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Abstract. This paper presents a technique for real-time crowd density 
estimation based on textures of crowd images. In this technique, the current 
image from a sequence of input images is classified into a crowd density class. 
Then, the classification is corrected by a low-pass filter based on the crowd 
density classification of the last n images of the input sequence. The technique 
obtained 73.89% of correct classification in a real-time application on a 
sequence of 9892 crowd images. Distributed processing was used in order to 
obtain real-time performance. 

1   Introduction 

For the problem of real-time crowd monitoring there is an established practice of 
using closed circuit television systems (CCTV), which are monitored by human 
observers. This practice has some drawbacks, like the possibility of human observers 
lose concentration during this monotonous task. Therefore, the importance of the 
development of robust and efficient automatic systems for real-time crowd 
monitoring is evident. 

Efforts for crowd estimation in train stations, airports, stadiums, subways and other 
places, have been addressed in the research field of automatic surveillance systems. 
Davies et al. [1] and Regazzoni and Tesei [2, 3] have proposed systems for crowd 
monitoring and estimation based on existing installed CCTV. The image processing 
techniques adopted by theirs systems remove the image background and then measure 
the area occupied by the foreground pixels. The number of foreground pixels is used 
to estimate the crowd density. Lin et al. [4] proposed a technique based on the 
recognition of head-like contour, using Haar wavelet transform, followed by an 
estimation of the crowd size, carried out by a support vector machine. For crowd 
classification, Cho et al. [5] proposed a hybrid global learning algorithm, which 
combines the least-square method with different global optimization methods, like 
genetic algorithms, simulated annealing and random search. The techniques proposed 
by Marana et al. [6,7,8] estimate crowd densities using texture analysis with gray 
level dependence matrices, Minkowski fractal dimension and wavelets.  

This paper presents a technique for real-time automatic crowd density estimation 
based on texture descriptors of a sequence of crowd images. The motivation for the 
use of texture descriptors to estimate crowd densities was inspired by the fact that 
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images of different crowd densities tend to present different texture patterns. Images 
of high-density crowd areas are often made up of fine (high frequency) patterns, while 
images of low-density crowd areas are mostly made up of coarse (low frequency) 
patterns. In order to improve the estimation accuracy and to provide real-time 
estimation, a distributed algorithm was developed. The technique obtained 73.89% of 
correct classification in a real-time application on a sequence of 9892 crowd images. 

2   Material 

The technique described in this paper for automatic crowd density estimation was 
assessed on a sequence of 9892 images extracted (one per second) from a videotape 
recorded in an airport area. From the total set of images, a subset of 990 images was 
homogeneously obtained (one image from each ten). Then, human observers 
manually estimated the crowd densities of these images.  The manual estimations 
were used to assess the accuracy of the automatic technique.  

After the manual estimation, the 990 images were classified into one of the 
following classes: very low (VL) density (0-20 people), low (L) density (21-40 
people), moderate (M) density (41-60 people), high (H) density (61-80 people), and 
very high (VH) density (more than 80 people). Figure 1 shows samples of crowd 
density classes. 

 

Fig. 1. Samples of crowd density classes. (a) Very low density (15 people); (b) Low density (29 
people); (c) Moderate density (51 people); (d) High density (63 people); (e) Very high density 
(89 people). 

Finally, the images of each class were grouped into train and test subsets. The train 
subset was used to train the neural network classifier and the test subset was used to 
assess the accuracy of the technique. Table 1 shows the distribution of the train and 
test subsets of images into the five classes of crowd densities. 

Table 1. Distribution of the train and test subset of images into the five classes of crowd 
densities  

 VL L M H VH 
Train 14 179 169 101 33 
Test 14 179 169 100 32 
Total 28 358 338 201 65 

(a)                      (b)                        (c)                        (d)                      (e) 
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3   Methods 

Figure 2 presents a diagram of the technique proposed for crowd density estimation 
using texture descriptors. The first step of the technique consists in the classification 
of each pixel of the input image into one of the previously identified texture classes. 
The classification is carried out by a self-organizing map  (SOM) neural network [9] 
using feature vectors composed of texture descriptors extracted from co-occurrence 
matrices [10], computed using a wxw window centered in the pixel being classified. 

 
 

 
 

Fig. 2. Diagram of the technique for crowd density estimation using texture and neural network 
classifier 

 

Fig. 3. Diagram of the proposed master-slave strategy for texture segmentation in PVM 
distributed environment, using n slave processors (in this example, n=3) 

As the classification of all pixels of the image is a time-consuming process (more 
than 100 seconds per image), in order to obtain real-time estimation it was 
implemented a distributed algorithm for the Beowulf environment, using Parallel 
Virtual Machine (PVM) [11].  This algorithm has the following steps:  

• The master processor divides the input image in n fragments (n is the 
number of slave nodes in the cluster); 

• Each image fragment is sent to a slave processor; 
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• Each slave processor performs the texture classification of its image 
fragment pixels using a sequential algorithm; 

• The slave processors send their classified fragments to the master; 
• The master processor assembles all fragments into a final texture-

segmented image. 

Figure 3 shows a diagram of the master-slave strategy adopted in this work to 
obtain a texture-segmented image. 

In the next step, the texture histogram, computed from the texture-segmented 
image, is used as feature vector by a second SOM neural network to classify the input 
crowd image into one of the crowd density classes.  

The second neural network learns the relationship among the texture histogram 
profiles and the crowd density levels during the training stage, in a supervised way. 

4   Experimental Results 

This section presents the results obtained with the application of the proposed 
technique for real-time crowd density estimation on a sequence of 9892 crowd images. 

During the experiments, it was used a cluster with eight Pentium IV processors, 
connected by a Fast-Ethernet switch. 

 

Fig. 4. Texture patterns from where texture-training samples were extracted. 

Pixel texture classification was carried out on a 15x15 window centered on the 
pixel, from where four co-occurrence matrices were calculated (distance d=1 and 
directions θ = 0º, 45º, 90º and 135º). From these four matrices, four texture features 
were extracted: energy, entropy, homogeneity and contrast [10], making up 16 
features. 
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The SOM neural network used in the first step for texture classification was trained 
to classify crowd image pixels into 12 patterns of texture. Figure 4 shows the 12 texture 
patterns from where 100 training samples of each texture class were randomly extracted. 

Figure 5(b) presents the result of the texture segmentation of the crowd image 
presented in Figure 5(a), obtained by the SOM neural classifier, using a 15x15   
window and the texture patterns showed in Figure 4. Figure 5(c) presents the texture 
histogram obtained from the texture-segmented image. 

It is possible to observe in Figure 5 that higher crowd density areas of the input 
image are associated with lighter gray level areas in the texture-segmented image, and 
that lower crowd density areas of the input image are associated with darker gray 
level areas in the texture-segmented image.  

 

Fig. 5. Example of texture segmentation of a crowd image. (a) Input image; (b) Texture-
segmented image; (c) Texture histogram obtained from the texture-segmented image. 

 

Fig. 6. Processing time (in seconds) necessary to classify all pixels of the input image (using a 
15x15 window) and to estimate its crowd density, varying the number of processors of the 
cluster 
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Figure 6 shows the processing times for texture segmentation and crowd density 
classification of a single crowd image, using the 8-processors cluster. The efficiency 
obtained by the insertion of new processors in all cases was always almost maximum, 
since the decreasing of processing time was always near to 87%. The processing time 
for each crowd image was around 105 seconds when only one processor was used and 
around 14 seconds when all 8 processors were used. 

Since the best processing time performance obtained (14 seconds) was not enough 
for real-time estimation, it was assessed the possibility of only part of pixels be 
classified. 

In the first experiment carried out, the crowd images were divided into 4x4 sub-
images and only one pixel from each sub-image (the top-left pixel) was classified. 
Table 2 shows the confusion matrix obtained in this experiment, where the last 7 
images of the input sequence were used by a median low-pass filter to correct the 
current crowd density estimation. In this experiment, 73.89% of the 494 test crowd 
images were correctly classified. The best result (90.63% of correct classification) 
was obtained by the VH class, and the worst result (59% of correct classification) was 
obtained by the H class. Real-time requirement was reached, since the crowd density 
estimation for each image took 1.025 seconds. It is possible to observe in Table 2 that 
all miss-classified images were assigned to a neighbor class of the correct one. Some 
miss-classification was expected since the borders between the crowd density classes 
are very tenuous (for instance, an image with 20 people belongs to VL class, but it 
can be easily classified as belonging to L class).  

Table 2. Results obtained when part of the input image pixels were classified and the crowd 
density classification were corrected applying the median low-pass filter in the last 7 
estimations of the input sequence 

 VL L M H VH 
VL 64.29 35.71    

L 6.7  81.01 12.29   

M  10.65 72.78 16.57  

H   10.00 59.00 31.00 

VH    9.38 90.63 

Table 3. Results obtained by the technique applying a 3x3 mean filter on the texture-segmented 
image before calculating the texture histogram and correcting the estimation applying a low-
pass (median) filter in the estimation of the last 10 images of the input sequence 

 VL L M H VH 
VL 71.43  28.57    

L 8.38  82.68 8.94   

M  13.02 77.51 9.47  
H   15.00 67.00 18.00 

VH    18.75 81.25 
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In the second experiment, where all pixels of the input image were classified, it 
was obtained 77.33% of correct estimation. In this experiment, a 3x3 mean filter was 
applied to enhance (remove noise) the texture-segmented image and the last 10 
estimations were used by a median low-lass filter to correct the crowd density 
classifications. But, in this case, the requirement for real-time estimation was not 
reached, since the estimations took 14 seconds. Table 3 shows the confusion matrix 
obtained in this experiment.  

In the Table 3 it is also possible to observe that all miss-classified images were 
assigned to a neighbor class of the correct one (this is a very favorable result). 

5   Conclusions 

In this paper, the problem of crowd density estimation was addressed and a technique 
for real-time automatic crowd density estimation was proposed, based on texture 
features extracted from a sequence of images and processed in a distributed 
environment. The proposed approach takes into account the geometric distortions 
caused by the camera’s position, since the farther areas (from the camera) under 
surveillance are mapped on finer textures and the closer areas are mapped on coarser 
textures. Crowd density estimations of a group of 494 test crowd images resulted in 
77.33% of correct estimation. When real-time constraint was demanded, it was 
obtained 73.89% of correct estimation. These results can be considered quite good 
since the variance of crowd density estimations for each class were very small and 
their means were the expected values. 
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