
Development of Knowledge-Filtering Agent
Along with User Context in Ubiquitous

Environment

Takao Takenouchi1, Takahiro Kawamura2,3, and Akihiko Ohsuga2,3

1 NEC Corporation, 2-11-5 Shibaura, Minato-ku, Tokyo, Japan
takenouchi@bu.jp.nec.com

2 The Graduate School of Information Systems,
University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo, Japan

{kawamura, ohsuga}@maekawa.is.uec.ac.jp
3 Research & Development Center, Toshiba Corp.,

1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa, Japan

Abstract. In this paper, we propose combination of Ubiquitous Com-
puting and Semantic Web. Data and services will be annotated even in
the ubiquitous devices, and should be connected to the web of the seman-
tics near future. We call it Ubiquitous Semantics, where we would find
huge amount of knowledge information, but also find most of them tran-
sitive along with user context. Therefore, in order for an agent to meet
user’s real-time query it is required to efficiently retrieve timely and use-
ful piece of the knowledge from the Ubiquitous Semantics. Thus, this paper
shows a knowledge-filtering agent, which quickly responds the query by dy-
namic classification of the necessary information along with the user con-
text changing in the real world. Further, to evaluate our approach we val-
idate the performance of an application: Recipe Recommendation Agent.

1 Introduction

Semantic Web[1] has gained attention for recent years. As the popularity of
Semantic Web, it is gets for an agent to gather enormous knowledge from Se-
mantic Web. Also, Ubiquitous Computing is expected to become much popu-
lar. In Ubiquitous Computing world, people can use computers and networks
anywhere-anytime and detect everything with RFIDs.

In near future, data and services would be annotated even in the ubiqui-
tous network, and connected to the web of the semantics. We call it Ubiquitous
Semantics, which is an extension of the current Semantic Web. Ubiquitous Se-
mantics is different from Semantic Web in the following points.

1. The agent can retrieve huge amount of knowledge from not only the networks
but also people, object and places in the ubiquitous environment. However,
most of them are transitive, which is described in the next section.

2. In the ubiquitous environment, it is necessary that the agent detects user
context and responds quickly in order to support the user’s behavior in the
real world.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 71–80, 2005.
c© IFIP International Federation for Information Processing 2005

72 T. Takenouchi, T. Kawamura, and A. Ohsuga

In short, the agent can get huge amount of knowledge from Ubiquitous Seman-
tics, but it is difficult to meet the user’s real-time query. Therefore, it is required
to retrieve timely and useful piece of the knowledge from the Ubiquitous Seman-
tics according to the user context.

Thus, this paper proposes a knowledge-filtering agent, which quickly responds
the query by dynamic classification of the useful information along with the user
context changing in the real world. Here, the knowledge is metadata annotated
to somethings, which is represented in a triple form including facts, rules, and
ontologies.

The rest of this paper is organized as follows: section 2 describes transitive-
ness. Section 3 proposes the knowledge-filtering agent based on transitiveness. In
section 4, we overview the architecture of our recipe recommendation agent for
evaluation, and validate the performance of the application in section 5. Then,
in section 6, we discuss related works, and section 7 concludes this paper.

2 Transitiveness of Knowledge

The knowledge of the current Semantic Web is sort of static such as web pages.
However, in the ubiquitous environment, it is necessary to consider the knowledge
changing along with the user’s real-time context. In other words, the knowledge
in Ubiquitous Semantics must be filtered along with the user’s time, place, and
so on. We call it transitive knowledge.

Therefore, we propose a method to classify the knowledge based on the tran-
sitiveness and to select a certain size of useful knowledge. This will enable the
agent to reason on it efficiently and quickly. In order to classify knowledge based
on the transitiveness, we define the following four factors of transitiveness.

First factor is Time. In the real world, there is much knowledge depending on
time. Therefore it is important to select useful knowledge based on the time.

Second factor is Place. In the ubiquitous environment, the user would mainly
need to know the knowledge related to the present time and place.

Third factor is Occasion. According to the user’s current context, it is dif-
ferent whether the user wants to have a response quickly or not. If the user
doesn’t have so much time, the agent should inference for short time period and
respond quickly. Thus, the user’s occasion is an important factor to detect the
transitiveness of Ubiquitous Semantics.

Fourth factor is Personalization. User’s preference is also an important factor
for selecting. Therefore, the agent should consider the user’s preference.

Here, we take the initials of the four names, and call it TPO+P. In the next
section, we describe an inference agent who classifies the transitive knowledge
based on TPO+P.

3 Knowledge-Filtering Agent

The agent needs to select useful knowledge in considering transitive knowledge
mentioned in section 2 in order for the agent to respond quickly in Ubiquitous

Development of Knowledge-Filtering Agent Along with User Context 73

Ubiquitous Semantics

Time, Place
Classification System

Knowledge Base
Time, Place Classification

Knowledge Base
TPO Classification

Knowledge Base
TPO+P Classification

Occasion
Classification System

Personalization
Classification System

Knowledge
Cutting Part

Transitive
Knowledge

Inference
Engine

Result of
Recommen-

Dation

Personalization
Rule

Occasion
Rule

Satisfaction
Evaluation

System

Time Information
Place Information

Events

Change of
Preference

User’s Request

Knowledge Base
are classified more

Knowledge Classification Part
(24 hours running)

Inference Part
(triggered by user’s request)

Sorted Result

Selected
Knowledge

for
Classification

Time, Place Classification

Occasion Classification
Personalization
Classification

Selected
Knowledge

for Classification

Retrieve Knowledge

Ubiquitous Semantics

Retrieved Knowledge

Finally Selected
Knowledge

for Inference

Selecting

Selecting

Selecting

Fig. 1. Archtecture of the knowledge-filtering agent and knowledge filtering

Semantics. Figure 1 shows the architecture of the agent. This agent is mainly
composed of Knowledge Classification part and Inference part.

The first part including knowledge base vertically connected from top to down
is Knowledge Classification part. This part classifies transitive knowledge. The
transitive knowledge are classified in three steps based on Time-Place, Occasion
and Personalization. Here, we applied the strategy which is to process the simple
classification first to make the size of knowledge passed to the next more complex
classification smaller. In addition, each classification is processed independently.
Therefore, it is possible to re-classify transitive knowledge quickly in case of
the change of user’s context (figure 1). Knowledge Classification part is always
running, then receives input information of user’s position, event, preference and
so on. We describe each step of classification process and the example in the next
section.

The second part including an inference engine horizontally from left to right
is Inference part to provide decision support information for users. This part is
executed on the user’s demand. Knowledge is already retrieved and classified by
Knowledge Classification part. Then, the inference part just selects the useful
part of knowledge to pass it to inference engine for decision making support.
Finally, the agent calculates the satisfaction ratio from the results of inference,
and outputs the sorted results with the satisfaction ratio.

4 Recipe Recommendation Agent

We have developed recipes recommendation agent for evaluation. The agent
recommends a recipe, for example, for homemakers to prepare dinner in consid-
eration of sale information and children’s preference and so on. Here, we assume
the ubiquitous environment as follows. The information of user’s position and
what merchandise in user’s hand is acquired by using GPS and a RFID reader
in the portable device. Also, the agent acquires the necessary knowledge from
Ubiquitous Semantics in cooperation with information appliances at home and
makes the recommendation. Finally, the portable device displays the recom-
mended recipes.

74 T. Takenouchi, T. Kawamura, and A. Ohsuga

4.1 Overview of Recipe Recommendation Agent

In the followings, we show the process of classification.

1. Time-Place Classification
Firstly, the agent detects user’s position and retrieves knowledge of shops
around the user and their sale information and so on, and classifies them
based on time and place .
The agent retrieves not only knowledge of business hours and regular holiday
of the shop, but also all knowledge that depends on time such as time-sale,
then classifies them.
Knowledge Classification part is always running. Thus, the knowledge near
the user such as local weather information is updated any time.
The information of shops such as opening hours and position, etc. are as-
sumed to be represented in RDF. In addition, we defined an ontology for
shop description (e.g. opening hours, shop holiday, service time and so on).
This ontology is defined with DAML-Time ontology[2].

2. Occasion Classification
For example, consider that the user picks up a food stuff in a shop. In this
case, it is thought that the user is interested in that food stuff. Thus, the
agent should recommend some recipes using it. So the agent retrieves the
name of the food stuff from the attached RFID or QR Code, and selects
recipe, and recommends some of them. In Occasion classification process,
Jess (Java Expert System Shell) [3] is used as an inference engine. Therefore,
Occasion rules are represented in S-expression like Lisp.
Occasion rules are divided into Common Rules and Condition Rules (table
1). Common rules describe some typical situations and are prepared by the
system manager. On the other hand, Occasion Rules describe the situations
depends on the user. Therefore, we will develop a tool to select and customize
the Occasion Rules in the future.

3. Personalization Classification
Finally, the agent classifies the useful knowledge based on the user’s pref-
erence, and calculates a satisfaction ratio for recommendation. The user’s

Table 1. Occasion rules

(defrule (event-read-handbill ?shop)
=> (area-shop ?shop))

If an user is reading a shop handbill, then the Agent
recommends to buy at the shop.

(defrule (user-near-station) (time-evening)
=> (area-shop-station-home))

If an user is near a station, and it is the time of going home, then
the Agent recommends to buy at the shops in his way home.

(defrule (user-in-shop) (event-have ?item)
=> (recomend-recipe-use ?item))

If an user is in a shop, and picks up merchandise, then the Agent
recommend recipes using it.

Condition
Rules

(defrule (user-have-car) (user-in-home)
=> (use-car-enable))

If an user has a car, and is at home, then the user can go
shopping by car.

(defrule (user-in-shop) (closing-time-soon ?shop)
=> (check-price ?shop))

If an user is in a shop, and the shop will be closed soon, then
Agent re-check the prices (because it will be saved).

(defrule (user-in-shop)
=> (cut-knowledge-small))

If an user is in a shop, then Agent cut the knowledge small size
(because the user would want to be recommended quickly).

Common
Rules

RuleDescriptionRule Type

Development of Knowledge-Filtering Agent Along with User Context 75

preference is complex, then it is written as rules. Personalization classifica-
tion is most time-consumption, so it is executed at the end.
For example, if the user is on a diet, the agent should retrieve knowledge of
nutrition information in order to calculate Calorie.
Personalization rules in which the user’s preferences are described are spec-
ified with URL, and downloaded from the network.
The user’s preferences are gathered by questionnaires in advance, then con-
verted to the Personalization rules. We will also develop a tool as well as the
Occasion rules in the future, so that the users can describe the Personaliza-
tion rules by themselves.

4.2 Motivation of Recipe Recommendation Agent

The recipe recommendation is one of the best applications for the evaluation as
follows.

First, there is much of transitive knowledge in the recipe recommendation. For
example, sale information on each day and time service discount information are
transitive knowledge depends on time information. In addition, user’s preference
depends the physical condition on everyday. Therefore, the preference is also
transitive knowledge.

Second, lots of sites show several recipes on the web, and various terms are
used. Thus, it is necessary to use the ontology in recipe recommendation agent.
For example, “Potato” is necessary as a food stuff for a menu, and a certain
merchandise is labeled as “White Potato”, then the agent should recognize that
“White Potato” is one of “Potato” and can be used as the food stuff of the menu.
A food stuff ontology is described in Web Ontology Language (OWL) [4].

5 Implementation

The mobile device of the recipe recommendation agent is assumed as an advanced
cellular phone (Smart Phone). However, the evaluation system was implemented
in Pocket PC due to the problem of the development environment (figure 2).

RFID ReaderRFID Reader

RFID for
Merchandise
RFID for
Merchandise

Display list of
recommended recipes
and their descriptions

Display list of
recommended recipes
and their descriptions

Fig. 2. Mobile device for evaluation

76 T. Takenouchi, T. Kawamura, and A. Ohsuga

<rdf:RDF …
<Merchandise rdf:about=“urn:epc:VE40101B49C24”>

<rdfs:label>fancy Chicken(200g)</rdfs:label>
<menu:ingredients>

<menu:Ingredient>
<!– linkage between Recipe RDF and Ingredient Ontology -->
<menu:item rdf:resource=“http://nike.....jp/menu/ingredient.owl#Chicken" />
<menu:unit rdf:resource=“http://nike.....jp/menu/unit.owl#Gram" />
<menu:quantity>200</menu:quantity>

<rdf:RDF …
<Menu rdf:ID=" Curry ">

<rdfs:label>Curry Stew</rdfs:label>
<ingredients>

<Ingredient>
<item rdf:resource=“http://nike.....jp/menu/ingredient.owl#Meat" />
<unit rdf:resource=“http://nike.....jp/menu/unit.owl#Gram" />
<quantity>400</quantity>

</Ingredient>

542VE40101B49C28

870VE40101B49C26

650VE40101B49C24

PriceTag ID

542VE40101B49C28

870VE40101B49C26

650VE40101B49C24

PriceTag ID(a) Recipe RDF
(b) Linkage between Merchandise

Tag and Recipe RDF

(c) Data Base for
Merchandise
Tag and Price

Linked by
using Ontology

Fig. 3. Knowledge on merchandises and recipes

We use HP iPAQ h2210 in which RFID Reader and GPS Reader are installed.
PDA OS is Pocket PC 2003.

We developed the recipe recommendation agent with Java, and installed it
to PC instead of a home server. We used Jena 2 Semantic Web Framework [5]
to process OWL ontology, and use Jess[3], which is a forward chaining inference
engine in Java. Thus, the user’s preferences are written in Jess rules. Web ser-
vices are provided in some of servers by using Axis[6], and the mobile device
communicates with the servers via the agent.

Further, we prepared the knowledge which links the merchandise tag with the
recipe written in RDFs as shown in figure 3. Information on tag IDs such as prices
are stored in merchandise DB, and the knowledge also links the merchandise tag
ID to the food ontology.

6 Evaluation

In this section, we evaluate the knowledge-filtering agent. The evaluation was
done on the response time and the accuracy.

The knowledge used in the experiment is the real data which is published
on a food company [7]. We converted it into RDF and used it as Ubiquitous
Semantics. Also, we converted part of the thesaurus which is made by [8] into
OWL, and used it as the food ontology.

6.1 Response Time

Table 2 shows the result of the response time comparing classifications and non
classification. The results are the averages over 3 times sending the same query.
We had an experiment in the occasion that the user is in a shop and thinks of
today’s dinner then picks up a merchandise at 2 shops, 93 merchandise in each
shop, and 40 recipes. The user sends the request to prefer the lowest price.

The agent classifies the knowledge based on shops by “Time-Place classifi-
cation”, and classifies it based on the merchandise which the user picked up
by “Occasion classification”. Moreover, by “Personalization classification” the
agent classifies the knowledge based on preference for lower price recipes.

Table 2 shows the response time improvement. It is caused by classifying the
knowledge based on TPO+P and selecting suitable knowledge of recipe according
to the users context. This result shows that the response time is getting faster
by increasing the classification factors.

Development of Knowledge-Filtering Agent Along with User Context 77

Table 2. Response time with classification factors (ms)

No Classification TP TPO TPO+P
Response Time 11550 6940 4137 291

Initialization 781 0 0 0
Non-Transitive Knowledge 471 0 0 0
TP Classification 0 317 0 0
TPO Classification 0 0 531 0
Pre-Inference Process 2033 1088 154 0
Price Calculation 7968 5261 3211 0
TPO+P Classification 0 0 0 50
Inference 297 274 241 241

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Number Of Shops

R
es

po
ns

e
T

im
e(

s) Classification Off

Classification On

Fig. 4. Response time with knowledge size

By looking at the internal processing time, it is found that the calculation on
the total price of the recipe takes so much time. The agent infers with the food
ontology like section 4.2 by using Jena and calculates the price. Therefore, as
the knowledge of the merchandise and the recipes increase, their combinations
increase and the processing time grows. However, as the classification factors
of knowledge information increase, the combinations become smaller, and the
processing time is getting faster.

In addition, we had an experiment on the response time when the size of
knowledge is changed. Figure 4 shows the result of classification. When not
classifying it, the combinations of the merchandise of the shop and the food
stuff of recipes increase explosively. Thus, the response time is getting worse
rapidly. In contrast, the response time is almost stable when classifying it.

Further, to confirm whether the classification order TPO+P is appropriate,
we shuffled the order. Table 3 shows the results of the time for each order. It
is confirmed by this result that the order of “Time-Place”, “Occasion”, and
“Personalization” is the fastest, and appropriate as the classification order.

Finally, we had an experiment on a processing time for re-classification with
100 recipes, 200 merchandises, and 4 shops. Figure 4 shows the result. When
the re-classification is done at “Time-Place classification”, it is necessary to do
re-classification at “Occasion classification” and “Personalize classification” that
are below it. That is, it costs the longest time to re-classify the knowledge at
“Time-Place classification”. The result shows it takes about 6 seconds to do

78 T. Takenouchi, T. Kawamura, and A. Ohsuga

Table 3. Reclassification time (ms) with TPO+P order

TimePlace Occasion Personalization Total
TP,O,P 497 251 448 1196
TP,P,O 538 808 855 2201
O,TP,P 631 1519 581 2731
O,P,TP 644 1519 12939 15102
P,TP,O 2507 240 39587 42334
P,O,TP 648 1385 40899 42932

Table 4. Reclassification time (ms)

Change level Reclassification Time
Time-Place changed 6023
Occasion changed 5488
Personalization changed 5021

re-classification at “Time-Place classification”. However, considering with the
current PC spec; Pentium M 1.5GHz, the agent would be able to follow enough
the user’s real movement.

As the result, the agent can decrease the number of combinations, reduce
the size of knowledge for inference, and improve the response time. Also, as the
size of ubiquitous semantics increases, the effectiveness of the agent will become
higher.

6.2 Accuracy of Recommendation

This section shows that the accuracy does not get worse by cutting out the
transitive knowledge. The verification method is as follows. First of all, each
tester recommends 20 recipes that he/she wants to eat in some occasions from
100 recipes. Then, the recipe agent recommends 20 recipes. Finally, we exam-
ines how many recipes which the agent recommended are matched to his / her
recommendations, and calculate the precision ratio of the recommendation.

The occasions are the followings.

Occasion A. In a shop at 3:00 PM, selecting a food stuff for today’s dinner.
At that time, the user picks up a savory carrot.

Occasion B. Around the train station at 10:00 PM. The user buys a food stuff
at a convenience store.

Occasion C. At home at 3:00 PM, thinking of the menu of today’s dinner.

Here, the user’s preference is “cooking time is shorter”, “low calorie”, “dislikes
fishes”. We had an experiment with 230 merchandise, 231 food ontology, and
7 testers. Table 5 shows the result of the average. (No-classification experiment
was not able to be done, because the system rised memory shortage error.)

Development of Knowledge-Filtering Agent Along with User Context 79

Table 5. Precision ratio (%)

TP TPO TPO+P
Occasion A 43.3 83.3 83.3
Occasion B 35.0 46.7 51.7
Occasion C 30.0 40.0 43.3

The result shows that the precision ratio improves as the classification factor
increases. In each classification, obviously unsuitable recipes are cut out, so the
precision ratio of the recipe has improved.

In summary, it was confirmed that the agent is able to respond quickly keeping
the accuracy by classifying transitive knowledge based on TPO+P.

6.3 Applicability of Other Applications

We have concluded the knowledge filtering agent is effective by evaluating the
recipe recomentdation system only. However, the knowledge filtering agent is
applicable to other applications. For example, man navigation system which
changes the destination along with user’s preference is one of target applications.
This system has too many possible destination for users goal. Therefore, it is dif-
ficult to consider the whole knowledge. Furthermore, it is necessary to recomend
quickly in the case of changing the user’s plan. Also, there are many kinds of
transitive knowledge, such as vacant seat in the theater and so on. For the above
reasons, the knowledge filtering agent would be applicable for other systems.

7 Related Works

Several studies have been made on context awareness in ubiquitous environment.
[9] aims at providing Web services that fit to ubiquitous computing and proposes
an architecture with middle agents who determine the best matched services
and location-ontology for ubiquitous computing. However, it doesn’t classify the
knowledge information from huge amount of transitive knowledge.

[10] proposes a system which infers user’s context from the knowledge in
Semantic Web and information from sensors, and provides appropriate informa-
tion to the user. However, it don’t classify massive transitive knowledge and not
consider the performance.

In addition, several methods of acquiring knowledge to respond quickly are
proposed. [11, 12] propose an agent who acquires the knowledge on the Web
using caching and planning technology. However, they don’t deal with transitive
knowledge in ubiquitous environment. Our research aims to respond quickly by
classifying transitive knowledge information.

Furthermore, several studies have been made on recipe recommendation. [13]
proposes a system to recommend new recipes from some basic recipes by using
Case-Based Reasoning and propose a substitute food stuff by using a food ontol-

80 T. Takenouchi, T. Kawamura, and A. Ohsuga

ogy. However, it doesn’t consider the transitive knowledge. If the size of knowledge
is large, then it would become necessary to select the useful knowledge.

8 Conclusion

We defined four factors that characterize the transitive knowledge as TPO+P,
and proposed the method of efficiently selecting the useful knowledge part from
the huge amount of knowledge in ubiquitous environment.

Then, we developed the recipe recommendation agent, and evaluated the re-
sponse time and the accuracy.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

2. Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard On-
tology for Ubiquitous and Pervasive Applications. In MobiQuitous 2004, August
2004.

3. Jess (Java Expert System Shell). Sandia National Laboratories.
http://herzberg.ca.sandia.gov/jess/.

4. Deborah L. McGuiness and Frank. van Harmelen. OWL Web Ontology Language
Overview, December 2003. http://www.w3.org/TR/owl-features.

5. Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the semantic web recommendations.
Technical Report HPL-2003-146, HP Lab, 2003.

6. Apache AXIS. Apache Web Services Project. http://ws.apache.org/axis/.
7. Ajinomoto, Co., Inc. Recipe DAIHYAKKA.

http://www.ajinomoto.co.jp/recipe/.
8. Institute of Language Engineering. Thesaurus. Japan,

http://www.gengokk.co.jp/thesaurus/.
9. Akio Sashima, Koichi Kurumatani, and Noriaki Izumi. Location-mediated service

coordination in ubiquitous computing. In the Third International Workshop on
Ontologies in Agent Systems(OAS-03), pages 39–46. AAMAS2003, 2003.

10. Harry Chen, Tim Finin, Anupam Joshi, Filip Perich, Dipanjan Chakraborty, and
Lalana Kagal. Intelligent Agents Meet the Semantic Web in Smart Spaces. IEEE
Internet Computing, 8(6):69–79, November 2004.

11. Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley XQ. Zhang. BIG: An Agent for Resource-Bounded Information Gathering
and Decision Making. Artificial Intelligence, 118(1–2):197–244, May 2000.

12. Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley XQ. Zhang. BIG: A Resource-Bounded Information Gathering and Deci-
sion Support Agent. Technical Report 1998-52, Multi-Agent Systems Laboratory
Computer Science Department University of Massachusetts, January 1999.

13. Kristian J. Hammond. CHEF: A Model of Case-Based Planning. AAAI, pages
267–271, 1986.

http://herzberg.ca.sandia.gov/jess/
http://www.w3.org/TR/owl-features
http://ws.apache.org/axis/
http://www.ajinomoto.co.jp/recipe/
http://www.gengokk.co.jp/thesaurus/

	Introduction
	Transitiveness of Knowledge
	Knowledge-Filtering Agent
	Recipe Recommendation Agent
	Overview of Recipe Recommendation Agent
	Motivation of Recipe Recommendation Agent

	Implementation
	Evaluation
	Response Time
	Accuracy of Recommendation
	Applicability of Other Applications

	Related Works
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

