A Framework for Protecting Private Information
Through User-Trusted-Program and Its
Realizability

Ken’ichi Takahashi', Kouichi Sakurai'?, and Makoto Amamiya?

! Institute of Systems & Information Technologies/KYUSHU,
2-1-22 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
{takahashi, sakurai}@isit.or.jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,
6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
amamiya@al.is.kyushu-u.ac.jp

Abstract. Thanks to the spread of mobile technologies, we will be able
to realize the ubiquitous computing environment, in which equipment
connected to the Internet assists users in their activities without special
care on their part. Then, a function to protect private information is
needed. This paper proposes a model for protecting private information.
The basic idea of our model is to make use of private information through
a program which a user trusts. A user offers a trusted program to a
partner and compels a partner to make use of his private information
through this program. In this way, a user prevents illegal use of his private
information.

1 Introduction

Thanks to the spread of mobile technologies, people can access the Internet
anytime through their cellular phones. In the near future, many equipments, for
example cellular phones, refrigerators, microwave ovens, etc, will be connected
to the Internet. This will enable the realization of the ubiquitous computing
environment, in which equipment connected to the Internet assists users in their
activities.

In the ubiquitous computing environment, there are a good many services
which assist users. Then, it is difficult to find services which a user wants to
use from among such a vast number of services. There are services which are
universally available, and also are provided only to specific users. There are
services which a user wants to use and also services which the user never use.
Therefore, it is necessary to show services which the user can use and wants
to use. Then, it is necessary to compare the substance of services with a user’s
private information. For example, the service in a liquor shop should be provided
only for adults, not provided for children. Also, users who do not drink liquor
will never use the service. Thus, the service should be offered only to users
who are adults and drink liquor. Therefore, the user must reveal his age to the

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 433-F42] 2005.
© IFIP International Federation for Information Processing 2005

434 K. Takahashi, K. Sakurai, and M. Amamiya

liquor shop for approval. Moreover it needs to judge whether he drinks liquor
or not. But since this is private information, he may not want to reveal it.
Also, some services may require users’ private information. For example, online
sales will require buyers’ credit card information for payments. But credit card
information is most important private information, and a user never wants it to
be used for purposes other than the payment of his purchases. Therefore users
must protect private information from illegal use by service providers.

As mentioned above, we need to provide private information to a service
provider for service use and for the selection of services, and then we must
protect private information. In this paper, we propose a model for protecting
private information. The basic idea of our model is to make available private
information through a program which a user trusts. A user offers his trusted
program to a service provider and compels the service provider to make use of
his private information through that program. In this way, a user will be able to
prevent illegal uses of his private information by a service provider.

2 Related Work

Cryptographic algorithms, such as symmetric algorithms and public-key algo-
rithms, and technologies based on them, such as digital signatures and Public
Key Infrastructure (PKI), have been proposed. These algorithms and technolo-
gies aim at the prevention of message interception or the identification of commu-
nication partners. Therefore we can ensure message confidentiality, integrity and
availability against malicious exploitation by third parties. But they are difficult
to prevent illegal uses of released information by a communication partner.

At the bottom of the homepages, we often find links concerning privacy, shown
as Privacy Policy at Yahoo!, Privacy at IBM and so on. These pages show how
the company treats users’ information that the company collects. Here, there
are two problems. One is that users must read the privacy page carefully. Most
people will not read the page, even when they provide their information. Another
one is that we cannot confirm whether the company actually keeps the promises
made on the privacy page or not. Consequently, we have no choice but to believe
that the company will keep the promises written on the privacy page.

The Platform for Private Preferences (P3P) [4] enables web sites to express
their privacy policies in a standard format that can be interpreted automati-
cally by user agents. Thus, a user agent can automate decision-making by the
comparison between a privacy policy and user-specified privacy preferences. So
that, users do not need to read the privacy policies at every site they visit. P3P,
however, does not provide technical assurance that sites act according to their
privacy policies.

The Enterprise Privacy Authorization Language (EPAL) [7] is a formal lan-
guage to specify fine-grained enterprise privacy policies. An EPAL policy defines
format privacy authorization rules that allow or deny actions on data-categories
by user-categories for certain purposes under certain conditions while mandat-
ing certain obligations. Employees within the organization are compelled to keep

A Framework for Protecting Private Information 435

EPAL policies. Thus EPAL prevents the illegal use of information by employees
within the organization. But EPAL does not enable users to consent to how
the organization protects their private information. Consequently, users cannot
know whether the organization manages private information securely.

3 A Basic Model for Protecting Private Information

A service may need to check user’s private information. Therefore, a user has to
reveal some private information, such as a credit card number, his name and so
on, if he wishes to use the service. Then, we must protect private information
which we released.

3.1 Ways of Checking Private Information

The best way to protect private information is not to release private information
to others (Fig.[Ila). Then private information will be checked by the user self.
Therefore, a user does not need to worry about the risks of releasing private
information. But we can apply this method only in situations where service
providers do not need exact verification of users’ private information. In other
words, this method is not appropriate in situations that need a password check
or a check of a right to use the service.

The next method is to release private information only to a trusted third
party [3] (Fig. dlb). The service provider commits the verification of private
information to a trusted third party. And the user releases his private information
to the trusted third party. Consequently, a service provider gets the result of the
verification from the trusted third party without actually getting the private
information. Then the user does not need to worry about the risks of releasing
private information. But we must provide a third party that both of them can
trust. It is difficult to provide a third party that any pair of users and service
providers can trust. Even if we prepares some third parties which both of them
can trust, we must worry that responsibility and the computational load are
centralized in their third parties.

The last method is to release private information to a service provider (Fig.
[lc). If a user can trust a service provider, he may not need to worry about the
risks of releasing private information. However, even if we assume a hierarchical
PKI model, it is difficult to construct a mechanism that enable any user to trust
any service provider. Therefore, we should also assume that a user cannot trust
a service provider. If private information is released once to the other, the user
cannot manage it. For this reason, it is risky to release private information to
such an untrusted service provider, even if a user wants to use the service. Hence,
we need a method that enables a service provider to verify private information
(e.g. passwords and a right to use the service) and enables a user to prevent
illegal use of private information.

To satisfy this dual requirement, we propose a method in which a user requires
a service provider to make use of his private information through programs which

436 K. Takahashi, K. Sakurai, and M. Amamiya

trusted third party

, , icheck prg|
user service provider AR
input 4 \ \ . .
»icheck prgi—----{check prg \ service provider
private lcheck pr
information
(a) check by a user (b) check by a trusted third party
user service provider
icheck prgi-----{check prg
convert) \

ifrusted prg----2itrusted prg;

private
. - release
information

(c) check by a service provider (d) check by a trusted program

Fig. 1. Models for protecting Private Information

he can trust (Fig.[Ild). A user confirms that a program does not leak information,
furthermore, is not used for purposes other than his wishes. Then, he requires
the service provider to make use of his private information through the program.
In this way, a user will be able to prevent illegal use of private information by
the service provider.

3.2 The Public and Private Zone Model

We introduce the public zone and the private zone model [6] as a model for
protecting private information based on verification by a user-trusted program.
Our model is based on two agent systems, named KODAMA [§] and VPC [2].
In our model, users and service providers are represented as agents. An agent
has a public zone and a private zone. The public zone is a freely accessible
space and realizes flexible service use. The private zone manages and protects
private information. And a security barrier exists between the public zone and
the private zone. The security barrier has functions for restricting the access to
private information and for the control of communications of a program which
accesses private information. An overview of our model is illustrated in Fig.

The Public Zone: In the ubiquitous computing environment, there are a good
many services, which have a different method for its use. So, it is difficult to
implement an agent which is able ab initio to use various services. Therefore, we
define the service program and the client program as a pair.

The service provider creates a service program and a client program pair, and
discloses a public policy in his public zone. A public policy consists of the client
program and service attributes. Service attributes consist of a description for
the explanation of the service, access info which is information necessary for the
service realization, usage for showing the purpose of access info information use

A Framework for Protecting Private Information 437

From other agents
To other agents

interaction

Agent
public zone

client program + attributes

public I getl l
***Tpolicies client

program

service
program

access check

4{ securit rfler }—
rivate zone i
P / register forbidden

privacy
information

Fig. 2. The Overview of the Public and Private Zone Model

other agent

public zone public zone
4] interaction,, | service
i g
dient 1T | program,
]
programi i, |
2. install 1\gret
3. invoke ’
client program + attributes
user service provider

Fig. 3. The Flexible Service Use Mechanism

and process which is the utilization process of access info. A user agent acquires
a client program from a service provider agent and invokes it in his public zone.
Then the service is actualized through communications, guided by the client
program, between the service provider agent and the user agent (Fig. [3). In this
way, a user agent can make use of various services without the implementation
of explicit methods for the use of the various services.

The Private Zone: The private zone manages private information. An agent
cannot directly access private information, but must access it through the pub-
lic zone. Private information has a privacy policy which consists of permission
for specifying access conditions, allowable partner for specifying communications
allowed to a program which accesses private information, allowable usage for
specifying permitted purposes of private information use, and trusted prg for
specifying trusted programs related with allowable usage. Privacy policies are
registered with the security barrier.

When a user wishes to use a service, the user agent acquires the public policy
from the service provider agent and invokes its client program. Then, if the
client program tries to access private information, the security barrier checks
the access by permission. If the access is allowed, the security barrier returns

438 K. Takahashi, K. Sakurai, and M. Amamiya

private zone register | PUblic zone public zone |

privacy 4. create from trusted| prg | °- 'nS}_%U ___________

policy and process /.managemenq
» | Management | __program i} &
priv;te 8 L_Program, | 7 i 5
, > = =% release prjvate /- US§ private| 8
information \ é,_ lnforr%W information %
1. check by perm|SS| ; §
=] 0}
Q client ! @

e prograrﬁ
. 3. check by gllowable_partner
2. register the and dllowable_usage
client progra
user service provider

Fig. 4. The Protection of Private Information by the Security Barrier

its value and registers the client program in the access-table; if it is refused, an
Tllegal AccessException happens. After that, the security barrier monitors the
communication of the client program registered in the access-table. When the
client program communicates with other agents, the security barrier compares
usage of the client program with allowable partner and allowable usage of the
privacy policy. If it is refused, an Illegal CommunicationException happens; if
it is allowed, the security barrier creates a management program, as a trusted
program, from process of the public policy and trusted prg of the privacy policy.
And the user agent sends the management program to the service provider agent.
After that, the user agent sends the private information (which is encrypted,
not raw data) to the management program (Fig. [d]). The service provider agent
invokes the management program with this private information. In this manner,
the user agent protects private information by restricting the access to private
information and by requiring the use of the management program for the control
of private information use.

3.3 A Simple Application Scenario

We show an example in which a user purchases a product. In the example,
the user agent has private credit card information, and the service provider
agent provides a product purchase service. The privacy policy of the credit card
information is

permission=read_only, allowable_partner=publisher_only
allowable_usage={payment:trusted_prg_only}
trusted_prg={payment:trusted_payment_prg}.

Service attributes in the public policy are

description="Product Sales", access_info=creditcard
usage={creditcard:payment}, process={payment:payment_process}.

A Framework for Protecting Private Information 439

SalesProgram extends ClientProrgam{

List product-list; // the product list

Agent owner; // the publisher of this program

public void main(){
display(product-1list);
product = a product the user selected
creditcard = accessToPrivateResource("creditcard");
send (owner, {creditcard, price(product)}, process("payment"));

Fig. 5. The Client Program of the Product Purchase Service

And the client program for the product purchase service is shown in Fig. [l

1.

2.

or

Al

Then a user purchases a product as follows.

A user agent acquires the public policy of a product purchase service from
the service provider agent.

The user agent confirms whether the user can use it or not by the description
and access info of the public policy. Here, since the agent has credit card
information to which access is allowed, the agent shows the product purchase
service to the user.

When the user wishes to use the product purchase service (e.g. the user clicks
”Product Sales” displayed on his terminal), the user agent invokes its client
program. Then, the product list is shown to the user at line 5 in Fig. Bl

If the user selects a product, the client program tries to access the credit
card information at line 7. Here, the access is allowed, since permission is
read only.

The client program tries to send the credit card information to the service
provider agent for a payment of the product at line 8. To communicate with
the publisher of the client program and to use the credit card information to
pay for products are allowed by the allowable partner and allowable usage.
But the credit card information is only allowed to be used by trusted pro-
grams. Therefore, the user agent creates a management program from the
payment process of process and the trusted payment prg of trusted prg and
sends it to the service provider agent.

The user agent sends the credit card information to the management pro-
gram which was sent at step Bl Then, the service provider agent receives the
payment by invoking the management program.

As shown above, the user agent confirms whether the service can be used
not at step 2 and restricts the access to the private information at step
Moreover, the user agent monitors the communication of the client pro-

gram and allows the use of private information only by the trusted program
(the management program). In this manner, user agents prevent the service
provider agents from using private information for purposes which users do not
desire.

440 K. Takahashi, K. Sakurai, and M. Amamiya

4 Requirements for the Realization of Our Proposed Model

We have proposed a model for protecting private information, but we must
overcome some challenges to realize our model. In this section, we focus on
those challenges and discuss their resolvability.

4.1 A Method of Creating the Management Program

In our model, a user agent must creates a management program from process and
trusted prg. Here, an issure is how a management program can be created from
process and trusted prg. We suppose this can be realized by combining programs
prepared in advance. For example, a user agent analyzes process of the public
policy and extracts the part which uses private information. After that, the user
agent replaces this part with a program specified in trusted prg.

Consider a product purchase service. The product purchase service requires
a credit-card payment and we assume its process is shown in Fig.[6l Here, a user
agent may not be able to trust payment-prg at line 2. Therefore, the user agent
replaces line 2 by trusted-payment-prg specified in trusted prg. In this way, a
user agent creates a management program from process and trusted prg.

4.2 Protection of Management Programs

By compelling a service provider agent to use a management program, user
agents protect private information. But if the service provider agent can rewrite
the management program, the user agent cannot trust it any longer. Therefore,
it is necessary to prevent the rewriting of management programs.

The easiest way to achieve this is to assume the use of anti-tampering devices.
We implement public-key cryptography on anti-tampering devices, in which has
a public and a secret key pair certified by a certificate authority. A service
provider agent opens the public key to the public. A user agent encrypts the
management program and private information with the public key and sends
the encrypted them to the anti-tampering device of the service provider agent.
The anti-tampering device decrypts the encrypted data using the private key and
invokes their decrypted versions. In this manner, we can prevent the rewriting
of a management program. But this requires that anti-tampering devices be
installed in each service provider agent.

Another approach is to make the analysis of a management program difficult
for a service provider agent. Mobile cryptography [5] and software obfuscation [1]

1 : purchase-program(creditcard, price){

2 payment-prg(creditcard, price); +

3: send a product; | replace
4 : } |

trusted-payment-prg(creditcard, price); <--+

Fig. 6. An Example of the Conversion of a Non-trusted Program into a Trusted One

A Framework for Protecting Private Information 441

are applicable technologies for this purpose. Mobile cryptography allows direct
computations without decryption on encrypted functions. However, it is appli-
cable only to polynomial functions and rational functions. Software obfuscation
is a technique which converts a program into another program with a similar
behaviour, but which is more difficult to analyze. However, its reliability and
evaluation methods are not established.

The purpose of our model is to protect private information, not programs.
In other words, a user agent must protect the management program only when
private information is exposed to danger. For example, suppose that a man-
agement program deletes private information after the process has completed.
Then private information can be protected, if it is possible to protect the man-
agement program until its process finishes. In this case, we will be able to use
software obfuscation to protect the management program, even if its reliability
and evaluation methods are not established.

Also, it may be allowed to interact with the user during management program
execution and/or to release pieces of a management program little by little as the
program progresses. Then it will be easier to protect the management program
from service provider agents.

4.3 Confirmation of Management Programs

A service provider agent makes use of private information through a management
program which is sent from the user agent. If the management program behaves
in ways that are undesirable to the service provider agent, the program has no
value for the service provider. Accordingly, a service provider agent has to be
able to confirm the substance of the management program.

It is difficult to analyze a management program with no information. But
a service provider agent knows the workflow of the management program by
process and asks replaced parts from the user agent. Then, it may be possible
to confirm whether the replaced parts work well or not. For example, a service
provider agent may be able to confirm that the replaced part in Fig. [0 is war-
ranted by the credit card company. Consequently, a service provider agent can
rely on the management program.

Also, as a mentioned at Sect. £.2] a management program is converted to
a program (obfuscated program) which is difficult to analyze. So that, it is
difficult to analyze the obfuscated program. Here, remember that our purpose
is the protection of private information, not programs. Therefore, after finishing
the process which requires private information, it is permissible to make the
obfuscated program clear. Then the service provider agent will be able to confirm
the de-obfuscated program. So, we suppose it is possible to ensure both the
protection and confirmation of the management program.

4.4 Other Requirements

We must consider the possibility that a management program may be 'malware’.
Therefore, we need to protect a service provider agent from malicious manage-

442 K. Takahashi, K. Sakurai, and M. Amamiya

ment programs. Also, to create private policies will be burdensome for users.
Therefore, we have to consider who creates privacy policies. If information is
supplied from other agents, these agents may be able to offer the privacy policy
together with a private information.

5 Conclusions

This paper introduced a model for protecting private information and discussed
its realizability. In our model, users and service providers are represented as
agents who have a public zone and a private zone. The public zone is a freely
accessible space for the realization of flexible service use. The private zone is a
space for protecting private information by restricting access to private infor-
mation and by the control of the communications of the client program which
accesses private information. When a user needs to send private information to
a service provider agent, the user agent compels the service provider agent to
make use of private information through user’s trusted program. In this manner,
the user agent prevents the service provider agent from using private information
for purposes which are undesirable to the user.

Acknowledgements. This research has been supported by the Telecommunica-
tions Advancement Foundation and Strategic Information and Communications
R&D Promotion Programme under grant 052310008.

References

1. D. Aucsmith, and G. Fraunke. Tamper Resistant Software: An Implementation. In
Proc. of International Workshop on Information Hiding, LNCS 1174, pp. 317-333,
1996.

2. T. Iwao, Y. Wada, M. Okada, and M. Amamiya. A Framework for the Exchange
and Installation of Protocols in a Multi-Agent System. In Proc. of Cooperative In-
formation Agents 2001, LNCS 2182, pp. 211-222, 2001.

3. C. Pearce, P. Bertok, and R.V. Schyndel. Protecting Consumer Data in Composite
Web Services. In Proc. of 20th IFIP International Information Security Conference,
pp. 19-34, 2005.

4. P3P project. http://www.w3.org/P3P.

5. T. Sander, and C. Tschudin. Protecting Mobile Agents Against Malicious Hosts. In
Mobile Agents and Security, LNCS 1419, pp. 44-60, 1998.

6. K. Takahashi, S. Amamiya, and M. Amamiya. A Model for Flexible Service Use and
Secure Resource Management. In Advances in Grid Computing - EGC 2005, LNCS
3470, pp. 1143-1153, 2005.

7. The EPAL 1.1. http://www.zurich.ibm.com/security /enterprise-privacy /epal/.

8. G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and M. Amamiya. The Design and
Implementation of KODAMA System. In IEICE Transactions INF.& SYST., Vol.
E85-D, No. 4, pp. 637-646, 2002.

	Introduction
	Related Work
	A Basic Model for Protecting Private Information
	Ways of Checking Private Information
	The Public and Private Zone Model
	A Simple Application Scenario

	Requirements for the Realization of Our Proposed Model
	A Method of Creating the Management Program
	Protection of Management Programs
	Confirmation of Management Programs
	Other Requirements

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

