
A Short Proxy Signature Scheme:
Efficient Authentication in the

Ubiquitous World�

Xinyi Huang1, Yi Mu2, Willy Susilo2, Fangguo Zhang3, and Xiaofeng Chen4

1 College of Mathematics and Computer Science,
Nanjing Normal University, P.R. China

xinyinjnu@126.com
2 Centre for Information Security Research,

School of Information Technology and Computer Science,
University of Wollongong, Australia

{wsusilo, ymu}@uow.edu.au
3 Department of Electronics and Communication Engineering,

Sun Yat-Sen University, Guangzhou 510275, P.R. China
isdzhfg@zsu.edu.cn

4 Department of Computer Science,
Sun Yat-Sen University, Guangzhou 510275, P.R. China

isschxf@zsu.edu.cn

Abstract. We present a cryptanalysis on the short proxy signature
scheme recently proposed in [11] and propose a novel short proxy sig-
nature scheme from bilinear pairings. Compared with the existing proxy
signature schemes, the signature length of our scheme is the shortest.
Our short proxy signature scheme satisfies all the properties required
for proxy signatures. We prove that our scheme is secure in the random
oracle model.

Keywords: Proxy Signature, Short Signature, Authentication.

1 Introduction

Ubiquitous computing plays an important role in many aspects such as human
factors, computer science, engineering, and social sciences. However, Placing
computers in human life would face an essential problem, namely, how to im-
plement security and trust among the users that connected to a network. As an
example, in a wireless network, the users can connect to a network in anywhere
within the broadcast power range. How can they know that they are talking with
a real person? Therefore, a necessary authentication scheme must be deployed.
In a distributed computing environment, usually, a network is heavily loaded
with thousands of users and the bandwidth consumption is a major concern. To

� This work is supported by ARC Discovery Grant DP0557493 and the National Nat-
ural Science Foundation of China 60403007.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 480–489, 2005.
c© IFIP International Federation for Information Processing 2005

A Short Proxy Signature Scheme: Efficient Authentication 481

achieve security without consuming substantial bandwidth is a major challenge
to security researchers. In this paper, we will describe an authentication scheme
that presents a promise to the minimal use of bandwidth and to providing strong
authentication in a “proxy” environment.

The concept of proxy signature can be very useful in cases when a user (say,
Alice) wants to delegate her signing right to the other user or proxy (say, Bob).
Once the delegation is performed, the proxy can then sign on behalf of the origi-
nal signer. The notion of proxy signature was introduced by Mambo, Usuda and
Okamoto [10]. Based on the delegation type, they classified proxy signatures as
full delegation, partial delegation, and delegation by warrant. In the full delega-
tion system, Alice’s private key is given to Bob directly so that Bob can have
the same signing capability as Alice. In practice, such schemes are obviously
impractical and insecure. In a partial proxy signature scheme, a proxy signer
possesses a key, called private proxy key, which is different from Alice’s private
key. So, proxy signatures generated by using the proxy key are different from
Alice’s signatures. However, in such schemes, the messages a proxy signer can
sign is not limited. This weakness is eliminated in delegation by a warrant that
specifies what kinds of messages are delegated. Some related works about proxy
signatures can be found from [4,9, 8, 6, 12].

According to whether the original signer knows the proxy private key, proxy
signatures can be classified into proxy-unprotected and proxy-protected. In a
proxy-protected scheme only the proxy signer can generate proxy signatures,
while in a proxy-unprotected scheme either the proxy signer or the original
signer can generate proxy signatures since both of them has a knowledge on the
proxy private key. In many applications, proxy-protected schemes are required
to avoid the potential disputes between the original signer and the proxy signer.

Short signature has attracted a lot of attention since the exploring positive
use of bilinear pairing [2]. With bilinear pairings, a digital signature can be as
short as 160 bits [3,1,5]. Short signatures have a great advantage while the band-
width of a communication channel is limited. Recently, Okamoto, Inomata and
Okamoto [11] proposed a short proxy signature scheme, which allows a much
shorter size than other existing schemes. We refer it to as OIO scheme. Unfor-
tunately, we found that the scheme is flawed.

In this paper, we show that their scheme is not secure against a dishonest orig-
inal signer; namely, given a valid proxy signature, the original signer can forge
a valid proxy signature of any new message. We then propose a novel proxy
signature, which, we believe, is the shortest proxy signature scheme amongst all
existing proxy signature schemes. We also provide a security proof to our novel
scheme and show that our scheme is secure against dishonest Alice and Bob and
any other polynomial-time adversaries.

The rest of this paper is arranged as follows. In Section 2, we provide the
preliminaries of our scheme including bilinear pairings and security assumptions.
In Section 3, we give a cryptanalysis on the OIO scheme and show that their
scheme is flawed. In Section 4, we describe the model of our proxy signature
scheme. In Section 5, we present a novel construction of the shortest proxy

482 X. Huang et al.

signature. In Section 6, we provide a security proof to our scheme. We show that
our scheme is secure against any polynomial adversaries. In the last section, we
conclude our paper.

2 Preliminaries

2.1 Basic Concepts on Bilinear Pairings

Let G1 be cyclic additive groups of prime order q and is generated by P . Let G2
be a cyclic multiplicative group with the same order q. Let ê : G1 × G2 → G2 be
a bilinear mapping with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for (P, Q) ∈ G1 × G1 and a, b, ∈ ZZq. Here
ZZq denotes the definite field of the order q.

2. Non-Degeneracy: There exists (P, Q) ∈ G1 × G1 such that ê(P, Q) �= 1G2 .
3. Computability: There exists an efficient algorithm to compute ê(P, Q) for

(P, Q) ∈ G1 × G1.

2.2 Security Assumption

Definition 1. Computational Diffie-Hellman (CDH) Problem.
Given two randomly chosen aP, bP ∈ (G1, +) of prime order q, for unknown
a, b ∈ ZZq, compute Z = abP .

The CDH assumption states that for every probabilistic polynomial-time algo-
rithm A, SuccCDH

A,G1
is negligible.

2.3 ZSS Signature Scheme [5]

The ZSS signature scheme proposed in [5] consists of the following algorithms: a
parameter generation algorithm ParamGen, a key generation algorithm KeyGen,
a signature generation algorithm Sign and a signature verification algorithm Ver.

1. ParamGen: The system parameters are {G1, G2, ê, q, P, H}. Here H : {0, 1}∗
→ ZZq is a cryptographic hash function

2. KeyGen: Randomly selects x ∈ ZZ∗
q , and computes Ppub = xP . The public

key of the signer is Ppub. The secret key is x.
3. Sign: Given a secret key x, and a message m, computes S = 1

H(m)+xP . The
signature is S.

4. Ver: Given a public key Ppub, a message m, and a signature S, verify whether
ê(H(m)P + Ppub, S) = ê(P, P).

The security of ZSS signature scheme is based on the security of the k-CAA
problem. For more details, we refer the readers to [5].

Definition 2. k-Collusion Attack Algorithm(k-CAA)
For an integer k, and x ∈ ZZq, P ∈ G1, given (P, Q = xP, h1, · · · , hk ∈
ZZq,

1
h1+xP, · · · , 1

hk+xP), to compute 1
h+xP for some h /∈ {h1, h2, · · · , hk}.

A Short Proxy Signature Scheme: Efficient Authentication 483

The k-CAA assumption states that for every probabilistic polynomial-time algo-
rithm A, Succk−CCA

A,G1
is negligible. The following theorem has been proved in [5].

Theorem 1. If there exists a (t, qH , qS , ε)-forger F using adaptive chosen mes-
sage attack for the proposed signature scheme, then there exists a (t′, ε′)-
algorithm A solving qS-CAA, where t′ = t, ε′ ≥ (qS

qH
)qS .

3 An Analysis of the OIO Short Proxy Signature Scheme

Recently, a short proxy signature scheme (OIO for short) was presented in [11].
In this section, we will firstly describe the OIO short proxy signature scheme,
then we give an attack to show that the original signer can successfully forge a
valid proxy signature of OIO’s scheme.

3.1 Description of OIO Short Proxy Signature Scheme

1. Notations Used in OIO Scheme
– O: an original signer; P : a proxy signer; V : a verifier.
– IDp: the ID for a user p, mp; a message to be signed by P .
– H(·): a hash function H : {0, 1}∗ → ZZq.

2. Key Generation:
(a) O picks up two elements P ∈ G1 and s ∈ Zq at random and computes

V = sP , g = ê(P, P). O sends g to P .
(b) P picks up a random number r ∈ ZZq, computes vp = gr and sends vp to

O. O then computes ep = H(IDp, vp) and Sp = 1
s+ep

P .
(c) O publishes g, V, IDp and sends Sp to P using a secure channel.
(d) P checks whether ê(epP + V, Sp) = g holds or not.
As a result, O′s key tuple is {Public-key: g, V ; Secret-key: s}. P ′s key tuple
is {Public-key: IDp, vp; Secret-key: r, Sp}.

3. Proxy Signature Generation: P computes em = H(mp, vp) and Sigp = (r +
em)Sp. The proxy signature for a message mp is Sigp.

4. Proxy Verification: V first computes ep = H(IDp, vp) and em = H(mp, vp).
Then he checks whether ê(epP + V, Sigp) = vpg

em holds or not.

3.2 An Attack Model of OIO Short Proxy Signature Scheme

Suppose there is a valid message-signature pair (m, Sigm). Since Sigm is a valid
proxy signature on the message m, we have Sigm = (r + em)Sp. Then O can
compute rP = (s + ep)Sigm − H(m, vp)P.

With the knowledge of rP , the original signer is able to forge a valid signature
on any new message. For a new message m∗, O computes Sigm∗ = rP+em∗ P

s+ep

where rP = (s + ep)Sigm − H(m, vp)P , em∗ = H(m∗, vp) and ep = H(IDp, vp)
are all known to O. We can find it is a valid proxy signature on the message
m∗ because Sigm∗ = rP+em∗ P

s+ep
= (r + em∗) 1

s+ep
P = (r + em∗)Sp which is

indistinguishable to the third party which party (P or O) is the signer.

484 X. Huang et al.

4 Outline of Our Short Proxy Signature (SPS) Scheme

Let Alice denote the origin signer and Bob the proxy signer. Our short proxy
signature scheme consists of the following algorithms: ParamGen, KeyGen, Prox-
yKeyGen, ProxySign and ProxyVer.

1. ParamGen: Taking as input the system security parameter k, this algorithm
outputs system’s parameters: Para.

2. KeyGen: Taking as input the system security parameter k, the algorithm
generates the secret/public key pair (xi, Pi) where i ∈ {A, B}. That is
(xi, Pi) ← KeyGen(Para).

3. ProxKeyGen: The original signer Alice and the proxy signer Bob utilize this
algorithm to obtain the proxy key which will be used in the ProxySign. That is
proxykey ← ProxyKeyGen(Para, xA, PA, xB , PB, IDB, mw). mw is the warrant
which specifies what kinds of messages are delegated and IDB is the identity
of the proxy signer Bob.

4. ProxySign: The proxy signer utilizes this algorithm to generate the proxy
signature. That is σ ← ProxySign(m, proxy key, Para).

5. ProxyVer: Given the public keys of the origin signer and proxy signer, anyone
can use this algorithm to check whether a signature is a valid proxy signature.
That is {True, ⊥} ← ProxyVer(m, σ, PA, PB , IDB, mw, Para)

4.1 Attack Model

To discuss the Non-Forgeability of our short proxy signature scheme, we divide
the adversaries into the following three types:

1. Type I: The adversary only has the public keys of Alice and Bob.
2. Type II: The adversary has the public keys of Alice and Bob and also has

the secret key of Bob.
3. Type III: The adversary has the public keys of Alice and Bob and also has

the secret key of Alice.

One can find that if our short proxy signature scheme is unforgeable against
Type II (or Type III) adversary, our scheme is also unforgeable against Type I
adversary.

Formal Security Notion
Type II Adversary
We provide a formal definition of existential unforgeability of a short proxy
signature scheme under a Type II chosen message attack (EF -SPS-adversary).
This type of adversaries only has the secret key of the proxy signer and does not
obtain the proxy key from the original signer. It is defined using the following
game between an adversary AII and a challenger C.

– Setup: C runs the algorithm to obtain the secret key and public key pair
(xA, PA), (xB , PB) representing the keys of the original signer A and the
proxy signer B, respectively. C then sends (PA, PB , xB) to the adversary
AII .

A Short Proxy Signature Scheme: Efficient Authentication 485

– PublicKey Queries: AII can set the ith user in the system as the proxy signer.
He asks the public key Pi of the ith user with the identity IDi. In response,
C generates Pi and returns Pi to the adversary AII .

– PSign Queries: AII can request a signature on a message m with the original
signer A and the proxy signer with the identity IDi. In response, C outputs
a signature σ for a message m.

– Output: Finally, AII outputs a target message m∗ ∈ {0, 1}∗ and σ∗ such
that σ∗ is a valid proxy signature with the original signer A and the proxy
signer B.

Type III Adversary
We provide a formal definition of existential unforgeability of a short proxy signa-
ture scheme under a Type III chosen message attack (EF -SPS-adversary). It is
defined using the following game between an adversary AIII and a challenger C.

– Setup: C runs the algorithm to obtain the secret key and public key pair
(xA, PA), (xB , PB) representing the keys of the original signer A and the
proxy signer B, respectively. C then sends (PA, PB , xA) to the adversary
AIII .

– PSign Queries: AIII can request a signature on a message m. In response, C
outputs a signature σ for a message m.

– Output: Finally, AIII outputs a target message m∗ ∈ {0, 1}∗ where m∗ has
never been queried during the PSign Queries and σ∗ is a valid proxy signature
with the original signer A and the proxy signer B.

Definition 3. A short proxy signature scheme is existential unforgeable against
chosen-message attacks iff it is secure against both type II and type III adver-
saries.

5 Our Scheme

1. ParamGen: Taking as input the system security parameter k, this algorithm
outputs {G1, G2, q, ê, P}, including a cyclic additive group G1 of order q,
a multiplicative group G2 of order q, a bilinear map ê : G1 × G1 → G2 and
a generator P of G1. This algorithm also outputs two cryptographic hash
functions H0 and H1 where H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → ZZ∗

q . We
denote the set ZZ∗

q = ZZq \ {0} where 0 is the zero element of the field ZZq.
2. KeyGen: The algorithm generates the original signer Alice’s secret/public

key pair (xA, PA = xAP) and the proxy signer Bob’s secret/public key pair
(xB , PB = xBP).

3. ProxyKeyGen:
(a) Alice computes DAB = xAQB. Here, QB = H0(IDB, PB , mw). IDB is

the identity of the proxy signer Bob, PB is the public key of Bob, and
mw is the warrant. Alice then sends DAB to Bob.

(b) Bob verifies whether ê(DAB, P) = ê(QB, PA).
As a result, Bob obtains his proxy key (xB , DAB).

486 X. Huang et al.

4. ProxySign: For a message m, Bob computes σ = 1
H1(m)+xB

DAB. The proxy
signature on the message m is σ.

5. ProxyVer: To check whether σ is a valid proxy signature, any one can check:
ê(σ, H1(m)P + PB) ?= ê(QB, PA). If the equation holds, the receiver accepts
it as a valid proxy signature; otherwise, rejects it.

The correctness of the scheme can be verified:

ê(σ, H1(m)P + PB) = ê(
1

H1(m) + xB
DAB, H1(m)P + PB)

= ê(
1

H1(m) + xB
DAB, (H1(m) + xB)P)

= ê(DAB, P) = ê(QB, PA)

6 Security Analysis

6.1 Unforgeable Against Type II Adversary

Theorem 2. Let AII be a type II adversary who can get a valid signature of
our scheme with success probability SuccEF−CMA

AII ,SPS . In some polynomial time t,
he can ask qH hash queries to the hash function H1 and qS sign queries and qV

verify queries, then there exits B who can use AII to solve an instance of CDH
problem with the success probability

SuccCDH
B,G1

= SuccEF−CMA
AII ,SPS

in the same polynomial time t.

Proof. Given P1 = aP, P2 = bP for some unknown a, b ∈ ZZ∗
q , we will show how B

can use the type II adversary AII to get the value abP . Let’s recall the definition
of the type II adversary AII . This type of adversary AII only has the secret key
of the proxy signer Bob.

B chooses c ∈R ZZ∗
q and sets the original signer’s public key PA = P1 =

aP , the proxy signer’s public key PB = cP and QB = P2 = bP . B returns
(P, PA, PB, QB, c) to the Type II adversary AII . AII can ask most qH PHash
Queries and qS PSign Queries to the PHash Oracle and PSign Oracle respectively.
AII can additionally request the PublicKey Oracle of the other proxy signer’s
public key he is interested in. B will act all these oracles in our proof. Af-
ter all the queries, AII will output a valid proxy signature (m∗, σ∗) such that
ê(σ∗, H1(m∗)P+PB) = ê(QB, PA). Here, we assume that m∗ has been queried by
AII to the PHash Oracles before he outputs the signature σ∗ of the message m∗.

In the proof B maintains a list, H-List, to record all the PHash Queries and
the corresponding answers. B also maintains another list PK-List to record the
public key queries and the corresponding answers. We assume that before AII

asks the PSign Queries with the ith user is proxy signer, AII has obtained the
public key Pi and Qi of the ith proxy signer from the PublicKey Oracle.

A Short Proxy Signature Scheme: Efficient Authentication 487

1. Public Key Queries: In this process, AII can ask the Pi and Qi of the ith

proxy signer with the identity IDi. For each request, B chooses xi, yi ∈ ZZ∗
q ,

and sets Pi = xiP, Qi = yiP . B then adds (IDi, xi, yi) to the PK-List and
returns (Pi, Qi) to AII .

2. PHash Queries: In this process, AII can ask at most qH PHash Queries. For
each request mi, B first checks the H-List:
(a) If there is an item (mj , hj) in the H-List such that mj = mi, B sets

H1(mi) = hj and returns hj as the hash value of mi to AII .
(b) Otherwise, mi has not been requested to the hash oracle. B chooses

hi ∈ ZZ∗
q such that there is no item (·, hi) in the H-List. B then adds

(mi, hi) into the H-List and returns hi to AII .
3. PSign Queries: In this process, AII can ask at most qS PSign Queries. For

each request (mi, IDk) chosen by AII , B first checks the H-List:
(a) If there is an item (mj , hj) in the H-List such that mj = mi, B obtains

H1(mi) = hj .
(b) Otherwise, mi has not been requested to the hash oracle. B chooses

hi ∈ ZZ∗
q such that there is no item (·, hi) in the H-List. B then adds

(mi, hi) into the H-List and sets H1(mi) = hi.
After the check of H-List, B returns σi = 1

hi+xk
ykPA to AII as the signature

of mi under the original signer A and the kth proxy signer.

After all the queries, AII outputs (m∗, σ∗) such that ê(σ∗, H1(m∗)P + P ∗
B) =

ê(QB, PA). That is σ∗ = 1
H1(m∗)+cabP . Therefore, B computes (H1(m∗)+c)σ∗ =

(H1(m∗)+c) 1
H1(m∗)+cabP = abP . Therefore B can also solve an instance of CDH

problem with the probability SuccCDH
B,G1

= SuccEF−CMA
AII ,SPS .

6.2 Unforgeable Against Type III Adversary

Theorem 3. Let AIII be a type III adversary who can get a valid signature
of our short proxy signature (SPS) scheme with probability SuccEF−CMA

AIII ,SPS . In
polynomial time t he can aske qH hash queries to the hash function H1 and qS

sign queries and qV verify queries, then there exists another adversary B also
uses AIII to obtain a valid signature of ZSS signature scheme [5] with the success
probability

SuccEF−CMA
B, ZSS = SuccEF−CMA

AIII , SPS

in the same polynomial time t.

Proof. There two adversaries, AIII and B in our proof. AIII is the Type III
attacker of our proposed short proxy signature(SPS) scheme and B is the adver-
sary of ZSS signature scheme [5]. We will show that given Bob’s public key PB ,
how B can use AIII to obtain Bob’s valid signature of ZSS scheme in [5]. As
presented in [5], B can ask Hash Query and Sign Query to his own Hash Oracle
and Sign Oracle.

In the proof, AIII can ask the PHash Query and PSign Query. B will act as
these three oracles. B chooses a, c ∈ ZZ∗

q and sets Alice’s public key PA = aP and
QB = cP . Then, B returns PA, PB , QB, a to the adversary AIII . AIII can ask
the following queries:

488 X. Huang et al.

1. PHash Queries: In this process, AIII can ask at most qH PHash Queries. For
each request mi, B submits mi to his own Hash Oracle and obtains the result
hi. B also returns hi to A as the answer.

2. PSign Queries: In this process, AIII can ask at most qS PSign Queries. For
each request mi, B submits mi to the Sign Oracle and obtains the result
σ̂i. Then B returns σi = acσ̂i to AIII as the answer. Note that σi is a
valid proxy signature, this is true because σ̂i is Bob’s valid signature of ZSS,
that is ê(σ̂i, H1(mi)P + PB) = ê(P, P). Therefore ê(σi, H1(mi)P + PB) =
ê(acσ̂i, H1(mi)P + PB) = ê(σ̂i, H1(mi)P + PB)ac = ê(cP, aP) = ê(QB, PA)

After all the queries, AIII outputs (m∗, σ∗) such that m∗ is not requested in
the PSign Queries and ê(σ∗, H1(m∗)P + PB) = ê(QB, PA). Then B computes
σ̂∗ = (ac)−1σ∗ and (m∗, σ̂∗) is Bob’s valid signature in the scheme presented
in [5]. This is true because: ê(σ̂∗, H1(m∗)P +PB) = ê(σ∗, H1(m∗)P +PB)(ac)−1

=
ê(QB, PA)(ac)−1

= ê(cP, aP)(ac)−1
= ê(P, P). That is to say B also find a valid

signature of ZSS signature scheme [5] with the probability SuccEF−CMA
B, ZSS =

SuccEF−CMA
AIII , SPS in the same polynomial time t.

7 Conclusion

In this paper, firstly we pointed out that the construction of short proxy sig-
nature (OIO scheme) in [4] is insecure. We proceed with a formal definition of
short proxy signature scheme, together with three types of adversarial model.
Finally, we presented an efficient and short proxy signature, which outperforms
any existing proxy signature in terms of signature length, and proved that the
scheme is secure in the random oracle model.

Acknowledgement

The authors would like to express their gratitude thanks to the anonymous ref-
erees of the 2nd International Symposium on Ubiquitous Intelligence and Smart
Worlds (UISW2005) for the suggestions to improve this paper.

References

1. D. Boneh and X. Boyen. Short signatures without random oracles. In Advances in
Cryptology, Proc. EUROCRYPT 2004, LNCS 3027, pages 56–73. Springer–Verlag,
2004.

2. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Ad-
vances in Cryptology, Proc. CRYPTO 2001, LNCS 2139, pages 213–229. Springer–
Verlag, 2001.

3. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
Advances in Cryptology–ASIACRYPT 2001, LNCS 2248, pages 514–532. Springer–
Verlag, 2001.

A Short Proxy Signature Scheme: Efficient Authentication 489

4. A. Boldyreva A. Palacio and B. Warinschi. Secure Proxy Signature Schemes for
Delegation of Digning Rights. Available at http://eprint.iacr.org/2003/096

5. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bi-
linear pairings and its applications. In Public Key Cryptography (PKC’04), LNCS
2947, pages 277–290. Springer–Verlag, 2004.

6. J.-Y. Lee, J. H. Cheon and S. Kim. An analysis of proxy signatures: Is a secure
channel necessary? In Topics in Cryptology - CT-RSA 2003, LNCS 2612, pages.
68–79. Springer–Verlag, 2003.

7. B. Lee, H. Kim and K. Kim. Strong proxy Signature and its applications. In Proc
of SCIS’01, pages. 603–08. 2001.

8. B. Lee, H. Kim, and K. Kim. Secure mobile agent using strong nondesignated proxy
signature. In Information Security and Privacy (ACISP’01), LNCS 2119, pages.
474–486. Springer–Verlag, 2001.

9. S. Kim, S. Park and D. Won. Proxy Signatures, Revisited. In Information and Com-
munications Security (ICICS’97), LNCS 1334, pages. 223–232. Springer–Verlag,
1997.

10. M. Mambo, K. Usuda and E. Okamoto. Proxy signature: Delegation of the power
to sign messages. IEICE Trans. Fundamentals, Vol. E79-A, No. 9, Sep., pages.
1338–1353, 1996.

11. T. Okamoto, A. Inomata, and E. Okamoto. A proposal of short proxy signature us-
ing pairing. In International Conference on Information Technology (ITCC 2005),
pages 631–635. IEEE Computer Society, 2005.

12. H.-U. Park and I.-Y. Lee. A digital nominative proxy signature scheme for mobile
communications. In Information and Communications Security (ICICS’01), LNCS
2229, pages. 451–455, Springer–Verlag, 2001.

	Introduction
	Preliminaries
	Basic Concepts on Bilinear Pairings
	Security Assumption
	ZSS Signature SchemeFangguo04

	An Analysis of the OIO Short Proxy Signature Scheme
	Description of OIO Short Proxy Signature Scheme
	An Attack Model of OIO Short Proxy Signature Scheme

	Outline of Our Short Proxy Signature (SPS) Scheme
	Attack Model

	Our Scheme
	Security Analysis
	Unforgeable Against Type II Adversary
	Unforgeable Against Type III Adversary

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

