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Abstract. To evolve robot controllers that generalize well, we should
evaluate the controllers using as many environment patterns (evaluation
patterns) as possible. However, to evolve the controllers faster, we should
use as few evaluation patterns as possible in evaluation. It is difficult to
know in advance what patterns can produce good controllers. To solve
this problem, this paper studies co-evolution of the robot controllers and
the evaluation patterns. To improve the effectiveness of co-evolution, we
introduce fitness sharing in the population of evaluation patterns, and the
inter-generation fitness in selecting good controllers. Simulation results
show that the proposed method can get much better robot controllers
than standard co-evolutionary algorithm.

1 Introduction

Neural network is a good model for robot control because it can acquire the
control rules automatically through learning. In many cases, the rules cannot
be given beforehand, because the environment may change frequently. In such
cases, the robot must be smart enough to acquire the rules by itself. Since the
teacher signals are often not available, supervised learning cannot be used. It
is known that evolutionary learning or reinforcement learning is more efficient.
In reinforcement learning, when the robot takes a certain action in the current
state, there is some feedback (reward or penalty) from the environment, and the
robot can learn based on the feedback. In evolutionary learning, only the final
result is evaluated. In general, evolutionary learning uses much less information
in learning. In this research, we consider evolutionary learning only.

There is one dilemma in evolving smart robot controllers. On the one hand,
the evolution may become unstable if the environment of evolution is not fixed,
and good controllers cannot be obtained. On the other hand, if the environment
for evolution is fixed, the controller might be good only for that environment.
That is, the robot is just a lucky-guy that cannot generalize well. One method
for resolving this dilemma is to choose some typical evaluation patterns (en-
vironment patterns). The individual robot controllers can be evaluated using
these patterns during evolution. Using this method, we can reduce the chance of
obtaining lucky-guys because the robot controller should be good for different
evaluation patterns. Also, because the evaluation patterns are fixed, the evolu-
tion can be stable. The problem is that in general it is difficult to choose the
evaluation patterns that can generate good controllers.
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In this paper, we try to resolve the above dilemma through co-evolution be-
tween the evaluation patterns and the robot controllers. We start from a simple
problem first here. The problem considered is to evolve a mobile robot that can
reach a given goal from any start point in an environment containing obstacles.
The layout of the environment is not changed during evolution. The evaluation
patterns in this case are the start points and the orientation of the robot. If we
can solve this problem well, we can get some important hints for solving more
complex problems in the next step.

When we use co-evolution, it is necessary to consider the following points:

1. Because we would like to obtain different evaluation patterns, fitness sharing
is necessary for the population of the evaluation patterns. If we do not use
fitness sharing, all evaluation patterns in the population will be very similar
after evolution, and the robot so evolved will have a good chance to be the
lucky-guy.

2. Since the robots and the evaluation patterns evolve together, when the eval-
uation patterns change, the criteria for evaluating the robots also change.
If the robot individuals are selected based only on the fitness in the current
generation, many good individuals can be selected against. This is a problem
seen in dinosaur extinction. To solve this problem, we introduce the concept
of inter-generation fitness, which is the sum or average fitness of an indi-
vidual over several generations. The robot individuals are selected based on
their inter-generation fitness.

In this paper, we will confirm the effectiveness of the above ideas through simu-
lation experiments. This paper is organized as follows. In the next section, some
preliminaries related to this work are provided. In Section 3, we give a short
review on the GA (genetic algorithm) based evolution of the robot controllers.
In Section 4, we describe the co-evolution in detail. Section 5 provides the sim-
ulation results, and Section 6 is the conclusion.

2 Preliminaries

2.1 The Robot Used in This Study

In this study, we use the Khepera robot which is a well-known mini mobile robot
used by many researchers for studying intelligent robots. However, we do not use
the real robot in our experiments because that will be very time consuming. We
use the free software Khepera simulator 2.0. The simulation environment is a
squared map of 1000 × 1000 pixels. The layout of the robot(s), the obstacles,
and the goal(s) can be defined by the user.

2.2 The Controller Model

The multilayer perceptron (MLP) is used as the robot controller in this study.
The network has one input layer, one hidden layer and one output layer. The
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input layer has 17 inputs (8 infrared sensors, and 8 light sensors and one bias).
For convenience, the number of hidden neurons is also fixed to 17 without fine-
tuning. Two output neurons are used to encode four actions:

1. Move forward: both outputs are larger than 0.5.
2. Move back: both outputs are less than 0.5.
3. Turn right: the first output is larger than 0.5, and the second output is less

than 0.5.
4. Turn left: the first output is less than 0.5, and the second output is larger

than 0.5.

3 Evolving the Robot Controllers Based on Standard GA

The genetic algorithm (GA) can be used for evolving the robot controllers. For
this purpose, we need to define the fitness and genotype of the individuals. The
genotype of a neural network robot controller is simply the list of all connection
weights represented in real numbers. Since the problem considered here is to
obtain robot controllers that can drive the robot to a given goal (light source)
from any start point, we can define the fitness based on the distance between
the robot and the goal after the robot moves for a certain number of steps. If the
robot can reach the goal, we should prefer those that can reach the goal quickly.
Specifically, the fitness of a robot controller can be calculated as follows:

1. The robot is put to the start points.
2. Let the robot move in the environment based on the sensor inputs and the

decisions made by the controller. The robot stops when the number of moves
reaches to 2,000, or when it reaches the goal.

3. If the robot cannot reach the goal, the fitness is defined as follows:

fitness = A × (B − distance) (1)

where A and B are constants, and distance is the distance between the robot
and the goal when the robot stops. In this paper, we defined A=0.1 and B=700.
If the robot reaches the goal within 2,000 steps, the bonus given below is added
to the fitness.

Bonus = [(2000 − n)2 × C + D] (2)

Here, C=0.000016 and D=14. The parameters A, B, C and D are so chosen
that when the robot reaches the goal with 1,000 steps, the fitness is 100. If the
robot reaches the goal with 2,000 steps, the fitness becomes 84. The fitness is
still higher than the fitness when the robot cannot reach the goal.
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4 Co-evolution of Robot Controllers and Evaluation
Patterns

4.1 General Considerations

To evolve the robot controller using GA, the selection of start points is very
important. If we fix one start point, the robot can reach the goal from this start
points, but may not be able to reach goal if we put it to other start point. If we
evaluate the robot using start points randomly generated in each generation, the
generalization ability may become higher, but the evolution process may not be
stable because the evaluation criterion is not constant. To solve this problem, we
study the co-evolutionary approach here. The subjects to be co-evolved are the
robot controllers and the start points (the evaluation patterns). The Individual
of an evaluation pattern includes the x and y coordinates of the start point, and
the orientation of robot at that point.

4.2 Standard Co-evolution

First, let us consider the standard co-evolution. Fig. 1 shows the flowchart of
co-evolution. It can be described as follows:

– Step 0: Generate two populations, one for the robot controllers, and another
for the evaluation patterns. All individuals are initialized using random num-
bers.

– Step 1: Evaluate the evaluation patterns using all robots. Specifically, for
a given evaluation pattern, put all robots, one by one, to the position and
orientation defined by this pattern, and let the robot move towards the goal.
For each robot, we get a fitness value as defined by (1) and (2). The fitness
of the evaluation pattern is defined as the sum of the fitness values of all
robots. Note that fitness of an evaluation pattern should be as small as
possible. That is, we should find such patterns from which the robots cannot
reach the goal easily.

– Step 2: Evolve the evaluation patterns using standard GA defined in the
previous section.

– Step 3: Evaluate the robots using all the evaluation patterns. For each robot,
the fitness of the robot for one evaluation pattern is defined by (1) and (2).
Its total fitness is the sum of the fitness values for all evaluation patterns.
The fitness of the robots should be as high as possible.

– Step 4: Evolve the robots using standard GA.
– Step 5: If the terminating condition is satisfied, stop; otherwise, return to

Step 1. In our experiment, the terminating condition is very simple. We just
restrict the number of generations to 100.

4.3 Modified Co-evolution

In the standard co-evolution, each individual in one population must be evalu-
ated by all individuals in another population. This is very time consuming. To
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Fig. 1. Flowchart of standard co-evolution

Fig. 2. Start points for testing the robot

Fig. 3. Evaluation of the individuals in standard
co-evolution

Fig. 4. Evaluation of the environment patterns in
the modified co-evolutionary algorithm

Fig. 5. Evaluation of the robots in the modified
co-evolutionary algorithm

Fig. 6. Evolution curve of co-evolution with
fitness sharing

speed-up the evolution process, we consider a modified co-evolution here. In the
modified version, each individual is evaluated using several top individuals in
another population. In this study, we just use the top 3 individuals in a popula-
tion to evaluate the individuals in another population (Fig. 4 and Fig. 5). Note
that in evaluating the robots, each environment pattern is used twice to make
the evaluation results more reliable. Since there are some noises in the sensor
inputs, the result for each evaluation is different.

In this study, the size of the robot population is 100, and that of the envi-
ronment pattern population is 20. Therefore, the total number of evaluations in
one generation in the standard co-evolution is 100×20 + 100×20×2 = 6,000. In
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Table 1. Result of GA

Method 1 Method 2
Controller1 33 78
Controller2 52 53
Controller3 43 44
Controller4 48 71
Controller5 26 43
Controller6 32 79
Controller7 32 71
Controller8 26 73
Controller9 19 63
Controller10 52 74
Average 36.3 64.9

Table 2. Result of standard Co-evolution

Method 3 Method 4 Method 5
Controller1 61 75 56
Controller2 59 60 61
Controller3 55 57 56
Controller4 52 57 61
Controller5 56 84 87
Controller6 53 77 86
Controller7 52 75 84
Controller8 64 70 78
Controller9 61 59 59
Controller10 51 59 57
Average 56.4 67.3 70.1

Table 3. Result of modified Co-evolution

Method 6 Method 7 Method 8
Controller1 49 64 76
Controller2 51 63 77
Controller3 74 72 74
Controller4 67 67 85
Controller5 59 71 74
Controller6 63 69 72
Controller7 68 65 74
Controller8 63 65 78
Controller9 69 86 73
Controller10 84 82 77
Average 64.7 70.4 76.0

Fig. 7. Evolution curve of co-evolution with
fitness sharing and inter-generation fitness

Fig. 8. Evaluation patterns obtained by the
standard co-evolution after 100 generations

Fig. 9. Evaluation patterns obtained by the co-
evolution with fitness sharing after 100 generations

the modified co-evolution, the number of evaluations is 100×2×3 + 20×3 = 660.
The speed-up ratio is about 9.

4.4 Fitness Sharing

There is an important problem in the above co-evolutionary algorithm. In fact,
the evaluation patterns after evolution tend to be close to one point in the
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environment. Usually, this point is the most difficult start point for the robot to
reach the goal. Note that our purpose is to evolve robots that can reach the goal
from ANY start point. Using only one point (although it is the most difficult
one) cannot result in robot that generalizes well.

To solve the above problem, we introduce fitness sharing in the population
of the environment patterns. For each individual, we first find its neighbors in
a certain range. If there are N neighbors, its fitness is divided by N. In this
study, we just adopt a hard limit for defining the neighborhood. For two points
p1 and p2, if their distance is less than R, we say that they are neighbors. In our
simulations, R = 250. With fitness sharing, different environment patterns can
be obtained through evolution.

4.5 Inter-generation Fitness

Since our purpose is to find one robot that can go from any start point to the
goal, we do not use fitness sharing in the robot population. However, there is
another problem in evolving the robots. Because the evaluation patterns evolve
together with the robots, good robots may suddenly become not so good or even
bad in the next generation. This results in an unstable evolution. To solve this
problem, we propose to use the inter-generation fitness in selecting the robot
individuals. By inter-generation fitness we mean the total or average fitness of
the robot over many generations. By so doing, robots that are good for different
evaluation patterns generated in different generations can be preserved.

5 Simulation Results

To verify the ideas given in the previous section, we conducted several experi-
ments. Results of the following methods are used for comparison:

– Method 1: Fix the start point to the center of the environment, and evolve
the robot using GA;

– Method 2: Generate a new start point at random in each new generation,
and evolve the robot using GA;

– Method 3: Evolve the robot and the evaluation pattern (the start point)
together via standard co-evolution;

– Method 4: Standard co-evolution with fitness sharing;
– Method 5: Standard co-evolution with fitness sharing and inter-generation

fitness based evaluation;
– Method 6: Modified (simplified) co-evolution;
– Method 7: Modified co-evolution with fitness sharing;
– Method 8: Modified co-evolution with fitness sharing and inter-generation

fitness based evaluation.

To test the performance (generalization ability) of the robot controllers, we
count the number of times the robot can reach the given goal from 100 start
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points as shown in Fig. 2. The number of successes divided by the total number
of test cases is called the success rate. To make the results more reliable, we
evolved 10 robot controllers, and evaluated each controller 10 times.

The success rates are used to compare the effectiveness of the methods. The
parameters used in the simulations are 1) The number of generations is 100
or 1,000; 2) The size of the population for robots is 100; 3) The size of the
population for the environment patterns is 20; 4) The number of individuals (of
another population) used for evaluation is all or 3; 5) Weight-by-weight mutation
is used, with the mutation rate=0.002; 6) Two-point crossover with the crossover
rate=0.8; and 7) Truncation selection with the selection rate=0.2.

Tables 1-3 are the experimental results. The numbers shown in the tables
are the success rates (in %) of the robots. From these tables we can see that
co-evolution without fitness sharing cannot generate good robot controllers.
Method 2 is actually better. Fitness sharing can improve the generalization abil-
ity of both standard co-evolution and the modified one. However, from Fig. 6
we can see that fitness sharing alone is not enough to stabilize the evolution-
ary process. The (average) fitness of the population can drop sharply in some
generation. Using inter-generation fitness, the evolution can be more stable (see
Fig. 7).

Note that from Fig. 7 we can also see that the fitness of the best robot con-
troller did not increase through evolution. This is because that the evaluation
patterns are becoming more and more difficult. This is actually a relative mea-
sure. In this sense, the success rate shown in Tables 1-2 is the absolute measure.

One interesting fact is that the modified co-evolutionary algorithm is better
than the standard one, although its computation cost is lower. We need to do
more experiments to see if this is generally true or not.

Fig. 8 and Fig. 9 show the evaluation patterns obtained by the standard co-
evolution and the co-evolution with fitness sharing. Clearly, co-evolution with
fitness sharing can get different evaluation patterns, while standard co-evolution
tends to provide evaluation patterns in the same location.

6 Conclusion

In this paper, we have investigated different co-evolutionary algorithms for evolv-
ing robot controllers. We found that fitness sharing and inter-generation fitness
are very useful for improving the performance of the evolved robot controllers.
However, the success rates are still not high enough. Further improvement is
required to get better controllers.

In the future, we would like to use parallel computation to speed-up the
evolution process first. Using parallel computation, we can increase the number of
generations as well as the population sizes, and hopefully we can get better robot
controllers. We will also try to solve more difficult problems such as evolving
robots that can approach to any goal from any start point, and for any given
environment layout . In addition, we would like to transform the learned results
into understandable and re-usable rules.
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