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Abstract. A world model for ubiquitous computing environments is presented.
It can be dynamically organized like a tree based on geographical containment,
such as in a user-room-floor-building hierarchy and each node in the tree can be
constructed as an executable software component. It provides a unified view of
the locations of not only physical entities and spaces, including users and ob-
jects, but also computing devices and services. A prototype implementation of
this approach was constructed on a Java-based mobile agent system.

1 Introduction

Various computing and sensing devices are already present in almost every room of
a modern building or house and in many of the public facilities of cities. As a result,
spaces are becoming perceptual and smart. For example, location-sensing technologies,
e.g., RFID, computer vision, and GPS, have been used to identify physical objects and
track the positions of objects. These sensors have made it possible to detect and track the
presence and location of people, computers, and practically any other object we want
to monitor. There have been several attempts for narrowing gaps between the physical
world and cyberspaces, but most existing approaches or infrastructures inherently de-
pend on particular sensing systems and have inherently been designed for their initial
applications.

A solution to this problem would be to provide a general world model for represent-
ing the physical world in cyberspaces. Although several researchers have explored such
models, most existing models are not available for all ubiquitous computing, because
these need to be maintained in centralized database systems, whereas the environments
are often managed in an ad-hoc manner without any database servers. We also need of-
ten necessary to maintain computing devices and software in addition to modeling enti-
ties and spaces in the physical world. This paper foucsed on discussing the construction
of such a model, called M-Spaces, as a programming interface between physical enti-
ties or places and application-specific services in cyberspaces in ubiquitous computing
environments.

2 Background

Many researchers have explored world models for ubiquitous computing environments.
Most existing models have been aimed at identifying and locating entities, e.g., people
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and physical objects and computing devices in the physical world. These existing mod-
els can be classified into two types: physical-location and symbolic-location models.
The former represents the position of people and objects as geometric information, e.g.,
NEXUS [512]] and Cooltown [6]. A few applications like moving-map navigation can
easily be constructed on a physical-location model with GPS systems. However, most
emerging applications require a more symbolic notion: place. Generically, place is the
human-readable labeling of positions. The latter represent the postion of entities as
labels for potentially overlapping geometric volumes, e.g., names of rooms, and build-
ings, e.g., Sentient Computing [4], and RAUM [3]. Existing approaches assume that
their models are maintained in centralized database servers, which may not always be
used in ubiquitous computing environments. Therefore, our model should be managed
in a decentralized manner and be dynamically organized in an ad-hoc and peer-to-peer
manner. Virtual Counterpart [7] supports RFID-based tracking systems and provides
objects attached to RFID-tags with Jini-based services. Since it enables objects attached
to RFID-tags to have their counterparts, it is similar to our model. However, it only sup-
ports physical entities except for computing devices and places. Our model should not
distinguish between physical entities, places, and software-based services so that it can
provide a unified view of ubiquitous computing environments, where not only physical
entities are mobile but also computing devices and spaces.

The framework presented in this paper was inspired by our previous work, called
SpatialAgents [10], which is an infrastructure that enables services to be dynamically
deployed at computing devices according to the positions of people, objects, and places
that are attached to RFID tags. The previous framework lacked any general-purpose
world model and specified the positions of physical entities according to just the cov-
erage areas of the RFID readers so that it could not represent any containment rela-
tionship of physical spaces, e.g., rooms and buildings. Moreover, we presented another
location model, called M-Space [11] and the previous model aimed at integrating be-
tween software-based services running on introducing computing devices and service-
provider computing devices whereas the model presented in the paper aims at modeling
containment relationship between physical and logical entities, including computing
devices and software for defining services.

3 World Model

This section describes the world model presented in this paper. The model manages the
locations of physical entities and spaces through symbolic names.

Hierarchical World Model. Our model consists of elements, called components,
which are just computing devices or software, or which are implemented as virtual
counterpart objects of physical entities or places. The model represents facts about en-
tities or places in terms of the semantic or spatial containment relationships between
components associated with these entities or places.

— Virtual counterpart: Each component is a virtual counterpart of a physical entity
or place, including the coverage area of the sensor, computing device, or service-
provider software.
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Fig. 1. Rooms on floor in physical world and counterpart components in location model

— Component structure: Each component can be contained within at most one com-
ponent according to containment relationships in the physical world and cyberspace.

— Inter-component movement: Each component can move between components as
a whole with all its inner components.

When a component contains other components, we call the former component is called
a parent and the latter children, like the MobileSpaces model [8]. When physical en-
tities, spaces, and computing devices move from location to location in the physi-
cal world, the model detects their movements through location-sensing systems and
changes the containment relationships of components corresponding to moving entities,
their source and destination. Each component is a virtual counterpart of its target in the
world model and maintains the target’s attributes. Fig. [[lshows the correlation between
spaces and entities in the physical world and their counterpart components. The model
also offers at least two basic events, entering and leaving, which enable application-
specific services to react to actions in the physical world. Since each component in the
model is treated as an autonomous programmable entity, it can some defines behaviors
with some intelligence.

Components. The model is unique to existing world models because it not only main-
tains the location of physical entities, such as people and objects, but also the locations
of computing devices and services in a unified manner. As we can see from Fig. 2]
components can be classified into three types.

— Virtual Counterpart Component (VCC) is a digital representation of a physical
entity, such as a person or object, except for a computing device, or a physical
place, such as a building or room,

— Proxy Component (PC) is a proxy component that bridges the world model and
computing device, and maintains a subtree of the model or executes services located
ina VCC.

— Service Component (SC) is software that defines application-specific services de-
pendent on physical entities or places.

For example, a car carries two people and moves from location to location with its oc-
cupants. The car is mapped into a VCC on the model and this contains two VCCs that
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Fig. 2. Three types of proxy components

correspond to the two people. The movement of the car is mapped into the VCC mi-
gration corresponding to the car from the VCC corresponding to the source to the VCC
corresponding to the destination. Also, when a person has a computer for executing ser-
vices, his or her VCC has a PC, which represents the computer and runs SCs to define

the services.

Furthermore, the model also classifies PCs into three subtypes, PCM (PC for Model
manager), PCS (PC for Service provider), and PCL (PC for Legacy device), according
to the functions of the devices. Our model can be maintained by not only the server but

also multiple computing devices in ubiquitous computing environments.

— The first component, i.e., PCM, is a proxy of a computing device maintaining a
subtree of the components in the world model (Fig.[2(a)). It attaches the subtree of
its target device to a tree maintained by another computing device. Some computing

devices can provide runtime systems to execute services defined as SCs.

— The second component, i.e., PCS, is a proxy of the computing device that can ex-
ecute SCs (Fig. 2A(b)). If such a device is in a space, its proxy is contained by the
VCC corresponding to the space. When a PCS receives SCs, it forwards these to

the device that it refers to.

— The third component, called PCL (PC for Legacy device), is a proxy of the com-
puting device that cannot execute SCs (Fig. 2lc)). If such a device is in a space,
its proxy is contained by the VCC corresponding to the space and it communicates

with the device through the device’s favorite protocols.
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For example, a television, which does not have any computing capabilities, can have
an SC in the VCC corresponding to the physical space that it is contained in and can be
controlled in, and the SC can send infrared signals to it. A computing device can have
different PCs whereby it can provide the capabilities to them.

4 Implementation

To evaluate the model described in Section 4] we implemented a prototype system that
builds on this model. The model itself is independent of programming languages but
the current implementation uses Java (J2SE or later versions) as an implementation
language for components.

Component

Virtual Counterpart Component: Each VCC is defined from an abstract class, which
has some built-in methods that are used to control its mobility and life-cycle. It can
explicitly defines its own identifier and attributes.

class VirtualCounterComponent extends Component {

void setIdentity(String name) { ... }
void setAttribute(String attribute, String value){ ... }
String getAttribute(String attribute) {..}
ComponentInfo getParentComponent () { ... }
ComponentInfo[] getChildren() { ... }
ServiceInfo[] getParentServices(String name) { ... }
ServiceInfo[] getAncestorServices(String name) { ... }
Object execService(ServiceInfo si,

Message m) throws NoSuchServiceException { ... }

Proxy Component: PCs can be classified into three classes, i.e., PCM, PCS, and PCL.
Each PCM attaches a subtree maintained by its target computing device to a tree main-
tained by another computing device. It forwards its visiting components or control mes-
sages to its target device from the device that it is located at, and vice versa, by using the
component migration mechanism. Each PCS is a representation of the computing de-
vice that can execute SCs. It automatically forwards its visiting SCs to its target device
by using the component migration mechanism. Each PCL supports a legacy computing
device that cannot execute SCs due to limitations with its computational resources. It is
located at a VC corresponding to the space that contains its target device. It establishes
communication with its target device through its favorite approach, e.g., serial com-
munications and infrared signals. For example, a television, which does not have any
computing capabilities, can have an SC in the VC corresponding to the physical space
that it is contained in and can be controlled in, and the SC can send infrared signals to it.

Service Component (SC): Many computing devices in ubiquitous computing envi-
ronments only have a small amount of memory and slower processors. They cannot
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always support all services. Here, we introduce an approach to dynamically installing
upgraded software that is immediately required in computing devices that may be run-
ning. SCs are mobile software that can travel from computing device to computing
device achieved by using mobile agent technology. The current implementation as-
sumes SCs to be Java programs. It can be dynamically deployed at computing de-
vices. Each SC consists of service methods and is defined as a subclass of abstract
class ServiceComponent. Most serializable JavaBeans can be used as SCs.

class ServiceComponent extends Component {
void setName (String name)
Host getCurrentHost () { ... }
void setComponentProfile(ComponentProfile cpf) { ... }

}

When an SC migrates to another computer, not only the program code but also its
state are transferred to the destination. For example, if an SC is included in a VC
corresponding to a user, when the user moves to another location, it is migrated with
the VC to a VC corresponding to the location. The model allows each SC to specify
the minimal (and preferable) capabilities of PCSs that it may visit, e.g., vendor and
model class of the device (i.e, PC, PDA, or phone), its screen size, number of colors,
CPU, memory, input devices, and secondary storage, in CC/PP (composite capabil-
ity/preference profiles) form [12]]. Each SC can register such capabilities by invoking
the setComponentProfile () method.

Component Management System

Our model can manage the computing devices that maintain it. This is because a PCM
is a proxy for a subtree that its target computing device maintains and is located in the
subtree that another computing device maintains. As a result, it can attach the former
subtree to the latter. When it receives other components and control messages, it au-
tomatically forwards the visiting components or messages to the device that it refers
to (and vice versa) by using a component migration mechanism, like PCSs. Therefore,
even when the model consists of subtrees that multiple computing devices maintain, it
can be treated as a single tree. Note that a computing device can maintain more than one
subtree. Since the model does not distinguish between computing devices that maintain
subtrees and computing devices that can execute services, the former can be the latter.
Component migration in a component hierarchy is done merely as a transformation
of the tree structure of the hierarchy. When a component is moved to another compo-
nent, a subtree, whose root corresponds to the component and branches correspond to
its descendent component is moved to a subtree representing the destination. When a
component is transferred over a network, the runtime system stores the state and the
code of the component, including the components embedded within it, into a bit-stream
formed in Java’s JAR file format that can support digital signatures for authentication.
The system has a built-in mechanism for transmitting the bit-stream over the network
through an extension of the HTTP protocol. The current system basically uses the Java
object serialization package for marshaling components. The package does not support
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the stack frames of threads being captured. Instead, when a component is serialized, the
system propagates certain events within its embedded components to instruct the agent
to stop its active threads.

People should only be able to access location-bound services, e.g., printers and
lights, that are installed in a space, when they enter it carrying their own terminals
or using public terminals located in the space. Therefore, this model introduces a com-
ponent as a service provider for its inner components. That is, each VC can access its
neighboring components, e.g., SCs and PCs located in the parent (or an ancestor) of the
VC. For example, when a person is in the room of a building, the VC corresponding
to the person can access SCs (or SCs on PCs) in the VC corresponding to the room
or the VC corresponding to the building. In contrast, it has no direct access over other
components, which do not contain it, for reasons of security. Furthermore, like Unix’s
file-directory, the model enables each VC to specify its owner and group. For example,
a component can explicitly permit descendent components that belong to a specified
group or are owned by its user to access its services, e.g., PCs or SCs.

Location-Sensor Management. The model offers an automatic configuration mech-
anism to deploy components by using location-sensing systems. To bridge PCMs and
location-sensors, the model introduces location-management systems, called LCMs,
outside the PCMs. Each LCM manages location sensors and maintains a database where
it stores bindings between references of physical entities in sensors, e.g., the identifiers
of RFID tags attached to the entities and the identifiers of VCCs corresponding to the
entities. Each LCM is responsible for discovering VCCs bound to entities or PCs bound
to computing devices within the coverage areas of the sensors that it manages. When an
entity (or device) attached to an RFID-tag and an LCM detect the presence of the entity
(or device) within the coverage area of an RFID reader managed by the LCM, the LCM
searches its database for VCCs (or PCs) bound to the entity (or device) and informs
computing devices that maintain the VCCs (or PCs) about the VCC corresponding to
the reader. Then the VCCs (or PCs) migrate to the reader’s VCC. If the LCM’s database
does not have any information about the the entity (or device), it multicasts query mes-
sages to other LCMs. If other LCMs have any information about the entity, the LCM
creates a default VCC as a new entity. When the tag is attached to an unknown device
that can maintain a subtree or execute SCs, the LCM instructs the VCC that contains
the device to create a default PCM or PCS for the device.

5 Applications

This section briefly discusses how the model represents and implements typical appli-
cations and what advantages the model has.

5.1 Follow-Me Applications

Follow-me services are a typical application in ubiquitous computing environments. For
example, Cambridge University’s Sentient Computing project [4] enabled applications
to provide a location-aware platform using infrared-based or ultrasonic-based locating
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Fig. 3. Follow-me desktop applications between two computers

systems in a buildingEl While a user is moving around, the platform can track his or
her movement so that the graphical user interfaces of the user’s applications follow the
user. The model presented in this paper, on the other hand, enables moving users to be
naturally represented independently of location-sensing systems. Unlike previous stud-
ies on the applications, it can also migrate such applications themselves to computers
near the moving users. That is, the model provides each user with more than one VCC
and can migrate this VCC to a VCC corresponding to the destination. For example,
we developed a mobile window manager, which is a mobile agent and could carry its
desktop applications as a whole to another computer and control the size, position, and
overlap in the windows of the applications. Using the model presented in this paper,
the window manager could be easily and naturally implemented as a VCC bound to the
user and desktop applications as SCs. They could be automatically moved to a VCC
corresponding to the computer that was in the current location of the user by an LCM
and could then continue processing at the computer, as outlined in Fig.[3l

5.2 Location-Based Navigation Systems

The next example is a user navigation system application running on portable comput-
ing devices, e.g., PDAs, tablet-PCs, and notebook PCs. The initial result on the system
was presented in a previous paper [L0]. There has been a lot of research on commercial
systems for similar navigation, e.g., CyberGuide [1] and NEXUS [3]. Most of those
have assumed that portable computing devices are equipped with GPSs and are used
outdoors. Our system is aimed at use in a building. As a PDA enters rooms, it displays a
map on its current position. We has assumed that each room in a building has a coverage
of more than one RFID reader managed by an LSM, the room is bound to a VC that
has a service module for location-based navigation, and each PDA can execute service
modules and is attached to an RFID tag. When a PDA enters a room, the RFID reader
for the room detects the presence of the tag and the LSM tries to discovery the compo-
nent bound to the PDA through the procedure presented in the previous section. After
it has information about the component, i.e., a PCS bound to a PDA, it informs to the

! The project does not report their world model but their systems seem to model the position of
people and things through lower-level results from underlying location-sensing systems.
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VC corresponding to the room about the capabilities of the visiting PDA . Next, the VC
deploys a copy of its service module at the PCS and then the PCS forwards the module
to the PDA to which it refers to display a map of the room. When the PDA leaves from
the room, the model issues events to the PCS and VC and instructs the PCS to returns
to the VC. Fig. [ (right) outlines the architecture for the system. Fig. @ (left) shows a
service module running on a visiting PDA displaying a map on the PDA’s screen.

5.3 Software Testing for Location-Based Services

To test software for location-based services running on a portable device, the devel-
oper often has to carry the device to locations that a user’s device may move to and
test whether software can connect to appropriate services provided in the locations. We
developed a novel approach to test location-aware software running on portable com-
puting devices [9]]. The approach involves a mobile emulator for portable computing
devices that can travel between computers, and emulates the physical mobility and re-
connection of a device to sub-networks by the logical mobility of the emulator between
sub-networks. In this model, such an emulator can be naturally implemented as a PC,
which provides application-level software, with the internal execution environments of
its target portable computing devices and target software as SCs. The emulator carries the
software from a VCC that is running on a computer on the source-side sub-network to an-
other VCC that is running on another computer on the destination-side sub-network. Af-
ter migrating to the destination VCC, it enables its inner SCs to access network resources
provided within the destination-side sub-network. Furthermore, SCs, which were tested
successfully in the emulator, can run on target computing devices without modifying or
recompiling the SCs. This is because this model provides a unified view of computing
devices and software and enables SCs to be executed in both VCCs and PCs.

6 Conclusion

We presented a world model for context-aware services, e.g., location-aware and per-
sonalized information services, in ubiquitous computing environments. Like existing
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related models, it can be dynamically organized like a tree based on geographical con-
tainment, such as a user-room-floor-building hierarchy and each node in the tree can
be constructed as an executable software component. It also has several advantages in
that it can be used to model not only stationary but also moving spaces, e.g., cars. It
enables context-aware services to be managed without databases and can be managed
by multiple computers. It can provide a unified view of the locations of not only phys-
ical entities and spaces, including users and objects, but also computing devices and
services. We also designed and implemented a prototype system based on the model
and demonstrated its effectiveness in several practical applications.
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