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Abstract. In this paper, we introduce an extension of the classi-
cal Resource-Constrained Project Scheduling Problem: the Multi-skill
Project Scheduling Problem. We consider a project made up of activities
that must be implemented by a staff: every member of this staff masters
one or more skill(s). An activity needs a given amount of each skill with
a fixed minimum level of mastering. For each unit of a skill needed, we
have to assign an employee who masters the required level of this skill
during the whole processing time of the activity. The objective is to min-
imize the duration of the project, i.e. the makespan. We introduce here
two lower bounds used to evaluate the minimum duration.

1 Introduction

This paper deals with the Multi-skill Project Scheduling Problem (MSPSP) with
hierarchical levels of skill. In this problem, there is a project to schedule, in
which activities need to be done by staff members who master specific skills at
specific level of ability. It can be seen as an extension of the classical Resource-
Constrained Project Scheduling Problem with multiple modes of execution (MM-
RCPSP), but in our problem the number of modes allowed for each activity
corresponds to the number of subsets of staff members that are able to satisfy
needs, and this number can be very large. This is the reason why methods used
for the MM-RCPSP, for example in [7], [13], [16], [12], [18], [23], cannot be used
directly for the MSPSP. Here the goal is to find some efficient lower bounds that
are not too time-consuming, in order both to evaluate heuristic methods (as for
example in [6]) and to be used in a branch-and-bound method. Section 2 presents
the problem; Section 3 is devoted to lower bounds, then we show experimental
results (Section 4), before concluding in Section 5.

2 Multi-skill Project Scheduling

The MSPSP is a model that can be applied to different cases of project man-
agement. We focus on a particular case of multi-skill project scheduling that
appears when we have to take into account different levels of skill abilities.
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2.1 General Case

As in the classical project scheduling problem (RCPSP, MM-RCPSP), we want
to schedule a project in a minimum elapsed time, respecting resource and prece-
dence constraints. A project is made up of a set of activities Ai, i ∈ {0, . . . , n},
that represent all the steps of the project. Each activity has to be processed
without preemption. Between the activities of the project, there exist prece-
dence relations (Ai, Aj) that can be modelled using an activity-on-node graph
G = (A, E, d). In this precedence graph, we include the dummy source A0 and
the dummy sink An that represent the beginning and the end of the project, re-
spectively. Each activity has given needs of resources. In our case, the resources
are staff members that have to be assigned to activities.

Moreover, the resources, which are staff members Pm, m ∈ {0, . . . , M}, can-
not be chosen arbitrarily. To satisfy each need of an activity Ai, we have to
assign a person according to his/her skill that must match the required skill
during the whole processing time pi of activity Ai. Actually, a staff member can
master or not each skill needed in the project. Thus, to schedule an activity we
have to choose among all the staff members who possess the required skill for
each need. Besides that, the employees may not be available all along the time
horizon; this means we are allowed to assign a person for the need of an activity
Ai starting at time ti only if he/she is available during the total duration of the
activity, i.e. during [ti, ti + pi[.

2.2 Hierarchical Levels of Skills

There has been considerable research on workforce planning and project schedul-
ing. For example, the nurse rostering problem [8] is well studied: it assigns em-
ployees to satisfy all the needs on all the shifts, trying to find a fair solution
for everybody. The course timetabling problem has also been studied (for exam-
ple in [1]). It consists in finding a timetable for each lesson, respecting teachers
availabilities and the rooming constraints. The authors in [14] present a prob-
lem related to course scheduling but to minimize the total cost. The paper [2]
treats simultaneously the problem of minimizing the project duration and the
associated manpower cost. Although the notion of skill has been studied with
respect to some workforce planning problems (as in [25]), to the best of our
knowledge, very few papers deal with hierarchical levels of skills in the field of
project scheduling [15].

For the MSPSP with hierarchical levels of skills, we evaluate for each em-
ployee the level l of quality he/she guarantees regarding skill Sk according to
his/her experience. In the same way, we evaluate for each activity its level of
difficulty. Then, we can deduce Sl

k, the level l of mastering skill Sk that will be
required, and the number bl

i,k of employees that will be required for level l of
this skill Sk to process Ai. So, we have to assign to each need somebody that
masters this skill at least at the required level. We also know the total number
of persons required, for each level of each skill, allowing this number to be equal
to zero.

The notation used in this paper is defined in Table 1.
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Table 1. Input data and auxiliary notation

Activity data
n the index of the last activity,

Ai, i ∈ {0, . . . , n} the set of activities of the project: A0 is dummy
start node and An the dummy end of the project,

pi, i ∈ {0, . . . , n} the processing time of activity Ai,
(Ai, Aj) ∈ E if there exists a precedence relation between Ai

and Aj ,
G = (A, E, d) the precedence graph.

Resource data
K number of skills,
L number of levels per skill,

M number of staff members,
Sk, k ∈ {0, . . . , K} set of skills: k is the number of the skill,

Sl
k, k ∈ {0, . . . , K}, l ∈ {0, . . . , L} set of levels of skills; k is number of the skill

and l the level (1 is first level of mastering skill
and L is the highest level),

Pm, m ∈ {0, . . . , M} staff members,
Sm,k = l, m ∈ {0, . . . , M}, the maximum level l at which Pm can do Sk,

k ∈ {0, . . . , K}
to simplify: Sl′

m,k = 1 ∀l′ ≤ l, if Pm can do Sk at level l, 0 otherwise,
A(Pm, t), m ∈ {0, . . . , M} = 1 if Pm is available at time t, 0 otherwise,

t ∈ {0, . . . , Tmax}
bl
i,k, i ∈ {0, . . . , n} number of persons able to do Sk at level l,

k ∈ {0, . . . , K}, l ∈ {0, . . . , L} required to execute Ai.

Auxiliary notation
ri release date of activity Ai,

d̃i deadline of activity Ai,
ti starting time of activity Ai,

A(Pm, t1, t2) =
�t2−1

t=t1
A(Pm, t), total time Pm is available between t1 and t2.

m ∈ {0, . . . , M}

2.3 Example and Integer Linear Program

The MSPSP model can be applied to some project scheduling problems that
arise in the software development industry, where employees are programmers,
analysts, designers, etc [15]. In this section we give an example of such a prob-
lem. The project to be implemented is made up of four activities linked by the
precedence relationship presented in Figure 1.

Needs of the activities are summarized in Table 2 and skills of employees are
presented in Table 3. There are two levels per skill. We are interested in schedules
that minimize the makespan of the project. Finding a solution consists in fixing
starting times of all the activities of the project and assigning a subset of staff
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Fig. 1. Precedence graph of the project of the example

Table 2. Needs of activities of the example

Skill S1 Skill S2 Skill S3 Skill S4

bl
i,k S1

1 S2
1 S1

2 S2
2 S1

3 S2
3 S1

4 S2
4

A1 1 1 0 0 1 0 1 0
A2 0 0 0 1 0 0 1 0
A3 0 0 1 0 2 0 0 0
A4 1 0 0 0 0 1 0 0

Table 3. Skills of employees of the example

Skill S1 Skill S2 Skill S3 Skill S4 Unavailability period(s)

S1
1 S2

1 S1
2 S2

2 S1
3 S2

3 S1
4 S2

4 no. (start, end)

P0 1 1 1 1 0 0 0 0 1 (2, 4)
P1 0 0 1 1 1 1 0 0 0 –
P2 0 0 1 0 1 1 1 1 0 –
P3 1 0 1 0 1 0 0 0 2 (2, 3); (6, 8)
P4 1 0 0 0 0 0 1 1 0 –
P5 1 0 0 0 1 1 0 0 1 (7, 10)

members to each activity, according to their needs. We present a feasible solution
for this problem in Figure 2.

The MSPSP can be modelled by the integer LP formulation below, where

– xi,m,t = 1 if Pm begins to work for Ai at time t, 0 otherwise
– δl

i,m,k = 1 if Pm does Sk at level l for Ai, 0 otherwise:

∀(i, j) ∈ E,

∑M
m=0

∑Tmax
t=0 xi,m,t · t

∑K
k=0

∑L
l=0 bl

i,k

+ pi ≤
∑M

m=0

∑Tmax
t=0 xj,m,t · t

∑K
k=0

∑L
l=0 bl

j,k

, (1)
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Fig. 2. One feasible solution for the example

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑

t=0

xi,m,t ≤ 1 , (2)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑

t=0

xi,m,t · t ≤
∑M

h=0

∑Tmax
t=0 xi,h,t · t

∑K
k=0

∑L
l=0 bl

i,k

, (3)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M}, ∀k ∈ {1, . . . , K},
∀l ∈ {1, . . . , L}, δl

i,m,k ≤ Sl
m,k , (4)

∀i ∈ {1, . . . , n},
M∑

m=0

Tmax∑

t=0

xi,m,t · t =
K∑

k=0

L∑

l=0

bl
i,k , (5)

∀i ∈ {1, . . . , n},
M∑

m=0

δl
i,m,k = bl

i,k , (6)

∀m ∈ {1, . . . , M},
n∑

i=0

t∑

d=t−pi+1

xi,m,d ≤ 1 , (7)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑

t=0

xi,m,t =
K∑

k=0

L∑

l=0

δl
i,m,k , (8)
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min Cmax =
∑Tmax

t=0

∑M
m=0 xn,m,t · t

∑K
k=0

∑L
l=0 bl

n,k + pn

.

Equation (1) ensures that two activities that respect the precedence relation
do not overlap. Equation (2) allows staff members to be assigned to an activity
only once. Equation (3) obliges all the staff members assigned to a common
activity to start at the same time. According to Equation (4), a person cannot
be assigned to a need if he/she does not master the level of the skill needed.
Equation (5) ensures that the number of persons that do an activity is equal to
the sum of the need of this activity. Equation (6) obliges the number of persons
that are assigned to a level of a skill to be equal to the needs for this level of
this skill, for each activity. Equation (7) ensures that a person will not start
an activity during the whole processing time of an activity he/she is already
assigned to. Finally, Equation (8) ensures that a person participates in all the
activities he/she starts.

This model is a time-indexed one, and in the general case a simple relax-
ation of this kind of model does not provide good lower bounds as it has been
demonstrated for RCPSP. It is necessary to use constraint programming and /or
a cutting plane technique [4], [10] to have good bounds. But these methods are
too time-consuming: our goal is to develop an efficient lower bound that may be
used both to compute a global lower bound and that may be used at each node
of a branch-and-bound method. Thus, we focus on other types of lower bound
formulation.

2.4 Literature Review

The MSPSP is a kind of problem very close to the classical MM-RCPSP [24],
[12], [13], [7] and can be considered as a particular case of it. Actually, in the
multi-mode RCPSP, every activity has different possible modes of execution.
One mode is defined by a given quantity of each resource and an associated
processing time, and for each activity there exists a finite number of modes (less
than ten in the classical instances). If we apply this model to our problem, a
mode corresponds to a feasible subset of staff members that can be assigned to
an activity according to the required skills, while the processing time remains
the same for all modes.

To the best of our knowledge, most of the methods that exist for the MM-
RCPSP are based on explicit enumeration of all possible modes (even for com-
puting lower bounds the authors of [7] use variables ξi,m that are equal to 1
if and only if Ai is processed in mode m). For the MSPSP the number of dif-
ferent modes, i.e. the number of different subsets of staff members that can be
assigned to an activity, may become huge. For example if we want to solve an
instance with three skills with only one level for each skill, and 10 employees,
some activities may have more than 1,000 modes each. Then, according to the
LP formualtion proposed by [7], the number of variables grows quickly and the
problem becomes intractable even for small size instances.
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The problem we want to solve can also be seen as a particular case of the
multi-resource shop [9], where every activity has specific fixed needs for each
type of resource, a type of resource being defined by a set of machines. The
difficulty is that the sets of resources corresponding to each different type are
not disjoint. In our problem the resources are always the employees and the set
of resources is those who master the required level of the skill needed.

3 Lower Bounds

As mentioned previously, the lower bounds we are looking for must provide a
good trade-off between their efficiency and their time-consumption because they
will be used in a branch-and-bound method at each node of the search tree. We
have adapted two such bounds that have been proposed for RCPSP. Notice that
the two bounds that we have adapted, namely from [22] and [3], are two of the
most efficient ones to be used in branch-and-bound methods, considering respec-
tively instances with high ratio of disjunction between activities and instances
with few disjunctions between activities (see [11] and [3] for further details).

Here we present two classical lower bounds for the RCPSP that we adapt
for the MSPSP. Both of them are destructive, which means that we fix a value
D we want to test and either we detect a contradiction, i.e. we prove that the
project cannot end before D and then D+1 is a valid lower bound, or we cannot
detect an infeasibility and then D is decreased. Practically, we use binary search
between the value given by the critical path and a valid upper bound [6].

For these two methods it is necessary that each activity has a time window.
So, first of all, we use the precedence graph to compute the release date ri

of each activity Ai, according to the release dates and the durations of all its
predecessors. Setting ri = L(0, Ai) as the longest path from the source to the
activity Ai, then the value D, which is a lower bound for the project duration
we are testing, is propagated from the last activity to the first in order to get
deadlines d̃i(D) for the activities. Here d̃i(D) is equal to L(Ai, An) − pi, the
longest path from an activity to the sink of the project. Notice that these two
lower bounds are mainly based on [ri, d̃i(D)], thus they can be applied even if
generalized precedence relationships are considered.

Notice that we have adapted these two lower bounds to MSPSP because their
efficiency on a large range of RCPSP instances has been proved.

3.1 Graph of Compatibility

The first lower bound that we have adapted from RCPSP was introduced by
[22] and is based on the notion of a block. A block is a feasible subset of ac-
tivities that can be processed simultaneously, i.e. violating neither the resource
constraints nor the precedence constraints. In the MSPSP framework, the prece-
dence constraints can be simply verified, and checking whether a subset J of
activities does not violate the resource constraints if its activities are in progress
at the same time can be done using a max-flow formulation (see Figure 5). Thus,
the bound of Mingozzi can be adapted to the MSPSP.
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Fig. 3. Graph G1 used for testing the needs of Ai and Aj

More precisely, we have adapted the third bound (LB3) of [22] that is based
on the use of disjunction between a couple of activities due to the resource
constraint. For each couple of activities Ai and Aj (except the dummy activities),
we test if it is possible for them to be in progress at the same time. First of
all, we have to check that there is no precedence relationship between the two
activities. Then we have to test if their time windows overlap, i.e. if there exists
an intersection between [ri,d̃i(D)] and [rj ,d̃j(D)], and finally we have to check
the resource constraints. To find out if there are enough resources to schedule the
two activities Ai and Aj during a common period, we solve the corresponding
assignment problem using a max-flow formulation. The graph G1 = (X1, F, c),
X1 = {Ai, Aj}

⋃{Sl
k|∀k ∈ {0, . . . , K}, ∀l ∈ {0, . . . , L}}⋃{Pm|∀m ∈ {0, . . . , M}}

in which we search for a maximum flow is presented in Figure 3.
In this graph, the two nodes of the first column symbolize the activities Ai

and Aj we are testing. The nodes of the second column represent each level of
each skill Sl

k needed by the activities, and the third column of nodes corresponds
to the staff members Pm that can be assigned to one of those activities. Edges
have maximum capacity: for those from activity Ai to a level of a skill Sl

k this
capacity is equal to the number of required staff members: bl

i,k. From a staff
member to the sink (p) this capacity is equal to 1 in order to limit a person
to do one thing at a time. The edge between a level of a skill Sl

k and a person
Pm exists if the person is able to do this level of this skill, i.e. if Sl

m,k = 1. We
compute the maximum flow in order to compare it to the sum of the needs of
the two activities (

∑K
k=0

∑L
l=0(b

l
i,k + bl

j,k)) and conclude if the two activities can
be in progress at the same time.

Property 1. If the maximum flow found in graph G1 is strictly less than the sum
of the needs of the two activities (

∑K
k=0

∑L
l=0(b

l
i,k+bl

j,k)), there is a contradiction
for the activities Ai and Aj to be in progress at the same time, and we can
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conclude that those two activities have to be scheduled in two time-intervals
that do not overlap.

Proof. The proof is obvious due to the graph construction.

Once all those verifications have been done, we know exactly which couple of
activities can be in progress at the same time, i.e. (Ai, Aj) ∈ E′. We can then
build the graph of compatibility. Based on the precedence graph G = (A, E, d)
we define a graph G′ = (A, E′), in which there is an edge between two activities
(Ai, Aj) if no infeasibility has been detected and they can be scheduled in a
common interval. We associate a weight with each node, equal to the duration
pi of the corresponding activity Ai. Then, we search for a maximum-weighted
stable set in this graph, in order to determine the longest set of activities that
cannot be in progress at the same time, which is a lower bound of the project
duration.

But finding a maximum-weighted stable set in a graph is NP-hard in the
strong sense. This is the reason why we first try to solve it through a heuristic
method as in [22]. This method is a greedy algorithm. First, we take all the nodes
corresponding to the activities of the critical path, and then we add possible
nodes one by one, in order of decreasing weights, until we cannot add any other
node. A second way to compute the stable set is based on a MIP formulation
solved with Cplex (1). Practical results show that this problem is well-solved.
The model used is the following, where xi ∈ {0, 1}, xi = 1 if Ai is in the stable
set:

max
n∑

i=0

pi · xi s.t. ∀(Ai, Aj) ∈ E′ xi + xj ≤ 1 . (9)

3.2 Energetic Reasoning Based Lower Bound

In [3] and [21] satisfiability tests and time-bound adjustments were introduced
for the classical RCPSP. Satisfiability tests can notably be used to find if a
given schedule can complete before a global deadline D and then can be used to
compute a destructive lower bound. Energetic reasoning is based on the fact that
in a given time interval [t1, t2], we are able to detect if all the mandatory parts of
the activities that have to be processed in this time interval can be done or not.
The mandatory part of activity Ai that has to be scheduled between t1 and t2 is
computed either by left-shifting or right-shifting the activity in its time window
[ri, d̃i(D)]. Then we are sure that if there exists at least one time interval where
those mandatory parts cannot be satisfied, i.e. there are not enough resources,
then the lower bound can be increased to D + 1.

In order to use energetic reasoning, we compute all time intervals [t1, t2],
where t1 ∈ {ri, ri + pi, d̃i(D) − pi, ∀i ∈ {1, . . . , n}} and t2 ∈ {ri + pi, d̃i(D) −
pi, d̃i(D), ∀i ∈ {1, . . . , n}}, t1 < t2. All these time intervals are to be tested. This
set of time points is a subset of those that have been proved to be relevant for
bounding RCPSP [3]. They have not been proved to be relevant for the MSPSP,
but the two problems are very close, so we assume that at least those time points
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Fig. 4. Computation of the mandatory part of an activity

are interesting for our problem, and we cannot add all the possible time points
because this lower bound is already as slow as acceptable, as is proved in Section
4.2.

To test the interval [t1, t2], we have to compute the mandatory part of each
activity in this interval. The mandatory part of an activity is the minimum part
of this activity we have to schedule in this interval if we do not want to violate
the time window of the activity. The mandatory part of Ai between t1 and t2,
w(i, t1, t2), is (see Figure 4)

w(i, t1, t2) = min(max(0, ri + pi − t1), max(0, t2 − (d̃i(D) − pi)), pi, t2 − t1) .

Once all the mandatory parts are computed we check if there are enough
available resources in this interval to execute at least all these mandatory parts.
As above, this problem can be modelled as an assignment problem that can be
solved using a max-flow formulation. To do this, we use the graph G2(t1, t2, D)
presented in Figure 5, where we search for a maximum flow in order to verify
property 2. This graph is made of the first column of nodes that represent each
level of each skill Sl

k and of the second column of nodes that corresponds to the
staff members. Each edge from s to a level of a skill Sl

k has a maximum capacity
equal to the mandatory parts times the number of persons needed for this level
l of this skill (

∑n
i=0

∑K
k=0

∑L
l=0(w(i, t1, t2) · bl

i,k)). Edges between levels of skills
Sl

k and staff members Pm exist if the staff member masters this level of the
skill, i.e. Sl

m,k = 1. These edges have the maximum capacity equal to the length
of the time interval [t1, t2]. Finally, the edge between person Pm and p has the
maximum capacity equal to the total time this person is available between t1
and t2, which is equal to A(Pm, t1, t2).
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Fig. 5. Solving the assignment problem for energetic lower bound

Property 2. If there is at least a time-interval [t1, t2] where the maximum flow
in G(t1, t2, D) is strictly less than the sum of the mandatory parts times the
number of persons needed (

∑n
i=0

∑K
k=0

∑L
l=0(w(i, t1, t2) · bl

i,k)), then D+1 is a
valid lower bound.

Proof. The proof is obvious due to the graph construction.

4 Experimental Results

4.1 Instances Generation

Since there are no standard benchmark instances for the problem this paper
deals with, we have generated some instances to test our methods. In fact, the
problem is really close to other project management problems like the MM-
RCPSP and multi-resource shop, but to validate our lower bounds we have to
take instances where the number of “modes” or possible subsets of persons are
much more numerous. Thus, we decided to keep the precedence graph from the
PSPlib instances [19], [20], and build the data sets on those graphs. We have
taken 180 instances from the single mode RCPSP, with 30, 60 and 90 activities,
and a network complexity equal to 1.5, 1.8 or 2.1. Then for each instance, we
have randomly generated between three and six different skills with three levels
of ability. Then we have generated a number of persons between five and 30, and
defined their skills in order to have at least one feasible solution. The instances
we have generated in this way represent a wide range of instances, according
to the disjunctive ratio on precedence and disjunctive ratio on resource defined
in [3]. Some of them are strongly constrained so there are very few blocks of
activities that can be scheduled in parallel, and other have many activities that
can be in progress at the same time.
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Table 4. Deviation between the two lower bounds and the upper bound given by the
tabu search

LB with energetic LB with graph Best of the
No. of No. of reasoning (%) of compatibility (%) two LB (%)

activities instances Av. Max. Av. Max. Av. Max.

30 60 3.06 16.66 2.95 13.63 2.53 13.636
60 60 8.03 20.58 11.34 28.2 7.35 18.6
90 60 11.47 26.47 22.34 47.17 11.17 25
Total 180 7.52 26.47 12.21 47.17 7.02 25

Table 5. Computational time of the lower bounds

No. of No. of LB with energetic LB with graph
activities instances reasoning (s) of compatibility (s)

30 60 0.938 0.012
60 60 3.013 0.04
90 60 5.99 0.15
Total 180 3.31 0.07

4.2 Results

Using 180 generated data sets, we have obtained the results presented in Table 4.
In this table, the lower bounds are compared to the best known upper bound for
each instance. These upper bounds have been obtained by a tabu search we have
applied to the specific problem with hierarchical levels of skills, inspired by [6].
This tabu search has been adapted from the one for RCPSP [17]. Thus, in the first
step, activities are sorted in a list, according to a classical priority rule (Minimum
Slack Time, Latest Starting Time,. . .), and we apply a dispatching rule adapted
from the Serial Schedule Scheme to define a solution. Then a neighbour is defined
by swapping two activities in the priority list, respecting precedence constraints.
Moves that do not modify the current solution in terms of starting times of
activities are not allowed. All generated solutions are stored using a hashtable,
with the index of the iteration in which the solution has been explored. These
solutions are considered to be tabu during a given number of iterations, in order
to avoid cycling.

The deviation presented in Tables 4 and 5 is equal to: upper bound−lower bound
upper bound .

In these tables we do not show the results given by the lower bound based on the
graph of compatibility when the stable set is computed by the greedy algorithm
because this method is not efficient: it is clearly dominated by the two other
lower bounds. Notice that the minimum deviation between LB and UB is not
reported because it is always equal to zero.
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These results clearly show that the lower bound given by energetic reasoning
is better than the lower bound given by the graph of compatibility for every
instance. However, Table 5 shows that this lower bound is much more time
consuming. Although the average deviation is more important for the method
based on the graph of compatibility, there exist some instances where this lower
bound is more efficient than the other one. This is why the third column has been
included in Table 4 in order to take the best one from the two lower bounds.
It appears that the deviation we get considering the best from the two lower
bounds is better than the one obtained by the energetic reasoning-based lower
bound. So, the two lower bounds appear to be complementary. This is due to
the fact that they do not consider the same aspect of the problem: the graph of
compatibility first considers the activities two by two, and checks if there is a
resource conflict between them in the whole time horizon, whereas the energetic
lower bound checks a set of activities but only for restricted time intervals.

Notice that even if the lower bounds seem very time consuming, they will be
used in this way, i.e. included into binary search on D, only at the root node
of the search tree. In every other node of a branch-and-bound method, it will
not be useful to search for lower bound by binary search, it is only necessary
to check if the current value of the best upper bound minus one is feasible or
not. If this value cannot be respected, that means that at least one of the two
lower bounds detects infeasibility, so the node is pruned. Thus, the time needed
at each node will be drastically reduced.

In order to find out if the lower bound limitations are particularly linked
to one feature (or more) of the instances, as it appears for the RCPSP [3], we
have tried to classify our instances and find a link between the average deviation
and the ratio of resource disjunction between activities, the ratio of precedence
disjunction between activities or the average number of couple of activities that
have no contradiction to be assigned in parallel. No conclusion can be drawn
because none of these features appears to be directly influential.

Finally, the average deviation increases dramatically when the size of the
instances grows, but this gap may be due to the quality of the upper bound
used. Actually, the tabu search we used is not guaranteed to be really efficient
for the kind of instances with hierarchical levels of skill we consider, and the
gap with the optimum is unknown. On some instances we have generated for
the MSPSP without hierarchical levels of skills, i.e. certainly less difficult, the
average deviation between the best lower bounds and the upper bound is around
4%.

5 Conclusion

This paper deals with the MSPSP, which is an extension of the RCPSP. In this
particular scheduling problem, the resources are staff members with specific skills
and levels of skills that allow them to be assigned to different kind of activities
of the project. Each activity has a specific need for each level of each skill.



242 O. Bellenguez and E. Néron

We have proposed a model for this problem, and introduced two lower bounds,
adapted from lower bounds known for the RCPSP. The results show that the
lower bounds are complementary and efficient.

The research direction we focus on now is to design an exact method in order
to compute optimal solutions for small and medium size instances. This method
will be used to determine whether the gap between lower bounds and upper
bound is due to the upper bound or not. Our two lower bounds will be used in
the branch-and-bound method. This exact method is already in progress [5].
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6. Bellenguez, O., Néron, E.: Methods for Solving the Multi-skill Project Scheduling
Problem. 9th Int. Workshop on Project Management and Scheduling, Nancy (2004)
66–69

7. Brucker, P., Knust, S.: Lower Bounds for Resource-Constrained Project Scheduling
Problems. Eur. J. Oper. Res. 149 (2003) 302–313

8. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The
State of the Art of Nurse Rostering. J. Scheduling 7 (2004) 441–499

9. Dauzère-Pérès, S., Roux, J., Lasserre, J. B.: Multi-resource Shop Scheduling with
Resource Flexibility. Eur. J. Oper. Res. 107 (1998) 289–305

10. Demassey, S., Artigues, C., Michelon, P.: Constraint-Propagation-Based Cutting
Planes: An Application to the Resource-Constrained Project-Scheduling Problem.
INFORMS J. Comput. (2003) In press

11. Demeulemeester, E., Herroelen, W.: New Benchmark Results for the Resource-
Constrained Project Scheduling Problem. Manage. Sci. 43 (1997) 1485–1492

12. De Reyck, B., Herroelen, W.: The Multi-mode Resource-Constrained Project
Scheduling Problem with Generalized Precedence Relations. Eur. J. Oper. Res.
119 (1999) 538–556

13. Hartmann, S., Drexl, A.: Project Scheduling with Multiple Modes: A Comparison
of Exact Algorithms. Networks 32 (1998) 283–297

14. Haase, K., Latteier, J., Schirmer, A.: The Course Scheduling Problem at the
Lufthansa Technical Training. Eur. J. Oper. Res. 110 (1998) 441–456

15. Hanne, T., Nickel, S.: A Multiobjective Evolutionary Algorithm for Scheduling
and Inspection Planning in Software Development Projects. Eur. J. Oper. Res.
167 (2005) 663–678

16. Josefowska, J., Mika, M., Rozycki, R., Waligora, G., Weglarz, J.: Simulated An-
nealing for Multi-mode Resource-Constrained Project Scheduling Problem. Ann.
Oper. Res. 102 (2001) 137–155



Multi-skill Project Scheduling Problem 243

17. Klein, R.: Project Scheduling with Time-Varying Resource Constraints. Int. J.
Prod. Res. 38 (2000) 3937–3952

18. Kolisch, R., Drexl, A.: Local Search for Non-preemptive Multi-mode Resource-
Constrained Project Scheduling Problem. IIE Trans. 29 (1997) 987–999

19. Kolisch, R., Sprecher, A.: PSPLIB—A Project Scheduling Problem Library. Eur.
J. Oper. Res. 96 (1997) 205–216

20. Kolisch, R., Sprecher, A.: PSPLIB—A Project Scheduling Problem Library.
ftp://ftp.bwl.uni-kiel.de/pub/operations-research/psplib/html/indes.html (2000)

21. Lopez, P., Erschler, J., Esquirol, P.: Ordonnancement de Tâches sous Contraintes:
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