Synchronization and Recovery in an Embedded
Database System for Read-Only Transactions

Subhash Bhalla and Masaki Hasegawa

The University of Aizu, Aizu-Wakamatsu, Fukushima PO 965-8580, Japan
{bhalla, d8041201}@u-aizu.ac.jp

Abstract. Transactions within an embedded database management
system face many restrictions. These can not afford unlimited delays or
participate in multiple retry attempts for execution. The proposed em-
bedded concurrency control (ECC) techniques provide support on three
counts, namely - to enhance concurrency, to overcome problems due to
heterogeneity, and to allocate priority to transactions that originate from
critical host.

1 Introduction

An embedded system is most often dedicated to a single application or small
set of tasks. The software to manage them is small and simple. The operating
conditions of the system are typically more restrictive than those of general pur-
pose computing environments. An embedded system must continue to function
without interruption and without administrator intervention.

In this paper, we focus on the Asilomar report ”gizmo” databases [3]. These
databases reside in devices such as smart cards, toasters, or telephones. The key
characteristics of such databases are the following,

— the database functionality is completely transparent to users,

— explicit database operations or database maintenance is not performed,

— the database may crash at any time. It must recover instantly,

— the device may undergo a hard reset at any time. It requires that the database
must return to its initial state, and

— the semantic integrity of the database must be maintained at all times.

As embedded systems define a specific environment and set of tasks, requir-
ing expertise during the initial system configuration process is unacceptable.
Many research efforts focus their attention on the maintenance of the system.
For example, Microsoft’s Auto Admin project [6], and the ”"no-knobs” adminis-
tration. These have been identified as an area of important future research by
the Asilomar authors [3].

2 DMotivation - Embedded Database Systems

There are a few tasks that are typically performed by database administrators
(DBAs) in a conventional database system. These tasks must be automated in
an embedded system.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 509-518] 2005.
© IFIP International Federation for Information Processing 2005

510 S. Bhalla and M. Hasegawa

2.1 Outline of Requirements

Embedded systems typically perform simple queries. The relevant criteria are
ease of maintenance, robustness, and small footprint. Of these three require-
ments, robustness and ease of maintenance are the more important criteria.
Users must trust the data stored in their devices and must not need to manually
perform anything resembling system administration in order to get their unit to
work properly.

Application Level Database System. In an embedded database, the nor-
mal maintenance tasks must be automated. These are not necessarily based on
the initial system configuration prepared by a user. There are five tasks that
are traditionally performed by DBAs, but must be performed automatically
in embedded database systems. These tasks are log archival and reclamation,
backup, data compaction / reorganization, automatic and rapid recovery, and
re-initialization from scratch.

Log archival and backup are tightly coupled. Database backups are part of
any large database installation, and log archival is analogous to incremental
backup [13]. There are a few implications of backup and archiving data in an
embedded system. Consumers do not back up their VCRs or refrigerators, yet
they back up their personal computers or personal digital assistants. We assume
that backups, in some form, are required for gizmo databases (imagine having to
reprogram, manually, the television viewing access pattern learned by some set-
top television systems today) [I3]. Furthermore, we require that those backups
are nearly instantaneous or completely transparent,as users should not be aware
that their gizmos are being backed up and should not have to explicitly initiate
such backups.

Data compaction or reorganization has traditionally required periodic dump-
ing and restoration of database tables and the recreation of indices. In an em-
bedded system, such reorganization must happen automatically.

Recovery issues are similar in embedded and traditional environments with
a few exceptions. While a few seconds or even a minute recovery is acceptable
for a large server installation, no one is willing to wait for their telephone or
television to reboot. As with archival, recovery must be nearly instantaneous
in an embedded product. Secondly, it is often the case that a system will be
completely reinitialized, rather than simply rebooted. In this case, the embedded
database must be restored to its initial state, freeing all its resources. This is not
typically a requirement of large server systems.

System Level Architecture. In addition to the maintenance-free operation
required of the embedded systems,there are a number of requirements that fall
out of the constrained resources found in the systems using gizmo databases.
These requirements are: small footprint, short code-path, programmatic interface
for tight application coupling and to avoid the overhead (in both time and size)
of interfaces such as SQL and ODBC, application configurability and flexibility,
support for complete memory-resident operation (e.g., these systems must run
on gizmos without file systems), and support for multi-threading.

Synchronization and Recovery in an Embedded Database System 511

A small footprint and short code-path are common requirements for embedded
database (EDB). However, traditional interfaces such as ODBC and SQL add
significant size overhead and frequently add multiple context/thread switches
per operation. These also add several IPC calls.

The rest of the manuscript is organized as follows. The next section describes
database transactions. Section 4 presents a model of the system. It also describes
the data sharing problems and a solution based on embedded concurrency con-
trol. Section 5 considers a proof of correctness. Section 6 presents related research
activities. Finally, section 7 presents summary and conclusions.

3 Database Transactions

We consider, an environment based on transaction classification. The transac-
tions at the server end are considered to be short and these can be easily restarted
on account of few failures. The critical client’s transactions on the other hand are
considered instant execution requests of highest (real-time) priority. The server
is assumed to have a high capacity and receives a few cases of critical client
update requests. In many cases, the transaction processing system can execute
a critical client (cc) update, with little or no overheads. In the study, conflicts
among two critical client transactions are separately discussed at the end for
sake of simplicity. We demonstrate the ease of processing a long read (backup)
transaction using the proposed model.

In order to preserve serializability, the conventional systems depend on 2 phase
locking (2PL) protocol [2]. Whereas the 2PL protocol enforces a two phase disci-
ple, the criteria of serializability does not dictate the order in which a collection of
conflicting transactions need to execute [2]. This option provides an opportunity
to make a modified system that follows 2 PL protocol at the TM’s level, but can
be flexible at the data manager’s (DM’s) level. It can permit a interference free
and 'non-blocked’ execution for critical host (CH) transactions. This change ne-
cessitates maintaining "lock table’ in the form of site level graphs. Although this
is the first effort (to the best of our knowledge) to use the technique for embedded
databases, many graph based techniques have been studied earlier by [7], [L1], [12].

Transaction Execute and Terminate

Commit

Priority
Transaction

Normal - -
Transaction Execute if valid

Execution precedence .
available Commit

Validation
and two Phase

Fig. 1. Execution of CH update transactions in isolation through embedded 2 phase
locking based concurrency control

512 S. Bhalla and M. Hasegawa

It is proposed to execute a critical host update (CHU) transaction in a special
priority fashion. It may need to wait for another low-priority transaction, only
if, that transaction has completed and local DM is participating in the second
phase of a 2 phase commit.

The introduction of these possibilities integrates well with the existing trans-
action execution models. Earlier efforts at separating read-only transactions and
update transactions exist [2]. The present study is an effort that proposes an
implementation strategy for isolation of Serializable CHU transactions, for such
an execution, that is free from interference by other transactions (Figure 1).

3.1 Transaction Execution

It is common for designers to extend the available approaches for concurrency
control for use within the new system environments. However, we propose to
study an analytical model and consider introduction of parallelism.

There have been some efforts at introducing parallelism within the concur-
rency control function. Earlier proposals attempt to eliminate interference be-
tween two classes of transactions. For example, processing Read-only transac-
tions separately by using older versions of data, eliminate interference. Within
the new classes, transactions are processed with no interference from each other’s
transactions. These can be considered to be executing in parallel. We propose
to study the process of data allocation to executing transactions by using a
stochastic process model. The model helps us in examining the parallel activity
introduced by the use of classification of transactions. It also provides new in-
sights that can lead to efficient processing of time-critical transactions. In the
new environment, the time-critical transactions aim to execute with no interfer-
ence from the ordinary transactions (Figure 1). In this light, the characteristics
of the 2 Phase Locking based Concurrency Control scheme have been examined,
within framework of a Real-Time (time-critical) database system.

4 The System Model

Based on the models of 2 phase locking and real-time computational environ-
ment with no slack time [9], a set of assumptions for executing transactions are
organized. It is assumed that a 2 phase locking discipline is followed and the
transaction execution is based on the criteria of serializability. Ideally, the CHU
transactions should be able to do the following :

— a critical transaction may proceed without interference from other transac-
tions.

— over ride conventional delays during execution

— integrate with existing modes of transaction executions. The two phases
within the two phase locking (2PL) protocol must execute with no blocking;;

— execute and commit, i.e., if phase 1 is completed, then phase 2 needs to
complete.

In the following section, a scheme to execute transactions as per a precedence
order is described.

Synchronization and Recovery in an Embedded Database System 513

4.1 Definitions : Embedded Database System

Embedded database system (EDS) consists of a set of data items (say set 'D’).
The EDS is assumed to be based on a server that are occasionally accessed by
critical hosts. The site supports a transaction manager (TM) and a data manager
(DM). The TM supervises the execution of the transactions. The DMs manage
individual databases. Each critical host supports a TM, that interacts with an
EDB server. That performs other TM functions of interaction with other DMs.
The network is assumed to detect failures, as and when these occur. When a site
fails, it simply stops running and other sites detect this fact.

4.2 The Transaction Model

We define a transaction as a set of atomic operations on data items. The system
contains a mixture of instant priority real-time transactions (CHU, or CH reads)
and ordinary transactions. We assume that the ordinary transactions can be
aborted, in case of a data conflict with the real-time transactions.

The use of real-time database systems is growing in many application areas such
as, industrial process control systems, and other time-critical applications. Many
approaches for implementation of Real-Time systems are being studied [I0]. In
the real-time system environment, a critical transaction (computational task) is
characterized by its computation time and a completion deadline. These systems
are characterized by stringent deadlines, and high reliability requirements.

4.3 Embedded Concurrency Control for Critical Data Operations

It is proposed to execute a CHT in isolation. It permits the CHT to proceed by
locking data items. This step reduces the value of 'n’ as the domain of locked
items is confined to CHTs only. The norm for processing other transactions is
based on an additional validation check, as per the criteria of serializability. For
this purpose, each transaction is validated before commit.

The validation test for other transactions(OTs) uses the following criteria :

1. (normal) No data item, read by the transaction (OT), has been updated
by a transaction after the read, that is -
Read-set (OT) N Write-set (more recently committed transactions) ; and
2. (additional) No data item read by the transaction (OT), is in the locked
item list of executing CHTs, that is -
Read-set (OT) N Locked-items (CHTs) .

The transactions that fail to meet the first criteria are aborted, and restarted.
The transactions that fail to meet the second criteria can be made to delay
commit, so as to let the executing CHT complete its execution. The algorithm
for performing, the validation check is given below (Figure 2.). The possibility
of repeated rollback of an ordinary transaction can be eliminated (It can be
submitted as a low priority CHT). It can be observed that, such an execution
introduces a non-interference environment for a CHT.

The above test is strictly conflict based and OT's need not perform any locking
and can be made completely dependent upon a validation test [4].

514 S. Bhalla and M. Hasegawa

Procedure Validate (OT);
Valid := true;
For each X € Read-set (OT) do
if X € write-set (Transactions committed after read by OT)
then Valid := false, exit loop; end ;
if X € (Locked items list of CHT's)
then wait for release and Valid := false, exit loop;
end;
If valid
then for each X € write-set (T) do
< Allot a commit sequence number to T >
< Commit write-set (T) to database >

else restart (T);
end.

Fig. 2. Validation procedure for Embedded Concurrency Control (ECC)

Correctness Criteria. The critical host update transactions execute as per
the criteria of serializability by virtue of the 2PL protocol [2]. As the CHTs
completely ignore the presence of OTs, these transactions are executed as per
the notion of optimistic concurrency control, with an enhanced validation check.
The validation check ensures that an OT is Serializable with respect to,

1. the previously committed transactions, and
2. the executing critical host transactions.

Performance Considerations. A drawback associated with adoption of val-
idation based approaches is the possibility of repeated rollbacks. However the
proposed scheme can prevent these rollbacks by resubmitting a rejected trans-

Critical transaction,

CC-1
Ordinary transactions

Fig. 3. Performance gain for Critical Transactions

Synchronization and Recovery in an Embedded Database System 515

action as a low priority CHT. This will make the OT execute as per the 2PL
protocol and prevent the repeated rollbacks.

Although, in this approach the OTs face an enhanced level of validation,
there are three positive aspects that are associated with our proposal. Firstly,
the OTs avoid the problem of repeated rollbacks. Also, such a mixed mode of
execution enhances the overall level of concurrency, because unlike locking based
approaches the validation check is based on testing conflicts using the read-set of
the committing transaction. Finally, the main item under focus concerning the is
performance is the execution of CHT. Although the overall level of concurrency is
expected to be improved, the performance of CHTSs is enhanced as these execute
with no interference with the other transactions within the system (Figure 3).
A performance evaluation study has been presented in [5].

4.4 Incremental Corrections to Global Read Contents

We propose an algorithm based on asynchronous computing ([4]). This algorithm
has two stages. In the first stage, the log of the transactions is recorded during
global-read. In the next stage, the backup copy is corrected by using the log of the
transactions in off-line mode. The entity conditions and the normal transactions
work the same as the original incremental global-read algorithm [I]. In this
proposal, there are no rejected transactions.

In the proposed algorithm, a global read transaction is started. It locks a
small part of the database as it proceeds. The database items that are read by
the global read are colored as black. Other transactions that update data in the
database are colored based on the items accessed by them. Transactions that read
black data items are colored as black. Other transactions are colored as white or
grey (mixed read-set). These transaction update database. The database items
updated by the colored transactions are colored as grey. At the time of commit,
if an entity’s color is black and is updated by a black or gray transaction, then
its contents are noted by using the log of the transactions. Later, the copied
version of database (inconsistent version read by global read copy) is corrected
by using the log (in off-line mode) (Figure[dl). This proposal creates a complete
backup of the database which is consistent with the time, when the global-read
is completed. This proposal does not need more storage, as a small log can
be maintained in the main memory. Also, if a separate system recovery log is
prepared for recovery by the system. By combining the backup log with system
recovery log, no additional storage is needed.

The Algorithm - Transformation of Database States. As shown in Figure
@ phase 1, generates a modified log during the execution of a global-read trans-
action. This log (called the color log) contains a color marking for each update
transaction. On completion of the global-read, the data read by the global-read
contains an inconsistent version of the database. In phase 2, modifications are ap-
plied to make the data consistent, as shown in figure@l An algorithm to generate
the color log and for later generation of a consistent database version is described
in this section. The various aspects of the proposed scheme are discussed below.

516 S. Bhalla and M. Hasegawa

[white read / written by

black or mixed
global — read transaction
written by
black / mixed

[black W transaction
W

Fig. 4. State transition diagram for data entities

Global-Read Processing. The global-read transaction (T,) divides the
database entities into black and white colors. At the beginning, all database
entities are white. Gradually, entities read by a Ty, are colored black. In addition,
all entities that are written by black or mixed transactions are colored as gray.
White data entitity that are read by black or mixed transaction are also colored
as gray. Thus all data entities are colored as white, or black or gray. Normal
update transactions are colored white or black depending on the color of data
entities being updated by them. A transaction is termed as mixed (gray color),
based on the following conditions,

— a transaction that updates a mixture of black and white data entities;
— a transaction that reads a data entity that is colored as gray; and
— a transaction that writes on a data entity that is colored gray.

The color of a transaction can be determined at the time of its commit by
examining the color of data items in its, read-set and write-set. Normal read-only
transactions are not colored and proceed normally subject to the constraints of
the two-phase locking protocol.

5 Proof of Correctness

While the earlier proposals avoid inconsistency by not allowing certain transac-
tions to commit, our proposals permit a normal execution activity during the exe-
cution of the global-read transaction. All such updates that could have been missed
partially or fully, are rewritten on the database copy, during phase 2. These updates
by gray or black transactions, can generate inconsistency. Concurrent updates by
white transactions are read by the global-read transaction, during global-read.

6 Related Work

Occasionally, leading researchers in the database community convene to iden-
tify future directions in database research. The most recent of discussion is the

Synchronization and Recovery in an Embedded Database System 517

1998 Asilomar report. It identifies the embedded database as one of the im-
portant research areas in database research [3]. Also, market analysts identify
the embedded database market as a high-growth area in the commercial sector
as well [§].

The Asilomar report identifies a new class of database applications, which they
term ”gizmo” databases, small databases embedded in tiny mobile appliances,
e.g., smart-cards, telephones, personal digital assistants. Such databases must
be self-managing, secure and reliable. Thus, the idea is that gizmo databases
require plug and play data management with no database administrator (DBA),
no human settable parameters, and the ability to adapt to changing conditions.
More specifically, the Asilomar authors claim that the goal is self-tuning, in-
cluding defining the physical DB design, the logical DB design, and automatic
reports and utilities [3]. To date, few researchers have accepted this challenge,
and there few research studies on the subject [13].

7 Summary and Conclusions

In a embedded database system, transactions need to backup data and perform
updates. A possibility is demonstrated by considering the critical client, as a host
issuing update (or read) transactions. This class of transactions can be executed
as an instant priority real-time transaction with no slack time available. By
adopting transaction classification, many changes can be accommodated within
the conventional locking at a low cost that enable the database updates by
critical clients.

References

1. P. Amann, Sushil Jajodia, and Padmaja Mavuluri, ”On-The-Fly Reading of Entire
Databases”, IEEE Transactions of Knowledge and Data Engineering, Vol. 7, No.
5, October 1995, pp. 834-838.

2. Bernstein P.A., V.Hadzilacos and N.Goodman, Concurrency control and recovery
in database systems, Addison-Wesley, 1987.

3. Bernstein, P., Brodie, M., Ceri, S., DeWitt, D., Franklin, M., Garcia-Molina,H.,
Gray, J., Held, J., Hellerstein, J., Jagadish, H., Lesk, M., Maier, D., Naughton,
J., Pirahesh, H., Stonebraker, M., Ullman, J., "The Asilomar Reporton Database
Research”, SIGMOD Record, Vol. 27, No. 4,pp. 74-80, 1998.

4. Bhalla S., "Improving Parallelism in Asynchronous Reading of an Entire
Database”, Proceedings of Tth High Performance Computing (HiPC 2000) con-
ference, Banglore, December 2000, published by LNCS vol. 1970.

5. Bhalla S., ” Asynchronous Transaction Processing for Updates With no Wait-for
State”, Proceedings of 9th High Performance Computing (HiPC 2002) conference,
Banglore, December 2002, published by LNCS vol. 2552.

6. Chaudhuri, S., Narasayya, V., ” An Efficient, Cost-Driver Index Selection Tool for
Microsoft SQL Server,” Proceedings of the 23rd VLDB Conference, Athens, Greece,
1997.

7. Eich, M.H., and S.H.Garard, ”"The performance of flow graph locking”, IEEFE
Transactions on Software Engineering, vol. 16, no. 4, pp. 477-483, April 1990.

518

8.

9.

10.

11.

12.

13.

S. Bhalla and M. Hasegawa

Hostetler, M., ”Cover Is Off A New Type of Database,” Embedded DB News,
http://www.theadvisors.com/embeddeddbnews.htm, 5/6,/98.

Korth H.F., E. Levy, and A. Silberschatz, ”Compensating Transactions: a New
Recovery Paradigm,” Proceedings of 16th International Conference on Very Large
Databases (VLDB), Brisbane, Australia, 1990, pp. 95-106.

Ramamritham K., "Real-Time Databases”, Distributed and Parallel Databases,
Kluwer Academic Publishers, Boston, USA, Vol. 1, No. 1, 1993.

Reddy P. Krishna, and S. Bhalla, ” A Nonblocking Transaction Data Flow Graph
Based Protocol For Replicated Databases”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 7, No. 5, October 1995.

Reddy P. Krishna, and S. Bhalla, ” Asynchronous Operations in Distributed Con-
currency Control”, IEEE Transactions on Knowledge and Data Engineering, Vol.
15, No. 3, May 2003.

Seltzer, M., and M. Olson, ”Challenges in Embedded Database System Adminis-
tration”, May 2005, http://www.sleepycat.com/docs/ref/refs/embedded.html

	Introduction
	Motivation - Embedded Database Systems
	Outline of Requirements

	Database Transactions
	Transaction Execution

	The System Model
	Definitions : Embedded Database System
	The Transaction Model
	Embedded Concurrency Control for Critical Data Operations
	Incremental Corrections to Global Read Contents

	Proof of Correctness
	Related Work
	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

