28
N
o0
25
Ve
o)
at
i

Tomoya Enokido Lu Yan
Bin Xiao Daeyoung Kim
Yuanshun Dai Laurence T. Yang (Eds.)

Embedded and
Ubiquitous Computing —
EUC 2005 Workshops

EUC 2005 Workshops:
UISW, NCUS, SecUbiq, USN, and TAUES
Nagasaki, Japan, December 2005, Proceedings

¢

Ifip

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3823

Tomoya Enokido LuYan Bin Xiao
Daeyoung Kim Yuanshun Dai
Laurence T. Yang (Eds.)

Embedded and
Ubiquitous Computing —
EUC 2005 Workshops

EUC 2005 Workshops:

UISW, NCUS, SecUbiq, USN, and TAUES
Nagasaki, Japan, December 6-9, 2005
Proceedings

@ Springer

Volume Editors

Tomoya Enokido

Rissho University, Faculty of Business Administration

2-16 Osaki 4 Chome, Shinagawa-ku, Tokyo 141-8602, Japan
E-mail: eno@ris.ac.jp

Lu Yan

Turku Centre for Computer Science (TUCS)
Lemminkaisenkatu 14, 20520 Turku, Finland
E-mail: lyan@abo.fi

Bin Xiao

Hong Kong Polytechnic University, Department of Computing
Hung Hom, Kowloon, Hong Kong

E-mail: csbxiao@comp.polyu.edu.hk

Daeyoung Kim

Information and Communications University

119 Munji-ro, Yuseong-gu, Daejeon, 305-732, Korea
E-mail: kimd @icu.ac.kr

Yuanshun Dai

Purdue University, Department of Computer and Information Science
723 W. Michigan Street SL.280, Indianapolis, IN 46202, USA
E-mail: ydai @cs.iupui.edu

Laurence T. Yang

St. Francis Xavier University, Department of Computer Science
Antigonish, NS, B2G 2WS5, Canada

E-mail: lyang @stfx.ca

Library of Congress Control Number: 2005936805

CR Subject Classification (1998): C.2, C.3,D.4,D.2, H4, K.6.5, H.5.3, K.4

ISSN 0302-9743
ISBN-10 3-540-30803-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30803-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© IFIP International Federation for Information Processing 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11596042 06/3142 543210

Preface

Welcome to the proceedings of the EUC 2005 workshops, held in conjunction
with the IFIP International Conference on Embedded and Ubiquitous Comput-
ing in Nagasaki, Japan, December 6-9, 2005.

The objective of these workshops is to extend the spectrum of the main
conference by providing a premier international forum for researchers and prac-
titioners from both industry and academia, to discuss hot topics and emerging
areas, to share recent progress and latest results, and to promote cutting-edge
research and future cooperation on embedded and ubiquitous computing.

To meet this objective, we featured five workshops:

— UISW 2005: The Second International Symposium on Ubiquitous Intelli-
gence and Smart Worlds

— NCUS 2005: IFIP International Symposium on Network-Centric Ubiquitous
Systems

— SecUbiq 2005: The First International Workshop on Security in Ubiquitous
Computing Systems

— USN 2005: The First International Workshop on RFID and Ubiquitous Sen-
sor Networks

— TAUES 2005: The International Workshop on Trusted and Autonomic Ubiq-
uitous and Embedded Systems

They address five state-of-the-art research directions in embedded and ubig-
uitous computing:

— UISW 2005: Following ubiquitous computers, networks, information, ser-
vices, etc., is a road towards a smart world (SW) created on both cyberspaces
and real spaces. A SW is characterized mainly by ubiquitous intelligence
(UI) or computational intelligence pervasive in the physical world, filled
with ubiquitous intelligent or smart real things, that are capable of com-
puting, communicating, and behaving smartly with some intelligence. One
of the profound implications of such ubiquitous smart things is that various
kinds and levels of intelligence will exist ubiquitously in everyday objects,
environments, systems and even ourselves, and possibly be extended from
man-made to natural things. Ubicomp or percomp can be regarded as the
computing of all these intelligent/smart real things. A smart thing can be
endowed with different levels of intelligence, and may be context-aware, ac-
tive, interactive, reactive, proactive, assistive, adaptive, automated, sentient,
perceptual, cognitive, autonomic and/or thinking. Intelligent/smart things
is an emerging research field covering many disciplines. A series of grand
challenges exist to move from the ubiquitous world with universal services
of any means/place/time to the SW of trustworthy services with the right
means/place/time.

VI

Preface

— NCUS 2005: Historically, ubiquitous systems have been highly engineered for

a particular task, with no spontaneous interactions among devices. Recent
advances in wireless communication and sensor/actuator technologies have
given rise to a new genre of ubiquitous systems. This new genre is character-
ized as self-organizing, critically resource constrained, and network-centric.
The fundamental change is communication: numerous small devices operat-
ing collectively, rather than as stand-alone devices, form a dynamic ambient
network that connects each device to more powerful networks and process-
ing resources. IFIP International Symposium on Network-Centric Ubiqui-
tous Systems was launched to serve as a premier international forum for
researchers and practitioners, from both industry and academia to share the
latest research results and ideas on ubiquitous networking and its applica-
tions, thereby promoting research activities in this area.

SecUbiq 2005: Ubiquitous computing technology provides an environment
where users expect to access resources and services anytime and anywhere.
Serious security risks and problems arise because resources can now be ac-
cessed by almost anyone with a mobile device in such an open model. The
security threats exploited the weakness of protocols as well as operating
systems, and also extended to attack ubiquitous applications. The security
issues, such as authentication, access control, trust management, privacy and
anonymity etc., should be fully addressed. This workshop provided a forum
for academic and industry professionals to discuss recent progress in the area
of ubiquitous computing system security, and included studies on analysis,
models and systems, new directions, and novel applications of established
mechanisms approaching the risks and concerns associated with the utiliza-
tion and acceptance of ubiquitous computing devices and systems.

USN 2005: In the emerging era of ubiquitous computing, networked small
embedded devices with sensing capabilities will play a key role. Small enough
to guarantee the pervasiveness in the ubiquitous world, a network of sensor
devices provides valuable information to be exploited for a great variety of
sensor applications. While there has been intensive research during the last
few years, the consideration of anywhere and anytime presence still brings
new challenges, keeping the topic of sensor networks in the center of the
ubiquitous systems investigation. At the same time, radio frequency iden-
tification (RFID) shows a great potential in market penetration to address
today’s object identification systems, and its technologies already entail a
success for the industry with some field applications across the globe. How-
ever, numerous questions about its implementation, capability, performance,
reliability, economy and integration with other technologies still remain to
be answered. The purpose of USN 2005 was to establish a discussion frame-
work on all the challenges raised from the evolution of the ubiquitous sensor
networks and RFID technologies. As a unique opportunity to obtain an in-
sight into the leading technologies of the next pervasive era, USN 2005 tried
to provide the place for discussing and exchanging ideas from both academia
and industry worldwide.

Preface VII

— TAUES 2005: Embedded and ubiquitous computing is emerging rapidly as
an exciting new paradigm to provide computing and communication services
all the time, everywhere. Its systems are now pervading every aspect of life
to the point that they are hidden inside various appliances or can be worn
unobtrusively as part of clothing and jewelry. To achieve this level of invisi-
ble ubiquitous and pervasive computation and communication, we will need
to study trusted and self-managing infrastructure. As such, it is necessary to
develop new trustworthy software, selfware technologies, and self-X proper-
ties to effectively and inconspicuously manage these emerging embedded and
ubiquitous systems. Trustworthy computing, which is essential to embedded
and ubiquitous systems, addresses all issues relating to security, privacy, re-
liability, and information integrity. One of the most promising paradigms for
self-managing systems is that of autonomic computing, which is inspired by
nature and biological systems (such as the autonomic nervous system) that
have evolved to cope with the challenges of scale, complexity, heterogeneity
and unpredictability by being decentralized, embedded, context aware, adap-
tive, ubiquitous and resilient. This new era is characterized by self-X prop-
erties such as self-defining, self-configuring, self-optimizing, self-protecting
and self-healing as well as context aware and anticipatory. This workshop
brought together computer scientists, industrial engineers and researchers
to discuss and exchange experimental or theoretical results, novel designs,
work-in-progress, experience, case studies, and trend-setting ideas in the area
of trusted and autonomic ubiquitous and embedded systems.

In pursuit of excellence, a distinguished international panel of reviewers was
assembled and worked hard to review the submitted papers in a timely and
professional manner.

UISW 2005, NCUS 2005, SecUbiq 2005, and USN 2005 attracted 175, 66, 51,
and 50 papers, respectively. The Program Committees accepted 59, 24, 21, and
18 papers based on peer reviews, for acceptance rates of 34%, 36%, 41%, and
36%, respectively. TAUES 2005 consists of ten accepted papers.

In total, 132 papers were chosen for delivery and inclusion in this volume
from many submissions all over the world, with a weighted average acceptance
rate of 36%. These, we believe, are of a high standard and resulted in stimulating
discussions when presented at the forum.

Numerous people deserve appreciation and recognition for their contribution
to making EUC 2005 workshops a success:

— UISW 2005: First of all, we would like to thank the EUC 2005 Organi-
zation Committee for their support, guidance, and help. We would like to
express our special thanks to Jeneung Lee, Satoshi Itaya, Hiroyuki Yoshino,
and Youhei Tanaka for maintaining the Web system, and handling the sub-
mission and review process. In addition, we would like to give our special
thanks to local organizers at Nagasaki. Finally, we also would like to take
the opportunity to thank all the members of the Organization Committee
and Program Committee as well as the authors for paper submission and
reviewers for paper review.

VIII Preface

— NCUS 2005: The exciting program was the result of the hard and excellent
work of many others. We would like to express our sincere appreciation to
all authors for their valuable contributions and to all Program and Tech-
nical Committee members and external reviewers for their cooperation in
completing the program under a very tight schedule.

— SecUbiq 2005: First, we would like to thank all the authors for their hard
work in preparing submissions to the workshop. We deeply appreciate the
effort and contributions of the Program Committee members, who worked
very hard to send back their comments and to put together an exciting pro-
gram. Especially, we thank the effort of those Program Committee members
who delivered their reviews in a timely manner despite having to face very
difficult personal situations. In addition, we would like to thank the EUC
2005 Organization Committee for their support, guidance, and help for the
workshop. We would like to give our special thanks to the local organizers at
Nagasaki Institute of Applied Science and to those people who kindly helped
us prepare and organize the SecUbiq 2005 workshop.

— USN 2005: We owe a great deal of thanks to the members of the Program
Committee and the reviewers. The success of this year’s USN would not be
possible without their hard work. We are also grateful to all the members of
Steering Committee, Jongsuk Chae, Joongsoo Ma, Hao Min, Kang Shin and
Yu-Chee Tseng, for their advice and support. Finally, our many thanks to
Tomdas Sanchez Lépez of the Information and Communications University
for his great help in preparing the workshop. USN 2005 was co-sponsored
by the Mobile Multimedia Research Center (ITRC program of Ministry of
Information and Communication, Korea) and the Auto-ID Labs Korea.

— TAUES 2005: The exciting program for this conference was the result of the
hard and excellent work of many others, such as Program Co-chairs, exter-
nal reviewers, Program and Technical Committee members. We would like
to express our sincere appreciation to all authors for their valuable contri-
butions and to all Program and Technical Committee members and external
reviewers for their cooperation in completing the program under a very tight
schedule. We were also grateful to the members of the Organizing Committee
for supporting us in handling the many organizational tasks.

October 2005 Tomoya Enokido, Lu Yan
Bin Xiao, Daeyoung Kim

Yuanshun Dai, Laurence T. Yang

EUC 2005 Workshop Chairs

EUC 2005 Workshops Organization

EUC 2005 Workshop Chairs

Makoto Takizawa
Seongsoo Hong

Tokyo Denki University, Japan
Seoul National University, Korea

UISW 2005 Executive Committee

General Chairs:

Program Chairs:

Advisory Committee:

Jianhua Ma, Hosei University, Japan

Laurence T. Yang, St. Francis Xavier University,
Canada

Tomoya Enokido, Rissho University, Japan

Victor Callaghan, University of Essex, UK

Hai Jin, Huazhong Univ. of Science & Technology,
China

Makoto Takizawa, Tokyo Denki Univ., Japan

Moon Hae Kim, Konkuk University, Korea

Hitoshi Aida, The University of Tokyo, Japan

Makoto Amamiya, Kyushu University, Japan

Leonard Barolli, Fukuoka Institute of Tech., Japan

Jingde Cheng, Saitama University, Japan

Minyi Guo, The University of Aizu, Japan

Ali R. Hurson, Pennsylvania State University, USA

Haruhisa Ichikawa, NTT Network Innovation Lab.,
Japan

Kane Kim, University of California, Irvine, USA

Madjid Merabti, Liverpool John Moores Univ., UK

Manish Parashar, Rutgers University, USA

Tae-Woo Park, AFOSR/AOARD, USA

Ichiro Satoh, National Institute of Informatics,
Japan

Timothy K. Shih, Tamkang University, Taiwan

David Taniar, Monash University, Australia

Jeffrey J.P. Tsai, Univ. of Illinois at Chicago, USA

Jhing-Fa Wang, Nat. Cheng Kung Univ., Taiwan

Albert Zomaya, University of Sydney, Australia

X Organization

UISW 2005 Program/Technical Committee

Marios C. Angelides Brunel University, UK

Bernady Apduhan Kyushu Sangyo University, Japan

Juan Carlos Augusto University of Ulster at Jordanstown, UK

Jiannong Cao Hong Kong Polytechnic Univ., Hong Kong, China

Genci Capi Fukuoka Institute of Tech., Japan

Chih-Yung Chang Tamkang University, Taiwan

Han-Chieh Chao National Dong Hwa University, Taiwan

Kuo-Ming Chao Coventry University, UK

Vipin Chaudhary Wayne State University, USA

Zixue Cheng The University of Aizu, Japan

Ken Jen-Shiun Chiang Tamkang University, Taiwan

Xavier Defago JAIST, Japan

Lawrence Y. Deng St. John’s & Mary’s Inst. of Tech., Taiwan

Mieso Denko, University of Guelph, Canada

Marios D. Dikaiakos University of Cyprus, Cyprus

Michael Ditze University of Paderborn, Germany

Arjan Durresi Louisiana State University, USA

Frank Golatowski University of Rostock, Germany

Takahiro Hara Osaka University, Japan

Naohiro Hayashibara Tokyo Denki University, Japan

Aiguo He The University of Aizu, Japan

Pin-Han Ho University of Waterloo, Canada

Hui-Huang Hsu Tamkang University, Taiwan

Chung-Ming Huang Nat. Cheng Kung Univ., Taiwan

Runhe Huang Hosei University, Japan

Tsung-Chuan Huang Nat. Sun Yat-sen Univ., Taiwan

Jason C. Hung Northern Taiwan Inst. of Sci. and Tech.,
Taiwan

Ren-Hung Hwang National Chung Cheng University, Taiwan

Jadwiga Indulska Univ. of Queensland, Australia

Xiaohong Jiang Tohoku University, Japan

Qun Jin Waseda University, Japan

Chung-Ta King National TsingHua University, Taiwan

Akio Koyama Yamagata University, Japan

Stan Kurkovsky Columbus State University, USA

Choonhwa Lee Hanyang University, Korea

Wonjun Lee Korea University, Korea

Hong-Va Leong Hong Kong Polytechnic Univ., Hong Kong, China

Jiandong Li Xidian University, China

Fuhua Oscar Lin Athabasca University, Canada

Alex Zhaoyu Liu Univ. of North Carolina at Charlotte, USA

Beniamino Di Martino Second Univ. of Naples, Italy

Geyong Min University of Bradford, UK

Yi Mu University of Wollongong, Australia

Thomas Noel University Louis Pasteur, France

Antonio Puliafito University of Messina, Italy

Organization XI

UISW 2005 Program/Technical Committee (continued)

Aaron J. Quigley
Indrakshi Ray
Jae-cheol Ryou
Hiroki Saito
Kouichi Sakurai
Elhadi Shakshuki
David Simplot-Ryl
Alexei Sourin

Ivan Stojmenovic
Willy Susilo
Tsutomu Terada
Yu-Chee Tseng
Javier Garcia Villalba
Cho-li Wang
Li-Chun Wang
Ying-Hong Wang
Chaohui Wu

Jie Wu

Bin Xiao

Yang Xiao

Lu Yan

Chu-Sing Yang
George Yee

Masao Yokota
Takaichi Yoshida
Jon (Jong-Hoon) Youn
Muhammed Younas
Ming Yu

Salim Zabir
Guozhen Zhang
Jingyuan (Alex) Zhang
Qiangfu Zhao
Xiaobo Zhou

University College Dublin, Ireland

Colorado State University, USA

Chungnam National Univ., Korea

Tokyo Denki University, Japan

Kyushu University, Japan

Acadia University, Canada

Univ. Lille 1, France

Nanyang Tech. Univ., Singapore

Ottawa University, Canada

University of Wollongong, Australia

Osaka University, Japan

National Chiao-Tung University, Taiwan

Complutense Univ. of Madrid, Spain

Hong Kong University, Hong Kong, China

National Chiao-Tung University, Taiwan

Tamkang University, Taiwan

Zhejiang University, China

Florida Atlantic University, USA

Hong Kong Polytechnic Univ., Hong Kong, China

University of Memphis, USA

Turku Centre for Computer Science, Finland

National Sun Yat-sen University, Taiwan

National Research Council, Canada

Fukuoka Institute of Tech., Japan

Kyushu Institute of Technology, Japan

Univ. of Nebraska at Omaha, USA

Oxford Brookes University, UK

SUNY at Binghamton, USA

Panasonic R&D, Japan

Waseda University, Japan

University of Alabama, USA

The University of Aizu, Japan

University of Colorado at Colorado Springs,
USA

XII Organization

NCUS 2005 Executive Committee

General Chairs: Jingyuan (Alex) Zhang, University of Alabama, USA
Jon (Jong-Hoon) Youn, University of Nebraska at Omaha,
USA
Steering Chair: Laurence T. Yang, St. Francis Xavier University, Canada
Program Chairs: Lu Yan, Turku Centre for Computer Science (TUCS), Finland
Luis Javier Garcia Villalba, Complutense University of

Madrid (UCM), Spain

NCUS 2005 Program/Technical Committee

Nael Abu-Ghazaleh
Saad Biaz

Jacir L. Bordim
Phillip Bradford
Jiannong Cao
Guangbin Fan
Satoshi Fujita
Xiaoyan Hong
Anup Kumar
Jiageng Li

Koji Nakano
Huai-Rong Shao
Randy Smith
Dajin Wang

Zhijun Wang
Claudia Jacy Barenco Abbas
Qing-An Zeng
Ming Yu

Jiang (Leo) Li
Mohamed Ould-Khaoua
Mieso Denko
Chih-Hung Chang
Chung-Ta King
Yu-Chee Tseng
Xinrong Zhou
Antonio Puliafito

SUNY at Binghamton, USA

Auburn University, USA

University of Brasilia, Brazil
University of Alabama, USA

Hong Kong Polytechnic University, China
University of Mississippi, USA
Hiroshima University, Japan
University of Alabama, USA
University of Louisville, USA
University of West Georgia, USA
Hiroshima University, Japan
Samsung, USA

University of Alabama, USA
Montclair State University, USA
University of Alabama, USA
University of Brasilia, Brazil
University of Cincinnati, USA

SUNY at Binghamton, USA

Howard University, USA

University of Glasgow, UK

University of Guelph, Canada
Tamkang University, Taiwan

National TsingHua University, Taiwan
National Chiao-Tung University, Taiwan
Abo Akademi, Finland

University of Messina, Italy

Organization XIIT

NCUS 2005 Program/Technical Committee (continued)

Chu-Sing Yang National Sun Yat-sen University, Taiwan

Han-Chieh Chao National Dong Hwa University, Taiwan

Jianhua Ma Hosei University, Japan

Nidal Nasser University of Guelph, Canada

Hong Shen JAIST, Japan

Hai Jin HUST, China

Doo-Hwan Bae KAIST, Korea

Jun Pang INRIA-Futurs, France

Rafael Timoteo de Sousa Universidad de Brasilia, Brazil

Ricardo Puttini Universidad de Brasilia, Brazil

Paulo Roberto de Lira Gondim Universidad de Brasilia, Brazil

Mario Dantas Universidad Federal de Santa Catarina, Brazil

Mirela S. M. A. Notare Faculdades Barddal, Brazil

Alba Melo Universidad de Brasilia, Brazil

Dan Grigoras University College Cork, Ireland

Ami Marowka Shenkar College of Engineering and Design,
Israel

Hesham Ali University of Nebraska at Omaha, USA

Chulho Won University of Nebraska at Omaha, USA

Hamid Sharif University of Nebraska at Lincoln, USA

Jitender Deogun University of Nebraska at Lincoln, USA

Seungjin Park Michigan Technological University, USA

Dana Petcu Institute e-Austria Timisoara, Romania

Maria Ganzha Private Institute of Higher Learning, Poland

Kathy Liszka University of Akron, USA

Hyunjeong Lee University of Nevada, USA

Song Ci University of Massachusetts Boston, USA

Hyunyoung Lee University of Denver, USA

Guanling Chen University of Massachusetts Lowell, USA

Gary Marsden University of Cape Town, South Africa

Marcin Paprzycki Oklahoma State University, USA

Il Kyeun Ra University of Colorado at Denver, USA

SecUbiq 2005 Executive Committee

General Chairs: Edwin Sha, University of Texas at Dallas, USA
Xiaobo Zhou, University of Colorado at Colorado Springs,
USA
Program Chairs: Alex Zhaoyu Liu, University of North Carolina at Charlotte,
USA
Bin Xiao, Hong Kong Polytechnic University, Hong Kong,
China
Steering Chair: Laurence T. Yang, St. Francis Xavier University, Canada

XIV Organization

SecUbiq 2005 Program/Technical Committee

Antonio Corradi
Jemal Abawajy
Leemon Baird
John T. Brassil
Yuanshun Dai
Arjan Durresi
Hanping Hu

Hua Ji

Zhiping Jia

Zhen Jiang
ShiGuang Ju
Seungjoo Kim
Yoohwan Kim
Raymond Li
Sanglu Lu
Jianhua Ma
Antonino Mazzeo
Jason A. Moore
Yi Mu

Maréa S. Pérez-Hernandez
Xiao Qin

Jae-cheol Ryou

Kouichi Sakurai

Dino Schweitzer
Chi-Sheng(Daniel) Shih
Xinmei Wang
Chuan-Kun Wu

Yang Xiao

Ming Xu

George Yee
Meng Yu
Ning Zhang
Xukai Zou

University of Bologna, Italy

Deakin University, Australia

US Air Force Academy, USA

HP Laboratories, USA

Indiana University-Purdue University, USA

Louisiana State University, USA

Huazhong University of Science and Technology,
China

Juniper Networks, USA

Shangdong University, China

West Chester University, USA

Jiangsu University, China

Sungkyunkwan University, Korea

University of Nevada, USA

CISCO, USA

Nanjing University, China

Hosei University, Japan

Second University of Naples, Italy

US Air Force Academy, USA

University of Wollongong, Australia

Universidad Politécnica de Madrid, Spain

New Mexico Institute of Mining and Technology,
USA

Chungnam National University, Korea

Kyushu University, Japan

US Air Force Academy, USA

National Taiwan University, Taiwan

Xidian University, China

Chinese Academy of Sciences, China

The University of Memphis, USA

National University of Defence Technology,
China

National Research Council, Canada

Monmouth University, USA

University of Manchester, UK

Indiana University-Purdue University, USA

SecUbiq 2005 Reviewers

Jemal Abawajy
Leemon Baird
John T. Brassil

Yuanshun Dai Hua Ji
Arjan Durresi Zhiping Jia
Hanping Hu Zhen Jiang

ShiGuang Ju
Seungjoo Kim
Yoohwan Kim
Raymond Li
Sanglu Lu
Jianhua Ma
Antonino Mazzeo
Jason A. Moore

Organization

Yi Mu Chuan-Kun Wu
Mara S. Pérez—Hernandez Yang Xiao

Xiao Qin Ming Xu
Jae-cheol Ryou George Yee
Kouichi Sakurai Meng Yu
Dino Schweitzer Ning Zhang
Chi-Sheng(Daniel) Shih ~ Xukai Zou

Xinmei Wang

USN 2005 Executive Committee

Program Chair:

Steering Committee:

Daeyoung Kim, Information and Communications

University, Korea
Jongsuk Chae, ETRI, Korea

Joongsoo Ma, Information and Communications

University, Korea
Hao Min, Fudan University, China
Kang Shin, University of Michigan, USA

XV

Yu-Chee Tseng, National Chiao Tung Univ., Taiwan

USN 2005 Program/Technical Committee

Yunju Baek
Chih-Yung Chang
Paul Chartier
Yuh-Shyan Chen
Yoonmee Doh
Anthony Furness
Paul Havinga
Yan Huang
Rajgopal Kannan
Chung-Ta King
Youngbae Ko
Noboru Koshizuka
Bhaskar Krishnamachari
Koen Langendoen
Insup Lee
Sungyoung Lee
Yann-Hang Lee
Wei Lou
Wen-Chih Peng
Sang Son
Mohamed Younis
Chansu Yu

Feng Zhao

Pusan National University, Korea
Tamkang University, Taiwan
Praxis Consultants, UK

National Chung Cheng University, Taiwan

ETRI, Korea

AIMUK/UCE, UK

University of Twente, Netherlands
Motorola Labs, USA

LSU, USA

National Tsing-Hua University, Taiwan
Ajou University, Korea

University of Tokyo, Japan

USC, USA

Delft University of Technology, Netherlands

University of Pennsylvania, USA
Kyunghee University, Korea
Arizona State University, USA

Hong Kong Polytechnic University, China

National Chiao Tung Univ., Taiwan
University of Virginia, USA
University of Maryland, USA
Cleveland State University, USA
Microsoft, USA

XVI Organization

TAUES 2005 Executive Committee

General Chairs: Yuan-Shun Dai, Indiana University-Purdue
University, USA
Manish Parashar, Rutgers University, USA
Program Chairs: Roy Sterritt, University of Ulster, N. Ireland
Xukai Zou, Indiana University-Purdue University, USA
Xiao Qin, New Mexico Inst. of Mining and
Technology, USA
Steering Chairs: Laurence T. Yang, St. Francis Xavier University,
Canada
Jianhua Ma, Hosei University, Japan
Advisory Chair: Salim Hariri, University of Arizona Tucson, USA

Organization XVII

TAUES 2005 Program/Steering/Advisory Committees

Jingde Cheng
Makoto Takizawa
Jogesh Muppala

Mike Hinchey
Tadashi Dohi
Leonard Barolli
Gregory Levitin
Haruhisa Ichikawa,
Dave Bustard
Beniamino Di Martino
Umberto Villano
Jemal Abawajy
Phillip Bradford
Petre Dini
Michael Ditze
David P. Duggan

Katerina Goseva-Popstojanova

Chandana Gamage
Sachin Garg

Frank Golatowski
Swapna Gokhale
Michael Grottke
Minaxi Gupta

Gail Kaiser
Andrew Laws
Xiaolin Li

Hua Liu

Man Lin

Rodrigo de Mello
Maria S. Perez-Hernandez
Rami Melhem
Adel Rouz

Biplab K. Sarker
Elhadi Shakshuki
Michael Smirnov
Kalyan Vaidyanathan
Bin Xiao

Jiang (Linda) Xie
Liudong Xing

Xun Yi

Tomoya Enokido

Saitama University, Japan

Tokyo Denki University, Japan

Hong Kong University of Science and
Technology, China

NASA Goddard Flight Center, MD, USA

Hiroshima University, Japan

Fukuoka Institute of Technology, Japan

Technion-Israel Institute of Technology, Israel

NTT Network Innovation Lab, Japan

University of Ulster, UK

Second University of Naples, Italy

University of Sannio, Italy

Deakin University, Australia

University of Alabama, USA

Cisco Systems Inc., USA

University of Paderborn, Germany

Sandia National Laboratories, Sandia, USA

West Virginia University, USA

Free University, Netherlands

AVAYA Labs, USA

University of Rostock, Germany

University of Connecticut, USA

Duke University, USA

Indiana University, USA

Columbia University, USA

Liverpool John Moores University, UK

Rutgers University, USA

Rutgers University, USA

St. Francis Xavier University, Canada

University of Sao Paulo, Brazil

Universidad Politecnica de Madrid, Spain

University of Pittsburgh, USA

Fujitsu, UK

University of New Brunswick, Canada

Acadia University, Canada

Fraunhofer Institute FOKUS, German

Sun MicroSystems, USA

Hong Kong Polytechnic University, China

University of North Carolina at Charlotte, USA

University of Massachusetts Dartmouth, USA

Victoria University, Australia

Rissho University, Japan

XVIII Organization

Hao Yin
Bo Yang

Ming Zhu

Tsinghua University, China
University of Electronic Sci. and
Tech. of China, China

Oracle, USA

TAUES 2005 Reviewers

Dave Bustard
Beniamino Di Martino
Umberto Villano
Jemal Abawajy
Phillip Bradford

Petre Dini

Michael Ditze

David P. Duggan

K. Goseva-Popstojanova
Chandana Gamage
Sachin Garg

Frank Golatowski

Swapna Gokhale
Michael Grottke
Minaxi Gupta
Gail Kaiser
Andrew Laws
Xiaolin Li

Hua Liu

Man Lin
Rodrigo de Mello
M.S. Perez-Hernandez
Rami Melhem
Biplab K. Sarker

Elhadi Shakshuki
Michael Smirnov
Kalyan Vaidyanathan
Bin Xiao

Jiang (Linda) Xie
Liudong Xing
Xun Yi

Tomoya Enokido
Hao Yin

Bo Yang

Ming Zhu

Table of Contents

The Second International Symposium on Ubiquitous
Intelligence and Smart Worlds (UISW 2005)

Session 1: Smart Environments and Systems I

Human Activity Recognition Based on Surrounding Things
Naoharu Yamada, Kenji Sakamoto, Goro Kunito, Kenichi Yamazaki,
Satoshi Tanaka

Baton: A Service Management System for Coordinating Smart Things
in Smart Spaces
Jingyu Li, Yuanchun Shi0

An Extensible Ubiquitous Architecture for Networked Devices in Smart
Living Environments

Thierry Bodhuin, Gerardo Canfora, Rosa Preziosi,

Maria Tortorellao e

A World Model for Smart Spaces
Ichiro Satoh

Session 2: Agent Based Smart Computing

Dealing with Emotional Factors in Agent Based Ubiquitous Group
Decision
Goreti Marreiros, Carlos Ramos, José Neves

A Multi-agent Software Platform Accommodating Location-Awareness
for Smart Space

Hongliang Gu, Yuanchun Shi, Guangyou Xu,

Yu Chen ..o

Context-Aware Ubiquitous Data Mining Based Agent Model for
Intersection Safety

Flora Dilys Salim, Shonali Krishnaswamy, Seng Wai Loke,

Andry Rakotonirainy

Development of Knowledge-Filtering Agent Along with User Context
in Ubiquitous Environment
Takao Takenouchi, Takahiro Kawamura, Akihiko Ohsuga

11

21

31

41

o1

61

71

XX Table of Contents

Session 3: Smart Computing Environments

Application-Driven Customization of an Embedded Java Virtual
Machine
Alexandre Courbot, Gilles Grimaud, Jean-Jacques Vandewalle,
David Simplot-Ryl 81

A Study on Fast JCVM with New Transaction Mechanism and
Caching-Buffer Based on Java Card Objects with a High Locality
Min-Sik Jin, Won-Ho Choi, Yoon-Sim Yang, Min-Soo Jung 91

Intelligent Object Extraction Algorithm Based on
Foreground/Background Classification
Jhing-Fa Wang, Han-Jen Hsu, Jyun-Sian Li 101

Thin Client Based User Terminal Architecture for Ubiquitous
Computing Environment
Tatsuo Takahashi, Satoshi Tanaka, Kenichi Yamazaki,
Tadanori Mizumo 111

An Application Development Environment for Rule-Based I/O Control
Devices
Ryohei Sagara, Yasue Kishino, Tsutomu Terada, Tomoki Yoshihisa,
Masahiko Tsukamoto, Shojiro Nishio 121

A wWDL Handler for Context-Aware Workflow Services in Ubiquitous
Computing Environments
Yongyun Cho, Joohyun Han, Jaeyoung Choi, Chae-Woo Yoo 131

Session 4: Smart Environments and Systems 11

SMMART, a Context-Aware Mobile Marketing Application:
Experiences and Lessons
Stan Kurkovsky, Vladimir Zanev, Anatoly Kurkovsky 141

Ubiquitous Organizational Information Service Framework for Large
Scale Intelligent Environments
Kwang-il Hwang, Won-hee Lee, Seok-hwan Kim, Doo-seop Eom,
Kyeong Huro 151

TS-U: Temporal-Spatial Methodology for Application Checking of the
Systems in the Ubiquitous Environment
Fran Jarnjak, Jinhyung Kim, Yixin Jing, Hoh Peter In,
Dongwon Jeong, Doo-Kwon Baik 161

Table of Contents

Ubiquitous Learning on Pocket SCORM
Hsuan-Pu Chang, Wen-Chih Chang, Yun-Long Sie, Nigel H. Lin,
Chun-Hong Huang, Timothy K. Shih, Qun Jin

An Application Based on Spatial-Relationship to Basketball Defensive
Strategies

Su-Li Chin, Chun-Hong Huang, Chia-Tong Tang,

Jason C. HUNG e

Intrinsically Motivated Intelligent Rooms
Owen Macindoe, Mary Lou Maher

Session 5: Smart Networking and Protocols 1

Multivariate Stream Data Reduction in Sensor Network
Applications
Sungbo Seo, Jaewoo Kang, Keun Ho Ryu

Implementing a Graph Neuron Array for Pattern Recognition Within
Unstructured Wireless Sensor Networks
M. Bager, A.I. Khan, Z.A. Baiguuuiieinnnn...

Building Graphical Model Based System in Sensor Networks
Dongyu Shi, Jinyuan You, Zhengwei Qi

Energy-Aware Broadcasting Method for Wireless Sensor Network
Cheol-Min Park, Dae-Won Kim, Jun Hwang

Anonymous Routing in Wireless Mobile Ad Hoc Networks to Prevent
Location Disclosure Attacks

Arjan Durresi, Vamsi Paruchuri, Mimoza Durresi,

Leonard Barolli

Session 6: Smart Environments and Systems 111

The Design and Implementation of a Location-Aware Service Bundle
Manager in Smart Space Environments
Minwoo Son, Soonyong Choi, Dongil Shin, Dongkyoo Shin

A Context-Aware and Augmented Reality-Supported Service
Framework in Ubiquitous Environments
Jae Yeol Lee, Dong Woo S€o

XXI

XXII Table of Contents

A Smart Method of Cooperative Learning Including Distant Lectures
and Its Experimental Evaluations
Dilmurat Tilwaldi, Toshiya Takahashi, Yuichiro Mishima,
Jun Sawamoto, Hisao Koizumicouuuuniiiininanan... 268

u-KoMIPS: A Medical Image Processing System in a Ubiquitous
Environment
Soo Jin Lee, Moon Hae Kim0 ... 278

The Extended PARLAY X for an Adaptive Context-Aware Personalized
Service in a Ubiquitous Computing Environment
Sungjune Hong, Sunyoung Han, Kwanho Song 288

A Context-Aware System for Smart Home Applications
Wen-Yang Wang, Chih-Chieh Chuang, Yu-Sheng Lai,
Ying-Hong Wang 298

Session 7: Smart Computing

Human Position/Height Detection Using Analog Type Pyroelectric
Sensors
Shinya Okuda, Shigeo Kaneda, Hirohide Haga 306

ENME: An ENriched MEdia Application Utilizing Context for Session
Mobility; Technical and Human Issues

Egil C. Osthus, Per-Oddvar Osland, Lill Kristiansen 316
DartDataFlow: Semantic-Based Sensor Grid

Huajun Chen, Zhiyong Ye, Zhaohui Wu 326
Sentient Artefacts: Acquiring User’s Context Through Daily
Objects

Kaori Fujinami, Tatsuo Nakajima 335

A Multi-dimensional Model for Task Representation and Allocation in
Intelligent Environments
Victor Zamudio, Vic Callaghan, Jeannette Chin 345

Norms Enforcement as a Coordination Strategy in Ubiquitous
Environments
Ismail Khalil Ibrahim, Reinhard Kronsteiner,
Gabriele Kotsiso 355

Table of Contents XXIII

Session 8: Smart Objects

A Java-Based RFID Service Framework with Semantic Data Binding
Between Real and Cyber Spaces
Kei Nakanishi, Makoto Setozaki, Jianhua Ma, Runhe Huang 365

Kallima: A Tag-Reader Protocol for Privacy Enhanced RFID System
Yusuke Doi, Shirou Wakayama, Masahiro Ishiyama, Satoshi Ozaksi,
Atsushi INOUE ..ot e e 375

Selective Collision Based Medium Access Control Protocol for Proactive
Protection of Privacy for RFID
JuSung Park, Jeonil Kang, DaeHun Nyang....................... 383

1Cane — A Partner for the Visually Impaired
Tsung-Hsiang Chang, Chien-Ju Ho, David Chawei Hsu,
Yuan-Hsiang Lee, Min-Shieh Tsai, Mu-Chun Wang,
Jane Hswu ... oo 393

Session 9: Security and Fault Tolerance of
Smart Systems 1

ORAID: An Intelligent and Fault-Tolerant Object Storage Device
Dan Feng, Lingfang Zeng, Fang Wang, Shunda Zhang 403

Architecture Based Approach to Adaptable Fault Tolerance in
Distributed Object-Oriented Computing
Rodrigo Lanka, Kentaro Oda, Takaichi Yoshida 413

Security Analysis of Michael: The IEEE 802.11i Message Integrity Code
Jianyong Huang, Jennifer Seberry, Willy Susilo,
Martin Bundero 423

A Framework for Protecting Private Information Through
User-Trusted-Program and Its Realizability
Ken’ichi Takahashi, Kowichi Sakurai, Makoto Amamiya............ 433

Session 10: Smart Networking and Protocols 11

Performance Analysis of IP Micro-mobility Protocols in Single and
Simultaneous Movements Scenario
Giuseppe De Marco, S. Loreto, Leonard Barolli 443

XXIV Table of Contents

HMRP: Hierarchy-Based Multipath Routing Protocol for Wireless
Sensor Networks

Ying-Hong Wang, Hung-Jen Mao, Chih-Hsiao Tsai,

Chih-Chieh Chuango

On Energy-Aware Dynamic Clustering for Hierarchical Sensor Networks
Joongheon Kim, Wonjun Lee, Eunkyo Kim, Joonmo Kim,
Choonhwa Lee, Sungjin Kim, Sooyeon Kim

Neighbor Node Discovery Algorithm for Energy-Efficient Clustering in
Ubiquitious Sensor Networks

Ji Young Choi, Chung Gu Kang, Yong Suk Kim,

Kyeong Hur

Session 11: Security and Fault Tolerance of
Smart Systems II

A Short Proxy Signature Scheme: Efficient Authentication in the
Ubiquitous World

Xinyi Huang, Yi Mu, Willy Susilo, Fangguo Zhang,

Xiaofeng Cheno

The Design and Implementation of Secure Event Manager Using
SPKI/SDSI Certificate
YoungLok Lee, HyungHyo Lee, Seungyong Lee, HeeMan Park,
BongNam Noh

Object Reminder and Safety Alarm
Chi-yau Lin, Chia-nan Ke, Shao-you Cheng, Jane Yung-jen Hsu,
Hao-hua Chu e e e

Synchronization and Recovery in an Embedded Database System for

Read-Only Transactions
Subhash Bhalla, Masaki Hasegawa cuou...

Session 12: Intelligent Computing

Learning with Data Streams — An NNTree Based Approach
Qiangfu Zhao

Generating Smart Robot Controllers Through Co-evolution
Kouichi Sakamoto, Qiangfu Zhao

Table of Contents XXV

Integrated Multimedia Understanding for Ubiquitous Intelligence Based
on Mental Image Directed Semantic Theory
Masao Yokota, Genci Capic..u .. 538

Session 13: Smart Environments and
Systems IV

Hyper-Interactive Video Browsing by a Remote Controller and Hand

Gestures
Hui-Huang Hsu, Timothy K. Shih, Han-Bin Chang, Yi-Chun Liao,
Chia-Tong Tang e 547

Mobile Computing with MPEG-21
Marios C. Angelides, Anastasis A. Sofokleous, Christos N. Schizas .. 556

A Unified Context Model: Bringing Probabilistic Models to Context
Ontology
Binh An Truong, YoungKoo Lee, Sung Young Lee 566

IFIP International Symposium on Network-Centric
Ubiquitous Systems (NCUS 2005)

A Component-Based Adaptive Model for Context-Awareness in
Ubiquitous Computing
Soo-Joong Ghim, Yong-Ik Yoon, Ilkyeun Ra 576

Improvement of an Efficient User Identification Scheme Based on
ID-Based Cryptosystem
FEun-Jun Yoon, Kee-Young Yoo 586

The Wrong Challenge of ‘Pervasive Computing’: The Paradigm of
Sensor-Based Context-Awareness
Eric ANGamanoo. e 592

An Abstract Model for Incentive-Enhanced Trust in P2P Networks
Mats NEOUIUS . . . e e e e e 602

Construction of Credible Ubiquitous P2P Content Exchange
Communities
Yuki Yokohata, Hiroshi Sunaga, Hiroyuki Nakamura 612

Location-Based Routing Protocol for Energy Efficiency in Wireless
Sensor Networks
Hyuntae Cho, Yunju Baek 622

XXVI Table of Contents

Efficient Access of Remote Resources in Embedded Networked
Computer Systems
Paul S. Usher, Neil C. Audsley

Lightweight Ontology-Driven Representations in Pervasive Computing
Jarostaw Domaszewicz, Michal ROj.

Object Tracking Using Durative Events
FEiko Yoneki, Jean Bacon

Design of Integrated Routing System for Mobile Ad Hoc Networks
Overlaying Peer-to-Peer Applications
Yan Annie Ding, David Everitt

A Design of Privacy Conscious RFID System Using Customizing
Privacy Policy Based Access Control
Byungil Lee, Howon Kim i,

Efficient Resource Management Scheme of TCP Buffer Tuned Parallel
Stream to Optimize System Performance
Kun Myon Choi, Eui-Nam Huh, Hyunseung Choo

Multi-level Service Differentiation Scheme for the IEEE 802.15.4 Sensor
Networks
FEuigik Kim, Meejoung Kim, Sungkwan Youm, Seokhoon Choi,
Chul-Hee Kang o i

Development of Event Manager and Its Application in Jini Environment
YoungLok Lee, HyungHyo Lee, Seungyong Lee, InSu Kim,
BongNam Noh

On Scalability and Mobility Management of Hierarchical Large-Scale
Ad Hoc Networks
Ming-Hui Tsai, Tzu-Chiang Chiang, Yueh-Min Huang

Exploring Small-World-Like Topologies Via SplitProber: Turning Power
Laws into an Advantage in Unstructured Overlays
Xinli Huang, Wenju Zhang, Fanyuan Ma, Yin Li

Efficient Uplink Scheduler Architecture of Subscriber Station in IEEE
802.16 System
Woo-Jae Kim, Joo-Young Baek, Sun-Don Lee, Young-Joo Suh,
Yun-Sung Kim, Jin-A Kim i,

A Survey of Anonymous Peer-to-Peer File-Sharing
Tom Chothia, Konstantinos Chatzikokolakis

632

642

652

663

673

683

693

704

714

724

734

Table of Contents XXVII

A Churn-Resistant Strategy for a Highly Reliable P2P System
Giscard Wepiwé, Sahin Albayrak 756

Building a Peer-to-Peer Overlay for Efficient Routing and Low
Maintenance
Honghao Wang, Yiming Hu 766

Dynamic Object Assignment in Object-Based Storage Devices
Lingjun Qin, Dan Fengc.. .. 776

Dynamic Resource Discovery for Sensor Networks
Sameer Tilak, Kenneth Chiu, Nael B. Abu-Ghazaleh,
Tony FOUNTain e e 785

Survey on Location Authentication Protocols and Spatial-Temporal
Attestation Services
A.I Gonzdlez-Tablas, K. Kursawe, B. Ramos, A. Ribagorda 797

Predicate Detection Using Event Streams in Ubiquitous Environments
Ajay D. Kshemkalyani. ... i, 807

The First International Workshop on Security in
Ubiquitous Computing Systems (SecUbiq 2005)

Image Watermarking Technique Based on Two-Dimensional Chaotic
Stream Encryption
Hanping Hu, Yonggiang Chen, 817

Identity-Based Universal Designated Verifier Signatures
Fangguo Zhang, Willy Susilo, Yi Mu, Xiaofeng Chen 825

Short Designated Verifier Proxy Signature from Pairings
Xinyi Huang, Yi Mu, Willy Susilo, Futai Zhang 835

An Embedded Gateway Based on Real-Time Database
Zhiping Jia, Xinziao QIao 845

Efficient Authentication Scheme for Routing in Mobile Ad Hoc
Networks
Shidi Xu, Yi Mu, Willy Susilo 854

Collision Attack on XTR and a Countermeasure with a Fixed Pattern
Dong-Guk Han, Tsuyoshi Takagi, Tae Hyun Kim, Ho Won Kim,
Kyo I Chungo e e 864

XXVIII Table of Contents

Security in Persistently Reactive Systems
Takumi Endo, Junichi Miura, Koichi Nanashima, Shoichi Morimoto,

Yuichi Goto, Jingde Cheng 874
ID-Based Access Control and Authority Delegations

So-Young Park, Sang-Ho Lee 0 iiiiiiiiiinin... 884
How to Construct Secure Cryptographic Location-Based
Services

Jun Anzai, Tsutomu Matsumoto 894

A Key Management Scheme for Mobile Ad Hoc Networks Based on
Threshold Cryptography for Providing Fast Authentication and Low
Signaling Load

Hoang Nam Nguyen, Hiroaki Morino 905

Program Obfuscation Scheme Using Random Numbers to Complicate
Control Flow
Tatsuya Toyofuku, Toshihiro Tabata, Kouichi Sakurai 916

Authenticated Public Key Distribution Scheme Without Trusted Third
Party
Jae Hyung Koo, Bum Han Kim, Dong Hoon Lee 926

Cryptanalysis of a Generalized Anonymous Buyer-Seller Watermarking
Protocol of IWDW 2004
Bok-Min Goi, Raphael C.-W. Phan, M.U. Siddiqi 936

Efficient RFID Authentication Protocol for Ubiquitous Computing
Environment
Eun Young Choi, Su Mi Lee, Dong Hoon Lee 945

A New Simple Authenticated Key Agreement and Protected Password
Change Protocol
Eun-Jun Yoon, Kee-Young Yoo 955

A Method for Deciding Quantization Steps in QIM Watermarking
Schemes
Yunho Lee, Kwangwoo Lee, Seungjoo Kim, Dongho Won,
Hyungkyu Yang 965

A New DDoS Detection Model Using Multiple SVMs and TRA
Jungtaek Seo, Cheolho Lee, Taeshik Shon, Kyu-Hyung Cho,
Jongsub Moon 976

Table of Contents

PPF Model with CTNT to Defend Web Server from DDoS Attack
Jungtaek Seo, Cheolho Lee, Jungtae Kim, Taeshik Shon,
Jongsub Moom

Efficient Key Agreement for Merging Clusters in Ad-Hoc Networking
Environments
Sooyeon Shin, Taekyoung Kwon oo,

An Effective Method for Location Privacy in Ubiquitous Computing
Gunhee Lee, Wonil Kim, Dong-kyoo Kim

Integrated Support for Location Aware Security Services in Enterprise
Wireless Networks
Zhaoyu Liu, Peeyush Sharma, Jian Raymond Li

The 1st International Workshop on RFID and
Ubiquitous Sensor Networks (USN 2005)

Session 1: RFID

Optimal Scheduling for Networks of RFID Readers
Vinay Deolalikar, John Recker, Malena Mesarina,
Salil Pradhan

PULSE: A MAC Protocol for RFID Networks
Shailesh M. Birari, Sridhar Tyer i ..

RFIDcover - A Coverage Planning Tool for RFID Networks with
Mobile Readers
S. Anusha, Sridhar Tyer

Vibration Powered Battery-Assisted Passive RFID Tag
Elaine Lai, Andrew Redfern, Paul Wright

Wireless RFID Networks for Real-Time Customer Relationship
Management
Philipp Schloter, Hamid Aghajan. i,

Tree-Based Classification Algorithm for Heterogeneous Unique Item ID
Schemes

Yong Hwan Lee, Hee Jung Kim, Byeong-hee Roh, S.W. Yoo,

Y.C. Oh oo

XXIX

XXX Table of Contents

An Efficient Key Pre-distribution Scheme for Secure Distributed Sensor
Networks
Sung Jin Choi, Hee Yong Youn, 1088

Session 2: USN

Energy-Driven Adaptive Clustering Hierarchy (EDACH) for Wireless
Sensor Networks
Kyung Tae Kim, Hee Yong Youn 1098

A Load-Balancing and Energy-Aware Clustering Algorithm in Wireless
Ad-Hoc Networks

Wang Jin, Shu Lei, Jinsung Cho, Young-Koo Lee, Sungyoung Lee,

Yonil Zhongo 1108

Energy-Efficient Cluster Reconfiguration with Fair Cluster Formations
in Sensor Networks
Hyang-tack Lee, Yong-hyun Jo, Byeong-hee Roh, SSW. Yoo 1118

Virtual Sink Rotation: Low-Energy Scalable Routing Protocol for
Ubiquitous Sensor Networks
Lynn Choi, Kwangseok Choi, Jungsun Kim, Byung Joon Park 1128

FERMA: An Efficient Geocasting Protocol for Wireless Sensor
Networks with Multiple Target Regions
Young-Mi Song, Sung-Hee Lee, Young-Bae Ko.................... 1138

Power-Aware Position Vector Routing for Wireless Sensor Networks
Sangsoo Lee, Daeyoung Kim, Sungjin Ahn, Noseong Park 1148

Multicast Routing with Minimum Energy Cost and Minimum Delay in
Wireless Sensor Networks
Zhao Li, Wei Zhang, Hengchang Liu, Baohua Zhao, Yugui Qu. 1157

Self Location Estimation Scheme Using ROA in Wireless Sensor
Networks
Yun Kyung Lee, Fui Hyeok Kwon, Jae Sung Lim 1169

Energy-Efficient Target Localization Based on a Prediction Model
Yu Gu, Wei Zhang, HengChang Liu, Baohua Zhao, Yugui Qu 1178

Reducing Congestion in Real-Time Multi-party-tracking Sensor
Network Applications
Wonwoo Jung, Sujeong Shin, Sukwon Choi, Hojung Cha 1191

Table of Contents

Variable-Radii Method Based on Probing Mechanism (VRPM): An
Energy Conservation Method for Wireless Active Sensor Networks
Qi Zhou, Takuya Asaka, Tatsuro Takahashi

The International Workshop on Trusted and
Autonomic Ubiquitous and Embedded Systems
(TAUES 2005)

Session 1: Autonomic Computing

Automata-Theoretic Performance Analysis Method of Soft Real-Time
Systems
Satoshi Yamane

A Component-based Architecture for an Autonomic Middleware
Enabling Mobile Access to Grid Infrastructure
Ali Sajjad, Hassan Jameel, Umar Kalim, Young-Koo Lee,
Sungyoung Lee

Autonomic Agents for Survivable Security Systems
Roy Sterritt, Grainne Garrity, Edward Hanna, Patricia O’Hagan . . .

Towards Formal Specification and Generation of Autonomic Policies
Roy Sterritt, Michael G. Hinchey, James L. Rash, Walt Truszkowski,
Christopher A. Rouff, Denis Gracaninccuoienn...

Session 2: Security

Intrusion Detection with CUSUM for TCP-based DDoS
Fang-Yie Leu, Wei-Jie Yang

A Digital Content Distribution Using a Group-key and Multi-layered
Structure Based on Web
Yun-Ji Na, Il Seok Ko i

Access Policy Sheet for Access Control in Fine-Grained XML
Jing Wu, Yi Mu, Jennifer Seberry, Chun Ruan

Session 3: Dependable Computing

Monitoring the Health Condition of a Ubiquitous System: Rejuvenation
vs. Recovery
Kazuki ITwamoto, Tadashi Dohi, Naoto Kaio

XXXI

1235

XXXII Table of Contents
A Dependability Management Mechanism for Ubiquitous Computing
Systems

Changyeol Choi, Sungsoo Kimo, 1293

Reassignment Scheme of an RFID Tag’s Key for Owner Transfer
Junichiro Saito, Kenji Imamoto, Kouichi Sakurai 1303

Author Index 1313

Human Activity Recognition
Based on Surrounding Things

Naoharu Yamada, Kenji Sakamoto, Goro Kunito,
Kenichi Yamazaki, and Satoshi Tanaka

Network Laboratories, NTT DoCoMo, Inc.,
3-5 Hikarino-oka, Yokosuka city, Kanagawa 239-8536, Japan
{yamada, sakamoto, kunito, yamazaki,
satoshil}@netlab.nttdocomo.co.jp

Abstract. This paper proposes human activity recognition based on the actual
semantics of the human’s current location. Since predefining the semantics of
location is inadequate to identify human activities, we process information
about things to automatically identify the semantics based on the concept of af-
fordance. Ontology is used to deal with the various possible representations of
things detected by RFIDs, and a multi-class Naive Bayesian approach is used to
detect multiple actual semantics from the terms representing things. Our ap-
proach is suitable for automatically detecting possible activities under a variety
of characteristics of things including polysemy and variability. Preliminary ex-
periments on manually collected datasets of things demonstrated its noise toler-
ance and ability to rapidly detect multiple actual semantics from existing things.

1 Introduction

Owing to the downsizing and increasing sophistication of computing appliances, the
Ubiquitous Computing Environment proposed by Mark Weiser [22] is becoming
reality. In the Ubiquitous Computing Environment, people will enjoy new services
called “ubiquitous services”. The appropriate ubiquitous services are provided de-
pending on user’s activities. While traditional services are reactive and uniform for
every user, ubiquitous services are proactive and adaptive to each user. For example,
when a user is shopping in a food court, the system can tell him what is in his refrig-
erator and what is missing. When the user unintentionally leaves his umbrella in a
shop or train, the system detects the omission and informs the user. One of the essen-
tial issues in achieving ubiquitous services is how to recognize human activities since
services are provided depending on the user’s activities not his explicit requests. If
system misjudges the activity, the user will receive useless and annoying services.
This paper presents a method to infer human activities based on the actual seman-
tics of the human’s current location. We name it activity space. Activity spaces (AS)
are the logically defined spaces in which the user will perform a particular activity.
By identifying activity space at user’s current position, the system can infer the user’s
activities. Activity space is characterized by continual creation and disappearance. For
example, when a flea market is held at a park, a shopping AS only exists during the
period of the flea market. Therefore, we need a way of detecting the existence of

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 1—10, 2005.
© IFIP International Federation for Information Processing 2005

2 N. Yamada et al.

activity spaces automatically. To solve this issue, we focus on “things” that compose
activity spaces. Since things basically have the purpose of existence and affordance
[4] that offers people to do with them, they can specify human activities. Each thing
can be identified by a Radio Frequency Identification (RFID) tag. Since various terms
can be used to represent the same thing, we acquire all representations by utilizing
ontology [S5]. Activity spaces are detected by employing a topic detection method
designed for document handling because we can draw an analogy between documents
composed by words and activity spaces composed by things. Preliminary experiments
utilizing actual things data demonstrate the feasibility of our proposed method.

2 Related Work

Approaches to tackle the essential issue of human activity recognition are classified
into two types. One is utilizing wearable sensors [14] and the other is utilizing various
sensors attached to things in the environment. Though the former approach is appro-
priate for fundamental activities such as sitting, standing, and walking by detecting
limb motions, it places a burden on users since they wear the devices. For the latter
approach, some papers focused on detecting the interaction between humans and
objects by utilizing a camera [7] or an ultrasonic sensor [11]. Unfortunately, imple-
mentation costs are very high and the approaches only work in the laboratory. Tapia
et al. [17] developed environmental state change sensors and Fishkin et al. [3] utilized
RFID tags. They recognize user’s activities based on sequential data of things that the
user touches or grasps. They achieved low-cost implementation and their work are
applicable to real world environments. However, it is difficult for them to identify the
activities including many non-sequential interactions with various things since the
user may perform these activities in various ways.

Our main idea is to focus on activity spaces in identifying human activities. The
simple approach is inference based on the predefined semantics of location such as a
map [13] [21]. They focused more on how to identify the spatial position of users and
less on how to specify the semantics of the spatial position because they assumed that
the semantics of a spatial position was static. However, the effectiveness of this ap-
proach is limited since the activities that a location can offer are fixed and some loca-
tions do not specify just one activity. As for the former, the location semantics can
change over time such as a flea market. However, these semantics are not handled at
all in prior works. Typical examples of the latter locations are a living room at home
or a multipurpose room. Though a living room can support various activities such as
studying, working, eating, and playing TV games, the system cannot identify the ac-
tivities actually supported by a room since it depends on the equipment in the room.

Our approach is to focus on the things forming the user’s immediate environment
to identify activity spaces. Moreover, things existing in a certain space can be easily
detected by RFID tags. They are seen as replacing the barcode in the area of logistics.
Some companies or governments now require suppliers to attach RFID tags to every
item. EPC Global [2] and Ubiquitous ID center [19] have proposed an ID scheme that
makes it possible to put a unique serial number on every item. Considering this
background, we can assume that everything will soon have its own RFID tag. This
means that RFID tags are the most promising approach to realizing the Ubiquitous
Computing Environment. The use of RFID tags demands the use of RFID tag readers.

Human Activity Recognition Based on Surrounding Things 3

They are located in the environment or a user carries one. From the perspective of
hardware cost, there is tradeoff between these two methods: if the target space is large
and the number of users is small, the former method is better, and otherwise, the latter
is better. In this paper, we assume RFID tag readers are placed in the environment.

3 Activity Space Detection

This section clarifies the definition, characteristics, and technical issues of an activity
space. It then describes the proposed approach based on ontology and multi-class
Naive Bayes for automatic detection of activity spaces.

3.1 Activity Space: Definition, Characteristics, and Technical Issues

An activity space is a logically defined space that affords the user some particular
activity. Examples are “shopping AS” such as supermarkets, flea markets, and stalls
are where users buy commodities. “Eating AS” such as a dining room at home, res-
taurants, and cafeterias are where we eat and drink. “User’s own domains AS” such
as the user’s own room in their house and the user’s desk at the office are where the
user keeps his/her possessions. Activity spaces are not simply spaces defined in terms
of X-Y-Z coordinates with no regard for semantics; activity spaces are inherently
associated with semantics. Activity space is a subconcept of place. With regard to
place, Tuan [18] mentioned that “place is space infused with human meaning”, and
Curry [1] mentioned the several ways in which places are created: naming, categoriz-
ing, making a symbol, telling stories, and performing activities. In his categorization,
an activity space is a place of performing activities with particular objects.
Activity spaces have the following characteristics.

Dynamics of existence: Activity spaces are dynamically generated, move, and disap-
pear. For example, “a shopping AS” such as a flea market is dynamically gener-
ated, moves, and disappears in parks or squares depending on the action of the
booth owners. “An eating AS” can be dynamically generated by preparing a meal
and disappears after the meal. Each activity space has a different period of exis-
tence. Some activity spaces, such as a bedroom in a house, can exist for long peri-
ods. On the other hand, the activity spaces such as an eating activity space or a
flea market exist for short periods. This characteristic raises a technical issue: the
transient activity spaces cannot be identified by using spatial maps.

Spatial relationships: Several Activity Spaces can exist at the same spatial position.
For example, while a living room is designed to enable people to get together for
meeting or chatting with a family or friends, people do several other activities such
as eating and working in a living room. Therefore, there are spatial relationships
among activity spaces such as inclusion, overlap, and adjacency. This characteristic
raises the fact that multiple activity spaces can occupy the same spatial position.

Therefore, a key technical issue on activity space is multiple activity space detection.

3.2 Thing-Oriented Activity Spaces Detection and Its Difficulties

People can generally recognize an activity space simply by “looking at” it. For exam-
ple, if people look at a kitchen in a house, they can recognize it as a cooking AS. The

4 N. Yamada et al.

reason is affordance as introduced by Gibson [4]. Affordance is what things offer
people to do with them. Affordance enables you to recognize what actions you can do
with a thing by just looking at it. For example, a knife offers the function of cutting to
people and they can recognize that a knife can be used to cut objects by just looking at
the knife. By extending affordance, we believe that a set of things also affords particu-
lar activities to people. Therefore, we focus on sets of things to identify activity
spaces. However, identifying activity spaces from a set of things suffers from several
difficulties. We listed them based on the characteristics of things.

Massiveness: People are surrounded by a huge number of things. While some of
them are effective in identifying the activity space, others such as lamp and trash
are useless; eliminating the ineffective things is very difficult [P1-1].

Mobility: Things can be moved by several causes. The things that are moved due to
the user’s intention such as food or dishes for preparing meals are important in
identifying the activity space. However, other things that move such as the user’s
clothing are useless; it is necessary to suppress the noise [P1-2].

Polysemy: Everything has multiple representations. For example, the thing pencil has
the meaning of a writing tool and stationery, and at the store, it has the meaning of
a commercial goods. Thus, how to represent things is difficult [P2].

Variability: The things that form the same kind of the activity space are different in
each activity space. For example, the cooking ASs of different houses have dif-
ferent things. This implies the manual creation of detection rules is extremely
difficult [P3]. Furthermore, even if some learning approaches are utilized to
automatically extract inference rules, the system cannot deal with unlearned
things [P4].

While the above difficulties arise from the characteristics of things, other problems
arise from the use of RFIDs: RFID tag detection is not completely reliable because of
collision and differences in the interval of ID transmission.

3.3 Ontology and PMM for Detecting Activity Spaces from Things

To solve P2 and P4, we utilize ontology that defines explicit formal specifications of
terms and the relations among them. As for P1-1, P1-2, P3, and the technical issue of
multiple activity spaces detection, we employ the parametric mixture model (PMM)
[20], a text classification method, because we draw an analogy between documents
composed by words and activity spaces composed by things.

The proposed system consists of four processes: preprocess, represent, learn, and
classify. In the preprocess stage, the system aggregates detected RFID tags and ex-
tracts distinct things. For example, the system extracts only things that appeared re-
cently to detect newly generated activity spaces. In the represent stage, the system
acquires terms that represent each thing. We acquire the attribute information of each
detected thing from Physical Markup Language servers (PML servers) [12] of EPC
Global. Utilizing the information, all terms representing the things are acquired
through ontology. At the learn stage, the probability of a thing being in an activity
space is specified by utilizing the terms and supervised activity space data. In the
classify stage, the system uses PMM to classify a set of terms into activity spaces.

Human Activity Recognition Based on Surrounding Things 5

3.3.1 Ontology to Manage Representations

Ontology has a long history in philosophy as it refers to the subject of existence. One
definition of ontology involves the specification of terms in each domain and the
relations among them. Ontology sets “basic concept” that represent underlying con-
cept such as pencil and “role concept” that represent the role that a thing plays in a
particular domain such as product. In addition, it also sets “is-a relation” to represent
the sub concept between two terms. For example, “A pen is-a writing tool” means a
pen is a sub concept of a writing tool [8][9][10]. Utilizing these concepts and relations
makes it possible to acquire all terms related to a thing by tracing relations. The low-
est terms in each concept are preliminarily linked to the ID of each thing in PML.
Among all terms related to a thing, it is necessary to identify the appropriate term for
the thing to identify activity spaces. Since it is difficult to identify proper terms and
the appropriate level in a hierarchy based on is-a relation, we manually choose the
appropriate concept instead of the appropriate terms. For example, basic concept is
selected for a working AS, and role concept is selected for a shopping AS. This ap-
proach, however, leaves unanswered how to select the proper abstraction level in the
is-a relation; this is solved in the next section. To solve P4, we transform the terms
that have not been learned into the terms that have been learned by utilizing is-a rela-
tions. For example, if the thing eraser has not been learned but the thing pencil has,
we can treat both as stationery, which has already been learned.

3.3.2 Activity Space Identification Via Topic Detection
Many schemes for tackling the identification of the topics of documents or web con-
tents have been proposed. The characteristics of their target are very similar to those
of our objective: a document consists of a set of words that includes noise such as
stop words [15], each document on the same topic consists of different words, but
people can identify the topic of a document at a glance. Among the many approaches
proposed for topic detection, most assume that a document has only one topic; the
parametric mixture model (PMM), however, allows one document to have multiple
topics. It employs a probabilistic approach which is efficient and robust against noise;
it offers the highest accuracy in detecting multiple topics [20]. Since it is highly likely
that multiple activity spaces will be detected from one set of things, we employ PMM.
PMM extends Naive Bayes [6] to provide multi-topic detection. PMM assumes
that a multi-topic document is composed of a mixture of words typical of each topic.
Based on this assumption, a multi-topic document can be represented as the linear
summation of the word occurrence probability vector of each topic as shown in Eq.
(1). Here, p(tlc;) is calculated using MAP estimation. By replacing (words, topics)
with (things, activity spaces), we can use Eq. (1) to detect multiple activity spaces.

p(d1e)= plty..it, 1) =[[b () pt, 1)

=l 1=l

where h(y) = Ly, J=1,..,L,y, =1(y, belongs) or 0(y, does not belong) (1)

Z Vi

I'=1

d :document,c :topic, x; : frequency of word t;, L :No.of topic,n:No.of word kinds

To select the appropriate abstraction level of an is-a relation, conditional probability
p(thing | activity space) is learned utilizing the lists of things at each abstraction level.

6 N. Yamada et al.

PMM then acquires the classification accuracy of activity spaces though the learned
conditional probability. Finally, the abstraction level with the highest classification
accuracy is employed to classify a test set of things.

4 Preliminary Experiment

Before doing experiments in an actual environment, we did preliminary experiments
using actual data that was manually collected. We evaluate the feasibility of the pro-
posed method for activity space detection under the difficulties posed by P1-1, P2, P3,
and P4 while P1-2 and the difficulties created by the RFIDs was left for the experi-
ments in actual environments. We did two experiments: exp.1), the detection of fre-
quently changing activity spaces to address P2, P3, and P4, and exp.2), the detection
of an activity space that contains a large number of things to address P1-1. In exp.1,
we focused on a table in a living room since it can support several activities as de-
scribed in 3.1. Since a meeting AS always exists, we detect three activity spaces: just
a meeting AS, a meeting AS and a working AS, and a meeting AS and an eating AS.
We assume that RFID tag readers are put on the table and detect things on or near the
table. Though activity spaces on a table in a living room frequently change, the things
on it are relatively few (94 things, 26 kinds). In exp.2 we focused on a room in a
home since each room has many things (836 things, 472 kinds). We detect four types
of activity spaces: a living room (a meeting AS), a kitchen (a cooking AS), a bath
room (a bathing AS), and a study room (a working AS). We assume that each room
has several RFID tag readers. We use F-measure to evaluate the accuracy of activity
space detection. The F-measure is defined as the harmonic mean of precision and
recall and is widely used in the information retrieval field.

4.1 Input Data to Detect Activity Spaces

First of all, we need to acquire the data of real world things that includes actual noise.
As for exp.1, we manually identified all things on a table of a typical Japanese home.
Although PMM must know of the things of each activity space to learn the condi-
tional probability, a meeting AS always exists when a working AS or a meeting AS
exists. Therefore, we eliminate the data of things that indicate just a meeting AS from
those of an eating AS or a working AS. Fig. 1 (a) shows the things of each AS. As for

(a Activity Space Things

Living place 1 dining table, 4 chairs, 4 cushions, 4 newspapers, 1 vase, 1 jotter, 5 window
envelops, 5 ballpoints, 1 in-basket, 1 wastepaper basket, 2 coasters

Eating place (Breakfast) | 6 dishes, 2 chopsticks, 2 table spoons, 2 mugs, 2 table linens

Eating place (Lunch) 6 dishes, 2 chopsticks, 2 forks, 2 table knives, 2 glasses, 2 table linens

Eating place (Dinner) 6 dishes, 2 chopsticks, 2 forks, 2 table knives, 2 glasses, 2 beer cans, 2
table linens

Working place 2 ballpoints, 4 highlighters, 1 commonplace book, 1 digital computer, 1

power code, 1 mouse, 7 files

Fig. 1. (a): Things of each activity space for exp.l. (b), (c): Pictures used to identify things in
an actual office desk for exp.2.

Human Activity Recognition Based on Surrounding Things 7

exp.2, we used the things in an actual Korean family’s house as collected by the Na-
tional Museum of Ethnology [16]. Since the house did not have a study room, we
manually identified all things in and on an office desk from photos taken at various
angles (Fig. 1 (b) (¢))

To represent the data of things in abstract terms, we surveyed existing ontology bases
in terms of the number of vocabularies, abstract terms, and hierarchy and the structure
of conceptualization. In this survey, we decided to employ WordNet [23]. We set “arti-
fact” in WordNet as abstraction level 1, the most abstract term, and acquired terms on
abstraction levels 2 to 6 by utilizing the is-a relations provided by WordNet. Instead of
utilizing PML, we manually set the terms of abstraction level 6 representing each thing.
We then added noise to the abstraction data sets with noise ratios of 0%, 25%, and 50%.
In detail, we added the things of another activity space to reflect the presence of things
not related to the activity space. In addition, we randomly eliminated some things from
the data sets to reflect RFID detection error and the presence of things without an RFID
tag. By randomly adding noise, we created 1000 data sets for each activity space. To
include unlearnt things in test data for evaluating P4, we used eating ASs (breakfast) as
learning data and those of lunch and dinner as test data in exp. 1.

4.2 Results

Table 1 shows the F-measure in exp.1. The proposed method successfully detected a
meeting AS and an eating AS with a high degree of accuracy, while that of a working
AS was not high. This result indicates that a meeting AS and an eating AS have the
particular things that clearly identify the activity space while a working AS does not.
In detail, while the multiple activity spaces of working and living can be successfully
detected, the single activity space of living is classified as the multiple activity spaces
of working and living. This is because a meeting AS has some characteristic things of
such as ballpoints and jotters. This result also demonstrates the noise tolerance of the
proposed method since the accuracy of activity space detection did not drop as the
noise ratio was raised. Furthermore, the accuracy of working AS detection increased
with the abstraction level. By raising the abstraction level, the number of kinds of
terms decreased: 1 kind in level 1 and 34 kinds in level 6. This means that the infor-
mation amount decreased and the accuracy of activity space detection generally falls.
Ontology can provide an explanation: each activity space has many kinds but a few
discriminative terms; the use of ontology raised the abstraction level which trans-
formed them into fewer kinds with a larger number of discriminative terms. This
demonstrates that ontology can raise the accuracy of activity space detection. Note
that it makes sense that the F-measure of level 1 is 0 in most activity spaces since the
term of abstraction level 1 is just “Artifact”. As for unlearnt things, we did not learn
forks, table knives, and glasses. WordNet transformed forks, table knives, and table-
spoons into cutlery in level 5. Glasses and mugs, which were known were trans-
formed into container in level 3. Therefore, ontology could utilize unlearnt things for
activity space detection by raising the abstraction level.

Table 3 shows the F-measure of each activity space in exp.2; the results also dem-
onstrate the feasibility of the proposed method. Table 2 shows the processing time
needed for assessing 4000 sets of things data and the number of kinds of terms in each
abstraction level. This demonstrates that the proposed method can rapidly handle

8 N. Yamada et al.

large sets of things and that increasing the abstraction level makes it possible to re-
duce the processing time. Furthermore, though 472 kinds of things were aggregated
into 17 kinds in abstraction level 2, the F-measure of each activity space did not drop,
which obviously demonstrates the effectiveness of ontology.

Table 1. F-measure of detecting each activi-

ty space in exp.1 Table 3. F-measure of detecting each activity
space in exp.2

Meeting AS
noise ratio|Levell Level2 |Level3 |Level4 |Level5 |Level6)
0%| 100.0%| 100.0%| 100.0%| 100.0%| 100.0%| 100.0% AS
59| 100.0%] 99.9%| 100.0%| 100.0%] 100.0%| 100.0% noise ratiolLevell |Level2 |Level3 |Level4 [JLevel5 [JLevel6
9 9 9 7 9 < 9
50%)| 100.0% 98.3%| 100.0%| 100.0%| 100.0%| 100.0% 0% 0%]_100.0%] 100.0%[100.0%] 100.0%] 100.0%

25%| 0%| 97.1%| 95.6%| 99.8%] 98.9%] 100.0%

Meeting AS and Eating AS

noise ratio]Levell _|Level2 |Leveld |Leveld |Levels |Levelo S0%) _O%] 86.6%] 922%) ©994%| 97.8%] 1000%
0%| 0.0%| 100.0%| 100.0%| 100.0%] 100.0%| 100.0% Cooking AS
259 0.0%| 100.0%| 100.0%| 100.0%| 100.0%| 100.0%! noise ratiojLevell |Level2 |Level3 |Leveld |Level5 [Level6
50% 0.0%| 100.0%| 100.0%| 100.0%| 99.8%| 100.0% 0% 40%| 100.0%| 100.0%| 100.0%] 100.0%| 100.0%
Meeting AS and Working AS 25% 40% 91.1%]| 96.5% 98.7%] 99.4%| 100.0%
noise ratio[Levell [Level2 |Leveld |Leveld [Level5 [Level6 50%| 40%| 825%| 92.5%| 97.6%| 96.9%| 100.0%
0% 0.0%| 100.0%] 100.0%] 100.0%] 100.0%| 100.0%) Moctine AS

25% 0.0% 75.9% 93.5% 94.2% 96.4% 90.5%
50% 0.0% 62.9% 81.0% 79.3% 86.1% 78.0%

noise ratio]Levell |Level2 |Level3 |Level4 [Level5 |]Level6
0%]| 100%| 100.0%| 100.0%| 100.0%| 100.0%] 100.0%
25% 100% 94.6% 97.2% 98.1%) 98.8%| 100.0%
50% 100% 89.9%) 94.0% 97.5%) 97.7%| 100.0%
Table 2. Processing time for estimating “Working S
4000 data sets and the No. of kinds of terms noise ratio|Levell |Level2 [Leveld [Leveld [Levels |[Levelo
0% 0%| 100.0%] 100.0%| 100.0%| 100.0%| 100.0%
25% 0%| 90.6%] 97.5%| 99.3%| 99.4%] 100.0%
50% 0% 83.9%| 95.1%| 98.4%| 97.4%| 100.0%

levell |level2 [level3 |leveld |levelS |level6
No. of kinds of terms 1 17 48 149] 421|472
time for estimation (sec)| 37 55 100 227 526 570

5 Discussion

The preliminary experiments described above evaluated the proposed method using
actual but manually collected sets of things. Though the findings of these experiments
are meaningful and interesting, some problems remain to be evaluated.

Mobility of things: Noise data derived from this characteristic are not included in the
manually collected sets. To evaluate it, we need to establish an environment where
each thing has an RFID tag and gather the data of RFID tag detection over time.

Human activity inference based on activity spaces: We need to evaluate the accu-
racy of inferring the user’s situation from the activity spaces. To do this, we can
compare the activity inferred from activity spaces with actual user activity ac-
quired by asking the user what s/he is doing in the environment.

Furthermore, we need to consider the following issues.

Target activity spaces: Activity spaces need to be expanded and refined. As for
expansion, we need to acquire as many activity spaces as there are human activi-
ties. As for refinement, we need to classify each activity space into more refined
activity space. For example, a meeting AS has sub-concepts of a director’s meet-
ing AS and a group meeting AS. Ontology would be helpful in achieving this.

Human Activity Recognition Based on Surrounding Things 9

Concepts of ontology: WordNet defines only the basic concepts of terms. Though it
is useful to identify many activity spaces, other activity spaces such as selling
space are difficult to identify. Since no existing ontology base defines role concept
such as product, we need to build the ontology of role concept.

PMM for activity space detection: Since PMM is designed for identifying a topic
from a large amount of words, it is difficult to identify the few important things.
For example, takeout food consists of few things but important in identifying an
eating AS. This issue can be solved by adding weight to thing in preprocessing.

Human activity inference in multiple activity spaces: When multiple activity
spaces overlap, the system needs to choose some of them to identify user activity.
One approach is identifying the activity space generated most recently since a user
intentionally moves things to perform a particular action such as preparing meal.
Another approach is identifying the thing that the user is interacting with and
specifying the activity space with the highest conditional probability.

6 Conclusion

This paper proposed a novel approach to recognize human activities based on activity
spaces, the spaces that afford humans particular activities. Activity spaces are identi-
fied through the things that exist there based on the concept of affordance. We utilize
ontology to specify terms representing things and the parametric mixture model to
identify activity spaces from the terms. Since activity spaces represent the “actual”
semantics of position, activity spaces infer human activities more precisely than con-
ventional approaches based on just location; moreover, this approach is more feasible
than those based on just what the user is interacting with. Preliminary experiments
demonstrated the noise tolerance, high accuracy of activity space detection, and the
ability to rapidly handle large amounts of data. Though we focused on human activi-
ties with things, other activities that are independent of things remain to be recog-
nized. Such activities may depend on other entities such as human or time context and
in that case, our approach based on ontology and topic detection may be applicable.

References

1. Curry M.: The Work in the World — Geographical Practice and the Written Word. Univer-
sity of Minnesota Press, ISBN 0-8166-2665-0, 1996.

2. EPC Global: http://www.epcglobalinc.org/

3. Fishkin K., Jiang B., Philipose M., Roy S.: I Sense a Disturbance in the Force: Unobtru-
sive Detection of Interactions with RFID-tagged Objects. Proc of 6th Intl. Conference on
Ubiquitous Computing (UbiComp2004), pp.268-282, 2004.

4. Gibson J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Assoc Inc,
ISBN: 0898599598, 1979.

5. Gruber T.: A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993.

6. McCallum A., Nigam K.: A Comparison of Event Models for Naive Bayes Text Classifica-
tion. Proc. of Intl. Workshop on Learning for Text Categorization in AAAI-98, 1998.

10

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.
20.

21.

22.
23.

N. Yamada et al.

Moore D., Essa 1., Hayes M.: Exploiting Human Actions and Object Context for Recogni-
tion Tasks. Proc. of 4th Intl. Conference on Computer Vision (ICCV’99), 1999.

. Mizoguchi R.: Tutorial on ontological engineering Partl: Introduction to Ontological En-

gineering, New Generation Computing, OhmSha&Springer, Vol.21, No.4, pp.365-384,
2003.

Mizoguchi R.: Tutorial on ontological engineering Part2: Ontology development, tools and
languages, New Generation Computing, OhmSha&Springer, Vol.22, No.1, pp.61-96, 2004.
Mizoguchi R.: Tutorial on ontological engineering Part3: Advanced course of ontological
engineering, New Generation Computing, OhmSha&Springer, Vol.22, No.2, 2004.

Nishida Y., Kitamura K., Hori T., Nishitani A., Kanade T., Mizoguchi H.: Quick Realiza-
tion of Function for Detecting Human Activity Events by Ultrasonic 3D Tag and Stereo
Vision. Proc. of 2nd IEEE Intl. Conference on Pervasive Computing and Communications
(PerCom2004), pp. 43-54, 2004.

PML Core Specification 1.0: http://www.epcglobalinc.org/standards_technology/Secure/
v1.0/PML_Core_Specification_v1.0.pdf

Schilit B., Adams N., Gold R., Tso M., Want R.: ParcTab Mobile Computing System. Proc.
of 4th Workshop on Workstation Operating Systems (WWOS-1V), pp.34-39, 1993.
Seon-Woo L., Mase K.: Activity and Location Recognition Using Wearable Sensors. Per-
vasive Computing, pp.10-18, Sep.2002.

Stop list: ftp://ftp.cs.cornell.edu/pub/smart/english.stop

The National Museum of Ethnology: Seoul Style 2002. ISBN: 4915696465, 2002.

Tapia E., Intille S., Larson K.: Activity Recognition in the Home Using Simple and Ubiq-
uitous Sensors. Proc. of 2nd Intl. Conference on Pervasive Computing 2004 (Perva-
sive2004), pp.158-175, 2004.

Tuan Y.: Space and Place: The Perspective of Experience. ISBN: 0816638772, 1977.
Ubiquitous ID Center: http://www.uidcenter.org/

Ueda N., Saito K.: Singleshot detection of multi-category text using parametric mixture
models. Proc. of 8th Intl. Conference on Knowledge Discovery and Data Mining
(SIGKDD2002), pp. 626-631, 2002.

Ward A., Jones A., Hopper A.: A New Location Technique for the Active Office. IEEE Per-
sonal Communications, Vol. 4, No. 5, pp.42-47, 1997.

Weiser M.: The Computer for the 21st century. Scientific American, pp.94-104, Sep.1991.
WordNet: http://wordnet.princeton.edu/

Baton: A Service Management System for Coordinating
Smart Things in Smart Spaces

Jingyu Li and Yuanchun Shi

Key Laboratory of Pervasive Computing, Ministry of Education,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
lijingyu03@mails.tsinghua.edu.cn, shiyc@tsinghua.edu.cn

Abstract. Smart spaces are open complex computing systems, consisting of a
large variety of cooperative smart things. Central to building smart spaces is the
support for sophisticated coordination among diverse smart things collaborating
to accomplish specified tasks. Multi-agent systems are often used as the soft-
ware infrastructures to address the coordination in smart spaces. However, since
agents in smart spaces are dynamic, resource-bounded and have complicated
service dependencies, current approaches to coordination in multi-agent sys-
tems encounter new challenges when applied in smart spaces. In this paper, we
present Baton, a service management system to explicitly resolve the particular
issues stemming from smart spaces while coordinating agents (delegating smart
things in smart spaces). Baton is designed as a complement to coordination ap-
proaches in multi-agent systems with a focus on mechanisms for service dis-
covery, service composition, request arbitration and dependency maintenance.
Baton has been now deployed in our own smart spaces to achieve better coordi-
nation for smart things.

1 Introduction

Smart Spaces [1] are typically open, distributed, heterogeneous and dynamic computing
systems, which can be conceived as cooperating ensembles of a great variety of smart
things, striving to achieve different missions. Accordingly, when building smart spaces,
a fundamental aspect should be to support sophisticated coordination among diverse
smart things working together towards accomplishing specified tasks. Many research
projects have adopted multi-agent systems to enforce the coordination in smart spaces
[2][3][4], where smart things are delegated by Agents, who provide services and con-
sume services, and are coordinated in terms of service dependencies. However, existing
coordination mechanisms of multi-agent systems need to be enhanced to cope with the
particular situations when coordinating smart things in smart spaces [5].

1) Smart spaces are open and dynamic environments, where smart things (i.e. a smart
phone) may enter or leave at will. Along with the smart things’ appearance or ab-
sence, services provided by them are dynamically available or disappearing in a
smart space, making the service consumers experience discontinuous services and
thus tampering with the consumers’ tasks. As a result, coordination in smart spaces

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 11-20, 2005.
© IFIP International Federation for Information Processing 2005

12 J.Liand Y. Shi

needs to continuously maintain the service dependencies among smart things in
spite of variations of service providers.

2) Smart things in smart spaces are resource-bounded since they are integrated with
physical environments where physical resources are limited in number and have
many physical constraints. So when there are more requests than a service provider
can handle, for example, a video player, an email notifier and a file controller si-
multaneously require to use the only wall-sized display of a smart space, service
request collisions will be incurred. Therefore, coordination in smart spaces should
try to resolve request collisions and ensure that each consumer can get its deserved
services so as to satisfy its service dependencies.

3) Besides the simple case in which a requested service can be directly provided by a
single smart thing, smart spaces often encounter more complex situations where the
requested service has to be fulfilled through the orchestration of multiple smart
things conforming to certain control logic. A typical scenario is that a user may
submit a PPT-Display service requirement, which must be satisfied by cooperating
at least a File Reader and a Projector, or more considerately, a lamp controller (to
dim the light for better vision) , a laser pointer (to control the PPT files) and so on.
Consequently, to form new high-level services, coordination in smart spaces needs
to comply with some coordination rules in addition to simple service dependencies.

Some of the existing multi-agent systems [13] perform agent coordination by
means of high-level agent communication language and conversation protocols, such
as FIPA ACL and KQML, which assumes that the interaction patterns are established
in a priori and thus doesn’t appropriately support the notion of openness and dynamic-
ity [6]. OAA [2] provides a loose-coupling framework to accommodate dynamic
agents and utilizes a “delegating computing” notion to coordinate agents, but doesn’t
deeply consider the problem of service request collisions. Metaglue [3] enforce its
agent coordination with the assistance of a dedicated resource management system,
called Rascal. Rascal [7] deals with many of the issues pertinent to smart spaces when
coordinating agents, such as resolving request collisions, however, it doesn’t take
many considerations on composing several services to fulfill a potential request [12],
which are common cases in smart spaces and doesn’t pay much attention to maintain-
ing service dependencies when agents join or leave smart spaces.

In this paper, we present Baton, a service management system to explicitly address
the particular issues in smart spaces. Baton can be regarded as a complement to coor-
dination approaches of multi-agent systems with a focus on mechanisms for service
discovery, service composition, request arbitration and dependency maintenance.
Baton is implemented on Smart Platform [4], which is a multi-agent system designed
as the software infrastructure for our own smart spaces (Smart Classroom [8] and
Smart Meeting Room [9]), where agents are loose-coupled and interact in a black-
board pattern.

The remainder of this paper is organized as follows: section 2 first defines some
basic concepts, then presents an overview of the structure of Baton, and gives a de-
tailed description of its two major components, Knowledge Base and Service Broker,
which play key roles in addressing the particular issues when coordinating agents in
smart spaces. Section 3 concludes the whole paper and discusses our future work.

Baton: A Service Management System for Coordinating Smart Things in Smart Spaces 13

2 Architecture of Baton

2.1 Basic Concepts

Before detailed introduction of Baton, we’d like to clarify several concepts relating to
our work.

1.

Agents. Agents are basic functional units in smart spaces, who provide services
and in the meanwhile, consume services. Note that all the smart things are encap-
sulated as agents in our smart spaces. We assume that agents in smart spaces are
trusted and friendly -- they can honestly express their service needs and capabili-
ties, and release the services when they have finished their jobs or when some oth-
ers need those services badly.

. Services. Services are well defined functionalities provided by smart things, dele-

gating by agents. An agent can provide one or more services, and a service may be
provided by a number of agents. For example, a smart mirror may provide face
recognition service and experience capture service, while a controlling service can
be provided by a laser pointer or a speech recognizer. Services are the interfaces
through which agents interact and cooperate with one another.

. Atomic Service and Composite Service. An atomic service can be provided by a

single agent, while a composite service has to be fulfilled through the teamwork of
multiple agents. For example, in an automated office [14], a message notification
service needs to be accomplished by at least a message receiving agent, a user loca-
tion detection agent and a text or speech output agent.

2.2 Structure

The architecture of Baton is shown in Figure 1. Each of the smart spaces needs to run
an instance of this architecture so as to perform its service management.

enforee seryice reservabions IE .

SErVice n:qunsn S-Ln'lca' maiehing]
Request Sewlm Knowladge
Analyzer Broker Base

=iy e roquutnrhlirarim

service distribution commands

service status

serviee variations

Fig. 1. Architecture of Baton

14 J.Liand Y. Shi

Baton consists of five components, which are Knowledge Base, Service Broker,
Request Analyzer, Service Monitor and Service Adaptor. For the sake of efficiency,
each of these components is encapsulated as a single agent, distributed among differ-
ent devices and cooperating to fulfill the tasks of Baton.

Knowledge Base stores all the information about the services registered by agents,
and performs the service-request matching. Service Broker is the core part of Baton,
and takes charge of choosing the most suited services, deciding who should get the
requested service when service request collision happens and constructing composite
services. In fact, Service Broker (enveloped by dashed lines) may be extended to
several distributed federated cooperating Service Brokers when the smart spaces be-
come larger or there are more services. Request Analyzer translates the service re-
quests into internal representations that can be parsed by Service Broker. Service
Adaptor here is responsible for maintaining the service dependencies among agents in
case of changes, and mainly considers two situations: (1) if a previous service request
hasn’t been satisfied, then once the desired service appears in the system, Service
Adaptor will help to establish this service dependency; (2) if a service consumer loses
its service while it is being served, Service Adaptor will try to find another substitute
to continue this service. Service Monitor monitors and collects the service information
in a real-time fashion. We are now extending Service Monitor from a component in
Baton to a visualized tool, through which we can see clearly what kinds of services
are active in a smart space, what they can do, and what status they are in.

In the following sections, we will give a further discussion on the two major com-
ponents of Baton, the Knowledge Base and the Service Broker.

2.3 The Knowledge Base

Knowledge Base contains the information of both atomic services and composite ser-
vices, and thus is the basis on which Baton makes all its decisions when coordinating
agents. Atomic service information comes from the service descriptions submitted by
agents when they first participate in a smart space, and is updated by agents themselves
when change occurs in their lives. While composite service information is the knowl-
edge about how to construct a composite service, which may include what atomic ser-
vices are needed and what their logical relationship is to form this composite service.

Service Descriptions. We have recognized that the descriptions of services should
mainly cover the following two aspects:

1) Inherent information. Inherent information describes the inherent features of a
service, including service name, attributes and values, maximum capacity, pro-
vider, and service dependencies, which specify what other services are needed to
provide this service, for example, the Speaker Recognition agent in Smart Class-
room [8] often depends on the aid of the User Profile agent to correctly recognize
the speaker. Inherent information also includes the interface information, which
specifies how the service should be accessed and interacted with. With the purpose
of achieving the automatic service invocation and interoperation, we utilize OWL-
S [15] as the description language to describe the inherent information of a service.

2) Dynamic information. Dynamic information reflects the runtime states of a ser-
vice, which describes to what extent the service has been used and how many of its

Baton: A Service Management System for Coordinating Smart Things in Smart Spaces 15

service dependencies have been satisfied. A service can be free, reserved, busy or
busy reserved, its dependencies can be satisfied, unsatisfied or satisfying, and its
current available capacity varies with its workload. Dynamic information is initial-
ized as free, unsatisfied and maximum capacity, and is dynamically updated by the
service provider in case of changes. Since OWL-S doesn’t take many considera-
tions on the runtime status of a service, we use XML language to describe the dy-
namic information to supplement the description of a service. Baton keeps track of
the services by examining the descriptions of their dynamic information, which re-
veal every detail of the services in their whole lives.

Knowledge Representation for Composite Services. To accurately express the
complicated relations among atomic services cooperating to perform different
composite services, we borrow the idea of ConcurTaskTrees [10] to model a
composite service. The tree-like structure with relational operators proposed by
ConcurTaskTrees guarantees the integrity and clarity of the specifications of a wide
variety of composite services. The nodes and relational operators used in the model of
our composite service trees are defined as follows:

1) CS. CS delegates a composite service to be constructed, which can be a root node
or an internal node of a composite service tree.

2) AS. AS is an atomic service, always being a leaf node of a composite service tree.

3) The operators describing the temporal relationships of the services are only applied
to those on the same level of a composite service tree. In view of the current smart
spaces, we only define four operators:

® S1 >> S2: Service S2 is activated when S1 terminates. For example, in Figure 2(a),
as with a PPT-Display service, the projecting service only makes sense after the
File-access service finishes.

* S1 []>> S2: When service S1 terminates, it provides some values for S2 besides
activating it. A typical example is shown in Figure 2(b), a Bitmap-to-PPT trans-
formation service can be performed by a Bitmap-to-x service first, and then an x-
to-PPT service. Here x can be any transitional format, such as gif format.

® S1 | S2: choosing. As is shown in Figure 2(a), PPT-controlling can be performed
by hand-free controlling like speech command, or manual controlling like pointing.

* [S]: S is optional. In Figure 2(a), marking service is optional and is activated only
if the consumer needs to make annotations on the PPT file.

C351: PPT-Display service 81
C32: PPT controlling service
C53: Bitmap-ta-PPT AS1 == ASZ >> CS2 [AS]]
AS1: File access service
ASZ: Projecting service AS4 | ASS
AS3: Marking service {a)
AS4; Pointing
AS85: Speech command cs3
ASG: Bitmap-to-x
AST: x-to-PPT ASE llI=> AST
(B

Fig. 2. Examples of composite service trees

16 J.Liand Y. Shi

The knowledge for a composite service may either be well-predefined by applica-
tion designers, who just need to specify the composition strategy by using the Con-
curTaskTrees model (e.g. Fig.2.(a)), or be generated based on the OWL ontology of
the atomic services (e.g. Fig.2.(b)).

In terms of our own smart spaces [8] [9], a number of possible composite services
have been modeled using the above nodes and operators. And for consistency, the Con-
curTaskTrees models are also mapped to OWL-S descriptions. For convenience and
efficiency, the Berkeley DB XML [11], a dedicated database for mastering xml files is
introduced in Baton as the Knowledge Base to maintain the descriptions of all services,
and a query language, Xpath [16] is utilized and extended to access the database.

2.4 The Service Broker

Evaluation for Service Matching. In spite that there may be several candidate
services for a request found in Knowledge Base, it is probable that some of them may
be insufficient and some may be an oversupply. For example, as to a request for a
color printing service, if a color printer doesn’t exist, a black-and-white one can be a
substitute but is inadequate; while as to a request for a video playing service with
maximum frame rate of 30fps, the service offering 40fps will be a waste. Actually,
there exists an affinity between a service and a request --- the more perfectly the
service matches the request, the closer the affinity. Given a request R, a candidate
service S, then Affinity(R, S§) = Match(R, S), where the value of Match(R,S) is
estimated according to several predefined matching rules, Match(R, S) € [0, 1].

In simple cases, Service Broker just picks the free service owning the highest Affin-
ity value above a preset threshold as the final choice for a request. However, if all the
candidate services are being occupied, the process of solving request collisions will be
activated.

Solution for Request Collisions. Services provided by agents in smart spaces are
capacity-limited, so if multiple service consumers request the same service, a verdict
must be made on who should get the service. While solving request collisions, we
recognize that three guidelines should be followed in smart spaces:

1) Agents have different priorities in smart spaces, for example, an agent delegates a
teacher in Smart Classroom has a much higher priority than those delegating stu-
dents. So when different agents contend for the same service, priority is a very im-
portant factor in deciding to whom the service should go.

2) Agents in smart spaces tend to be served continuously, rather than frequently dis-
turbed. So if request collision occurs and service redistribution is inevitable, then the
changes of service dependencies brought by the redistribution should be minimized.

3) Service types in smart spaces are varied, so it is difficult to achieve a global opti-
mal distribution of all services, but reaching an optimal distribution of a single ser-
vice is quite feasible.

According to these guidelines, we take subsequent considerations:

— Service consumers usually have contentment evaluations on the results of their
service requests. Specifically, a contentment evaluation basically relies on whether
the consumer can get its desired service, and how the affinity between the request

Baton: A Service Management System for Coordinating Smart Things in Smart Spaces 17

and the service is like. A formal description of the contentment evaluation is:
Given a request R, a service S, then

Contentment (R, S) = Affinity (R, S) xAvailable (R, S) (D)

Available(R, S) demonstrates that whether service S can be used by R, if yes, then
Available(R, S) = 1, otherwise, Available(R, S) = 0.

— However, since Service Broker has to dynamically adjust the distributions of ser-
vices in response to requests submitted by agents at will, consumers’ contentment
evaluations on a certain service vary from time to time. To be specific, for example,
when the Nth request on service S comes, consumer A’s contentment evaluation on
S may be 0, as its request for S hasn’t been fulfilled; whereas, when the N+1¢h re-
quest on S comes, A’s contentment evaluation may increase to 1 because it has ac-
quired S for some reason, and when the N+2th request comes, S may be taken away
from A, making A quite displeased, and A’s contentment evaluation may decrease
to -1. To reflect that contentment evaluation is changing with new coming request,
we formulate contentment evaluation with a variation of equation (1):

Contentment (R, S, N) = Affinity (R, S)X f(R, S, N))
N indicates the Nth request on S and f (R, S, N) is defined as follows:

f(R,S,N)=|1 if Available(R,S,N)=1
0 if Available(R,S,N —1) = Available(R,S,N) =0 3)
—1 if Available(R,S,N —1) =1& Available(R,S,N)=0

— The goal of Service Broker in solving request collisions is to take every effort to
fulfill each request for a certain service so as to maximize the total contentment
evaluations of all the consumers on this service, and ensure that this service is not
exploited beyond its capacity. Therefore, the problem of solving request collisions
turns out to be a constraint satisfaction problem. It is reasonable to believe that
when two consumers request the same service, distributing the service to the one
who has a higher priority will take more benefits to the sum of contentment evalua-
tions, so the priority value of each consumer can be assigned as the weight of its
contentment evaluation when calculating the totals. Consequently, as with a given
service S, when the Nth request on S comes and incurs a collision, the goal of Ser-
vice Broker can be clearly illustrated as:

Max C (S, N) = X [Priority (Ri) x Contentment (Ri, S, N) |

s.t. X [Require(Ri, S) x Available (Ri, S, N)] £ Maximum Capacity(S);
Ri € RA = {Requests on S from service consumers}; “)
Available (Ri, S, N) €{0,1};
i=1,2..IRAl;

Therein, Require(Ri, S) specifies the requirement that Ri poses on S, which will be
discussed later.

— In terms of capacity, we identify two distinct categories of services:

1. Capacity of a service means the largest number of consumers that the service can
support in parallel. For example, the capacity of a speech recognition agent may be
that it can simultaneously handle three channels of speech stream. As to this case,

18 J.Liand Y. Shi

any consumer can only get a copy of the service, thus Require(Ri, S)=1, and the
constraint condition in (4) can be simplified to:

X Available (Ri, S, N) £ Maximum Capacity(S) = 3.

2. Capacity of a service may have no explicit confinement on the number of con-
sumers, but is limited by its own capability. For example, a video on-demand agent
can provide video data accessing service with a bandwidth of at most /000KBps,
and it can serve any number of consumers as long as the total sum of the bandwidth
used by these consumers doesn’t exceed /000KBps. In this case, Service Broker
only checks whether the service can satisfy the minimum need of a request, and
thus Require(Ri, S) equals the minimum requirement that Ri poses on S, for exam-
ple, consumer A may request a video data accessing service with a rate at least
300KBps, consumer B may request at least 400KBps and consumer C at least
500KBps. Thus the constraint condition in (2) will be expressed as:

® 300xAvailable(Ra,S,N)+400x Available(Rb,S,N)+500x Available(Rc,S,N) < 1000.

As a matter of fact, looking into equations (2), (3) and (4), we can see that only
Available(Ri, S, N)s are variables, therefore, solving a request collision turns to be
solving a simple linear programming problem with the variable domain to be {0,1}.
The solutions can demonstrate which consumer can get the desired service when there
is a collision. For example, a solution, Available(Ra,S,N)=0, Available(Rb,S,N)=1,
Available(Rc,S,N)=1, means only consumer A can not get service S.

Algorithm for Service Brokering. A service request is handled by Service Broker
as a transaction because we believe that the process of satisfying a request should be

function SatisfyRequest (rd) returns a service aggregation or failure:
inputs; rd, request description from a consumer,
return Commit(GetService(rd)); // two phase commit

function GetService(rd) returns a service aggregation;
§4 = {}; initial service aggregation
service € the scrvice that matches »d;
if service doesn’t exist, them S4={}, return 54;
if service is an atom service, then 54 = 54 U {service!, return S4;
if service is a composite service, then
i
traverse the tree of this compeosite service using preorder traversal;
for cach node i in the tree do
rdx € service description of node 7 ;
GetService(rdx);
h

function Commit (S4) returns a solution or failure:

inputs: 54, scrvice aggregation containing all the desired atom scrvices to
construct a composite service:

if S4 = {}, return failure;

reserve all the services in S4;

if any collision occurs when reserving, then solve the collisions using linear
programming model;

if all services are reserved successfully, then return 5.4;

if any service can not be reserved, then return failure:

Fig. 3. Algorithm for service brokering

Baton: A Service Management System for Coordinating Smart Things in Smart Spaces 19

indivisible, or we say atomic. Service Broker adopts a two-phase commit algorithm to
guarantee the atomicity of the procedure of satisfying a request, in which Service
Broker first collects and then reserves all the requested services, and according to the
reservation responses from service providers, decides whether the request can be
fulfilled. A short description of the algorithm is shown in Figure 3. For a composite
service, when all its desired atomic services are available, Service Broker will take
steps to coordinate agents providing these services to perform the composite service
based on its knowledge description.

3 Conclusion and Future Work

When multi-agent systems are situated in smart spaces to address the coordination of
various smart things, agent coordination approaches encounter new challenges. In this
paper, we present Baton, a service management system to enhance the coordination
mechanisms of multi-agent systems in smart spaces. Services in Baton are described
by OWL-S language, which makes the processes of service discovery and composi-
tion more accurate and efficient. Solutions for request collisions are modeled as sim-
ple linear programming problems, which makes it easy to solve the collisions and in
the meanwhile, keep changes of service dependencies to the minimum. The process of
fulfilling a request is handled as a transaction, and a two-phase commit algorithm is
utilized to assure its atomicity. Currently, Baton has been built into our Smart Class-
room [8] and Smart Meeting Room [9] to manage the services of the systems so as to
sustain better coordination of the smart things in smart spaces.

We are now trying to improve the dynamic service composition strategy by using
the semantic information of services, and will add proper access controls of services
to Baton so as to settle the security problem in smart spaces.

References

1. NIST Smart Space Laboratory. http://www.nist.gov/smartspace

2. David L. Martin, Adam J. Cheyer, Douglas B. Moran: The open agent architecture: A
framework for building distributed software systems. Applied Artificial Intelligence, 13(1-
2): 91-128, January-March 1999

3. Brenton Phillips. Metaglue: A programming language for multi-agent systems. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1999

4. Xie WK, Shi Y C, Xu GY, et al: Smart Platform - A Software Infrastructure for Smart
Space (SISS). The Fourth International Conference on Multimodal Interfaces, Pittsburgh,
USA, 2002

5. Andrea Omicini, Sascha Ossowski: Objective versus Subjective Coordination in the Engi-
neering of Agent Systems. The AgentLink Perspective: pp. 179 - 202

6. Martin Fredriksson, Rune Gustavsson, Alessandro Ricci: Sustainable Coordination. The
Agent Link Perspective: pp. 203 - 233

7. Krzysztof Gajos: Rascal — A Resource Manager for Multi-Agent Systems in Smart Spaces.
CEEMASO1, Krakow, Poland, 2001

8. Yuanchun Shi, Weikai Xie, Guangyou Xu, et al: The Smart Classroom: Merging Tech-
nologies for Seamless Tele-Education. IEEE Pervasive Computing, vol. 2, no. 2, pp. 47-
55,2003

20

10.

11.
12.

13.
14.
15.
16.

J.Liand Y. Shi

Xin Xiao, Enyi Chen, Yuanchun Shi: Multimedia Communication between Mobile De-
vices and Smart Spaces. The 13th National Multimedia Conference, Ningbo, China

F. Paterno, C. Mancini, S. Meniconi: Concur-TaskTrees: A Diagrammatic Notation for
Specifying Task Models. Proc. Interact, Sydney, 1997

Berkeley DB XML Download page. http://www.sleepycat.com/download/xml/index.shtml
Robert Kochman: Decision Theoretic Resource Management for Intelligent Environments.
http://www.csail.mit.edu/research/abstracts/abstracts03/interfaces-applications/interfaces-
applications.html

Jade Technical Overview. http://www.jadeworld.com/downloads/Jade6/technicaloverview
Automated Office. http://www.ai.sri.com/~o0aa

OWL-S 1.1 Release. http://www.daml.org/services/owl-s/1.1

XML Path Language Version 1.0. http://www.w3.org/TR/xpath

An Extensible Ubiquitous Architecture for Networked
Devices in Smart Living Environments

Thierry Bodhuin, Gerardo Canfora, Rosa Preziosi, and Maria Tortorella

RCOST - Research Centre On Software Technology,
Department of Engineering, University of Sannio,
Via Traiano, Palazzo ex-Poste — 82100, Benevento, Italy
{bodhuin, canfora, preziosi, tortorella}@unisannio.it

Abstract. Continuous technological innovation is entailing that living
environments be equipped with products that improve the quality of daily life.
Unluckily, the adopted solutions do not always represent an adequate support
and people continue to execute repetitive tasks that software infrastructures
could perform automatically. This is partially due to the fact that the existent
technological solutions cannot be always integrated in a coherent
communication platform, as they use proprietary protocols and ad hoc
implementations not easily reusable. This paper proposes an extensible
ubiquitous architecture for networked virtualized devices in smart living
environments. The aim is realizing ubiquitous applications and integrating
networked devices through an architecture that hides their complexity and
heterogeneity. Several intelligence techniques have been integrated for offering
a smart environment through the use of automatic learning techniques.

1 Introduction

People thirst for technological products helping them to have a better quality of the
everyday life. They equip with these products their professional, personal, transit,
transport, and so on, living environments. Academic and industrial world feel inclined
to promote technological progress and terms as home automation, domotic system,
smart home are diffusing in the industry, while expressions as pervasive computing,
ubiquitous computing, nomadic computing, ambient intelligent, context-aware
computing, augmentation of the real world, indicate academic research topics. The
available technologies do not always represent an adequate support as they are often
unable to interact with other products made by different makers and/or based on
different solutions. Their communication and integration too often requires human
intervention, and people are discouraged by the complexity of the new Information
and Communication Technologies (ICT) facilities and by the redundancy of the
needed administrative and configuration activities. In addition, the use of proprietary
communication protocols in software architectures for smart environments does not
facilitate the interoperability of the networked devices and the reusability and
maintainability of software packages forming part of the architecture. This forces
developers to perform repetitive implementation tasks.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 21 -30, 2005.
© IFIP International Federation for Information Processing 2005

22 T. Bodhuin et al.

The work presented in this paper has been carried on within the Demonstrator
project of the Regional Centre of Competence in Information and Communication
Technology, CRdC ICT. This Centre involves many researchers and industrial
partners of the Campania Region in Italy. It aims at analysing, defining and realizing
hardware and software platforms for permitting the provision of networked services
and the implementation of advanced technologies. In particular, the activities carried
on in the unit of the University of Sannio, RCOST (Research Centre On Software
Technology), aim at developing a platform in the field of home automation that is
endowed with different levels of intelligence. It addresses the following aspects:
virtualization of devices, for defining a generic functional characterization of the
networked devices, making the applications independent from the characteristics of a
particular device and supporting implementation tasks of software developers;
abstract description of devices, for defining a semantic characterization of the
networked devices, making applications more aware of the triggered actions in the
physical world and supporting human intervention and interaction; abstract
description of services, for providing a functional and semantic characterization of the
services with reference to their relations with the other services and devices.

The proposed software architecture aims at facilitating the interoperability of
networked devices, based on different technologies, and produced by different
manufacturers; offering a middleware supporting different levels of intelligence as
awareness, reactivity and adaptiveness; and permitting to activate services, through
suitable applications respect to the typology of the client accessing it.

In the following, Section 2 presents some related work, Section 3 describes the
software architecture, Section 4 discusses an example of virtualization, and the final
section summarizes the main conclusions and sketches future directions of research.

2 Related Work

The increasing request of telecommunication solutions conducted to the development
of sophisticated networked heterogeneous devices, supporting one or more of the
available communication protocols (e.g., X-10, EIB, LonWorks, Ethernet-TCP/IP)
and/or service and discovery-focused standards (e.g., HAVi, Jini, OSGi, UPnP).
Currently, these standards are complementary, rather than competitive, even if they
are sometimes partially overlapped in some provided facilities. The use of networked
devices supporting different protocols and standards requires the adoption of more
complex networking techniques, facilitating the interaction and interoperability of the
devices and their accessibility from both local-area and wide-area networks.

In this scenario, it would be expected that different interconnected networks,
supporting distinct features of smart living environments, exist. Consequently,
manufacturers of different communication technologies, such as LonWorks and EIB,
continuously upgrade their systems for increasing the reciprocal interoperability [4]
and allowing devices from different vendors to communicate each other. However,
the communication between devices is still not supported [4, 10, 11] in many cases.
For example, it is possible to find living environments including EIB controlled
devices, Ethernet networked devices and Bluetooth mobile devices, but it is unlikely
to find living environments where other components, such as a X-10 and a EIB
controlled lamp, interoperate.

An Extensible Ubiquitous Architecture for Networked Devices 23

In many cases, the effort addresses the integration of various physical elements,
including sensors, actuators, microcontrollers, computers and connectors [5]. But,
many of the proposed solution are mostly manual and ad-hoc, lack of scalability and
are too close to the third parties. Likewise, each time a new component is inserted into
the considered space, conflicts and uncertain behaviours may be verified in the overall
system, requiring programming and testing interventions. For facing these problems, a
middleware automating integration task is required for ensuring pervasive space
openness and extensibility [6]. It must enable programmers to dynamically integrate
devices without interacting with the physical world, and, then, decouple programming
tasks from construction and integration of physical devices.

The typical approach that is applied regards the connection of sensor-actuator
devices using classical network infrastructures, such as OSI, CORBA, and so on, at a
low level. Unfortunately, the use of these kinds of infrastructures does not ease the
integration of the devices. The approach in [12] is based on the integration of the
devices at high-level, and ad-hoc networking infrastructures that dynamically
integrate sensors and actuators into complex interactive systems while providing
services and interfaces.

The architectural design presented in this paper has been defined for partially
solving the problems of integrating devices, and for controlling and monitoring
personal living environments from heterogeneous terminals. It considers requirements
of interoperability, portability, extensibility, reusability and maintainability from the
developer’s point of view and usability and adaptability from the end-user’s point of
view. In addition, the proposed solution is based on the OSGi (Open Service Gateway
initiative) [9], an emergent open architecture, which permits the deployment of a large
array of wide-area-network services to local network services such as smart homes
and automobile [5]. OSGi defines a lightweight framework for delivering and
executing service-oriented applications. It presents advantages, such as: platform
independence, different levels of system security, hosting of multiple services and
support for multiple home-networking technologies.

3 Extensible and Ubiquitous Architectural Design

Figure 1 shows the proposed extensible ubiquitous architectural design. The various
layers are grouped in six levels, going from A to F, and they are next presented.

3.1 LevelsF,E,D

Level F in Figure 1 depicts the heterogeneous networked devices to be accessed.
They may be produced from different manufacturers and/or using different
communication protocols and, service and discovery-focused standards. Level E
includes the needed drivers, grouped in two layers: a hardware layer and a layer of
network IP cards, audio cards, RS-232 ports, etc., necessary for connecting the
devices of level F. Level D concerns the portability of the implemented software and
includes the operating system and the Java Virtual Machine (JVM).

24 T. Bodhuin et al.

4 4 Levels minimizing repefitive tasks of
v

2 r2 common pecple and realizing the
A requirements of usability and
7

S v — | adaptability

B Level minimizing repefitive tasks of
sty] designers and developers and realizing the
o requirements of reusability and
maintainability

Levels implementing the requirements of
extensibility, reusability and
interoperability.

Levels implementing software
portability

Levels containing the drivers, hardware,
network IP card, audio cards, RS-232
ports.

Networks of interoperating heterogeneous

networked electronic devices coming from

different manufacturers. The interoperability

of this level simplifies the common people’s
purchases.

Tdentificatio
system and

Fig. 1. Extensible and ubiquitous architectural design

3.2 LevelsA,B,C

Levels A, B and C form the Domus intelligent Keeper (DiK) software infrastructure.
DiK is composed of three main components: a framework component, which aims at
minimizing the activities of developers and helping the extensibility and ubiquity
capability of the architecture; a service oriented applications component which uses
the framework and aims at simplifying and minimizing human intervention and
interaction activities; and an intelligence component aiming at decreasing repetitive
daily activities and facilitating the automatic evolution of the software infrastructure,
on the basis of people’s continuous changing habits and modifications of the
networked devices adopted in the living environments.

Level C assures the characteristic of interoperability of the proposed architectural
design. It includes the OSGi (Open Service Gateway initiative) Framework [9]
enabling the connectivity and management of the devices based on different
transmission technologies. It defines a platform model where the software
applications are installed and executed. These applications are Java archives, called
bundles, which cooperate to the implementation of a service. The OSGi Framework
represents a common environment hosting bundles. The bundles use: the resource of
the OSGi Framework, all the standard Java libraries, virtualized devices and service
interfaces. In addition, they access level E and, consequently, monitor and control the
networked devices of level F. In particular, the OSGi Framework is the part that
changes a JVM from a single application environment into a multiple one. The
advantages are many. Actually, running multiple applications in a single JVM means
less process swaps, fast inter-application communication, and significantly less
memory consumption. Moreover, the OSGi Framework makes possible the
interoperability among different devices, service providers, network operators, service
gateway manufacturers, and home appliance manufacturers. Level C in Figure 1
manages the life cycle of the bundles and solves their interdependence, keeps a

An Extensible Ubiquitous Architecture for Networked Devices 25

registry of services and manages the events informing the listeners when the state of a
bundle is changed, when a service is stored and when an error occurs. Besides the
usage of OSGi bundles, level C includes an alternative device access solution based
on the Java Remote Method Invocation (RMI) and the Jini technology. RMI/Jini and
OSGi solutions are not the only ones to be considered for level C, as this level is a
dynamic container with changeable content according to the technological progress so
that it can deliver access to services over any network and protocol. Level C was
developed with the intention of ensuring the satisfaction of the extensibility
requirement. This aspect is strongly related to the capability of evolving the software
when new technologies are introduced and needs of the end-user change. The
extensibility requirement is also preserved by the usage of class libraries in the level
C. In this manner, developers can take advantage from the object-oriented techniques,
which facilitate a more modular designing and encourage the use of constructs related
to inheritability for better organizing the source code, avoiding repetitions, gaining
time and reducing development costs.

Level B, including the Devices Virtualization layer, is located between the bundles
of the OSGi Framework and Level A of the services accessible from the user. Its
objective is to provide an abstraction of the devices of level F, by generalizing their
behaviour independently from their identity (or type), nature and communication
protocol, and hiding the complexity of the reciprocal communications. In particular,
two different devices have different identity expressed from a set of attributes like:
name, serial, version, model, manufacturer, etc. Two devices with different nature are
logically connected to two distinct physical concepts. Nevertheless, two different
devices with distinct type and nature may share the same actuation mechanism. For
example, a networked lamp is a device different from an alarm. The lamp is logically
connected to the electric light concept and may change the state of the environment
where it is installed by providing, or not providing, light on the basis of the switch
on/off actuation mechanism. The alarm is logically connected to the sound concept
and may change the state of the environment hosting it by providing or not providing
noise in accordance with its open/close actuation mechanism. The lamp and alarm are
devices of different identity, nature and semantic, but share an actuation mechanism
with the same working procedure. So, it is possible to extract a functional view
permitting a first classification of the devices grouping them in two families: Sensors,
capturing information from the networked devices and/or the environments, and
producing events; Actuators, consuming events and, triggering actions on the
networked devices in the considered environments. Sensors and Actuators can be still
specialized in other objects. For example, the networked rolling shutter has a
mechanism of actuation different from that of the networked lamp and alarm. It
cannot be defined by two values but considering a set of valid values. For instance,
the rolling shutter may have five possible valid values, absent, low, medium, high,
highest, modelling five different positions and brightness degrees. Besides the
Sensors and Actuators, complex devices exist in the living environments. They are the
result of the composition of more elementary devices. For instance, a camera is
defined as a complex device with different elementary actuation mechanism related to
different functionalities, as later described. Figure 2 exhibits a view of the device
interface hierarchy. It shows that the specialization of the generic devices of type
Sensor and Actuator is reasonable. For example, the networked lamp is a device of

26 T. Bodhuin et al.

Actuator type, which can be described by a BinaryActuator interface, able to assume
only two valid values. While the rolling shutter is a device of Actuator type
describable by a SetValuesActuator interface being able to assume different discrete
defined values. Furthermore, a device with values inside a given continuous range can
be characterized by a RangeValuesActuator interface. Besides those discussed, further
specialization levels can be identified. In addition, Figure 2 highlights that Interface
Device is characterized by methods adding/removing the EventListener objects and
used from clients for registering/un-registering a listener in Device. Thus, clients can
be notified in a push way of changes in the state of the devices for taking their
decisions. Listener and event interface hierarchies are also defined. Moreover,
interface Device is characterized by getting/ setting methods for accessing and/or
manipulating the identity of a considered device. The identity information is
maintained in the logical layer and its handling is a first step toward the modelling of
devices that considers the semantic aspect.

The interface hierarchy shown in Figure 2 is not complete. It permits the
realization of reusable software components. Furthermore, the Devices Virtualization
layer is still valid, even when the hierarchy is extended for including new devices,
independently from their complexity.

Finally, level A groups the layers oriented to minimize the work of the end-user. In
fact, they allow DiK to adapt a personal living environment to the needs of common
people and/or situations and to simplify the human interaction. Level A includes three
layers named Logical, Services and User Interface (UI).

Logical layer manages and maintains the information regarding the logical internal
characterization of each networked electronic device and the optional logical external
characterization. The internal characterization of a device is defined by its datasheet,
while the external one is described by the logical connections between the considered
device and the physical concepts it can affect. The physical concepts are attributes
characterizing the environment that is external to the device. For example, a
networked rolling shutter is a device internally characterized by the raising behaviour.

<< Interface>> O
Device
+addEventListener (eventListener):void
+getDevicelnfo():Devicelnfo
+removeEventListener(eventListener):void
+setDevicelnfo(devicelnfo:Devicelnfo):void
<< Interface>> () << Interface>> (7) << Interface>> ()
MutiDevices Actuator Sensor
+addDevice (device:Device):void +getState():Object + getState():Object
+getDevice(pos:int): Device +setState(obj:Object):void T
+getDevices():Device[]
“+removeD evice):
<< Interface>> ()
+size()int << Interface>> (0) Setvaluesactuat
etvaluesActuator

T

<< Interface>> (7 +decreaseValue():boolean
BinaryActuator +getRangeValues():RangeValues

+getSetvalues():SetValues
+getValue():Value
+setValue(value):void

+getValue():Value

+getBooleanState():boolean +increaseValue():boolean T
+setBooleanState(state:boolean):void +setValue(value):void .t
+setState(state:boolean):void ?

T.

Fig. 2. A simplified view of device interface hierarchy

An Extensible Ubiquitous Architecture for Networked Devices 27

This behaviour allows the rolling shutter to be (un)rolled at a given grade. In this way,
it allows one to change the state of brightness of a given environment. Therefore a
logical connection exists between the cited device and the solar light physical
concept, which represents its external characterization.

Services layer aggregates functionalities exported from single networked devices
for providing services that are able to promote comfort, safety, security, initial
minimization of human intervention and improved lifestyle for residential end-users.
For instance, if an illumination control service exists in a house, it could promote
comfort in terms of luminosity, while reducing associated cost for producing light in
the area where the householder is located. This service may use: any localization
sensor (e.g., presence sensor, RFID identification) for recognizing human presence in
a given area; a luminosity sensor for knowing if a given luminosity threshold is
achieved; and light actuators, like dimmer or on/off lamp, for reaching the light
condition requested. Aggregating the functionality of networked curtains, rolling
shutters and lamps allow the reduction of the associated cost for reaching a certain
luminosity level, corresponding to the householder wished level of comfort. The
control services use standard control mechanisms with loop control. However, in the
context of home automation networks with slow action to effect, the control services
were enhanced by using neural network for learning the relation between wishes (e.g.,
light condition), context (e.g., sensors, time, occupants), and possible actuations on
the different actuator devices, that are located in the area where the service control
takes place and are connected with the interesting physical aspect (e.g., devices
connected with the illumination aspect). The use of a neural network allows the
control services to achieve more rapidly their objective on slow networks and/or slow
action/effect relation. In addition the Service layer includes a group of intelligent
services permitting to support different levels of intelligence: context-aware,
automated, reactive, adaptive. Whatever intelligence type might be, it requires the
measurement and collection of data, as well as the extraction, aggregation and
abstraction of information. The progress made in hardware technology allows storing
very large amounts of data, while abstracting valuable information is still a very
difficult task. This task is more difficult when applied to data collected when the
people interact with devices and services in the living environments. A high degree of
randomness in the real human life is source of high complexity.

Despite the high degree of randomness, it is possible to identify patterns in the
person’s life [3]. Patterns may represent regular repetitive interactions of the people
with the networked devices. People have habits that are usually sampled in time and
inter-connected with the other people’ habits through various constraints, which are
dependent on the current role and activities that people have when they use the
devices and services of the actual environment. A person’s life can be “sampled” on
the basis of the hours, days, week days or week-ends, seasons, and so on. Human
living environments can be “sampled” based on the location, room or areas, where
federations of devices and persons are defined. The repetition of these patterns may
have a high or low frequency according to the variability of the person’s life. These
facts suggest that person’s life in human living environments can be automatically
“photographed” and patterns captured, processed and transformed in rules for
enabling control systems and autonomously acting, while remaining unobtrusive, in
addressing people’s needs by requesting user’s feedback.

28 T. Bodhuin et al.

One important component of the intelligent services group is a rule engine named
Jess [8] that allow the execution of rules describing relations between events and
actions. The rules may be created by smart environment users, or be automatically
generated by a learning system that was developed on the basis of the WEKA
(Waikato Environment for Knowledge Analysis) tool [14]. This tool provides a suite of
facilities for applying data mining techniques to large data sets for supporting various
tasks including classification, market basket analysis (MBA or association rules),
prediction. Currently, MBA algorithms are used for analyzing end-user patterns.

User Interface layer allows a transparent access to heterogeneous networked
devices installed in living environments from interface AWT/Swing, Web and mobile.

4 An Example

Figure 3 depicts an example of virtualization. It refers to an Axis Video Camera with
Pan/Tilt and Zoom functionalities [1]. The figure is organized in three blocks going
from a) to ¢).

Block b) shows that the Java AxisVideoCamera class is implemented as a
specialization of the MultiDevices class. In particular, it is composed of the following
parts: six RangeValuesActuators, which are specializations of the Actuator class and
virtualize the Pan, Tilt, Zoom, Iris, Focus and Frame/sec functionalities; one
SetValuesActuator, which is a specialization of the Actuator class and virtualizes the
preset position functionality; two BinaryActuators, which are specializations of the
Actuator class and virtualize the Auto iris and Auto focus functionalities; one
VideoSensor, virtualizing the video functionality as a specialization of the Sensor
class. The specific implementation of VideoSensor for the Axis Video Camera
includes the implementation of the Java Media framework DataSource [7] for the
encapsulation of the MJPEG format provided by the Web server included in the
Internet video camera. All the implemented classes include the functional code
needed for the communication between the specific Actuators and Sensors and the
physical Axis Camera, in accordance to the contract between the device
implementation and their clients. Further, they exhibit suitable interfaces, exemplified
by the ¢) block, to the client objects. The implementation of the considered Axis
Camera uses the same actuation mechanisms adopted in other devices, such as the
networked lamp, alarm and rolling shutter, but with a different semantic specification.

Focus Il 1ris Ipan [Titt |zoond Fs _' ___RangeVaIuesActuator
= TN IR T o
Position Preset ... SetValuesActuator o
- E
Video, 3t VideoSensor § E
' § 3
Audio iris | Audio focus _ _ Binary !\Actuator | S
* =
X
. <

a) b) <)

Fig. 3. Camera virtualization: a) mask of functionalities; b) implemented classes; c) interfaces

An Extensible Ubiquitous Architecture for Networked Devices 29

Therefore, a new complex device, different from the Axis camera, can be obtained
simply changing the mask of the functionality shown in block a). This is possible
thanks to the device virtualization process. In particular, the implementation of the
defined classes are generic and provide a generic implementation of the methods for
getting and setting the state of a device, for the (un)registering of listeners and events
notification, related to the modification of the state of a device. Therefore, the device
virtualization process simplifies the reuse of the generic parts of the devices and the
mechanisms notifying change events to the listeners. When the implemented classes
and their interfaces are introduced in the framework of the architectural design shown
in Figure 1, it is possible to get and modify the video camera state trough any kind of
user interfaces. For example, the Axis Video camera provides an http network
protocol interface. Getting and modifying the video camera state (e.g., Rotating the
video camera in PAN/TILT or Zooming), could be performed through the http
interface, and connecting to the URL http://videocamerahost/axis-cgi/com/ptz.cgi?
autofocus=on, sets the state of the BinaryActuator regarding the AutoFocus to ON.
The Video source is acquired in a MJPEG format from an http connection to the
networked video camera (e.g., http://videocamerahost/axis-cgi/mjpg/video.cgi). This
video source is encapsulated inside a Java Media Framework DataSource for
facilitating its integration with the video/audio streaming and the visualization utilities
offered by the Java Media Framework. The video source is transmitted by using the
Real Time Streaming protocol for permitting its visualization through unicast or
multicast connection and in on-demand way. The device virtualization process also
simplifies the implementation of the device remotization for letting it be accessible in
a remote way by using a RMI interface. The actual protocol between the RMI client
and server is defined through the Jini Extensible Remote Invocation [13] that permits
the use of protocols different from the Java specific one, named JRMP.

The described implementation was tested with frame rate of more than 30
frame/sec through Real Time Streaming protocol and replicated with a D-Link DCS
2100+ Wireless Internet Audio/Video Camera, providing the video and audio without
the Pan/Tilt and Zoom functionalities.

5 Conclusions and Future Work

This paper describes an extensible ubiquitous layered architectural design for smart
living environments supporting different levels of intelligence. The technologies used
for developing it, were already used with success in other projects in the ubiquitous
computing context. The main difference respect to the previous usage consists of the
existence of the B layer. It contains the Devices Virtualization layer and is oriented to
decouple the A layers from layers below it. So, several technologies can be integrated
for providing an architecture that is open to different makers and adequately supports
the developers implementation tasks and decisions of the users that can feel free to
buy and insert different new devices in their living environments and make them
operative. Devices Virtualization layer aims at defining a framework for easily
developing services, by decoupling the physical devices from the clients accessing
them, and offering a middleware that permits the activation of a service, choosing a
suitable user interface implementation with reference to the type of client accessing it.
Further, this layer enables DiK to better survive to the changes due to the

30 T. Bodhuin et al.

technological progress. This aspect is very important when a software system with
unstable requirements has to be developed. This is the case of the applications for
living environments, where people’s habits continuously change together with the
physical devices to be used and integrated.

The need of a semantic characterization for networked devices was also
highlighted, for addressing the dynamic discovery of devices and services, promoting
comfort, safety, security, communication, and so on. This aspect is deepened in [2]. It
required investigation in using ontology and specialized representation mechanisms of
contextual information for ubiquitous systems. Finally, the Intelligence services were
developed to achieve automatic generation of rules based on the finding of patterns in
the interaction between users and devices/services in the smart living environment.
Another Intelligence service regarded finding the relations for each physical aspect
(e.g., light, temperature) between sensor level target and possible actuations
considering constraints like cost saving. The Intelligence services use data-mining and
neural networks techniques and apply them for achieving smart living environments
without creating autonomous and non-manageable or understandable environment.

Future work will be considered in the field of embedded software in hardware
devices with distributed infrastructure and intelligence. The aim is to support the
cooperation between these devices to reach some comfort level based on the living
environment occupants without needing of a semi-centralized architecture.

References

1. Axis Communications: Axis Networked Video Camera. http://www.axis.com/products/
cam_213/

2. Bodhuin, T., Canfora, G., Preziosi, R., Tortorella, M.: Hiding complexity and
heterogeneity of the physical world in smart living environments. Submitted. Available
from the authors (2005)

3. Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems, J. of Personal and
Ubiquitous Computing. To appear (2005). http://reality.media.mit.edu/pdfs/realitymining.pdf

4. Fuertes, C. T.: Automation System Perception-First Step towards Perceptive Awareness
Dissertation. Institute of Computer Technology, TU Wien (July 2003)

5. Gu, T., Pung, HK., Zhang, D. Q.: Toward an OSGi-Based Infrastructure for Context Aware

Applications, IEEE Pervasive Computing, Vol.3, No.4 (October-December 2004) 66-74

Helal, S.: Programming Pervasive Spaces, IEEE Pervasive Computing, Vol.4, No.l

(January-March 2005) 84-87.

JavaSoft: Java Media Framework. http://java.sun.com/products/java-media/jmf/index.jsp

Sandia National Laboratories: Java Expert System Shell. http://herzberg.ca.sandia.gov/jess

Open Service Gateway Initiative: The Open Service Gateway. http://www.osgi.org

Russ, G.: Situation-dependent behaviour in building automation. Dissertation, Institute of

Computer Technology, TU Wien (2003)

11. Russ, G., Dietrich, D., Tamarit, C.: Situation Dependent Behaviour in Building
Automation. Proceedings of Workshop EurAsia-ICT 2002, Advances in Information and
Communication Technology, Shiraz, Iran (2002) 319-323

12. Schramm, P., Naroska, E., Resch, P., Platte, J. Linde, H. , Stromberg, G. and T. Sturm,: A
Service Gateway for Networked Sensor Systems, IEEE Pervasive Computing, Vol.3, No.1
(January-March 2004) 66-74

13. Sommers, F.: Call on extensible RMI — An Introduction to JERI, JavaWorld.
http://www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology_p.html (2003)

14. Waikato Environment for Knowledge Analysis Project. http://www.cs.waikato.ac.nz/~ml/

o

_
© 0>

A World Model for Smart Spaces

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. A world model for ubiquitous computing environments is presented.
It can be dynamically organized like a tree based on geographical containment,
such as in a user-room-floor-building hierarchy and each node in the tree can be
constructed as an executable software component. It provides a unified view of
the locations of not only physical entities and spaces, including users and ob-
jects, but also computing devices and services. A prototype implementation of
this approach was constructed on a Java-based mobile agent system.

1 Introduction

Various computing and sensing devices are already present in almost every room of
a modern building or house and in many of the public facilities of cities. As a result,
spaces are becoming perceptual and smart. For example, location-sensing technologies,
e.g., RFID, computer vision, and GPS, have been used to identify physical objects and
track the positions of objects. These sensors have made it possible to detect and track the
presence and location of people, computers, and practically any other object we want
to monitor. There have been several attempts for narrowing gaps between the physical
world and cyberspaces, but most existing approaches or infrastructures inherently de-
pend on particular sensing systems and have inherently been designed for their initial
applications.

A solution to this problem would be to provide a general world model for represent-
ing the physical world in cyberspaces. Although several researchers have explored such
models, most existing models are not available for all ubiquitous computing, because
these need to be maintained in centralized database systems, whereas the environments
are often managed in an ad-hoc manner without any database servers. We also need of-
ten necessary to maintain computing devices and software in addition to modeling enti-
ties and spaces in the physical world. This paper foucsed on discussing the construction
of such a model, called M-Spaces, as a programming interface between physical enti-
ties or places and application-specific services in cyberspaces in ubiquitous computing
environments.

2 Background

Many researchers have explored world models for ubiquitous computing environments.
Most existing models have been aimed at identifying and locating entities, e.g., people

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 3140, 2005.
(© IFIP International Federation for Information Processing 2005

32 1. Satoh

and physical objects and computing devices in the physical world. These existing mod-
els can be classified into two types: physical-location and symbolic-location models.
The former represents the position of people and objects as geometric information, e.g.,
NEXUS [5,2] and Cooltown [6]. A few applications like moving-map navigation can
easily be constructed on a physical-location model with GPS systems. However, most
emerging applications require a more symbolic notion: place. Generically, place is the
human-readable labeling of positions. The latter represent the postion of entities as
labels for potentially overlapping geometric volumes, e.g., names of rooms, and build-
ings, e.g., Sentient Computing [4], and RAUM [3]. Existing approaches assume that
their models are maintained in centralized database servers, which may not always be
used in ubiquitous computing environments. Therefore, our model should be managed
in a decentralized manner and be dynamically organized in an ad-hoc and peer-to-peer
manner. Virtual Counterpart [7] supports RFID-based tracking systems and provides
objects attached to RFID-tags with Jini-based services. Since it enables objects attached
to RFID-tags to have their counterparts, it is similar to our model. However, it only sup-
ports physical entities except for computing devices and places. Our model should not
distinguish between physical entities, places, and software-based services so that it can
provide a unified view of ubiquitous computing environments, where not only physical
entities are mobile but also computing devices and spaces.

The framework presented in this paper was inspired by our previous work, called
SpatialAgents [10], which is an infrastructure that enables services to be dynamically
deployed at computing devices according to the positions of people, objects, and places
that are attached to RFID tags. The previous framework lacked any general-purpose
world model and specified the positions of physical entities according to just the cov-
erage areas of the RFID readers so that it could not represent any containment rela-
tionship of physical spaces, e.g., rooms and buildings. Moreover, we presented another
location model, called M-Space [11] and the previous model aimed at integrating be-
tween software-based services running on introducing computing devices and service-
provider computing devices whereas the model presented in the paper aims at modeling
containment relationship between physical and logical entities, including computing
devices and software for defining services.

3 World Model

This section describes the world model presented in this paper. The model manages the
locations of physical entities and spaces through symbolic names.

Hierarchical World Model. Our model consists of elements, called components,
which are just computing devices or software, or which are implemented as virtual
counterpart objects of physical entities or places. The model represents facts about en-
tities or places in terms of the semantic or spatial containment relationships between
components associated with these entities or places.

— Virtual counterpart: Each component is a virtual counterpart of a physical entity
or place, including the coverage area of the sensor, computing device, or service-
provider software.

A World Model for Smart Spaces 33

compluter B person
room l D] l *ﬁom 3 component c;;mpqne)nt
()| e / component (service) component (person)service
PDA (computer B~ T >—F<—>gomponent (PDA)
| 'componen >,
| (room 2 omp om-3
om@onent (CpmputerA
yau— _ floor component (room 1
| / 74—
D] T D] component (floor)
|

computer A
P room 1

Fig. 1. Rooms on floor in physical world and counterpart components in location model

— Component structure: Each component can be contained within at most one com-
ponent according to containment relationships in the physical world and cyberspace.

— Inter-component movement: Each component can move between components as
a whole with all its inner components.

When a component contains other components, we call the former component is called
a parent and the latter children, like the MobileSpaces model [8]. When physical en-
tities, spaces, and computing devices move from location to location in the physi-
cal world, the model detects their movements through location-sensing systems and
changes the containment relationships of components corresponding to moving entities,
their source and destination. Each component is a virtual counterpart of its target in the
world model and maintains the target’s attributes. Fig. 1 shows the correlation between
spaces and entities in the physical world and their counterpart components. The model
also offers at least two basic events, entering and leaving, which enable application-
specific services to react to actions in the physical world. Since each component in the
model is treated as an autonomous programmable entity, it can some defines behaviors
with some intelligence.

Components. The model is unique to existing world models because it not only main-
tains the location of physical entities, such as people and objects, but also the locations
of computing devices and services in a unified manner. As we can see from Fig. 2,
components can be classified into three types.

— Virtual Counterpart Component (VCC) is a digital representation of a physical
entity, such as a person or object, except for a computing device, or a physical
place, such as a building or room,

— Proxy Component (PC) is a proxy component that bridges the world model and
computing device, and maintains a subtree of the model or executes services located
ina VCC.

— Service Component (SC) is software that defines application-specific services de-
pendent on physical entities or places.

For example, a car carries two people and moves from location to location with its oc-
cupants. The car is mapped into a VCC on the model and this contains two VCCs that

34 I. Satoh

(a)
link

N /S
—>(PC] NCC
computer 1 for L mount 7

bilateral (vCcC

managing space model 1

el .migratio
(b) forwarding (: : ?
(sC] : i
< el —{PC] \ACC
computer 1 for L VCC/
managing space model 1

computer 2 for managing space model 2

c
“ black ‘COmmuncation(oo /7
box :@; vee
TR

computer 1 for
executing its program

computer 2 for managing space model 2

Fig. 2. Three types of proxy components

correspond to the two people. The movement of the car is mapped into the VCC mi-
gration corresponding to the car from the VCC corresponding to the source to the VCC
corresponding to the destination. Also, when a person has a computer for executing ser-
vices, his or her VCC has a PC, which represents the computer and runs SCs to define

the services.

Furthermore, the model also classifies PCs into three subtypes, PCM (PC for Model
manager), PCS (PC for Service provider), and PCL (PC for Legacy device), according
to the functions of the devices. Our model can be maintained by not only the server but

also multiple computing devices in ubiquitous computing environments.

— The first component, i.e., PCM, is a proxy of a computing device maintaining a
subtree of the components in the world model (Fig. 2(a)). It attaches the subtree of
its target device to a tree maintained by another computing device. Some computing

devices can provide runtime systems to execute services defined as SCs.

— The second component, i.e., PCS, is a proxy of the computing device that can ex-
ecute SCs (Fig. 2(b)). If such a device is in a space, its proxy is contained by the
VCC corresponding to the space. When a PCS receives SCs, it forwards these to

the device that it refers to.

— The third component, called PCL (PC for Legacy device), is a proxy of the com-
puting device that cannot execute SCs (Fig. 2(c)). If such a device is in a space,
its proxy is contained by the VCC corresponding to the space and it communicates

with the device through the device’s favorite protocols.

A World Model for Smart Spaces 35

For example, a television, which does not have any computing capabilities, can have
an SC in the VCC corresponding to the physical space that it is contained in and can be
controlled in, and the SC can send infrared signals to it. A computing device can have
different PCs whereby it can provide the capabilities to them.

4 Implementation

To evaluate the model described in Section 4, we implemented a prototype system that
builds on this model. The model itself is independent of programming languages but
the current implementation uses Java (J2SE or later versions) as an implementation
language for components.

Component

Virtual Counterpart Component: Each VCC is defined from an abstract class, which
has some built-in methods that are used to control its mobility and life-cycle. It can
explicitly defines its own identifier and attributes.

class VirtualCounterComponent extends Component {

void setIdentity(String name) { ... }
void setAttribute(String attribute, String value){ ... }
String getAttribute(String attribute) {..}
ComponentInfo getParentComponent () { ... }
ComponentInfo[] getChildren() { ... }
ServiceInfo[] getParentServices(String name) { ... }
ServiceInfo[] getAncestorServices(String name) { ... }
Object execService(ServiceInfo si,

Message m) throws NoSuchServiceException { ... }

Proxy Component: PCs can be classified into three classes, i.e., PCM, PCS, and PCL.
Each PCM attaches a subtree maintained by its target computing device to a tree main-
tained by another computing device. It forwards its visiting components or control mes-
sages to its target device from the device that it is located at, and vice versa, by using the
component migration mechanism. Each PCS is a representation of the computing de-
vice that can execute SCs. It automatically forwards its visiting SCs to its target device
by using the component migration mechanism. Each PCL supports a legacy computing
device that cannot execute SCs due to limitations with its computational resources. It is
located at a VC corresponding to the space that contains its target device. It establishes
communication with its target device through its favorite approach, e.g., serial com-
munications and infrared signals. For example, a television, which does not have any
computing capabilities, can have an SC in the VC corresponding to the physical space
that it is contained in and can be controlled in, and the SC can send infrared signals to it.

Service Component (SC): Many computing devices in ubiquitous computing envi-
ronments only have a small amount of memory and slower processors. They cannot

36 I. Satoh

always support all services. Here, we introduce an approach to dynamically installing
upgraded software that is immediately required in computing devices that may be run-
ning. SCs are mobile software that can travel from computing device to computing
device achieved by using mobile agent technology. The current implementation as-
sumes SCs to be Java programs. It can be dynamically deployed at computing de-
vices. Each SC consists of service methods and is defined as a subclass of abstract
class ServiceComponent. Most serializable JavaBeans can be used as SCs.

class ServiceComponent extends Component {
void setName (String name)
Host getCurrentHost () { ... }
void setComponentProfile(ComponentProfile cpf) { ... }

}

When an SC migrates to another computer, not only the program code but also its
state are transferred to the destination. For example, if an SC is included in a VC
corresponding to a user, when the user moves to another location, it is migrated with
the VC to a VC corresponding to the location. The model allows each SC to specify
the minimal (and preferable) capabilities of PCSs that it may visit, e.g., vendor and
model class of the device (i.e, PC, PDA, or phone), its screen size, number of colors,
CPU, memory, input devices, and secondary storage, in CC/PP (composite capabil-
ity/preference profiles) form [12]. Each SC can register such capabilities by invoking
the setComponentProfile () method.

Component Management System

Our model can manage the computing devices that maintain it. This is because a PCM
is a proxy for a subtree that its target computing device maintains and is located in the
subtree that another computing device maintains. As a result, it can attach the former
subtree to the latter. When it receives other components and control messages, it au-
tomatically forwards the visiting components or messages to the device that it refers
to (and vice versa) by using a component migration mechanism, like PCSs. Therefore,
even when the model consists of subtrees that multiple computing devices maintain, it
can be treated as a single tree. Note that a computing device can maintain more than one
subtree. Since the model does not distinguish between computing devices that maintain
subtrees and computing devices that can execute services, the former can be the latter.
Component migration in a component hierarchy is done merely as a transformation
of the tree structure of the hierarchy. When a component is moved to another compo-
nent, a subtree, whose root corresponds to the component and branches correspond to
its descendent component is moved to a subtree representing the destination. When a
component is transferred over a network, the runtime system stores the state and the
code of the component, including the components embedded within it, into a bit-stream
formed in Java’s JAR file format that can support digital signatures for authentication.
The system has a built-in mechanism for transmitting the bit-stream over the network
through an extension of the HTTP protocol. The current system basically uses the Java
object serialization package for marshaling components. The package does not support

A World Model for Smart Spaces 37

the stack frames of threads being captured. Instead, when a component is serialized, the
system propagates certain events within its embedded components to instruct the agent
to stop its active threads.

People should only be able to access location-bound services, e.g., printers and
lights, that are installed in a space, when they enter it carrying their own terminals
or using public terminals located in the space. Therefore, this model introduces a com-
ponent as a service provider for its inner components. That is, each VC can access its
neighboring components, e.g., SCs and PCs located in the parent (or an ancestor) of the
VC. For example, when a person is in the room of a building, the VC corresponding
to the person can access SCs (or SCs on PCs) in the VC corresponding to the room
or the VC corresponding to the building. In contrast, it has no direct access over other
components, which do not contain it, for reasons of security. Furthermore, like Unix’s
file-directory, the model enables each VC to specify its owner and group. For example,
a component can explicitly permit descendent components that belong to a specified
group or are owned by its user to access its services, e.g., PCs or SCs.

Location-Sensor Management. The model offers an automatic configuration mech-
anism to deploy components by using location-sensing systems. To bridge PCMs and
location-sensors, the model introduces location-management systems, called LCMs,
outside the PCMs. Each LCM manages location sensors and maintains a database where
it stores bindings between references of physical entities in sensors, e.g., the identifiers
of RFID tags attached to the entities and the identifiers of VCCs corresponding to the
entities. Each LCM is responsible for discovering VCCs bound to entities or PCs bound
to computing devices within the coverage areas of the sensors that it manages. When an
entity (or device) attached to an RFID-tag and an LCM detect the presence of the entity
(or device) within the coverage area of an RFID reader managed by the LCM, the LCM
searches its database for VCCs (or PCs) bound to the entity (or device) and informs
computing devices that maintain the VCCs (or PCs) about the VCC corresponding to
the reader. Then the VCCs (or PCs) migrate to the reader’s VCC. If the LCM’s database
does not have any information about the the entity (or device), it multicasts query mes-
sages to other LCMs. If other LCMs have any information about the entity, the LCM
creates a default VCC as a new entity. When the tag is attached to an unknown device
that can maintain a subtree or execute SCs, the LCM instructs the VCC that contains
the device to create a default PCM or PCS for the device.

5 Applications

This section briefly discusses how the model represents and implements typical appli-
cations and what advantages the model has.

5.1 Follow-Me Applications

Follow-me services are a typical application in ubiquitous computing environments. For
example, Cambridge University’s Sentient Computing project [4] enabled applications
to provide a location-aware platform using infrared-based or ultrasonic-based locating

38 I. Satoh

step 1 step 2
r ‘ 1

component migration

computer 2

computer 1

computer 1 computer 2

gt |
RFID-

RFID- m RF Ii
reader readel Lreader “ read‘ed
- & “ ﬁ."’

Fig. 3. Follow-me desktop applications between two computers

B Tleft

systems in a building.! While a user is moving around, the platform can track his or
her movement so that the graphical user interfaces of the user’s applications follow the
user. The model presented in this paper, on the other hand, enables moving users to be
naturally represented independently of location-sensing systems. Unlike previous stud-
ies on the applications, it can also migrate such applications themselves to computers
near the moving users. That is, the model provides each user with more than one VCC
and can migrate this VCC to a VCC corresponding to the destination. For example,
we developed a mobile window manager, which is a mobile agent and could carry its
desktop applications as a whole to another computer and control the size, position, and
overlap in the windows of the applications. Using the model presented in this paper,
the window manager could be easily and naturally implemented as a VCC bound to the
user and desktop applications as SCs. They could be automatically moved to a VCC
corresponding to the computer that was in the current location of the user by an LCM
and could then continue processing at the computer, as outlined in Fig. 3.

5.2 Location-Based Navigation Systems

The next example is a user navigation system application running on portable comput-
ing devices, e.g., PDAs, tablet-PCs, and notebook PCs. The initial result on the system
was presented in a previous paper [10]. There has been a lot of research on commercial
systems for similar navigation, e.g., CyberGuide [1] and NEXUS [5]. Most of those
have assumed that portable computing devices are equipped with GPSs and are used
outdoors. Our system is aimed at use in a building. As a PDA enters rooms, it displays a
map on its current position. We has assumed that each room in a building has a coverage
of more than one RFID reader managed by an LSM, the room is bound to a VC that
has a service module for location-based navigation, and each PDA can execute service
modules and is attached to an RFID tag. When a PDA enters a room, the RFID reader
for the room detects the presence of the tag and the LSM tries to discovery the compo-
nent bound to the PDA through the procedure presented in the previous section. After
it has information about the component, i.e., a PCS bound to a PDA, it informs to the

! The project does not report their world model but their systems seem to model the position of
people and things through lower-level results from underlying location-sensing systems.

A World Model for Smart Spaces 39

location-dependent
map viewer SC O

AN
computer I RN

X# RFID Reader

AN

Fig. 4. RFID-based location-aware map-viewer service and location-aware map-viewer service
running on PDA

VC corresponding to the room about the capabilities of the visiting PDA . Next, the VC
deploys a copy of its service module at the PCS and then the PCS forwards the module
to the PDA to which it refers to display a map of the room. When the PDA leaves from
the room, the model issues events to the PCS and VC and instructs the PCS to returns
to the VC. Fig. 4 (right) outlines the architecture for the system. Fig. 4 (left) shows a
service module running on a visiting PDA displaying a map on the PDA’s screen.

5.3 Software Testing for Location-Based Services

To test software for location-based services running on a portable device, the devel-
oper often has to carry the device to locations that a user’s device may move to and
test whether software can connect to appropriate services provided in the locations. We
developed a novel approach to test location-aware software running on portable com-
puting devices [9]. The approach involves a mobile emulator for portable computing
devices that can travel between computers, and emulates the physical mobility and re-
connection of a device to sub-networks by the logical mobility of the emulator between
sub-networks. In this model, such an emulator can be naturally implemented as a PC,
which provides application-level software, with the internal execution environments of
its target portable computing devices and target software as SCs. The emulator carries the
software from a VCC that is running on a computer on the source-side sub-network to an-
other VCC that is running on another computer on the destination-side sub-network. Af-
ter migrating to the destination VCC, it enables its inner SCs to access network resources
provided within the destination-side sub-network. Furthermore, SCs, which were tested
successfully in the emulator, can run on target computing devices without modifying or
recompiling the SCs. This is because this model provides a unified view of computing
devices and software and enables SCs to be executed in both VCCs and PCs.

6 Conclusion

We presented a world model for context-aware services, e.g., location-aware and per-
sonalized information services, in ubiquitous computing environments. Like existing

40

I. Satoh

related models, it can be dynamically organized like a tree based on geographical con-
tainment, such as a user-room-floor-building hierarchy and each node in the tree can
be constructed as an executable software component. It also has several advantages in
that it can be used to model not only stationary but also moving spaces, e.g., cars. It
enables context-aware services to be managed without databases and can be managed
by multiple computers. It can provide a unified view of the locations of not only phys-
ical entities and spaces, including users and objects, but also computing devices and
services. We also designed and implemented a prototype system based on the model
and demonstrated its effectiveness in several practical applications.

References

10.

11.

12.

. G.D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton, Cyberguide: A

Mobile Context-Aware Tour Guide, ACM Wireless Networks Vol. 3, pp.421-433. 1997.

. M. Bauer, C. Becker, and K. Rothermel Location Models from the Perspective of Context-

Aware Applications and Mobile Ad Hoc Networks, Personal and Ubiquitous Computing,
vol. 6, Issue 5-6, pp. 322-328, Springer, 2002.

. M. Beigl, T. Zimmer, C. Decker, A Location Model for Communicating and Processing of

Context, Personal and Ubiquitous Computing, vol. 6 Issue 5-6, pp. 341-357, Springer, 2002

. A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster, The Anatomy of a Context-

Aware Application, Proceedings of Conference on Mobile Computing and Networking (MO-
BICOM’99), pp. 59-68, ACM Press, 1999.

. F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm, Next Century Chal-

lenges: Nexus - An Open Global Infrastructure for Spatial-Aware Applications, Proceedings
of Conference on Mobile Computing and Networking (MOBICOM’99), pp. 249-255, ACM
Press, 1999).

. T. Kindberg, et al, People, Places, Things: Web Presence for the Real World, Technical Re-

port HPL-2000-16, Internet and Mobile Systems Laboratory, HP Laboratories, 2000.

. K. Romer, T. Schoch, F. Mattern, and T. Dubendorfer, Smart Identification Frameworks for

Ubiquitous Computing Applications, IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom’03), pp.253-262, IEEE Computer Society, March 2003.

. L. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-

ing a Hierarchical Mobile Agent System, Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168, April 2000.

. L. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-

ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

I. Satoh, Linking Physical Worlds to Logical Worlds with Mobile Agents, Proceedings of In-
ternational Conference on Mobile Data Management (MDM’2004), IEEE Computer Society,
January 2004.

I. Satoh, A Location Model for Pervasive Computing Environments, Proceedings of IEEE
3rd International Conference on Pervasive Computing and Communications (PerCom’05),
pp,215-224, IEEE Computer Society, March 2005.

World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/ TR/NOTE-CCPP, 1999.

Dealing with Emotional Factors in Agent Based
Ubiquitous Group Decision

Goreti Marreirosl, Carlos Ramosl, and José Neves’

' GECAD, Knowledge Engineering and Decision Support Group,
Institute of Engineering, Polytechnic of Porto, Porto, Portugal
{goreti, csr}@dei.isep.ipp.pt
% University of Minho, Braga, Portugal
jneves@di.uminho.pt

Abstract. With the increasing globalization of economy and consequent in-
creasing in the inter and intra organizational competitiveness, the role of groups
in organizations and businesses achieve greater significance. The work, as well
as the responsibility involved to reach a decision, is distributed among group
members, which may be distributed geographically and may cooperate in an
asynchronous way. This paper shortly presents the WebMeeting prototype,
which is a group decision support system that supports ubiquitous group deci-
sion meetings. It is also discussed the influence of emotional factors in group
decision making and it is proposed a multi-agent model to simulate ubiquitous
group decision making processes, where argumentation and emotional capabili-
ties are considered.

1 Introduction

The problem of group decision-making has gained great relevance in the scope of
Decision Support Systems, which were initially designed as individual tools. Quickly
those tools have demonstrated to be limited, in the sense that in today’s organizations
several persons, entities or agents are involved in most of the decision processes. In
that way decision problems are considered from different points of view, with differ-
ent opinions about the importance of the decision criteria (for instance, in the pur-
chase of a car we will be able to consider criteria like price, technical characteristics,
design or manufacturer).

The present business environment is characterized by the use of groups, which
work in distributed environments and have to deal with uncertainty, ambiguous prob-
lem definitions, and rapidly changing information.

In order to support group work, numerous commercial and non commercial Group
Decision Support Systems (GDSS) were developed in the last years (GroupSystems
software; WebMeeting [16]; HERMES [10]; VisionQuest software). Despite the qual-
ity of these systems, they present some limitations. In our recent work we are propos-
ing some new ideas to deal with GDSS [14], namely: the use of Multi-Agent Systems
to model group participants; and the inclusion of argumentation and emotional aspects
in the group decision making process.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 41 -50, 2005.
© IFIP International Federation for Information Processing 2005

42 G. Marreiros, C. Ramos, and J. Neves

The work described in this paper is included in ArgEmotionAgents project (POSI /
EIA /56259 /2004 - Argumentative Agents with Emotional Behaviour Modelling for
Participants’ Support in Group Decision-Making Meetings), which is a project sup-
ported by FCT (Science & Technology Foundation — Portugal) envisaging the use of
Multi-Agent Systems approach for simulating Group Decision-Making processes,
where Argumentation and Emotion components are specially important.

This paper is organized as follows. Section 2 provides a general approach to group
decision making, in particular to ubiquitous group decision making. Yet in this sec-
tion it is presented the WebMeeting prototype (which is a group decision support
system that supports ubiquitous group decision meetings) and is discussed the role of
emotion in group decision meetings. In section 3 it is presented the OCC model of
emotion proposed by Ortony, Clore and Collins [20]. A model to support agent based
ubiquitous group decision making is proposed in section 4, this model has several
components, we will focus in the emotional component. Finally section 5 presents
conclusions and gives some perspectives and ideas for future work.

2 Group Decision

The term Group Decision Support System (GDSS) [7][12] emerged effectively in the
beginning of the eighty-decade. According to Huber [8] a GDSS consists of a set of
software, hardware, languages components and procedures that support a group of peo-
ple engaged in a decision related meeting. A more recent definition from Nunamaker
and colleagues [18] says that GDSSs are interactive computer-based environment which
support concerted and coordinated team effort towards completion of joint tasks.

Generically we may say that GDSS aims to reduce the loss associated to group
work (e.g. time consuming, high costs, improper use of group dynamics, etc.) and to
maintain or improve the gains (e.g. groups are better to understand problems and in
flaw detection, participants’ different knowledge and processing skills allow results
that could not be achieved individually). The use of GDSS allows groups to integrate
the knowledge of all members into better decision making.

Jonathan Grudin [6] classifies the digital technology to support the group interac-
tion in three phases: pre-ubiquitous, the proto-ubiquitous and the ubiquitous. In the
pre-ubiquitous phase, that begin in the 70’s, were supported face-to-face meetings. In
the proto-ubiquitous phase distributed meetings were supported, this phase begun
approximately at 1990. The ubiquitous phase is now getting under way and support
meetings distributed in time and space. This classification is similar to DeSancits and
Gallupe [3] classification to GDSS, although in this last one it is considered another
type of support, the Local Decision Network that is a type of support where group
members meet at the same place but at different time.

Our interest is in ubiquitous group support.

2.1 Ubiquitous Group Decision Making

There are many areas where ubiquitous group decision making makes sense. One of
the most cited areas in literature is Healthcare since patient’s treatment involves vari-
ous specialists, like doctors, nurses, laboratory assistants, radiologist, etc. These

Dealing with Emotional Factors in Agent Based Ubiquitous Group Decision 43

specialists could be distributed across departments, hospitals or even in different
countries. The HERMES system, a web-based GDSS was tested inside this context
[10]. Many of the decisions we take every day will take a new dimension if we con-
sider that they will be resolved by a group of individuals, for instance: choice of a
place to make vacations, buy a car, hire an employee and choice of a place to build a
new airport. If the group members are dispersed in time and space, the need of coor-
dination, informal and formal communication, and information share support will
increase significantly. There are already some examples of GDSS that support ubiqui-
tous decision (GroupSystems software; WebMeeting [16]; HERMES [10]; Vision-
Quest software).

2.2 Emotion in Group Decision

Common sense usually tell us that a great deal of emotion can harm decision making
process but, on the other hand, Rosalind Picard for instance, claims that too little
emotion can impair decision making as well [21]. It seams that, in decision making
processes, emotion is needed in a balanced way.

In psychological literature several examples could be found on how emotions and
moods affects the individual decision making process:

e Individuals are more predisposed to recall past memories that are congruent with
their present feelings.

e Positive mood trend to promote risk aversion behaviour, while negative mood
promote a risk taking behaviour.

e Positive moods tend to be associated with heuristics information strategy process-
ing, while negative moods are more related to systematic processing.

Emotion will influence the individual decisions of the group members, but during a
group decision making, group members may be also influenced by the displayed emo-
tions of other members.

The process of emotional contagion could be analysed based on the emotions that a
group member is feeling or based on the group members mood [17].

A more detailed review of the influence of emotion in group decision making can
be found in [13].

2.3 WebMeeting Prototype

WebMeeting is a GDSS that supports distributed and asynchronous meetings through
the Internet (ubiquitous meetings) [16]. The WebMeeting system is focused on multi-
criteria problems, where there are several alternatives that are evaluated by various
decision criteria. Moreover the system is intended to provide support for the activities
associated with the whole meeting life cycle, from the pre-meeting phase to the post-
meeting phase.

The system aims at supporting the activities of two distinct types of users: ordinary
group “members” and the “facilitator”. The users of WebMeeting can access the sys-
tem from anywhere through a PC and an Internet connection.

The WebMeeting system is composed by the following modules: Setup, Manage-
ment, Argumentation, Multi-criteria, Voting and Database. The Setup module will be

44 G. Marreiros, C. Ramos, and J. Neves

operated by a facilitator during the pre-meeting phase. The Multi-Criteria module is
used: by the facilitator during the pre-meeting phase to configure the multi-criteria
decision problem; and by the participants during the meeting in order to establish
individual preferences. The argumentation module is based on the IBIS (Issue Based
Information System) argumentation model [18] and implements an argumentation
forum where group members could argue in favor or against alternatives. The Voting
module is responsible for the emission of “vote bulletins”, and for the publication of
results (intermediate and final). In figure 1 it is possible to see a screen of an argu-
mentation forum of a very simple group decision (acquisition of a laptop).

3 hexpe/ fhucifer, sadg_sng_y=1/ - Microaoft Intemet Caplorer
De It Umw Faeeer Toas WeR

S < C: - I (< S I A |

Btk Forsan Stop Redrwd Hoe Seand Savoiies Macia Hid ey el Fif
dubeenes 5] hito s ckonisacy_eng sl

"S(_}- A Meeting Setup Farticipate in Meeting
Ak .

@—) Argeraentanon Fanzn fae 1 meebrg

kil

i " M evlingg el Devision mmssing about e acquisition of« sxley

1
Leeend _ -

— (B Very pov B Fro B Heulral B Cors, S8 Vay Cocee,
Carkion Presence

b rasE
desle wl 06-03-2002

Arzamestatar

sk by at 05]
0 Viry enpensive Senl by afeste ol 01-03-2002

@ Aherative 2 3 Compadq laptop
120 Exelerd baand Send by afvezio sl 071-03-2002

@ Aherative 27 £ Dell laptop

Fig. 1. Argumentation forum

An interesting and somehow natural expansion of the WebMeeting system might
involve the addition of a simulation system where it should be possible to simulate the
participants of an ubiquitous group decision meeting through emotional autonomous
agents. Bellow it will be described some of the approaches that can be found in litera-
ture, that use agents and in particular multi-agent systems in group decision support
systems. Section 4 will present our model of an agent based support to ubiquitous
decision that handles emotional aspects.

2.4 Agents in Group Decision Support Systems

In literature there are already descriptions of agent based GDSS, some of them will be
described afterwards.

Ito and Shintani [9] propose an architecture for an agent based GDSS where, it is
associated an agent to each member (human) of the decision meeting. The key idea of
this system is the persuasion mechanism between agents. The persuasion in this sys-
tem is already done in pairs, for instance, agent A tries to convince agent B about the
choice of alternative X, if agent A succeed then they will form a group and together
will start a new persuasion cycle and try to convince another agent about the choice of
alternative X.

Dealing with Emotional Factors in Agent Based Ubiquitous Group Decision 45

Kudenko and colleagues [11] propose a system named MIAU whose aim is to sup-
port a group of users in the decision of acquiring a good from an electronic catalogue.
The catalogue items are characterized by a set of criteria (if the item of the catalogue
is a car the criteria could be: price, technical characteristics, design or manufacturer,
capacity of charge). MIAU intends to obtain a compromise solution that can be ac-
ceptable for all group members and for that it acquires the preference models of each
user through interface agents. After this phase a mediator agent combine all the agents
and try to identify negotiable aspects and to suggest what seems to be a compromise
solution. The users can accept or reject the proposed solution, and that may imply
updates in the individual preference models. This process is repeated until a consen-
sual solution is found.

Hermes [10] is a web-based GDSS that supports argumentative discourses between
group members. The role of agents in this system is, for instance, to provide mecha-
nisms to validate arguments consistency as well as to weight them. Agents in Hermes
are also responsible for processes related with information search, for instance recov-
ering information from previous discussions.

3 OCC Model

As we have seen before, the emotional state of an individual affects its decisions and
influence the emotional state of others member of the group, through the process of
emotional contagion that will be discussed in section 4. As we intend to simulate group
decision making through autonomous agents, it is important that those agents have
some emotional characteristics, in order to approximate the simulation to the reality.

The OCC model [20] proposes that emotions are the results of three types of sub-
jective appraisals:

1. The appraisal of the pleasantness of events with respect to the agent's goals.

2. The appraisal of the approval of the actions of the agent or another agent with
respect to a set of standards for behaviour.

3. The appraisal of the liking of objects with respect to the attitudes of the agent.

Generically in the OCC model emotions are seen as valenced reactions to three dif-
ferent type of stimulus [20]: objects; consequence of events and action of agents.
These are the three major branches of emotion types. In the branch objects we have
the emotions love and hate. In the branch consequences of events we have the emo-
tions: happy-for, gloating, pity, resentment, satisfaction, hope, fear, fears-confirmed,
relief, disappointment, joy and distress. In the branch actions of agents we have the
emotions: pride, shame, admiration and reproach. The model considers yet 4 com-
pound emotions, because they are consequence of events and agents actions, which
are: gratification, remorse, gratitude and anger.

The original OCC model, described above, with his 22 different types of emotions
is probably, for our propose, to much fine grained. A simplified version of this theory
was presented in 2003 by Ortony [19], where he considered only two different catego-
ries of emotional reactions: positive and negative. As in the original model, emotions
are the results of three types of subjective appraisals (goal-based, standard-based and
taste-based). In table 1 it is possible to visualize the OCC model reviewed in 2003,
after the collapse of some of the original categories.

46 G. Marreiros, C. Ramos, and J. Neves

Table 1. Five specializations of generalized good and bad feelings (collapsed from [19])

Positive Reactions Negative Reactions
Undifferentiated | ---because something good happened | ...because something bad happened
(joy) (distress)
...about the possibility of something | ...about the possibility of something bad
good happening (hope) happening (fear)
Goal-based ... because a feared bad thing didn’t ... because a hoped-for good thing didn’t
happen (relief) happen (disappointment)
... about a self-initiated praisewor- ... about a self-initiated blameworthy act
thy act (pride) (remorse)
Standard-based ... about an other-initiated praise- ...about an other-initiated blameworthy
worthy act (gratitude) act (anger)
... because one finds someone/thing ... because one finds someone/thing
Taste-based appealing or attractive (like) unappealing or unattractive (dislike)

The OCC model was several times used to model the implementation of emotional
agents, and afterwards we will referrer to some of the implementations that use it.

Bates [2] developed the OZ project in which real-time, interactive, self-animating
agents were situated in simulated micro-worlds. These agents, who were based on the
principles of traditional character animation, were equipped with emotions to make
them believable. The module that implements emotions in the OZ project is the EM
module that is based in a simplified version of the OCC model (only some emotions
of the model were implemented).

Elliot [4] developed the Affective Reasoner, a multi-agent simulation model based
on the OCC emotions model, where agents have the capacity to produce twenty four
emotion types and express more than 1200 facial expressions. Each agent has a repre-
sentation of itself and a representation of the concerns of other agents which allow
them to explain the emotional episodes of others. During the simulation, agents judge
events according to their attractiveness and status (unconfirmed, confirmed, and dis-
confirmed).

Adamatti and Bazzan in [1] describe Afrodite, a framework to simulate agents with
emotions that is based on the OCC model. With this simulation framework it is possi-
ble to configure different scenarios.

El-Nasr [5] proposes the FLAME model that is a computational implementation of
emotions that uses fuzzy logic and is based in a combination of the OCC model and
the Roseman emotion model [22].

Despite several implementations of the OCC model, it is not exempt of critics,
probably the more cited are: the fact that OCC model does not retain memory of past
emotions (interactions) and the impossibility to model an emotion mixture.

4 The Proposed Model

As we referred in the beginning of this paper our aim is to present a multi-agent
model to simulate ubiquitous group decision making considering emotional factors. In
our opinion the use of Multi-Agent Systems seems to be quite suitable to simulate the
behaviour of groups of people working together and, in particular, to ubiquitous group
decision making modelling, because it allows [15]:

Dealing with Emotional Factors in Agent Based Ubiquitous Group Decision 47

e Individual modelling — each participant of the group decision making can be rep-
resented by an agent that will interact with other agents. Agents can be modelled
with social and emotional characteristics in order to become more realistic.

e Flexibility — with this approach it is easy to incorporate or remove entities.

e Data distribution — frequently, in group decision making, participants are geo-
graphically distributed.

In ours previous work we identified the main agents involved in a simulation of a
group decision meeting [14] and they are: Participant Agents; Facilitator Agent; Reg-
ister Agent; Voting Agent and Information Agent.

In the remain text of this section we will first present the architecture of partici-
pants agents, because they represent the main role in group decision making and then
we will detail one of the components of this architecture, the Emotional module.

4.1 Participant Agent Architecture

In figure 2 it is represented the architecture of participant agents. This architecture
contains three main layers: the knowledge layer, the reasoning layer and the commu-
nication layer.

In the knowledge layer the agent has information about the environment where it is
situated, about the profile of the other participants agents that compose the simulation
group, and regarding its own preferences and goals (its own profile). The information
in the knowledge layer is dotted of uncertainty and will be accurate along the time
through interactions done by the agent.

The communication layer will be responsible for the communication with other
agents and by the interface with the user of the group decision making simulator.

The reasoning layer contains three major modules:

e the argumentative system — that will be responsible by the arguments generation;

e the decision making module — that will choose the preferred alternative;

e the emotional system — that will generate emotions and moods, affecting the
choice of the arguments to send to the others participants, the evaluation of the
received arguments and the final decision.

[Self Model ‘ (World knowledge } L Model of the others W

Knowledge

Argumentative Decision Making Emotion System
System

i i i
!

[Communication] [Interface]

Fig. 2. Participant Agent Architecture

48 G. Marreiros, C. Ramos, and J. Neves

4.2 Emotional Module

The emotions that will be simulated in our system are those identified in the reviewed
version of the OCC model: joy, hope, relief, pride, gratitude, like, distress, fear, dis-
appointment remorse, anger and dislike.

An emotion in our system is characterized by the proprieties identified in table 2.

Table 2. Emotion property

Type Emotion type

Valence Positive or negative

Agent_Id Identification of the agent

Time Moment in time when emotion was initiated

Origin_Id Identification of the agent or event that origin the emotion
Intensity Emotion intensity

In figure 3 it is possible to visualize the main components of the emotional system.

Emotions

Appraisal

’ Selection ‘ —” Mood ‘
«—

Fig. 3. Emotional Module

The emotional module is composed by three main components: the appraisal —
based on OCC model, where the intensities of potential emotions are calculated; the
selection — each emotion has a threshold activation, that can be influenced by the
agent mood, this component selects the dominant emotion; and decay — emotions
have a short duration, but they do not go away instantaneously, they have a period of
decay.

The agent mood is calculated based on the emotions agents felt in the past and in
the moods of the remaining participants. In our approach only the process of mood
contagion is being considered, we do handle the process of emotions contagion. We
consider only three stages for mood: positive, negative and neutral.

In group decision simulation the participant agents will exchange arguments in order
to achieve a consensual solution, the selection of arguments to be sent and the evalua-
tion of received arguments will take into account the agent internal emotional state, the
moods of other agents, as well as other characteristics that compose the agents profile:
debts of gratitude, agents in which the participant agent trust, agents that participant
agent think that consider him as credible, friendship agents and enemy agents.

Dealing with Emotional Factors in Agent Based Ubiquitous Group Decision 49

Although our model is based on the OCC model we think that with the inclusion of
mood we can surpass one of the major critics that usually is pointed to this model, the
fact that OCC model does not handle treatment of past interactions, past emotions.

5 Conclusion

More and more organizational decisions are taken by groups of people distributed in
time and space. It is also accepted that the emotional state of an individual affects its
decision and when he is taking part of a group decision he will influence both the
emotional state of others members and group decisions.

In this paper it was briefly presented WebMeeting a ubiquitous group decision sup-
port system, but it main goal was the presentation of an agent based simulation model
to group decision. The presented model incorporate the agents emotions and mood in
the decision making process. The agent emotions and mood affect the selection of
arguments to send to others agents, as well as, the evaluation of the received argu-
ments. Agents individual emotions and mood are affected by the process of mood
contagion.

Future work includes the implementation, validation and consequent refinement of
the model. The inclusion of this model as component of WebMeeting is also being
considered. In that case a participant in a real ubiquitous group decision meeting,
supported by WebMeeting, will use this model for instance to simulate the other par-
ticipants and to preview its behaviour.

References

1. Adamatti, D. and Bazzan, A.: AFRODITE — A Framework for Simulation of Agents with
Emotions. ABS 2003 — Agent Based Simulation 2003. Montpelier, France, 28-30 April,
(2003)

2. Bates, J.: The role of emotion in believable agents. Communications of the ACM, Special
Issue on Agents, July (1994)

3. DeSanctis, G. and Gallupe, R. B.: Group Decision Support Systems - A New Frontier.
Database Vol. 16 No. 1 (1985) 3-10

4. Elliot, C.: The Affective Reasoner A process model of emotions in a multi-agent systems.
PhD dissertation. Northwestern University, USA, (1992)

5. El-Nasr, M.; Yen, J.; loerger, T.R.: FLAME -Fuzzy Logic Adaptive Model of Emotions.
Autonomous Agents and Multi-agent systems, Vol.3 (2000) 217-257

6. Grudin, J.: Group Dynamics and Ubiquitous computing. Communications of the ACM, vol
45 No. 12 (2002)

7. Huber, G. P. : Group decision support systems as aids in the use of structured group man-
agement techniques. Proc. of second international conference on decision support systems,
San Francisco, (1982) in C. W. Holsapple, A. B. Whinston, Decision support systems: a
knowledge-based approach (Thomson Learning, inc, 2001)

8. Huber, G. P: Issues in the design of group decision support systems, Mis Quarteley, Vol. 3
No. 8 (1984).

9. Ito, T.; Shintani, T.: Persuasion among agents: An approach to implementing a group De-
cision Support System based on multi-agent negotiation. Proceedings of the 5™ Interna-
tional joint Conference on Artificial Intelligence (1997)

50

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

G. Marreiros, C. Ramos, and J. Neves

Karacapilidis, N.; Papadias, D.: Computer supported argumentation and collaborative de-
cision making: The Hermes system, Information Systems, Vol. 26 No. 4 (2001) 259-277
Kudenko, D.; Bauer, M.; Dengler, D.: Group decision making through mediated discus-
sions. Proceedings of the tenth International conference on user modelling (UM’03)
(2003)

Lewis, L.F.: Facilitator: A microcomputer decision support systems for small groups, Ph.
D. dissertation, University of Louisville, 1982. in C. W. Holsapple, A. B. Whinston, Deci-
sion support systems: a knowledge-based approach (Thomson Learning, inc, 2001).
Marreiros, G.; Ramos, C. and Neves, J.: Emotion and Group Decision Making in Artificial
Intelligence. Proceedings of InterSymp 2005 17th International Conference on System Re-
search, Informatics & Cybernetics - Special Focus Symposium on Cognitive, Emotive and
Ethical Aspects of Decision-Making in Humans and in Al, Baden-Baden, Germany (2005)
Marreiros, G.; Ramos, C. and Neves, J.: Modelling group decision meeting participants
with an Agent-based approach. Selected for publication in an upcoming special issue of
the International Journal of Engineering Intelligent Systems (2005)

Marreiros, G.; Santos, R.; Ramos, C. and Neves, J.: Agent Based Simulation for Group
Formation. SCS-ESM 2005 19th European Simulation Multi-Conference, Riga, Latvia
(2005) 521-526

Marreiros, G.; Sousa, J.P. and Ramos, C: WebMeeting - A Group Decision Support Sys-
tem for Multi-criteria Decision Problems. International Conference on Knowledge Engi-
neering and Decision Support, Porto, Portugal ICKEDS04 (2004) 63-70

Neumann, R. and Strack, F.: Mood contagion: The automatic transfer of mood between
persons; Journal of Personality and Social Psychology, Vol. 79 (2000) 211-223
Nunamaker, J.F. et al.: Lessons from a dozen years of group support systems research: A
discussion of lab and field findings. Journal of Management Information Systems, Vol. 13
No. 3 (1997).

Ortony, A.: On making believable emotional agents believable. In R. P. Trapple, P. (Ed.),
Emotions in humans and artefacts. Cambridge: MIT Press (2003)

Ortony, A.; Clore, GL; Collins, A.: The cognitive structure of emotions. Cambridge: Cam-
bridge University Press (1988)

Picard, R. : Affective Computing; MIT Press, Cambridge, MA (1997)

Roseman, I.; Spindel, M.; Jose, P.: Appraisals of emotion-eliciting events: Testing a theory
of discrete emotions. Journal of Personality and Social Psychology, Vol. 59, (1990)

A Multi-agent Software Platform Accommodating
Location-Awareness for Smart Space

Hongliang Gu, Yuanchun Shi, Guangyou Xu, and Yu Chen

Computer Science Department, Tsinghua University, Beijing 100084, P.R. China
ghl02@mails.tsinghua.edu.cn, shiyc@tsinghua.edu.cn,
xgy-dcs@mail.tsinghua.edu.cn, yuchen@tsinghua.edu.cn

Abstract. Software Platform is a middleware component of Smart Space to coor-
dinate and manage all modules. Location-awareness is a common feature of many
modules. Current several typical methods for distributed systems can hardly be
competent for both the role of Software Platform and accommodating location-
awareness simultaneously. Aiming at this, we present our method: SLAP (Smart
Location-awareness-Accommodating Platform). The method, on the basis of
OAA (Open Agent Architecture), adopts such new technologies as Poll-Ack
mechanism, dual-central coupling model and hybrid architecture. Consequently it
not only reserves the advantages of OAA to coordinate multi-modal modules effi-
ciently and flexibly, but also accommodates location-aware computing well.

1 Introduction

Smart Space [1] (or Intelligent Environment) is a working environment integrated
with numerous distributed software and hardware, including multi-modal modules
and positioning sensors, which is also a system intensively applying perva-
sive/ubiquitous computing technologies. The Software Platform (also called Software
Infrastructure), working as a middleware between OS (Operation System) and appli-
cation modules, is a fundamental component of Smart Space to coordinate and man-
aging all hardware and software modules.

Nowadays location-awareness is becoming an indispensable characteristic of most
modules in Smart Space, which brings about a research field: location-aware comput-
ing. In our project, Smart Classroom [2] (a Smart Space on tele-education), location-
awareness means that applications or services can modify their own behaviors unob-
trusively or non-intrusively to adapt to users’ purpose, according to the location (or
spatial relationship) of located-objects [3] (including applications or service).

Both accommodating location-aware computing and adapting to Smart Space give
the Software Platform dual challenges, which are just all the necessity of Smart Class-
room. However, current several representative methods for tradition distributed sys-
tems, e.g. DCOM, CORBA, Metaglue and OAA (Open Agent Architecture) etc, can
not give both needs a satisfying solution simultaneously. Aiming at this, we present
our method: SLAP, a system with our improvement on OAA, which it not only effi-
ciently coordinates and manages all modules according to the demands of Smart
Space, but also accommodates location-aware computing very well.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 51 -60, 2005.
© IFIP International Federation for Information Processing 2005

52 H. Guet al.

The contents below are as follows: Section 2 discusses the demands of Smart
Space on Software Platform. Section 3 introduces the requirements of location-
awareness and the deficiencies of OAA. Section 4 presents our improvement’s key
technologies of. Section 5 presents the architecture and primitives of SLAP. Section 6
elaborates on the experiments. And section 7 concludes this paper.

2 Criterion and Selection of Software Platform

2.1 Demands of Smart Space on Software Platform

As far as the fact that Smart Space consists of various computing and communication
units is concerned, Smart Space is a distributed system in some sense. However, it has
some special features different from the normal distributed systems:

1. autonomy and independency

The modules in Smart Space are more autonomous and independent than those in
distributed systems. For example, most modules in Smart Space can run or expire
independently, which are not in a certain module’s control and do not comply with
other modules’ assignment at all.

2. loose-coupling

A Smart Space system is very dynamic. Modules are restarted or moved to different
hosts and System configurations change time to time. The loose coupling of modules
will help to cope with this nature of Smart Space, as well as to resile from failure.

3. lightweight

As an underlying component, the Software Platform is to run on the various units in
Smart Space which have various abilities of computing and communication spanning
from mainframe computers to embedded systems, and to be used by the various mod-
ule’s developers who have uneven IT backgrounds. Thus, the feature of lightweight
helps the Software Platform to accommodate various units, and to give various users a
facile and simple interface. The light-weighted Software Platform only provides some
key services and commits other complex functions to the applications in manner of
the end-to-end implementation.

The items above are almost the common demands for all modules of Smart Space,
especially for the multi-modal modules.

2.2 Selection of Software Platform

The Smart Space’s features mentioned above are the criterion to select proper frame-
work model for Software Platform. Currently, the representative methods for distrib-
uted systems can roughly be divided into two categories: Distributed Component
Model (DCM), and Multi-Agent System (MAS).

In essence, DCM model is to encapsulate modules into objects (though someone ar-
gue that component is slightly different from object), which abstractly represents the
states and behaviors’ implementation (also called properties and methods) of modules.
The representative DCM models include DCOM, CORBA and EJB etc. In DCM
model, there must be a centralized thread of application logic which decides which
objects to be invoked (used) and when to invoke (use). However, this premise is diffi-

A Multi-agent Software Platform Accommodating Location-Awareness 53

cult to be met in Smart Space, due to the modules’ autonomy and independency. For
example, in Smart Classroom, a laser-pen-tracking module continuously tracks the
position of laser point, which is a projecting point on Smart Board (a large-sized touch
screen) corresponding to users’ gesture, while a speech-recognition module keeps
recognizing the user’s voice. In the example, a clear centralized control logic is diffi-
cult to be picked up. Instead, there are two parallel application logics simultaneously.

In contrast, MAS model encapsulates each module into an agent, which not only
has the same behaviors’ implementation as an object, but also owns itself activation
logic, executing process and purpose. That is, according to its environment, an agent
can itself decide what to do and how to do, which an object can hardly achieve. Thus,
in MAS model, the control logic of modules is decentralized, which is more flexible
and fitter for Smart Space than that of DCM model. The typical MAS models include
Metaglue [4], Hyperglue [5] and OAA [6],[7].

Besides those advantages, MAS model is usually more light-weighted than DCM
model. Those representative DCM models, such as DCOM and CORBA, all own
many complicated features, e.g. object set, transaction process and currency control
etc. In view of those synthetic factors, we select MAS system instead of DCM model
as the abstraction model of Software Platform. According to modules’ coordination
mode, MAS model is divided into two kinds: direct-coupled and meeting-oriented.

® —o¢ o

Y / o on
JUEY / \z

(a) RPC (b)PubIlsh Subscrlbe

Fig. 1. The inter-module communication mode

The direct-coupled mode is also called RPC-like (Remote Procedure Call) mode.
In this mode, each module must know other modules’ definite reference (name or ID).
As Fig. 1(a) shows, the module on the one side must know who the other side is, and
furthermore the modules on the two sides must run at the same time. Both Metaglue
and Hyperglue belong to this mode, in which the inter-agent communication is
achieved by Java RMI. Undoubtedly, the direct-coupled mode is tight-coupling.

The meeting-oriented mode means the modules achieve the mutual coordination by
broadcasting messages in a logic (virtual) meeting room. This mode’s feature is that
the modules needn’t own others’ references. The Publish-Subscribe mechanism,
which OAA adopts, is typically meeting-oriented. In OAA, when an agent wants a
certain kind of message, it will register the messages on a message center: Facilitator.
This activity is called subscribe message, which is also called asking a question in
OAA. And if an agent tends to send messages, it needn’t know which agent and how
many agents need those messages. What it does is only to send Facilitator the mes-
sages tagged with the name or category, and then Facilitator forwards all messages to

54 H. Guet al.

those agents who subscribe them, according to the messages’ category and name. The
agent’s activity above is called publish message. The whole process is called “dele-
gated computing” in term of OAA, which is skeletally shown in Fig.1 (b).

In comparison with the tight-coupling coordination mode of Metaglue, that of
OAA is loose-coupling. Considering this factor, we prefer OAA to Metaglue and
Hyperglue as a framework of Software Platform.

3 Deficiencies of OAA on Location-Awareness

3.1 Requirements of Location-Awareness on Software Platform

In Smart Space, the location-aware computing system consists of three parts: loca-
tion-aware applications, location server and position system. The position system of
our project is Cricket V2.0 [8], in which each positioning unit (a PDA with Cricket
Mote) knows its own geometric coordinate location and then sends its location to the
location server by a wireless network. The location server, on the one hand, takes
charge of storing and managing all units’ location; on the other hand, provides the
location-related services for the applications. In Smart Classroom, the location server
adopts an implementation method called ASMod [9] to provide two kinds of service:
query service and spatial event service. The former asks the applications’ spatial
query, which is like a SQL service; the latter tracks the varying of located-objects’
spatial relationship to emit the relevant event notification.

To support the location-aware computing system, Software Platform encounters
two new issues: one is how to efficiently organize the communication of position
system, namely the communication between the location server (also an agent) and
positioning agents (which correspond to positioning units); another is how to organize
the communication between location-aware applications according to their locations
(or spatial relationship) which is also called location-based communication. Unfortu-
nately, neither of the issues is OAA competent for.

3.2 Deficiencies of OAA on Supporting Location-Aware Computing

First, OAA does not excel at organizing the communication between the location
server and positioning agents efficiently, due to its Publish-Subscribe mechanism. In
the mechanism, when to publish messages and how many messages to publish only
depend on the agent itself, which we call free-publishing characteristic. This charac-
teristic adapts to such Smart Space’s demands as modules’ autonomy and independ-
ency and the system’s loose coupling, meanwhile it also brings about two problems:

One problem is the difficulty in controlling the communication between the
location server and positioning agents. In Smart Space, the location server usually
needs to obtain the location from various positioning agents at various frequencies in
different time according to its data’s state, which is essentially the location server’s
data update policy. For example, in a time, if the location server infers that a
positioning agent is moving quickly (maybe attached to a mobile person), it will get
data from the agent twice per second. Likewise, in another time, if the location
server infers the positioning agent seldom moves, it will get data from the agent only
once per minute.

A Multi-agent Software Platform Accommodating Location-Awareness 55

Another problem is that the disorderly contentions on the wireless network’s chan-
nel increase, which results in the degradation of performance and throughput. Because
each positioning agent publishes its data (namely location) only according to its own
willing, despite the others and the location server’s need, the disorderly contentions
are inevitable, which will become more intensive with the increasing of the position-
ing agents’ number and the frequency of publishing in each agent.

Secondly, OAA is also incompetent for organizing the location-based communica-
tion between applications. In Smart Space, much communication between agents is
not constantly sustaining from beginning (subscribing) to end (unsubscribing), but
varies according to their spatial relationship. The kind of communication, namely the
location-based communication, is different from that of multi-modal modules, which
OAA excels at. For example, when a PDA enters the service scope of Smart Board,
the communication between the PDA agent and the Smart Board agent will emerge;
and when the PDA leaves the service scope, the communication will also be broken
off. Unfortunately, OAA is incompetent for the location-based communication. The
cause is that neither Facilitator nor the source agents (which publish messages) cares
the agents’ location and changes their behaviors according to the varying of location.

4 Key Technologies of Our Improvement

Aiming at the deficiencies of OAA on supporting location-aware computing, we present
our solution to Software Platform: SLAP (Smart Location-awareness-Accommodating
Platform). Here we first introduce the Key technologies of SLAP, which are to solve the
two issues brought by location-aware computing.

4.1 Poll-Ack Mechanism

Aiming at the incompetence of Publish-Subscribe mechanism for organizing position
system communication, we present an appropriative inter-agent communication
mechanism: Poll-Ack mechanism. This mechanism is described as follows:

As Fig. 2 illustrates, the communication consists of Poll-Ack cycles. And each cy-
cle is initiated by a broadcast message from the location server, which is called Poll.
A poll indicates which agent to publish its location. On receiving the Poll, the posi-
tioning agent indicated in the Poll, replies an acknowledgement message called Ack
(including ID and location) in a fixed time. The location server stores all agents’ loca-
tion, and assigns poll number to each agent in the unit time according to the agent’s
velocity. An agent’s velocity is its adjacent location difference divided by the interval

. Location Server

Wireless N At B
N2 ' NN
Network ?,9' i ‘\:if—
y v R

Positioning Agent

Fig. 2. The Poll-Ack mechanism

56 H. Guet al.

of its adjacent Ack. The higher velocity an agent is at, the more polls the location
server assigns to it. Hence, not only this mechanism doesn’t produce channel conten-
tion, but also it is a velocity-directed bandwidth assignment in some sense.

4.2 Dual-Central Coupling Model

Aiming at the incompetence of OAA for organizing location-based communication,
we present the dual-central coupling structure and the Spatial-event-directed Publish-
Subscribe mechanism.

In OAA there is a unique coupling center, Facilitator, to organize message com-
munication. In contrast, in SLAP there are two coupling centers: LAMD (Location-
Aware Message Dispatcher) and LocServ. The former provides the analogous func-
tion of Facilitator, and the latter plays the role of location server. LocServ has a com-
ponent, Spatial Event Generator, which tracks the agent’s moving and translates loca-
tion into spatial events. LAMD owns a dispatching engine, Forward-Valve, which
decides messages whether to forward indeed according to the event notification from
LocServ. The structure of two coupling centers is shown in Fig. 3.

The dual-central coupling structure adopts a new communication mechanism
called Spatial-event-directed Publish-Subscribe. The mechanism is based on Publish-
Subscribe with some modification. The modification is as follows:

1. When an agent subscribes a kind of messages, it is demanded to submit a spatial
condition of the messages to LocServ at the same time. The spatial condition indi-
cates the premise the communication needs, and the premise is express as a spatial
relationship, such as, the publisher’ location must be contained in the subscriber’s
scope. The step is called spatial condition’s customization.

2. LocServ keeps on obtaining the latest location of all agents from the position sys-
tem (namely tracking agents’ moving), and judges whether the spatial conditions
are met by its Spatial Event Generator. When the spatial conditions become met or
unmet, LocServ sends LAMD the event notifications: message-forward-enable or
message-forward-disable.

3. According to the notifications, LAMD will decide whether to forward the sub-
scribed messages to the subscriber (agents).

If an agent wants the received messages to be irrelevant to the location, it submits a
command to LocServ to abolish the spatial condition of messages. The whole process
of this mechanism is shown in Fig. 4.

Location Tracking

Spatial Event Ganeratar

______ N -

,l"}\ Agenl Location

Fig. 3. The structure of two coupling centers

A Multi-agent Software Platform Accommodating Location-Awareness 57

. LocServ

—p Publish & Forward
— == Subscribe

/ -
—) Customize Spatial Condition >
<}:| Spatial Event Mofifiction ‘ ‘ ‘

Fig. 4. The spatial-event-directed publish-subscribe mechanism

5 The Architecture of SLAP

As a Software Platform, SLAP is a middleware between OS (Operation System) and
applications (agents). An overview of SLAP is shown in Fig. 5.

049000 (X —@) & rorsnan

' ' ' * P Positioning Agent
Lo oGSl Positioning Platform

* LAMD
0s 08 08 0s 0s 0s 0s . LocSery
PDA Host Host Host PDA PDA PDA
* Directory Service
Network Wireless Network W Container

Fig. 5. The architecture of SLAP

SLAP is a hybrid architecture composed of two parts, which respectively corre-
spond to two kinds of communication environment. The right part, positioning plat-
form, is used for the position system to coordinate LocServ and the positioning
agents, which adopts the Poll-Ack communication mechanism. And the left part,
location-based platform, is to organize the location-based communication between
agents, which adopts the dual-central coupling model. The host containing LAMD
and LocServ spans two network environments: one connects to the position system’
network (wireless network), another connects to the network all normal agents share.
To enhance some functions of SLAP, we add in some components that OAA doesn’t
own. For example, the containers, acting as mediators under the agent layer, are to
shield heterogeneous OS and accommodating different developing languages, such as
C++ and Java. The Directory Service is used for the service’s discovery.

6 Performance Analysis

To evaluate the performance of SLAP, we compare the Poll-Ack mechanism (which
SLAP adopts) with the Publish-Subscribe mechanism (which OAA adopts) on the
communication efficiency of position system. Define:

58 H. Guet al.

T, = Average time for a positioning agent to calculate its location
L g p gag
D, =Transmission duration of a location message (which is in the form of Ack

message in the Poll-Ack mechanism)
D, = Transmission duration of a poll message

Now we first investigate the performance of Publish-Subscribe mechanism. Pro-
viding a positioning agent publishes its location message at once after calculating its
location, the probability that the positioning agent publishes the location:

=" (1)

For a successful publishing exactly one of 7 positioning agents should be publish-
ing at a given time. Hence the probability that only one given positioning agent is
publishing at a particular time:

B =pl-p")

When there are n positioning agents, the probability that exactly one positioning
agent is publishing at a given time is the channel utilization of wireless network U .

U=np(1-p)"" 3)
For maximum utilization of publish-subscribe mechanism, there exists:

dUu e . 1
Ezn(l—p) "—np(n—-1)1-p) 2:0:>p:;:>TL:nDL 4)

Hence, in the case above, the optimum utilization of Publish-Subscribe mechanism:

Uo, , =(- l)"‘l)
n

As for the Poll-Ack mechanism, the channel is occupied by Polls and Acks in turn.
Hence, the channel utilization U is:

" DL

=——L 6
D, +D, ©

Because the equation (4) exists in the case of channel’s maximum utilization, the
optimum utilization of Poll-Ack mechanism Vo, , is:

T,

Uo =—"—
T+ nD, @)

As for a given position system, the average time of calculating location 7 is
fixed, which only depends on the hardware’s intrinsic functionality. In contrast, the

poll’s transmission duration D » is determined by the concrete Poll-Ack mechanism.

A Multi-agent Software Platform Accommodating Location-Awareness 59

Both Publish-Subscribe mechanism and Poll-Ack mechanism are simulated using the
ns-2 network simulator with suitable extensions [10], which is guided by the CMU

wireless extensions. In the simulation experiment, TL is set to 100ms, Dp is set to
Ims, 2ms and 4ms, which are corresponding to the curve Poll-Ack (1), (2) and (4) in

Fig. 6 respectively. And the performance of Publish-Subscribe mechanism is labeled
by the curve Pub-Sub in Fig. 6.

1
—— Pub-Sub

.g 08 e PO|L-Ack(1)
S — — Poll-Ack(2)
S oo f Poll-Ack(4)
o)

s

6 04 r

£

Eoz2f

=

f=1

o

0 A S S S S S S
0 10 20 30 40 50 60

Number of Agent

Fig. 6. The communication performance of SLAP versus OAA in position system

As Fig. 6 shows, in most cases, the optimum channel utilization of the Poll-Ack
mechanism is superior to that of the Publish-Subscribe mechanism. The few excep-
tional cases occur on Poll-Ack (4) with the agent number of about 45, where the total
transmission duration of polls (180ms) is greater than the average positioning time
(100ms) by far. These cases are very extreme, which rarely appears in practice. An-
other trend seen from Fig. 6 is that, the smaller the poll’s transmission duration is, the
larger improvement of channel utilization the Poll-Ack mechanism achieves on the
Publish-Subscribe mechanism.

7 Conclusion

On the one hand, as a Software Platform for Smart Space, being based on OAA,
SLAP reserves the main characteristics of OAA, a loose-coupling multi-agent system.
Those characteristics conform to Smart Space’s demands on Software Platform better
than other distributed system methods, which highly ensure modules’ autonomy and
independency, inter-module loose-coupling and system’s lightweight. Hence, as far as
accommodating Smart Space is concerned, SLAP, as well as OAA, is an excellent
Software Platform, especially for coordinating most multi-modal modules.

On the other hand, SLAP overcomes the shortcomings of OAA on accommodating
location-awareness. By introducing in the dual-central coupling model, SLAP realizes
inter-agent location-based communication that OAA used to not be able to provide.
And by introducing the Poll-Ack communication mechanism into position system,

60 H. Guet al.

SLAP achieves higher channel utilization and more efficient communication perform-
ance than OAA. Thus SLAP not only is competent for Software Platform of Smart
Space, but also accommodates location-aware computing well.

References

1. http://www.nist.gov/smartspace/

2. Y. C., Shi, et al.: The smart classroom: merging technologies for seamless tele-education.
Pervasive Computing, IEEE press, Vol 2, No 2, 2003, pp. 47-55

3. B. Schilit, N. Adams, and R. Want: Context-aware computing applications. IEEE Work-
shop on Mobile Computing Systems and Applications, IEEE CS Press, 1995, pp. 85-90

4. M.H. Coen, B. Phillips, N. Warshawsky, et al.: Meeting the computational needs of intel-
ligent environments: The Metaglue system. Proc 1st International Workshop Managing In-
teractions in Smart Environments (MANSE'99), 1999, pp.210-213

5. Peters S, Look G, Quigley K.: Hyperglue: Designing High-Level Agent Communication
for Distributed Applications. Technical Report, Laboratory of CS and Al (CSAIL), Mas-
sachusetts Institute of Technology, 2002.

6. SRI., OAA web site: http://www.ai.sri.com/~oaa

7. Adam Cheyer, David Martin: The Open Agent Architecture. Autonomous Agents and
Multi-Agent Systems, Kluwer Academic Publisher, Vol 4, No 1-2, 2001, pp.143-148

8. Adam Smith, Hari Balakrishnan, Michel Goraczko, Nissanka Priyantha: Tracking Moving
Devices with the Cricket Location System. Proc 2nd International conference on Mobile
systems, applications, and services(MobiSys’04), 2004, pp.190-202

9. Hongliang Gu, et al.: A core model supporting location-aware computing in Smart Class-
room, Proc 4th International Conference on Web-based Learning, 2005, pp.1-13

10. NS-2 network simulator. http://www.isi.edu/nsnam/ns/

Context-Aware Ubiquitous Data Mining Based Agent
Model for Intersection Safety*

Flora Dilys Salim!, Shonali Krishnaswamy!, Seng Wai Loke!,
and Andry Rakotonirainy”

I Caulfield School of Information Technology, Monash University,

900 Dandenong Road, Caulfield East, VIC 3145, Australia
{Flora.Salim, Shonali.Krishnaswamy,
Seng.Lokel}@infotech.monash.edu.au
2 Centre for Accident Research and Road Safety Queensland,

Queensland University of Technology, Beams Road, Carseldine, QLD 4034, Australia
r.andry@gqut.edu.au

Abstract. In USA, 2002, approximately 3.2 million intersection-related crashes
occurred, corresponding to 50 percent of all reported crashes. In Japan, more
than 58 percent of all traffic crashes occur at intersections. With the advances in
Intelligent Transportation Systems, such as off-the-shelf and in-vehicle sensor
technology, wireless communication and ubiquitous computing research, safety
of intersection environments can be improved. This research aims to investigate
an integration of intelligent software agents and ubiquitous data stream mining,
for a novel context-aware framework that is able to: (1) monitor an intersection
to learn for patterns of collisions and factors leading to a collision; (2) learn to
recognize potential hazards in intersections from information communicated by
road infrastructures, approaching and passing vehicles, and external entities; (3)
warn particular threatened vehicles that are approaching the intersection by
communicating directly to the in-vehicle system.

1 Background

In spite of the advancement of state-of-the-art technologies being implemented in ve-
hicles and on the road over the years, the annual toll of human loss caused by inter-
section crashes has not significantly changed in more than 25 years, regardless of im-
proved intersection design and more sophisticated ITS technology [21]. Intersections
are among the most dangerous locations on U.S. roads [7]. In 2002, USA, approxi-
mately 3.2 million intersection-related crashes occurred, corresponding to 50 percent
of all reported crashes. 9,612 fatalities (22 percent of total fatalities) [21] and roughly
1.5 million injuries and 3 million crashes took place at or within an intersection [22].
Yearly, 27 percent of the crashes in the United States take place at intersections [7]. In
Japan, more than 58 percent of all traffic crashes occur at intersections. Intersections-

* The work reported in this paper has been funded in part by the Co-operative Research Centre
Programme through the Australian Government's Department of Education, Science and
Training.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 61 —70, 2005.
© IFIP International Federation for Information Processing 2005

62 F.D. Salim et al.

related fatalities in Japan are about 30 percent of all Japanese traffic accidents, and
those fatal crashes mainly happen at intersections without traffic signals [7].

The complexity of intersections is due to various characteristics of intersections [1,
7, 19], which are as follows: different intersection shapes, number of intersection legs,
signalized/ unsignalized, traffic volume, rural / urban setting, types of vehicles using
the intersection, various average traffic speed, median width, road turn types, and
number of lanes. From those characteristics that pertain to intersection collisions, a
driving assistance system for intersection is highly needed, particularly one that is
able to warn driver for potential threats or collisions. Given the uniqueness of each in-
tersection, an intelligent system for intersection safety should be able to adapt to dif-
ferent characteristics of an intersection [19].

The advances in sensor technology and the need for intelligence, dynamicity, and
adaptability in ITS have motivated the research of Context-Awareness, Multiagent
Systems, and Data Mining for Intelligent Transportation Systems as discussed in Sec-
tion 2. Section 3 discusses the model we propose to address the issues of intersection
safety. Section 4 concludes the paper and outlines future work of the project.

2 Related Work

Subsection 2.1 reviews existing research projects in intelligent software systems, such
as Context-Awareness, Multiagent Systems, and Data Mining, which have been util-
ized to advance Intelligent Transportation Systems. Subsection 2.2 discusses the exist-
ing approaches in intersection collision warning and/or avoidance systems.

2.1 Intelligent Software Systems

Context-aware applications observe the “who’s, where’s, when’s, and what’s” of enti-
ties and use this information to find out “why” a situation is happening [2]. With the
availability of context information, an application can then use it to adapt to environ-
ment changes. The research areas of context-awareness in ITS include smart autono-
mous cars [17, 18] and traffic monitoring [11].

An agent is autonomous intelligent program acting on behalf of the user [24]. A
multiagent system (MAS) is a collection of agents that communicate with each other
and work together to achieve common goals with a certain measure of reactivity
and/or reasoning [24]. There have been considerable ITS projects using the notion of
agents, such as for controlling and managing traffic in intersections [3, 6, 10].

Given that there are considerable amount of data from the in-vehicles and roadside
sensors, clearly, it is essential to make sense of the sensors data. Data mining is the
development of methods and techniques to gain knowledge from data by pattern dis-
covery and extraction [4]. Data analysis techniques are necessary for processing in-
formation both on roadside and in vehicle situations [16]. However, data mining and
machine learning techniques require high computational resources as knowledge is
discovered from the analysis of huge data storages. Learning from data streams in
ubiquitous environment is enabled by Ubiquitous Data Mining (UDM), which is the
analysis of data streams to discover useful knowledge on mobile, embedded, and
ubiquitous devices [9]. UDM have been used to monitor vehicle’s health and driver’s
characteristics in moving vehicles [13] and to identify drunk-driving behavior [12].

Context-Aware Ubiquitous Data Mining Based Agent Model for Intersection Safety 63

The above mentioned technology in ubiquitous computing enables more sophisti-
cated ITS applications. However, after reviewing those research projects, none has
addressed a holistic approach for intersection safety.

2.2 Intersection Collision Warning and/or Avoidance Systems

Intersection collision warning and avoidance systems are categorized as either vehi-
cle-based, infrastructure-only or as infrastructure vehicle cooperative [5, 22]. Vehi-
cle-based systems rely only on in-vehicle sensors, processors, and interface to detect
threats and produce warnings [22]. Infrastructure-only systems rely only on roadside
warning devices to inform drivers [5]. Cooperative systems communicate information
straight to vehicles and drivers. The main advantage of cooperative systems rests in
their potential to improve the interface to the driver, and thus to almost guarantee that
a warning is received.

Existing Intersection Collision Warning Systems as those described in [5, 8, 19, 20,
23] are still infrastructure-only system, and are limited in certain aspects:

1. Warning messages are less effective as they are only displayed on the roadside.

2. There is no communication means that exists between road infrastructure and vehi-
cles, and therefore, no exchange of useful information between them.

3. Information about intersection might not be comprehensive as the only data source
is roadside sensors.

4. The systems are mostly reactive. Although reactive trait is required; however, de-
liberative reasoning aspect can supplement and enhance these systems.

5. Each system is built for a particular intersection or an intersection type, and there-
fore each application requires a field study on that intersection.

Vehicle-based intersection collision warning systems [15] are fairly effective for a
single vehicle. However, in an intersection, a cooperative system is a preferred solu-
tion as it is very important to communicate foreseen threats to other vehicles.

Research initiatives in developing cooperative system for intersection safety such
as [14, 22] have recently commenced. However, these projects do not mention the
techniques to discover crash patterns and pre-crash behavior associations, which are
essential to detecting and reacting to potential threats. A generic framework that is
able to automatically adapt to various types of intersections is also required for effi-
ciency of deployment; however, these projects have not addressed this issue.

There is a project that uses multiagent system for intersection collision warning
system [22]; however, it only implements vehicle-to-vehicle cooperation for intersec-
tion safety. Threat detection relies on information (location, velocity, acceleration)
shared by other vehicles. Useful information from external sources such as the infra-
structure and environment are not incorporated. Another limitation is that the agent
architecture is reactive; there is no learning to gain new knowledge that can improve
the system.

Therefore we suggest an integration of multi-agent systems and ubiquitous data
mining notions to a hybrid intersection safety model that can be applied to any inter-
section. The elucidation and model of our approach is described in the Section 3.

64 F.D. Salim et al.

3 Proposed Model

Subsection 3.1 outlines the requirements of the model for intersection safety man-
agement. Subsection 3.2 explains our model to answer those requirements.

3.1 Model Requirements

There is a need for a cooperative intersection collision warning and avoidance system
that addresses the following challenges:

1. An intersection safety model that is able to detect high risk situations and foresee
threats in particular intersections is required. Given that there is considerable
amount of sensor data in cars and infrastructures, there is an opportunity to reason
and use this data to develop patterns and associations that can help in better under-
standing of high risk situations and behaviors that lead to crashes. While current
systems tend to be reactive to situations, there is increased recognition [3, 14, 22]
that reasoning and learning can be integrated to supplement reactivity.

2. As each intersection is unique, the profile of high risk situations in one intersection
is different from another, therefore, a generic model that is able to adapt to particu-
lar intersections over a period of time is required. Each system in different intersec-
tions should have a knowledge that is applicable only within its locality. This
knowledge is gained through reasoning and learning. Hence, this approach allevi-
ates the inefficiency of the current method of developing different intersection col-
lision warning and avoidance systems for different intersections [1, 7, 19].

3. There is a necessity for exchange of information and knowledge between intersec-
tion infrastructure and vehicles and also for vehicle-to-vehicle communication.
This is due to the need for a comprehensive understanding of a particular intersec-
tion so that the system is able to act or respond better to a hazardous situation.

This research aims to investigate an integration of intelligent software agents,
ubiquitous data stream mining, for a novel context-aware framework that is able to:

1. monitor an intersection to learn for patterns of collisions and factors leading to a
collision using ubiquitous data stream mining;

2. learn to recognize potential hazards in intersections from information communi-
cated by road infrastructures, approaching and passing vehicles, and external enti-
ties using a layered agent architecture;

3. warn particular threatened vehicles that are in the intersection by communicating
directly to the in-vehicle system with multi-agent communication principles.

The goal is feasible due to the recent advances in ITS sensor technology that al-
lows real-time data from in-vehicle and traffic sensors to become more accessible.

3.2 Model Description

This research brings together Multi-Agent Systems with Ubiquitous Data Mining to
develop a context-aware model that addresses for cooperative intersection collision
warning and avoidance systems.

Multiagent technology is very fitting for coordination of entities in intersections.
The abstraction of independent, autonomous entities that are able to communicate with

Context-Aware Ubiquitous Data Mining Based Agent Model for Intersection Safety 65

other entities and make independent decisions maps eminently to the situation of an
on-road scenario. Each entity can be represented by an intelligent agent. Communica-
tion among those entities is made possible through agent communication language.
Accordingly, we need to decide on which agent architecture is the most appropriate to
answer the challenges in the Section 1. According to [24], there are four classifications
of agents based on their architectures: logic, reactive, BDI, and layered agents. As
agent’s layered architecture is designed for balance of mutual effectiveness of reactiv-
ity and reasoning, thus we view it as appropriate to adopt this architecture for the basis
of the model of agents for intersection safety system. Such model allows retaining the
element of reactivity while incorporating the potential to reason and learning.

The question now remains as to how the reasoning and learning is accomplished.
We view Ubiquitous Data Mining (UDM) as suitable in this context. A system that is
deployed to continuously monitor an intersection must necessarily be able to operate
in a ubiquitous resource-constrained environment. The information delivered to the
systems will be from a myriad of sensors that continuously and rapidly stream data to
the systems. Given this content, it is evident that UDM is a suitable option and one
that can facilitate incremental learning. The question remains that while the general
principals of UDM are appropriate for our research, the specifics and modalities of the
learning process and the algorithms suited to this application need to be investigated
and developed as part of this research.

Therefore, the model we propose is: A context-aware multi-agent framework with
an integration of layered agent architecture and ubiquitous data mining for intersec-
tion safety. The subsection 3.2.1 discusses the internal model of agents, while the sub-
section 3.2.2 discusses the interaction model of our multiagent system.

3.2.1 Agent Model
For each agent in the framework, we propose a novel hybrid agent model: Ubiquitous
Data Mining based Layered Agent (UDMLA), as displayed in Figure 1.

The theoretical model consists of three layers, which are described as follows:

1. Reactive layer as the bottom layer. It has sensors, communication components, and
actuators that accept sensory data input and generate responses. It performs infor-
mation exchanges with other agents or external parties and performs the task of is-
suing notifications. Reactive layer possesses knowledge based rules for generating
actions or responses. The characteristics of the knowledge in this layer are stable
(unchanging for an extended period of time) and highly reliable or have high levels
of confidence.

2. Training layer is intended to test new knowledge from the higher layer. Data re-
ceived from reactive layer are passed to the higher layer for reasoning. This layer is
designed to train untested knowledge that is passed from reasoning layer by data
mining techniques for training datasets, solve conflict in untested knowledge by
confidence measurement, recognize failures and learn from it by passing the in-
formation back to the reasoning layer. This layer possesses knowledge with mod-
erate confidence as the knowledge still needs to be tested. When this knowledge
has reached acceptable levels of stability or confidence, it is passed to the reactive
layer for initiating actions based on events that conform to these patterns.

3. Reasoning layer contains UDM algorithm that extracts information from streams of
data to recognize new knowledge such as in form of patterns and associations.

66 F.D. Salim et al.

Reasoning Information
Low Confidence

4 > |
data| l infiormation
Training Untested Knowladge
Mboderate Confidence
4]
dgta | l knowledges
Reactive Tested Knowledge

High Confidence

v

A

data| l action
message

Fig. 1. UDM based Layered Agent (UDMLA) model

Intersection Agent
Reasoning
Layer
Ubiquitous Data Mining Rules Extractor
Training
Layer !
Failure Handler Confidence Measure Knowledge Trainer
feacﬁve Behavior Warning
ayer Classificatory Algorithm
A 4
Input Output
Sensors Comnunication | [Actuators
Traffic Light| | oreco
o) Display
GIS Weather A g Intelligent Rumble
Handler Strips
X

Fig. 2. The internal architecture of an intersection agent

Each layer has a confidence measure to check whether data entering the layer can
be treated within certain levels of confidence for specific purposes such as for gener-
ating actions or training; otherwise, data will be passed into higher layers for reason-
ing. This approach facilitates knowledge evolution within the layers of the agent;
hence, the agent is improving its intelligence over a period of time.

To our knowledge, a model of intelligent agent architecture that accommodates
Ubiquitous Data Mining is novel. The UDMLA model is applicable to other applica-

Context-Aware Ubiquitous Data Mining Based Agent Model for Intersection Safety 67

tion domains that require reactivity along with deliberation to cope with a fast chang-
ing environment.

Figure 2 shows an application of UDMLA model for a single intersection agent.
Input to the reactive layer of an intersection agent can come from sensory inputs and
also from different sources, such as from vehicle agents and external parties such as
traffic bureau. The input data is checked against behavior classificatory to be vali-
dated whether it falls into one of the dangerous behavior categories. If it does, the data
will be passed on to warning algorithm that will take an action depends on the rate of
danger a situation carries.

Every input to the reactive layer is also passed into the next upper layer, which is
the training layer. The training layer assesses the input and remeasures the confidence
of knowledge by calculating and comparing the number of valid and invalid matched
data items. For example, if knowledge to be tested states that a car that a travel ap-
proaching the vicinity is making a direct left turn without first yielding right-of-way,
and another car from the opposite side of intersection, with the distance less than 25
meters, is approaching with the average speed of 50 km/h, crash will happen. In this
case, the crash will likely occur in 1.8 second (3600 seconds + (50000 m + 25 m)).
Say that this knowledge has 3 valid occurrences out of 4 total occurrences (75% con-
fidence). A new data item that falls within the same situation adds the confidence of
the knowledge to be 4 out of 5 (80% confidence). A confidence threshold is given to
this layer, that before a knowledge can be passed into the reactive layer it must reach
a certain level of confidence, for example 90% confidence. If there is a failure in
warning relevant vehicles (i.e. crash happens), failure handler will store the case and
test next relevant data items whether the correct rule is the negation of the current rule
or is a fuzzy rule derived from both the current rule and its negation.

The top layer is the reasoning layer where all input data are being learned and studied
by Ubiquitous Data Mining techniques to find patterns of intersection crashes and dan-
gerous situations and driver behaviors that lead to each crash category. Rules for classi-
fying situations are also being extracted here after clusters of crash patterns are found,
so that dangerous situations can be detected instantly. Every new rule extracted is trans-
ferred to the training layer to be tested with new data items over a period of time.

One example of a scenario that is examined by an intersection agent is a situation of
a small size car that is approaching the intersection with the speed of 40 — 60 km/h
without decelerating to beat the yellow traffic light before it turns to red in 0.5 second.
A near side-collision event occurs as a car from the other side of intersection suddenly
puts on the brakes within the distance of 0.5 meter from the car that violates the red
light signal. This event is then recorded with all the attributes to be clustered and clas-
sified by UDM algorithm. The clustering of UDM uses initial clusters depends on in-
tersection types and crash patterns described by previous studies. For example, for a
cross intersection [15], the initial clusters are: (1) across path turn; (2) perpendicular
paths with no violation of traffic control; (3) perpendicular paths with violation of traf-
fic control; (4) premature intersection entry scenario. Driving behaviors and attributes
in each of the cluster will then be mapped against five stages of driving, which are
“normal, warning, collision avoiding, collision imminent, and collision past” [24]. The
warning algorithm treats each stage of driving differently by issuing different level of
warning. The number of crash patterns will change according to the usage behaviors
and characteristics of the intersection. Hence, the intersection agent is context-aware,
and able to adapt to different kinds of intersections due to its learning capabilities.

68 F.D. Salim et al.

Vehicle agents are using reactive agent architecture as immediate actions should be
taken in response to warning messages from the intersection agent and possibly from
other vehicle agents. Vehicle agents only carry knowledge that are tested and has a
high level of confidence. This knowledge is communicated by the intersection agent.
The multiagent interaction model used for the system is discussed in the next subsec-
tion 3.2.2.

3.2.2 Multiagent Interaction Model

The multi-agent system consists of a stationary agent in an intersection and also mobile
agents in vehicles and is capable of discovering knowledge from streams of data from
various sources such as sensors, traffic bureau and weather bureau. Multi-agent system
will be applied on the whole intersection-vehicle system. Each vehicle will have at least
one vehicle agent, and every intersection will have at least one stationary agent. These
agents will then communicate and work together to achieve their common goals using
their individual and shared knowledge delivered from ubiquitous data mining. As a re-
sult, the system will be more knowledgeable over periods of time. If a vehicle or a
driver has unacceptable behaviors that will risk the other road users, mobile agents will
warn the stationary agent in an adjacent intersection. If a danger for collision is foreseen
by either the stationary agent at the intersection, warnings will be sent to all relevant ve-
hicles. An agent that resides in each vehicle will then act accordingly to the warning
message and also to the situation of the vehicle and driver. This architecture is general
for all kinds of intersections, as each intersection will have its own set of localized
knowledge. This is due to the different crash patterns that exist because of the situation
difference, such as intersection shape, location, volume usage, and presence of different
traffic signals. As a result, this infrastructure safety architecture is also a context-aware
system that knows about its current situation and knows how to react and adapt to dif-
ferent situations. The intersection agent operates within its zone of influence.

A zone of influence is the spatial domain that determines the region of authority of
an intersection agent to coordinate vehicle agents in the approaching and passing ve-
hicles. Knowledge about an intersection that is possessed by an intersection agent is
specific within the boundaries of the zone of influence. Once a vehicle enters a zone
of influence, it broadcasts its sensor data to the intersection agent that resides in the
zone of influence. The intersection agent will then transfer its knowledge about the in-
tersection to the vehicle for the knowledge base of the vehicle agent’s warning algo-
rithm. Warnings are produced mainly from the vehicle agent when the agent detects
the driver is executing dangerous driving maneuvers. However, warnings are also pro-
duced from the intersection agent and sent to relevant vehicles that are going to be af-
fected, as at some situations where multiple cars are involved, it is only the intersec-
tion agent that is able to detect and analyze the situation well. In the intersection
agent, the zone of influence is managed by I/O message handler in the reactive layer.

Our architecture for intersection collision warning and avoidance system enables
vehicle-to-vehicle communication and vehicle-to-infrastructure communication via
agent communication protocol. The necessity of applying data processing and analy-
sis techniques to assess different situations in an intersection is satisfied by having
ubiquitous data mining that is learning from sensors information. Another benefit of
this approach is that it is a scalable solution as there is an automatic localization to
specific intersections.

Context-Aware Ubiquitous Data Mining Based Agent Model for Intersection Safety 69

4 Conclusion and Future Work

We have proposed Ubiquitous Data Mining based Layered (UDMLA) model for co-
operative intersection-vehicle safety: an integration of layered agent architecture with
ubiquitous data mining and context-awareness for intersection safety with the notion
of support and confidence of data mining for knowledge evolution of an agent.

Our contribution to research in road safety is a generic intersection safety model

that can adapt to specific intersections. We are currently implementing the UDMLA
model on a computer based simulation.

References

10.

11.

12.

13.

Arndt, O. K.: Relationship Between Unsignalised Intersection Geometry and Accident Rates,
School of Civil Engineering, Queensland University of Technology, PhD Thesis (2003)

Dey, A. K. and Abowd, G. D.: Towards a Better Understanding of Context and Context-
Awareness, 1st International Symposium on Handheld and Ubiquitous Computing, GVU
Technical Report GIT-GVU-99-22 (1999)

Dresner, K. and Stone, P.: Multiagent Traffic Management: An Improved Intersection
Control Mechanism, the Proceedings of The Fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS '05), Utrecht, Netherlands (2005)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery
in Databases, Al Magazine Vol. 17, No. 3 (1996)

Ferlis, R. A.: Infrastructure Intersection Collision Avoidance, Intersection Safety Confer-
ence, Milwaukee, WI (2001)

France, J. and Ghorbani, A. A.: A Multi-Agent System for Optimizing Urban Traffic,
Proc. of IEEE/WIC International Conference on Intelligent Agent Technology (IAT 2003),
Halifax, Nova Scotia, Canada (2003)

Frye, C.: “International Cooperation to Prevent Collisions at Intersections”, Public Roads
Magazine, Vol. 65, No. 1, July—August 2001, Federal Highway Administration, USA (2001)
Funderburg, K. A.: “Update on Intelligent Vehicles and Intersections”, Public Roads Maga-
zine, Vol. 67, No. 4, January—February 2001, Federal Highway Administration, USA (2004)
Gaber, M. M., Krishnaswamy, S., and Zaslavsky, A.: Ubiquitous Data Stream Mining, Cur-
rent Research and Future Directions Workshop, in conjunction with The Eighth Pacific-
Asia Conference on Knowledge Discovery and Data Mining, Sydney, Australia (2004)
Gabric, T., Howden, N., Norling, E., Tidhar, G., and Sonenberg, E.: Agent-oriented design
of a traffic flow control system, University of Melbourne Department of Computer Sci-
ence Technical Report 94/24 (1994)

Harrington, A., and Cahill, V.: Route Profiling - Putting Context To Work, Proceedings of
the 19th ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus (2004)
1567-1573

Horovitz, O., Gaber, M, M., and Krishnaswamy, S.: Making Sense of Ubiquitous Data
Streams: A Fuzzy Logic Approach, to appear in the Proceedings of the 9th International
Conference on Knowledge-based Intelligent Information & Engineering Systems 2005
(KES 2005), Melbourne, Australia (2005)

Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K.,
Klein, M., Vasa, M. and Handy, D.: VEDAS: A Mobile and Distributed Data Stream Min-
ing System for Real-Time Vehicle Monitoring, Proceedings of the SIAM International
Data Mining Conference, Orlando (2004)

70

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

F.D. Salim et al.

Lages, U.: INTERSAFE — New European Approach for Intersection Safety, funded by the
European Commission in 6th Framework Program, 11th World Congress on ITS, Nagoya,
Japan (2004)

Lloyd, M., Pierowicz, J., Jocoy, E., Pirson, B., Bittner, A.: Intersection Collision Avoid-
ance Using Its Countermeasures. Task 9: Final Report: Intersection Collision Avoidance
System Performance Guidelines, U. S. Department of Transportation, National Highway
Traffic Safety Administration (2000)

Miller, R., Huang, Q.: An Adaptive Peer-to-Peer Collision Warning System, Vehicular
Technology Conference (VTC), Birmingham, Alabama (2002)

Oliver, N. and Pentland, A.: Graphical Models for Driver Behavior Recognition in a
SmartCar, Proceedings of IEEE International Conference on Intelligent Vehicles, Detroit,
Michigan (2000)

Sivaharan, T., Blair, G., Friday, A., Wu, M., Duran-Limon, H., Okanda, P., and Sgrensen,
C-F.: Cooperating Sentient Vehicles for Next Generation Automobiles, ACM MobiSys In-
ternational Workshop on Applications of Mobile Embedded Systems, Boston (2004)
Stubbs, K., Arumugam, H., Masoud, O., McMillen, Veeraraghavan, H., Janardan, R., Pa-
panikolopoulos, N.: A Real-Time Collision Warning System for Intersections, Proceedings
of Intelligent Transportation Systems America, Minneapolis (2003)

U.S. Department of Transportation — Federal Highway Administration: Intersection Colli-
sion Warning System, April 1999, http://www.tthrc.gov/safety/pubs/99103.pdf (1999)
U.S. Department of Transportation — Federal Highway Administration, Institute of
Transportatio Engineers: Intersection Safety Briefing Sheet, April 2004,
http://www.ite.org/library/IntersectionSafety/BreifingSheets.pdf (2004)

U.S. Department of Transportation: Cooperative Intersection Collision Avoidance System,
http://www.its.dot.gov/initiatives/initiative2.htm (2005)

Veeraraghavan, H., Masoud, O., and Papanikolopoulos, N.: Vision-based Monitoring of
Intersections, Proceedings of IEEE Intelligent Transportation Systems Conference (2002)
Wooldridge, M.: “Intelligent Agents”, Multiagent systems: A modern approach to distrib-
uted artificial intelligence, Chapter 1, Weiss, G. (Ed.), The MIT Press (1999) 27 -77

Development of Knowledge-Filtering Agent
Along with User Context in Ubiquitous
Environment

Takao Takenouchi', Takahiro Kawamura??3, and Akihiko Ohsuga?>>

! NEC Corporation, 2-11-5 Shibaura, Minato-ku, Tokyo, Japan
takenouchi@bu. jp.nec.com
2 The Graduate School of Information Systems,
University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo, Japan
{kawamura, ohsuga}@maekawa.is.uec.ac.jp
3 Research & Development Center, Toshiba Corp.,
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa, Japan

Abstract. In this paper, we propose combination of Ubiquitous Com-
puting and Semantic Web. Data and services will be annotated even in
the ubiquitous devices, and should be connected to the web of the seman-
tics near future. We call it Ubiquitous Semantics, where we would find
huge amount of knowledge information, but also find most of them tran-
sitive along with user context. Therefore, in order for an agent to meet
user’s real-time query it is required to efficiently retrieve timely and use-
ful piece of the knowledge from the Ubiquitous Semantics. Thus, this paper
shows a knowledge-filtering agent, which quickly responds the query by dy-
namic classification of the necessary information along with the user con-
text changing in the real world. Further, to evaluate our approach we val-
idate the performance of an application: Recipe Recommendation Agent.

1 Introduction

Semantic Web[1] has gained attention for recent years. As the popularity of
Semantic Web, it is gets for an agent to gather enormous knowledge from Se-
mantic Web. Also, Ubiquitous Computing is expected to become much popu-
lar. In Ubiquitous Computing world, people can use computers and networks
anywhere-anytime and detect everything with RFIDs.

In near future, data and services would be annotated even in the ubiqui-
tous network, and connected to the web of the semantics. We call it Ubiquitous
Semantics, which is an extension of the current Semantic Web. Ubiquitous Se-
mantics is different from Semantic Web in the following points.

1. The agent can retrieve huge amount of knowledge from not only the networks
but also people, object and places in the ubiquitous environment. However,
most of them are transitive, which is described in the next section.

2. In the ubiquitous environment, it is necessary that the agent detects user
context and responds quickly in order to support the user’s behavior in the
real world.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 71-80, 2005.
© IFIP International Federation for Information Processing 2005

72 T. Takenouchi, T. Kawamura, and A. Ohsuga

In short, the agent can get huge amount of knowledge from Ubiquitous Seman-
tics, but it is difficult to meet the user’s real-time query. Therefore, it is required
to retrieve timely and useful piece of the knowledge from the Ubiquitous Seman-
tics according to the user context.

Thus, this paper proposes a knowledge-filtering agent, which quickly responds
the query by dynamic classification of the useful information along with the user
context changing in the real world. Here, the knowledge is metadata annotated
to somethings, which is represented in a triple form including facts, rules, and
ontologies.

The rest of this paper is organized as follows: section 2 describes transitive-
ness. Section 3 proposes the knowledge-filtering agent based on transitiveness. In
section 4, we overview the architecture of our recipe recommendation agent for
evaluation, and validate the performance of the application in section 5. Then,
in section 6, we discuss related works, and section 7 concludes this paper.

2 Transitiveness of Knowledge

The knowledge of the current Semantic Web is sort of static such as web pages.
However, in the ubiquitous environment, it is necessary to consider the knowledge
changing along with the user’s real-time context. In other words, the knowledge
in Ubiquitous Semantics must be filtered along with the user’s time, place, and
so on. We call it transitive knowledge.

Therefore, we propose a method to classify the knowledge based on the tran-
sitiveness and to select a certain size of useful knowledge. This will enable the
agent to reason on it efficiently and quickly. In order to classify knowledge based
on the transitiveness, we define the following four factors of transitiveness.

First factor is Time. In the real world, there is much knowledge depending on
time. Therefore it is important to select useful knowledge based on the time.

Second factor is Place. In the ubiquitous environment, the user would mainly
need to know the knowledge related to the present time and place.

Third factor is Occasion. According to the user’s current context, it is dif-
ferent whether the user wants to have a response quickly or not. If the user
doesn’t have so much time, the agent should inference for short time period and
respond quickly. Thus, the user’s occasion is an important factor to detect the
transitiveness of Ubiquitous Semantics.

Fourth factor is Personalization. User’s preference is also an important factor
for selecting. Therefore, the agent should consider the user’s preference.

Here, we take the initials of the four names, and call it TPO+P. In the next
section, we describe an inference agent who classifies the transitive knowledge
based on TPO+P.

3 Knowledge-Filtering Agent

The agent needs to select useful knowledge in considering transitive knowledge
mentioned in section 2 in order for the agent to respond quickly in Ubiquitous

Development of Knowledge-Filtering Agent Along with User Context 73

Ubiquitous Semantics
ime ion

Time, Place
Classfication System

Ubiquitous Semantics

Retrieve

Knowledge Classification Part
(24 hours running)

]

Events Occasion

Classification System
_—————

Knowledge Base
TPO Classification

* Retrieved Knowledge
Knowledge Base g
are dlassified more

Change of
Preference
e,

Personalization
Classification System

Time, Place Cl
Selecting] [
Selected

Knowiedge
Inference Part Selected for Gussiteaio
(riggered by user's reques) Knowledge Selecting |:|

for -
Classification
Finally Selected
- Personalization
Occasion Classification Claoatti ot Knowledge

for Inference

Selecting

Fig. 1. Archtecture of the knowledge-filtering agent and knowledge filtering

Semantics. Figure 1 shows the architecture of the agent. This agent is mainly
composed of Knowledge Classification part and Inference part.

The first part including knowledge base vertically connected from top to down
is Knowledge Classification part. This part classifies transitive knowledge. The
transitive knowledge are classified in three steps based on Time-Place, Occasion
and Personalization. Here, we applied the strategy which is to process the simple
classification first to make the size of knowledge passed to the next more complex
classification smaller. In addition, each classification is processed independently.
Therefore, it is possible to re-classify transitive knowledge quickly in case of
the change of user’s context (figure 1). Knowledge Classification part is always
running, then receives input information of user’s position, event, preference and
so on. We describe each step of classification process and the example in the next
section.

The second part including an inference engine horizontally from left to right
is Inference part to provide decision support information for users. This part is
executed on the user’s demand. Knowledge is already retrieved and classified by
Knowledge Classification part. Then, the inference part just selects the useful
part of knowledge to pass it to inference engine for decision making support.
Finally, the agent calculates the satisfaction ratio from the results of inference,
and outputs the sorted results with the satisfaction ratio.

4 Recipe Recommendation Agent

We have developed recipes recommendation agent for evaluation. The agent
recommends a recipe, for example, for homemakers to prepare dinner in consid-
eration of sale information and children’s preference and so on. Here, we assume
the ubiquitous environment as follows. The information of user’s position and
what merchandise in user’s hand is acquired by using GPS and a RFID reader
in the portable device. Also, the agent acquires the necessary knowledge from
Ubiquitous Semantics in cooperation with information appliances at home and
makes the recommendation. Finally, the portable device displays the recom-
mended recipes.

74

T. Takenouchi, T. Kawamura, and A. Ohsuga

4.1 Overview of Recipe Recommendation Agent

In the followings, we show the process of classification.

1.

Time-Place Classification

Firstly, the agent detects user’s position and retrieves knowledge of shops
around the user and their sale information and so on, and classifies them
based on time and place .

The agent retrieves not only knowledge of business hours and regular holiday
of the shop, but also all knowledge that depends on time such as time-sale,
then classifies them.

Knowledge Classification part is always running. Thus, the knowledge near
the user such as local weather information is updated any time.

The information of shops such as opening hours and position, etc. are as-
sumed to be represented in RDF. In addition, we defined an ontology for
shop description (e.g. opening hours, shop holiday, service time and so on).
This ontology is defined with DAML-Time ontology|[2].

Occasion Classification

For example, consider that the user picks up a food stuff in a shop. In this
case, it is thought that the user is interested in that food stuff. Thus, the
agent should recommend some recipes using it. So the agent retrieves the
name of the food stuff from the attached RFID or QR Code, and selects
recipe, and recommends some of them. In Occasion classification process,
Jess (Java Expert System Shell) [3] is used as an inference engine. Therefore,
Occasion rules are represented in S-expression like Lisp.

Occasion rules are divided into Common Rules and Condition Rules (table
1). Common rules describe some typical situations and are prepared by the
system manager. On the other hand, Occasion Rules describe the situations
depends on the user. Therefore, we will develop a tool to select and customize
the Occasion Rules in the future.

Personalization Classification

Finally, the agent classifies the useful knowledge based on the user’s pref-
erence, and calculates a satisfaction ratio for recommendation. The user’s

Table 1. Occasion rules

Rules

recommend recipes using it

Rule Type Description Rule
Common If an user is in a shop then Agent cut the knowledge small size (defrule (user in shop)
Rules (because the user would want to be recommended quickly) => (cut knowledge small))

If an user is in a shop and the shop will be closed soon then (defrule (user in shop) (closing time soon ?shop)
Agent re check the prices (because it will be saved) => (check price ?shop))
If an user has a car and is at home then the user can go (defrule (user have car) (user in home)
shopping by car => (use car enable))

Condition | If an user isin a shop and picks up merchandise then the Agent | (defrule (user in shop) (event have ?item)

=> (recomend recipe use ?item))

If an user is near a station and it is the time of going home then
the Agent ds to buy at the shops in his way home

(defrule (user near station) (time evening)
=> (area shop station home))

If an user is reading a shop handbill then the Agent
recommends to buy at the shop

(defrule (event read handbill ?shop)
=> (area shop ?shop))

Development of Knowledge-Filtering Agent Along with User Context 75

preference is complex, then it is written as rules. Personalization classifica-
tion is most time-consumption, so it is executed at the end.

For example, if the user is on a diet, the agent should retrieve knowledge of
nutrition information in order to calculate Calorie.

Personalization rules in which the user’s preferences are described are spec-
ified with URL, and downloaded from the network.

The user’s preferences are gathered by questionnaires in advance, then con-
verted to the Personalization rules. We will also develop a tool as well as the
Occasion rules in the future, so that the users can describe the Personaliza-
tion rules by themselves.

4.2 Motivation of Recipe Recommendation Agent

The recipe recommendation is one of the best applications for the evaluation as
follows.

First, there is much of transitive knowledge in the recipe recommendation. For
example, sale information on each day and time service discount information are
transitive knowledge depends on time information. In addition, user’s preference
depends the physical condition on everyday. Therefore, the preference is also
transitive knowledge.

Second, lots of sites show several recipes on the web, and various terms are
used. Thus, it is necessary to use the ontology in recipe recommendation agent.
For example, “Potato” is necessary as a food stuff for a menu, and a certain
merchandise is labeled as “White Potato”, then the agent should recognize that
“White Potato” is one of “Potato” and can be used as the food stuff of the menu.
A food stuff ontology is described in Web Ontology Language (OWL) [4].

5 Implementation

The mobile device of the recipe recommendation agent is assumed as an advanced
cellular phone (Smart Phone). However, the evaluation system was implemented
in Pocket PC due to the problem of the development environment (figure 2).

Fig. 2. Mobile device for evaluation

76 T. Takenouchi, T. Kawamura, and A. Ohsuga

(b) Linkage between
Tag and Recipe RDF

(a) Recipe RDF

<rdf.RDF
<Menu rdf:1D=" Curry ">
<rdfsilabel>Curry Stew/rdfsilabel>
<ingredients>
<Ingredient>
<item =“http://nike wi#Meat" />
<unit rdf:resource="http:/nike.... jp/menu/unit.owl# Gram" />
ity>

<quantity>400</quanti
Linked by
</Ingredient> using Ontology

TagID Price

<rdf:RDF ..
<Merchandise rdf:about="urn:epc:VE40101B49C24">
<rdfsilabel>fancy Chicken(200g)</rdfs:label>
<menu:ingredients>
<menu:ingredient>
<I- linkage between Recipe RDF and Ingredient Ontology -->
<menu:item “http://nike
<menu:unit rdf:resource="http://nike.... jp/menu/unit.owi#Gram? />
<menu:quantity>200</menu:quantity>

VE40101B49C24
VE40101B49C28

VE40101B49C26

- (c) Data Base for
Merchandise
Tag and Price

Fig. 3. Knowledge on merchandises and recipes

We use HP iPAQ h2210 in which RFID Reader and GPS Reader are installed.
PDA OS is Pocket PC 2003.

We developed the recipe recommendation agent with Java, and installed it
to PC instead of a home server. We used Jena 2 Semantic Web Framework [5]
to process OWL ontology, and use Jess[3], which is a forward chaining inference
engine in Java. Thus, the user’s preferences are written in Jess rules. Web ser-
vices are provided in some of servers by using Axis[6], and the mobile device
communicates with the servers via the agent.

Further, we prepared the knowledge which links the merchandise tag with the
recipe written in RDFs as shown in figure 3. Information on tag IDs such as prices
are stored in merchandise DB, and the knowledge also links the merchandise tag
ID to the food ontology.

6 Evaluation

In this section, we evaluate the knowledge-filtering agent. The evaluation was
done on the response time and the accuracy.

The knowledge used in the experiment is the real data which is published
on a food company [7]. We converted it into RDF and used it as Ubiquitous
Semantics. Also, we converted part of the thesaurus which is made by [8] into
OWL, and used it as the food ontology.

6.1 Response Time

Table 2 shows the result of the response time comparing classifications and non
classification. The results are the averages over 3 times sending the same query.
We had an experiment in the occasion that the user is in a shop and thinks of
today’s dinner then picks up a merchandise at 2 shops, 93 merchandise in each
shop, and 40 recipes. The user sends the request to prefer the lowest price.

The agent classifies the knowledge based on shops by “Time-Place classifi-
cation”, and classifies it based on the merchandise which the user picked up
by “Occasion classification”. Moreover, by “Personalization classification” the
agent classifies the knowledge based on preference for lower price recipes.

Table 2 shows the response time improvement. It is caused by classifying the
knowledge based on TPO+P and selecting suitable knowledge of recipe according
to the users context. This result shows that the response time is getting faster
by increasing the classification factors.

Development of Knowledge-Filtering Agent Along with User Context 7

Table 2. Response time with classification factors (ms)

No Classification TP TPO TPO+P

Response Time 11550 6940 4137 291
Initialization 781 0 0 0
Non-Transitive Knowledge 471 0 0 0
TP Classification 0 317 0 0
TPO Classification 0 0 531 0
Pre-Inference Process 2033 1088 154 0
Price Calculation 7968 5261 3211 0
TPO+P Classification 0 0 0 50
Inference 297 274 241 241

100 .
% Zg —— Classification Off
E Zg [| = Classification On Z
3 = =
o 10 — P e ——
° 1 2 3 4 ‘ 5 ‘ 6 ‘ 7
Number Of Shops

Fig. 4. Response time with knowledge size

By looking at the internal processing time, it is found that the calculation on
the total price of the recipe takes so much time. The agent infers with the food
ontology like section 4.2 by using Jena and calculates the price. Therefore, as
the knowledge of the merchandise and the recipes increase, their combinations
increase and the processing time grows. However, as the classification factors
of knowledge information increase, the combinations become smaller, and the
processing time is getting faster.

In addition, we had an experiment on the response time when the size of
knowledge is changed. Figure 4 shows the result of classification. When not
classifying it, the combinations of the merchandise of the shop and the food
stuff of recipes increase explosively. Thus, the response time is getting worse
rapidly. In contrast, the response time is almost stable when classifying it.

Further, to confirm whether the classification order TPO+P is appropriate,
we shuffled the order. Table 3 shows the results of the time for each order. It
is confirmed by this result that the order of “Time-Place”, “Occasion”, and
“Personalization” is the fastest, and appropriate as the classification order.

Finally, we had an experiment on a processing time for re-classification with
100 recipes, 200 merchandises, and 4 shops. Figure 4 shows the result. When
the re-classification is done at “Time-Place classification”, it is necessary to do
re-classification at “Occasion classification” and “Personalize classification” that
are below it. That is, it costs the longest time to re-classify the knowledge at
“Time-Place classification”. The result shows it takes about 6 seconds to do

78 T. Takenouchi, T. Kawamura, and A. Ohsuga

Table 3. Reclassification time (ms) with TPO+P order

TimePlace Occasion Personalization Total

TP,0,P 497 251 448 1196
TP,P,0 538 808 855 2201
0,TP,P 631 1519 581 2731
O,P, TP 644 1519 12939 15102
P,TP,0 2507 240 39587 42334
P,0,TP 648 1385 40899 42932

Table 4. Reclassification time (ms)

Change level Reclassification Time
Time-Place changed 6023
Occasion changed 5488
Personalization changed 5021

re-classification at “Time-Place classification”. However, considering with the
current PC spec; Pentium M 1.5GHz, the agent would be able to follow enough
the user’s real movement.

As the result, the agent can decrease the number of combinations, reduce
the size of knowledge for inference, and improve the response time. Also, as the
size of ubiquitous semantics increases, the effectiveness of the agent will become
higher.

6.2 Accuracy of Recommendation

This section shows that the accuracy does not get worse by cutting out the

transitive knowledge. The verification method is as follows. First of all, each

tester recommends 20 recipes that he/she wants to eat in some occasions from

100 recipes. Then, the recipe agent recommends 20 recipes. Finally, we exam-

ines how many recipes which the agent recommended are matched to his / her

recommendations, and calculate the precision ratio of the recommendation.
The occasions are the followings.

Occasion A. In a shop at 3:00 PM, selecting a food stuff for today’s dinner.
At that time, the user picks up a savory carrot.

Occasion B. Around the train station at 10:00 PM. The user buys a food stuff
at a convenience store.

Occasion C. At home at 3:00 PM, thinking of the menu of today’s dinner.

Here, the user’s preference is “cooking time is shorter”, “low calorie”, “dislikes
fishes”. We had an experiment with 230 merchandise, 231 food ontology, and
7 testers. Table 5 shows the result of the average. (No-classification experiment
was not able to be done, because the system rised memory shortage error.)

Development of Knowledge-Filtering Agent Along with User Context 79

Table 5. Precision ratio (%)

TP TPO TPO+P
Occasion A 43.3 83.3 83.3
Occasion B 35.0 46.7 51.7
Occasion C 30.0 40.0 43.3

The result shows that the precision ratio improves as the classification factor
increases. In each classification, obviously unsuitable recipes are cut out, so the
precision ratio of the recipe has improved.

In summary, it was confirmed that the agent is able to respond quickly keeping
the accuracy by classifying transitive knowledge based on TPO+P.

6.3 Applicability of Other Applications

We have concluded the knowledge filtering agent is effective by evaluating the
recipe recomentdation system only. However, the knowledge filtering agent is
applicable to other applications. For example, man navigation system which
changes the destination along with user’s preference is one of target applications.
This system has too many possible destination for users goal. Therefore, it is dif-
ficult to consider the whole knowledge. Furthermore, it is necessary to recomend
quickly in the case of changing the user’s plan. Also, there are many kinds of
transitive knowledge, such as vacant seat in the theater and so on. For the above
reasons, the knowledge filtering agent would be applicable for other systems.

7 Related Works

Several studies have been made on context awareness in ubiquitous environment.
[9] aims at providing Web services that fit to ubiquitous computing and proposes
an architecture with middle agents who determine the best matched services
and location-ontology for ubiquitous computing. However, it doesn’t classify the
knowledge information from huge amount of transitive knowledge.

[10] proposes a system which infers user’s context from the knowledge in
Semantic Web and information from sensors, and provides appropriate informa-
tion to the user. However, it don’t classify massive transitive knowledge and not
consider the performance.

In addition, several methods of acquiring knowledge to respond quickly are
proposed. [11,12] propose an agent who acquires the knowledge on the Web
using caching and planning technology. However, they don’t deal with transitive
knowledge in ubiquitous environment. Our research aims to respond quickly by
classifying transitive knowledge information.

Furthermore, several studies have been made on recipe recommendation. [13]
proposes a system to recommend new recipes from some basic recipes by using
Case-Based Reasoning and propose a substitute food stuff by using a food ontol-

80

T. Takenouchi, T. Kawamura, and A. Ohsuga

ogy. However, it doesn’t consider the transitive knowledge. If the size of knowledge
is large, then it would become necessary to select the useful knowledge.

8

Conclusion

We defined four factors that characterize the transitive knowledge as TPO+P,
and proposed the method of efficiently selecting the useful knowledge part from
the huge amount of knowledge in ubiquitous environment.

Then, we developed the recipe recommendation agent, and evaluated the re-

sponse time and the accuracy.

References

10.

11.

12.

13.

. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, May 2001.

. Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard On-

tology for Ubiquitous and Pervasive Applications. In MobiQuitous 2004, August
2004.

. Jess (Java Expert System Shell). Sandia National Laboratories.

http://herzberg.ca.sandia.gov/jess/.

. Deborah L. McGuiness and Frank. van Harmelen. OWL Web Ontology Language

Overview, December 2003. http://www.w3.org/TR/owl-features.

. Jeremy J. Carroll, Tan Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,

and Kevin Wilkinson. Jena: Implementing the semantic web recommendations.
Technical Report HPL-2003-146, HP Lab, 2003.

. Apache AXIS. Apache Web Services Project. http://ws.apache.org/axis/.
. Ajinomoto, Co., Inc. Recipe DAIHYAKKA.

http://www.ajinomoto.co.jp/recipe/.

. Institute of Language Engineering. Thesaurus. Japan,

http://www.gengokk.co. jp/thesaurus/.

. Akio Sashima, Koichi Kurumatani, and Noriaki Izumi. Location-mediated service

coordination in ubiquitous computing. In the Third International Workshop on
Ontologies in Agent Systems(OAS-03), pages 39-46. AAMAS2003, 2003.

Harry Chen, Tim Finin, Anupam Joshi, Filip Perich, Dipanjan Chakraborty, and
Lalana Kagal. Intelligent Agents Meet the Semantic Web in Smart Spaces. [FEE
Internet Computing, 8(6):69-79, November 2004.

Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley XQ. Zhang. BIG: An Agent for Resource-Bounded Information Gathering
and Decision Making. Artificial Intelligence, 118(1-2):197-244, May 2000.

Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley XQ. Zhang. BIG: A Resource-Bounded Information Gathering and Deci-
sion Support Agent. Technical Report 1998-52, Multi-Agent Systems Laboratory
Computer Science Department University of Massachusetts, January 1999.
Kristian J. Hammond. CHEF: A Model of Case-Based Planning. AAAI, pages
267-271, 1986.

Application-Driven Customization of an
Embedded Java Virtual Machine

Alexandre Courbot!, Gilles Grimaud?,
Jean-Jacques Vandewalle?, and David Simplot-Ryl!

! TRCICA/LIFL, Univ. Lille 1, France, INRIA futurs, POPS research group
{Alexandre.Courbot, Gilles.Grimaud, David.Simplot}@lifl.fr
2 Gemplus Systems Research Labs, La Ciotat, France
Jean-Jacques.Vandewalle@research.gemplus.com

Abstract. Java for embedded devices is today synonym of “embed-
dable pseudo-Java”. Embedded flavors of Java introduce incompatibili-
ties against the standard edition and break its portability rule. In this
paper, we introduce a way to embed applications written for Java 2
Standard Edition. The applications are pre-deployed into a virtual Java
execution environment, which is analyzed in order to tailor the embed-
ded Java virtual machine according to their runtime needs. Experiments
reveal that this method produces customized virtual machines that are
comparable in size to existing embedded Java solutions, while being more
flexible and preserving standard Java compatibility.

1 Introduction

Many solutions exist as of today for using Java on small and restrained de-
vices [1], like Java 2 Micro Edition (J2ME) and Java Card. To become em-
beddable, these flavors deviate from standard Java and only offer a subset of its
features. Java 2 Standard Edition (J2SE [2]) is the original edition of Java, and as
such has the widest applicative spectrum of all the Java implementations. How-
ever, its resource requirements limit it to desktop workstations or strong PDAs.
Lighter devices have to turn to degraded versions of Java such as J2ME. These
Java flavors come with APIs that cover a limited range of the J2SE APIs, and
are sometimes incompatible with it. In addition, their virtual machine doesn’t
cover all the features range of the J2SE specification. A Java derivative is there-
fore only suitable for a given kind of applications and a given range of devices,
and enforces the application programmer to cope with an environment that is
not J2SE-compliant. The portability gold rule of Java is thus broken.
Obviously, using Java on restrained devices requires a degradation of the Java
environment at some point to make it fit. However, imposing restrictions right
from a specification tend to make the environment either suitable for the general
use and inefficient for dedicated tasks, or good for one domain and inapplicable
to others. It also multiplies the number of incompatible implementations of Java
that a developer has to choose from. Our approach is to tailor the most suitable
customized Java environment from a standard Java environment on a per-case

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 81-90, 2005.
© IFIP International Federation for Information Processing 2005

82 A. Courbot et al.

basis, according to the applications that are to be run, and the specifics of the
target device. As efficient customization of software requires knowledge about
its runtime conditions, the customizations take place during an off-board pre-
deployment phase of the system, called romization.

We identify two kinds of customizations that are applicable during romization.
The first one, automatic reduction and specialization of the J2SE APIs to get
light and efficient custom-build APIs, has been studied in previous work. In the
present paper, we are interested in the specialization of the Java virtual machine
that is embedded into the target device. We propose and evaluate a method for
determining and removing the virtual machine features that are not necessary
to the embedded applications. This approach has the advantage to retain J2SE
compatibility for the programmer, and to provide an adequately-tailored virtual
machine to the applications.

The remainder of this paper is organized as follows. In section 2, we make an
overview of Java on embedded devices, introduce the romization concept, and
summarize our previous work on it. Then, section 3 explains how deployment-
time analysis of the system can be useful to customize the embedded virtual
machine. Section 4 experimentally measures the memory gained by removing
unused virtual machine features, and we conclude on our approach in section 5.

2 Overview of Java on Embedded Devices

In this section, we overview some existing solutions for using Java on small and
restrained devices. Then, we present the romization process, its advantages for
embedded Java systems, and summarize our previous work on it.

2.1 Java on Embedded Devices

Java offers features like compact program bytecode and safe execution that make
embedded Java a hot topic. As of today, many embedded Java environments are
available. Java 2 Micro Edition (J2ME [3]) specifies a Java-like virtual machine
specification and APIs, and is derived into two configurations. The Connected
Device Configuration (CDC) is designed for network appliances, while the Con-
nected Limited Device Configuration (CLDC) is targeted at small and mobile
networked devices, like mobile phones. Both CDC and CLDC come with a small
subset of the J2SE APIs and bring new, incompatible APIs. Moreover, CLDC
imposes restrictions on the virtual machine: no support for reflection, objects
finalization, floating point numbers, and limited error handling. Java Card [4]
is another Java derivative from Sun that targets smartcards. It has more lim-
itations than CLDC, since it also drops support for garbage collection, 32-bits
operands, and strings. Java Card also deviates by the firewalling mechanism,
and its .cap preloaded class format. TinyVM and LeJOS [5, 6] are community
projects for enabling Java on the Lego Mindstorm platform. They propose two
differently sized and featured implementations, with additional non-standard
APIs and limitations on the virtual machine.

Application-Driven Customization of an Embedded Java Virtual Machine 83

Java’s promise is “compile once, run everywhere”. But as we can see, all the
embedded solutions considered here are incompatible with J2SE and violate this
rule. Moreover, they offer a rather static virtual machine configuration, which
features may not all be exploited by the embedded applications, thus wasting
silicon and questioning the relevancy of writing small applications in Java. To
address these issues, we propose not to adapt the applications to a specific Java
environment, but on the contrary to tailor a standard J2SE environment ac-
cording to its applications and targeted device. Such a tailored Java system
becomes embeddable and provides the right subset of runtime features needed
by the applications. Our approach, which customizes the J2SE APIs as well as
the embedded virtual machine, relies on the romization process.

2.2 The Romization Process

Romization is the process by which a Java system is pre-deployed by a deploy-
ment host, for a target device. In this particular form of deployment, the device
that runs the system is not the device that deployed it. Romization differs from
distributed deployment methods like Java Card .cap format or JEFF [7], which
are pre-loaded alternatives to the .class format. The romizer deploys the Java
Runtime Environment within a virtual execution environment, and then dumps
a memory image of it. This memory image containing the deployed system is
then copied to the target device where it will continue its execution. Romization
can therefore be characterized as an “in-vitro” form of deployment (figure 1).

. Deployed |

Fig. 1. The romization process

Java
classes

Romization brings two interesting properties for restrained devices willing to
run Java. First, the device does not need to support the cost of deployment. This
point is important because Java class loading is too costly a process for many
small devices. Second, the output of the romizer serves as the initial state for
the device (the state it is in when powered on). Since this state comprehends the
deployed Java virtual machine, the device is ready to use it immediately, which
reduces startup times. These points make romization a very common practice,
not to say a mandatory step, in the embedded Java world.

2.3 Previous Work on Romization

As of today, romization is primarily used to pre-load Java classes and provide a
service quite similar to distributed class formats. In previous work [8], we have

84 A. Courbot et al.

overridden this classical usage of romization and shown the benefits of going fur-
ther in the system deployment during romization: the romizer can perform very
aggressive customizations on the system if the latter is deployed far enough. In
particular, call graph analyses [9] on the threads allow unused parts of the APIs
to be removed using library extraction techniques [10, 11], and the remainder to
be specialized for runtime usage. This results in APIs that are custom-tailored
on a per-case basis for the system, and have low memory footprints.

This previous work did only cover the specialization of the deployed applica-
tions and Java APIs. In this paper, we take advantage of the advanced deploy-
ment state of the system to customize the embedded Java virtual machine.

3 Customization of the Java Virtual Machine

We have seen in the previous sections that many features of the J2SE virtual
machine are not supported by restrained devices. We are however interested
in developping our applications using the standard J2SE, and degrading it ac-
cording to the applications needs and the capabilities of the target device. This
section evaluates how the necessary runtime features of a Java program can be
figured out, while the next one gives experimental results on this approach.

The purpose of the Java virtual machine is to execute Java programs: i.e, to
provide an implementation for every bytecode used by a program, in such a way
that its semantic is conform to the Java specification. If a bytecode is not used
by the virtual machine, support for it can safely be dropped.

3.1 Unused Bytecodes Support Removal

The full Java instruction set covers a large spectrum of operations: integer and
floating point arithmetic and logic for 32 and 64 bits operands, objects allocation,
methods invocation, threads synchronization, and so on. But few Java programs
use all the bytecodes — this is especially true for small programs. For instance, many
embedded applications have no use for floating point arithmetic. Critical applica-
tions, if deployed far enough within the romizer, often never allocate memory.

Figure 2 shows the bytecodes usage spectrum of various benchmark programs,
as stated by the call graph analysis done in our romizer. AlarmClock is a simple
alarm program that waits for a given time to be reached. Dhrystone is the well-
known integer operations performance benchmark, and Raytracer is a multi-
threaded image rendering benchmark from the SPEC JVMO98 suite [12].

It is striking that every benchmark is far from using all the bytecodes of the
Java instruction set. A very small application like AlarmClock, which scope is
limited to integer arithmetic, has no use for the majority of them. Dhrystone
uses strings and is already a more complete program, but there are still more
white sections than black ones on its spectrum. Raytracer heavily uses floating
point arithmetic in addition to integers, as well as threads synchronization and
memory allocation. However, it still uses less than half of the bytecodes set.

Once the set of useful bytecodes is determined, support for unused ones can
be removed from the bytecode interpreter. This may give the opportunity to

Application-Driven Customization of an Embedded Java Virtual Machine 85

| I] 1] [

AlarmClock (12 bytecodes used)

 (IAD I (A T] [T .

Dhrystone (65 bytecodes used)

(RN NN L AR NN | HIN e .

Raytracer (104 bytecodes used)

Fig. 2. Bytecodes usage spectrum for different programs. The horizontal axis parses
the whole Java instruction set. Bytecodes present in the program call graph rise a black
bar, whereas a white gap indicates an unused bytecode.

remove some services provided by the virtual machine. For instance, the new
bytecode is responsible for allocating memory for an object of a given class. To
do so, it uses a virtual machine function that allocates memory on the heap. If
there is not enough memory available, this function triggers a garbage collection
to recover memory. This mechanism is reproduced for other memory allocation
bytecodes, like newarray or anewarray. If the new bytecode is never to be met
by the virtual machine at runtime, the object allocation function of the virtual
machine can be dropped. If none of the memory allocation bytecodes is present
in the program code, then not only can their corresponding allocation functions
be dropped, but also the garbage collector since it is never going to be useful
to recover memory: the gain of removing all the memory allocation bytecodes is
greater than the cumulated gain of removing each of them individually.

All the bytecodes are not equally interesting to remove. Memory allocation
bytecodes are great candidates, because they rely on heavy mechanisms. On the
contrary, removing an arithmetic bytecode leads to a poor gain. We noticed that
two-thirds of the memory footprint of the virtual machine serves for implement-
ing one-tenth of the bytecodes: those responsible for memory allocation, threads
synchronization, exception throwing, and method invocation.

Removing support for bytecodes in the virtual machine is a good way to elimi-
nate some of its useless features. However, all the virtual machine features are not
exclusively dependent on the presence of some bytecodes. For instance, threads
switching may be triggered by a bytecode (monitorenter or monitorexit), but
also by other events (a thread used its time slot, a native method put the cur-
rent thread in sleeping state, ...). Such features require a deeper analysis of the
system in order to be decided useful or not.

3.2 Analysis of the Deployed System

Some virtual machine features, such as threads management, would always be
present in the virtual machine no matter the bytecodes included. The reason is
that these mechanisms are called by the virtual machine itself: for instance, when
a time slice is elapsed, the virtual machine requests a thread switching. This is
unfortunate because threads management is responsible for a non-neglectable

86 A. Courbot et al.

part of the virtual machine memory footprint, and some Java systems have no
use for threads (for instance, Java Card). In particular, systems that never have
more than one Java thread simultaneously still perform in accordance with the
Java specification if they don’t include multithreading.

In a virtual machine developed with configurability in mind, threads manage-
ment can easily be disabled through compile-time definitions. In such a config-
uration, the bytecode interpreter executes the current thread without switching
and ends with it. It is possible for the program analyzer of the romizer to detect
in which case this configuration is possible. The virtual machine can be purged
of threads management if it fulfills the following conditions:

— There is only one active thread into the system at the time of analysis,

— The program analysis reveals that the method Thread.start() is never
called,

— No additional code is loaded from the outside.

In such a case, it is assured that no more than one thread will ever run, and
the threading mechanisms of the virtual machine can safely be discarded by a
compilation flag.

The system analysis might enter in conflict with the bytecodes support re-
moval in some cases. For instance, consider a system which fulfills the condi-
tions to be mono-threaded. However, its execution path meets the bytecode
monitorenter at some point (for instance, by calling a synchronized method).
The implementation of monitorenter triggers a thread switching if the cur-
rent thread doesn’t own the monitor, thus including the thread switching func-
tions into the virtual machine. To override this problem, all the instances of
monitorenter and monitorexit in the Java code can be eliminated during
romization, which also has the beneficial side effect of reducing the code size.

Removing threads management when it is useless is just an example amongst
others, although it is probably the one that offers the most significant memory
gains. Similar analyzes can be performed for other customizations, like disabling
support for exceptions.

4 Experimental Evaluation

The previous section explained how to detect and remove features of the virtual
machine unneeded for a given Java program. In this section, we evaluate the
effective memory footprint gained by this tailoring.

4.1 Methodology

All our measurements have been performed on the Java In The Small (JITS [13])
Java-OS. JITS comprises J2SE-compliant APIs and virtual machine, and a
romization architecture that allows to execute the system off-board and to per-
form analyzes on it. The binaries are obtained by romizing the benchmark pro-
grams mentioned in section 3, and by compiling the tailored JITS virtual machine

Application-Driven Customization of an Embedded Java Virtual Machine 87

using GCC 3.4.3 with optimization level 2, for the x86 architecture. The linker
is then asked to eliminate dead code.

The JITS virtual machine is made of several compilation units. The bytecode
interpreter engine, when including support for all bytecodes, is 15350 bytes big.
The interpreter loop itself is 11670 bytes, the rest are peripheral features like
method frame creation or exception throwing. The full threads management
mechanisms take 6967 bytes, and the complete memory manager 10915 bytes, of
which 7036 are for the garbage collector. A non-customized JITS virtual machine
therefore has a memory footprint 33232 bytes, to which one must add the target-
specific code, native methods, and Java classes that are needed for the virtual
machine to function. Indeed, many core features of JITS, like the class loader,
are written in Java. We are not including these features in our measurements
because they are covered by the customization of the Java classes that has been
addressed in previous work. In this paper, we are just interested in tailoring the
natively-written part of the runtime environment.

4.2 Results

Table 1 shows the sizes obtained for virtual machines capable of running our
benchmark programs.

AlarmClock uses 12 bytecodes, and its engine is reduced to 2895 bytes. This
program never allocates memory, which makes the memory manager unneces-
sary, and the threads management operations can also be highly reduced since
the program never creates new threads. Moreover, the set of bytecodes used
is quite “ideal”, with only low-cost bytecodes (stack manipulation and integer
arithmetic). This explains the very low footprint of this virtual machine.

Dhrystone uses 65 bytecodes, for an engine size of 6992 bytes, and is also
mono-threaded. One question can be raised about why the memory manager is
not included in the binary, since this benchmark allocates arrays in its source
code. The answer is, because all the allocations have already been performed
within the romizer. Dhrystone allocates memory at two points of its execu-
tion: during the initialization of the classes (for initializing static fields), and at
the very beginning of the benchmark where it allocates one-sized integer arrays
(which are a trick to simulate passing integers by address). These memory al-
locations are not performed at runtime because the romizer dumped the state

Table 1. Size (in bytes) of the obtained virtual machines for the different benchmark
programs

Benchmark Reference AlarmClock Dhrystone Raytracer
Number of bytecodes used 242 12 65 104
Engine size 15350 2895 6992 8576
Memory manager size 10915 0 0 7986
Threads management size 6967 1908 1908 6854

Total size 33232 4803 8900 23416

88 A. Courbot et al.

of the system after their execution. It doesn’t change the runtime semantic of
the program because at this point the benchmark algorithm has not yet started.
Therefore, these memory allocations can be considered initialization work that
is safe to be performed off-board. This is a typical example of the advantage of
bringing the system to an advanced state of deployment within the romizer: if
our romization architecture were only capable of pre-loading the classes, none
of these initializations would have been performed. Our virtual machine would
then have suffered a penalty of several kilobytes for the memory manager; not
to mention the footprint of the class initialization mechanism, and the increased
startup time of the system.

We should also mention that the customization of the Java APIs done dur-
ing romization is essential for efficiently removing bytecodes. For instance, the
String.charAt method used by Dhrystone allocates and throws an exception
if the given index isn’t within the range of the string. But since Dhrystone
always calls this method with well known values and on strings we statically
know the size of, the romizer can infer that the exception is never thrown, and
improve the code of the method accordingly. Without this APIs customization
pass, the exception throwing would be a plausible program path and the new
bytecode marked as used, requiring a part of the memory allocation module and
the whole garbage collector to be included.

Our last benchmark, Raytracer, requires 104 bytecodes for an engine size
of 8576 bytes. There is no way to completely drop the memory manager since
it allocates objects at runtime. Being multithreaded, it also requires almost all
the threading mechanisms. Its virtual machine size is therefore of 23416 bytes,

Randomly- Possible VMs set
) generated VM X Benchmark VM D approximation
2 30
‘3 X ><><>l<*§¥><>§S< X&XW
0 e § - 3o S
< 25 X RXE X X 0% x
= xy ¥ 5 &fx))((BQ?%facer » 3(»é,,<x><><>?<3("“x %
g & % WXX(X S%S<>><<><>< X
220 A X % % <% X X
s x g BRI X
X
>
£ 15 o
=)
é) x R XXX *
10 1% X Hel1oWorld
>§é X
% % -

ot
N

25 50 75 100 125 150 175 200 225 242
Number of bytecodes

Fig. 3. Memory footprint against number of bytecodes supported, for 300 randomly-
generated virtual machines. The grey area gives a theoretical approximation of the
range of virtual machines that can be generated.

Application-Driven Customization of an Embedded Java Virtual Machine 89

which is only 8 Kbytes less than the fully-featured reference virtual machine.
Indeed, Raytracer doesn’t even use half of the bytecodes set, but within the used
bytecodes are a good part of the “critical bytecodes” that require the heaviest
features of the virtual machine, notably memory allocation bytecodes.

To complete these experiments, we have generated 300 virtual machines,
each one supporting a random number of randomly-chosen bytecodes. Whether
the virtual machine is mono or multi-threaded is also determined randomly.
These virtual machines are not designed for a particular application, but give an
overview of the possible memory footprints for a customized virtual machine.

Figure 3 shows the memory footprints obtained for virtual machines support-
ing a given number of bytecodes and for our benchmark programs. The grayed
area is a theoretical range of the possible virtual machines, based on the in-
dividual cost of the bytecodes: the upper curve follows the worst possible case
(costly bytecodes included first), while the lower one shows the best case (cheap-
est bytecodes first). As we can see, the memory footprint varies a lot for virtual
machines with the same number of bytecodes. We also notice that the dots tend
to group into lines that grow linearly, each line corresponding to the inclusion
of a “critical” virtual machine feature: namely, the memory and threads man-
agers. After 150 bytecodes, chances are very low not to include at least one
memory allocation bytecode, and the dots form two parallel lines: the lower line
for mono-threaded virtual machines, the upper line for multi-threaded ones.

We can compare these results with existing embeddable virtual machines.
A standard KVM supporting the CDC configuration is about 40 Kbytes of
code when compiled for x86. Recent work on the Squawk virtual machine [14],
which aims at providing an efficient CLDC-compliant virtual machine for next-
generation smart cards, resulted in a virtual machine memory footprint of 26
Kbytes. Our results obtained by customizing a J2SE virtual machine are there-
fore quite comparable with these more static solutions. It should be noted, when
comparing these sizes with our measures, that the KVM and Squawk footprints
comprehend system parts like the class loader which are not included in our
virtual machines. This is because the JITS class loader is implemented in Java
and is not a direct part of the virtual machine.

5 Conclusion

We gave a proposal solution to the problem of embedding Java on embedded and
restrained devices. Current solutions consist in statically-degraded Java virtual
machines that are incompatible with J2SE. On the contrary, our approach let the
programmer use a full-fledged J2SE virtual machine, which is then customized
during romization according to the applications it is going to run and the target
device that will host it. The “right” virtual machine is thus generated on a
per-case basis, which efficiently reduces its memory footprint.

Put together with our previous work of [8], which tailors the J2SE APIs,
these results make it possible to use J2SE for programming embedded Java
applications, while providing lower memory footprints than traditional solutions.

90

A. Courbot et al.

Since the bytecodes set is chosen according to the romized applications, this

solution is particularly suitable for closed systems that do not load code dynam-
ically. Open systems can define a set of “authorized” bytecodes that are to be
included into the virtual machine regardless of their usage by the romized appli-
cations; this is especially pertinent if this set only comprehend low-cost bytecodes
which gain is negligible. For cases where the Java system has already been de-
ployed, the device memory can also be flashed with another, more featured Java
virtual machine.

References

1.

2.

>

0 3 O Ot

10.
11.
12.

13.
14.

D. Mulchandani, “Java for embedded systems,” Internet Computing, IEEE, vol. 2,
no. 3, pp. 30 — 39, 1998.

T. Lindholm and F. Yellin, Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

. Sun Microsystems, J2ME Building Blocks for Mobile Devices, 2000.
. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s

Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

. “TinyVM.” http://tinyvm.sourceforge.net/.

. “LeJOS.” http://lejos.sourceforge.net/.

. The J-Consortium, JEFF Draft Specification, March 2002.

. A. Courbot, G. Grimaud, and J.-J. Vandewalle, “Romization: Early deployment

and customization of java systems for restrained devices,” Tech. Rep. RR-5629,
INRIA Futurs, Lille, France, July 2005.

. D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construction in

object-oriented languages,” in OOPSLA ’97: Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and appli-
cations, (New York, NY, USA), pp. 108-124, ACM Press, 1997.

D. Rayside and K. Kontogiannis, “Extracting java library subsets for deployment
on embedded systems,” Sci. Comput. Program., vol. 45, no. 2-3, pp. 245-270, 2002.
F. Tip, P. F. Sweeney, and C. Laffra, “Extracting library-based java applications,”
Commun. ACM, vol. 46, no. 8, pp. 35-40, 2003.

“SPEC JVM98 benchmarks.” http://www.spec.org/jvm98.

“Java In The Small.” http://www.lifl.fr/RD2P/JITS/.

N. Shaylor, D. N. Simon, and W. R. Bush, “A java virtual machine architecture
for very small devices,” in Proceedings of the 20038 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems, pp. 34—41, ACM Press, 2003.

A Study on Fast JCVM with New Transaction
Mechanism and Caching-Buffer Based on Java Card
Objects with a High Locality*

Min-Sik Jinl, Won-Ho Choi, Yoon-Sim Yang, and Min-Soo Jung2

Dept of Computer Engineering, Kyungnam University, Masan, Korea
{comsta6, hoya9499, ysyang}@kyungnam.ac.kr
msjung@kyungnam.ac.kr

Abstract. Java Card is now a mature and accepted standard for smart card and
SIM technology. Java Card is distinguished primarily by its independence from
hardware platforms and portability and is now the most important open stan-
dard. However, the main concern of Java Card is now its low execution speed
caused by the hardware limitation. In this paper, we propose how to improve a
execution speed of Java Card by reducing the number of EEPROM writing. Our
approaches are an object-buffer based on a high locality of Java Card objects,
the use of RAM, has a speed more faster 1000 times than EEPROM, as much as
possible and new transaction mechanism using RAM.

1 Introduction

Java Card technology [1, 2, 3] enables smart cards and other devices with very limited
memory to run small applications, called applets, that employ Java technology such as
a platform independence and a dynamic downloading(post-issuance). For these rea-
sons, Java Card technology is an accepted standard for smart card and SIM technol-
ogy [15]. SIM cards are basically used to authenticate the user and to provide encryp-
tion keys for digital voice transmission. However, when fitted with Java Card tech-
nology, SIM cards can provide transactional services such as remote banking and
ticketing, and also service a post-issuance function to manage and install applications
in cards after the cards issued [1, 3, 15].

Java Card uses generally RAM and EEPROM. The difference of both memory is
that writing operations to EEPROM are typically more than 1,000 times slower than
to RAM. In a traditional Java Card, the specific area, transactionbuffer(T_Buffer), in
EEPROM is used to support an atomicity and transaction [1, 3]. It makes the speed of
the Java Card more slowly. In addition to the transaction mechanism, a traditional
Java Card has a low-level EEPROM writing with a page-buffer. The size of a page-
buffer depends on platforms such as ARM, Philips and SAMSUNG [15]. This page-

* This work is supported by Kyungnam University Research Fund, 2005.
! Ph.D Student of Kyungnam University.
2 Professor of Kyungnam University.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 91 —100, 2005.
© IFIP International Federation for Information Processing 2005

92 M.-S. Jin et al.

buffer is just to write one byte or consecutive bytes less than the size of the page-
buffer at a time into EEPROM. However, this page-buffer of Java Card generally is
made regardless of a high locality of Java Card Objects [5, 7].

In this paper, we suggest two ideas to improve the speed of Java Card. One is new
transaction mechanism in RAM, not EEPROM. Another is new object-buffer based on
a high locality of Java Card objects to support a caching and buffering of heap area.

This paper is organized as follows. Section 2 describes the feature of each memory
in a typical Java Card, Java Card objects and the method that writes data to EEPROM.
Section 3 explains about a transaction and object writing of a traditional Java Card
using a lot of EEPROM writing. Section 4 outlines our approach about new transac-
tion mechanism using RAM and new object-buffer based on a high locality of Java
Card objects. Section 5 discusses the evaluation between a traditional one and our
approach. Finally, we present our conclusions in Section 6.

2 The Java Card Environment

2.1 Different Types of Memory in Java Card

A typical Java Card system places the JCRE code(virtual machine, API classes) and
COS in ROM. RAM is used for temporary storage. The Java Card stack is allocated in
RAM. Intermediate results, method parameters, and local variables are put on the
stack. persistent data such as post-issuance applet classes, applet instances and longer-
lived data are stored in EEPROM [3,5].

Deselect Transient Area
Reset Transient Area

} ava garg ﬁM, API
— ava Card Interpreter
| 150} | COos P

Download agplet class
. Persistent Object
| Heap Area

Transient Buffer

Java Card Stack, C Stack
B -

| EEPROM

Fig. 1. The general memory model of Java Card that is consisted of three areas and its contents

EEPROM provides similar read and write access as RAM does. However, The dif-
ference of both memory is that writing operations to EEPROM are typically more
than 1,000 times slower than to RAM and the possible number of EEPROM writing
over the lifetime of a card is physically limited [4].

Table 1. Comparison of memory types used in Smart Card microcontrollers [4]

Type of Memory Number of write/erase Writing time per Typical cell size with 0.8-ym
cycles memory access technology
RAM unlimited 70 ns 1700 pm’
EEPROM 10,000 - 1,000,000 3-10 ms 400 pm’

A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 93

2.2 How to Write Objects in EEPROM in Java Card

In the latest release, Java Card 2.2.1, one EEPROM mainly consists of 3 areas; static
field area, heap area to save many Java Card objects including transient object ta-
ble(TOT) and persistent object table(POT) and transactionbuffer(T_buffer area)[7].

0x80000 Static field for each Packages

Persistent Object Table(3byte *128)
[Persistent object address list] Java Stack

Main Persistent Object Table(5byte *64)
[Persistent object Table address list]

Object Heap Transient RAM

Persistent object t{Header + Data]

Lot - Deselect Transient RAM
Transient object [Header + Transient RAM pointer] : a

Transient Persistent Object Table(3byte *128) Reset Transient RAM
[Transient object Table address list]
Main Transient Object Table(5byte *64) Page_Buffer (128 bytes)
[Transient object Table address list] —
Transient Buffer C-Stack
0x88000 RAM(6K)
EEPROM(32K)

Fig. 2. The inner structure of RAM and EEPROM consisting of several areas. Especially, all
objects that are made by Java Card is saved in Heap area with a high locality.

A transaction mechanism [10] using the T_Buffer area in EEPROM is used to sup-
port an atomicity [3]. In a traditional Java Card, to support this transaction, the Java
Card temporarily saves old_data in T_Buffer in EEPROM until the transaction is
complete.

In a point of COS’s view lower level than Java Card, smart cards such as Java Card
use only one page-buffer in RAM to write data in EEPROM,. The size of the page-
buffer depends on platforms such as ARM, Philips and SAMSUNG. In fact, the data
is first written into the page-buffer in RAM, when the Java Card writes one byte or
consecutive bytes less than the size of the page-buffer into EEPROM. However, the
most important point about writing operation using the page-buffer is that the writing
time of both 1 byte and 128 consecutive bytes is almost the same.

3 A Transaction and Object Writing of a Traditional Java Card

3.1 Atomic Operations and Transaction in a Traditional Java Card

A transaction is a set of modifications performed atomically, which means that either
all modifications are performed or none are performed. This is particularly for smart
cards, because the card reader powers them: when you unexpectedly remove the card
from the reader (this is called "tearing"), it's possible that you're interrupting a critical
operation that needed to run to completion. This could put the card in an irrecoverable
state and make it unusable.

To prevent this, the Java Card platform offers a transaction mechanism. As soon as
a transaction is started, the system must keep track of the changes to the persistent
environment(EEPROM). The Java Card must save old_value of EEPROM address

94 M.-S. Jin et al.

that will be written into a particular area(T_Buffer) in EEPROM. In other words, If a
transactional computation aborts, the Java Card must be able to restore old_value
from the T_Buffer in EEPROM to its pervious position.

In case of commit, the check_flag byte of the T_Buffer must just be marked invalid
and the transaction is completed. In case of abort, the saved values in the buffer are
written back to their former locations when the Java Card is re-inserted to CAD.

check_flag_byte
|

V| togt [log2 [log3 | ~-a[logn |
Heap
| header | length | address | old_value |
—r— e —
1 byte 1byte 1byte length bytes

EEPROM

Fig. 3. The inner structure of T_buffer has a lot of logs and each log consists of 4 parts; header,
length, address and old_value

Table 2 below shows the number of EEPROM writing per each area of whole
EEPROM. T_buffer area writing is about 75 to 80 percent of total number. The rea-
son why the writing number of this area is higher than other areas is a transaction
mechanism of a traditional Java Card to guarantee an atomicity. In other words, The
transaction mechanism protects data corruption against such events as power loss in
the middle of a transaction. In a traditional Java Card, this transaction mechanism
makes the Java Card more slow and inefficient. In this paper, we suggested new
transaction mechanism using RAM, not EEPROM.

Table 2. The number of EEPROM writing per each area of whole EEPROM during the
downloading and executing of each applet

EMYV Applet Wallet Applet
EEPROM area the number of writing EEPROM area the number of writing
StaticField 1,681 staticfield 752
“Hea 1,659 Heap 1,121
T_buffer 10,121 T_buffer 8,478
Total 13,461 Total 10,351

3.2 A Traditional Java Card with One Page Buffer

In a general Java Card environment, one page-buffer in RAM is used to write data
into EEPROM. the size of a page-buffer depends mainly on platforms. It is between
128 and 256 bytes. our chip with CalmCorel6 MPU from SAMSUNG has 128 bytes
page buffer that a Java Card can write up to 128 consecutive bytes to EEPROM at a
time. Namely, a Java Card can write between 1 byte and 128 consecutive bytes with
this page buffer into EEPROM. For example, If EEPROM addresses of objects that
will be written by a Java Card are sequentially 0x86005 and 0x86000, although both
addresses are within 128 bytes, Java Card will first writes one object data in 0x86005
through the page-buffer, and then, after the page-buffer is clear, another object data
will be written in 0x86000.

A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 95

@ bufferi RAM
20 0000 34/00¢

~ page buffor 2000 20[36 07
object #2 1o be wiitten
20 00 00 34 00 in

@ flushl) -

obiect #1 to be writtan
in OxE605

@ flushl) -

EERROM)

FF|FF|FF|FF FF 20/00|00 34|00 00|00 03|00|C00(00
00| 00|00 ({00 03|00[00 ({00 00| 30|00[00 ﬂolon 00|00

FEPROM

20|00 20|38|07 | z0[o0 |0o[34|00]00 00|00 oo[os|oo
01| 000 Q0|00 | 0|00 G000 05 S0 {00 G0 (00 00{00 | () |

Fig. 4. how to write objects to EEPROM of the traditional Java Card using an inefficient page-
buffer algorithm

Above figure 4 shows the page-buffer algorithm of a traditional Java Card. this
page-buffer is just to write consecutive data to EEPROM. It dose not have the func-
tion for caching. When an applet is executed on Java Card, if the information such as
objects and class data that the applet writes are close to each other, the total number of
EEPROM writing would be reduced by adding a caching function to the page-buffer.
first of all, to do this, the writing address of objects and data created by Java Card
must have a high locality. It causes the number of EEPROM writing to reduce and
also makes a hitting rate of caching function more high.

We investigated a general tendency of writing operation in accordance with the
EEPROM address. we discovered the Java Card has internally a rule about the local-
ity of EEPROM writing address. Consequently, a locality of Java Card objects and
data is considerably high.

3.3 A High Locality of Heap Area in EEPROM

As mentioned earlier, a traditional Java Card System has only one page-buffer in
RAM to write data into EEPROM. The page-buffer has a function for the buffering of
just consecutive bytes. In this paper, we suggest the object-buffer that perform a buff-
ering and caching to improve the execution speed of Java Card. The most important
and considerable point in order to add caching function to Java Card is a high hitting
rate of the caching buffer.

When the wallet class is created by install() method, the wallet object
(2011C3A600000000) that have 3 fields is first written in EEPROM, and then, Own-

[public class wallet extends Applet{
int balance;

int withdraw; } global variables

OwnerPIN pin;
-> reference class
wallet){ // constructor o .
pin = new OwnerPIN(3, 8); // create OwnerPIN(trylimit, Pinsize) object

initialize
balanc(g {: 90;

v}vithdraw(){ // method
withdraw = 50;
balance = balance — withdraw;

}

Fig. 5. wallet applet that has 3 methods and 3 fields; when the wallet applet is created by in-
stall() method, OwnerPIN object also is created in wallet() constructor

96 M.-S. Jin et al.

erPIN object (20111E69000308) that assigned 0045 as an objectID is created and
written in EEPROM. After the OwnerPIN object created, Java Card writes the objec-
tID (0045) as pin reference field of the wallet object (2011C3A600000045). After the
wallet applet is created, a method such as initialize() and withdraw() generally would
be invoked. In figure 4, initialize() method is to change the value of balance field into
100. After this operation, the content of the wallet object is 2011C3A690000045.
withdraw() method also changes the field value of withdraw and balance into 50 and
40 separately. At this time, the content of the wallet object is 201 1C3A640500045.

after wallet() method execution after initialized(), withdraw() execution
20 abjecl haader 0 | object heater 0 ohiect hearer % ohiect hearker
" contest 1 cortest T conlesd 1 conled
T30 OwrerPM class arldiess was wallet class addross 1T A8 [OwnetPIN class adiress | L7 A% | wallot chass addross
00 Yriesslolt ik on balance ficld 0 triesleft field LS halance figkd
0 trylimit field T withdraw field 2 Anglimit fieded [wilbdiivw Tiesd
a: Pinsize field 1145 unerBIN Obisct 1D 28 Pinsize field T095 | OwnarPIM Object ID

GAneINoblect ==t

wallet object wallet qnject

FF|FF 2011 05 FF FF FF A
) 46|00 00 00|45
00|00 00|00| 00 Q0|00 00 00|00 o0 00 ‘

Fig. 6. The creation process of the wallet applet and the OwnerPIN object in EEPROM and the
process of the changing localized-fields and rewriting them

Figure 5 and 6 showed several EEPROM writing processes from the creation of
wallet applet to the execution of methods such as initialize() and withdraw(). If Java
Card just performs these processes by using one page-buffer above-mentioned, it
might spends much time in writing and changing localized-data like above example.

4 Our Changed Java Card with a Fast Execution Speed

4.1 New Transaction Algorithm with T_Buffer in RAM

As mentioned in the related works, smart cards including a Java Card supports a
transaction mechanism by saving old_values in EEPROM. the number of EEPROM
writing in order to support the transaction is about 75 to 80 percent of the total num-
ber of EEPROM writing. EEPROM writing is typically more than 1,000 times slower
than writing to RAM. It makes also Java Card much more slow and inefficient.

We suggested new transaction mechanism using RAM, not EEPROM in this paper.
If such tearing such as power loss happens in the middle of a transaction, all data after
transaction began should be ignored. If T_Buffer area to save old_values places in
RAM, in case of power loss, RAM is automatically reset. It means the preservation of
old_values.

Figure 7 shows the transaction mechanism of a traditional Java Card. After a trans-
action begin, if tearing such as power loss occurs, Java Card restore data involved in
the transaction to their pretransaction(original) values the next time the card is pow-
ered on. To do this, Java Card must store all old_values in T_Buffer in EEPROM
whenever Java Card writes some data in EEPROM.

A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 97

| begin_transaction |

v

save old_value

in T_Buffer
v
|

| write new_value

148 next bower-on D

heck_flag byte ==

no
rewrite old values in T_Buffer
to their original addresses

<]

no (tearing)

yes (success) $:
| check_flag byte = 0 | | Execution |

Fig. 7. The transaction mechanism with T_buffer in EEPROM of a traditional Java Card

Javastask | begin_transaction |
| logl | log2 I log3 |“‘| logn | 7*

Translent RAM
Dissalect Translent RAM /'

Reset Transient RAM

save new_values
in T Buffer in RAM

| header | length | address I new_value |

—r———r—————> yes (success)

C RAM 1 byte 1byte 1byte length bytes write logs in T_Buffer
- into new addresses

Fig. 8. RAM structure to support our changed transaction mechanism, the structure of our
T_buffer and our transaction mechanism with T_buffer in RAM of a traditional Java Card

In this paper, we suggest that T_Buffer to support a transaction is in RAM in order
to reduce EEPROM writings. Our T_buffer in RAM saves all new_values that will be
written in EEPROM after a transaction began. Our T_Buffer also could have many
logs until a transaction commit. Figure 8 below shows the structure of T_Buffer. Each
log entry consists of four fields. The length field is the number of bytes of old data.
The address field is original data in EEPROM. The last old_data field is old data bytes.

4.2 Our Object-Buffer Based on Java Card Objects with a High Locality

In chapter 3, we explained how to write data in EEPROM by using one page buffer
in a traditional Java Card. It is the one of causes of a Java Card’s performance drop in

\ —Buff Hian address Low address

— ovecter |

.
Mex Mo foos 128 itee o

Statlc Fleld |.

' Object-Buffer
RAM

EEPROM

Fig. 9. The heap-buffer that is consisted in 2 part; the buffer and cache. The data between Min
and Max can be written to EEPROM at a time.

98 M.-S. Jin et al.

company with the transaction mechanism of a traditional Java Card. We discovered
that all objects and data that the Java Card creates during the execution has a high
locality. It means that an additional caching function makes the number of EEPROM
writing go down. For these reasons, we developed new Java Card with two page
buffer in RAM; one is the existing page buffer for non-heap area, another (object-
buffer) is for heap area in EEPROM. The heap area is where objects created by Java
Card are allocated.

Figure 10 below shows the main algorithm using the object-buffer and page-buffer
The writing of non heap-area is performed with the existing page buffer. The writing
of heap-area is executed with the object-buffer. When the Java Card writes data re-
lated to Java Card objects into heap area of EEPROM, the first operation is to get 128
bytes lower than the address that will be written and to copy them to the cache area of
the object-buffer. Next, the buffer area(128-byte) of the object-buffer is cleared. Two
points, Max and Min have the highest and lowest points that are written after Java
Card get new 256 bytes to the object-buffer. the gap between them continually is
checked in order to write the heap buffer to EEPROM. Max and Min are non-fixed
points to raise the efficiency of the heap buffer. The reason why the gap between Max
and Min is 128 bytes is that our target chip, CalmCorel6, supports the EEPROM
writing of 128 bytes at a once.

2_add1j— C heap_are

Write data to page buff
- write 128 bytes of heap buff to EEPROM

- copy new 128 bytes to cache area of heap|
buff from E2p_addr [e—
L clear the buffer area (128 bytes) of heap|
buff

Write data to heap buff

(N

Max = E2p_addr

€S

Min = E2p_addr

Max-Min < 128

no

Write data to heap buff

Fig. 10. The object-buffer algorithm that checks continually the Min and Max points to write
the object-buffer to EEPROM when Java Card writes data to heap area. (fE2p_addr : the
EEPROM address that data will be written, + heap_buff(object-buff) : our new heap buffer with
caching and buffering function for just heap area in EEPROM).

S Evaluation of Our Approach

The key of our approach is improve an execution speed of the Java Card by reducing
the number of EEPROM writing. The main idea is also that EEPROM writes are
typically more than 1,000 times slower than writes to RAM. One of the analyzed
results of a traditional Java Card is that Java Card has a inefficient transaction mecha-
nism to guarantee an atomicity and page-buffer algorithm to write data to EEPROM
regardless of the high locality of Java objects. For this reason, we developed new
transaction mechanism and new page buffer algorithm.

A Study on Fast JCVM with New Transaction Mechanism and Caching-Buffer 99

In our approach, to get more precise figure in the real Java Card, we made an ex-
periment with CalmCorel6 MCU [14], SAMSUNG MicroController for smart card.

Figure 11 below shows the comparison between a traditional Java Card and our
changed Java Card in regard to the number of EEPROM writing and the execution
speed. First of all, the number of EEPROM writing is reduced by about 80% by using
the T_Buffer and the object buffer in RAM.

Applets Traditional | Our Approach | Reduced The number of EEPROM Writing
ChannelDemo 7552 1586 79%
JavaLoyalt 7291 1322 2%
TavaPulse 22712 4537 80% -
ObjDelDemo 16416 3025 82% |
gac‘kageA 9685 2000 79% § Ll
ackageB 7698 1406 82% | Z e
PackageC 3439 745 79
PhotoCard 6737 400 9%
RMIDemo 6119 1261 79%
Wallet 5641 1190 79% B B R -
EMV small Applet 6721 1419 9% : EooL i F R §
EMV Large Applet 11461 2433 9% I S S - S
Aerage 80% = Applets
J\PP»\ Triml 0‘““1“'[1 = romen The £oced of aoolet s downlosding and cRecuting
annelDemo
JavaLoyalt 72703 46187 36! =annnn
TavaPulse 232100 150359 35
ObjDelDemo 159420 99157 38 £ Ioaono
ackageA 90530 56375 38 £ 1nannn
ackageB 74859 49937 33 50000
== == S5 Il
PhotoCard 6460 41407 37 o (NEL 1A — s L -
RMIDemo 57321 6235 34 g £ ¢ E ¥ % L F E OE =L
Wallet 5714 7438 37 T ¢ 5 = P E P E ZE = I
EMYV small Applet 61766 38859 37 3 Z E 5
EMV Large Applet 119812 79422 34 F 3
Aerage 36%

Fig. 11. The comparison between a traditional Java Card and our changed Java Card with
regard to the number of EEPROM writing and the execution speed

Components Traditional | Our Approach | Differnce
Initialize 1485 1688 203 10350 | LRI
Select Install 6281 3812 2469
CAP Begin 1234 485 749
Header 3562 2156 206 5350
Director: 3969 2344 625 |
Tmport 2875 640 23 »
oS 53 g it N
s s = = & z = =
Method 11266 641 2625 2 E 3 3 g ‘é L T : : Ea i
StaticField 2297 469 82 2 Em 3 % E xuw i % %R L 2
ConstantPool 6781 4984 1797 E g T E - = 5 .§ 5 3 3
ReferenceLocation 9141 4719 4427 o O w £ % H
CAP End 625 422 203 L 5 § <
Create Applet 2171 1672 499 Components 2
Total 57140 37438 19702 &

Fig. 12. The comparison between a traditional Java Card and our changed Java Card in regard
to Wallet applet’s downloading and execution speed per each component

One applet consists of over 11 components that include all information of one app-
let package. We also produced downloading results about each component. Basically,
when Java Card installer downloads one applet, the component that takes a long time
is the referencelocation component. The reason is that both are related to the resolu-
tion of indirect references during the downloading. our approach almost reduced the
downloading time of the referencelocation by 50%.

100 M.-S. Jin et al.

6 Conclusion and Future Work

Java Card technology is already a standard for smart cards and SIM cards [11, 15]. A
Java language is basically slower than other languages. The card platforms also have
a heavy hardware limitation. In spite of a Java’s slow speed, the reasons why Java
Card technology is selected as a standard are a post-issuance and a platform inde-
pendence. When Java Card downloads new application, a post-issuance generally
spends a lot of time [10, 11].

In this paper, we have proposed the method to reduce the number of EEPROM
writing with new robust transaction mechanism and new object-buffer based on the
high locality of Java Card objects. It also makes Java Card more fast. With our ap-
proach, the number of EEPROM writing and the downloading speed reduced by 80%
and 35% separately. It also enables an application to be downloaded more quickly in
the case of an application sent to a mobile phone via the GSM network (SIM). This
technology will be applied to embedded systems such as KVM, PJAVA, CLDC with
a Java Technology.

References

1. Sun Microsystems, Inc. JavaCard 2.2.1 Virtual Machine Specification. Sun Microsystems,
Inc. URL: http://java.sun.com/products/javacard (2003).
2. Sun Microsystems, Inc. JavaCard 2.2.1 Runtime Environment Specification. Sun Micro-
systems, Inc. URL: http://java.sun.com/products/javacard (2003).
3. Chen, Z. Java Card Technology for Smart Cards: Architecture and programmer’s guide.
Addison Wesley, Reading, Massachusetts (2001).
4. W.Rankl,. W.Effing,. : Smart Card Handbook Third Edition, John Wiley & Sons (2001).
5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. : The Java Language Specification,
Second Edition. Addison-Wesley, http://java.sun.com/docs/books/jls/index.html (2001).
6. Marcus Oestreicher, Ksheerabdhi Krishna. : USENIX Workshop on Smartcard Technol-
ogy, Chicago, Illinois, USA, May 10-11, 1999.
7. M. Oestreicher and K. Ksheeradbhi, “Object Lifetimes in JavaCard,” Proc. Usenix Work-
shop Smart Card Technology, Usenix Assoc., Berkeley, Calif., (1999) 129-137.
8. Michael Baentsch, Peter Buhler, Thomas Eirich, Frank Horing, and Marcus Oestreicher,
IBM Zurich Research Laboratory, Java Card From Hype to Reality (1999).
9. Pieter H. Hartel , Luc Moreau. : Formalizing the safety of Java, the Java virtual machine,
and Java card, ACM Computing Surveys (CSUR), Vol..33 No.4, (2001) 517-558.
10. M.Oestreicher, “Transactions in JavaCard,”, Proc. Annual Computer Security Applications
Conf., IEEE Computer Society Press, Los Alamitos, Calif., to appear, Dec. 1999.
11. Kim, J. S., and Hsu, Y.2000. Memory system behavior of Java programs: methodlogy and
analysis. In Proceedings of the ACM Java Grande 2000 Conference, June.
12. 10. http://www.gemplus.com. : OTA White Paper. Gemplus (2002).
13. the 3rd Generation Partnership Project. : Technical Specification Group Terminals Secu-
rity Mechanisms for the (U)SIM application toolkit. 3GPP (2002).
14. MCULAND, http://mculand.com/e/sub1/s1main.htm.
15. X. Leroy. Bytecode verification for Java smart card. Software Practice & Experience, 2002
319-340
16. SAMSUNG, http://www.samsung.com/Products/Semiconductor
17. SIMAlliance, http://www.simalliance.org.

Intelligent Object Extraction Algorithm Based on
Foreground/Background Classification

Jhing-Fa Wang, Han-Jen Hsu, and Jyun-Sian Li

Department of Electrical Engineering, National Cheng Kung University,
No.1, Ta-Hsueh Road, Tainan, Taiwan
wangjf@csie.ncku.edu.tw, hjhsu@icwang.ee.ncku.edu.tw
http://icwang.ee.ncku.edu. tw

Abstract. In this paper, we propose an intelligent object extraction algorithm
based on foreground/background classification. The proposed algorithm can of-
fer the users more friendly interface for object extraction from image without
unnecessary steps. After the interactive steps from user (marking the foreground
and background parts), the wanted object is extracted from the background
automatically. The proposed algorithm processes the input image by watershed
to produce the regions. Then, the regions are labeled after marking parts of re-
gions. We also introduce an implementation of hierarchical queues to store the
unlabeled regions. The classification of foreground and background will gener-
ate the final image with selected object. In our experimental results, the pro-
posed algorithm provides the output image with high efficiency. The wanted
object is generated after user marking the foreground and background parts less
than one second. In addition, the application of this work also can be used in
image synthesis or object removal in other fields of image processing.

Keywords: Object extraction, image editing tool, image segmentation.

1 Introduction

In traditional researches, image segmentation means to detect the boundaries in digital
image. However, the boundaries of whole image may contain the boundaries of tex-
tures or the inner structure of object in the foreground. In this work, we need to find
the contour of wanted object which separates the image into only two parts
foreground and background. Therefore, object extraction can be considered as a bi-
nary labeling problem.

The related works include boundary-based methods and region-based methods. For
boundary-based methods, they tried to approximate the pre-assigned curves near the
object to the object contour, such as intelligent scissor [1], image snapping [2], and
Jetstream [3]. The users need to draw the curves which enclose the whole object. This
disadvantage of these methods is high complexity in user interface. The user needs to
draw the shape of object explicitly.

In order to reduce the redundant steps in user interface, several researches are men-
tioned to improve the previous works in boundary-based methods. Recently, the re-

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 101110, 2005.
© IFIP International Federation for Information Processing 2005

102 J.-F. Wang, H.-J. Hsu, and J.-S. Li

gion-based methods are proposed. The accuracy is increased without as much efforts
as that in boundary-based methods. The primitive concerns of this problem are two
points. One problem is using less effort to acquire more accurate result. Another prob-
lem is the detail information of the object also needed to be preserved. Sun et al. pro-
posed a smart method “Poisson Matting” [4] focused on preserving fine features of
object, such as hairs and feathers. The object can be cut from original image and
pasted on another target image. Rother et al. proposed “GrabCut” [5] to achieve fore-
ground extraction using iterated Graph Cuts. The target object is extracted by drag-
ging a square window around the target. Another work “Lazy snapping” [6], is pre-
sented by drawing the foreground and background parts at first. The user interface is
similar to our system. An example of our proposed algorithm is provided in Fig. 1.
The user draws two kinds of lines, green lines for foreground seeds and yellow lines
for background seeds, in the input image in Fig. 1(a). The wanted object is acquired
easily in the output image shown in Fig. 1(b). Based on foreground and background
classification, the regions belonged to wanted object are given as foreground label
(F). The other remaining regions are classified to background label (B). However, the
object also can be labeled as background by opposite assignments of foreground and
background. The obtained result is the input image for object removal.

The organization of this paper is shown as follows. In Section 2, we will describe our
algorithms in detail. In Section 3, the experimental results are shown to provide subjec-
tive measurement. Finally, the conclusion and future work are provided in Section 4.

(@ (b)

Fig. 1. The example of our proposed algorithm

2 Proposed Intelligent Object Extraction Algorithm

The flow diagram of our proposed algorithm is shown in Fig. 2. At first, the input
image in Fig. 2(a) is pre-processed to reduce additive noise. The edge detection and
watershed algorithm are applied to produce many small regions shown in Fig. 2(b).
Then, the user marks the image by foreground (green lines) and background (yellow
lines) markers, respectively, as shown in Fig. 2(c). Once the user marks the image,
according to the two sets of markers, two sets of regions are labeled as F and B, re-
spectively. And the non-marked regions are defined as unlabeled.

Intelligent Object Extraction Algorithm Based on Foreground/Background Classification 103

Input Image

Noise Reduction

Edge Detection and
Watershed

Input Foreground/Background
Foreground/Background Regions Classfication
Seeds

Output Image

(d)

Fig. 2. The flow diagram of our proposed algorithm

After all, the unlabeled regions are classified into foreground or background to
generate the final image as shown in Fig. 2(d). The detail description of the proposed
algorithm is shown as follows.

2.1 Noise Reduction

The pre-processing is applied to remove the noise which may affect the output result.
We use median filter and mean filter to reduce the noise [7]. The median filter is ap-
plied first to avoid the operation of averaging at impulse noise in mean filter.

2.2 Edge Detection and Watershed

After noise reduction, edge detection and watershed are used to segment the input
image into large number of regions. In order to enhance the luminance and color
variation near the boundary of object, we adopt a simple and efficient method which
incorporates the morphological gradient of luminance and color in L*a*b* color
space from [8]. The gradient value is decided by the erosion and dilation. The color
space transformation of RGB to L*a*b* is described from [9]. The RGB values to
XYZ(D65) is shown as in (1).

104 J.-F. Wang, H.-J. Hsu, and J.-S. Li

Xpes | [0.3935 03653 0.1916] [R
Ypes |=|0.2124 07011 0.0865|x|G (1)
Zpes | 100187 0.1119 09582| |B

The pixel values in L*a*b* color space transformation is provided as in (2).

1/3
116 X -16, X > 0.008856
L* — Yn Yn

903.3 r 5 [Yj <0.008856

n

e
)42

'3, ¢ > 0.008856
7.787z+£, £ <0.008856
116

n

where _f(t):{

We have used D65 as the CIE L*a*b* reference white point. Thus, the constant
values X, , Y,,and Z, are equal to 0.9504, 1.0, and 1.0889, respectively.

After edge detection, we use the watershed algorithm from [7] to chunk the image
into many regions. We then construct the region adjacency graph (RAG) [10]-[11],
which represents the relation between each region and its neighborhood. With this
useful step, we can extract the object more efficiently. The RAG is defined as an
undirected graph, G = (V, E) , where V = {1,2,3,~-,k} is the set of graph nodes, k is the
number of regions obtained from watershed, and £ C VXV is the set of graph
edges. Each region is represented by a graph node and there exists a graph edge (x, y)
if the two graph nodes x and y are adjacent.

A weight of each graph edge stands for the regional color distance of the two adja-
cent regions, as shown in (3).

RCD(x,y) =l C(x)-C(») 3)

where C(e) denotes the mean color vector of a region in L*a*b color space, X€ V ,

yeV , and (x,y)e E.

2.3 Input Foreground/Background Seeds

The all regions are all unlabeled regions before this step. In this step, we mark the
image with foreground and background seeds. More drawing the lines of the fore-
ground and background will lead more exact result. However, our algorithm needs
less effort to generate the wanted object. The foreground seeds are selected in green
and the background seeds are selected in yellow, respectively. Once the user marks
the image, foreground and background marked regions are labeled as F and B, respec-
tively. Therefore, the marked regions are the labeled regions inevitably. And the non-

Intelligent Object Extraction Algorithm Based on Foreground/Background Classification 105

ENQUEUE |

| |

| |

1 |

| |
suppressed

queues
I

() DEQUEUE

higher regional distance lower regional distance

Fig. 3. The notation diagram of hierarchical queues

e region boundary

a neighboring labeled region of blue region

a neighbaring unlabeled region of blue region

the nodes and edges between blue region
and its neighboring labeled regions

Fig. 4. The generic notation diagram of region labeling

marked regions are regarded as unlabeled regions. In the next step, the remaining non-
marked regions are processed by F/B classification.

2.4 F/B Classification (Region Labeling)

In this Section, the other unlabeled regions which are not belonged to user-defined
foreground and background regions are labeled in this Section. F/B classification
(Region labeling) is the most important step in our algorithm, which affects the qual-
ity of final result. The pseudocode of region labeling is shown in Table. 1.

In our implementation, we adopt the hierarchical queues shown in Fig. 3 from [12].
In each queue of hierarchical queues, the regions with the same index number are put
in the same queue. For example, there are three green balls in the same queue which
means three regions with the same index number. This data structure is used in image

106 J.-F. Wang, H.-J. Hsu, and J.-S. Li

segmentation originally. However, this mechanism is also suitable for region labeling.
It is composed of two steps: Initialization of the Hierarchical Queues and the Flooding
Step. The generic notation diagram is shown in Fig. 4, the blue region is denoted as
A, in initialization of hierarchical queues. The regional color distance between region
A and neighboring labeled regions is used to decide which index number of region
A in hierarchical queues is. On the other hand, the blue region is denoted as R in
the flooding step. Therefore, the regional color distance between region R and
neighboring labeled regions is used to decide which label of region R is. The detail
descriptions of these two steps are shown as below.

Table 1. The pseudocode of region labeling in our proposed algorithm

Step Description
Initialization of the Hierarchical Queues:

For each labeled region L
For each neighboring region A of L
if A is a unlabeled region outside of the hierarchical queues en-
queue A into the hierarchical queues according to its index
number.

Flooding Step:

Repeat the following steps until the all hierarchical queues are empty:

1. dequeue a region R from the hierarchical queues from the low-
est index number;

2. region R has at least one labeled region in its neighborhood. It
is assigned to the same label with its neighboring labeled region
which has the smallest distance from R;

3. the neighboring regions of R that have not been labeled and are
still outside the hierarchical queues are enqueued into the hier-
archical queues with the index number not lower than the index
number of R

Initialization of the Hierarchical Queues

The initialization of region labeling is enqueued the neighboring unlabeled regions of
the user marked regions into the hierarchical queues. Each neighboring unlabeled
region (A) of user marked regions is enqueued into the hierarchical queues according
to its index number as in (4). The index number of a region is denoted as q.

q = floor(min(RCD(R;,A))+0.5) wherei=1tom 4)
where (R;,A)e E and m is the number of the labeled regions adjacent to A.

Flooding step
After the initialization of the hierarchical, we start to dequeue the regions from the
queue with the lowest index number. Any queue which is empty will be suppressed

Intelligent Object Extraction Algorithm Based on Foreground/Background Classification 107

and no longer be enqueued. The hierarchical queues are processed until all the queues
are empty. The flooding step is similar to the initialization of the hierarchical queues.
Each region in the hierarchical queues is dequeued and compared the similarity with
the neighboring labeled regions. The labeled regions may contain the user marked
regions and the regions which are already labeled in this step. As shown in Table. 1,
after we dequeue a region R from the hierarchical queues, we have to find a neighbor-
ing labeled region of R which is most similar to R as in (5).

R’ =argminRCD(LR,R), Wwhere {L}}e N(R))
LR R" e N(R)

R” is the most similar region to R, and N(R) denotes the neighboring labeled region

of R. Then, R is assigned to the same label as R".
On the other hand, the neighboring unlabeled regions (B) of region R which is still
out of the hierarchical queues is enqueued into the g-th queue as in (6).

t = floor(min(RCD(R;,B))+0.5) where j=1ton
(6)

q=t, if t>z . .
where z is the index of R

q = z, otherwise
where R i is labeled, (R j,B) € E, and n is the number of the labeled regions adjacent

to B.

After this, if the queue with the same index number of R is empty, it will be sup-
pressed. In the later processing, if we obtain a region which will be enqueued into the
suppressed queue, we put the regions into the lowest un-suppressed queue. Finally,
until the whole regions are labeled (the hierarchical queues is empty), the wanted
objects are extracted from the input image.

3 Experimental Results

We provide some experimental results in this Section. The experimental results show
our proposed algorithm can produce excellent output images. The test image from
Kodak test images “parrot” is chosen by the user shown in Fig. 5(a). After our pro-
posed algorithm, the red parrot is extracted from input image shown in Fig. 5(b). The
use only needs to draw little lines of foreground and background. Another example is
provided in Fig. 6. The wanted lighthouse is extracted from the image shown in Fig.
6(b). The test image from [13] in Fig. 7 shows three chairs on the grass. The red
chair is chosen to be the target object. We draw two points in green and one line in
yellow as background. The middle red chair is extracted from the image shown in
Fig. 7(b).

Besides of natural images, we also use indoor image to test our proposed algo-
rithm. In Fig. 8(a), we use the test image from [14]. The operation of marking the
foreground and background are reversed to generate the opposite result. The wanted
object is selected as background which we want to remove from the image. In another
work, “object removal”, the result shown in Fig. 8(b) is used to be the input image.

108 J.-F. Wang, H.-J. Hsu, and J.-S. Li

We take another photograph as shown in Fig. 9. The left man is chosen to be the ob-
ject which we want to remove. The output result is shown in Fig. 9(b). The computa-
tion time analysis is given in Table. 2. The computation time costs most time in edge
detection and watershed algorithm. The final result is obtained immediately after the
user drawing. The simulation environment is on AMD 1.7G with 1GB of RAM and
implemented in C++.

(b)

Fig. 5. The experimental result for object extraction

(b)

Fig. 6. The experimental result for object extraction

(@)

(®)

Fig. 7. The experimental result for object extraction

Intelligent Object Extraction Algorithm Based on Foreground/Background Classification 109

(@) (b)

Fig. 9. The experimental result for object removal

Table. 2. The computation time analysis of our proposed algorithm

Image no. ReIsI:)llauggon Reljh(ilcst?on ngvi?on Watershed Classli:f/'llzation
1 768%512 1.390 sec 5.469 sec 2.250 sec 0.031 sec
6 768%512 1.421 sec 5.406 sec 2.172 sec 0.016 sec
7 768%512 1.406 sec 5.422 sec 2.234 sec 0.032 sec
8 352%234 0.282 sec 1.141 sec 0.453 sec 0.001 sec
9 450%339 0.500 sec 2.078 sec 0.813 sec 0.001 sec
10 352%211 0.266 sec 1.031 sec 0.422 sec 0.001 sec
11 352%264 0.329 sec 1.266 sec 0.484 sec 0.001 sec

4 Conclusion and Future Work

In this work, we propose an intelligent object extraction algorithm based on fore-
ground/background classification. The regions after watershed are classified into

110 J.-F. Wang, H.-J. Hsu, and J.-S. Li

foreground and background. The hierarchical queues are implemented to increase the
efficiency. The user interface is easy to use, even the general users without the tips in
image processing can acquire the wanted object. The proposed algorithm can produce
good results in real-time.

Our future work is preserving the fine features on the boundary of the object. Cur-
rently, the fine features of the object need to be selected as foreground to ensure the
excellent result. We are going to improve the weakness of our proposed algorithm. To
develop the smart camera system, we also plan to integrate with object removal from
our previous work.

References

1. Mortensen, E. N., Barrett, W. A.: Toboggan-based intelligent scissors with a four parame-
ter edge model. In Proceedings of CVPR’99. (1999)

2. Gleicher, M.: Image snapping. In Proceedings of ACM SIGGRAPH’95. (1995)

3. Perez, P., Blake, A., Gangent, M.: Jetstream: Probabilistic contour extraction with parti-
cles. In Proceedings of ICCV 2001. (2001)

4. Jian Sun, Jiaya Jia, Chi-Keung Tang, Heung-Yeung Shum: Poisson matting. ACM Trans-
actions on Graphics (TOG), Volume 23 Issue 3 (2004)

5. Carsten Rother, Vladimir Kolmogorov, Andrew Blake: "GrabCut": interactive foreground
extraction using iterated graph cuts. ACM Transactions on Graphics (TOG), Volume 23
Issue 3 (2004)

6. Yin Li, Jian Sun, Chi-Keung Tang, Heung-Yeung Shum: Lazy snapping. August ACM
Transactions on Graphics (TOG), Volume 23 Issue 3 (2004)

7. Rafael C. Gonzalez, Richard E. Woods.: Digital Image Processing. Prentice-Hall, Inc.
(2002)

8. Hai Gao, Wan-Chi Siu, Chao-Huan Hou: Improved Techniques for Automatic Image
Segmentation. Circuits and Systems for Video Technology, IEEE Trans. on Volume
11, Issue 12, pp. 1273 - 1280 (2001)

9. J. M. Kasson, W. Plouffe: An Analysis of Selected Computer Interchange Color Spaces.
ACM Transactions on Graphics, Vol. 11, No. 4, October, Pages 373-405 (1992)

10. D. Ballard and C. Brown: Computer Vision. Englewood Cliffs, NJ: Prentice-Hall (1982)

11. X. Wu: Adaptive split-and merge segmentation based on piecewise least-square approxi-
mation. IEEE Trans. Pattern Analysis Machine Intelligence Vol. 15, Page 808-815 (1993)

12. Meyer, F.: Color Image Segmentation. Image Processing and its Applications, Interna-
tional Conference 303 - 306 (1992)

13. L. Drori, D. Cohen-Or, H. Yeshurun: Fragment-based image completion, in ACM Trans.
Graphics (TOG), vol.22, no. 3, pp. 303-312 (2003)

14. J. Jia, and C. K. Tang: Inference of segmented color and texture description by tensor
voting. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, June (2004)

Thin Client Based User Terminal Architecture for
Ubiquitous Computing Environment

Tatsuo Takahashi!, Satoshi Tanakal, Kenichi Yamazaki!, and Tadanori Mizuno?

! Network Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka 239-8536, Japan
{tatsuo, satoshi, yamazakil}@netlab.nttdocomo.co.jp
2 Faculty of Information, Shizuoka University, 3-5-1 Jo-hoku, Hamamatsu 432-8011, Japan
mizuno@cs.inf.shizuoka.ac.jp

Abstract. In this paper, the authors examine the use of thin client based user
terminals to realize the RFID tag based ubiquitous computing environment. The
ubiquitous service targeted is not information retrieval via RFID but the user
observation service based on environment perception. Thus the user terminal
must ensure service consistency even when the communication link to the
server is disconnected. In order to achieve this, the authors propose an event
cache mechanism that stores predicted event conditions and the corresponding
reactions. A prototype and evaluation results are also described.

1 Introduction

In the ubiquitous computing environment advocated by Marc Weiser [1], various
objects surrounding us will have computing ability. They will recognize the situation
of the user and his/her surroundings, select the best service, and offer it without error
or intrusion. In such an environment, the user will not have to know how to use a
computer nor recognize the existence of the system. Therefore, the conventional
wisdom is that user-carried terminals such as note PCs and PDAs will lose their
significance in the ideal ubiquitous computing environment. However, the authors
consider that the user carried terminals (hereafter called user terminal) will be needed
for the time being, in order to evaluate and collect the ubiquitous services provided,
offer an exclusive use actuator (which prevents interference by a third party), and
follow the moving user to collect his/her situation continuously.

From such a standpoint, the authors examine the architecture of the user terminal
and computing device controlling it with regard to implementing the ubiquitous
computing environment.

The authors propose a thin client based user terminal that is realized as a cellular
phone with an RFID tag reader. No specific RFID format is assumed.

2 The User Terminal for the Ubiquitous Computing Environment

2.1 Assumed Ubiquitous Computing Environment

Figure 1 illustrates the ubiquitous computing environment assumed in this paper. In
this environment, computing devices in cyber-space capture the real-space from RFID

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 111-120, 2005.
© IFIP International Federation for Information Processing 2005

112 T. Takahashi et al.

Portable tag
reader

Real Space
Cyberspace

Retrieve information
about the collected IDs

*Surrounding Perception
eUbiquitous Service
Application

Ubiquitous service server

Information
Database

Fig. 1. Assumed ubiquitous computing environment

tags as detected by tag readers. RFID tags are attached to various objects. Locator
tags are special RFID tags that identify places not objects. Locator tags will be
attached to train stations, major buildings, and intersections. Each RFID tag stores just
a unique identifier. Tag readers collect the IDs of the RFID tags in their range, and
forward this information to the computing devices (hereafter called server) via the
Internet and/or mobile communication networks. The server passes the ID to an
information database, and retrieves information (name, role, color, owner, and other
attributes) of the object. The server infers the user’s surroundings from the collected
information and offers various ubiquitous services as appropriate.

Though the simple information search service based on RFID tags is also called
ubiquitous service, the authors address the observation and life assistance services
based on RFID-based environment perception. Also, in this paper, the authors focus
on services for the mobile user. Examples are Lost Property Notification service[2]
which gives real-time notification when user drops a carried object or it seems to have
been stolen, and Shopping List service [2] which is a reminder service for when the
user seems to have forgotten to purchase something (or goes to the shop).

2.2 User Terminal Requirements for the Assumed Environment

In the ubiquitous computing environment assumed, each user should carry his/her
user terminal in order to satisfy the following requirements.

(1) Platform for the portable tag reader
Because the detection range of most tag readers is limited to about ten meters even if
the UHF band is used, it is difficult to cover all areas completely by using fixed tag
readers. If the server cannot detect the event that should trigger the service, user
satisfaction will be degraded. Thus, in the assumed environment, each mobile user
always carries a portable tag reader to provide real-time the event detection around
him/her; the collected RFIDs are transferred to the server over the mobile
communication network.

In order to control the portable tag reader, collect the tag information, and transfer
the information via the mobile communication network, some kind of platform is
required. In the assumed environment, the user terminal acts as this platform.

(2) Subordinate control for the server
It is difficult to provide the service that the user desires all of the time even if the
server perceives the surrounding from a huge amount of information and an advanced

Thin Client Based User Terminal Architecture for Ubiquitous Computing Environment 113

inference engine is used. Therefore, it is necessary to provide a service evaluation
function, and feed the user’s feelings back to the server. Moreover, it is considered
that the user must make the final decision on important matters such as those related
to the user’s life and property. The user terminal must offer support functions to
achieve these goals.

(3) Actuation function

In order for the ubiquitous service to reach the user, the mechanism of service
actuation is required. If shared terminals and robots, etc. are used as the actuator,
information related to the user’s privacy and security will be leaked in public spaces.
Therefore, the user’s terminal should become an exclusive actuator that provides
adequate privacy.

2.3 General Requirements for the User Terminal

As described in the previous section, the user terminal is needed in the environment
considered here. In this section the general requirements for this user terminal are
described.

— Portability: Because each user always has to carry the user terminal, it should be
light and small.

— Low power consumption: Because the user terminal must always be active when
the ubiquitous service is required, it should have low power consumption and
should run for long periods without battery change.

— Low cost: This seems to be a fundamental requirement for every user.

2.4 Other Work Related to the User Terminal

In this section the authors describe the previous research on user terminals for the
ubiquitous computing environment.

Project Oxygen of MIT uses the user terminal called H21 [3]. Unlike the
environment assumed in this paper, Project Oxygen uses image and voice to gauge
the user's surrounding. Accordingly, H21 has a camera and a microphone.
Additionally, the perception and offering service is provided by H21 itself, so a huge
amount of processing performance is required which increases the electric power
consumption and cost.

The ubiquitous communicator [4] is a small, light user terminal like a PDA, which
has an RFID tag reader. It can read ucode-compliant RFID tags and display the linked
information. However, it does not target the RFID-based environment perception
services for mobile user described in Section 2.1.

3 Thin Client Based User Terminal

As described above, existing research does not satisfy the requirements for the user
terminal in the assumed environment. Accordingly, the authors propose the thin client
based user terminal; it is a small, light, and low cost terminal (e.g. cellular phone) that

114 T. Takahashi et al.

realizes RFID-based surrounding perception and acts as the actuator for the
ubiquitous services.

3.1 Basic Architecture

The thin client [5][6]is an architecture that concentrates execution, storing, and
management of the application on the server, and the client function is limited to
HMI(Human Machine Interface) and some part of I/O. Therefore, a simple terminal
can realize the functions and the performance of a PC (Personal Computer). In
particular, previous research, called mobile thin client [7], introduced a cellular
phone-based thin client system that enables PC applications (e.g. Word, Excel, and
PowerPoint) to be used through cellular phone.

Mobile Communication Fixed Network (e.g. The Internet)

Cellular Phone User terminal N R T O O P N ET PI T N PP .

" . . etwork DA . .
Rrrp (Thin Client terminal) : : Ubiquitous service server |nformatiory
tag HMmi| Controliing the Server, Tag -Ibontroﬁ Ubiquitous Service Database E
Portable (< Coial Reader, and Event Cache :D =|L_Application program H
Tag ontro — + DOWNZ | MEvent Cache :
Reader “[Actuator Control : generating :Qf?r.ma.on E

etrievi

‘ ™ ollecting | [Event Cache : [surrounding Perception 4 9 H
- i -

Transfer the ID ID E et — .t

Fig. 2. Architecture of proposed user terminal

In this paper, the authors extended the mobile thin client to realize a cellular phone-
based user terminal. Figure 2 illustrates the architecture of the proposed terminal. The
HMI function for controlling (start, terminate, correct, selection of critical choices)
server ubiquitous service is simply inherited from the mobile thin client. All other
functions such as attached portable type tag reader, collecting the RFIDs function, and
actuator control functions (BEEP, vibration, backlight blinking, and messaging to the
user via the display of the cellular phone) are extensions. The collected RFIDs are
transferred to the server via the mobile communication network. The server retrieves
the information about the objects from the information database, perceives the user's
surroundings from this information, and generates actuator control instructions for the
cellular phone. In addition, the proposed architecture offers the function of continuing
the ubiquitous services even when the mobile communication network is temporarily
disconnected. This mechanism, called event caching, is described in detail in the
following section.

3.2 Event Caching

The major problem of the thin client system, developed in the authors’ previous
research, is that when the communication link between the thin client and the server is
disconnected, the thin client fails to work. Because the population cover rate of
mobile communication network has already reached 100% in Japan, it has far better
connectivity compared to the range of fixed tag readers. However, temporary
disconnection is common in some environments such as inside subway trains and

Thin Client Based User Terminal Architecture for Ubiquitous Computing Environment 115

areas of heavy network traffic. Because the targeted services described in Section 2.1
are related to the user’s life and property, these interruptions should be offset.

The event cache guarantees service continuity. It is achieved by both event
prediction in the server and event detection and caching the reaction (i.e. actuator
control) in the thin client. After the server perceives the user's current surroundings, it
predicts the next event, and then generates the appropriate reaction that should be
done when the event occurs. This information is downloaded to the event cache in the
user terminal and held until needed or replaced by newer information.

3.2.1 Event Prediction

In this section, event predictability is described using the example of the “Lost
Property Notification service", a typical ubiquitous computing application described
in Section 2.1. It seems easy to judge that the user still has his/her property (object)
from the reception by his/her tag reader of the object’s RFID tag signal. When the
object’s signal is no longer received, the ubiquitous application should judge whether
the user put the object somewhere on purpose, or he left it somewhere in error, in
order to generate the correct reaction. Such processing has to be performed by the
server because it requires much processing power and access to a comprehensive
information database on the fixed network.

The authors note that the number of objects that should be observed is limited in
several ubiquitous applications including the Lost Property Notification service. The
server recognizes the current state of each object and decides what kinds of events are
possible in the near-term future (e.g. if the user picks up an object, the server predicts
that he/she may drop it as a possible next step). Moreover, by using the locator tag
described in Section 2.1, the server can recognize the current place of the user;
moreover, it is considered that the places that the user will pass are limited and
predictable in the short term. It is considered that by using the features of each object
(role, price, etc.), the kinds of possible events, and features of the places where an
event may occur (public area or private area), the content of the reaction (level and
content of warning) that should be executed when the event occurs, can be predicted.
The number of events for which reactions are needed is limited because all of the
above parameters are limited. After the server identifies the events that are possible in
the near-term future and generates the corresponding reactions, it downloads this
information into the user terminal. It is a relatively simple task for the thin client
terminal to observe the event and execute the appropriate reaction quickly even if the
mobile communication network is disconnected.

3.2.2 Event Classification
In this section the authors define the states and events. The term state means the
relationship between the user and the object, and the term event means a state transfer.
Because of the assumption that the user always carries a tag reader, it is possible to
simplify the definition to three states and three events as described below.
WAITS_FOR state is the state in which the RFID reader cannot receive the signal
from the target RFID tag. In the real space, this state corresponds to the situation in
which the user is not carrying nor encounters the object. When the reader finds the
targeted RFID, it raises the FOUND event and the DETECTED state is entered.

116 T. Takahashi et al.

DETECTED state is the state in which the RFID reader first receives a signal from
the target RFID tag. In the real space, this state means that the object and the user
have approached each other. When the reader keeps receiving the signal for some
time, the KEEP event is entered, and then the HAS_A state.

HAS_A state is the state in which the RFID reader continuously receives the signal
from the target RFID tag. In the real space, this state means that the user is carrying
the target object. When the signal from the tag is broken (LOST event), the
WAITS_FOR state is entered.

3.2.3 Event Cache Construction

Figure 3 illustrates the construction of the event cache. Each entry in the event cache
is composed of an entry identifier part, target RFID part, event detection condition
part, reaction definition part, and linked entry definition part. The entry identifier part
is the entry identification number in the event cache. The target RFID part describes
the RFID value to be observed.

In some kinds of services, such as the shopping list service described in Section
2.1, the user terminal should be in the WAITS_FOR state where the RFID values are
unknown. That is, the user has decided the kind of object to be bought, but does not
know the entire RFID value. In order to support such situations, the authors propose
to introduce the standardized category field that identifies the kind of the object into
the RFID format. This allows the event cache to detect the event by the category field
value (a part of the RFID) instead of the entire RFID value. In Figure 3, entry #02
WAITS_FOR any object belonging to category “beef (indicated by the code C)”.

The Event detection condition part defines the detection condition of the event
according to the tag state condition and the time condition. The tag condition can be
specified by not only the state of the observed RFID tag state but also the related
RFID tag state. The related tag state is assumed to define the place condition retrieved
by the locator tag. The reaction definition part defines the reaction that is to be
executed by the user terminal actuator and the execution priority of the reaction when
the event detection condition is satisfied. If the communication link is available, when
the event occurs, the execution priority provides the definition of whether priority is
given to the execution of the reaction (P (A) in Figure 3) or to communication with
the server which will then execute advanced inference including the situation around
the user (P (B) in Figure 3).

Entry Target RFID Event detection condition Linked Reaction definition
ID tag Cate State of tag Related tag Time gg;ry

1D gory tag ID State
#01 101 - HAS_A - - - - B, M ("You dropped Purse!”), P(A)
#02 - xCx WAITS_ 303 DETE - - L, M (“Please buy beef at super”), P(B)

FOR CTED

#03 301 - DETECTED | - - - #04 L, M (“Please go to the super”), P(B)
#04 - - - - - 18:30 #03 L, M (“Please go to the super”), P(B)

xCx: x means ignored field, C is category identifier for the object “beef”’. B, L, M (), and P ()
are flags of Beeping, Lighting, Messaging on display, and priority.

Fig. 3. Construction of the event cache

Thin Client Based User Terminal Architecture for Ubiquitous Computing Environment 117

It is considered that there will be cases in which several events are linked, so if one
specific event occurs then the other will no longer be possible or required. For this
case, if the first event cache entry is hit, the second should be deleted automatically.
The linked event part provides support for these linked events. In Figure 3, if entry
#03 (#04) hit, entry #04 (#03) is automatically deleted.

3.3 Service Scenarios Using Event Cache

In this section, the authors describe an example of event cache activities in the case of
the Lost Property Notification service.

The user starts the service through the user terminal when he/she leaves home. The
server recognizes the user-carried objects by observing the RFID tags collected by the
user terminal over some period. If the user terminal receives a signal from an RFID
constantly, the corresponding entry of the event cache moves to the state of
"HAS_A". As a result of this process, entries #01 and #02 in Figure 4 are generated
and downloaded to the user terminal. If the server detects the possibility of the user’s
visiting his/her friend’s home from the tracking information from the received locator
tag, the server adds entry #03, see Figure 4.

While the user is in a subway car and the mobile communication network cannot
be used, if object "Purse" is dropped, event cache #01 is activated and the user
terminal issues a maximum strength warning (Beeping, Vibrating, Lighting, and
Messaging) to the user at once. On the other hand, if the place where the event
occurs is the friend’s house and if the object is not a purse but an umbrella, event
cache #03 is activated and the user terminal tries to communicate to the server prior
to notifying the user, because the execution priority of #03 is B. If the mobile
communication network cannot be used, the user terminal issues a warning via the
message display. If the user terminal can link to the server, it transfers all logged IDs
to the server. The server then retrieves information about these objects. If there are
many objects owned by the friend where the event occurred, the server recognizes
that the user left it at the friend’s home intentionally, and changes the state of the
umbrella to WAITS_FOR.

Entry Target RFID Event detection condition Linked Reaction definition
ID Tag Cat. State Related tag Time gg:ry
D of tag !
tag ID State
#01 101 - HAS_A | - - - - B, V, L, M ("You dropped Purse!”), P(A)
#02 201 - HAS_A | - - - - V, L, M (“Didn’t you leave your umbrella?”), P (B)
#03 201 - HAS_A | 302 DETE - L, M ("You left or mislaid your umbrella at Mr.
CTED A's home”), P(B)

B, V,L, M (), and P () are flags of Beeping, Vibrating, Lighting, Messaging on display, and
priority. tagl01 is the user’s purse, 201 is the user’s umbrella, and 302 is the locator tag near
the friend’s home.

Fig. 4. Event cache transfer in the Lost Property Notification Service

118 T. Takahashi et al.

4 Implementation

The authors implemented a prototype. The RFID tag/reader is based on the SPIDER
V system [8]. SPIDER V is an active type tag system, so each tag transmits its ID
periodically for the reader to capture it. The event cache was implemented by i-appli
(DoJa2.1) [9]. Because it is not possible to connect the cellular phone directly to the
SPIDER V reader, the authors used a cellular phone emulator on a note PC. The
SPIDER V tag reader was connected to the note PC via a serial interface.

Generally speaking, even if the tag is within the reader's range, the tag reader can
not receive 100% of the transmitted signal because of signal failures caused by the
characteristic of electric wave propagation and collision with other tag signals.
Therefore, the user terminal stores the history of several signaling periods, and the
KEEP and LOST events are defined by whether the received signal number exceeds
some threshold. This means that there is some delay in detecting the corresponding
event. Maximum delay value of the LOST event is as follows.

(T-m) x t+t [seconds] (D

where,
T is the number of stored periods, m is a threshold number, and t is tag signaling
period.

5 Evaluations and Consideration

(1) Service consistency in the disconnected situation

Figure 5 illustrates the basic operation sequence in the Lost Property Notification
service. Here, t=1, T=10, and m=3. First, service start is acquired and the list of
carried objects is displayed (step 1). Next, the communication link between note PC
and the server was cut (step 2). The tag corresponding to "Purse" was put into a
shielded box (step 3), The Lost event was detected nine seconds after step 3, the cache
was executed, and the warning was displayed on the emulator screen (step 4). Finally,
the communication link was recovered and the new cache was downloaded by the
server and the display was updated (step 5, 6). The results confirmed service
consistency in the disconnected situation.

C— 1. time=0sec. ' — —- 8 time=163sec.' “~=6. time=277sec.
= Service started =— Event Detected. = Updated the
(Listed HiE e °% §(Messaging “You ||"1E cache.
Emulated umbrella, R i dropped purse”, (Listed umbrella
User terminal purse, e in Japanese, and baggage,
: baggage, in with beeping, in Japanese)
Messaging Japanese) vibrating, and
Lighting)
= =
Events on 2.t M 106 3. i 154 5 t‘ 274 ¢
Real Space - time=106sec. . |m“e_ "sgc. - time=274sec.
Communication Tag “Purse” is Communication
Link Disconnected removed Link connected again

Fig. 5. Basic operation sequence in the Lost Property Notification service

Thin Client Based User Terminal Architecture for Ubiquitous Computing Environment 119

(2)Event detection delay

From equation (1), the event detection delay can be reduced if m is increased, or T or
t is lessened. Because excessively small t causes tag signal collision and shortens the
life of the tag battery, the authors fixed t to 1 and tried to enlarge m and lessen T.
Table. 1 shows the experimental results (ten times average and standard deviation)
and the ideal value from equation (1) of event detection delay when T=10/m=3,
T=10/m=7, and T=6/m=3. The difference, a few seconds, between the ideal value
and the experimental value is due to the communication delay of the tag collecting
function and event cache, thread switching timing, etc. In addition, when execution
priority is B, another few seconds of delay is added for communication to the server.

Table 1. Evaluation results of event detection delay

Average detection delay (standard deviation) [seconds]
T=10/m=3 T=10/m=7 T=6/m=3
Ideal value 8 4 4
execution priority A | 9.3(0.63) 5.3(0.64) 5.1(0.66)
execution priority B | 11.1(0.58) 7.0(0.54) 6.5(0.57)

The results of Table 1 show that actually the delay was lessened when the
T=10/m=7 and T=6/m=3. However, too large m and too small T causes another
problem. Figure 6 illustrates the 100 signaling period monitoring results of the event
cache internal parameter for event detection (i.e. when this value becomes less than m
the event cache detects the LOST event) when m is set to 7. The Y axis shows how
many signals from the tag were received in the last T (in this case T=10) periods, and
the X axis shows the number of periods. Figure 6 shows that the false event of LOST
was detected even though the tag - antenna distance was 1 meter. This is considered
to reflect the influence of signal failure described in Section 4. Similarly, too small T
values (T=6/m=3) caused the false detection as in the other experiment. The user will
not adopt the ubiquitous service if there are many annoyances like false detection. On
the contrary, too large T and too small m enlarge the delay. The authors think that m

% 10
e °
o 8
)
B2 7}
-% PC_) 6 tag - antenna
Qe 5 f distance
S | —1m False LOST
B 4 -=-2m event Detection
59 2| A | esm
S9g 2 ~ oy S --dm
E C 4 e i ke . £ — g]
2 2 0 ; 3 i A i o
"
1 10 20 30 40 50 60 70 80 90 100
Periods

Fig. 6. Tag detection history: ten cycle windows over 100 cycles

120 T. Takahashi et al.

should be 3 and T should be set to 10 according to the results of Figure 6. The average
delay is 9.3 seconds from Table 1. The authors consider that this result satisfies the
real-time requirements for mobile user observation ubiquitous services described in
Section2.1.

6 Conclusion

In this paper the authors examined the user terminal needed for realizing ubiquitous
computing services. Our terminal is based on the thin client architecture and uses
event caching in order to provide service continuity even if the communication link
between the client and the server is disconnected. A prototype and evaluation results
were described. The results indicate that the proposal is sufficiently practical. Detailed
evaluations such as event prediction and field experiments are being planned.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American (1991) 415-438

2. Takahashi, T., Mizuno, T.: Thin Client-based Handheld Device Architecture for Ubiquitous

Computing. Proceedings of Workshop on Informatics 2004 (2004) 330-334, in Japanese

MIT PROJECT OXYGEN. http://oxygen.lcs.mit.edu/

Ubiquitous ID Center. http://www.uidcenter.org

5. Sinclir, J., Merkow, M.: Thin Clients Clearly Explained. Morgan Kaufmann, San Francisco
(2000)

6. Kanter, J.: Thin Clients/Server Computing. Microsoft Press, Washington (1998)

7. Takahashi, T., Takahashi, O., Mizuno, T.: A Study of a Thin Client System for Mobile
Computing. IPSJ Journal, Vol.45, No.5 (2004) 1417-1431, in Japanese

8. SPIDER V System. http://www.nextcom.co.jp/solutions/rfidrfid/spiderv.htm

9. http://www.nttdocomo.co.jp/p_s/imode/make/java/index.html

Ll

An Application Development Environment for
Rule-Based I1/0O Control Devices

Ryohei Sagara!, Yasue Kishino!, Tsutomu Terada', Tomoki Yoshihisa?,
Masahiko Tsukamoto?, and Shojiro Nishio!

! Graduate School of Information Science and Technology, Osaka University, Japan
2 Academic Center for Computing and Media Studies, Kyoto University, Japan
3 Faculty of Engineering, Kobe University, Japan

Abstract. In this paper, we propose an application development en-
vironment for the ubiquitous chip, which is a rule-based event-driven
input/output (I/O) control device for constructing ubiquitous comput-
ing environments. The proposed development environment simulates the
behaviors of multiple ubiquitous chips and helps users to create rules.
Moreover, it has a function for developing applications by cooperation
between virtual ubiquitous chips and real ubiquitous chips. The applica-
tion environment enables both programmers and general users to develop
and customize applications for ubiquitous computing environments.

1 Introduction

Recent evolutions in the miniaturization of computers and component devices
such as microchips, sensors, and wireless modules, contribute to the achievement
of ubiquitous computing environments [4, 8, 10]. In our ubiquitous computing en-
vironments, small devices are embedded in many places to support daily human
life. To construct ubiquitous computing environments, we propose a rule-based
I/O control device called ubiquitous chip [9].

The behaviors of a ubiquitous chip are described by a set of event-driven
rules, and a ubiquitous chip can dynamically change its behavior by modifying
stored rules. In our assumed environments, ubiquitous chips are embedded into
almost any artifacts to enrich our daily-life, and we can customize functions and
services in ubiquitous chips according to our preference.

To achieve such environments, we need an application development envi-
ronment that enables both programmers and general users to intuitively de-
velop/customize applications. In response to these requirements, we propose a
development environment for ubiquitous chips that simulates the behaviors of
multiple ubiquitous chips and helps users to create rules. Moreover, this proposed
environment includes a function for developing applications through cooperation
between virtual and real ubiquitous chips.

The remainder of this paper is organized as follows. Section 2 outlines the
ubiquitous chip. Section 3 describes the design of the proposed application de-
velopment environment, and Section 4 describes a prototype system. Section 5
discusses the development environment and Section 6 sets forth our conclusions
and planned future work.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 121-130, 2005.
© IFIP International Federation for Information Processing 2005

122 R. Sagara et al.

2 Ubiquitous Chip

As shown in Figure 1, a ubiquitous chip consists of a core part, which is the main
unit, and a cloth part that has connectors and a rechargeable battery. It has five
digital input ports, one analog input port, twelve digital output ports, two serial
communication ports, and a multi-purpose LED. Figure 2 shows the various
input/output devices for the ubiquitous chip such as sensors, input devices,
and actuators. Using these attachments, we can flexibly change configurations
of ubiquitous chips. The behaviors of ubiquitous chip are described by a set of
ECA rules, which are used for describing behaviors in event-driven databases. An
ECA rule consists of Event, Condition, and Action. Event is an occurring event,
Condition is a condition for executing actions, and Action is the operations to
be carried out. Tables 1, 2, and 3 show the lists of events, conditions, and actions
that can be used on the ubiquitous chip.

A ubiquitous chip communicates with other ubiquitous chips via its serial com-
munication ports. We can use the SEND MESSAGE action, the SEND DATA
action, and SEND COMMAND action as communication functions. The SEND
MESSAGE action sends a message that has a specific ID (0-7). The SEND DATA
action sends one byte data that is specified in the rule or input voltage of the ana-
log port. The SEND COMMAND action sends a command to remotely manage
ECA rules stored in ubiquitous chips. Table 4 shows the lists of commands that
can be sent by the SEND COMMAND action. The DEMAND DATA command
demands the one byte data specified address of the memory in a ubiquitous chip.
When a ubiquitous chip receives a DEMAND DATA command, it returns the
required data as a REPLY DATA command.

serial connecter

sound sensor

IR communication modules

temperature
sensor
switch with LED

illumination sensor distance sensor

Fig. 1. Ubiquitous chip Fig. 2. Attachments for ubiquitous chip

Table 1. Events

Name Contents
TIMER EXPIRE Firing a timer
RECEIVE MESSAGE 8 types of message reception via a serial port
RECEIVE DATA 1 byte data reception via a serial port
NONE Evaluating conditions at all times

An Application Development Environment 123

Table 2. Conditions

Name Contents

INPUT On/Off state of input ports
ANALOG INPUT Range of input from the analog port
INPUT STATE Value of internal variables
TIMER ID ID of fired timer
MESSAGE ID ID of received message
DATA RANGE Range of received data

Table 3. Actions

Name Contents

OUTPUT On/Off control of output ports
OUTPUT STATE On/Off control of state variables
TIMER Setting a new timer
SEND MESSAGE Sending a message
SEND DATA Sending a 1 byte data
SEND COMMAND Sending a command
HW CONTROL Hardware control

Table 4. Commands

Name Contents

ADD ECA Adding a new ECA rule
DELETE ECA Deleting a specific ECA rule(s)
ENABLE ECA Enabling a specific ECA rule(s)
DISABLE ECA Disabling a specific ECA rule(s)

DEMAND DATA Requesting a data of EEPROM
REPLY DATA Sending a data of EEPROM
(reply to DEMAND DATA)

3 Design of Application Development Environment

3.1 Requirements

In this research, we assume that ubiquitous chips are embedded into almost any
artifacts such as furniture, appliances, walls, and floors, and that they cooperate
with each other and provide various services. These services are required to be
adaptable to user preferences, as users may want to customize services according
to their own requirements. For example, we envisage the following situations:

— When a user buys a new piece of furniture that features an embedded ubig-
uitous chip and sensors, he/she customizes a room automation application,
which is already available in his/her room to integrate the new furniture into
the application.

— When a user redecorates his/her room, he/she modifies the application ac-
cording to the new allocation.

— When a user changes his/her routine, he/she adjusts the applications.

— A user uses actual I/O devices to check the behavior of an application.

We construct an application development environment for ubiquitous chips that
visualizes the behavior of applications and achieves easy development for users.

124 R. Sagara et al.

Moreover, the development environment also provides a function for verifying
applications with actual I/O devices and ubiquitous chips to enable users to
develop/customize applications intuitively.

3.2 Approach

In order to satisfy the above requirements, our application development envi-
ronment has the following functions.

Simulation with Virtual Ubiquitous Chips

Services in ubiquitous computing environments are realized through coopera-
tion among multiple ubiquitous chips. In such situations, it is difficult for users
to grasp the existing configurations and construct applications taking into con-
sideration of the relationships among multiple ubiquitous chips. Therefore, our
application development environment needs a function that simulates multiple
virtual ubiquitous chips, which process their ECA rules in the same way as the
real ubiquitous chip. A virtual ubiquitous chip has the following characteristics:

— A virtual ubiquitous chip has a hexagonal shape, I/O ports, serial ports, and
a multi-purpose LED, the same as a real ubiquitous chip.

— An arbitrary number of virtual ubiquitous chips can be added /deleted to/from
the simulation environment. A user can add/delete connections between 1/0
ports and serial ports over multiple ubiquitous chips.

— The state of I/O ports and the multi-purpose LED are displayed at all times
as a series of colored circles.

— A wuser can check a virtual ubiquitous chip’s internal variables and stored
ECA rules even when an application is running.

— A user can add new ECA rules easily without professional knowledge. The
application development environment has an ECA rule editor, which enables
general users to write ECA rules easily. Moreover, a user can check stored
ECA rules in a style similar to natural language.

Cooperation Among Real/Virtual Ubiquitous Chips

The application development environment has a function for constructing ap-
plications through cooperation between a virtual ubiquitous chip and a real
ubiquitous chip. This function achieves the following implementation styles:

Case 1. A user customizes the application that is in-service on a real ubiquitous
chip.

Case 2. A user checks the behaviors of real I/O devices at the final step of
application development.

The application development environment manages the state of a real ubig-
uitous chip in the same way as a virtual ubiquitous chip by linking their states.
For example, as Figure 3 shows, when a user pushes the button connected to
the real ubiquitous chip, the input port of the associated virtual ubiquitous chip
is turned on. Likewise, when the output port of the virtual ubiquitous chip is
turned on, the output port of the real ubiquitous chip is also turned on.

An Application Development Environment 125

Virtual ubiquitous chip

Input port linked to the
real input port
attached to the button

Output port linked to
the real output port
attached to the buzzer
Buzzer

Fig. 3. Cooperation among real and virtual ubiquitous chips

4 Implementation

We have implemented a prototype of the application development environment.
In this section, we explain the details of its implementation and show an example
of its use. Figure 4 shows a snapshot of the application development using a PC
and a real ubiquitous chip.

Fig. 4. Example of a application development using a PC and a ubiquitous chip

4.1 Simulation with Virtual Ubiquitous Chips

Figure 5 shows a screenshot of the development environment. In the proposed
development environment, the behaviors of ubiquitous chips are simulated by
virtual ubiquitous chips. A virtual ubiquitous chip is illustrated as a hexagon
and the circles indicate I/O ports, serial ports, and a multi-purpose LED. One
input port and two output ports are placed along each edge of the hexagon,
likewise in the real ubiquitous chip. The state of the I/O ports and the multi-
purpose LED are expressed by differences in their color. A user operates the
virtual ubiquitous chip in the following ways:

— places multiple virtual ubiquitous chips in the simulation area.
— toggles input ports.
— checks the state of the output ports and the multi-purpose LED.

126 R. Sagara et al.

\ T Serial (TX)
]}_ Serial (RX)
NG

T lar—Input

- . & [£ ST Output

Multi purpose LED

e X . 1D of ubiquitous chip
= [Con Virtual ubiquitous chip
—|‘m

Fig. 5. Screenshot of the application development environment

CEEPTTE———)
Fiect Perchion
- o e [
[ERTAY
! Tuke Sukg Srt Suxl Shad oyl
0 B ol |]] e || Fix i
ca (|lco s ®ol co (o Il
T Faieas Yass 9 men
1 Pt fanb, CE: I

e Son e

Gt e | G Ot e Dt e - F ol (s el I

calleail el ci €

(|) O N N e i
QuEt pORIE T Tk Coeeel [T oglT o, CEECE
ra |"1 FE: Chl Cowa [l oy, CXE CI5

i
Tutid | Baad | B B

s :
e el | Hetnwconn
ruflee e e e e N P

Ol = Skl P,
L o e
[Cakis b ax

(] KLk

[ImalaTatin [oF Mo T
™ Fase:

Fig. 6. ECA rule editor

— connects I/O ports and serial ports to the other ubiquitous chips.
— checks the value of the internal variables and the stored ECA rules.
— adds new ECA rules using ECA rule editor (Figure 6).

Users have only to use a mouse to achieve the above operations.

4.2 Cooperation Among Real/Virtual Ubiquitous Chips

As described in Section 3.2, cooperation is classified into two cases: a user cus-
tomizes an application using a real ubiquitous chip and a user checks the behav-
iors of real I/O devices.

In the former case, cooperation is achieved as follows:

Step 1. A user connects a real ubiquitous chip to the PC.

Step 2. A user places a new virtual ubiquitous chip in the simulation area.
Step 3. The application development environment reads the ECA rules stored
in the real ubiquitous chip and adds them to the virtual ubiquitous chip.
Step 4. The development environment sends the DELETE ECA command to

the real ubiquitous chip to delete all stored ECA rules, this prevents conflict
among the ECA rules.

An Application Development Environment

127

Table 5. Formula for creating control rules

Original rule

Control rule

E: (A ny event) E: NONE

C: 1(¢)=0 (i=1-5) C: 1(¢)=0, S(i-1)=1

A: (Any action) A: S(:-1)=0, SEND DATA(2i-1)
E: (Any event) E: NONE

C: 1(4)=1 (i=1-5) C: I(¢)=1, S(i-1)=0

A: (Any action) A: S(:-1)=1, SEND DATA (24)
E: (Any event) E: RECEIVE DATA

C: Any condltlon) C: RECEIVED DATA=2i-1

A: O(2)=0 (i=1-12) A: O(i)=0

E: (Any event) E: RECEIVE DATA

C: (Any condition) C: RECEIVED DATA=2;

A: O(i)=1 (i=1-12) A: O(i)=1

E: (Any event) E: RECEIVE DATA

C: (Any condition) C: RECEIVED DATA=25

A: HW CONTROL A: HW CONTROL

E: (Any event) E: RECEIVE DATA

C: (Any condition) C: RECEIVED DATA=26

A: HW CONTROL(M LED OFF) A: HW CONTROL(M LED OFF)

Step 5. The development environment writes rules to the real ubiquitous chip,
which lets the real ubiquitous chip behave in the same manner as the virtual
ubiquitous chip.

In the latter case, cooperation is realized by performing only Steps 4 and 5 of
the above procedure.

Table 5 shows the formula for creating control rules. When the state of a real
input port changes, the real ubiquitous chip sends one byte data to the devel-
opment environment. When the development environment receives the data, it
changes the state of the associated virtual input port.

4.3 Example

In this section, we give an example of the use of the proposed application de-
velopment environment. The sample application behaves as though “a user is
sitting on a chair, and the desk lamp lights automatically when there is not
enough bright.” In this application, we use three ubiquitous chips called UC1,
UC2, and UC3. UC1 is attached to the chair and has a pressure sensor that
detects when the user is sitting. UC2 is attached to the desk and is connected
to the desk lamp in order to control it. UC3 is attached to the wall and has an
illumination sensor. Figure 7 shows the connection relationship of the ubiquitous
chips.
The user programs the application in the following way:

1. The user positions the three virtual ubiquitous chips, UC1, UC2, and UC3.
2. The user connects the I/O ports and serial ports as shown in Figure 7.
3. The user adds the ECA rules shown in Table 6 using the ECA rule editor.

128 R. Sagara et al.

Fig. 7. System structure of sample application

Table 6. Rule set for the sample application

Rules for UC1 (2 rules)

E: NONE E: NONE
C: 1(2)=1, S(0)=0 C: 1(2)=0, S(0):
A: S(0)=1, SEND MESSAGE(M0) A: S$(0)=0, SEND MESSAGE(M1)

Rules for UC2 (5 rules)

E: RECEIVE MESSAGE E: RECEIVE MESSAGE E: NONE
C: MESSAGE ID=0 C: MESSAGE ID=1 C: I(3)=1
AL S(0)=1 A S(0)=0, O(4)=0 A S(1)=0, O(4)=
E: NONE E: NONE
C: I(3)=0 C: S(0)=1, S(1)=1
A:S(1)=1 A: O(4)=1
Rules for UC3 (2 rules) Control rules for UC3 (2 rules)
E: NONE E: NONE E: NONE E: NONE
C:I(2)=1 C:1(2)=0 C:I(2)=0, S(2)=1 C: I(2)=1, S(2)=0

A: O(5)=1 A:O(5)=0 A: S(2)=0, SEND DATA(3) A: S(2)=1, SEND DATA(4)

4. The user checks the behavior of the ubiquitous chips by toggling their input
ports. If bugs are found, the user modifies the rules.

5. When the user wants to confirm the behavior of the application with a real
illumination sensor, he connects a real ubiquitous chip to a PC and links UC3
and the real ubiquitous chip. In this case, the control rules shown in Table
6 are automatically added to the real ubiquitous chip. The user changes the
brightness of the room and checks the behavior.

6. When he completes the application, he writes ECA rules to real ubiquitous
chips and attaches them to furniture.

5 Consideration

5.1 Planned Functions

When more than seven virtual ubiquitous chips are placed, the simulation area
becomes full. Thus, it is difficult to develop applications consisting of ten or more

An Application Development Environment 129

ubiquitous chips. To solve this problem, we are planning to develop functions
that can group several ubiquitous chips into a meaningful unit and that can
manage groups collectively.

Although we can grasp the state of I/O ports through the circles of a virtual
ubiquitous chip, we cannot know the behavior of connected devices. Therefore,
we should provide virtual I/O devices and functions that can simulate their
behaviors.

In this paper, we focus on serial ports connected by means of wired cables.
Practically, we have provided various wireless communication units for ubiqui-
tous chips such as Infrared (IR) units, Radio Frequency (RF) units, and Blue-
tooth units. The development environment should be able to support to simulate
wireless communication.

5.2 Related Work

Smart-It [2], MOTE [3], and U-Cube [5] are small devices for constructing ubig-
uitous computing environments and sensor networks. These devices have sen-
sors/actuators and wireless modules and they are similar to ubiquitous chip in
the point that we can customize system configurations by changing the attached
devices. However, we cannot change their behaviors or the attached devices while
applications are running. Therefore, it is difficult to dynamically customize the
behaviors of embedded devices according to user demands. Moreover, since these
devices are developed with a C-like programming language, it is difficult for gen-
eral users to develop and customize applications.

MINDSTORMS [6] and ROBOT WORKS [1] have application development
environments for specific hardware. Users can easily program applications by
aligning blocks in which conditions and operations are described. However, these
development environments do not have simulation functions. Moreover, they
cannot develop applications through cooperation with actual hardwares.

MPLAB [7] is a development environment for PIC, which is a microprocessor
used in ubiquitous chip. MPLAB can simulate the behaviors of PIC by displaying
the values of variables. However, it cannot simulate the behaviors of multiple
PICs and it cannot visualize the states of I/O ports.

6 Conclusion

In this paper, we described the design and implementation of an application
development environment for ubiquitous chips. The proposed development envi-
ronment simulates the behaviors of multiple ubiquitous chips. Moreover, it has
a function for verifying applications through cooperating with real ubiquitous
chips.

In future, we have plans to construct functions for developing large-scale ap-
plications, for simulating I/O devices, and for cooperating with multiple real
ubiquitous chips. We also plan operational tests and further evaluation of the
application development environment.

130 R. Sagara et al.

Acknowledgement

This research was partially supported by The 21st Century Center of Excellence
Program “New Information Technologies for Building a Networked Symbiotic
Environment” and Grant-in-Aid for Scientific Research (A)(17200006) from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. BANDAI: “ROBOT WORKS,” http://www.roboken.channel.or.jp/borg/.

2. M. Beigl and H. Gellersen: “Smart-Its: An Embedded Platform for Smart Objects,”
Smart Objects Conference (sOc) (May. 2003).

3. Crossbow Technology Inc.: “MICA.,”
http://www.xbow.com/products/Wireless Sensor Networks.htm.

4. J. Kahn, R. Katz, and K. Pister: “Mobile Networking for Smart Dust,” in Proc.
ACM/IEEE International Conference on Mobile Computing and Networking (Mo-
biCom99), pp. 271-278 (Aug. 1999).

5. Y. Kawahara, M. Minami, H. Morikawa, and T. Aoyama: “Design and Implementa-
tion of a Sensor Network Node for Ubiquitous Computing Environment,” in Proc.
VTC2003-Fall (Oct. 2003).

6. LEGO: “MINDSTORMS,” http://mindstorms.lego.com/japan/products/.

7. Microchip Technology Inc.: “MPLAB,”
http://www.microchip.com/1010/index.htm.

8. K. Sakamura: “TRON: Total Architecture,” in Proc. Architecture Workshop in
Japan’84, pp.41-50 (Aug. 1984).

9. T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino, S. Nishio, and
A. Kashitani: “Ubiquitous Chip: a Rule-based I/O Control Device for Ubiqui-
tous Computing,” in Proc. Int’l Conf. on Pervasive Computing (Pervasive 2004),
pp-238-253 (Apr. 2004).

10. M. Weiser: “The Computer for the Twenty-first Century,” Scientific American,
Vol. 265, No. 3, pp. 94-104 (Sept. 1991).

A uWDL Handler for Context-Aware Workflow
Services in Ubiquitous Computing Environments

Yongyun Cho, Joohyun Han, Jaeyoung Choi, and Chae-Woo Yoo

School of Computing, Soongsil University,
1-1 Sangdo-dong, Dongjak-gu, Seoul 156743, Korea
jhhan, cho}@ss.ssu.ac.kr, {choi, cwyoo}@comp.ssu.ac.kr
J yy ¥y p

Abstract. To develop context-aware workflow services in ubiquitous
computing environments, a service developer must describe and recog-
nize context information as transition constraints. uWDL (ubiquitous
Workflow Description Language)[1] is a workflow language that describes
the situation information of ubiquitous environments as a rule-based ser-
vice transition condition. In this paper, we suggest a uWDL handler that
supports workflow’s service transition to be aware of user’s condition in-
formation. The uWDL handler consists of a uWDL parser and a uWDL
context mapper. The uWDL parser represents contexts described in the
scenario with sub-trees of a DIAST (Document Instance Abstract Syntax
Tree) as a result of the parsing. To derive the right transition of workflow
services, the uWDL context mapper compares contexts described in sub-
trees of DIAST with a user’s situation information generated from ubig-
uitous environments by using a context comparison algorithm. Therefore,
the uWDL handler will be used in developing context-aware workflow ap-
plications that can change the flow of a service scenario according to the
user’s situation information in the ubiquitous computing environment.

1 Introduction

Ubiquitous computing environments mean that a user can connect with a net-
work freely and receive services that he wants, anyplace and anytime [2,7]. A
workflow model for business services in traditional distributed computing envi-
ronments [3] can be applied as a service model to connect services related in
ubiquitous computing environments and express service flows [1]. However, a
workflow in ubiquitous computing environments must decide a service transi-
tion according to the user’s situation information that is inputted dynamically
[2]. For that, a workflow language for ubiquitous environments must be able
to express the user’s situation information as service transition conditions in a
workflow service scenario. uWDL (ubiquitous Workflow Definition Language) is
a workflow language based on a structural context model which expresses con-
text information as transition constraints of workflow services [1,?]. Through
a workflow service scenario document in uWDL, developers can represent con-
text information as workflow state transition constraints in order to support a
context-aware service transition of workflows. To develop application programs

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 131-140, 2005.
© IFIP International Federation for Information Processing 2005

132 Y. Cho et al.

with a workflow language, a developer commonly needs a handler that processes
a document written in that language and interprets the structure and the mean-
ing of it.

In this paper, we present a uWDL handler that verifies the validation of
a uWDL workflow service scenario document and derives the service transition
according to a user’s state information being inputted dynamically in ubiquitous
environments. For that, the uWDL handler consists of a uWDL mapper and
a uWDL parser. The uWDL parser parses a uWDL scenario document, and
produces DIAST (Document Instance Abstract Syntax Tree), which represents
the document’s structure information. To decide a workflow service transition, a
UWDL mapper compares contexts described in DTAST with the user’s situation
information offered from a sensor network.

2 Related Work

2.1 Context-Aware Workflow and Workflow Language

Context in a ubiquitous environment means any information that can be used
to characterize the situation of an entity [3]. An application or system that
uses context information or performs context-appropriate operations is called a
context-aware application or context-aware system [4, ?]. Ubiquitous workflow is
dependent on context information that is sensed from the physical environment,
and provides a context-aware service automatically based on that sensed in-
formation. The ubiquitous workflow is required to specify ubiquitous context
information as state-transition constraints. The existing workflow languages,
such as BPEL4WS [5], WSFL [6], and XLANG [7], are suitable for business
and distributed computing environments. These languages use the results of the
former services and the event information of services as transition conditions
of services. However, they do not include any elements to describe context in
ubiquitous computing environments to workflow services. For example, XPath
is unsuitable for expressing high-level situation information that comes from
ubiquitous environments, because it has only logic and condition operators.

2.2 uWDL (Ubiquitous Workflow Description Language)

uWDL [1] can describe context information as transition conditions of services
through the <context> element consisting of the knowledge-based triple entity -
subject, verb, and object. The uWDL reflects the advantages of current workflow
languages such as BPEL4WS, WSFL, and XLANG, and also contains rule-based
expressions to interface with the DAML4OIL [8] ontology language. In uWDL,
a simple context and profile information are described using an RDF expression
[9], and complex context information is expressed using an ontology expression.
Figure 1 shows uWDL’s schema.

In Figure 1, the <node> element points to Web services in ubiquitous environ-
ments and it conforms to a web service’s operation. The <link> element contains

A uWDL Handler for Context-Aware Workflow Services 133

4| profile E]—E)EH customization ﬂ
Tom
i (| BB (8

1.

(oL 2@

Tom

Fig. 1. uWDL Schema

a sub element <condition>, which selects the service flows. The <context> el-
ement contains the <constraint> element in order to specify high-level context
information generated by ontology and inference services as a form of structural
description. The <constraint> element has the triplet sub-element of <subject>,
<verb>, and <object> based in RDF. The <node> element points to one oper-
ation that provides a functionality of Web services in ubiquitous environments.
The <transition> element specifies the state change of a current node. The
<condition> element makes a decision to select a proper service by context,
profile, and event information. The composite attribute of the <constraint> el-
ement has a value of 'and’, ’or’, and 'not’. By using these attributes, we can
express the relationship between simple contexts and describe a high-level com-
plex context. The <rule> element means a set of the <constraint> elements.

2.3 Context Parser

To develop an application program in a context definition language, a developer
needs a parser to parse the structure and the meaning of a document that is
made out in the language. Jena2 [11] is useful as a parser for such ontology
languages as RDF, DAML+OIL, and OWL [12] to define context. Jena2 parses
ontology based in existent RDF as well as contexts of DAML+OIL, OWL, N3,
DB, and so on. Jena2 redefines low-level contexts from a sensor network in

134 Y. Cho et al.

ubiquitous environments as high-level contexts based in RDF. However, Jena2
is not suitable for processing workflow scenario documents like a uWDL scenario
document that includes the <context> element to describe contexts. Therefore,
developers may require a parser that can recognize and parse workflow service
scenario documents describing contexts like a uWDL workflow service scenario
document in ubiquitous computing environments.

In this paper, we design and implement a uWDL parser that parses the struc-
ture and meaning of a uWDL document. Also, we propose an algorithm for com-
paring contexts inputted in RDF-based triple form in ubiquitous environments
with contexts described in uWDL workflow service scenario documents. Through
the algorithm, the uWDL mapper makes the workflow perform context-aware
service transitions according to a user’s situation.

3 A uWDL Handler

3.1 A System Architecture

In this paper, we propose a uWDL handler that can help a service developer to
develop context-aware workflow services in ubiquitous computing environments.
Figure 2 shows the system structure of the uWDL handler.

After a service developer writes a uWDL workflow service scenario, the uWDL
handler compares a context described as subject, verb, and object elements in
the uWDL scenario to other contexts, which are obtained as the entity from
a sensor network. To do that, we suggest an algorithm to parse uWDL service
scenarios and recognize the context according to the sensed contexts from the

ﬁ Document

U-Service Provider or Instance AST
uWDL scenario Maker

uWDL scenario editor

(@Ol —»| unoL - 3
el Parser I\ ’»
_‘ //
uWDL scenario S MY —_—
document Validation
Check
DTD AST ontext-Mapper

Ubiquitous Service Engine

Context-type | [Context-value
Checker Checker

ol 24 X

Abstract Context Model

Ubiquitous Middleware ﬁ ﬁ ﬁ

Fig. 2. The architecture for handling the context in uWDL

A uWDL Handler for Context-Aware Workflow Services 135

sensor network. Figure 2 shows a process of manipulating contexts aggregated
from the sensor network and providing an adaptive service based on the scenario.

3.2 uWDL Parser

In Figure 2, the uWDL parser analyzes a uWDL service scenario document. A
uWDL scenario document is divided into units of token by a lexical analyzer. The
tokens are parsed by the uWDL parser, a recursive descendant parser [13,15],
using the uWDL’s DTD definition. The uWDL parser examines if a uWDL
workflow scenario document is valid to the uWDL DTD AST(Abstract Syntax
Tree) [13] that represents a syntax architecture of the uWDL DTD. As a result
of a parsing, the uWDL parser makes a DIAST (Document Instance Abstract
Syntax Tree) that represents the structure information of a uWDL document as
a tree data structure. At this time, a context described as a triple entity in the
parsed scenario document is constructed as a subtree in the DIAST produced by
the uWDL parser. Figure 3 shows a part of an example DIAST that the uWDL
parser creates after it parses a uWDL workflow service document.

In the DIAST tree of Figure 3, a part representing transition conditions that
can decide workflow service transitions is a <constraint> area that is marked
by a dotted line. That is, a subtree [14,15] whose root node in the DIAST is a
<constraint> element displays that contexts in a workflow service document are

Fig. 3. A part of an example DIAST produced by a uWDL parser

136 Y. Cho et al.

uWDL DT Tres Node

Production Nurmber - '
ATA tahl
Adtribute Information TR b tahiel]
PCDATA : COMMENT) for String PTR PEDATA num |
MNexl | Lefi | Parent Righl P'rey o
Prowd] - 1
sehems | namg: Ihs wpr | link 2
Qo “uWDL 1 0 1
| W DL Elemenn W DI 2 1 2 » Value_list]
z “ e’]]
Opr namsz link:
Dpe takle]] Artr - Tis] num
e s name - 1 AND 2
T i Ny THATTIE Iype Dl Vislue vl ink
Mo T ” &
i = 'ﬂ. m list : R
1 SeG || Mversiond | ATT O DEF_REGUIRED] O "Le) 3 NOT 0
2 SEQNIL kiR 4 LOCATION | 5
OPTION 2 “log' | ATT_C| DEF_OPTIGNAL i =] H TIME 5
DATA HANIMII ~
4 OPTIONNIL - = - N E [" 7
| 3 ame ATT_C| DEF_REGUIRED n 4 . .
5 STAR DATA LIGHT %
L] STARNIL . . i F 8 NOISE £l
i | OR 0| Cwpd | '.[J.—— SF REGUIRED 1 AND 11 J ('IIJ‘E:\)II:(”'.l-.i\-l 10
" ORNIL foBY 1 L J b
e | PLUS 11| “subject | =" DEF_ROGUIRED| 4 TIME 12 !
- = st 11 SITUATION|
L0 PLUSNIL

Fig. 4. DIAST s element node structure

represented as RDF-based triple nodes. Therefore, a <constraint>’s subtree in
the DTAST is compared with a user’s situation information inputted from sensors
to derive service transitions described in a workflow scenario. Figure 4 displays
the data structure of the DIAST’s element node and various data tables. The
DIAST’ nodes are connected to each other and useful data tables by 6 pointers.

Through the data structure of the element node and its data tables, develop-
ers can easily know the whole DIAST structure and use it to compare contexts
between DIAST and sensors in ubiquitous computing environments. The Pro-
duction Number is a unique element number which distinguishes each element
node. The Left, Parent, and Right links express for element’s order and con-
nection information in the DIAST. Each node in the DIAST is divided into a
common element node or an operator node. An operator node displays a meta-
character to express a language-specific characteristic of elements in a uWDL’s
DTD. For example, a parent element node for <node> element in the example
DIAST of Figure 3 is <PLUS> operator node, not a common element node.
The Attribute Information PTR is a pointer that indicates a relevant record
of Attr list [| to get an element’s attribute value. The String PTR is a pointer
that indicates a record of the PCDATA table that contains string information
of PCDATA or COMMENT element.

3.3 uWDL Context Mapper and Context Comparison Algorithm

Contexts that the context mapper uses for the comparison are described in a
triple entity based on RDF. Context information from the sensor network can
be embodied as a triple entity consisting of subject, verb and object accord-
ing to the structural context model based in RDF. A context described in the

A uWDL Handler for Context-Aware Workflow Services 137

Boolean MatchContext{UC A, OCS B) {
int j: /7 For the index of context in B each context ser */

for each j in OCS B { /% Repeatedly comparing contexts in A, T3 contest set #/

if (AT type == Bj.OKC pe dole AT e == B0 i

(AU type] fype &nhs A T

(A UCo_type Bj.OCo type &k AUCo_valuc

return TRUE /# Found conlext mateh #/

b /F End for
return FATSE

1
I

A* Return matchresult #/

Fig. 5. An algorithm for comparing UC A with OCS B

<constraint> element in the uWDL service scenario consists of the triple entity
based in RDF. The context mapper extracts context types and values of the
entity objectified from sensors. It then compares the context types and values of
the objectified entity with those of the DIAST’s subtree elements related to the
entity. In the comparison, if the context types and values in the entity coincide
with the counterpart in the DIAST’s subtree, the context mapper drives the
service workflow. A context comparison algorithm is shown in Figure 5.

In Figure 5, we define a context embodied with a structural context model
from the sensor network as OC = (OCs type, OCs value), (OCv type, OCv value),
(OCo type, OCo value), and a context described in a uWDL scenario as UC
= (UCs type, UCs value) (UCv type, UCv value), (UCo type, UCo value). OC
means a context objectified with the structural context model, and it consists of
0OCs, OCv, and OCo which mean subject, verb, and object entities. UC means a
context described in a uWDL. UCs, UCv, and UCo mean subject, verb, object
entities in the uWDL scenario. A context consists of a pair of type and value.
Also, OCS and UCS that mean each set of OC and UC can be defined as OCS
= (0C1, 0C2, 0C3, -, OCi) and UCS = (UC1, UC2, UC3, -, UCi).

4 Experiments and Results

For testing, we will make a uWDL scenario for an office meeting service in ubig-
uitous environments, and show how the suggested uWDL handler makes the
workflow’s service perform context-aware transitions, by comparing contexts de-
scribed in the scenario with a user’s situation information from sensors. The
example scenario is as follows. John has a plan to do a presentation in Room
313 at 10:00 AM. When John moves to Room 313 to participate in the meeting
before 10:00 AM, a RFID sensor above room 313’s door transmits John’s basic
context information (such as name, notebook’s IP address) to a server. If the
conditions, such as user location, situation, and current time, are satisfied with
contexts described in the uWDL workflow service scenario, then the server down-
loads his presentation file and executes a presentation program. A developer can
use <subject>, <verb> and <object> in the uWDL scenario to decide what

138 Y. Cho et al.

Fie Edit m

J| Ole|e| S| & |m]w] m
oL G
= 1 porttyem G b2
a cresleSession
b ey Seasion
prop——
{CoNstraint compaosita="AND"> ‘amv:«
{aubject typ "SituationType' » prasentaton </ subject> 3::" el
<verb sype="Date Type > Date</vern ‘;_,,:"‘“
<object type="TrmeType"> 10:00 ¢/akct> . < oetParerts o
</constraint> laa— W
e " Bt Ecphorer
£ feomtes = I T |
foontexts = = =
- Siusue | = (24 Comition
5 4 Corlest
v’ | 2§ et
* coreirs
@ i
<rulg> |E\-t'1
- | Coerwiicn
S ' % 7 Actin -
) al | |
<rule nik Constrant Info
' s T I TR
. [ey ShusbiorType Fresenistion
U |Cegect LocdinType 313
<consiraint= <constraint nik-
M
=constraiet nll= =

Fig. 6. The service scenario and the DIAST’s subtree that the uWDL parser in an
uWDL scenario editor produced for the scenario

service is selected, according to context and profile that are the user’s situation
information.

For experiments, we implement a uWDL scenario editor. The editor includes the
suggested uWDL handler and gives convenient user interfaces to set constraints’
values of a context. Figure 6 shows a uWDL workflow service scenario for the ex-
ample scenario, and a part of the <constraint> subtree of DIAST that the WDL
parser produces for the uWDL scenario. The subtree in the structure window is
for the <constraint> highlighted in the edit window. Now, if the context map-
per receives context data objectified as (SituationType, presentation), (UserType,
Michael), (UserType, John), and (LocationType, 313), it compares the contexts’
types and values with the subtree’s elements shown in Figure 6. In this case, be-
cause context (UserType, Michael) is not suitable anywhere in the subtree’s el-
ements, it is removed. The context described to the uWDL scenario in Figure 6
consists of a limited number of UCs. However, contexts from a sensor network can
be produced as innumerable OCs according to the user’s situation. Therefore, the
uWDL handler must quickly and correctly select an OC coinciding with a UC that
is described in the uWDL scenario from such innumerable OCs. In an experiment,
we generated a lot of OCs incrementally, and measured how fast the suggested
uWDL handler found the OCs that coincided with the UCs in the uWDL scenario
of Figure 6. We used a Pentium 4 2.0 Ghz computer with 512M memory based in
Windows XP OS for the experiment. Figure 7 is the result.

In Figure 7, we increased the OC’s amounts by 50, 100, 200, 300, 400 and 500
incrementally. We placed the OCs coinciding with the UCs in the middle and
end of the OCs that we produced randomly. In Figure 7, 1/2 hit-position means

A uWDL Handler for Context-Aware Workflow Services 139

Hit Time of OC and UC according to the Hit-Positions and the incre asing of the OC mumbers
o}
45
4397
4 =
o i -
’ 151 Position
2 ' —- 22 Hit
: 2763
Time(s) 2.5 - /ﬁ@f’rﬂ Fosition
: __—Tans e
15 : 45
E T sl
o
03
0
a0 100 200 300 400 00
OC s nambers

Fig. 7. A hit-time for hit-position and the number of OCs

the position of the OC coinciding with the UC is the middle of the produced
OCs, and 2/2 hit-position means the position of the OC is the end of the OCs.
As shown in the result, the hit-time did not increase greatly regardless of the
OCS’s considerable increase. Also, we verified that all schedule.ppt files had
been downloaded in all cases when hits between OCs with UCs happened. It
shows that the suggested uWDL handler can sufficiently support context-aware
workflow service.

5 Conclusion

uWDL is a ubiquitous workflow description language to specify service flows, where
appropriate services are selected based on context information and executed con-
currently or repeatedly, and to specify context-aware state transition. In this paper,
we present the uWDL handler that can process a uWDL workflow service scenario
document, and can derive service transition according to a user’s situation infor-
mation. Through experiments, we showed processes in which the uWDL handler
parsed the created uWDL scenario document and produced a DIAST for the docu-
ment. We defined a user’s status information from the sensor network as OC based
on RDF, and a context described in uWDL scenario as UC. We showed an experi-
ment in which the uWDL mapper compared contexts of UCSs and OCSs through
a context comparison algorithm, and measured hit-times and service transition ac-
curacy to verify the efficiency of the algorithm. Through the results, we found that
the hit-times were reasonable in spite of the OCs’ amounts. Therefore, this uWDL
handler will contribute greatly to the development of the context-aware applica-
tion programs in ubiquitous computing environments.

Acknowledgements

This research is supported by the Ubiquitous Autonomic Computing and Net-
work Project, the Ministry of Information and Communication (MIC) 21st Cen-
tury Frontier R&D Program in Korea.

140

Y. Cho et al.

References

(@]

11.

12.

13.

14.

15.

. Joohyun Han, Yongyun Cho, Jaeyoung Choi: Context-Aware Workflow Language

based on Web Services for Ubiquitous Computing, ICCSA 2005, LNCS 3481, pp.
1008-1017, (2005)

. M. Weiser: Some Computer Science Issues in Ubiquitous Computing. Communica-

tions of the ACM, Vol.36, No.7 (1993) 75-84

. D. Hollingsworth: The Workflow Reference Model. Technical Report TC00-1003,

Work flow Management Coalition (1994)

. Guanling Chen, David Kotz: A Survey of Context-Aware Mobile Computing Re-

search, Technical Report, TR200381, Dartmouth College (2000)

. Tony Andrews, Francisco Curbera, Yaron Goland: Business Process Execution Lan-

guage for Web Services. BEA Systems, Microsoft Corp., IBM Corp., Version 1.1
(2003)

. Frank Leymann: Web Services Flow Language (WSFL 1.0). IBM (2001)
. Satish Thatte: XLANG Web Services for Business Process Design. Microsoft Corp.

(2001)

. R. Scott Cost, Tim Finin: ITtalks: A Case Study in the Semantic Web and

DAML+OIL. University of Maryland, Baltimore County, IEEE (2002) 1094-7167

. W3C: RDF /XML Syntax Specification, W3C Recommendation (2004)
. James Snell: Implementing web services with the WSTK 3.2, Part 1, IBM Tutorials,

IBM (2002)

Jena2-A Semantic Web Framework.

Available at http://www.hpl.hp.com/semweb/jenal.html

Deborah L. McGuinness, Frank van Harmelen (eds.): OWL Web Ontology Lan-
guage Overview, W3C Recommendation (2004)

Aho, A.V., Sethi R., and Ullman J. D., Compilers: Principles, Techniques and
Tools, Addison-Wesley (1986)

Bates, J. and Lavie A.)”Recognizing Substring of LR(K) Languages in Linear
Time”, ACM TOPLAS, Vol.16 ,No.3, pp.1051-1077 (1994)

Reckers J. and Koorn W., Substring parsing for arbitrary context-free grammars.
ACM SIGPLAN Notices,, 26(5), pp.59-66 (1991)

SMMART, a Context-Aware Mobile Marketing
Application: Experiences and Lessons

Stan Kurkovsky', Vladimir Zanev?, and Anatoly Kurkovsky’

! Computer Science Department,
Central Connecticut State University,
1615 Stanley Street, New Britain, CT 06050, USA
KurkovskySta@ccsu.edu
% Department of Computer Science,
Columbus State University,
4225 University Avenue, Columbus, GA 31906, USA
Zanev_Vladimir@colstate.edu
? Department of Mathematics, Physics and Computer Science,
University of the Sciences in Philadelphia,
600 South Forty-third Street, Philadelphia, PA 19104, USA
a.kurkov@usip.edu

Abstract. A new class of m-commerce applications is emerging due to the
unique features of handheld devices, such as mobility, personalization and loca-
tion-awareness. This paper presents SMMART, a context-aware, adaptive and
personalized m-commerce application designed to deliver targeted promotions
to the users of mobile devices. SMMART adapts to changing interests of its
user by monitoring his or her shopping habits and guarantees the privacy of its
users by not transmitting any personally identifiable information to the retailers.
We describe our experiences of building and evaluating a fully functional proto-
type of SMMART implemented for Pocket PCs.

1 Introduction

M-commerce is a branch of electronic commerce, in which mobile devices and their
network connection medium are used in the process of buying and selling of services,
and products. Wireless mobile devices possess unique features: ubiquity (they are
affordable and portable), personalization (a device belongs to and can be identified
with a single individual), and location awareness (a wireless connection may be used
to determine the physical location) [7]. While some existing e-commerce applications
are adapted for mobile platforms, the features inherent to mobility and wireless com-
munication medium create a unique class of emerging m-commerce applications
striving to achieve the anytime, anywhere paradigm of pervasive computing [11].

In this paper we present our experience with building a prototype of SMMART —
System for Mobile Marketing: Adaptive, peRsonalized and Targeted. SMMART is a
context-aware application, delivering narrowly targeted promotions to the users wire-
less mobile devices, such as PDAs and smart phones, when they are in a close prox-
imity or inside a retail store. SMMART adapts to the needs of its user by unobtru-

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 141150, 2005.
© IFIP International Federation for Information Processing 2005

142 S. Kurkovsky, V. Zanev, and A. Kurkovsky

sively monitoring his/her shopping habits and learning the user’s personal prefer-
ences. The functionality of the system may be described using a simple metaphor:

Whenever you go to a retail store, there are brochures advertising current sales.
You may be interested in some products, but have no time or intention to look through
all pages in the brochure with no guarantee of finding anything interesting. Imagine
that there is a genie who knows all about your shopping interests that will carefully
read the entire brochure and clip only those promotions that precisely match your
interests. SMMART is that genie running on your PDA or smart phone, which can
work at any retail store equipped with the corresponding technology. Moreover, it
will know when your interests change as long as you continue using it.

This paper is organized as follows: Section 2 describes related work; Section 3 de-
scribed a scenario of using SMMART; Section 4 discusses SMMART architecture;
Section 5 concludes the paper and presents possible directions of future work.

2 Background and Related Work

Varshney and Vetter [12] provide a classification of m-commerce applications, which
includes a category of mobile advertising applications that typically use demographic
or other information specified by the consumers to deliver targeted advertising mes-
sages [14]. These applications may be location-sensitive, delivering the message only
to the users that are located in the vicinity of the retailer being advertised [11]. How-
ever, coverage area of such applications depends on the precision of the user location
determined by the network technology used for wireless connectivity. Each mobile
advertising application should cover a small area and narrowly target its recipients to
avoid network congestion and overwhelming consumers with a large number of ir-
relevant advertising messages.

A context-aware system operates and adapts itself based on the knowledge about
its user’s state and physical surroundings [12]. One of the methods to obtain location
context without gathering precise geospatial data is by detecting a connection to a
wireless personal area network (PAN), such as WiFi or Bluetooth. Context-aware
services enabled by PAN technologies can only reach customers located within a
close physical proximity of the wireless service provider. eNcentive framework de-
scribed in [10] is a context-aware m-commerce application used to distribute elec-
tronic coupons. However, it pushes all available coupons to its users regardless of
their preferences. To be effective, eNcentive is deployed at a large number of retail
sites and requires an even larger number of customers carrying wireless PDAs.

SMMART belongs to the same class of applications as eNcentive and is used to
deliver targeted marketing information to customers whose preferences match prod-
ucts that are currently on sale at retail stores. SMMART guarantees a high level of
privacy because it does not transmit any personally identifiable information and can-
not be used by retailers to track their customers and their buying habits.

SMMART is an example of a user-centric, context-aware pervasive system. In
general, pervasive computing systems have the following characteristics [5]: ubiqui-
tous access, context awareness, intelligent behavior, and natural interaction. Ubiqui-
tous access and ubiquitous computing, introduced by Weiser [13], refer to an envi-
ronment where users are surrounded by computational power and applications. Sen-

SMMART, a Context-Aware Mobile Marketing Application 143

sors, smart phones, pagers, PDAs, different miniaturized and embedded devices are
the hardware environment supporting ubiquitous services and applications.

Ubiquitous ervices are context-aware in the terms of location-awareness, time
awareness, device-awareness and personalization [6]. Context-awareness refers to the
ability of a system to recognize users, to interpret context information and to run in an
appropriate fashion for the users, applications and services.

Intelligence in pervasive computing comprises adapting to user behavior, personal-
ization of application and services and supplying users with information at the right
place and time. SMMART is designed and implemented as an intelligent pervasive
system with abilities to adapt, to target user with information and to personalize its
services. SMMART incorporates a number of features enabling it to adapt its behav-
ior based on the current context and past user input.

Natural interaction in pervasive computing refers to system modality where the
same functionality is delivered through voice (speech recognition and synthesis),
wireless interfaces, and gesture recognition. SMMART is designed to be extensible
with a provision to eventually develop a multimodal voice-enabled interface with
speech recognition and synthesis.

3 Using SMMART

Products with Promotions
“Every Breath You Take” - CD by Police
“On Every Street” - CD by Dire Straits

In this section we present a scenario of how a
hypothetical shopper named Bob could use
SMMART in his everyday shopping (Fig. 1).

Bob recently installed SMMART Client
software onto his wireless PDA, entered his
musical preferences, as shown in Fig. 2a, and
drove to his favorite place to buy CDs. As
Bob enters the store, his SMMART Client
makes a connection with the store’s
SMMART Server and tells the server about
his preferences. The server responds with a
list of products that match Bob’s preferences
and are currently on sale, as shown in Fig. 2b.
Bob selects Every Breath You Take on the
screen of his PDA to view more information
about the promotion. As Bob clicks on this
product, his SMMART Client assumes that
he may be interested in other products by
Police and its musicians. In this case, key-
word Sting (the lead singer of Police) is
automatically added into the list of Bob’s preferences. Bob also decides to purchase
On Every Street by Dire Straits. Clicking on this product description has two conse-
quences: Bob’s interest in Dire Straits is confirmed and the keyword Mark Knopfler
(the founder of Dire Straits) is added to his preferences.

Later Bob decides to visit a bookstore. At this moment, Bob’s preferences include
five keywords, as shown in the lower portion of Fig. 1. Upon entering the store, his

Keywords New Keywords
Cranberries Mark Knopfler
Dire Straits Sting
Police

Keywords New Keywords
Cranberries Guy Ritchie
Dire Straits
Mark Knopfler
Police
Sting

J_C

Products with Promotions
“Lock, Stock & Two Smoking Barrels” -
movie starring Sting -
“Princess Bride” - movie with
music written by Mark Knopfler
“Broken Music” - book by Sting

Related Products
“Snatch” - movie directed by Guy Ritchie

Fig. 1. A typical scenario of using
SMMART

144 S. Kurkovsky, V. Zanev, and A. Kurkovsky

SMMART Client receives all current promotions matching his interests, presenting
Bob with three products. Bob is most interested in Lock, Stock and Two Smoking
Barrels, a movie starring Sting. As Bob selects this product description, Bob’s inter-
est in Sting is confirmed and his preferences are updated with a new keyword — Guy
Ritchie (director of this movie). Bob’s SMMART Client also offers a list of related
products, which include Snatch, a movie directed by Guy Ritchie.

£\ sMMaRT-Preferences o< 1:27 €3 [l FF|sMMART-Offers ¢ 1:27 €3 WA sMMART-Products ¢ 1:29 €3
View/Edit your preferences The following offers match your Every Breath You Take: The Classics
preferences

Enter your preference (s) along with a
prority (1-Lowest)

Categories:

v

Every Breath ¥ou Take: The Classics

Preference Waeight
|[5_[a-] [s] Erand New Day
Ten Summoner's Tales
Forrest Gurmp
Synchronicity
Dire Straits .
Palice Type: L
Artist: Dire Straits
Dffer Ends: 08fes 2004
Delete
You Save: 10% Pracuct | offer | Related |
Menu E|A Menu E|A Menu E|A
a) b))
Fig. 2

4 Overview of SMMART Architecture

As illustrated by the above sce- -
. . SMMART Client SMMART Server

nario, SMMART consists . Of a [SMMART Browser | [Search & Match Agent |
server installed at every participat-
. . . . Preferences Inventory
ing retail location and clients for : /N

retatl. . ()
mobile wireless devices that pull
information from the server (Fig. 3).
An inventory database of a retail Preference 3 Inventory —=3

. . Data Database -

store provides the basis for all data
available to the SMMART Server.
Product Manager retrieves all rele- Fig. 3. Architecture of SMMART

vant information about a specific

product, which is then used by SMMART Client when the user chooses to view the
details about a particular offering. Similarly, Promotion Manager retrieves all promo-
tion information for a given product. Search & Match Agent is the core of the
SMMART Server. This agent receives a list of keywords from the client ordered by
their relevancy to the user’s interests. For each keyword in the list, the agent finds all
matching products that currently have a promotion and adds them to the result. The
result consisting of matching products is sorted in the order of relevance to the user
preferences and returned to the client.

SMMART, a Context-Aware Mobile Marketing Application 145

As shown in Fig. 3, SMMART Client consists of two main components: SMMART
Browser and Preferences module. Typically, after SMMART Client connects to and
communicates with a server, the user is presented with a list of matching products that
currently have promotions (Fig. 2b). The user explores each product in detail by view-
ing its full description in SMMART Browser. This information is divided into sev-
eral sections: product information, offer details and related products (Fig. 2¢), which
can also be explored using the SMMART Browser.

Preferences module contains and manipulates Preference Data — a list of keywords
stored in XML format. Each keyword is associated with a numeric weight represent-
ing its relevancy to the user’s interests and a timestamp indicating the last time this
keyword or its weight was updated. As described below, the keyword weights and
timestamps also facilitate the learning capabilities of SMMART.

When the user runs SMMART Client, the Preference Data is scanned. If no key-
words are found, the user is prompted to add new keywords using Preference Editor
(Fig. 2a). Main responsibilities of this module include adding new, editing and deleting
existing keywords, manually changing the weights of existing keywords if needed.

When the user indicates an interest in a particular product by viewing its full de-
scription in SMMART Browser, Preference Data is automatically updated by Update
Manager. If the keywords associated with a product are already present in Preference
Data, their weights are incremented. Otherwise, they are added with a default weight.

SMMART assumes that by viewing full product description the user signifies his
interest the product. It is possible for keywords not reflecting true user interests to be
automatically added to Preference Data. The primary goal of Maintenance Agent is
to detect and remove any keywords that are erroneous or represent past interests of
the user. Maintenance Agent runs at application startup and looks for keywords that
have not been updated within a specified period and decreases their weight. Eventu-
ally, such keywords will be placed in the Recycle Bin and will not be used to find
matching products.

S Implementation of SMMART Prototype: Lessons Learned

To prove the functional feasibility of the SMMART, we implemented its fully opera-
tional prototype. We chose C# and ASP.NET to implement SMMART Server run-
ning on Microsoft .NET Framework. SMMART Client is also implemented in C#
running on Microsoft .NET Compact Framework. Our inventory database runs on
SQL Server 2000. All tests were conducted using Dell Axim PDAs. The remainder
of this section discusses different approaches to the specific implementation details of
a context-aware mobile marketing application, such as SMMART, as well as some
challenges that we faced in that process.

5.1 SMMART Context Information

SMMART uses several types of context information [2] as described below.

Physical location context is needed to determine which store’s inventory is to be
searched every time a user wishes to use SMMART. Our application does not require
the knowledge of geographical coordinates of the user’s location. Instead, we are
using the information about the physical proximity of the user (SMMART client) to

146 S. Kurkovsky, V. Zanev, and A. Kurkovsky

the store (corresponding server). Our approach to obtaining this type of context in-
formation is discussed in the next section.

User context (user identity) determines what specific information is presented to
the shopper. For example, it is reasonable to expect that two different users of
SMMART visiting the same store will see a different set of offers because they have
different their shopping preferences. In SMMART, user context is also affected by
the previous experiences of each user. In the beginning of using SMMART, it is the
user’s responsibility to enter some keywords describing his or her shopping prefer-
ences (if no preferences are entered, the user will have an option to see all offers
available at a store). As soon as the user begins browsing through the available of-
fers, SMMART starts analyzing the user’s browsing patterns by matching and updat-
ing keywords describing each viewed product and keywords in the Preference Data.

5.2 Infrastructure of Client-Server Communication

XML Web Services appear to be a good choice for the logical structure of SMMART
client-server communication [9]. Firstly, web services fit well in the general philoso-
phy of SMMART: a number of functionally and semantically related methods are
united under the umbrella of a single service; all methods work with the same data,
i.e. the store’s inventory. Secondly, using web services helps overcome the burden of
possible network disconnections due to the statelessness of the connection. However,
XML and SOAP add a sizeable overhead to the amount of the exchanged data [1],
which may result in a delayed application response and congestion of the wireless
network connection.

Our primary objective was to prove the viability of SMMART concept. Current
implementation of the prototype uses XML web services over a Wi-Fi wireless LAN.
Such a choice of technologies works well for a large class of existing Wi-Fi-enabled
PDAs. This also assumes that each SMMART site must be equipped with one or
more wireless access points. Also, each site must route all network traffic from an
access point only to the web server hosting SMMART web services. This enables an
unambiguous identification of the store to which a SMMART Client is connected.
Additionally, such a routing scheme prevents possible hijacking of the wireless band-
width. However, there is another class of devices, which includes smart phones
equipped with Bluetooth sensors requiring a different combination of network and
data access technologies. SMMART can easily be implemented to work with this set
of client hardware with no modifications to the architecture of the system.

5.3 Design for Handheld Devices

Designing applications for handheld devices is greatly influenced by their hardware
limitations, primarily small screen, slow CPU, small amount of RAM, and short bat-
tery life. In an application such as SMMART, only the most essential information
must be displayed on the screen. This is not only because the screen is small, but also
because this application is used in an environment where the user may be easily dis-
tracted by many environmental factors. SMMART requires minimal data processing
since its algorithms are simple and produce no noticeable delay on Dell Axim PDAs,
on which SMMART prototype was tested.

SMMART, a Context-Aware Mobile Marketing Application 147

The most challenging issue in designing a networked application for a PDA is the
short battery life. Currently, maintaining a WiFi connection on a PDA is a very en-
ergy-consuming task. A SMMART client requires wireless connectivity for brows-
ing, searching or matching of any products in the store inventory. A connection is not
required for editing of preferences. However, while running a SMMART client, a
PDA can be powered off at any moment. When it is turned back on, possibly at a
different location, a running SMMART client will detect the changes in the wireless
network, find an available SMMART server and obtain a new set of products match-
ing the user’s preferences.

5.4 End-User Acceptance

When a new application arrives on the market, it is crucial to know whether end-users
will find it intuitive and easy to use. If the users do not want to use the system, it does
not matter how technologically advanced it is or how much savings it could yield.
We conducted a survey of potential end-users of SMMART who were given an op-
portunity to test its prototype using their own shopping preferences in our “test store”
containing about one hundred products. The results of our survey indicate that its
participants have a very favorable opinion about SMMART. Specifically, based on
their own experience with SMMART, 80% of the survey respondents agreed that the
system makes good matches between their shopping preferences and products in the
test store. Given a chance to browse through the products found as a result of match-
ing of preferences or searching for keywords, navigate through the different screens
of the user interface and system options, 80% of the respondents agreed that interface
of SMMART Client is intuitive and easy to use. Finally, 93% of the respondents said
that if they owned a mobile device running a SMMART Client, they would be willing
to use the system in their everyday shopping.

Consumers are always concerned about their privacy: why would they give away
potentially compromising information about themselves and their preferences? In
terms of preserving the user’s privacy, using SMMART is equivalent to searching the
inventory of a store with an Internet portal. In this process, the store can deduce the
consumer’s interest in certain products. A typical online store can also easily detect
whether a particular search resulted in a purchase. SMMART enables consumers to
make such searches completely anonymous because stores cannot make a connection
between a search and a purchase. Additionally, while performing a search,
SMMART filters and sorts the obtained results according to the criteria of their rele-
vance to multiple keywords. This effectively eliminates the necessity to reformulate
the search query, which arises frequently in searching the inventories of online stores.

5.5 Retailer Acceptance

Increased revenue is the primary factor that determines the acceptance of SMMART
by retailers. Deploying SMMART at a single retail store or at a chain of affiliated
stores must be economically justified. The costs of the framework, its supporting
infrastructure, data upkeep and maintenance must be less than the revenue from addi-
tional sales generated by the customers using SMMART.

At the same time, retailers should not view SMMART as a potential tool to drive
up the competition. It is in the retailers’ best interests not to allow shoppers to com-

148 S. Kurkovsky, V. Zanev, and A. Kurkovsky

pare products easily, but rather to distinguish their products from the competitors,
which can be achieved through personalization. SMMART is designed for use at
only one store at a time and therefore shoppers will be unable to compare prices
among different stores. This feature should be appealing to the retailers because it
creates an easy way to automatically create personalized shopping lists without any
investments in additional demographic and market research.

To demonstrate the increase in revenues, we created a simulation model, in which
we measured a relative increase in sales generated by purchases resulted from product
matches and recommendations made by SMMART. Our experimental results show
that SMMART yields the highest increase in sales with the low values of P(c), the
metric we used in our model, which represents the probability that a customer ¢ would
make a purchase uninfluenced by SMMART. This is typical for upscale stores in
shopping malls, stores that sell large ticket items, or stores where people come to
socialize, as well as to shop. For example, according to our data, when the probability
of a customer to make a purchase is 20% and when only 5% of all customers are car-
rying SMMART-enabled mobile devices (S(c) = 5%,), using the system would yield
an almost 13% increase in sales. Alternatively, with higher values of P(c), which are
typical for stores where customers are determined to make a purchase and stores
where customers make routine purchases, such as grocery stores and supermarkets,
the expected impact of SMMART is more modest. With P(c) = 90% and S(c) = 5%,
SMMART yields slightly less than a 3% increase in sales.

5.6 The Big Picture

Following our experience with SMMART, we propose a generic client-server archi-
tecture for context-aware systems that subsumes a number of other architectures pro-
posed in the literature [3, 8]. Our architecture comprises four core components: sen-
sor information and drivers, context client, context server, and context database.

Different sensors remotely or locally connected to the server, usually network-
based, are responsible to supply context information — location, time, device or object
status, and personalization. The drivers are software components that interpret sensor
information and convert it in appropriate context information for Context Interpreter.
Some authors called the drivers widgets [4], or adaptors [6].

Context Interpreter is responsible for converting context information received from
the drivers or from the context client input to higher levels of context information
understandable by an application and its services. For example, physical coordinates
can be converted to street name and number and/or building and floor. If the context
can be recognized and interpreted, the context is transferred to the Application Man-
ager, which runs an application or applications connected to the current context. If
the context cannot be recognized because of ambiguous, insufficient or inaccurate
information, the Context Interpreter queries the context tables and uses context rules
in attempt to find the right context. The context tables contain user context informa-
tion: user preferences, user habits, past user schedules and activities. The context
rules are similar to knowledge database rules. Context Interpreter acts as an inference
engine to find the right context and to deliver it to the Application Manager.

Application Manager matches context information to applications and services
and initiates their execution controlling the running and stopping of services and

SMMART, a Context-Aware Mobile Marketing Application

Context Client

Context Server

Application

Application
Services

Application
Services

| 7| Services
:
|
L [Application Manager

1

] Context Interpreter

o

Context Database

Data tables

Context tables

149

[Driver] [Driver] [Driver |

Fig. 4. Generic Architecture for Context-aware Systems

applications. The applications can query the data tables of the context database to
retrieve information and to deliver it to the clients as output.

The services are components that execute actions on behalf of applications (for ex-
ample turning the lights on or delivering notifications). Usually they are implemented
as software agents. The services proactively monitor user calendars and schedules,
email accounts, and deliver information to the user in a timely manner.

6 Conclusion and Future Work

In this paper we presented a novel approach to mobile marketing in context-aware
environments. We built a prototype of SMMART implementing this approach. A
user of a wireless PDA equipped with SMMART can receive promotions from retail
stores for those products that match his interests. We also studied the economic fea-
sibility of SMMART that indicate that it will be extremely effective in stores where
customers need additional incentives to make purchases. Possible examples include
stores in shopping malls, bookstores, consumer electronics warehouses, and any other
retailers where consumers come not only to shop, but also to socialize.

SMMART can be extended by providing more features that would enhance its us-
ability. A product inventory search would allow a user to search the entire inventory
of a store. Product information pages of SMMART Browser could be enhanced with
a map schematically showing the location of the selected product in the store.
SMMART could also provide the user with the ability to reserve an item which is on
back order at the sale price or the option of ordering an in stock item to be picked up
and purchased on a designated date and time. This feature could also work well with
large items such as big screen TV’s or other products where the inventory is not kept
on the display floor. Finally, SMMART could be extended with a multimodal inter-
face giving the users an ability of voice communication with the system.

References

1. H. Chu, C. You, C. Teng. “Challenges: Wireless Web Services,” In Proceedings of 10™
International Conference on Parallel and Distributed Systems (ICPADS'04), July 7-9,
2004, Newport Beach, CA.

2. Dey. “Understanding and Using Context” in Personal and Ubiquitous Computing, Vol. 5,
No. 1, pp. 4-7, Springer-Verlag 2001.

150

10.

11.

12.

13.

14.

S. Kurkovsky, V. Zanev, and A. Kurkovsky

Dey, G. Abowd. “The Context Toolkit: Aiding the Development of Context-Aware Ap-
plications,” In Proceedings of the Workshop on Software Engineering for Wearable and
Pervasive Computing, Limerick, Ireland, June 6, 2000.

Dey, G. Abowd, and D. Sabler. “A Context-Based Infrastructure for Smart Environ-
ments,” In Proceedings of the 1% International Workshop on Managing Interactions in
Smart Environments, Dublin, Ireland, Dec. 13-14, 1999.

. Fersha. “Coordination in Pervasive Computing Environments,” In Proceedings of 12"

IEEE International Workshop on Enabling Technologies, 2003.
T. Hofer et al, “Context-Awareness on Mobile Devices — the Hydrogen Approach,” Pro-
ceedings of 36™ Hawaii International Conference on System Sciences, 6-9 January, 2003.

. P. Kannan, A. Chang, A. Whinston. “Wireless Commerce: Marketing Issues and Possi-

bilities,” In Proceedings of The 34™ Hawaii International Conference on System Sciences,
IEEE CS Press, 2001.

. S. Meyer, A. Rakotonirainy. “A Survey of Research on Context-Aware Homes,” In Pro-

ceedings of the Workshop on Wearable, Invisible, Context-Aware, Pervasive and Ubiqui-
tous Computing, Adelaide, Australia, 2003.

T. Pilioura, T. Tsalgatidou, S. Hadjiefthymiades. “Scenarios of Using Web Services in M-
Commerce.” ACM SIGecom Exchanges. Vol. 3, No. 4, Jan. 2003, pp. 28-36.

O. Ratsimor, T. Finin, A. Joshi, Y. Yesha. “eNcentive: A Framework for Intelligent Mar-
keting in Mobile Peer-to-Peer Environments,” In Proceedings of The 5™ International Con-
ference on Electronic Commerce (ICEC-03), Pittsburg, PA, October 2003.

U. Varshney. “Location Management for Mobile Commerce: Applications in Wireless
Internet Environment.” ACM Transactions on Internet Technology. Vol. 3, No. 3, Aug.
2003, pp. 236-255.

U. Varshney, R. Vetter. “Mobile Commerce: Framework, Applications and Networking
Support.” Mobile Networks and Applications, Vol 7, pp. 185-198, Kluwer, 2002.
M.Weiser. “The Computers for the 21st Century”, Scientific American, 265, 3, September
1991.

H. Yunos, J. Gao, S. Shim. “Wireless Advertising’s Challenges and Opportunities.” IEEE
Computer, Vol. 36, No. 5, pp. 30-37, IEEE CS Press, 2003.

Ubiquitous Organizational Information
Service Framework for Large Scale Intelligent
Environments

Kwang-il Hwang!, Won-hee Lee', Seok-hwan Kim!,
Doo-seop Eom!, and Kyeong Hur?

! Department of Electronics and Computer Engineering, Korea University,
#1-5ga, Anam-dong, Sungbuk-gu, Seoul, Korea
{brightday, wangpepe, sukka, eomds}@final.korea.ac.kr
2 Department of Computer Education,

Gyeongin National University of Education
khur@ginue.ac.kr

Abstract. In this paper, we introduce a concrete, practical Ubiquitous
Organizational Information (UOI) service framework, providing novice users
intelligent and useful services with respect to the environment. The UOI
framework based on the sensor networks is composed of 3-level hierarchical
network architecture. To provide a rich array of services, the modular software
framework and foundation software are designed and implemented on our
hardware prototype. We define three representative UOI services and illustrate
each service flow operating on the proposed UOI network. In addition, we
describe some details in the implementation of a distributed UOI network on
the UOI test-bed.

Keywords: Distributed Sensor Networks, Embedded Systems, Intelligent
Environment, and Ubiquitous Computing.

1 Introduction

To coincide with the grand pervasive computing vision, everyday computing spaces
will need to become a component of the user’s normal background environment,
gradually becoming more ubiquitous in nature. Mark Weiser first initiated the notion
of Ubiquitous Computing at Xerox PARC [1], who envisioned in the upcoming
future, ubiquitous interconnected computing devices that could be accessed from any
location, used effortlessly, and operate unobtrusively, even without people’s notice of
them, just as that of electricity or telephones are used today.

Many researchers define an intelligent environment, as one of the most
representative applications of Ubicomp, as an augmented spacious environment
populated with many sensors, actuators and computing devices. These components
are interwoven and integrated into a distributed computing system, capable of

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 151 -160, 2005.
© IFIP International Federation for Information Processing 2005

152 K.-i. Hwang et al.

perceiving context through sensors, to execute intelligent logic on computing devices
and serve occupants by actuators. This intelligent environment is extending its range
from a users’ personal room or classroom, to a large house or building.

Let us suppose the following situation. We visit an unfamiliar environment, which
presents a wide area, such as an amusement park, university campus, or large
building. Confusions often arise when finding the location of something or where to
travel next. Furthermore, the use of certain facilities may be desired or someone in the
organization may need to be found. Such users’ needs will be satisfied with an
intelligent service involving information regarding the organization. Our UOI service
framework is designed to provide such an intelligent service to users, especially for
large scale environment. In this paper, the presented UOI service framework presents
more concrete and practical way to create intelligent environment.

The rest of this paper is organized as follows. We first outline several researches
related to the intelligent environment. Then, the UOI framework is presented, which
is composed of three major components. Subsequently, the UOI service flow through
the distributed UOI network is illustrated. Our hardware prototype and UOI
foundation software operated on the prototype is also introduced. Lastly, details in the
implementation of a distributed UOI network are described. A conclusion is provided
with a description of future work.

2 Related Work

There have been substantial researches relating to the construction of ubiquitous
environments.

Cooltown [2] and the associated CoolBase infrastructure aim to give people,
places, and things a Web presence. Although Web technology is proven and widely
available, it has inherent complexity, since, to be connected to the Web, a fully
supported TCP/IP stack and system capable of running the relatively heavy software
is required.

Projects, such as Gaia [8], Microsoft Easy Living [3], and CORTEX [9], aim to
develop an infrastructure to support augmented environments in a fairly broad sense.
They provide basic abstractions and mechanisms for coping with the dynamics and
device heterogeneity of pervasive computing environments. There is quite a large
difference between the projects and the framework presented in this paper. While they
provide application models that are still rather generic, our work supports a rather
specific application model.

In such a sense, PiNet [10] is the most similar to the presented model in that the
final goal is to provide an organizational information service to users. However, the
work in this paper is distinguished from PiNet primarily in the uses of sensor
networks. In contrast to PiNet using a global cellular network as an infrastructure, the
UOI adopts distributed sensor networks. In our research, service network
infrastructure and service framework based on sensor networks, are more emphasized,
instead of focusing on user perception or virtual reality as in [4 - 7].

Ubiquitous Organizational Information Service Framework 153

3 Architecture of UOI Framework

The UOI service framework infrastructure is based on distributed sensor networks. It
is assumed that the environment is covered with innumerable tiny sensor nodes,
which are extremely limited in power, processing, and memory resources. The sensor
nodes are called access nodes, since they are used as access points connecting users to
a UOI network. Each node is aware of its own location information by manual
planning or other localization algorithms, and possesses the ability to communicate
with user’s devices via short range wireless communication. The UOI service
infrastructure using sensor networks, not global networks such as cellular networks or
GPS, presents advantages as follows.

e Guarantee of freshness with respect to the dynamics of information
e Security
e Service charge issues regarding information use

Firstly, the update of information with respect to the change of an organizational
structure or service will be achieved faster and easier through a scalable UOI
framework. Secondly, organizational information will be safer from outside networks.
Lastly, users are allowed to use the service without any extra communication charge.
In addition to these advantages, compared to WLAN networks, the UOI network
architecture provides more elaborate location information and increases efficiency in
the use of facilities through sensors and actuators. The UOI network architecture also
enables localized information processing and fusion, by clustering regionally adjacent
access nodes.

3.1 Key Features of UOI Framework

The presented framework is designed to efficiently provide UOI services. Such UOI
framework includes the following array of features.

Level 2 (Areas)

e Link Between UOI Central
and UDI Regional Head
(Ethernet or Wireless LAN)

Level 1 (UOI Region
Heads |

Link Between UOI Regional
— Head
AND Access Node
(Ethernet or Wireless LAN
{Mesh))

Link Between Access Node
And User

Level 0 (Access (Short Range Wireless)

Nodes: Sensors)

Fig. 1. Hierarchical UOI network architecture based on distributed sensor networks

154 K.-i. Hwang et al.

Hierarchical architecture: As shown in Fig. 1, the UOI framework is composed of
three-tier architecture, more specifically, access node level, regional head level, and
UOI central. Regionally adjacent nodes form a cluster in which a cluster head node is
responsible for managing its own cluster member nodes. In addition, the clusters form
a network of tree-based or mesh-based topology to communicate with each other. The
clusters are also connected to the UOI central, which operates similarly to a central
server. This hierarchical architecture of UOI framework makes it possible to localize
information in a cluster, and reduces traffic by using aggregation and fusion within a
cluster head. This feature is also useful when the environment is managed regionally.

Property-based naming and information-centric routing: The UOI platform uses
property-based naming, similar in concept to naming in the Directed Diffusion [11],
not global ID such as IP address or MAC address, as a node identifier. Each node has
an inherent name related to its property such as location or sensing ability. For
example, ‘East2 Floor1’ means the node is the 2™ node from UOI regional head of the
1* floor to east. In addition, ‘Tb21 KoreanRest1’ will be the 21th table number of a
Korean restaurant in a huge amusement park. Information-centric routing is also
enabled by virtue of the property-based naming, which is different from address-
centric routing.

Distributed querying and tasking: In the UOI framework, user’s service request is
translated into a query to be flooded to the UOI network. The query is injected in each
access node and the UOI regional head via the UOI hierarchy. In each node, the query
generates a corresponding task, operating on the UOI foundation software. This
distributed tasking demonstrates some results with respect to the query and only the
nodes, which have data matched with the query, can report matched information to
UOI central. This feature reinforces the distributed information processing ability in
the UOI network, in contrast to other global or centralized networks.

Transparent services: The UOI framework provides transparent services to users.
Users only request a service with their device, and specific actions for configuration
or registration are not required. When entering an area covered with a UOI network,
the user is expected to turn on the device and be automatically connected. No
configuration changes are necessary as the user moves from one site to another. The
network needs no pre-knowledge regarding the device attempting to connect to it.

3.2 Components for UOI Service Framework

The UOI network infrastructure is composed of three distinguished components,
Access node, UOI regional head, and UOI central, as shown in Fig. 2. These
independent components play an important role in building a UOI service framework
with a hierarchical architecture.

Access node is the most basic component, allowing users to access the UOI
infrastructure. This component is composed of UOI foundation software, Query
Translation Unit, Task Manager Unit, User Interaction Manager, and Location
Management Unit.

Ubiquitous Organizational Information Service Framework 155

U Central uol i Head Access Node

ocati

| ug| Fuundaﬂa*m |

Short Range
LAN or Wireless LAN Wirsless Communication ShorgRange
Wirsless Cgmmunication

User with Simple
Hand-held Device

Fig. 2. Components for UOI service framework

UOI Regional Head as a cluster head is responsible for managing access nodes in
its own cluster, and operates as a gateway between access nodes and UOI central. The
UOI head includes two independent networks software: TCP/IP for connecting to
UOI central by LAN or WLAN, and UOI foundation software for managing cluster
members. In addition, the role of UOI head is performed with UOI application,
Cluster Manager Unit, Information Acquisition and Fusion Unit, and Service Manger
Unit.

UOI Central represents component of the highest level in the UOI service
hierarchy. It plays an important role in generating queries with respect to user’s
service request, managing tasks and services and authenticating users and logging.
The works are performed with the Query Generation Unit, Task Manager, Service
Manager, and Authentication Unit.

3.3 Organizational Information Services Through Distributed UOI Networks

Users entering an unfamiliar environment want to get some organizational
information and be available to freely use various facilities without pre-knowledge in
the organization. Furthermore, users do not want to manually configure or register
themselves to use organization services. We summarize the UOI services fulfilling
such user’s requirements into the following service category.

Location guide service: First of all, the most basic service offered to novice users is
location guidance. Generally, guiding services using GPS are the most common.
However, in GPS, the service with high resolution is not guaranteed. In addition, GPS
is difficult to be used for indoor location systems, such as large buildings.

Compared with the GPS service, our UOI framework provides more reliable
location