
Security Analysis of Michael: The IEEE 802.11i
Message Integrity Code

Jianyong Huang, Jennifer Seberry, Willy Susilo, and Martin Bunder

University of Wollongong, NSW 2522, Australia
{jyh33, jennie, wsusilo, mbunder}@uow.edu.au

Abstract. The latest IEEE 802.11i uses a keyed hash function, called
Michael, as the message integrity code. This paper describes some prop-
erties and weaknesses of Michael. We provide a necessary and sufficient
condition for finding collisions of Michael. Our observation reveals that
the collision status of Michael only depends on the second last block
message and the output of the block function in the third last round.
We show that Michael is not collision-free by providing a method to find
collisions of this keyed hash function. Moreover, we develop a method to
find fixed points of Michael. If the output of the block function in any
round is equal to any of these fixed points, a packet forgery attack could
be mounted against Michael. Since the Michael value is encrypted by
RC4, the proposed packet forgery attack does not endanger the security
of the whole TKIP system.

1 Introduction

Wireless devices based on IEEE 802.11b standard [3] are widely in use nowadays.
The IEEE 802.11b defines an encryption scheme called Wired Equivalent Privacy
(WEP). It is well known that WEP has several serious security flaws. Fluhrer,
Mantin, and Shamir [7] (FMS) proposed an attack on the WEP encryption
protocol. By exploiting weaknesses of the RC4 [8] key scheduling algorithm, the
FMS attack demonstrated that the RC4 encryption key can be easily derived
by an eavesdropper who can intercept several million encrypted WEP packets
whose first byte of plaintext is known. Stubblefield, Ioannidis, and Rubin [9]
practically implemented the FMS attack, and showed that the real systems could
be defeated. Borisov, Goldberg, and Wagner [5] showed that the WEP data
integrity could be compromised as encrypted messages could be modified by
an attacker without being detected. Moreover, Arbaugh, Shankar, and Wan [4]
showed that the WEP authentication mechanism is vulnerable to attack.

To address the WEP vulnerabilities, the IEEE 802.11 Task Group i (TGi) pro-
vides a short-term solution and a long-term solution. The short-term solution
has adopted the Temporal Key Integrity Protocol (TKIP). TKIP is a group of al-
gorithms that wraps the WEP protocol to address the known weaknesses. TKIP
includes three components: a message integrity code called Michael, a packet
sequencing discipline, and a per-packet key mixing function. TKIP is consid-
ered as a temporary solution, and it is designed for legacy hardware. For the

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 423–432, 2005.
c© IFIP International Federation for Information Processing 2005

424 J. Huang et al.

long-term solution, the IEEE 802.11 TGi recommends two modes of operation:
WRAP (Wireless Robust Authenticated Protocol) and CCMP (Counter-Mode-
CBC-MAC Protocol). Both WARP and CCMP are based on AES cipher [2],
and they require new hardware.

Our contributions. In this paper, we investigate the security issues of Michael.
First, we present a necessary and sufficient condition for finding collisions of
Michael, showing that the collision status of Michael only depends on the sec-
ond last block message and the output of the block function in the third last
round. Second, by employing the necessary and sufficient condition, we provide
a method to find collisions of Michael and show that Michael is not collision-free.
Furthermore, we develop a method to find fixed points of Michael, and a packet
forgery attack could be mounted against Michael if the output of the block func-
tion in any round is equal to any of these fixed points.

Notations. A 64-bit Michael key K is converted to two 32-bit subkeys, k0 and
k1, written as K = (k0, k1). An n-block message M is written as M = (m0, m1,
..., mn−1). Li

0, Ri
0, Li

1, Ri
1, Li

2, Ri
2, Li

3, Ri
3, Li

4, Ri
4, and Li

5 are variables used in
the (i + 1)-th round of Michael(K, M) procedure. For an n-round Michael(K,
M) procedure, we represent the (i + 1)-th (0 ≤ i ≤ n − 1) round output of the
Michael block function as (Li

5, Ri
4), where Li

5 stands for the left half of the out-
put and Ri

4 stands for the right half of the output. Some other notations used in
this paper are listed as follows: ≪ is left rotation, ≫ represents right rotation,
⊕ is exclusive-or, � stands for addition modulo 232, || is concatenation, and =⇒
means “imply”.

Organization. The rest of this paper is organized as follows. Section 2 pro-
vides the overview of the Michael keyed hash function. Section 3 describes one
previous work on Michael, which shows that Michael is invertible. We provide a
necessary and sufficient condition for finding collisions of Michael in Section 4.
In Section 5, we propose a method to find collisions of Michael, and based on our
method, we show that Michael is not collision-free. In Section 6, we introduce
a simple method to find fixed points of Michael and propose a packet forgery
attack against Michael. Finally, we conclude this paper in Section 7.

2 The Michael Keyed Hash Function

Michael [6] is the message integrity code (MIC) of TKIP in the IEEE 802.11i
[1]. Michael is a keyed hash function, whose inputs are a 64-bit Michael key
and an arbitrarily long message, and output is a 64-bit Michael value. The
64-bit key is converted to two key 32-bit words, and the message is parti-
tioned into 32-bit blocks. The message is padded at the end with a single
byte with the hexadecimal value 0x5a and then followed by between 4 and 7
zero bytes. The number of zero bytes is chosen so that the overall length of
the message plus the padding is a multiple of 4. We note that the last block

Security Analysis of Michael: The IEEE 802.11i Message Integrity Code 425

of the padded message is zero, and the second last block of the padded mes-
sage is not zero. The details of Michael are described in Algorithm 2.1 and 2.2.

Algorithm 2.1: Michael((k0, k1), (m0, ..., mn−1))

Input : Key(k0 , k1)
Input : Padded message (m0 , ..., mn−1)
Output : MIC value (L,R)
(L, R) ← (k0, k1)
for i ← 0 to n − 1

do
�

L ← L ⊕ mi

(L, R) ← B(L, R)(Algorithm2.2)
return (L, R)

Algorithm 2.2: B(L, R)

Input : (L,R)
Output : (L, R)
R ← R ⊕ (L ≪ 17)
L ← (L + R) mod 232

R ← R ⊕ XSWAP (L)
L ← (L + R) mod 232

R ← R ⊕ (L ≪ 3)
L ← (L + R) mod 232

R ← R ⊕ (L ≫ 2)
L ← (L + R) mod 232

return (L, R)

Michael employs several operations, including exclusive-or, left rotation, right
rotation, addition modulo 232 and swapping (XSWAP). Swapping function
XSWAP swaps the position of the two least significant bytes and the position
of the two most significant bytes in a word, i.e., XSWAP (ABCD) = BADC
where A, B, C, D are bytes. The block function given in Algorithm 2.2 is an
unkeyed 4-round Feistel-type construction.

The TKIP frame appends the MIC value as a tag after the message body.
The message body together with the MIC value are encrypted by RC4 at the
transmitter and then sent to the receiver. The receiver recomputes the MIC
value and compares the computed result with the tag coming with the message.
If these two MIC values match, the receiver accepts the message; if not, the
receiver rejects the message.

3 Related Work

Wool found one weakness of Michael: it is not one-way, in fact, it is invertible
[10]. There exists a simple inverse function, which can recover the secret Michael
key K, given a known message M and its corresponding Michael value MIC =
Michael(K, M). We note that the block function is unkeyed, and every step in
Michael is invertible, therefore the whole Michael algorithm is invertible.

The security of Michael relies on the fact that a message and its hash are
encrypted by RC4, and thus the hash value is unknown to the attacker. Wool
proposed a related-message attack on Michael [10].

Remark: Michael is invertible is known by the inventor of Michael, and this
security flaw is mentioned implicitly on Page 14 in [6]: “a known-plaintext attack
will reveal the key stream for that IV, and if the second packet encrypted with
the same IV is shorter than the first one, the MIC value is revealed, which can
then be used to derive the authentication key.”

426 J. Huang et al.

4 Finding Collisions of Michael

We study the collision-resistance of Michael in this section. By providing Theo-
rem 1, we prove that the collision status of Michael only depends on the second
last block message and the output of the block function in the third last round.
We would like to point out that Condition 1 and 2 in Theorem 1 are a necessary
and sufficient condition for finding collisions of Michael.

Theorem 1. Given two pairs of keys and messages, (Key1, M1) and (Key2,
M2), Michael(Key1, M1) = Michael(Key2, M2) if and only if the following two
conditions hold:

1. Rx−3
4 = R′y−3

4
2. Lx−3

5 ⊕ L′y−3
5 = mx−2 ⊕ m′

y−2

where M1 has x 32-bit blocks, M2 has y 32-bit blocks, and both x and y are ≥ 3.

Proof. The last three rounds of Michael are illustrated in Figure 1 in Appendix
A. We provide the last round and the second last round of Michael(Key1, M1)
in Algorithm 4.1 and Algorithm 4.2 respectively. Similarly, the last round and
the second last round of Michael(Key2, M2) are shown in Algorithm B.1 and
Algorithm B.2 in Appendix B respectively.

Algorithm 4.1: Last Round (Key1, M1)

1.Lx−1
0 = Lx−2

5
2.Rx−1

0 = Rx−2
4

3.Lx−1
1 = Lx−1

0 ⊕ mx−1

4.Rx−1
1 = Rx−1

0 ⊕ (Lx−1
1 ≪ 17)

5.Lx−1
2 = (Lx−1

1 + Rx−1
1) mod 232

6.Rx−1
2 = Rx−1

1 ⊕ XSWAP (Lx−1
2)

7.Lx−1
3 = (Lx−1

2 + Rx−1
2) mod 232

8.Rx−1
3 = Rx−1

2 ⊕ (Lx−1
3 ≪ 3)

9.Lx−1
4 = (Lx−1

3 + Rx−1
3) mod 232

10.Rx−1
4 = Rx−1

3 ⊕ (Lx−1
4 ≫ 2)

11.Lx−1
5 = (Lx−1

4 + Rx−1
4) mod 232

(Note : Michael(Key1, M1) = (Lx−1
5 , Rx−1

4))

Algorithm 4.2: 2rd Last (Key1, M1)

1.Lx−2
0 = Lx−3

5
2.Rx−2

0 = Rx−3
4

3.Lx−2
1 = Lx−2

0 ⊕ mx−2

4.Rx−2
1 = Rx−2

0 ⊕ (Lx−2
1 ≪ 17)

5.Lx−2
2 = (Lx−2

1 + Rx−2
1) mod 232

6.Rx−2
2 = Rx−2

1 ⊕ XSWAP (Lx−2
2)

7.Lx−2
3 = (Lx−2

2 + Rx−2
2) mod 232

8.Rx−2
3 = Rx−2

2 ⊕ (Lx−2
3 ≪ 3)

9.Lx−2
4 = (Lx−2

3 + Rx−2
3) mod 232

10.Rx−2
4 = Rx−2

3 ⊕ (Lx−2
4 ≫ 2)

11.Lx−2
5 = (Lx−2

4 + Rx−2
4) mod 232

Necessary condition: If Michael(Key1, M1) = Michael(Key2, M2), namely
the collisions occur, we then backtrack from Step 11 and 10 in Algorithm 4.1
and B.1.

Lx−1
5 = L′y−1

5 and Rx−1
4 = R′y−1

4 =⇒ Lx−1
4 = L′y−1

4 ,
Lx−1

4 = L′y−1
4 and Rx−1

4 = R′y−1
4 =⇒ Rx−1

3 = R′y−1
3 ,

Lx−1
4 = L′y−1

4 and Rx−1
3 = R′y−1

3 =⇒ Lx−1
3 = L′y−1

3 ,
Lx−1

3 = L′y−1
3 and Rx−1

3 = R′y−1
3 =⇒ Rx−1

2 = R′y−1
2 ,

Lx−1
3 = L′y−1

3 and Rx−1
2 = R′y−1

2 =⇒ Lx−1
2 = L′y−1

2 ,
Lx−1

2 = L′y−1
2 and Rx−1

2 = R′y−1
2 =⇒ Rx−1

1 = R′y−1
1 ,

Security Analysis of Michael: The IEEE 802.11i Message Integrity Code 427

Lx−1
2 = L′y−1

2 and Rx−1
1 = R′y−1

1 =⇒ Lx−1
1 = L′y−1

1 ,
Lx−1

1 = L′y−1
1 and Rx−1

1 = R′y−1
1 =⇒ Rx−1

0 = R′y−1
0 .

As Lx−1
1 = Lx−1

0 ⊕ mx−1, L′y−1
1 = L′y−1

0 ⊕ m′
y−1, Lx−1

0 = Lx−2
5 , L′y−1

0 = L′y−2
5 ,

Rx−1
0 = Rx−2

4 , R′y−1
0 = R′y−2

4 , mx−1 = 0 and m′
y−1 = 0, therefore Lx−2

5 = L′y−2
5

and Rx−2
4 = R′y−2

4 .
Similarly, we use the same method in the second last rounds of Michael(Key1,

M1) and Michael(Key2, M2).

Lx−2
5 = L′y−2

5 and Rx−2
4 = R′y−2

4 =⇒ Lx−2
4 = L′y−2

4 ,
Lx−2

4 = L′y−2
4 and Rx−2

4 = R′y−2
4 =⇒ Rx−2

3 = R′y−2
3 ,

Lx−2
4 = L′y−2

4 and Rx−2
3 = R′y−2

3 =⇒ Lx−2
3 = L′y−2

3 ,
Lx−2

3 = L′y−2
3 and Rx−2

3 = R′y−2
3 =⇒ Rx−2

2 = R′y−2
2 ,

Lx−2
3 = L′y−2

3 and Rx−2
2 = R′y−2

2 =⇒ Lx−2
2 = L′y−2

2 ,
Lx−2

2 = L′y−2
2 and Rx−2

2 = R′y−2
2 =⇒ Rx−2

1 = R′y−2
1 ,

Lx−2
2 = L′y−2

2 and Rx−2
1 = R′y−2

1 =⇒ Lx−2
1 = L′y−2

1 ,
Lx−2

1 = L′y−2
1 and Rx−2

1 = R′y−2
1 =⇒ Rx−2

0 = R′y−2
0 .

As Lx−2
1 = Lx−2

0 ⊕ mx−2, L′y−2
1 = L′y−2

0 ⊕ m′
y−2, Lx−2

0 = Lx−3
5 and L′y−2

0 =
L′y−3

5 , therefore Lx−3
5 ⊕ L′y−3

5 = mx−2 ⊕ m′
y−2. As Rx−2

0 = Rx−3
4 and R′y−2

0 =
R′y−3

4 , therefore Rx−3
4 = R′y−3

4 .
Thus, Michael(Key1, M1) = Michael(Key2,M2) =⇒ Rx−3

4 = R′y−3
4 and Lx−3

5
⊕ L′y−3

5 = mx−2 ⊕ m′
y−2.

Sufficient condition: If Rx−3
4 = R′y−3

4 and Lx−3
5 ⊕ L′y−3

5 = mx−2 ⊕ m′
y−2

hold, we start from Step 1 and 2 in Algorithm 4.2 and B.2.

Lx−3
5 = Lx−2

0 , L′y−3
5 = L′y−2

0 and Lx−3
5 ⊕ L′y−3

5 = mx−2 ⊕ m′
y−2 =⇒

Lx−2
1 = L′y−2

1 ,
Rx−3

4 = R′y−3
4 , Rx−3

4 = Rx−2
0 and R′y−3

4 = R′y−2
0 =⇒ Rx−2

0 = R′y−2
0 ,

Lx−2
1 = L′y−2

1 and Rx−2
0 = R′y−2

0 =⇒ Rx−2
1 = R′y−2

1 ,
Lx−2

1 = L′y−2
1 and Rx−2

1 = R′y−2
1 =⇒ Lx−2

2 = L′y−2
2 ,

Lx−2
2 = L′y−2

2 and Rx−2
1 = R′y−2

1 =⇒ Rx−2
2 = R′x−2

2 ,
Lx−2

2 = L′y−2
2 and Rx−2

2 = R′x−2
2 =⇒ Lx−2

3 = L′y−2
3 ,

Lx−2
3 = L′y−2

3 and Rx−2
2 = R′x−2

2 =⇒ Rx−2
3 = R′y−2

3 ,
Lx−2

3 = L′y−2
3 and Rx−2

3 = R′y−2
3 =⇒ Lx−2

4 = L′y−2
4 ,

Lx−2
4 = L′y−2

4 and Rx−2
3 = R′y−2

3 =⇒ Rx−2
4 = R′y−2

4 ,
Lx−2

4 = L′y−2
4 and Rx−2

4 = R′y−2
4 =⇒ Lx−2

5 = L′y−2
5 .

Finally, we bring the above results from the second last rounds to the last rounds.
According to the padding method, we note that mx−1 = 0 and m′

y−1 = 0.

Lx−2
5 = L′y−2

5 , Lx−1
0 = Lx−2

5 and L′y−1
0 = L′y−2

5 =⇒ Lx−1
0 = L′y−1

0 ,
Rx−2

4 = R′y−2
4 , Rx−2

4 = Rx−1
0 and R′y−2

4 = R′y−1
0 =⇒ Rx−1

0 = R′y−1
0 ,

Lx−1
0 = L′y−1

0 and mx−1 = m′
y−1 =⇒ Lx−1

1 = L′y−1
1 ,

Lx−1
1 = L′y−1

1 and Rx−1
0 = R′y−1

0 =⇒ Rx−1
1 = R′y−1

1 ,
Lx−1

1 = L′y−1
1 and Rx−1

1 = R′y−1
1 =⇒ Lx−1

2 = L′y−1
2 ,

428 J. Huang et al.

Lx−1
2 = L′y−1

2 and Rx−1
1 = R′y−1

1 =⇒ Rx−1
2 = R′y−1

2 ,
Lx−1

2 = L′y−1
2 and Rx−1

2 = R′y−1
2 =⇒ Lx−1

3 = L′y−1
3 ,

Lx−1
3 = L′y−1

3 and Rx−1
2 = R′y−1

2 =⇒ Rx−1
3 = R′y−1

3 ,
Lx−1

3 = L′y−1
3 and Rx−1

3 = R′y−1
3 =⇒ Lx−1

4 = L′y−1
4 ,

Lx−1
4 = L′y−1

4 and Rx−1
3 = R′y−1

3 =⇒ Rx−1
4 = R′y−1

4 ,
Lx−1

4 = L′y−1
4 and Rx−1

4 = R′y−1
4 =⇒ Lx−1

5 = L′y−1
5 .

Therefore, Rx−3
4 = R′y−3

4 and Lx−3
5 ⊕ L′y−3

5 = mx−2 ⊕ m′
y−2 =⇒ Michael(Key1,

M1) = Michael(Key2, M2).
Therefore, Rx−3

4 = R′y−3
4 and Lx−3

5 ⊕ L′y−3
5 = mx−2 ⊕ m′

y−2 are a necessary
and sufficient condition of Michael(Key1, M1) = Michael(Key2, M2). ��

5 Michael Is Not Collision-Free

In this section, we show that Michael is not collision-free by providing a simple
method to find collisions of Michael. Intuitively, for a given arbitrarily length
message M and a key K, a 96-bit block message M ′ and a key K ′ can be
computed such that Michael(K, M) = Michael(K ′, M ′).

Theorem 2. Given an arbitrarily length message M and a specific key K, a
96-bit block message M ′ distinct from M and a key K ′ can always be computed
such that Michael(K, M) = Michael(K ′, M ′), where M has n 32-bit blocks and
n is any integer ≥ 3.

Proof. We write M as (m0, m1, ..., mn−1), and M ′ as (m′
0, m

′
1, m

′
2). We rep-

resent the outputs of the last, second last, third last and fourth last round
of Michael(K, M) as (Ln−1

5 , Rn−1
4), (Ln−2

5 , Rn−2
4), (Ln−3

5 , Rn−3
4) and (Ln−4

5 ,
Rn−4

4) respectively. The outputs of the last, second last and third last round
of Michael(K ′, M ′) are represented as (L′2

5 , R′2
4), (L′1

5 , R′1
4) and (L′0

5 , R′0
4) re-

spectively. K ′ is written as (k′
0, k′

1). K ′, m′
0, m′

1 and m′
2 are constructed as

follows.

1. Choose m′
2 = 0 (as mn−1 = 0 according to the padding method).

2. Choose m′
1 = mn−2.

3. Choose m′
0 arbitrarily, but m′

0 �= mn−3 if n = 3.
4. Choose k′

0 = Ln−4
5 ⊕ mn−3 ⊕ m′

0 and k′
1 = Rn−4

4 . K ′ is constructed as K ′ =
(k′

0, k′
1) = (Ln−4

5 ⊕ mn−3 ⊕ m′
0, Rn−4

4).

The construction is illustrated in Figure 2 in Appendix A. The soundness of this
construction is shown as follows.

k′
0 = Ln−4

5 ⊕ mn−3 ⊕ m′
0 =⇒ k′

0 ⊕ m′
0 = Ln−4

5 ⊕ mn−3,
k′
0 ⊕ m′

0 = Ln−4
5 ⊕ mn−3 and k′

1 = Rn−4
4 =⇒ Rn−3

4 = R′0
4 and Ln−3

5 = L′0
5 ,

Ln−3
5 = L′0

5 and mn−2 = m′
1 =⇒ Ln−3

5 ⊕ L′0
5 = mn−2 ⊕ m′

1.

Therefore, Michael(K, M) = Michael(K ′, M ′) holds because Rn−3
4 = R′0

4 satisfies
Condition 1 in Theorem 1 and Ln−3

5 ⊕ L′0
5 = mn−2 ⊕ m′

1 satisfies Condition 2 in
Theorem 1. ��
Theorem 3. Michael is not collision-free.

Proof. Can be deduced from Theorem 2. ��

Security Analysis of Michael: The IEEE 802.11i Message Integrity Code 429

6 Finding Fixed Points of Michael

In this section, we present a method to find fixed points of Michael. A fixed
point of Michael is a triple (Li, Ri, mi) such that Michael((Li, Ri), mi) = (Li,
Ri). The procedure is described in Section 6.1. A packet forgery attack could be
mounted against Michael if the output of the Michael block function is equal to
any of the fixed points. The packet forgery attack is shown in Section 6.2.

6.1 The Fixed-Point Finding Procedure

To find fixed points of Michael, we only need to focus on one round of Michael.
Figure 3 in Appendix C illustrates one round of Michael. In Figure 3, we note
that Michael((Li, Ri), mi) = (Li+1, Ri+1). In the finding procedure, our goal is
to find a triple (Li, Ri, mi) such that Michael((Li, Ri), mi) = (Li+1, Ri+1) =
(Li, Ri). The procedure is described as follows.

1. Let Xi = Li ⊕ mi, and choose a value for Ri. Define a counter c and set it
to zero.

2. FOR (Xi = 0; Xi ≤ 232; Xi++)
(a) Call block function B(Xi, Ri)
(b) IF Ri = Ri+1 THEN

i. There exists an Xi such that Ri = Ri+1. For a found Xi, there exists
a corresponding Li+1 because the mapping from (Xi, Ri) to (Li+1,
Ri+1) is bijective. Choose Li = Li+1.

ii. Choose mi = Xi ⊕ Li.
iii. Increase counter c by one.

3. IF counter c = 0 THEN no fixed point found for this Ri.
4. ELSE There are c fixed points for this Ri.

The key point of this procedure is in Step 2 (b). Given an Xi, if Ri = Ri+1
holds, there exists a fixed point (mi, Li, Ri) such that Michael((Li, Ri), mi)
= (Li, Ri). For a specific value of Ri, the time complexity of deciding whether
there exists a fixed point of Michael is O(232). To search the complete space of
Ri for all fixed points, the time complexity is O(264) since Ri is 32-bit.

We have implemented the fixed-point finding procedure on a personal com-
puter whose processor is an Intel Pentium 4 2.8 GHz, and the program takes 2-3
minutes to decide whether there exists a fixed point for a given Ri. For example,
(Li, Ri, mi) = (0x3f651087,0x2, 0xbbac8b1a) is a fixed point. A more complete
fixed-point table is provided in the full paper.

6.2 A Packet Forgery Attack

A packet forgery attack (depicted in Figure 4 in Appendix C) could be mounted
against Michael if the output of the block function in any round is equal to any
of the fixed points.

Theorem 4. Given a message M1 and an arbitrary key K, an attacker can
always construct a message M2 distinct from M1 such that Michael(K, M1) =
Michael(K, M2) if the following condition holds.

430 J. Huang et al.

1. The output of the block function of Michael(K, M1) in any round is equal
to any of the fixed points.

Proof. Suppose M1 has n blocks, and is written as (m0, m1, ..., mn−1). Suppose
the output of block function in any round, say in the (i + 1)-th round (the
corresponding message is mi), is equal to any of the fixed points (assume this
point is (Li, Ri)). Given a fixed point (Li, Ri), we can find a corresponding
m′

i from the fixed-point table. A multiple of four blocks of message m′
i can be

appended to the (i+1)-th round without changing the Michael value. The reason
why the number of the inserted blocks of m′

i is a multiple of four is due to the
padding method of Michael. In other words, we need to guarantee length(M1)
mod 4 = length(M2) mod 4. Thus, M2 can be constructed as (m0, m1, ..., mi,
< m′

i, m′
i, ..., m′

i, >, mi+1, ..., mn−1), where the number of the inserted blocks
of m′

i is a multiple of four. According to the property of fixed points, we have
Michael(K, M1) = Michael(K, M2). ��

Remark: 1. If Condition 1 in Theorem 4 holds, an attacker can forge a message
M2 to replace the original message M1 without modifying the Michael value, and
this packet forgery attack can apply to any key K. 2.We note that the packet
forgery attack does not endanger the entire TKIP system as the message and
the hash value are encrypted by RC4. Hence an attacker needs to know the
decryption before mounting such a forgery attack against Michael.

7 Conclusions

Michael was designed as the message integrity code for the IEEE 802.11i. In this
paper, by providing a necessary and sufficient condition for finding collisions of
Michael, we showed that the collision status of Michael only depends on the
second last block message and the output of its third last round. Therefore, to
find collisions of Michael, we only need to focus on its two rounds: the third last
round and the second last round. In addition, we demonstrated that Michael is
not collision-free. Moreover, we proposed a simple method to find fixed points of
Michael and built a fixed-point table based on our results. If the output of the
block function in any round is in the fixed-point table, a packet forgery attack
could be mounted against Michael. The packet forgery attack does not endanger
security of the whole TKIP system as the Michael value is encrypted by RC4.
To make the proposed forgery attack practical to TKIP, the attacker needs to
consider the combination of Michael and RC4.

References

1. Information Technology - Telecommunications and Information Exchange Between
Systems - Local and Metropolitan Area Networks - Specific Requirements Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications Amendment 6: Medium Access Control (MAC) Security Enhancements.
23 July 2004.

Security Analysis of Michael: The IEEE 802.11i Message Integrity Code 431

2. Advanced Encryption Standard. National Institute of Standards and Technology,
NIST FIPS PUB 197, U.S. Department of Commerce. November 2001.

3. ANSI/IEEE Std 802.11, 1999 Edition. Information technology - Telecommunica-
tions and information exchange between systems - Local and metropolitan area
networks - Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications.

4. W. Arbaugh, N. Shankar, and Y.C. Wan. Your 802.11 Wireless Network has No
Clothes. In Proceedings of IEEE International Conference on Wireless LANs and
Home Networks, pages 131–144, Singapore, 2001.

5. N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications: The
Insecurity of 802.11. In Proceedings of the 7th Annual Internaltional Conference
on Mobile Computing and Networking, pages 180–189, Rome, Italy, 2001.

6. N. Ferguson. Michael: an improved MIC for 802.11 WEP. IEEE 802.11 doc
02-020r0, 17 January 2002. http://grouper.ieee.org/groups/802/11/Documents/
DocumentHolder/2-020.zip.

7. S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. In Proceedings of the 8th Annual International Workshop on Selected Areas
in Cryptography, pages 1–24, Toronto, Canada, 2001.

8. R. Rivest. The RC4 Encryption Algorithm, RSA Data Security Inc., (Proprietary).
March 1992.

9. A. Stubblefield, J. Ioannidis, and A. Rubin. Using the Fluhrer, Mantin, and Shamir
Attack to Break WEP. In Proceedings of the 2002 Network and Distributed Systems
Security Symposium, pages 17–22, San Diego, California, 2002.

10. A. Wool. A Note on the Fragility of the “Michael” Message Integrity Code. IEEE
Transactions on Wireless Communications, 2004.

A Three-Round Diagrams

�

�

�

Block Function
�

�

�

Lx−3
5

�

Rx−3
4

��mx−2
(�= 0) �

Block Function

�

�

Lx−2
5 Rx−2

4
��mx−1

(= 0) �
Block Function

� �Lx−1
5 Rx−1

4

�

�

�

Block Function
�

�

�

L′x−3
5

�

R′x−3
4

��m′
x−2

(�= 0) �
Block Function

�

�

L′x−2
5 R′x−2

4
��m′

x−1
(= 0) �

Block Function

� �L′x−1
5 R′x−1

4

Fig. 1. Last Three Rounds of Michael

�

�

Ln−4
5 Rn−4

4
��mn−3

�

�

�

�

Block Function

�

�

Ln−3
5 Rn−3

4
��mn−2

(�= 0) �
Block Function

�

�

Ln−2
5 Rn−2

4
��mn−1

(= 0) �
Block Function

� �Ln−1
5 Rn−1

4

�

�

k′
0 k′

1
��m′

0

�
Block Function

�

�

L′0
5 R′0

4
��m′

1
(�= 0) �

Block Function

�

�

L′1
5 R′1

4
��m′

2
(= 0) �

Block Function

� �L′2
5 R′2

4

Fig. 2. The Construction of (K′, M ′)

432 J. Huang et al.

B Algorithms in Section 4

Algorithm B.1: Last Round (Key2, M2)

1.L′y−1
0 = L′y−2

5

2.R′y−1
0 = R′y−2

4
3.L′y−1

1 = L′y−1
0 ⊕ m′

y−1

4.R′y−1
1 = R′y−1

0 ⊕ (L′y−1
1 ≪ 17)

5.L′y−1
2 = (L′y−1

1 + R′y−1
1) mod 232

6.R′y−1
2 = R′y−1

1 ⊕ XSWAP (L′y−1
2)

7.L′y−1
3 = (L′y−1

2 + R′y−1
2) mod 232

8.R′y−1
3 = R′y−1

2 ⊕ (L′y−1
3 ≪ 3)

9.L′y−1
4 = (L′y−1

3 + R′y−1
3) mod 232

10.R′y−1
4 = R′y−1

3 ⊕ (L′y−1
4 ≫ 2)

11.L′y−1
5 = (L′y−1

4 + R′y−1
4) mod 232

(Note : Michael(Key2, M2) = (L′y−1
5 , R′y−1

4)

Algorithm B.2: 2rd Last (Key2, M2)

1.L′y−2
0 = L′y−3

5

2.R′y−2
0 = R′y−3

4

3.L′y−2
1 = L′y−2

0 ⊕ m′
y−2

4.R′y−2
1 = R′y−2

0 ⊕ (L′y−2
1 ≪ 17)

5.L′y−2
2 = (L′y−2

1 + R′y−2
1) mod 232

6.R′y−2
2 = R′y−2

1 ⊕ XSWAP (L′y−2
2)

7.L′y−2
3 = (L′y−2

2 + R′y−2
2) mod 232

8.R′y−2
3 = R′y−2

2 ⊕ (L′y−2
3 ≪ 3)

9.L′y−2
4 = (L′y−2

3 + R′y−2
3) mod 232

10.R′y−2
4 = R′y−2

3 ⊕ (L′y−2
4 ≫ 2)

11.L′y−2
5 = (L′y−2

4 + R′y−2
4) mod 232

C Figures

�
�

Li Ri

��mi

�
+

�≪ 17 � �

�

+
�
�XSWAP� �

�

+

�
�

≪ 3 � �

�

+

�
�

≫ 2 � �

��Li+1 Ri+1

Fig. 3. One Round of Michael

�

�

L0 R0
��m0

�
Block Function

� ��

�

�

�

�

Li−1 Ri−1

��mi−1

�
Block Function

�
�

Li Ri

�

� �

�

�

mi
�

�

Ln−1 Rn−1

�mn−1
�
�

�
Block Function

� �
Original Blocks

�

�

Li Ri

��m′
i

�
Block Function

�

�

Li Ri

��m′
i

� �

�

�

�

�

Li Ri

��m′
i

�
Block Function

Li Ri� �

�

�

�

�

A Multiple of 4 Blocks of
m′

i Inserted

Fig. 4. The Packet Forgery Attack

	Introduction
	The Michael Keyed Hash Function
	Related Work
	Finding Collisions of Michael
	Michael Is Not Collision-Free
	Finding Fixed Points of Michael
	The Fixed-Point Finding Procedure
	A Packet Forgery Attack

	Conclusions
	Three-Round Diagrams
	Algorithms in Section 4
	Figures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

