An Application Development Environment for
Rule-Based I/0O Control Devices

Ryohei Sagara!, Yasue Kishino!, Tsutomu Terada', Tomoki Yoshihisa?,
Masahiko Tsukamoto?, and Shojiro Nishio!

! Graduate School of Information Science and Technology, Osaka University, Japan
2 Academic Center for Computing and Media Studies, Kyoto University, Japan
3 Faculty of Engineering, Kobe University, Japan

Abstract. In this paper, we propose an application development en-
vironment for the ubiquitous chip, which is a rule-based event-driven
input/output (I/O) control device for constructing ubiquitous comput-
ing environments. The proposed development environment simulates the
behaviors of multiple ubiquitous chips and helps users to create rules.
Moreover, it has a function for developing applications by cooperation
between virtual ubiquitous chips and real ubiquitous chips. The applica-
tion environment enables both programmers and general users to develop
and customize applications for ubiquitous computing environments.

1 Introduction

Recent evolutions in the miniaturization of computers and component devices
such as microchips, sensors, and wireless modules, contribute to the achievement
of ubiquitous computing environments [4,[8[10]. In our ubiquitous computing en-
vironments, small devices are embedded in many places to support daily human
life. To construct ubiquitous computing environments, we propose a rule-based
I/O control device called ubiquitous chip [9].

The behaviors of a ubiquitous chip are described by a set of event-driven
rules, and a ubiquitous chip can dynamically change its behavior by modifying
stored rules. In our assumed environments, ubiquitous chips are embedded into
almost any artifacts to enrich our daily-life, and we can customize functions and
services in ubiquitous chips according to our preference.

To achieve such environments, we need an application development envi-
ronment that enables both programmers and general users to intuitively de-
velop/customize applications. In response to these requirements, we propose a
development environment for ubiquitous chips that simulates the behaviors of
multiple ubiquitous chips and helps users to create rules. Moreover, this proposed
environment includes a function for developing applications through cooperation
between virtual and real ubiquitous chips.

The remainder of this paper is organized as follows. Section 2 outlines the
ubiquitous chip. Section 3 describes the design of the proposed application de-
velopment environment, and Section 4 describes a prototype system. Section 5
discusses the development environment and Section 6 sets forth our conclusions
and planned future work.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 121-{I30} 2005.
© IFIP International Federation for Information Processing 2005

122 R. Sagara et al.

2 Ubiquitous Chip

As shown in Figure[Il a ubiquitous chip consists of a core part, which is the main
unit, and a cloth part that has connectors and a rechargeable battery. It has five
digital input ports, one analog input port, twelve digital output ports, two serial
communication ports, and a multi-purpose LED. Figure 2 shows the various
input/output devices for the ubiquitous chip such as sensors, input devices,
and actuators. Using these attachments, we can flexibly change configurations
of ubiquitous chips. The behaviors of ubiquitous chip are described by a set of
ECA rules, which are used for describing behaviors in event-driven databases. An
ECA rule consists of Event, Condition, and Action. Event is an occurring event,
Condition is a condition for executing actions, and Action is the operations to
be carried out. Tables[I] 2l and Blshow the lists of events, conditions, and actions
that can be used on the ubiquitous chip.

A ubiquitous chip communicates with other ubiquitous chips via its serial com-
munication ports. We can use the SEND MESSAGE action, the SEND DATA
action, and SEND COMMAND action as communication functions. The SEND
MESSAGE action sends a message that has a specific ID (0-7). The SEND DATA
action sends one byte data that is specified in the rule or input voltage of the ana-
log port. The SEND COMMAND action sends a command to remotely manage
ECA rules stored in ubiquitous chips. Table] shows the lists of commands that
can be sent by the SEND COMMAND action. The DEMAND DATA command
demands the one byte data specified address of the memory in a ubiquitous chip.
When a ubiquitous chip receives a DEMAND DATA command, it returns the
required data as a REPLY DATA command.

serial connecter

sound sensor

IR communication modules

temperature
sensor
switch with LED

\dista.nce sensor

illumination sensor

Fig. 1. Ubiquitous chip Fig. 2. Attachments for ubiquitous chip

Table 1. Events

Name Contents

TIMER EXPIRE Firing a timer
RECEIVE MESSAGE 8 types of message reception via a serial port
RECEIVE DATA 1 byte data reception via a serial port
NONE Evaluating conditions at all times

An Application Development Environment 123
Table 2. Conditions

Name Contents

INPUT On/Off state of input ports
ANALOG INPUT Range of input from the analog port
INPUT STATE Value of internal variables
TIMER ID ID of fired timer
MESSAGE ID ID of received message
DATA RANGE Range of received data

Table 3. Actions

Name Contents

OUTPUT On/Off control of output ports
OUTPUT STATE On/Off control of state variables
TIMER Setting a new timer
SEND MESSAGE Sending a message
SEND DATA Sending a 1 byte data
SEND COMMAND Sending a command
HW CONTROL Hardware control

Table 4. Commands

Name Contents

ADD ECA Adding a new ECA rule
DELETE ECA Deleting a specific ECA rule(s)
ENABLE ECA Enabling a specific ECA rule(s)
DISABLE ECA Disabling a specific ECA rule(s)

DEMAND DATA Requesting a data of EEPROM
REPLY DATA Sending a data of EEPROM
(reply to DEMAND DATA)

3 Design of Application Development Environment

3.1 Requirements

In this research, we assume that ubiquitous chips are embedded into almost any
artifacts such as furniture, appliances, walls, and floors, and that they cooperate
with each other and provide various services. These services are required to be
adaptable to user preferences, as users may want to customize services according
to their own requirements. For example, we envisage the following situations:

— When a user buys a new piece of furniture that features an embedded ubig-
uitous chip and sensors, he/she customizes a room automation application,
which is already available in his/her room to integrate the new furniture into
the application.

— When a user redecorates his/her room, he/she modifies the application ac-
cording to the new allocation.

— When a user changes his/her routine, he/she adjusts the applications.

— A user uses actual I/O devices to check the behavior of an application.

We construct an application development environment for ubiquitous chips that
visualizes the behavior of applications and achieves easy development for users.

124 R. Sagara et al.

Moreover, the development environment also provides a function for verifying
applications with actual I/O devices and ubiquitous chips to enable users to
develop/customize applications intuitively.

3.2 Approach

In order to satisfy the above requirements, our application development envi-
ronment has the following functions.

Simulation with Virtual Ubiquitous Chips

Services in ubiquitous computing environments are realized through coopera-
tion among multiple ubiquitous chips. In such situations, it is difficult for users
to grasp the existing configurations and construct applications taking into con-
sideration of the relationships among multiple ubiquitous chips. Therefore, our
application development environment needs a function that simulates multiple
virtual ubiquitous chips, which process their ECA rules in the same way as the
real ubiquitous chip. A virtual ubiquitous chip has the following characteristics:

— A virtual ubiquitous chip has a hexagonal shape, I/O ports, serial ports, and
a multi-purpose LED, the same as a real ubiquitous chip.

— An arbitrary number of virtual ubiquitous chips can be added/deleted to/from
the simulation environment. A user can add/delete connections between 1/0
ports and serial ports over multiple ubiquitous chips.

— The state of I/O ports and the multi-purpose LED are displayed at all times
as a series of colored circles.

— A wuser can check a virtual ubiquitous chip’s internal variables and stored
ECA rules even when an application is running.

— A user can add new ECA rules easily without professional knowledge. The
application development environment has an ECA rule editor, which enables
general users to write ECA rules easily. Moreover, a user can check stored
ECA rules in a style similar to natural language.

Cooperation Among Real/Virtual Ubiquitous Chips

The application development environment has a function for constructing ap-
plications through cooperation between a virtual ubiquitous chip and a real
ubiquitous chip. This function achieves the following implementation styles:

Case 1. A user customizes the application that is in-service on a real ubiquitous
chip.

Case 2. A user checks the behaviors of real I/O devices at the final step of
application development.

The application development environment manages the state of a real ubig-
uitous chip in the same way as a virtual ubiquitous chip by linking their states.
For example, as Figure [3] shows, when a user pushes the button connected to
the real ubiquitous chip, the input port of the associated virtual ubiquitous chip
is turned on. Likewise, when the output port of the virtual ubiquitous chip is
turned on, the output port of the real ubiquitous chip is also turned on.

An Application Development Environment 125

Virtual ubiquitous chip

Input port linked to the
real input port
attached to the button

Output port linked to
the real output port
attached to the buzzer
Buzzer

Fig. 3. Cooperation among real and virtual ubiquitous chips

4 Implementation

We have implemented a prototype of the application development environment.
In this section, we explain the details of its implementation and show an example
of its use. Figure [shows a snapshot of the application development using a PC
and a real ubiquitous chip.

Fig. 4. Example of a application development using a PC and a ubiquitous chip

4.1 Simulation with Virtual Ubiquitous Chips

Figure [l shows a screenshot of the development environment. In the proposed
development environment, the behaviors of ubiquitous chips are simulated by
virtual ubiquitous chips. A virtual ubiquitous chip is illustrated as a hexagon
and the circles indicate I/O ports, serial ports, and a multi-purpose LED. One
input port and two output ports are placed along each edge of the hexagon,
likewise in the real ubiquitous chip. The state of the I/O ports and the multi-
purpose LED are expressed by differences in their color. A user operates the
virtual ubiquitous chip in the following ways:

— places multiple virtual ubiquitous chips in the simulation area.
— toggles input ports.
— checks the state of the output ports and the multi-purpose LED.

126 R. Sagara et al.

\ T Serial (TX)
]}_ Serial (RX)
%

[T lar—Input
e s :_Oulpu(
5 Licl= . \‘_‘1 5
T Multi-purpose LED
wa ID of ubiquitous chip

= Virtual ubiquitous chip

Fig. 5. Screenshot of the application development environment

P -lEix
Fuect ovection
- v e i
berdFik
! fuwe Skt Sant Swml Sl e
& Doz Bt il B CF: ;
ca |ealral ol S
17 Fan e tasaare e
™ P b, Ffr:oem

e et Hrngn
Gy Sl duia) e Oute | Ol T e [g o, CEICX
calleail el i B
L) |t Y N T 2 P
2t
1

L |om CE: DR Coest [T ol g X T2

1 CXE Okl Cegea [g o, CEE CXF

i
Tutid | Baad | B B

s :
e el | Hetnwconn
ruflee e e e e N P

Ol = Skl P,
L o e
[Cakis b ax

(] KLk

[ImalaTatin [oF Mo T
™ Fase:

Fig. 6. ECA rule editor

— connects I/O ports and serial ports to the other ubiquitous chips.
— checks the value of the internal variables and the stored ECA rules.
— adds new ECA rules using ECA rule editor (Figure [a]).

Users have only to use a mouse to achieve the above operations.

4.2 Cooperation Among Real/Virtual Ubiquitous Chips

As described in Section 3.2, cooperation is classified into two cases: a user cus-
tomizes an application using a real ubiquitous chip and a user checks the behav-
iors of real I/O devices.

In the former case, cooperation is achieved as follows:

Step 1. A user connects a real ubiquitous chip to the PC.

Step 2. A user places a new virtual ubiquitous chip in the simulation area.
Step 3. The application development environment reads the ECA rules stored
in the real ubiquitous chip and adds them to the virtual ubiquitous chip.
Step 4. The development environment sends the DELETE ECA command to

the real ubiquitous chip to delete all stored ECA rules, this prevents conflict
among the ECA rules.

An Application Development Environment

127

Table 5. Formula for creating control rules

Original rule
ny event)

1(5)~0 (i=1-5)
: Any action)
Any event)
1 (i=1-5)
: Any actlon)

Any condltlon)
0(#)=0 (i=1-12)
Any event)
Any condition)
- 0(i)=1 (i=1-12)
Any event)
Any condition)
: HW CONTROL
: (Any event)
Any condition)
: HW CONTROL(M LED OFF)

ZQE >QE >QH Qb =Qi >.Q@

E
C
A
E
C:
A: S(e-
E: RECEIVE DATA

C: RECEIVED DATA=2:-1
A: O(i)=0

E:
C
A
E
C
A
E
C
A

Control rule

: NC;NE)

- 1(4)=0, S(i-1)=1
: S(e-
: NONE

1)=0, SEND DATA (2i-1)

1(i)=1, S(i-1)=0
1)=1, SEND DATA(2i)

RECEIVE DATA

: RECEIVED DATA=2;
1 0(1)=1

: RECEIVE DATA

: RECEIVED DATA=25
: HW CONTROL

: RECEIVE DATA
: RECEIVED DATA=26
: HW CONTROL(M LED OFF)

Step 5. The development environment writes rules to the real ubiquitous chip,
which lets the real ubiquitous chip behave in the same manner as the virtual
ubiquitous chip.

In the latter case, cooperation is realized by performing only Steps 4 and 5 of
the above procedure.

Table Bl shows the formula for creating control rules. When the state of a real
input port changes, the real ubiquitous chip sends one byte data to the devel-
opment environment. When the development environment receives the data, it
changes the state of the associated virtual input port.

4.3 Example

In this section, we give an example of the use of the proposed application de-
velopment environment. The sample application behaves as though “a user is
sitting on a chair, and the desk lamp lights automatically when there is not
enough bright.” In this application, we use three ubiquitous chips called UC1,
UC2, and UC3. UC1 is attached to the chair and has a pressure sensor that
detects when the user is sitting. UC2 is attached to the desk and is connected
to the desk lamp in order to control it. UC3 is attached to the wall and has an
illumination sensor. Figure[f]shows the connection relationship of the ubiquitous
chips.
The user programs the application in the following way:

1. The user positions the three virtual ubiquitous chips, UC1, UC2, and UC3.
2. The user connects the I/O ports and serial ports as shown in Figure [1
3. The user adds the ECA rules shown in Table [using the ECA rule editor.

128 R. Sagara et al.

Fig. 7. System structure of sample application

Table 6. Rule set for the sample application

Rules for UC1 (2 rules)

E: NONE E: NONE
C: 1(2)=1, S(0)=0 C: 1(2)=0, S(0)=1
A: S(0)=1, SEND MESSAGE(M0) A: S(0)=0, SEND MESSAGE(M1)

Rules for UC2 (5 rules)

E: RECEIVE MESSAGE E: RECEIVE MESSAGE E: NONE
C: MESSAGE ID=0 C: MESSAGE ID=1 C: I(3)=1
A S(0)=1 A S(0)=0, O(4)=0 A S(1)=0, O(4)=0
E: NONE E: NONE
C: I(3)=0 C: S(0)=1, S(1)=1
A: S(1)=1 A: O(4)=1
Rules for UC3 (2 rules) Control rules for UC3 (2 rules)
E: NONE E: NONE E: NONE E: NONE
C:1(2)=1 C:1(2)=0 C:I(2)=0, S(2)=1 C: I(2)=1, S(2)=0

A: O(5)=1 A:O(5)=0 A: S(2)=0, SEND DATA(3) A: S(2)=1, SEND DATA(4)

4. The user checks the behavior of the ubiquitous chips by toggling their input
ports. If bugs are found, the user modifies the rules.

5. When the user wants to confirm the behavior of the application with a real
illumination sensor, he connects a real ubiquitous chip to a PC and links UC3
and the real ubiquitous chip. In this case, the control rules shown in Table
are automatically added to the real ubiquitous chip. The user changes the
brightness of the room and checks the behavior.

6. When he completes the application, he writes ECA rules to real ubiquitous
chips and attaches them to furniture.

5 Consideration

5.1 Planned Functions

When more than seven virtual ubiquitous chips are placed, the simulation area
becomes full. Thus, it is difficult to develop applications consisting of ten or more

An Application Development Environment 129

ubiquitous chips. To solve this problem, we are planning to develop functions
that can group several ubiquitous chips into a meaningful unit and that can
manage groups collectively.

Although we can grasp the state of I/O ports through the circles of a virtual
ubiquitous chip, we cannot know the behavior of connected devices. Therefore,
we should provide virtual I/O devices and functions that can simulate their
behaviors.

In this paper, we focus on serial ports connected by means of wired cables.
Practically, we have provided various wireless communication units for ubiqui-
tous chips such as Infrared (IR) units, Radio Frequency (RF) units, and Blue-
tooth units. The development environment should be able to support to simulate
wireless communication.

5.2 Related Work

Smart-It [2], MOTE [3], and U-Cube [5] are small devices for constructing ubig-
uitous computing environments and sensor networks. These devices have sen-
sors/actuators and wireless modules and they are similar to ubiquitous chip in
the point that we can customize system configurations by changing the attached
devices. However, we cannot change their behaviors or the attached devices while
applications are running. Therefore, it is difficult to dynamically customize the
behaviors of embedded devices according to user demands. Moreover, since these
devices are developed with a C-like programming language, it is difficult for gen-
eral users to develop and customize applications.

MINDSTORMS [6] and ROBOT WORKS [1] have application development
environments for specific hardware. Users can easily program applications by
aligning blocks in which conditions and operations are described. However, these
development environments do not have simulation functions. Moreover, they
cannot develop applications through cooperation with actual hardwares.

MPLAB [7] is a development environment for PIC, which is a microprocessor
used in ubiquitous chip. MPLAB can simulate the behaviors of PIC by displaying
the values of variables. However, it cannot simulate the behaviors of multiple
PICs and it cannot visualize the states of I/O ports.

6 Conclusion

In this paper, we described the design and implementation of an application
development environment for ubiquitous chips. The proposed development envi-
ronment simulates the behaviors of multiple ubiquitous chips. Moreover, it has
a function for verifying applications through cooperating with real ubiquitous
chips.

In future, we have plans to construct functions for developing large-scale ap-
plications, for simulating I/O devices, and for cooperating with multiple real
ubiquitous chips. We also plan operational tests and further evaluation of the
application development environment.

130 R. Sagara et al.

Acknowledgement

This research was partially supported by The 21st Century Center of Excellence
Program “New Information Technologies for Building a Networked Symbiotic
Environment” and Grant-in-Aid for Scientific Research (A)(17200006) from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. BANDAI: “ROBOT WORKS,” http://www.roboken.channel.or.jp/borg/.

2. M. Beigl and H. Gellersen: “Smart-Its: An Embedded Platform for Smart Objects,”
Smart Objects Conference (sOc) (May. 2003).

3. Crossbow Technology Inc.: “MICA.,”
http://www.xbow.com/products/Wireless Sensor Networks.htm.

4. J. Kahn, R. Katz, and K. Pister: “Mobile Networking for Smart Dust,” in Proc.
ACM/IEEEFE International Conference on Mobile Computing and Networking (Mo-
biCom99), pp. 271-278 (Aug. 1999).

5. Y. Kawahara, M. Minami, H. Morikawa, and T. Aoyama: “Design and Implementa-
tion of a Sensor Network Node for Ubiquitous Computing Environment,” in Proc.
VTC2003-Fall (Oct. 2003).

6. LEGO: “MINDSTORMS,” http://mindstorms.lego.com/japan/products/.

7. Microchip Technology Inc.: “MPLAB,”
http://www.microchip.com/1010/index.htm.

8. K. Sakamura: “TRON: Total Architecture,” in Proc. Architecture Workshop in
Japan’84, pp.41-50 (Aug. 1984).

9. T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino, S. Nishio, and
A. Kashitani: “Ubiquitous Chip: a Rule-based I/O Control Device for Ubiqui-
tous Computing,” in Proc. Int’l Conf. on Pervasive Computing (Pervasive 2004),
pp-238-253 (Apr. 2004).

10. M. Weiser: “The Computer for the Twenty-first Century,” Scientific American,
Vol. 265, No. 3, pp. 94-104 (Sept. 1991).

	Introduction
	Ubiquitous Chip
	Design of Application Development Environment
	Requirements
	Approach

	Implementation
	Simulation with Virtual Ubiquitous Chips
	Cooperation Among Real/Virtual Ubiquitous Chips
	Example

	Consideration
	Planned Functions
	Related Work

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

