The tiles are grown so that
each tile can be executed atomically. Since all of this is done at runtime, sparse tiling
is only profitable if the overhead of forming the tiles can be amortized over multiple
applications of the smoother on the same underlying matrix. Fortunately, this is often
the case.

Figure 5 shows how sparse tiling would work on our simple example. The horizontal
axis (representing the indices of the u and newu vectors) is partitioned into six cells. In
the top diagram, these are numbered sequentially from left to right; in the bottom, they
are given a different numbering. Then, each tile in turn is “grown” upwards assuming
adjacent tiles will be executed in numerical order. If the neighboring iteration points
have already been computed by an earlier tile, then the upward growth can expand
outwards; otherwise, the tile contracts as it grows upwards through the iteration space.

1 2 4 6

1 2 3 4 5 6

3 5

Fig. 5. Two applications of sparse tiling to the iteration space of figure 4. In both cases, the
data was partitioned into six cells. In the top diagram, they were ordered from left to right. The
resulting tiling achieves inter-iteration locality. The small arrows indicate dependences between
tiles.

Both diagrams result in a tiling that achieves inter-iteration locality. However, there
will be dependences between the tiles, as shown by the arrows in the diagrams. The six
tiles in the top diagram must be executed sequentially — tile i + 1 cannot be executed
until tile i is completed, under the usual assumption that tiles are executed atomically.
However, in the bottom diagram, the tiles numbered 1 and 2 can be executed concur-
rently. When 1 is complete, 3 can be started; when 2 is done, 4 can be started, and so on.
Thus, sparse tiling can achieve parallelism, intra-iteration locality, and inter-iteration

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 97

locality on irregular problems. However, it requires either luck or a thoughtful choice
for the initial numbering of the cells given by the partitioner.

In the remainder of this paper, we will move away from the simplifying assump-
tions of this section. In particular, we will consider higher dimensional, unstructured
problems. Thus, there will be more non-zeros in the A matrix, they will occur in an
irregular pattern, and a space-efficient sparse data structure will be used. Furthermore,
we will concentrate on using a Gauss-Seidel smoother rather than a Jacobi one. This
eliminates the temporary vector newu. Instead, each i iteration reads and updates the
u vector which introduces dependences within a convergence iteration as well as be-
tween convergence iterations. As mentioned earlier, it is common with Gauss-Seidel
that a reordering of the unknowns is permitted, provided that once an order is chosen,
the same order is used throughout the execution of the iteration space. This allows us to
choose any numbering on the cells of the partitioning as well.

3 Executing Sparse Tiled Gauss-Seidel in Parallel

Sparse tiling techniques perform runtime rescheduling and data reordering by partition-
ing the matrix graph, growing tiles from the cells of the seed partitioning, constructing
the new data order, and creating the new schedule based on the sparse tiling. In order
to execute tiles in parallel we construct a tile dependence graph. The tile dependence
graph is used by a master-worker implementation. The master puts tiles whose data
dependences are satisfied on a ready queue. The workers execute tiles from the ready
queue and notify the master upon completion.

The following is an outline of the sparse tiling process for parallelism.

– Partition the matrix graph to create the seed partitioning. Each piece of the parti-
tion is called a cell. Currently we use the Metis [22] partitioning package for this
step.

– Choose a numbering on the cells of the seed partition.
– Grow tiles from each cell of the seed partitioning in turn to create the tiling function

θ which assigns each iteration point to a tile. The tile growth algorithm will also
generate constraints on the data reordering function.

– Reorder the data using the reordering function.
– Reschedule by creating a schedule function based on the tiling function θ. The

schedule function provides a list of iteration points to execute for each tile at each
convergence iteration.

– Generate tile dependence graph identifying which tiles may be executed in par-
allel.

Either full tile growth (called serial sparse tiling in [33]) or cache blocking tile
growth [12] can be used to grow tiles based on an initial matrix graph partitioning.
We show results for both methods.

Our experiments were conducted using the IBM Blue Horizon and SUN Ultra at the
San Diego Supercomputer center. Details on both machines are given in table 1. We
generated three matrices by solving a linear elasticity problem on a 2D bar, a 3D bar,
and a 3D pipe using the FEtk [18] software package. The Sphere and Wing examples

98 M.M. Strout et al.

are provided by Mark Adams [1]. These are also linear elasticity problems. Table 2
shows statistics on the matrices.

In all our experiments, the sparse matrix is stored in a compressed sparse row (CSR)
format. Our previous work [33] compared sparse tiled Gauss-Seidel (with a serial sched-
ule) using CSR with a version of Gauss-Seidel which used a blocked sparse matrix for-
mat with a different format for the diagonal blocks, upper triangle blocks, and lower
triangle blocks. The blocked sparse matrix format exploits the symmetric nature of the
sparse matrices generated by the Finite Element package FEtk [18]. Further experimen-
tation has shown that the CSR matrix format results in a more efficient implementation
of the typical Gauss-Seidel schedule.

Table 1. Descriptions of architectures used in experiments

Name Description L2 cache

Ultra SUN HPC10000, up to 32 4MB
400 MHz UltraSPARCII processors

Blue One node of an IBM SP, 8MB
Horizon Eight 375 MHz Power3 processors
Node

Table 2. Descriptions of input matrices

avg
non-zeros

Matrix numrows num non-zeros per row

2D Bar 74,926 1,037,676 13.85
3D Bar 122,061 4,828,779 39.56
Sphere150K 154,938 11,508,390 74.28
Pipe 381,120 15,300,288 40.15
Wing903K 924,672 38,360,266 41.49

Our experiments examine the raw speedup of sparse tiled versions of Gauss-Seidel
over a typical schedule for Gauss-Seidel (as shown in figure 1), the overhead of com-
puting the sparse tiling, and the average parallelism within the tile dependence graph.

3.1 Raw Speedup

Figure 6 shows the raw speedups of cache blocked and full sparse tiled Gauss-Seidel
for 1, 2, 4, and 8 processors on a node of the IBM Blue Horizon. Figure 7 shows the
raw speedups on the SUN Ultra using up to 32 processors. In [12], cache block sparse
tiling uses seed partitions which fit into half of L2 cache, and we do the same. In our
experience, full sparse tiling gets better performance when we select the seed partition
size to fit into one-eighth of L2 cache. More work is needed to improve on this heuristic.

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 99

While both sparse tiling techniques achieve speedups over the unoptimized Gauss-
Seidel, full sparse tiling frequently achieves the best speedups. With cache block sparse
tiling all of the tiles are executed in parallel except for the last tile. This last tile cannot
be started until all the other tiles have completed, so parallelism is inhibited. Further, the
last tile may be large and therefore have poor inter-iteration locality and intra-iteration
locality.

Sparse tiling performs well in all cases but the Wing matrix on the Ultra. Further
investigation is needed for the largest problem set.

Fig. 6. Raw speedup of sparse tiled Gauss-Seidel with 2 convergence iterations over a typical
Gauss-Seidel schedule. These experiments were run on a node of the IBM Blue Horizon at SDSC.
Each node has 8 Power3 processors.

3.2 Overhead

Sparse tiling techniques are performed at runtime, therefore the overhead of performing
sparse tiling must be considered. We present the overhead separately because Gauss-
Seidel is typically called many times within applications like multigrid. We can amor-
tize the overhead over these multiple calls which use the same sparse matrix. Our re-
sults show that Gauss-Seidel with two convergence iterations must be called anywhere
from 56 to 194 times on the sample problems to amortize the overhead. Specific break
even points are given in table 3. On average, 75% of the overhead is due to the graph
partitioner Metis. A break down of the overhead per input matrix is given in table 4.
Owner-computes parallelization methods for sparse matrices also require a partitioner
and data reordering is necessary for parallelizing Gauss-Seidel.

It is possible to reduce the overhead by using faster matrix graph partitioners and
by reducing the size of the matrix graph. The results in this paper use the Metis
PartGraphRecursive function for the matrix graph partitioning. Preliminary experiments

100 M.M. Strout et al.

Fig. 7. Raw speedup of sparse tiled Gauss-Seidel with 2 convergence iterations over a typical
Gauss-Seidel schedule. These experiments were run on a SUN HPC10000 which has 36 Ultra-
SPARCII processors with uniform memory access.

Table 3. Number of Gauss-Seidel (2 convergence iterations) executions required to amortize
sparse tiling overhead

Blue Horizon, Gauss-Seidel with numiter=2, Rescheduling for parallelism
Input Matrix Partition Time Data Reordering

Matrix9 78.92% 14.06%
Matrix12 71.89% 13.42%
Sphere150K 67.64% 16.53%
PipeOT15mill 81.42% 9.73%
Wing903K 83.58% 9.95%

Table 4. Break down of the overhead time. Around 80% to 90% of the overhead is due to parti-
tioning the matrix graph plus reordering the unknown vector, right-hand side, and sparse matrix.

Blue Horizon, Gauss-Seidel with numiter=2, Rescheduling for parallelism
Input Matrix Partition Time Data Reordering

Matrix9 78.92% 14.06%
Matrix12 71.89% 13.42%
Sphere150K 67.64% 16.53%
PipeOT15mill 81.42% 9.73%
Wing903K 83.58% 9.95%

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 101

show that the Metis PartGraphKway function is much faster, and the resulting raw
speedups decrease only slightly. We are also experimenting with the GPART parti-
tioner [16].

Previous sparse tiling work [33, 12] performed full sparse tiling and cache block
sparse tiling on the input mesh, instead of the resulting matrix graph. Since there are
often multiple unknowns per mesh node in a finite element problem, the resulting matrix
graph will have multiple rows with the same non-zero structure. In such cases, the
mesh will be d2 times smaller than the resulting sparse matrix, where d is the number
of unknowns per mesh node. Future work will consider compressing general matrix
graphs by discovering rows with the same non-zero structure.

3.3 Increasing Parallelism with Graph Coloring

The degree of parallelism within sparse tiled Gauss-Seidel is a function of the tile de-
pendence graph. Specifically, the height of the tile dependence graph indicates the crit-
ical path of the computation. A more useful metric in determining the amount of paral-
lelism available is the total number of tiles divided by the height of the tile dependence
graph, which we refer to as the average parallelism.

For example, figure 5 gives two sparse tilings of the same iteration space graph.
The tile dependence graphs for those sparse tilings are shown in figure 8. The first
tile dependence graph, which exhibits no parallelism, has height equal to 6 and aver-
age parallelism equal to 1. The second tile dependence graph has height 3 and average
parallelism 2. Therefore, the second sparse tiling has enough parallelism to keep two
processors busy, assuming that each tile requires roughly the same amount of computa-
tion time.

1

6

4

3

2

5

1

6

2

5

3 4

Fig. 8. Tile dependence graphs for the sparse tilings shown in figure 5. Each circle represents a
tile, and arrows represent data flow dependences. For example, in the first tile dependence graph,
tile 1 must execute before tile 2.

Potentially we can execute the second sparse tiling twice as fast. The two sparse
tilings differ in their original numbering of the cells of the seed partition. The tile growth

102 M.M. Strout et al.

algorithms use that numbering to indicate the execution order for adjacent tiles, thus the
partition numbering affects the data dependence direction between tiles.

We compared the partition numbering provided by Metis, a random numbering, and
a numbering based on a coloring of the partition graph. The partition graph is an undi-
rected graph with a node for each cell of the matrix graph partitioning. When cells A
and B share an edge or multiple edges in the matrix graph, there is an edge (A, B) in the
partition graph. We color the nodes of the partition graph, and then assign consecutive
numbers to the cells of the partitioning which correspond to nodes of a given color. This
way, the tiles grown from the cells of a given color will probably not be data dependent.
After tile growth, the data dependences between tiles must be calculated to insure cor-
rectness, since even though two partition cells are not adjacent, the tiles grown from the
cells may be dependent. In our experiments, we use the greedy heuristic provided in the
Graph Coloring Programs [10] to color the partition graph.

The graph in figure 9 shows the average parallelism for four different matrices with
full sparse tiling using cells that fit into one eighth of an 8 MB L2 cache. Using graph
coloring on the partition graph uniformly improves the degree of parallelism.

The importance of the average parallelism in the tile dependence graph can be seen
when we examine the raw speedup of full sparse tiled Gauss-Seidel using the three dif-
ferent partition numberings. In figure 10, notice that the top two lines with speedups
for the Pipe matrix show nearly linear speedup, corresponding to the fact that aver-
age parallelism for the Pipe matrix is over 16 for a random partition numbering and
a graph coloring based partition numbering. However, the speedup is much less than
linear when the number of processors is larger than the average parallelism in the tile
dependence graph, as illustrated by the other four lines of figure 10.

2D Bar
R=74,926
NZ=1,037,676

3D Bar
R=122,061
NZ=4,828,779

Sphere
R=154,938
NZ=11,508,390

Pipe
R=381,120
NZ=15,300,288

0

5

10

15

20

25

30

35

A
ve

ra
ge

 P
ar

al
le

lis
m

Metis Partition Numbering
Random Partition Numbering
Graph Coloring Partition Numbering

0

5

10

15

20

25

30

35

Fig. 9. The average parallelism in the tile dependence graph for full sparse tiled Gauss-Seidel
with 2 convergence iterations

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 103

Fig. 10. The effect that average parallelism has on speedup for full sparse tiled Gauss-Seidel with
2 convergence iterations

4 Comparison with Other Gauss-Seidel Parallelization Techniques

Sparse tiling techniques differ from other Gauss-Seidel parallelization techniques,
specifically multicoloring and owner-computes methods, in their focus on improving
intra- and inter-iteration locality. Since in all these parallelization methods each proces-
sor is given an approximately equal amount of work, less than linear speedup may be
due to parallel inefficiencies and/or poor data locality. In this section we compare the
parallel efficiency, intra-iteration locality, and inter-iteration locality of multi-coloring,
owner-computes methods, and sparse tiling techniques.

Table 5. Summary of how the various Gauss-Seidel parallelization techniques compare in how
they handle the three performance aspects

Intra- Inter-
Parallel iteration iteration

Efficiency locality locality

Multi-coloring yes no no
Owner-computes yes yes no
Sparse tiling yes yes yes

4.1 Parallel Efficiency

In shared memory parallel processing, the synchronization time is the amount of time
that processors are waiting for data dependent results that are generated by other proces-

104 M.M. Strout et al.

sors. Parallel efficiency occurs when the synchronization time is minimized. For owner-
computes parallelized Gauss-Seidel there is intra-iteration synchronization because ad-
jacent cells of the matrix graph partitioning will depend on each other. Nodal Gauss-
Seidel reorders the unknowns so that intra-iteration synchronization is hidden and there-
fore parallel efficiency is maintained.

For multi-coloring and owner-computes methods, as long as each processor is given
approximately the same number of unknowns and associated matrix rows, the syn-
chronization barrier between convergence iterations will not cause much parallel in-
efficiency.

Because they group multiple convergence iterations together, sparse tiling techniques
only have synchronization issues between tiles, instead of intra-iteration and inter-
iteration synchronization. As long as the tile dependence graph has enough parallelism
to feed the available processors, full sparse tiled Gauss-Seidel should have good parallel
efficiency.

4.2 Intra-iteration locality

Multi-coloring techniques have poor intra-iteration locality because in order for itera-
tion point <iter, v > to be executed in parallel with other iteration points, <iter, v >
must not be a neighbor of the other iteration points. However, neighboring iteration
points reuse the same data. When executing many iteration points that are not neigh-
bors, data reuse is not local.

Owner-computes methods like nodal Gauss-Seidel can easily improve their intra-
iteration locality by further partitioning the sub-matrix on each processor, and reorder-
ing the unknowns based on that partitioning [16].

The partitions used to grow sparse tiles are selected to be small enough to fit into
(some level of) cache. Therefore the data reordering will result in intra-iteration locality.

4.3 Inter-iteration locality

Both multicolored and owner-computes Gauss-Seidel execute all the iteration points
within one convergence iteration before continuing to the next convergence iteration. If
the subset of unknowns (and their associated sparse matrix rows) assigned to a processor
do not fit into a level of cache then no inter-iteration locality occurs.

Sparse tiling techniques subdivide the iteration space so that multiple convergence
iterations over a subset of the unknowns occur atomically, thus improving the inter-
iteration locality.

4.4 Experimental Comparison

Since owner-computes methods differ from sparse tiling methods only by their lack of
inter-iteration locality, we compare the two by simulating an owner-computes method.
We refer to the experiment as a simulation because the Gauss-Seidel dependences are
violated in order to give the owner-computes method perfect intra-iteration parallel effi-
ciency. This simulates the performance of a complete Nodal Gauss-Seidel implementa-
tion which has good intra-iteration parallel efficiency. Inter-iteration parallel efficiency

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 105

within the owner-computes simulation is achieved by giving each processor the same
number of unknowns. Finally, intra-iteration locality is provided by partitioning the
sub-matrix graph on each processor and then reordering the unknowns accordingly.

Fig. 11. Full sparse tiled Gauss-Seidel with 2 and 4 convergence iterations compared with the
owner-computes simulation. These experiments were run on one node of the IBM Blue Horizon
at SDSC.

The Sphere, Pipe, and Wing problems are the only data sets that do not fit into L2
cache once the data is partitioned for parallelism. The Sphere matrix has an average
number of non-zeros per row of 74.28 (as shown in table 2). This causes sparse tiles
to grow rapidly and therefore results in poor parallelism in the tile dependence graph.
Recall in figure 9 that the maximum average parallelism was 7.5 for 2 convergence it-
erations when tiled for the Blue Horizon’s L2 caches. This average parallelism worsens
to 3.2 for 4 convergence iterations. The lack of parallelism causes poor performance
in the full sparse tiled Gauss-Seidel on the Blue Horizon for the Sphere dataset (figure
11). However, with the Pipe and Wing matrices the average number of non-zeros per
row is much lower at 40.15 and 41.49. Correspondingly, the average parallelism when
tiling for one-eighth of the Blue Horizon L2 cache is 30.5 and 56.6 for 2 convergence
iterations. Therefore for 2, 4, or 8 processors there is plenty of parallelism for the Pipe
and Wing problems on the Blue Horizon.

On the Ultra (results shown in figure 12), the L2 cache is smaller so more tiles were
used to fit into one-eighth of the L2 cache. This increased the average parallelism for the
Sphere problem to 9.3 for Gauss-Seidel with 2 convergence iterations. The speedup on
the Ultra for the Sphere problem is maximized around 6 even though there is more par-
allelism available. When sparse tiling Sphere Gauss-Seidel for 3 convergence iterations
the average parallelism for Sphere reduces to 4.66, and the full sparse tiled speedup
never hits 3. The owner-computes simulation outperforms full sparse tiling in this in-
stance, because in this one case full sparse tiling doesn’t generate enough parallelism.

106 M.M. Strout et al.

Fig. 12. Full sparse tiled Gauss-Seidel with 2 and 3 convergence iterations compared with the
owner-computes simulation. These experiments were run on the SUN HPC10000 at SDSC.

The Wing results on the Ultra are curious. The tile dependence graph for 2 conver-
gence iterations has 90.5 average parallelism and for 3 convergence iterations has 82.3
average parallelism. However, even though the Wing problem has been rescheduled for
parallelism, inter-iteration locality, and intra-iteration locality, the speedup never breaks
4. We conjecture that this is due to the size of the problem and possible limits on the
Ultra.

Our experiments show that as long as the tile dependence graph generated by full
sparse tiling has enough parallelism, full sparse tiled Gauss-Seidel out performs owner-
computes methods on shared memory architectures. Our owner-computes simulation
made idealized assumptions about the intra-iteration parallel efficiency and added intra-
iteration locality. These results show that inter-iteration locality is an important perfor-
mance aspect that owner-computes methods are missing.

5 Future Work

Automating the use of sparse tiling techniques is an important next step to increase
the usefulness of such techniques. Sparse tiling techniques use domain-specific infor-
mation in order to reschedule Gauss-Seidel for parallelism, intra-iteration locality, and
inter-iteration locality. Currently a number of research projects are exploring ways of
optimizing the use of domain-specific libraries. Sparse tiling is most applicable to li-
braries which contain a large amount of sparse matrix iterative computations.

ROSE [28] is a system which generates domain-specific preprocessors. Their frame-
work supports translating the general abstract syntax tree (AST) to a higher-level
domain-specific AST, on which transformations for performance optimizations can then
be performed. Interface compilation [13] and telescoping languages [9] also look at
ways of optimizing uses of library interfaces. Others have looked at the specific exam-
ple of compiler transformations for Matlab which is a domain-specific language [4].

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 107

Being able to attach domain-specific semantics to the library interface would allow us
to construct a preprocessor which recognizes that the unknown vector being passed to
a Gauss-Seidel function may be a priori reordered.

The Broadway compiler [7] allows the library expert to specify annotations for
domain-specific, higher-level dataflow analysis. We can apply these ideas to determine
what other data structures will be affected by doing an a priori reordering of the un-
known vector in a Gauss-Seidel invocation.

Another important step for sparse tiling techniques will be the ability to run on dis-
tributed memory machines. This will require calculating the data footprint of all the
tiles and creating an allocation of tiles to processors which results in parallel efficiency.

Finally, sparse matrices with a large ratio of non-zeros to rows result in tiles with
many more dependences than the original cells of the seed partitioning. It might be
possible to add edges to the partition graph before coloring it, so that the final tile
dependence graph will have fewer dependences.

6 Related Work

Both iteration space slicing [27] and data shackling [23] are techniques which divide up
the iteration space based on an initial data partition. This is exactly what sparse tiling
does, but sparse tiling handles irregular iteration space graphs, whereas iteration space
slicing and data shackling are applicable in loops with affine loop bounds and array
references.

Since the smoother dominates the computation time in multigrid methods, much
work revolves around parallelizing the smoother. This paper focuses on parallelizing an
existing iterative algorithm with good convergence properties, Gauss-Seidel. Another
approach is to use smoothers which are easily parallelizable like domain decomposi-
tion [31], blocked Jacobi, or blocked Gauss-Seidel [17]. Relative to Gauss-Seidel these
approaches have less favorable convergence properties. For example, the convergence
rate depends on the number of processors and degrades as this number increases [15].

There has also been work on run-time techniques for improving the intra-iteration
locality for irregular grids which applies a data reordering and computation reschedul-
ing within a single convergence iteration [25, 26, 11, 19, 16]. Some of these techniques
do not apply to Gauss-Seidel because it has data dependences within the convergence
iteration. We use graph partitioning of the sub-matrices to give our owner-computes
simulation better intra-iteration locality.

Work which looks at inter-iteration locality on regular grids includes [6], [32], [29],
[21], and [36]. The only other technique to our knowledge which handles inter-iteration
locality for irregular meshes is unstructured cache-blocking by Douglas et al.[12]. We
have implemented this technique in our experimental framework and refer to it as cache
block sparse tiling in this paper.

7 Conclusion

Sparse tiling explicitly creates intra-iteration locality, inter-iteration locality, and paral-
lelism for irregular Gauss-Seidel. The combination of these three performance aspects

108 M.M. Strout et al.

results in high performance. This paper describes how full sparse tiling can be used to
parallelize Gauss-Seidel by creating a tile dependence graph. Full sparse-tiled Gauss-
Seidel is compared with an owner-computes based parallelization, and when all aspects
of performance are available, sparse tiled Gauss-Seidel has better speedups, due to the
lack of inter-iteration locality in owner-computes based methods.

Acknowledgments

This work was supported by an AT&T Labs Graduate Research Fellowship, a Lawrence
Livermore National Labs LLNL grant, and in part by NSF Grant CCR-9808946. Equip-
ment used in this research was supported in part by the UCSD Active Web Project, NSF
Research Infrastructure Grant Number 9802219 and also by the National Partnership
for Computational Infrastructure (NPACI). We used Rational PurifyPlus as part of the
SEED program.

We would like to thank Professor Mike Holst for his assistance with the FEtk soft-
ware package and general information about Finite Element Analysis. We would also
like to thank the reviewers for comments which helped improve the paper.

References

1. Mark F. Adams. Finite element market. http://www.cs.berkeley.edu/˜madams/femar-
ket/index.html.

2. Mark F. Adams. A distributed memory unstructured Gauss-Seidel algorithm for multigrid
smoothers. In ACM, editor, SC2001: High Performance Networking and Computing. Denver,
CO, 2001.

3. Mark F. Adams. Evaluation of three unstructured multigrid methods on 3D finite element
problems in solid mechanics. International Journal for Numerical Methods in Engineering,
To Appear.

4. George Alms̀i and David Padua. Majic: Compiling matlab for speed and responsiveness. In
PLDI 2002, 2002.

5. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

6. Frederico Bassetti, Kei Davis, and Dan Quinlan. Optimizing transformations of stencil opera-
tions for parallel object-oriented scientific frameworks on cache-based architectures. Lecture
Notes in Computer Science, 1505, 1998.

7. Emergy Berger, Calvin Lin, and Samuel Z. Guyer. Customizing software libraries for perfor-
mance portability. In 10th SIAM Conference on Parallel Processing for Scientific Computing,
March 2001.

8. Steve Carr and Ken Kennedy. Compiler blockability of numerical algorithms. The Journal
of Supercomputing, pages 114–124, November 1992.

9. Arun Chauhan and Ken Kennedy. Optimizing strategies for telescoping languages: Pro-
cedure strength reduction and procedure vectorization. In Proceedings of the 15th ACM
International Conference on Supercomputing, pages 92–102, New York, 2001.

10. Joseph Culberson. Graph coloring programs. http://www.cs.ualberta.ca/˜joe/Color-
ing/Colorsrc/index.html.

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling 109

11. Chen Ding and Ken Kennedy. Improving cache performance in dynamic applications through
data and computation reorganization at run time. In Proceedings of the ACM SIGPLAN
’99 Conference on Programming Language Design and Implementation, pages 229–241,
Atlanta, Georgia, May 1–4, 1999.

12. Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich Rüde, and Christian Weiß.
Cache Optimization for Structured and Unstructured Grid Multigrid. Electronic Transac-
tion on Numerical Analysis, pages 21–40, February 2000.

13. Dawson R. Engler. Interface compilation: Steps toward compiling program interfaces as
languages. IEEE Transactions on Software Engineering, 25(3):387–400, May/June 1999.

14. Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache and local memory
management by global program transformation. Journal of Parallel and Distributed Com-
puting, 5(5):587–616, October 1988.

15. M.J. Hagger. Automatic domain decomposition on unstructured grids (doug). Advances in
Computational Mathematics, (9):281–310, 1998.

16. Hwansoo Han and Chau-Wen Tseng. A comparison of locality transformations for irregular
codes. In 5th International Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers (LCR’2000). Springer, 2000.

17. Van Emden Henson and Ulrike Meier Yang. BoomerAMG: A parallel algebraic multi-
grid solver and preconditioner. Applied Numerical Mathematics: Transactions of IMACS,
41(1):155–177, 2002.

18. Michael Holst. Fetk - the finite element tool kit. http://www.fetk.org.
19. Eun-Jin Im. Optimizing the Performance of Sparse Matrix-Vector Multiply. Ph.d. thesis,

University of California, Berkeley, May 2000.
20. F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th Annual ACM

SIGPLAN Symposium on Priniciples of Programming Languages, pages 319–329, 1988.
21. Guohua Jin, John Mellor-Crummey, and Robert Fowler. Increasing temporal locality with

skewing and recursive blocking. In SC2001: High Performance Networking and Computing,
Denver, Colorodo, November 2001. ACM Press and IEEE Computer Society Press.

22. George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, 10 January 1998.

23. Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric multi-level block-
ing. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI-97), volume 32, 5 of ACM SIGPLAN Notices, pages 346–357,
New York, June 15–18 1997. ACM Press.

24. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems, 18(4):424–
453, July 1996.

25. John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hierarchy
performance for irregular applications. In Proceedings of the 1999 Conference on Super-
computing, ACM SIGARCH, pages 425–433, June 1999.

26. Nicholas Mitchell, Larry Carter, and Jeanne Ferrante. Localizing non-affine array references.
In Proceedings of the 1999 International Conference on Parallel Architectures and Compi-
lation Techniques (PACT ’99), pages 192–202, Newport Beach, California, October 12–16,
1999. IEEE Computer Society Press.

27. William Pugh and Evan Rosser. Iteration space slicing for locality. In LCPC Workshop, La
Jolla, California, August 1999. LCPC99 website.

28. Dan Quinlan. Rose: Compiler support for object-oriented frameworks. In Proceedings of
Conference on Parallel Compilers (CPC2000), Aussois, France, January 2000. Also pub-
lished in a special issue of Parallel Processing Letters, Vol.10.

110 M.M. Strout et al.

29. Sriram Sellappa and Siddhartha Chatterjee. Cache-efficient multigrid algorithms. In
V.N.Alexandrov, J.J. Dongarra, and C.J.K.Tan, editors, Proceedings of the 2001 International
Conference on Computational Science, Lecture Notes in Computer Science, San Francisco,
CA, USA, May 28-30, 2001. Springer.

30. Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel
Saltz. Run-time and compile-time support for adaptive irregular problems. In Supercomput-
ing ‘94. IEEE Computer Society, 1994.

31. Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press,
1996.

32. Yonghong Song and Zhiyuan Li. New tiling techniques to improve cache temporal locality.
ACM SIGPLAN Notices, 34(5):215–228, May 1999.

33. Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Rescheduling for locality in sparse
matrix computations. In V.N.Alexandrov, J.J. Dongarra, and C.J.K.Tan, editors, Proceedings
of the 2001 International Conference on Computational Science, Lecture Notes in Computer
Science, New Haven, Connecticut, May 28-30, 2001. Springer.

34. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Programming
Language Design and Implementation, 1991.

35. Michael J. Wolfe. Iteration space tiling for memory hierarchies. In Third SIAM Conference
on Parallel Processing for Scientific Computing, pages 357–361, 1987.

36. David Wonnacott. Achieving scalable locality with time skewing. International Journal of
Parallel Programming, 30(3):181–221, 2002.

A Hybrid Strategy Based on Data Distribution and
Migration for Optimizing Memory Locality

I. Kadayif1, M. Kandemir1, and A. Choudhary2

1 Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802, USA

{kadayif, kandemir}@cse.psu.edu
2 Department of Electrical and Computer Engineering,

Northwestern University, Evanston, IL 60208, USA
choudhar@ece.nwu.edu

Abstract. The performance of a NUMA architecture depends on the efficient
use of local memory. Therefore, software-level techniques that improve mem-
ory locality (in addition to parallelism) are extremely important to extract the
best performance from these architectures. The proposed solutions so far include
OS-based automatic data migrations and compiler-based static/dynamic data dis-
tributions.

This paper proposes and evaluates a hybrid strategy for optimizing memory lo-
cality in NUMA architectures. In this strategy, we employ both compiler-directed
data distribution and OS-directed dynamic page migration. More specifically, a
given program code is first divided into segments, and then each segment is op-
timized either using compiler-based data distributions (at compile-time) or using
dynamic migration (at runtime). In selecting the optimization strategy to use for
a program segment, we use a criterion based on the number of compile-time an-
alyzable references in loops.

To test the effectiveness of our strategy in optimizing memory locality of ap-
plications, we implemented it and compared its performance with that of sev-
eral other techniques such as compiler-directed data distribution and OS-directed
dynamic page migration. Our experimental results obtained through simulation
indicate that our hybrid strategy outperforms other strategies and achieves the
best performance for a set of codes with regular, irregular, and mixed (regular +
irregular) access patterns.

1 Memory Locality and Current Solutions

When a processor in a NUMA (non-uniform memory access) architecture issues a re-
quest for a data item, this item can be satisfied from local memory or remote (nonlocal)
memory. Since there might be an order of magnitude between local and remote memory
access times, it is extremely important to satisfy as many data requests as possible from
local memory. If a processor satisfies most of its data references from its local memory,
we say that it exhibits memory locality. It should be stressed that the concept of memory
locality is different from that of cache locality. For example, it might be the case that a
processor satisfies most of its references from its local memory but still exhibits poor
cache locality. There are at least four different ways that memory accesses for data can
be optimized in a NUMA architecture:

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 111–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 I. Kadayif, M. Kandemir, and A. Choudhary

– OS-directed static data distribution: Under normal circumstances, an operating
system tries to allocate the memory that a process uses from the node on which it
runs. But once memory has been allocated, its location is fixed. Consequently, if
the initial placement proves non-optimal, performance may suffer. Many NUMA
OSs provide several directives for static data distribution. For example, Origin 2000
uses first-touch and round-robin policies. In the first-touch policy, a memory page
is allocated from the local memory of the processor that first touches a data item
from that page. In the round-robin policy, on the other hand, the data pages are
distributed across local memories of processors in a round-robin fashion.

– OS-directed page migration: In situations where the initial data distribution does
not perform well from the memory locality viewpoint, page migration might be of
help. Enabling page migration tells the operating system to (dynamically) move
pages of memory to the nodes that access them most frequently, so a poor static
initial page placement can be corrected at runtime. Note that page placement is not
an issue for single-processor applications, so migration is only a consideration for
multiprocessor programs. It might also be important to tune the aggressiveness of
data migration. The best (most appropriate) level of aggressiveness for a particu-
lar program depends largely on how much time is available to move the data to
their optimal location. A less aggressive migration strategy (that is, a strategy that
migrates pages slowly) might do just fine for a long-running program with a poor
initial data placement. But if a program can only afford a small amount of time for
the data to get redistributed, a more aggressive migration strategy will perform bet-
ter. It should be emphasized, however, that migrating data pages dynamically incurs
a runtime cost, which is proportional to the number of times migration is invoked.
Consequently, programs whose access patterns change frequently take very little
advantage of automatic data migration (if any). In fact, it might even be beneficial
to freeze a data page in some local memory if it is found to migrate very frequently.

– Compiler-directed static data distribution: In cases where the compiler provides
directives for data distribution, the programmer can distribute datasets across lo-
cal memories of processors considering program-wide (global) access pattern. The
MIPSpro compiler in Origin 2000, for example, provides several directives to dis-
tribute arrays across processors’ memories. For instance, a compiler directive al-
lows dividing rows of a given multi dimensional array into multiple groups (where
each group contains several consecutive rows) and assigning each group to a sep-
arate local memory. These directives are very similar to those used in message-
passing compilers. Note that static data distribution works only for programs where
there is a program-wide (global) dominant data distribution that can lead to memory
locality and it is possible to derive this data distribution (either using the program-
mer’s help or using an optimizing compiler) at compile time.

– Compiler-directed dynamic data distribution: In cases where different portions of
the program demand different types of data distributions (e.g., row-major versus
column-major) and it is possible to identify these program portions and the cor-
responding data distributions at compile time, we can use dynamic data distrib-
utions. In this alternative, data distributions in different parts of the program are
decided at compile time, but data distributions themselves take place at runtime
(i.e., during the course of execution). However, one needs to be careful in applying
dynamic data distribution as its runtime overhead can easily outweigh its mem-
ory locality benefits. It should be noted that neither static nor dynamic compiler-
directed schemes are superior to dynamic page migration as these compiler-directed

A Hybrid Strategy Based on Data Distribution and Migration 113

strategies are not effective when suitable data distributions cannot be derived at
compile time (e.g., due to complex, non-analyzable array subscript expressions).

In this paper, we propose and evaluate a hybrid strategy for optimizing memory
locality in NUMA architectures. In our strategy, we employ both compiler-directed
data distribution and OS-directed dynamic page migration. In the rest of this paper, for
brevity, we refer to these two techniques as compiler-directed strategy and OS-directed
strategy (although both the strategies are initiated by the compiler). Our compiler takes
an input program and optimizes each part of it using either compiler-directed strategy
or OS-directed strategy. More specifically, it first divides the input program into mul-
tiple segments. Then, each segment is analyzed to see whether the data access pattern
exhibited by it is compile-time optimizable. If it is, then the segment is optimized using
compiler-directed (dynamic) data distribution. If not, the compiler enables data migra-
tion and lets the operating system to manage data flow between processor memories at
runtime. This hybrid strategy is expected to perform best for the programs where some
parts of the code have compile-time optimizable access patterns, whereas the other parts
do not. We believe that most of real-life, large-scale applications fit in this description.
In the rest of this paper, we give the details of our approach and present simulation
data showing its effectiveness. We focus on loop-based applications where the code is
structured as multiple nests and the bulk of the execution time is spent in executing loop
nests.

To test the effectiveness of our strategy in optimizing memory locality of appli-
cations, we implemented it and compared its performance with that of several other
techniques such as compiler-directed data distribution and OS-directed dynamic page
migration. Our experimental results obtained through a custom simulation environment
indicate that the hybrid strategy outperforms other strategies and achieves the best per-
formance for a set of codes with regular, irregular, and mixed (regular + irregular) access
patterns.

The remainder of this paper is organized as follows. In Section 2, we present details
of our hybrid optimization strategy. In Section 3, we introduce our benchmarks, exper-
imental setup, and the different code versions used. In Section 4, we give experimental
data demonstrating the effectiveness of our optimization strategy. Finally, in Section 5,
we conclude the paper by summarizing our major contributions.

2 Hybrid Strategy

Our hybrid strategy operates in two steps. First, it divides the input program into seg-
ments. Each segment corresponds to a portion of the program code that will be opti-
mized uniformly. What we mean by uniformly is that the segment will be optimized
using either compiler-directed data distribution or OS-directed page migration. In or-
der to decide which strategy to use for each segment, our approach checks whether the
segment can be optimized by the compiler using data distribution and accompanying
loop parallelization. If so, then the segment is optimized at compile time using loop and
data transformations. If not, the compiler inserts explicit migration activation instruc-
tion at the beginning of the segment.This instruction is a call to the operating system
to activate migration when the mentioned segment is about to start executing. When
the execution of the segment has completed, the migration is turned off. In the follow-
ing discussion, we first explain our compiler algorithm to divide a given program into
segments (Section 2.1) and then discuss how each segment is optimized (Section 2.2).

114 I. Kadayif, M. Kandemir, and A. Choudhary

for(i=0;i<n;i++)
{
for(k=0;k<n;k++)
{
for(r=0;r<n;r++)
{
...

}
}

for(l=0;l<n;l++)
{
...

}
}

for(j=0;j<n;j++)
{
...
...
...
for(s=0;s<n;s++)
{
...

}
}

Fig. 1. Example program fragment

2.1 Dividing Program into Segments

While there might be many ways of dividing a given program code into multiple,
uniformly-optimizable segments, there are at least three desirable characteristics for
any code segmentation:

– The segments should be small enough to enable uniform optimization. This is be-
cause if the segment is very large, it might be the case that different portions of it re-
quire different optimization strategies (e.g., compiler-directed versus OS-directed)
for the best results. In order to ensure that each segment can be decently optimized
using either compiler-directed scheme or OS-directed scheme, the segment sizes
should be kept sufficiently small.

– The segments should be large enough to minimize runtime overhead. Working with
very small segments can increase the number of transitions between OS-directed
and compiler-directed schemes and/or incur frequent dynamic data distributions.
Therefore, unless large performance gains are expected, a given segment should
not be divided into subsegments.

– The segment boundaries should be easy to handle. More specifically, they should
preferably be expressible in terms of high-level constructs of the programming lan-
guage used. Examples of these constructs are loop nests and procedures.

Considering these principles, we adopt a loop nest based program segmentation strat-
egy. In this strategy, the loops in the code form the boundaries between different seg-
ments. Two neighboring segments differ from each other either because they prefer dif-
ferent optimization strategies (e.g., compiler-directed versus OS-directed) or because
both prefer the compiler-directed strategy but demand different distributions for the
same array.

To demonstrate the working of our program segmentation strategy, we focus on
the abstract program fragment shown in Figure 1. Starting from the innermost loop

A Hybrid Strategy Based on Data Distribution and Migration 115

positions, our approach determines whether each loop should be optimized using the
compiler-directed strategy or the OS-directed strategy. Once the optimization strategy
for a given inner loop has been determined, it is propagated to the (immediate) outer
loop if the former is the only loop enclosed by the latter. Otherwise, i.e., if there are
other (inner) loops at the same nesting level, the optimization strategy of the inner loop
in question is not propagated to the outer loop. In Figure 1, we have two outermost
loops: i and j. Let us start with i. This loop encloses two loops: k and l, the first of
which encloses loop r. Since the loop r is the innermost, we start our analysis (of loop
bodies) with that loop. Suppose that after analyzing the body of this loop (this analysis
will be explained shortly), we determined that this loop can be best optimized using the
OS-directed strategy. We record this at the header of this loop, and move to its (immedi-
ate) enclosing loop (k loop). Since the loop r is the only loop inside k, our optimization
strategy decides that the latter should also be optimized using the OS-directed strategy.
That is, the k loop inherits the optimization strategy of the r loop. Note that this is a
reasonable approach because even if there are statements that are outside the r loop but
inside the k loop, assigning a different optimization strategy to the k loop would lead to
frequent data redistributions. We next move to i loop, which is the immediate encloser
of k. Since i loop contains other loops than k, its optimization strategy is not decided
at this point. Instead, our approach moves to l loop, the other loop enclosed by i. If
our analysis (as explained below) indicates that this loop should be optimized using the
OS-directed strategy, then we decide that the i loop should be optimized using the OS-
bases strategy as well (this is because both the loops it contains prefer the OS-directed
strategy). If, on the other hand, the l loop prefers a compiler-directed strategy, then we
transition from one strategy to another within the i loop. More specifically, in execut-
ing the k loop, we let the operating system use page migration for ensuring memory
locality, whereas for optimizing the l loop, we use the compiler-directed explicit data
distribution, and disable migration during its execution.

After processing the i loop, we move to the j loop. The statements enclosed by this
loop but not by loop s are dropped from consideration (as they are not enclosed by any
loop other than j and it may not be wise to consider their contribution in deciding the
optimization strategy for loop j). Our approach first focuses on the inner s loop and
then propagates the optimization strategy selected (loop-based or OS-directed) to the j
loop.

We select an optimization strategy (OS-directed or compiler-directed) for a given
loop by considering the references it contains. We first divide the references in the
loop into two disjoint groups. The first group (called Group I) contains compile time
analyzable references (also called regular references). What we mean by this is that the
data item accessed (through this reference) by each iteration of the enclosing loops can
be determined (without much difficulty) at compile time. The remaining references are
considered non-analyzable (also called irregular) and belong to Group II.

To clarify this grouping strategy, let us assume that i, j, and k are loop indices for a
given (possibly imperfectly-nested) loop. Group I references are the ones that fall into
one of the following categories:

– Scalar references, e.g., A
– Affine array references, e.g., B[i], C[i+j][k-1], D[2][5]

Examples of Group II references, on the other hand, are as follows:

– Non-affine array references, e.g., E[i2][j], F[i/j], G[i*j]
– Indexed (subscripted) array references, e.g., H[IP[j]+2]

116 I. Kadayif, M. Kandemir, and A. Choudhary

– References that contain function calls, e.g., I[foo(i)]
– Pointer references, e.g., *J[i],*K
– Struct constructs, e.g., L.field, M->field

After labeling each reference as a member of Group I or Group II, we calculate the
following ratio:

R =
Number of References in Group I

Number of References in Group I + Group II
.

If this ratio is larger than a pre-determined threshold value, we decide that the loop in
question should be optimized by the compiler-directed strategy. Otherwise, we decide
that the loop should be optimized using the OS-directed page migration strategy. The
rationale behind this approach is that if the said threshold value is kept large enough,
for the loops with ratios (R) larger than (or equal to) the threshold, we can expect
in general large performance gains by performing compiler-directed data distribution.
This is because the compiler can analyze most of the data references at compile time,
and based on this analysis, it can come up with suitable data distributions for the arrays
involved.

An important issue in this heuristic strategy is to select a suitable threshold value.
Note that while a very small threshold value would use the compiler-directed strategy
aggressively and (possibly) would not be able to optimize some loops, a very large
threshold value would not be able to take full advantage of the compiler-directed data
distribution and (most probably) would occur unnecessary runtime overhead due to fre-
quent activation of dynamic data migration. In our search for an appropriate threshold
value, we performed experiments with different values and selected the one that gen-
erated the best result for the majority of our benchmarks. We found that a threshold
value value of 60% covers most of the benefits of full optimization. Consequently, in
this study, we chose a threshold value of 60%.

2.2 Optimizing Segments

Once we have decided the optimization strategy that will be used for each program
segment, we implement these strategies. As discussed earlier, we use two types of opti-
mization strategies: compiler-directed automatic data distribution and OS-directed dy-
namic page migration. In the following discussion, we give the details of each strategy.

Compiler-Directed Data Distribution. In code segments where compiler can analyze
access patterns, it can use data distribution to maximize memory locality. The data
distribution algorithm adopted in this work is a locality-driven technique; that is, it first
tries to maximize data locality by exploiting data reuse in innermost loop positions, and
then, tries to parallelize outermost loops that do not carry data reuse. To achieve this, it
proceeds as follows:

– Optimizing data locality: In the first step, for each nest, we employ loop and data
transformations for maximizing data reuse in inner loop positions. It should be
noted that, provided that the loop bounds are large enough, only the data reuses in
the innermost loop positions can be converted into locality (i.e., can be exploited
at runtime) [11]. Therefore, modifying the code structure and data layouts to move
reuses into innermost loop positions is extremely important for many memory-
intensive applications. Our locality optimization strategy is as follows. First, we

A Hybrid Strategy Based on Data Distribution and Migration 117

determine the maximum exploitable temporal reuse in the code. We achieve this
using the data reuse model proposed by Wolf and Lam [11]. Second, we apply loop
transformations to put this reuse into innermost position as much as possible. Third,
for the arrays that do not exhibit temporal reuse in the innermost loop (after apply-
ing the loop transformations), we apply data layout transformations to transform
their memory layouts into suitable forms. This last step tries to improve spatial lo-
cality for the arrays in question. These three steps are executed for each nest in the
code; their details are beyond the scope of this paper and can be found in [5].

– Explicit layout conversion: Since the first step can choose different memory layouts
(for the same array) in two different nests (when optimizing their spatial locality), in
the second step, we insert explicit layout conversions codes (also called copy loops)
in the application code. The objective of a copy loop is to transform memory layout
of a given array from one form to another. For example, if a loop nest requires
row-major layout for a given array and the next nest requires column-major layout,
then a copy loop transforms the layout of the array from row-major to column-
major between these two nests. To do this explicit layout conversion for a two-
dimensionalN× N array U, we can use the following copy loop. After the execution
of this copy loop, the array identifier U’ is used whenever array U is used (in the
original code).

for(i=0;i<N;i++)
for(j=0;j<N;j++)
U’[i][j] = U[j][i];

Note that the copy loops used to implement explicit layout transformations are
pure overhead, so they should be optimized away as much as possible. Optimizing
them means selecting the most appropriate points to transform arrays and trans-
forming the layouts of multiple arrays simultaneously as much as possible. That
is, whenever possible, our strategy transforms multiple arrays simultaneously (i.e.,
using the same copy loop). Note also that since copy loops do not carry any data
dependence they can safely be optimized using classical locality-enhancing trans-
formations such as loop tiling.

– Data distribution across memories: In the last step, we decompose the shared
arrays between processors’ memories. In order to do this, we first determine the
parallel loops in the nest and then parallelize the outermost loop that can be par-
allelized. Then, we analyze the access pattern of this loop and determine the how
the arrays in the nest should be decomposed across processors’ memories for mini-
mizing non-local data access under this access pattern. The distribution styles used
by our current implementation are block distributions (i.e., row-block and column-
block). Consequently, if a parallel loop implies any other data distribution style, we
set it to row-block or column-block (depending on which one best approximates
the preferred data distribution style). While it is also possible to use cyclic distri-
butions, our experience with the codes in our experimental suite indicates that in
very rare cases cyclic distributions can perform better than block distributions. In
contrast, most of the nests in regular applications can take advantage of block distri-
butions. Nevertheless, our approach can be extended to include cyclic distributions
as well. In this work, however, we consider only block distributions. Once a distri-
bution is selected, data are decomposed using a directive that allows user/compiler
specify a different mapping for each dimension of the array. A distribution for an
m-dimensional array is specified using [D1][D2]...[Dm], where each Di can

118 I. Kadayif, M. Kandemir, and A. Choudhary

be either an asterisk, meaning that the corresponding dimension is not distributed
or BLOCK, meaning one block of adjacent elements is assigned to each memory. As
an example, let us assume that after locality optimizations, we obtain the following
code for a given nest:

for(i=0;i<N;i++)
for(j=0;j<N;j++)
for(k=1;k<N;k++)
V[i][k][j] = V[i][k-1][j] + U[k][i][j];

In this nest, only i and j loops can be parallelized (as the k loop carries a data
dependence). Since we favor outermost loop parallelism, we opt to parallelize only
the i loop. Note that this parallelization indicates that the first dimension of array
V should be distributed across processors. Similarly, the second dimension of array
U needs to be distributed across processors. In other words, the data distributions
for V and U are [BLOCK][*][*] and [*][BLOCK][*], respectively. In cases,
where there are multiple references to the same array, and each reference demands
a different distribution, our current implementation employs a simple tie-breaking
strategy. Specifically, for each type of distribution, we count the number of ref-
erences that require that distribution, and select the distribution with the largest
number of references.

It should be noted that using a compiler-determined data distribution such as
[*][BLOCK]with a row-major memory layout requires that a given page is shared
by multiple processors. This leads to false sharing of data during execution. To
prevent this, we also implement a page re-mapping strategy similar to the one em-
ployed by the SGI compilers. That is, a (re-mapped) page can consist of multiple
consecutive columns. To allow such modifications, we assume that the program be-
ing optimized does not make any assumption about the layout of data in memory.
For example, it does not assume that array elements with consecutive indexes are
located in consecutive virtual addresses. With this assurance, our compiler can do
several optimizations such as padding the array portion of a given processor into a
full page, or modifying the page layout. Modifying page layouts can prevent false
sharing by making the elements belonging to the array portion of a given processor
consecutive in memory.

– Explicit data re-distribution: If the data distributions (for a given array) demanded
by two successively executed nests are different, we explicitly re-distribute data
across nest boundaries. For example, if, for a given array, a nest demands the dis-
tribution specified by [BLOCK][*][*] and the next nest demands the distribu-
tion specified by [*][*][BLOCK], our strategy performs a redistribution from
[BLOCK][*][*] to [*][*][BLOCK]. In our current implementation, this step
is executed together with the second step above (explicit layout conversion); that
is, we transform the layout and distribution of the array simultaneously. To summa-
rize, we first execute the first step for all nests in the code, then the third step for all
nests, and finally the second and fourth steps perform memory layout conversions
and array redistributions.

It should be stressed that this locality-oriented data distribution strategy has an im-
portant property. In many cases, when data reuse is placed into innermost positions,
data dependences in the loop are also carried by inner loops [5]. Consequently, the
outer loops in the nest become doall loops [13] and can be parallelized without too
much overhead. That is, optimizing data reuse in inner loop positions allows better ex-
ploitation of outer loop (i.e., coarse-grain) parallelism.

A Hybrid Strategy Based on Data Distribution and Migration 119

OS-Directed Page Migration. In this strategy, OS keeps an array of counters (called
migration counters) for each data page. Each entry in this array corresponds to a proces-
sor and gives the number of accesses made by that processor (during a given time frame)
to the data page in question. Ideally, these counters are updated in each memory access
made by the processors in the system. From time to time, the counters are checked and
each data page is migrated to the memory of the processor that uses it most frequently.
Therefore, this approach operates with two periods (that can be taken as parameters):
an update period (which is the time duration between the two successive samples of
memory accesses) and a migration period (which is the time duration between two suc-
cessive migration counter checks and the required migrations (if any)). As an illustrative
example, a given implementation can have an update period of 10000 cycles, meaning
that the memory accesses are sampled once in every 10000 cycles. The same imple-
mentation can also have a migration period of 500000 cycles, which says that in every
500000 cycles the migration counters are checked and the necessary page migrations
are carried out. Note that by modifying these parameters the aggressiveness of page
migration can be controlled.

In addition to migration counters, we have another set of counters called freeze coun-
ters. There is a freeze counter for each data page and it keeps the count of migrations
that the page has done for a given period of time. From time to time these freeze coun-
ters are checked, and if it is found that a data page has migrated very frequently, it
is frozen in a specific memory (called home memory). The home memory can be the
memory that would be selected by the OS for this page had round-robin or first-touch
page allocation policies been used; or, it can be an arbitrarily selected memory. Note
that at regular intervals the freeze counters can be reset to enable the frozen pages to
migrate again.

An important advantage of this OS-directed strategy is that it is both programmer
and compiler transparent. That is, neither the programmer nor the compiler needs to do
anything for optimizing memory locality, other than inserting calls to activate migration.
However, dynamic data migration has two major disadvantages. First, there is a runtime
overhead introduced by migration. The degree of this overhead is proportional to the
aggressiveness of the migration policy used. Second, in some cases, there might be
short-lived localities (frequent references, in a short period of time, to the same group
of pages by a given processor). If the migration policy is aggressive, these localities
can invoke migration. However, when the big picture is considered, it might be the case
that it would be better not to act upon these localities as the overall access behavior
(big picture) does not favor migration. In most cases, this overall behavior can be better
captured using an optimizing compiler.

The overhead due to our migration strategy can be broken into three components.
First, there is an overhead due to updating the migration counters (at the end of each
update period); we refer to the cost (latency) of an update as Cu. Second, there is an
overhead in determining the pages to migrate. At the end of each migration period, we
determine at most K pages to be migrated. K is a parameter that can be set to different
values to implement different migration policies. In our implementation, we keep a
pointer the the array of migration counters and after checking K consecutive pages
for (potential) migration, we increment this pointer by K . So, in successive migration
periods, different pages are checked. We call Cc the cost of checking one page for
migration. Finally, there is the actual cost of migration a page; we use Cm to denote the
migration cost per page. In any realistic evaluation of migration, these overheads should
be accounted for. Note that the cost values Cu, Cc, and Cm are the primary factors for

120 I. Kadayif, M. Kandemir, and A. Choudhary

Data
Distribution

([BLOCK][*])

Data
Distribution

([*][BLOCK])

Data
Migration

A

B

C

A

B

C

(a) (b)

DISTRIBUTE U [*][BLOCK]
MIGRATION-OFF

DISTRIBUTE U [BLOCK][*]

MIGRATION-ON

Fig. 2. (a) A program fragment that contains three segments. (b) Insertion of compiler directives.

a given implementation that determine the effectiveness of a dynamic data migration
strategy. Note that when a data page is migrated the corresponding TLB entry should
also be removed. In computing Cm, our implementation takes into account this cost as
well.

The preceding discussion indicates that it may not be the best strategy to keep mi-
gration on all the time and use compiler-directed data distributions for each nest. One
problem with such a strategy is that keeping track of migration behavior and updat-
ing/checking counters incur runtime overhead. Another problem is the short-lived lo-
calities mentioned above. The third potential problem is the fact that (again, as men-
tioned earlier) trying to use loop/data transformations when non-analyzable references
dominate the loop body can lead to misguided optimization which may actually de-
grade the performance at runtime. Because of these three reasons, it seems to be a
better alternative to use compiler-directed transformations and OS-directed migration
more judiciously. Our experiments and experience show that most large-scale applica-
tion codes can be divided into segments, each of which can be optimized using either
OS-directed strategy or compiler-directed strategy.

Switching Between Optimization Strategies. Since neighboring program segments
can be optimized using different optimization strategies, during the course of execution,
we need to switch from one optimization strategy to another. To achieve this, we need
some support from compiler and architecture. First, to enable/disable dynamic data
migration, we assume the existence of two compiler directives: MIGRATION-ON and
MIGRATION-OFF. When migration is already on (resp. off), executing MIGRATION
-ON (resp. MIGRATION -OFF) directive does not have any effect. Another compiler
directive is DISTRIBUTE and has the following format:

DISTRIBUTE <Array-Name> <[D1][D2][D3]...[Dm]>

where Array-Name is the name of the array to be distributed (or redistributed) and
[D1][D2][D3]...[Dm] is the type specifier. Note that this directive can be used
both to distribute data at the beginning of the program, or to redistribute data (if it
is used in the middle of execution). Our optimization strategy can use all these three
directives in the same application code. Consider for example the code sketch shown
in Figure 2(a), where we have three program segments: A, B, and C. Assume that the

A Hybrid Strategy Based on Data Distribution and Migration 121

compiler detected that the segment A should be optimized using migration and the seg-
ments B and C should be optimized using data distribution. Assume further that the
data distributions (for a given two-dimensional array U) demanded by segments B and
C are [*][BLOCK] and [BLOCK][*], respectively. Figure 2(b) shows the compiler
directives inserted by our approach to implement these decisions.

3 Experimental Setup and Methodology

To test the effectiveness of our hybrid strategy and compare it with previous approaches
to memory locality, we set up a simulation environment and performed experiments
with twelve benchmark codes. Figure 3 lists important characteristics of our bench-
marks. In this figure, the second column indicates whether the application has regular
(denoted R), irregular (denoted I), or mixed (denoted M) access patterns. Experiment-
ing with codes that exhibit different access patterns allows us to measure the robustness
of our optimization strategy. Swim, Mgrid, Applu, Compress, Li, and Perl are from
Spec’95 benchmark suite. Chromakey is a large digital image processing application.
Protocol is a program that implements a wireless application protocol. TPC-D (Q1),
TPC-D (Q3), TPC-D (Q6) are C implementations of three different queries from TPC-
D which represents a broad range of decision support (DS) applications that require
complex, long running queries against large complex data structures. TPC-C is the C
version of a database benchmark used for comparing OLTP performance on various
hardware and software configurations. The third column in Figure 3 specifies the input
used for the corresponding benchmark. The fourth and fifth columns give, respectively,
the number of instructions (in UltraSparc) and the number of data references for each
benchmark.

Benchmark Type Input Instructions Data References

Applu R training 526.0M 122.9M
Chromakey M 44.4MB 819.2M 427.7M
Compress I training 58.2M 17.9M
Li I train.lsp 186.8M 79.3M
Mgrid R mgrid.in 78.7M 27.9M
Perl I primes.in 11.2M 4.8M
Protocol M 16.8MB 624.1M 210.1M
Swim R training 877.5M 269.7M
TPC-C M TPC-generated 127.0M 55.3M
TPC-D (Q1) M TPC-generated 330.5M 124.2M
TPC-D (Q3) M TPC-generated 582.6M 270.0M
TPC-D (Q6) M TPC-generated 328.6M 122.8M

Fig. 3. Benchmark codes used in this study

Our optimizations are implemented using the SUIF compiler infrastructure [1] from
Stanford University. This infrastructure consists of a small kernel and a toolkit of com-
piler passes built on top of the kernel. The kernel defines the intermediate representa-
tion, provides functions to access and manipulate the intermediate representation, and
structures the interface between different compiler passes. The optimization toolkit ap-
plies loop-level parallelism and data locality optimizations commonly used in commer-
cial optimizing compilers. Our SUIF implementation takes an input code, analyzes the
memory references in loops, and inserts migration and data distribution directives in the
code. The compile-time optimizable code segments are also optimized using SUIF.

122 I. Kadayif, M. Kandemir, and A. Choudhary

Simulation Parameter Value

Architectural Parameters
Number of Processors 8
Processor Speed 1GHz
Memory Capacity Per Processor 64 MB
Local Memory Access Latency 100 cycles
Remote Memory Access Latency 300 cycles
Data L1 Cache Per Processor 16 KB, 2-way, 32 byte blocks, 1 cycle latency
Instruction L1 Cache Per Processor 16 KB, 2-way, 32 byte blocks, 1 cycle latency
Unified TLB 32 entries, 4-way, 20 cycle miss penalty
Page Size 4KB

Migration-Related Parameters
Update Period 5000 cycles
Migration Period 2000000 cycles
Freeze Period 4000000 cycles
K (Number of Pages Checked) 10
Cu (Update Cost) 1 cycle
Cc (Page Checking Cost) 10 cycles
Cm (Page Migration Cost) 2560 cycles

Fig. 4. Configuration parameters used in our simulations

Our simulation environment takes as input this SUIF-modified code, the number
of processors (that will be used to execute the code in parallel), page size, cache and
TLB parameters, and memory size and simulates the parallel execution of the appli-
cation based on the compiler directives MIGRATION-ON, MIGRATION-OFF, and
DISTRIBUTE. This simulator only models data accesses and does not assume a spe-
cific inter-processor communication network. At each cycle, it executes an instruc-
tion from each processor and records whether it is a local or remote memory access,
whether it results in a cache hit, and whether it is a read or write reference. If the
data reference is write, it invalidates the copies in other caches. When migration is ac-
tivated, this execution model is interrupted from time to time. As mentioned earlier,
our migration algorithm incurs some overhead; all reported performance improvements
include this overhead as well. Although our simulation strategy is not extremely so-
phisticated, it allows us to evaluate and compare different strategies from the memory
locality perspective.

Most of our results have been obtained on a base configuration. The important pa-
rameters of this base configuration are listed in Figure 4. Later in the paper, we modify
some of these parameters to study the sensitivity of our strategy to those parameters.
Note that with these values, at the end of each migration period, checking for 10 pages
(i.e., K=10) and migrating them takes 10*(10+2560) = 25700 cycles. 2560 cycles per
page copy cost corresponds to a (16 bytes/10 cycle) speed, and is achievable using
memory-to-memory copy operations. Page checking cost involves determining which
processor uses the page most and whether this processor is the owner, and is imple-
mented using 10 instructions.

For each code in our benchmark suite, we performed experiments with six differ-
ent versions:

– OS (First-Touch): Under this policy, the processor that first touches (that is, writes
to, or reads from) a data page of memory causes that page to be allocated from its
local memory. Note that this is a static policy; that is, once the pages have been
assigned to memories, they are not re-assigned.

– OS (Round-Robin): Under this policy, data pages are allocated in a round-robin
fashion from all the parallel processors the program runs on.

A Hybrid Strategy Based on Data Distribution and Migration 123

– Migration: This policy starts with Round-Robin but allows pages to migrate be-
tween different memories based on the dynamic data access pattern exhibited by
the application being executed.

– Compiler (Static): In this strategy, the compiler optimizes the entire application
code using both loop and data transformations. The details of this strategy is ex-
plained elsewhere [5].

– Compiler (Dynamic): In this strategy, the compiler optimizes each nest separately
using the unified approach in [5]. Since the same array can have different layouts
in different nests, explicit layout transformation codes (copy loops) are inserted in
suitable places in the code.

– Hybrid: This is the optimization strategy discussed in this paper. As explained ear-
lier, it employs both compiler-directed dynamic data distribution and OS-directed
dynamic page migration.

4 Results

4.1 Results for the Base Configuration

Figure 5 shows the percentage reduction in execution time with respect to the First-
Touch policy. The average (percentage) improvements due to Round-Robin, Migration,
Static, Dynamic, and Hybrid are 1.64, 7.14, 7.68, 7.74, and 15.62, indicating that our
approach outperforms all other versions used in this study. In fact, except for one bench-
mark (Mgrid), our strategy generates the best result. In Mgrid, Hybrid activates migra-
tion which is not very effective, thereby incurring some extra overhead at runtime. We
also observe that, in purely irregular applications, our approach uses migration and gen-
erates the same result as Migration. As far as the regular applications are concerned, in
Swim and Applu, Hybrid and the compiler-based dynamic distribution technique gen-
erate the same result. In Mgrid, Hybrid outperforms the pure compiler strategy based on
static distribution. In the mixed codes, the Hybrid strategy is the clear winner as these
codes contain both regular and irregular segments and can be best optimized using both
the strategies. The reason that the Round-Robin strategy performs better than the First-
Touch strategy is that in most of the cases data initialization loops are not parallelized;
in a First-Touch strategy, this causes all data to be allocated from a single processor’s
memory.

Fig. 5. Percentage reduction in execution cycles (with respect to First-Touch)

124 I. Kadayif, M. Kandemir, and A. Choudhary

Fig. 6. Execution time breakdown of the programs optimized using the hybrid strategy

To illustrate the overheads of dynamic data migration, in Figure 6, we give the ex-
ecution time breakdown of the programs optimized using our hybrid strategy. In this
graph, the execution time of each (optimized) application is divided into three portions:
the time spent in execution and cache/local memory accesses (denoted Execution), the
time spent in remote memory accesses (denoted Remote Memory), and the time spent
during migration (which includes all overheads of updating migration counters, check-
ing pages for migration, and migrating them)—denoted Overhead. We see from these
results that the average contributions of Execution, Remote Memory, and Overhead are
78.43%, 15.17%, and 6.40%, respectively. Consequently, we can conclude that in the
optimized codes, the migration overheads themselves do not constitute a significant
percentage of execution time.

4.2 Sensitivity Analysis

Figure 7 shows the impact of migration period (MP) on the effectiveness of our hybrid
strategy. Recall that our default migration period was 2000000. We see from Figure 7
that the average reductions when migration period is 1000000, 2000000, 4000000, and
8000000 are 12.26%, 15.61%, 16.19%, and 16.85%, respectively. We also observe that
in general working with very small or large migration thresholds does not generate
the best results. In fact, for each benchmark, there is an optimum MP, and working
with a smaller or larger MP does not bring any additional benefit. This is because a
larger MP delays migration and leads to performance loss; similarly, a smaller MP
incurs a significant migration overhead. Four applications (Compress, Li, TPC-D(Q3),
TPC-D(Q6)) exhibit a different behavior. In these applications, when MP is small, short-
lived localities cause unnecessary migrations. Therefore, they benefit from the increased

Fig. 7. Sensitivity to the migration period (MP)

A Hybrid Strategy Based on Data Distribution and Migration 125

migration period. In Swim and Applu, on the other hand, the hybrid strategy does not
use data migration at all; consequently, their behavior is independent from the migration
period used.

5 Conclusions and Future Work

Obtaining acceptable speedups on NUMA architecture depends on two major factors:
exploiting parallelism and exploiting memory locality. This paper addresses the second
factor and proposes a novel memory locality optimization mechanism based on dynamic
data migration and automatic data distribution. The idea is to divide a given code into
disjoint segments and optimize each segment using either migration or data distribution
but not both. Our simulation results indicate that this technique outperforms not only
pure migration based or pure data distribution based strategies but also a very aggressive
strategy that uses both migration and distribution in each program segment.

References

1. S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. The SUIF compiler for scalable
parallel machines. In Proc. the Seventh SIAM Conference on Parallel Processing for Scien-
tific Computing, February, 1995.

2. J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformations for multi-
processors. In Proc. the 5th ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, pages 166–178, Santa Barbara, CA, July 1995.

3. R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedeljkovic, and J. Anderson. Data-distribution
support on distributed-shared memory multi-processors. In Proc. the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Las Vegas, NV, 1997.

4. R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and page mi-
gration for multiprocessor compute servers. In Proc. ASPLOS V, pages 12–24, October 1994.

5. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving locality using loop
and data transformations in an integrated framework. In Proc. the International Symposium
on Microarchitecture, Dallas, TX, December 1998, pp. 285–296.

6. R. LaRowe and C. Ellis. Page placement policies for NUMA multiprocessors. Journal of
Parallel and Distributed Computing, Vol. 11, No. 2, February 1991,

7. J. Laudon and D. Lenoski. The SGI Origin: A CC-NUMA highly scalable server. In Proc.
the 24th Annual International Symposium on Computer Architecture, May 1997.

8. W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell University, Ithaca,
New York, 1993.

9. K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with loop transformations.
ACM Transactions on Programming Languages & Systems, 18(4):424–453, July 1996.

10. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for improv-
ing data locality on CC-NUMA compute servers, In Proc. ASPLOS VII, Cambridge, MA,
1996

11. M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc. the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 30–44, June 1991.

12. M. Wolf, D. Maydan, and D. Chen. Combining loop transformations considering caches
and scheduling. In Proc. the International Symposium on Microarchitecture, pages 274–286,
Paris, France, December 1996.

13. M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley Publishing
Company, 1996.

Optimization of memory accesses is not a new idea, nor is it new that a compiler
should perform the appropriate transformations. However, over the past few years,
the natural evolution of computer hardware has yielded a qualitative change in how
memory accesses affect processor performance.

Logically, processors are more complex than memory, so one would expect them to
be slower than memory. In fact, that was the case for much of the history of digital
computing. However, through the relatively short history of digital computing, a
surprisingly wide variety of different technologies have been used for constructing
main memory and processors. Using different technologies, processors and memories
have followed different performance curves... both getting faster, but processors
increasing in speed at a much greater rate than memories. The result is what we all
know: main memory is now much slower than a processor. But the relationship is
much more complex than that suggests.

Compiler Optimizations Using Data
Compression o Decrease Address

Reference Entropy

H.G. Dietz and T.I. Mattox

Electrical and Computer Engineering Department,
University of Kentucky,

Lexington, KY 40506-0046
{hankd, tmattox}@engr.uky.edu

http://aggregate.org/

Abstract. In modern computers, a single random access to main memory often
takes as much time as executing hundreds of instructions. Rather than using tradi-
tional compiler approaches to enhance locality by interchanging loops, reordering
data structures, etc., this paper proposes the radical concept of using aggressive
data compression technology to improve hierarchical memory performance by
reducing memory address reference entropy.

In some cases, conventional compression technology can be adapted. How-
ever, where variable access patterns must be permitted, other compression tech-
niques must be used. For the special case of random access to elements of sparse
matrices, data structures and compiler technology already exist. Our approach is
much more general, using compressive hash functions to implement random ac-
cess lookup tables. Techniques that can be used to improve the effectiveness of
any compression method in reducing memory access entropy also are discussed.

1 Introduction

1.1 Modern Computer Architecture

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 126–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

t

It is true that processor clock rates have been increasing at an impressive rate, but the
processors running at these higher clock rates are not the same designs that were used
at lower clock rates. Very little of the performance increase in modern processors
comes from using the same design with faster gates. For example, the design of an
Intel 468DX processor allowed it to run with the then-fast clock frequency of 33MHz
and to complete execution of an instruction every few clock cycles. In contrast, the
Pentium 4 uses “superscalar” instruction-level parallel execution to complete
execution of several instructions every clock cycle — an order of magnitude more
work per clock cycle, even ignoring the fact that the Pentium 4’s clock ticks at a
blazing 2.4GHz. Beyond that, the reason a Pentium 4 can run with a 2.4GHz clock
frequency is not simply because it is built using better gates than a 486DX, but also
because it carves long logic paths into many pipeline stages. For example, this is why
a Pentium III cannot achieve the same clock rate as a Pentium 4 even when they are
built with the same technology: a Pentium 4 has much deeper pipelines yielding
shorter logic paths for each clock cycle. In summary, processor speed increases are
largely enabled by extensive use of superscalar pipelining — all of which comes to a
screeching halt when the processor has to wait for a memory read.

Computer architects are very aware of this problem. The solution is to tune the
architecture for the kinds of reference patterns that are common and/or those for
which performance easily can be improved. Traditionally, the primary hardware
mechanism used is a memory hierarchy in which small, fast memories are placed
within or near the processor and intended to be used to hold copies of memory blocks
that will be referenced with good spatial and/or temporal locality.

The fastest such memory structure is a register file. Compiler writers have long
understood register allocation... but there is a twist: the number of registers
accessible to the compiler is a function of the instruction set design, so the compiler
can only manage as many general-purpose registers on a Pentium 4 as it had on a
486DX. Fortunately, aggressive use of register renaming has allowed computer
architects to build hardware that performs on-the-fly reallocation of registers to a
much larger pool. For example, the 8 compiler-visible floating point registers of the
Intel 486DX turn into 88 within the AMD Athlon. In many processors, special write
buffer hardware even attempts to short-circuit-route data being stored from one
register into another register which is loading from the address being stored into.

After registers, there are usually two or more levels of cache. Cache line sizes and
replacement policies vary, but in general the line size gets bigger and access gets
slower as caches get further from the processor. Across processor generations, cache
line sizes tend to be increasing in general. Further, most caches now hav e special
provisions for fetching the requested word within a cache line first, rather than
fetching the words in sequence.

Even though your program might not use disk-based virtual memory, modern
operating systems rely on a page table mechanism to allocate main memory space.
Thus, all main memory addresses have to be translated from logical to physical
addresses. In most modern machines, this is done by two lev els of TLB (translation
lookaside buffers) which serve as “caches for address translations.” Caches typically
are indexed by physical addresses, so that TLBs appear between the processor and L1

Compiler Optimizations Using Data Compression 127

cache. The implication is that even if a particular address is in cache, it will be fast to
access only if its address is also in the TLB. Although TLBs are often ignored by
programmers, they are often very small (typically 32 to 128 entries), so TLB misses
can seriously limit performance.

Further complicating all of this, hardware in the latest AMD Athlon and Intel Pentium
4 processors attempts to automatically recognize access patterns and issue prefetch
operations. Thus, the old notions of temporal and spatial locality are only part of the
story; performance depends on having a memory access pattern that differs only
slightly from what the processor was designed to optimize — i.e., that has low
entropy.

How do all of the above architectural features change how code should be written?
The best way to answer such a question is to make some performance measurements
on real machines so that the cost of different coding constructs can be accurately
estimated. To make the memory access trends more visible, we have restricted our
benchmarks to processors that execute the basic IA32 (Intel Architecture, 32-bits)
instruction set. This not only eliminates artifacts from use of different instruction
sets, but also made it possible to literally use the exact same binary executable on all
the machines. Consequently, the memory system effects are not convolved with
differences between compilation systems; the one executable was produced using
EGS 2.91.66 with the optimizations enabled by the -O1 command line option. An
additional benefit in using this instruction set is that all the processors provide the
same processor clock cycle timing mechanism.

Most of the architectural features listed above are aimed at improving performance of
low-entropy memory access patterns: read sequences that have good spatial and
temporal locality or are easily predicted by the hardware. One would hope that
repeated references to the exact same word (temporal locality) would be optimized by
the compiler to access the word from memory once, and thenceforth from a register.
Thus, the lowest entropy memory reference pattern is generally assumed to be a
stride-1 access pattern in the increasing address direction. Have these architectural
changes achieved speed-up for this read access pattern? As Figure 1 clearly shows,
the answer is yes; from the 100MHz Pentium to the most modern Athlon and Pentium
4 an order of magnitude speedup is seen.

It is important to note that, because processors are heavily pipelined, memory access
latency can be partly overlapped with loop overhead. It is not possible to separate-out
the test loop overhead; any memory access latency that is completely overlapped with
loop overhead would appear to be zero and inefficient loop implementations would
make memory seem faster. For this reason, all of the graphs in this paper include the
loop overhead.

That good speedup is achieved for a low-entropy reference pattern is not surprising.
To determine if good speedup is also achieved for high-entropy reference patterns, we
selected a simple random number generator — RANQD1 [PrT88] — and used that to

1.2 Memory Access Performance f Modern Architectures

128 H.G. Dietz and T.I. Mattox

o

2

4

8

16

32

64

128

256

512

1024

32 1024 32768 1048576 33554432

T
im

e
(n

s)
 p

er
 S

eq
ue

nt
ia

l A
cc

es
s

Table Size (bytes)

Wall Clock Time per Sequential Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

2

4

8

16

32

64

128

256

512

1024

32 1024 32768 1048576 33554432

T
im

e
(n

s)
 p

er
 R

an
do

m
 A

cc
es

s

Table Size (bytes)

Wall Clock Time per Random Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

However, viewing Figures 1 and 2 together reveals a disturbing fact: newer
processors generally have larger differences between the best sequential time and the

type of high-entropy memory reference pattern commonly seen in programs. The
good news is that, as Figure 2 shows, good speedup is also achieved for this high-
entropy pattern.

Fig. 1. Low-Entropy Memory Read Access Pattern Times

Fig. 2. High-Entropy Memory Read Access Pattern Times

generate the address sequence. Ironically, a random number generator does not
generate the highest entropy memory access sequence, but is a good model for the

Compiler Optimizations Using Data Compression 129

Of course, some differences are due to differing clock rates; looking at raw counts of
clock cycles is an arguably purer measure. These results, respectively for the
sequential access pattern and for the random access pattern, are in Figures 3 and 4.

4

8

16

32

64

128

256

512

32 1024 32768 1048576 33554432

C
P

U
 C

lo
ck

 C
yc

le
s

pe
r

S
eq

ue
nt

ia
l A

cc
es

s

Table Size (bytes)

CPU Clock Cycles per Sequential Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

4

8

16

32

64

128

256

512

32 1024 32768 1048576 33554432

C
P

U
 C

lo
ck

 C
yc

le
s

pe
r

R
an

do
m

 A
cc

es
s

Table Size (bytes)

CPU Clock Cycles per Random Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

Fig. 3. Low-Entropy Memory Read Access Pattern Clock Cycles

Fig. 4. High-Entropy Memory Read Access Pattern Clock Cycles

worst random time. The 100MHz Pentium had only a time factor of 13.3 penalty for
a bad reference pattern, whereas an Athlon MP had a time factor of 127.5 penalty .

130 H.G. Dietz and T.I. Mattox

cycle. Executing as many as a thousand instructions to avoid a single high-entropy
memory reference can yield speedup! This huge payoff makes it practical to consider
very complex mechanisms for reducing address reference entropy. Throughout this
paper, our focus is using compression to decrease address reference entropy — in
some cases, the total size of the compressed data structures is actually larger than the
original data.

Although we believe the fully general concept of using compiler technology to
employ compression for the purpose of reducing address reference entropy to be
entirely new, there are a few special cases in which compression has been used to
improve memory system performance.

Although our focus is using compiler technology to apply compression to reduce
entropy of data references, the work most similar in concept involves hardware
technology to operate on compressed code. Shortly after the invention of VLIW
(Very Long Instruction Word) architecture, it was recognized that VLIW instructions
often contained redundant or empty fields. Although the fact was not widely
published, the Multiflow Trace architecture took advantage of this fact by having
processor hardware fetch compressed blocks of VLIW instructions and decompress
them on the fly. An even more aggressive compression scheme was used for encoding
instructions for the complex instruction set of the Intel 432 [ARM81]: instructions
were Huffman encoded as bit sequences that were extracted directly from the code
stream by the processor hardware. Although modern processor architecture
implementations could benefit from such a hardware-driven approach, the benefit is
not as great as one might expect because code stream address reference entropy is
relatively low — spatial locality is very good.

Very recent work [ZhG02] attempts to achieve modest compression for dynamically-
allocated data structures, but the majority of compiler techniques have been developed
to translate code written as “dense” matrix operations to use “sparse” data structures
[BiW95]. The sparse representations assume that the majority of data elements have
the same value (most often, zero). Despite this constraint, these compiler code and
data transformations, and the associated analyses, are very closely related to our more
general notion of using compression as a memory address entropy-reducing
transformation. In particular, the analysis that determines what code would be
impacted if the representation of a particular data structure were to be changed is
directly applicable. In fact, the analysis we presented in [JuD92] also would suffice
for that purpose.

The generalized problem of using compressed data structures with non-sparse data
can be subdivided into four classes based on two simple attributes:

2 Compression o Reduce Access Entropy

In summary, the cost of memory references is getting further from constan t; access
times are a complex function of the access pattern with costs currently ranging over at
least two orders of magnitude. High entropy memory access patterns can take
hundreds of clock cycles per read — and many operations can be executed per clock

Compiler Optimizations Using Data Compression 131

t

2. Are elements of the data structure accessed in a fixed pattern — i.e., are they
ordered? Given a fixed access pattern, transmitting the data structure from
memory to the processor in that order is nearly the same problem as transmitting
the data structure through a communications network — the classical application
of compression technology. Note that the access order need not access each
element precisely once; a structure containing “a,b,c” accessed with the fixed
order “c,a,c,c” is essentially the same as sequential access of the structure
“c,a,c,c”. If a variable access pattern must be supported, compression methods
that make decompression of an element dependent on decompression of previous
elements are generally inappropriate.

Techniques for fixed access pattern compression are very well developed; thus, the
primary contribution here is the concept of using these techniques as a compiler
technology. This is discussed in the following section. Given a variable access
pattern and read-only data, new compression techniques are needed. Section 2.2
outlines a very aggressive technique for this type of compile-time compression, which
is most useful for increasing the efficiency of lookup tables. To efficiently compress
given a variable access pattern and changeable data, the compression scheme must
have a relatively efficient method for incremental update of the compressed form.
Very few such schemes exist; a very brief discussion is given in section 2.3.

Compiler technology for recognizing everything necessary to improve ordered access
is very well developed. The required information is essentially accumulated as a side-
effect of performing traditional loop parallelization dependence analysis. For
example, consider the simple loop nest:

DO 10 J=1,100
DO 10 I=1,100

10 A(I,J) = A(I,J) * B(I, J)

Within this example loop nest, the elements of B are only read; let us further assume
that B is in fact an array of constant values known at compile time. The elements of
the array A are both read and written. Thus, the example contains both read-only and
read-write data structures with a known access order.

For B, because both the element values and the access order are known at compile
time, we can apply a traditional communications-oriented compression scheme at
compile time. For example, a variant of Huffman encoding, LZW (Lempel-Ziv
Welch), or even fractals and wav elets can be used to compress B. Simple type-
dependent compression techniques may be particularly appropriate; for example,

2.1 Compression with Ordered Access

1. Is the data structure read-only? Compression algorithms for read-only data
structures, especially those with compile-time constant values, can be very
computationally expensive provided that the decompression algorithm is
inexpensive. If the data can be changed during program execution, the efficiency
of the compression algorithm is also critical.

132 H.G. Dietz and T.I. Mattox

applied (e.g., wav elets cannot be used because they require examining the complete
data structure) and must be computationally cheap enough to be applied at every point
where the data are changed. However, the fact that compression is applied at run time
also makes it infeasible to try several alternatives and pick the most effective. For
many incremental compression techniques, it is quite possible that the result of
applying compression would be a data structure larger than the original — with the
slowdown aggravated by the higher overhead of processing compressed accesses.

With the exception of some of the sparse compression techniques discussed in section
2, virtually all compression techniques in the literature are incapable of supporting a
variable access pattern. However, if the elements of the data structure are read-only
and known at compile time, there are a variety of techniques that can be used to
compress the lookup table without compromising random access. The basic
technology is creation of a compressive hash function: a hash function that
implements a given mapping using a lookup table that contains fewer entries than
there are domain elements.

A hash function is a mapping of domain (input or key) values into range (function or
return) values. Normally, the ideal is to find a hash function that is minimal and
“perfect” — i.e., that implements a domain-to-range mapping by onto and 1:1
indexing of a lookup table. However, a perfect hash function only provides rapid
indexing: it does not provide compression of the data. In order to provide
compression, a compressive hash function maps multiple domain elements, whose
range values were equivalent, to the same lookup table entry. A minimal perfect
compressive hash would have precisely one hash table entry for each unique range
value, but any compressive hash function will provide some compression while
supporting fully variable random access patterns.

Let L(k)=vk be the original table lookup function implemented by indexing an array
of values, a[], such that vk=a[k]. If there exist two values of k, ki and kj such that
ki≠kj and L(ki)≡L(kj), then a[ki] and a[kj] are essentially copies of the same range
value and one might be able to be eliminated from storage as redundant. It is
common that lookup functions have many such redundant entries; further, there are
techniques that can be used to transform the lookup problem to create such
redundancies (see sections 3 and 4). The problem of finding a compressive hash
function, L’(k)=vk, is thus the problem of finding an index transformation function,
H(k)=xk, which maps into a table with fewer entries than a[], such that for all pairs of
values ki and kj, if H(ki)≡H(kj), then L(ki)≡L(kj). Notice that L(ki)≡L(kj) does not
imply H(ki)≡H(kj); duplicate entries can also exist in the compressed form, provided

2.2 Compression with Variable Access, Read-Only Data

although mantissa bits vary, it is very likely that the exponent and sign are the same
(or differ little) from one floating point value to the next. Further, because the
compression is done at compile time, it is feasible to try several alternative
compression techniques and pick the most effective.

The compression of A is much more difficult to make effective. In part, the
complexity comes from the fact that the compression algorithm must be incrementally

Compiler Optimizations Using Data Compression 133

Fundamentally, the problem of reverse-engineering an efficient hash function from the
array contents becomes exponentially more difficult as larger domains and ranges are
considered. Achieving higher compression generally has the same impact on
complexity of the search, or, equivalently, generates hash functions that are
computationally too complex to be useful. Our approach can be summarized as:

(1) Compute the minimum possible size of the hash table, s, by counting redundant
entries in L(k). If modulus operations are expensive, round s up to the next
largest power of two. Also initialize a hash table, e[s] to all “empty” entries.

(2) Generate a potential hash function, H(k), which ensures that, for all values of k,
0≤H(k)<s. If s is a power of two, this can be accomplished using bitwise AND
(s-1) in H(k).

(3) Evaluate H(k) for all values of k. In essence, this is done by evaluating H(ki)=xi
and then examining e[xi] for either of two conditions:

• If e[xi] is empty, set e[xi]=L(ki) and mark the entry as full.
(Serial numbering is often a good way to handle empty/full marking.)

• If e[xi] is full and e[xi]≠L(ki), record the conflict.
If the hash function must be perfect, goto step 5;
otherwise, continue with lossy compression (sections 5 and 6).

(4) Combine evaluations of conflicts and the computational cost for H(k);
record it as the new “best found so far” if appropriate.

(5) Increase s if the array size seems too small to afford a computationally efficient
hash function.

(6) Exit if available search time has elapsed, sufficiently good solution has been
found, or s has become too large.
Otherwise, go to step 2.

Notice that it was not specified how one generates the potential hash function in step
2. There are many viable alternatives. Techniques we have used include:

• Searches of fixed collections of known-effective forms

• Enumerative searches (as per the Superoptimizer [Mas87])

• Genetic programming (GP) [Koz92]

• Adaptive methods that attempt to correct specific conflict(s) from previous hash
functions

• Various curve-fitting techniques

that the total array size is still reduced. Similarly, having the compressed array
contain entries that are not targeted by any value of k also merely reduces the
compression factor achieved. Of course, optimizing the compression factor is not our
goal; minimizing average access cost by taking advantage of lower memory access
entropy is.

There are many approaches that can be used to search for a good hash function H(k)
and the array contents that it requires in order to perform the correct mapping.

134 H.G. Dietz and T.I. Mattox

Except when the rate of change of entries is low enough to permit use of a fixed hash
compression augmented by a conventional hash table with linear rehash used to
identify changed entries, we currently know of no effective approach.

Although programmers often take the position that every value computed within their
program should be computed with as much precision as possible, what really matters
is the accuracy of the results. Precision simply indicates how many bits are used to
represent a value; accuracy describes how many of the bits carry correct and useful
information. Because various savings are possible in operating on lower precision
values, it is generally desirable to make the storage precision of values equal to or
slightly greater than the accuracy of those values. The only benefit in maintaining
precision much higher than accuracy is that it saves the programmer from having to
be aware of what the accuracy of their computations truly is — in other words, it
facilitates bad programming practice.

Although integer values are absolutely accurate, the precision required for integer
values is determined by the range of values. For example, an integer variable that
ranges from 0 to 100 does not require storage with 32-bit precision; 7 bits would
suffice. A value that ranges from 10000 to 10100 also can be stored in just 7 bits. In
fact, a value that ranges from 10000 to 10200 and is always a multiple of 2 also can
be stored in just 7 bits. Range compression also can be applied to floating point
values that have a very limited range of exponent values.

Thus, when compression techniques are being applied, the compression techniques
should not be constrained to produce values that are identical to the full precision, but
only to preserve the accuracy and range of the original values.

For example, consider a typical lookup table. Each entry is usually either the result
 of a very complex computation or an empirically measured quantity — after all, if
entries were determined by a cheap formula, few programmers would bother
constructing a lookup table. However, even if complex computations were carried out
using very high precision, the accuracy of the results placed in the table is likely to be
far lower than the precision of the intermediate calculations used to compute them.
Low accuracy also is common for empirical data. Thus, even if subsequent
calculations using values from the lookup table require high precision arithmetic,
storage of the table entries need not. More generally, a lossy compression scheme
that recovers the table entries only approximately is acceptable provided that accuracy

3 Accuracy and Range Precision Filtering

Of these, the fixed-collection and GP methods have thus far proven to be most
effective. Howev er, further research is needed to find more efficient ways to handle
very hard hash compression problems. Currently, overnight or longer runs are often
needed to find appropriate hash functions.

As discussed above, it is very difficult to find an appropriate compressing hash
function for an arbitrary mapping... and the creation process is not incremental.

2.3 Compression with Variable Access, Changeable Data

Compiler Optimizations Using Data Compression 135

analysis. Despite this, the codes seem to produce reasonably accurate answers,
apparently with several significant digits. The discrepancy lies in the fact that
compensating errors are common and worst-case loss of accuracy is very rare, so
static analysis was far too conservative. For this reason, we suggest that the
programmer should use a pragma to explicitly state the accuracy that should be
preserved.

In some cases, accuracy and range precision filtering are not very helpful. For
example, a table of floating point numbers often will have relatively random bit
patterns in the mantissas. It may be exceedingly difficult to compress such data.
However, an interesting trick can be used to simplify the search.

Let L(k)=vk be the original table lookup function. If the return value has b bits, then
vk is really the bit vector vk[0..b-1]. Instead of searching for a single compressed
lookup function, L’(k)=vk, we can search for a set of compressed lookup functions
L’0=vk[0..b0-1], L’1=vk[b0..b1-1], ..., L’m=vk[bm-1..b-1]. This effectively
synthetically restricts the range for each compressed lookup function, significantly
reducing the apparent entropy of the values and consequently making appropriate
functions easier to create. Because the bit vectors can be stored as packed fields
within a table, there is little or no additional storage overhead associated with the
decomposition into bit vectors.

If the compression achieved for the decomposed bit vectors is comparable to the
compression achieved without decomposition, having m lookup table references
instead of 1 will introduce enough overhead to make decomposition inappropriate.
However, the reduced ranges often yield significantly higher compression for some of
the m compressed lookup functions. Thus, decomposition into m lookup tables may
significantly reduce the total space needed for lookup tables. If this reduction allows
the tables to reside in a higher level of memory (e.g., L2 cache rather than main
memory), computing m decomposed lookup functions can be significantly faster than
performing a single compressed lookup.

Another way to synthetically reduce the range is to convert bit positions that are
constant across all lookup values into “don’t care” bit positions. The bit positions that
are constant (“stuck” at 0 or 1) can be obtained straightforwardly. Let O be the
bitwise OR of all the values and A be the bitwise AND of all the values. The active
bit positions are then those in O AND NOTA. The inactive bit positions can thus be

4 Synthetic Range Filtering

is not compromised. Alternatively, accuracy information can be used to filter the
table before compression, reducing entropy by changing values to conform with other
values in the table when the change does not compromise accuracy.

It is useful to further note that, if the accuracy and range values vary widely over
portions of a lookup table, it may be appropriate to subdivide the table on this basis.

Although static accuracy analysis is not particularly difficult for a compiler to
implement, an informal survey conducted by Dietz in the early 1990s of scientific
Fortran codes then in use at Purdue University revealed that few, if any, results printed
by these programs had any significant digits as determined by the standard static

136 H.G. Dietz and T.I. Mattox

if (k≡x) {
return(vx);

} else {
return(L’(k));

}

This correction method can be generalized to correct multiple flaws in L’ by coding
either a binary tree or a linear nest of if tests.

Unfortunately, as discussed in the introduction, modern processors are heavily
pipelined; thus, performance depends critically on the processor correctly guessing
whether to take or not to take each conditional branch. One implication is that the
binary tree can be slower than the linear nest because the branch directions are less
predictable. In any case, branches often will be mispredicted. We can avoid branch
misprediction by converting each if statement into a masking operation like the
following C code:

t = kˆx;
m = ((t | -t) >> (WORDBITS-1));
return((m & (vx ˆ L’(k))) ˆ vx);

In this code, assume that K, x, t, and m are 2’s complement signed integers. The value
of t will be non-zero iff k≠x. For any non-zero value of t, the expression (t | -t)
will yield a negative integer value. A signed shift right of a negative value by the
number of bits in a word minus one essentially replicates the sign bit, making m have
the value -1. The same process gives m 0 if t is 0. Thus, m can be used as a bitmask
to conditionally enable part of the computation. The returned result is vx if m is 0 (i.e.,
k≡x). Otherwise, because vxˆvx is 0, the result is just L’(k). We can further optimize
this code to:

t = kˆx;
m = ((t | -t) >> (WORDBITS-1));
return((m & L’’(k)) ˆ vx);

By replacing the table entries of L’(k) with L’’(k)=(L’(k) ˆ vx);, we can avoid the
overhead of one of the exclusive-OR operations.

treated as “don’t care” values within the lookup function(s) and the correct bit
position values can be inserted by bitwise ANDing with the active set (computed
above) followed by bitwise ORing with A.

Suppose that a particular table lookup operation, L(k)=vk, is equivalent to a cheaper
lookup operation L’(k)=vk for all k≠x. The single exception can be corrected by code
like:

5 Individual Exceptions

Compiler Optimizations Using Data Compression 137

The surprising answer is that a compression scheme that only yields a correct value
for some inputs can dramatically decrease access entropy. Suppose that a particular
table lookup operation, L(k)=vk, is approximated by a lossy compressed lookup
operation L’(k)=v’k. It is possible to construct L’(k) such that, for some values of k,
v≡v’; i.e., the lossy scheme returns the correct value. Let p be the probability that k is
selected such that L’(k) is correct. By using L’(k) rather than L(k) for those values of k
that yield correct results, we can reduce the memory access entropy by an amount
proportional to p.

The only remaining problem is how to select when to use L’(k) and when to useL(k).
This can be solved by creating an auxiliary correctness-check function, C(k) that
returns true only for values of k for which L’(k) yields the correct answer. An
implementation of C(k) can be created trivially by using a lookup table with a single
bit for each possible value of k. Howev er, lossy compression of C(k) also can be
applied to create a lookup function C’(k). The only constraint is that for all k such
that C’(k)≡true, C(k)≡true. If there exists at least one value of k such that C’(k)≡false
and C(k)≡true, then the effect is that the probability of using L’(k) is reduced by the
sum of the probabilities of those values of k incorrectly classified by C’(k).

One further optimization is possible. Since L(k) will not be evaluated for values
where the correctness-check function returns true, it is possible to create a residual
lookup function, R(k), such that R(k)≡L(k) for all k where the correctness-check
function returns false. There are several different ways to produce R(k).

An obvious approach is to treat R(k) as a new L(k), and to recursively apply the search
for a possibly lossy, but cheaper, lookup function L’(k). It should be noted, however,
that the recursive application is slightly more complex because R(k) is only defined
for certain values of k, not for all values between a minimum and maximum. This
complication is easily accounted for in the search.

Alternatively, a valid R(k) always can be produced by using an arbitrary (imperfect)
hash function with linear rehashing. Each hash bucket in R would contain an
input/output value pair; if the input does not match, the sequentially next hash bucket
is examined, and so on, until the the value is found. The sequential re-hash is very
friendly to both caches and TLBs, so even performing several probes can take only a

6.1 The Basic Approach

A “lossy” compression scheme is one in which the values recovered from the
compressed form are not identical to the original, but have similar properties. In
many cases, a lossy compression scheme can yield significantly higher compression
than a lossless scheme. For example, JPEG image encoding achieves high
compression using a lossy scheme, but the compression technique is carefully
engineered so that the lost information is usually visually unimportant. Thus, the
question is: how can a lossy compression scheme be engineered to provide similar
benefits for reducing memory access entropy?

6 “Lossy” Compression

small fraction of the time required for a random lookup using L(k). Of course, this

138 H.G. Dietz and T.I. Mattox

literally the function L’(k)=0. There are 297,613 entries computed incorrectly by
L’(k)=0 (40%). If all values of k are equiprobable, p=0.6.

The obvious implementation of C(k) is a lookup table containing 742,600 bits — a
mere 92,825 bytes compared to 2,970,400 in the original data structure. This is small
enough that both L’(k) and C(k) fit within the L2 cache of most modern processors.
However, it is possible to achieve a still smaller cache footprint by lossy compression
of C(k). In this case, one of our hash search codes was able to create a 32,768-byte
table that can be used to implement C’(k) such that C’(k) is overly conservative in
estimating C(k) for less than 0.01% of the values of K, essentially leaving p
unaffected. However, the hash function for C’(k) is a degree-3 polynomial requiring
three multiplies and two adds to be evaluated to index the appropriate byte, which
would take significantly longer than the L2-cache access for C(k) — so use of a
compressed C’(k) is not worthwhile in this case. If 32,768 bytes fit in L2 cache and
92,825 bytes did not, use of C’(k) may have been justified. In general, the choice is
made by plugging-in the cost metrics for the particular target machine’s memory
access structure; further, it is not necessary to search hash function forms that exceed
the cost that the target machine would have for C(k).

Continuing our example, is it appropriate to replace L(k) with R(k)? As discussed
above, C(k) finds that there are 297,613 values of k that are incorrectly evaluated by
L’(k). For simplicity, assume that the recursive approach is ignored and we instead
accept an imperfect hash function with linear rehash. For virtually any data, it is easy
to find such a hash function that has an average of less than 1 linear rehash per
lookup. However, the imperfect hash function must not only store the 297,613 result
values, but also the value of k that each result is produced by. Because there are
742,600 possible values of k, storing each k value would require a minimum of 23
bits. For alignment reasons, one would certainly round that up to at least 24 bits, and
perhaps to 32 bits per k value. At 32+32 bits per table entry, the table for R(k) is
2,380,904 bytes — whereas the original table for L(k) was 2,970,400 bytes. This
constitutes a savings of just under 20%, which is probably not sufficient to justify
using R(k), because R(k) will be slower for the values of k that require linear rehashes.
Of course, if this size difference would allow R(k) to fit in cache where L(k) does not,
it would be worthwhile; our example just happens to be too large to fit R(k) in L2
cache on most modern processors.

last optimization applies only when p is sufficiently large; for small values of p,
directly using L(k) is faster because the lookup table for L(k) is comparably sized or
smaller than the one for R(k) — the table for L(k) does not need to hold values of k.

For example, one test case that we have examined is a lookup table taken from a
weather prediction code. This table can be viewed as a lookup function L(k),
0≤k<742,600, which returns a 32-bit floating point value.

It happens that many of the entries are 0, so the table is somewhat sparse — although
not sparse enough for the usual sparse data structure methods to be directly useful. It
is trivially easy to recognize that a very good choice for a lossy compressed L’(k) is

6.2 A Simple Example

Compiler Optimizations Using Data Compression 139

In this paper, we hav e outlined a family of new methods for achieving higher
performance from the complex memory access mechanisms used in superscalar
pipelined processors. Speedup is obtained by using very aggressive compression
technology, especially lossy compressive hash functions, to reduce the entropy of
memory access patterns. Decreasing entropy of references is all that matters; adding
lossy compressed data structures can simultaneously increase total memory footprint
and decrease entropy.

Accepting that some compression problems are unsolvable or would take to long to
solve, the new techniques easily could be integrated into a compiler using existing
compiler analysis combined with directives or pragmas to help identify appropriate
data structures. Our ongoing research centers on more efficient methods for creating
compressive hash functions.

This paper represents neither a completed study nor a final answer as to how
compression should be used. Rather, it was written because we had long been
applying some of these techniques in obscure special cases, but only recently
discovered that they hav e been rendered important and common by modern processor
architecture. The ev olution of memory systems will no doubt necessitate far more
research into exotic methods for improving access pattern entropy.

[ARM81] iAPX 432 General Data Processor Architecture Reference Manual, Intel, January
1981, Appendix A.2, pp. A-13 - A-22.

[BiW95] A. J. C. Bik, H. A. G. Wijshoff, “Advanced Compiler Optimizations for Sparse
Computations,” Journal of Parallel and Distributed Computing, Vol. 31, No. 1,
1995, pp. 14-24.

reduce memory access entropy requires much more research, but obvious cases are
worth compressing now.

7 Conclusion

References

On a 1GHz Athlon 4 laptop, the use of L’(k),C(k), and L(k) as described above gav e a
speedup of 1.4x to 2.1x over use of L(k) alone. The variability reflects changes in the
reference pattern; clearly, for some reference patterns, the use of compression would
yield slowdown due to the extra overhead of evaluating C(k). It is likely that a better
compressive hash would yield significantly greater average speedup, but the
interesting fact is that our existing software was able to create the above compression
scheme quickly enough so that integration of the technique in a compiler could yield
acceptably short compilation times.

Generally, read-only data structures that are accessed in fixed patterns are even easier
to compress. If the same 742,600-entry table used for the above example is accessed
in a fixed order, the lossless compression scheme used in gzip reduces the binary
data structure to less than 14% of its original size. Optimal use of compression to

140 H.G. Dietz and T.I. Mattox

[JuD92] Y-J. Ju and H. G. Dietz, “Reduction of Cache Coherence Overhead by Compiler
Data Layout and Loop Transformation,” Languages and Compilers for Parallel
Computing, edited by U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
Springer-Verlag, New York, New York, 1992, pp. 344-358.

[Koz92] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

[Mas87] H. Massalin, “Superoptimizer — a look at the smallest program,” ASPLOS II,
1987, pp. 122-126.

[PrT88] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in
C, Cambridge University Press, 2nd edition, 1988, p. 284.

[ZhG02] Y. Zhang and R. Gupta, “Data Compression Transformations for Dynamically
Allocated Data Structures,” International Conference on Compiler Construction,
April 2002, pp. 14-28.

Compiler Optimizations Using Data Compression 141

Towards Compiler Optimization of Codes Based on
Arrays of Pointers

F. Corbera, R. Asenjo, and E.L. Zapata

Computer Architecture Dept., University of Malaga
{corbera, asenjo, ezapata}@ac.uma.es

Abstract. To successfully exploit all the possibilities of current computer/multi-
computer architectures, optimization compiling techniques are a must. However,
for codes based on pointers and dynamic data structures these optimization tech-
niques have to be necessarily carried out after identifying the characteristics and
properties of the data structure used in the code. In this paper we present one
method able to automatically identify complex dynamic data structures used in
a code even in the presence of arrays of pointers. This method has been imple-
mented in an analyzer which symbolically executes the input code to generate a
set of graphs, called RSRSG (Reduced Set of Reference Shape Graphs), for each
statement. Each RSRSG accurately describes the data structure configuration at
each program point. In order to deal with arrays of pointers we have introduced
two main concepts: the multireference class, and instances. Our analyzer has been
validated with several codes based on complex data structures containing arrays
of pointers which were successfully identified.

1 Introduction

Programming languages such as C, C++, Fortran90, or Java are widely used for non-
numerical (symbolic) and numerical applications. All these languages allow the use of
complex data structures usually based on pointers and dynamic memory allocation. The
use of complex data structures is very helpful in order to speedup code development
and, besides this, it also may lead to reducing the program execution time. However,
compilers are not able to successfully optimize codes based on these complex data
structures for current computers or multicomputers.

More precisely, when dealing with pointer-based data structures usually built at run
time, current compilers are not able to capture, from the code text, the necessary infor-
mation to exploit locality, automatically parallelize the code, or carry out other impor-
tant optimizations. In other words, if the compiler is not aware of the properties fulfilled
by the data structure used in the code, it is impossible to apply certain optimizations.
For instance, if the compiler does not know that a certain loop is traversing a doubly
linked list, then important techniques such as data prefetching, locality exploiting or
parallelism detection, cannot be applied.

With this motivation, the goal of our research line is to propose and implement new
techniques that can be included in compilers to allow for the automatic optimization
of real codes based on dynamic data structures. As a first step, we have selected the
shape analysis subproblem, which aims at estimating at compile time the shape the data

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 142–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Compiler Optimization of Codes Based on Arrays of Pointers 143

will take at run time. Given this information, subsequent analysis (not implemented yet)
would focus on particular optimizations, for example, to exploit the memory hierarchy
or to detect whether or not certain sections of the code can be parallelized because they
access independent data regions.

There are several ways this shape analysis problem can be approached, some of
which are based on explicit programmer annotations [9], and others are based on ab-
stracting the properties of data structures by means of “path expressions” [11], “matri-
ces” [6] or graphs. We have focussed on graph-based methods as they are able to explic-
itly keep information about dynamic objects not pointed to by any pointer variable. In
these graphs the nodes represent the “storage chunks” and edges are used to represent
references between them. Some of these graph-based methods use just one graph to ap-
proximate all possible memory configurations for each statement in the code [2,12,13],
whereas other methods permit the existence of several graphs per statement to represent
the information more accurately [10,8,14]. Our own method belongs to the later class,
and it is described in [4,5]. Basically, our analyzer generates a reduced set of reference
shape graphs (RSRSG) for each statement in the code. Each RSRSG approximates the
data structure at each corresponding program point. We have compared our analyzer
with other related works in [4,5], but we emphasize here that to the best of our knowl-
edge, our analyzer is the only one able to accurately identify the data structure at each
statement of a real C code. The analyzed codes are based on complex data structures
such as doubly linked lists, trees, and octrees among others, and combinations of them,
such as a doubly linked list of pointers to trees where the leaves point to doubly linked
lists, etc.

However, our analyzer was not able to handle arrays of pointers as part of the dy-
namic data structure. Therefore, in this paper we describe how we extend our method
to deal with structures containing arrays of pointers. Please, note that this is the main
goal of this paper and that the analyzer details (which are already covered in [4,5]) can
not be tackled here due to space constrainst. Again, as far as we know, there is no other
previous technique able to automatically identify complex data structures comprising
arrays of pointers. However, arrays of pointers are frequently included in the definition
of complex and dynamic data structures such as sparse matrices and quad/octrees, as
we see in Sect. 5, and therefore they deserve to be taken into account in the area of
shape analysis research.

The rest of the paper is organized as follows. In Sect. 2 we provide an overview
of our shape analysis method, briefly summarizing our previous work for the sake of
completeness, as the next sections are based on these ideas. Sect. 3 introduces new con-
tributions to deal with arrays of pointers, such as the multiselector and instance ideas.
These new issues lead to new steps in shape analysis which are described in Sect. 4.
In Sect. 5 we present the experimental results obtained after feeding our analyzer with
several codes based on structures comprising arrays of pointers. Finally, we conclude
with the main contributions and future work in Sect. 6.

2 Method Overview

Basically, our method presented in [4,5] is based on approximating all possible memory
configurations that can appear after the execution of a statement in the code. We call

144 F. Corbera, R. Asenjo, and E.L. Zapata

a collection of dynamic structures a memory configuration. These structures comprise
several memory chunks, that we call memory locations, which are linked by references.
Inside these memory locations there is room for data and for pointers to other memory
locations. These pointers are called selectors. Each statement in the code will have a set
of Reference Shape Graphs (RSG) associated with it, which are called a Reduced Set
of Reference Shape Graphs (RSRSG). The RSGs are graphs in which nodes represent
memory locations which have similar reference patterns. To determine whether or not
two memory locations should be represented by a single node, each one is annotated
with a set of properties. Now, if several memory locations share the same properties,
then all of them will be represented by the same node. These properties are described
in [4,5], but to understand the experimental results we have to explain one of them: the
share information. This property can tell whether at least one of the locations repre-
sented by a node is referenced more than once from other memory locations. In order to
hold the shared information we use two kinds of attributes for each node: SHARED(n)
states if any of the locations represented by the node n can be referenced by other
locations by different selectors, and SHSEL(n, sel) points out if any of the locations
represented by n can be referenced more than once by following the same selector sel
from other locations.

As we have said, all possible memory configurations which may arise after the exe-
cution of a statement are approximated by a set of RSGs we call RSRSG. To move from
the “memory domain” to the “graph domain”, the calculation of the RSRSGs associ-
ated with a statement is carried out by the symbolic execution of the program over the
graphs. In this way, each program statement transforms the graphs to reflect the changes
in memory configurations derived from statement execution. The abstract semantic of
each statement states how the analysis of this statement must transform the graphs. The
whole symbolic execution process can be seen by looking at Fig. 1. For each statement
in the code we have an input RSRSGi and the corresponding output RSRSGo rep-
resenting the memory configurations after statement execution. During the symbolic
execution of the statement all the rsgij belonging to RSRSGi are going to be updated.
The first step comprises graph division to better focus on the several memory config-
urations represented by the RSG. Pruning removes redundant or nonexistent nodes or
links that may appear after the division operation. Then the abstract interpretation of the

RSRSG i RSRSG o
Symbolic execution of the sentence

*

*

*

i1

ij

in
rsg

ij2

ij1

ijk

and compression

rsg
rsg

rsg

ij1

ijk

ij2

o1rsg

okrsg

rsg om

graph union

rsg

rsg

rsg

rsg
rsg

and pruning
Division Abstract

interpretation
Compatible

Fig. 1. Schematic description of the symbolic execution of a statement

Towards Compiler Optimization of Codes Based on Arrays of Pointers 145

statement takes place and usually the complexity of the RSGs grows. In order to counter
this effect, the analysis carries out a compression operation. In this phase each RSG is
simplified by the summarization of compatible nodes, to obtain the rsg∗ijk graphs. Fur-
thermore, some of the rsg∗ijk can be fused into a single rsgok if they represent similar
memory configurations. This operation greatly reduces the number of RSGs in the re-
sulting RSRSG.

In the next two sections we present the new extension that allows our analyzer to
deal with dynamic data structures comprising arrays of pointers, as these kinds of data
structures are widely used in C codes. Due to space constraints we have tried to present
a clear idea of our extensions using English and examples, but more technical details
are in [3].

3 Multiselectors

We can view an array of pointers as a set of n selectors (links), all with the same name.
Our original method, briefly described in the previous section, only deals with single
selectors (which represent single links). Thus, the problem arising with the arrays of
pointers is that a single selector name represents several links, and all of them belong
to the same memory location (due to having been allocated by the same malloc instruc-
tion).

We illustrate all this with the following example. Figure 2 shows an example of a
complex data structure definition comprising two arrays of pointers, and it also illus-
trates the corresponding memory configuration after the execution of the last “malloc()”
statement. As we note, sel is a single selector which can point to a single memory loca-
tion and which can be modified by statements like “x→sel=...”. These kinds of selectors
can be managed by our previous analyzer. However, sel1 and sel2 represent arrays of
selectors. The difference between sel1 and sel2 is that we know the size of the sel1
array at compile time, but the size of sel2 is defined at run time. In any case, we now
want to deal with both types of arrays of selectors, which now have to be modified by
statements like “x→sel1[i]=...” or “x→sel2[i]=...”.

typedef struct str {
...
struct str1 *sel;
struct str2 *sel1[256];
struct str **sel2;

}
x=(str *)malloc(sizeof(
struct str));
x->sel2=(str **)malloc(n*
sizeof(str *));

256 n

. . .

str2

str2

str2

str

str

. . .

x

str1

sel sel1 sel2

Fig. 2. Example of data structure containing arrays of pointers

146 F. Corbera, R. Asenjo, and E.L. Zapata

Since sel1 and sel2 are not single selectors, we have called them multiselectors.
In order to take into account multiselectors in our method we have introduced in our
analyzer two new important concepts: instance and multireference class. The idea is
the following: since our method is already able to deal with single selectors our goal
is now to include a previous step in the symbolic execution process to focus on one
of the selectors included in a particular multiselector. In other words, a statement like
“x→sel1[i]=...” is going to update a single selector (a particular selector included in the
multiselector sel1), but before applying the symbolic execution, first we have to identify
the particular sel1[i] which is going to be updated. The instances and multireference
classes will help us to develop this preprocessing stage.

3.1 Instances

An instance of a multiselector represents a subset of links belonging to this multise-
lector. In other words, an instance identifies a subregion in the array of pointers. For
example, for the statement x → sel[i] the analyzer creates an instance in the multis-
elector sel (the one directly pointed to by x), which represents the i position of array
sel. This way, this instance can be processed and modified by the analyzer as if it were
a single selector.

In our method, the set of variables which are used to index the arrays of pointers is
called IVARS. Now, an instance, ins, is identified by two sets, < ivs, vivs > where:

• ivs = {iv ∈ IVARS}, is the set of index variables which identifies the array position
represented by the instance.

• vivs = {iv ∈ IVARS}, is the set of index variables that have previously visited the
array position represented by the instance, but which are currently indexing other
array positions.

The reason to keep the vivs set, is to achieve a more accurate description and
processing of the link represented by x → sel[i] inside a loop body in which the
variable i does not take the same value twice. Therefore, the reference x → sel[i]
always identifies a different position of the array sel and the analyzer will be able to
avoid updating regions of the data structures already updated in a previous iteration
of the loop.

The functions ivs(ins) and vivs(ins) provide the ivs and vivs sets respectively.
Now, we can say that there are two types of instances:

• Single instance. These instances represent exactly one position of the array and they
can be handled as a single selector. The instance ins is a single instance if ivs(ins)
�= ∅, which means that there is an index variable in the ivs set for the corresponding
ins instance.

• Multiple instance. These instances represent more than one array position, i.e. one
array region. Now, if ins is a multiple instance, then ivs(ins) = ∅.

We illustrate all these concepts with an example. In Fig. 3 we can see a graph as-
sociated with the statement 4 of the code presented in the same figure. Actually, at this
program point, the pointer variable (pvar) tree is pointing to the root of the tree repre-
sented by node n1. This tree root contains an array of pointers to the children, called

Towards Compiler Optimization of Codes Based on Arrays of Pointers 147

... (tree pvar points to a
previously created tree)

1 for (i=0; i<n; i++) {
2 j = ...
3 if (j == i) {
4 tree->child[j] =
5 ...
6 }
7 else {
8 ...
9 }
10 }
11 }

0
0vivs=

ivs={i,j} 0ivs=
vivs={i}

tree

child
n1

NULL

child
n2

Fig. 3. Code example and graph representation of the instances

child. Therefore, the node n1 contains the child multiselector. In this example, for this
multiselector, there are three instances represented by three circular nodes.

If statement 4 is reached, clearly index variables i and j share the same value and
the corresponding RSRSG will reflect this fact. Actually, the first instance, identified
by < {i, j}, ∅ > (which means ivs = {i, j}, vivs = ∅), represents the single array
position indexed by variables i or j. Clearly, this is a single instance as index variables
i or j have a single value at this program point and this way they index a single array
position. The vivs = ∅ for this instance states that this array position was not previously
visited by any index variable.

The second instance is identified by < ∅, {i} >. This is a multiple instance repre-
senting all the array positions not indexed at the current statement by any index variable
but previously visited by the index variable i in previous iterations of the loop at state-
ment 1. Finally, the last instance, identified by ∅ (< ∅, ∅ >), represents all the other
array positions: not indexed now or before by index variable i.

For example, if i = 5, at statement 4, the instance < {i, j}, ∅ > represents the
position 5 of the array, the instance < ∅, {i} > represents positions 0 to 4 and the
instance ∅ identifies positions 6 to the final one.

3.2 Multireference Classes

As we saw in Sect. 2, our method symbolically executes each statement of the code,
and some of the operations included in the symbolic execution are graph compression
and union and graph division. Graph compression and union operations are necessary
to avoid an explosion in the number of nodes and graphs associated with each statement
to describe the data structure at each program point. On the other hand, the goal of the
division operation is to focus on the area of the graph which is going to be modified
by the symbolic execution of a statement, leading to a much more accurate updating
of the RSRSGs. These operations were defined and work well for single selectors, but

148 F. Corbera, R. Asenjo, and E.L. Zapata

mc1

mc1

n1

n2

n3

n2

n5

mc2

mc2
n4

ms1

ms1

ms1

ms1

ms1

ms1

mc1
n2

n3

n5

ms1

ms1

ms1

ms1

mc2

n6

mc1, mc2

n6

mc1

mc1
n2

n3

mc2
n6

n2

n5

ms1

ms1

ms1

ms1

ms1

ms1

mc2

(a) (b) (c)

Fig. 4. Compression and division with multireference classes

something new has to be introduced to also deal with multiselectors: the multireference
classes, (mc).

After the allocation of a new memory location, multiselectors are labeled with a
certain multireference class. During the graph compression and union operations, com-
patible nodes which represent similar memory locations are fused or summarized into a
single one. When two nodes are summarized the destinations of their selectors and mul-
tiselectors may be joined as well, but multiselector preserves their multireference class.
Thus, if for a later statement the analyzer wants to focus on one of the summarized
nodes, it is possible to separate them, thanks to the multireference classes.

We can better illustrate this with the example in Fig. 4. First we note in Fig. 4 (a) that
nodes n1 and n4 have the same multiselector ms1, but links from node n1 are labeled
with mc1 and those from n4 belong to the multireference class mc2. Let’s suppose that
nodes n1 and n4 are compatible and can be summarized into a new node n6 in Fig. 4
(b). Some of the destination nodes are also joined but the multireference classes allow
the analyzer to accurately focus on node n1 or n4 if they have to be modified later
(Fig. 4 (c)).

Having introduced these two key concepts associated with multiselectors we can
move on to briefly describe how the symbolic execution of the statements has to be
modified to take into account this new information.

4 Extended Symbolic Execution for Multiselectors

As we said in Sect. 2, the symbolic execution of a statement carries out the generation of
the output RSRSGo which captures the modifications, due to this statement, in the data
structures represented by the input RSRSGi. Basically, as we explained in Fig. 1, the
symbolic execution process first focusses on the section of the graphs which are going
to be updated, to subsequently carry out the abstract interpretation of the statement
which conveniently modifies the graphs. Finally, graphs are compressed and some of
them joined for the sake of memory wastage minimization.

This scheme is valid for statements in which only single selector are involved. How-
ever, if the statement includes multiselectors, x → sel[i] = NULL, x → sel[i] = y

Towards Compiler Optimization of Codes Based on Arrays of Pointers 149

RSRSG i RSRSG o

i1

ij

in

rsg

rsg

rsg rsg
ij

ij

ij

rsg
rsg

rsg
ij

ij

ij

rsg
rsg

Symbolic execution of the sentence

*

*

*

and compression

rsg
rsg

rsg

ij1

ijk

ij2

o1rsg

okrsg

rsg om

graph unionand pruning
Division Abstract

interpretation
CompatibleMultiref.

Division
Class Instantiation

mc2

mc1

mcn

ins1

ins2

insn

Multiselector sentence only

rsg
ij2

ij1

ijk

rsg
rsg

Fig. 5. Extension of the symbolic execution to also deal with multiselectors

and y = x → sel[i], the analyzer must first identify the i position of the array of point-
ers to focus on the particular link represented by sel[i]. If we are able to do this, then
we can later apply the single selector procedure because we have translated a multi-
selector into a single selector. Since we are carrying out an analysis at compile time,
sometimes the method has to behave conservatively: if we cannot identify the particular
i selector we have to update all the links that may be represented by the sel[i] selector.
Fortunately, the analyzer normally avoids inaccurate updates since it is able to exclude
several links that are definitely not represented by sel[i]. Basically, in order to focus
on a single selector from a multiselector, the analyzer implements two previous steps
as we can see in Fig. 5: multireference class division and instantiation. These two pre-
processing stages are executed only for the symbolic execution of statements involving
multiselector, and are briefly described next.

4.1 Multireference Class Division

For a given statement like x → sel[i], the multireference class division operation just
splits the different configurations of the links represented by multiselector sel into sev-
eral graphs. These different configurations are in the same graph after a graph union
operation and may coexist in the graph domain for the sake of memory saving. How-
ever, in the memory domain those configuration are exclusive and the analyzer has to
separate them. In other words, in order to increase the accuracy of the method, before
updating a graph, the analyzer looks for the most precise description of the memory
configurations which are going to be updated.

More precisely, given an rsgi to be updated by a statement, the multireference class
division will split the rsgi into as many graphs rsgmci

i as there are multireference
classes in the multiselector, as we can see in Fig. 5. Note that the number of multiref-
erence classes that may appear in a multiselector is limited as a multireference class is
just an identifier of a subset of links that may be represented by a multiselector. Since
the number of links represented by a multiselector is finite (due to there being a finite
number of nodes), the number of subsets of links is also finite.

This operation can be better illustrated by the example in Fig. 6 where we can see
a hypothetical rsgi before the execution of statement of the type “a → col[i] = ...”.
In this graph, the pointer variable a is pointing to a memory location containing the
multiselector col. There are two instances associated with this multiselector which are
identified by (< ∅, {i} >), instance ins1, and ∅, instance ins2. Both instances are
pointing to other locations and the links are labeled with two multireference classes,
mc1 and mc2.

150 F. Corbera, R. Asenjo, and E.L. Zapata

0

nxt nxtnxt

n3 n4 n5

0

NULL nxt

n2

a
col

n1

mc1

mc1, mc2

mc1

mc2

ivs=
vivs={i}

ins1
ins2

Fig. 6. An example of graph that has to be updated

a
col

n1

0

nxt

n2

0

NULL

mc1
mc1mc1

ivs=
vivs={i}

a
col

n1

0
0

NULL

mc2

nxt nxt

n3 n4 n5

nxt

mc2

ivs=
vivs={i}

(a) (b)

Fig. 7. Graphs obtained after the multireference class division

Put simply, this graph represents an array of pointers, a, where the already visited
positions (instance ins1) are pointing to NULL, mc1, or to single linked lists of two
or more elements (n3, n4, and n5), mc2, depending of the followed path reaching the
statement in the control flow graph. On the other hand, non-visited positions of array a
(instance ins2) may point to a single memory location n2, mc1, or to NULL, mc1, mc2.

The multireference class division operation generates the two different graphs we
can see in Fig. 7. The first graph, Fig. 7 (a), is obtained just by keeping the links belong-
ing to multireference class mc1, whereas the second graph, Fig. 7 (b), keeps those links
of the multireference class mc2. Now we have identified two possible memory config-
urations (two possible data structures) that may reach the statement “a → col[i] = ...”.
Note that in this example, these two memory configurations reach the same statement
after following two different paths in the control flow graph of the analyzed code. The
analyzer has to conservatively update each memory configuration according to the new
“a → col[i] = ...” statement because at compile time the analyzer does not know which
path is going to be the one executed at run time.

4.2 Instantiation

After the multireference class division, several graphs rsgmci

i are going to be modified
by the instantiation operation. The goal now is to focus on the particular i position of
the array of pointers to successfully translate a multiselector into a single selector. In

Towards Compiler Optimization of Codes Based on Arrays of Pointers 151

order to do this, the analyzer has to generate a new single instance to represent the i link
of the multiselector sel. This particular link will be later processed as a single selector
by the subsequent compiler passes as can be seen in Fig. 5.

More precisely, for a statement of the type x → sel[i], the new single instance has
to fulfill that ivs = {i, ...}. In the worst case, the new instance would inherit all the
links which point to other memory locations from the other already existing instances.
This is the most conservative case in which the analyzer is not able to extract more
precise information about the particular i position of the array involved in the statement.
However, in most cases, the analyzer would be able to identify some relations between
index variables. These relations are stored in an index variable relation table, IVRT,
which is going to help in reducing the number of links that the new single instances
have to inherit.

This IVRT(iv1, iv2, st) table has to be generated in a preprocessing compiler pass
to store the relations between index variables iv1 and iv2 for the statement st. The IVRT
table also holds the relations between an index variable now (in the current iteration of
a loop) and before (in a previous iteration) using the expression IVRT(iv, va(iv), st),
where va(iv) represents the old values taken by iv in previous iterations of the loop. The
possible values for IVRT(iv1, iv2, st) are: eq, if iv1 and iv2 have the same value at st;
neq, if they are different; or unk, if the relation between them is unknown. We are also
studying including in the IV RT generation pass more precise array region descriptions
such as those presented in [7] which also deals with non-affine access functions.

The IVRT holds key information regarding the initialization of the links correspond-
ing to the new single instance. This way, the new single instance < {i}, ∅ > has to
inherit all the links of the compatible instances, which are those that do not contain j in
the ivs set where IVRT(i, j, st) = neq. This is due to the fact that if i �= j in st, then
the instances with ivs = {j, ...} do not represent the i position of the array. Besides, if
IVRT(i, va(i), st) = neq, then the new single instance < {i}, ∅ > will not inherit the
links of instances of the type < ..., {i, ...} >.

We can better explain these ideas by reference to Fig. 7. Let’s suppose that the
analyzer has found out in a previous step that IVRT(i, va(i), st) = neq, which means
that for the code statement st the index variable i has a new value which has never been
taken by this variable in this statement st (in a previous iteration). Now, the analyzer
has to generate a new single instance < {i}, ∅ > as we see in Fig. 8. Note that this new
instance only inherits the links of the ∅ instance since the < ∅, {i} > instance identifies
already visited positions of the array and we know that i now has a different value.

The number of instances that can appear in any multiselector is limited by the num-
ber of index variables and, as we said, an instance is just a pair of sets of index variables.
In addition, in these sets they will not appear all possible index variables, but just those
involved in the traversing of an array of pointers. These index variables are removed
from the instances when the symbolic execution leaves the loop in which the array of
pointer is traversed. Subsequently, instances with the same sets are fused and conse-
quently the number of instances decreased.

Due to space constraints we cannot cover additional important issues such as IVRT
generation and index variable analysis and scope; however, these are described in [3].

152 F. Corbera, R. Asenjo, and E.L. Zapata

a
col

n1

0

nxt

n2
0

0

NULLmc1

mc1
mc1

mc1

mc1
ivs={i}

vivs=

ivs=
vivs={i}

a
col

n1

0

nxt nxtnxt

n3 n4 n5

0
ivs={i}

vivs=
0

NULL

mc2
mc2 mc2

ivs=
vivs={i}

(a) (b)

Fig. 8. Resulting graphs after instantiation

5 Experimental Results

With the previously described ideas we have extended the analyzer presented in [4,5]
to allow for the automatic detection of the data structures at each program point for
codes based not only on single selectors but also on multiselectors. With this analyzer
we have analyzed several codes in which the dominant data structure comprises arrays
of pointers.

As we have seen, the set of properties associated with a node allows the analyzer
to keep in separate nodes those memory locations with different properties. Obviously,
the number of nodes in the RSRSGs depends on the number of properties and also on
the range of values these properties can take. The higher the number of properties the
better the accuracy in the memory configuration representation, but also the larger the
RSRSGs and memory wastage.

Fortunately, not all the properties are needed to achieve a precise description of the
data structure in all the codes. That is, simpler codes can be successfully analyzed tak-
ing into account fewer properties, and complex programs will need more compilation
time and memory due to all the properties that have to be considered to achieve ac-
curate results. Bearing this in mind, we have implemented the analyzer to carry out a
progressive analysis which starts with fewer constraints to summarize nodes, but, when
necessary, these constraints are increased to reach a better approximation of the data
structure used in the code. More precisely, the compiler analysis comprises three levels:
L1, L2, and L3, from less to more complexity.

The analyzed codes are the sparse matrix vector multiplication, sparse matrix ma-
trix multiplication, sparse LU factorization, and the kernel of the Barnes-Hut N-body

Table 1. Time and space required by the analyzer to process several codes

Time Space (MB)
Level L1 / L2 / L3 L1 / L2 / L3

S.Mat-Vec 0’03”/0’04”/0’05” 0.92/1.03/1.2
S.Mat-Mat 0’12”/0’14”/0’16 1.19/1.31/1.49
S.LU fact. 2’50”/3’03”/- 3.96/4.18/-
Barnes-Hut 61’24”/69’55”/0’54” 40.14/42.86/3.06

Towards Compiler Optimization of Codes Based on Arrays of Pointers 153

simulation. In Table 1 we present the time and memory required by the analyzer to pro-
cess these codes in a Pentium III 500 MHZ with 128 MB main memory. The first three
codes were successfully analyzed in the first level of the analyzer, L1. However, for the
Barnes-Hut code the highest accuracy of the RSRSGs was obtained in the last level,
L3, as we explain in Sect. 5.2. For the Sparse LU factorization, our analyzer runs out of
memory in L3. We now briefly describe the results for the analyzed codes.

5.1 Sparse Codes

Here we deal with three sparse irregular codes which implement sparse matrix op-
erations: matrix vector multiplication, r = M × v, matrix by matrix multiplication,
A = B × C, and sparse LU factorization, A = LU .

In the two first codes, sparse matrices M , A, and B are stored in memory as an array
of pointers, row, pointing to doubly linked lists which store the matrix rows. Matrix C
is similarly stored by columns instead of by rows. The sparse vectors v and r are also
doubly linked lists. This can be seen in Fig. 9(a). Note that vector r grows during the
matrix vector multiplication process.

v rM
row

ROWS VECTOR VECTOR

prvnxt nxt prv

nxt

prv

MATRIX
HEADER

0M
row

NULLnxtnxt

v
nxt nxt

nxtnxtnxt

prv nxt prv prv prv nxt

prv nxt prv prv

prvprvprv

HEADER
MATRIX

r

ROWS

VECTOR

VECTOR

n1

n2 n3 n4 n5

n6 n7 n8

n9 n10 n11

(a) (b)

Fig. 9. Sparse matrix-vector multiplication data structure and compacted RSRSG

On the other hand, the sparse LU factorization solves non-symmetric sparse linear
systems by applying the LU factorization of the sparse matrix. Here, the sparse matrix
is stored by columns. However, this code is much more complex to analyze due to
the matrix filling, partial pivoting, and column permutation which takes place in the
factorization in order to provide numerical stability and preserve the sparseness. After
the analysis process, carried out by our analyzer at level L1, the resulting RSRSGs
accurately represent the data structure at each program point for the three codes.

Regarding the sparse matrix vector multiplication, in Fig. 9(b) we present a compact
representation of the resulting RSRSG for the last statement of the code. Nodes where
the SHARED(n) property is true are shaded in the figures. In this RSRSG we can clearly
see the three main data structures involved in the sparse matrix vector multiplication
(M , v, and r). Each vector is represented by three nodes and the central one represents
all the middle items of the doubly linked list. The sparse matrix is pointed to by pointer

154 F. Corbera, R. Asenjo, and E.L. Zapata

variable M which is actually an array of pointers with the multiselector row. This
multiselector has, for the last statement of the code, a single instance (∅) representing
all the positions (pointers) of the array. In the RSRSG we can see that these pointers
can point to NULL (there is no element in the row), to a single node (the row has just
one entry), or to a doubly linked list of two or more elements. For the matrix matrix
multiplication, matrices A, B, and C are also clearly identified by three graphs like the
one just described before. The same happens for the in-place sparse LU factorization
where the resulting LU matrix is stored where the original matrix A was.

To properly interpret this graph representation of the sparse matrices we have to
say that the analyzer also knows that the SHSEL(n, sel) for all the nodes and all selec-
tors is false. Remember that SHSEL(n, sel) =false means that all the locations repre-
sented by n can not be referenced more than once by following the same selector sel
from other locations. This leads to several conclusions: (i) the doubly linked lists are
acyclic when traversed by following just one kind of selector (nxt or prv), since the
SHSEL(n, nxt)=false points out that a node can not be pointed to twice by other nodes
using selector nxt (the same for prv); (ii) different pointers of the array row point to
different rows, as SHSEL(n2, row) = false; (iii) besides this, the doubly linked lists do
not share elements between them.

Using this information, a subsequent compiler pass would be able to identify the
traversals of the rows for prefetching or locality exploiting. Furthermore, the analyzer
would state that the sparse matrix rows/columns can be updated in parallel for some
loops of the codes, and that it is also possible to update each row/column in parallel.

5.2 Barnes-Hut N-Body Simulation

This code is based on the algorithm presented in [1] which is used in astrophysics. In
Fig. 10(a) we present a schematic view of the data structure used in this code. The
bodies are stored by a single linked list pointed to by the pvar Lbodies. The octree
represents the several subdivisions of the 3D space. Each leaf of the octree represents a
subsquare which contains a single body and therefore points to this body stored in the
Lbodies list. Each octree node which is not a leaf has an array child of eight pointers
to its children.

Root

OCTREE

BODIES
LIST OF

child

body

STACK

node

child

child child child child

childchild

child child child child

childchild

nxt

nxtLbodies

Stack 0

0 0

node

node

node

Root
body OCTREE

n1

body

NULL

n3n2
body

NULLNULL

nxt nxt nxt
n6n5n4

LIST OF BODIES

STACK
n9

n8

n7
nxt

nxt

nxt

Stack
child

child child

Lbodies

(a) (b)

Fig. 10. Barnes-Hut data structure and compacted RSRSG

Towards Compiler Optimization of Codes Based on Arrays of Pointers 155

The three main steps in the algorithm are: (i) The creation of the octree and list
(ii) for each subsquare, compute the center of mass and total mass; and (iii) for each
particle, traverse the tree, to compute the forces on it.

All the traversals of the octree are carried out in the code by recursive calls. Due
to the fact that our analyzer is still not able to perform an interprocedural analysis,
we have manually carried out the inlining of the subroutine and the recursivity has
been transformed into a loop. This loop uses a stack pointing to the nodes which are
referenced during the octree traversal. This stack is also considered in Fig. 10 (a) and
obtained in the corresponding RSRSG, Fig. 10 (b). The first step of the code, (i), is
successfully analyzed in level L1 but the best accurate description of the data structures
used in steps (ii) and (iii) are obtained in level L3.

However, regarding Table 1, there is paradoxical behavior that deserves explanation:
L3 expends less time and memory than L1 and L2. In L3 SHARED and SHSEL remain
false for more nodes and links which leads to more nodes and links being pruned during
the abstract interpretation and graph compression phase of the symbolic execution of
the statements. This leads to significantly reducing the number of nodes and graphs,
which reduces memory and time requirements.

6 Conclusions and Future Work

In this work we have extended our shape analysis techniques to allow for the automatic
detection of dynamic data structures based on arrays of pointers that we have called
multiselectors. In order to accurately support multiselectors we propose the use of mul-
tireference classes and instances. On the one hand, the multireference classes point out
which are the possible configurations of links that may coexist for a given statement.
On the other hand, the instances are the key to focussing on the particular position of
the array of pointers which is actually involved in a statement including a reference to
a multiselector (sel[i]).

To validate these techniques we have implemented them in an analyzer which can
be fed with C code and returns the data structures at each program point. This analyzer
has reported very accurate descriptions of the data structures used in the tested codes,
requiring a reasonable amount of memory and time. To the best of our knowledge there
is no other implementation able to achieve such successful results for complex C codes
like the ones presented here.

Information about data structure is critical in order to carry out further compiler
optimizations such as locality exploiting or automatic parallelization. In the near future
we will approach the issue of these additional compiler passes, but before this we want
to tackle the recursive calls problem.

References

1. J. Barnes and P. Hut. A Hierarchical O(n· log n) force calculation algorithm. Nature v.324,
December 1986.

2. D. Chase, M. Wegman and F. Zadeck. Analysis of Pointers and Structures. In SIGPLAN
Conference on Programming Language Design and Implementation, 296-310. ACM Press,
New York, 1990.

156 F. Corbera, R. Asenjo, and E.L. Zapata

3. Francisco Corbera. Automatic Detection of Data Structures based on Pointers. Ph.D. Disser-
tation, Dept. Computer Architecture, Univ. of Málaga, Spain, 2001.

4. F. Corbera, R. Asenjo and E.L. Zapata Accurate Shape Analysis for Recursive Data
Structures. 13th Int’l. Workshop on Languages and Compilers for Parallel Computing
(LCPC’2000), IBM T.J. Watson Res. Ctr., Yorktown Heights, New York, NY, August, 2000.

5. F. Corbera, R. Asenjo and E. Zapata Progressive Shape Analysis for Real C Codes., IEEE
Int’l. Conf. on Parallel Processing (ICPP’2001), pp. 373-380. Valencia, Spain, September
3-7, 2001.

6. R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis for heap-
directed pointers in C. In Conference Record of the 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 1-15, St. Petersburg, Florida, January,
1-24, 1996.

7. J. Hoeflinger and Y. Paek The Access Region Test. In Twelfth International Workshop on
Languages and Compilers for Parallel Computing (LCPC’99), The University of California,
San Diego, La Jolla, CA USA, August, 1999.

8. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence Analysis for Pointer Variables. In Proceed-
ings of the SIGPLAN Conference on Programming Language Design and Implementation,
28-40, June 1989.

9. J. Hummel, L. J. Hendren and A. Nicolau A General Data Dependence Test for Dynamic,
Pointer-Based Data Structures. In Proceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 218-229. ACM Press, 1994.

10. N. Jones and S. Muchnick. Flow Analysis and Optimization of Lisp-like Structures. In Pro-
gram Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Englewood Cliffs,
NJ: Prentice Hall, Chapter 4, 102-131, 1981.

11. A. Matsumoto, D. S. Han and T. Tsuda. Alias Analysis of Pointers in Pascal and Fortran
90: Dependence Analysis between Pointer References. Acta Informatica 33, 99-130. Berlin
Heidelberg New York: Springer-Verlag, 1996.

12. J. Plevyak, A. Chien and V. Karamcheti. Analysis of Dynamic Structures for Efficient Parallel
Execution. In Languages and Compilers for Parallel Computing, U. Banerjee, D. Gelernter,
A. Nicolau and D. Padua, Eds. Lectures Notes in Computer Science, vol 768, 37-57. Berlin
Heidelberg New York: Springer-Verlag 1993.

13. M. Sagiv, T. Reps and R. Wilhelm. Solving Shape-Analysis problems in Languages with
destructive updating. ACM Transactions on Programming Languages and Systems, 20(1):1-
50, January 1998.

14. M. Sagiv, T. Reps, and R. Wilhelm, Parametric shape analysis via 3-valued logic. In Con-
ference Record of the Twenty-Sixth ACM Symposium on Principles of Programming Lan-
guages, San Antonio, TX, Jan. 20-22, ACM, New York, NY, 1999, pp. 105-118.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 157 – 171, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Empirical Study on the Granularity of Pointer
Analysis in C Programs

Tong Chen, Jin Lin, Wei-Chung Hsu, and Pen-Chung Yew

Department of Computer Science, University of Minnesota
{tchen, jin, hsu, yew}@cs.umn.edu

Abstract. Pointer analysis plays a critical role in modern C compilers because
of the frequent appearances of pointer expressions. It is even more important for
data dependence analysis, which is essential in exploiting parallelism, because
complex data structures such as arrays are often accessed through pointers in C.
One of the important aspects of pointer analysis methods is their granularity, the
way in which the memory objects are named for analysis. The naming schemes
used in a pointer analysis affect its effectiveness, especially for pointers
pointing to heap memory blocks. In this paper, we present a new approach that
applies the compiler analysis and profiling techniques together to study the
impact of the granularity in pointer analyses. An instrumentation tool, based on
the Intel’s Open Resource Compiler (ORC), is devised to simulate different
naming schemes and collect precise target sets for indirect references at
runtime. The collected target sets are then fed back to the ORC compiler to
evaluate the effectiveness of different granularity in pointer analyses. The
change of the alias queries in the compiler analyses and the change of
performance of the output code at different granularity levels are observed.
With the experiments on the SPEC CPU2000 integer benchmarks, we found
that 1) finer granularity of pointer analysis show great potential in
optimizations, and may bring about up to 15% performance improvement, 2)
the common naming scheme, which gives heap memory blocks names
according to the line number of system memory allocation calls, is not powerful
enough for some benchmarks. The wrapper functions for allocation or the user-
defined memory management functions have to be recognized to produce better
pointer analysis result, 3) pointer analysis of fine granularity requires inter-
procedural analysis, and 4) it is also quite important that a naming scheme
distinguish the fields of a structure in the targets.

1 Introduction

The pervasive use of pointer expressions in C programs has created a serious problem
for the C compilers. Without proper pointer analyses, compilers would not have
accurate knowledge of what memory objects may have been accessed by indirect
references. Consequently, many other important analyses, such as data dependence
analysis on arrays and complex data structures, may suffer from the conservative
assumptions about the targets of pointers. Hence, pointer analysis plays a critical role
in C compilers in exploiting parallelism [12]. It provides the analysis base for other
analysis and parallelizing techniques.

158 T. Chen et al.

Many pointer analysis methods have been proposed [1, 2, 3]. Among all the pointer
analyses, the points-to analysis [2, 4, 5, 6, 7, 8, 9, 10, 15] is the most widely used. A
points-to analysis aims to produce a set of potential targets for each indirect reference
so that the alias relationship among pointers can be determined by comparing their
target sets. Efforts have been put in searching for a good points-to analysis [11, 12,
13, 21].

The effectiveness of a pointer analysis is generally determined by two factors: the
algorithm used, and the granularity of the points-to targets specified in the compiler.
For example, the algorithms used by compilers may have different flow-sensitivity or
context sensitivity. The algorithm may also be applied inter-procedurally or only
intra-procedurally.

To calculate the target sets, the address space of memory objects in a program
should first be assigned names. The granularity of the names represents the precision
of the naming schemes used in pointer analysis. Different naming schemes may lead
to different granularity in pointer analyses. In general, there are two types of memory
objects: the local or global variables defined in the program, and heap memory blocks
allocated at runtime. The pointers that point to global or local variables are called
stack-oriented pointers; and the pointers that point to memory blocks are called heap-
oriented pointers [5]. For heap-oriented pointers, their target objects are anonymous.
Compilers have to assign them names internally before the target sets could be
calculated. For example, if the compiler assigns the entire heap space with only one
name, the entire heap space will be viewed as only one large memory object. All of
the pointers point to different memory locations in the heap space will have the same
target in their target sets, and they will all be aliases. On the other hand, for stack-
oriented pointers, global and local variables usually have explicitly given variable
names in the program, and with well-defined types. However, if the compiler treats an
entire data structure with many fields as a single memory object, all of the pointers
point to the different fields of the data structure will be aliases.

The granularity of the target objects and its related naming schemes not only affect
the results of a pointer analysis, but also the efficiency of its algorithm. Finer
granularity will allow better distinction among different memory objects, and hence,
fewer aliases. However, it may lead to a larger name space and possibly larger target
set sizes, and hence, longer time and more storage requirement for a points-to
analysis.

Various naming schemes have been proposed in the past [10, 16, 24, 27, 28]. For
anonymous heap memory objects, the place where they are allocated is used to name
them. For memory objects of structure type, the field names may be used in their
names. Some experiments have been done [25, 29] and showed the importance of
proper naming methods. However a comprehensive study on the impact of the
granularity on pointer analysis has not been done. Most of the previous studies focus
primarily on the algorithms. One reason is that it is not trivial to implement different
naming schemes in conjunction with various pointer analysis algorithms. Another
reason is that the heap memory objects have not received enough attention in the past.
In most compilers, only very simple naming schemes are used for heap memory
blocks. However, a recent study shows that the number of heap-oriented pointers is
quite significant in most SPEC CPU2000 programs [17]. Hence, it is important to

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 159

look at the impact of naming schemes and the granularity on the pointer analysis and
the optimizations that use the results of the pointer analysis.

In this paper, we study this problem using a new approach that combines the
profiling techniques and the compiler analysis. We developed an instrumentation and
profiling tool set based on the Intel’s Open Research Compiler (ORC) [14]. Different
naming schemes are simulated and the precise target sets of indirect references (e.g.
pointers) are collected at runtime for the points-to analysis. We then feed the results
of the points-to analysis back to the ORC compiler. The improvement on the results
of alias queries in other compiler analysis and optimizations and the performance of
the code thus generated are also measured. Our experiments are conducted on SPEC
CPU2000 integer benchmarks and on Intel Itanium computers.

The suggested approach does not have to implement pointer analyses with different
granularity in a compiler. It is much easier to simulate these analyses with a runtime
tool. The points-to set collected by this tool is an upper bound result and reveals the
potential of different granularity. Using the optimizations in the ORC compiler as
consumers makes the measurement of effectiveness meaningful. However, we have to
admit that some import issues, such as the impact of the algorithm, are not covered in
this paper.

The main contributions of this paper include:

• A comprehensive study on the naming schemes and the granularity of the pointer
analysis. We found that the widely used simple naming schemes are inadequate.
Wrapper functions and self-management functions that contain system memory
allocation functions (such as malloc()) need to be carefully analyzed. It is also
important for a pointer analysis to consider the fields of a data structure.

• A set of instrumentation and profiling tools to study issues related to pointer
analysis. We develop a tool that is capable of calculating precise target sets for
each pointer reference. This tool set is independent of the pointer analysis used in a
compiler.

• The impact of the pointer analysis on compiler optimizations. We feed the target
sets collected at runtime back into the ORC compiler to help later analyses and
optimizations, and measure the performance improvement on Itanium. It provides a
very direct way to study the impact of naming schemes and granularity on
performance.

The rest of the paper is organized as follows: The background knowledge of points-to
analysis is introduced in the next section. Section 3 and section 4 describe, in detail,
how the instrumentation and profiling tool works, and how the runtime results are fed
back to the ORC compiler to evaluate different naming schemes and granularity
levels. The experiment results are presented in section 5. The conclusions are
presented in section 6.

2 Background

In a points-to analysis, memory objects, such as variables and heap memory blocks,
need their names so the compiler can identify them as the targets of pointers. A
naming scheme sets up a mapping from the memory address space to the symbolic

160 T. Chen et al.

name space. These naming schemes differ in the way memory objects are grouped
together, and the names assigned to them. As a result, the naming schemes implicitly
determine the granularity of memory objects used within the compiler.

Global variables have explicit and fixed variable names in a program. Therefore,
using the variable names sets up a precise one-to-one mapping between their
corresponding memory locations and their names. The local variables within a
procedure also have explicit variable names. But there may be many instances of a
local variable at runtime if the procedure is called recursively. A name for a local
variable may represent many instances of the variable in different procedure
instances. However, such many-to-one mapping is usually thought as a quite precise.

Heap memory objects have no explicit names assigned to them in the program. The
number of memory blocks allocated at runtime by the malloc() function is unknown at
compile time. The compiler has to group those heap memory blocks and assigns them
a name to facilitate points-to analysis.

These anonymous memory objects created by all of the malloc() functions in the
program could be assigned the same name[26]. If that is the case, all references
accessing to any memory block allocated by the malloc() are aliases. This obviously
is not very desirable. Hence, the compiler often assigns names to memory blocks
according to the line number of the statement which contains malloc() function in the
program. This allows memory blocks allocated at different call sites of the malloc()
function to have different names, and hence, be treated as different points-to targets.
This is significantly better than the previous naming scheme. However, if the malloc()
function is called within the procedure X, and the procedure X is called several times
at different call sites. All of the memory blocks allocated at different call sites of
procedure X will have the same name.

To avoid such a problem, the compiler can also assign a name according to the
calling path at the invocation site of the malloc() function in addition to the line
number [10]. For example, if procedure X calls procedure Y which in turn calls
procedure Z, and a malloc() is called within procedure Z. The memory blocks
allocated by the malloc() can be assigned a name according to its calling path X-Y-Z
in addition to its line number. To control the complexity of such a naming scheme, the
compiler can use only the last n procedures of a calling path in its naming scheme. In
the last example, if n=2, Y-Z will be used. Different n will thus give different levels
of granularity to the named memory objects.

When a memory object is a structure type with many fields, the granularity of the
memory object can be made even finer by considering each of its field as a different
memory object. As a result, two pointers that point to different fields of a memory
object of the structure type can be distinguished. However, since C is not a strong-
typed language, type casting has to be monitored carefully when fields are considered.
Notice that the naming of the dynamically allocated memory blocks and separating
the fields of the structure-type memory objects are orthogonal, i.e. they can be used
independently in determining the granularity of memory objects.

In the following discussion, the granularity level, G, of a naming scheme will be
represented by these two considerations. For example, G=n means that the last n
procedures in the calling path are used, but fields are not considered. When n=0, it is
the degenerate case of assigning the entire heap space with only one name; when n=1,
only the line number is used. G=nf means the fields are also considered in addition to
the calling path.

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 161

3 Target Sets in Different Naming Schemes

3.1 Overview

We developed an instrumentation and profiling tool to simulate different naming
schemes and collect their target sets of indirect references. Our approach takes
advantage of the fact that the addresses of memory objects and references are all
available at runtime.

The selected naming scheme is simulated by setting up a mapping at runtime from
the addresses of memory objects to their names according to the naming scheme.
Targets of a pointer are identified by looking up the mapping with the addresses of the
references to their names. The target sets thus obtained represent approximately the
best results that these naming schemes and pointer analyses can be expected to
achieve.

To facilitate the lookup process, shadows are used to record the address-name
mapping. There are three contiguous data segments in a program: the global
variable segment, the heap memory segment and the local variables segment. A
library routine for system memory allocation is provided to assure that the heap
space is allocated in a compact space so as to keep the shadow space for heap
compact. A corresponding shadow entry in the shadow segment is assigned to each
of the memory blocks allocated. The sizes of the shadow segments can be
dynamically adjusted to be large enough to hold the address-name mapping for all
of the memory blocks allocated at runtime. The name of a memory object is stored
in its shadow entry in the shadow segment with the same offset as that in the data
segment (see Fig. 1). As a result, the offset can be used in the lookup process to
quickly locate the shadow entry that stores the name. Such a shadow data structure
makes its modification very easy - just overwrite the old value and no delete
operation is needed. However, this method doubles the size of memory required by
a program.

program data space name mapping in shadow space

address

offset

name

Fig. 1. The shadow for naming schemes

162 T. Chen et al.

There are several advantages using this approach. First, this tool provides a
uniform platform to study the granularity of the points-to analysis. The effectiveness
of different granularity levels can be compared using this framework. It is much
easier to develop such a profiling tool than to implement different naming schemes
and pointer analyses in a real compiler. Secondly, the precise target sets for each
naming scheme can be collected at runtime. These results are roughly the best any
compiler implementation can be expected to achieve. Hence, the obtained results do
not depend on the quality of the implementation of these naming schemes and points-
to analyses in a real compiler. This is a very significant advantage especially because
the results of an inter-procedural points-to analysis are heavily dependent on how it is
implemented. The third advantage is that the results of our measurements can be fed
back to the ORC compiler, and we can study their actual impact on the other analyses
and the optimization phases that are the clients of the points-to analysis. The fourth
advantage is that we can study the potential performance improvement on a real
machine, i.e. Itanium, not on a simulator.

However, such a profiling method also has its limitations. Since our results are
collected during runtime, they could be input dependent and the coverage of the
program limits our studies only to the parts that are actually executed at runtime. With
the measurements from a suite of benchmarks and the focus of the study is not on a
particular program, we believe that the results of our study can reflect the general
characteristics of real applications.

Our profiling tool has two major components: an instrumentation tool developed
on the Intel's ORC compiler [14], and a set of library routines written in C.
Application programs are first instrumented by the modified ORC compiler to insert
calls to the library routines. Then at runtime, these library routines simulate different
naming schemes and collect the target sets of indirect references.

3.2 Instrumentation

The instrumentation tool in the ORC compiler inserts function calls to invoke our
library routines to generate and process traces. They simulate different naming
schemes for every memory object, and calculate target sets for every indirect
reference. We describe some of the details in the followings:

• Procedure calls. At every entrance and exit of a procedure call in the program, a
library call is inserted with the call site ID of the procedure passed as one of the
parameters. The call site ID is pushed into or popped out of the calling path stack
to maintain the current calling path.

• Memory objects. When a memory object becomes alive, a library call is inserted
with the starting address, the length, and the name (for variables only) of the
memory object passed as its parameters. The name of the variables helps us to
identify which variable is actually referenced when the runtime results are fed back
to the compiler. The way a name is assigned to a heap memory block is determined
by the selected naming scheme. This library call sets up the mapping from the
addresses of this memory object to its name by writing the name in the
corresponding shadow entry. The number of entries to be written is determined by
the size of this memory object. Global variables, local variables and heap memory
blocks are instrumented differently:

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 163

• Global variables become alive at the beginning of a program. The mapping of
global variables is initialized only once when the program starts. Scope may be an
issue for global variables. Global variables are visible only in the files in which
they are declared. The initialization procedure for global variables is instrumented
in each file as a new procedure at the end of the file, and these procedures are
invoked at the beginning of the main function. The starting address of a global
variable can be accessed by the address-of operation. The length is determined by
the type.
− Local variables become alive each time the procedures in which they reside are

called. The address for a local variable may not remain the same for each
invocation of the procedure. Therefore, we have to insert library function calls at
the beginning of each procedure to set up the address-name mapping for local
variables. Variables can be ignored if their addresses are not taken. The starting
address of a local variable can be accessed by the address-of operation.

− Heap memory blocks become alive when they are allocated through calls to
system memory allocation functions, such as malloc() and calloc(). Library
function calls are insert after these functions. The starting address is the return
value of the memory allocation function, and the size of the memory blocks can
be obtained from the parameters of these memory allocation functions.

• Indirect references. Each indirect memory reference is instrumented with its
address and the reference ID passed as parameters to the library function call in
order to collect its target set at runtime.

• Typecast. The instrumentation of type cast is needed only when we want to
identify the type of a memory object. The instrumentation tool also generates a file
to describe the layout of each structure type. Therefore, the heap memory blocks
for data structures with fields can be sliced into smaller objects according to their
fields.

3.3 Assign Names

Global and local variables already have their given names. Hence, there is no need to
assign names to them. For heap memory blocks, we simulate naming schemes by
using different lengths of the calling path. The calling path stack is maintained by
instrumented library functions. When a heap memory block is allocated, the top n
elements in the calling path stack are checked, if G=n.

When the fields are considered, the field ID associated with the name assigned to
the memory object is written into the shadow. The instrumentation tool generates a
file to describe the layout of each structure type to help break down memory objects
to their fields.

For example, there is a memory object, and its name determined by the calling path
is g_name. The memory object’s starting address is addr_start and its size is
object_size. If this memory object is of structure type or array of structure type, the
kth field of this memory object will be assigned the name (g_name, k). Assume the
offset and the size of this field are offset and field_size, and the size of the structure is
struct_size. To set up the mapping, all address, addr, in this memory object will be
given name (g_name, k), when the following two conditions hold.

164 T. Chen et al.

1. addr_start ≤ addr < addr_start+object_size
2. offset ≤ (addr-starting) mod struct_size < offset+ field_size.

When references accessing different fields of this memory, the targets can be
distinguished because they have different field IDs.

3.4 Collect Target Sets

The target of each instance of reference is collected by looking up the shadow with
the address value of the reference. The target set of a reference is accumulated
according to the reference ID and stored in a hash table.

The target sets computed by the tool are flow sensitive and path sensitive. Only the
targets that can reach a reference at runtime are put into its target set. The previous
value of a pointer is overwritten after the pointer is re-assigned. The possible targets
in not-taken branches are also ignored.

If we want to make the target sets context insensitive, targets coming from
different calling contexts are not distinguished and are stored together. We can also
make the target sets context sensitive by attaching each target a tag to indicate its call
site. However, our evaluation method requires calling context insensitive results,
because it is not directly supported in the ORC compiler to generate multiple versions
for different calling contexts.

4 Evaluate Naming Schemes

The effectiveness of naming schemes is evaluated by feeding the target sets collected
at runtime back to the ORC compiler, and observing the changes in the alias queries
and in the performance of the generated code. The optimizations in the ORC compiler
are used as typical clients of the points-to analysis.

4.1 The ORC Compiler

The Open Research Compiler, or the ORC compiler [14], originated from the Pro64
compiler [19] developed by the Silicon Graphic Inc. The ORC compiler is for C, C++
and Fortran90. It has most of the analyses and optimizations available in modern
compilers. It performs pointer analyses, scalar optimizations, loop transformations,
inter-procedural analyses, and code generation. Profiling and feedback-directed
optimizations are also supported by this compiler.

There are three stages of analysis for each procedure: loop-nest optimizations
(LNO), scalar global optimizations (WOPT), and code generation optimizations (CG).
The LNO stage does loop related optimizations [23], such as parallelization, and
unimodular transformations. The WOPT stage contains some general optimizations,
such as partial redundancy elimination [22], copy propagation and strength reduction.
The CG stage focuses on generating optimized binary code. The inter-procedural
analysis is supported by the IPA component.

The pointer analysis in the ORC compiler starts from a flow-free pointer analysis,
which is similar to Steengaard's algorithm [8]. This pointer analysis is done inter-
procedurally when the inter-procedural analysis is turned on. A flow-sensitive pointer

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 165

analysis is then applied intra-procedurally to get more precise results. Some simple
rules, such as the address-taken rule, are used to help alias analysis. The alias
information stored in the internal representations is maintained across different stages.

When using the ORC compiler as a base for comparison, we try to tune the
compiler so that the best results could be brought about by the change of the naming
scheme. The optimization level is always set at O3. The inter-procedure analysis is
turned off, because the current version of the ORC compiler has unstable inter-
procedural analysis which may fail in some benchmarks. Therefore the result of ORC
compiler just represents the capability of a practical compiler, not a state-of-art
compiler. However, the moderate pointer analysis in the ORC compiler actually
makes the changes in granularity clear If the ORC had very powerful pointer analysis,
it is unclear where the pointer analysis is overdone.

4.2 Feedback

The target sets of indirect references are fed back to the ORC compiler. The target
sets may be different when different naming schemes are used, and thus the results of
the optimizations in the compiler may be different. Two things are measured: the
performance of the generated code on Itanium, and the results of alias queries within
the optimization phases.

The changes in the performance on Itanium directly reflect the impact of different
naming schemes in the ORC compiler. However, the performance changes are
determined by many factors. In this study, we also measure the changes in the result
of alias queries in the optimization phases, which somewhat reflect the subtle changes
in the pointer analysis.

The major optimizations are done in the WOPT and CG stages. In order to feed
back to different stages, the instrumentation is done at different stages so that the
feedback information can match. The instrumentation is also done incrementally
because the impact of the feedback to WOPT should be considered when the
instrumentation at CG is done. The target sets collected at runtime by the profiling
tool are fed back to the two stages, replacing the alias analysis result produced by the
ORC compiler. In the WOPT stage, the static single assignment (SSA) form [20] is
generated based on the target sets fed back from the runtime. Many optimizations in
WOPT, such as partial redundant elimination and dead code elimination, are built
upon the SSA form. In the CG stage, the results of alias queries are also replaced by
the target sets fed back from the runtime. We instrument the ORC compiler to record
the changes in alias queries.

The profiling information is limited to the portions in a program that is reached
during the execution. There is no alias information for the references that are not
reached at runtime. These references are conservatively assumed to be aliased with all
other references.

5 Experiment Results

Experiments are conducted on the SPEC CPU2000 integer benchmarks. First, the
distribution of the results of alias queries in the ORC compiler is reported. Then each

166 T. Chen et al.

benchmark is instrumented, and target information for each indirect references at
different granularity levels are collected at runtime. The benchmarks are compiled
again with the collected alias information. Due to the improved alias information,
some alias queries which used to return may alias now return no alias. The changes of
alias queries are reported again to show the impact of pointer analysis with different
granularities. Finally, the compiled benchmarks are executed again to measure the
impact on execution time.

5.1 Alias Queries

As in typical compilers, an alias query in the ORC compiler returns one of the
following three results: not alias, same location, and may alias. The first two cases are
accurate results, while the third one , may alias, is conservative and could be
improved by more precise pointer analyses. Since a pointer expression references
either a variable or a heap memory block, the alias pairs that return may alias can be
further classified into: three categories: between two variables (v-v), between a
variable and a heap memory object (v-h), and between two heap memory blocks (h-
h). Fig. 2 shows the distribution of the returned values from the original ORC
compiler. On average, the queries which return may alias accounts for 54.4% of all
queries. This high percentage indicates that there could be great potential for
improvements. As shown in Fig. 2, the majority of the may alias queries are related to
heap memory blocks. Although there are frequent v-h (variable to heap objects) type
queries returning may alias, many of them should be turned into no alias by a stronger
inter-procedural pointer analysis. For the rest of aliases among heap blocks, the
following experiments are conducted to study the impact of granularity levels on
pointer analyses.

Distribution of the result of alias queries

0%

20%

40%

60%

80%

100%

bzip2 crafty gap gzip mcf parser twolf vortex vpr

h-h alias

v-h alias

v-v alias

same

no alias

Fig. 2. Distribution of the result of alias queries

5.2 Query Enhanced by Feedback

After program instrumentation and runtime collection of target sets information, the
benchmarks are compiled with the ORC compiler again. This time, the ORC compiler
is provided with target information for pointer expressions collected from
instrumented runs. Now the ORC compiler is able to give more accurate answers to
alias queries. Some queries that used to return may alias now may return no alias. The

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 167

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%

bzip2 crafty gap gzip mcf parser twolf vortex vpr

G=0

G=0f

G=h

G=hf

G = 0: all heap memory blocks are given one name.
G=1, 2, 3: the calling path of length 1, 3 or 3 is used to name the heap memory blocks.
G=a: the whole calling path is used to name the heap memory blocks.
G=m: the user memory management function is recognized to name the heap memory blocks.

Fig. 3. Percentage of no-alias queries changed with granularity

percentage of the changes is reported in Fig. 3. The queries involving un-reached
references are excluded.

There are several observations based on Figure 3.

• There are more than 30% improvements even when G is 0. The reason is that the
ORC compiler uses a default symbol to represent all memory objects outside of a
procedure to simplify inter-procedural analysis. Such granularity is too coarse. A
normal inter-procedural points-to analysis can do much better. .

• For most of the benchmarks, except for bzip2 and mcf, heap memory analysis with
line number (G=1) does not improve much. However, for twolf and vpr, G=2
greatly reduces the number of may alias. Further increase of the calling path for
heap pointer analysis (G=3) makes little difference.

• G=a does not bring further improvements. Therefore, there are little incentives to
consider very long calling path. Some simple analyses, for example, suggested in
Intel’s compiler group [12], are sufficient.

5.3 User Managed Memory

In the benchmark gap and parser, the pointer analysis is insensitive to the naming
scheme for heap memory objects. The reason is that the heap memory space is
managed by programmers. Therefore, the calling path of system memory allocation
does not help. If the functions in which the user manages the heap memory can be
recognized, our tool can treat them like malloc(). For example, after we explicitly
recognize user managed memory allocation functions, the query improvement
improved drastically from 30.8 % to 82.2% in gap, and from 29.9% to 68.4% in
parser. See G=m in Figure 3.

Although the user managed memory allocation functions are very difficult, if not
impossible, for compiler to recognize them. The major difficulty is to trace the size of
memory space accessed through each pointer so that the no overlap can be proved.
For programs with user managed memory allocation functions, speculation or
dynamic optimization may be needed.

168 T. Chen et al.

0.0%

50.0%

100.0%

bzip2 crafty gap mcf parser twolf vpr

G=0

G=0f

G=h

G=hf

Fig. 4. Percentage of no-alias queries changed with field granularity

5.4 Fields of Heap Memory Blocks

The fields can affect the pointer analysis in two ways: 1) the pointer analysis can
distinguish the points-to sets of different fields that are defined as pointer type; and 2)
the pointer analysis can distinguish the targets pointing to different fields of a
structure. In our approach, the target sets collected at runtime have the same effects as
considering fields in points-to set. Whether to consider fields in target sets is another
potential variation.

It is easy to divide a structured variable into finer granularity using their type
definition. However, there is no data type defined for heap memory blocks. They can
be divided into finer granularity using their fields of structure type only when the
memory blocks with the same name are cast to and used as the same type. The type
casting of heap memory blocks are traced to identify conditions in which this analysis
is applicable. The naming scheme could be based on G=1 or G=2, or G=m such that
the heap memory blocks in the same group have the same type. We represented such
granularity as G=hf.

The change of queries when fields are considered is reported in Fig. 4. By
comparing the result of G=0 and G=0f, and comparing the result of G=h and G=hf, it
can be observed that it is important for pointer analysis to consider the fields of both
variables and heap memory blocks.

5.5 Performance Enhanced by Profiling

Pointer analyses at finer granularity might significantly improve the results of alias
queries. It is also interesting to know what would be the impact on the actual
optimizations. In this section, the target sets collected at runtime are fed back to the
WOPT and the CG phases in the ORC compiler. Optimizations in the two phases are
performed with the feedback information, and thus improved results of alias queries.
The performance improvement of the benchmark is shown in Fig. 5. After the user
memory management functions are recognized in gap and parser, the performance
improvement is 20.1% and 12.3%, respectively.

The performance improvement is in proportion to the improvement to alias queries
to a lower less a degree. The performance gain of an optimization may depend on
many other analyses and the characteristic of the code. Therefore, the improvements
of alias queries may not always contribute to overall performance. Half of the
benchmarks achieved more than 10% of improvement in performance with finer
granularity.

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 169

0 . 0 0 %

5 . 0 0 %

1 0 . 0 0 %

1 5 . 0 0 %

2 0 . 0 0 %

bz
ip2

cr
af

ty
ga

p
gz

ip
m

cf

pa
rs

er
tw

olf

vo
rte

x
vp

r

G = 0

G = 0 f

G = 1

G = 2

G = h f

Fig. 5. Performance improvement for different granularity levels

6 Conclusions

We conduct a comprehensive study on the naming schemes and the granularity of the
pointer analysis. We implement a set of instrumentation and profiling tools to study
issues related to pointer analysis. Each benchmark is instrumented with our tool to
collect target sets information at runtime. Such target sets information is fed back into
the ORC compiler automatically to help later analyses and optimizations. This
approach provides a direct way to study the impact of naming schemes and
granularity on performance

Our experiment results suggest that pointer analysis for heap memory blocks may
yield a good return. The commonly used naming scheme that names memory objects
with the statement line number of the malloc() function call improves only slightly
over the approach that treats heap memory blocks as one entity. However, naming
such dynamic allocated memory objects with respective calling path contributes more.
Some programs have their own dynamic memory allocation and management
routines. It is important for the compiler to recognize such routines to enable more
effective naming schemes.

By simulating naming schemes with calling path and field information, the point-to
information provided to the ORC compiler greatly improves the results of alias
queries. The improved results from alias queries in turn significantly increase the
effectiveness of compiler optimizations. Since the point-to information fed back to the
compiler is collected at runtime, this approach may not be used directly to generate
real code. However, it provides a useful guideline to the potential of pointer analyses
at finer granularity.

References

[1] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. In Proceedings of SIGPLAN’90 Conference on Programming Language
Design and Implementation, page 296-310, June 1990.

[2] W. Landi and B.G. Ryder. A safe approximate algorithm for interprocedural pointer
aliasing. In proceedings of the SIGPLAN’92 Conference on Programming Language
Design and Implementation, page 235-248, July 1992.

170 T. Chen et al.

[3] X. Tang, R. Ghiya, L. J. Hendren, and G.R. Gao. Heap analysis and optimizations for
threaded programs. In Proc. Of the 1997 Conf. On Parallel Architectures and
Compilation Techniques, Nov. 1997

[4] Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and sife-effects. In Proceedings of the ACM 20th Symposium on
Principles of Programming Languages, pages 232-245, January 1993.

[5] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In Proceedings of
the ACM SIGPLAN ’94 Conference on Programming Language Design and
Implementation, pages 242-256, June 1994.

[6] Nevin Heintze and Olivier Tardieu. Demand-Driven Pointer Analysis. ACM SIGPLAN
Conference on Programming Language Design and Implementation 2001.

[7] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation, pages 1-12, June 1995.

[8] Bjarne Steensgaard. Points-to analysis in almost linear time. In Conference Record of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages,
Pages 32-41, January, 1996.

[9] Bixia Zheng. Integrating scalar analyses and optimizations in a parallelizing and
optimizing compiler. PhD thesis, February 2000.

[10] Ben-Chung Cheng. Compile-time memory disambiguation for C programs. PhD. Thesis,
2000.

[11] Michael Hind and Anthony Pioli. Evaluating the effectiveness of Pointer Alias Analysis.
Science of Computer Programming, 39(1):31-35, January 2001

[12] Rakesh Ghiya, Daniel Lavery and David Sehr. On the Importance of Points-To Analysis
and Other Memory Disambiguation methods For C programs. In Proceedings of the
ACM SIGPLAN’01 Conference on Programming Language Design and Implementation,
page 47-58, June 2001.

[13] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dynamic Points-to
Sets: A Comparison with Static Analyses and Potential Applications in Program
Understanding and Optimzation. ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis 14for Software tools and Engineering, June 2001.

[14] Roy Ju, Sun Chan, and Chengyong Wu. Open Research Compiler for the Itanium
Family. Tutorial at the 34th Annual International Symposium on Microarchitecture.

[15] N. D. Jones and S. S. Muchnick,. A Flexible Approach to Interprocedural Flow Analysis
and Programs with Recursive Data Structures. ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1982.

[16] S. Zhang, B. G. Ryder, and W. Landi. Program decomposition for pointer aliasing: A
step towards practical analyses. In Proceedings of the 4th Symposium on the
Foundations of Software Engineering, October 1996.

[17] Tong Chen, Jin Lin, Wei-Chung Hsu and Pen-Chung Yew, On the Impact of Naming
Methods for Heap-Oriented Pointers in C Programs, International Symposium on
Parallel Architectures, Algorithms, and Networks, 2002.

[18] Spec CPU2000, http://www.specbench.org/osg/cpu2000/.
[19] G. R. Gao, J. N. Amaral, J. Dehnert, and R. Towle. The SGI Pro64 compiler

infrastructure: A tutorial. Tutorial presented at the International Conference on Parallel
Architecture and Compilation Techniques, October 2000.

 An Empirical Study on the Granularity of Pointer Analysis in C Programs 171

[20] Fred Chow, Raymond Lo, Shin-Ming Liu, Sun Chan, and Mark Streich, Effective
Representation of Aliases and Indirect Memory Operations in SSA Form, Proc. of 6th
Int'l Conf. on Compiler Construction, pp. 253-257, April 1996.

[21] Shapiro, M., and Horwitz, S., The effects of the precision of pointer analysis. Static
Analysis 4th International Symposium, SAS '97, Lecture Notes in Computer Science Vol
1302, September 1997.

[22] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. Anew algorithm for partial
redundancy elimination based on SSA form. In Proc. of SIGPLAN 97 Conference on
Programming Language Design and Implementation, page 273-286, May 1997.

[23] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen, Combining Loop
Transformations Considering Caches and Scheduling, Int'l J. of Parallel Programming
26(4), page 479-503, August 1998.

[24] Amer Diwan, Kathryn S. McKinley, J. Eliot and B. Moss, Type-Based Alias Analysis,
SIGPLAN Conference on Programming Language Design and Implementation, pages
106--117, June 1998

[25] Yong SH, Horwitz S, Reps T. Pointer Analysis for Programs with Structures and
Casting. SIGPLAN Conference on Programming Language Design and Implementation,
vol 34, pages 91-103, 1999-

[26] Erik Ruf. Context-Insensitive Alias Analysis Reconsidered. In ACM SIGPLAN '95
Conference on Programming Language Design and Implementation (PLDI'95), La Jolla,
California, vol 30, pages 13-22, June 1995.

[27] D. Choi, M. G. Burke, and P. Carini. Efficient flow-sensitive interprocedural
computation of pointer induced aliases and side effects. In Conference Record of the
Twentieth Annual ACM Symposium on Principles of Programming Languages, pages
232--245, January 1993.

[28] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita Altucher, A
Scheme for Interprocedural Modification Side-Effect Analysis with Pointer Aliasing,
ACM Transactions on Programming Languages and Systems (TOPLAS), 23(2), March
2001, pages 105--186.

[29] Michael Hind and Anthony Pioli, An Empirical Comparison of Interprocedural Pointer
Alias Analyses. IBM Report #21058, December 1997.

Automatic Implementation of Programming
Language Consistency Models�

Zehra Sura1, Chi-Leung Wong1, Xing Fang2, Jaejin Lee3,
Samuel P. Midkiff2, and David Padua1

1 University of Illinois at Urbana-Champaign, Urbana, IL 61801
{zsura, cwong1, padua}@cs.uiuc.edu

2 Purdue University, West Lafayette, IN 47907
{xfang, smidkiff}@purdue.edu

3 Seoul National University, Seoul 151-742, Korea
jlee@cse.snu.ac.kr

Abstract. Concurrent threads executing on a shared memory system
can access the same memory locations. A consistency model defines con-
straints on the order of these shared memory accesses. For good run-time
performance, these constraints must be as few as possible. Programmers
who write explicitly parallel programs must take into account the consis-
tency model when reasoning about the behavior of their programs. Also,
the consistency model constrains compiler transformations that reorder
code. It is not known what consistency models best suit the needs of
the programmer, the compiler, and the hardware simultaneously. We
are building a compiler infrastructure to study the effect of consistency
models on code optimization and run-time performance. The consistency
model presented to the user will be a programmable feature independent
of the hardware consistency model. The compiler will be used to mask the
hardware consistency model from the user by mapping the software con-
sistency model onto the hardware consistency model. When completed,
our compiler will be used to prototype consistency models and to mea-
sure the relative performance of different consistency models. We present
preliminary experimental data for performance of a software implemen-
tation of sequential consistency using manual inter-thread analysis.

1 Introduction

A consistency model defines the constraints on the order of accesses to shared
memory locations made by concurrently executing threads. For any shared mem-

� This material is based upon work supported by the NSF under Grant No. CCR-
0081265, and the IBM Corporation. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the NSF or the IBM Corporation. Also supported in
part by the Korean Ministry of Education under the BK21 program and by the Ko-
rean Ministry of Science and Technology under the National Research Laboratory
program.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 172–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatic Implementation of Programming Language Consistency Models 173

ory system, it is important to specify a consistency model because that deter-
mines the set of possible outcomes for an execution, and enables the programmer
to reason about a computation performed by the system.

The simplest and most intuitive consistency model for programmers to un-
derstand is sequential consistency (SC). SC requires that all threads “appear to”
see the same order of shared memory accesses. Between two consecutive writes
to a shared memory location, all threads that access the location see exactly the
same value, and that value is consistent with the program order.

Most hardware systems implement consistency models that are weaker than
SC [1], i.e. they impose fewer constraints on the order of shared memory ac-
cesses. This allows more instruction reordering, thus increasing the potential
for instruction level parallelism and better performance. Popular hardware con-
sistency models are weak ordering and release consistency, both of which allow
reordering of shared memory accesses. These consistency models assume synchro-
nization primitives that the programmer uses to specify points in the application
program where shared memory accesses must be made coherent.

Thus, programmers writing explicitly parallel programs must take into ac-
count the consistency model when reasoning about the behavior of their pro-
grams. If the consistency model allows indiscriminate reorderings, it makes the
task of writing well-synchronized programs difficult. Consider the following code:

Thread 1 Thread 2
a = ...;
x = 1; while (x==0) wait;

...= a;

This code uses a busy-wait loop and the variable x (initially set to zero) as a
flag to ensure that the value of a read by Thread 2 is the value that is assigned
to a by Thread 1. There are no data dependences between statements within a
thread. So, for the weak or release consistency model, the access to a in Thread
2 may happen before the while loop has finished execution, or the assignment
to a in Thread 1 may happen after the assignment to x. Therefore, there is no
guarantee what value of a will be read in Thread 2. For these consistency models,
the burden is on the programmer to insert proper synchronization constructs to
disallow undesirable reorderings.

The ideal consistency model must be simple for programmers to understand.
This is especially important because programmers for a general purpose language
form a wide user base with varied skill levels.

We are building a compiler infrastructure that uses software to bridge the
gap between the hardware consistency model and the consistency model as-
sumed by the programmer. Our compiler is based on the Jikes Research Virtual
Machine (Jikes RVM)1 [2] which is an open-source Java Virtual Machine from
IBM. Today, Java is the only widely-used, general-purpose language that de-
fines a consistency model as a part of the language specification [6], i.e. the Java
Memory Model. When completed, our compiler will allow users to experiment
with alternative consistency models. It is designed to abstract out the effect of

1 Originally called Jalapeño.

174 Z. Sura et al.

the consistency model on compiler transformations. The compiler will take as in-
puts a specific consistency model to be assumed by the programmer (henceforth
called the software consistency model), and the consistency model provided by
the target hardware (i.e. the hardware consistency model). The compiler will
perform aggressive inter-thread analysis and optimizations to generate machine
code based on the specific hardware and software consistency model(s) chosen.

Many different consistency models have been designed in the past, and new
consistency models are still being designed. Since our compiler infrastructure
abstracts out the consistency model and parameterizes it, it will allow rapid
prototyping of new consistency models. Also, all the analyses and optimizations
are to be “truly” portable, i.e. they will be reusable for all hardware and soft-
ware consistency models we can envision. The availability of a common system
platform and compiler algorithms for different consistency models will reduce
the number of variables in performance comparison tests. This will allow reli-
able performance comparisons between different consistency models. Thus, our
compiler will serve as a test-bed for developing and evaluating new software con-
sistency models that balance ease of use and performance requirements. Such a
test-bed is needed because the programming language community has little ex-
perience designing software consistency models. Problems with the Java Memory
Model [14] illustrate the difficulty of this task.

We have modified the Jikes RVM to provide a sequentially consistent im-
plementation. SC defines the strongest constraints among popular consistency
models that are feasible to implement, i.e. a sequentially consistent implemen-
tation has the least flexibility to reorder instructions for optimized execution.
Thus, the cost of implementing SC using software gives the maximum perfor-
mance degradation that can be suffered by any feasible software consistency
model implementation on a particular hardware system. We used manual inter-
thread analysis to estimate this cost for our compiler using a set of bench-
mark programs, and found it to be negligible (Section 4). However, a simple
implementation using the analyses provided in the Jikes RVM distribution gives
slowdowns of 4.6 times on average. Thus, precise inter-thread analysis is impor-
tant for a software implementation of consistency models that does not sacrifice
performance.

The outline of the rest of this paper is as follows. In Section 2, we describe
the overall system design for the compiler infrastructure we are developing. In
Section 3, we explain the analyses and optimizations that are important from the
perspective of implementing different consistency models. In Section 4, we give
preliminary experimental data for the performance of a sequentially consistent
implementation. Finally, in Section 5, we present our conclusions.

2 System Design

For well-synchronized programs that contain no data races, all shared memory
access reorderings possible under a relaxed consistency model (e.g. release con-
sistency) that is weaker than SC are also legitimate under SC. So there is no

Automatic Implementation of Programming Language Consistency Models 175

inherent reason for the run-time performance of these programs to be different
for any two consistency models that are equivalent to, or weaker than SC. Thus,
it should be possible to provide the user with a consistency model different from
the hardware consistency model without suffering performance degradation. The
performance of a software implementation of a consistency model is contingent
on the compiler’s ability to determine, without needing to be overly conserva-
tive, all the reorderings that lead to a legitimate outcome. This depends on
the precision with which the compiler can analyse the interaction of multiple
threads of execution through shared memory accesses. To provide the software
consistency model, the compiler inserts fences at required points in the gener-
ated code. Fences are special hardware instructions that are used for memory
synchronization.

To support multiple consistency models, the following features are used:

1. ability to specify the consistency model so that it can be parameterized,
2. rigorous program analysis for shared memory accesses,
3. constrained code reordering transformations, and
4. fence insertion to mask the hardware consistency model.

Constrained code reordering transformations and fence insertion have been im-
plemented. They are discussed in detail in Sections 3.5 and 3.6 respectively.
Inter-thread analysis algorithms are currently under development, and we dis-
cuss some of the issues involved in their design in Section 3.4.

We do not have a suitable notation for specifying the consistency model as
yet. The notation we develop must be:

1. easy to use for the person experimenting with different consistency models.
2. easy to translate to a form that can be used by the compiler.
3. expressive, i.e. the design space of new consistency models must not be lim-

ited by the ability to specify them in a certain way.

Java uses dynamic compilation, so the choice of a consistency model can be made
during program execution, and run-time values can be used to guide this choice.
Also, compiler directives may be used to allow different consistency models for
code segments within the same program. This flexibility will make it possible for
the developer to freely experiment and perhaps gain a better understanding of
the complexities involved in the design of software consistency models.

Figure 1 illustrates the relationship between the different components of the
compiler. Given the source program and a software consistency model, the pro-
gram analysis determines the shared memory access orders to enforce. Code
reordering transformations use this information to optimize the program with-
out changing any access orders that need to be enforced. Fence insertion also uses
this information along with knowledge of the hardware consistency model, and
generates code that enforces the access orders required by the software consis-
tency model. It does this by emitting fences for those access orders that are not
enforced by the hardware, but are required by the software consistency model.

176 Z. Sura et al.

software consistency model

Program Analysis

Code Reordering Transformations

optimized program that does not violate any
orders required by the software consistency model

Fence Insertion

by the software consistency model
program enforcing orders required

hardware consistency model

orders to enforcesource program

input/output

process

the arrows specify
input−process−output

relationship

Fig. 1. Components in the design of the compiler

3 Compiler Techniques

3.1 Delay Set Analysis

An execution is invalid when it yields results, visible outside the program, that
can only occur if the consistency model is violated. A delay set is a set of con-
straints on program execution order such that if these constraints are enforced,
the outcome of the program is always valid according to the consistency model.

In [16], Shasha and Snir show how to find the minimal delay set. They con-
struct a graph where each node represents a program statement. Edges in the
graph are of two types: directed program edges (these represent constraints on
the order of execution of statements within a thread as determined by the pro-
gram order), and undirected conflict edges.

A conflict edge exists between two accesses if they are accesses to the same
memory location from different threads, they may happen in parallel, and at
least one is a write access. Alias analysis and thread-escape analysis (discussed
in Section 3.2) help determine if there are accesses to the same memory location
from different threads, and MHP and synchronization analysis (discussed in
Section 3.3) help determine if they may happen in parallel. The conflict edges
can be oriented by giving them a direction that represents the order of the two
accesses during an execution of the program.

A minimal solution to the delay set analysis problem is the set of program
edges in all minimal mixed cycles. A mixed cycle is one that contains both pro-
gram and conflict edges, so a mixed cycle spans at least two threads in the
program. Also, since the cycles are minimal, any other cycle in the graph will
contain one or more of these minimal cycles within itself. Cycles represent in-
consistent executions, because their presence means that there is an orientation
of the conflict edges in the graph that is not consistent with the constraints
required by the program. The set of program edges in the cycles is the delay
set, i.e. the set of constraints that if enforced, prevents an orientation of conflict

Automatic Implementation of Programming Language Consistency Models 177

edges that gives rise to a cycle. If the program edges in this set are honored,
then it is impossible at run-time for an orientation of the conflict edges to occur
that gives rise to an inconsistent outcome.

In [9], Krishnamurthy and Yelick show that all exact delay set analysis algo-
rithms for multiple-instruction multiple-data (MIMD) programs have a complex-
ity that is exponential in the number of program segments. For single-program
multiple-data (SPMD) programs, a large number of threads can be approxi-
mately modeled as two threads, resulting in an exponent of two, and therefore
a quadratic algorithm [8]. The algorithms of [8,9] have been implemented, and
they give good compile time performance on their set of benchmarks.

In general, programs can have arbitrary control flow and multiple threads
may execute different code segments. It is difficult to analyse these programs
to accurately determine the conflict edges in the program graph. We will use or
develop precise alias analysis, synchronization analysis, and dependence analysis
to find the set of conflict edges required for delay set analysis.

We are investigating modified path detection algorithms to find mixed cycles
in a program graph. These algorithms have the property that they can be param-
eterized to be conservative and fast running, or precise and executing in worst
case exponential time. They can be adjusted dynamically for different program
regions, allowing more precise information to be developed “on demand”.

In Java, every thread is an object of class java.lang.Thread or its sub-
classes. Therefore, we can use a type-based approach to approximate the run-
time instances of threads.

3.2 Thread Escape Analysis

Escape analysis is used to identify all memory locations that can be accessed
by more than one thread. Our analysis is concerned only with thread escaping
accesses, and not the more general lifetime or method escaping properties. We
are developing an algorithm for this to be as precise as possible. Because our
algorithm is specialized for thread escaping accesses, we expect it to be faster
than the more general escape analysis algorithms [3,15].

Figure 2 shows a program fragment from raytracer2. The method run creates
an instance of the Interval object (referenced by interval). This object is used
only in the statement render(interval), so it can only escape through the call
render(interval). In render, the value of interval is initially accessible only
by the thread that assigns this value, and it is never passed to another thread
or assigned to static variables. So, interval always references a non-escaping
object when render(interval) is called by run, and the fields interval.width,
interval.yto, and interval.yfrom are thread local. This information can be
derived by a context-sensitive, flow-sensitive escape analysis [3].

Classical optimizations can be applied to uses of interval in render even if
run (and hence render) is executed by multiple threads. This will not violate the
correctness for any consistency model because the object referenced by interval

2 A benchmark program in the Java Grande Forum Multithreaded Benchmarks suite.

178 Z. Sura et al.

public void run() {
Interval interval = new Interval(...);
...
render(interval);
/* interval is not used hereafter */
...

}
public void render(Interval interval) {

int row[] = new int[interval.width * (interval.yto - interval.yfrom)];
...
for (y = interval.yfrom+interval.threadid; y < interval.yto;

y += JGFRayTracerBench.nthreads) {
ylen = (double) (2.0*y) / (double) interval.width - 1.0;
...

}
...

}

Fig. 2. Example program to illustrate thread local objects

public void render(Interval interval) {
int width = interval.width;
int yto = interval.yto;
int yfrom = interval.yfrom;
int row[] = new int[width * (yto - yfrom)];
...
for (y = yfrom+interval.threadid; y < yto;

y += JGFRayTracerBench.nthreads) {
ylen = (double) (2.0*y) / (double) width - 1.0;
...

}
...
}

Fig. 3. Optimization using information about thread local objects

does not escape the thread it was created in. Thus, redundant loads can be
removed from render because no other thread can access the object referred by
interval. The optimized render method is shown in Figure 3.

3.3 MHP and Synchronization Analysis

May-happen-in-parallel (MHP) analysis determines which statements may ex-
ecute in parallel. We are developing an efficient (low order polynomial time)
algorithm to perform MHP analysis that builds on previous work [13]. We use a
program thread structure graph, similar to a call graph, that allows parallelism
between code regions to be easily determined.

Synchronization analysis [4] is used to refine the results of MHP analysis.
For two statements S1 and S2 that are in different threads and may happen in
parallel, it attempts to determine if S1 must execute before S2, or after S2. This
can reduce the number of possible executions, and improve the precision of other
analyses. For example, concurrent global value numbering [12] can become more
precise since the values assigned to a variable in one thread that can reach a
use of that variable in another thread can be determined more accurately. Also,
the precision of delay set analysis improves because synchronization analysis can
determine orders on pairs of shared memory accesses from different threads that
would otherwise be assumed to conflict.

Automatic Implementation of Programming Language Consistency Models 179

3.4 Issues in the Design of Analysis Algorithms

To gauge the true effect of a consistency model on performance, the compiler
must use detailed inter-thread analysis. The analyses and optimizations must
be precise, otherwise this may lead to missed opportunities for code reordering
optimizations. This will adversely affect software consistency models that are
stronger than others being tested. The performance for the strong consistency
models will not reflect their true potential, and so fair comparisons between
different consistency models will not be possible.

We will be implementing alias analysis, concurrent global value numbering
(CGVN), thread-escape analysis, MHP analysis, synchronization analysis, and
delay-set analysis. There are several issues that make it challenging to design
analysis algorithms for our compiler:

Run-time compilation: Faster compilation is always desirable, but for a system
where the compile time contributes to the run-time, speed of compilation is
imperative. Our system uses dynamic compilation, so it is important that it
does not spend too much time performing analyses and optimizations. Thus, the
algorithms we use must be fast.
Dynamic class loading: Due to Java’s dynamic class loading feature, it is possible
that a method being analyzed contains calls to other unresolved methods. This
can result in incomplete information for analysis. Thus, we plan to implement
algorithms that are designed to be incremental. A set of classes that are inter-
dependent or mostly used together can be packaged into an archive (for example,
as a JAR file). For these classes, inter-procedural and inter-class analysis infor-
mation that is independent of the dynamic context can be determined statically
and included in the package. Later, when a class from this package is first used
in an application, the archived analysis results will be readily available for the
dynamic compiler to incorporate into its current context. This helps to improve
both the speed and accuracy of the analysis. Ideas from the design of the Net-
Beans [19] and Eclipse [18] platforms can be used to integrate a static package
that provides analysis information into a dynamic execution at run-time.
Incomplete program information: Dynamic class loading and JIT compilation
require that the analyses and optimizations be done with incomplete program
information. E.g., when an object is passed to an unresolved method, escape
analysis cannot determine if the object is thread-escaping since it does not know
whether the method makes the object accessible to another thread. Thus, a lack
of information leads to conservative and imprecise analysis, which can degrade
performance. There are two ways to handle incomplete program information:

1. The analysis can be optimistic and assume the best-case result. Thus, when
faced with lack of information, escape analysis would assume an object is
non-escaping. The compiler will then perform checks when methods are com-
piled later to ensure that previous assumptions are not violated. If a violation
occurs, it triggers a recompilation to patch up code previously generated.

2. The analysis makes conservative assumptions when faced with lack of in-
formation, but always generates safe code. Later, when more information

180 Z. Sura et al.

becomes available, methods can be recompiled and more precise results ob-
tained. To avoid expensive re-analysis overhead, only execution hotspots will
be recompiled. These hotspots typically include code sections with many
fences because fences are expensive. Recompiling the code using more anal-
ysis information allows greater freedom to reorder code and may eliminate
some fences. The cost model for recompiling must take into account both the
number of fences in the hotspot, and the potential benefit in performance of
the transformed code after recompilation.

Both approaches require an adaptive recompilation system that allows methods
to be recompiled during execution of the program.

3.5 Reordering Transformations

Code reordering transformations are sensitive to the consistency model being
supported because they can change the order of accesses to shared memory
locations. Therefore, optimization algorithms developed for single-threaded se-
quential programs that use code motion or code elimination cannot be directly
applied to shared memory systems with multiple threads of execution.

Consider the following example, where r1, r2, and r3 are registers, and a
and b are aliased.
1. Load r1, [a] // "a" contains the address of a memory location to load from
2. Load r2, [b] // "b" contains the same address as "a"
3. Load r3, [a]

If redundant load elimination (RLE) is applied to this code segment, the third
instruction can be transformed into Move r3, r1. However, this transformation
will violate SC if there is another thread that executes between the first and
second Load, and changes the value of the memory location given by a. In this
case, r3 gets an older value than r2, even though the assignment to r3 occurs
after the assignment to r2. Thus, the RLE transformation appears to reorder
code by changing the order of statements 2 and 3.

Transformations must be inhibited if they reorder code in cases where delay
set analysis determines that the software consistency model may be violated.
For best performance, there must be few instances where a transformation is
inhibited.

Our initial implementation targets SC as the software consistency model. We
examine all transformations in our compiler to determine if they are valid for a
sequentially consistent execution. Our compiler is built using the Jikes RVM, so
we focus on optimizations implemented in the Jikes RVM. We modify transfor-
mations so that they are not performed for instances that can potentially violate
the software consistency model; however, these transformations are performed,
even in sequentially consistent programs, where they are shown to be safe by the
analyses previously described. Optimizations in the Jikes RVM that are affected
are redundant load elimination, redundant store elimination, loop invariant code
motion, scalar replacement of loads, and loop unrolling.

Automatic Implementation of Programming Language Consistency Models 181

In the Jikes RVM, optimization phases are structured such that redundant
load/store elimination is done before most other optimizations. Thereafter, the
number of accesses to memory variables are fixed in the code. Further optimiza-
tions work on the results of these load/store instructions and temporary vari-
ables. When tailoring optimization phases to account for a particular memory
model, the effects of code motion on the relative ordering of load/store instruc-
tions have to be accounted for. However, elimination of loads and stores is not a
cause for concern at this stage if only temporary variables are being eliminated.
For example, common subexpression elimination (CSE) done across basic blocks,
as currently implemented in the Jikes RVM, eliminates common subexpressions
involving only temporary variables that cannot be changed by another thread.
So this CSE does not need to be modified for different consistency models.

In previous work [10,12], we give algorithms to perform optimizations such
as constant propagation, copy propagation, redundant load/store elimination,
and dead code elimination for explicitly parallel programs. These algorithms
are based on concurrent static single assignment (CSSA) graphs. CSSA graphs
are constructed from concurrent control flow graphs and they preserve the SSA
property for parallel programs, i.e. all uses of a variable are reached by exactly
one static assignment to the variable. CSSA graphs and delay set analysis en-
able us to encapsulate the effects of the consistency model. Thus, the algorithms
described can be reused for different consistency models by supplying the con-
sistency model as a parameter to the optimization engine. We will apply these
techniques in the compiler we are developing.

Example. We illustrate the use of inter-thread analysis to modify transforma-
tions in our compiler: we show how delay-set analysis influences RLE using the
toy example in Figure 4. This example is based on a code segment extracted from
lufact3 and simplified for clarity. We assume that the software memory model is
SC, and that the execution uses only two threads.

Thread 0 Thread 1
... ...
P1: while (!sync.flag1) ; S1: ...= col k[l];
P2: col k[l] = ...; S2: sync.flag1 = true;
P3: sync.flag2 = true; S3: while (!sync.flag2) ;

S4: ...= col k[l];
... ...

Fig. 4. Code segment to illustrate delay-set analysis

For the example, global value analysis and alias analysis are used to deter-
mine that all instances of col k[l] refer to the same element of a single array
object. The benchmark program lufact performs Gaussian elimination with par-
tial pivoting for a matrix. The rows of the matrix are distributed for processing
amongst different threads. However, Thread 0 is responsible for assigning the
pivot element (col k[l] in the example) each time. It uses shared variables
sync.flag1 and sync.flag2 for synchronization to avoid conflicts (the bench-
mark program uses volatile variables to implement barriers for this purpose).
3 A benchmark program in the Java Grande Forum Multithreaded Benchmarks suite.

182 Z. Sura et al.

delay edge

S2: sync.flag1 = true

S3: while (!sync.flag2)

S4: ... = col_k[l]

P1: while (!sync.flag1)

P2: col_k[l] = ...

P3: sync.flag2 = true

S1: ... = col_k[l] thread entry

thread exit

...

......

conflict edge

...

cobegin

sequential flow
of control:

parallel flow

coend

of control

Fig. 5. Program graph for the example of Figure 4 showing delay edges

The program graph with delay edges is shown in Figure 5. There are conflict
edges between P1 and S2 for the synchronization using sync.flag1, between P3
and S3 for the synchronization using sync.flag2, between P2 and S1 for the
write-read access to col k[l], and between P2 and S4 for the write-read access
to col k[l]. These result in the following three cycles in the program graph:

1. P1,P2,S1,S2: the corresponding delay edges are P1-P2 and S1-S2.
2. P2, P3, S3, S4: the corresponding delay edges are P2-P3 and S3-S4.
3. P2, S1,S4: the corresponding delay edge is S1-S4.

The delay edges are enforced by inserting fences as discussed in Section 3.6.
If we consider each thread in isolation without any consistency model con-

straints, RLE may be applied to the access col k[l] at S4. Thus, by traditional
analysis, the value of col k[l] accessed at S1 may be stored in a register and
reused at S4. However, this is invalid for SC because it effectively reorders the ac-
cess at S3 and the access at S4. Inter-thread delay set analysis can recognize this,
and the delay edge from S3 to S4 prevents the reuse of the value accessed at S1.

Note that the synchronization is important to guarantee consistent execution,
and it is the effect of the synchronization variable sync.flag2 that ensures the
RLE optimization is not incorrectly applied in this instance. For SC, the presence
of an intervening conflicting access is needed to disallow the reordering of two
conflicting accesses to the same shared variable. Taking this fact into account
helps to perform optimizations in as many instances as possible without being
overly conservative.

3.6 Fence Insertion

Fence instructions force memory accesses that were issued previously to complete
before further processing can occur. They can be used to enforce necessary orders

Automatic Implementation of Programming Language Consistency Models 183

for a consistency model, and thus it is possible to mask the hardware consistency
model by another stricter4 consistency model [11]. Thread-based escape analysis,
MHP analysis, synchronization analysis, and delay-set analysis determine the
points in the code where fences must be inserted.

We describe two techniques that optimize the number of fences inserted.
First, register hazards (i.e. write/write, write/read, and read/write operations
to the same register) in conjunction with the store order from the processor
enforce an order for all accesses to a particular memory location that occur
within the same thread. This is exploited to reduce the number of fences that
are inserted. Second, two orders to be enforced can overlap, i.e. in the sequence
of operations:

load A; load B; load C;

it is possible that the orders to be enforced are A before C and B before C.
Fences can be inserted in at least two ways: by placing a fence immediately after
A and immediately after B, or, more efficiently, by placing a single fence after B
that enforces both of the orders.

When developing an algorithm that makes the best use of program control
flow to optimize fence insertion, additional complexity is added for programs
with loops and branches. We have implemented a fast, flow-insensitive algo-
rithm, and a slower, but more precise, flow sensitive form of the analysis [5].
The experimental data in Section 4 was obtained using the whole-procedure,
flow-sensitive algorithm for fence insertion.

4 Experiments

We are implementing the compiler infrastructure described using the Jikes RVM
on an IBM AIX/PowerPC platform. The IBM PowerPC supports a relaxed con-
sistency model that is similar to weak ordering and provides sync instructions
that can be used as fences. The Jikes RVM is a Java virtual machine written
mostly in Java. It does dynamic compilation for the whole program, i.e. be-
fore any method is executed, machine code is generated for the entire method.
This allows fences to be inserted to enforce the software consistency model. The
Jikes RVM also supports an adaptive recompilation system that can be used to
optimize in the presence of dynamic class loading.

We obtained preliminary experimental results for a software implementation
of SC using both simple analysis and manual inter-thread analysis. We describe
simple analysis in Section 4.1 and manual inter-thread analysis in Section 4.2.
The goal of the experiments is to obtain quantitative numbers to estimate the
performance of an implementation of the compiler we have described. As a first
step, we focus on using SC as the programming language consistency model.
This is because SC is a natural and intuitive programming model and is one of
the most expensive consistency models to implement.
4 A stricter consistency model specifies stronger constraints on the ordering of shared

memory accesses.

184 Z. Sura et al.

For this study, we choose benchmark programs that have a small code size,
because that makes them amenable for manual analysis to be applied. We use
well-synchronized Java programs because these programs introduce no more con-
straints for a sequentially consistent programming model than a relaxed consis-
tency model. The synchronization required for these programs is the same for
SC as for popular hardware consistency models. We rely on program analyses
to detect the set of “required” synchronizations, i.e. the set of shared memory
access orders that must be enforced in program threads.

4.1 Simple Analysis

The simple analysis is the default analysis that is provided in the Jikes RVM
distribution. There is no MHP, synchronization, or delay set analysis. The escape
analysis is a simple flow-insensitive analysis. Initially, all variables of reference
type are assumed not to be pointing to any thread-shared objects. The analysis
then marks a reference variable as pointing to a thread-shared object if:

1. it stores the result of a load from a memory location, or
2. it is the operand of a store to a memory location, or
3. it is the operand of a return statement (and not a method parameter), or
4. it is the operand of a throw statement, or a reference move statement.

The performance using this conservative simple analysis provides a lower bound
of the performance using automatic inter-thread analysis. The simple analy-
sis may conservatively mark arguments of method calls as pointing to thread-
shared objects, even if the object is never passed to another thread. Therefore,
using this analysis can degrade performance even when the program is single-
threaded.

4.2 Manual Inter-thread Analysis

The analysis results are statically determined and supplied to the compiler by
inserting special directives in the program. These directives mark the accesses
to thread-shared memory objects that need to be synchronized. Although the
directives are inserted manually, we have the compiler implementation in mind
when we insert them. Logically, we mark an access if:

– the access involves a thread escaping object, i.e. the object is assigned to or
obtained from a class field, or passed to or obtained from another thread.

– MHP and delay set analysis cannot prove the thread escaping object is ac-
cessed exclusively.

Therefore, we expect the performance using manual inter-thread analysis to be
the upper bound of the performance using automatic inter-thread analysis. Note
that it is an upper bound because we did not consider dynamic class loading in
manual analysis. In the automatic analysis, we may only have partial program
information due to unloaded classes.

Automatic Implementation of Programming Language Consistency Models 185

4.3 Experimental Data

Table 1 gives execution times obtained for the benchmark programs. The first
seven programs are from the SPECJVM98 Benchmark suite, the next two are
from ETH, Zurich5, and the remaining are from the Java Grande Forum Bench-
mark suite v1.0. Except for the first six, all the programs are multithreaded.

Our goal is not to provide higher performance, but comparable performance
with an easy-to-understand-and-use consistency model. We compare the slow-
down when running the benchmark programs with SC, versus using the default
consistency model implemented in the Jikes RVM.

The data presented in Table 1 gives the average times taken over 4 runs of
each program on an IBM SP machine with 8 GB of memory and using 4 375MHz
processors. The ‘Original’ column is the execution time for the program using
the default Jikes RVM Java memory model. Column ‘Simple’ is the time taken
for an implementation of sequential consistency that uses the simple analysis
previously described. Column ‘Manual’ is the time taken for an implementation
of sequential consistency that uses precise, manual, inter-thread analysis. Note
that the slowdown numbers are shown in parentheses.

Table 1. Performance, in seconds, with (i) simple escape analysis, and (ii) manual
escape and delay-set analysis

Benchmark Original Simple Manual
201 compress 16.812 224.924 (13.379) 17.038 (1.013)
202 jess 9.758 29.329 (3.006) 9.777 (1.002)
209 db 30.205 41.232 (1.365) 30.560 (1.011)
213 javac 15.964 36.706 (2.299) 15.606 (0.978)
222 mpegaudio 13.585 174.478 (12.843) 13.457 (0.991)
228 jack 19.371 41.070 (2.120) 19.326 (0.998)
227 mtrt 4.813 26.516 (5.509) 4.822 (1.002)

elevator 22.507 22.509 (1.000) 22.508 (1.000)
philo 15.391 15.817 (1.028) 15.465 (1.004)
crypt 23.579 32.688 (1.386) 23.563 (0.999)
lufact 3.177 3.514 (1.106) 3.182 (1.001)
series 141.859 378.768 (2.670) 141.065 (0.994)
sor 4.137 35.776 (8.648) 4.137 (1.000)
sparsematmult 3.788 26.062 (6.880) 7.499 (1.979)
moldyn 71.756 446.406 (6.221) 71.190 (0.992)
montecarlo 13.973 28.852 (2.065) 13.846 (0.991)
raytracer 145.145 1015.980 (7.000) 145.237 (1.001)

For simple escape analysis, the average slowdown was 4.6, and 12 of the 17
benchmarks showed slowdowns greater than 2 times. However, for manual analy-
sis, none of the benchmarks showed any significant slowdowns, except sparsemat-
mult. sparsematmult showed a slowdown of 2 times. It performed poorly because
the analysis techniques we have described are not sufficient to eliminate false
dependences in the program that occur due to indirect array indexing. However,
other techniques can be applied to reduce the slowdown for sparsematmult. For
example, speculative execution or run-time dependence analysis can be used.
5 Thanks to Christoph von Praun for these.

186 Z. Sura et al.

Our results show that for well-synchronized programs, it is feasible to imple-
ment consistency models in software without performance degradation. So, it is
worthwhile to develop precise and efficient analysis algorithms for this purpose.

5 Conclusion

We have outlined the design of a compiler that allows the consistency model to
be a programmable feature. This compiler can be used to prototype and test
new consistency models, and to determine the effect of a consistency model on
compiler transformations and run-time performance.

We obtained an estimate for performance degradation due to a software im-
plementation of sequential consistency that uses manual analysis. For all bench-
mark programs except one, there was no slowdown. This demonstrates the us-
ability of software consistency model implementations to provide ease-of-use to
programmers, and justifies the development of precise and efficient inter-thread
analysis algorithms for this purpose.

References

1. Sarita V. Adve and Kourosh Gharachorloo.: Shared memory consistency models:
A tutorial. IEEE Computer, pages 66-76, Dec 1996

2. B. Alpern, et al: The Jalapeno virtual machine. IBM Systems Journal, Feb 2000
3. J.-D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, and S. Midkiff: Escape analysis

for Java. Proceedings ACM 1999 Conference on Object-Oriented Programming
Systems (OOPSLA 99), pages 1-19, Nov 1999

4. P.A. Emrath, S. Ghosh, and D.A. Padua: Event synchronization analysis for de-
bugging parallel programs. Proceedings of Supercomputing, pages 580-588, 1989

5. Xing Fang: Inserting fences to guarantee sequential consistency. Master’s thesis,
Michigan State University, July 2002

6. J. Gosling, B. Joy, G. Steele, and G. Bracha: The Java Language Specification,
Second Edition. The Java Series, Addison-Wesley Publishing Company, Redwood
City, CA 94065, USA, 2000

7. Mark D. Hill: Multiprocessors should support simple memory-consistency models.
IEEE Computer, pages 28-34, Aug 1998

8. Arvind Krishnamurthy and Katherine Yelick: Optimizing parallel SPMD programs.
Seventh Workshop on Languages and Compilers for Parallel Computing, Aug 1994

9. Arvind Krishnamurthy and Katherine Yelick: Analyses and optimizations for
shared address space programs. Journal of Parallel and Distributed Computing,
38:139-144, 1996

10. J. Lee, S.P. Midkiff, and D.A. Padua: Concurrent static single assignment form and
constant propagation for explicitly parallel programs. Proceedings of The 10th In-
ternational Workshop on Languages and Compilers for Parallel Computing, pages
114-130, Springer, Aug 1997

11. J. Lee and D.A.Padua: Hiding relaxed memory consistency with compilers. Pro-
ceedings of The 2000 International Conference on Parallel Architectures and Com-
pilation Techniques, Oct 2000

Automatic Implementation of Programming Language Consistency Models 187

12. J. Lee, D.A.Padua, and S.P. Midkiff: Basic compiler algorithms for parallel pro-
grams. Proceedings of The 1999 ACM SIGPLAN Symposiun on Principles and
Practice of Parallel Programming, pages 1-12, May 1999

13. G. Naumovich, G.S. Avruninand, and L.A. Clarke: An efficient algorithm for com-
puting MHP information for concurrent Java programs. Proceedings of Seventh
European Software Engineering Conference and Seventh ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, Sep 1999

14. William Pugh: Fixing the Java memory model. Proceedings of the ACM 1999 Java
Grande Conference, June 1999

15. R. Rugina and M. Rinard: Pointer analysis for multithreaded programs. Proceed-
ings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation, pages 77-90, June 1999

16. Dennis Shasha and Marc Snir: Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282-312, Apr 1988

17. C.-L. Wong, Z. Sura, X. Fang, S.P. Midkiff, J. Lee, and D. Padua: The Pensieve
Project: A Compiler Infrastructure for Memory Models. The International Sym-
posium on Parallel Architectures, Algorithms, and Networks, May 2002

18. Eclipse Platform Technical Overview. Object Technology International, Inc., July
2001, Available at www.eclipse.org

19. The NetBeans Platform. Sun Microsystems, Inc., Documentation available at
www.netbeans.org

Parallel Reductions: An Application of Adaptive
Algorithm Selection�

Hao Yu, Francis Dang, and Lawrence Rauchwerger

Dept. of Computer Science, Texas A&M University,
College Station, TX 77843-3112

{h0y8494, fhd4244, rwerger}@cs.tamu.edu

Abstract. Irregular and dynamic memory reference patterns can cause signifi-
cant performance variations for low level algorithms in general and especially for
parallel algorithms. We have previously shown that parallel reduction algorithms
are quite input sensitive and thus can benefit from an adaptive, reference pattern
directed selection. In this paper we extend our previous work by detailing a sys-
tematic approach to dynamically select the best parallel algorithm. First we model
the characteristics of the input, i.e., the memory reference pattern, with a descrip-
tor vector. Then we measure the performance of several reduction algorithms
for various values of the pattern descriptor. Finally we establish a (many-to-one)
mapping (function) between a finite set of descriptor values and a set of algo-
rithms. We thus obtain a performance ranking of the available algorithms with
respect to a limited set of descriptor values. The actual dynamic selection code
is generated using statistical regression methods or a decision tree. Finally we
present experimental results to validate our modeling and prediction techniques.

1 Parallel Performance Is Input Dependent

Improving performance on current parallel processors is a very complex task which, if
done ’by hand’ by programmers, becomes increasingly difficult and error prone. More-
over, due to the inherent complexity and human limitations, true optimizations are hard
to achieve. During the last decade, programmers have obtained increasingly more help
from parallelizing (restructuring) compilers. Such compilers address the need of detect-
ing and exploiting parallelism in sequential programs written in conventional languages
as well as parallel languages (e.g., HPF). They also optimize data layout and perform
other transformations to reduce and hide memory latency, the other crucial optimiza-
tion in modern, large scale parallel systems. The success in the ’conventional’ use of
compilers to automatically optimize code is limited to cases when performance is inde-
pendent of the application’s input data. When the access pattern of the code (e.g., loops)
is statically insufficiently defined, either because it is read–in from a file or it is actually
computed (and re-computed) during execution, then the compiler cannot use classic
analysis techniques, e.g., data dependence analysis. Unfortunately, this precludes tradi-
tional static compiler parallelization and latency hiding techniques from being used in

� This research supported in part by NSF CAREER Awards CCR-9624315 and CCR-9734471,
NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, and by the DOE ASCI ASAP pro-
gram grant B347886.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 188–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Reductions: An Application of Adaptive Algorithm Selection 189

the optimization of many important modern applications such as SPICE [12], DYNA–
3D [15], GAUSSIAN [10], and CHARMM [1], which have input-dependent and/or
computation-dependent memory reference patterns.

A particularly important input dependent optimization is the parallelization of re-
ductions (a.k.a. updates). In fact, with the exception of some simple methods using
unordered critical sections (locks) reduction parallelization is performed through a sim-
ple form of algorithm substitution. For example, a sequential summation is a reduction
which can be replaced by a parallel prefix, or recursive doubling, computation [7,8].

In [17] we have presented a small library of parallel reduction algorithms and shown
that the best performance can be obtained only if we dynamically select the most ap-
propriate algorithm for the instantiated input set (reference pattern). Also in [17] we
have presented a taxonomy of reduction reference patterns and sketched a decision tree
based scheme that allows an application to dynamically select the best algorithm for a
pattern.

This paper continues this work and presents in more detail a systematic process of
memory reference and algorithm characterization. It establishes a predictive model that
takes as input a reduction memory reference pattern and a library of parallel reduction
algorithms and outputs the performance ranking of these algorithms. All processes for
establishing such a predictive model and its use in a real application are automated.
Finally we show how this model can be used in the optimization of irregular applications
that instantiate reductions.

We believe that the paper’s main contribution is a framework for a systematic pro-
cess through which input sensitive predictive models can be built off-line and used
dynamically to select from a particular list of functionally equivalent algorithms, paral-
lel reductions being just one important example. The same approach could also be used
for various other compiler transformations that cannot be easily analytically modeled.

2 A Library of Reduction Parallelization Algorithms

To use an adaptive scheme that selects the most appropriate parallel reduction algorithm
we first need a library of reduction algorithms. Our library currently contains direct
update methods and private accumulation and global update methods. Direct update
methods update shared reduction variables during the original loop execution. Methods
in this category include unordered critical sections [3,19] (not of interest because they
don’t scale well for arrays) and local write [4]. Private accumulation and global update
methods accumulate in private storage during loop execution and update the shared
variables with each processor’s contribution after the loop has finished. Methods in this
category include replicated buffer [7,8,13,9], replicated buffer with links, and selective
privatization [17]. For brevity, we provide here only a high level description of the
methods. Table 1 provides an overview of their relative strengths and weaknesses. See
the previously cited literature and [17] for more details.

Replicated Buffer (REPBUFS). A reduction operation is an associative recurrence and
can thus be parallelized using a recursive doubling algorithm [7,8]. In a similar man-
ner, the REPBUFS scheme privatizes the reduction variables and accumulates in private
storage the partial results and thus allows the original loop to execute as a doall.

190 H. Yu, F. Dang, and L. Rauchwerger

Then, after loop execution, the partial results are accumulated across processors and the
corresponding shared array is updated.

Replicated Buffer With Links (REPLINK). To avoid the overhead encountered at the
cross-processor reduction phase by REPBUFS, REPLINK links used private elements
to avoid traversing unused private elements. For every shared element, a linked list is
maintained based on the processor IDs of used private elements.

Selective Privatization (SELPRIV). To avoid the overhead encountered by REPBUFS,
SELPRIV only privatizes array elements having cross–processor contentions. By ex-
cluding unused privatized elements, SELPRIV maintains a dense private space where
almost all elements are used. Since the private space does not align to that in REPBUFS,
to avoid introducing another level of indirection, the remote references in the original
index array are modified to redirect the access to the reserved elements in the dense pri-
vate space. The cross–processor reduction phase traverses links among private elements
corresponding to the same shared element to update the global reduction element.

Local Write (LOCALWRITE). LOCALWRITE uses a variation of the ’owner computes’
method and is mostly employed in the parallelization of irregular codes. The reference
pattern is first collected in an inspector loop [16] and is followed by a partitioning of the
iteration space based on the owner-computes rule. Memory locations referenced across
processors will have their iterations replicated so that they access addresses local to each
processor. The authors of LOCALWRITE have recently improved the implementation of
this scheme by using a low overhead graph partitioning (GPART) technique to reorder
the data and thus minimize the cross-processor communications [5]. The GPART al-
gorithm works on reduction loops when the data structure of the loop is equivalent to
a graph. Because we are not sure how the algorithm performs when applied to loops
with multiple reduction statements we have used a more general but less-optimized
implementation of LOCALWRITE: We record the iterations that need to be executed
on each processor and then predicate the reduction statements in all the (replicated)
iterations.

3 Pattern Descriptor

Memory accesses in irregular programs take a variety of patterns and are dependent
on the code itself as well as on their input data. Moreover, some codes are of a dy-
namic nature, i.e., they modify their behavior during execution because they often (not
necessarily) simulate position dependent interactions between physical entities. In this
context we need to quantify the characteristics of a loop containing reductions that mat-
ter most to the performance of parallel reduction algorithms. This characterization is
not general but specific to our goal of selecting the best algorithm for the input at hand.
In Table 1, we present an experimentally obtained qualitative correlation between the
values of some attributes of reduction loops and their memory access patterns and their
relative performance. These results indicate that the chosen set of attributes, (called a
pattern descriptor), can be used for modeling and performance ranking of reduction
loops.

Parallel Reductions: An Application of Adaptive Algorithm Selection 191

Table 1. Advantages and Disadvantages of schemes. M is the number of iterations; N is the size
of reduction array; P is the number of processors.

Issues REPBUFS REPLINK SELPRIV LOCALWRITE

Inspector Complexity NO O(N) O(M) O(M)
Inspector Applicability always always limited

Extra Space O(N × P) O(N × P) O(N × P + M) O(M × P)
Pattern change not sensitive sensitive sensitive sensitive

Locality poor poor good the best
Preferred patterns dense sparse sparse no preference
Extra computation None None access my index() replicate iterations

3.1 Pattern Descriptor

The various characteristics of a reduction loop can be described by a small number of
parameters, put together in a small vector, called a pattern descriptor.

Ideally, these attributes would take no overhead to measure, however this is not
possible in most cases because they are input dependent (read from a file or computed
during execution before the actual reductions take place). We will now enumerate them
in no specific order.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

NBF : Input Size = 25,600
 Connectivity = 200, P=8

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

NBF : Input Size = 25,600
 Connectivity = 200, P=8

1 2 3 4 5 6 7 8
0

5000

10000

15000

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

MOLDYN : Input Size = 16,384
 Connectivity = 95.75, P=8

1 2 3 4 5 6 7 8
0

5000

10000

15000

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

MOLDYN : Input Size = 16,384
 Connectivity = 95.75, P=8

1 2 3 4 5 6 7 8
0

2

4

6

8

10x 10
4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

IRREG : Input Size = 100,000
 Connectivity = 100, P=8

1 2 3 4 5 6 7 8
0

2

4

6

8

10x 10
4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

IRREG : Input Size = 100,000
 Connectivity = 100, P=8

1 2 3 4 5 6 7 8
0

2

4

6

8

10x 10
4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

IRREG : Input Size = 100,000
 Connectivity = 100, P=8

1 2 3 4 5 6 7 8
0

2

4

6

8

10x 10
4

Processors

R
ep

lic
at

eB
u

ff
er

 U
sa

g
e

IRREG : Input Size = 100,000
 Connectivity = 100, P=8

Fig. 1. Three classes of memory access patterns whose CLUS are defined as clustered, partially-
clustered, and scattered, respectively

N, the size of the reduction array is one of the attributes which impacts heavily on
the working set of the loop and has to be related to machine model.

CON, the Connectivity of a loop is a ratio between the number of iterations of the
loop and the number of distinct memory elements referenced by the loop. In [4] it is
equivalently defined as the number of edges over the number of nodes of a graph. The
higher the connectivity, the higher the ratio of computation to communication will be,
i.e., if CON is high, a small number of elements will be referenced by many iterations.

MOB, the Mobility per iteration of a loop, is directly proportional to the number
of distinct subscripts of reductions in an iteration. For the LOCALWRITE scheme, the
effect of a high iteration Mobility (actually lack of mobility) is a high degree of iteration
replication. MOB is the attribute that can be measured accurately at compile time.

NRED is the number of different reducitons using the same index. In the
cross-processor reduction phase of the REPLINK and SELPRIV schemes, this attribute
indicates how many shared reduction elements will be updated while traversing one
auxiliary link unit. In the LOCALWRITE scheme, it implies less replication for the

192 H. Yu, F. Dang, and L. Rauchwerger

same amount of reduction work. Thus, NRED should have larger positive effects on
these three schemes comparing to that on REPBUFS scheme.

OTH, the Other work per iteration of a loop, defines the relative amount of work
other than reduction operations. If OTH is high, a penalty will be paid for LOCAL-
WRITE to replicate iterations. This attribute is actually dynamic in nature but expensive
to measure at run-time. We have thus decided to estimate its value at compile time. Fur-
thermore, we have broken OTH into Memory Read (OTHR), Memory Write (OTHW)
and Scalar Computations (OTHS), and then used their relative operation counts for
modeling.

C, the degree of Contention of a reduction element, is the number of iterations
referencing it. The C measure is related to the CON measure in the sense that if an
element is referenced by many iterations it is quite likely (but not necessarily so) that
the loop has many iterations that do reductions on a small number of elements.

CHR, the ratio of the total number of references and the space needed for allocating
replicated arrays across processors (it is equal to the number of processors × dimension
of the reduction array). CHR measures the percentage of elements that are referenced
if replicated arrays are used. It indicates whether or not to use replicated arrays.

CLUS, the Degree of Clustering, defines a measurement to classify whether the
touched private elements are scattered or clustered on every processor. Fig. 1 shows
three classes of memory access patterns whose CLUS values are defined as clustered,
partially-clustered, and scattered, respectively. This attribute not only reflects the spa-
tial locality of reductions in private space, but also reflects the structure of the implied
graph structure of the reduction loop. For example, in most cases, a fully clustered pat-
tern indicates that data communication occurs mainly between neighbors nodes.

R, the reusability, measures the frequency and degree of change of the access pat-
tern from one instantiation of the reduction loop to the next. If R > 1, then it indi-
cates we can reuse the pattern characterization for R consecutive loop invocations. If
0 < R ≤ 1, then the loop is more or less dynamic. If R = 0, then the pattern changes
for every invocation. If the pattern is static for the entire execution of a program then it
is quite probable that this can be proved at compile time and R does not have to be col-
lected. As previously mentioned, REPLINK, SELPRIV, LOCALWRITE are applicable
only when R > 1 due to the significant run-time overhead they incur when they are set
up (usually part of an inspection). Thus, for a given reduction loop, the Reusability, is
a crucial factor in the decision whether a more complex reduction algorithm should be
considered. The best scheme should have the smallest value of R+O

Speedup , where R is the
reusability, O is the ratio of the set-up phase overhead and the parallel execution time
of one invocation of the loop applying a scheme, and Speedup is the speedup of the
scheme excluding the set-up phase overhead. We can prove if R > 0 at compile time
through loop invariant hoisting.

3.2 Decoupled Effects of Pattern Descriptor Values on Performances

In this section, we give a qualitative view and discussion of the decoupled effects of the
pattern descriptor components on the performance of different reduction parallelization
schemes. We should emphasize that while this decoupling is not realistic it is neverthe-
less useful to uncover qualitative trends.

Parallel Reductions: An Application of Adaptive Algorithm Selection 193

0 1 2 3 4 5 6

x 10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension (N)

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Dimension (N) − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Mobility

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Mobility − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

0 0.5 1 1.5 2 2.5 3 3.5 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scalar Operation Factor (OTHS)

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Scalar Operation Factor (OTHS) − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

2 4 6 8 10 12 14 16
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Connectivity

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Connectivity − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Private Density (CHR)

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Private Density (CHR) − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

1 1.5 2 2.5 3 3.5 4
0.7

0.75

0.8

0.85

0.9

0.95

1

Same Index Reductions # (NRED)

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Same Index Reductions # (NRED) − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Clusterness

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Clusterness − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

1 1.5 2 2.5 3 3.5 4
0.85

0.9

0.95

1

Memory Read Factor (OTHR)

R
el

at
iv

e
A

ve
ra

ge
 S

pe
ed

up
s

Memory Read Factor (OTHR) − Average Speedup

RepBufs
RepLink
SelPriv
LocalWrite

Fig. 2. Decoupled Effect of Pattern Descriptor Attributes on performances of different schemes

In Fig. 2, we show the effects of attributes N, CON, MOB, NRED, OTHR, OTHS,
CHR and CLUS. The graphs are based on a factorial experiment to generate a list of at-
tributes that are then used as parameters of a synthetic reduction loop (see Section 4.1).
In our experiments, we choose |Ai| values for the ith attribute. Each graph in Fig. 2
illustrates the decoupled effect of an attribute, say Ai. The vertical axis corresponds to
the average speedups normalized by the best average speedup for each scheme.

Table 3 summarizes the trends illustrated in Fig. 2. SELPRIV and LOCALWRITE

have better locality and use less space and thus perform better than the REPBUFS

scheme. Data replication based schemes (REPBUFS and SELPRIV) consist of two loops:
a reduction loop in privatized space and a cross-processor reduction loop. The second
loop can be considered as the parallel overhead of these schemes. Thus, when CON
(previously defined as the ratio between these two loops) increases, the ’privatized’
reduction loop dominates and the speedups of REPBUFS and SELPRIV increase. On
the other hand, low CON values will be helped by LOCALWRITE. High MOB values
also imply a large number of accesses of the index array of the irregular reductions
which in turn implies poor performance for the SELPRIV scheme. This is because in
this scheme both the original and the my index array redirect references to privatized
storage. Higher values for OTH increase the relative weight of the privatized reduction
loop which implies better performance for the REPBUFS and SELPRIV methods. High
CLUS values are helped by the SELPRIV scheme because it increases the clustering
(gathers references).

194 H. Yu, F. Dang, and L. Rauchwerger

Attributes REPBUFS SELPRIV LOCALWRITE

N ↗ ↑ ↑
CON ↑ ↗ –
MOB ↑ ↘ ↓
NRED – ↗ ↑
OTH ↑ ↑ ↗
CHR ↗ ↓ ↘

CLUS ↗ ↑ –

Fig. 3. Summary of Effects of attributes in
pattern descriptor on the performances of
different schemes. (↑: positive effect; ↓:
negative effect; ↗: little positive effect; ↘:
little negative effect; –: no effect.).

Irreg Nbf Moldyn
0

10

20

30

40

50

60

70

80

90

100

Applications (Reduction Loops)

R
at

io
 o

f O
ve

rh
ea

d
an

d
R

ep
B

uf
s

S
ch

em
e

Run−time Overhead of Pattern Charactorization

C=100

C=20

C=5

C=1

C=200

C=50

C=5

C=2

C=96

C=31

C=6.8

C=1.5

Overhead
RepBufs

Fig. 4. Modeling Overhead. Relative ex-
ecution times for the parallel reduc-
tion loop using the RepBufs scheme
(RepBufs) and generating the pattern
descriptor (Overhead). C denotes the
connectivity of the inputs.

4 Adaptive Scheme Selection

The pattern descriptor can be analyzed by the compiler (rarely) or measured and com-
puted at run-time, either with inspectors or by adopting a simple ’general purpose’
technique for the first instantiation of the loop. Some of the attributes of the descrip-
tor are not easy to estimate and/or measure. The characterization of the reduction pat-
tern is achieved by inexpensively computing some scalar values while the references
are traversed. Our run-time adaptive reduction parallelization scheme is illustrated in
Fig. 5.

The run-time overhead of our technique, represented by the procedures Compute
Pattern Descriptor and Select Scheme in Fig. 5, has been normalized to the REPBUFS

execution time (because it is assumed without overhead) and shown in Fig. 4.
A realistic prediction scheme cannot rely on the decoupled measurements presented

thus far but needs to combine the effect of all attributes as they cover the universe of
all possible (realistic) values. Because an exhaustive characterization is impractical we
have established a process through which we can sample the n-dimensional space of
the pattern descriptor, rank the performance of the algorithms in our library and use this
mapping to interpolate or reason about any other values of the pattern descriptor. This
process is done only once, off-line, as a setup phase for each machine installation and
it is outlined in Fig. 6.

We will first present the design of the initial map between a set of synthetically
generated pattern descriptors and their corresponding performance ranking. This will
generate a many-to-one mapping between a limited number of points in the multidi-
mensional space described by the pattern descriptor and the limited number of possible
rankings of performance of our library. In fact this number is very limited because we
will almost always select the best performing algorithm. Then, we will show how an ap-
plication can use this mapping to interpolate for its own pattern descriptor and select the
best possible algorithm. For this purpose we introduce two methods to generate the pre-
diction code that can then be used by an application at run-time: Statistical Regression
and Decision Tree Learning.

Parallel Reductions: An Application of Adaptive Algorithm Selection 195

with Chosen Scheme
Parallel Loop

Outer loop done?

Yes

No

RepBufs

Pattern Descriptor
Compute

Pattern Changed?
Yes

No

Run−time

Select Scheme

Fig. 5. Adaptive Reduction Paralleliza-
tion at Run-time

Descriptors
PatternParameterized

Synthetic Loops

Reduction Loops Inputs

Schemes Ranking

SchemeID = F(Pattern Descriptor)

Step 3

Step 1

Step 2

Setup Phase

Fig. 6. Setup phase of Adaptive
Scheme Selection

4.1 Sample Space Generation, a Factorial Experiment

To measure the performance of different reduction patterns, we have created the syn-
thetic reduction loop in Fig 7 which has been parameterized by most attributes of the
pattern descriptor, N, CON, MOB, NRED, OTHR, OTHS and OTHW. Attributes
CHR and CLUS are used to generate the index array. The various operation types
have been grouped in their own loop nests. Because sometimes the native compiler can-
not unroll the inner loop nests for different parallel and sequential versions of the loop
in the same way we have performed this transformation with our own pre-processing
phase. The dynamic pattern depends strictly on the index array. The generation of the
index array includes the following steps:

– Assign to each processor the number of touched private elements. The degree of
contention of each reduction element and the touched private elements on each
processor are normally distributed.

– Decide which elements are touched according to the CLUSerness parameter.
– Generate the index array: For any reduction operation in an iteration local to a

processor, assign an index value referencing one of the touched elements on the
processor. This assignment is random and corresponds to the chosen CLUS values.

The synthetic reduction loop is parallelized by all reduction parallelization schemes
described in Section 2 using essentially the same pattern descriptor as the original syn-
thetic loop. Then, we generate a list of pattern descriptors for a factorial experimental
design [6]. Specifically, we choose Vi values for the ith attribute of the descriptor that

Table 2. Values of attributes for the factorial design

Attributes N CON CLUS MOB CHR NRED OTHR OTHS OTHW

Values 16384 2 1 (clustered) 2 0.200 1 1 0 0
524288 16 2 (partial-clustered) 8 0.800 4 4 4

3 (scattered)

196 H. Yu, F. Dang, and L. Rauchwerger

DO j = 1, N*CON
DO i = 1, OTHR

Read from other arrays
DO i = 1, OTHS

Scalar division operation
DO i = 1, OTHW

Write to other arrays
DO i = 1, MOB

DO l = 1, NRED
data(l,index(i,j)) += func

Fig. 7. Synthetic Reduction Loop

FOR (each pattern descriptor) DO
Generate the index array
FOR (each parallelization scheme) DO

Instrument the synthetic loop
Execute the parallel synthetic loop
Measure speedup

ENDFOR
Rank schemes

ENDFOR

Fig. 8. Procedure to generate samples

are typical for realistic reduction loops. All the combinations of the chosen values of the
different attributes represent a list of pattern descriptors of size

∏A
i=1 Vi, where A is the

number of independent attributes of the descriptor. The values of the pattern descriptor
for the factorial design are presented in Table 2. The sample space has been generated
using the procedure given in Fig. 8. For each measured sample we compare and rank the
relative performance of the various reduction algorithms. Finally we obtain the compact
map from pattern descriptor to rank.

4.2 Model Generation I: Statistical Regression

We have used a set of candidate polynomial models with a reasonable low degree, e.g.,
up to 3. Then we choose the model which best fits these examples by using a standard
statistical package (SAS). The target attribute, the speedup of each scheme, has been fit
by a function of the form speedup = F (patterndescriptor).

Corresponding C library routines are generated automatically to evaluate the poly-
nomial F () for each scheme. After computing the pattern descriptor, these routines
are called to estimate speedups of all schemes, rank them and select the best one. For
practical reasons (experimentation time) we limit the maximal degree of models to 3.

4.3 Model Generation II: Decision Tree Learning

An alternative process of generating the run-time selection code is building (off-line)
a decision tree from our limited set of experiments. In general, our problem can be
reduced to that of classifying the collected samples into one of a discrete set of possible
categories. For each category, only one particular reduction parallelization algorithm is
considered best. These kinds of problems are often referred to as classification problems
for which a well-known technique, “decision tree learning,” can be applied.

Decision trees classify instances by organizing the instances in leaf nodes of a tree.
Each internal node in the tree specifies a test of an attribute. To classify an instance, we
visit the tree by testing the corresponding attributes specified in the root and internal
nodes to reach a leaf node. The classification of the leaf node represents the answer.
A decision tree is generated in a top-down manner, to choose the best attribute which
can be used as a test to partition the training examples. The chosen attribute is used
as the test at the root and each possible value of this attribute leads to a descendant.
The training examples are partitioned according to the value of the chosen attribute
associated to each instance. This process is recursively applied to the descendants and

Parallel Reductions: An Application of Adaptive Algorithm Selection 197

BuildTree
Input: Samples; Output: Tree
Attr = the best attribute to partition samples
Tree = node to test Attr.
FOR (each value(or interval) V of Attr) DO
IF (STOP(Samples(Attr=V)) THEN

Tree.child(Attr=V) = BuildLEAF(Samples(Attr=V))
ELSE

Tree.child(Attr=V) = BuildTree(Samples(Attr=V))

Fig. 9. Decision Tree Learning Algorithm. The Samples

(Attr=V) operator returns the subset of Samples in which
the Attr attributes of the samples is equal to V. The
Tree.child(Attr=V) operator returns an tree descendent
edge whose predicate is Attr=V.

CLUS

CHR

CON

RepLink

<=0.2>0.2

>8 <=8

=1
=2

=3

Fig. 10. A part of a deci-
sion tree made by C4.5. By
visiting the decision tree
along the illustrated path,
REPLINK is selected as the
best scheme.

the corresponding subset of training examples. A simplified version of the algorithm is
described in Fig. 9.

The central choice in this algorithm is the selection of the attribute to test for each
node in the tree. The goal is to select the attribute that is most useful for classifying
our samples. i.e., that partitions best. For this purpose, a splitting criterion is used to
measure how well a given attribute separates the training examples according to their
target classification. In [11], Quinlan used gain ratio, an information-based measure
that takes into account different numbers of test outcomes, as the splitting criterion. In
the algorithm, it is assumed that each attribute takes discrete values. For continuous
attribute A, the c values of A existing in the examples are sorted and the c − 1 midway
values of every pair of adjacent values partitions the example into c partitions. Notice
that the target attribute is a set of classes and it is a discrete variable.

For our experiments we have adopted an available decision tree learning program
package: C4.5 developed by Quinlan [14]. C4.5 can build a decision tree from a set
of given examples and classify items using the built tree. Also, C4.5 always tries to
produce the minimal tree to avoid over-fitting the training examples.

For adaptive algorithm selection purposes the decision tree learning mechanism is
used in two distinct phases. At the installation phase, we build the decision tree which
classifies the examples generated by the process described in 4.1 into classes. Each class
is associated with one of the parallelization schemes. During program execution a run-
time library is used to find the class to which a pattern descriptor belongs and then select
the algorithm associated with that class. Since the height of the tree is equal to the num-
ber of attributes, the run-time overhead associated with visiting the tree is negligible.

We have built a tree by C4.5 from the all the examples generated in Section 4.1;
after simplification, the tree only has 21 leaves. Fig. 10 gives an example to illustrate
finding the best scheme by visiting the decision tree.

5 Experimental Results

We have collected the performance data (speedups) of reduction loops from several
codes which have been parallelized using the reduction schemes described previously
and which have been executed with several different input sets. We have then used our

198 H. Yu, F. Dang, and L. Rauchwerger

prediction model to select the best reduction algorithm and then compared our choice
with the actual performance data. Table 3 shows the schemes recommended by both
prediction approaches, statistical regression and decision tree learning, with that from
experimental results. In most cases, these two prediction processes have recommended
the correct solution. We should remark, however, that some times the difference be-
tween the first and second algorithm choices did not amount to a significant perfor-
mance difference. However the trend was almost always predicted correctly.

We have chosen 7 programs from a variety of scientific domains and augmented
them with our instrumentation to collect information about the access pattern. This has
been done in most cases (for all Fortran codes) automatically using the Polaris compiler
[2]. The compiler is capable of extracting the condensed access descriptors of a loop
(similar to an inspector loop) and, where it was not possible (SPICE), used our run-
time parallelization pass [18] to collect data during actual loop execution. The compiler
has inserted calls to a run-time library that compute the various parameters we were
interested in. Then we have implemented (by hand) the various reduction algorithms
and inserted them one by one for our experiments.

The experimental setup for our speedup measurement consisted of a 16 proces-
sor HP-V class system with 4Gb memory and 4Mb cache per processor, running the
HPUX11 operating system. It is a directory based cache coherent UMA shared mem-
ory machine. Due to the limited size of our input sets and constraints on our single user
time allocation for this project we have used only 8 processors.

We have chosen the following well known applications which we will briefly de-
scribe here in order to make the paper self-contained. It is important to note that we
have tried, where possible, to use data sets that exercise the entire memory hierarchy of
our parallel machine in order to get the performance data of ’real-life’ applications.

Irreg is an iterative PDE solver used in CFD applications. It uses an unstructured
mesh to model physical structures. The code uses nodes and edges of a graph to repre-
sent its mesh. The time is spent computing the forces that are applied to the end points
of its edges. After evaluating the forces at each node the program performs an irregular
reduction to update them with the new values. The different input sets have almost the
same amount of work (N ∗ CON). The Mobility is 2 because there are two updates
to different addresses for each iteration of the reduction loop. Nbf is a kernel from the
GROMOS molecular dynamics benchmark. It is typical of N-body simulations in that
the code maintains a continuously updated list of its neighbors with which it interacts.
At every time step forces are evaluated at each node and applied through a reduction
operation across the whole data structure of the program. Because the interaction of the
molecules changes the Reusability is variable. Moldyn is a kernel for the molecular dy-
namics code CHARMM. It is similar to Nbf in the sense that its nodes interact only with
its neighbors. The list of neighbors changes at various times because of the forces ap-
plied to them. It is a very dynamic irregular code for which Reusability is low. Charmm
is the original code for Moldyn. We have used other data sets with sizes of 332,288 and
664,576 in order to produce ’real results’. Spark98 is a collection of 10 sparse ker-
nels developed by David O’Hallaron at CMU. The sparse matrices are induced from a
pair of three-dimensional unstructured finite element simulations of earthquake ground
motion in the San Fernando Valley. Each kernel is a program/mesh pair. There are 5

Parallel Reductions: An Application of Adaptive Algorithm Selection 199

Table 3. Modeling Example Result. P = 8; N, CON(nectivity), MOB(ility), NRED, OTHR(other
work Memory Read), OTHS(other work Scalar Computation), OTHW(other work Memory
Write), CHR, CLUS(terness) are as defined previously. In the last four columns, the schemes
are represented by an one digit number. The schemes REPBUFS, REPLINK, SELPRIV and LO-
CALWRITE are numbered as 1, 2, 3, 4 respectively.

APP Pattern Descriptor Best Scheme(s)
N CON MOB NRED OTHR OTHS OTHW CHR CLUS Real Syn. Reg. Tree

Irreg 100000 100 2 1 1 0 0 1 1 1 123 132 31
500000 20 0.99 1 321 132 3 3

1000000 5 0.71 3 4 43 43 43
2000000 1 0.22 3 3 3 3 34

Nbf 25600 200 2 1 1 0 0 0.25 1 1 213 12 32
128000 50 0.25 1 12 21 321 3
256000 5 0.25 1 231 32 3 3

1280000 2 0.25 1 23 43 3 3
Moldyn 16384 214 2 3 3 3 0 0.48 2 21 123 12 312

42592 70 0.39 2 21 21 213 312
70304 21 0.34 2 12 213 321 312
87808 6 0.29 2 1 32 3 312

Spark98 21882 4.80 2 3 9 0 0 0.20 2 2 231 3 21
90507 4.88 0.18 2 32 321 3 21

Charmm 331776 17.98 2 3 3 0 0 0.14 2 123 321 3 21
331776 8.99 0.15 2 3 213 3 21
663552 4.48 0.13 2 2 321 3 21

Spice 186943 0.04 28 1 2 0 1 0.13 2 3 3 3 3
99190 0.06 0.13 2 3 3 3 3
89925 0.05 0.13 2 3 3 3 3
33725 0.05 0.13 2 3 3 3 3

Fma3d 174762 0.50 8 3 3 0 0 0.13 3 3 3 3 3

real/syn/reg inp2 inp3 inp4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

irr − SPEEDUPs: Real vs Synthetic vs Regression

RepBufs
RepLinks
SelPriv
LocalWrite

real/syn/reg inp2 inp3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

charmm − SPEEDUPs: Real vs Synthetic vs Regression

RepBufs
RepLinks
SelPriv
LocalWrite

real/syn/reg inp2 inp3 inp4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

nbf − SPEEDUPs: Real vs Synthetic vs Regression

RepBufs
RepLinks
SelPriv
LocalWrite

real/syn/reg spark98 fma3d
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

spark98, fma3d − SPEEDUPs: Real vs Synthetic vs Regressio

RepBufs
RepLinks
SelPriv
LocalWrite

real/syn/reg inp2 inp3 inp4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

moldyn − SPEEDUPs: Real vs Synthetic vs Regression

RepBufs
RepLinks
SelPriv
LocalWrite

real/syn/reg inp2 inp3 inp4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inputs (+Schemes)

S
pe

ed
up

spice − SPEEDUPs: Real vs Synthetic vs Regression

RepBufs
RepLinks
SelPriv
LocalWrite

Fig. 11. Comparison of Scheme ranks for normalized execution of real applications (real), nor-
malized execution of synthetic reduction loop (syn) and normalized prediction with a regression
model (reg)

C programs (smv, lmv, rmv, mmv, hmv) and 2 finite element input data sets (sf10 and
sf5). We have chosen the rmv kernel which computes irregular reductions. The meshes
determine both the size and nonzero structure of the sparse matrices used. We have
used the moderate size mesh Sf5 (because the large one was not available to us). It has

200 H. Yu, F. Dang, and L. Rauchwerger

30,169 nodes, 410,923 nonzero matrix entries. Reusability is high, there are 3 reduc-
tion statements in the loop. Other than reduction statements, there are quite a few other
computations and memory references. This code has been transformed by hand because
our compiler infrastructure can handle only Fortran code. SPICE 2G6 is a circuit sim-
ulation code written in an older Fortran style. Its main feature is that it does its own
memory management inside a statically allocated large array named Value. Therefore
all references to arrays are through indirection (subscripted subscripts) which makes
almost any compiler analysis impossible. We have transformed the code for parallel ex-
ecution using the run-time techniques described in [18]. For this paper we have chosen
the main loop in subroutine BJT which evaluates the device model and updates the Y
matrix of the circuit (this is the reduction loop). The program iterates to a fixed point
solving a linear system and then re-evaluating the device model for the newly found
values. The model evaluation loop takes between 11% and 45% of total execution time
depending on the complexity of the devices and circuits being simulated. The Mobility
is 28, which means that there are 28 distinct reduction statements for each iteration. The
Connectivity is very low. In order to reuse the information we have used a technique we
have named Global Schedule Reuse Control. Instead of proving that addresses do not
change from one instance of the loop to the other one, we have checked, at run-time,
when a potential address (an integer array) is modified in the global context. Fortunately
our conservative method yields only two address changes during the whole program
yielding high reusability. FMA3D is a finite element method based three-dimensional
inelastic, transient dynamic response simulation code from the SPEC CPU2000 suite.
We choose one reduction loop in SCATTER ELEMENT NODAL FORCES PLATQ sub-
routine. The loop has Mobility 8 and three different reductions sharing the same index
(NRED= 3).

5.1 Discussion

Table 3 shows the overall results obtained with our modeling approaches. The first ten
columns list applications and attributes of pattern descriptor defined in Section 3.1.
In the last four columns, we list the best scheme(s) obtained from: execution of real
applications (Real), execution of synthetic loop with corresponding real pattern de-
scriptors (Syn.), recommendation by regression models (Reg.) and recommendation by
decision tree learning (Tree). The schemes REPBUFS, REPLINK, SELPRIV and LO-
CALWRITE are numbered 1, 2, 3, and 4, respectively. Besides the best scheme we also
listed the schemes (whenever applicable) whose speedups are greater than 90% of the
best speedup. The last column of Table 3 represents the prediction given by the C4.5 de-
cision tree learning program. We specify all the possible rankings of the best schemes,
whose speedups are greater than 90% of the best speedup, as given by C4.5 with the
highest probability.

In most cases the estimated rankings are consistent with the experimental rankings.
To further investigate the accuracy of the synthetic loop and the regression models,
we plotted the relative speedups obtained from the the execution of real applications
(Real), the execution of synthetic loop with corresponding real pattern descriptor (Syn.)
and the recommendation by regression models (Reg.) in Fig. 11 and also shown in
Table 3. In these graphs, each group of bars corresponds to an application-input case

Parallel Reductions: An Application of Adaptive Algorithm Selection 201

irreg nbf moldyn spark98 charmm spice fma3d
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications + Inputs Cases

R
el

at
iv

e
S

pe
ed

up

Performance Lost: Regression vs The Best

(a)

irreg nbf moldyn spark98 charmm spice fma3d
0

0.5

1

1.5

2

2.5

3

3.5

Applications + Inputs Cases

R
el

at
iv

e
S

pe
ed

up

Performance Lost: Regression vs RepBufs

(b)

irreg nbf moldyn spark98 charmm spice fma3d
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications + Inputs Cases

R
el

at
iv

e
S

pe
ed

up

Performance Lost: Decision Tree vs The Best

(c)

Fig. 12. Performance Comparison. (a) compares the performance of regression prediction and
that of the best scheme; (b) compares the performance of regression prediction and that of Rep-
Bufs scheme (simplest scheme); (c) compares the performance of decision tree prediction and
that of the best scheme To illustrate the effects of the prediction, we assume the reusability of
applications is big, thus we do not have to consider the overheads related to schedule reuse.

and each sub-group shows the relative speedups of the four schemes. In most of the
cases, although the speedups are not close to each other, the rankings from different
sources are consistent. The loss of accuracy occurs because we have not yet been able
to accurately model the OTH part of the reduction loops. From a total of 22 application-
input cases, the regression approach predicted 14 cases correctly. For the 8 mispredicted
cases, only in 5 cases is the mis-prediction more than 10% (lower speedup).

Some of the errors are due to the small number of samples used and imperfect
regression models. Table 3 shows that the predictions given by C4.5 are not as accurate
as those of the regression approach. From 22 cases, it predicted 10 case precisely, 4
cases with confidence of 90% and 8 cases with confidence less than 90%. Because the
decision tree can be represented as a step function and the function in every interval is
a constant, it has less extrapolation capability than regression approach. To improve its
accuracy the decision tree would need a larger number of samples.

The graphs in Fig. 12 show the effect of our predictions on the performance of
real applications. Graph 12(a) indicates that, for most of the patterns, the performance
obtained by applying the predicted schemes came close to that of the best schemes.
We define an average relative speedup loss (LOSS) and use it as a metric of the pre-
dictions. In Graph 12(a), for all 22 real application-input cases, the LOSS value of the
regression approach is 93.86%. In the four reduction parallelization schemes, REPBUFS

is the simplest to implement, thus we compare the performances using recommended
schemes with that using REPBUFS. Graph 12(b) compares the relative performance gain
between the REPBUFS (the simplest) and the scheme recommended by our model. On
the average the LOSS value is 140.20%, a significant performance gain. Graph 12(c),
shows that LOSS value for the decision tree method is better than 90%.

6 Summary and Future Work

In [17] we have essentially shown that input dependent programs can benefit from adap-
tively selecting the low level algorithms with which to implement optimizations, e.g.,
parallel reductions. In this work we have presented a systematic approach of construct-
ing a performance model which, in conjunction with a input data characterization can

202 H. Yu, F. Dang, and L. Rauchwerger

predict and select the best available algorithm. While the results are good there are
several issues which need more work such as to more accurately measure and/or esti-
mate the pattern descriptor of each individual loop instantiation. Also for this purpose
a data base (or profile base) of real reduction loops with an experimentally validated
pattern descriptor could be useful. Another important conclusion is that Reusability (R)
is essential for the ammortization of the overhead of the presented reduction schemes.

References

1. Charmm: A program for macromolecular energy, minimization, and dynamics calculations.
J. of Computational Chemistry, 4(6), 1983.

2. W. Blume,et. al Advanced Program Restructuring for High-Performance Computers with
Polaris. IEEE Computer, 29(12):78–82, Dec. 1996.

3. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automatic Paralleliza-
tion of Four Perfect-Benchmark Programs. Proc. of the 4-th Workshop on Languages and
Compilers for Parallel Computing, Santa Clara, CA, LNCS 589, pp. 65–83, Aug. 1991.

4. H. Han and C.-W. Tseng. Improving compiler and run-time support for adaptive irregular
codes. In Int. Conf. on Parallel Architectures and Compilation Techniques, Oct. 1998.

5. H. Han and C.-W. Tseng. A comparison of locality transformations for irregular codes.
In 5th Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers,
Rochester, NY, May 2000.

6. R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc., 1991.
7. C. Kruskal. Efficient parallel algorithms for graph problems. In Proc. of the 1986 Int. Conf.

on Parallel Processing, pp. 869–876, Aug. 1986.
8. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann, 1992.
9. Y. Lin and D. Padua. On the automatic parallelization of sprase and irregular fortran pro-

grams. In Proc. of the Workshop on Languages, Compilers and Run-time Systems for Scal-
able Computers, pp. 41–56, Pittsburgh, PA, May 1998.

10. M. J. Frisch et. al Gaussian 94, Revision B.1. Gaussian, Inc., Pittsburgh PA, 1995.
11. T. Mitchell. Machine Learning. MIT Press and The McGraw-Hill Companies, Inc., 1997.
12. L. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. PhD thesis,

Univ. of California, May 1975.
13. W. M. Pottenger. Theory, Techniques, and Experiments in Solving Recurrences in Computer

Programs. PhD thesis, CSRD, Univ. of Illinois at Urbana-Champaign, May 1997.
14. Ross Quinlan. C4.5 Release 8. http://www.cse.unsw.edu.au/ quinlan/.
15. R. G. Whirley and B. Engelmann. DYNA3D: A Nonlinear, Explicit, Three-Dimensional Finite

Element Code For Solid and Structural Mechanics. Lawrence Livermore National Lab., Nov.,
1993.

16. J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation methods for multi-
computers. In Dr. H.D. Schwetman, editor, Proc. of the 1991 Int. Conf. on Parallel Process-
ing, pp. 26–30. CRC Press, Inc., 1991. Vol. II - Software.

17. H. Yu and L. Rauchwerger. Adaptive reduction parallelization. In Proc. of the 14th ACM Int.
Conf. on Supercomputing, Santa Fe, NM, May 2000.

18. H. Yu and L. Rauchwerger. Run-time parallelization overhead reduction techniques. In
Proc. of the 9th Int. Conf. on Compiler Construction (CC2000), Berlin, Germany. LNCS
1781, Springer-Verlag, March 2000.

19. H. Zima. Supercompilers for Parallel and Vector Computers. ACM Press, New York, New
York, 1991.

Adaptively Increasing Performance
and Scalability of Automatically

Parallelized Programs�

Jaejin Lee1,�� and H.D.K. Moonesinghe2

1 Seoul National University, School of Computer Science and Engineering,
Seoul 151-742, Korea
jlee@cse.snu.ac.kr

2 Michigan State University, Department of Computer Science and Engineering,
East Lansing, MI 48824, USA

moonesin@cse.msu.edu

Abstract. This paper presents adaptive execution techniques that de-
termine whether automatically parallelized loops are executed parallelly
or sequentially in order to maximize performance and scalability. The
adaptation and performance estimation algorithms are implemented in
a compiler preprocessor. The preprocessor inserts code that automati-
cally determines at compile-time or at run-time the way the parallelized
loops are executed. Using a set of standard numerical applications writ-
ten in Fortran77 and running them with our techniques on a distributed
shared memory multiprocessor machine (SGI Origin2000), we obtain the
performance of our techniques, on average, 26%, 20%, 16%, and 10%
faster than the original parallel program on 32, 16, 8, and 4 processors,
respectively. One of the applications runs even more than twice faster
than its original parallel version on 32 processors.

1 Introduction

High performance optimizing and parallelizing compilers perform various optimizations
to improve the performance of sequential and parallel programs [2]. A problem that
most of such compilers currently faced is the lack of information about machine pa-
rameters and input data at compile-time. The performance of an algorithm that best
solves a problem largely depends on the combination of the input set and the hardware
platform executing it. The information about the input and the platform is difficult to
obtain or unavailable at compile time. Consequently, it is difficult or sometimes impos-
sible to statically fine-tune the application to the platform. To address this issue, recent

� This work was supported in part by National Science Foundation under grant EIA-
0130724 and by National Computational Science Alliance under grant ocn, and uti-
lized the Silicon Graphics Origin2000. This work was also supported in part by the
Korean Ministry of Education under the BK21 program and by the Korean Ministry
of Science and Technology under the National Research Laboratory program.

�� The preliminary work of this paper was done when the author was in the Department
of Computer Science and Engineering at Michigan State University.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 203–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 J. Lee and H.D.K. Moonesinghe

work [1, 7, 14, 20, 21] has been started to explore the feasibility of run-time fine-tuning
and optimizations when complete knowledge about the input set and the hardware
platform is available.

Automatic parallelizing compilers analyze and transform a sequential program into
a parallel program without any intervention of the user. However, in order to achieve
maximum performance from the automatically parallelized programs, the user must
consider the following factors with regards to the underlying multiprocessor architec-
ture: amount of parallelism contained in the program, cache locality of the program,
hardware cache coherence mechanism, workload distribution between processors, data
distribution, false sharing, coordination overhead incurred between processors, synchro-
nization overhead, etc. Since these factors manifest synergistically on the performance
of parallel loops and the effects differ from one machine to another machine, identify-
ing performance bottlenecks of a parallel program is a tedious and difficult job for the
programmer. Consequently, the cost that a programmer pays in order to obtain rea-
sonable performance from an automatically parallelized program adds extra difficulties
in developing and maintaining parallel programs.

In this paper, instead of manually identifying the performance bottlenecks from an
automatically parallelized program, we avoid executing some parallel loops in parallel
if performance degradation of the loops exceeds a predefined threshold value during
parallel execution of the program. No knowledge of the parallel program should be as-
sumed from the programmer. Such adaptive execution techniques significantly increase
the performance and scalability of automatically parallelized programs. The adaptation
and performance estimation algorithms are implemented in a compiler preprocessor.
The preprocessor inserts code that automatically determines at run-time the way the
parallelized loops must be executed using information obtained by the preprocessor at
compile-time and by the code itself at run-time.

Using a set of standard numerical applications written in Fortran77 and running
them with our techniques on a distributed shared memory machine (SGI Origin2000),
we obtain the performance, on average, 26%, 20%, 16%, and 10% faster than the
original parallel programs on 32, 16, 8, and 4 processors respectively.

The rest of the paper is organized as follows: Section 2 describes our parallel pro-
gramming and execution model assumed; Section 3 presents our algorithm; Section 4
describes the evaluation environment; Section 5 evaluates the algorithm; and Section 6
discusses related work. We conclude in Section 7.

2 Our Framework

Figure 1 shows our framework. An automatically or manually parallelized program is
fed into the compiler preprocessor. The preprocessor inserts performance estimation
and adaptive execution code into the parallel program using target machine specific
parameters. The output program from the preprocessor is compiled with a compiler
that generates code for the target multiprocessor.

We are particularly interested in adaptive optimization strategies that select code
at run-time from a set of statically generated code variants. We generate two different
versions of a single parallel loop, one is a sequential version and the other is a parallel
version. Since we are interested in running a parallel loop sequentially or in parallel, we
focus on the parallel programs that contain large amount of loop level parallelism. A
variety of selection algorithms are compared and evaluated with these highly parallel
programs: compile-time cost estimation, run-time cost estimation, selection based on

Adaptively Increasing Performance and Scalability 205

Machine
specific
parameters

program
Parallel

Cost estimation
and

adaptive code generation

PREPROCESSOR
Adaptive
parallel
program

Compiler
for the target
multiprocessor

Fig. 1. Our framework

execution time, selection based on performance counters, such as the number of grad-
uated instructions, and combinations of those strategies. The key observation in this
paper is that most of parallel loops are invoked many times so that adaptive execution
of the parallel loops is feasible and effective.

The preprocessor inserts instrumentation code in the parallel loop in order to mea-
sure, at run-time, the execution time of an invocation or the number of instructions
graduated in an invocation. These invocations where execution time, the number of
graduated instructions, or both of them are measured are called decision runs. Based
on the measurements in the decision runs of a parallel loop, the adaptation code de-
termines the way of executing the loop, i.e., sequentially or in parallel in the next or
remaining invocations.

A drawback of our adaptive execution techniques with decision runs is that we have
to run a parallel loop at least once sequentially and at least once in parallel in order
to obtain some useful information for adapting the loop to the run-time environment.
To compensate this penalty, we combine compile-time cost estimation and adaptive
execution techniques. In addition, we introduce the notion of adaptation window for
run-time cost estimation.

We use the OpenMP parallel programming model as our model of parallel execu-
tion. It is a master-slave thread model [13, 5, 17]. Creating slave threads for a parallel
loop, distributing the iterations of the loop between threads, cache affinity of each
thread executing different iterations, and the synchronization between threads at the
end of the loop incur an overhead for running the loop in parallel. We call it parallel
loop overhead.

3 Adaptive Execution Algorithms

We have implemented complier and run-time algorithms that adaptively execute au-
tomatically parallelized programs. The same techniques can be applied to the parallel
programs generated by hand as long as they use standard parallelization directives
used in automatic parallelizing compilers.

Our adaptation scheme has basically three different parts. A compile-time cost
estimation model, a run-time cost estimation model, and adaptation strategies using
the two models. First, the compile-time cost estimation model (Figure 2) filters parallel
loops that contain smaller amount of work than the parallel loop overhead (small loops).
Second, the run-time cost estimation model filters highly efficient parallel loops due to
large amount of work in the loop. An efficient parallel loop is the parallel loop whose
speedup is greater than 1. Otherwise, it is an inefficient parallel loop. The model counts

206 J. Lee and H.D.K. Moonesinghe

Executed
sequentially

Always executed
adaptively

Executed
in parallel

cost estimation
Run-time

cost estimation
Run-time

cost estimation
Compile-time

Not efficient due to
small amount of work

Adaptation
window

Highly efficient due to
large amount of work

Amount of work LargeSmall

Fig. 2. The adaptation scheme

the number of instructions executed in an invocation of the loop at run-time. It also
identifies small loops that cannot be handled by the compile-time cost estimation model
due to run-time parameters in the loops. Finally, several adaptive execution strategies
(including execution time based strategies) determine the way the remaining loops are
executed.

3.1 Compile-Time Cost Estimation

The compile-time cost estimation model identifies parallel loops that are not efficient
due to insufficient amount of work in the loop. It is not beneficial to run this type of
loops in parallel because the amount of work in the loop is fairly small compared to the
parallel loop overhead. We define a threshold value for the amount of work contained
in the loop. If the amount of work is smaller than the threshold value, we run the loop
sequentially.

We use a fairly simple cost estimation model. The amount of work (W) in a loop can
be estimated as a function of the numbers of iterations(ni), assignments (na), floating
point addition (nfadd

), floating point multiplication (nfmul
), floating point subtraction

(nfsub
), floating point division (nfdiv

), intrinsic function calls (nfi), system function
calls (nfs), and user defined function calls (nfu) Consequently, the estimated amount
of work (Wi) in an iteration is given by the following formula:

Wi = na · ca + nfadd
· cfadd

+ nfmul
· cfmul

+ nfsub
· cfsub

+nfdiv
· cfdiv

+ nfi · cfi + nfs · cfs + nfu · cfu

Where cop is the cost of performing a single operation with type op on the target
machine. Thus, the total estimated amount of work in an invocation of the loop is,

W (ni) = ni · Wi

Because we cannot determine at compile-time the actual number of iterations in a loop
in general, this formula is parameterized by ni. When we estimate the amount of work
in a loop that has branches, we give equal weight to each branch.

We determine the threshold value heuristically. First, we run several representative
microbenchmark programs that contain many different type of parallel loops. After

Adaptively Increasing Performance and Scalability 207

0.0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000 2500 3000

Compile-Time Estimated Cost

S
p

e
e
d

u
p

Threshold value

pa

pT

pb

Fig. 3. Determining the threshold value with compile-time cost estimation

measuring sequential execution time and parallel execution time of each loop contained
in the program on p processors, we plot the speedup of each loop on the Y-axis and
the estimated cost (the estimated amount of work) on the X-axis. Then, draw a line
from the point that has the lowest estimated cost (pa in Figure 3) to the point that
has the lowest estimated cost among those whose speedup is greater than 0.8 (pb). We
choose the cost of the intersecting point with the horizontal line of speedup 1.0 (pT)
as our threshold value.

When the loop is multiply nested, it is hard to determine the number of iterations
of an inner loop before we run the outer loop. It is because the upper bound, lower
bound, and step of the inner loop may change in the outer loop. In other words, it is
hard to obtain the cost function parameterized by the numbers of iterations of both
the outermost loop and the inner loop. In this case, we simply pass the loop to the
run-time cost estimation model.

3.2 Run-Time Cost Estimation

While the compile-time cost estimation model estimates the performance of parallel
loops that contain small amount of work and that are highly inefficient, the run-time
cost estimation model identifies the loops that contain enough amount of computation
that can overcome the parallel loop overhead and other overheads incurred during its
execution. It also handles the small loops that cannot be handled by the compile-time
cost model due to some run-time parameters.

Because the number of instructions executed in a loop is proportional to its amount
of work contained in it, we use the number of instructions executed (graduated) in an
invocation of a parallel loop as the cost estimation. For the run-time cost estimation
model to be effective, the parallel loop must be invoked at least once in the program.

There are two threshold values to be determined in the run-time cost estimation
model. One (the lower threshold value) is for the inefficient loops that contain small
amount of work and that cannot be handled by the compile-time cost estimation model.

208 J. Lee and H.D.K. Moonesinghe

The other (the higher threshold value) is for filtering out highly efficient loops. Heuristi-
cally determining the threshold values for the run-time cost estimation model is similar
to the compile-time cost estimation model. We run several representative benchmark
programs that contain many different type of parallel loops. We measure sequential ex-
ecution time, parallel execution time, and the number of graduated instructions in the
parallel execution of each loop in the benchmark programs on p processors. Then, we
plot the speedup of each loop on the Y-axis and the number of graduated instructions
(run-time estimated cost) on the X-axis.

For the higher threshold value, we draw a line from the point that has the lowest
number of instructions executed (pa in Figure 4) to the point that has the lowest number
of instructions executed among those whose speedup is greater than the average speedup
of all the loops plotted. (pb in Figure 4) We choose as our higher threshold value (TH)
the cost of the point (pH) whose number of instructions executed is in the middle of
the intersecting point with the speedup 1.0 (pc) and the intersecting point with the
average speedup (pd).

For the lower threshold value, the method is the same as the compile-time cost
estimation model. Draw a line from the point with the lowest cost (pa) to the point
with the lowest cost among those whose speedup is greater than 0.8 (pe). We choose
the cost of the intersecting point (pL) with the horizontal line of speedup 1.0 as our
lower threshold value (TL in Figure 4).

The region in between the lower threshold value and the higher threshold value is
called the adaptation window.

0

1

2

3

4

5

6

7

8

9

4000 5000 6000 7000 8000 9000

Number of Instructions Executed

S
p
e
e
d
u
p

T HT L

Average

Speedup

Adaptation Window

BA

pa

pH

pe

pd

pc

pb

pL

A = B

Fig. 4. Determining the threshold value with run-time cost estimation. For simplicity,
only the essential part of the graph is shown.

3.3 Adaptive Execution Algorithms

Depending on the frequency of decision runs and the cost estimation model used,
we propose five different adaptive execution schemes: First 2 Invocations with Tim-
ing (F2T), Most Recent with Timing (MRT), Static (compile-time) estimation and

Adaptively Increasing Performance and Scalability 209

Table 1. Auto-Parallelizing directives used for SGI MIPSpro Fortran77 compiler

Directive Meaning

C*$* ASSERT DO (SERIAL) Instructs the compiler not to parallelize the
the loop following the assertion.

C*$* ASSERT DO PREFER (CONCURRENT) Instructs the compiler to parallelize the loop
following the assertion, if it is safe to do so.

Table 2. Applications used

Application Source Number of Lines Data Size and Number of Iterations

Applu SPECfp2000 3980 Reference input with 20 iterations
Hydro2d SPECfp95 4303 Reference input with 100 iterations
Mgrid SPECfp2000 489 Test input with 40 iterations
Su2cor SPECfp95 2271 Reference input with 100 iterations
Swim SPECfp2000 435 Reference input with 50 iterations

Most Recent with Timing (SMRT), MRT with Run-time cost estimation (MRTR),
and MRT with Static (compile-time) and Run-time cost estimation (SMRTR). Our
adaptive schemes are based on the observation that most of scientific applications have
one outermost sequential loop and the parallel loops contained in it are invoked multiple
times.

First Two invocations with Timing (F2T). The parallel loop is executed in
parallel and timed when it is first invoked in the program. When it is invoked for
the second time, it is executed sequentially and timed. Then we determine whether
we run this loop in parallel or sequentially by comparing the two measurements. The
loop is executed for the remaining invocations in the program in parallel or sequentially
depending on the result of the comparison. The drawback of First Two Invocations with
Timing (F2T) is that a highly efficient parallel loop has to be executed sequentially
once in the decision runs. Also, the measured execution time in the decision runs is not
the representive for the remaining invocations of the loop.

Most Recent with Timing (MRT). When a parallel loop is invoked for the first
time, it is executed in parallel and timed. When it is invoked for the second time, it is
executed sequentially and timed again. Then we determine whether we run this loop
parallelly or sequentially in the next invocation by comparing the two measurements.
However, the way we execute the loop for the remaining invocations is not fixed at this

Table 3. Machine specification

Architecture Distributed Shared Memory
Processor Type (Clock speed) MIPS R10000 (250MHz)
Number of Processors 128
Total Memory 128 GB
Total Disk 640 GB
Instruction cache size (cache line size) 32 KB (64 B)
Data cache size (cache line size) 32 KB (32 B)
Secondary unified instruction/data cache size (cache line size) 4 MB (128 B)

210 J. Lee and H.D.K. Moonesinghe

point. Instead, every time the loop is executed, we time it and compare the execution
time to its most recent execution time in the other way. If the latter is lower, we change
the way it is running. Most Recent with Timing can adapt to changes in the workload
of the loop across invocations. It uses the recent past of a loop to predict its future
behavior. Consequently, if the workload of the loop changes gradually, this strategy
works well. However, sudden changes may cause this strategy to work poorly. Similar
to F2T, the drawback of MRT is that a highly efficient parallel loop has to be executed
sequentially at least once in the first decision runs.

Static cost estimation and Most Recent with Timing (SMRT). By com-
bining compile-time performance estimation model with MRT, we can avoid running
some loops inefficiently. As shown in Figure 2, the loop that contains smaller amount
of work than parallel loop overhead can be filtered out by the compile-time cost esti-
mation model. We run these loops sequentially. Then, the remaining parallel loops are
executed by MRT.

MRT with Run-time cost estimation (MRTR). MRTR uses the notion of
adaptation window. The adaptation window consists of the two threshold values of the
run-time cost estimation model. In this strategy, a parallel loop is executed in parallel
when it is first invoked. We measure the execution time and number of instructions
executed (graduated) in the loop. If the number of instructions executed is less than the
lower threshold value, the loop is executed sequentially for the remaining invocations.
If the number of instructions executed is greater than the higher threshold value, it
is executed in parallel for the remaining invocations. Otherwise, its execution in the
remaining invocations follows MRT, i.e., the loops with the number of instructions that
falls in the adaptation window follow MRT scheme. A parallel loop is niether highly
efficient nor highly inefficient if it falls into the adaptation window.

MRT with Static and Run-time cost estimation (SMRTR). SMRTR is
a combination of Static and MRTR. Before it applies to MRTR, it filters out small
inefficient parallel loops with the compile-time cost estimation model (Static) and run
them always sequentially. Then, MRTR is used for the remaining parallel loops. For
those inefficient parallel loops filtered out by Static, we do not pay the penalty of
executing them in parallel at least once in MRTR because their cost is estimated at
compile-time. Consequently, we expect that SMRTR gives the best performance.

4 Evaluation Environment

4.1 Compiler

We have implemented the compiler and adaptive execution algorithms described in
Section 3 in our compiler preprocessor. The preprocessor is written in Perl. To iden-
tify automatically parallelizable loops in a program, we use SGI MIPSpro Fortran77
compiler [18]. The parallelization information together with the original program is
fed into our compiler preprocessor. The preprocessor inserts adaptive execution code
and appropriate directives in the original program to direct the compiler of the target
multiprocessor machine (SGI Origin2000). The directives inserted are summarized in
Table 1. The output program from the preprocessor is compiled by the SGI Fortran77
compiler to generate an executable.

Adaptively Increasing Performance and Scalability 211

To measure the execution time of an invocation of each loop, we use an SGI system
call from syssgi to read the processor cycle counter. To count the number of graduated
instructions of each loop in an invocation, we use SGI perfex library to access proces-
sor event counters. The number of graduated instructions from the master thread is
counted.

4.2 Applications

We evaluate the effectiveness of our algorithms using scientific applications written in
Fortran77. We selected applications that are highly parallel. They are Applu, Mgrid,
and Swim from SPECfp2000 and Hydro2d and Su2cor from SPECfp95. Table 2 shows
the problem sizes and number of iterations used for the applications.

4.3 Target Architecture

The code generated by our system is targeted to SGI Origin2000 at the National Center
for Supercomputing Applications. All our experiments are done in the dedicated mode
of the SGI Origin2000. Table 3 shows the parameters of the architecture.

5 Evaluation

Before we evaluate our adaptive execution strategies, we first examine the charac-
teristics of the parallel loops in each application (Section 5.1). We then evaluate the
performance of our strategies (Section 5.2).

5.1 Characteristics of the Parallel Loops

Table 4 shows the characteristics of the parallel loops in each application. The table
gives us the rationale of our adaptive execution strategies. It has one section for all the
parallel loops and another for inefficient parallel loops in each application. The first
row in the first section shows the total number of parallel loops in each application
and their % sequential execution time relative to the sequential execution time of the
application. The second row in the first section shows the average number of invocations
for each individual parallel loops in the application. The last row in the first section
shows the average loop size measured in the number of processor cycles that it takes to
execute one invocation of the loop. The first row in the second section shows the total
number of inefficient loops in each application for different number of processors. It
also shows that their % sequential execution time relative to the sequential execution
time of the application and % parallel execution time of inefficient loops relative to
the parallel execution time of the application for different number of processors. The
second row in the second section shows the average number of invocations for each
individual inefficient parallel loops in the application for different number of processors.
The last row in the second section shows the average loop size measured in the number
of processor cycles that it takes to execute one invocation of the loop in parallel on
different number of processors.

We see that the applications are highly parallel and that the parallel loops account
for an average of 96.2% of the sequential execution time. Applu, Mgrid, Hydro2d, and
Su2cor contains many inefficient parallel loops. More than 30% of their parallel loops

212 J. Lee and H.D.K. Moonesinghe

Table 4. Characteristics of parallel loops in the applications

Applu Hydro2d Mgrid Su2cor Swim Average

Parallel Number of 55 86 11 41 16 41.8
Loops Parallel Loops

(% sequential time) (95.2%) (97.3%) (99.7%) (88.8%) (99.8%) (96.2%)
Average Number 8779.7 373.0 422.7 34220.1 28.4 8764.8
of Invocations
Average Loop 127.3K 4.1K 44.3K 0.6K 364.6K 108.2K

Size (processor cycles)

#procs Applu Hydro2d Mgrid Su2cor Swim Average
Inefficient Number of 2 28 34 1 15 3 16.2

Loops Inefficient Loops (0.9%) (0.6%) (0.5%) (2.8%) (0.9%) (1.2%)
(% sequential time) (16.5%) (13.3%) (0.9%) (25.2%) (10.2%) (13.2%)
(% parallel time) 4 29 28 – 15 3 18.8

(0.9%) (0.2%) (2.8%) (4.2%) (2.0%)
(28.1%) (20.8%) (34.5%) (21.6%) (26.3%)

8 28 28 – 16 3 18.8
(0.9%) (0.2%) (2.8%) (4.2%) (2.0%)

(44.3%) (28.9%) (48.6%) (33.4%) (38.8%)
16 29 28 1 18 3 15.8

(0.9%) (0.2%) (0.2%) (2.8%) (4.2%) (1.7%)
(57.2%) (37.1%) (1.2%) (62.5%) (51.8%) (42.0%)

32 32 32 – 18 6 22.0
(1.4%) (0.3%) (2.8%) (4.2%) (2.2%)
(79.6%) (44.8%) (70.0%) (67.1%) (65.3%)

Average 2 16871.3 357.7 1042.0 80892.9 17.3 19836.2
Number 4 16289.6 309.4 – 80892.9 2.3 24373.6

of 8 16871.3 337.9 – 75837.2 2.3 23262.2
Invocations 16 16289.6 312.9 1.0 67458.8 2.3 16812.9

32 15077.8 351.9 – 67458.8 18.0 20726.6
Average 2 1.4K 0.6K 0.4K 0.2K 368.7K 74.3K
Loop 4 3.7K 0.6K – 0.2K 633.4K 159.5K
Size 8 1.4K 0.5K – 0.5K 633.4K 159.0K

(processor cycles) 16 1.4K 0.5K 179.2K 0.4K 633.4K 163.0K
32 1.3K 0.4K – 0.4K 317.0K 79.8K

Compile-time Number of
Cost Parallel Loops 18 31 1 32 8 18

Estimation (% sequential time) (0.51%) (0.36%) (0.00%) (88.50%) (0.44%) (17.97%)
Average Number 25122.4 389.0 1.0 43801.6 37.3 13870.3
of Invocations

are inefficient. Inefficient parallel loops do not affect the sequential execution time
because they account for at most 2.2% of the sequential execution time on average.
However, inefficient parallel loops dominate in parallel execution for all applications but
Mgrid. They account for average 13.2% of the parallel execution time of the applications
on 2 processors and their execution time covers up to average 65.3% of the parallel
execution time on 32 processors. The % parallel execution time of inefficient parallel
loops increases as the number of processors increases. This is due to the parallel loop
overhead incurred by the inefficient parallel loops. Consequently, we see that inefficient
parallel loops are a significant target for optimizations.

Most of the parallel loops are invoked many times (8764.8 times on average). In-
efficient parallel loops are invoked much more times than the other parallel loops (for
example, 20726.6 times on 32 processors). The size of inefficient parallel loops are
much less than the size of other parallel loops except in Mgrid and Swim. Therefore,
the overhead involved in executing small parallel loops in parallel is likely to be large
compared to their execution time. This means that our serialization technique is an
effective optimization technique for parallel programs.

The last section of Table 4 will be explained in Section 5.2.

Adaptively Increasing Performance and Scalability 213

5.2 Results

Figure 5 compares the execution times of the applications under several strategies. For
each application, there are 5 groups of bars. Each group corresponds to the number of
processors 2, 4, 8, 16, and 32. The leftmost bar (Base) in each group corresponds to the
execution time of the original parallel program. All parallel loops that are identified by
the SGI parallelizing compiler are contained in the original parallel program, and they
run in parallel in Base. The remaining bars correspond to the our strategies described
in Section 3: First Two invocations with Timing (F2T), Most Recent with Timing
(MRT), Static cost estimation (Static), Run-time cost estimation (Runtime), Static
cost estimation and MRT (SMRT), MRT with Run-time cost estimation (MRTR), and
MRT with Static and Run-time cost estimation (SMRTR). In each application, all bars
are normalized to Base (the smaller, the better).

The First Two invocations with Timing (F2T) is the worst. This is because it uses
only the first two invocations of a parallel loop as decision runs to determine the way it
runs for the remaining invocations. Unless the amount of computation of the parallel
loop is constant across invocations, the decision is likely to be inaccurate. Also, it runs
each parallel loop sub-optimally at least once.

The Most Recent with Timing (MRT) is better than F2T and often better than
Base. The reason why it can do better than F2T is that it chooses the way to run each

Applu

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 8 16 32

Number of Processors

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Hydro2d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 8 16 32

Number of Processors

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Mgrid

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

2 4 8 16 32

Number of Processors

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Su2cor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2 4 8 16 32

Number of Processors

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Swim

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4 8 16 32

Number of Processors

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 4 8 16 32

Number of Processors

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Base

F2T

MRT

Static

Runtime

SMRT

MRTR

SMRTR

Fig. 5. Normalized Execution Time

214 J. Lee and H.D.K. Moonesinghe

individual parallel loop in an adaptive manner. However, in the process of doing so, it
runs each parallel loop sub-optimally at least once. Under some conditions, changes in
the amount of work in a parallel loop across invocations may confuse MRT and make
it slow.

Static runs the parallel loops according to the result of static cost estimation model.
From the figure, we see that Static is better than Base for most applications (Applu,
Hydro2d, and Su2cor). This is because it can estimate the cost of most of the parallel
loops in these three applications, and these loops tend to be small (note that it does
not estimate the cost of doubly nested parallel loops) and invoked many times in the
applications. In addition, it estimates the cost of a parallel loop before it runs. Thus,
it does not pay the penalty caused by the decision runs. The last section in Table 4
shows the number of parallel loops whose amount of work is estimated by the static
cost model. Note that multiply nested loops are not handled by the static cost model
(Section 3.1). It also shows their % sequential time and average number of invocations.
Overall, Static is attractive because of its simplicity.

The Run-time cost estimation Runtime is better than F2T, MRT, and Base, but
slightly worse than Static. This is because it estimates the cost by counting the number
of instructions executed in the loop when the loop is running. Thus, the estimation is
accurate. However, in the process of doing so, it runs each parallel loop sub-optimally
at least once.

The Static cost estimation with MRT (SMRT) is better than F2T and MRT, but
not better than Base. The reason is that the penalty from the decision runs of MRT is
much bigger than the benefits obtained from Static. Even though some parallel loops
are filtered by Static, running the remaining parallel loops sub-optimally at least once
still affects the performance a lot.

The MRT with run-time cost estimation (MRTR) is much better than Base and
Static in Applu, Hydro2d, and Su2cor. It is comparable to Static in Mgrid and Swim.
Because it estimates the cost of a parallel loop more accurately than Static by us-
ing the run-time information, more inefficient loops that tend to be small are filtered
by the run-time cost estimation model and are executed sequentially in MRT. Conse-
quently, there is no penalty of running efficient (big) parallel loops sequentially at least
once.

As expected, MRT with static and run-time cost estimation (SMRTR) is the fastest.
This is because it runs only the parallel loops which fall in the adaptation window
at least once sub-optimally. Even though we see a slight performance degradation in
Mgrid and Swim due to the penalty caused by decision runs, it significantly reduces the
penalty caused by the decision runs of MRT. Moreover, it uses both compile-time and

0

1

2

3

4

5

6

7

8

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Applu Hydro2d Mgrid Su2cor Swim

S
p
e
e
d
u
p

Base SMRTR

Fig. 6. Speedup of Base and SMRTR for each application

Adaptively Increasing Performance and Scalability 215

run-time cost estimation model. Consequently, it selects inefficient loops more accu-
rately. Overall, SMRTR is the best strategy for adaptively executing the applications.
For example, the parallel program with SMRTR runs 26% faster on average than the
original parallel program on 32 processors. For Su2cor, SMRTR runs more than twice
faster than Base on 32 processors. The speedup obtained with SMRTR for different
number of processors is shown in Figure 6.

6 Related Work

Recent work has begun to explore the possibilities of optimizations performed at run-
time when complete knowledge of the execution environment exists. Many different
types of adaptive optimization techniques have been proposed recently in the literature.

Some approaches [8, 16, 6, 15] are based on parameterization of the code at compile-
time to restructure it at run-time. Gupta and Bodik [8] dealt with the complexity of
loop transformations, such as loop fusion, loop fission, loop interchange, and loop re-
versal, done at run-time. Saavedra et al. [16] proposed adaptive prefetching algorithm
that can change the prefetching distance of individual prefetching instructions. Their
adaptive algorithm uses simple performance data collected from hardware monitors
at run-time. Another adaptive optimization technique, which is based on replication
of objects in object oriented programs, is proposed by Rinard et al. [14]. To avoid
synchronization overhead occurred in updating a shared object, the object is repli-
cated adaptively. Multiple versioning of a loop for run-time optimization was first
proposed by Byler et al. [3], and modern compilers still use this technique. Diniz et
al. [7] used multiple versioning with dynamic feedback to automatically choose the
best synchronization optimization policy for object-based parallel programs. Holzle et
al. [9] proposed a dynamic type feedback technique for improving the performance
of object oriented programs. These approaches are similar to our work in that the
program dynamically adapts to the environment during its execution using run-time
information. However, we neither restructure the code at run-time nor deal with object-
oriented programs. We focus on shared memory parallel programs with loop level par-
allelism, and use different adaptation strategies in order to improve performance and
scalability.

Lee [10] proposed a serialization technique of small parallel loops using static per-
formance prediction and some heuristics. A sophisticated static performance estima-
tion model based on the stack distance[12] was proposed by Cascaval et al. [4]. A
generic compiler-support framework called ADAPT was proposed by Voss and Eigen-
man [20, 21] for adaptive program optimization. Users can specify types of optimiza-
tions and heuristics for applying the optimizations at run-time using ADAPT language.
The ADAPT compiler generates a complete run-time system by reading these heuristics
and applying them on to the target application. Voss and Eigenman [19] also proposed
two run-time test schemes to identify unprofitable parallel loops. Because they used
a profiling technique and the execution time of the first invocation of a parallel loop
for the tests, their schemes are partially adaptive during the entire execution of an
application.

Even though we used a fairly simple static performance estimation model in this pa-
per, our run-time cost estimation models compensate for the inaccuracy caused by the
static model. Moreover, our scheme is fully adaptive during the entire execution of an
application. Our work is also related to adaptive compilers for heterogeneous Processing
In Memory systems [11], where heterogeneity of the system is exploited adaptively.

216 J. Lee and H.D.K. Moonesinghe

7 Conclusion

This paper presented performance estimation and adaptive execution techniques that
determine whether a parallel loop is executed parallelly or sequentially in order to
maximize performance and scalability. The adaptation and performance estimation
algorithms are in the code that is inserted into the original parallel program by the
compiler preprocessor. Applying our adaptation scheme to five highly parallel numerical
applications, we obtained 26%, 20%, 16%, and 10% better performance on average than
the original parallel programs on 32, 16, 8, and 4 processors, respectively. One of the
applications runs even more than twice faster than its original parallel version on 32
processors. The results indicate that our adaptive execution techniques are promising
to speed-up the programs that are already parallel.

References

1. Bowen Alpern et al. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, February 2000.

2. William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel programming with Polaris. IEEE
Computer, 29(12):78–82, December 1996.

3. Mark Byler, James Davies, Christopher Huson, Bruce Leasure, and Michael Wolfe.
Multiple Version Loops. In Proceedings of the International Conference on Parallel
Processing (ICPP), pages 312–318, August 1987.

4. Calin Cascaval, Luise DeRose, David A. Padua, and Daniel Reed. Compile-Time
Based Performance Prediction. In Proceedings of the 12th Workshop on Languages
and Compilers for Parallel Computing (LCPC), pages 365–379, August 1999.

5. Rohit Chandra, Leo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Manon. Paralle Programming in OpenMP. Morgan Kaufmann Publisher,
2001.

6. Alan L. Cox and Robert. J. Fowler. Adaptive Cache Coherency for Detecting
Migratory Shared Data. In Proceedings of the 20th International Symposium on
Computer Architectur, pages 98–108, May 1993.

7. Pedro Diniz and Martin Rinard. Dynamic Feedback: An Effective Technique for
Adaptive Computing. In Proceedings of the ACM SIGPLAN Conference on Pro-
gram Language Design and Implementation, pages 71–84, June 1997.

8. Rajiv Gupta and Rastislav Bodik. Adaptive Loop Transformations for Scientific
Programs. In Proceedings of the IEEE Symposium on Parallel and Distributed
Processing, pages 368–375, October 1995.

9. Urs Holzle and David Ungar. Optimizing Dynamically-Dispatched Calls with
Run-Time Type Feedback. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 326–336, June
1994.

10. Jaejin Lee. Compilation Techniques for Explicitly Parallel Programs. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign,
October 1999. Department of Computer Science Technical Report UIUCDCS-R-
99-2112.

Adaptively Increasing Performance and Scalability 217

11. Jaejin Lee, Yan Solihin, and Josep Torrellas. Automatically Mapping Code in an In-
telligent Memory Architecture. In Proceedings of the 7th International Symposium
on High Performance Computer Architecture (HPCA), pages 121–132, January
2001.

12. R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation Techniques for
Storage Hierarchies. IBM Systems Journal, 9(2):78–117, December 1970.

13. OpenMP Standard Board. OpenMP Fortran Interpretations, April 1999. Version
1.0.

14. Martin Rinard and Pedro Diniz. Eliminating Synchronization Bottlenecks in Ob-
ject Based Programs Using Adaptive Replication. In Proceedings of the ACM
International Conference on Supercomputing (ICS), pages 83–92, June 1999.

15. Theodore H. Romer, Dennis Lee, Brian N. Bershad, and Bradley Chen. Dynamic
Page Mapping Policies for Cache Conflict Resolution on Standard Hardware. In
Proceedings of the 1st USENIX Symposium on Operating Systems Design and Im-
plementation, pages 255–266, November 1994.

16. Rafael H. Saavedra and Daeyeon Park. Improving the Effectiveness of Software
Prefetching with Adaptive Execution. In Proceedings of the Conference on Parallel
Algorithms and Compilation Techniques, October 1996.

17. Silicon Graphics Inc. MIPSpro Auto-Parallelization Option Programmer’s Guide,
1999.

18. Silicon Graphics Inc. MIPSpro Fortran 77 programmer’s Guide, 1999.
19. Michael J. Voss and Rudolf Eigenmann. Reducing Parallel Overheads through Dy-

namic Serialization. In Proceedings of the International Parallel Processing Sym-
posium, pages 88–92, April 1999.

20. Michael J. Voss and Rudolf Eigenmann. ADAPT: Automated De-Coupled Adap-
tive Program Transformation. In Proceedings of the International Conference on
Parallel Processing (ICPP), page 163, August 2000.

21. Michael J. Voss and Rudolf Eigenmann. High-level Adaptive Program Optimiza-
tion with ADAPT. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 93–102, June 2001.

Selector: A Language Construct for Developing
Dynamic Applications

Pedro C. Diniz and Bing Liu

University of Southern California, Information Sciences Institute,
4676 Admiralty Way, Suite 1001,
Marina del Rey, California, 90292

{pedro, bliu}@isi.edu

Abstract. Fitting algorithms to meet input data characteristics and/or
a changing computing environment is a tedious and error prone task.
Programmers need to deal with code instrumentation details and imple-
ment the selection of which algorithm best suits a given data set. In this
paper we describe a set of simple programming constructs for C that al-
lows programmers to specify and generate applications that can select at
run-time the best of several possible implementations based on measured
run-time performance and/or algorithmic input values. We describe the
application of this approach to a realistic linear solver for an engineer-
ing crash analysis code. The preliminary experimental results reveal that
this approach provides an effective mechanism for creating sophisticated
dynamic application behavior with minimal effort.

1 Introduction

The best algorithm for a given computation differs widely depending on the
characteristics of its input data and of features of the target architecture. For
example there are several sorting algorithms that perform very well when the
distribution of the keys is uniform (e.g., quicksort) while other algorithms per-
form much better when the keys either have known boundary properties (e.g.,
bucket sort) or are heavily modal (e.g., merge sort). In other scenarios the envi-
ronment characteristics, rather than the input characteristics impact the choice
of algorithm more deeply. For instance, in the context of distributed applications
it is possible to trade off computation with communication or simply to offload
some of the computation to other nodes if the available bandwidth is adequate.
Overall programmers would like to choose a particular implementation among a
set of possible alternative implementations of the same functionality depending
on input data characteristics, environment conditions or both. While in some
cases it is possible to characterize the exact set of conditions for which each al-
ternative implementation should be used (e.g., sorting), in general, programmers
must rely on observed behavior to decide which implementation performs best.
For scenarios where the choice of which algorithm implementation depends on
environment conditions programmers must manually instrument the code with
calls to a run-time-system and manually encode the strategies to dynamically

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 218–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Selector: A Language Construct for Developing Dynamic Applications 219

select the appropriate algorithm implementation. Other than being cumbersome
and error-prone, the resulting code is complex and hard to port or maintain. The
approach proposed in this paper advocates extending an imperative program-
ming language such as C/C++ with a modest set of programming constructs
allowing programmers to specify the dynamic behavior of a set of alternative
implementations for the same functionality. Programmers use a selector con-
struct to associate several code variant implementations of the same function
name and to define what the switching policy between the alternative code vari-
ants is. Programmers also specify which set of environment variables should be
observed for which code variant and associate a cost and (optionally) a probe
function with each code variant. The implementation uses the probe and cost
functions to evaluate, rank and choose the best available variant. Because prob-
ing and selecting among a potentially large number of code variants can incur
non-negligible overheads the selector construct provides a trigger function that
can disable the probing of code variants for a specific number of invocations or
until a relevant environment event occurs. Trigger functions provide a powerful
mechanism to control the amount of probing overhead and encode the relevant
environment conditions under which the alternative variant should be reevalu-
ated. This paper makes the following specific contributions:

– Describes the selector construct - a modest set of language extensions for
adaptive programming for imperative programming languages.

– Describes a particular implementation of the selector to C and outlines a
source-to-source code generation scheme for C/C++.

– Presents results of the application of the selector construct to a sophisticated
linear solver from a real engineering code.

While it is true that programmers can manually implement the functionality
of the selector, there are several benefits to the approach outlined in this paper.
First, it is automated. Programmers are not required to engage in low-level
error-prone instrumentation of their codes. Second, the semantic gap between
the selector semantics and the generated C code is not wide, thereby avoiding
programmers second-guessing what the selector code will do.

We see the selector as a powerful tool for application and/or library develop-
ers whose needs are beyond what optimizing compilers can currently perform.
The selector provides a set of hooks at the language level that allow programmers
to exploit and control run-time behavior of the code without having to master
all of the instrumentation details.

The remainder of this paper is organized as follows. The next section presents
a concrete example of the application of the selector concepts. Section 3 describes
the design and implementation of the selector in more detail. Section 4 presents
preliminary experimental results of using the selector in a large scientific appli-
cation. We discuss related work in Section 5 and conclude in section 6.

220 P.C. Diniz and B. Liu

2 Example

We now illustrate the application of the selector construct in the context of solv-
ing large sparse linear systems. In this example we wish to select between three
alternative equation reordering algorithms, namely Weighted Nested Dissection
(WND), Multiple-Minimum-Degree (MMD) and the Multi-Section (MS). The
overall objective of any equation reordering algorithm is to minimize the num-
ber of non-zero entries that arise during factorization of the matrix. Minimizing
the matrix fill results in lower data requirements with the subsequent reduction
in number of data memory accesses and arithmetic operations. To address the
uncertainty of which method performs the best for a given matrix we define a
selector as depicted in Figure 1. The selector construct defines a set of entries
via the entry keyword. The selector also defines a symbolic name, in this case
Solver and a list of parameters to be used by all of the entries. In addition to
the binding of the entries to a single symbolic name, the selector defines for each
entry a masking function, a probe function, and a cost function. Typically the
probe functions are not considered as doing any useful work in the sense that
they create side effects that are non-critical to the overall computation. It is the
programmer’s responsibility to make sure that probe functions are side-effect-
free. These probe functions have their arguments either drawn from the selector
parameter list or environment variables such as clock. Environment variables
are denoted with the modifier env and indicate that the corresponding variable
should be sampled before and after the corresponding probe function executes.
The cost functions can be defined elsewhere and need not to be defined in the
scope of the selector. We have also added, for illustration purposes, a simple
masking function defined by the when keyword. In this case the masking func-
tion is replaced by the simple predicate (neq > 1024) meaning that whenever
the predicate does not hold during the evaluation of the various entries, the
corresponding entry is not considered.

In this example we have also defined a policy function and a trigger. A pol-
icy function defines how to choose the best of the set of evaluated entries. The
default policy function is to choose the entry with the minimum evaluated cost.
A trigger function defines when should the various entries be evaluated by ex-
ecuting the corresponding probe functions. In this example we have defined a
parameterized trigger function that is active once every block invocations of
the selector. An important point to notice about these functions is that they
are defined in the lexical scope of the selector. This allows for programmers
to access a set of selector predefined internal variables generated automati-
cally by the compiler. These variables include for instance the number of en-
tries in the selector, (number entries) or the invocation number of the selector
(invocation number). Other cost related variables are declared implicitly by
the cost functions on an entry-by-entry basis. The selector uses these variables
to store the cost metrics associated with each probe function to be used for
quantitative evaluation of the cost functions. Figure 2 illustrates the compiler
generated C code for the selector in Figure 1. For brevity we have omitted all of
the operational code but rather focused on the selector syntax.

Selector: A Language Construct for Developing Dynamic Applications 221

selector Solver(Matrix A, Vector x, Vector b, int neq, int vol) is {
// The list of alternative code variants.
entry FactorMMD(A, x, b)

when (neq > 1024) //this is a simple masking function.
with probe orderingMMD(A)
with cost costMetric1(vol, env clock);

entry FactorWND(A,x,b)
with probe orderingWND(A)
with cost costMetric1(vol, env clock);

entry FactorMS(A,x,b)
with probe orderingMS(A)
with cost costMetric2(neq, vol, env clock);

// One of many possibly policies - typically one although more
// than one is possible for distinct call sites of the selector.
// Default policy is to choose the variant with the lowest cost.

int policy MinCost() {
int i, idx, min=-1;
// It is a run-time error if no version is selectable...
// compiler inserts check. This is also the default policy function.
for(i = 0; i < number entries; i++){

if((selectable[i]) && (cost[i] < min)){
min = cost[i];
idx = i;

}
}
for(i=0; i < number entries; i++)

selectable[i]=FALSE;
return idx;

}

// The default trigger function is { return TRUE; }
boolean trigger Every(int block){

if((invocation number % block) == 0)
return TRUE;

return FALSE;
}

} // end of the selector construct.

// Invocation site with specific policy and trigger function.
// Different call sites could have different policies and
// trigger functions declared for this selector
selector Solver(args) with policy MinCost() with trigger Every(10);

Fig. 1. Example of Linear Solver with Selector Construct

At the selector call site the programmer can associate an actual policy and
trigger function and/or provide specific argument values. In the example above
the selector will reevaluate the set of available entries every 10 invocations. Dur-
ing the successive invocations when no evaluation is required the selector uses
the code entry selected in the previous evaluation. At startup the selector forces
an evaluation to set up initial conditions. We now describe in detail the behavior
of the selector generated C code. As outlined in Figure 2, the compiler generates
code that evaluates each of the individual probes in the selector and chooses
the entry as dictated by the user-provided policy function. For each entry the
generated code first determines if that particular entry is selectable. It does so
by evaluating the predicates (and in general a boolean function) associated with

222 P.C. Diniz and B. Liu

typedef struct Solver selector data {
int number entries, invocation number, selected entry;
int selectable[3]; // to reflect the masking
double cost[3];// to store the results of cost functions
// Cost variables for each entry extracted from cost function args.
int probe0 var0; // for the vol variable
double probe0 var1[2]; // env variable with before, after
int probe1 var0; // for the vol variable
double probe1 var1[2]; // env variable with before, after
int probe2 var0; // for the neq variable
int probe2 var1; // for the vol variable
double probe2 var2[2]; // env variable with before, after

}
...

Solver selector data SolverCS0;
// The Selector call site is replaced by the function below.
// Compiler initilizes the Solver selector data SolverCS0.

...
void SolverCallSite0(Matrix A, Vector x, Vector b,

int neq, int vol, int trigger arg0){
if(Every(trigger arg0) == TRUE){ // The trigger function invocation

for(i = 0; i < SolverCS0.number entries; i++){
switch(i){

case 0:
if(neq > 1024) SolverCS0.selectable[0] = TRUE;
SolverCS0.probe0 var1[0] = clock;// before the probe executes.
orderingND(A,x,b);
SolverCS0.probe0 var0 = vol;
SolverCS0.probe0 var1[1] = clock; // after the probe executes.
SolverCS0.cost[0] =

(double)costMetric1(SolverCS0.probe0 var0,SolverCS0.probe0 var1);
break;

... // other cases here.
}

}
SolverCS0.selected entry = MinCost(SolverCS0);

if((bounds(SolverCS0.selected entry,SolverCS0.number entries)){
printf(” *** Error: Empty selection (solverCS0) ”); exit(1);

}
}
switch(SolverCS0.selected entry){ // Now selector the variant and execute it.
case 0:

FactorND(A,x,b);
break;

... // other cases here.
}

}
// The original call site would be trasnformed into
SolverCallSite0(A, x, b, volume, number equations, 10);

Fig. 2. Selector Code for Selector in Figure 1

each entry. Next the generated code invokes the probe function and evaluates
its run-time performance using the corresponding cost function. The next step
is for the generated code to invoke the cost functions and then its policy func-
tion. In a typical application the programmer would like to reassess the various
alternatives from time to time or in a response to a significant event. For this
purpose the trigger function is executed before the selector assesses the various
code variants. If the trigger function is inactive, the selector chooses the code
variant selected in the previous invocation for the same call site or forces the
evaluation of the probes if this is the first time the selector is invoked. This

Selector: A Language Construct for Developing Dynamic Applications 223

example illustrates the scenarios the selector is designed to handle. First there
is a discrete number of alternative implementation for the same functionality.
Associated with each entry the programmer can define a specific cost function
and a set of identifiable variables whose run-time values are needed to assess the
cost of the entry. Last the programmer can define a policy and trigger functions
to control when the choice of code variants should be reevaluated and which
variant should be selected. In the next section we describe in more detail the
implementation issues of the selector. We also describe a set of more advanced
features for the selector, which include the ability to terminate a sequence of
evaluation of probe functions as well as the ability to abort the evaluation of a
probe function based on a time-out specification.

3 Selector Design and Implementation

We now describe the basic concepts the selector relies on, their syntax and
implementation restrictions. Later we describe a series of advanced features that
allow for greater flexibility in specifying a richer set of selector behaviors for
applications that require more sophisticated dynamic behavior.

3.1 Basic Concepts

The selector relies on four basic concepts illustrated in Figure 3, namely:

– A discrete set of alternative code variants or implementations. These variants
must draw their input arguments from a common parameter list to ensure
that the arguments passed at the call site to the selector can be applied to
any of the code variant of the selector;

– A set of cost functions one per alternative code variant. These cost functions
provide two pieces of information. First a way to generate a quantitative
metric that can be used to rank code variants. Typically cost functions will
yield floating-point values for comparison purposes. The second piece of in-
formation is that the argument list of each cost function implicitly defines
the set of metric variables (e.g., wall-clock or number of cache misses) to be
used in the evaluation of each code variant. The compiler instruments each
code variant based on these variables.

– A policy function that defines which of the code variant to choose. The
default policy function, should it be omitted at the selector call site, is to
choose the code variant with the minimum cost.

– A trigger function that dictates when the selector should evaluate the al-
ternative code variants. This function is used to control the amount of time
devoted to evaluate alternative code variants mitigating any substantial per-
formance overhead in the search for the best code variant. The default be-
havior is to evaluate every code variant only once during the first invocation
of the selector. This situation occurs when the relative performance of the
code variants does not change over time but is unknown at compile time.

224 P.C. Diniz and B. Liu

Functions
Cost

Alternate Code Variants

Code
Policy

Trigger
Costs

Metrics

Run−Time−System

Selector

Fig. 3. Graphical Illustration of the Selector Concepts

3.2 Selector Syntax and Semantics

We have chosen a syntax for the selector construct that is closely related to C
as outlined below. Here the parameter list defines the names inside the scope
of the selector that can be used for the binding of parameters for each entry
and the lists of arguments carg0,...,cargC , type parg0,...,type pargP
and type targ0,...,targT are simple variable expressions drawn from the se-
lector parameters or globally visible variables. At the selector call site the pro-
grammer must include the keywords probed selector or the keywords sampled
selector with an argument list that agrees in number and type with the argu-
ment list declared in the selector.

selector Name (type parm0,...,type parmN) is {
entry entryName0(arg0,...,argk)
with cost Cost0(type carg0,...,type cargC);
...
int policy PolicyA(type parg0,...,type pargP) { ... }
boolean trigger TriggerT(type targ0,...,targT) { ... }

}

In the selector definition the programmer can specify a series of policy and
trigger functions. At the call site the programmer indicates which of the defined
policy and trigger functions that particular site should use as illustrated below.1

probed selector Name(args) with policy P(args) with trigger T(args);
sampled selector Name(args) with policy P(args) with trigger T(args);

We implement two distinct behaviors for the selector, namely a sampled be-
havior and a probed behavior. The probed selector corresponds to the implemen-
tation described in section 2. In this behavior, the implementation evaluates all
of the probes of the selectable variants when triggered by an active trigger func-
tion. The probe functions are executed in turn along with their cost functions.
1 In many cases the keyword probed can be omitted as long as for every entry there

is a probed function. The sampled keyword, however, must be included.

Selector: A Language Construct for Developing Dynamic Applications 225

// additional selector control variables
int current entry; // the next code variant to be evaluated
boolean sampling phase; // controls the sampling across invocations
...
void NameSelector(parm list){

if(triggerfunction(arg list)){
sampling phase = TRUE;
current entry = 0;

}
if(sampling phase){

current entry = nextEntry(current entry,N,order,selectable);
switch(current version){

... // invoke the code variant here.
}
if(current entry == number entries){
sampling phase = FALSE;
selected entry = policy(arg list);
}

} else {
switch(selected entry){

... // invoke the selected version in non-sampling phase mode.
}

}
}

Fig. 4. Sampled selector Code Generation Scheme Outline

Next the implementation selects a code variant according to the policy function
and executes it. A sampled selector does not use any probe function for the eval-
uation of each code variant, but rather the code variant itself. In this situation,
and because the actual code variant produces useful work, the implementation
cannot simply discard the work. As such a sampled selector will work across
selector invocations and use the actual run of the code variant to determine the
code variant cost. At the first invocation the selector determines which code vari-
ants are enabled. It invokes the first of such code variants and saves the resulting
performance metrics as specified by the arguments of the cost functions. The im-
plementation then tracks which code variant is to be sampled in the subsequent
invocations using internal variables. 2 At each selector invocation the compiler
generated code first checks if the trigger function holds. If that is the case the
selector enters a sampling phase where every subsequent call to the selector are
used to sample the performance of one of the selectable code variants. Once all
of the code variants have been examined during a sampling phase the selector
uses the policy function to select which code variant to execute. Figure 4 outlines
the code generation scheme for the sampled selector behavior.

3.3 Advanced Selector Features

We now describe a set of advanced selector features namely, state and environ-
ment variables an early cut-off function.
2 The sampled selector implementation evaluates the predicates that dictate which

variants are selectable, the predicates when the trigger function is first active and
during the next N-1 invocations, when the selector is sampling the various variants
the corresponding trigger functions could possibly no longer be active.

226 P.C. Diniz and B. Liu

Selector State Variables. Another aspect of the selector is the ability to define
state variables the programmer can use to define a richer set of policies using
selector invocation site history. These state variables are declared as ordinary
variables in the scope of the selector and therefore used by any function defined
in the same scope. Eventually this allows the programmer to control aspects
such as the evaluation order of the code variants and consequently ameliorating
potential run-time overheads of the selector.

Environment Variables. Typically a probe function would require a given en-
vironment variable such as wall-clock time or any other raw performance metric
to be examined before and after the actual probe function executes. To address
this, we define the env attribute for variables to be used as arguments in cost
functions. and associated two predefined functions before and after to access
the value of the variable before and after the probe function executes. The com-
piler automatically instruments the probe function to extract and store at run-
time the values of the environment variables before and after the probe function
executes.

Early Cut-Off or Break Function. In some cases the programmer might
want to exploit properties of the various code variants in a given selector or
simply take advantage of the information gathered in previous evaluations to
terminate the evaluation in the current evaluation cycle. At least two scenarios
are likely:

– The last evaluated function has yielded good enough expected performance
result and no resources should be devoted to exploring alternative variants;

– The last evaluated version exhibits poor performance and subsequent vari-
ants are likely to exhibit worse performance due to monotonic properties of
the implementations.

To address these concerns the selector includes the possibility of defining an
early cut-off, or break function for each selector entry as outlined below.

entry E
with cost C() with probe P() with break B(...)

After the selector has evaluated a given entry’s cost function it invokes the
corresponding break function. If this break function evaluates to the boolean
true value the selector skips the evaluation of the remaining entries and selects
the best implementation evaluated so far.

3.4 Discussion

One of the guiding principles behind the definition of a selector and its syntax
was to keep it C-like. The intended target programmers will be a knowledgeable
programmer intending to tune a library code or the sophisticated programmer
whose need for performance warrants the exploitation of algorithmic trade-offs
without engaging in low-level run-time environment programming. The choice of

Selector: A Language Construct for Developing Dynamic Applications 227

a new script-like language that would include concepts such as ”best” and ”cost”
would present the challenge of teaching yet another scripting language to a pro-
grammer whose native programming language will be almost likely C/C++. As
such we have define a set of modest extensions to C/C++ to provide hooks so
that programmer can explore the notions of dynamically choosing between mul-
tiple implementations while retaining a clear, straight-forward vision of that the
semantics of the selector is. While the approach outlined above can be viewed
as fancy C++ template building there are several differences. First the selec-
tor compiler can perform a substantially more flexible code generation that is
currently possible with templates (or at least for currently stable compiler im-
plementations). Furthermore the type checking in the selector, while less sophis-
ticated provides for a clearer semantics than in C++ using inheritance rules
in templates. Second the selector concept is language-independent. Overall our
approach has been to offer a simple set of abstractions via a modest set of new
keywords and constructs.

4 Experimental Results

In this section we describe a preliminary experiment of the application of the
selector concept described above to a real engineering code.

4.1 Example Application and Methodology

For this experiment we have used an existing FORTRAN 77 code for solving a
large linear system of equations using a variant of the Cholesky direct factoriza-
tion method. The segment of the code is structured into three main phases. In
the first phase the code reads the input matrix from a file. In the second phase
the code factors the input matrix into a lower and upper triangular matrices.
In the last phase the code solves the system of equations using two back solve
steps. Currently this code can use in isolation one of two competing methods for
equation reordering, namely the Multiple-Minimum-Degree (MMD) [9] and the
weighted nested dissection (WND) [8] ordering.

Using in this linear solver application we have coded a selector with two en-
tries for the MMD and the WND ordering methods. We also use a cost function
that uses the number of non-zero entries in the symbolic-factorization of the
matrices as a prediction on how well the corresponding ordering will perform
during factorization. At the time of this writing our front-end parser and code
generator are not fully operational. As such we have generated the selector code
manually using the template that parser will eventually use. This approach al-
lows us to develop a sense for the implementation and performance evaluation
details before investing a whole set of resources to a fully automated implemen-
tation. The original version of this solver code was written in FORTRAN 77. We
have converted the driver component of this application to C to integrate with
the selector generated C code. For these experiments we have used 3 input ma-
trices referred to respectively as the Hood, the Knee and the I-Beam. Table 1
summarizes the relevant structural and numeric characteristics of each matrix.

228 P.C. Diniz and B. Liu

Table 1. Input Data Sets of Linear Solver

Input Structure Number Storage
Application Domain (if any) of Equations (Mbytes)

Hood Automobile Metallic 2D 6-point 235,962 200
Structural Analysis stencil

Knee Human Prosthetic 3D localized 69,502 553
Implant neighbors FEM

I-Beam Civil Engineering regular linear 615,600 1,311

4.2 Results

We now describe the performance experimental results obtained with the Solver
selector example described above for each of the input matrices. These experi-
ments were carried out on a Sun Blade 100 Workstation with 1Gbyte of internal
RAM and running the Solaris 8 operating system. All codes, both FORTRAN
and C were compiled with the SunPro compiler using -O optimization level.

We begin this discussion by presenting in Table 2 for each input matrix the
time breakdown for solving one linear system with each of the available ordering
methods for a single solving run. In reality the applications are structured as
multiple solve operations for the same symbolic factorization steps. Table 2 re-
veals that overall the symbolic factorization has a fairly small weight in the total
execution time. However, the choice of which ordering, has a substantial impact
on the overall factorization and consequently the overall execution time. Another
observation is that although MMD ordering is usually the fastest it produces for
these examples the worst execution time. For long runs of solve steps the extra
computation power devoted to WND yields substantial gains, even for a single
solve step. Next we report on the utilization of a probed selector with the two
distinct orderings as referred above.

For each solving variant we have an ordering function as its probe and use
the number of non-zeros in the symbolic factorization obtained during the or-
dering as the prediction of the performance of the factorization step. We use
the default policy, as the policy that selects the code variant with the lowest
cost metric. For this experiment we enabled all the available code variants and

Table 2. Execution time Breakdown for 3 Input Matrices and 2 Ordering Methods

Application Step MMD WND
Time (secs) Percent Time (secs) Percent

Hood Ordering 4.49 3.26 8.04 7.81
Factorization 130.79 94.85 92.55 89.94

Solve 2.59 1.73 2.31 2.24
Total 137.87 100.0 102.90 100.0

Knee Ordering 2.93 0.97 7.05 5.23
Factorization 296.11 98.15 126.04 93.48

Solve 2.66 0.88 1.74 1.29
Total 301.70 100.0 134.83 100.0

I-Beam Ordering 8.96 1.03 19.25 3.40
Factorization 731.98 84.38 418.11 73.91

Solve 126.49 14.49 128.33 22.69
Total 867.87 100.0 565.69 100.0

Selector: A Language Construct for Developing Dynamic Applications 229

therefore execute all of the associated probes. To evaluate the performance im-
pact of the selector we experience with three selector strategies using trigger and
break functions. For this experiment we perform 10 consecutive factorizations of
matrices with the same structure followed by a corresponding solve phase. This
reflects a computation where the matrix values change slightly but retains the
same connectivity.

– Probe-at-Start: In this strategy the selector probes all of the available vari-
ants at the beginning of the execution and then uses the best code variant
throughout the remainder of the computation.

– Check-in-Middle: In this strategy the selector probes all of the code variants
at the beginning of the execution. In the middle of the execution the selector
reevaluates all of the variants.

– Reorder-and-Break: In this strategy the selector reevaluates the code variants
but starts with the variant that was last selected for execution. In addition
it skips the remainder probes if the newly evaluated cost is either better or
at most 10% worse than the cost last evaluated for this variant.

Table 3 presents the execution breakdowns for each of the input matrices
and for each of the strategies described above. We have separated the amount
of time devoted to the probes and compared it with the total execution time.

Table 3. Execution Results for Various Selector Strategies

Strategy
Application Probe-at-Start Check-in-Middle Reorder-and-Break

Total Selector (%) Total Selector (%) Total Selector (%)
Hood 1048.71 12.46(1.3) 1059.43 25.27(2.5) 1052.98 (2.1)
Knee 1339.25 9.71(0.8) 1349.44 19.46(1.6) 1332.70 12.60(1.3)

I-Beam 8699.10 28.26(0.32) 8779.83 56.35(0.6) 8864.88 36.67(0.41)

The results in Table 3 reveal that the overhead associated with the probe
functions is very small. Even in the case of the naive Check-in-Middle strategy
the overhead climbs only to a modest 2.5%. This is partly true given the fact
that we had only 2 competing variants of code. For larger number of variants the
overhead can quickly become significant. As expected the strategy Reorder-and-
Break reduces the overhead and could be a strategy of choice for selector with
large number of code variants. Another noteworthy aspect is that the selector is
only as good as the probe functions are. In the case of the I-Beam matrix the
cost function guides the selector to choose the MMD ordering. This turns out
to be the wrong choice for the factorization. A way to combat the inherent un-
reliability of estimations/predictions of the probes is to use the sampled selector
version where the real factorization would be used for evaluation.

4.3 Discussion

This example illustrate the potential of the selector construct as a way to relieve
the programmer of having to deal with explicitly building the instrumentation,

230 P.C. Diniz and B. Liu

control for evaluation and all of the auxiliary data structure associated with
a selection scheme. The low programmer effort required to control the overall
strategy of the selector is a key aspect of the overall approach In these experi-
ments we had to code only 20 lines of C code to specify both the trigger, cost
and break functions. The generated C code was about 200 lines long.

An aspect not focused so far on parallel execution. Clearly parallel execution
can exacerbate program execution trade-offs and hence make the application of
the selector construct even more appealing (see [6] for an illustrative example).
Another important aspect is that parallel execution enables the concurrent eval-
uation of alternative code variants thereby mitigating the selector overhead even
further. We are currently working on extending the code generation scheme to
support parallel evaluation as well as testing the abort functionality.

5 Related Work

We begin by describing these efforts and then describe the more automated
compiler approaches that rely on dynamic profiling to validate or enhance the
applicability of traditional compiler analysis or transformations.

5.1 Languages for Adaptivity

Voss and Eigenman [10] defined a new language, AL, used to describe compiler
optimization strategies. This language uses specific constructs such as constraint
and apply-spec to interface with internal compiler transformation passes and fo-
cuses on the application of compiler transformation to regions of the code that
meet these constraints. The specification also allows the definition of phases of
optimization and user-defined strategies. Our approach is very similar to AL in
terms of the concept of observing run-time performance and choosing the ”best”
code variant. A major difference is that AL focuses on tuning the application of
compiler transformations whereas we have focused on user-level application tun-
ing. Adve, Lam and Ensink [1] proposed an extension to the class hierarchy of
an objected-oriented model of computation with three basic concepts - adaptors,
metrics and events. The notion of selector described here is very object-oriented
as well. Rather than relying on the syntax and class mechanisms of C++ we
have chosen to use a more language-independent approach by requiring the pro-
grammer to specify the same set of concepts via functions.

5.2 Dynamic Compilation

Dynamic compilation aims at delaying the entry compilation process until run-
time. One of the benefits is that run-time data values are accessible and special-
ized versions of the code can be generated on-the-fly overcoming the inherent
limitations of static optimizations. While this approach has been successful in
the context of interpreted languages (e.g., in the Hot-Spot compiler from Sun
MicroSystems) for C the overheads of implementation seems prohibitively high
[4,7], thereby limiting the widespread adoption of this technique.

Selector: A Language Construct for Developing Dynamic Applications 231

5.3 Feedback-Directed Optimization

In the context of dynamic feedback optimizations researchers have developed
fully automated systems that are capable of using run-time profiling informa-
tion to validate or simply apply transformations. Agesen and Hölzle use run-time
information to improve the efficiency of the Polymorphic-In-Line cache (PIC) via
the reordering the sequences of the tests to perform faster dynamic dispatching.
Bala et. al [5] use run-time basic-block statistical data to reoptimize sequences
of basic blocks, recompiling non-trivial sequences of basic blocks. The Jalapeño
RVM project [3] at IBM uses a simple cost/benefit analysis at run-time to de-
termine which level of optimization to apply when recompiling hot methods.
Whereas previous approaches have focused on using run-time data to either
validated or enhance the applicability of a given set of transformations, in our
own work we have focused on using dynamic feedback to delay the binding of a
different set of code variants produced with distinct policies of the same set of
transformations [6]. In this approach the compiler, and therefore the compiler
writer, must be fully aware of an inherent trade-off for the applications of a given
set of programming transformations with distinct policies.

6 Conclusion

In this paper we have presented a set of modest extensions to C to allow pro-
grammers to easily specify and control the invocation of various code variants
for the same functionality. The compiler can generate code automatically using
a simple template relieving the programmer from the tedious and error-prone
low-level performance evaluation. We have validated this approach for a sophis-
ticated engineering linear solver. For this code the programmer can easily specify
a set of cost and run-time strategy functions so that the resulting generated se-
lector code can choose the best available code implementation while exhibiting
negligible overheads.

References

1. V. Adve, V. Lam and B. Ensink, Language and Compiler Support for Adaptive Dis-
tributed Applications. In Proc. of the ACM SIGPLAN Workshop on Optimization
of Middleware and Distributed Systems (OM 2001) Snowbird, Utah, June 2001.

2. O. Agesen and U. Hölzle, Type Feedback vs. Concrete Type Analysis: A Com-
parison of Optimization Techniques for Object-Oriented Languages. In Proc. of
the ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’95) 1995.

3. M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney, Adaptive Optimization
in the Jalapeño JVM: The Controller’s Analytical Model. In Proc. of the ACM
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), Dec., 2000.

4. J. Auslander, M. Philipose, C. Chambers, S.J. Eggers and B.N. Bershad, Fast,
Effective Dynamic Compilation. In Proc. of the ACM Conference on Programming
Language Design and Implementation (PLDI96), June 1996.

232 P.C. Diniz and B. Liu

5. V. Bala, E. Duesterwald, S. Banerjia, Dynamo: A Transparent Dynamic Opti-
mization System. In Proc. of the ACM Conference on Programming Language and
Implementation (PLDI00), June 2000.

6. P. Diniz and M. Rinard, Dynamic Feedback: An Effective technique for Adaptive
Computing. In Proc. of the ACM Conference on Programming Language Design
and implementation (PLDI97), June 1997.

7. D. Engler, Vcode: a retargetable, extensible, very fast dynamic code generation
system. In Proc. of the ACM Conference on Programming Language and Imple-
mentation (PLDI96), June 1996.

8. G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, Jan. 1998.

9. J. Liu, Modification of the minimum degree algorithm by multiple elimination
ACM Transactions on Mathematical Software, 11(2), pp. 141-153, Jun. 1985.

10. M. Voss and R. Eigenmann, High-Level Adaptive Program Optimization with
ADAPT. In Proc. of the ACM Symp. on Principles and Practice of Parallel Pro-
gramming (PPOPP’01), 2001.

Optimizing the Java Piped I/O Stream Library
for Performance �

Ji Zhang1, Jaejin Lee2,��, and Philip K. McKinley1

1 Michigan State University, Department of Computer Science and Engineering,
Software Engineering and Network Systems Laboratory,

East Lansing, MI 48824, USA
{zhangji9, mckinley}@cse.msu.edu

2 Seoul National University, School of Computer Science and Engineering,
Seoul 151-742, Korea
jlee@cse.snu.ac.kr

Abstract. The overall performance of Java programs has been signif-
icantly improved since Java emerged as a mainstream programming
language. However, these improvements have revealed a second tier of
performance bottlenecks. In this paper, we address one of these issues:
the performance of Java piped I/O stream library. We analyze com-
monly used data transfer patterns in which one reader thread and one
writer thread communicate via Java piped I/O streams. We consider
data buffering and synchronization between these two threads, as well as
the thread scheduling policy used in the Java virtual machine. Based on
our observations, we propose several optimization techniques that can
significantly improve Java piped I/O stream performance. We use these
techniques to modify the Java piped I/O stream library. We present per-
formance results for seven example programs from the literature that
use the Java piped I/O stream library. Our methods improve the perfor-
mance of the programs by over a factor of 4 on average, and by a factor
of 27 in the best case.

1 Introduction

Due to wide acceptance of Java as a mainstream programming language, the
performance of Java programs is increasingly important. With the emergence of
new Java virtual machine implementations and new compiler optimization tech-
niques, such as just-in-time compilation and hot-spot detection with dynamic
� This work was supported in part by the U.S. Department of the Navy, Office of

Naval Research under Grant No. N00014-01-1-0744, and in part by National Science
Foundation grants CCR-9912407, EIA-0000433, and EIA-0130724. This work was
also supported in part by the Korean Ministry of Education under the BK21 program
and by the Korean Ministry of Science and Technology under the National Research
Laboratory program.

�� Corresponding author. The preliminary work of this paper was done when the author
was in the Department of Computer Science and Engineering at Michigan State
University.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 233–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 J. Zhang, J. Lee, and P.K. McKinley

compilation, the overall performance of Java programs has been significantly
improved. However, these improvements have revealed a second tier of perfor-
mance bottlenecks.

Java is inherently a multi-threaded programming language. In some multi-
threaded Java programs, data is processed and transferred from one thread to
another in a pipeline fashion. A common example is proxy server, a middleware
component often used to mitigate the limitations of mobile hosts and their wire-
less connections [1,2,3]. Adopting the terminology of the IETF Task Force on
Open Pluggable Edge Services (OPES) [4], proxies are composed of many prox-
ylets, which are functional components that can be inserted, added and removed
dynamically at run time without disturbing the network state. Example proxylet
services include transcoding data streams into lower-bandwidth versions, scan-
ning for viruses, and introducing forward error correction to make data streams
more resilient to losses. In an earlier study [5], our group designed a composable
proxy framework based on detachable Java I/O streams. Using piped I/O among
proxylets produces a flexible framework that can be reconfigured at run time in
response to changing environmental conditions or user preferences. However, this
investigation also revealed shortcomings of the Java piped I/O classes in terms
of performance.

In this paper, we investigate how to improve the performance of Java piped I/O
stream library. We found that the Java pipe library is implemented in a very inef-
ficient way. Because Java pipes are widely used, well beyond our own proxy-based
systems, their efficiency may significantly impact on the performance of many pro-
grams. We analyze data transfer patterns between different threads that are used
in Java piped I/O stream library. We consider data buffering, synchronization be-
tween different threads, and the thread scheduling policy used in the Java virtual
machine. Based on our observations, we propose several optimization techniques
that can significantly improve Java piped I/O stream performance. We use these
techniques to modify the Java piped I/O stream library. Our experimental results
show that these techniques improve the performance of some example programs
from the literature using the Java pipe library by over a factor of 4 (by a factor of
27 in the best case) on average. Also, we demonstrate that the most effective tech-
nique to use depends on the run-time environment.

The remainder of the paper is organized as follows: Section 2 describes Java
piped I/O stream library, and Section 3 presents our proposed methods. Section 4
describes the evaluation environment, and Section 5 presents results of our exper-
iments. Related work is discussed in Section 6, and our conclusions are given in
Section 7.

2 Java Piped I/O Stream

In this section, we review the use and implementation of Java pipes.

2.1 Using Java Piped I/O Stream

The PipedInputStream and PipedOutputStream classes in the Java library pro-
vide a mechanism to transfer a stream of bytes between different threads. Before

Optimizing the Java Piped I/O Stream Library for Performance 235

transferring data between threads, a pipe between the two threads is created. Sub-
sequently, one thread can write data to the PipedOutputStream, and the other
thread can read data from the PipedInputStream. Figure 1 shows the process of cre-
ating a pipe by using connectmethod of PipedInputStream.

// create the piped input
PipedInputStream pipeIn = new PipedInputStream();
// create the piped output
PipedOutputStream pipeOut = new PipedOutputStream();
// connect the piped input with the piped output.
pipeIn.connect(pipeOut);

Fig. 1. Creating a pipe

Two methods are available for reading data from the pipe:
PipedInputStream.read() and PipedInputStream.read(byte[] b, int
off, int len). The read() method reads one byte from the pipe; the read(b,
off, len) method reads a byte-array, b[], from the pipe. The length of the
byte-array is specified by len. The first byte read is stored at b[off] and the kth
byte read is stored at b[off+k-1].

Similarly, two methods are available for writing data to the pipe:
PipedOutputStream.write(int b) and PipedOutputStream.write(byte[]
b, int off, int len). The write(b) method writes a byte, b, to the pipe; the
write(b, off, len) method writes a byte-array b[] to the pipe. The length of
the array written to the pipe is specified by len. The first byte written to the pipe
is b[off] and the kth byte is b[off+k-1]. Figure 2 shows how to read and write
data using the pipe created in Figure 1.

...
byte byteOut;
byte[] byteArray = new byteArray[MAX];
...
// preparing output values (byteOut and byteArray)
...
pipeOut.write(byteOut);
...
pipeOut.write(byteArray,0,MAX);
...

Writer Thread

...
byte byteIn;
byte[] byteArray = new byteArray[MAX];
...
...
...
byteIn = pipeIn.read()
...
pipeIn.read(byteArray,0,MAX);
...

Reader Thread

Fig. 2. Writing and reading data on a pipe

Thewriter can invoke a synchronizedmethodPipedOutputStream.flush() in
order to notify the reader that bytes are available in the pipe. The flush method
simply invokes notifyAll(); it is not related to the flushing mechanisms of the
underlying operating system.

2.2 Implementation in Sun JDK 1.3.1

The UML class diagram in Figure 3 shows the Java pipe read-write mechanism.
When the pipe is connected, a PipedInputStream object reference is assigned to

236 J. Zhang, J. Lee, and P.K. McKinley

byte[] buffer

sync int read()
sync int read(byte[] b, int off, int len)
sync void receive(int b)
sync void receive(byte b[], int off, int len)

PipedInputStream

sink.receive(b);

sink.receive(b,off,len)
while (--len >= 0)

receive(b[off++]);

PipedInputStream sink

void write(byte b)

PipedOutputStream

void write(byte b[], int off, int len)

Fig. 3. The UML diagram of the Java pipe read/write

the variable sink in the PipedOutputStream class. When the writer invokes write
method to write data to the pipe, the PipedOutputStream object calls the receive
method of the PipedInputStream object with the parameters of the writemethod.

The PipedInputStream encapsulates all the key functions of the pipe includ-
ing protection of critical sections with synchronization. The buffer in PipedInput-
Stream is sharedbetween the writer and reader.The writer deposits data to buffer
by calling a writemethod and the reader extracts data from the buffer by calling
a read method. Two methods, receive(b) and receive(b,off,len), in Piped-
InputStream are called by the writemethod in PipedOutputStream to write to the
buffer one byte and an array of bytes, respectively.

Figure 4 describes the synchronization mechanism of Java pipe in read() and
receive(b) methods. The read() and receive(b) methods are synchronized.
When the reader calls read(), it checks if there are any data unread in buffer.
If not, the reader notifies the writer and blocks itself. The reader wakes up 1000
ms later or is woken up by a notifyAll method invoked by the writer. If at least
one byte is available in buffer, read() reads a byte from buffer. When the writer
calls receive(b) through write, it checks if there is any free space in buffer. If
not, the writer notifies the reader and blocks itself. It wakes up 1000 ms later or is
woken up by notifyAll invoked by the reader. If the shared buffer is not full, then
receive(b)writes a byte to the shared buffer.

while(no data in the buffer) {
notifyAll();
wait(1000);

}
// read one byte from the buffer
ret = byte [out++];
return ret;

(a)

while(no free space buffer){
notifyAll();
wait(1000);

}
// write one byte to the buffer
buffer[in++] = b;

(b)

Fig. 4. Synchronization mechanism in Java pipe. (a) Synchronizedmethod read() called
by the reader. (b) Synchronized method receive(b) called by the writer.

Figure 5 shows the implementation of read(b,off,len)and receive(b,off,
len). The read(b,off,len) method first calls read() to read one byte from
buffer, and then copies the remaining bytes byte-by-byte from buffer in a loop.
The implementation of thereceive(b,off,len)method is quite simple: it repeat-
edly calls receive(b) len times.

However, the implementation and the algorithms used in Java pipe library are
inefficient for the following reasons:

Optimizing the Java Piped I/O Stream Library for Performance 237

b[off]=read();
off++; len--;
while(len > 0 &&

there are bytes left in the buffer) {
Copy one byte from the buffer to b[off];
off++;
len--;

}
(a)

while (--len >= 0) {
receive(b[off++]);

}

(b)

Fig. 5. Implementation of read(b,off,len) and receive(b,off,len) in Java
pipe. (a) Synchronized method read(b,off,len). (b) Synchronized method
receive(b,off,len).

1. The receive(b, off, len)method repeatedly calls receive(b). This design
incurs at least one method invocation when each byte is transferred.

2. The read(b, off, len) method uses byte-by-byte copying, which is very in-
efficient.

3. Synchronization overhead is high. The methods read and receive are syn-
chronized methods and use wait/notify synchronization. Monitor operations
are involved in both synchronized methods and wait/notify synchronization.
When the switching frequency between the reader and writer is high, the syn-
chronization overhead becomes high.

4. The concurrency level is low. The granularity of synchronization is an entire
method. Thus, the operations inside the synchronized methods cannot be
interleaved.

In this paper, we develop optimization techniques for the Java piped I/Ostream
library to overcome these inefficiencies.

3 Our Approach

In this section, we introduce five different optimization techniques for Java piped
I/O stream library.

3.1 Array Copying (ArrC)

In the Java piped I/O stream library, the method read(b,off,len)uses byte-by-
byte assignments to copy bytes from the shared buffer to the byte array b, and the
method receive(b,off,len) repeatedly calls the method receive(b) to copy
multiple bytes to the shared buffer from the byte arrayb. The byte-by-byte copying
and repeated method invocations cause unnecessary overhead.

In many cases, it is more efficient to use a native method System.arraycopy
providedby the Java library to copydata froma byte array to another. The method
signature is System.arraycopy(Object src, int src position, Object dst,
int dst position, int length).

We rewrote read(b,off,len) in the library with System.arraycopy by re-
placing repeated byte-by-byte copying, as shown in Figure 6.

238 J. Zhang, J. Lee, and P.K. McKinley

b[off]=read();
off++; len--;
while(len>0 &&

there are bytes left in the buffer) {
Copy one byte from the buffer to b[off];
off++;
len--;

}
(a)

while(no data in the buffer){
notifyAll();
wait(1000);

} // if no byte left in the buffer, then block
Array-copy the bytes from the buffer to b;

(b)

Fig. 6. Modification of read(b,off,len). (a) Original code (b) Modified code with
System.arraycopy.

In addition, we modify receive(b,off,len) in the library. Instead of repeat-
edly calling receive(b), we place the synchronization inside the method and use
array copying to directly copy a certain number of bytes from the shared buffer to
the byte-array b, as shown in Figure 7.

while (--len >= 0) {
receive(b[off++]);

}

(a)

while (len > 0) {
while(no free space in the buffer){
notifyAll();
wait(1000);

}// if no free space, then block

Array copy data from b to
the space available in the buffer;

len = len - number of bytes copied;
}

(b)

Fig. 7. Modification of receive(b,off,len). (a) Original code. (b) Modified code with
System.arraycopy.

3.2 Buffering (Buff)

The basic idea of modifying the library with buffering is to add two extra buffers,
input and output, on both ends of the pipe. These buffers are not shared between
the reader and the writer. Read and write operations use these buffers, and do not
directly access the shared buffer. When the output buffer buffer is full, it is written
to the shared buffer. Similarly, when the input buffer is empty, it is filled from the
shared buffer. This concept is illustrated in Figure 8. The size of each buffer is 1024
bytes.

Shared Buffer
Output
Buffer

Piped
Output
Stream

Buffer
Input

Piped
Input
Stream

Pipe

write(b,off,len)

read()

read(b,off,len)

write(b)

Fig. 8. Buffering mechanism

Optimizing the Java Piped I/O Stream Library for Performance 239

There is one issue that needs to be considered when the buffering technique is
used. When the communication between two theads through a pipe depends on the
specific pattern of the bytes transferred, the buffering technique may cause dead-
lock. Calling the flush method is required after writing the data to the pipe in order
to prevent deadlock.

3.3 Combining Buffering with Array Copying (Buff&ArrC)

Buffering increases the size of data to be transferred through the pipe at one time.
As a result, it boosts performance of data transfer. When the data size to be trans-
ferred is large, the array copying technique is more effective than the case when the
size is small. Thus, it is natural to combine buffering and array copying. We add in-
put and output buffers at both ends of the pipe. When writing (reading) to (from)
the pipe, we write (read) to (from) the output (input) buffer. When the output or
input buffer is full, we use array copying to transfer data between the output or
input buffer to the shared buffer in the pipe.

3.4 Synchronization Elimination (SE&ArrC)

Java pipes use a typical producer-consumer model, with wait and notify synchro-
nization between PipedOutputStream (the producer) and PipedInputStream (the
consumer). We find that the synchronization mechanism in Java pipe is inefficient
and the degree of concurrency can be increased. First, most of the methods in the
Java pipe library including the read and receivemethods are synchronized meth-
ods. To enter a synchronizedmethod, the calling threadmust acquire the lock of the
synchronizedmethod.This lockingmechanism includesmonitor-enter andmonitor-
exit operations and is expensive. Second, when a thread invokes wait, the state
of the thread is switched from runnable to not runnable. When notify is invoked
by the other thread, the state of the waiting thread is switched from not runnable
to runnable [6]. This procedure creates thread scheduling overhead [7]. Because
receive and read methods are synchronized, the writer and reader cannot exe-
cute concurrently.

In order to increase the degree of concurrency and to decrease synchronization
and thread scheduling overhead,we completely eliminate synchronizationbetween
receive and read using a nondeterministic algorithm. In Java pipes, the PipedIn-
putStream class contains a 1024-byte circular shared buffer accessed by both the
reader and writer, and the range of available data in the buffer is specified with the
shared variables in and out. Our algorithm, shown in Figure 9, uses a 1025-byte
circular shared buffer (Figure 10) instead of the 1024-byte sharedbuffer. Only 1024
bytes in our shared buffer is avaliable for the writer to fill in. There are two shared
pointer variables in and out. The variable in points to the location in the buffer
where the next byte is written, and out points to the location where the next byte
is read. The variable out is modified only by the reader and the variable in is mod-
ified only by the writer. The two variables increase in a circular manner (modulo
1025). To explain our algorithm, we denote the range of the circular buffer in the
following way:

240 J. Zhang, J. Lee, and P.K. McKinley

B[x, y] =
{

[x, y] if x ≤ y
[x, 1024] ∪ [0, y] otherwise

B[x, y) =
{

[x, y) if x ≤ y
[x, 1024] ∪ [0, y) otherwise

where 0 ≤ x, y ≤ 1024. Then, the range of data that is valid in the buffer for
the reader is B[out, in), and for the writer is B[in, out-1). Thus, the range of
the buffer that is operated on by the reader and the writer at one time is B[out,
out-1), and it is 1024 bytes long. If in = out then the buffer is empty, and if (in +
1) % buffer.length= out then the buffer is full.

In read(b, off, len), the reader first takes a snapshot of the shared variables
in and out and store their values in new local variables Lin and Lout. Then, we
use Lin and Lout to determine whether the shared buffer is empty in the while
loop. The reader exits the loop only when there are valid data in the buffer. If the
shared buffer is empty, we use Thread.yield() in order to let the writer execute
by yielding the execution of the current thread (reader). If the shared buffer is not

while(true){
Lin=in;
Lout=out;
if (Lin == Lout)
// buffer is empty
Thread.yield();

else
break;

}
Compute the range of available

data in the buffer;
Use array copying to copy len bytes

from the buffer. The data to be
read begins at buffer[Lout];

Lout = (Lout + number of bytes copied)
% buffer.length;

out = Lout;

read(b, off, len)

while(len > 0){
while(true){

Lin=in;
Lout=out;
if ((Lin + 1) % buffer.length == Lout)

// buffer is full
Thread.yield();

else
break;

}
Compute the range of empty

elements in the buffer
Use array copying to copy len bytes

to the buffer. The location to
be writen begins at buffer[Lin];

Lin = (Lin + number of bytes copied)
% buffer.length;

in = Lin;
len = len-number of bytes copied;

}
receive(b, off, len)

Fig. 9. Synchronization elimination in the Java pipe implementation

out

in

data

1024 0

empty

Fig. 10. The circular buffer

Optimizing the Java Piped I/O Stream Library for Performance 241

empty, the reader exits the loop and copies data from the shared buffer to the des-
tination byte array b by using array copying. When copying data, the portion of
the shared buffer that can be accessed by the reader is solely determined by Lin
and Lout, and it is B[Lout, Lin). The variable in is increased only by the writer
in the circular manner after its local copy Lin is made by the reader. Since out is
increased only in the circular manner by the reader, out= Lout, and the following
conditions are ensured by the writer when in is modified:

in′ < Lout when in < out
in′ < Lout+ 1025 − 1 otherwise

Wherein’ is themodifiedvalueofinby thewriter.Therefore,in is always inB[Lin,
Lout).Thus, B[Lout,Lin)⊆ B[out,in), and the reader always operate on the valid
data in this range. After copying data, the reader sets Lout to the new location:
Lout = (Lout + length of data copied) % buffer.length, and commits Lout
to the shared variable out (out = Lout;). The case of receive(b, off, len) is
symmetrical to read(b, off, len).

3.5 Combining SE with Buffering (SE&ArrC&Buff)

This approach is similar to Buff&ArrC. We add output and input buffers at both
ends of the pipe. However, we use the SE&ArrC algorithm to transfer data between
the output/input buffers and the shared buffer in the pipe.

4 Evaluation Environment

We evaluated our techniques on a synthetic benchmark and seven different exam-
ple programs taken from the literature. Figure 11 shows the synthetic benchmark
used in the experiments. SOURCE SIZE is the size of the source array in the writer.
PACKET SIZE is the number of bytes to be transferred at a time in the pipe. In the
experiments, we set SOURCE SIZE (= 128KB) to be a multiple of PACKET SIZE, and
varied PACKET SIZE from 1 byte to 29 bytes. By doing so, we see the relationship
between the packet size and the performance in addition to the performance of our
techniques. In order to focus on the performance of the Java pipe, we try to mini-
mize other factors such as caching, file read, file write, and other computations, in
the synthetic benchmark. We assume the total data size (DATA SIZE) is 1MB. We
transfer the same source array 8 times and measure the execution time.

Table 1 describes the seven programs we used in our experiments.
We evaluated the benchmark programs on a dual-processor 800MHZ Pentium

III SMP with 32KB L1 and 256KB L2 caches, and 256MB main memory, running
Redhat Linux 7.2. Table 2 shows two different JVM configurations used in our ex-
periments. However, we do not compare the performance of Java pipe across dif-
ferent JVM configurations.

Sun JDK supports two threading models, native threads and green threads [17],
depending on the wayhowJava threads aremapped to the native threads of the un-
derlying OS.Native threads in Solaris is many-to-many mapping, i.e., multiple Java

242 J. Zhang, J. Lee, and P.K. McKinley

byte[] src = new byte[SOURCE SIZE];
off = 0;
Prepare src;
remainingData = DATA SIZE;
Start Timer;
while (remainingData > 0){

pipeOut.write(src,off,PACKET SIZE);
remainingData = remainingData - PACKET SIZE;
off = off + PACKET SIZE;
if(off >= SOURCE SIZE)
off = 0;

}
pipeOut.flush();
PipeOut.close();

Thread 1: writer

byte dst[] = new byte [SOURCE SIZE];
off = 0;
int dataIn = 1;
while (dataIn > 0)

dataIn= pipeIn.read(dst,off,PACKET SIZE);
Stop Timer;

Thread 2: reader

Fig. 11. The synthetic benchmark

Table 1. Applications used in our experiments

Name Description Size (lines)

RhymingWords [8] Four threads collaborating. The first thread reads data
from a file. The second sorts the data. The third reverses
the data, and the last thread writes the data to StdOut.

252

TestThread [9] One thread generates a random number. The other
thread writes the number to StdOut.

29

SystemStream [10] One thread reads bytes from StdIn. The other writes the
bytes to StdOut.

69

JavaClassExample [11] One thread generates random floating point numbers.
The other thread writes the average of the numbers to
StdOut.

88

XY [12] One thread reads data from a file. The other thread
changes the letter ’X’ into ’Y’ in the data and writes
the data to StdOut.

140

Fibonacci [13] One thread generates Fibonacci numbers and converts
them into bytes. The other thread converts the bytes
back to integers.

101

IntByte [14] One thread converts integers into bytes. The other
thread converts the bytes back to integers.

88

threads aremapped to multiple LWPs and the JVM leaves the thread scheduling to
the OS (Figure 13(a)). Because there are no LWPs in Linux, each thread is directly
mapped to a process (Figure 13(b)) [16]. Green threads is many-to-one mapping,
i.e., multiple Java threads are mapped to one LWPs (Light Weight Processes) in
Solaris or a process in Linux, and the JVM takes care of scheduling Java threads
[17]. Thus, performance enhancement from parallelism cannot be realized using
green threads.

The effect of Thread.yield() in Linux depends on the thread model. While
Thread.yield() is simply neglected by the JVM in native threads, it yields exe-

Table 2. Java Virtual Machines used in our experiments

Sun JDK 1.3.1 Java 2 Runtime Environment, Standard Edition
with native threads [15] Java HotSpot Client VM
Sun JDK 1.3.1 Java 2 Runtime Environment, Standard Edition
with green threads [16] Classic VM

Optimizing the Java Piped I/O Stream Library for Performance 243

cution to the next thread with the highest priority in the waiting queue in green
threads.

5 Evaluation

5.1 Synthetic Benchmark Experiments

The performance results of our techniques with the synthetic benchmark are shown
in Figure 12. Base is the benchmark using the original Java piped I/O stream li-
brary.

When we use the array copying technique (ArrC), the data transfer rate in-
creases very fast as the packet size increases. When the packet size is 512B, ArrC is

Sun JDK with Native Threads

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Packet Size (Byte)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

Uniprocessor Two processors

Sun JDK with Green Threads

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Paket Size (Byte)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

Uniprocessor Two processors

Fig. 12. The performance of the synthetic benchmark

Table 3. The best technique depends on the environment

One processor Two processors
Small (< 256B) Large (≥ 256B) Small (< 256B) Large (≥ 256B)

Native threads ArrC&Buff ArrC&Buff SE&ArrC&Buff SE&ArrC
Green threads SE&ArrC&Buff SE&ArrC SE&ArrC&Buff SE&ArrC

244 J. Zhang, J. Lee, and P.K. McKinley

33 times faster thanBase on average.When the packet size is small,however,we ob-
serve slowdown with ArrC when using a single processor. This is because the native
method (System.arraycopy) invocation overhead is high with the small packet
size.

The buffering technique (Buff) is beneficial when the packet size is small be-
cause it increases the size of data to be transfered to the shared buffer in the pipe.
However, it causes extra overheadof data copying between the input/output buffer
and the shared buffer in the pipe. When the packet size is large, the benefit becomes
less significant than the copying overhead.

The combination of array copying and buffering (ArrC&Buff) exhibits the best
performance on one processor with native threads and is better than each of the
others when the packet size is small. When the packet size is large, its performance
is close to ArrC. This is because buffering incurs an extra overhead of copying data.

Except for the Sun JDK native threads on one processor,SE&ArrC is the fastest
when the packet is greater than or equal to 256B. When the packet size is smaller
than 256B, the combination of all the techniques (SE&ArrC&Buff) is preferred. The
performance difference between SE&ArrC and SE&ArrC&Buff on different packet
sizes is likely caused by the extra data copying overhead incurred by buffering.

Green Threads

Kernel threads

User threads

Java threads

LWPs

Native Threads

(a)

User threads

Java threads

Processes

Green Threads Native Threads

(b)

Fig. 13. Green threads and native threads.
(a) Solaris. (b) Linux.

Java threads

User threads

Processes

writer

Processor

reader

(a)

Java threads

User threads

Processes

writer

Processors

reader

(b)

Fig. 14. Thread scheduling on
physical processors in Linux with
native threads. (a) one physi-
cal processor. (b) Two physical
processors.

In the case of Sun JDK with native threads on one processor, both SE&ArrC
and SE&ArrC&Buff slow down significantly. They are even slower than Base. We
also see that their performance does not vary as the packet size changes (about 44
seconds). This can be explained by a close study of thread scheduling issues of Sun
JVM on Linux. In this case, the reader is mapped to one process and the writer to
the other [16]. These two processes are running on one processor (Figure 14(a)).
When the writer deposits data to the shared buffer and the buffer is full, it calls
Thread.yield,but this function is ignored in native threads. Thus, the reader will
not be scheduled until the current process finishes its time slice assigned by Linux.
A similar situation occurs for the reader when the buffer is empty. Thus, it takes
approximately two time slices to finish transferring data whose size is the same as
the size of the shared buffer between the reader thread and the writer thread.

Optimizing the Java Piped I/O Stream Library for Performance 245

In Linux, the time slice assigned to each process is about 20 ms. The size of the
shared buffer in the Java pipe library is 1KB and the data size to be transferred in
our experiment is 1MB. The estimated transfer time is 2×20ms×(1MB/1KB) =
40, 960ms = 41s, whichmatches the result of the experiment, 44 seconds, verywell.

On the contrary,when two processors are available in the native threads model,
the reader and the writer can be mapped to two processes and these two processes
run on the two processors in parallel (Figure 14(b)).

From the results, we see that the most effective technique varies depending on
thenumber of physicalprocessors, the threadingmodel,and thepacket size.Table3
summarizes the results in different situations.

5.2 Experiments with Real Programs

In real applications, there are many other factors that affect the performance of the
Java pipes, such as the existence of threads other than the reader and writer, file
I/O, and so on. The execution time of each real example program is shown in Fig-
ure 15. The execution time is normalized to the programs with the original Java

0

0.2

0.4

0.6

0.8

1

1.2

Rymingwords TestThread SysStream JavaClassExample XY Fibonacci IntByte

N
o

rm
a

li
z
e

d

E
x
e

c
u

ti
o

n
 T

im
e

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

30.45 30.917.147.11 32.8031.99 3.02 2.88 3.84 3.83 3.56 3.483.47 3.51

(a) Native threads on one processor.

0

0.2

0.4

0.6

0.8

1

1.2

Rymingwords TestThread SysStream JavaClassExample XY Fibonacci IntByte

N
o

rm
a

li
z
e

d

E
x
e

c
u

ti
o

n
 T

im
e

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

(b) Native threads on two processors.

0

0.2

0.4

0.6

0.8

1

1.2

Rymingwords TestThread SysStream JavaClassExample XY Fibonacci IntByte

N
o

rm
a

li
z
e

d

E
x
e

c
u

ti
o

n
 T

im
e

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

(c) Green threads on one processor.

0

0.2

0.4

0.6

0.8

1

1.2

Rymingwords TestThread SysStream JavaClassExample XY Fibonacci IntByte

N
o

rm
a

li
z
e

d

E
x
e

c
u

ti
o

n
 T

im
e

Base

ArrC

Buff

ArrC&Buff

 SE&ArrC

 SE&ArrC&Buff

(d) Green threads on two processors.

Fig. 15. The execution time of our 7 real example programs

246 J. Zhang, J. Lee, and P.K. McKinley

pipe library (Base). Table 4 shows the average packet size (the len argument in
read and write (or receive))used in each program. When the packet size is small
(RhymingWords, TestThread, JavaClassExample, XY, andFibonacci), the results
conform to our expectation based on Table 3: ArrC&Buff and SE&ArrC&Buff are
preferredwithnative threadsonone and twoprocessors, respectively.SE&ArrC&Buff
is the fastest using green threads. When the packet size is large (SystemStream
and IntByte), the best techniques with green threads (SE&ArrC) and with native
threadsononeprocessor (ArrC&Buff)are as expected inTable3.Withnative threads
on two processors, the best technique (SE&ArrC&Buff) is different from Table 3
(SE&ArrC). However, the performance difference is not significant. In the best case
(SystemStream with SE&ArrC using green threads), we obtained a speedup of 27.

Table 5 summarizes the average speedups obtained from our best optimization
technique based on Table 3 for each application. The appropriate implementation
of Java piped I/O stream library could be chosen at run-time depending on the
environmental conditions.

Table 4. Average packet size

Program Read Write

RhymingWords 7 1
TestThread 1 1
SystemStream 500 250
JavaClassExample 1 1
XY 1 1
Fibonacci 1 1
IntByte 512 1024

Table 5. Average speedup obtained from
our best optimization technique for each
application

One processor Two processors

Native threads 2.58 3.87
Green threads 4.83 4.76

6 Related Work

Guyer andLin [18] showed the importanceofoptimizing the software library inhigh
performance computing and scientific computing. They showed that applying an
optimization to the library could yield much more performance improvement than
an analogous conventional optimization. Optimizing the library needs more effort,
but the cost can be amortized by many applications. They proposed an annotation
language,which provides the information needed to optimize the libraryat compile
time. Our work is an example of library optimization, and our results show that the
library optimization is not trivial, i.e., in many cases, there isno single optimization
method that gives the best performance.

BogdaandHolzle [19]pointedout the importanceof eliminating overheadcaused
by unnecessary synchronization in Java. They proposed a technique that creates
separate functions for shared variables and local variables to avoid functions ac-
cessing both a shared object and a local object. Ruf [20] proposed a technique for
statically removing unnecessary synchronization in both the standard library and
runtime system of Java. Objects that are synchronized only by a single thread at
compile-time are detected and redundant synchronization is removed. Boyapati
and Rinard [21] introduced a new static type system, which can ensure that a well-
typed program is free of data races. By detecting data races, Some of the unneces-

Optimizing the Java Piped I/O Stream Library for Performance 247

sary synchronization that is inserted conservatively in theprogramcanbe removed.
However, the synchronization mechanism in Java pipe library cannot be removed
by that technique. Our implementation of Java pipes doesnot use any synchroniza-
tion provided by Java, but still ensures correctness.

Goetz [22] found that the transfer rate of unbuffered data transfer is much lower
than that of buffered data in Java I/O. McCluskey [23,24] showed that buffering is
effective for Java file I/O, while ourwork focuses on Java piped I/O streambetween
different threads.

7 Conclusions and Future Work

In this paper, we presented optimization techniques for the Java piped I/O stream
library: array copying, buffering, synchronization elimination, and combinations
of them. We analyzed commonly used data transfer patterns between threads that
use the Java piped I/O stream library to transfer data. Our observation is based
on data buffering, data copying mechanism, synchronization between threads, and
the thread scheduling policy used in the Java virtual machine. Based on these ob-
servations, wemodified the Javapiped I/Ostream libraryusing those optimization
techniques.

By using a synthetic benchmark, we found that the optimization techniques
exercise different performance in different environments, such as size of data trans-
ferred at a time (packet size), number of processors, and threading model. The best
optimization technique depends on the run-time environment.

We evaluated our techniques with seven different example programs from the
literature. Our experimental results show that these techniques improve the per-
formance of the programs using Java piped I/O stream class library by a factor of
4 on average and by a factor of 27 in the best case.

Acknowledgments

The authors thank the anonymous reviewers, Hank Deitz, Paul Foutrier, Samuel
P. Midkiff, and Bill Pugh for their useful comments.

Further Information. A number of related papers and technical reports of the Soft-
ware Engineering and Network Systems Laboratory can be found at the following
URL: http://www.cse.msu.edu/sens.

References

1. B. R. Badrinath, A. Bakre, R. Marantz, and T. Imielinski, “Handling mobile hosts:
A case for indirect interaction,” in Proc. Fourth Workshop on Workstation Operating
Systems, (Rosario, Washington), IEEE, October 1993.

2. Y. Chawathe, S. Fink, S. McCanne, and E. Brewer, “A proxy architecture for reliable
multicast in heterogeneous environments,” in Proceedings of ACM Multimedia ’98,
(Bristol, UK), September 1998.

248 J. Zhang, J. Lee, and P.K. McKinley

3. M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller, and M. Baker,
“Person-level routing in the mobile people architecture,” in Proceedings of the 1999
USENIX Symposium on Internet Technologies and Systems, (Boulder, Colorado),
October 1999.

4. L. Yang and M. Hofmann, “OPES architecture for rule processing and service ex-
ecution.” Internet Draft draft-yang-opes-rule-processing-service-execution-00.txt,
February 2001.

5. P. K. McKinley, U. I. Padmanabhan, and N. Ancha, “Experiments in composing
proxy audio services for mobile users,” in Proceedings of the IFIP/ACMInternational
Conference on Distributed Systems Platforms (Middleware 2001), (Heidelberg, Ger-
many), pp. 99–120, November 2001.

6. M. Campione, K. Walrath, and A. Huml, The Java Tutorial: A Short Course on the
Basics, Third Edition. Addison-Wesley, 2001.

7. Sun Microsystems, “Multithreaded programming guide.” 806-5257-1, January 2001.
8. M. Campione and K. Walrath, The Java Tutorial: Object-Oriented Programming for

the Internet, First Edition, Online Version. Addison-Wesley, 1996.
9. R. Gagnon, “Ral’s how to: Java thread.”

http : //www.rgagnon.com/javadetails/java − 0140.html.
10. Java Power, “Java power scratch book.”

http : //www.javapower.ru/faq/sb/java io7.htm.
11. D. Kramer, P. Chan, and R. Lee, The Java(TM) Class Libraries, Second Edition,

Volume 1. Addison-Wesley, February 1998.
12. J. Weber, Special Edition Using Java. Que, November 1996.
13. E. R. Harold, Java I/O. O’Reilly & Associates, March 1999.
14. P. Hyde, Java Thread Programming. SAMS, August 1999.
15. Sun Microsystems, “Java 2 SDK for solaris developer’s guide.” 06-1367-10, February

2000.
16. C. Austin, “Java technology on the Linux platform: A guide to getting

started,” October 2000. http : //developer.java.sun.com/developer/
technicalArticles/Programming/linux/.

17. Sun Microsystems, “Java on Solaris 7 developer’s guide.” 805-4031, 1998.
18. S. Z. Guyer and C. Lin, “Optimizing the use of high performance software libraries,”

in The 13th International Workshop on Languages and Compilers for Parallel Com-
puting (LCPC 2000), pp. 227–243, August 2000.

19. J.Aldrich,C.Chambers,E.G. Sirer, andS. J. Eggers, “Static analyses for eliminating
unnecessary synchronization from Java programs,” in Static Analysis Symposium,
pp. 19–38, 1999.

20. E. Ruf, “Effective synchronization removal for java,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 1999.

21. C. Boyapati and M. Rinard, “A parameterized type system for race-free Javapro-
grams,” in 16th Annual Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2001.

22. B. Goetz, “Tweak your IO performance for faster runtime :increase the speed of Java
programs by tuning IO performance,” Java World, November 2000.

23. G. McCluskey, “Java I/O performance,” ;login: - The Magazine of USENIX & SAGE,
December 1998. http : //www.usenix.org/publications/login/online.html.

24. G. McCluskey, “Tuning Java I/O performance.”
http : //developer.java.sun.com/developer/ technicalArticles/Programming/
PerfTuning/, Mar 1999.

A Comparative Study of Stampede Garbage
Collection Algorithms

Hasnain A. Mandviwala1, Nissim Harel1,
Kathleen Knobe2, and Umakishore Ramachandran1

1 College of Computing, Georgia Institute of Technology
{mandvi, nissim, rama}@cc.gatech.edu

2 HP Labs - Cambridge Research Laboratory
kath.knobe@hp.com

Abstract. Stampede is a parallel programming system to support inter-
active multimedia applications. The system maintains temporal causality
in such streaming real-time applications via channels that contain times-
tamped items. A Stampede application is a coarse-grain dataflow pipeline
of timestamped items. Not all timestamps are relevant for the applica-
tion output due to the differential processing rates of the pipeline stages.
Therefore, garbage collection (GC) is crucial for Stampede runtime per-
formance. Three GC algorithms are currently available in Stampede. In
this paper, we ask the question how far off these algorithms are from an
ideal garbage collector, one in which the memory usage is exactly equal
to that which is required for buffering only the relevant timestamped
items in the channels? This oracle, while unimplementable, serves as an
empirical lower-bound for memory usage. We then propose optimiza-
tions that will help us get closer to this lower-bound. Using an elabo-
rate measurement and post-mortem analysis infrastructure in Stampede,
we evaluate the performance potential for these optimizations. A color-
based people tracking application is used for the performance evaluation.
Our results show that these optimizations reduce the memory usage by
over 60% for this application over the best GC algorithm available in
Stampede.

1 Introduction

Emerging applications such as interactive vision, speech, and multimedia col-
laboration require the acquisition, processing, synthesis, and correlation (often
temporally) of streaming data such as video and audio. Such applications are
good candidates for the scalable parallelism available in clusters of SMPs. In a
companion paper [10] we discuss the need for higher level data abstractions to
match the unique characteristics of this class of applications. Stampede [9] is a
parallel programming system for enabling the development of such applications.
The programming model of Stampede is simple and intuitive. A Stampede pro-

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 249–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 H.A. Mandviwala et al.

gram consists of a dynamic collection of threads communicating timestamped
data items through channels1.

A Stampede computation with threads and channels is akin to a coarse-grain
dataflow graph, wherein the nodes are threads and channels and the links are
the connections among them. Threads can be created to run anywhere in the
cluster. Channels can be created anywhere in the cluster and have cluster-wide
unique names. Threads can connect to these channels for doing input/output via
get/put operations. A timestamp value is used as a name for a data item that
a thread puts into or gets from a channel. Every item on a channel is uniquely
indexed by a timestamp. Typically in a Stampede computation, a thread will
get an item with a particular timestamp from an input connection, perform
some processing2 on the data in the item, and then put an item with that same
timestamp onto one of its output connections. Items with the same timestamp
in different channels represent various stages of processing of the same input.

The time to process an item varies from thread to thread. In particular,
earlier threads (typically faster threads that perform low level processing) may
be producing items dropped by later threads doing higher level processing at a
slower rate. Only timestamps that are completely processed affect the output
of the application, while a timestamp that is dropped by any thread during the
application execution is irrelevant. The runtime system of Stampede takes care of
the synchronization and communication inherent in these operations, as well as
managing the storage for items put into or gotten from the channels. The metric
for efficiency in these systems is the rate of processing relevant timestamps (i.e.,
timestamps that make it all the way through the entire pipeline). The work
done processing irrelevant timestamps represents an inefficient use of processing
resources.

In a Stampede computation, the creation of threads, channels, and connec-
tions to channels are all dynamic. Since the channels hold timestamped data
there is an issue as to when to get rid of data from channels that are no longer
needed by any thread (current and future). We refer to this issue as the garbage
collection problem in Stampede. The traditional GC problem [12,7] concerns re-
claiming storage for heap-allocated objects (data structures) when they are no
longer “reachable” from the computation. On the other hand, Stampede’s GC
problem deals with determining when timestamped items in channels can be
reclaimed. The runtime system determines that a specific timestamp (which is
not a memory pointer but an index or a tag) will not be used anymore. Thus
storage associated with all items that are tagged with this timestamp can be
reclaimed. Stampede prescribes a simple set of rules for timestamp values that
can be associated with an item by a thread (or its children). Further it imposes

1 Stampede also provides another cluster-wide data abstraction called queues. Queues
also hold timestamped data items and differ in some semantic properties from the
channels. From the point of view of the focus of this paper these differences are
immaterial and hence we will not mention them in the rest of the paper.

2 We use “processing a timestamp”, “processing an item”, and “processing a times-
tamped item” interchangeably to mean the same thing.

A Comparative Study of Stampede Garbage Collection Algorithms 251

a discipline of programming that requires each thread to mark an item (or a set
of items) on a channel as garbage once the thread is finished using that item
by issuing a consume operation for that item. Using all this information, the
runtime system discerns when items can be garbage collected from channels.

In a companion paper [8], we have presented a distributed garbage collec-
tion algorithm for Stampede that does not use any application-level knowledge.
In a more recent paper [5], we have introduced a new algorithm, called dead-
timestamp based garbage collection (DGC), that uses an application-level task
graph to make runtime decisions on the interest set for timestamps. We show
that using such application-level knowledge can result in a significant space ad-
vantage (up to 40%) compared to the earlier algorithm that does not use such
knowledge.

In this paper, we ask the question how far off are these GC algorithms from
an ideal? We define ideal as the case where the memory usage is exactly that
which is required for processing relevant timestamps. While implementation of
such an oracle is infeasible, it nevertheless serves as an empirical lower-bound
for memory usage. We then propose two optimizations to the DGC algorithm
that is expected to get us closer to this lower-bound:

1. The first optimization is to globally propagate the information that a par-
ticular timestamp value is irrelevant using the task graph.

2. The second optimization is to buffer only the most recent few items in a
channel. This optimization gives a producer of items some measure of direct
control over garbage collection. The intuition is that downstream computa-
tions in interactive applications need only the most recent items and will
skip over earlier ones.

The rest of the paper is organized as follows. We discuss related work in Sec. 2.
Sec. 3 presents a summary of algorithms that are currently available in Stampede
for garbage collection. In Sec. 4, we present the proposed enhancements to the
DGC algorithm. The measurement infrastructure in Stampede that allows us to
gather the performance data for comparing these algorithms are presented in
Sec. 5. We introduce the definition for Ideal GC in Sec. 5.1. In Sec. 6, we discuss
the performance of the current algorithms as well as the proposed enhancements
with respect to the ideal. We present concluding remarks in Sec. 7.

2 Related Work

The traditional GC problem (on which there is a large body of literature [12,7])
concerns reclaiming storage for heap-allocated objects (data structures) when
they are no longer “reachable” from the computation. The “name” of an object
is a heap address, i.e., a pointer, and GC concerns a transitive computation that
locates all objects that are reachable starting with names in certain well-known
places such as registers and stacks. In most safe GC languages, there are no
computational operations to generate new names (such as pointer arithmetic)
other than the allocation of a new object. Stampede’s GC problem is an orthog-
onal problem. The “name” of an object in a channel is its timestamp, i.e., the

252 H.A. Mandviwala et al.

timestamp is an index or a tag. Timestamps are simply integers, and threads
can compute new timestamps.

The problem of determining the interest set for timestamp values in Stam-
pede has similarity to the garbage collection problem in Parallel Discrete Event
Simulation (PDES) systems [3]. However, the application model that Stampede
run-time system supports is less restrictive. Unlike Stampede, PDES systems
require that repeated executions of an application program using the same in-
put data and parameters produce the same results [4]. To ensure this property,
every timestamp must appear to be processed in order by the PDES system. A
number of synchronization algorithms have been proposed in the PDES litera-
ture to preserve this property. Algorithms such as Chandy-Misra-Bryant (CMB)
[1,2] process the timestamps strictly in order, exchanging null messages to avoid
potential deadlocks. There is no reliance on any global mechanism or control.
Optimistic algorithms, such as Time Warp [6], assume that processing a times-
tamp out of order by a node is safe. However, if this assumption proves false then
the node rolls back to the state prior to processing the timestamp. To support
such a roll back, the system has to keep around state, which is reclaimed based
on calculation of a Global Virtual Time (GVT). The tradeoff between the con-
servative (CMB) and optimistic (Time Warp) algorithms is space versus time.
While the former is frugal with space at the expense of time, the latter does the
opposite.

On the other hand, the Stampede programming model does not require in-
order execution of timestamps, nor does it require that every timestamp be
processed. Consequently, Stampede does not have to support roll backs. If noth-
ing is known about the application task graph, then similar to PDES, there is a
necessity in Stampede to compute GVT to enable garbage collection. The less
restrictive nature of the Stampede programming model allows conception of dif-
ferent types of algorithms for GVT calculation like the one described in [8]. In [5]
we have proposed yet another algorithm that uses application-level knowledge
enabling garbage collection based entirely on local events with no reliance on
any global mechanism.

3 Algorithms for Garbage Collection in Stampede

There are three competing mechanisms for GC in Stampede: a REFerence count
based garbage collector (REF), a Transparent Garbage Collector (TGC) [8], and
a Dead timestamp based Garbage Collector (DGC) [5]. Each algorithm represents
a specific point in the tradeoff between information needed to be provided to the
runtime system and the corresponding aggressiveness for eliminating garbage.

– Reference Count Based Garbage Collector:
This is the simplest garbage collector. As the name suggests, a thread as-
sociates a reference count with an item when it puts it in a channel. The
item is garbage collected when the reference count goes to zero. Clearly, this
garbage collector can work only if the consumer set for an item is known

A Comparative Study of Stampede Garbage Collection Algorithms 253

a priori. Hence this algorithm works only for static graphs where all the
connections are fully specified.

– Transparent Garbage Collector:
The TGC algorithm [8] maintains two state variables on behalf of each
thread. The first is the thread virtual time, and the second is the thread keep
time. The former gives the thread an independent handle on timestamp val-
ues it can associate with an item it produces on its output connections. The
latter is the minimum timestamp value of items that this thread is still inter-
ested in getting on its input connections. Thread keep time advances when an
item is consumed, and thread virtual time advances when a thread performs
a set virtual time operation. The minimum of these two state variables gives
a lower bound for timestamp values that this thread is interested in. TGC
is a distributed algorithm that computes a Global Virtual Time (GVT) that
represents the minimum timestamp value that is of interest to any thread in
the entire system. So long as threads advance their respective virtual times,
and consume items on their respective input connections the GVT will keep
advancing. All items with timestamps less than GVT are guaranteed not
to be accessed by any thread and can therefore be safely garbage collected.
This algorithm is entirely transparent to the specifics of the application, and
hence needs no information about the application structure.

– Dead Timestamps Based Garbage Collector:
The DGC algorithm [5] is inspired by the observation that even in dynamic
applications, it may be possible to discern all the potential channel, thread,
and connection creations by analyzing the application code at compile time.
Under such circumstances, it is possible for the application programmer to
supply the runtime system with a task graph that is a maximal representa-
tion of the application dynamism. A task graph (see Figure 1) for a Stampede
application is a bipartite directed graph with nodes that represent either
threads, which perform a certain computation, or channels, which serve as
a medium for buffer management between two or more threads. Directed
edges between nodes are called connections. A connection describes the di-
rection of the data flow between two nodes. Both types of nodes, threads and
channels, have input and output edges called input and output connections.
The DGC algorithm determines a timestamp guarantee for each node (thread
or channel). For a given timestamp T, the guarantee will indicate whether T
is live or whether it is guaranteed to be dead. A timestamp T is live at a node
N if (a) T is a relevant timestamp, and (b) there is some further processing
at N on T (i.e., T is still in use at N). Otherwise T is a dead timestamp at

Fig. 1. An abstract task graph

254 H.A. Mandviwala et al.

node N. If the node is a thread, “in use” signifies that the node is still pro-
cessing the timestamp; if the node is a channel, “in use” signifies that the
timestamp has not been processed by all the threads connected to that chan-
nel. DGC use the application supplied task graph to propagate timestamp
guarantees among the nodes. The algorithm generates two types of guaran-
tees: forward and backward. The forward guarantee for a connection iden-
tifies timestamps that might cross that connection in the future. Similarly,
the backward guarantee for a connection identifies timestamps that are dead
on that connection. Using these guarantees, a node can locally separate live
timestamps from dead ones, and garbage collect items with dead timestamps.

4 Enhancements to the DGC Algorithm

The three GC algorithms have been implemented in the Stampede system. In the
case of DGC, the forward and backward propagation of timestamp guarantees
are instigated by put/get operations on channels. In a companion paper [5], we
experimentally compared the performance of these three GC algorithms in the
context of a real-time color-based people tracker application that was developed
at Compaq CRL [11]. We use memory footprint - the amount of memory used
for buffering timestamped items in the Stampede channels by the application as
a function of real time - as the metric for performance evaluation. This metric is
indicative of the instantaneous memory pressure of the application. We showed
that the memory footprint of the DGC algorithm for the color-based people
tracker application is reduced anywhere from 16% to 40% compared to the other
two algorithms.

In this section, we consider optimizations that can further reduce the memory
footprint of the application. The first optimization is specific to DGC and con-
cerns the global propagation of the timestamp guarantees. The second optimiza-
tion is more generally applicable to any GC algorithm, and concerns associating
specific attributes with a channel to hasten garbage collection.

4.1 Out-of-Band Propagation of Guarantees (OBPG)

Our current implementation of DGC propagates forward and backward guaran-
tees by piggy-backing them with the put/get operations. The limitation to this
approach is that a node guarantee cannot be propagated along the graph until
either (a) a put is performed by the thread node, or (b) a get is performed on the
channel node. A more aggressive garbage collection would be possible if these
guarantees are made available globally. It is conceivable to use out of band com-
munication among the nodes to disseminate these guarantees. However, there will
be a consequent increase in overhead in the runtime system for this out-of-band
communication. To understand this trade-off, the first optimization evaluates the
following hypothetical question: How much reduction in memory footprint can
be achieved by instantly disseminating the node guarantees to all other nodes in
the graph? Clearly, instantaneous propagation is not practically feasible but this
helps us to understand the potential performance limit for such an optimization.

A Comparative Study of Stampede Garbage Collection Algorithms 255

101111

1111

12

(Seen)(Unseen)

(Latest Unseen)

(Dead)

Producer
Local Dead

Set

Attributed Channel

Fig. 2. An Attributed Channel. Implementing the KLnU optimization where n = 1.

4.2 Attributed Channels

– Keep Latest ’n’ Unseen. The second optimization stems from the fact that
in real-time applications, downstream computations are mostly interested
only in the latest item produced by an upstream computation. Coupled with
this fact is our earlier observation that upstream computations are lighter
than the downstream ones, resulting in a large number of items becoming
irrelevant. For example, in [5], we show that in the people tracker application
only one in eight items produced by the digitizer thread reaches the end of
the pipeline. The proposed optimization is to associate an attribute with a
channel that allows it to discard all but the latest item. The basic idea is
that when a producer puts a new item, the channel immediately gets rid of
items with earlier timestamps if they have not been gotten on any of the
connections. We refer to this set of earlier timestamps as the dead set. Since
a Stampede application depends on timestamp causality, this optimization
will not allow an item with an earlier timestamp to be garbage collected even
if one connection has gotten that item from this channel. We generalize this
attribute and call it keep latest n unseen (KLnU), to signify that a channel
keeps only the last n items. The value of n is specified at the time of channel
creation and can be different for different channels. Further, it should be
clear that this attribute gives local control for a channel to garbage collect
items that are deemed irrelevant and is in addition to whatever system-wide
mechanism may be in place for garbage collection (such as DGC).

Fig. 4.2 shows how attributed channels work. The producer thread has
just produced an item with timestamp 12. Items with timestamps 10 and 11
are already present in the channel. Item with timestamp 10 has been gotten
by a consumer, while 11 has not been gotten by any consumers so far. Thus

256 H.A. Mandviwala et al.

Local
Dead

Set
DS-out1

DS-out2

DS-out3

DS-in1

DS-in2

Input Connections
from Producers

Out Connections
To Consumers

Dead Set

Fig. 3. Propagation of Dead Sets. The arrows indicate the direction of flow of dead
sets into the given node.

upon put of item with timestamp 12, timestamp 11 can be added to the
dead-set of this channel while 10 cannot be.

– Propagating Dead Sets.
Similar to the forward and backward guarantee propagation in the basic
DGC algorithm, we consider propagating the local dead-set information from
a node to other nodes in the graph. We call this optimization Propagating
Dead Sets (PDS).

Fig. 4.2 shows the state of a node in a given task graph. This node will
receive dead-set information from all the out edges due to backward prop-
agation. Similarly, it will receive dead-set information from all the in edges
due to forward propagation. The dead-set for a node is computed as the
union of the local dead-set and the intersection of the dead-set information
of all the in and out edges incident on that node.

In [5], we introduced the notion of dependency among input connections
incident at a node. This information allows timestamp guarantees to be
derived for dependent connections. For e.g., if connection A to a channel
is dependent on connection B to another channel, and if the guarantee on
B is T (that is no timestamps less than T will be gotten on B), then the
guarantee on A is T as well. In a similar vein, we propose dependency among
output connections. For e.g., let A and B be out connections from a given
channel, and let A be dependent on B. If the timestamp guarantee on B is T
(that is no timestamps less than T will be gotten on B), then the guarantee
on A is T as well.

Figure 4.2 shows the connection dependency for the color-tracker pipeline
(Fig. 5). As can be noticed from the table, for the video frame channel the out
connections to the histogram and target-detection threads are dependent on
the out connection to the change-detection thread. This dependency implies

A Comparative Study of Stampede Garbage Collection Algorithms 257

Channel Out Dependent Channel Out Dependent
Name Connection Connections Name Connection Connections

V ideo F rame C1 C6, C9 Motion Mask C3 C5, C8
V ideo F rame C2 no dep. Motion Mask C5 no dep.
V ideo F rame C6 C1 Motion Mask C8 no dep.

Hist. Model C4 no dep.
Hist. Model C7 no dep.

Fig. 4. Out Connection Dependency. The depencies stated here are for the real-time
color people-tracker pipeline illustrated in figure 5.

that timestamps in the dead-set of the change-detection thread, would never
be gotten by either the histogram or the tracker threads. Therefore, the dead-
set from the change-detection thread serves as a shorthand for the dead-sets
of all three out connections emanating from the video frame channel. Thus
the dependent connection information allows faster propagation of dead-set
information to neighboring nodes during get/put operations.

– Out-of-Band Propagation of Dead Sets (OBPDS).
The PDS optimization assumes that the dead-set information is propagated
only upon get/put operations by neighboring nodes. In Sec. 4.1 we observed
the potential for more aggressive garbage collection if local information is
disseminated more globally. This optimization investigates the performance
potential for out-of-band communication of the the dead-set information to
all nodes in the graph, and call it OBPDS.

The KLnU attribute to a channel has applicability to any GC algorithm. How-
ever, the PDS, and OBPDS optimizations are specific enhancements to the DGC
algorithm since they require application knowledge.

5 Methodology

Stampede is implemented as a runtime library on top of standard platforms (x86-
Linux, Alpha-Tru64, x86-Solaris). The three GC algorithms mentioned in Sec. 3
have been implemented in Stampede. The TGC algorithm is implemented in the
Stampede runtime by a daemon thread in each address space that periodically
wakes up and runs the distributed GVT calculation algorithm. As we mentioned
earlier, for the DGC algorithm forward and backward propagations are instigated
by the runtime system upon a put/get operation on a channel.

We have developed an elaborate measurement infrastructure that helps us
to accumulate the memory usage as a function of time in the Stampede chan-
nels. Events of interest are logged at run-time in a pre-allocated memory buffer
that is flushed to disk at the successful termination of the application. Some of
the interesting events that are logged include, memory allocation times, channel
put/get times, and memory free (or GC) times. A post-mortem analysis pro-
gram then uses these logged events to generate metrics of interest such as the

258 H.A. Mandviwala et al.

application’s mean memory footprint, channel occupancy time for items, latency
in processing etc.

5.1 Ideal GC

We define an Ideal Garbage Collector (IGC) as one in which the memory foot-
print of the application is exactly equal to that needed to buffer only relevant
items of the application. Thus the memory footprint recorded by IGC represents
a lower bound for an application.

5.2 Simulating IGC and the Proposed Optimizations

We use the runtime logs and post-mortem analysis technique to simulate IGC
as well as answer the what if questions raised in Sec. 4. This strategy is akin to
using trace-driven simulation to predict the expected performance of an archi-
tectural idea in system studies. Essentially, we use the runtime logs as a trace.
The events such as get/put/consume are all recorded in the logs with their re-
spective times of occurrence. The logs contain the GC times for all item on all
channels. However, either for simulating IGC or for studying the effect of the
optimizations we simply ignore these log entries. Instead, using the logs and
the specific optimization being investigated, the post-mortem analysis program
computes the times when the items will be garbage collected in the presence
of that optimization. For IGC we use the logs and postem-mortem analysis to
accumulate the memory usage for only the relevant items.

6 Performance of GC Algorithms

We use a real-time color-based people tracker application developed at Compaq
CRL [11] for this study. Given a color histogram of a model to look for in a
scene, this application locates the model if present. The application task graph
is shown in figure 5.

C 1

C 2

LEGEND :

Computation Thread

Stampede Channel

C 3
C 4

C 5

C 6

C 8

C 7

C 9

Video
Frame

Change
Detection

Histogram
Model

Model 1
Location

Target
Detection

Target
Detection

Digitizer

Histogram

Motion
Mask

Model 2
Location

Model 1

Model 2

Fig. 5. Color Tracker Task Graph

Any number of models can be tracked simultaneously by cloning the target
detection thread shown in the figure and giving each thread a distinct model to

A Comparative Study of Stampede Garbage Collection Algorithms 259

look for in the scene. The digitizer produces a new image every 30 milliseconds,
giving each image a timestamp equal to the current frame number. The target
detection algorithm cannot process at the rate at which the digitizer produces
images. Thus not every image produced by the digitizer makes its way through
the entire pipeline. Each thread gets the latest available timestamp from its input
channel. To enable a fair comparison for all the proposed optimization strategies,
the digitizer reads a pre-recorded set of images from a file; two target detection
threads are used in each experiment; and the same model file is supplied to
both the threads. Under the workload described above, the average message
sizes delivered to the digitizer, motion mask, histogram, and target detection
channels are 756088, 252080, 1004904, and 67 bytes respectively.

We use memory footprint metric to evaluate the proposed optimization strate-
gies. As we mentioned in Sec. 4, memory footprint is the amount of memory used
for buffering timestamped items in the channels by the application as a function
of real time, and is indicative of the instantaneous memory pressure exerted by
the application. To associate real numbers with the memory footprint, we also
present the mean memory usage of the application.

All experiments are carried out on a cluster of 17, 8-way 550 MHz P-III
Xeon SMP machines, each with 4GB of main memory running Redhat Linux
7.1 and interconnected with Gigabit Ethernet. The Stampede runtime uses a
reliable messaging layer called CLF implemented on top of UDP. We conduct
our experiments using two configurations. In the first configuration all threads
and channels shown in figure 5 execute on one node within a single address
space. Thus there is no need for inter-node communication in this configuration.
In the second configuration, threads and channels are distributed over 5 nodes of
the cluster. The channel into which a thread ‘puts’ items is colocated with that
thread in the same address space. Due to the distribution of threads in different
address spaces, the messaging layer as well as the network latencies play a part
in determining the performance of the application. CPU resources, however, are
not shared.

6.1 Performance of TGC, REF and DGC

In our earlier work [5], we presented a comparison of the DGC, REF, and TGC
algorithms in the context of this same application. Figure 7 and figure 6 sum-
marize the results of this comparison. The primary conclusion from that work
is that although the latency for processing a relevant timestamp through the
entire pipeline increased for DGC due to the in-line execution of transfer func-
tions on puts and gets, the percentage increase was nominal (2.7% and 0.5%
compared to TGC 3.2% and less than 0.1% compared to REF for 1-node and
5-node configurations, respectively [5]). However, the mean memory usage and
standard deviation for memory usage for DGC were both much lower that that
of either TGC or REF. Figure 7 also shows the simulated results for IGC. The
IGC result is really that of an oracle that knows the set of relevant timestamps
exactly. It gives a lower bound for memory usage and serves to point out the
disparity of realizable implementations (such as DGC) from the ideal. As can be

260 H.A. Mandviwala et al.

0 2 4 6 8 10 12

x 10
7

0

1

2

3

4

5

6
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

IGC − Lower Bound

0 2 4 6 8 10 12

x 10
7

0

1

2

3

4

5

6
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

DGC

0 2 4 6 8 10 12

x 10
7

0

1

2

3

4

5

6
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

REF

0 2 4 6 8 10 12

x 10
7

0

1

2

3

4

5

6
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

TGC

Fig. 6. Memory Footprint. The four graphs represent the memory footprint of the
application (distributed over 5 nodes) for the three GC algorithms and the additional
Ideal: (left to right)(a) Ideal Garbage Collector (IGC), (b) DGC-Dead timestamps GC,
(c) REF-Reference Counting, (d) TGC-Transparent. We recorded the amount of mem-
ory the application uses on every allocation and deallocation. All three graphs are to
the same scale, with the y-axis showing memory use (bytes x 107), and the x-axis rep-
resenting time (milliseconds). The graphs clearly show that DGC has a lower memory
footprint than the other two but still much lower than IGC. In further comparison with
REF and TGC, DGC deviates much less from the mean, thereby requiring a smaller
amount of memory during peak usage.

Config 1 : 1 node Config 2 : 5 nodes

Average Mean Memory % Average Mean Memory %
Latency Memory usage w.r.t. Latency Memory usage w.r.t.

(ms) usage (B) STD IGC (ms) usage (B) STD IGC

TGC 491,946 24,696,845 6,347,450 616 554,584 36,848,898 5,698,552 444
REF 489,610 23,431,677 6,247,977 585 556,964 32,916,702 4,745,092 397
DGC 505,594 17,196,808 4,143,659 429 557,502 28,118,615 2,247,225 339
IGC N/A 4,006,947 1,016,427 100 N/A 8,292,963 2,903,339 100

Fig. 7. Metrics (1 and 5 node configurations). Performance of three GC algorithms
and IGC is given for the color people-tracker application. The fifth and the last column
also give the percentage of Mean Memory usage with respect to IGC.

seen, the mean memory usage of DGC (which is the best performer of the three
GC techniques) is still 429% (on 1AS config.) with respect to that of IGC. This
is the reason for exploring further optimization strategies.

6.2 Performance of the Proposed Optimizations

In this subsection we consider the performance potential of each of the proposed
optimizations. As we mentioned in Sec. 4, the KLnU optimization has general
applicability. However, in this study we use the DGC algorithm as the base for
evaluating all the performance enhancements.

– Performance of Out-of-Band Propagation of Guarantees (OBPG)
Figure 8 (c) shows the results for this optimization. As we mentioned earlier
in Sec. 4, to assess the performance limit for this optimization, zero time
is assumed for the out-of-band dissemination of the timestamp guarantees.
Comparing the results with those for DGC (figure 8 (b)), it can be seen that

A Comparative Study of Stampede Garbage Collection Algorithms 261

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
e

m
o

ry
 f

o
o

tp
ri
n

t
(B

yt
e

s)

Memory Usage of the Color People Tracker vs. Time

Ideal GC (Lower Bound)

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
e

m
o

ry
 f

o
o

tp
ri
n

t
(B

yt
e

s)

Memory Usage of the Color People Tracker vs. Time

DGC − Unoptimized

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
e

m
o

ry
 f

o
o

tp
ri
n

t
(B

yt
e

s)

Memory Usage of the Color People Tracker vs. Time

DGC + OBPG

Fig. 8. Memory Footprint. The tracker application was run on 1 Address Space (on
a single node). The memory footprint graphs above show results for (from left to
right) : (a) Ideal GC - Lower Bound (IGC), (b) the unoptimized DGC implementation,
(c) DGC optimized with Out-of-Band Propagation of Guarantees (OBPG).

the peak memory usage is lower with this optimization. However, the differ-
ence is almost insignificant. The reason is two-fold both of which stem from
the nature of this particular application. First, later stages in the pipeline
do more processing than earlier stages. Therefore, backward guarantees are
more useful in hastening garbage collection than forward guarantees. Second,
the task graph is highly connected (see figure 5). Later threads (such as the
target detection thread) need input directly from earlier channels (such as
the video frame channel). Thus GC events from later stages of the pipeline
are directly getting fed back to earlier stages reducing the benefits of the
OBPG optimization.

– Performance of Keep Latest n Unseen (KLnU)
For this optimization, we associate the KLnU attribute (n = 1, i.e., a channel
buffers only the most recent item) with all the channels in the color tracker
pipeline. Figure 9 (a) and figure 10 show the effect of the KLnU optimization
over DGC. Compared to DGC (unoptimized) there is only a modest (16% -
26% reduction in memory usage) improvement due to this optimization. This
is surprising since we expected that this optimization will allow each channel
to be more aggressive in eliminating garbage locally. Recall that even though
the buffering is limited to just the most recent item, a channel still cannot
GC earlier items that have been gotten by at least one out connection to

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

DGC + KLnU

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

DGC + OBPG + KLnU

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

DGC + PDS

0 2 4 6 8 10 12

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

time in [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

Memory Usage of the Color People Tracker vs. Time

DGC + OBPG + PDS + OBPDS

Fig. 9. Memory Footprint. The tracker application was run again on 1 Address Space
(on a single node). The memory footprint graphs above show results for: (from left to
right) (a) DGC with KLnU , (b) DGC with OBPG and KLnU optimizations, (c) DGC
with PDS, and (d) DGC with OBPG and OBPDS.

262 H.A. Mandviwala et al.

preserve timestamp causality. The surprisingly small reduction in memory
usage is a consequence of this fact.

– Performance of Propagating Dead Sets (PDS)
Figure 9 (c) and (d) show the results of the PDS optimization. Compared
to DGC (unoptimized) the reduction in memory usage is large (59% - 55%).
The significant improvement due to this optimization is quite surprising
at first glance. This optimization combines two effects: first, nodes propa-
gate the dead-set information forwards and backwards using the application
task graph; second, a channel aggressively incorporates the incoming dead-
set information using the dependency information on its out connections.
Analysis of our runtime logs reveal that it is the latter effect that aids the
effectiveness of this optimization. For e.g., the video frame channel can use
the dead-set information that it receives from the change-detection thread
immediately without waiting for similar notification from the histogram and
target-detection threads.

– Performance of Out-of-Band Propagation of Dead Sets (OBPDS)

This optimization is similar to OBPG, with the difference that dead-set
information is disseminated out-of-band instead of timestamp guarantees. As
in OBPG, we assume that this dissemination itself takes zero time to assess
the performance limit of this optimization. Figure 10 shows a small reduction
(approximately 500KB) in memory usage compared to DGC (unoptimized).
As we observed with the OBPG optimization, the relatively little impact of
this optimization is due to the connectedness of this particular application
task graph.

Overall, the combined effect of the proposed optimizations is a reduction in
memory usage of 62% on 1 AS, and 65% on 5AS, respectively, compared to DGC
(unoptimized).

Config 1 : 1 node Config 2 : 5 nodes

Mean Memory % % Mean Memory % %
Memory usage w.r.t. w.r.t. Memory usage w.r.t. w.r.t.

usage (B) STD DGC IGC usage (B) STD DGC IGC

DGC − Unoptimized 17,196,808 4,143,659 100 429 30,359,907 2,486,790 100 366
DGC + OBPG 15,509,662 4,774,496 85 387 22,076,617 5,609,878 73 266
DGC + KLnU 14,480,981 3,222,947 84 361 22,500,410 2,181,028 74 271

DGC + OBPG + KLnU 13,201,657 3,764,269 77 329 16,456,518 4,396,111 54 198
DGC + PDS 7,016,269 981,811 41 175 13,770,987 2,910,143 45 166

DGC + OBPG + OBPDS 6,497,603 1,235,326 38 162 10,556,471 3,226,764 35 127
IGC Lower − Bound 4,006,947 1,016,427 23 100 8,292,963 2,903,339 27 100

Fig. 10. Metrics (1 and 5 node configurations). Performance of different GC algorithms
with combinations of different optimizations is presented for the tracker application.
Percentage Mean Memory usage of optimizations with respect to that of Unoptimized
DGC and IGC are also presented in the figure.

A Comparative Study of Stampede Garbage Collection Algorithms 263

6.3 Summary

We considered a number of potential optimizations to enhance the performance
of garbage collection. Of the ones considered, the PDS scheme is implementable
while OBPG and OBPDS are mainly to understand the limits to performance
of implementable strategies. The performance benefits of the PDS optimization
is sensitive to several factors that are application-specific: number of attributed
channels, the value of n chosen for the KLnU attribute, the connectedness of the
task graph, and the dependencies among the in/out connections to nodes in the
graph. Some counter-intuitive results emerged from the performance study. First,
disseminating the timestamp guarantee of DGC or the dead-set information of
PDS to all the nodes did not result in substantial savings. In hindsight, this seems
reasonable given the connectedness of the color-based people tracker task graph.
Second, the KLnU optimization in itself was not sufficient to get substantial
reduction in memory usage. The propagation of the dead-set information, and
use of the dependency information on the out connections of channels was the
key to achieving most of the performance benefits.

There is a danger in generalizing the expected performance benefit of these
optimizations simply based on the results of one application. Nevertheless, it
appears that knowledge of the dependency information on the out connections
of channels is a crucial determinant to the performance potential of these op-
timizations. A question worth investigating is the performance potential for in-
corporating out connection dependency in the original DGC algorithm. Another
question worth investigating is the extent to which the TGC and REF algorithms
will benefit in the presence of attributed channels.

7 Concluding Remarks

Stampede is a cluster programming system for interactive stream-oriented ap-
plications such as vision and speech. A Stampede application is composed of
threads that can execute anywhere in the cluster, communicating timestamped
items via channels (that can be created anywhere in the cluster as well). An
important function performed by the Stampede runtime system is garbage col-
lection of timestamped data items that are no longer needed by any threads in
the application. In interactive applications for which Stampede is targeted, it is
common for threads to work with the most recent items in a channel and skip
over earlier timestamps. Thus the performance of a Stampede computation is
crucially dependent on the efficiency of garbage collection.

Our earlier work has proposed distributed transparent garbage collection al-
gorithm. In a more recent work, we have proposed a new algorithm that uses
an application task graph to locally compute guarantees on timestamps that are
needed by a given node in the graph and propagate such guarantees to other
nodes. In this paper, we have first quantified how far off are the memory usages
in these existing algorithms from an ideal garbage collector, one that buffers
exactly the items that are processed fully in the task graph. Armed with this
knowledge, we propose optimizations that help us get closer to the empirical

264 H.A. Mandviwala et al.

limit suggested by the ideal garbage collector. The first optimization is to make
the timestamp guarantees of our previous algorithm available to all the nodes
in the graph. The second optimization is to buffer only a few of the most recent
items in each channel. This optimization gives local control to the producer of
items to declare some timestamps as dead in a channel and allows dissemination
of this information to other nodes in the graph. The proposed optimizations are
evaluated with the measurement and post-mortem analysis infrastructure avail-
able in Stampede using a color-based people tracker application. The results
show over 60% reduction in the memory usage compared to our most aggressive
garbage collection algorithm that is based on timestamp guarantees.

References

1. R. E. Bryant. Simulation of Packet Communication Architecture Computer Sys-
tems. Technical Report MIT-LCS-TR-188, M.I.T, Cambridge, MA, 1977.

2. K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of
parallel computation. Communications of the ACM, 24:198–206, 1981.

3. R. M. Fujimoto. Parallel Discrete Event Simulation. Comm. of the ACM, 33(10),
October 1990.

4. R. M. Fujimoto. Parallel and distributed simulation. In Winter Simulation Con-
ference, pages 118–125, December 1995.

5. N. Harel, H. A. Mandviwala, K. Knobe, and U. Ramachandran. Dead timestamp
identification in stampede. In The 2002 International Conference on Parallel Pro-
cessing (ICPP-02), Aug. 2002. To Appear.

6. D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, July 1985.

7. R. Jones and R. Lins. Garbage Collection : Algorithms for Automatic Dynamic
Memory Management. John Wiley, August 1996. ISBN: 0471941484.

8. R. S. Nikhil and U. Ramachandran. Garbage Collection of Timestamped Data
in Stampede. In Proc.Nineteenth Annual Symposium on Principles of Distributed
Computing (PODC 2000), Portland, Oregon, July 2000.

9. R. S. Nikhil, U. Ramachandran, J. M. Rehg, R. H. Halstead, Jr., C. F. Joerg,
and L. Kontothanassis. Stampede: A programming system for emerging scalable
interactive multimedia applications. In Proc. Eleventh Intl. Wkshp. on Languages
and Compilers for Parallel Computing (LCPC 98), Chapel Hill NC, August 7-9
1998.

10. U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and K. Knobe. Space-Time
Memory: A Parallel Programming Abstraction for Interactive Multimedia Appli-
cations. In Proc. Principles and Practice of Parallel Programming (PPoPP’99),
Atlanta GA, May 1999.

11. J. M. Rehg, M. Loughlin, and K. Waters. Vision for a Smart Kiosk. In Computer
Vision and Pattern Recognition, pages 690–696, San Juan, Puerto Rico, June 17–19
1997.

12. P. R. Wilson. Uniprocessor garbage collection techniques, Yves Bekkers and
Jacques Cohen (eds.). In Intl. Wkshp. on Memory Management (IWMM 92),
St. Malo, France, pages 1–42, September 1992.

Compiler and Runtime Support for Shared Memory
Parallelization of Data Mining Algorithms�

Xiaogang Li, Ruoming Jin, and Gagan Agrawal

Department of Computer and Information Sciences,
Ohio State University, Columbus OH 43210

{xgli, jinr, agrawal}@cis.ohio-state.edu

Abstract. Data mining techniques focus on finding novel and useful patterns or
models from large datasets. Because of the volume of the data to be analyzed, the
amount of computation involved, and the need for rapid or even interactive anal-
ysis, data mining applications require the use of parallel machines. We have been
developing compiler and runtime support for developing scalable implementa-
tions of data mining algorithms. Our work encompasses shared memory paral-
lelization, distributed memory parallelization, and optimizations for processing
disk-resident datasets.

In this paper, we focus on compiler and runtime support for shared memory
parallelization of data mining algorithms. We have developed a set of paralleliza-
tion techniques that apply across algorithms for a variety of mining tasks. We de-
scribe the interface of the middleware where these techniques are implemented.
Then, we present compiler techniques for translating data parallel code to the
middleware specification. Finally, we present a brief evaluation of our compiler
using apriori association mining and k-means clustering.

1 Introduction

Analysis of large datasets for extracting novel and useful models or patterns, also re-
ferred to as data mining, has emerged as an important area within the last decade [5].
Because of the volume of data analyzed, the amount of computation involved, and the
need for rapid or even interactive response, data mining tasks are becoming an impor-
tant class of applications for parallel machines.

In recent years, large shared memory machines with high bus bandwidth and very
large main memory have been developed by several vendors. Vendors of these machines
are targeting data warehousing and data mining as major markets. Thus, we can expect
data mining applications to become an important class of applications on large SMP
machines.

This paper reports on runtime and compiler support for easing implementations of
data mining algorithms on shared memory machines. We have observed that parallel
versions of several well-known data mining techniques, including apriori association
mining [1], k-means clustering [7], and k-nearest neighbor classifier [5], share a rela-
tively similar structure. The main computation in these algorithms involves updating a

� This work was supported by NSF grant ACR-9982087, NSF CAREER award ACR-9733520,
and NSF grant ACR-0130437.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 265–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 X. Li, R. Jin, and G. Agrawal

reduction object using associative and commutative operators. The main issue in main-
taining correctness is avoiding race conditions when multiple threads may want to in-
crement the same element.

Based upon this observation, we have developed a set of techniques for parallelizing
data mining algorithms. Our set of techniques include full replication, full locking, fixed
locking, optimized full locking, and cache-sensitive locking. Unlike previous work on
shared memory parallelization of specific data mining algorithms, all of our techniques
apply across a large number of common data mining algorithms. The techniques we
have developed involve a number of tradeoffs between memory requirements, opportu-
nity for parallelization, and locking overheads. The techniques have been implemented
within a runtime framework. This framework offers a high-level interface and hides the
details of implementation of the parallelization techniques.

We have also used this framework and its interface as a compiler target. Starting
from a data parallel version of a data mining algorithm, our compiler generates code for
the interface for our runtime framework. Our experience in implementing the compiler
has shown the use of a runtime framework significantly simplifies the compiler im-
plementation. This paper describes our parallelization techniques, runtime framework,
compiler implementation, and an evaluation of our compiler using apriori association
mining and k-means clustering.

The rest of the paper is organized as follows. We survey the parallel data mining
algorithms in Section 2. The interface and functionality of our middleware is described
in Section 3. The language dialect we use is presented in Section 4. Our compiler tech-
niques are presented in Section 5. Experimental evaluation of our prototype compiler is
the topic of Section 6. We compare our work with related research efforts in Section 7
and conclude in Section 8.

2 Parallel Data Mining Algorithms

In this section, we describe how several commonly used data mining techniques can be
parallelized on a shared memory machine in a very similar way. Our discussion focuses
on three important data mining techniques: apriori associating mining [1],
k-means clustering [7], and k-nearest neighbors [5].

2.1 Apriori Association Mining

Association rule mining is the process of analyzing a set of transactions to extract asso-
ciation rules and is a very commonly used and well-studied data mining problem [1,19].
Given a set of transactions1 (each of them being a set of items), an association rule is
an expression X → Y , where X and Y are the sets of items. Such a rule implies that
transactions in databases that contain the items in X also tend to contain the items in Y .

Formally, the goal is to compute the sets Lk. For a given value of k, the set Lk

comprises the frequent itemsets of length k. A well accepted algorithm for associa-
tion mining is the apriori mining algorithm [1]. The main observation in the apriori
technique is that if an itemset occurs with frequency f , all the subsets of this itemset

1 We use the terms transactions, data items, and data instances interchangeably.

Compiler and Runtime Support for Shared Memory Parallelization 267

also occur with at least frequency f . In the first iteration of this algorithm, transactions
are analyzed to determine the frequent 1-itemsets. During any subsequent iteration k,
the frequent itemsets Lk−1 found in the (k − 1)th iteration are used to generate the
candidate itemsets Ck. Then, each transaction in the dataset is processed to compute
the frequency of each member of the set Ck. k-itemsets from Ck that have a certain
pre-specified minimal frequency (called the support level) are added to the set Lk.

A simple shared memory parallelization scheme for this algorithm is as follows.
One processor generates the complete Ck using the frequent itemset Lk−1 created at the
end of the iteration k − 1. The transactions are scanned, and each transaction (or a set
of transactions) is assigned to one processor. This processor evaluates the transaction(s)
and updates the counts of candidates itemsets that are found in this transaction. Thus,
by assigning different sets of transactions to processors, parallelism can be achieved.
The only challenge in maintaining correctness is avoiding the possible race conditions
when multiple processors may want to update the count of the same candidate.

2.2 k-Means Clustering

The second data mining algorithm we describe is the k-means clustering technique [7],
which is also very commonly used. This method considers transactions or data instances
as representing points in a high-dimensional space. Proximity within this space is used
as the criterion for classifying the points into clusters.

Three steps in the sequential version of this algorithm are as follows: 1) start with k
given centers for clusters; 2) scan the data instances, for each data instance (point), find
the center closest to it, assign this point to the corresponding cluster, and then move the
center of the cluster closer to this point; and 3) repeat this process until the assignment
of points to cluster does not change.

This method can also be parallelized in a fashion very similar to the method we
described for apriori association mining. The data instances are read, and each data in-
stance (or a set of instances) are assigned to one processor. This processor performs the
computations associated with the data instance, and then updates the center of the clus-
ter this data instance is closest to. Again, the only challenge in maintaining correctness
is avoiding the race conditions when multiple processors may want to update center of
the same cluster.

2.3 k-Nearest Neighbors

k-nearest neighbor classifier is based on learning by analogy [5]. The training samples
are described by an n-dimensional numeric space. Given an unknown sample, the k-
nearest neighbor classifier searches the pattern space for k training samples that are
closest, using the euclidean distance, to the unknown sample.

Again, this technique can be parallelized as follows. Each training sample is
processed by one processor. After processing the sample, the processor determines if
the list of k current nearest neighbors should be updated to include this sample. Again,
the correctness issue is the race conditions if multiple processors try to update the list
of nearest neighbors at the same time.

268 X. Li, R. Jin, and G. Agrawal

3 Parallelization Techniques and Middleware Support

In this section, we initially focus on the parallelization techniques we have developed
for the data mining algorithms we described in the last section. Then, we give a brief
overview of the middleware within which these techniques are implemented. We also
describe the middleware interface.

3.1 Parallelization Techniques

In the previous section, we have argued how several data mining algorithms can be
parallelized in a very similar fashion. The common structure behind these algorithms
is summarized in Figure 1. The function op is an associative and commutative func-
tion. Thus, the iterations of the foreach loop can be performed in any order. The data-
structure Reduc is referred to as the reduction object. Every element of this object is
referred to as a reduction element.

The main correctness challenge in parallelizing a loop like this on a shared memory
machine arises because of possible race conditions when multiple processors update the
same element of the reduction object. The element of the reduction object that is up-
dated in a loop iteration (i) is determined only as a result of the processing. For example,
in the apriori association mining algorithm, the data item read needs to matched against
all candidates to determine the set of candidates whose counts will be incremented.
In the k-means clustering algorithm, first the cluster to which a data item belongs is
determined. Then, the center of this cluster is updated using a reduction operation.

The major factors that make these loops challenging to execute efficiently and cor-
rectly are as follows:

– It is not possible to statically partition the reduction object so that different pro-
cessors update disjoint portions of the collection. Thus, race conditions must be
avoided at runtime.

– The execution time of the function process can be a significant part of the exe-
cution time of an iteration of the loop. Thus, runtime preprocessing or scheduling
techniques cannot be applied.

– In many of algorithms, the size of the reduction object can be quite large. This
means that the reduction object cannot be replicated or privatized without signifi-
cant memory overheads.

{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = process(e) ;
Reduc(i) = Reduc(i) op val ;

}
}

Fig. 1. Structure of Common Data Mining Algorithms

Compiler and Runtime Support for Shared Memory Parallelization 269

– The updates to the reduction object are fine-grained. The reduction object com-
prises a large number of elements that take only a few bytes, and the foreach loop
comprises a large number of iterations, each of which may take only a small number
of cycles. Thus, if a locking scheme is used, the overhead of locking and synchro-
nization can be significant.

We have developed a number of techniques for parallelizing this class of loops.
The comparison of our work with existing work on shared memory parallelization is
presented in the related work section. Our work has shown that three techniques are the
most competitive and can all out-perform each other under certain conditions. These
techniques are, full replication, optimized full locking, and cache-sensitive locking. For
motivating the optimized full locking and cache-sensitive locking schemes, we also
describe a simple scheme that we refer to as full locking.

Full Replication: One simple way of avoiding race conditions is to replicate the reduc-
tion object and create one copy for every thread. The copy for each thread needs to be
initialized in the beginning. Each thread simply updates its own copy, thus avoiding any
race conditions. After the local reduction has been performed using all the data items
on a particular node, the updates made in all the copies are merged.

We next describe the locking schemes. The memory layout of the three locking
schemes, full locking, optimized full locking, and cache-sensitive locking, is shown in
Figure 2.

Full Locking: One obvious solution to avoiding race conditions is to associate one lock
with every element in the reduction object. After processing a data item, a thread needs
to acquire the lock associated with the element in the reduction object it needs to update.

In our experiment with apriori, with 2000 distinct items and support level of 0.1%,
up to 3 million candidates were generated. In full locking, this means supporting 3
million locks. Supporting such a large numbers of locks results in overheads of three

Optimized Full Locking

Full Locking

Reduction Elements

 Locks

Cache−Sensitive Locking

Fig. 2. Memory Layout for Various Locking Schemes

270 X. Li, R. Jin, and G. Agrawal

types. The first is the high memory requirement associated with a large number of locks.
The second overhead comes from cache misses. Consider an update operation. If the
total number of elements is large and there is no locality in accessing these elements,
then the update operation is likely to result in two cache misses, one for the element
and second for the lock. This cost can slow down the update operation significantly.

The third overhead is of false sharing. In a cache-coherent shared memory multi-
processor, false sharing happens when two processors want to access different elements
from the same cache block. In full locking scheme, false sharing can result in cache
misses for both reduction elements and locks.

Optimized Full Locking: Optimized full locking scheme overcomes the the large num-
ber of cache misses associated with full locking scheme by allocating a reduction el-
ement and the corresponding lock in consecutive memory locations, as shown in Fig-
ure 2. By appropriate alignment and padding, it can be ensured that the element and the
lock are in the same cache block. Each update operation now results in at most one cold
or capacity cache miss. The possibility of false sharing is also reduced. This is because
there are fewer elements (or locks) in each cache block. This scheme does not reduce
the total memory requirements.

Cache-Sensitive Locking: The final technique we describe is cache-sensitive locking.
Consider a 64 byte cache block and a 4 byte reduction element. We use a single lock
for all reduction elements in the same cache block. Moreover, this lock is allocated in
the same cache block as the elements. So, each cache block will have 1 lock and 15
reduction elements.

Cache-sensitive locking reduces each of three types of overhead associated with
full locking. This scheme results in lower memory requirements than the full locking
and optimized full locking schemes. Each update operation results in at most one cache
miss, as long as there is no contention between the threads. The problem of false sharing
is also reduced because there is only one lock per cache block.

3.2 Middleware Functionality and Interface

We have developed a middleware in which the various parallelization techniques we
described earlier have been implemented. The middleware serves two goals. First, it
offers a high-level interface for the programmers to rapidly implement parallel data
mining algorithms. Second, it can serve as a compiler target. By generating code for
the middleware interface, the compiler need not generate separate code for each of the
parallelization approaches we support. This work is part of our work on developing
a middleware for rapid development of data mining implementations on large SMPs
and clusters of SMPs [8]. Our middleware targets both distributed memory and shared
memory parallelization, and also includes optimizations for efficient processing of disk-
resident datasets.

For shared memory parallelization, the programmer is responsible for creating and
initializing a reduction object. Further, the programmer needs to write a local reduction
function that specifies the processing associated with each transaction. The initializa-
tion and local reduction functions for k-means are shown in Figure 3. As we discussed
earlier, a common aspect of data mining algorithms is the reduction object. Declaration

Compiler and Runtime Support for Shared Memory Parallelization 271

void Kmeans::initialize() {
for (int i = 0; i < k; i++) {

clusterID[i]=reducobject->alloc(ndim + 2);
}
{* Initialize Centers *}

}
void Kmeans::reduction(void *point) {

for (int i=0; i < k; i++) {
dis=distance(point, i);
if (dis < min) {

min=dis;
min index=i;

}
}
objectID=clusterID[min index];
for (int j=0; j< ndim; j++)

reducobject->Add(objectID, j, point[j]);
reducobject->Add(objectID, ndim, 1);
reducobject->Add(objectID, ndim + 1, dis);

}

Fig. 3. Initialization and Local Reduction Functions for k-means

and allocation of a reduction object is a significant aspect of our middleware interface.
There are two important reasons why reduction elements need to be separated from
other data-structures. First, by separating them from read-only data-structures, false
sharing can be reduced. Second, the middleware needs to know about the reduction ob-
ject and its elements to optimize memory layout, allocate locks, and potentially replicate
the object.

Two granularity levels are supported for reduction objects, the group level and the
element level. One group is allocated at a time and comprises a number of elements. The
goal is to provide programming convenience, as well as high performance. In apriori,
all k itemsets that share the same parent k − 1 itemsets are typically declared to be in
the same group. In k-means, a group represents a center, which has ndim+2 elements,
where ndim is the number of dimensions in the coordinate space.

After the reduction object is created and initialized, the runtime system may clone
it and create several copies of it. However, this is transparent to the programmer, who
views a single copy of it.

The reduction function shown in Figure 3 illustrates how updates to elements within
a reduction object are performed. The programmer writes sequential code for process-
ing, except the updates to elements within a reduction object are performed through
member functions of the reduction object. A particular element in the reduction object
is referenced by a group identifier and an offset within the group. In this example, add
function is invoked for all elements. Besides supporting the commonly used reduction
functions, like addition, multiplication, maximum, and minimum, we also allow user

272 X. Li, R. Jin, and G. Agrawal

defined functions. A function pointer can be passed a parameter to a generic reduction
function. The reduction functions are implemented as part of our runtime support. Sev-
eral parallelization strategies are supported, but their implementation is kept transparent
from application programmers.

After the reduction operation has been applied on all transactions, a merge phase
may required, depending upon the parallelization strategy used. If several copies of
the reduction object have been created, the merge phase is responsible for creating a
single correct copy. We allow the application programmer to choose between one of
the standard merge functions, (like add corresponding elements from all copies), or to
supply their own function.

4 Data Parallel Language Support

We now describe a data parallel dialect of Java that can be used for expressing parallel
algorithms for common data mining tasks. Though we propose to use a dialect of Java
as the source language for the compiler, the techniques we will be developing will be
largely independent of Java and will also be applicable to suitable extensions of other
languages, such as C or C++.

We use three main directives in our data parallel dialect. These are for specifying a
multi-dimensional collections of objects, a parallel for loop, and a reduction interface.

Rectdomain: A rectdomain is a collection of objects of the same type such that each
object in the collection has a coordinate associated with it, and this coordinate belongs
to a pre-specified rectilinear section.
Foreach Loop: A foreach loop iterates over objects in a rectdomain, and has the prop-
erty that the order of iterations does not influence the result of the associated computa-
tions.

Interface Reducinterface {
{* Any object of any class implementing *}
{* this interface is a reduction variable *}

}
public class KmPoint implements Disk-resident {

double x1, x2, x3;
KmPoint (String buffer) {

{* constructor for copying to/from a buffer *}
}

}
public class Kcenter implements Reducface {

static double [] x1,x2,x3;
static double[] meanx1, meanx2, meanx3;
static long[] count;
Kcenter (String buffer) {

{* constructor for copying to/from a buffer *}
}
void Postproc() {

for(i=0; i<k; i++) {
x1[i]=meanx1[i]/count[i];
x2[i]=meanx2[i]/count[i];
x3[i]=meanx3[i]/count[i];

}
}
void Assign(KmPoint point,int i,double dis) {

meanx1[i]+=point.x1;
meanx2[i]+=point.x2;
meanx3[i]+=point.x3;
count[i]+=1;

}
}

public class Kmeans {

public static void main(String[] args) {
Point< 1 > lowend = .. ;
Point< 1 > hiend = .. ;
RectDomain< 1 > InputDomain=[lowend:hiend];
KmPoint[1d] Input=new KmPoint[InputDomain];

while(not converged) {

foreach (p in InputDomain) {
min=9.999E+20;
for (i=0; i < k; i++) {

int dis = Kcenter.distance(Input[p],i);
if(dis < min) {

min=temp;
minindex=i;

}
}
Kcenter.Assign(Input[p],minindex,min);

}
Kcenter.Finalize();
}

}
}

Fig. 4. k-means Clustering Expressed in Data Parallel Java

Compiler and Runtime Support for Shared Memory Parallelization 273

Reduction Interface: Any object of any class implementing the reduction interface
acts as a reduction variable [6]. The semantics of a reduction variable are analogous
to those used in version 2.0 of High Performance Fortran (HPF-2) [6]. A reduction
variable has the property that it can only be updated inside a foreach loop by a series of
operations that are associative and commutative. Furthermore, the intermediate value
of the reduction variable may not be used within the loop, except for self-updates.

Another interface we use is Disk-resident. Any class whose objects are either read or
written from disks must implement this interface. For any class which implements the
reduction interface, or represents objects that are disk-resident, we expect a constructor
function that can read the object from a string. In the case of a class that implements
the reduction interface, such constructor function is used for facilitating interprocessor
communication. Specifically, the code for the constructor function is used for generating
code for copying an object to a message buffer and copying a message buffer to an
object. Similarly, for any dataset which is either read or written to disks, the constructor
function is used to generate code that reads or writes the object.

The data parallel Java code for k-means clustering is shown in Figure 4. k is the
number of clusters that need to be computed. An object of the class KmPoint rep-
resents a three-dimensional point. The variable Input represents a one-dimensional
array of points, which is the input to the algorithm. In each iteration of the foreach
loop, one point is processed and the cluster whose center is closest to the point is de-
termined. The function Assign accumulates coordinates of all points that are found to
be closest to the center of a given cluster. It also increments the count of the number of
points that have been found to be closest to the center of a given cluster. The function
Postproc is called after the foreach loop. It determines the new coordinates of the
center of a cluster, based upon the points that have been assigned to the cluster. The
details of the test for termination condition are not shown here.

5 Compiler Implementation

In this section, we describe how our compiler translates a data mining application writ-
ten in the data parallel dialect to a middleware specification.

The use of middleware considerably simplifies the task of compiler, because task
planning, asynchronous I/O operation and synchronization are all transparent to the
compiler. Moreover, the compiler does not need to generate significantly different code
to use different parallelization techniques.

As illustrated in previous sections, a typical application in our target class com-
prises an initialization of an array of reduction elements, an iterator which specifies the
input data and local reduction function that operates on the instance, and a finalization
function to handle output. Accordingly, our compiler needs to: 1) Generate function to
initialize reduction elements, 2) For each data parallel loop that updates an object of
reduction interface, generate local and global reduction functions, and 3) Generate the
finalization function.

A special template called a reduction element is implemented in our middleware to
make synchronizations transparent to users. Each reduction element corresponds to one

274 X. Li, R. Jin, and G. Agrawal

void Kmeans::initialize() {
ReplicationDM (double)::preinitialize();
int reduct buffer=reducobject->alloc(k*4+1);
for (int i = 0; i < k; i++) {

(*reductionElement)(reduct buffer, i)=0 ;
(*reductionElement)(reduct buffer, i+1)=0 ;
(*reductionElement)(reduct buffer, i+2)=0 ;
(*reductionElement)(reduct buffer, i+3)=0 ;

}
Replication DM< double > ::post initialize();

}

Fig. 5. Compiler Generated Initialization Function for k-means

void Kmeans::local reduction(void* block) {
int *datablock=(int *) block;
int instance number = *datablock;
double *instance=(double*)(datablock)+1;
double min;
double temp;
int min index;
KmPoint Input ;
for (;instance number>0;instance number–) {

scandata(instance, &Input) ;
min=max number;
for(int i=0;i<;i++) {

temp = distance(Input, i);
if(temp < min) {

min=temp;
minindex=i;

}
}
assign(Input, minindex, min);

}
}

void Kmeans::scandata(int*instance, KmPoint* Input)
{

memcpy(&Input.x1,instance,sizeof(double));
instance+=sizeof(double);
memcpy(&Input.x2,instance,sizeof(double));
instance+=sizeof(double);
memcpy(&Input.x3,instance,sizeof(double));
instance+=sizeof(double);

}

void Kmeans::assign(KmPoint& Input, int index, double dis)
{

reducObject->Add(reduct buffer,index, Input.x1);
reducObject->Add(reduct buffer,index+1, Input.x2);
reducObject->Add(reduct buffer,index+2, Input.x3);
reducObject->Add(reduct buffer,index+3, 1);
reducObject->Add(reduct buffer,K*4+1, dis);

}

Fig. 6. Compiler Generated Local Reduction function for k-means

block in the memory, and all reduction elements are shared by all consumer processes
at runtime.

The responsibilities of initialization function typically include allocation of reduc-
tion elements and setting the initial values. In generating the initialization function, we
gather static information from the class declaration of reduction interface to decide the
number of reduction elements to be allocated. For applications where this cannot be
known until runtime, such as apriori associate mining, we use symbolic analysis. Fig-
ure 5 shows the initialization function of kmeans. After allocating reduction elements,
the statements that set the initial value of each element are translated directly from the
constructor of the object of reduction interface.

Generating local reduction function is quite straight-forward. The operations within
the foreach loop can be extracted and put into a separate function, which simply be-
comes the local reduction function. However, as high level representation of the reduc-
tion interface in our dialect of Java is translated to reduction elements, reference and
updates of the reduction interface must also be translated to reference and updates of
the corresponding reduction elements. The compiler generated local reduction function
is shown in Figure 6.

Compiler and Runtime Support for Shared Memory Parallelization 275

Currently for the data mining applications we have studied, the global reduction
function is just a call to a method of the middleware that performs reductions on all
reduction elements. The detailed operations are transparent to our compiler.

The last task of our compiler is generating a finalization function to specify the
output. The finalization function typically also includes the termination condition for
the sequential loop surrounding the foreach loop. This is done by simply translating the
functions called after the foreach loop in the source code.

6 Experimental Results

In this section, we focus on evaluating our compiler and runtime framework. We use two
common data mining algorithms, apriori association mining and k-means clustering.

Our first experiment demonstrates that each of the three parallelization techniques
we have developed can out-perform others depending upon the problem characteristics.
Our second set of experiments compare the performance of compiler generated codes
with hand-coded versions.

Through-out this section, the versions corresponding to the full replication, opti-
mized full locking and cache-sensitive locking are denoted by fr, ofl, and csl, re-
spectively.

6.1 Evaluating Different Parallelization Techniques

This experiment was performed using a Sun Microsystem Ultra Enterprise 450, with 4
250MHz Ultra-II processors and 1 GB of 4-way interleaved main memory.

We used apriori association mining for this experiment. The size of the reduction
object in k-means clustering is usually quite small, and as a result, almost identical
performance is seen from all three techniques.

0.1% 0.05% 0.03% 0.02%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Support Level

T
im

e
(s

)

fr
ofl
csl

Fig. 7. Relative Performance of Full Replication, Optimized Full Locking, and Cache-Sensitive
Locking: 4 Threads, Different Support Levels

276 X. Li, R. Jin, and G. Agrawal

1 thread 2 threads 4 threads 8 threads
0

500

1000

1500

2000

2500

3000

No. of threads

T
im

e
(s

)

fr−comp
fr−man
ofl−comp
ofl−man
csl−comp
csl−man

Fig. 8. Comparison of Compiler Generated
and Manual Versions - Apriori Association
Mining

1 thread 2 threads 4 threads 8 threads
0

50

100

150

200

250

300

No. of threads

T
im

e
(s

)

fr−comp
fr−man
ofl−comp
ofl−man
csl−comp
csl−man

Fig. 9. Comparison of Compiler Generated
and Manual Versions - k-means clustering

We use a dataset with 2000 distinct items, where the average number of items per
transaction is 20. The total size of the dataset is 500 MB and a confidence level of 90%
is used. We consider four support levels, 0.1%, 0.05%, 0.03%, and 0.02%.

The results are shown in Figure 7. These results were obtained using a In apriori as-
sociation mining, the total number of candidate item-sets increases as the support level
is decreased. Therefore, the total memory requirement for the reduction objects also
increases. When support level is 0.1% or 0.05%, sufficient memory is available for re-
duction object even after replicating 4 times. Therefore, fr gives the best performance.
At the support level of 0.1%, ofl is slower by 7% and csl is slower by 14%. At the
support level of 0.05%, they are slower by 4% and 6%, respectively. When the support
level is 0.03%, the performance of fr degrades dramatically. This is because replicated
reduction object does not fit in main memory and memory thrashing occurs. Since the
memory requirements of locking schemes are lower, they do not see the same effect.
ofl is the best scheme in this case, though csl is slower by less than 1%. When the
support level is 0.02%, the available main memory is not even sufficient for ofl. There-
fore, csl has the best performance. The execution time for csl was 6,117 seconds,
whereas the execution time for ofl and fr was more than 80,000 seconds.

6.2 Evaluating Compiler Generated Codes

We next focus on comparing the performance of compiler generated codes with manu-
ally coded versions. We use apriori association mining and k-means clustering for this
purpose.

These experiments were conducted on a SunFire 6800. Each processor in this ma-
chine is a 64 bit, 900 MHz Sun UltraSparc III. Each processor has a 96 KB L1 cache
and a 8 MB L2 cache. The total main memory available is 24 GB. The Sun Fireplane
interconnect provides a bandwidth of 9.6 GB per second.

The results obtained from apriori are shown in Figure 8. We used a 1 GB dataset
for our experiments. We compared the compiler generated and manual versions cor-
responding to the three parallelization techniques we have developed. These six ver-

Compiler and Runtime Support for Shared Memory Parallelization 277

sions are denoted as fr-comp, fr-man, ofl-comp, ofl-man, csl-comp, and
csl-man, respectively.

On this dataset, the reduction object fits into main memory even after being repli-
cated for 8 threads. As a result, full replication based versions give the best performance.
All versions achieve a relative speedup greater than 6.5 on 8 threads.

In comparing the performance of compiler and manual versions, the compiler ver-
sions are consistently slower by between 5% and 10% than the corresponding manual
versions. An exception to this is the fr-comp version on 8 threads, which is almost
20% slower than fr-man.

In comparing the compiler generated and manual versions, the main difference
arises because the compiler generated version performed extra copying of the input
data, whereas the manual version analyzed data directly from the read buffer. As the
code becomes more memory bound, the impact of extra copying gets larger. This, we
believe, is the reason for a more significant slow-down of the compiler version using
full replication on 8 threads.

The results obtained from k-means are presented in Figure 9. We used a 1 GB
dataset, comprising 3 dimensional points. The value of k we used was 100. We again
experimented with six versions.

Because of the small size of reduction object and a higher amount of computation in
each iteration, the performance of the three parallelization techniques is almost identi-
cal. The relative speedups are greater than 7.5 in all cases. The performance of compiler
generated versions is nearly 5% slower than the performance of the corresponding man-
ual versions in all cases.

7 Related Work

Shared memory parallelization has been widely studied by a number of compilation
projects. We believe that our approach is distinct in two specific ways. First, we are
not aware of compilation efforts focusing on the cache implications of locking. Second,
our compiler generates code for a runtime framework that implements a number of
parallelization techniques.

Rinard and Diniz have developed the technique of adaptive replication [15] which
has some similarities with our approach. They perform replication at runtime for reduc-
tion elements that are accessed frequently and therefore, the associated locks can incur
large synchronization costs. Our experiences with data mining codes has shown that
synchronization costs are not significant. Instead, the cache misses in accessing locks
are the significant cost, and are addressed by our optimized full locking and cache-
sensitive locking techniques.

A number of research projects in recent years have focused on parallelization of
indirection array based reductions [2,4,10,11,3,16]. In such reductions, the reduction
array is typically accessed using an indirection array. The indirection array can be ana-
lyzed as part of a runtime preprocessing or inspector phase to determine the element(s)
accessed during a particular iteration. Such analysis can be done in a small fraction of
the cost of execution of the entire loop. However, this is not an applicable solution for
data mining algorithms.

278 X. Li, R. Jin, and G. Agrawal

Many researchers have focused on shared memory parallelization of data mining
algorithms, including association mining [18,13,14] and decision tree construction [17].
Our work is significantly different, because we focus on on a common framework for
parallelization of a number of data mining algorithms and involve compiler support.

8 Conclusions

In this paper, we have focused on providing runtime and compiler support for shared
memory parallelization of data mining applications. With the availability of large
datasets in many scientific and commercial domains, we expect that data mining will
be important class of applications for parallel computers. We have presented a set of
parallelization techniques, a runtime framework implementing these techniques, and a
compiler that translates data parallel code to the runtime interface.

Our work has resulted in the following observations. First, we have shown that the
three parallelization techniques we have focused on, involving replication or locking
with different granularities, can all outperform each other based upon the problem char-
acteristics. Second, our compiler implementation experience has shown that a runtime
framework can significantly ease the code generation task. Experimental results from
our compiler have shown that the performance of compiler generated code is competi-
tive with the performance of hand-written code.

References

1. R. Agrawal and J. Shafer. Parallel mining of association rules. IEEE Transactions on Knowl-
edge and Data Engineering, 8(6):962 – 969, June 1996.

2. W. Blume, R. Doallo, R. Eigenman, J. Grout, J. Hoelflinger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming with Polaris. IEEE
Computer, 29(12):78–82, December 1996.

3. E. Gutierrez, O. Plata, and E. L. Zapata. A compiler method for the parallel execution of
irregular reductions in scalable shared memory multiprocessors. In ICS00, pages 78–87.
ACM Press, May 2000.

4. M. Hall, S. Amarsinghe, B. Murphy, S. Liao, and M. Lam. Maximizing multiprocessor
performance with the SUIF compiler. IEEE Computer, (12), December 1996.

5. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2000.

6. High Performance Fortran Forum. Hpf language specification, version 2.0. Available from
http://www.crpc.rice.edu/HPFF/versions/hpf2/files/hpf-v20.ps.gz, January 1997.

7. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
8. Ruoming Jin and Gagan Agrawal. A middleware for developing parallel data mining imple-

mentations. In Proceedings of the first SIAM conference on Data Mining, April 2001.
9. Ruoming Jin and Gagan Agrawal. Shared Memory Parallelization of Data Mining Algo-

rithms: Techniques, Programming Interface, and Performance. In Proceedings of the second
SIAM conference on Data Mining, April 2002.

10. Yuan Lin and David Padua. On the automatic parallelization of sparse and irregular Fortran
programs. In Proceedings of the Workshop on Languages, Compilers, and Runtime Systems
for Scalable Computers (LCR - 98), May 1998.

Compiler and Runtime Support for Shared Memory Parallelization 279

11. Honghui Lu, Alan L. Cox, Snadhya Dwarkadas, Ramakrishnan Rajamony, and Willy
Zwaenepoel. Compiler and software distributed shared memory support for irregular ap-
plications. In Proceedings of the Sixth ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPOPP), pages 48–56. ACM Press, June 1997. ACM SIGPLAN
Notices, Vol. 32, No. 7.

12. S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary sur-
vey. Data Mining and Knowledge Discovery, 2(4):345–389, 1998.

13. Srinivasan Parthasarathy, Mohammed Zaki, and Wei Li. Memory placement techniques for
parallel association mining. In Proceedings of the 4th International Conference on Knowl-
edge Discovery and Data Mining (KDD), August 1998.

14. Srinivasan Parthasarathy, Mohammed Zaki, Mitsunori Ogihara, and Wei Li. Parallel data
mining for association rules on shared-memory systems. Knowledge and Information Sys-
tems, 2000. To appear.

15. Martin C. Rinard and Pedro C. Diniz. Eliminating Synchronization Bottlenecks in Object-
Oriented Programs Using Adaptive Replication. In Proceedings of International Conference
on Supercomputing (ICS). ACM Press, July 1999.

16. Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization and scheduling
of loops. IEEE Transactions on Computers, 40(5):603–612, May 1991.

17. M. J. Zaki, C.-T. Ho, and R. Agrawal. Parallel classification for data mining on shared-
memory multiprocessors. IEEE International Conference on Data Engineering, pages 198–
205, May 1999.

18. M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel data mining for association
rules on shared memory multiprocessors. In Proceedings of Supercomputing’96, November
1996.

19. Mohammed J. Zaki. Parallel and distributed association mining: A survey. IEEE Concur-
rency, 7(4):14 – 25, 1999.

Performance Analysis of Symbolic Analysis
Techniques for Parallelizing Compilers�

Hansang Bae and Rudolf Eigenmann

School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN

{baeh, eigenman}@purdue.edu

Abstract. Understanding symbolic expressions is an important capa-
bility of advanced program analysis techniques. Many current compiler
techniques assume that coefficients of program expressions, such as array
subscripts and loop bounds, are integer constants. Advanced symbolic
handling capabilities could make these techniques amenable to real ap-
plication programs. Symbolic analysis is also likely to play an important
role in supporting higher–level programming languages and optimiza-
tions. For example, entire algorithms may be recognized and replaced by
better variants. In pursuit of this goal, we have measured the degree to
which symbolic analysis techniques affect the behavior of current par-
allelizing compilers. We have chosen the Polaris parallelizing compiler
and studied the techniques such as range analysis – which is the core
symbolic analysis in the compiler – expression propagation, and sym-
bolic expression manipulation. To measure the effect of a technique, we
disabled it individually, and compared the performance of the result-
ing program with the original, fully-optimized program. We found that
symbolic expression manipulation is important for most programs. Ex-
pression propagation and range analysis is important in few programs
only, however they can affect these programs significantly. We also found
that in all but one programs, a simpler form of range analysis – control
range analysis – is sufficient.

1 Introduction

Automatic program parallelization has been studied and developed intensely in
the last two decades, especially in an effort to automatically detect parallelism
present in numerical applications. As a result, advanced analysis and transforma-
tion techniques exist today, which can optimize many programs to a degree close
to that of manual parallelization. The ability of a compiler to manipulate and
understand symbolic expressions is an important quality of this technology [1].
For instance, the accuracy of data dependence tests, array privatization, dead
� This material is based upon work supported by the National Science Foundation

under Grant, No. 9974976-EIA, 9975275-EIA, and 0103582-EIA. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 280–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Performance Analysis of Symbolic Analysis Techniques 281

code elimination, and the detection of zero-trip loops increases if the techniques
have knowledge of the value ranges assumed by certain variables.

Several research groups have developed symbolic analysis capabilities to make
the most of program analysis techniques implemented in their compilers
[1,3,4,5,6,7,8]. The Polaris parallelizing compiler [2] has incorporated advanced
symbolic analysis techniques in order to effectively detect privatizable arrays,
to determine whether a certain loop is a zero-trip loop for induction variable
substitution, and to solve data dependence problems that involve symbolic loop
bounds and array subscripts. Range Propagation [3] is the basis for this func-
tionality. It can determine the value ranges that symbolic expressions in the
program can assume. Polaris’ symbolic nonlinear data dependence test – the
Range Test [4] – makes use of Range Propagation. The Range Test is the main
advanced data dependence test in the Polaris compiler. Expression propagation
is another important technique, which can eliminate symbolic terms by substi-
tuting them with known values. Furthermore, symbolic expression simplification
is essential in several passes in the Polaris compiler.

The major impediment in adopting certain symbolic analysis techniques is
their relatively high cost [5,9]. For example, in one of our experiments, the Polaris
compiler exhausted the available memory space that kept the range information
of that program. Whether or not this cost is worth expending is not known,
as the techniques’ effectiveness in the context of an advanced optimizing com-
piler and with contemporary application programs has not been studied. These
facts motivated our effort to quantify the gains of symbolic analysis techniques.
We present the results as follows. Section 2 outlines the analysis techniques we
measured. Section 3 describes our experimental methods and metrics. Section 4
discusses the results in detail. Section 5 reviews related work, and Section 6
presents our conclusion.

2 Symbolic Analysis Techniques in Polaris

We categorize the studied techniques into three groups. First, Range Propagation
and the Range Test are the most important techniques that deal with symbolic
terms in array subscripts. Second, Expression Propagation is a conventional
technique to transform symbolic expressions into more analyzable form. Third,
Symbolic Expression Simplification was included, because it provides essential
functionality that several Polaris passes make use of.

2.1 Range Propagation and Range Test

The Range Analysis technique determines the value ranges assumed by variables
at each point of a program. It does this by performing abstract interpretation [10]
along the control and data flow paths. The results are kept in a range dictio-
nary [3], which maps from variables to their ranges. Polaris supports two levels of
range dictionaries. The control range dictionary collects information by inspect-
ing control statements, such as IF statements and DO statements. The abstract
interpretation (AI) range dictionary subsumes the control range dictionary and

282 H. Bae and R. Eigenmann

IF (m.GT.5) THEN IF (j.GT.0.AND.j.LT.3) THEN
n = m + 4 {m>=6} DO i = 1, imax
DO i = 1, m {m>=6, n=m+4} S1: a(3*i+j) = a(3*i) + 3.14*i
a(i) = 3.14*n {m>=6, n=m+4, 1<=i<=m} ENDDO

ENDDO ENDIF
ENDIF

(a) (b)

k = 0
L1: DO i = 1, 10 L1: DO i = 1, 10
L2: DO j = 1, m L2: DO j = 1, m

k = k + 2 ...
... -> ENDDO

ENDDO a(2*i*m) = ...
a(k) = ... ENDDO

ENDDO
(c)

DIMENSION a(10000), a0(2:30)
!$OMP PARALLEL
!$OMP+PRIVATE(A0,K,TPINIT,I)

DO tpinit = 2, 30, 1
a0(tpinit) = 0.0

DIMENSION a(10000) ENDDO
... !$OMP DO
DO k = 1, 10 DO k = 1, 10, 1
DO i = 1, imax DO i = 1, imax, 1
a(3*k) = a(3*k) + 3.14*i a0(3*k) = a0(3*k)+3.14*i

ENDDO -> ENDDO
DO i = 1, 1000 DO i = 1, 1000, 1
a(2*k) = a(2*k) + 3.14*i a0(2*k) = a0(2*k)+3.14*i

ENDDO ENDDO
ENDDO ENDDO

!$OMP END DO NOWAIT
!$OMP CRITICAL

DO tpinit = 2, 30, 1
a(tpinit) = a(tpinit)+a0(tpinit)

ENDDO
!$OMP END CRITICAL
!$OMP END PARALLEL

(d)

Fig. 1. The Range Propagation technique and its applications. (a) Contents of the
range dictionary. (b) Loop that can be parallelized with the Range Test. (c) Induction
variable substitution. (d) Reduction transformation.

collects additional information from all assignment statements. Figure 1(a) shows
an example code and the contents of the range dictionary.

One objective of this study is to determine the effectiveness of the range
dictionary. The Polaris compiler currently uses range dictionary information to
detect zero-trip loops in the induction variable substitution pass, to determine
array sections referenced by array accesses in the reduction parallelization pass,
and to compare symbolic expressions in the Range Test. Figure 1(c) illustrates
the case of induction variable substitution. Suppose the range dictionary for the
shown code section keeps the range for the variable m, which is also the upper
bound of the loop L2. If it is possible to prove that m is greater than or equal
to one, based on range dictionary information, the loop L2 is not a zero-trip
loop, and induction variable substitution can be applied safely in the array a,
as shown in the right-hand side code. Otherwise, the compiler keeps the original
code or generates multi-version loops.

The Polaris compiler is able to recognize array reductions and translate them
into parallel form [11]. Privatized Reductions is one possible translation variant,
shown in Figure 1(d). The range information for k was used to determine the
accessed region of array a. This information is then used as the dimension of
the private copy a0, and for the bounds of the preamble and postamble loop
of the parallel reduction operation. If the range information were not available,

Performance Analysis of Symbolic Analysis Techniques 283

Polaris would use the declared dimension of the array a instead, which may be
too large, causing overhead in the preamble and the postamble.

The most important application of range analysis is the Range Test. The test
performs many comparisons between symbolic expressions in order to analyze
array subscripts. The comparison procedure determines the arithmetic relation-
ship of two expressions by examining the difference of the two expressions. If the
difference contains a symbolic expression, the range information of that expres-
sion is searched in the range dictionary. Figure 1(b) shows a simple example.
Since the possible value of j is either one or two, the Range Test can determine
that there is no loop-carried dependence in the statement S1.

2.2 Expression Propagation

By propagating the expression assigned to a variable to the variable’s use sites,
symbolic expressions can deliver more accurate information. Polaris can propa-
gate constant integer, constant logical, and symbolic expressions within a pro-
cedure and across procedures. Real-valued expressions can also be propagated,
but this option is switched off by default.

Before analyzing individual subroutines, Polaris performs interprocedural ex-
pression propagation, during which assignments to propagated expressions are
inserted at the top of each procedure. Then, these expressions are propagated to
possible call sites. This process iterates until no new expressions are discovered.
Subroutine cloning is performed during this process, if the same subroutine is
called with two different expressions.

Intraprocedural expression propagation is performed on each subroutine after
the induction variable substitution pass. This Polaris pass introduces variables
for which propagation can be important, as our measurements will show. How-
ever, other than this effect, intraprocedural expression propagation is essentially
subsumed by intraprocedural and range propagation. As mentioned earlier, this
technique can also propagate real-valued expressions and array expressions. We
will include this option in our measurements as well.

2.3 Symbolic Expression Simplification

The simplification of symbolic expressions is important, as compiler–manipulated
expressions tend to increase in complexity, making them difficult to analyze.
Nearly all Polaris passes make use of expression simplifier functions. For in-
stance, the procedure performing symbolic expression comparison assumes that
the two expressions are reduced to their simplest form. Polaris provides the
following three simplifying techniques for symbolic expressions:

– Combine: A+4*A -> 5*A

– Distribute: A*(3+B) -> 3*A+A*B

– Divide: 3*A/A -> 3

284 H. Bae and R. Eigenmann

3 Experimental Methodology

The fully-optimized programs serve as the baseline of our measurements. Start-
ing from these programs, we disabled each compiler technique individually. For
techniques that contain several levels of optimization, we took measurements
with increasing levels. We compared the resulting, transformed code with the
base code to examine the difference in the number of parallelized loops, and we
measured the overall program performance of the parallel programs. In order to
understand the performance impact of the techniques on the programs before
parallel code generation, we also measured the performance of the transformed
programs executed sequentially (i.e., without OpenMP translation).

3.1 Benchmark Suite

Table 1 shows our benchmark suite. We selected scientific/engineering programs
written in Fortran77 from the floating point benchmarks in SPEC CPU95, from
the Perfect Benchmarks and from the serial version of NAS Parallel Benchmarks.
We chose the SPEC CPU95 over CPU2000 codes because Polaris requires For-
tran77 input. All SPEC CPU2000 Fortran77 programs are present in the SPEC
CPU95 suite. Since they are essentially the same codes, we expect that the results
in terms of the number of parallelized loops would be the same for the SPEC
CPU2000 codes. However, the speedup of the parallel programs is expected to be
higher for the SPEC CPU2000 compared to the CPU95 codes, due to the larger
input data sizes. Several Perfect Benchmarks with their original input data sets
execute in only a few seconds on today’s machines. Therefore we have increased
the problem sizes of ARC2D and TRFD. Among the four NAS benchmarks written
in Fortran77, we found that symbolic analysis makes a difference only in MD.
We included this code in our figures.

3.2 Set-Up and Metrics

The Polaris compiler outputs parallel programs written in OpenMP, which we
compiled using the Forte compiler to generate code for Sun workstations. We
used a four-processor shared-memory Sun E-450 system for our experiments. The
following shows all settings for this experiment. The compiler flag “-stackvar”
allocates all local variables on the stack, and “-mt” is needed for multithreaded
code.

Table 1. Benchmark suite

Code # Lines Serial time Code # Lines Serial time
APSI 7361 57.8 TURB3D 2100 183.6

HYDRO2D 4292 80.3 WAVE5 7764 96.3
MGRID 484 54.5 ARC2D 4650 55.1
SU2COR 2332 55.0 MDG 1430 27.1
SWIM 429 84.7 TRFD 580 126.0

TOMCATV 190 96.1 MG 1460 57.4

Performance Analysis of Symbolic Analysis Techniques 285

- CPU: 480 MHz UltraSPARC II - Number of processors: 4
- Memory: 4GB - Operating System: SunOS 5.8
- Compiler: Forte 6.1 - Compiler flags: -fast -stackvar -mt -openmp

We use the overall program speedup – serial execution time of the original
code divided by parallel execution time of the transformed code – as a metric
for presenting the performance of the programs, and also briefly describe the
features of the transformed codes, such as the number of parallelized loops to
explain the quality of the transformed codes.

4 Results and Analysis

4.1 Impact on Sequential Execution of Transformed Programs

In a first experiment, we ran all transformed benchmarks without compiling
OpenMP directives and compared them with the original programs. In this way,
we could observe the effect of each technique on the performance before parallel
code generation. Such effects are due to (1) direct changes of the source code by
the techniques and (2) affected restructuring transformations. Our expression
propagation techniques are implemented such that they perform direct substitu-
tions of the source code. Also, the expression simplification techniques affect the
programs directly. Among the restructuring transformations that are affected
by symbolic analysis are induction variable substitution and reduction trans-
formations. Understanding these performance effects is important because they
represent degradation that is not a result of the parallel execution or lack thereof.

We found that expression propagation can introduce overhead. For example,
expression propagation made a statement longer than a hundred lines in APSI,
disabling code generation by the backend compiler. TURB3D ran 144% longer be-
cause of the overhead from expression propagation. SU2COR increased by 9%. All
other programs showed no more than 5% overhead after program transformation.

We found that the expression simplification technique is necessary for many
benchmarks. For instance, TRFD ran 240% longer after disabling the combining
functionality for simplification. That means that, without this technique, the
restructured program would run so inefficiently that it would offset much of the
gain from parallel execution.

Another interesting situation is the reduction transformation. Sometimes,
this transformation is expensive because of inefficient preamble and postamble,
as shown in Figure 1(d). This happened after certain compiler techniques were
disabled in our experiments, resulting in insufficient information for data depen-
dence analysis. We deal with that situation further in the following subsection.

In order to observe the effect of each compiler technique on the parallel
program performance, we ran all benchmarks on four processors. We describe
the result of the experiments category by category in the following subsections.

4.2 Range Analysis

Table 2 shows the characteristics of the transformed codes, with enabled/disabled
techniques that relate to range analysis. The figures in each column represent

286 H. Bae and R. Eigenmann

Table 2. Number of parallel loops with and without range analysis. RT stands for
Range Test. The figures in each colum describe: “total (lost outer-level)” parallel loops.
“=” means the code is identical with the base code, The “No AIRD” row shows the
results with no AI range dictionary used; in “No RD” both the AI and the control
range dictionary are switched off; The last row “No RT” serves as a reference showing
the effect of disabling the Range Test.

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 185 126 20 5 35
No AIRD 141(2) = = = = = = 185(2) = 20 5 =
No RD 139(10) 92(3) = = = = 24 181 = 19(2) 11(2) 35(7)
No RT 122(7) 89 8 44 7 = 22 160(7) 125 13(1) 8(2) 24(2)

the total number of parallel loops in the program. The numbers in parenthe-
ses explain how many outer level parallel loops were lost. For example, without
the range dictionary, Polaris found 92 parallel loops in HYDRO2D. Although the
base code and the code with disabled range dictionary have the same number of
parallel loops, three outer–level loops could no longer be found parallel.

As expected, many programs benefit from the Range Test, since it is the only
advanced data-dependence test used in Polaris. (Polaris also includes an optional
Omega test. The performance when using this test instead of the Range Test is
essentially the same as the “No RD” version.) More importantly, the table shows
that the computation of full range information using the AI range dictionary is
necessary only for APSI and WAVE5. This means that the relatively inexpensive
control range dictionary is sufficient for Polaris to analyze the other codes. The
table further shows that half of the benchmark codes do not need any range
information – they can still be analyzed as accurately as the fully-optimized
code. Although many subscripts contain symbolic terms, these terms cancel out
in comparison operations. For example, the two expressions i+m-3 and i+m+5
can be compared by the test without the need for range information.

Figure 2 shows the program performance on four processors. Three programs
APSI, WAVE5, and TURB3D achieved speedup less than one. This is due to the fact
that we have used the “eager parallelization scheme” in Polaris. That is, the
compiler is conservative in its profitability analysis – it avoids the parallelization
of small parallel loops only if there is a provable disadvantage. This is appropri-
ate for our study, where we are interested in the compiler’s ability or inability to
detect parallelism. In addition, TURB3D is included without advanced interpro-
cedural analysis, which could improve the performance of the code significantly,
but was not yet available in our version of Polaris.

In terms of program performance, four benchmarks, HYDRO2D, WAVE5, MDG and
TRFD, benefit from the range dictionary. The code section in Figure 3 shows the
case that needs range analysis in HYDRO2D. This loop accounts for 5% of the serial
execution time, and is the main factor of the performance difference. After induc-
tion variable substitution, the array tst contains symbolic subscripts i-mq+j*mq.
The range information for the variable mq (mq>=1) enables the Range Test to
compare expressions such as j*mq and 1-mq+(j-1)*mq, allowing the compiler to

Performance Analysis of Symbolic Analysis Techniques 287

0

0.5

1

1.5

2

2.5

3

3.5

A
P

S
I

H
Y

D
R

O
2
D

M
G

R
ID

S
U

2
C

O
R

S
W

IM

T
O

M
C

A
T

V

T
U

R
B

3
D

W
A

V
E

5

A
R

C
2
D

M
D

G

T
R

F
D

M
G

S
p
e
e
d
u
p

Full Optimization No AI Range Dictionary No Range Dictionary No Range Test

Fig. 2. Program performance with and without Range Analysis

k = 0
DO j = 1,nq DO j = 1,nq

DO i = 1,mq DO i = 1,mq
... ...
k = k + 1 -> tst(i-mq+j*mq) = DMIN1(tcz, tcr)
tst(k) = DMIN1(tcz, tcr) ENDDO

ENDDO ENDDO
ENDDO

Fig. 3. Need for range dictionary in HYDRO2D

disprove the output dependence on tst. The performance gain after disabling
the Range Test in TURB3D comes from not parallelizing small loops.

The phenomenal performance loss in MDG comes from an inefficient reduc-
tion transformation. Remarkably, INTERF_do1000 and POTENG_do2000, the most
time-consuming loops in MDG, were parallelized even without the Range Test.
However, a small other loop was transformed very inefficiently without Range
Analysis. The loop looks like a reduction operation, but is a fully parallel loop.
This fact can be detected by the Range Test with range dictionary information.
However, without range information, the loop ends up being transformed as an
array reduction, which is highly inefficient due to large pre/postambles in this
case. The graph indicates the control range dictionary is sufficient to detect the
explicit parallelism in the loop. In TRFD, Polaris was unable to parallelize the two
most time-consuming loops without any range dictionary. Instead, many small
inner loops were parallelized, causing significant performance degradation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
P

S
I

H
Y

D
R

O
2
D

M
G

R
ID

S
U

2
C

O
R

S
W

IM

T
O

M
C

A
T

V

T
U

R
B

3
D

W
A

V
E

5

A
R

C
2
D

M
D

G

T
R

F
D

M
G

 C
o
m

p
a
ri

so
n
 F
a
ilu

re
 R
a
t e

Full Range Dictionary No AI Range Dictionary No Range Dictionary

Fig. 4. Expression comparison failure rate

288 H. Bae and R. Eigenmann

Table 3. Cost of range anlaysis. (a) Percent compilation time of range analysis. The
analysis time spans from 0.63 seconds to 153 seconds with full range dictionary, and
from 0.38 seconds to 21 seconds only with control range dictionary. (b) Normalized
memory requirement (1=No range analysis). The memory requirement spans from 33
Megabytes to 266 Megabytes with full range dictionary, and from 33 Megabytes to 125
Megabytes only with control range dictionary.

(a)
Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Full 27.0 16.8 6.8 5.9 14.9 9.9 7.0 9.4 15.6 13.4 17.8 8.4
Control 3.1 9.5 1.6 2.0 6.6 8.6 2.7 3.6 4.7 4.3 7.1 2.4

(b)
Full 2.13 1 1 1.06 1 1 1 1.05 1.07 1.12 1 1.15

Control 1 1 1 1.01 1 1 1 1 1 1.02 1 1.02

The results in this section indicate that Range Analysis is performance-
critical for a small set of benchmarks only. Figure 4 shows that the range informa-
tion affects the compiler, nevertheless. It presents the failure rate of expression
comparison during the Range Test. It clearly shows that Polaris is able to make
better decisions, thanks to range information, in all but one program. In MDG,
the number of comparisons is less without the Range Dictionary. The lack of
range information made several monotonicity tests fail during the Range Test,
making further comparisons useless. MG has more comparison failures with full
range analysis because it creates more complex expressions in the range dictio-
nary. While there could be a simple fix in this case, it points out a generic issue.
Advanced program analysis tends to generate more complex compiler-internal
representations, necessitating more powerful manipulation algorithms.

Table 3 shows the cost of range analysis. In many programs the analysis takes
a significant fraction of the overall execution time of the compiler. Full range
analysis is significantly more expensive than the analysis based on the control
range dictionary. Given the limited benefit from full range analysis, this simpler
form of analysis may be preferable for practical compiler implementations. On
the other hand, the additional memory requirement for full range analysis is
small, except for a 213% increase in APSI.

4.3 Expression Propagation

The effects of expression propagation on the benchmark codes are presented in
Table 4. Interprocedural propagation helped Polaris find more parallel loops in
MDG and TRFD. Moreover, additional intraprocedural expression propagation was
essential in finding outer-level parallelism in TRFD. The reason is that the poten-
tial dependence caused by a variable introduced by induction variable substitu-
tion was disproved by propagating information to the use site of that variable.
For the benchmark APSI, interprocedural expression propagation provided in-
formation that helped the compiler recognize that an outermost loop had only
one iteration and serialize this loop. This explains why Table 4 shows more
outer-level parallelism without that technique.

Performance Analysis of Symbolic Analysis Techniques 289

Table 4. Number of parallel loops with and without expression propagation. “*” means
outer-level parallelism. Expression propagation was not applied to the base code for
WAVE5.

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 126 20 5 35
No IntraEP 141 = = 54 = = 24 = 20 6(1) =
No InterEP 141(*1) 92 10 54 16 = 25 126 17 8(2) 35(2)
No EP 141(5,*1) 92 10 54 16 = 25 126 17 8(2) 35(2)

0

0.5

1

1.5

2

2.5

3

3.5

A
P

S
I

H
Y

D
R

O
2
D

M
G

R
ID

S
U

2
C

O
R

S
W

IM

T
O

M
C

A
T

V

T
U

R
B

3
D

W
A

V
E

5

A
R

C
2
D

M
D

G

T
R

F
D

M
G

S
p
e
e
d
u
p

Full Optimization No Intra EP No Inter EP No Expression Propagation

Fig. 5. Program performance with and without expression propagation

In MDG and TRFD, expression propagation improved performance, as pre-
sented in Figure 5. The most time-consuming loops POTENG_do2000 in MDG and
OLDA_do100 and OLDA_do300 in TRFD were not parallelized without interproce-
dural expression propagation and even without additional intraprocedural ex-
pression propagation for the case of TRFD. However, expression propagation does
not make much difference in terms of execution time for the SPEC benchmarks.
For some benchmarks, the actual substitution of the propagated expression in-
curred a slight overhead because of the increased strength of the operation. Using
1+i1+2**(6+(-2)*l)+k1*2**(7+(-2)*l) instead of i1+i120 a huge number
of times in TURB3D is an example of the potential disadvantage of expression
propagation.

The OpenMP translation of Polaris is responsible for the odd behavior of
ARC2D when interprocedural expression propagation was disabled. The code sec-
tion in Figure 6(a) accounts for the performance difference. The left-hand-side
code was generated with interprocedural expression propagation, whereas the
right-hand-side code was generated without this technique. Both outermost loops
are parallel. Polaris detected the original array work as private. Expression prop-
agation helps Polaris determine that only an array subrange of size jmax, where
jmax is definied in the subroutine, is actually needed as private. Since OpenMP
does not support partial arrays to be declared private, Polaris chooses to allocate
from the heap a smaller array and use array expansion rather than privatization.
Unfortunately, this turns out to perform less than privatizing the full array in
this case.

290 H. Bae and R. Eigenmann

SUBROUTINE filery(jdim, ...) SUBROUTINE filery(jdim, ...)
... ...
jdim = jmax !$OMP+PRIVATE(..., work)
... ...
ALLOCATE (work0(1:jdim, ...)) DO n = 1, 4
DO n = 1, 4 DO k = kbegin, kup

DO k = 1, kmax-1 DO j = jlow, jup
DO j = jlow, jup work(j,k,1) = ...

work0(j,k,1,my_cpu_id) =
...

(a)

!$OMP PARALLEL DO j = 2, ju-jl, 1
DO j = 2, ju-jl, 1 jx = ju+(-jl)

!$OMP DO !$OMP PARALLEL
DO k = 2, ku, 1 !$OMP DO
f(ju+(-j), k) = ... DO k = kl, ku, 1
... = f(2+ju+(-j), k) f(jx, k) = ...

ENDDO ... = f(2+jx, k)
!$OMP END DO NOWAIT ENDDO

ENDDO !$OMP END DO NOWAIT
!$OMP END PARALLEL !$OMP END PARALLEL

ENDDO
(b)

Fig. 6. Code sections of ARC2D with and without expression propagation. (a) Priva-
tization in subroutine FILERY (b) Loop blocking in subroutine XPENTA.

Table 5. Number of parallel loops with and without expression simplifier. SU2COR
could not be parallelized without combining functionality.

Code APSI HYDRO2D MGRID SU2COR SWIM TOMCATV TURB3D WAVE5 ARC2D MDG TRFD MG

Base 141 92 10 54 16 6 24 185 126 20 5 35
No Divide = 92 = 54 = = 24 185 = = 6(1) =
No Distribute 130(15) 92(3) 8 48 = 6 23 177(7) 125 15(2) 11(2) 31(8)
No Combine 121(11) 89 8 N/A 7 6 22 156(11) 129(1) 13(2) 9(2) 24(4)

However, without expression propagation, there were four loop nests where
the outer loop was no longer parallel, setting off the performance gain in Fig-
ure 6(a). Those four loops have similar shapes. Figure 6(b) shows one of them.
With expression propagation, the compiler could substitute jx with ju-j and
remove the assignment to jx, making it possible to do loop-blocking utilizing
OpenMP directives. The subroutine containing this loop is called 400 times,
and the value of ju-jl is 288, making the number of fork-joins in the right-
hand side loop 114799 more than that of the left-hand side loop. MG speeds up
only with intraprocedural expression propagation. In other configurations, the
parallelizer performs reduction transformation that introduces huge overhead in
preambles/postambles.

We have also measured the effectiveness of more specific options of expression
propagation. These are the propagation of array expressions and propagation of
real expressions. The base code was generated with array expression propaga-
tion and without real expression propagation. In general, the effects of these
techniques are negligible compared to other techniques examined in this section.
However, we have seen code examples where propagation generated very long
expressions, which is undesirable.

Performance Analysis of Symbolic Analysis Techniques 291

0

0.5

1

1.5

2

2.5

3

3.5

A
P

S
I

H
Y

D
R

O
2
D

M
G

R
ID

S
U

2
C

O
R

S
W

IM

T
O

M
C

A
T

V

T
U

R
B

3
D

W
A

V
E

5

A
R

C
2
D

M
D

G

T
R

F
D

M
G

S
p
e
e
d
u
p

Full Optimization With Real Expression Propagation No Array Expression Propagation

Fig. 7. Program performance with and without expression propagation

0

0.5

1

1.5

2

2.5

3

3.5

A
P

S
I

H
Y

D
R

O
2
D

M
G

R
ID

S
U

2
C

O
R

S
W

IM

T
O

M
C

A
T

V

T
U

R
B

3
D

W
A

V
E

5

A
R

C
2
D

M
D

G

T
R

F
D

M
G

S
p
e
e
d
u
p

Full Optimization No Divide No Distribute No Combine

Fig. 8. Program performance with and without expression simplifier

4.4 Expression Simplifier

In general, the symbolic expression simplifier turned out to be important. This
is because nearly all passes implemented in Polaris use that functionality. For in-
stance, the Range Test assumes the two expressions to be compared are in their
simplest form before the comparison. Table 5 shows the effects of this technique
on the benchmark codes. The combining capability plays a more important role
in helping the Range Test than the other two capabilities, because it performs
the actual simplification in the expression manipulation. On the other hand, can-
celing common factors in the denominator and the numerator does not happen
frequently, so the effect was negligible, except for TRFD.

Figure 8 shows the overall performance of each program without the expres-
sion simplifier. As we have seen in this section, TRFD again shows an extreme
performance loss. For TURB3D, disabling the simplifier resulted in serializing small
loops with a performance gain.

An important additional consideration is the expression simplifier’s impact on
memory usage during program analysis. Polaris could not fully analyze SU2COR
with expression simplification turned off because it exhausted its swap space
(2 GB).

As in the case without expression propagation, ARC2D shows odd behavior
without the combining capability. It turned out that the code section responsible
for this behavior runs faster with inner-level parallelism, which is not true in gen-
eral. Without the combining capability, the compiler could only find inner-level

292 H. Bae and R. Eigenmann

parallelism, which happened to perform better because of insufficient number of
iterations at the outer level.

5 Related Work

We have found no comprehensive studies that measure the impact of symbolic
analysis techniques, as presented in this study. However, a number of projects
have developed compile-time symbolic analysis techniques similar to those con-
sidered in this paper. Haghighat and Polychronopoulos proposed a methodology
for the discovery of certain program properties that are essential in the effective
detection and efficient exploitation of parallelism [6]. The authors’ methodology
was implemented as a symbolic analysis framework for the Parafrase-2 paral-
lelizing compiler. Induction variable substitution, dead-code elimination, sym-
bolic data dependence test, and program performance prediction were suggested
as possible analysis techniques that could benefit from the symbolic analysis
framework. The authors also showed their analyzer performed well, especially in
detecting complex induction variables such as induction variables in conditional
statements.

Fahringer proposed symbolic analysis techniques to be used as part of a
parallelizing compiler and a performance estimator for optimization of parallel
programs [7]. He suggested an algorithm for computing lower and upper bounds
of symbolic expressions based on a set of constraints, to be used in comparing
symbolic expressions, simplifying systems of constraints, examining non-linear
array subscript expressions for data dependences, and optimizing communica-
tions. Another functionality he suggested is the capability of estimating the
number of integer solutions to a system of constraints, which can be used to
support detection of zero-trip loops, elimination of dead code, and performance
prediction of parallel programs. His techniques were implemented for the Vi-
enna Fortran Compilation System (VFCS), a High-Performance-Fortran-style
parallelizing compiler. His technique for comparing symbolic expressions enabled
hoisting communication out of loop nests in FTRVMT, a dominant loop in OCEAN.

There were also efforts to analyze symbolic expressions across procedure
boundaries. Havlak constructed interprocedural symbolic analysis mechanisms
as an infrastructure for the Parascope compilation system [8]. His analysis is
based on the program representation in Thinned-gated single-assignment (TGSA)
form – an extended form of Static single-assignment (SSA), and operates inter-
procedurally by relating a call graph to each value graph for a procedure. During
the analysis, information such as passed values, returned values, array subscripts
and bounds, loop bounds, and predicates are considered. The effectiveness of his
technique was measured only by comparing dependence graphs.

Recent research deals with symbolic analysis by formulating it as a system
of constraints. Pugh and Wonnacott’s research on nonlinear array dependence
analysis [12,14] suggested a method of obtaining certain conditions under which
a dependence exists. Value-based dependence analysis, which delivers more ac-
curate information, was also described by a set of constraints, and the author

Performance Analysis of Symbolic Analysis Techniques 293

suggested uninterpreted function symbols as a way of representing non-affine
terms that could exist during dependence analysis. Rugina and Rinard’s work
on symbolic bound analysis [15] proposed a scheme to compute symbolic bounds
for each pointer and array index variable at each program point, and to compute
a set of symbolic regions that a procedure accesses. They reduced the systems
of constraints to linear programs to obtain symbolic bounds.

6 Conclusion

We have measured the impact of symbolic analysis techniques, specifically range
propagation, expression propagation, and symbolic expression simplification. Us-
ing several SPEC CPU95, Perfect, and NAS benchmarks we have analyzed the
techniques’ability tohelp recognize parallelism and improveprogramperformance.

We have found that all techniques make a significant difference in at least one of
the programs. Expression simplification is important for most programs, while full
range propagation does not affect the program performance substantially. Some-
what unexpected, interprocedural expression propagation was only relevant for
two of the programs. More complex programs are affected more significantly. Sym-
bolic analysis effects performance the most in the Perfect Benchmarks and the
least in the NAS benchmarks. This suggests that the techniques will impact full-
scale applications more significantly than measured in our experiments.

In our analysis we found that secondary effects of symbolic analysis techniques
can make a performance difference. For example, in several program sections, the
techniques helped recognize parallel loops that were too small to improve perfor-
mance and introduced overhead instead. Improved performance estimation capa-
bilities could help remedy these situations and would thus be important comple-
ments of advanced program analysis techniques.

We found that the simpler form of range propagation, which derives informa-
tion from control statements only, had the same effect as full range analysis in all
but one programs. In terms of the resulting programperformance, the two forms of
range analysis were equivalent. Furthermore, full range analysis consumed signif-
icantly more compile time. These findings are significant, as they will allow com-
piler developers to implement advanced optimization techniques that rely on sym-
bolic analysis without high compile-time expenses. It holds in particular for the
Range Test, which is able to analyze data dependences in the presence of nonlinear
and symbolic subscripts.

References

1. W. Blume and R. Eigenmann. An overview of symbolic analysis techniques needed
for the effective parallelization of the perfect benchmarks. In Proceedings of the 1994
International Conference on Parallel Processing, pages 233–238, August 1994.

2. W. Blume, R. Doallo, R. Eigenmann, J. G. J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel program-
ming with polaris. IEEE Computer, pages 78–82, December 1996.

294 H. Bae and R. Eigenmann

3. W. Blume and R. Eigenmann. Symbolic range propagation. In Proceedings of the
9th International Parallel Processing Symposium, pages 357–363, Santa Barbara,
CA, April 1995.

4. W. Blume and R. Eigenmann. Nonlinear and symbolic data dependence testing.
IEEE Transactions on Parallel and Distributed Systems, 9(12):1180–1194, December
1998.

5. P. Tu and D. A. Padua. Gated SSA-based demand-driven symbolic analysis for
parallelizing compilers. In Proceedings of the 1995 International Conference on Su-
percomputing, pages 414–423, 1995.

6. M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for parallelizing
compilers. ACM Transactions on Programming Languages and Systems, 18(4):477–
518, July 1996.

7. T. Fahringer. Efficient symbolic analysis for parallelizing compilers and performance
estimators. The Journal of Supercomputing, 12(3):227–252, May 1998.

8. P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer Sci-
ence, Rice University, May 1994.

9. W. Blume and R. Eigenmann. Demand-driven symbolic range propagation. In Pro-
ceedings of the 8th Workshop on Languages and Compilers for Parallel Computing,
pages 141–160, Columbus, OH, 1995.

10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of 4th ACM Symposium, pages 238–252, 1977.

11. W. M. Pottenger and R. Eigenmann. Idiom recognition in the polaris parallelizing
compiler. In Proceedings of the 9th International Conference on Supercomputing,
pages 444–448, 1995.

12. W. Pugh and D. Wonnacott. Nonlinear Array Dependence Analysis. In Proceed-
ings of 3rd Workshop on Languages, Compilers and Run-Time Systems for Scalable
Computers, November 1994.

13. V. Aslot and R. Eigenmann. Performance characteristics of the spec omp2001
benchmarks. In Proceedings of the 3rd European Workshop on OpenMP
(EWOMP’2001), Barcelona, Spain, September 2001.

14. W. Pugh and D. Wonnacott. Constraint-based array dependence analysis. ACM
Transactions on Programming Languages and Systems, 20(3):635–678, May 1998.

15. R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array in-
dices, and accessed memory regions. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation, pages 182–195, Vancouver,
Canada, June 2000.

Efficient Manipulation of Disequalities
During Dependence Analysis

Robert Seater and David Wonnacott

Haverford College, Haverford, PA 19041
davew@cs.haverford.edu

http://www.cs.haverford.edu/people/davew/index.html

Abstract. Constraint-based frameworks can provide a foundation for
efficient algorithms for analysis and transformation of regular scientific
programs. For example, we recently demonstrated that constraint-based
analysis of both memory- and value-based array dependences can often
be performed in polynomial time. Many of the cases that could not be
processed with our polynomial-time algorithm involved negated equality
constraints (also known as disequalities).

In this report, we review the sources of disequality constraints in ar-
ray dependence analysis and give an efficient algorithm for manipulating
certain disequality constraints. Our approach differs from previous work
in that it performs efficient satisfiability tests in the presence of disequal-
ities, rather than deferring satisfiability tests until more constraints are
available, performing a potentially exponential transformation, or ap-
proximating. We do not (yet) have an implementation of our algorithms,
or empirical verification that our test is either fast or useful, but we
do provide a polynomial time bound and give our reasons for optimism
regarding its applicability.

1 Introduction

Constraint-based frameworks can provide a foundation for efficient algorithms for
analysis and transformation of “regular scientific programs” (programs in which
the most significant calculations are performed on arrays with simple subscript
patterns, enclosed in nested loops). For example, the detection of memory-based
array data dependences is equivalent to testing the satisfiability of a conjunction
of constraints on integer variables. The individual constraints may be equalities
(such as i = j + 1), inequalities (such as 1 ≤ i ≤ N), and occasionally dise-
qualities (such as i �= j). (For a discussion of the Omega Test’s constraint-based
approach to both memory-based (aliasing) and value-based (dataflow) depen-
dence analysis, see [1,2].)

Satisfiability testing of a conjunction of inequality constraints on integer
variables (“integer linear programming”) is NP-complete [3], and value-based
dependence analysis introduces the further complexity of negative constraints.
One might not expect that the constraint-based approach to dependence analy-
sis could yield an efficient algorithm, but empirical tests (such as [1]) have found

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 295–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 R. Seater and D. Wonnacott

these techniques to be efficient in practice. We recently investigated the rea-
sons for this efficiency [2], and found that most constraints come from a simpler
domain for which polynomial-time satisfiability testing is possible.

While it is possible to construct an arbitrarily complicated integer linear
programming problem via memory-based dependence analysis [4], almost all of
the problems that arise are conjunctions of equality and inequality constraints
from the LI(2)-unit subdomain. An inequality constraint is said to be in the
LI(2) subdomain if it can be expressed in the form ai + bj + c ≥ 0. It is said to
be in LI(2)-unit if a, b ∈ {−1, 0, 1}. The existing Omega Library algorithms [5]
perform satisfiability testing of conjunctions of LI(2)-unit inequality and equality
constraints in polynomial time.

Negative constraints, even within the LI(2)-unit subdomain, can also cause
exponential behavior of the Omega Library. However, almost all of the conjunc-
tions of constraints that are negated during value-based dependence analysis are
so redundant (with respect to other constraints) that the Omega Test can re-
place them with a single inequality (for example, 1 ≤ i ≤ N ∧ ¬(i = 1 ∧ 1 ≤ N)
will be converted to 1 ≤ i ≤ N ∧ ¬(i ≤ 1), and then to 2 ≤ i ≤ N). As long
as each negated conjunction can be replaced with a single inequality (and the
individual constraints are still LI(2)-unit), the Omega Test performs value-based
dependence testing in polynomial time.

Many of the cases that could not be processed with our polynomial-time
algorithm involved conjunctions of disequalities (negated equality constraints).
Disequalities can be produced by disequalities in if statements, by equality tests
in if-else statements, during the negation step of value-based analysis, or when
an uninterpreted function symbol is used to represent a non-linear term.

Disequalities can be converted into disjunctions of inequalities (α �= β ⇔
(α < β ∨ α > β)). However, when this is followed by conversion to disjunc-
tive normal form, the size of the problem increases exponentially. Lassez and
McAloon [6] observed that, for constraints on real variables, disequalities are
independent. That is, if no one disequality eliminates all solutions, there is no
way for a finite number of disequalities to add up and together make the system
unsatisfiable. Unfortunately, it is in general possible for disequalities to add up
for constraint systems with integer variables. We have developed an algorithm
to identify disequalities that cannot add up despite our use of integer variables.
We call such disequalities inert, and use the term ert for disequalities that can
add up. Satisfiability testing of r inert disequalities can be handled with 2r sat-
isfiability tests of conjunctions of inequalities, rather than the 2r needed for ert
disequalities.

This paper is organized as follows: Section 2 provides formal definitions of
inert and ert disequalities, and gives the (very simple) algorithm for satisfiability
testing. Section 3 gives our inertness test, and Section 4 discusses the impact it
would have on the data structures used in the Omega Library. Section 5 gives
the reasons why we believe the test would be useful during dependence analysis.
Section 6 discusses related work, and Section 7 presents our conclusions.

Efficient Manipulation of Disequalities During Dependence Analysis 297

2 Inert (and Ert) Disequality Constraints

From this point on, we consider satisfiability testing of a conjunction of m in-
equalities and k disequalities on n integer variables. In practice, we may manip-
ulate a mixture of equality, inequality, and disequality constraints, but we ignore
equalities here in the interest of simplicity (we could, in principle, convert each
equality into a conjunction of inequalities).

Any disequality constraint α �= β can be treated as a disjunction of in-
equalities (α < β ∨ α > β). However, a satisfiability test of a conjunction of m
inequalities and k disequalities using this approach involves 2k satisfiability tests
of conjunctions of m + k inequality constraints (after conversion to disjunctive
normal form).

Lassez and McAloon [6] observed that, for constraints on real variables, dis-
equalities are independent. That is, if no one disequality eliminates all solutions,
there is no way for a finite number of disequalities to add up and together make
the system unsatisfiable. Thus, satisfiability testing of a conjunction of m in-
equalities and k disequalities on real variables can be treated as 2k satisfiability
tests of m + 1 inequalities.

Unfortunately, disequality constraints on integer variables can add up. For
example, the three disequalities shown (as dashed lines) in Figure 1a together
eliminate all integer solutions in the grey region bounded by the three inequal-
ities (solid lines). In Figure 1b, a collection of four disequalities parallel to the
bounding inequalities could eliminate all integer solutions. However, no finite
set of disequalities can add up to eliminate all integer solutions in Figure 1c,
and disequalities that are not parallel to the bounding inequalities cannot be
important in eliminating all integer solutions in Figure 1b. Thus, the opportu-
nity for disequalities to add up depends on the nature of the inequalities and
disequalities.

c) All Disequalities must be Inerta) No Disequalities can be Inert b) Some Disequalities are Inert

Fig. 1. Inertness of Disequalities on Integer Variables

298 R. Seater and D. Wonnacott

We therefore give the following definitions:

Given a feasible conjunction of inequalities C and relevant disequality d,

We say d is inert in C if, for any finite conjunction of disequalities D,
C ∧ d ∧ D is satisfiable ⇔ both C ∧ d and C ∧ D are satisfiable.

Otherwise, we say that d is ert in C.

Note that inertness is not defined when C is infeasible or d is not relevant
(in the sense used by Lassez and McAloon [6], i.e. d is relevant if C ∧ ¬d is
satisfiable). Our algorithm for satisfiability testing of a conjunction of inequality
and disequality constraints follows immediately from this definition:

1. Let C be the inequality constraints and D the disequalities.
2. Test C for satisfiability. If C is unsatisfiable, C ∧ D must be unsatisfiable,

so return false.
3. Optionally, test each d ∈ D for relevance (by testing satisfiability of C ∧¬d),

and discard irrelevant disequalities. Note that irrelevant disequalities may
be treated as either inert or ert without affecting the result.

4. Test each d ∈ D for inertness.
5. For each inert disequality i ∈ D, test the satisfiability of C ∧ i. If C ∧ i is

unsatisfiable, C ∧ D must be unsatisfiable, so return false.
6. Let E be the conjunction of all ert disequalities in D. Test C ∧ E for satis-

fiability by treating each e ∈ E as a disjunction of inequalities. Return the
result of this test (if D contains no ert disequalities, return true).

Thus, if we can perform polynomial-time tests for (a) the inertness of a
disequality (in Step 4), and (b) the satisfiability of a conjunction of inequalities
(in Steps 2, 3, and 5), the overall algorithm is polynomial in the number of
inequalities and inert disequalities. The test is still exponential in the presence
of ert disequalities (due to Step 6), but we will have reduced the exponent:
for i inert disequalities and e ert disequalities, the number of satisfiability tests
of conjunctions of inequalities is 2i + 2e rather than 2i+e. Since our existing
polynomial-time test requires constraints from LI(2)-unit subdomain, we seek a
quick test for inertness within this domain.

Our algorithm for testing inertness is made of two tests that formalize, and
generalize for higher dimensions, two insights that are evident from Figure 1.
The “closure test” is based on the observation that all disequalities are inert if
the set of inequalities is “closed”, as in Figure 1a. The “parallel test” finds cases
in which parallel inequalities bound an open prism, as in Figure 1b; in this case
disequalities that are parallel to the boundaries are ert.

Note that there may be other approaches to polynomial-time satisfiability
testing for systems of constraints in the LI(2)-unit subdomain, but our approach
follows the philosophy of the Omega Test: produce an algorithm that is effi-
cient in the common cases, but general enough to handle the full logic. This
lets us apply a single algorithm to fully LI(2)-unit systems, systems with a few
constraints that are slightly more complex, or arbitrarily complex systems of
constraints (the last of which may, of course, require unacceptable amounts of
memory or time).

Efficient Manipulation of Disequalities During Dependence Analysis 299

3 A Complete Inertness Test for LI(2) Constraints

In this Section we describe a general algorithm for determining inertness of an
LI(2) disequality d in a conjunction of m LI(2) inequalities C on n variables. We
assume that C is known to have at least on integer solution.

We begin, in Subsection 3.1, by stating a theorem about inertness and out-
lining an informal proof (so far, our attempts at a full proof have clearly been
beyond the scope of this paper). In Subsection 3.2, we give a motivation for
the Closure Test and an intuitive understanding of how and why it works. In
Subsection 3.3 we give detailed pseudocode for the algorithm. In Subsection 3.4,
we give and prove upper bounds for the time complexity and space complexity
of the algorithm. In Subsection 3.5, we prove the accuracy of the closure test
algorithm. In Subsection 3.6, we describe the Parallel Test which covers some
additional cases which are not accounted for by the closure test. These two tests
are the key components to the algorithm to determine inertness. In fact, the
proof of correctness (given in 3.7) is just a proof that those tests are sufficient
to completely determine inertness.

3.1 Inertness and Non-parallel Rays

Inertness testing can be viewed as the search for rays contained in C that are
not parallel to the hyperplane defined by ¬d.

Theorem 1. Given C, a feasible conjunction of inequalities with integer (or
rational) coefficients, and d, a disequality relevant to C, d is inert in C iff ∀ rays
r ⊆ sol(C), r ‖ d.

If all rays contained in C are parallel to d, C must be either closed or open
in a direction parallel to d, and d is ert in C (recall Figure 1a and the slanted
disequalities in Figure 1b).

If C contains a ray r that is not parallel to d, d must be inert in C: Since C is
convex, any ray parallel to r with an origin within C contains only points in C.
Consider the set of rays R that are parallel to r and originate from the integer
solutions to C ∧ ¬d. Each ray in R must contain an infinite number of integer
points in C (assuming that r is defined, like all our constraints, with integer
coefficients). For d to be ert when C ∧ d is satisfiable (which must be the case if
C contains a ray not parallel to d), there must be some set of disequalities D for
which C ∧ d ∧ D is unsatisfiable and C ∧ D is satisfiable. C ∧ d ∧ D can only be
unsatisfiable if every integer solution in C, including those on R, is eliminated by
some disequality. Since each ray Ri in R contains an infinite number of integer
points, there must be at least one disequality in (D ∧ d) that eliminates all the
points in Ri. Since d �‖ r, d cannot eliminate any Ri, and D eliminates all points
in R, including all integer solutions to C∧¬d. Thus, C∧D must be unsatisfiable,
and d cannot be ert in C.

300 R. Seater and D. Wonnacott

3.2 Closure Test: Overview and Motivation

The Closure Test determines whether or not each of the variables in d is bounded
both above and below. To determine whether or not a variable v is bounded
above, we could compute the transitive closure of the “upper bound” relation
among the variables (and a single node representing constants). That is, y is an
upper bound of x if there exists a constraint ax ≤ by + c). x is bounded above iff
it has a path to the constant node or to both y and −y for some variable y. Recall
that in LI(2), there are no bounds of the form ax ≤ by + dz + c. We actually use
a “sloppy” variation on transitive closure that only guarantees accurate bound
on the variables in d, to gain a slight reduction in complexity.

It may be tempting to think of determining the boundedness of each variable
as equivalent to determining boundedness of C, but that is not the case, and the
distinction is important. Any closed region can be trivially made to be open by
adding an irrelevant variable which is not mentioned in any of the constraints.
For instance, adding z ≥ 0 to C, where z is not mentioned anywhere else in C,
will make C open even if it was closed beforehand. However, as far as inertness
is concerned, we don’t care about the irrelevant variables. This is because d will
be extruded infinitely far (without being bounded by C) along each of those
variables. Therefore, any ray which “escapes” only along irrelevant variables
is necessarily parallel to d. Recall that rays parallel to d do not give us any
information about the inertness of d, and that we are only concerned with the
existence of non-parallel escaping rays. For these reasons, it is very important
that our test treat regions which are only open along irrelevant variables as
being closed. In summary, we really want to determine the boundedness of the
variables of C which are relevant to d.

3.3 Closure Test: The Algorithm

In this section, we describe the actual algorithm for performing a closure test on
a set of variables (namely those in d).

For each variable x in d, we will determine if x is bounded above and if
−x is bounded above. Since the lower bound of x ∈ d is the same as the
upper bound of −x, we will determine both upper and lower bounds of each
variable. However, framing the question entirely as upper bounds will make
the algorithm more readable and will make storing and retrieving the informa-
tion easier.

We will need the following additional storage space to run the algorithm:

a boolean array of length n, recording if a variable has been reached or not.
a boolean table of indirect upper bounds

one row per variable and per negative of each variable
one column per variable and per negative of each variable
one “constant bound” column
one “modified” column

Efficient Manipulation of Disequalities During Dependence Analysis 301

Pseudocode for the algorithm is as follows:

Indirect_Bound(integer x)
mark x as ‘‘reached’’ // prevent infinite recursion
look at all upper bounds on x and set the appropriate

column in the row for x to true
set the ‘‘modified’’ column for x iff any columns were set
if no constant bound and no +y/-y pair is checked for x
foreach single variable bound on x which is not ‘‘reached’’
call this Indirect_Bound recursively on it
set (to true) the column for each variable returned

// note that there are no multi-variable bounds in LI(2)
return the list of bounds on x (the true entries in x’s row)

We run this algorithm on each variable in d, and on the negative of each
variable in d. After doing so, we need to do some post-processing:

(1) If any variables in d are entirely unbounded (0 entries in the “modified”
column), the the region is unbounded. Otherwise, run the next test.

(2) For each variable in d, check to see if it is either bounded by a constant or
bounded by y and −y for some variable y. If each variable is bounded in this
manner, then the region is bounded. Otherwise, the region is bounded.

Interpret the results of the algorithm as follows:

If the region is bounded, the d is ert.
If the region is unbounded, then d might still be ert, so we run the Parallel
test.

If we were not working over the LI(2) (or LI(2)-unit) domain, then there
would also be the possibility of a multiple variable bound.

3.4 Closure Test: Time Complexity

Pre-processing and initializing the table will take O(n2) time.
Post-processing takes O(m) in order to scan the relevant entries in the table,

since the density of the constraints is bounded to 2.
Naively examined, the recursive function will take O(m2n) time, however

amortized analysis reveals that the test actually takes O(mn) time. That is, by
recording our progress in the table, we save a linear amount of time by consulting
the table instead of re-deriving some of the information.

The functions is called at most once on each of the n variables. At each call,
each of the (up to m) upper bounds has to be examined. Each of those might
return as many as m upper bounds which have to be merged with the existing
upper bounds. However, the total number of upper bounds is at most m, since
each equation only provides one bound on x. The algorithm takes advantage of
this fact by not returning previously visited bounds, and thus the total amount
of work spent on returning upper bounds in O(m). Thus, the total amount of
work done over all n recursive calls is O(nm). Consequently, the overall time
complexity is O(n2 + mn).

302 R. Seater and D. Wonnacott

3.5 Closure Test: Accuracy

Recall that the quadratic time complexity is achieved because we don’t return
upper bounds which have already been encountered. However, this means that
the bound in question has already been returned to the original variable we are
testing, so it is already accounted for. Of course, the upper bounds recorded in
the table may be incomplete for the variables which don’t appear in d, but we
still get accurate information on the variables in d.

Intuition If is x is eventually bounded by y and −y, then we can use back
substitution to create two constraints of the form

x + y + c1 ≥ 0
x − y + c1 ≤ 0

Solving for the intersection of those two lines gives us a (constant) bound on x
(although not necessarily a tight one).

3.6 The Parallel Test

The Parallel Test is based on the fact that if there are two parallel inequalities,
one on each side of d, then d will not be inert. For some disequality of the form

a1x1 + ... + anxn �= c0

we look for a pair of inequalities of the form

a1x1 + ... + anxn ≤ c1,
a1x1 + ... + anxn ≥ c2

with c2 ≤ c0 ≤ c1. If such constraints are present in C, then d is ert in C.
The Omega Library uses a hash table to facilitate identification of parallel

constraints, so this test should take constant time. Even without this hash table,
it would only take O(m) time to scan the m constraints.

Note that outside of the LI(2) subdomain, it is possible to have a case in
which d is contained in a “prism” with sides that are not parallel to d. Thus
our parallel test is not sufficient to identify all ert disequalities if C includes
constraints outside of this subdomain.

3.7 Combining the Two Tests

In this section, we bring together the closure and parallel tests to create a single
tests which will completely determine inertness.

Conjecture: Let d and C be LI(2) (or LI(2)-unit). If d is ert in C, then either
the closure test or the parallel test will identify it as such. If d is inert, then
neither the Closure Test nor the Parallel test will identify it as ert.

That is, the Closure and Parallel tests completely determine inertness. We
will validate this conjecture by proving the following theorem.

Efficient Manipulation of Disequalities During Dependence Analysis 303

Definition: Consider a hyperplane (in our case d) and a conjunction of linear
constraints C. Let r be a ray which originates on d. If r is completely contained
within C but does not intersect the boundary of C, then r is said to escape C
from d.

For the following theorem and proof, we will use ”d” to denote the hyperplane
defined by the negation of the disequality d.

Theorem 2. If there are not two non-redundant constraints parallel to d and
there exists some ray r such that

(a) r is not bounded by C,
(b) the initial point of r satisfies C and lies on d, and
(c) r ‖ d,

then there must exist a ray r′ such that

(a) r is not bounded by C,
(b) the initial point of r satisfies C but not d, and
(c) r �‖ d.

Remark: The theorem exactly says that d is inert in C only if both tests fail to
return “ert”. Proving this theorem will also validate the completeness conjecture.

Proof: Since there are not two constraints parallel to d, at least one of the two
half spaces defined by d doesn’t contain a constraint parallel to d. Consider that
half space (or one of them if both fit the criteria). By “down” we will mean
directly towards d and by “up” we will mean directly (perpendicularly) away
from d. Angles will be implicitly measured from the plane d “upwards”.

We will prove that, if all non-parallel rays are blocked by C, then all rays
are blocked by C. Thus we will have proven the converse of the theorem and the
theorem will follow.

By assumption, there must be some ray, r′, which is

(1) parallel to d, and
(2) has initial point on d and within the bounds of C
(3) which is not bounded by C.

If not, then we will construct a valid r′ with the following algorithm, begin-
ning it with n = 0.

Algorithm: We are given a ray rn. If it is not bounded by C, then stop. We
have found a valid r′. If so, then there are three ways for rn to be bounded by
(intersect with) a constraint in C.

(a) A constraint that is parallel to d.
(b) A constraint c such that rn points into d. That is, the angle of rn up from

the projection of rn onto d is positive.

304 R. Seater and D. Wonnacott

(c) A constraint c such that rn does not point into d. That is, the angle of rn

up from the projection of rn onto d is negative.

The Theorem gives us that (a) is not the case.
If (c) is the case then that constraint must also block rp. This result is a

contradiction with our assumption that rp is not blocked by C and thus cannot
occur.

If (b) is the case, then consider a new ray, rn+1, of smaller angle, which is
not blocked by the same constraint. Run the algorithm on this new ray. Since
there are only a finite number of constraints in C, then eventually a ray will be
produced which is blocked by one of the other two cases. Since we are given that
case(a) does not occur, we know that eventually we will produce a ray which is
not bounded by C.

Consequently, if both the Parallel Test and the Closure Test do not return
“ert”, then a non-parallel ray must escape – making d inert in C.

3.8 Generalizations

The algorithms above work when all inequalities and disequalities are in the
LI(2) subdomain. If a formula contains a small number of disequalities outside
of this subdomain, we can safely (if expensively) treat them as ert. However,
if a formula contains one non-LI(2) inequality, we must (in the absence of an
inertness test) treat all disequalities as ert.

We are currently investigating extensions of our inertness test, focusing on the
use of linear programming techniques to perform a direct test for the existence
of a ray r that is not parallel to d: we simply determine if an objective function
that is perpendicular to d is unbounded. However, it is not clear that the overall
complexity of this approach can be made low enough to make it helpful in
dependence testing.

We could also try to identify the extreme rays of C, and then determine
whether or not any of them are not parallel to d. However, if a system has many
extreme rays and few disequalities, this might prove to be much slower than our
approach.

It is also worth noting that any disequality that contains a variable that does
not appear in any inequality (or equality) constraint can trivially be satisfied (es-
sentially by treating the disequality as an equality, solving for the new variable,
and then setting it to some other value).

4 The Representation of “Simplified” Relations

As the Omega Test and Omega Library [5] served as the foundation for our prior
work on polynomial time array dependence analysis, it is the obvious framework
for implementation of the algorithms presented here. Such an implementation
would involve major modifications to the Omega Library’s core data structures.
The library is designed to transform relations defined by arbitrary Presburger

Efficient Manipulation of Disequalities During Dependence Analysis 305

Formulas [7], possibly with certain uses of uninterpreted function symbols [8],
into a “simplified form”. This transformation happens automatically during sat-
isfiability testing and at other times; it prevents redundant analysis, and thus
presumably provides a great speed advantage over a system that evaluates every
query based on an unsimplified relation.

The simplified form is a variant of disjunctive normal form in which indi-
vidual “conjuncts” (conjunctions of equality and inequality constraints, possibly
with local existentially quantified variables) are connected by disjunction (∨).
Depending on the query performed, this simplified form may or may not include
redundant conjuncts, equalities, or inequalities.

Note that simplification may not always be beneficial, and deferring it to
the proper point is an important strategy for getting good performance from
the Omega Library. For example, consider queries for value-based dependence
analysis, which have the form C0 ∧ ¬C1 ∧ ¬C2 ∧ ... ∧ ¬CN , where the Ci’s are
conjuncts. The Omega Library uses information in C0 to reduce the cost of
negating the other conjuncts. If we were to simplify each negated conjunct and
then combine the results with ∧, the cost would be dramatically higher for many
cases (see [1] for details).

Even if our polynomial-time disequality algorithm has proven that a system
of constraints is satisfiable, converting it into simplified form can increase its size
exponentially, since each non-redundant disequality will be converted into a dis-
junction. We could solve this problem by allowing disequality constraints within
the individual conjunct data structures. This approach would have benefits even
if all disequalities where ert: except in cases where redundancy is to be removed,
the Omega Library could stop testing for satisfiability as soon as it has proven a
relation is satisfiable. The current algorithms produce the entire disjunction and
then test each conjunct for satisfiability. This could provide some part of the
speedup shown under “privatization analysis” in [9, Table 13.2], but in a more
generally applicable context.

An equivalent approach would be to simply allow negated equality constraints
in simplified relations. This approach could be taken even further, to allow more
general negated constraints, or other formulas that cannot be handled efficiently
(or at all). The current Omega Library can (in principle) handle arbitrary Pres-
burger Formulas when it is not restricted to our provably polynomial subdo-
main. However, when faced with certain uses of uninterpreted function symbols,
or when restricted to provably polynomial cases, the Omega Library replaces
any set of constraints that it cannot handle with a special constraint identified
simply as unknown.

It might be possible to modify this algorithm to annotate each unknown with
the unsimplified formula that produced it, in case later manipulation of the re-
lation provides information that lets the library handle the offending constraint.
However, without extensive empirical testing, it is hard to know whether the
overhead involved in this approach would be worthwhile.

The above changes have the potential to improve the accuracy, speed, and
ease of use of the Omega Library, since polynomial-time simplifications could

306 R. Seater and D. Wonnacott

be performed early without causing a decrease in later accuracy (this approach
would also make the efficiency less sensitive to the timing of simplifications).

5 Implementation Status and Future Work

We do not currently have an implementation of our algorithms, and thus we do
not have empirical verification that they are either fast or effective in practice.
Given the nature of the changes discussed in the previous section, we do not
expect to have an implementation any time soon.

However, we do have reason to hope that our algorithms will be applicable
during dependence analysis. Our studies of the constraints that arise in practice
[1,2] suggest that disequalities often involve loop index variables used in if
statements or in subscripts. For programs with scalable parallelism, some or all
loops are bounded by symbolic constants (typically program parameters), which
are not themselves bounded above. In this case, we expect the disequalities to
be inert. When all disequalities are inert and the constraints obey the other
conditions given in [2], memory- and value-based dependence testing can be
done in polynomial time.

Before undertaking any implementation effort, we plan to investigate algo-
rithms for projection and gist in the presence of disequalities. It may be the case
that some of the insights of Imbert [10] can be combined with our definition of
inertness in some useful way.

6 Related Work

Most other work on handling negated constraints during dependence analysis
focuses on producing approximate results or deferring satisfiability tests until
more constraints are available. The Omega Library’s negation algorithms [11,9]
and the algorithms for manipulating “Guarded Array Regions With Disjunction”
(GARWD’s) in the Panorama compiler [12] are examples of the deferral approach
(the proposals at the end of Section 4 were directly inspired by the GARWD
algorithms). The drawback with deferring negation is, of course, that we will be
forced to choose some other approach if we do not get any helpful constraints
before we must answer a satisfiability query.

Our work with identifying inert disequalities complements this approach,
and there should be no problem with combining the two. When disequalities are
inert, they can be tested directly; when they are not, satisfiability testing should
be delayed as long as possible.

We do not know of any other work on polynomial-time satisfiability testing
of disequalities on integer variables. Our work on identifying inert disequalities
on integer variables was driven by a frustrated desire to apply the work of Lassez
and McAloon [6], which is relevant only to real (or rational) variables.

Efficient Manipulation of Disequalities During Dependence Analysis 307

7 Conclusions

Disequality constraints can cause exponential behavior during dependence analy-
sis, even when all constraints are in the otherwise polynomial LI(2)-unit domain.
We have developed a polynomial-time algorithm to identify certain inert dise-
qualities within this domain, in which case satisfiability testing is polynomial in
the number of inequalities and inert disequalities, but exponential in the number
of ert disequalities.

The integration of our algorithms into the Omega Library would require
a redefinition of the central data structure representing a “simplified” problem,
and would thus be a major undertaking. However, it might provide opportunities
for improving the speed and accuracy with which the Omega Test handles other
queries.

Acknowledgments

This work is supported by NSF grant CCR-9808694.

References

1. William Pugh and David Wonnacott. Constraint-based array dependence analysis.
ACM Trans. on Programming Languages and Systems, 20(3):635–678, May 1998.

2. Robert Seater and David Wonnacott. Polynomial time array dataflow analysis. In
Proceedings of the 14th International Workshop on Languages and Compilers for
Parallel Computing, August 2001.

3. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

4. D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence
analysis. In ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, pages 1–14, June 1991.

5. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeis-
man, and David Wonnacott. The Omega Library interface guide. Tech-
nical Report CS-TR-3445, Dept. of Computer Science, University of Mary-
land, College Park, March 1995. The Omega library is available from
http://www.cs.umd.edu/projects/omega.

6. Jean-Louis Lassez and Ken McAloon. Independence of negative constraints. In
TAPSOFT 89: Proceedings of the International Joint Conference on Theory and
Practice of Software, 1989.

7. G. Kreisel and J. L. Krevine. Elements of Mathematical Logic. North-Holland Pub.
Co., 1967.

8. Robert E. Shostak. A practical decision procedure for arithmetic with function
symbols. Journal of the ACM, 26(2):351–360, April 1979.

9. David G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis,
Dept. of Computer Science, The University of Maryland, August 1995. Available
as ftp://ftp.cs.umd.edu/pub/omega/davewThesis/davewThesis.ps.

10. Jean-Louis Imbert. Variable elimination for disequations in generalized linear con-
straint systems. The Computer Journal, 36(5):473–484, 1993. Special Issue on
Variable Elimination.

308 R. Seater and D. Wonnacott

11. William Pugh and David Wonnacott. An exact method for analysis of value-based
array data dependences. In Proceedings of the 6th International Workshop on
Languages and Compilers for Parallel Computing, volume 768 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, August 1993.

12. Junjie Gu, Zhiyuan Li, and Gyungho Lee. Experience with efficient array data
flow analysis for array privatization. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 157–167,
Las Vegas, Nevada, June 1997.

Removing Impediments to Loop Fusion Through
Code Transformations

Bob Blainey1, Christopher Barton2, and José Nelson Amaral2

1 IBM Toronto Software Laboratory, Toronto, Canada
blainey@ca.ibm.com

2 Department of Computing Science, University of Alberta, Edmonton, Canada
{cbarton, amaral}@cs.ualberta.ca

Abstract. Loop fusion is a common optimization technique that takes
several loops and combines them into a single large loop. Most of the ex-
isting work on loop fusion concentrates on the heuristics required to op-
timize an objective function, such as data reuse or creation of instruction
level parallelism opportunities. Often, however, the code provided to a
compiler has only small sets of loops that are control flow equivalent, nor-
malized, have the same iteration count, are adjacent, and have no fusion-
preventing dependences. This paper focuses on code transformations that
create more opportunities for loop fusion in the IBM®XL compiler suite
that generates code for the IBM family of PowerPC®processors. In this
compiler an objective function is used at the loop distributor to decide
which portions of a loop should remain in the same loop nest and which
portions should be redistributed. Our algorithm focuses on eliminating
conditions that prevent loop fusion. By generating maximal fusion our
algorithm increases the scope of later transformations. We tested our im-
proved code generator in an IBM pSeries™ 690 machine equipped with a
POWER4™ processor using the SPEC CPU2000 benchmark suite. Our
improvements to loop fusion resulted in three times as many loops fused
in a subset of CFP2000 benchmarks, and four times as many for a subset
of CINT2000 benchmarks.

1 Introduction

Modern microprocessors such as the POWER4 have a high degree of available
instruction level parallelism and are typically nested within a relatively slow
memory subsystem with non-uniform access times. Both of these machine char-
acteristics make the distribution of memory references within a program critical
to achieving high performance. In many scientific applications, the structure of
loop nests operating on dense data arrays is a primary determinant of overall
performance. Compilers with advanced automatic loop restructuring capabilities
have emerged to address this performance opportunity [1].

Two important and complementary transformations typically performed in
a loop restructuring compiler are loop fusion and loop distribution. Important
design decisions when implementing loop optimization include (a) the order in

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 309–328, 2005.
© Springer-Verlag Berlin Heidelberg 2005

310 B. Blainey, C. Barton, and J.N. Amaral

which these phases should be executed, and (b) whether the smartness of the
loop optimization algorithm should be placed (i) in loop fusion, (ii) in loop
distribution, or (iii) in both.

In this paper we introduce the algorithms used for loop fusion in the IBM XL
Fortran and VisualAge®for C++ for AIX compilers. In these compilers maximal
loop fusion is performed first and then selective loop distribution takes place, i.e.,
the smartness is placed in the distribution phase of the loop optimization process.
These compilers target the PowerPC architecture and have been in continuous
production use since the introduction of the POWER architecture in 1990. In this
paper we report performance results for the new IBM processor, the POWER4.
The POWER4 processor features two microprocessors running in excess of 1
GHz on a single chip along with a large shared L2 cache and control logic for an
even larger off-chip L3 cache and high bandwidth chip-to-chip communication.
Each microprocessor features 8 parallel functional units executing instructions
in an out-of-order fashion along with dedicated L1 data and instruction caches.
As in the POWER3™ processor, the POWER4 data caches include support for
automatic prefetching of linear reference streams.

The fusion of small loops to generate larger loops decreases the number of
loop branches executed, creates opportunities for data reuse, and offers more
instructions for the scheduler to balance the use of functional units. Possible
negative effects of loop fusion are increased code size, increased register pressure
within a loop, potential overcommiting of hardware resources and the forma-
tion of loops with more complex control flow. Increased code size can affect the
instruction cache performance. Higher register pressure has the potential of re-
sulting in code with undesirable spilling instructions. Architectures such as the
POWER4 achitecture contain hardware support for prefetching linear reference
streams. If a loop contains more reference streams than can be prefetched by the
hardware, one or more of the reference streams will be plagued by cache misses,
causing performance degredations. Loops with complex control flow have a longer
instruction path length and can have negative side effects on later optimizations
such as software pipelining.

The loop fusion algorithm used in this compiler scans the code to find pairs
of normalized loops that can be fused and greedily fuses them. Two loops can
be fused if they are control equivalent, have no dependences, and their bounds
conform (see Section 4). In order to be fused, there must be no intervening code
between the loops. In some situations the code that is between the loops has
no data dependences with one of the loops. In this case the code can be moved
either before the first loop or after the second loop. In this paper we describe our
implementation of this data movement operation. We also implement loop peel-
ing to allow the fusion of loops that originally had non-conforming bounds. Our
algorithm processes loops in the same nesting level in a given control flow, mov-
ing intervening code, peeling iterations, and fusing loops until no more loops can
be fused. We present experimental results comparing the loop fusion algorithm
with and without these improvements.

Removing Impediments to Loop Fusion Through Code Transformations 311

In previous work published on loop fusion, the decision to fuse a set of loops
was based on the evaluation of an objective function — usually a measurement of
data reuse and/or estimates of resource usage [4, 6, 10]. In our implementation
the decision of how the code should be aggregated into a set of loop nests is
delayed until loop distribution. Therefore, we can apply maximal loop fusion
without regard to resource usage or to the benefits of fusion. For compile time
and implementation efficiency we use a greedy algorithm and do not consider
cases in which an early fusion might prevent a later, potentially more profitable,
fusion.

The main contributions of this paper are:

– A new algorithm that eliminates conditions that prevent loop fusion and
increase the scope of later loop restructuring transformations.

– An implementation of the new fusion algorithm in the IBM production com-
pilers for the eServer pSeries, and measured performance on the eServer
pSeries 690 that is built around the new POWER4 processor.

– Experimental results that show that the algorithm increases the number of
loops fused when compared with the algorithm in the original compiler.

The rest of the paper is organized as follows: Section 2 briefly introduces the
POWER4 Architecture, which was used for the performance measurements. Sec-
tion 3 describes the general loop optimizer that is used in this compiler. Section 4
describes the loop fusion algorithm and Section 5 presents some preliminary ex-
perimental results. Section 6 reviews related work.

2 The POWER4 Architecture

The POWER4 is a new microprocessor implementation of the 64-bit PowerPC
architecture designed and manufactured by IBM for the UNIX®server market.
It features two processor cores running at speeds up to 1.3 GHz placed onto a
single die. Four of these dies are placed together to form one multi-chip module
(MCM), containing eight processor cores. Each of the two processors on the die
has a dedicated 64 KB direct mapped L1 instruction cache, a dedicated 32 KB 2-
way set associative L1 data cache and a unified 1 KB 4-way set associative TLB
supporting 4 KB and 16 MB page sizes. The two processors share a single 8-way
set associative 1.44 MB on-chip combined L2 cache. Each 4 chip (8 processor)
MCM has an attached 128 MB L3 cache and dedicated memory controller. For
the experiments presented in this paper we used a dual MCM pSeries model 690
server. This machine runs at 1.1 GHz and has 64 GB of main memory[3].

Each L1 instruction cache can support up to 3 outstanding misses and each
L1 data cache can support up to 8 outstanding misses. The L1 data cache and
the L2 and L3 shared caches include support for automatic prefetching of linear
reference streams. Each processor maintains a 12-entry prefetch address filter
queue and up to 8 concurrent active prefetch streams. The L2 cache is orga-
nized into 3 slices, each 480 KB in size and can offer more than 100 GB/s in
bandwidth [12].

312 B. Blainey, C. Barton, and J.N. Amaral

3 Overview of Loop Optimizations

In the XL compilers, most optimizing transformations are applied to each loop
nest in functions by the iterative application of several specialized passes. Loop
fusion enlarges the scope in which later optimizations are applied. Fusion cre-
ates opportunities to improve data reuse, to generate coarser grain parallelism,
to exploit the use of hardware prefetch streams, to improve the allocation of ar-
chitected register files, and to improve the scheduling for load/store or floating-
point dominated code, or for code that combines both types of operations. The
larger scope available for these later optimizations is due to the aggregation of
more code into a smaller number of loop nests. In order to reap these benefits
we implement maximal fusion first, and later redistribute the code into separate
loop nests. The distributor reaggregates code according to a set of constraints
and the optimization of an objective function. If the original loop structure is
already optimal, the distributor will usually re-create it. Thus the loop fusion
phase performs maximal fusion without concern for potential negative effects in
the code.

Figure 1 presents the sequence of transformations applied to the code, includ-
ing loop fusion and loop distribution. Starting on the left of the figure, the early
optimizations, aggressive copy propagation and dead store elimination, create
opportunities for loop interchanging and loop unroll and jam. Conventional copy
propagation algorithms do not move computations into a loop to prevent the en-
largement of the dynamic path length of the loop. Our aggressive propagation,
however, does move statements into a loop to enable the creation of perfectly
nested loops. Figure 2 illustrates the aggressive copy propagation performed in
this compiler. The original code is in Figure 2(a). After copy (and expression)
propagation the code in Figure 2(b) is obtained, and after the dead store elimina-
tion, the code in Figure 2(c) results. Although the multiplication x*y now needs
to be computed in every iteration of the inner loop, the combination of these two
optimizations generates a perfectly nested loop that can be advantageous both
for loop permutation and unroll-and-jam. Furthermore, the computation of x*y
can be moved back out of the loop after the loop optimizer has completed.

Next, maximal loop fusion is performed. The goal is to enhance the scope
for optimization in the loop distributor and not necessarily to improve perfor-
mance on its own. Working with larger portions of the code, the distributor will

Splitting
Node

and Jam
Loop UnrollLoop Fusion

Elimination
Dead Store

Propagation
Aggressive Copy

Expansion
Scalar

Distribution
Loop

Permutation
Loop

and Jam
Loop Unroll

Fig. 1. Loop Optimizations

Removing Impediments to Loop Fusion Through Code Transformations 313

Fig. 2. Example of aggressive copy propagation followed by dead store elimination

encounter more opportunities to explore data reuse, generate coarser grained
parallelism, exploit prefetch, improve the use of architected registers, and sched-
ule operations to the fix point, floating point, and load/store units.

After loop fusion, the compiler applies common-subexpression elimination,
and node splitting. In order to keep the size of the data dependence graphs
(DDGs) under control, complex statements are allowed in the code representa-
tion at this level. Each one of these statements is a node in the DDG. Because
these nodes represent complex statements, a node may participate in multiple
dependence relations. Node splitting separates a complex statement into two or
more simpler statements, each participating in a disjoint dependence relation. In
some cases node splitting allows the loop distributor to distribute two portions
of a statement into separate loop nests. For instance, such a split is profitable
when one part of the statement has self-dependences that prevent parallelization
and the other part parallelizable.

The scalar expansion transformation identifies the use of scalars that induce
anti or output dependences across loop iterations. In a traditional scalar expan-
sion algorithm, each one of these scalar variables would be expanded into arrays
with as many dimensions as required to eliminate the dependences. In this com-
piler, the expansion is limited to one dimension, and the variables are marked as
expandable but the actual generation of the arrays is postponed until the code
generation phase. At that point the expansion might not be necessary because
of code aggregation done by the loop distributor or, if expansion is necessary,
the required storage could be overlaid with existing temporary storage.

It is important to strike the right balance between the multiple conflicting
goals of the loop distributor. In this compiler suite the loop distributor first
identifies the minimal segments of code that must be distributed as a unit. For
instance, if an if statement is encountered, the test along with the code that
appears in both branches, up to but not including the join node, form a unit
of code. These code units are called aggregate nodes. Aggregate and statement
nodes, which form maximal strongly connected components of the DDG are
grouped together to form π-nodes, named after the definition by Kuck [13].
Degenerate π-nodes are also formed from the remaining statement and aggre-
gate nodes that are not part of any strongly connected component. A π-node
may contain from a single statement to an arbitrarily complex portion of code.
π-nodes are the units that the distributor works with.

314 B. Blainey, C. Barton, and J.N. Amaral

Some of the characteristics of a π-node that are relevant for the loop dis-
tribution algorithm include: register requirements,1 load/store usage, number of
floating point and fixed point operations executed, and the number of prefetch-
able linear streams.2 Another important attribute taken into consideration by
the distributor is whether the code in a π-node is self-dependent or not. A
π-node that is not dependent on itself is parallelizable and should be aggregated
only with other non-self-dependent nodes.

Once the π-nodes are formed, the distributor creates an affinity graph that
is an undirected weighted graph whose nodes correspond to π-nodes and whose
weighted edges represent the affinity between the nodes. Currently the only
measure of affinity used in the compiler is the potential for data reuse between
the code in the nodes. The compiler uses a greedy algorithm in the distributor:
it attempts to aggregate nodes in decreasing order of affinity. The decision about
aggregating two π-nodes is based not only on the affinity in the graph, but also on
whether aggregation would satisfy data dependences and whether aggregation
is desirable based on node attributes. For instance, if the aggregation of two
π-nodes would exceed the use of the existing prefetching streams, the nodes are
usually not aggregated. Likewise self-dependent (non-parallelizable) nodes are
usually not aggregated with non-self-dependent (parallelizable) nodes. Decisions
about aggregating nodes are conditioned to the potential increase in data reuse.

After loop distribution, loop permutation and unroll and jam are performed.
These transformations are limited in their application to perfectly nested loops
and benefit from the loop distributor’s efforts to isolate perfect nests.

4 Loop Fusion Algorithm

In the XL compiler suite, loop normalization takes place prior to loop fusion.
In other words, whenever possible, the loop starting count, its increment, and
its direction (always increasing the index) are normalized. We divide loops into
two classes: loops that are eligible for fusion and loops that are not eligible for
fusion. Examples of loops that are non-eligible for fusion include loops that were
specified to be parallel loops by the programmer (in OpenMP for instance), loops
for which normalization fails, non-counted loops, and loops with side entrances
and side exits. In order to be fused, two loops that are eligible for fusion must
satisfy the following conditions:

– they must be conforming,
– they must be control equivalent,
– they must be adjacent, and
– there can be only forward dependences between the loop bodies.

1 Loop body size is used as an estimator for register pressure.
2 The number of prefetchable linear streams is an important characteristic for the

optimization of code for the Power4 because this architecture has a hardware stream
prefetching mechanism that is triggered by regular data accesses.

Removing Impediments to Loop Fusion Through Code Transformations 315

Fig. 3. Fortran 90 and Fortran 77 versions of the code for running example

Two normalized loops are conforming if they have the same iteration count. A set
of loops is control equivalent if, whenever one of the loops of the set is executed,
all of the other loops must be executed. We say that a loop is executed if its exit
test is executed at least once. Two loops are determined to be control equivalent
using the dominator and post-dominator properties of the loops. If loop Lj

dominates loop Lk and Lk post-dominates Lj then the two loops are control
equivalent. Two loops Lj and Lk are adjacent if there is no intervening code
between them, i.e., in the Control Flow Graph, Lk is the immediate successor
of Lj .

We use the contrived running example presented in Fortran 90 and Fortran
77 in Figure 3 to illustrate our loop fusion algorithm. This code example has
four loops accessing four different arrays, a, b, c, d. We assume that there is no
overlap between the memory locations of these arrays, i.e., there is no i and j
such that the address of x(i) overlaps with the address of y(j), where x and y
represent the arrays a, b, c, and d.

Figure 4 presents the LoopFusion algorithm. The algorithm operates one
nest level at a time processing the outermost nesting level first and then moving
toward the innermost level (step 1). First the algorithm partitions all the loops
that are at the same nest level into sets of loops that are control equivalent. In
step 4 all loops that are not eligible for fusion are removed from the set. Since
all the loops in a set are control flow equivalent, dominance defines a total order
over the set. Therefore, we can use the notion of moving forward and moving
in reverse order through the set. The loop fusion algorithm iterates, alternating
forward and reverse passes over the set, until it finds no more loops to be fused.
Fusions and code movements that take place during a pass through a set of
loops change the control flow graph and the dominance order between the loops.
Therefore, before each pass the control flow graphk and the dominance relations
are recomputed. The iterations processed in the while loop starting at step 7

316 B. Blainey, C. Barton, and J.N. Amaral

LoopFusion
1. foreach NestLevel Ni from outermost to innermost
2. Gather identically control dependent loops in Ni

into LoopSets
3. foreach LoopSet Si

4. Remove loops non-eligible for fusion from
Si

5. FusedLoops ← T rue
6. Direction ← Forward
7. while FusedLoops = T rue
8. if |Si| < 2
9. break
10. endif
11. Build Control Flow Graph
12. Compute Dominance Relation
13. FusedLoops =

LoopFusionPass(Si,Direction)
14. if Direction = Forward
15. Direction = Reverse
16. else
17. Direction = Forward
18. endif
19. endfor
20. end while
21. endfor

Fig. 4. Loop Fusion Algorithm

alternate between forward and reverse passes through the loop set until no loops
are fused during a pass. In the code example of Figure 3, all loops are eligible for
fusion and control equivalent, thus all four loops are in the same set, and have
the following dominance order: i1 → i2 → i3 → i4 (we will identify the loops
in the example by their index variables).

In a forward pass the LoopFusionPass algorithm presented in Figure 5 tra-
verses a set of control flow equivalent loops in dominance order, while during a
reverse pass the traversal is in post-dominance order. The function Intervening
Code(Lj , Lk) checks whether the two loops are adjacent, i.e., if there is inter-
vening code between them. We use the dominance relation to determine the
existence of intervening code. An aggregate node ax intervenes between loops
Lj and Lk if and only if Lj properly dominates ax, Lj ≺d ax, and Lk prop-
erly post-dominates ax, Lk ≺pd ax. Because the loops Lj and Lk are control
equivalent, there cannot be a side entrance or a side exit to the intervening code
between the two loops. If we find intervening code between Lj and Lk, we check
if the intervening code can be moved either before the first loop or after the
second one (step 3). Our algorithm allows for a portion of the intervening code
to be moved above the first loop while the remainder of that code is moved

Removing Impediments to Loop Fusion Through Code Transformations 317

LoopFusionPass(Si, Direction)
1. FusedLoops = False
2. foreach pair of loops Lj and Lk in Si, such that Lj

dominates Lk, in Direction
3. if InterveningCode(Lj, Lk) = T rue and

IsInterveningCodeMovable(Lj , Lk) = False
4. continue
5. endif
6. σ ← |κ(Lj) − κ(Lk)|
7. if Lj and Lk are non-conforming and

σ cannot be determined at compile time
8. continue
9. endif
10. if DependenceDistance(Lj , Lk) < 0
11. continue
12. endif
13. MoveInterveningCode(Lj, Lk, Direction)
14. if InterveningCode(Lj, Lk) = False
15. if Lj and Lk are non-conforming
16. Lm ← FuseWithGuard(Lj , Lk)
17. else
18. Lm ← Fuse(Lj , Lk)
19. endif
20. Si ← Si ∪ Lm − {Lj , Lk}
21. FusedLoops = T rue
22. else
23. continue
24. endif
25. endfor
26. return FusedLoops

Fig. 5. Loop Fusion Algorithm

after the second loop. This is necessary when a portion of the intervening code
cannot be moved down because of dependences with Lk and the remainder of
the code cannot be moved up because of dependences with Lj. The algorithm
IsInterveningCodeMovable checks for this condition.

If the two loops do not conform, i.e., if they have different iteration counts,
they could be made to conform by guarding iterations of one of the loops. We
are only considering loops that were normalized (loops for which normalization
failed were eliminated in step 4 of the LoopFusion algorithm). In step 6 we
compute the difference between the upper bound of the two loops, κ(Lj) and
κ(Lk) and store the result in σ. Observe that this is a symbolic subtraction as
the value of σ may not be known at compile time. In step 7 we abandon our
attempt to fuse the loops Lj and Lk if σ cannot be determined at compile time.

318 B. Blainey, C. Barton, and J.N. Amaral

On the other hand, if σ is a known constant, a guard is placed in the fused loop
to inhibit the extra execution of one of the loop bodies (see step 16).

Figure 9 presents the algorithm FuseWithGuard used to fuse two non-
conforming loops Lj and Lk. A new loop, Lm is created with the larger upper
bound of the two loops (step 1). A guard branch is then created at the beginning
of the loop (step 2) and the bodies of Lj and Lk are included within the guard
(steps 3 and 4). The guard branch checks to see if the current iteration count is
less than the lower upper bound of the two loops. The bodies of the original loops
are then copied into the new loop, preserving the dominance relation between
them. An else statement is then inserted to guard the second loop body (step 5).
The longer loop is inserted in the else statement (step 6). This guarded fusion
creates more code growth than an alternative technique that would simply guard
the shorter loop. However, it is preferable in this compiler because it favors a later
index set splitting transformation because it will allow the common portions of
the fused loop to remain together.

In step 10 we check if the dependence relations between the bodies of loops
Lj and Lk prevent fusion. This test is performed last because checking for de-
pendences between loop bodies is the most expensive loop fusion condition that
needs to be tested. If there is a negative dependence distance from Lj to Lk,
the loops cannot be fused. In the IBM XL compiler suite, data dependences are
computed on demand. For our algorithm, this computation is based on the SSA
data flow representation within the context of a loop. The information about
references to arrays is summarized in matrices of subscripts. These matrices are
used along with vectors representing the bounds of surrounding loops to de-
termine the dependence relation between two loop bodies, or between a loop
body and intervening code. If there are dependences, the dependence analysis
produces a dependence vector consisting of a distance or direction for each loop
surrounding the reference pair.

The intervening code between loops Lj and Lk may itself contain loops. These
loops are treated as regular code and are moved if dependences allow. During a
forward pass, the intervening code is only moved up (step 13). This restriction
on the direction of code movement during a pass is a result of an engineering
design. A collection of data structures is used to store the control flow graph,
the dominator and post-dominator trees, and the SSA data flow graph. We allow
these data structures to become inconsistent after the fusion of loops and the
movement of intervening code within a pass of the algorithm. These structures
are rebuilt at the end of each pass. It would have been possible to modify the
interface to these structures to allow them to be updated as fusion progressed,
however we do not believe our approach has a noticeable effect on running times
and it maintains the original interface. Because code is not moved down (or up)
during a forward (or reverse) pass, even if all the intervening code is movable,
the part of the code that must move down (or up), because of dependences, is
not moved in this step. In this case the two loops do not become adjacent and
cannot be fused in the same pass. Therefore, in step 14 we check once more if
the loops are adjacent before fusing the two loops in step 18 and updating the

Removing Impediments to Loop Fusion Through Code Transformations 319

Fig. 6. Completing first forward pass in running example

loop set in step 20. When all the intervening code is movable, the movement of
the portion of the intervening code that can move up in step 13 prepares the
loop set for a potential fusion in the next pass of the algorithm.

In the example of Figure 3(b) the first two loops to be compared are i1 and
i2. There are no dependences that prevent their fusion, they are adjacent, but
they are non-conforming. The test in step 15 in Figure 5 is true and the two
loops are fused using the algorithm in Figure 9. This fusion results in the loop
i5 shown in Figure 6(a).

The next comparison is between loops i5 and i3. There are no dependences
preventing fusion, and the loops are non-adjacent but the intervening code (ini-
tialization of ds) is movable to the point before i5. However, the difference
between the iteration count of the two loops cannot be determined at compile
time (we assume that n and m are not known until run time), and fusion of i5
and i3 fails.

Next i5 and i4 are compared, the two loops can be made to conform, there
are no dependences preventing fusion, and all the intervening code (which in-
cludes loop i3 and the if-then-else before i4) can be moved. Because of the
dependence on d between i5 and i3, i3 only can be moved down to the point
after i4. The dependence on c(n-2) requires the aggregate node that contains
the if-then-else to be moved up to the point before i5. The MoveInterven-
ingCode algorithm moves the intervening code that can be moved up to the
point before i5 resulting in the code shown in Figure 6(b). However, the test on
step 14 fails, and the loops cannot be fused in this pass.

The control flow graph is rebuilt and the dominance and post-dominance
relations recomputed before a reverse pass starts. In the reverse pass the loops i4
and i3 are compared, but they cannot be fused because we cannot determine the
difference in their iteration count at compile time. Next, i4 and i5 are compared.

320 B. Blainey, C. Barton, and J.N. Amaral

Fig. 7. Final reverse pass on running example

The only intervening code (loop i3) can be moved down below i4. The difference
in iteration count between i4 and i5 is 2 and there are no dependencies that
prevent fusion. The intervening code between i4 and i5 is moved down (in
step 13) resulting in the code shown in Figure 7(a). The two loops are then
fused resulting in the code in Figure 7(b) and the reverse pass terminates. The
next forward pass will result in no additional fusions and the algorithm will
terminate.

As discussed in Section 3, the code is organized into aggregate nodes. An
aggregate node is a minimum code segment that must be moved as a unit.
Examples of aggregate nodes include a single statement, a nest of loops, or
an if-then-else statement with arbitrarily complex code in each branch. The
algorithm in Figure 8 checks if all the aggregate nodes in the intervening code
found between two loops Lj and Lk can be moved to other places in the program.
In step 1 we build the set InterveningCodeSet containing all the aggregated
nodes that are intervening code between the two loops. An aggregate node ax

is intervening code between two loops Lj and Lk if Lj properly dominates ax,
Lj ≺d ax and Lk properly post-dominates ax, Lk ≺pd ax.

We cannot move aggregate nodes that might have side effects. Instances of
code that have side effects include volatile load/store, statements that perform
I/O, and unknown functions that might contain such statements. If any of the
aggregate nodes in the intervening code between two loops have or may have
side effects, the intervening code is non-movable (step 2).

When determining the direction in which an aggregate node ax can move,
we need to take into consideration the data dependences between ax and the

Removing Impediments to Loop Fusion Through Code Transformations 321

remaining aggregate nodes in the intervening code, as well as the data depen-
dence relations with the loops Lj and Lk. Thus we build a Data Dependence
Graph G for the nodes in the aggregate node set (step 4). Then we traverse G
in topological order to build the CanMoveUpSet, the set of nodes that can be
moved to the point before the loop Lj (steps 5 to 10). A node ay can move up if

IsInterveningCodeMovable(Lj , Lk)
1. InterveningCodeSet ← {ax|Lj ≺d axandLk ≺pd ax}
2. if any node in InterveningCodeSet is non-movable
3. return False
4. Build a DDG G of InterveningCodeSet
5. CanMoveUpSet ← ∅
6. foreach ay ∈ G in topological order
7. if CanMoveUp(Predecessors(ay)) and Lj � δ ay

8. CanMoveUpSet ← CanMoveUpSet ∪{ay}
9. endif
10. endfor
11. CanMoveDownSet ← ∅
12 foreach az ∈ G in reverse topological order
13. if CanMoveDown(Successors(az)) and az � δ Lk

14. CanMoveDownSet ← CanMoveDownSet ∪{az}
15. endif
16. endfor
17. if InterveningCodeSet −

(CanMoveUpSet ∪ CanMoveUpSet) = ∅
18. return T rue
19. return False

Fig. 8. Algorithm to check if all intervening code can be moved

FuseWithGuard(Lj, Lk)
1. Create Lm with upper bound max(κ(Lj), κ(Lk))
2. Insert Guard Bound for min(κ(Lj), κ(Lk)) at beginning

of Lm

3. Copy body of Lj to Lm, within guard
4. Copy body of Lk to Lm, after Lj body, within guard
5. Insert else statement
6. if (κ(Lj) > κ(Lk))
7. Copy body of Lj to Lm, after else statement
8. else
9. Copy body of Lk to Lm, after else statement
10. endif

Fig. 9. Algorithm to fuse loops using a guard statement

322 B. Blainey, C. Barton, and J.N. Amaral

there are no data dependences between the preceding loop Lj and ay, Lj � δ ay,
and all the predecessors of ay in G can also move up.

Similarly, in steps 11 to 16 we traverse G in reverse topological order to build
the set of nodes that can move down, the CanMoveDownSet. In order to move
a node az down, there must be no dependences between az and the second loop
Lk, and all of az’s successors must be able to move down. The test in step 17
tests if every aggregate node in the InterveningCodeSet can be moved either up
or down.

The MoveInterveningCode called in step 13 of the LoopFusionPass
uses the sets created by the IsInterveningCodeMovable to move code. If
called during a forward pass, it simply traverses the DDG and moves any ag-
gregate node that can move up to the point before the first loop Lj . Likewise,
when called during a reverse pass, it moves all nodes that can move down to the
point after the second loop Lk.

5 Results

We implemented the algorithms presented in Section 4 in the development ver-
sion of the IBM XL compiler suite and ran benchmarks compiled with this mod-
ified compiler on an IBM eServer pSeries 690 machine built with the POWER4
processor. Figure 10 presents preliminary results for the SPEC2000 and SPEC95

Fig. 10. Number of loops fused with each version of the compiler3

Removing Impediments to Loop Fusion Through Code Transformations 323

Fig. 11. Execution times for selected SPEC benchmarks with multiple versions of the
compiler suite

benchmark suites. We only include in the figures of results the benchmarks in
which our loop fusion algorithm affects code transformations, i.e., benchmarks
in which more loops are fused as a result of our algorithm. Also, benchmarks
from SPEC95 which also occur in the SPEC2000 suite were not repeated.

We compare five versions of our algorithm with an implementation of basic
loop fusion. Figure 10 presents the number of loop fusions that occurs in each
version of the compiler. The versions of the compiler are:

Original: It is a basic loop fusion algorithm in which no code transformations
are performed to try and make loops fusible.

+MIC: Does a single forward pass of the algorithm and moves any intervening
code that can be moved up. If all of the intervening code cannot be moved
up, fusion fails.

+MPIC: Part of the intervening code is moved up. In order for fusion to benefit
from this, the iteration step must be included.

+guard: Non-conforming loops are fused using the guard branch. It does not,
however, allow intervening code between two loops to be moved.

+MIC +guard: Combines guarding and simple code motion.
+MIC +guard +iteration: Complete implementation of the iterative algo-

rithm executing as many passes as required for maximal fusion.

The results in Figure 10 indicate that each of the transformations affect
different benchmarks. The movement of intervening code (columns MIC and
MPIC) results approximately doubles the number of loops fused in fma3d, galgel,

324 B. Blainey, C. Barton, and J.N. Amaral

facerec, and mgrid. The number of loops fused with MPIC or without MIC
partial movement of intervening code is the same. This is to be expected because
moving partial intervening code (move some statements up in current pass and
the remainder down in the reverse pass) only benefits when the iteration step is
added. The more complex MPIC pass, however, does not result in performance
degredations when compared to the simpler MIC pass.

When loops are made to conform through the use of guard branches (guard),
five times as many loops are fused in sixtrack, three times as many loops are
fused in crafty and 27% more loops are fused for fma3d. Both gzip and go had
2 loops fused where none were fused in the original algorithm. However, for all
other benchmarks, no extra loops are fused.

Combining the movement of intervening code with the guard branches for
loop conformation (MIC and guard) produces a dramatic increase in the number
of fused loops for many benchmarks.

Finally, the addition of the iteration step, in combination with the MPIC
and guard options resulted in even more loops fused in several benchmarks (apsi,
facerec, fma3d, galgel and sixtrack). This demonstrates that there are cases in
which moving intervening code below the second loop (reverse pass) and splitting
intervening code to move part of the intervening code above the first loop and
the rest below the second loop can be very beneficial.

The technique to generate more fusion that we report in this paper is an
enabling technology for optimizations that take place later in this compiler
framework. We are now addressing some of those optimizations and finding
ways in which they will benefit from the larger scope provided by our im-
proved fusion. Nonetheless, a paper reporting advancement of compiler tech-
nology would not be complete without run times for SPEC benchmarks. There-
fore, we present the running times for the different versions of the compiler in
Figure 11. In the current version of the compiler, the impact of the increased
fusion in the running times is modest. The most significant performance change
is in wave5, where tripling the number of loops fused resulted in an improve-
ment of 5.1% in the running time. The other significant performance change is
in mgrid, where doubling the number of loops fused resulted in an improvement
of 3.6% in the running time. We are in the process of obtaining run-time mea-
surements using hardware counters in the POWER4 (performance of caches,
load/stores completed, etc.,) to offer better explanations for the performance
changes.

When non-conforming loops are fused as a result of adding guard statements,
control flow is introduced into the loop body. The insertion of control flow into
a loop might inhibit software pipelining. Thus, we would expect to see a degra-
dation in performance in this case. We are currently investigating several of
the benchmarks (crafty, fma3d and sixtrack) to determine if there were benefits
to loop fusion (i.e., data reuse) which offset the negative effects of introducing
control flow. We are also working on a variation of index set splitting that will
be able to identify branches within a loop and peel or split the loop to remove
control flow splits.

Removing Impediments to Loop Fusion Through Code Transformations 325

6 Related Work

In this paper we presented improvements to the maximal loop fusion algorithms
in the IBM XL Fortran and VisualAge for C compilers. Scant work has been
published on maximal loop fusion followed by a loop distributor. In contrast,
there has been extensive studies and experimentation with weighted loop fusion.
Weighted loop fusion associates non-negative weights with each pair of loop
nests. These weights are a measurement of the gains that are expected if the two
loops were fused. Examples of gains represented in weighted loop graphs include
potential for array contraction, improved data reuse, and improved local register
allocation. Given such a weighted graph representing potential fusions, the goal
of weighted loop fusion is to group the loop nests into clusters in a way that
minimizes the total weight of edges that cross cluster boundaries [14].

In Gao et al., a Loop Dependence Graph (LDG) provides a measure for the
number of arrays that can be contracted when two loops are fused. Contracted
arrays can be represented by a small number of scalar variables, thus removing
memory instructions through the elimination of multiple load/stores of the same
array. Their solution for this modified weighted loop fusion problem is based on
the max-flow/min-cut algorithm [6]. The LDG based solution for loop fusion fo-
cuses on solving the problem of moving data between the cache and the registers,
while our approach also takes into consideration the data cache performance.

Kennedy and McKinley used a polynomial reduction of the Multiway Cut
problem to prove that solving the weighted loop fusion problem to maximize data
reuse is NP-Hard. They also provide a greedy algorithm and a variation of the
max-flow/min-cut algorithm to find approximated solutions for loop fusion [10].
Megiddo and Sarkar propose an integer linear programming solution for weighted
loop fusion based on the Loop Dependence Graph (LDG) [14].

In [11] Kennedy and McKinley introduce the concept of loop type. In their
experiments they used two types of loops: parallel loops are loops that have no
loop-carried dependences, and sequential loops are loops that have at least one
loop-carried dependence. In order to be fused, two loops must be of the same
type, and must be conformable at level k, i.e. they are at the same level of perfect
nests and all their outer loops are conformable. Two loops are conformable if they
have the same iteration count. When performing Unordered Typed Fusion they
try to produce the fewest loops without giving priority to any loop type. Through
a reduction of the Vertex Cover problem they show that the Unordered Typed
Fusion problem is NP-Hard. On the other hand, the Ordered Typed Fusion
exercises a preference for fusing loops of a given type. For instance, parallel
loops should be fused first — and thus potentially prevent some later fusion of
sequential loops — when data reuse is not a concern. They propose a greedy
algorithm to solve the Ordered Typed Fusion problem.

Loop distribution was introduced in Muraoka’s Ph.D. thesis to improve par-
allelism [15]. Kuck introduced the idea of using a portion of the dependence
graphs in the loop distribution algorithm, and defined of a π-block as a strong

3 Measurements were not done using the official SPEC tools.

326 B. Blainey, C. Barton, and J.N. Amaral

connected component of the data dependence graph [13]. Kennedy and McKin-
ley designed a loop distribution algorithm for loops with complex control flow
that does not replicate statements or conditions [9]. Hsieh, Hind, and Cytron
extend the algorithm to allow the distribution of loops with multiple exits [8].
A comprehensive discussion of loop transformations is found in Bacon et al. [2].

In addition to improving data locality and reducing loop overhead, loop fu-
sion can increase the granularity of parallelism and minimize loop synchroniza-
tion. Some research on loop fusion focuses on multi-processor architectures and
programs that can run in parallel. Singhai and McKinley developed a heuristic
to fuse loops, taking into account both data locality and parallelism subject to
register pressure [16].

Gupta and Bodik introduce a technique for loop transformations, including
loop fusion, to be decided at run time instead of compile time [7]. Kennedy
and McKinley provided an algorithm for fusing a collection of parallel and se-
quential loops that minimizes parallel loop synchronizations while maximizing
parallelism [10].

7 Final Remarks

Many papers address the problem of optimizing the set of loops that should
be fused to increase data reuse through graph partition and related techniques.
However, there has been scant documentation of the actual process of combining
code motion with fusion to enable maximal loop fusion and allow the redistri-
bution of these loops at a later phase. Thus the description of the maximal loop
fusion algorithms in this paper is an important contribution. Our algorithm is
fast — there are no noticeable changes in the compile time when the fusion
algorithm is implemented — and easy to implement and debug.

Our next line of study will include removing the restriction that all the loops
that are fused must be control equivalent. We will investigate techniques similar
to the ones described by Chen and Kennedy [5] that allow the critical path of a
loop to be increased when there is a potential for benefits due to increased data
reuse.

The loop distributor is also being enhanced in light of the new loop fusion
implementation. Larger loop nests are being created, which are providing new
scenarios for the loop distributor to to evaluate and deal with.

Loop alignment is another well known loop transformation which we are also
working on. Performing loop alignment on loops that have a known distance
negative dependence will allow even more loops to be fused.

A form of Index Set-Splitting is currently being developed that will analyze
the guard branches generated by the FuseWithGuard algorithm and create new
loops (through loop peeling or loop splitting) that do not contain the guards.
This optimization will eliminate the control flow splits introduced during fusion,
which should increase opportunities for later optimizations, such as software
pipelining.

Removing Impediments to Loop Fusion Through Code Transformations 327

We believe this work provides an excellent framework to enhance the number
of loops which are fused in a program. This loop fusion enables other optimiza-
tions, such as loop distribution, to make better decisions on how to organize
loops to increase performance. While the runtime results presented do not indi-
cate this work had any improvement on overall performance, we are confident
that it does create more opportunities for other optimizations and work is cur-
rently underway to enhance these optimizations to benefit from these fusion
results.

Acknowledgements

The work reported in this paper uses the infrastructure built by many hands. We
thank the Toronto Portable Optimizer (TPO) and Toronto Optimizing Backend
(TOBEY) teams for building this infrastructure. Special thanks to Jim McInnes,
Ryan Weedon, and Roch Archambault for extensive and fruitful discussions.
This research is supported by an IBM Centre for Advanced Studies (CAS) fel-
lowship and by grants from the National Sciences and Engineering Council of
Canada (NSERC), including a grant from the Collaborative Research Develop-
ment (CRD) Grants program.

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:
IBM, PowerPC, POWER3, POWER4, pSeries, VisualAge.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

References

1. A. W. Lim an S.-W. Liao and M. S. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pages 103–
112, June 2001.

2. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4):345–420, 1994.

3. Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank O’Connell, and Will
Weir. The power4 processor introduction and tuning guide. Technical Report
SG24-7041-00, IBM, November 2001.

4. C. Ding and K. Kennedy. The memory bandwidth bottleneck and its amelioration
by a compiler. In 2000 International Parallel and Distributed Processing Sympo-
sium, pages 181–189, Cancun, Mexico, May 2000.

5. C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. In International Parallel and Distribute Process-
ing Symposium, San Francisco, CA, April 2001.

328 B. Blainey, C. Barton, and J.N. Amaral

6. Guang R. Gao, Russ Olsen, Vivek Sarkar, and Radhika Thekkath. Collective loop
fusion for array contraction. In 1992 Workshop on Languages and Compilers for
Parallel Computing, pages 281–295, New Haven, Conn., 1992. Berlin: Springer Ver-
lag.

7. R. Gupta and R. Bodik. Adaptive loop transformations for scientific programs.
In IEEE Symposium on Parallel and Distributed Processing, pages 368–375, San
Antonio, Texas, October 1995.

8. B.-M. Hsieh, M. Hind, and R. Cytron. Loop distribution with multiple exits. In
Proceedings of Supercomputing, pages 204–213, November 1992.

9. K. Kennedy and K. S. McKinley. Loop distribution with arbitrary control flow.
In Proceedings of Supercomputing, pages 407–417. IEEE Computer Society Press,
November 1990.

10. K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel and
sequential code generation. Technical Report CRPC-TR94646, Rice University,
Center for Research on Parallel Computation, 1994.

11. Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improv-
ing data locality via loop fusion and distribution. In 1993 Workshop on Languages
and Compilers for Parallel Computing, pages 301–320, Portland, Ore., 1993. Berlin:
Springer Verlag.

12. Kevin Krewell. Ibm’s power4 unveiling continues: New details revealed at micro-
processor forum 2000. In Microprocessor Report: The Insider’s Guide to Micropro-
cessor Hardware, November 2000.

13. D. J. Kuck. A survey of parallel machine organization and programming. ACM
Computing Surveys, 9(1):29–59, March 1977.

14. Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for parallel
programs. In ACM Symposium on Parallel Algorithms and Architectures, pages
282–291, 1997.

15. Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis,
University of Illinois at Urbana Champaign, Dept. of Computer Science, February
1971. Report No. 71-424.

16. S. Singhai and K. McKinley. A parameterized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal, 40(6):340–355, 1997.

Near-Optimal Padding for Removing
Conflict Misses

Xavier Vera1, Josep Llosa2, and Antonio González2

1 Institutionen för Datateknik, Mälardalens Högskola
P.O. BOX 883, Väster̊as, 721 23, Sweden

xavier.vera@mdh.se
2 Computer Architecture Department, Universitat Politècnica de

Catalunya-Barcelona
Jordi Girona 1-3, Barcelona, 08034, Spain

{josepll, antonio}@ac.upc.es

Abstract. The effectiveness of the memory hierarchy is critical for the
performance of current processors. The performance of the memory hi-
erarchy can be improved by means of program transformations such
as padding, which is a code transformation targeted to reduce conflict
misses. This paper presents a novel approach to perform near-optimal
padding for multi-level caches. It analyzes programs, detecting conflict
misses by means of the Cache Miss Equations. A genetic algorithm is
used to compute the parameter values that enhance the program. Our
results show that it can remove practically all conflicts among variables
in the SPECfp95, targeting all the different cache levels simultaneously.

1 Introduction

Memory performance is critical for the performance of current computers. Mem-
ory is organized hierarchically in such a way that the upper levels are smaller and
faster. The uppermost level typically has a very short latency (e.g. 1-2 cycles)
but the latency of the lower levels may be a few orders of magnitude longer (e.g.
main memory latency may be around 100 cycles). Thus, techniques to keep as
much data as possible in the uppermost levels are key to performance.

In addition to the hardware organization, it is well known that the perfor-
mance of the memory hierarchy is very sensitive to the particular memory ref-
erence patterns of each program. The reference patterns of a given program can
be changed by means of transformations that do not alter the semantics of the
program. These program transformations can modify the order in which some
computations are performed or can simply change the data layout. Padding is
an example of the latter family of techniques. Padding is based on adding some
dummy elements between variables (inter-variable padding) or between elements
of the same variable (intra-variable padding).

Padding has a significant potential to remove cache misses. In fact, it can
remove most conflict misses by changing the addresses of conflicting data, and
some compulsory misses by aligning data with cache lines. However, finding the

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 329–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

330 X. Vera, J. Llosa, and A. González

Var0 Var1 Var2(a)

Var0 Var1 Var2(b)

P_Base0 P_Base1 P_Base2

Var0 Var1 Row0(c) Var1 Row1 Var1 Row2

Var0 Var1 Row0(d) Var1 Row1 Var1 Row2

P_Base1 P_Dim10 P_Dim10

Var1 Row
0

Var1 Row
1

Var1 Row
2

P_Dim10

Var1 Row
n

Dim11

Dim
10

Var1 Row
0

Var1 Row
1

Var1 Row
2

Var1 Row
n

Dim11

Dim
10

P_Dim
10

(f)(e)

Fig. 1. Data layout: (a) before inter-variable padding, (b) after inter-variable padding
(c) before padding, (d) after padding, (e) 2-D array, (f) 2-D array after intra-variable
padding

optimal padding for a given program is a very complex task, since the options
are almost unlimited and exploring all of them is infeasible. For very simple
programs, the programmer intuition may help but in general, a systematic ap-
proach that can be integrated into a compiler and can deal with any type of
program and cache architecture is desirable. This systematic approach requires
the support of a locality analysis method in order to assess the performance of
different alternatives.

In this paper, we propose an automatic approach to perform both inter- and
intra-variable padding in numeric codes, targeting any kind of multi-level caches.
It is based on a very accurate technique to analyze the locality of a program that
is known as Cache Miss Equations (CMEs) [6] and a genetic algorithm in order to
search the solution space. Earlier, we have proposed techniques to estimate the
locality of a possible solution in a very few seconds [2, 21], in spite of the fact that
a direct solution to the CMEs is an NP problem. The proposed genetic algorithm
converges very fast and although it does not guarantee that the optimal solution
is found, we show that after padding, the conflict miss ratio of the evaluated
benchmarks is almost negligible. Besides, comparing our method with previous
frameworks that address padding [17, 19], it turns out that in 91% of the cases
our approach yields better results.

The rest of this paper is organized as follows. Section 2 presents the padding
technique and its performance is evaluated in Section 3. Section 4 outlines some
related work and compares our method with previous approaches. Finally, Sec-
tion 5 summarizes the main conclusions of this work.

2 Padding

This section presents our method for guiding both inter- and intra-variable
padding. In this paper we refer to the cache size of L1 (primary) cache as Cs.

Near-Optimal Padding for Removing Conflict Misses 331

memi is the original base address of variable number i (V ari) and P Basei

stands for the inter-variable padding between V ari and V ari−1. dimij stands
for the size of the dimension j of V ari (Di is the number of dimensions) and Si

is its size. P Dimij is the intra-variable padding applied to dimij , and P Si is
the size of V ari after padding (see Figure 1). We define Δi as P Si − Si.

2.1 Inter-variable Padding

When inter-variable padding is applied only the base addresses of the variables
are changed. Thus, padding is performed in a simple way. Memory variable base
addresses are initially defined using the values given by the compiler. Then, we
define for each memory variable V ari, a variable P Basei, i = 0 . . .k:

0 ≤ P Basei ≤ Cs − 1

Note that padding a variable is equivalent to modifying the initial addresses
of the other variables (see Figure 1). Thus, after padding, the memory variable
base addresses are computed as follows:

BaseAddr(V ari) = memi +
k≤i∑
k=0

P Basek

2.2 Adding Intra-variable Padding

The result of applying both inter- and intra-variable padding is that all base ad-
dresses and sizes of every dimension of each memory variable may change. They
are initially set according to the values given by the compiler. For each mem-
ory variable V ari, i = 0 . . .k we define a set of variables {P Basei, P Dimij},
j = 0 . . .Di

0 ≤ P Basei, P Dimij ≤ Cs − 1

After padding, memory variable base addresses are computed in the following
way (see Figure 1):

BaseAddr(V ari) = memi+
+

∑k<i
k=0(P Basek + Δk) + P Basei

and the size of the dimensions are:

Dimi(V arj) = dimji + P Dimji

2.3 Model

For the sake of uniformity in the analysis presented here, we assume that both
inter- and intra-variable padding are applied1 In presence of a multi-level cache,
1 To apply only inter-variable padding, set all P Dimij to 0.

332 X. Vera, J. Llosa, and A. González

the cost function to minimize is the miss penalty, which can be estimated as
follows:

miss penalty =
∑

l

μl ∗ number missesl

where μl is the latency of the cache level l. Our work focuses in obtaining the
values of the variables

{P Basei, P Dimij}
that minimizes the miss penalty. When having only a single level cache, mini-
mizing the miss penalty is the same as minimizing the number of misses.

Let f be the function that represents the miss penalty for each possible value
of the padding variables:

f �−→ miss penalty (1)

f([0, Cs − 1]︸ ︷︷ ︸
P Base0

× [0, Cs − 1]D0︸ ︷︷ ︸
P Dim0j

× . . . × [0, Cs − 1]︸ ︷︷ ︸
P Basek

× [0, Cs − 1]Dk︸ ︷︷ ︸
P Dimkj

) =

= f(P Base0, P Dim0j︸ ︷︷ ︸
D0

, . . . , P Basek, P Dimkj︸ ︷︷ ︸
Dk

)

Note that [0, Cs − 1]Di represents the domain of the different P Dimij of
the variable V ari. There is no need to consider larger domains: if two references
do not conflict on a cache of size S, they will not conflict on a cache of size nS
(larger by a factor of n). Therefore, we use the cache size of the smallest cache
in the hierarchy (which in practice is L1).

Our problem can be expressed as follows:

MIN f(P Base0, P Dim0j︸ ︷︷ ︸
D0

. . . , P Basek, P Dimkj︸ ︷︷ ︸
Dk

)

0 ≤ P Basei, P Dimij ≤ Cs − 1

i = 0 . . .k

where f is called the objective function.
Since f is a pseudo-polynomial function [4], the relationship between padding

and the number of misses is nonlinear. P Basei and P Dimij can take only
integer values, thus, our problem can be seen as a nonlinear integer optimization
(NLP) one.

One of the challenges in NLP is that some problems exhibit local minima.
Algorithms that propose to overcome this problem are named Global Optimiza-
tion. Real functions have been studied deeply [20, 12, 7]. Unfortunately, integer
functions are hard to optimize. There are some studies based on {0,1} valued
integer functions [10], but in general, this is a hard and time-consuming prob-
lem. Hence, the use of heuristics is necessary. Tabu search [8] obtains promising
theoretical results, but only partial implementations have been reported so far.
On the other hand, simulated annealing [13] and genetic algorithms [9, 11] have
been used for years with very good results.

Near-Optimal Padding for Removing Conflict Misses 333

ALGORITHM:
Supply a population P0

i=1
while (not finish)

Pi=Selection(Pi−1)
Pi=Reproduce(Pi)
i=i+1

end

Fig. 2. Simple Genetic Algorithm

Our proposal is based on the use of a genetic algorithm to optimize function
f . We implemented a direct-search that makes the same number of evaluations
as our approach for the sake of comparison. In none of the cases did it yield
better results than the genetic algorithm and the miss penalty was 26.9% larger
on average.

2.4 Genetic Algorithm

Algorithms for function optimization are generally limited to convex regular
functions. However, there are lots of functions that are not continuous, non
differentiable or multi-modal. It is common to solve this problem by means of
stochastic sampling.

Genetic Algorithms (GAs) [9] are a particular type of stochastic methods,
that simulate the evolution of a population. Figure 2 shows the simplest GA.
It starts from a random generated population, and it makes the population
evolve by means of basic genetic operators (selection, mutation and crossover) [9]
applied to individuals of the current population, to produce an improved next
generation. The probabilities for crossover and mutation, as well as the size of
the initial population, are set experimentally.

Genetic Algorithm Parameters. The use of GAs requires the determination
of the following issues: chromosome representation, selection function, genetic
operators and the termination criteria.

Each individual is made up of a set of chromosomes, which represents the
variables. In our work, each individual is one configuration of padding (identi-
fied by all the inter- and intra-variable padding factors), and the chromosomes
represent one single padding factor. The fitness of those individuals is computed
using the objective function (eq. 1). The fittest individual is the one that has a
set of padding factors that results in a smallest miss penalty.

Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some finite alphabet such as
alphabet {0,1}. Therefore, each chromosome is made up of a sequence of genes
from a certain alphabet.

It has been shown that using large alphabets gives better results [15]. Thus,
we have used the alphabet {0, . . . , 2k − 1}, where k is the greatest divisor of the

334 X. Vera, J. Llosa, and A. González

log2Cs that is lower than log2Cs. This is the largest value of k that guarantees
that a single padding factor consists of at least two genes for every cache size.
This is not a restriction because the compilers know the cache size. Thus, this
computation can be done automatically.

Example. Let us assume a cache of 32KB. Thus, log2(32×210) = 15. The set of
divisors is divisors = {1, 3, 5, 15}. Hence, the greatest divisor less than 15 is 5,
and we will use the alphabet {0, . . . , 31}, representing each single padding with
3 genes. For instance, a padding factor of 10017 is represented by the following
three genes:

01001︸ ︷︷ ︸
gene0=9

11001︸ ︷︷ ︸
gene1=25

00001︸ ︷︷ ︸
gene2=1︸ ︷︷ ︸

chromosome

Genetic operators provide the basic search mechanism of the GAs, creating
new solutions based on the solutions that exist. The selection of individuals
to produce successive generations plays an extremely important role. We have
adopted one of the selection schemes that gives better results, which is known
as remainder stochastic selection without replacement [9].

2.5 Implementation of Padding

Given a loop nest, our objective function (f in eq. 1) consists of the CMEs
generated in a parameterized way, weighted with the latencies of each cache
level. We generate a set of parameterized equations for each cache level, where
the parameters are the padding factors. We have developed some techniques
that exploit the special characteristics of the CMEs [2] in order to speed-up the
process of counting solutions in them. To further reduce the computation cost,
we propose to study a subset of the iteration space instead of the whole iteration
space [21]. This subset is used to study the L1 cache, and the resulting misses
are passed to the following cache levels.

Our experiments have shown that an initial population of size equal to 30 is
enough to achieve a good solution. We find that if we set crossover probability
to 0.9 and we choose a mutation probability of 0.001, the genetic algorithm gives
near-optimal results after 15 generations.

3 Performance Evaluation

3.1 Experimental Framework

We have implemented our padding technique for Fortran codes through the
Polaris Compiler [16] and the Ictineo library [1].

We evaluate the CMEs using our own polyhedra representation [2]. The size
of the sample is set according to a confidence interval of width 0.05 and a 95%
confidence [21]. We use the central point of this interval as an estimation of the
actual miss ratio.

Near-Optimal Padding for Removing Conflict Misses 335

We have optimized several applications taken from the SPECfp95 that give
an insight into how our tool can remove conflict misses. For each application, we
have chosen the most time-consuming loop nests that in total represent between
the 60-70% of the whole execution time, using the reference input data. Results
for different cache architectures, including multi-level caches, are reported. A
fully-associative cache has been evaluated as a reference point to estimate the
amount of conflict misses that are not removed by the padding technique.

3.2 Experimental Evaluation

Figure 3 shows, for the 6 SPECfp95 programs analyzed, the miss ratio of a direct-
mapped cache before and after applying inter-variable padding. Note that the
figures for the different cache sizes (32KB, 16KB, 8KB, and 4KB) have different
scales. Note also that the SPECfp95 applications have a relatively small working
set with respect to current applications. Thus, the results for the smaller cache
sizes may be more representative of what we can expect today for larger caches
and bigger applications. Two sets of programs can be distinguished:

– Set1 is composed of programs Tomcatv and Swim. The miss ratio of this set
of programs is highly affected by cache size. In addition many of the misses
are due to conflicts [5].

– Set2 is composed of programs Su2cor, Hydro, Mgrid, and Applu. The miss
ratio of this set of programs is quite insensitive to the cache size. In addition
all the programs of this set have practically no conflict misses [5].

(b)(a)

32KBCache

0,0

5,0

10,0

15,0

20,0

25,0

Tomca
tv

Swim

Su2c
or

Hyd
ro

Mgri
d

App
lu

Benchmarks

M
is

s
Ra

tio

NOPadding

Inter-Padding

16KBCache

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0

Tomca
tv

Swim

Su2
co

r
Hyd

ro
Mgri

d
Applu

Benchmarks

M
is

s
Ra

tio

NOPadding

Inter-Padding

(c) (d)

8KB Cache

0,0
10,0

20,0
30,0
40,0
50,0

60,0
70,0

Tomca
tv

Swim

Su2co
r

Hyd
ro

Mgrid
Applu

Benchmarks

M
is

s
ra

tio NO Padding

Inter-Padding

4KB Cache

0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0
80,0
90,0

Tomca
tv

Swim

Su2c
or

Hyd
ro

Mgri
d

Applu

Benchmarks

M
is

s
Ra

tio

NOPadding

Inter-Padding

Fig. 3. Miss ratio before and after inter-variable padding for different cache sizes

336 X. Vera, J. Llosa, and A. González

(a)

(d)

(b)

(c)

32KB Cache

0

5

10

15

20

25
M

is
s

Ra
tio NO Padding

Inter- Padding

Fully-Assoc.

Tomcatv Swim

21 43 21 4365 7 65 7

16KB Cache

0
5

10
15
20
25

30
35
40

45
50

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

8KB Cache

0
10

20
30

40
50
60

70
80

90
100

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

4KB Cache

0
10

20
30
40
50

60
70
80

90
100

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

Fig. 4. Miss ratio for the Tomcatv and Swim loop nests before and after inter-variable
padding for different cache sizes

Inter-Variable Padding. Since the objective of padding is to eliminate conflict
misses, for Set2 we obtain a small improvement when applying inter-variable
padding due to the low number of conflicts. Su2cor, which is the program with
the highest conflict miss ratio in this set, experiences the highest improvement
(e.g 27% miss rate reduction for a 16KB cache). In addition, another source of
improvement is that the proposed inter-variable padding technique also aligns
the data structures with cache lines, which reduces compulsory misses.

On the other hand, inter-variable padding provides a huge improvement in
miss ratio for Set1. Note that for both programs, a small improvement is ob-
tained for a 32KB cache (Figure 3.a). This is caused by the fact that almost no
conflicts arise for 32KB caches or bigger for these programs due to the relatively
small working set of the SPECfp95 applications. However, the smaller the cache
the bigger the miss ratio and the bigger the improvement that inter-variable
padding obtains.

For the Swim program, the miss ratio grows from 8.1% to 24.8%, 62.9%,
and 77.9% when the cache is reduced from 32KB to 16KB (Figure 3.b), 8KB
(Figure 3.c), and 4KB (Figure 3.d) respectively. However, when we apply inter-
variable padding, the miss ratio is kept almost constant (7.1%, 7.2%, 7.8% and
8.2% respectively). This is because most of the misses of this program are caused
by conflicts between different data structures (inter-variable conflict misses) and
the algorithm practically obtains the optimal padding among them.

For the Tomcatv program, the miss ratio also grows significantly when the
cache size is reduced (9.5%, 14.8%, 46.0%, and 72.1% respectively for the dif-

Near-Optimal Padding for Removing Conflict Misses 337

Tomcatv

0

10

20

30

40

50

60

70

80

90

100
M

is
s

R
at

io

NO Padding

Inter-Padding

Intra-Padding

Fully-Assoc

1 32 4 5 6 7 1 32 4 5 6 7

Cache 8KB Cache 4KB

(b)(a)

Pentium4Cache

0

10

20

30

40

50

60

70

80

90

M
is

s
R

at
io

NO Padding

Intra-Padding

Fully-Assoc

Sw imTomcatv

Fig. 5. (a) Miss ratio for different Tomcatv loop nests before and after inter- and intra-
variable padding (b) Miss ratio for the Tomcatv and Swim loop nests for the Pentium
4 L1 cache

ferent cache sizes). In this program, we also obtain a considerable improvement
when applying inter-variable padding for caches smaller than 32KB. However,
the miss ratio after inter-variable padding varies significantly with the cache size
(8.8%, 11.8%, 21.6%, and 52%). This variation is caused by capacity misses that
grow when the cache is reduced, and by intra-variable conflict misses (e.g. con-
flicts among distinct rows and columns of the same array) whose frequency also
grows when the cache is reduced. Inter-variable padding does not remove the
latter type of conflicts, which are the target of intra-variable padding.

Figure 4 details the miss ratio for the main loop nests of the programs in Set1
(note again the different scales for the different cache sizes). The figure shows the
miss ratio for each loop before and after applying inter-variable padding. It also
shows the miss ratio for a fully-associative cache after inter-variable padding.

For the Swim program loop nests 1 and 2 have practically no improvement
due to inter-variable padding (excepting a slight improvement due to alignment)
because they have no conflict misses. Note also that these two loop nests have
almost the same miss rate regardless of the cache size. On the other hand, loop
nests 3 to 7 have an extremely large miss ratio. As an extreme case, loop nest
3 has a miss ratio close to 100% for a 4KB cache, which after inter-variable
padding is reduced to 11.8%. Note that inter-variable padding removes all the
conflict misses for all Swim loops since the miss rate after inter-variable padding
and the fully-associative miss rate are practically identical.

The Tomcatv program has several loop nests that deserve special comments.
For the 32KB and 16KB, the proposed inter-variable padding technique prac-
tically removes all conflict misses. For the 8KB cache, inter-variable padding
removes all conflict misses from all loop nests except for loop 1. In this case,
inter-variable padding reduces the miss ratio from 53.6% to 29.2% but not all
conflict misses are removed since the fully-associative miss ratio is 11.4%. An
analysis of this loop shows that there are also intra-conflict misses.

In the case of a 4KB cache, inter-variable padding achieves about the same
miss rate as a fully-associative cache for loop nests 2, 3, 5, and 7. As a noticeable
case, the miss ratio of loop 7 has been reduced from 42.3% to 15.8%. For the
other loop nests there is a significant improvement but the miss ratio is still far

338 X. Vera, J. Llosa, and A. González

(a) (b)

UltraSparc I

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
M

is
s

Pe
na

lty

NO Padding

Intra-Padding

Tomcatv Swim

Pentium 4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

M
is

s
Pe

na
lty

NO Padding

Intra-Padding

Tomcatv Swim

Fig. 6. Miss penalty before and after intra-padding for (a) UltraSparc I (b) Pentium
4 cache architectures

from that of the fully-associative cache. An analysis of these three loop nests
revealed that most of the remaining misses are intra-variable conflict misses.

Intra-Variable Padding. Inter-variable padding cannot remove intra-variable
conflict misses. The objective of intra-variable padding is to eliminate them.

We have shown in the previous section that Tomcatv is the only program
of our benchmarks that has a significant intra-variable conflict miss ratio, in
particular for caches of 4KB and 8KB. Figure 5.a shows the miss ratio for the
different loop nests of the Tomcatv program. The figure shows the miss ratio
for each loop after applying inter- and intra-variable padding. It also shows the
miss ratio before padding and that of a fully-associative. As we observed before,
inter-variable padding does not remove all conflict misses because there are intra-
conflict misses. Intra-variable padding achieves about the same miss rate as
the fully-associative cache, which means that the proposed padding algorithm
removes practically all conflict misses.

Figure 5.b details the miss ratio for the main loop nests of the programs in
Set1 for a 8KB 4-way set associative cache with 64B lines, which is the L1 cache
architecture of the new Pentium 4 processor [3]. Intra-variable padding achieves
about the same miss ratio as the fully associative cache, reducing the average
miss ratio from 62.5% to 4.18% for the Swim program, and from 23.6% to 4.6%
for the Tomcatv.

3.3 Multi-level Caches

We experimentally evaluated multi-level padding for uniprocessors. Cache anal-
yses were made for two different configurations:

– UltraSparc I:
• 16KB, 32B line direct-mapped L1 cache
• 512KB, 64B line direct-mapped L2 cache

– Pentium 4
• 8KB, 64B line 4-way set-associative L1 cache
• 256KB, 128B line 8-way set-associative L2 cache

Near-Optimal Padding for Removing Conflict Misses 339

For both processors, the L2 latency is approximately 3 times the latency of
L1, so for computing the cost function, we define the miss penalty in multiples
of L1 latency (e.g. a hit has no penalty, a L1 miss adds a penalty of 1, and
a L2 miss adds a penalty of 3). We analyzed the most significant loop nests
from Tomcatv and Swim, applying intra-variable padding. Figure 6.a shows the
miss penalty for the different loop nests assuming a cache architecture such as
UltraSparc I. Intra-variable padding reduces 21.7% the average miss penalty for
the Tomcatv program, and it reduces the average miss penalty by 50.7% for
the Swim program. Figure 6.b details the same information for the Pentium 4
architecture. Again, intra-padding reduces drastically the miss penalty for both
programs. In the case of Tomcatv, average miss penalty is reduced by 57.2%,
whereas it drops 86.6% in the case of Swim.

Optimization Time. Finally, padding has to be performed in a reasonable
amount of time in order to be included as an optimization step of a compiler.
In our case, it took about 3 minutes to optimize each program2 This amount of
time can be significantly reduced if the technique is guided by a locality analysis
in order to apply padding only to those loop nests that can benefit from it. The
locality analysis developed in this work could easily be extended to provide such
information.

4 Related Work

Caches improve the speed of programs by reducing the number of accesses to
the slow upper levels of the memory hierarchy. Conflict misses may represent
the majority of intra-nest misses and about half of all cache misses for typical
programs and cache architectures [14].

Some padding techniques have been previously proposed by other authors.
Rivera and Tseng [17, 18] propose several simple heuristics that are addressed

to eliminate conflicts in some particular cases. They mainly focus on conflicts
that occur on every loop iteration, addressing only inter-padding for uniformly
generated references (so they can not remove conflict misses for references such
as B(i,j) and C(k,j)). On the other hand, they do not use intra-padding to remove
cross-interferences. In the case they can not remove all the conflicts, no changes
are done to the data layout. Besides, they use the padding algorithm devised to
avoid conflict misses for direct-mapped caches to remove conflict misses for set-
associative caches, without taking in account that interferences arise in different
situations for different cache architectures. A set contention in a set-associative
cache does not mean there is an interference. They presented an extension of
this work targeting multi-level caches [19].

Figure 7 and Figure 8 compare their method with ours. We have studied all
the main loop nests of the programs in Set1 (see Section 3.2), which are the
ones that suffer heavily from conflict misses.

2 In a Pentium III at 600 MHZ.

340 X. Vera, J. Llosa, and A. González

(a) (b)

(c) (d)

32KB Cache (=29.1%)

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00
M

is
s

R
at

io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

16KB Cache (=13.6%)

0,0

5,0

10,0

15,0

20,0

25,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

8KB Cache (=9.0%)

0,0

5,0

10,0

15,0

20,0

25,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

4KB Cache (=15.6%)

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

Fig. 7. Comparison with Rivera et al’s method for direct-mapped caches. Δ stands for
the relative decrease in miss ratios our method achieves compared to theirs.

Figure 7 compares both methods for 32KB, 16KB, 8KB and 4KB direct-
mapped caches. Notice different scales for each chart. First column presents
the miss ratios obtained running Rivera et al’s method. We use the best result
yielded by their two approaches PAD and PADLITE. The second column shows
the miss ratios obtained by our approach. GA performs better in all the cases
for 32KB and 16KB caches. However, we observe that in some cases Rivera et
al’s heuristics obtain better results when studying 8KB and 4KB caches.

In order to improve the population in successive iterations, the presence
of good individuals in the first population may help. Thereby, we include in
the initial solution two individuals (seeds) that represent the original solution
provided by the compiler and the one obtained by running PADLITE [17]. The
third column presents the results for this variant (called GA+seed). It gives
better results for all cache configurations, yielding 29.1%, 13.6%, 9% and 15.6%
smaller miss ratios for the 32KB, 16KB, 8KB and 4KB caches respectively.

Finally, we compare the different padding techniques for multi-level caches.
Figure 8 shows the miss penalty for UltraSparc I and Pentium 4 cache architec-
tures. Our method improves the miss penalty, compared to Rivera et al’s method,
by 8.1% and 8.9% for UltraSparc I and Pentium 4 architectures respectively.

Ghosh, Martonosi and Malik [6] propose a padding technique for direct-
mapped caches based on using the CMEs for conflicting arrays that have the
same column size. Their technique finds the optimal padding if there is a padding
such that the total number of replacement misses after padding is zero. However,
if such a padding does not exist, their technique does not provide any solution.
Note that replacement misses include both conflict and capacity misses and one

Near-Optimal Padding for Removing Conflict Misses 341

(a) (b)

UltraSparc I (=8.1%)

0

1000

2000

3000

4000

5000

6000
M

is
s

P
en

a
lty

PAD(MULT)

GA

GA+seed

Tomcatv Swim

Pentium 4 (=8.9%)

0

500

1000

1500

2000

2500

3000

M
is

s
P

en
al

ty

PAD(MULT)

GA

GA+seed

Tomcatv Swim

Fig. 8. Comparison with Rivera et al’s method for multi-level caches. Δ stands for the
relative decrease in miss penalty our method achieves compared to theirs.

may expect the case where replacement misses cannot be decreased up to zero
to be common. In their experiments, this only happens for one out of the seven
loops examined but most of their benchmarks are small kernels.

Our technique differs and improves these two previous approaches in the fact
that it is a technique to search the solution space for the optimal padding, for
any type of reference pattern that corresponds to affine references. It always
produces a padding scheme that reduces conflict misses and usually is very close
to the optimal. It is not targeted to avoid conflicts in some particular cases but
it considers any type of conflicts, using both inter- and intra-padding to remove
self- and cross-conflicts. Besides, our algorithm works fine for both direct-mapped
and set-associative caches, generating the best padding scheme for each kind of
architecture.

Recently, Vera and Xue [22] have presented a method that extends the CMEs
to further analyze whole programs. We believe that our padding approach can be
easily adapted to this new analysis technique. In that way, the padding factors
could be optimized at a global program level considering the interactions of the
different loop nests.

5 Conclusions

Cache memory performance is critical for the efficient execution of numerical
applications. Padding is a program transformation that reduces conflict misses.
In this work, we have proposed the use of genetic algorithms in order to perform
near-optimal padding.

The evaluations show that, for the programs that have conflict misses, we
achieve a significant improvement. For instance, for a 8KB 4-way associative
cache, which is the L1 cache of the new Pentium 4 processor [3], we can reduce
the miss ratio of the Swim program from 62.5% to 4.18% and the miss ratio
of the Tomcatv program from 23.6% to 4.6%. Furthermore, the miss penalty
for Pentium 4 is reduced by 79.27%. Besides, for the programs without conflict
misses padding slightly reduces the compulsory misses due to a better alignment
of arrays with cache lines.

342 X. Vera, J. Llosa, and A. González

Finally, an exhaustive evaluation of the programs with a high number of
conflict misses reveals that the proposed technique practically removes all the
conflict misses for all the loops analyzed, both inter- and intra-variable conflicts.

Acknowledgments

This work has been supported by the ESPRIT project MHAOTEU (EP 24942)
and the CICYT project 511/98. We would like to thank the anonymous referees
for providing helpful comments in earlier drafts of this paper.

References

1. E. Ayguadé et al. A uniform internal representation for high-level and instruction-
level transformations. UPC, 1995.

2. N. Bermudo, X. Vera, A. González, and J. Llosa. An efficient solver for cache miss
equations. In IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’00), 2000.

3. D. Carmean. Inside the Pentium 4 Processor Micro-Architecture
(www.intel.com/pentium4), 2000.

4. P. Clauss. Counting solutions to linear and non-linear constraints through Ehrhart
polynomials. In ACM International Conference on Supercomputing (ICS’96), pages
278–285, Philadelphia, 1996.

5. A. Fernández. A quantitative analysis of the SPECfp95. Technical Report UPC-
DAC-1999-12, Universitat Politècnica de Catalunya, March 1999.

6. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. ACM Transactions on Programming
Languages and Systems, 21(4):703–746, 1999.

7. Gill, Murray, and Wright. Practical optimization. Academic Press, 1981.
8. Glover and Laguna. Tabu search. Kluwer, 1997.
9. D. Goldberg. Genetic algorithms in search, optimizations and machine learning.

Addison-Wesley, 1989.
10. Hansen, Jaumard, and Mathon. Constrained nonlinear 0-1 programming. ORSA

Journal on Computing, 1995.
11. J. Holland. Adaptation in natural and artificial systems. The University of Michigan

Press, Ann Arbor, 1975.
12. Host, Pardalos, and Thoai. Introduction to global optimization. Kluwer, 1995.
13. Kirkpatrick, Gelatt, and Vecchi. Optimization by simulated annealing. Science

220, 1983.
14. K. S. McKinley and O. Temam. A quantitative analysis of loop nest locality. In

Proc. of VII Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’96), 1996.

15. Z. Michalewicz. Genetic algorithms+Data structures=Evolution Programs.
Springer-Verlag, 1994.

16. D. Padua et al. Polaris developer’s document, 1994.
17. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.

In ACM SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation (PLDI’98), pages 38–49, 1998.

Near-Optimal Padding for Removing Conflict Misses 343

18. G. Rivera and C.-W. Tseng. Eliminating conflict misses for high performance ar-
chitectures. In ACM Internacional Conference on Supercomputing (ICS’98), 1998.

19. G. Rivera and C.-W. Tseng. Locality optimizations for multi-level caches. In
Supercomputing (SC’99), 1999.

20. Torn and Zilinskas. Global optimization. Springer-Verlag, 1989.
21. X. Vera, J. Llosa, A. González, and C. Ciuraneta. A fast implementation of cache

miss equations. In 8th International Workshop on Compilers for Parallel Comput-
ers (CPC’00), 2000.

22. X. Vera and J. Xue. Let’s study whole program cache behaviour analitically. In
International Symposium on High-Performance Computer Architecture (HPCA 8),
Cambridge, Feb. 2002.

Fine-Grain Stacked Register Allocation for the
Itanium Architecture

Alban Douillet1, José Nelson Amaral2, and Guang R. Gao3

1 Dept. of Computer Science, University of Delaware,
Newark, DE 19716, USA
douillet@capsl.udel.edu

2 Dept. of Computing Sciences, University of Alberta,
Edmonton, Alberta, T6G 2E8, Canada

amaral@cs.ualberta.ca
3 Dept. of Electrical Engineering, University of Delaware,

Newark, DE 19716, USA
ggao@capsl.udel.edu

Abstract. The introduction of a hardware managed register stack in
the Itanium Architecture creates an opportunity to optimize both the
frequency in which a compiler requests allocation of registers from this
stack and the number of registers requested. The Itanium Architecture
specifies the implementation of a Register Stack Engine (RSE) that au-
tomatically performs register spills and fills. However, if the compiler
requests too many registers, through the alloc instruction, the RSE will
be forced to execute unnecessary spill and fill operations. In this pa-
per we introduce the formulation of the fine-grain register stack frame
sizing problem. The normal interaction between the compiler and the
RSE suggested by the Itanium Architecture designers is for the compiler
to request the maximum number of registers required by a procedure
at the procedure invocation. Our new problem formulation allows for
more conservative stack register allocation because it acknowledges that
the number of registers required in different control flow paths varies
significantly. We introduce a basic algorithm to solve the stack regis-
ter allocation problem, and present our preliminary performance results
from the implementation of our algorithm in the Open64 compiler.

1 Introduction

The problem of minimizing data traffic between the memory and the registers
of a processor — known as the register allocation problem — has occupied
researchers for many years. Whether selecting a set of values to be promoted
to registers [5], or minimizing the number of values spilled from registers to
memory [4,3], the goal is to minimize the number of loads and stores actually
executed at runtime to reduce memory traffic and thus reduce the execution
time of the program.

Register allocation algorithms work with the constraint that a processor has
a fixed — and often small — register set. Besides the increased traffic with

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 344–361, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fine-Grain Stacked Register Allocation for the Itanium Architecture 345

memory caused by the unavoidable spill operations, reusing the same register to
store multiple temporary values introduces write after read (WAR), and write
after write (WAW) dependencies in the instruction stream. Such dependences
are not intrinsic to the program being executed, but are a consequence of register
reuse.

Another unintended consequence of the small fixed-size register file is that
the load and store instructions required for register spilling must be fetched from
memory and issued, thus these instructions compete with other instructions for
space in the instruction and the data cache and further increase the memory
traffic.

In order to eliminate these avoidable dependences, out-of-order issue proces-
sors often have extra non-architected registers — or reservation stations — that
are not visible to the compiler. This extra storage can be used at runtime to re-
name the registers selected by the compiler, eliminating the extra dependences
and allowing more instruction level parallelism. Unfortunately loads and stores
inserted by the compiler to spill values to memory cannot be eliminated from
the instruction stream at runtime. Therefore these spill instructions increase the
memory traffic even when some of the non-architected storage could be used to
save the value been spilled[9,10].

An alternative design that eliminates many of these problems is adopted in
the Intel Itanium Architecture [6,7,8]. In the Itanium a portion of the register
file is implemented as a very deep stack. In the first processor in the Itanium
family, the top 96 positions of this register stack are implemented as physical
registers, while the remainder of the stack is mapped to memory. An instruction,
called alloc , is provided to enable the compiler to specify how many registers
will be used by each procedure. This instruction allows for up to 96 registers
to be allocated at once. The architecture also provides a register stack engine
(RSE), a hardware mechanism that automatically copies to and from memory
the bottom portion of the stack that does not fit in the 96 physical registers. To
the best of our knowledge, the Itanium architecture is the only architecture that
uses such a mechanism.

Whenever the accumulated allocations in a program exceed 96 registers, the
RSE transfers values between the memory and the registers to make room for the
new allocation. Therefore the compiler still has to solve the register allocation
problem in a similar fashion as it does for architectures without a register stack.
However it is now possible to make new tradeoffs between serialization caused by
the creation of WAR and WAW dependences and the allocation of more registers.
Moreover the allocation instruction itself has a cost that needs to be taken into
consideration when multiple allocation instructions are used in a procedure to
reduce the accumulated register allocation.

The alloc instruction was designed to be called once at the beginning of every
function. In this paper, we propose the fine-grain allocation of stacked registers,
i.e.,we propose to use more than one alloc instruction in each procedure in order
to reduce the number of unnecessary register spills and fills. In Section 2, we
describe the register stack and the alloc instruction. In Section 3, we introduce a

346 A. Douillet, J.N. Amaral, and G.R. Gao

motivating example and clearly formulate the multi-alloc problem. In Section 4,
we describe an algorithm to solve the multi-alloc problem. The experimental
results are presented in Section 5 and show that a finer-grain use of the alloc
instruction can lead to improvements at run-time.

2 Register Stack and Allocation Instruction

The Itanium architecture has 128 integer general purpose registers. Of those,
32 are static registers accessed and allocated by the compiler using conventional
mechanisms. A register stack is implemented in the remaining 96 registers. Be-
cause the architecture maintains a backing storage where portions of the stack
can be spilled, from the point of view of the application, this stack can grow
unbounded. Stacked registers are organized into frames, one per function invoca-
tion. The size of the frames are set using the alloc instructions1. Each individual
alloc instruction can resize the current register stack frame to up to 96 registers.

Whenever the total number of stacked registers allocated surpasses 96, a
hardware mechanism, called the Register Stack Engine (RSE) automatically
spills enough values to the backing storage to make room for a new allocation
request. When physical registers become available (e.g. due to the completion
of a function invocation, the RSE fills these registers with values that had been
previously spilled. The spill/fill operations are asynchronous with the execution
of the instructions of the running application.

2.1 The Allocation Instruction

The alloc instruction has four parameters: the number of inputs, i, the number
of locals, l, the number of outputs, o, and the number of rotating registers, r.
The size of the frame allocated is given by l + o. The input registers are a subset
of the local registers. The output registers of a caller procedure overlap with the
input registers of the callee to allow the passage of parameters via registers. The
rotating registers are a subset of the stacked registers allocated in the current
frame with the restriction that 0 ≤ r ≤ l + o. Rotating registers are used to
enable the implementation of dynamic single assignment in software pipelined
loops. The execution of an alloc instruction may either grow or shrink the register
frame of the current procedure. The parameters of the alloc instruction specify
the size of the current frame, and that this new size is effective immediately
upon completion of the instruction.

For simplicity, in the remaining of this paper we consider the alloc instruction
to have a single parameter that is the size of the frame. Unless otherwise stated,
henceforth, all references to number of registers, refer to stacked registers. We
say that a function requires n registers for its execution if in at least one of
its execution paths n stacked registers are accessed. Notice that not all the
1 The alloc instruction should actually be named resize instruction. Indeed it does not

only allocate registers but also deallocate them if needed. The effect of the instruction
is only a change of size of the register stack frame.

Fine-Grain Stacked Register Allocation for the Itanium Architecture 347

executions of the function will need the allocation of n registers, as the function
might not execute the path that requires the maximum number of registers.
Consider, for instance, a function foo that requires 60 registers and that calls a
function bar that also requires 60 registers. Figure 1(a) shows the register stack
after the allocation of registers for the function foo. Figure 1(b) illustrates that
when bar executes there is not enough registers to allocate its 60 registers (see the
shaded area). Therefore some of the registers previously allocated to foo must
be saved to memory (spilled) to make room for the registers required by bar
(Figure 1(c)). The register frame of bar wraps around to use the space emptied
by spilling the lower part of foo’s frame. Now consider that we have used our
technique in bar and have provided multiple alloc instructions for different paths
of bar. If the current invocation of bar only requires 10 registers, the pattern of
allocation will be the one shown in Figure 1(d), and no register spilling by the
RSE would be required.

96

80

60

40

20

0

(b)(a) (c)

bar(high)

foo (high)

bar (low)

foo

bar

alloc 10
bar

alloc 60

foofoo

alloc 60

(d)

Fig. 1. Example of the Effects of the alloc Instruction

In this paper we explore the use of multiple alloc instructions in a procedure
in order to reduce the number of unnecessary spills/fills performed by the RSE.
Our intuition is that if the compiler is forced to use a single alloc instruction
per procedure, this instruction must inserted early in the procedure and must
request the allocation of the maximum number of registers used in any control
path through the procedure. If the total number of allocated registers over all
the active functions exceeds 96, then the RSE must spilled values in all called
procedures. Meanwhile the actual register requirement in some control paths
may be considerably smaller than the maximum among all control paths.

2.2 RSE Modes of Operation

An important factor in the optimization of the placement of alloc instructions
by the compiler is the policy used to perform the spill and fill operations by

348 A. Douillet, J.N. Amaral, and G.R. Gao

the RSE. The Itanium architecture proposes four spill/fill policies for the RSE
implemented as modes of operation. The four modes of operations offer com-
binations of eager and just-in-time loads and stores. A load/store is said to be
just-in-time when it is executed when an alloc instruction triggers it or by the
return of a procedure. A load/store is said to be eager when the RSE specu-
latively loads/stores registers from/to memory before an alloc instruction asks
for it or the procedure returns. Through the eager execution of load/stores, the
RSE will hopefully make enough space for the next alloc instruction and will
not stall the execution of the program waiting for the spills to be executed.

Although the algorithm discussed in this paper is independent of the mode
of operation of the RSE. the “eager loads/eager stores” mode of operation
would be the most efficient one for applications with many function calls. How-
ever, the Itanium processor only implements the “just-in-time loads/just-in-time
stores”.

3 Problem Statement and Motivating Example

In this section we introduce a simple example that we will used throughout the
paper to motivate and describe the execution of our multi-alloc algorithm.

3.1 Motivating Example

We consider the problem of efficiently inserting alloc instructions in the code of
a function f in a program P . We explain what we mean by “efficient” through
the following example. We are given the Control-Flow Graph (CFG) G of f and
the local register requirement (lrr) of every basic block of G, i.e.,the number of
stacked registers that must be allocated for each basic block of G. For instance,
lrr(A) = 10 means that basic block A requires that at least 10 registers be
allocated from the register stack to execute properly. We assume that the CFG
is acyclic — we will deal with loops later. Also, the lrr values are known and
our problem formulation takes place after the register assignment phase2.

Figure 2 shows the CFG G that we will use throughout the paper. The
big boxes represents the basic blocks of G while the number in the little boxes
attached to the basic blocks are the lrr value of the corresponding basic block.
For instance, lrr(C) = 20 and lrr(F) = 96.

The alloc instructions have not been inserted in the code of f yet. For in-
stance, the basic block A can only be executed if there are at least lrr(A) = 10
registers allocated on the stack. Thus, we must make sure that,

Criterion 1: For every control-flow path C of G, there will be enough
registers allocated to allow the execution of every basic block of C .

Figure 3 presents an allocation instruction insertion scheme that satisfies
Criterion 1.
2 Usually named register allocation phase, but we want to avoid any confusion with

the traditional register allocation problem.

Fine-Grain Stacked Register Allocation for the Itanium Architecture 349

D 10 E 20 F 96

G 10

B 10 C 20

A 10

Fig. 2. The CFG G of a routine f where every basic block is associated with its lrr value

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 96

Fig. 3. The alloc instruction allocates enough registers so that every basic block in G

can execute properly

Now, thanks to the alloc instruction in A, 96 registers are allocated for every
basic block in G, the program is correct and f can be executed. The allocation
value of the alloc instruction was chosen as equal to the maximum lrr value
of all the basic blocks in G. This is the normal usage of the alloc instruction
described in the Intel Itanium Architecture manuals[6,7,8]. Note that the alloc
instruction must be executed before any other instruction that uses a stacked
register is executed.

Unfortunately, depending on the control-flow path to be executed, we may
allocate more registers than actually required and therefore trigger unnecessary
memory traffic. For instance, if the control-flow path [A, B, D, G] is executed
at run-time, 96 registers are allocated but only 10 are used. It would be more
efficient if,

350 A. Douillet, J.N. Amaral, and G.R. Gao

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 10 alloc 20

alloc 10 alloc 20 alloc 96

alloc 10

Fig. 4. An alloc instruction is inserted in every basic block of G to allocate the exact
number of registers required by any basic block

Criterion 2: For every control-flow path of G, we do not allocate more
registers than actually required.

Using this criterion, we could have the other extreme for the insertion of the
allocation instructions shown in Figure 4.

Now, we have satisfied Criteria 1 and 2 but we, obviously, used unnecessary
alloc instructions that create a non-negligible increase on the code size and will
slow down the program. For instance, the alloc instruction in D is redundant and
could be removed because basic block B, the only parent of D, already allocated
enough registers for D to execute. Thus, we need another criterion to generate
an efficient alloc insertion,

Criterion 3: In any control-flow path in G, only “necessary” alloc in-
structions are inserted.

To apply criterion 3, we try to use a simple algorithm that eliminates the alloc
instruction from a basic block vi if all the paths that lead to vi have allocated
enough registers to satisfy the lrr of vi. Unfortunately, as shown in Figure 5, this
algorithm fails to satisfy Criterion 3 : for the control-flow path [A, C, E, G], the
alloc instruction in basic block E is not necessary. However our algorithm failed
to eliminate that instruction because the control-flow path [A, B, E, G] does not
allocate enough registers before reaching E.

We want to move the alloc instruction that is in E in Figure 5 to another
place, so that it is not executed in the path [A, C, E, G]. On the other hand,
we do not want to move the alloc from E to B, because in that case we would
allocate too many registers (20 instead of 10) for the path [A, B, D, G] and
violate criterion 2. Thus, we would like the alloc instruction to appear between
B and E. We insert an artificial basic block in the CFG when we have no

Fine-Grain Stacked Register Allocation for the Itanium Architecture 351

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 20

alloc 20 alloc 96

Fig. 5. The alloc instruction are all necessary except the one in E for the control path
[A, B, E, G]

place for the alloc instruction that would satisfy all three criteria. Because the
allocation instruction insertion phase occurs late in the code generation phase,
the insertion of an artificial basic block in the CFG can be costly in term of
updating hyperblocks, scheduling, and live ranges. Therefore we need another
criterion for our definition of efficient allocation insertion in order to ensure that
this method is only used as a last resort,

Criterion 4: The number of artificial basic blocks inserted in G is min-
imum.

3.2 Problem Formulation

In practice we are concerned with the number of alloc instructions executed at
runtime, therefore when applying Criterion 3 we want to take into consideration
the frequency of execution of each control path. Thus we now assume that we are
also given a function w(C) that specifies the frequency of execution of the control
path C when the function f is executed. To implement the third condition we
define N(G, w), the number of alloc instructions executed for the control flow
graph G under the frequency of execution w as:

N(G, w) =
∑

C∈P (G)

∑
vi∈C

w(C).hasalloc(vi)

where P (G) is the set of all control-flow paths of G, vi ∈ C indicates that the
basic block vi is in part the control path C, and the function hasalloc(vi) returns
1 if the basic block vi contains an alloc instruction and 0 otherwise. Because the
alloc instruction can have a long latency (RSE spills/restores) and because the
alloc instruction introduces new false dependencies with the instructions using

352 A. Douillet, J.N. Amaral, and G.R. Gao

the registers being allocated, the less alloc instructions executed at run-time,
the better (Criterion 3). We can now present our problem statement.

Multiple Alloc Problem Statement: Given an acyclic control-flow graph
G = (V, E) for a procedure f , a register assignment for the variables of f , and
a frequency of execution w(C) for each control-flow path of f , find an
allocation instruction insertion scheme A of G such that all the following
conditions are satisfied:

(i) Correctness Criterion: for every control-flow path C of G, enough
registers are allocated to allow the correct execution of each basic block in
C.

(ii) Fitness Criterion: for every control-flow path C of G, the number of
registers allocated does not exceed the maximum local register requirement
of any basic block in C.

(iii) Efficiency Criterion: the average number of alloc instructions executed
at run-time, N(G, w), is minimized.

(iv) Sparseness Criterion: the number of artificial basic blocks inserted in
the CFG is minimized

The criteria of the problem statement are sorted in decreasing priority order.
For instance, the efficiency criterion must be satisfied before trying to satisfy the
sparseness criterion.

In Figure 6 we provide a solution that satisfies all the requirements of our
problem statement. A control-flow path may include more than one alloc instruc-
tion, because a given basic block may belong to multiple control paths. The arti-
ficial basic block H has been inserted between B and E to allocate 20 registers for

alloc 20 0

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 20

alloc 96

H

Fig. 6. A solution to our example

Fine-Grain Stacked Register Allocation for the Itanium Architecture 353

the execution of E without the instruction interfering with the control-flow path
[A, C, E, G]. Criteria 1-3 are satisfied while the number of artificial basic blocks
inserted is minimized. In any control path, when the flow of execution reaches
a basic block, either enough registers have already been allocated or the basic
block contains the appropriate alloc instruction. Also, after any alloc instruction
that allocates r registers, at least r registers are actually used later in the CFG.
Finally, N(G, w) is minimized and equal to 4 + 2 + 1 + 1 = 8 when consider-
ing the control-flow paths in the following order: [A, B, D, G], [A, B, H, E, G],
[A, C, E, G] and [A, C, F, G].

4 Solution Method

In this section we introduce an heuristic algorithm that generates a multiple
alloc instruction placement. Given a CFG annotated with the lrr for each basic
block, this algorithms finds a set of alloc instructions that satisfies criterion 1.
Although this algorithm does not minimize the number of artificial basic blocks
inserted, our observation indicates that few such blocks are actually inserted in
the code. In its current formulation, the algorithm assumes that all control-flow
paths have the same frequency of execution.

4.1 The Algorithm

Before inserting the alloc instructions, the following intermediate values need to
be computed.

lrr(A): Local Register Requirement of basic block A. As defined earlier, it is
the maximum number of live registers at any point in basic block A. To be
executed, A requires that lrr(A) registers be allocated on the stack.

orr(A): Outgoing Register Requirement of basic block A. It is the minimum
number of stacked registers required by any control-flow path in the CFG
that originates in A, A included, and ends at the exit node. The orr(A) can
be defined recursively by: orr(A) = max(lrr(A), min(orr(S1), . . . , orr(Sn)))
where the S1, . . . , Sn are the direct successors of A in the CFG.

Given a register assignment, the lrr(A) and the orr(A) are intrinsic prop-
erties of A. The following two values are determined by the placement of alloc
instructions:

alloc(A): Number of registers allocated by the alloc instruction in A. If there is
no alloc instruction in A, then alloc(A) = 0.

maa(A): Minimum Actually Allocated. The value represents the minimum num-
ber of registers actually allocated in any control-flow path that originates in
the start node of the CFG and ends in A, A included. The maa(A) can be de-
fined recursively by: maa(A) = max(alloc(A), min(maa(P1), . . . , maa(Pn)))
where P1, . . . , Pn are the direct predecessors of A in the CFG.

354 A. Douillet, J.N. Amaral, and G.R. Gao

Fig. 7. The multi-alloc placement algorithm

Fine-Grain Stacked Register Allocation for the Itanium Architecture 355

For performance, multiple alloc instructions should not be placed inside loop
nests. Therefore, for the multi-alloc algorithm, each loop nest is represented as
an aggregate node in the CFG, i.e.,a single virtual basic block with a single set of
values (lrr,orr,...). The lrr of a loop nest is the maximum register requirement
of all the basic blocks in the loop nest. This is a conservative approach to loop
nests, but effective in practice.

Before applying our algorithm, we inserted empty basic blocks on the en-
trance edges of loops to make sure the algorithm is able to insert alloc instruc-
tions in the predecessors of loop entry basic blocks if necessary. The inserted
basic blocks have only one successor and therefore the insertion of an alloc in-
struction is compatible with the fitness criterion.

Our multi-alloc placement algorithm is shown in Figure 7. First (lines 1-2),
a bottom-up topological traversal is performed to compute the orr values using
the lrr values.

Then each basic block is considered in topological order (line 3). If the basic
block has no predecessor in the CFG, we insert an alloc instruction in the block
(lines 4-6). If the basic block requires zero stacked registers, insert alloc(orr(vi))
is converted into a no-operation.

Given a node vi, we check all the immediate predecessors of vi to identify
which ones are candidates for the placement of an alloc instruction (lines 11-16).
A predecessor Pj of vi is a candidate for an alloc placement if its maa(Pj) is
smaller than lrr(vi).

If all the incoming paths of vi need an alloc instruction, then the alloc in-
struction is placed in vi itself (lines 19 and 25). The number of registers allocated
is equal the maximum number of registers that will be required in any path leav-
ing vi, orr(vi). By allocating orr(vi) instead of lrr(vi), we prevent the need for
the insertion of another alloc instruction in at least one path leaving vi.

If there exists at least one incoming path that does not need the alloc
instruction, the algorithm inserts one alloc instruction in each of the incom-
ing paths that need it (lines 27-29). Finally we update the maa(vi) value
(line 30).

4.2 Application to Our Motivating Example

The application of the algorithm to our motivating example is shown on Figure 8.
In this figure each basic block is annotated with its lrr, orr, and maa values.
Figure 8(a) shows the CFG after the computation of the orr values(lines 1-2).
Then the CFG is traversed in topological order (line 3). The first basic block,
A, has no predecessor therefore we insert an alloc instruction (line 4-6) with
alloc(A) = orr(A) (Figure 8(b)). Next basic block B is visited. Because lrr(B)
is equal to maa(A) (an immediate predecessor of B) no alloc instruction is needed
in B (lines 11,14-15). Assume that the algorithm visits C next. A is the only
predecessors of C, and maa(A) is smaller than the lrr(C). Therefore an alloc
instruction must be inserted in C. Because A, the only predecessor of C, has
a lower orr value, the insertion must be in C (lines 17-19, Figure 8(c)). When
the algorithm visits D, its only predecessor B has enough registers allocated

356 A. Douillet, J.N. Amaral, and G.R. Gao

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

lrr
orr
maa

(a)

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

alloc 10

10

(b)

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

alloc 10

10

10

10

alloc 20

20

(c)

20
20
20

D 10 E 20 F 96

G 10

B 10 C

A 10
10

10

10

10

20 96

alloc 10

10

10

10

alloc 20

H

(d)

alloc 20

10

20
20
20

D 10 E 20 F 96

G 10

B 10 C

A 10
10

10

10

10

20 96

alloc 10

10

10

10

alloc 20

20 96

alloc 96

10

H

(e)

alloc 20

Fig. 8. Application of the algorithm on our motivating example

(lrr(D) ≤ maa(B)) (lines 11,15-16), thus D does not need an alloc . As for B
we do not insert an alloc instruction in D. E has two predecessors and only one
incoming path, from B, requires the insertion of an alloc instruction. Because
orr(B) < orr(E), the insertion must be local (lines 17-19, Figure 8(d)). Then
the algorithm continues and an alloc instruction is inserted in F but not in G
(Figure 8(e)).

4.3 Algorithm Analysis

Time Complexity

Theorem 1. The algorithm is linear in the number of basic blocks in the CFG.

Proof. The algorithm traverses the CFG in topological order and only visits
the predecessors of every basic block. Visiting a predecessor is equivalent to
following an edge backwards. In a CFG each node can have at most 2 immediate
successors. Thus the number of edges in a CFG is proportional to the number
of nodes. Therefore the entire loop can be executed in linear time in the number
of nodes.

For the same reason, the insertion of artificial basic blocks does not change
anything to the time complexity. �

Fine-Grain Stacked Register Allocation for the Itanium Architecture 357

Criteria Satisfaction. First we prove that the two first criteria of our problem
statement are satisfied.

Theorem 2. The algorithm proposed returns an allocation instruction insertion
scheme that satisfies the correctness criterion.

Proof. The algorithm traverses the graph in top-down topological order. For each
basic block, the algorithm tests if enough registers have been allocated for every
incoming path to the basic block (line 11). If an alloc instruction is required to
satisfy the local register requirement of the basic block, the algorithm inserts
one either directly in the basic block (lines 4-6 or 24-26), either earlier in the
faulty paths (lines 27-30). Therefore the correctness criterion is satisfied. �

The fitness criterion is not satisfied as our example shows for the basic block
E in Figure 8(e). If the control-flow paths comes from C, then we repeat the
alloc instruction.

Because the algorithm does not take into account the frequency of execution
of any given control-flow paths of G, the algorithm cannot return an allocation
instruction insertion scheme that satisfies efficiency criterion. However, if each
control-flow path has the same frequency of execution, then we believe that the
algorithm satisfies the criterion in most of the cases.

Since we do not insert new basic blocks in the CFG at all, the number of
inserted basic blocks is obviously optimal.

5 Experiments and Results

5.1 Experimental Framework

We implemented the multi-alloc algorithm with the two optimizations in the
industry-strong Open64 compiler ([1,2]. The alloc instructions are inserted right
after the register allocation phase but before the last instruction scheduling
phase of the compiler. Our experiments were performed in an HP workstation
i2000 equipped with a single 733MHz Itanium processor and 1GB of memory
and running Debian Linux 2.4.7.

Currently we have tested the implementation on 6 SPEC CPU2000 bench-
marks programs. We measured the number of alloc instructions inserted and

Fig. 9. Number of registers saved and alloc instructions inserted for each of the seven
benchmarks tested

358 A. Douillet, J.N. Amaral, and G.R. Gao

the number of registers saved due to our algorithm. We compare our results to
the standard algorithm for the alloc instruction, i.e.,an algorithm that inserts a
single alloc in each procedure entrance. On average, we allocate 1.38 less regis-
ters per procedure with a maximum of 19.95 registers saved. We use 1.97 alloc
instructions on average with a maximum of 32 instructions in a procedure. This
average is weighted by the frequency of execution of each basic block.

5.2 Implementation Considerations

For simplicity, the algorithm presented in this paper assumes that the alloc
instruction has a single parameter, i.e., the size of the current register stack
frame. However, in the alloc instruction in the Itanium architecture specifies the
number of input, output, local, and rotating registers. Thus an implementation
of the algorithm has to include different strategies for each type of register.

The rotating registers overlap with the local and output registers. In our
current implementation, the alloc instructions requests rotating registers only
when the number of rotating registers required is less than the sum of local
and output registers. If this is not the case, then obviously there can be no
downstream loop that uses rotating registers. A downstream loop that requires
rotating registers would have been taken into account in the orr values.

The input registers are easily handled because they are part of the local
section of the register stack frame. Input registers are used to specify how many
registers in the new stack frame overlap with the previous stack frame.

The local registers and the output registers were the only types of registers
that require modifications to the simplified algorithm. Each basic block needs the
full set of values (lrr, orr, maa and alloc) for each of the two types of registers.
Thus, an alloc instruction is inserted in a basic block if either local or output
registers are required (OR statement).

In some cases the introduction of a second parameter forces us to insert
more alloc instructions to preserve the correctness of the program. This situation
happens when two different control flows reach a function call and the number of
local registers allocated in each incoming path is distinct. Consider, for instance,
the example shown in Figure 10. Each alloc instruction is annotated with two
numbers: the number of local registers to the left, and the number of output
registers to the right. Because of automatic register renaming, r32 is always the
first register in a stack frame. If we consider only the number of registers required
in each basic block, the alloc instruction in basic block C is not necessary because
there are enough registers allocated in either incoming path. However, if block
C has a function call that expects three output registers, there is a problem: the
boundary between local and output register depends on the incoming path: if we
reach block C from block A, then r42 is the first output register. Whereas, if the
flow comes from B, the first output register is r52. Therefore, at the function
call site, there is no way to tell at compile time which register is the first output
register. We must insert an alloc instruction before the function call to ensure
that the output registers start at r42 regardless of the incoming path as shown
in our example.

Fine-Grain Stacked Register Allocation for the Itanium Architecture 359

A alloc 10,3

C 10,3

10,3 20,3B alloc 20,3

alloc 10,3

Fig. 10. Necessary extra alloc instruction for function calls

5.3 Results

Table 9 shows our results for the six benchmarks tested. These numbers are
weighted by the frequency of execution of each basic block in the routine. Thus
the basic blocks and alloc instructions in a control-flow path that is executed 1
out of 10 times that the routine is executed is weighted by 0.1. Then we take
the average for all the routines in the benchmark.

The number of registers saved can be significant with a maximum of 19.95
registers for one routine of 186.crafty. The number of registers not allocated
thanks to our optimization is low: 1.38 on average. Nonetheless, the algorithm
reduces the register stack frame size of a routine by 15.73%, on average. These
results are explained by the relatively low register pressure in the SPEC2000
benchmarks.

Although the algorithm does not try to limit the number of alloc instructions
inserted in a given routine, the average number of instructions inserted is 1.97.
By adding one more alloc instruction per routine, we can manage to reduce the
number of registers allocated by 15.73%. However, in some rare cases the number
of alloc instructions inserted is high. For instance in one routine of 175.vpr
the algorithm inserted 32 alloc instructions. We are investigating such cases
to identify opportunities for improvement. We are to notice the direct relation
between the average number of alloc instructions inserted and the execution
time.

Despite the savings in register allocated, the execution time of the programs
has been increased by up to 56.61% for 186.crafty. The main reason is the cost
of the alloc instruction itself that was not taken into account by the algorithm.
This instruction is expensive and introduces false dependences that can break a
good instruction schedule. Moreover the insertion of basic blocks to host alloc
instructions at the entrance of loops results in the insertion of branch instructions
as well. Finally, most of the time, the difference between the number of registers
allocated between two alloc instructions is small and inserting a second alloc
instruction does not pay off.

6 Future Work

Future generations of processors of the Itanium family are expected to have a
much more efficient Register Stack Engine. We anticipate that the implementa-

360 A. Douillet, J.N. Amaral, and G.R. Gao

tion of eager spill and eager fill modes in the RSE will lead to a more effective
application of the idea of using multiple alloc instructions introduced in this
paper. Moreover we plan to study the following modifications to the original
algorithm:

– The algorithm could use an alloc instruction immediately before a loop entry
to reduce the number of registers allocated to the number of variables live
at that point in the program, and another alloc instruction at the loop exit
to restore the number of registers required by the paths that leave the loop.

– A similar solution could be used around function calls. In the Itanium archi-
tecture, there are 96 registers available in the register stack. As long as all
the cumulative number of registers requested by active functions is less then
96, there will be no spills and fills. Using this observation, we could delay
the time when the 96 register threshold value is reached by shrinking the
current register stack frame as much as possible right before every function
call.

– When feedback profiling information is available, the multiple alloc place-
ment algorithm can favor placing the least number of alloc instructions in the
control paths that have the highest frequency of execution. The placement
of alloc instructions in other paths would be secondary to this constraints.

– the insertion of alloc instructions could be triggered by a profitability anal-
ysis, and be restricted to the places where the gain is significant enough.
The registers could be allocated in chunks, or quanta, of 5 or 10 up to the
maximum needed by the function. It would reduce the number of alloc in-
structions in the program (efficiency criterion) with a limited cost for the
fitness criterion. This idea follows from the implementation of efficient dy-
namic memory allocation algorithms.

7 Conclusion

In this paper, we tried to solve the problem of inserting alloc instructions in
Itanium code in order to achieve a finer-grain allocation scheme and reduces the
number of blocking spills and restores with the register stack engine. We defined
four subgoals: correctness, fitness, efficiency and stability and proved that the
problem was NP-complete.

Then we propose a heuristic that solves the first two criteria: correctness and
fitness. The algorithm is linear and achieves ...

However the algorithm did not consider the frequency of execution of the
control-flow paths in the CFG and the resulting code could be further improved.
Also, the eager allocation modes were not available in the Itanium processor used
for the the experiments, although it would a efficient source of improvement.

The next step is now to consider the frequency of execution of control-flow
paths and try different levels of optimizations by releasing the fitness constraint
for instance.

Fine-Grain Stacked Register Allocation for the Itanium Architecture 361

Acknowledgments

We would like to acknowledge Gerolf Hoflehner and Jim Pierce for their con-
tributions and for insightful comments about our approach to the problem.
This research is supported by the National Science Foundation (NSF), by the
National Security Agency (NSA), by the Defense Advanced Research Projects
Agency (DARPA), and by the Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada. We would also like to thank Intel Corporation for their
generous donations.

References

1. Open research compiler for itanium processors. http://ipf-orc.sourceforge.net/,
January 2002.

2. Open64 compiler and tools. http://open64.sourceforge.net/, January 2002.
3. D. Callahan and B. Koblenz. Register allocation via hierarchical graph coloring. In

SIGPLAN 91 Conference on Programming Language Design and Implementation,
pages 192–203, Toronto,ON, June 1991.

4. G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN 82
Symposium on Compiler Construction, pages 98–105, June 1982.

5. F. C. Chow and J. L. Hennessy. The priority-based coloring approach to register
allocation. ACM Transactions on Programming Language and Systems, 12(4):501–
536, October 1990.

6. Intel Corporation. Intel Itanium Architecture Software Manual vol1-4, December
2001. revision 2.0.

7. Intel Corporation. Intel Itanium Processor Reference Manual for Software Devel-
opment, December 2001. revision 2.0.

8. Intel Corporation. Intel Itanium Processor Reference Manual for Software Opti-
mization, November 2001. http://developer.intel.com/design/itanium/.

9. R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and G. R. Gao. Minimum reg-
ister instruction sequence problem: Revisiting optimal code generation for dags. In
15th International Parallel and Distributed Processing Symposium, San Francisco,
CA, April 2001.

10. R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and G. R. Gao. Minimum
register instruction sequencing to reduce register spills in out-of-order issue super-
scalar architectures. IEEE Transactions on Computers, 2002.

Evaluating Iterative Compilation

G.G. Fursin1, M.F.P. O’Boyle1, and P.M.W. Knijnenburg2

1 ICSA, School of Informatics, University of Edinburgh, UK
2 LIACS, Leiden University, The Netherlands

Abstract. This paper describes a platform independent optimisation
approach based on feedback-directed program restructuring. We have
developed two strategies that search the optimisation space by means
of profiling to find the best possible program variant. These strategies
have no a priori knowledge of the target machine and can be run on
any platform. In this paper our approach is evaluated on three full SPEC
benchmarks, rather than the kernels evaluated in earlier studies where
the optimisation space is relatively small. This approach was evaluated
on six different platforms, where it is shown that we obtain on average
a 20.5% reduction in execution time compared to the native compiler
with full optimisation. By using training data instead of reference data
for the search procedure, we can reduce compilation time and still give
on average a 16.5% reduction in time when running on reference data.
We show that our approach is able to give similar significant reductions
in execution time over a state of the art high level restructurer based on
static analysis and a platform specific profile feedback directed compiler
that employs the same transformations as our iterative system.

1 Introduction

Traditional approaches to compiler optimisations are based on static analysis
and a hardwired compiler strategy which can no longer be used in a computing
environment where the platform is rapidly changing. Modern architectures have
very complex internal organisations: high issue widths, out-of-order execution,
deep memory hierarchies, etc. However, compiler machine models are necessar-
ily simplified to be tractable and only take into account a small part of the
actual system. Such models provide very rough performance estimates which, in
practice, are too simplistic to statically select the best optimisations. What is re-
quired is an approach which evolves and adapts to architectural change without
sacrificing performance.

This paper examines a feedback assisted approach based on traversing an op-
timisation space. Early results suggest that such an approach can give significant
reductions in execution time over purely static approaches with, on average, a
20.5% improvement over the highest optimisation levels provided by the native
compiler. Although such an approach is usually ruled out in terms of excessive
compilation time, it is precisely the approach used by expert programmers when
the application is to be executed many times. Embedded systems are an ex-
treme example of this, allowing the cost of compilation to be amortised over
many shipped products.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 362–376, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evaluating Iterative Compilation 363

In previously published work [2,7], we have shown the use of iterative compi-
lation in optimising program performance. Different transformations are applied,
corresponding to points in the transformation space, and their worth evaluated
by executing the program. Several evaluations, based on a compiler search strat-
egy, are performed to a certain pre-defined maximum number, with the compiler
selecting the best one. Related work in the area of linear algebraic libraries has
also shown good performance [13].

However, the main drawback of previous work is that it has focused solely on
tuning compute-intensive kernels where the optimisation spaces being searched
are relatively trivial. Clearly, for iterative compilation to be considered a realistic
optimisation approach, it must be shown to be able to find good results on the
large spaces that arise for realistic applications with a relatively few number of
evaluations.

Although iterative approaches can find good results, they may be inappro-
priate if the data size, for instance, is different from that actually encountered at
runtime. In order to investigate this phenomenom, we applied our approach to
training data before applying the selected transformation to distinct reference
data. In all cases our approach outperforms the native optimising compiler.

Finally, we compared our approach to a state-of-the-art profile driven opti-
miser that is present in the Compaq compiler for the Alpha processors. There
are many optimisations used in this optimiser, including all of the high level
source to source transformations that are used by our system, plus many oth-
ers. This optimiser collects runtime data to steer its optimisation process, like
our approach. However, unlike our approach, it uses this data, by certain fixed
heuristics, in a fixed strategy. We show that our searching techniques outperform
this static approach significantly, even though the static profile driven optimiser
has access to additional transformations not considered by our scheme that can
dramatically improve execution time, such as software pipelining.

The paper makes the following contributions:

– For the first, time it demonstrates that iterative compilation outperforms
static approaches on realistic non-kernel benchmarks.

– It demonstrates that good optimisations can be found with variable runtime
data.

– It demonstrates significant reductions in execution time compared to a state-
of-the art native high level restructurer that employs statically (among oth-
ers) the same transformations as our system with few evaluations.

– It demonstrates significant reductions in execution time over an existing
platform specific feedback directed optimiser that employs (among others)
the same optimisations as our system.

This paper is organised as follows. Section 2 describes the benchmarks and
platforms investigated. Section 3 shows comparatively how performance is af-
fected by different transformations. Section 4 describes the overall compiler in-
frastructure and the iterative compilation strategies implemented. This is fol-
lowed in Section 5 by an evaluation of this approach. Section 6 provides a brief
review of related work and Section 7 provides some concluding remarks.

364 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

2 Benchmarks and Platforms

We consider the following SPEC95 FP benchmarks: Tomcatv, Swim and Mgrid
with the reference data input sets. The following platforms are used:

Alpha 21164 500MHz. In-order. Digital UNIX V4.0D. F77 V5.0. 8K L1.
Alpha 21264 500MHz. Out-of-order. Digital UNIX V4.0E. F77 V5.2. 64K L1.
Pentium II 350 MHz. Windows 2000 Professional. Compaq F77 V6.1 16K L1.
Pentium III 600MHz. Red Hat Linux 6.1. g77 2.95.1. 16 k L1.
HP-PA 9000/712 80 MHz. OS A.09.07 F77.9.0. 128K L1.
Ultrasparc 300 MHz. SunOS 5.7, g77 2.95.1. 16K L1.

All comparative experimental data is with respect to the native compilers at
their highest optimisation level. We later compare our approach against the
Compaq high level restructurer which is only available on the Pentium and
the 2 Alphas. The Compaq compiler with the optimisation level set to -O5
becomes a high level restructurer which applies all of the transformations of
our system. This compiler, moreover, applies other loop transformations as
well, including software pipelining that is well known to boost program
performance.

Furthermore, on the Alpha platforms this compiler allows profile driven op-
timisation where it uses runtime data to drive these loop transformations. We
compare our approach against this option also.

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16

(a) Pentium II

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

(b) Pentium III

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16

(c) HP-PA

Fig. 1. Percentage reduction in execution time for varying pad sizes: Swim

Evaluating Iterative Compilation 365

3 Impact of Program Transformations

It is well-known that program transformations have a variable impact on pro-
gram performance and that finding the best transformation sequence is a difficult
task. In this section we wish to empirically demonstrate not only the non-linear
impact of program transformations, but how this varies across machines, demon-
strating the challenge in developing generic compilers that can adapt to different
platforms.

3.1 Transformations

Here we examine the impact of 3 well known transformations, array padding,
loop unrolling and tiling on selected benchmarks and platforms.

Padding. Array padding is used to reduce conflict misses in cache based archi-
tectures [10]. Figure 1 shows the reduction in execution time due to padding

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

Loop1
Loop2

(a) Pentium II Mgrid

23.6

23.8

24

24.2

24.4

24.6

24.8

25

2 3 4 5 6 7 8 9 10 11

Loop1
Loop2
Loop3
Loop4
Loop5

(d) Pentium II Tomcatv

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

Loop1
Loop2

(b) A21164 Mgrid

10

10.5

11

11.5

12

12.5

13

0 2 4 6 8 10 12 14 16

Loop1
Loop2
Loop3
Loop4
Loop5

(e) A21164 Tomcatv

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

Loop1
Loop2

(c) A21264 Mgrid

15

16

17

18

19

20

21

22

23

24

25

26

0 2 4 6 8 10 12 14 16

Loop1
Loop2
Loop3
Loop4
Loop5

(f) A21264 Tomcatv

Fig. 2. Percentage reduction in time for varying unroll factors: Mgrid + Tomcatv

366 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

with respect to the original code on Swim across three of the platforms. This
oscillatory behaviour is not particularly surprising and is well studied [8], how-
ever, it does highlight the difficulty for an optimising compiler in determining
whether array padding should be considered and finding the best factor, partic-
ularly when moving from one platform to another. For instance, on the Pentium
II, array padding gives, on average, a clear improvement, even if small changes
in parameter values give wide variation in behaviour. In the case of the Pentium
III, however, it has little impact on performance while for the HP-PA it should
generally be avoided.

Loop Unrolling. Loop unrolling is a well known optimisation used to expose
more instruction level parallelism (ILP) to the back end scheduler and reduce
the relative overhead of memory access. Figure 2 show the impact of loop un-
rolling on 21162, 21264 and the Pentium II when applied to Mgrid and Tom-
catv. We have highlighted the impact on the most time consuming loops: two
in the case of Mgrid and five in the case of Tomcatv. In absolute terms there
is much less variability than in the case of padding, though clearly in the case
of Mgrid, unrolling loop 1 gives a much greater reduction in execution time
than loop 2. Similarly the best unroll factor varies from platform to platform.
In the case of Tomcatv, all 5 loops benefit from unrolling and there is generally
no large absolute difference between different unroll factors. However, unrolling
by a factor of 5 on loop 3 on the A21164 gives particularly poor performance,
and an unroll factor of 13 on the A21264 seems surprisingly beneficial to all
loops.

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

Loop1
Loop2

(a) A21164 Mgrid

10

10.5

11

11.5

12

12.5

13

0 2 4 6 8 10 12 14 16

Loop1
Loop2
Loop3
Loop4
Loop5

(b) A21164 Tomcatv

10

11

12

13

14

15

16

17

18

19

20

0 2 4 6 8 10 12 14 16

Loop1
Loop2
Loop3

(c) A21164 Swim

Fig. 3. Percentage reduction in execution time for varying tile sizes: A21164

Evaluating Iterative Compilation 367

Loop Tiling. Loop tiling [8] is used to improve cache utilisation by exploiting
temporal and spatial locality. Figure 3 show the impact of loop tiling on the
three benchmarks on the A21164. Here we again highlight two of the main loops
in Mgrid, this time we just focus on two loops for Tomcatv and three for Swim.
In the case of Mgrid, tiling is beneficial for tile sizes greater than 4 for loop 1
but should be avoided for loop 2. It is beneficial for all tile sizes in the case
of Swim, with those greater than 14 giving the greatest reduction in execution
time. However, tiling always gives poor performance on Tomcatv, due to the lack
of intra-loop locality within this program [8].

Although the impact of program transformations has been well studied, this
section has shown that high-level transformations can have a significant impact
on performance even when compared to modern high performance native com-
pilers. It is not the intention of this paper to explain processor behaviour in the
presence of transformations, rather that, as the figures shown in this section sug-
gest, such behaviour will be difficult to accurately predict. Thus, designing an
optimising strategy that works well across such platforms is highly non-trivial.
In the next section we develop two compiler strategies that are intended to be
suitably generic.

4 Compiler Strategies

The main objective of a compiler strategy is to decide which transformations
to apply, guided by information in the form of static analysis, execution time,
or heuristics which are meant to reduce the transformation space to consider.
While the majority of research in optimisation via high level restructuring has
relied on static information, here we are primarily concerned with developing
techniques that have no architectural knowledge and are solely based on dynamic
information.

4.1 Strategy 1

This strategy uses data and loop transformations in a cost-conscious manner.
Rather than search through a large space of all possible loop and data transfor-
mations, it targets those sections of the program that dominate program execu-
tion and considers restricted loop and data transformations in separate phases
reducing the number of combinatorial options by imposing a phase order.

Initially, the program is profiled and those subroutines that dominate ex-
ecution time are marked. Within each marked routine, those loop nests that
dominate execution are also marked as are the arrays referenced within them.
After this initially marking phase, we consider data transformations on those
arrays marked as significant. As data transformations are global in effect, they
are considered first on the assumption that local loop transformations can later
compensate for some adverse effects that can be caused locally by the global
data transformations. In this strategy, the only data transformation considered
is array padding and this is applied to the first dimension of the marked arrays

368 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

inter-procedurally. If there are p padding factors to consider and a arrays, then
the number of different padding combinations is pa. To reduce this complexity,
we pad each array the same amount, reducing the complexity to p. For this new
padded program, we now consider loop transformations.

Loop tiling (with tile sizes ranging from 2 to the range of the loop bounds)
is considered for all those loop nests marked initially as significant. Each loop
nest is considered in turn and tiled. When the best tile size is determined, it
is recorded before moving on to the next loop nest. To avoid combinatorial
explosion, each loop is optimised in isolation, ignoring the effect of transforming
one loop on the rest of the program. Once the tile factors for each significant
loop have been determined, they are all applied to give a new program. Finally
loop unrolling is applied in a similar manner.

4.2 Strategy 2

This strategy again focuses on the three transformations considered before: ar-
ray padding, loop tiling, and loop unrolling. Once again, profiling is used to
determine those arrays and loop nests of interest. This time, however, rather
than combine the best padding, tiling and unroll factors, we randomly search
for the best combination. One or more loops and arrays are randomly selected
and random tile, pad and unroll factors applied. This avoids the coupled be-
haviour of transformations (where the best form of one transformation plus the
best form of another gives a sub-optimal value when combined), without having
to exhaustively search a large space.

Both strategies retain the best version found so far at each evaluation, so that
after evaluating a fixed number of transformed programs, the best transformed
program is returned as the final selected program. As is immediately apparent,
neither of these strategies contain any platform or program specific information.
The next section evaluates to what extent they may improve performance.

5 Experimental Results

In this section we evaluate the two iterative search strategies. This is followed
by an evaluation of the use of smaller training data as a mechanism to reduce
overall compilation time.

Finally, we evaluate our iterative approach against an existing high level
restructurer and a feedback directed optimiser that employ (among others) the
same transformations as our iterative system.

5.1 Evaluating Iterative Search Strategies

The first search strategy was allowed to run for 200 evaluations1 and Table 1
shows the reduction in execution time found across the platforms and bench-
marks. In all cases we improve on the best obtainable performance of the native
1 An evaluation consists of 3 parts: (i) transform the program, (ii) compile it with the

native compiler, and (iii) execute the program.

Evaluating Iterative Compilation 369

compiler and give on average a 20.5% reduction in execution time. Tomcatv is
most improved by program optimisations considered in this paper and Swim the
least, though on the 21264 a 40% improvement is found. Comparing different
platforms, the 21264 is most improved by the program optimisations considered
in this paper and the PIII the least.

Table 1. Strategy 1: Percentage reduction in execution time

PII PIII HP-PA US 21164 21264 Avg.
Tomcatv 31.4 25.3 38.6 22.6 13.5 25.4 26.1
Swim 21.7 2.31 8.35 17.73 22.6 40.0 18.8
Mgrid 18.1 1.29 17.38 15.1 32.6 15.4 16.6
Avg. 23.7 9.63 21.4 18.5 22.9 26.9 20.5

In Figure 4 we show how the first search strategy performs with respect
to the number of evaluations. The reduction in execution time of the current
best program version is shown for three of the six different platforms across the
three benchmarks. At each evaluation a new program version is selected by the
strategy. If the new program selected is an improvement on the best version so
far, we see an improvement in execution time reduction and the new program
becomes the current best version. Otherwise the current best version is retained
and we see no change in execution time reduction. In the case of Tomcatv, the
most significant performance gains are made within 40 evaluations. In the case
of Swim, higher performance gains are made for these three platforms, taking
approximately 40 evaluations to find the majority of the available performance
gains. Finally, in the case of Mgrid, after just 18 iterations the search strategy
finds good program optimisations across the three platforms.

Despite the complex behaviour of transformations across platforms and their
interaction with each other, our first iterative strategy has shown that it can
perform well across all platforms. Interestingly, the rate at which it finds good
candidate optimisations is broadly similar for each target machine.

Although the first strategy finds good performance with relatively few eval-
uations, this may still be too time consuming in practice. Therefore, we now
evaluate Strategy 2 with a maximum of 15 evaluations and compare its per-
formance against the native compiler, restricting our attention to 3 of the 6
platforms. What is immediately apparent from the results in Table 2, is that
the second strategy is able to find considerable reductions in execution time de-
spite the small number of evaluations. On the Pentium, it achieves 75% of the
performance found using Strategy 1 and over 85% on the two Alphas.

If we examine in detail how fast the strategy finds good results as shown
in Figure 5, we find that within just 5 evaluations, significant reductions in
execution time are found. Considering the size of the optimisation search space
considered, this is a significant result.

370 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

21164
21264

PII

(a) Tomcatv

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

21164
21264

PII

(a) Tomcatv

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

21164
21264

PII

(b) Swim

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

21164
21264

PII

(b) Swim

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

21164
21264

PII

(c) Mgrid

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

21164
21264

PII

(c) Mgrid

Fig. 4. Strategy 1 and 2 : The reduction in execution time of the best transformation
found so far by strategy 1 wrt the number of evaluations. Performed on 3 platforms.

Table 2. Strategy 2: Percentage reduction in execution time

PII 21164 21264 Avg.
Tomcatv 24.6 9.9 22.0 18.8
Swim 14.5 19.0 33.0 22.6
Mgrid 14.5 30.5 14.8 19.9
Avg. 17.8 19.8 23.2 20.2

5.2 Evaluating the Use of Training Data to Determine
Transformation

Although we have shown that our approach outperforms native compilers in ev-
ery case with relatively few evaluations, this still may be too expensive. In this
experiment we therefore use the smaller training data (and hence shorten evalua-

Evaluating Iterative Compilation 371

Table 3. Strategy 1: Training Data: Percentage reduction in execution time

PII PIII HP US A21164 A21264 Avg.
Tomcatv 32.5 25.3 38.6 22.6 11.9 19.4 25.05

Swim 21.5 0.09 3.2 14.0 23.1 38.6 16.7
Mgrid 12.1 0 0 0 31.8 5.1 8.16
Avg. 22 8.5 13.9 12.21 22.3 21 16.63

Table 4. Strategy 2: Training Data: Percentage reduction in execution time

PII A21164 A21264 Avg.
Tomcatv 25.4 11.2 22.3 19.6

Swim 28.4 23.9 35.7 29.3
Mgrid 11.5 32.7 4.3 16.16
Avg. 21.7 22.6 20.76 21.68

Table 5. Strategy 1 and 2: Percentage reduction in execution time wrt a high level
restructurer -O5

A21164 A21264 PII Avg.
Tomcatv 12.3 25.4 22.3 20
Swim 27.9 38.2 20.3 28.8
Mgrid 4.3 10.5 18.0 10.9
Avg. 14.8 24.7 20.2 19.6

A21164 A21264 PII Avg.
Tomcatv 8.3 23.7 14.6 15.5
Swim 20.1 31.8 11.9 21.2
Mgrid 0 8.3 16.1 8.13
Mgrid 12.23 21.26 14.16 14.9

tion time) from the SPEC benchmark suite in order to find a good optimisation
and then apply the resulting best optimisation to the actual reference data.
Use of the training data will also give an insight into how iterative compilation
performs in the presence of different data sets and sizes.

As can be seen in Table 4, the first iterative strategy using training data
never performs worse than the native optimiser and in the majority of case gives
significant reduction in execution time. On average there is a 16.63% improve-
ment which compares favourably with the 20.5% average found using solely the
reference data (Table 1). Using training data we reduce the evaluation time and
obtain over 80% of the execution time reduction when using the actual refer-
ence data. In the case of Mgrid, performance gain was found on only 3 of the
6 platforms, showing that its performance is more closely related to the actual
runtime data.

If we apply the second strategy with just 15 evaluations to three of the
six platform, we find the results shown in Table 5, where we have on average
a 21.68% improvement. If we compare the execution time reduction of Strategy 2

372 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

against Strategy 1 on each machine, we see that their performance is almost
identical when using training data. Furthermore, if we compare the execution
time reduction of Strategy 2 using training data with the performance obtained
using reference data (Table 2), the training data actually gives slightly better
results due to the random nature of the search strategy.

5.3 Comparison Against an Existing Static High Level Restructurer

The previous sections have shown that iterative compilation can give good per-
formance improvements over the native compiler in relatively few iterations and
in the presence of smaller training data.

In order to further evaluate the use of iterative compilation in high level
restructuring, this section compares our approach to an industrial high level
restructurer. The Compaq compiler has an option (-O5) which enables high level
restructuring and is integrated within the entire compiler chain. This restructurer
uses an elaborate phase ordered strategy based on sophisticated static analysis
and considerable architectural knowledge. Loop transformation optimisations
that are used by the Compaq compiler include loop blocking, loop distribution,
loop fusion, loop interchange, loop scalar replacement, and outer loop unrolling.
It moreover employs array padding and software pipelining. Hence this compiler
uses the same transformations as our iterative system, and several that are not
implemented by us.

We applied Strategies 1 and 2 to the three platforms (where the Compaq
compiler is available) with high level restructuring enabled. Thus, we are apply-
ing high level transformations which are then fed into a native compiler which
may, in turn, apply further high level transformations. The results are given in
Tables 6 and 7. Overall Strategy 1 is able to reduce execution time by 19.6% and
Strategy 2 by 14.9%. Thus a techniques that evaluates just 15 program trans-
formations is able to give significant execution time reduction when compared
to a state of the art optimiser.

In only one case does Strategy 2 fail to make an improvement and in this
case simply achieves the same performance as the native high level restructurer
as we are using the native high level restructuring as our backend compiler. This
ability to make use of the best available vendor supplied compiler technology is a
useful feature of our approach. However, for a strictly fair comparison, we should
compare our approach using the native low level optimiser (-O4) as our backend
compiler, to Compaq’s high level restructurer (-O5) which also makes use of the
native low level compiler as its backend compiler. In such a case, strategies 1 and
2 give 9.92% and 8.6%, respectively, reduction in execution time when compared
to the Compaq high level restructurer, using the same native low level optimiser.

Thus we are able outperform an existing high level restructurer, and fur-
thermore can use that same restructurer as a backend to further improve perfor-
mance. The ability to adapt to improvements in vendor supplied system software
is a useful feature of our approach.

Evaluating Iterative Compilation 373

5.4 Comparison Against an Existing Profile-Directed Compiler

We have shown that our technique outperforms native compilers, with full op-
timisation enabled, and an existing static high level restructurer. Here we show
our generic approach also outperforms an existing profile-directed compiler. The
Compaq compiler on the two Alphas has accesses to low level profile tools that
allows it to gather information during one execution in order to improve code
generated for the next run [5]. This can be done under two modes: with full
low level optimisation on (-profile -O4) and with full low level optimisation on
plus high level restructuring (-profile -O5). Hence on the Alphas the Compaq
compiler can drive the same loop transformations as our system using profile
data. The difference between the Compaq compiler and our system lies in the
fact that the Compaq compiler uses predefined heuristics in a predefined order
to select transformations whereas our system performs a search procedure. In
this section we show that searching outperforms highly tuned static heuristics
significantly.

We plotted the speedups of these two different modes against the native
compiler in Figures 6, 7, and 8 (-profile -O4, -profile -O5). We also plotted the
speedups of all other approaches described in this paper. Namely, the original
native (-O4) execution time, the native high level restructurer time (-O5). For
further comparison, we also plotted the results of both strategies using the native
compiler as the backend compiler (-it st 1/2 -O4), and the native compiler with
high level restructuring enabled as the backend (-it st 1/2 -O5).

As can be immediately seen, the iterative approaches outperform the Alpha’s
profile directed approach in all cases. Furthermore, iterative compilation with a
simple native compiler (-it st 1/2 -O4) even outperforms the profile directed ap-
proach using high level restructuring (-profile -O5) in most cases. In the majority
of cases the A21264 benefits more from optimisation than the A21164, except in
the case of mgrid where (-O5) optimisation dramatically improves performance
for both the profile directed and iterative approaches on the A21164. Interest-
ingly, the Alpha’s profile directed compilation actually performs better without
the use of high level restructuring on the A21164. It is not immediately appar-
ent why this is the case, possibly high level restructuring may interfere with the
profiler.

Overall, Strategy 1 reduces the execution time on average by 16.52% when
compared to the profile directed compiler, while Strategy 2 reduces the execution
time by 12.48%.

Once again these performance gains are made with the Compaq high level
restructurer (-O5) as our backend compiler. However, for a strictly fair compar-
ison, we should compare our approach using the native low level optimiser (it st
1/2 -O4) as our backend compiler against Compaq’s profile directed approach
using a high level restructurer (-profile -O5) which also makes use of the native
low level compiler as its backend compiler. In such a case, strategies 1 and 2 give
9.8% and 8.5%, respectively, reduction in execution time when compared to the
Compaq’s profile directed, high level restructurer; both using the same native
low level optimiser.

374 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Alpha 21164 Alpha 21264

S
p

ee
d

u
p

-O4

-O5

-profile -04

-profile -05

-it st 1 -04

-it st 2 -04

-it st 1 -05

-it st 2 -05

Fig. 5. Tomcatv: Speedup

0.8

1

1.2

1.4

1.6

1.8

2

Alpha 21164 Alpha 21264

S
p

ee
d

u
p

-O4

-O5

-profile -04

-profile -05

-it st 1 -04

-it st 2 -04

-it st 1 -05

-it st 2 -05

Fig. 6. Swim: Speedup

0.8

1

1.2

1.4

1.6

1.8

2

Alpha 21164 Alpha 21264

S
p

ee
d

u
p

-O4

-O5

-profile -04

-profile -05

-it st 1 -04

-it st 2 -04

-it st 1 -05

-it st 2 -05

Fig. 7. Mgrid: Speedup

Thus, our generic approach outperforms even highly optimised platform spe-
cific, feedback directed approaches.

6 Related Work and Discussion

Feedback directed optimisation [11] is a basic technique used in computer ar-
chitecture where hardware resources are dedicated to tracing and predicting
program behaviour. Similarly, in low-level compilers profile guided compilation
is widely used to determine execution path, allowing improved program optimi-
sation.

Due to the limits of static analysis, systems for generation highly optimised
versions of BLAS routines are proposed which probe the underlying hardware for
platform specific parameters [13,1]. In the SPIRAL project a feedback directed
search approach is applied to DSP algorithms that can be expressed as tensor
products Within this domain, excellent versions of DSP algorithms can be found
in a relatively short number of executions [9].

Evaluating Iterative Compilation 375

Wolf, Maydan and Chen [14] have described a compiler that also searches for
the optimal optimisation based on a fixed order of the transformations. However,
they solely use a static cost model to evaluate the different optimisations which
inevitably approximates system behaviour and does not adapt to architectural
change. A similar approach has been taken by Han, Rivera and Tseng [6] which
uses a model to search for tile and pad sizes; again such an approach is restricted
by the use of static models. Finally, Chow and Wu [4] apply “fractional factorial
design” to decide on the number of experiments to run for selecting a collection
of compiler switches, rather than trying to explore a program optimisation space
in a platform independent manner.

Feedback directed high level transformations have also recently become more
popular. In [12] a framework is described which allows remote on-line optimisa-
tion of a program while it is running, gaining the benefits of actual knowledge
of runtime parameters without the overhead of compilation on the critical path.
Our approach is similar in spirit in that different optimisations are tried and
the best selected, theirs on-line ours off-line. However, the main distinction is
that we have developed generic search strategies based on investing a systematic
transformation optimisation space. Dynamic online optimisations found in Java
just-in-time compilers [3] also make use of runtime behaviour in determining
program optimisation. However, such approaches only consider a fixed predeter-
mined number of optimisations.

7 Conclusion

This paper has described an aggressive compiler framework that outperforms
static optimisation approaches and that allows optimisers to adapt to new plat-
forms by way of feedback directed iterative compilation. By decoupling strategy
from implementation, we have implemented two architecture blind generic opti-
misation approaches. These rely on our framing the problem of optimisation as
that of traversing a transformation space in order to minimise the object func-
tion of execution time. We have shown that for three SPEC FP benchmarks,
across six platforms, we reduce the execution time by 20.5% on average. When
restricting the number of evaluations to just 15, we achieve a reduction of 20.2%
across 3 of the platforms. We have also shown that good performance can be
achieve when smaller training data is used giving over 80% of the performance
achieved using reference data.

For a fair comparison, we compared our approach to that of a native high level
restructurer. Using the same native backend compiler we obtain a reduction in
execution time of almost 10% on average. Moreover, if we compare our approach
to a platform specific profile directed high level optimiser that employs the same
transformations as our system plus several more, we also obtain a reduction in
execution time of almost 10% on average. Furthermore, we are able to adapt and
use the high level restructurer as our backend compiler, where we are able to
further improve performance, reducing execution time by 12% on average when
compared to the platform specific profile directed high level optimiser.

376 G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg

We have shown, for the first time, that iterative compilation is viable for
large optimisation spaces found in general programs and that good performance
may be achieved regardless of platform. Future work will investigate both the
use of models to further reduce the number of evaluations required and evaluate
other search strategies.

References

1. J. Bilmes, K. Asanović, C.W. Chin, and J. Demmel. Optimizing matrix multi-
ply using PHiPAC: A portable, high-performance, C coding methodol-
ogy, ICS’97,1997.

2. F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and E. Rohou It-
erative Compilation in a Non-Linear Optimisation Space , Profile and
Feedback Directed Compilation, PACT, 1998.

3. M.Burke et.al, The Jalapeno Dynamic Optimizing Compiler for Java, Proc.
of ACM’99 Java Grande Conference, June 1999.

4. K. Chow and Y. Wu, Feedback-Directed Selection and Characterization of
Compiler Optimizations, FDO, 1999.

5. R.Cohn and P.G. Lowney, Feedback Directed Optimization in Compaq’s
Compilation Tools for Alpha, FDO, 1999.

6. H. Han, G. Rivera and C.-W. Tseng, Software Support for Improving Local-
ity in Scientific Codes, CPC, 2000.

7. T. Kisuki, P.M.W. Knijnenburg and M.F.P. O’Boyle, Combined Selection of
Tile Sizes and Unroll Factors Using Iterative Compilation, PACT, 2000.

8. K. S. McKinley and O. Temam., A Quantative Analysis of Loop Nest Lo-
cality, ASPLOS, 1996.

9. J. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, M. Puschel, B. Singer,
M. Veloso, and J. Xiong. Generating Platform-Adapted DSP Libraries us-
ing SPIRAL, Proc. HPEC 2001, MIT Lincoln Laboratories.

10. G. Rivera and C.-W. Tseng, Data Transformations for Eliminating Conflict
Misses, PLDI, 1998.

11. M. Smith, Overcoming the Challenges to Feedback-Directed Optimiza-
tions, Dynamo’00, 2000.

12. Voss M.J. and Eigenmann R., A framework for remote dynamic Program
Optimization, Dynamo, 2000.

13. R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra soft-
ware. Proc. Alliance, 1998.

14. M.E. Wolf, D.E. Maydan, and D.-K. Chen. Combining loop transforma-
tions considering caches and scheduling. Int’l. J. of Parallel Programming,
26(4):479–503, 1998.

Author Index

Agrawal, Gagan 265
Amaral, José Nelson 309, 344
Asenjo, R. 142

Bae, Hansang 280
Barton, Christopher 309
Baumgartner, Gerald 1
Bik, Aart J.C. 61
Blainey, Bob 309

Carter, Larry 90
Chen, Tong 157
Choudhary, A. 111
Cociorva, Daniel 1
Corbera, F. 142

Dang, Francis 188
Dietz, H.G. 126
Diniz, Pedro C. 218
Douillet, Alban 344

Eigenmann, Rudolf 280

Fang, Xing 172
Feautrier, Paul 16
Ferrante, Jeanne 90
Freeman, Jonathan 90
Fursin, G.G. 362

Gao, Guang R. 344
Girkar, Milind 61
González, Antonio 329
Grey, Paul M. 61
Griebl, Martin 16
Größlinger, Armin 16

Harel, Nissim 249
Hsu, Wei-Chung 157
Hwang, Yuan-Shin 75

Ishizaka, Kazuhisa 31

Jin, Ruoming 265

Kadayif, I. 111
Kaminaga, Hiroki 31
Kandemir, M. 111
Kasahara, Hironori 31

Knijnenburg, P.M.W. 362
Knobe, Kathleen 249
Kreaseck, Barbara 90

Lam, Chi-Chung 1
Lee, Chingren 45
Lee, Jaejin 172, 203, 233
Lee, Jenq Kuen 45, 75
Li, Xiaogang 265
Lin, Jin 157
Lin, Yung-Chia 75
Liu, Bing 218
Llosa, Josep 329

Mandviwala, Hasnain A. 249
Mattox, T.I. 126
McKinley, Philip K. 233
Mills Strout, Michelle 90
Midkiff, Samuel P. 172
Moonesinghe, H.D.K. 203

Obata, Motoki 31
O’Boyle, M.F.P. 362

Padua, David 172

Ramachandran, Umakishore 249
Ramanujam, J. 1
Rauchwerger, Lawrence 188

Sadayappan, P. 1
Seater, Robert 295
Shirako, Jun 31
Sura, Zehra 172

Tian, Xinmin 61

Vera, Xavier 329

Wong, Chi-Leung 172
Wonnacott, David 295

Yew, Pen-Chung 157
You, Yi-Ping 45
Yu, Hao 188

Zapata, E.L. 142
Zhang, Ji 233

	Frontmatter
	Memory-Constrained Communication Minimization for a Class of Array Computations
	Forward Communication Only Placements and Their Use for Parallel Program Construction
	Hierarchical Parallelism Control for Multigrain Parallel Processing
	Compiler Analysis and Supports for Leakage Power Reduction on Microprocessors
	Automatic Detection of Saturation and Clipping Idioms
	Compiler Optimizations with DSP-Specific Semantic Descriptions
	Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling
	A Hybrid Strategy Based on Data Distribution and Migration for Optimizing Memory Locality
	Compiler Optimizations Using Data Compression to Decrease Address Reference Entropy
	Towards Compiler Optimization of Codes Based on Arrays of Pointers
	An Empirical Study on the Granularity of Pointer Analysis in C Programs
	Automatic Implementation of Programming Language Consistency Models
	Parallel Reductions: An Application of Adaptive Algorithm Selection
	Adaptively Increasing Performance and Scalability of Automatically Parallelized Programs
	Selector: A Language Construct for Developing Dynamic Applications
	Optimizing the Java Piped I/O Stream Library for Performance
	A Comparative Study of Stampede Garbage Collection Algorithms
	Compiler and Runtime Support for Shared Memory Parallelization of Data Mining Algorithms
	Performance Analysis of Symbolic Analysis Techniques for Parallelizing Compilers
	Efficient Manipulation of Disequalities During Dependence Analysis
	Removing Impediments to Loop Fusion Through Code Transformations
	Near-Optimal Padding for Removing Conflict Misses
	Fine-Grain Stacked Register Allocation for the Itanium Architecture
	Evaluating Iterative Compilation
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

