
T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 91 – 100, 2005.
© IFIP International Federation for Information Processing 2005

A Study on Fast JCVM with New Transaction
Mechanism and Caching-Buffer Based on Java Card

Objects with a High Locality*

Min-Sik Jin1, Won-Ho Choi, Yoon-Sim Yang, and Min-Soo Jung2

Dept of Computer Engineering, Kyungnam University, Masan, Korea
{comsta6, hoya9499, ysyang}@kyungnam.ac.kr

msjung@kyungnam.ac.kr

Abstract. Java Card is now a mature and accepted standard for smart card and
SIM technology. Java Card is distinguished primarily by its independence from
hardware platforms and portability and is now the most important open stan-
dard. However, the main concern of Java Card is now its low execution speed
caused by the hardware limitation. In this paper, we propose how to improve a
execution speed of Java Card by reducing the number of EEPROM writing. Our
approaches are an object-buffer based on a high locality of Java Card objects,
the use of RAM, has a speed more faster 1000 times than EEPROM, as much as
possible and new transaction mechanism using RAM.

1 Introduction

Java Card technology [1, 2, 3] enables smart cards and other devices with very limited
memory to run small applications, called applets, that employ Java technology such as
a platform independence and a dynamic downloading(post-issuance). For these rea-
sons, Java Card technology is an accepted standard for smart card and SIM technol-
ogy [15]. SIM cards are basically used to authenticate the user and to provide encryp-
tion keys for digital voice transmission. However, when fitted with Java Card tech-
nology, SIM cards can provide transactional services such as remote banking and
ticketing, and also service a post-issuance function to manage and install applications
in cards after the cards issued [1, 3, 15].

Java Card uses generally RAM and EEPROM. The difference of both memory is
that writing operations to EEPROM are typically more than 1,000 times slower than
to RAM. In a traditional Java Card, the specific area, transactionbuffer(T_Buffer), in
EEPROM is used to support an atomicity and transaction [1, 3]. It makes the speed of
the Java Card more slowly. In addition to the transaction mechanism, a traditional
Java Card has a low-level EEPROM writing with a page-buffer. The size of a page-
buffer depends on platforms such as ARM, Philips and SAMSUNG [15]. This page-

* This work is supported by Kyungnam University Research Fund, 2005.
1 Ph.D Student of Kyungnam University.
2 Professor of Kyungnam University.

92 M.-S. Jin et al.

buffer is just to write one byte or consecutive bytes less than the size of the page-
buffer at a time into EEPROM. However, this page-buffer of Java Card generally is
made regardless of a high locality of Java Card Objects [5, 7].

In this paper, we suggest two ideas to improve the speed of Java Card. One is new
transaction mechanism in RAM, not EEPROM. Another is new object-buffer based on
a high locality of Java Card objects to support a caching and buffering of heap area.

This paper is organized as follows. Section 2 describes the feature of each memory
in a typical Java Card, Java Card objects and the method that writes data to EEPROM.
Section 3 explains about a transaction and object writing of a traditional Java Card
using a lot of EEPROM writing. Section 4 outlines our approach about new transac-
tion mechanism using RAM and new object-buffer based on a high locality of Java
Card objects. Section 5 discusses the evaluation between a traditional one and our
approach. Finally, we present our conclusions in Section 6.

2 The Java Card Environment

2.1 Different Types of Memory in Java Card

A typical Java Card system places the JCRE code(virtual machine, API classes) and
COS in ROM. RAM is used for temporary storage. The Java Card stack is allocated in
RAM. Intermediate results, method parameters, and local variables are put on the
stack. persistent data such as post-issuance applet classes, applet instances and longer-
lived data are stored in EEPROM [3,5].

Fig. 1. The general memory model of Java Card that is consisted of three areas and its contents

EEPROM provides similar read and write access as RAM does. However, The dif-
ference of both memory is that writing operations to EEPROM are typically more
than 1,000 times slower than to RAM and the possible number of EEPROM writing
over the lifetime of a card is physically limited [4].

Table 1. Comparison of memory types used in Smart Card microcontrollers [4]

Type of Memory Number of write/erase

cycles

Writing time per

memory access

Typical cell size with 0.8-µm

technology
RAM unlimited 70 ns 1700 µm2

EEPROM 10,000 – 1,000,000 3-10 ms 400 µm2

RAM

ROM

EEPROM

Java Card Stack, C Stack
Deselect Transient Area
Reset Transient Area
Java Card VM, API
Java Card Interpreter
COS
Download applet class
Persistent Object
Heap Area
Transient Buffer

 A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 93

2.2 How to Write Objects in EEPROM in Java Card

In the latest release, Java Card 2.2.1, one EEPROM mainly consists of 3 areas; static
field area, heap area to save many Java Card objects including transient object ta-
ble(TOT) and persistent object table(POT) and transactionbuffer(T_buffer area)[7].

Fig. 2. The inner structure of RAM and EEPROM consisting of several areas. Especially, all
objects that are made by Java Card is saved in Heap area with a high locality.

A transaction mechanism [10] using the T_Buffer area in EEPROM is used to sup-
port an atomicity [3]. In a traditional Java Card, to support this transaction, the Java
Card temporarily saves old_data in T_Buffer in EEPROM until the transaction is
complete.

In a point of COS’s view lower level than Java Card, smart cards such as Java Card
use only one page-buffer in RAM to write data in EEPROM,. The size of the page-
buffer depends on platforms such as ARM, Philips and SAMSUNG. In fact, the data
is first written into the page-buffer in RAM, when the Java Card writes one byte or
consecutive bytes less than the size of the page-buffer into EEPROM. However, the
most important point about writing operation using the page-buffer is that the writing
time of both 1 byte and 128 consecutive bytes is almost the same.

3 A Transaction and Object Writing of a Traditional Java Card

3.1 Atomic Operations and Transaction in a Traditional Java Card

A transaction is a set of modifications performed atomically, which means that either
all modifications are performed or none are performed. This is particularly for smart
cards, because the card reader powers them: when you unexpectedly remove the card
from the reader (this is called "tearing"), it's possible that you're interrupting a critical
operation that needed to run to completion. This could put the card in an irrecoverable
state and make it unusable.

To prevent this, the Java Card platform offers a transaction mechanism. As soon as
a transaction is started, the system must keep track of the changes to the persistent
environment(EEPROM). The Java Card must save old_value of EEPROM address

Main Transient Object Table(5byte *64)
[Transient object Table address list]

Persistent Object Table(3byte *128)
[Persistent object address list]

0x80000

EEPROM(32K)

Transient RAM

Transient Buffer

Transient Persistent Object Table(3byte *128)
[Transient object Table address list]

0x88000

Static field for each Packages

Main Persistent Object Table(5byte *64)
[Persistent object Table address list]

Object Heap

Persistent object t[Header + Data]
Transient object [Header + Transient RAM pointer]

Deselect Transient RAM

Reset Transient RAM

Java Stack

C-Stack

Page_Buffer (128 bytes)

RAM(6K)

94 M.-S. Jin et al.

that will be written into a particular area(T_Buffer) in EEPROM. In other words, If a
transactional computation aborts, the Java Card must be able to restore old_value
from the T_Buffer in EEPROM to its pervious position.

In case of commit, the check_flag byte of the T_Buffer must just be marked invalid
and the transaction is completed. In case of abort, the saved values in the buffer are
written back to their former locations when the Java Card is re-inserted to CAD.

Fig. 3. The inner structure of T_buffer has a lot of logs and each log consists of 4 parts; header,
length, address and old_value

Table 2 below shows the number of EEPROM writing per each area of whole
EEPROM. T_buffer area writing is about 75 to 80 percent of total number. The rea-
son why the writing number of this area is higher than other areas is a transaction
mechanism of a traditional Java Card to guarantee an atomicity. In other words, The
transaction mechanism protects data corruption against such events as power loss in
the middle of a transaction. In a traditional Java Card, this transaction mechanism
makes the Java Card more slow and inefficient. In this paper, we suggested new
transaction mechanism using RAM, not EEPROM.

Table 2. The number of EEPROM writing per each area of whole EEPROM during the
downloading and executing of each applet

EMV Applet Wallet Applet
EEPROM area the number of writing EEPROM area the number of writing

StaticField 1,681 staticfield 752
Heap 1,659 Heap 1,121

T_buffer 10,121 T_buffer 8,478
Total 13,461 Total 10,351

3.2 A Traditional Java Card with One Page Buffer

In a general Java Card environment, one page-buffer in RAM is used to write data
into EEPROM. the size of a page-buffer depends mainly on platforms. It is between
128 and 256 bytes. our chip with CalmCore16 MPU from SAMSUNG has 128 bytes
page buffer that a Java Card can write up to 128 consecutive bytes to EEPROM at a
time. Namely, a Java Card can write between 1 byte and 128 consecutive bytes with
this page buffer into EEPROM. For example, If EEPROM addresses of objects that
will be written by a Java Card are sequentially 0x86005 and 0x86000, although both
addresses are within 128 bytes, Java Card will first writes one object data in 0x86005
through the page-buffer, and then, after the page-buffer is clear, another object data
will be written in 0x86000.

EEPROM

check_flag_byte

length bytes 1 byte 1 byte

header length address

…StaticField

Heap

T_Buffer

log1 log2 log3 logn

old_value

1 byte

 A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 95

Fig. 4. how to write objects to EEPROM of the traditional Java Card using an inefficient page-
buffer algorithm

Above figure 4 shows the page-buffer algorithm of a traditional Java Card. this
page-buffer is just to write consecutive data to EEPROM. It dose not have the func-
tion for caching. When an applet is executed on Java Card, if the information such as
objects and class data that the applet writes are close to each other, the total number of
EEPROM writing would be reduced by adding a caching function to the page-buffer.
first of all, to do this, the writing address of objects and data created by Java Card
must have a high locality. It causes the number of EEPROM writing to reduce and
also makes a hitting rate of caching function more high.

We investigated a general tendency of writing operation in accordance with the
EEPROM address. we discovered the Java Card has internally a rule about the local-
ity of EEPROM writing address. Consequently, a locality of Java Card objects and
data is considerably high.

3.3 A High Locality of Heap Area in EEPROM

As mentioned earlier, a traditional Java Card System has only one page-buffer in
RAM to write data into EEPROM. The page-buffer has a function for the buffering of
just consecutive bytes. In this paper, we suggest the object-buffer that perform a buff-
ering and caching to improve the execution speed of Java Card. The most important
and considerable point in order to add caching function to Java Card is a high hitting
rate of the caching buffer.

When the wallet class is created by install() method, the wallet object
(2011C3A600000000) that have 3 fields is first written in EEPROM, and then, Own-

Fig. 5. wallet applet that has 3 methods and 3 fields; when the wallet applet is created by in-
stall() method, OwnerPIN object also is created in wallet() constructor

public class wallet extends Applet{
int balance;
int withdraw;
OwnerPIN pin;

wallet (){ // constructor

pin = new OwnerPIN(3, 8); // create OwnerPIN(trylimit, Pinsize) object
}
initialize(){

balance = 90;
}
withdraw(){ // method
 withdraw = 50;
 balance = balance – withdraw;
}

}

global variables
 reference class

96 M.-S. Jin et al.

erPIN object (20111E69000308) that assigned 0045 as an objectID is created and
written in EEPROM. After the OwnerPIN object created, Java Card writes the objec-
tID (0045) as pin reference field of the wallet object (2011C3A600000045). After the
wallet applet is created, a method such as initialize() and withdraw() generally would
be invoked. In figure 4, initialize() method is to change the value of balance field into
100. After this operation, the content of the wallet object is 2011C3A690000045.
withdraw() method also changes the field value of withdraw and balance into 50 and
40 separately. At this time, the content of the wallet object is 2011C3A640500045.

after wallet() method execution after initialized(), withdraw() execution

Fig. 6. The creation process of the wallet applet and the OwnerPIN object in EEPROM and the
process of the changing localized-fields and rewriting them

Figure 5 and 6 showed several EEPROM writing processes from the creation of
wallet applet to the execution of methods such as initialize() and withdraw(). If Java
Card just performs these processes by using one page-buffer above-mentioned, it
might spends much time in writing and changing localized-data like above example.

4 Our Changed Java Card with a Fast Execution Speed

4.1 New Transaction Algorithm with T_Buffer in RAM

As mentioned in the related works, smart cards including a Java Card supports a
transaction mechanism by saving old_values in EEPROM. the number of EEPROM
writing in order to support the transaction is about 75 to 80 percent of the total num-
ber of EEPROM writing. EEPROM writing is typically more than 1,000 times slower
than writing to RAM. It makes also Java Card much more slow and inefficient.

We suggested new transaction mechanism using RAM, not EEPROM in this paper.
If such tearing such as power loss happens in the middle of a transaction, all data after
transaction began should be ignored. If T_Buffer area to save old_values places in
RAM, in case of power loss, RAM is automatically reset. It means the preservation of
old_values.

Figure 7 shows the transaction mechanism of a traditional Java Card. After a trans-
action begin, if tearing such as power loss occurs, Java Card restore data involved in
the transaction to their pretransaction(original) values the next time the card is pow-
ered on. To do this, Java Card must store all old_values in T_Buffer in EEPROM
whenever Java Card writes some data in EEPROM.

 A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 97

Fig. 7. The transaction mechanism with T_buffer in EEPROM of a traditional Java Card

Fig. 8. RAM structure to support our changed transaction mechanism, the structure of our
T_buffer and our transaction mechanism with T_buffer in RAM of a traditional Java Card

In this paper, we suggest that T_Buffer to support a transaction is in RAM in order
to reduce EEPROM writings. Our T_buffer in RAM saves all new_values that will be
written in EEPROM after a transaction began. Our T_Buffer also could have many
logs until a transaction commit. Figure 8 below shows the structure of T_Buffer. Each
log entry consists of four fields. The length field is the number of bytes of old data.
The address field is original data in EEPROM. The last old_data field is old data bytes.

4.2 Our Object-Buffer Based on Java Card Objects with a High Locality

In chapter 3, we explained how to write data in EEPROM by using one page buffer
in a traditional Java Card. It is the one of causes of a Java Card’s performance drop in

Fig. 9. The heap-buffer that is consisted in 2 part; the buffer and cache. The data between Min
and Max can be written to EEPROM at a time.

begin_transaction

save old_value
in T_Buffer

write new_value

commit

check_flag byte = 0
yes (success)

next power-on

no (tearing)

check_flag byte = 0

rewrite old values in T_Buffer
to their original addresses

no

Execution

yes

log1 log2 log3 logn

header length address new_value

1 byte 1 byte 1 byte length bytes

… begin_transaction

save new_values
in T Buffer in RAM

commit

write logs in T_Buffer
into new addresses

yes (success)

98 M.-S. Jin et al.

company with the transaction mechanism of a traditional Java Card. We discovered
that all objects and data that the Java Card creates during the execution has a high
locality. It means that an additional caching function makes the number of EEPROM
writing go down. For these reasons, we developed new Java Card with two page
buffer in RAM; one is the existing page buffer for non-heap area, another (object-
buffer) is for heap area in EEPROM. The heap area is where objects created by Java
Card are allocated.

Figure 10 below shows the main algorithm using the object-buffer and page-buffer
The writing of non heap-area is performed with the existing page buffer. The writing
of heap-area is executed with the object-buffer. When the Java Card writes data re-
lated to Java Card objects into heap area of EEPROM, the first operation is to get 128
bytes lower than the address that will be written and to copy them to the cache area of
the object-buffer. Next, the buffer area(128-byte) of the object-buffer is cleared. Two
points, Max and Min have the highest and lowest points that are written after Java
Card get new 256 bytes to the object-buffer. the gap between them continually is
checked in order to write the heap buffer to EEPROM. Max and Min are non-fixed
points to raise the efficiency of the heap buffer. The reason why the gap between Max
and Min is 128 bytes is that our target chip, CalmCore16, supports the EEPROM
writing of 128 bytes at a once.

Fig. 10. The object-buffer algorithm that checks continually the Min and Max points to write
the object-buffer to EEPROM when Java Card writes data to heap area. (†E2p_addr : the
EEPROM address that data will be written, ‡ heap_buff(object-buff) : our new heap buffer with
caching and buffering function for just heap area in EEPROM).

5 Evaluation of Our Approach

The key of our approach is improve an execution speed of the Java Card by reducing
the number of EEPROM writing. The main idea is also that EEPROM writes are
typically more than 1,000 times slower than writes to RAM. One of the analyzed
results of a traditional Java Card is that Java Card has a inefficient transaction mecha-
nism to guarantee an atomicity and page-buffer algorithm to write data to EEPROM
regardless of the high locality of Java objects. For this reason, we developed new
transaction mechanism and new page buffer algorithm.

E2p_addr ⊂ heap_area

E2p_addr ⊂ heap_buff

Min < E2p_addr < Max

E2p_addr < Min

Min = E2p_addr

Max-Min < 128

Max = E2p_addr

E2p_addr < Min

Write data to page buff

- write 128 bytes of heap buff to EEPROM
- copy new 128 bytes to cache area of heap
buff from E2p_addr
- clear the buffer area (128 bytes) of heap
buff

Write data to heap buff

Write data to heap buff

no

no

yes

no

yes

yes

no

yes yes

no

†

‡

 A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 99

In our approach, to get more precise figure in the real Java Card, we made an ex-
periment with CalmCore16 MCU [14], SAMSUNG MicroController for smart card.

Figure 11 below shows the comparison between a traditional Java Card and our
changed Java Card in regard to the number of EEPROM writing and the execution
speed. First of all, the number of EEPROM writing is reduced by about 80% by using
the T_Buffer and the object buffer in RAM.

Applets Traditional Our Approach Reduced
ChannelDemo 7552 1586 79%
JavaLoyalty 7291 1322 82%
JavaPulse 22712 4537 80%

ObjDelDemo 16416 3025 82%
PackageA 9685 2000 79%
PackageB 7698 1406 82%
PackageC 3439 745 79%
PhotoCard 6737 1400 79%
RMIDemo 6119 1261 79%

Wallet 5641 1190 79%
EMV small Applet 6721 1419 79%
EMV Large Applet 11461 2433 79%

Aerage 80%
Applets Traditional Our Approach Reduced

ChannelDemo 76140 49438 35%
JavaLoyalty 72703 46187 36%
JavaPulse 232100 150359 35%

ObjDelDemo 159420 99157 38%
PackageA 90530 56375 38%
PackageB 74859 49937 33%
PackageC 32743 20907 36%
PhotoCard 64608 41407 37%
RMIDemo 57328 36235 34%

Wallet 57140 37438 37%
EMV small Applet 61766 38859 37%
EMV Large Applet 119812 79422 34%

Aerage 36%

Fig. 11. The comparison between a traditional Java Card and our changed Java Card with
regard to the number of EEPROM writing and the execution speed

Components Traditional Our Approach Differnce
Initialize 1485 1688 -203

Select Install 6281 3812 2469
CAP Begin 1234 485 749

Header 3562 2156 1406
Directory 3969 2344 1625

Import 2875 1640 1235
Applet 3250 1922 1328
Class 2203 1484 719

Method 11266 8641 2625
StaticField 2297 1469 828

ConstantPool 6781 4984 1797
ReferenceLocation 9141 4719 4422

CAP End 625 422 203
Create Applet 2171 1672 499

Total 57140 37438 19702

Fig. 12. The comparison between a traditional Java Card and our changed Java Card in regard
to Wallet applet’s downloading and execution speed per each component

One applet consists of over 11 components that include all information of one app-
let package. We also produced downloading results about each component. Basically,
when Java Card installer downloads one applet, the component that takes a long time
is the referencelocation component. The reason is that both are related to the resolu-
tion of indirect references during the downloading. our approach almost reduced the
downloading time of the referencelocation by 50%.

100 M.-S. Jin et al.

6 Conclusion and Future Work

Java Card technology is already a standard for smart cards and SIM cards [11, 15]. A
Java language is basically slower than other languages. The card platforms also have
a heavy hardware limitation. In spite of a Java’s slow speed, the reasons why Java
Card technology is selected as a standard are a post-issuance and a platform inde-
pendence. When Java Card downloads new application, a post-issuance generally
spends a lot of time [10, 11].

In this paper, we have proposed the method to reduce the number of EEPROM
writing with new robust transaction mechanism and new object-buffer based on the
high locality of Java Card objects. It also makes Java Card more fast. With our ap-
proach, the number of EEPROM writing and the downloading speed reduced by 80%
and 35% separately. It also enables an application to be downloaded more quickly in
the case of an application sent to a mobile phone via the GSM network (SIM). This
technology will be applied to embedded systems such as KVM, PJAVA, CLDC with
a Java Technology.

References

1. Sun Microsystems, Inc. JavaCard 2.2.1 Virtual Machine Specification. Sun Microsystems,
Inc. URL: http://java.sun.com/products/javacard (2003).

2. Sun Microsystems, Inc. JavaCard 2.2.1 Runtime Environment Specification. Sun Micro-
systems, Inc. URL: http://java.sun.com/products/javacard (2003).

3. Chen, Z. Java Card Technology for Smart Cards: Architecture and programmer’s guide.
Addison Wesley, Reading, Massachusetts (2001).

4. W.Rankl,. W.Effing,. : Smart Card Handbook Third Edition, John Wiley & Sons (2001).
5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. : The Java Language Specification,

Second Edition. Addison-Wesley, http://java.sun.com/docs/books/jls/index.html (2001).
6. Marcus Oestreicher, Ksheerabdhi Krishna. : USENIX Workshop on Smartcard Technol-

ogy, Chicago, Illinois, USA, May 10–11, 1999.
7. M. Oestreicher and K. Ksheeradbhi, “Object Lifetimes in JavaCard,” Proc. Usenix Work-

shop Smart Card Technology, Usenix Assoc., Berkeley, Calif., (1999) 129–137.
8. Michael Baentsch, Peter Buhler, Thomas Eirich, Frank Höring, and Marcus Oestreicher,

IBM Zurich Research Laboratory, Java Card From Hype to Reality (1999).
9. Pieter H. Hartel , Luc Moreau. : Formalizing the safety of Java, the Java virtual machine,

and Java card, ACM Computing Surveys (CSUR), Vol..33 No.4, (2001) 517-558.
10. M.Oestreicher, “Transactions in JavaCard,”, Proc. Annual Computer Security Applications

Conf., IEEE Computer Society Press, Los Alamitos, Calif., to appear, Dec. 1999.
11. Kim, J. S., and Hsu, Y.2000. Memory system behavior of Java programs: methodlogy and

analysis. In Proceedings of the ACM Java Grande 2000 Conference, June.
12. 10. http://www.gemplus.com. : OTA White Paper. Gemplus (2002).
13. the 3rd Generation Partnership Project. : Technical Specification Group Terminals Secu-

rity Mechanisms for the (U)SIM application toolkit. 3GPP (2002).
14. MCULAND, http://mculand.com/e/sub1/s1main.htm.
15. X. Leroy. Bytecode verification for Java smart card. Software Practice & Experience, 2002

319-340
16. SAMSUNG, http://www.samsung.com/Products/Semiconductor
17. SIMAlliance, http://www.simalliance.org.

	Introduction
	The Java Card Environment
	Different Types of Memory in Java Card
	How to Write Objects in EEPROM in Java Card

	A Transaction and Object Writing of a Traditional Java Card
	Atomic Operations and Transaction in a Traditional Java Card
	A Traditional Java Card with One Page Buffer
	A High Locality of Heap Area in EEPROM

	Our Changed Java Card with a Fast Execution Speed
	New Transaction Algorithm with T_Buffer in RAM
	Our Object-Buffer Based on Java Card Objects with a High Locality

	Evaluation of Our Approach
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

