
VTrust: A Trust Management System Based
on a Vector Model of Trust

Indrajit Ray, Sudip Chakraborty, and Indrakshi Ray

Colorado State University,
Computer Science Department,
Fort Collins, CO 80523, USA

{indrajit, sudip, iray}@cs.colostate.edu

Abstract. Trust can be used to measure our confidence that a secure system be-
haves as expected. We had previously proposed a vector model of trust [1]. In
this work we address the problem of trust management using the vector model.
We develop a new trust management engine which we call VTrust (from Vector
Trust). The trust management engine stores and manages current as well as his-
torical information about different parameters that define a trust relation between
a truster and a trustee. We propose an SQL like language called TrustQL to in-
teract with the trust management engine. TrustQL consists of a Trust Definition
Language (TDL) that is used to define a trust relationship and a Trust Manipu-
lation Language (TML) that is used to query and update information about trust
relationships.

1 Introduction

Traditionally, security challenges in computing have been addressed through the use of
techniques such as passwords, access control, program verification, intrusion detection,
cryptographic protocols and so on.However, with the growing use ofdistributed open sys-
tems such as the Internet and pervasive computing environments, traditional approaches
to security are often found lacking. For example, open systems applications such as e-
commerce or e-government presents interesting problems to security. In such systems,
human users and computational agents and services often interact with each other without
having sufficient assurances about the behavior of the other party. There is often insuffi-
cient information for deciding how much access to authorize and how much information
to share in a multi-user environment. These problems have led researchers to explore the
potential of security mechanisms that are based on some aspects of social control.

The notion of trust has often played a crucial role for the proper formulation of secu-
rity policies and in reasoning about expectations from agents and systems to work with
confidentiality, integrity and availability. Thus, using trust to enable secure interaction
among computational agents seems appropriate. Unfortunately there is no well accepted
model for the specification of and reasoning about trust. For the most part, trust is con-
sidered to be a binary entity; confidence is measured in terms of either total trust or no
trust. This had motivated us earlier to propose a new vector model of trust [1]. In this
model trust is a quantitatively measurable entity which can have different degrees. We
define methods and algorithms to measure trust and to compare two trust relationships.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2005, LNCS 3803, pp. 91–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 I. Ray, S. Chakraborty, and I. Ray

To use this trust model however, we need a corresponding trust management system.
The current work presents a step in that direction.

A trust management system is a comprehensive framework designed to facilitate
the specification, analysis and management of trust relationships. It focuses on spec-
ifying and interpreting security policies, credentials, and relationships [2]. The trust
management system also provides trust establishment, trust evaluation, trust monitor-
ing and trust analysis service. Traditionally, trust managment has always focused on
how one can make authorization and access control more efficiently [3]. Blaze, et al.
first introduced the trust management problem as a distinct and important component
of security in network services [4]. The PolicyMaker trust management system [4, 5] is
a framework for expressing in a common language authorization policies, certificates
and trust relationships. The PolicyMaker service appears to applications very much like
a database query engine [4]. KeyNote [2] derives from PolicyMaker and was designed
to improve some of its weaknesses. KeyNote provides a simple language for describing
and implementing security policies, trust relationships, and digitally-signed credentials.
KeyNote has a built-in credential verification system and a simple notation to express
authorization predicates. Grandison [3] proposes SULTAN (Simple Universal Logic-
oriented Trust Analysis Notation), an abstract, logic-oriented framework designed to
facilitate the specification, analysis and management of trust relationships. The IBM
Trust Management System [6] implements trust management on top of the Role Based
Access Control model. The underlying trust model is binary. The XML based Trust
Policy Language that is used to interact with the system is flexible and can be easily ex-
panded. However, it often requires defining custom XML tags for complex situations.

In this paper, we present the VTrust (from Vector Trust model) trust management
framework. Major components of the trust management system include a database en-
gine to store and manage trust data, a trust specification engine for defining and manag-
ing trust relationships, a trust analysis engine to process results of a trust query, a trust
evaluation engine for evaluating trust expressions and a trust monitor for updating trust
relationship information in the database engine. We have also developed an SQL like
language to interact with the trust management system. We call it TrustQL.

The rest of the paper is organized as follows. In section 2 we describe the main
components of the vector trust model. We discuss the extensions to the model that are
needed to implement it in the VTrust framework. In section 3 we describe the VTrust
system architecture. Section 4 presents the conceptual entity-relationship model for the
VTrust system. The section begins with a description of relational entities involved. We
discuss inter-relationship of these entities. We then showcase the idea with a running
example. Section 5 identifies components of a query based language, called TrustQL, to
interact with the trust management system. In this section we also discuss the rationality
for choosing such a language. We conclude the paper in Section 6 with some discussion
on extensions that we are currently working on.

2 Overview of Vector Trust Model

For the purpose of implementing the model in the trust management system we needed
to introduce several modifications to the original model. In this discussion we include

VTrust: A Trust Management System Based on a Vector Model of Trust 93

the extensions we have made. The interested reader is refered to [1] for the original
model. We bgin by defining trust along the lines of Grandison and Sloman [7].

Definition 1. Trust is defined to be the firm belief in the competence of an entity to act
dependably and securely within a specific context.

Definition 2. Distrust is defined as the firm belief in the incompetence of an entity to
act dependably and securely within a specified context.

Although we define trust and distrust separately in our model, we allow the possibility
of a neutral position where there is neither trust nor distrust.

We specify trust in the form of a trust relationship between two entities – the trus-
ter – an entity that trusts the target entity – and the trustee – the target entity that is
trusted. This trust is always related to a particular context. An entity A needs not trust
another entity B completely. A only needs to calculate the trust associated with B in
some context pertinent to a situation. The specific context will depend on the nature of
application and can be defined accordingly. Based on our current model, trust is evalu-
ated under one context c only. The simple trust relationship (A c−→ B)t is a vector with
three components – experience, knowledge, and recommendation. It is represented by
(A c−→ B)t = [AEc

B,A Kc
B,ψ Rc

B], where AEc
B represents the magnitude of A’s experience

about B in context c, AKc
B represents A’s knowledge and ψRc

B represents the cumulative
effect of all B’s recommendations to A from different sources.

To compute a trust relationship we assume that each of these three factors is ex-
pressed in terms of a numeric value in the range [−1,1]∪{⊥}. A negative value for
the component is used to indicate the trust-negative type for the component, whereas a
positive value for the component is used to indicate the trust-positive type of the com-
ponent. A 0 (zero) value for the component indicates trust-neutral. To indicate a lack of
value due to insufficient information for any component we use the special symbol ⊥.

2.1 Computing the Experience Component

We model experience in terms of the number of events encountered by a truster A re-
garding a trustee B in the context c within a specified period of time [t0, tn]. An event
can be trust-positive, trust-negative or, trust-neutral depending on whether it contributes
towards a trust-positive experience, a trust-negative experience or, a trust-neutral expe-
rience. Intuitively, events far back in time does not count as strongly as very recent
events for computing trust values. Hence we introduce the concept of experience policy
which specifies a length of time interval subdivided into non-overlapping intervals. It is
defined as follows.

Definition 3. An experience policy specifies a totally ordered set of non-overlapping
time intervals together with a set of non-negative weights corresponding to each ele-
ment in the set of time intervals.

Recent intervals in the experience policy are given more weight than those far back.
The whole time period [t0,tn] is divided in such intervals and the truster A keeps a log
of events occurring in these intervals.

94 I. Ray, S. Chakraborty, and I. Ray

If ei
k denote the kth event in the ith interval, then vi

k = +1, if
ei

k ∈ P , vi
k = −1, if ei

k ∈ Q or vi
k = 0, if ei

k ∈ N , where, P = set of all trust-positive
events, Q = set of all trust-negative events and N = set of all trust-neutral events.

The incidents I j, corresponding to the jth time interval is the sum of the values of
all the events, trust-positive, trust-negative, or neutral for the time interval. If n j is the
number of events that occured in the jth time interval, then I j =⊥ , if there is no event in
[t j−1,t j], and I j = ∑

n j
k=1 v j

k, otherwise.
The experience of A with regards to B for a particular context c is given by AEc

B =
∑n

i=1 wiIi
∑n

i=1 ni
. where, wi is a non-negative weight assigned to ith interval.

2.2 Computing the Knowledge Component

The knowledge component has two parts - direct knowledge and indirect knowledge (or,
reputation). The truster A assigns two values to these two parts. Her knowledge policy
regarding B in context c determines the weights to express relative importance between
these two. Sum of the product of values and weights for the parts gives us a value for
knowledge.

The knowledge of A with regards to B for a particular context c is given by

AKc
B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d, if r =⊥
r, if d =⊥
wd ·d + wr · r, if d �=⊥,r �=⊥
⊥, if d = r =⊥

where d,r ∈ [−1,1]∪{⊥} and wd +wr = 1. d and r are the values to direct and indirect
knowledge respectively and wd and wr are the corresponding non-negative weights.

2.3 Computing the Recommendation Component

Recommendation is evaluated on the basis of a recommendation value returned by a
recommender to A about B. Truster A uses the “level of trust” he has on the recom-
mender in the context “to provide a recommendation” as a weight to the value returned.
This weight multiplied by the former value gives the actual recommendation score for
trustee B in context c.

The recommendation of A with regards to B for a particular context c is given by

ΨRc
B =

∑n
j=1(v(A rec−→ j)N

t)·Vj

∑n
j=1(v(A rec−→ j)N

t)
where Ψ is a group of n recommenders, v(A rec−→ j)N

t) = trust-

value of jth recommender and Vj = jth recommender’s recommendation value about the
trustee B.

2.4 Trust Vector

We next observe that given the same set of values for the factors that influence trust, two
trusters may come up with two different trust values for the same trustee. We believe

VTrust: A Trust Management System Based on a Vector Model of Trust 95

that there are two main reasons for this. First, during evaluation of a trust value, a trus-
ter may assign different weights to the different factors that influence trust. The weights
will depend on the trust evaluation policy of the truster. So if two different trusters as-
sign two different sets of weights, then the resulting trust value will be different. The
second reason is applicable only when the truster is a human being and is completely
subjective in nature – one person may be more trusting than another. We believe that
this latter concept is extremely difficult to model. At this stage we choose to disregard
this feature in our model and assume that all trusters are trusting to the same extent. We
capture the first factor using the concept of a normalization policy. The normalization
policy is a vector of same dimension as of (A c−→ B)t ; the components are weights that
are determined by the corresponding trust evaluation policy of the truster and assigned
to experience, knowledge, and recommendation components of (A c−→ B)t . The nor-
malization policy together with the experince policy and the knowledge policy form the
truster’s trust evaluation policy.

We use the notation (A c−→ B)N
t , called normalized trust relationship to specify a

trust relationship. It specifies A’s normalized trust on B at a given time t for a par-
ticular context c. This relationship is obtained from the simple trust relationship –
(A c−→ B)t – after combining the former with the normalizing policy. It is given by
(A c−→ B)N

t = W� (A c−→ B)t . The � operator represents the normalization operator.
Let (A c−→ B)t = [AEc

B,A Kc
B,ψ Rc

B] be a trust vector such that AEc
B, AKc

B, ψRc
B ∈ [−1,1]∪

{⊥}. Let also W = [We,Wk,Wr] be the corresponding trust policy vector such that
We +Wk +Wr = 1 and We,Wk,Wr ∈ [0,1]. The � operator generates the normalized
trust relationship as

(A c−→ B)N
t = W� (A c−→ B)t

= [We, Wk, Wr]� [AEc
B, AKc

B, ψRc
B]

= [We · AEc
B, Wk · AEc

B, Wr · ψRc
B]

= [ˆAEc
B, ˆAKc

B, ˆψRc
B]

We next introduce a concept called the value of a trust relationship. This is denoted
by the expression v(A c−→ B)N

t and is a number in [−1,1]∪{⊥} that is associated with
the normalized trust relationship. The special symbol ⊥ is used to denote the value
when there is not enough information to decide about trust, distrust, or neutrality. This
value together with the vector now represents a trust of certain degree.

Finally, we investigate the dynamic nature of trust – how trust (or distrust) changes
over time. We make a couple of observations. First, trust depends on trust itself; that is
a trust relationship established at some point of time in the past influences the com-
putation of trust at the current time. If an agent is positively trusted to begin with
then negative factors are often overlooked (that is given less weightage) when trust
is re-evaluated in the agent. Second, trust decays with time. This is owing to the ef-
fect of forgetfulness of the human mind. The second idea is captured by the equation –

v(Ttn) = v(Tti)e
−(v(Tti)∆t)2k

where, v(Tti), be the value of a trust relationship, Tti , at time
ti and v(Ttn) be the decayed value of the same at time tn. We have developed a method
to obtain a vector of same dimension as of (A c−→ B)N

t from this value v(Ttn). The effect
of time is captured by the parameter k which is determined by the truster A’s dynamic

96 I. Ray, S. Chakraborty, and I. Ray

policy regarding the trustee B in context c. The current normalized vector together with
this time-affected vector are combined according to their relative importance. Relative
importance is determined by truster’s history weight policy which specifies two values
α and β in [0,1] (where, α+β = 1) as weights to current vector and the vector obtained
from previous trust value. The new vector thus obtained gives the actual normalized
trust vector at time t for the trust relationship between truster A and trustee B in context
c. This is represented by the following equation

(A c−→ B)N
tn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ˆAEc
B, ˆAKc

B, ˆψRc
B] if tn = 0

[v(T̂)
3 , v(T̂)

3 , v(T̂)
3] if tn �= 0 and ˆAEc

B = ˆAKc
B = ˆψRc

B =⊥
α · [ˆAEc

B, ˆAKc
B, ˆψRc

B]+ β · [v(T̂)
3 , v(T̂)

3 , v(T̂)
3]

if tn �= 0 and at least one of ˆAEc
B, ˆAKc

B, ˆψRc
B �=⊥

where [v(T̂)
3 , v(T̂)

3 , v(T̂)
3] is the time-effected vector and v(T̂) = v(Ttn).

3 The VTrust System Architecture

The high level system architecture consists of the components as shown in the follow-
ing figure 1. Values of the different parameters needed for the computation of trust
relationships are maintained in the VTrust database. The truster interacts with the trust
management system through the external interface. The communication is done using
the language TrustQL that we have developed. The TrustQL language parser in the
interface parses the command and sends it to the appropriate component in the next
layer. This layer has the following major components. A specification server is man-
aging and updating the trust database schema. The analysis engine processes all trust
related queries. It interacts with specification server and an evaluation engine. The lat-
ter is responsible for computing trust related information according to the underlying
model. The evaluation engine takes a parsed trust query string, finds the associated in-
formation and policy, and returns the final trust vector and value to the analysis engine.
The trust monitor is responsible for acquiring relevant trust formulation parameters. It
maintains the VTrust database, updates the trust data while truster and trustee interacts
with each other and also updates periodically trust component values like experience
and knowledge.

All these information (trusters, trustees, recommenders, policies and trust parameter
information) are stored in the VTrust database. The database is implemented as de-
scribed in section 4. Since TrustQL can not interact with the database directly, an SQL
translator beneath the component layer does this job. The specification server, analy-
sis engine and evaluation engine takes a trust operation specified in TrustQL and maps
the command to an equivalent SQL command to interact with the underlying database.
After receiving an answer from the database, each of those components again does a
reverse mapping to output the answer in terms of TrustQL.

The following algorithm is used by a truster to compute the trust relationship with a
trustee for a given context at any given time.

VTrust: A Trust Management System Based on a Vector Model of Trust 97

Database

Equivalent SQL
Commands

Query
Results

Data
Manager

Query
Processor

TrustQL - SQL
Cross Compiler

Equivalent SQL
Commands

Trust Updates
and Queries

Analysis
Engine

Specification
Server

Evaluation
Engine

Trust
Specification

Trust
Monitor

TrustQL
Interface

External Interface

Updates

Updates and
Queries

Fig. 1. Trust Management System Architecture

Algorithm 1. 1. If not already available, initialize the truster’s trust evaluation pol-
icy corresponding to the trustee and the specific context. If needed update the same
to reflect current circumstances.

2. Initialize dynamic policy and history weight policy if not already available. Update
as needed.

3. Compute truster’s experience with trustee.

(a) Determine last point in time when trust was evaluated for current trustee in the
given context. If such a time exists call it tlast .

(b) Read off experience values from database starting from most recent first till
either tlast or start of experience table.

(c) Apply experience policy to evaluate current experience value.

4. Compute truster’s knowledge with trustee by applying knowledge policy to current
direct knowledge and reputation values.

5. Compute recommendation value for trustee.

98 I. Ray, S. Chakraborty, and I. Ray

6. Compute truster’s simple trust on trustee using values obtained in steps 3 - 5. Apply
normalization policy as appropriate to the simple trust.

7. Let trust value at tlast be termed Tlast (assuming available); compute decayed value
for Tlast by applying dynamic policy to it.

8. Combine trust values obtained in steps 6 and 7 using the history weight policy to
get the truster’s current trust relationship with the trustee in the given context.

9. Record current time of trust evaluation as tlast corresponding to this truster, trustee
and context.

4 Conceptual Trust Model

We model the underlying trust components using Entity-Relationship techniques (see
Figure 2). Both the entity sets and the relationship sets are then converted to tables in
a relational database with columns representing the “attributes” of the entity and rela-
tionship sets. ACTOR is a generalization of three specific types – TRUSTER, TRUSTEE,
and RECOMMENDER as Role. A TRUSTER has the the following relationships with
a TRUSTEE: EVENTS, EXPPOL, KNOWLEDGE, KNOWLPOL, NORMPOL, DYNPOL,
and HWTPOL. The relationship RECOMMENDATION involves all three types of ACTOR

(i.e Truster, Trustee and Recommender). The TRUSTER calculates his ‘experience’ with
a TRUSTEE on the basis of EVENTS and EXPPOL. The entity EVENTS is a log of events
happened between the truster and the trustee in the context at certain time. Experience
is calculated by summing up the net effect of events within some consecutive intervals
of time. The EXPPOL specifies the length of that time interval. KNOWLEDGE returns
a value which is evaluated based on KNOWLPOL which determines weights for direct
knowledge (DKnolWt) and reputation (RepuWt). The truster assigns values for direct
knowledge (DirectKnol) and repuation (Repuation). RECOMMENDATION (Recommen-
dationScore) is evaluated based on the value returned by the recommender (RecoValue)
and the recommender’s weight (RecommenderWt) according to the truster. These three
values (i.e., experience score, knowledge score and recommendation score) are normal-
ized according to a normalization policy (NORMPOL). They are multiplied with their
corresponding weights – ExpWt, KnolWt, and RecoWt. The DYNPOL determines the
parameter k to get the current value of the last available trust value. A vector from this
trust history is derived and HWTPOL specifies weights to be assigned to this vector
and the current normalized vector. Composition of these two vectors results in actual
trust vector with components Experience score, Knowledge score and Recommenda-
tion score and they, in turn, return trust value between the truster and the trustee in a
context on a particular date.

We now use a hypothetical trust relationship example to descibe how the VTrust
database works. Let Alice be developing a software that has several modules with
diffrent functionality. She wants to get every module tested by an expert software engi-
neer before she merges two modules. Assume that she assigns this testing responsibility
to Bob. Thus, Alice wants to evaluate her ‘trust’ on Bob in the context of ‘efficiency
to test a software’ (say, EST; acronym for the context) to decide her further course of
action with Bob in the context EST. Alice sets up a trust-relationship with Bob in the
context EST. She thinks of consulting Charlie, her friend who happens to know Bob,

VTrust: A Trust Management System Based on a Vector Model of Trust 99

R
ol

e

k

Truster

Context

DpolDate

DynPol

NpolDate

IS
A

Context

NormPol

Context

HwtPol

Beta

Context

Alpha

HwtPolDate

EventDate

Events

A
ct

or
A

ct
or

N
am

e

ExpWt

KnolWt

RecoWt

Context

ExpPol
TimeperiodLn

ExpPolDate

Recommendation Context

REvalDate

Knowledge DirectKnol

Reputation

RecommenderWt

RecoValue

Events(+) Events(−)

KnowlPol

Context

KpolDate

RepuWt
DKnolWt

KEvalDate

Context

Recommender

Trustee

Fig. 2. ER-diagram of the VTrust system

Table 1. Initial ACTOR table

ACTORNAME ROLE

Alice Truster
Bob Trustee
Charlie Recommender

Table 2. Alice’s experience policy

ACTOR.ACTOR-
NAME1

ACTOR.
ROLE1

ACTOR.ACTOR-
NAME2

ACTOR.
ROLE2

CONTEXT EXOPOLDATE Timeper
iodLn

Alice Truster Bob Trustee EST 01/01/2004 1 month

to get his view about Bob’s efficiency in this context. To store the information Alice
creates the table called ACTOR as shown in Table 1.

Alice starts interacting with Bob from 1st January, 2004. She decides to keep track
of events that occured between her and Bob on a monthly basis. Alice forms her EXP-

100 I. Ray, S. Chakraborty, and I. Ray

Table 3. Alice’s knowledge policy

ACTOR.ACTOR-
NAME1

ACTOR.
ROLE1

ACTOR.ACTOR-
NAME2

ACTOR.
ROLE2

CON-
TEXT

KPOLDATE Dknol
Wt

Repu-
Wt

Alice Truster Bob Trustee EST 06/30/2004 0.7 0.3

Table 4. Alice’s normalization policy

ACTOR.ACTOR-
NAME1

ACTOR.
ROLE1

ACTOR.ACTOR-
NAME2

Actor.
Role2

CONTEXT NPOL

DATE

Exp
Wt

Knol
Wt

Reco
Wt

Alice Truster Bob Trustee EST 10/31/2004 0.5 0.3 0.2

Table 5. Alice’s EVENTS table on 31st December, 2004

ACTOR.ACTOR-
NAME1

ACTOR.
ROLE1

ACTOR.ACTOR-
NAME2

Actor.
Role2

CONTEXT EVENT

DATE

Eve
nts(+)

Eve
nts(-)

Alice Truster Bob Trustee EST 01/06/2004 1 0
Alice Truster Bob Trustee EST 01/19/2004 1 1
. .

Alice Truster Bob Trustee EST 07/27/2004 0 1
Alice Truster Bob Trustee EST 10/10/2004 0 1
Alice Truster Bob Trustee EST 11/07/2004 2 0

Table 6. Alice’s knowledge value on 31st December, 2004

ACTOR. AC-
TOR NAME1

ACTOR.
ROLE1

ACTOR. AC-
TOR NAME2

Actor.
Role2

CONTEXT KEVAL

DATE

Direct
Knol

Reput
ation

Alice Truster Bob Trustee EST 12/31/2004 0.8 0.2

Table 7. Alice’s recommendation score on 31st December, 2004

ACTOR.
ACTOR

NAME1

ACTOR.
ROLE1

ACTOR.
ACTOR

NAME2

ACTOR.
ROLE2

CONTEXT REVAL

DATE

ACTOR.
ACTOR

NAME3

ACTOR.
ROLE3

Reco
value

Recomm
enderwt

Alice Truster Bob Trustee EST 12/31/2004 Charlie Recom
mender

0.55 0.8

POL as shown in Table 2. Alice also sets up her knowledge policy regarding Bob. She
decides to assign 70% weight on direct knowledge and 30% to indirect knowledge she
gets about Bob regarding EST. Thus, her KNOWLPOL table looks like that in Table 3.
Alice can set her knowledge policy anytime before the first time she evaluates trust for
Bob in EST. She can also set the normalization policy anytime prior to first evaluation
of trust for Bob in EST. Let she have the NORMPOL as shown in Table 4. Now let

VTrust: A Trust Management System Based on a Vector Model of Trust 101

Table 8. Alice’s trust on Bob in the context EST on 31st December, 2004

ACTOR.
ACTOR

NAME1

ACTOR.
ROLE1

ACTOR.
ACTOR

NAME2

ACTOR.
ROLE2

CONTEXT EVALUAT

ION DATE

Exper-
ience
Score

Know-
ledge
Score

Recom
mendati-
on
Score

Trust
value

Alice Truster Bob Trustee EST 12/31/2004 0.077 0.186 0.088 0.351

us assume that Alice evaluates Bob’s trust in EST for the first time on 31st December,
2004. On that day her EVENTS table looks like Table 5. Alice calculates the ‘experience
value’ from the above log with the help of her ‘experience policy’. The policy defines
the time-period length as 1 month. Let us assume that Alice specify the start-date for
calculation as 01/02/2004. Then the above log is devided in 30-day periods and net
effect of positive and negative events are calculated within those periods. Thus Alice
got her experience value as 0.1543. Alice next builds the KNOWLEDGE, and RECOM-
MENDATION databases. She assigns two values for direct knowledge and reputation
for Bob in EST. During the year Alice possibly makes several visits to Bob’s office to
get idea about Bob’s infrastructure; she checks tools and techniques used by Bob for
testing. She hears about Bob’s efficiencey in the job. Based on these information Al-
ice assigns those two values according to her own policy. The knowledge value, which
comes as 0.62, is calculated based on the two values she provides and their correspond-
ing weights specified in Table 3. Finally, before evaluating trust in Bob Alice consults
Charlie to get his view on Bob in the context of EST. Charlie returns his judgment about
Bob as a recommendation value to Alice. Alice evaluates Charlie’s recommendation on
the basis of the trust she has on Charlie. Alice calculates recommendation score of Bob
with these information as 0.44 and the RECOMMENDATION table is of the form of Ta-
ble 7. Now Alice evaluates the actual trust vector as well as the trust value based on
these information. All these component values are normalized before calculating the
trust value with the values available from Table 4. These calculations are automatically
computed by the system. The final trust vector and the trust value of Alice for Bob in
the context EST as obtained on 31st December, 2004 shown in the Table 8.

Let us next assume that Alice again wants to evaluate Bob after 4 months. Therefore,
on 30th April, 2005 she wants to have a trust for Bob in the same context EST. We
assume that after evaluating trust on 31st December, she purges all events prior to that
date and start keeping log afresh. Rationale is that at any later time, her decision would
be influenced by the previous trust value. She does not need the whole set of events to
derive current trust value. Only the events after the previous evaluation are considered
to evaluate current experience. We also assume that she has not changed any policy
and nothing happened between her and Bob during these 4 months. Thus there will
not be any change in Alice’s EVENTS table on 30th April, 2005. Let us assume that
Alice changes the values assigned to direct knowledge and repuation on the basis of
her current judgment. So she adds a new entry to the KNOWLEDGE table and calcu-
lates the new knowledge value as 0.66 (say). Maybe also the trust relationship of Alice
with Charlie on the context of “providing a recommendation” changes from 0.8 to 0.7
and this time Charlie returns a lower value 0.4 for Bob in the context EST. Hence the

102 I. Ray, S. Chakraborty, and I. Ray

Table 9. Alice’s dynamic policy

ACTOR. ACTOR

NAME1
ACTOR.
ROLE1

ACTOR. ACTOR

NAME2
ACTOR.
ROLE2

CONTEXT DPOLDATE k

Alice Truster Bob Trustee EST 03/31/2005 1

Table 10. Alice’s policy on assigning weights to previous trust value at current time

ACTOR. ACTOR

NAME1
ACTOR.
ROLE1

ACTOR. ACTOR

NAME2
ACTOR.
ROLE2

CONTEXT HWTPOL

DATE

Alpha Beta

Alice Truster Bob Trustee EST 04/01/2005 0.6 0.4

Table 11. Alice’s trust on Bob in the context EST on 30th April, 2005

ACTOR.
ACTOR

NAME1

ACTOR.
ROLE1

ACTOR.
ACTOR

NAME2

ACTOR.
ROLE2

CONTEXT EVALUAT

ION DATE

Exper
ience
Score

Know
ledge
Score

Recom
mendati-
on
Score

Trust
value

Alice Truster Bob Trustee EST 12/31/2004 0.077 0.186 0.088 0.351
Alice Truster Bob Trustee EST 04/30/2005 0.0064 0.4024 0.1744 0.5832

RECOMMENDATION table changes and (possibly) the new recommendation score for
Bob is evaluated as 0.28. Now the trust value evaluated earlier (i.e., on 31st December,
2004) will have some effect on Alice’s present decision. For that Alice has to form the
dynamic policy which gives the current ‘level’ of the previous value. Alice can form
this table DYNPOL anytime before 30th April, 2005. Let us assume that Alice set k in
DYNPOL as 1 on 31st March, 2005. This is presented in Table 9.

To combine the vector having current value of the parameters with the vector derived
from the time-affected value of trust, Alice needs to form HWTPOL on or before 30th

April, 2005 to put relative weight on these two vectors. Let us assume that Alice put
60% weight to the vector with currently evaluated values and rest 40% to the vector
derived from the time-affected value. It is shown in Table 10. The final trust vector and
value on 30th April, 2005 is presented in the Table 11. Alice keeps on adding a new
entry in the tables everytime she evaluates Bob’s trust vector in EST.

5 TrustQL: The Trust Query Language

Users of the trust management system need a language to interact with the system. The
language should be able to interact with the database implementation of the model.
Therefore, we introduce a trust language similar to Structured Query Language (SQL).
We call this language as Trust Query Language or TrustQL.TrustQL consists of Trust
Definition Language (TDL) and Trust Manipulation Language (TML). TDL is used
to create, alter and drop entities, policies, parameters and context. TML is used to add,
modify and delete trust records as well as query the trust engine to get trust values. Trust

VTrust: A Trust Management System Based on a Vector Model of Trust 103

CREATE POLICY
{policy name}

WEIGHT
{(experience weight, knowledge weight, recommendation weight)}
EXPERIENCE POLICY {experience policy name}
KNOWLEDGE POLICY {knowledge policy name}
RECOMMENDATION POLICY {recommendation policy name}
DYNAMICS POLICY {dynamics policy name}
HISTORY POLICY {history policy name}

Fig. 3. Defining trust evaluation policies using TrustQL

INSERT TRUST
BETWEEN {<truster>} AND {<trustee>}
CONTEXT {context name}
[WHEN {some date}]
[EXPERIENCE VALUES {(<experience values>)}]
[KNOWLEDGE VALUES {(<knowledge values>)}]
[RECOMMENDATION VALUES {(<recommendation values>)}]

<truster> ::= {entity name}
<trustee> ::= {entity name}
<experience values> ::= {time interval, experience value} [,...n]
<knowledge values> ::= {direct knowledge value,

indirect knowledge value }
<recommendation values> ::= {<recommender>, recommendation value}[,...n]
<recommender> ::= {entity name | group name}

Fig. 4. Populating trust relationships using TrustQL

Definition Language (TDL) consists of TrustQL keywords, Identifiers, Statements, and
TrustQL convention. Trust Manipulation Language (TML) consists of commands like
INSERT, UPDATE, DELETE, SELECT, and commands to query trust value after the
trust management system has been set up using Trust Definition Language. TrustQL
differs from general purpose procedural language such as C and Java in that users
specify what they want instead of how to get the result. It is up to the VTrust en-
gine to manipulate the data and present the final trust value to end users. From the
user’s point of view, this approach makes it easy to interact with the trust management
system.

Some examples of TrustQL statements are shown in figures 3 and 4.

6 Conclusion and Future Work

The vector model of trust gives a technique to measure trust quantitatively on the basis
of some parameters. The model has methods to specify policies to evaluate those pa-
rameters. Using this model we can define “multilevel” trust and distrust. In this paper
we present a trust management framework, named as VTrust, based on vector-based

104 I. Ray, S. Chakraborty, and I. Ray

trust model. In this framework, information regarding trust relationships are kept in a
trust database. The trust relationship, the entities involved in it (e.g., truster, trustee,
context etc.), the parameters to evaluate trust, and the policies to determine values are
represented as relational entities. All these are translated to tables of the database and
the attributes of these entities are expressed as columns in the tables. The working prin-
ciple of the database system is explained with an example. The system architecture of
VTrust, which contains a user interface, trust management components in the middle
layer and the trust database as the lower layer is also introduced. We also introduce a
query language, called TrustQL, to interact with the components of trust management
system. We present some of the features of TrustQL with examples. The detail syntax
and semantics of TrustQL are left out.

A lot of work remains to be done. We are currently extending the underlying trust
model to define more operations on trust relationships. Presently we have single en-
tity as truster or trustee. We want to incorporate the idea of a group of truster or a
group of trustee. In our current representation, the user (i.e., the truster) needs to enter
a lot of values. We are trying to minimize the number of user input by giving more
power to the analysis engine. An efficient design of the underlying database and a
good user interface are need to be developed. We believe that achieving above goals
would result in a complete trust management framework based on the vector-based trust
model.

Acknowledgment

This work was partially supported by the U.S. Air Force Research Laboratory (AFRL)
and the Federal Aviation Administration (FAA) under contract F30602-03-1-0101. The
views presented here are solely that of the authors and do not necessarily represent
those of the AFRL or the FAA. The authors would like to thank Mr. Pete Robinson
of the AFRL and Mr. Ernest Lucier of the FAA for their valuable comments and their
support for this work.

References

[1] Ray, I., Chakraborty, S.: A vector model of trust for developing trustworthy systems. In: Pro-
ceedings of the 9th European Symposium on Research in Computer Security (ESORICS’04).
Volume 3193 of Lecture Notes In Computer Science., Sophia Antipolis, Frech Riviera,
France, Springer-Verlag (2004) 260–275

[2] Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The keynote trust management
system (version 2). http://www.crypto.com/papers/rfc2704.txt (1999)

[3] Grandison, T.: Trust Specification and Analysis for Internet Applications. PhD thesis, Impe-
rial College of Science Technology and Medicine, Department of Computing, London, UK
(2001)

[4] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of
17th IEEE Symposium on Security and Privacy, Oakland, California, USA, IEEE Computer
Society Press (1996) 164–173

[5] Blaze, M., Feigenbaum, J., , Strauss, M.: Compliance checking in the policymaker trust
management system. In: Proceedings of the 2nd Financial Crypto Conference. Volume 1465
of Lecture Notes in Computer Science., Anguilla, Springer-Verlag (1998) 254–274

VTrust: A Trust Management System Based on a Vector Model of Trust 105

[6] Herzberg, A., Mass, Y., Mihaeli, J., Naor, O., Ravid, Y.: Access control meets public key
infrastructure, or: Assigning roles to strangers. In: Proceedings of IEEE Symposium on
Security and Privacy, Washington, DC, USA, IEEE Computer Society Press (2000) 2–15

[7] Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Communications
Surveys and Tutorials 3 (2000) 2–16

	Introduction
	Overview of Vector Trust Model
	Computing the Experience Component
	Computing the Knowledge Component
	Computing the Recommendation Component
	Trust Vector

	The VTrust System Architecture
	Conceptual Trust Model
	TrustQL: The Trust Query Language
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

