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Preface

This volume contains a selection of papers from the 5th International Conference
on the Practice and Theory of Automated Timetabling (PATAT 2004) held in
Pittsburgh, USA, August 18–20, 2004. Indeed, as we write this preface, in the
Summer of 2005, we note that we are about one month away from the tenth
anniversary of the very first PATAT conference in Edinburgh. Since those very
early days, the conference series has gone from strength to strength and this
volume represents the latest in a series of five rigorously refereed volumes which
showcase a broad spectrum of ground-breaking timetabling research across a
very wide range of timetabling problems and applications.

Timetabling is an area that unites a number of disparate fields and which
cuts across a number of diverse academic disciplines. While the most obvious
instances of timetabling occur in educational institutions, timetabling also ap-
pears in sports applications, transportation planning, project scheduling, and
many other fields. Viewing timetabling as a unifying theme enables researchers
from these various areas to learn from each other and to extend their own re-
search and practice in new and innovative ways. This volume continues the trend
of the conference series to extend the definition of timetabling beyond its educa-
tional roots. In this volume, seven of the 19 papers involve domains other than
education. Of course, educational timetabling remains at the core of timetabling
research, and the papers in this volume represent the full range of this area
including exam timetabling, room scheduling, and class rostering.

There are a number of particularly interesting aspects to the research pre-
sented in this volume. First, the variety of techniques being used to address these
problems is striking. In this book, there are papers exploring optimization, con-
straint programming, evolutionary algorithms, tabu search, fuzzy approaches,
and many other exact and heuristic methodologies. In many ways, timetabling
is an ideal testbed for algorithmic approaches. The strength of timetabling in this
regard revolves around a number of characteristics. First, timetabling problems
are difficult, even for small instances. It is not necessary to have 10,000 students
and 1,000 courses to lead to hard instances: even problems one-hundredth the
size can be difficult. But it is exactly problems of that size that are of practical
interest. Problems of practical interest are neither too large to be possibly solved,
nor too small to be trivial. They are “just right”: challenging, but possible. Fur-
thermore, there are a lot of data available, and much of those data are available
to academics. Finally, there are a number of different problem types available,
allowing for a rich field of problems to be addressed. Taken together, these char-
acteristics make timetabling an ideal domain for research on algorithms, and
this volume demonstrates this richness through the variety of novel timetabling
approaches that are explored and discussed.

Second, it is important to note how grounded in practice these papers are.
Most of the papers begin with a real-world problem to solve. It is this interplay
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between real practice and theory that gives timetabling its richness. These papers
are generally not about theoretical issues but are based on the need to create
real timetables. This gives an immediacy to this work that is uncommon in much
research.

The downside of this real-world aspect is a lack of standardization, leading
to many papers solving only slightly different problems. The third interesting
aspect of this volume is a growing interest in standardizing problem definitions
and creating robust, flexible definitions of general timetabling problems. This
trend is most obvious in the “General Issues” papers, but occurs in many other
papers in the volume. While grounding the work in practice, there is a growing
interest in generalizations.

Overall, we think this volume shows timetabling as a broad, important field
with a rich set of practical models, and a robust and growing set of solution
approaches. We thank the authors for their contributions, and are confident in
the continuing success of the PATAT conference series.

Conference Series

The Meeting in Pittsburgh was the fifth in the PATAT series of international
conferences. The first four conferences were held in Edinburgh (1995), Toronto
(1997), Constance (2000), and Gent (2002). Selected papers from these four
conferences appeared in the Springer Lecture Notes in Computer Science series.
The full references are:

Edmund Burke and Peter Ross (Eds.): Practice and Theory of Automated
Timetabling, 1st International Conference, Edinburgh, UK, August/September
1995, Selected Papers, Lecture Notes in Computer Science, Vol. 1153, Springer,
1996.

Edmund Burke and Michael Carter (Eds.): Practice and Theory of Auto-
mated Timetabling, 2nd International Conference, Toronto, Canada, September
1997, Selected Papers, Lecture Notes in Computer Science, Vol. 1408, Springer,
1998.

Edmund Burke and Wilhelm Erben (Eds.): Practice and Theory of Auto-
mated Timetabling, 3rd International Conference, Konstanz, Germany, August
2000, Selected Papers, Lecture Notes in Computer Science, Vol. 2079, Springer,
2001.

Edmund Burke and Patrick De Causmaecker (Eds.): Practice and Theory of
Automated Timetabling, 4th International Conference, Gent, Belgium, August
2002, Selected Papers, Lecture Notes in Computer Science, Vol. 2740, Springer,
2003.

The sixth conference will be held in Brno, Czech Republic, August/September
2006. See http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml for informa-
tion on the conference series.



Preface VII

Acknowledgements

We are very grateful to a large number of people for the success of the Pitts-
burgh conference and for their efforts in helping to put together this volume. We
would like to acknowledge the financial support from the Tepper School of Busi-
ness, Carnegie Mellon; the Carnegie Bosch Institute, Carnegie Mellon; and the
Aladdin Center, Carnegie Mellon. Their generosity helped to give the conference
the special atmosphere that made it such a memorable occasion. A particular
thank you also goes to Cathy Burstein, who was invaluable in handling the local
organization and registration, and the program could not have occurred without
her efforts.

The papers that appear in this volume were carefully and thoroughly refereed.
Many thanks go to the members of the Programme Committee who spent a
significant amount of time ensuring the quality of the conference program itself
and, particularly, of the selected papers that appear in this volume. Their hard
work plays a major role in ensuring the success and high standards that have
come to characterize the conference. We are also grateful to the staff at Springer
for their help and encouragement and to Jan van Leeuwen, who, as an editor
of the Lecture Notes in Computer Science series, has always given us valuable
support and advice since the very beginning of the conference series back in
1995.

We would like to offer a very special thank you to Piers Maddox, our copy
editor. The very high formatting and typesetting standards of this volume are
entirely due to him. Special thanks should also go to Emma-Jayne Dann for all
her hard work in supporting the administration that underpinned the editorial
process for this book.

We are, of course, also very grateful to the authors and delegates at the
conference who contributed so much towards making it such an enjoyable event.
Finally, we would like to thank all the people on the Steering Committee for
their hard work in organizing the entire series of PATAT conferences.

We are looking forward to the next conference and to seeing you in Brno in
the Summer of 2006.

July 2005 Edmund Burke
Michael Trick



5th International Conference on the Practice
and Theory of Automated Timetabling

Programme Committee

Edmund Burke (Co-chair): University of Nottingham, UK
Michael Trick (Co-chair): Carnegie Mellon University, USA

Jonathan Bard University of Texas, USA
Viktor Bardadym Noveon Inc., Belgium
Cynthia Barnhart MIT, USA
James Bean University of Michigan, USA
Patrice Boizumault University of Caen, France
Peter Brucker University of Osnabrueck, Germany
Michael Carter University of Toronto, Canada
Peter Cowling University of Bradford, UK
Patrick De Causmaecker KaHo St.-Lieven, Gent, Belgium
Kathryn Dowsland Gower Optimal Algorithms Ltd.
Andreas Drexl University of Kiel, Germany
Moshe Dror University of Arizona, USA
Wilhelm Erben FH Konstanz - University of Applied Sciences,

Germany
Jacques A. Ferland University of Montreal, Canada
Michel Gendreau Centre de Recherche sur les Transports,

Montreal, Canada
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Learning User Preferences in Distributed
Calendar Scheduling

Jean Oh and Stephen F. Smith

School of Computer Science, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh,

PA 15213, USA
{jeanoh, sfs}@cs.cmu.edu

Abstract. Within the field of software agents, there has been increas-
ing interest in automating the process of calendar scheduling in recent
years. Calendar (or meeting) scheduling is an example of a timetabling
domain that is most naturally formulated and solved as a continuous,
distributed problem. Fundamentally, it involves reconciliation of a given
user’s scheduling preferences with those of others that the user needs
to meet with, and hence techniques for eliciting and reasoning about a
user’s preferences are crucial to finding good solutions. In this paper, we
present work aimed at learning a user’s time preference for scheduling
a meeting. We adopt a passive machine learning approach that observes
the user engaging in a series of meeting scheduling episodes with other
meeting participants and infers the user’s true preference model from
accumulated data. After describing our basic modeling assumptions and
approach to learning user preferences, we report the results obtained in
an initial set of proof of principle experiments. In these experiments, we
use a set of automated CMRADAR calendar scheduling agents to simu-
late meeting scheduling among a set of users, and use information gen-
erated during these interactions as training data for each user’s learner.
The learned model of a given user is then evaluated with respect to how
well it satisfies that user’s true preference model on a separate set of
meeting scheduling tasks. The results show that each learned model is
statistically indistinguishable from the true model in their performance
with strong confidence, and that the learned model is also significantly
better than a random choice model.

1 Introduction

One vision of research in the field of intelligent software agents is the realiza-
tion of personal computer assistants. A personal computer assistant is a software
agent that is integrated into a user’s computing environment and pro-actively
accomplishes various tasks in support of high-level user goals. Like a human
assistant, such a personal computer assistant would do such things as process
email, schedule meetings, service information requests, organize events, and so
on; autonomously interacting with other personal computer assistants as nec-
essary to carry out a given task and in each case recognizing if and when it is

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 3–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 J. Oh and S.F. Smith

appropriate to engage the user in the process. One fundamental aspect of a per-
sonal computer assistant is that it is enduring and self-improving. It is expected
to persist indefinitely, and learn over time to make decisions that better reflect
user constraints and preferences.

Toward this goal of creating personal computer assistants, there has been
increasing interest in automating the process of scheduling meetings and man-
aging user calendars. Calendar scheduling can be seen as a kind of timetabling
problem—the objective is to assign time slots to meetings in such a way that the
constraints and preferences of meeting requests and prospective attendees are
best satisfied. However, the problem of calendar scheduling differs from typical
timetabling problems in a couple of important respects:

– Continuous, dynamic problem. Calendar scheduling is an ongoing endeavor.
At any point in time, there are some number of meetings booked, and new
requests are serviced continuously in an incremental manner. It is generally
desirable to maintain stability in assignments over time, although invariably
it will be necessary to bump previously scheduled meetings, and the busier
individuals are, the more frequently such tradeoffs will need to be considered.

– Distributed decision-making. Although one can consider centralized approach-
es to the calendar scheduling problem, this requires all individuals involved
to share their calendars and this is not a realistic assumption in many circum-
stances. In these cases, protocols for negotiating time slots that are mutu-
ally acceptable to prospective attendees must be devised. Note that in some
situations it may be necessary to settle on a subset of attendees, and/or
coordinate with additional resource brokers (e.g., room booking agents).

Like other timetabling domains, calendar scheduling preferences will vary
from user to user, and one strong prerequisite of any calendar scheduling solu-
tion is an ability to incorporate user-specific preferences. Preferences can range
from simple static time of day (or day of week) preferences, to more complex
dynamic preferences (such as scheduling meetings back-to-back or retaining free
time in proximity to important deadlines), to preferences of which meeting(s) to
bump in over-constrained situations. Typical timetabling solutions require users
to directly specify their preferences as input to the problem solving process. How-
ever, the fact that calendar scheduling is an ongoing, continuous process suggests
the possibility of automatically acquiring this knowledge over time through ob-
servation of meeting scheduling episodes.

Our recent research in the calendar scheduling domain has led to development
of CMRADAR, a distributed calendar scheduling system [9]. Each CMRADAR
scheduling agent accepts requests for meetings from its user, and interacts au-
tonomously with the CMRADAR agents of other users to determine and confirm
a mutually agreeable meeting time. If the action of scheduling a given meet-
ing pre-empts a previously scheduled meeting, then affected CMRADAR agents
coordinate to reschedule the bumped meeting. CMRADAR meeting schedul-
ing protocols support a range of negotiation strategies, allowing the amount of
information exchanged (e.g., number of options, preference values) and the as-
sumptions made about organizational structure to be varied. Scheduling options
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are proposed and evaluated by CMRADAR agents based on how well they satisfy
underlying user preferences. CMRADAR uses a quantitative preference repre-
sentation, (i.e., a user preference is specified as a utility function), and assigns a
value indicative of degree of satisfaction to a given scheduling option. Since such
a specification of preference is somewhat unnatural for the user whom a given
CMRADAR agent is assisting, we consider the possibility of automating the
acquisition of user preferences. Another advantage of learning preferences auto-
matically is that statistical observations can reveal certain meaningful patterns
that are often missed by the human users.

Our general hypothesis is that it is possible for a software agent to learn a
user’s meeting time scheduling preferences by observing the user engage in a
series of meeting scheduling episodes with other meeting participants. In this
paper we describe an initial proof of principle experiment. We make specific as-
sumptions about the types of information that can be observed during a meeting
scheduling episode and the organizational setting in which meeting scheduling
takes place, and with these assumptions we investigate an approach to learn-
ing the user’s true preference model. In particular, we assume that a learning
software agent has access to the following information when observing the user
schedule meetings:

1. the user’s current calendar,
2. incoming and outgoing meeting requests (initiator, proposed time slots),
3. user replies (accept or refuse) and
4. confirmed meeting time slots.

We further assume that meeting scheduling takes place within a hierarchical
organization, that the learning agent has knowledge of the respective ranks of
various meeting participants in the organization, and that users in the organiza-
tion use a common negotiation strategy when scheduling meetings that favors the
preferences of higher ranked individuals. Our specific hypothesis is that under
these assumptions, accumulation of the above meeting information over some
number of user scheduling episodes is sufficient to enable the agent to learn
the user’s true meeting time preference. To test this hypothesis we use a set of
CMRADAR scheduling agents to simulate meeting scheduling under the above
assumptions and generate training data for the learning agent. We then evaluate
the ability of the learning agent to learn the true preference model of a given
CMRADAR agent.

2 Related Work

There has been growing interest in creating software agents that can assist the
users with daily routine tasks. In the particular problem of calendar scheduling
there exist several commercial software calendar programs that support some
form of basic meeting scheduling protocol. For instance, Microsoft Outlook Ex-
change Server provides capabilities such as finding intersections of free time slots
of all attendees, and sending out meeting requests via automatically generated
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email messages, etc. Most commercial software rely on the protocol in which a
centralized server has access to every individual calendar. In general meeting
scheduling often takes place in more distributed settings where the members of
an organization are not obliged to use a specific calendar software but elect to
use their own choice of calendar programs. More fundamentally, these tools are
limited in the fact that the user’s scheduling preferences and habits are ignored.

Sen et al. [10] applied voting theory to their distributed scheduling agent
system which tries to compromise in the event of conflicting user preferences
during the negotiation process. The preferences are associated with utility values
similar to our approach, but the user is responsible for specifying the quantitative
data manually. Calendar Apprentice (CAP) [5], [8] used the decision tree learning
method to learn user preference rules. Blum [2] improved CAP’s performance
by applying Winnow and Weighted-Majority based algorithms. CAP suggests
specific values for the attributes of meeting such as duration and time slot. For
example, the time of day preference rule suggests a time slot for a given type
of meeting. If the suggested time slot is already taken by another meeting the
closest available time slot is suggested. On the other hand, CMRADAR learns
a utility function to evaluate different alternatives. PCalM [1] is another system
that learns an evaluation function, in this case using large margin method [6]
and Naive Bayesian approach with additional active learning strategy. However,
no experimental results have been reported with this system in the literature.

3 Basic Modeling Assumptions

For purposes of this paper, we adopt the following basic modeling assumptions:

– We define a calendar to be a sequence of time slots of equal duration over
some horizon. Let Cu be the calendar of user u, and Cu(t) refer to time slot
t of Cu.

– A meeting request Reqi,A,T is initiated by an initiator i, and designates a
set of attendees A and a set of one or more proposed time slots T .

– A reply or response to meeting request r by user u is designated Respu,r

and specifies a value of either accept or refuse for each time slot t ∈ T .
– A Scheduled Meeting Mi,A,t similarly designates an Initiator i, a set of at-

tendees A and a specific time slot t. For all u ∈ A, Cu(t) = Mi,A,t.
– A given time slot Cu(t) of user u’s calendar will either contain a scheduled

meeting M or is available. Only one meeting may be scheduled at a given
time slot. Hence for any new meeting M ′ to be scheduled at a given time slot
t, either Cu(t) = available or the currently scheduled meeting MI,A,t : u ∈ A
must be bumped.

– A static user meeting time preference model is expressed as a utility curve
over some sequence of time slots. A static time of day (TOD) preference
is a utility curve over a sequence of TOD time slots (e.g., the sequence of
slots 7am, 8am, . . . , 6pm). A time of week (TOW) preference model would
be specified similarly (albeit using a larger sequence of TOW time slots).
The value associated with a given time slot t in a preference utility curve
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ranges from 1.0 (most preferred) to −1.0 (most negatively preferred), with
0 designating a tolerable lower bound on acceptability in peer to peer nego-
tiation circumstances. Let Pref u(t) designate the preference value for time
slot t by user u. When scheduling a meeting, Pref u determines the relative
desirability of different available time slots.

– We assume a hierarchical organization with n levels. A given individual i in
the organization has a rank Ri, where 1 ≤ Ri ≤ n. Individuals with higher
rank reside at higher levels in the organization.

From the standpoint of the learning agent, the goal is to observe user u in
the process of scheduling meetings and to acquire u’s preference curve Pref u.
We assume that the learner sees each meeting request Reqi,A,T involving u, each
Respu,r involving u, and receives confirmation of each scheduled meeting Mi,A,t

involving u. The learner also has access to u’s current calendar at all times.
Finally, the learner has knowledge of the ranks of all individuals in the organi-
zation, and assumes that all individuals use a common strategy for negotiating
meeting times in which the preferences of higher ranked individuals are favored.

4 Approach

We take a statistical approach to learning a static TOD preference curve for a
given user from observed meeting scheduling data. During a series of meeting
scheduling episodes the learning agent observes the user’s actions relative to the
set of time slots in Cu. As meeting scheduling proceeds, the user proposes various
time slots to initiate new meetings, accepts or refuses the time slots proposed by
other users, and receives confirmations of mutually agreed upon meeting times.
Conceptually, our approach views such actions and results as noisy examples of
the user’s underlying preference model (both positive and negative). In order to
turn these observed data into a meaningful characterization of the user’s time of
day preference, we map the collected set of scheduling actions and results into
“votes” for each time slot. The key point of our approach concerns how to weight
these votes to minimize the noise.

In more detail, the following information is collected as the user engages in
meeting scheduling:

– TOD time slots proposed by the user when initiating a meeting. In this case,
proposed time slots provide active positive evidence of the user’s true pref-
erence. Accordingly, we define InitPropCtu(t) to accumulate this positive
evidence for different TOD time slots (e.g., 7am, 8am). The potential ob-
scuring factor (or source of noise) in these data, however, is the density of
Cu; if the most preferred time slots are already occupied, then less preferred
time slots will necessarily be proposed. Taking this fact into account, each
time the user proposes a given TOD time slot t when initiating a meeting,
the following computation is performed:

InitPropCtu(t) = InitPropCtu(t) + (1 − DensityCu
)
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where

DensityCu
=

OccupiedSlotsCu

TotalSlotsCu

.

In other words, the evidence for a given proposed TOD time slot is discounted
by the current density of Cu.

– TOD time slots that are available but refused by the user when respond-
ing to a meeting request. In this case, the user’s response provides active
negative evidence for the time slot(s) in question. We define RefusedCtu(t)
to accumulate this negative evidence for various time slots. Each time the
user refuses a proposed TOD time slot t that is actually available in Cu, the
following computation is performed:

RefusedCtu(t) = RefusedCtu(t) + 1 .

– TOD Time slots of confirmed meeting times. These time slots also can pro-
vide passive positive evidence of the user’s true preference (since the user has
agreed to this time slot). As in the case of those time slots proposed by the
user when initiating a meeting, DensityCu

can be an obscuring factor and
must be discounted. However, here there is also a second source of noise re-
lating to the relative ranks of meeting attendees in the organization. Taking
into account the fact that all users employ a common negotiation protocol
that favors higher ranked individuals, we assume that the user will tend to
reveal more truthful preferences when negotiating with lower ranked indi-
viduals. To account for this, evidence relating to confirmed meeting times is
differentiated by the rank of the meeting initiator. Specifically, we define a
matrix ConfirmedCtu(r, t), and each time a TOD time slot t proposed by an
individual of rank r is confirmed as a meeting time, the following update is
performed:

ConfirmedCtu(r, t) = ConfirmedCtu(r, t) + (1 − DensityCu
) .

Using the above computations, we collect “votes” for each TOD time slot. We
then use the weighted k-nearest neighbor (KNN) algorithm [4] to consolidate this
data and smooth the curve. KNN was initially proposed by Fix and Hodges [7].
It is a popular statistical approach which has been used heavily in the pattern
recognition research and also in the text categorization. The basic idea here is
to predict the utility value for a given TOD time slot using k similar data points
in the training set. Here similarity is defined as a combination of both distance
between TOD time slots and the distance between a meeting initiator’s rank
and the user’s rank in the organization. The influence of a given data point on
another is discounted as a function of its distance.

In more detail, the learned user preference model is computed according to
the following four-step procedure:

1. Integrate TOD time slot values in ConfirmedCtu. Taking the user’s rank Ru

into account, weighted KNN is applied to average the values accumulated for
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each TOD time slot (i.e., each column in the matrix). KNN is applied asym-
metrically in this case using rank distance as a similarity metric. Specifically,
values accumulated for meetings initiated by individuals of rank Ri > Ru

are increasingly discounted as rank distance increases, based on the above
stated intuition that meetings initiated by higher ranked individuals give less
information. On the other hand, values for meetings initiated by individuals
of rank Ri ≤ Ru are given full weight, since the user’s preference will dom-
inate in this case. The result of this smoothing step is a flattened vector of
Confirmed meeting votes, designated FlatConfirmedCtu.

2. Combine collected data. Compose final “votes” for each TOD time slot as
follows:

TSu = w1 × InitPropCtu + w2 × FlatConfirmedCtu − w3 × RefusedCtu .

3. Smooth adjacent time slot data. Weighted KNN is applied again, this time
to the consolidated TOD time slot vector TSu. Following the assumption
that the actual (true) user preference will tend to be continuous, each TOD
time slot value is averaged with the values of the k neighboring TOD time
slots, discounted by TOD distance.

4. Normalize final values. Finally, the values in TSu are normalized to the range
[−1, 1] to produce the learned preference utility curve.

In the experiment described below, the above procedure is invoked after
observing a fixed number of meeting scheduling episodes. Note, however, that
the algorithm could be applied to compute (and recompute) the utility curve
dynamically as more data points are accumulated over time.

5 Evaluation

Our evaluation contrasts the performance of three preference models:

– true model, the preference model used to simulate meeting scheduling and
generate the training data used by learner;

– learned model, the preference model generated by the learning agent;
– random model, a preference model that randomly assigns utility values to

time slots.

Each of these models is evaluated with respect to the true model: i.e., how
well each model approximates the scheduling outcomes produced by the true
model. Each model is applied to schedule a common (new) sequence of meetings,
and in each case the final resulting calendar is evaluated with respect to how
well it satisfies the true user preference model. More precisely, the quality of the
resulting schedule is determined as

Q =
∑

m∈MTGSu

Pref u(TimeSlot(m))
|MTGSu|

,

where MTGSu is the set of meetings in Cu and TimeSlot(m) is the time slot in
which meeting m is scheduled.
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6 Experimental Design

We use a set of CMRADAR agents to simulate meeting scheduling in a four
person organization. In our experiment, this CMRADAR simulation serves two
purposes. First, it is used to generate training data for learning a given user’s
preference model. Second, it is used to evaluate the performance of a learned
user preference model during the test phase of the experiment. The simulation
is configured as follows:

– Each CMRADAR “user” (agent) is given a unique preference curve. Ex-
periments were run with two distinct sets of preference curves: (1) a sim-
ple configuration consisting of a combination of morning, afternoon, strictly
morning, and strictly afternoon preferences, and (2) a complex configuration
consisting of four randomly specified preference curves.

– We assume a three-tiered organizational structure with User A > User B >
Users C1, C2 .

– A common negotiation protocol that favors preferences of higher ranked
individuals is utilized by all CMRADAR agents. Details of this negotiation
protocol are given in the Appendix.

For purposes of the experiment user calendars are assumed to contain a total
of 60 time slots per week; specifically a five-day work week with each work day
containing 12 one-hour time slots from 7am to 7pm. The target is to learn a
daily TOD preference: i.e. a utility curve over the sequence of TOD time slots
from 7am to 7pm.

For the training (learning) phase of each experiment, 60 meeting requests
to be scheduled over a two-week horizon were randomly generated. 50 meetings
were designated for week one and 10 for week two to ensure that some number
of scheduling decisions must be made in the context of high density calendars.
Each generated meeting involved 2, 3 or 4 of the individuals in the organiza-
tion and the initiator was randomly assigned. Starting with empty calendars for
all agents, the CMRADAR system is used to automatically schedule these 60
meetings. All meeting request messages, meeting response messages and meet-
ing confirmation messages together with the users’ evolving calendars are used
along the way as training data for the learning algorithm summarized in section
4. Note that CMRADAR is a distributed system and each CMRADAR agent
represents a different user in the organization. Hence, there are four different
preference learners operating in this experiment, each associated with a spe-
cific CMRADAR agent (or user). Of course each learner only has access to the
information that is local to its user.

For the test phase of each experiment, 20 new meetings to be scheduled in a
one week interval were randomly generated as before. Each of four learned models
was evaluated separately, by substituting one learned model for the correspond-
ing true model in the CMRADAR system, and then running the system along
with the true preference models for other CMRADAR users. For each revised
configuration, the sequence of 20 new meetings was scheduled, starting again
with empty calendars for all agents. By limiting the test case to 20 meetings,
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we ensure calendars that in the worst case are only 1
3 full, and hence scheduled

times are likely to be more reflective of user preference.
As indicated above, separate experiments were run for both simple and com-

plex configurations of true preference models. For each configuration, 10 replica-
tions of the above training and test procedure were run using different meeting
sets. The test results obtained using each different data set were averaged to-
gether to determine overall performance of the learned model. For comparison,
we also computed average results obtained with the true and random models
across all data sets.

7 Results

We analyze the results of both experiments relative to two basic hypotheses:

1. The performance of the learned model is comparable to the performance of
the true model (i.e., the two models produce results that are statistically
indistinguishable).

2. The performance of the learned model is indistinguishable from the perfor-
mance of the random model.

Table 1 shows the experimental results obtained for the simple preference
model configuration. It shows, for each of the four users, the quality of the
final schedule produced by the learned model during the test phase from the
standpoint of how well it satisfies the true preference model of each respective
user (designated QLearned). The quality of the final schedules produced by the
true model (QTrue) and the random model (QRandom) are also shown, as well as
a p-test evaluation of our basic hypotheses.

For all users, we see that there is sufficient evidence to reject the hypoth-
esis that QLearned is indistinguishable from QRandom . In other words, QLearned

performs significantly better than QRandom for all users. We note that the dif-
ference between QLearned and QRandom is smaller for users at lower ranks in the
organization than it is for users at higher ranks (and this can be seen for the
difference between QTrue and QRandom as well). This reflects the fact that a
common negotiation strategy favoring the preferences of higher ranked individu-
als is used, which reduces the overall influence of the preferences of lower ranked
individuals.

Alternatively, it is not possible to reject the hypothesis that QLearned is in-
distinguishable from QTrue for any user. To provide evidence in support of this
hypothesis [3], confidence intervals for each pair of models were also computed.
These are shown in Table 2. We can see with 95% confidence that there is strong
evidence for QTrue = QLearned for all users except user A. In each case, the
confidence interval is found to contain zero and to be very small relative to
the two scores. In the case of user A, QLearned is actually found to be signif-
icantly higher than QTrue . The fact that QLearned > QTrue is due to the fact
that the learned preference model is stricter than the true model, which leads
to increased pressure toward more preferred time slots in the true preference
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Table 1. Performance results for Simple preference model configuration

QTrue QLearned QRandom QTrue = QLearned QLearned = QRandom

User (p-value) (p-value)

A 0.882 0.889 0.200 Cannot reject Very strong reject
(0.712 > 0.05) (0.0000 < 0.01)

B 0.936 0.938 0.864 Cannot reject Very strong reject
(0.534 > 0.05) (0.0068 < 0.01)

C1 0.822 0.807 0.720 Cannot reject Strong reject
(0.347 > 0.05) (0.020 < 0.5)

C2 0.791 0.792 0.726 Cannot reject Weak reject
(0.505 > 0.05) (0.061 < 0.1)

Table 2. 95% Confidence intervals for Simple preference model configuration

QTrue − QLearned Width QTrue = QLearned

User interval

A (−0.028768, −0.006232) 0.022536 Cannot accept
(but QLearned is better)

B (−0.0070086, 0.0028886) 0.0098971 Accept
C1 (−0.00086878, 0.031358) 0.032226 Accept
C2 (−0.011393, 0.010319) 0.021713 Accept

Table 3. Performance results for Complex preference model configuration

QTrue QLearned QRandom QTrue = QLearned QLearned = QRandom

User (p-value) (p-value)

A 0.826 0.792 0.533 Cannot reject Very strong reject
(0.191 > 0.05) (0.0000 < 0.01)

B 0.757 0.759 0.647 Cannot reject Very strong reject
(0.52 > 0.05) (0.0069 < 0.01)

C1 0.607 0.602 0.510 Cannot reject Strong reject
(0.462 > 0.05) (0.032 < 0.5)

C2 0.634 0.640 0.501 Cannot reject Very strong reject
(0.551 > 0.05) (0.0025 < 0.01)

model. We would expect these Q values to balance out with additional training
data. Figure 1 shows the true and learned preference models for each user from
one of the simple preference configuration runs to give a graphical sense of their
correspondence.

Table 3 shows the experimental results for the complex preference model
configuration, and Figure 2 shows plots of learned and true models for each user
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Fig. 1. True (dashed) and learned (solid) preference utility curves for Simple preference
experiment

Table 4. 95% Confidence interval for Complex preference model configuration

QTrue - QLearned Width QTrue = QLearned

User interval

A (0.016814,0.052084) 0.03527 Cannot accept
B (-0.01343,0.0091317) 0.022562 Accept
C1 (-0.011222,0.020452) 0.031674 Accept
C2 (-0.018553,0.0062601) 0.024814 Accept

from one of the experimental runs. As in the first experiment, the performance of
the learned preference model is found to be better than that of the random model
for all individuals in the organization (i.e., the hypothesis QLearned = QRandom is
rejected in all cases). Again, it is the case that the hypothesis QLearned = QTrue

cannot be rejected for any user and computation of confidence intervals provides
strong evidence that the hypothesis can be accepted. Table 4 shows the 95%
confidence intervals for the complex model. For users B, C1 and C2, the results
indicate that there is no significant difference between QTrue and QLearned . Not
only does the confidence interval of the difference contain zero in each case, but
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Fig. 2. True (dashed) and learned (solid) preference utility curves for the Complex
preference experiment

it is also very small relative to the two scores. (e.g., for user B, the confidence
interval of the difference between QTrue and QLearned is 0.0225

0.757 = 3% of QTrue).
In the case of user A, the confidence interval failed to cover zero. However, even
though the difference between the two scores is not really zero, it is no more
than 0.035

0.826 = 4% of QTrue with 95% confidence, indicating that performance of
A’s learned model very closely approximates that of A’s true model.

8 Conclusion and Future Work

These two experiments provide initial evidence of the ability to learn static user
preference models for meeting scheduling through observation. Our ongoing work
is investigating the implications for user preference learning of other sets of as-
sumptions about meeting scheduling protocols and organizational structures,
as well as extension of user preference learning techniques to incorporate more
complex, dynamic preferences (e.g., a preference for scheduling meetings back-
to-back, a preference to bump less important meetings). Currently, CMRADAR
utilizes a passive learning approach only, but we plan to integrate our system with
an intelligent user interface to enable active learning by collecting user’s feed-
back. Since the user’s feedback provides the true answers, the agent’s learning
curve will be expedited. Knowing when and in what occasions the user should be
interrupted is also another interesting learning task. Rule based strategies such
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as those proposed in CAP are more appropriate for capturing preferences more
sensitively tuned to specific meeting types, i.e. implicitly recurring meetings. To
tune our model to such customized meeting types, we anticipate extending our
system to incorporate additional features in the distance metric, such as the
subject of the meeting. If the number of features is large it will be more efficient
to dynamically compute the utility values for alternative options, dynamically
because the utility values will be customized according to the attributes of the
given meeting by selectively choosing a subset of the data collected to date. For
instance, if the given meeting is with person A and the subject of the meeting
is Lunch, the system will use only the lunch meetings with person A to evaluate
possible options, providing more customized evaluation criteria.
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Appendix

Negotiation Protocols for CMRADAR Simulation

Within the CMRADAR simulation used in the experiment, each CMRADAR
agent uses the following common negotiation protocol:

– Initiator. Initiator issues meeting request message and proposes a set of n
options (time slots) that best suit its own preferences. In other words, the
initiator proposes the n most preferred options (In the experimental runs
n = 3.)

– Attendees. Each attendee responds to the meeting request as follows:
• If one or more options are available, then evaluate and returned the

combined preference value for each (see below).
• If there are no available options, bump the least important pre-emptable

meeting, and return the combined preference value for this newly freed
time slot.

– Initiator. Collect all attendee responses. If there is an agreeable option then
confirm it. Otherwise, repeat above steps with n new options.

The above protocol implements a common policy of favoring the preferences
of higher ranked individuals by communicating and combining the preference
values of initiator and attendee. More precisely, Let

– Pref i(t) = the value assigned by Initiator i to time slot t and communicated
to attendee A

– Pref a(t) = the value assigned by attendee a to time slot t
– RiandRa = the ranks of i and a respectively.

In evaluating a time slot proposed to attendee a by initiator i, a computes the
following combined preference value:

Pref Comb(t) = Wi × Pref i(t) + Wa × Pref a(t) ,

where
Wi = 0.5 + 0.5 ∗ Ri − Ra

RMax − RMin

and
Wa = 1.0 − Wi .
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Abstract. Automated timetabling is a research domain that has occu-
pied many researchers over the last 50 years. Several algorithms have
proven to be applicable to timetabling but they are nearly all designed
to address specific problems. The framework presented in this paper is a
step towards a generic semi-automatic timetabling tool. The basis of the
framework is an ontology for timetabling that we designed after having
investigated different types of timetabling problem.

A first step towards solving general problems consists of mapping their
data representation to the ontology. That is carried out in such a way
that existing data that is already available in databases can further be
used throughout the application. In the next step, the tool assists in
determining the constraints and objectives of the problem. The seman-
tic components have three sources of information: meta-data about the
database, domain knowledge about timetabling problems and external,
non-domain-specific knowledge.

1 Introduction

From the early definitions of timetabling problems (e.g. [9], see [10], [17], [18] for
an overview) on, it has been clear that timetabling was a complicated problem
deeply entangled in the real world. From then onwards several researchers have
tried to model a variety of real-world cases [22], [32], [33], [39], [50]. An equally
large variety of solving techniques have been tried out and experimented with
(for example tabu search [24], [61], genetic algorithms [16], [26], [59], constraint
logic programming [19], [29], [39], simulated annealing [14], [55], evolutionary
algorithms [54]). Quite often a single methodology was not sufficient. In most
real-world cases only a hybrid approach would lead to satisfactory solutions [12],
[42], [60]. Both modelling and techniques have seen significant progress over the
years. On the modelling side, specific languages were created [11], [47], [48], [51],
and development frameworks have been built [23], [28], [38]. Those frameworks
play an in-between role while offering modelling support as well as libraries of
solution approaches [23], [28]. Methodologies, on their side, have evolved from
problem-specific [27] to more general [3], [4]. The evolution is in line with the
more general trend in optimisation technology, especially in the field of meta-
heuristics [52]. The complexity and importance of those real-world applications

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 17–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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together made it an excellent field for research in optimisation technology. They
both ignited new technological ideas and offered a test bed for new developments.
Application domains such as university course and exam timetabling [35], [37],
sport timetabling [58], employee timetabling [36] were studied by cases. Some-
times even more specialised domains—such as nurse rostering (see [15] for a
survey)—effectively grew into important research subjects with their own re-
search communities. This strong real-world entanglement and the fruitful years
of intensive research naturally lead to tools that support the development of
timetabling systems. A number of efforts in these directions have been reported
[11], [28], [48], [51]. Recent years have seen a boost in the development of method-
ologies for integration [2], [34]. Again, the timetabling domain, with its advanced
status of knowledge, can serve as a test bed. In this paper we present a set of
integration tools that we have developed with this goal in mind.

Languages as in [11], [48], [51] allow the description of timetabling problems
to which solution methods can be applied. Frameworks as presented in [23],
[28] support the development of timetabling systems using libraries and data
structures. The approach of the present paper is to try to automatically read an
existing system and to semi-automatically extract the essential concepts. We fur-
thermore provide tools that allow users or operators to define their constraints.
The result is a system that is linked to a database but that uses an ontology
which allows different components such as solvers and editors to smoothly in-
teract. We are thus one step further away from the programming level of the
languages and framework-focused approaches.

While studying different timetabling problems, it is possible to identify a com-
mon set of characteristics. In Figure 1, we have grouped four different timetabling
(or scheduling) examples with varying terminology such as lecture, game, quali-
fication, operation, etc. As can be seen from these examples, timetabling always
involves assigning activities to timeslots (and locations, people, etc), subject to
constraints. Constraints that one developer calls soft may be hard for another
developer. In [62], Wren defines timetabling as “the allocation, subject to con-
straints, of given resources to objects being placed in space-time, in such a way
as to satisfy as nearly as possible a set of desirable objectives.” Hard constraints
are those that must be satisfied at all time. Soft constraints should preferably be
satisfied but violations will affect the quality of the solution. Reducing the num-
ber of violated soft constraints is a common objective in timetabling. Often, the
objective of timetabling problems is expressed in terms of a real-valued function,
called the objective function, that reflects a degree of constraint violation.

We have developed a framework for timetabling applications with a cen-
tral “time-tabling” domain ontology [21]. Ontologies enable information sharing
between researchers in a specific domain. They contain at least some machine-
interpretable definitions of domain concepts and their relationships. The time-
tabling ontology is based on the general OZONE [53] scheduling ontology. We
used the DAML+OIL [20] ontology language, which is founded on web stan-
dards such as XML [8] and RDF [40], to express the timetabling ontology. RDF
provides a format to describe data using XML as a serialisation syntax. All these
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languages and standards fit in the Semantic Web [6] initiative of the World Wide
Web Consortium (W3C). More detailed information about the use of these lan-
guages in timetabling applications is available in [21].

The developed timetabling ontology allows the application of one single ap-
proach to solve a multitude of different problems. The ontology acts as an in-
termediate language between the data layer (in this case an already existing
database that contains specific information about the timetabling problem at
hand) and a calculation component. In the case that the problem data is stored
in a problem-specific database, the only requirement is a mapping (a kind of se-
mantic translation) of the database schema to the ontology. The mapping can be
performed semi-automatically (user assistance is still required) by the “semantic
mapping component” presented in Section 3. We do not aim at fully automatic
mapping but input from a domain expert will be required during the mapping
process. A calculation component, which is aware of the ontology, can compute
a solution with the data extracted from the data layer. Of course, a general so-
lution framework will not be competitive with made-to-measure algorithms for
specific problems. Optimal performance across different timetabling domains is
however not our main concern. We rather aim at providing satisfactory decision
support for a variety of timetabling problems.

In Figure 1, a schematic overview of the tool is presented. All depicted parts
will be discussed in the following sections. We use an existing real-world univer-
sity database to test the semantic application. The database contains all data
concerning rooms, students, teachers, . . . of our institute and is used to manually
create the timetables. We also tested the application on two simplified databases
containing data on nurse rostering and games.

This paper focuses on the semantic part of the developed application and not
on the calculation component. In Section 2, we discuss other recent contributions
to semantic mapping. The semantic mapping component for timetabling is in-
troduced in Section 3. In Section 4, we describe the user support for defining the
timetabling problem. Section 5 describes implementation issues, while Section 6
gives directions for future research. Section 7 concludes.

2 Semantic Mapping Tools

The ontology mapping tool described by Prasad et al. [49] uses explicit infor-
mation. It must be provided by “exemplars” that describe the meaning of the
concepts in both ontologies. By using a text classifier, a model is built for each on-
tology. Afterwards, the models of both ontologies are compared and the concepts
with the highest similarity scores are considered for mapping. Two algorithms
(heuristic and Bayesian) have been developed to finalise the mappings. The on-
tology mapping tool GLUE [25] applies a multi-strategy learning approach with
a set of learners of which the predictions are combined. Domain constraints and
general heuristics improve the accuracy of the matching.

Anchor-PROMPT [45] and PROMPT [46] are tools for merging ontologies.
The activity of mapping ontology concepts is an important step in the merging
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Fig. 1. Schematic overview of the tool

process. The tool described in this paper has a similar aim since it tries to
map the concepts in a database schema to an ontology. It differs in the sense
that one ontology is considered fixed and will probably only cover a subset
of the concepts in the database. PROMPT explores the ontologies to locate
candidate terms for merging. It uses both syntactic and semantic information
and also feedback from the user. Anchor-PROMPT first searches pairs of related
terms in different ontologies (“anchors”), which are identified by the user or
automatically generated by the system. Starting from these anchors, Anchor-
PROMPT searches a new pair of terms on the path between anchors.

KAON Reverse [56] is the tool that approaches our needs for a semantic
mapping tool best. It allows to export data from a database to an ontology. As a
prototype, KAON Reverse’s functionality is too basic to fulfil the requirements
of the timetabling mapping tool.

Missikof et al. [44] developed a software environment with the OntoLearn
tool as a core. It can build and valuate domain ontologies. The software envi-
ronment acquires new domain concepts by exploring available documents and
related Web sites. WordNet (see Section 3) is one of the resources used for the se-
mantic interpretation of the corpus. Missikof et al. state that capturing kindship
relations is clearly important for an ontology based Web application.
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Fig. 2. The timetabling ontology presented in OilEd

3 Semantic Mapping Component

The purpose of the semantic mapping component is to “map” the specific prob-
lem data of a relational database to the timetabling ontology. The structure and
content of the database will always be problem dependent, but the target on-
tology is always the same. In Figure 2, the timetabling ontology is represented
in an ontology editor called OilEd [5]. The complete ontology can be found
at http://ingenieur.kahosl.be/projecten/cofftea/2003/03/hybrid.daml. The on-
tology is rather general since different problem-specific databases have to be
mapped to it. The developed tool will help to discover and map data that is
directly available in the database to the ontology. One of the key concepts in
the ontology is the “SESSION” concept. It corresponds to what is called the
“scheduling object” in Figure 1. The concept contains properties such as loca-
tion, timeslot, date, attendee and SESSION ID, that are useful for describing
concepts in detail. There are also constraints attached to these properties. One
of the constraints is that there is exactly one unique SESSION ID per SESSION
concept.

Each relational database consists of relations (tables) with attributes. There
are two types of special attribute: primary keys and foreign keys. One condition
for the mapping component is that there are no composite primary keys in
the relations. The second part of the semantic mapping component consists of
the ontology for timetabling problems and is shown in the right part of the
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Fig. 3. GUI of the mapping component

user interface (see Figure 3). The ontology includes classes with properties. We
can identify two special property types: identifier and reference properties. The
first step in the process consists of mapping a relation from the database to a
class in the ontology. Next, the attributes of the relation are mapped to the
corresponding properties of the class. The correspondence between the database
and the ontology terminology is illustrated in Figure 4.

The semantic mapping component uses three kinds of information source.
First of all, meta data about the database offers useful knowledge. We mark the
primary key of each relation and annotate each foreign key with the relation
whose candidate key matches. Domain knowledge about timetabling problems
is a second source of information. Timetabling concerns resources that need
to be scheduled in a time frame. Apart from these problem-specific informa-
tion sources, WordNet [1] adds external information to the mapping component.
WordNet is the result of a research project at Princeton University that has
attempted to model the lexical knowledge of a native English speaker. Infor-
mation in WordNet is organised around logical groupings called synsets. Each
synset consists of a list of synonymous word forms and semantic pointers that de-
scribe relationships between the current synset and other synsets. These semantic
pointers can be of a number of different types including: “Hyponym/Hypernym
(Is-a, Has-a)” and “Meronym/Holonym (Part-of/Has-part)”.

Figure 5 describes the procedure for mapping the database to the ontology. In
the first step, the central timetabling object is identified by the mapping process.
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Fig. 4. Terminology

That object will be liable to the local search component and must be mapped
to the class “Session” in the ontology. A first possible way to recognise this
central timetabling object is its number of foreign keys. The central timetabling
object of the database will often be the relation with the largest number of
foreign keys because it involves a lot of resources. A lecture, for example, is
assigned to a teacher, students, a room, etc. The second rule for finding the
central timetabling object indicates that it is a kind of activity or event. That
characteristic can easily be checked using WordNet. If this still does not identify
the central timetabling object, user assistance is required.

Once the relation in the database that represents the central timetabling ob-
ject is found, mapping its attributes can start. A first rule for mapping attributes
is that the identifier of the class in the ontology will be mapped to the primary
key of the corresponding relation. For example, we managed to recognise “shift”
(a task to be carried out within a specified time period) in nurse rostering as
the central scheduling object. Therefore, “shift” will be mapped to the ontology
class “Session”. The ontology class “Session” contains an identifier “SessionID”.
We will map the primary key of the relation “shift” to that identifier. Other
attributes of the relation are mapped to the most similar property of the ontol-
ogy. We apply a slightly altered version of the recursive algorithm for computing
string similarity [30]. Attributes can also be mapped to properties that are not
similar, by using knowledge about the English language. For example, “room”
can be mapped to “location” because “room” is a kind of “location” according
to WordNet. Similarly, “nurse” is a possible dimension of the nurse rostering
search space because it is a kind of “professional” and it is an attribute of the
central timetabling object. Once a foreign key of the relation can be mapped to
a reference property of the ontology, we can also map the corresponding relation
to the reference class. Subsequently, we can map attributes of the relation to
properties of the class, etc.

The Semantic Mapping Component also determines the dimensions of the so-
lution space. In school timetabling, for example, sessions can be moved in time
and space (rooms). In the sport timetabling problem that we studied [57], one
single dimension (time) suffices (see also Figure 1). The result of the mapping
process is a semi-automatically generated XML file that is in an appropriate
format to be used by the D2R mapping tool [7]. That tool allows translation
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Fig. 5. Mapping rules

of data from a relational database to an RDF file. Normally, the D2R XML file
that describes how to map data from the database to the RDF file is manually
written, but our mapping tool is now able to semi-automatically construct the
“translation” file. The resulting RDF data file, which contains the problem spe-
cific data in terms of the timetabling ontology, will be used in the computational
part of the framework and in the graphical semantic constraint generator.

4 Timetabling Characteristics

4.1 Constraints

Timetabling problems are not completely characterised by the RDF data file
alone. Some additional semantic components are required. We have developed a
semantic tool—the graphical semantic constraint generator (GSCG)—to assist
in defining the timetabling problem with concepts from the user’s domain. The
GSCG (Figure 6) builds on the results of the mapping component and enables
the user to specify the constraints. It stores the constraint description in separate
XML files. We opt to save the constraints directly in XML, since we experienced
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Fig. 6. GUI for constructing constraints

that it was hard to express the constraints in DAML+OIL. Such difficulties are
also indicated in [41], [43].

Constraints are expressed as follows:

number of concept1 PER concept2 is [LESS THAN|EQUAL|etc] concept3 .

For example,

(number of sessions) per (timeslot and location) ≤ 1

means that there cannot be more than one session per timeslot in a location
(room). Both hard and soft constraints can be expressed in the same form. In
order to define comprehensive constraints, we sometimes need information that
is not available in the ontology. “Weekend” is an example of a concept that is
commonly used in timetabling constraints but not available in the timetabling
ontology nor in the database. The XML code in Figure 7 clearly demonstrates
that the existing (primitive) concept “Date” is used to define the concept “Week-
end”. It is actually the translated primary key of the date concept (DATE ID)
which is used. In the example, we consider a period of 3 weeks (21 days) consist-
ing of 3 weekends. Every weekend is defined as consisting of a Saturday and a
Sunday. Of course, it is also possible to define a “Weekend” that starts on Friday
and ends on Monday.

4.2 Objective Function

Once the mapping has been completed and the constraints are known, the time-
tabling problem is pretty well defined. The local search component, however,
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Fig. 7. Example of XML file that expresses the “Weekend” concept

still requires an objective function that evaluates constraint violations. A final
component (Figure 8) supports the user when defining this function. The com-
ponent can be regarded as a tuning instrument for the application that allows
the user to express the relative importance of the constraints.

5 Implementation Issues

We succeeded to map most of the data fields in the real-world university database
that we used as a test case (see Section 1). The mapping failed where stored
procedures were used. There is insufficient semantic information available for
our system to map such items to their ontology counterparts. Instead, we had to
write extra Java code to obtain these data. We, for example, need the number
of students that attend a session in order to decide whether the capacity of the
room is sufficient. Since a session can be attended by different student groups,
the total number of attendees is to be computed through a stored procedure that
sums the students in all the groups. In order to solve that problem, we executed
the stored procedure from a Java client and imported the obtained information
in the already translated mapped data file.
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Fig. 8. GUI for constructing the objective function

6 Future Research

The basic calculation component currently handles a specific type of constraint.
We are investigating an extension of this component that allows expressing and
evaluating general constraints. Specifically, we will look at the numbering tech-
nique [13] that was developed for a shift assignment system to allow for an exact
definition of concepts such as minimal contiguity or maximum interleave. We
want to investigate if the numbering technique can be extended to define and
evaluate all possible timetabling problems. A component that is based on the
numbering could perfectly well be used with a local search component. Cur-
rently, we are experimenting with the OpenTS framework [31] for optimisation
and search.

7 Conclusions

It is the aim of this research to apply specific timetabling knowledge for solving
any kind of timetabling problem within a generic framework. Although this
is a demonstration project, we have achieved to support experienced planners
in integrating their problem (represented in a database) into the timetabling
framework. Given the following information:

– the ontology,
– the mapped problem data,
– the dimensions of the solution space,
– the objective function,
– and a list of hard and soft constraints,
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a local search component can be called to solve any kind of timetabling problem.
We carried out qualitative experiments on a number of timetabling problems (as
described in Section 1). The results are promising but, as discussed in Section 5,
not all the real-world data can be mapped to the ontology. We believe that
semantic components such as these presented in this paper, will become very
valuable when it comes to re-using timetabling software.
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Abstract. This article deals with the analysis and design of an interac-
tive decision support system for timetable management. This tool will be
able to take hierarchical data organization into account and to maintain
coherence of the constraints on this data. Our research which has led to
the creation of the VT tool1 has two aims. The first aim is to provide
an open, generic tool which can be developed in many different ways.
In order to achieve this aim, we have used an object-oriented approach
and we have defined object classes for the modelling of the timetabling
problem. The second aim is to analyse the needs in timetable manipula-
tion and to provide a generic organization so that the tool can be used
in many situations. To achieve this aim, both user-based and automated
techniques are used.

1 Introduction

Every year, the task of the university educational managers is to organize timeta-
bles for the various courses or branches, whilst trying, as far as possible, to meet
the “human” constraints of the teachers and students, along with the pedagog-
ical constraints imposed by teaching progression and the “physical” constraints
linked to material resources (rooms, equipment, etc).

Up until now, managers have explored two different ways: graphical tools
and fully automated tools.

The graphical tools (like tabler or dedicated tools) are easy to use. They are
powerful to draw pretty timetables. Unfortunately these tools give very poor
help especially to find conflicts in timetables. They give no help to resolve these
conflicts.

The fully automated tools [3], [10], [20], [21] are able to find a timetable.
But generally, these tools require powerful machines. They are better feet the
needs of secondary schools. Their timetables are built on a weekly basis. The
development of a timetable for a year only duplicates the weekly structure. These
automated generation tools are also well suited to the examinations [5], [11] or
conferences [8].

Fully automated tools are not efficient when the constraints cannot lead
to a valid solution (impossibility of building a clash-free timetable). In these
situations, the tools do not provide any support in explaining the causes for the

1 VT for visual timetabling: http://visual.timetabling.free.fr

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 34–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Open Interactive Timetabling Tool 35

lack of solution. Nothing is given to determine which constraints must be relaxed
to bring about a solution. The quality of these timetables also depends on the
exhaustiveness of the constraints. In a university, it is impossible to collect and
to formalize all this information. Expertise of timetablers is the key.

Besides, more advanced techniques have been explored by the constraint
programming community for the design of timetables [15]. These techniques
allow users to give some guidelines to the system and obtain quicker or more
adequate solution. However, this approach is still focused on systems. We have
chosen a different point of view since our work is focused on the end user.

The tool required must above all be interactive, adaptable and open, and it
must have ergonomic qualities [14].

We will describe first the current organization at the University of Valen-
ciennes and Hainaut-Cambrésis (UVHC) and more specifically at the Institute
of Sciences and Techniques of Valenciennes (ISTV). We will then present the
VT tool, written in DELPHI object-oriented language and we will describe the
different objects defined. Finally, we will give some obtained results using VT and
we present perspectives to get the highest level of genericity for this kind of tool
and to make it designed for a multi-user configuration.

2 Modelling of the Timetable Problem

In an abstract view, the timetable problem consists in distributing over time ped-
agogical activities which require resources (teachers, groups, rooms and equip-
ment). In order to respect the usual vocabulary, these activities are called teach-
ing modules and each occurrence of an activity is called a session. The sessions
have a duration. The timetable problem therefore requires the modelling of the
activities, the resources and the time.

2.1 Modelling of the Pedagogical Activity

The pedagogical activity is modelled using one entity teaching module.
A teaching module is characterized by a name, a subject, a total duration,

a default duration (the duration suggested by default for each teaching module
session) and a set of resources. Experience in the field led us to separate the
resources into two sets: imposed resources and necessary resources. The distinc-
tion made between these two types of resource makes it possible to set certain
constraints as soon as the teaching module is described.

In addition to these characteristics, each teaching module must be situated
in relation to the others. For example, the E2 teaching module may only take
place once the E1 has been completely finished.

2.2 Modelling of Resources

The resources considered are the physical entities necessary for the preparation
of timetables: rooms, teachers, groups, students and equipment. In order to take
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DEUG -SCIENCES

Deug 1st  year Deug 2nd  year

STPI _2MASS_2 MIAS _2
option

informatique _2

groupA groupB groupC groupD groupE groupF groupG

STPI _1MASS_1 MIAS _1

STPIMASS MIAS

Fig. 1. Example of group hierarchy in the ISTV

in most of the configurations imaginable, the resources are organized according
to a hierarchical structure. Each resource R has daughter resources and can be
the daughter of several other resources. Figure 1 shows an example.

Each reference to a resource R also concerns all the daughters of R, as well
as all its “granddaughters”, down to the lowest level of the hierarchy. Moreover,
as soon as a session concerning R is placed, this limits the degrees of freedom of
all its mother resources.

In the ISTV, this organization of the resources into hierarchical structures is
used for the groups and for the equipment.

Five categories of resources are considered: the rooms, the teachers, the
groups, the students and the equipment. Each resource is described with data
to identify it (like its name) and data to characterize it (like capacity, speciality,
etc).

2.3 Modelling of Time

Two fields are used in order to represent time: the instant and the duration. The
duration of each session is distinguished from the duration between the sessions.
It should be noted that this representation of time is more flexible than that
generally chosen in secondary schools. In classical timetabling problems each
day is divided into a set of time slots which are fixed [4]. In these cases, each
session can only take place in one or several consecutive slots. Here a session can
begin at each time in a day.

The granularity of time makes it possible to link representations of time with
various degrees of sharpness. At the lowest level, we find the basic temporal
representation (for example 15 minutes).

In order to model time, the following entities are defined: date, time, duration,
slot and calendar.

A date refers to a triplet (day, month, year). Using this triplet, the value
associated with it on the day axis is defined. A time is a whole number included
between the minimum value HMin (8h00) and the maximum value HMax
(19h00). These two numbers correspond to times in relation to a date.
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A duration is a number included between DMin and Dmax = Hmax −
HMin. DMin represents the smallest temporal unit available.

A time slot refers to a temporal interval during a day. It is characterized by
a couple (H, D) in which H represents the starting time of the slot and D its
duration.

A calendar is a set of dates. Each date is associated with a state (available
or unavailable).

Each teaching module is also associated with a calendar to specify when it can
be planned during the year. For example we can decide that a teaching module
must be planned on Friday and another from September 1st to December 15th.

2.4 Sessions, Schedules and Bookings

A session corresponds to a temporal event of a teaching module on a given date,
during a specific slot. The characteristics of a session are: its teaching module,
its date, its slot, its equipment and its room. The schedule of a resource is the set
of sessions in which this resource appears. In this way, it is possible to consider
the schedule for a room in the same way as that of a teacher.

A booking corresponds to an option placed on the occupation of a resource.
In relation to a session, a booking is not associated with a teaching module.
Bookings give flexibility to the use of the tool, especially during the timetable
creation stage performed by the various managers. For example, a room can
be booked by a manager for a group, without knowing exactly which teaching
module will take place in it. The other managers are aware of the booking and
will avoid using the room. If they do use the room, the room manager will have
to find an alternative by suggesting another room.

2.5 Description of Constraints

The constraints to be respected can be classified into two groups: physical con-
straints (also called hard constraints) and preference constraints (or soft con-
straints) which are linked to the pedagogical quality of the timetables. The
physical constraints make it possible to be sure that any particular timetabling
problem has a solution (resolution) whereas the preference constraints are gen-
erally taken into account when a solution is being improved (optimization).

Physical Constraints. These constraints cannot be violated, otherwise clash-
ing situations would arise. There is a physical resource clash between two sessions
s1 and s2 if these sessions have a common resource for a non-null duration.

The physical constraints we have studied in VT are the following:

– No resource r may be concerned by two different sessions s1 and s2 at the
same slot (time and date): ∀s1∀s2∀r[((s1 �= s2 ∧ r ∈ resources(s1) ∧ r ∈
resources(s2)))] ⇒ [slotDateT ime(s1) ∩ slotDateT ime(s2) = ∅]
where resources(si) is the set of all the resources affected by si and
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slotDateT ime(si) indicates date, time and duration of si.
As soon as a resource appears in a session, all its daughter resources are also
concerned by the same session recursively:
∀s∀r(r ∈ resources(s) ⇒ (∀x(x ∈ subresources(s) ⇒ x ∈ resources(s))))
In the same way, as soon as the resource appears in a session, none of its
mother resources may be occupied at the same time (because all of these
resources have resources in common). These are constraints linked to the
hierarchical structure.

– It is forbidden to put more students than there are places in a room.
– The total duration of the sessions in a teaching module may not exceed the

volume planned.
– The calendars are respected for all the resources (sessions may only be placed

during resource “working” days).

These constraints are part of VT: they cannot be modified by the users but
they can be parametrized or can be ignored. Thus, in all the orders available
to the user, only actions which respect the constraints can be performed. For
example, when a user wants to allocate a room to a session, only the rooms which
respect all the constraints (free, suitable size and type) are suggested. This way of
proceeding makes it possible, amongst other things, to avoid clashes appearing.
We will discuss this further in the paragraph concerning the treatment of clashes.
The user can decide to use the automatic timetabler and then to modify the
result.

Preference Constraints. Preference constraints may be violated: in this case,
the timetable obtained is of a lower quality. Typically, these constraints are
used to express what a “good” timetable should be for the students and for the
teachers.

Two preference constraints have been studied in VT. The first one is used to
limit the resources moving between rooms. The second one allocates to a session
the room for which the capacity is near to the number of students. For example,
in VT we avoid allocating a very large room to a small set of students.

3 Visualization of the Timetables and Points of View

The two types of view most commonly used are: the weekly graphical view
and the yearly graphical view. In both cases, visualizing a timetable consists in
representing sessions of one or several resources on a plan. On every view of a
timetable, two axes are represented: the resource axis and the time axis. It should
be noted that there are no restrictions concerning the resources which appear
on the resource axis. In other words, it is possible to visualize on one screen
the timetables of several groups, teachers, rooms and elements of equipment.
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This has two major advantages. Firstly, during the modification phase, the user
is informed on one screen about the availability or occupation of the resources
he/she is dealing with. Secondly, it enables the user to understand why the tool
refuses to place a session in the slot he/she has chosen (role of explanation).

The handling orders are given via screens. They are invariably available in
each view. The orders allow the user to “navigate” around the timetables and
modify them whilst controlling clashes (and avoiding them as far as possible).
In order to make the user’s task easier, the constraints are taken into account
in a dynamic fashion. Thus, for example, when a session is being moved, the
tool begins by finding the moves allowed and then suggests them to the user.
This approach limits the user’s search space to the areas in which sessions can
be placed without creating clashes.

We defined the notion of points of view in a previous research on co-operative
reasoning and its application to interactive diagnosis [16]. The basic idea consists
in representing a model according to different angles of vision, called points of
view. Each point of view only concerns a part of the model, but the set of points
of view covers the entire model. The reasoning performed using each point of
view is propagated to the other points of view, and this guarantees the coherence
of the set of points of view.

The notion of point of view is used here to represent various elements of in-
formation for the same indicator (time, resource) without overloading the screen.
The points of view retained here are: the resource point of view (teacher, group,
room and equipment), the teaching module point of view and a specific point
of view in which the user chooses the information he/she wishes to see. In this
last point of view, the user can see for example the names of the rooms, their
capacity and their occupation rate as well as the names of the teachers who
use the rooms in question. A button enables the user to switch from one point
of view to another whilst keeping the general appearance of his/her view along
with the same orders (addition, removal, etc).

Figure 2 shows part of the schedule for the DESS ICHM class and its sub-
groups ICHM1 and ICHM2, from the point of view of the teachers and the
rooms for a period chosen by the user. It is a yearly view where each week is
represented by one line. Each line has as many sub-lines as resources selected
(here the resources are the groups: DESS ICHM , ICHM1 and ICHM2). The
name of the teacher for each visualized session is displayed (teacher’s point of
view).

3.1 Action Possible Using the Graphic Interface

We have defined three types of user: the designers (pedagogical managers), the
analysers (administrative managers) and the others (teachers, students: only for
seeing the timetables). They have specific needs which lead to the definition of
specific action classes. This action classes are described in [17].
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Fig. 2. A timetable seen from the teacher point of view

3.2 Allocation of Resources in an Existing Schedule: Example of
the ROOMS

The allocation of rooms is performed by the room manager once the timeta-
bles have been created by the educational managers. The rooms are divided into
several types: lecture theatres, ordinary rooms, specialized rooms. They are char-
acterized by their capacity as well as by their geographical location. The location
is limited to proximity zones because the important thing is to know whether
one room is close to another or not, more than the actual distance between the
two.

Up to now, the manual allocation of rooms has been carried out without
too many problems thanks to the experience acquired over the past 20 years by
the various managers. Moreover, the allocation of rooms rarely leads to clashes
which bring about considerable modifications in the timetables. This can be
explained mainly by the applied approach. Before the educational managers
even begin developing the timetables, they meet together to pinpoint the critical
teaching modules (i.e. those which need critical resources—rooms or equipment).
These teaching modules are placed on the various timetables in such a way as to
satisfy all requirements and avoid clashes. For example, the lecture theatres are
allocated to the various courses so as to cover global needs. This is done using
the booking notion explained previously. Thus, for example, for a specific group,
a lecture theatre is reserved for four half-days every week from 15th September
to 30th May.

When the rooms are actually allocated to sessions, the user must choose a
room from all the rooms so that the constraints are respected: the room must
be free and have a sufficient capacity to accommodate the students concerned
by the session. Extra constraints (preference constraints) must also be taken
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hard constra
ints
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Fig. 3. Dialogue window for the allocation of rooms with consideration of preference
constraints

into account not only for the quality of the timetables but also in order to
anticipate needs which are unknown when the timetables are developed (for
example, organization of work meetings or seminars).

We suggest helping the user to decide which room to allocate to which session
in the following manner. Firstly, a list is drawn up of the free rooms which have a
sufficient capacity to accommodate the group of students. Then these rooms are
classified using a function which depends on preference constraints or heuristics.
Thus the user can either trust the tool and choose the first room in the classified
list, or choose another room on the list for reasons which are not known to the
tool. The parameters of the function used to classify the rooms in the list can
be chosen by the user who can decide to apply all of the preference constraints
or just some of them.

The preference constraints currently in use were defined in collaboration with
the room managers: regularity of room allocation, limitation of group movement
between rooms and anticipation of unknown events.

The user can decide whether to take preference constraints into account or
whether to ignore them, as is shown in the dialogue window in Figure 3. In
addition, this user can decide to use the automatic allocation module. This
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module is based on intelligent backtracking algorithms like backjumping and
forward checking (we know that these exact methods are not the best for a full
automated approach, but they are sufficient in our situation) [19].

4 Treatment of Clashes

In the section concerning constraints, we defined the notion of clashes: a clash
is characterized by the sharing of resources between several sessions at the same
moment in time:

∀s1∀s2, clash(s1, s2) ⇔ ((s1 �= s2) ∧ (overlapped(date(s1), date(s2)))
∧(resources(s1) ∩ resources(s2) �= ∅)) .

The basic idea of our work is to design an interactive decision support tool which
will allow the planning of sessions on a schedule whilst guaranteeing that there
are no clashes. Nevertheless, several reasons oblige us firstly to accept that there
will be clashes and secondly to resolve them.

Firstly, during our on-site tests with the users, it appeared that during the
development of timetables, some users prefer to have the possibility of placing
clashing sessions temporarily and then correcting these clashes, rather than only
being able to consider non-clashing situations.

Secondly, in reality, the timetables are created locally for the branches, with-
out knowing the schedules for other branches. When all the schedules for all these
branches are grouped together, clashes generally appear because of teachers who
work in several branches for example.

Finally, our tests revealed that even for users who wish to avoid clashes when
placing sessions, it is important for them to be able to be informed of the reasons
for the impossibility of placing certain sessions. For example, when the user clicks
with the mouse on a grid in order to place a session, the tool begins by searching
for a list of sessions which may be placed without creating clashes. If there is
nothing in this list, it is better to indicate why that is so. Two explanations
can be given. The first is that all the sessions have been placed. The second
explanation is that for all the sessions which still have to be placed, there is
systematically one of the resources which is already used for another session at
the same time. In this case, it is best to give to the user the list of sessions which
hinder the placing; the user can then decide whether to rethink the choice of
place or whether to return to sessions placed beforehand.

4.1 First Approach: Avoiding Clashes

The method which consists in avoiding clashes is well adapted when the timetable
is available and the user wishes to modify it slightly, or when it is available on
paper and the user wishes to enter it on a computer. Avoiding clashes then comes
down to avoiding data entry errors. The users who appreciate this method are
the room managers because they allocate the rooms to the sessions, once the
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Fig. 4. A weekly view for sessions scheduling

sessions have already been scheduled. Figure 4 shows a weekly view of session
placement. On the left is a list of the sessions that should be placed in this week.
To the right, the user can see where to place the session he/she has selected.

This method is also advantageous for the creation of timetables because it
constantly limits the space of the sessions which can be placed in a given slot.
In this case, this method alone is not sufficient. We noted that when wanting to
place a session in a slot, the user is put off if the session he/she thinks he/she
can place is not on the list of possible sessions. To solve this problem, the user
would like to be given the reasons for this absence (teacher, room, group or one
of the descendants or ascendants already occupied). Another way to tackle this
problem is to accept clashes and to resolve them afterwards. The danger of this
method is that there could be a lot of clashes which would be impossible to
resolve without starting the work again from the beginning.

By allowing the manipulation of incomplete sessions (no teacher, no room),
a different approach is adopted which consists in creating a timetable without
resources (or the fewest resources possible) and then allocating the resources
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Fig. 5. Example of clash with groups
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clash with groups

clash with rooms

13h

Fig. 6. Example of a multiple clash

afterwards. The problem with this approach is that the constraints are not in-
tegrated early enough. At the ISTV, it is this approach which is used, since the
rooms are allocated once the timetables have been created.

These two approaches can be compared to the prospective and retrospective
approaches which are well known in the field of constraint programming [19]. It
is shown that the approaches which involve forward checking through constraints
are more efficient than those which check if constraints have been respected after
the choices have been made.

4.2 Second Approach: Interactive Resolution of Clashes

A clash can be resolved in several different ways.
The first way is to delete certain clashing sessions and to request the user to

place them elsewhere on the schedule. This method is only viable if the depen-
dencies between clashes are taken into account and if the number of clashes is
reasonable. For example, let us consider the case shown in figure 5 in which the
sessions S1, S2 and S3 are scheduled on the same day in the same slot.
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Fig. 7. The clashes have been resolved

In this case, two clashes are linked: S1 with S2 and S2 with S3. The clashes
can be resolved by deleting the three sessions and trying to place them elsewhere,
by deleting S1 and S3 and placing them elsewhere, or by deleting S2 only and by
placing it in another slot. The choice of solution can depend on various criteria.
It is possible to choose the solution which modifies the fewest sessions (just S2
in the example). It is also possible to choose the solution which preserves the
quality of the timetables.

The second way consists in grouping together the resources involved in differ-
ent sessions. The teaching modules may be shared by several groups in different
branches. When the data relating to the different branches is merged, these teach-
ing modules are declared several times. This can cause clashes with the teachers,
for example, because for these shared teaching modules, the same teacher gives
a lesson to different groups at the same time. The resolution of these clashes is
easy: the groups in the two teaching modules have to be merged.

The third way of resolving clashes is to reduce the duration of the sessions
so that the time interval associated to the clashes is eliminated. In the previous
example, the two clashes take place in the time intervals [10.00–11.00] and [11.00–
12.00]. There are several possibilities : reduce session S1 to the [09.00–10.00]
interval and session S3 to the [12.00–13.00] interval or reduce session S1 to the
[09.00–10.30] interval, session S2 to the [10.30–11.30] interval and session S3 to
the [11.30–13.00] interval.

The fourth way is to eliminate the “cause” of the clash, that is the teacher,
the group or the room. Once the clash has been eliminated, an attempt can be
made to allocate the sessions to other teachers, groups or rooms.

This method can be extended so that it is capable of exchanging the resources
for various sessions. For example, the teachers of two teaching modules can
be interchanged. More complicated exchanges can also be envisaged, involving
more than two teachers. However, searching for these exchanges with an aim to
resolving clashes is a laborious process. In Figure 6, an example of a multiple
clash is shown.

By performing the following exchanges: prof(S1) � prof(S4), group(S1) �
group(S2) and room(S1) � room(S3), the three clashes are resolved and the
configuration shown in Figure 7 is obtained.
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Fig. 8. Window displaying the clashes detected

Trials were carried out in real situations. We have worked with the manu-
ally made timetables for the academic year 1999–2000. The search for clashes
amongst the 2500 sessions took three seconds using a PC with a Pentium III
500Mz processor, 256M ram. This search revealed 350 group clashes, 50 teacher
clashes and 30 room clashes.

It should be noted that this test was performed using real data from the
manually-made timetables used for the university year, which should in theory
have been clash-free! This mean that clashes was not detected during the con-
ception phase of timetables: they have been treated during the year by teachers
themselves.

Figure 8 shows how the clashes are displayed (group clashes in the case of
the figure). There is a nine-column chart (the ninth column is hidden because
of the size of the window). Each line represents a clash. For example, the first
line shows a clash involving the SMPC group on 04-02-2002. In fact there are
two overlapping sessions. The first one, ALG CR DEUG, starts at 08.30 and
lasts for 2 hours, while the second, ALG CR DEUG, starts at 09.00 and lasts
for 1.30 hours. The overlap is therefore 1.30 hours. By using the See button,
the user sees the schedule for this group for the entire week which shows up
these two sessions. The user can then decide how to correct the clash (move the
sessions, eliminate them, etc).

Figure 9 shows the view a user can have when he/she has decided to request
a graphical view of a clash (the first clash in our example). The two clashing
sessions are shown up by a colour. It is necessary to modify (eliminate, move or
reduce) the duration of one of the two sessions to resolve the clash.

The user can view the schedule for a set of resources, showing the teachers
as well as the groups, rooms and equipment. This type of view is particularly
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Fig. 9. Visualization of one of the clashes

well-suited to understanding why the choice of a place or move of session is
impossible. For example, let us suppose that the graphical view shown concerns
the timetable of a group G1 and that the user wishes to move a session S for
this group. By clicking on the session, the user can choose the instruction move
in the day. VT calculates the list of slots corresponding to the possible moves.
If the user does not find the slot he/she had been thinking of a priori on this
list, the tool enables him/her to understand the reasons why by providing the
occupation of each resource involved in the session.

4.3 Semi-automatic Resolution of Clashes

The problem of resolving clashes can be tackled in a generic way, but experience
has led us to agree with the view of Foulds and Johnson [?]: the clashes generally
concern few sessions and can be resolved by backtracking a little way.

Clashes are detected according to each type of resource (teacher, group, room
and equipment) and are classified according to different criteria. These criteria
were defined on the basis of the experience of the various educational managers.

– The clash represents a double. Two sessions are a double (session duplication)
if they are sessions in the same teaching module (so they have the same
teachers and the same groups, but not necessarily the same equipment or
the same rooms) or if they take place on the same day, at the same time
and for the same duration. This problem is solved by deleting one of the
sessions. If the total volume of sessions of this teaching module is not equal
to the total volume planned, the user will have to place the deleted session
elsewhere.

– Sharing of a teaching module over several groups. For example, conferences
are organized for two courses represented by G1 and G2. The managers
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of these courses create their timetables. Then, when all the timetables are
collated for the allocation of rooms and detection of clashes, the conferences
are detected as being clashes because they share the same teacher, on the
same date, at the same time and for the same duration. Experience shows
that these cases of teaching modules shared over several courses is done with
small groups and according to the level (first, second or third cycle). The
problem is solved by deleting one of the two teaching modules and adding
the teaching module groups from the deleted module to the groups of the
remaining module.

– Resolution of clashes by giving preference to moving sessions involving small
groups and short sessions (in duration).

5 Conclusion and Future Work

In this article, the problem of timetable management has been looked at from
a viewpoint centred on the user, and not, as in many other research projects,
centred on the problem (or on the algorithms available). This led us to design
the VT decision support tool which helps the user when faced with solving a
problem. The tool has been tested successfully at the University of Valenciennes
and Hainaut-Cambrésis in large-scale real situations.

VT is intended for different user profiles, going from the designers of timeta-
bles to users who have varied degrees of computing skills. It makes it possible to
manage resources organized into a hierarchy (groups, teachers, rooms and equip-
ment). It guarantees data coherence in a dynamic way. When clashing situations
appear, various resolution approaches are suggested.

The aim was to design a generic interactive decision support tool for timetable
problems on the basis of a real case study which was truly representative of the
problem. An object-oriented approach was chosen and the generic classes have
been defined like in [22].

Work is now continuing in a main direction: the aim will be to help the user to
express constraints and to take these constraints into account in an interactive
manner. For this, we intend to revise the work performed on constraint pro-
gramming to provide support in the design and generating of timetables. In this
field, most existing work deals with automated generation. On the other hand,
very few research projects focus on support in the description of timetables [6],
[2], [12] or [18]. We feel that an interesting project would be to combine the
automated and interactive generation of timetables. This direction was explored
successfully in [1] and [9] which deal with other problems based on scheduling.
For example, we envisage performing an automatic allocation of rooms after the
timetables have been created interactively with the users (thus making it easier
to take into account the pedagogical constraints which are difficult to express
and formulate). A project similar to [7] or [13] based on approaches from the
constraint programming field has already been started on this subject.
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Gestion des Emplois du Temps Basé sur les Points de Vue (in French). J. Human–
Computer Interaction, in press

18. Reis, L. P., Oliveira, E.: A Language for Specifying Complete Timetabling Prob-
lems. In: Burke, E., Erben, W. (eds.): The Practice and Theory of Automated
Timetabling III (PATAT’00, Selected Papers). Lecture Notes in Computer Science,
Vol. 2079. Springer, Berlin (2001) 322–341

19. Tsang, E.: Foundations of Constraint Satisfaction. Computation in Cognitive Sci-
ence Series. Academic, New York (1993)



50 S. Piechowiak, J. Ma, and R. Mandiau

20. Willemen, R.: School Timetable Construction: Algorithms and Complexity. Ph.D.
Thesis. Technishe Universiteit, Eindhoven, The Nederlands (2002)

21. Yoshikawa, M., Kaneko, K., Nomura, Y., Watanabe, M.: A Constraint-Based Ap-
proach to High-School Timetabling Problems: A Case Study. Proc. 1995 Int. Joint
Conf. on AI (IJCAI’95, Montreal)

22. Zervoudakis, K., Stamatopoulos, P.: In: Burke, E., Erben, W. (eds.): The Practice
and Theory of Automated Timetabling III (PATAT’00, Selected Papers). Lecture
Notes in Computer Science, Vol. 2079. Springer, Berlin (2001) 28–47



Distributed Choice Function Hyper-heuristics
for Timetabling and Scheduling

Prapa Rattadilok, Andy Gaw, and Raymond S.K. Kwan

School of Computing, University of Leeds, UK
{prapa, gaw, rsk}@comp.leeds.ac.uk

Abstract. This paper investigates an emerging class of search algo-
rithms, in which high-level domain independent heuristics, called hyper-
heuristics, iteratively select and execute a set of application specific but
simple search moves, called low-level heuristics, working toward achieving
improved or even optimal solutions. Parallel architectures have been de-
signed and evaluated. Results based on a university timetabling problem
show an important relationship between performance, algorithm software
and hardware implementation.

1 Introduction

Hyper-heuristics are a powerful emerging search technology [6]. Search algo-
rithms are often constructed from a collection of simple neighbourhood moves
referred to as low-level heuristics. Rather than hard-wiring such simple moves,
hyper-heuristics employ a domain independent driver that iteratively makes dy-
namic decisions on which simple move(s) should be executed next. The selected
heuristics can be knowledge-poor heuristics like simple add, drop and swap moves
or complete algorithms more akin to meta-heuristics. Cowling et al. [15], [16] and
Soubeiga [27] proposed a choice-function-based hyper-heuristic driver, which has
components designed for search intensification and diversification and incorpo-
rates some simple learning capability. Selection is made based on three factors:
the previous performance of the heuristic, the performance of successive pairs of
heuristics and the time since the heuristic was last used.

Hyper-heuristics have been successfully used to solve scheduling problems
and have also been shown to provide a useful tool in rapid prototyping of opti-
mised systems [6], [14], [15], [16]. Burke et al. [9] and Petrovic and Qu [22] show
the success of a hyper-heuristic approach that uses case-based reasoning, while
the later paper of Burke et al. [7] uses tabu search to address this specific type
of problem.

Burke et al. [9] use case-based reasoning, by taking the benefits of using
relevant cases from memory and adapt them to fit new situations to apply in
heuristic selection. The selected heuristics for the problem in hand are selected
based on the best (or reasonably good) heuristics used from solving similar prob-
lems. The result shows that after a training session, retrieval accuracy increases.
Petrovic and Qu [22] studied the importance of features and their weightings in
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the knowledge discovery process. They found that, in retrieval, the feature se-
lection of each source case is more important than the feature weight, when the
features are elaborate enough. The number of features also affects system per-
formance. Too many features cause a slow-down because of the confusion within
the system in finding a good source case for prediction when the source cases
and the training cases are too close to one another. For the system to perform
very well, a large training set is needed. Another approach involves the use of a
learning classifier system that associates the problem states with the heuristics.
The approach tries to find powerful combinations of heuristics, it has also been
successfully used to tackle a bin packing problem [24], [25] and an examination
timetabling problem [28].

Burke et al. [7] combine tabu search with heuristic selection, by maintaining
a tabu variable length list of low level heuristics, which excludes some low-
performance heuristics from the selection for a certain duration. The results
show that for small/medium size problems it performs as well as or better than
tailor-made algorithms, while better results are achieved from an Ant algorithm
for bigger instances. Burke et al. [8] adapt the single objective hyper-heuristic
approach in [7] to multi-objective optimisation. The paper compares the perfor-
mance of different objective selection methods (random or roulette wheel) and
different design of tabu lists (one for every objective or one for each objective).
The experiment results show that the approach performs well on a wide range
of problems with narrow gaps between the best and worst solutions obtained.

Kendall and Mohd Hussin [20], [21] show more recent work on tabu-based
hyper-heuristics. Similar to [7], hyper-heuristics select a non-tabu low-level
heuristic to apply at any iteration. Kendall and Mohd Hussin [20] studied the
tabu criteria based on CPU time, the tabu element was based on changes in
a penalty function and probabilistic heuristic selection. The low-level heuristic
that is used in the current iteration will be tabu for a certain duration (0–4
iterations) to allow other low-level heuristics to perform. The experiments show
that a tabu duration of two is the best duration. Kendall and Mohd Hussin [21]
show the result of the approach on a university timetabling problem.

Cowling et al. [13] show another example of combining a hyper-heuristic
with a meta-heuristic. The approach uses a genetic algorithm as the high level
selector to evolve the order of the low-level heuristics for a personnel scheduling
problem with each gene in the chromosome representing a low-level heuristic
call. The results show that the hyper-GA is able to evolve a suitable sequence
for a number of different problem instances. An adaptive length chromosome
with guided operation is used in their later work [18]. The evolution process
evolves a suitable sequence without explicit concern on chromosome length; poor-
performing heuristics can be removed and/or efficient heuristics can be added.
Their strategies of when to inject or remove are based on the length of the
chromosome, if it is too long then poor blocks of genes will be removed, if it is
too short then fit blocks of genes will be injected. Han and Kendall [19] extend
their previous work by adding tabu search to increase the efficiency of each low-
level heuristic call. The gene is penalised when it does not make any change to the
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objective function. The penalty is in the form of forbidding a poor-performing
low-level heuristic to be executed for a certain number of iterations. The results
are comparable to their guided operator hyper-GA, but using less processing
time.

Burke et al. [5], [10] discuss an alternative to simple low-level heuristics,
the graph heuristics, for tabu-based hyper-heuristics. The graph heuristics pro-
vide ways to order events that are not yet scheduled based on the difficulties
of scheduling them into a feasible timeslot, for example, they can be ordered
based on the number of enrolment, conflict or feasible slots. Burke et al. [10]
use a tabu-based hyper-heuristic to guide the sequence of these graph heuristics.
Burke et al. [5] compare a tabu-based hyper-heuristic to select graph heuris-
tics with the hybrid approach of also using case-based reasoning. The results
show better performance when using a tabu-based approach. In graph heuris-
tics, events are ordered based on some measurement of their difficulties recorded
in matrices, Burke and Newall [11] propose an adaptive approach in estimat-
ing these difficulties by experience, basing its consideration on constraint-based
strategies: hard constraint only, or both hard and soft constraint.

Ayob and Kendall [3] apply Monte Carlo acceptance criteria for new solu-
tions. At any iteration, a low-level heuristic is selected randomly to modify a
given solution. The Monte Carlo acceptance criteria always accept an improved
solution, though a worse solution will be accepted probabilistically. The three
Monte Carlo strategies discussed are linear, exponential, and exponential with a
counter of consecutive non-improvement iteration. The experiment shows that
the performance of the linear Monte Carlo approach is the most parameter sen-
sitive. The exponential with counter approach was also found to give equally
good performance and it is parameter-free, thus it is a more robust approach.

Many sequential scheduling algorithms have been extended to new parallel
versions. The algorithmic parallelisation techniques are aimed either at reducing
the time consuming processes of the algorithm or at increasing the search space
coverage. Cost function calculation and neighbourhood transition have been dis-
tributed onto multiple processors for algorithms including simulated annealing,
genetic algorithms, ant algorithms and tabu search, to speed up the execution
of the algorithm [1], [2], [4], [23]. The simplest form of parallelism that increases
the search coverage would be to execute the algorithm on different processors
using different random seeds or starting solutions. Interactions of these proces-
sors, e.g. transferring good solutions to other processors, are found to increase
the overall fitness, with the added cost of a communication [23]. Cantu-Paz [12]
lists several topologies for the interaction of processors in a genetic algorithm.
De Falco et al. [17] describe the technique where partial solutions are explored
on processors and combined at the master processors. Although this technique
reduces the communication overhead, this search dividing process becomes too
problem specific. Hyper-heuristic methods, comprising a very large number of
simple steps, favour parallelisation by increasing the search coverage, e.g. carry-
ing out multiple low-level heuristics in parallel.
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The two key aims of the research are the developments of a general hyper-
heuristic framework and of distributed algorithms. The general framework sim-
plifies the development of effective low-level heuristics, and permits their reuse
in different problem applications. The distributed algorithm expands the search
possibilities, increasing both the search efficiency and its coverage, which can
be limited in sequential algorithms. This paper reports on on-going research in
the design of choice function hyper-heuristics, the modelling of general-purpose
low-level heuristics, and the exploitation of parallel computing platforms for
hyper-heuristics.

The University Timetabling Problem is concerned with the production of
good quality class timetables for universities. An abstract version of the prob-
lem was used as the basis for an international timetabling competition, organised
by the Metaheuristics Network [30]. Each problem instance comprises a set of
events, a set of students, and a set of locations and times at which events may
take place. Students each attend a subset of the available events. Events may
require specific facilities (e.g. computers, OHPs) to be available in the rooms in
which they take place, and these may not be available in all locations. Addition-
ally, the assigned rooms must be large enough to seat all the attending students.
No student can be required to attend two or more events simultaneously, and
only one event can take place at a given location and time.

A feasible solution to a given problem instance consists of an assignment of
each event to a room and time, such that all the above conditions are met.

In addition to these hard constraints, there are a number of soft constraints,
representing undesirable characteristics of a timetable, which should be min-
imised. These are: students attending events during the last hour of the day;
students attending three events in successive hours of a day; and students at-
tending a single event on any given day. Occurrences of each of these should
be minimised, so the number of instances found in a feasible timetable gives a
measure of solution quality.

2 Hyper-heuristic Framework

Figure 1 shows an overview of the general framework for scheduling and re-
lationships of its components. The hyper-heuristic applies a low-level heuristic
to an existing solution. The quality of the modified solution is determined by
the problem class and stored with the solution. An initial solution is required,
and this may be generated in a number of ways, including randomly, or using a
problem-specific method.

2.1 Solution

A solution represents a set of assignments of resources to demands. An abstract
representation of a working solution is used in our framework, which includes
meta-data on the state and history of the solution, and the progress of the
search. The class provides a number of generic methods for making changes to
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Fig. 1. Overview of hyper-heuristic framework

the solution it represents (to add or drop assignments, or swap resources between
two assignments, for example). These are used by low-level heuristics to generate
new solutions.

2.2 Low-Level Heuristic

Each low-level heuristic contains a solution perturbing mechanism. It is used to
generate a set of new solutions (known as a neighbourhood) from an initial solu-
tion by making small changes. Each neighbour is evaluated, and based on these
evaluations one will be selected. This becomes the initial solution for the next
iteration. The evaluation criteria vary, but best neighbour, or best neighbour
not worse than the current solution, are common. At this stage of development,
problem-specific low-level heuristics were used.

H1 : Change room of the assignment with the highest number of violations
H2 : Same as H1 but for a random assignment
H3 : Change time of the assignment with the highest number of violations
H4 : Same as H3 but for a random assignment
H5 : Change day of the assignment with the highest number of violations
H6 : Same as H5 but for a random assignment
H7 : Find best slot for a chain of assignments

These low-level heuristics are grouped into two groups: for Intensification
and for Diversification. Intensifying low-level heuristics (H1–H6) only accept a
new neighbour that does not have lower quality than the initial one, whereas,
the diversifying low-level heuristic (H7) will accept the neighbour as long as
no better one can be found, allowing it to move the search away from a local
optimum and into new areas of the search space.
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2.3 Choice Function

A choice-function-based hyper-heuristic based on that of Soubeiga [27] was de-
veloped to provide a ranking of low-level heuristics based on their performance
statistics. The performance statistic is calculated using the improvement the
low-level heuristic makes to the timetable (the reduction of violations) and the
time taken to obtain that improvement. The performance statistics are time-
weighted averages, used in order to steer the selection to the best performing
low-level heuristics, with an emphasis on recent performance. The choice func-
tion uses the information about the individual performance of each low-level
heuristic (f1), joint performance of pairs of heuristics (f2), and the amount of
time elapsed since the low-level heuristic was last called (f3). At each decision
point, the choice function is evaluated for all heuristics, and the heuristic with
the highest score is selected for the next iteration:

f =
∑

(α(f1) + β(f2) + γ(f3)) . (1)

In this paper we determined values of α, β, and γ experimentally. It is desir-
able for the tuning processes of these parameters to be automated, to preserve
the problem-independence of the approach. Future work will investigate adap-
tively changing heuristic parameters during the solving process itself.

3 Distributed Hyper-heuristic

Parallel processing power has been used to speed up search processes for many
scheduling algorithms. As discussed, speed is a smaller issue when all low-level
heuristic are small and simple moves. Our distributed approach investigates mul-
tiple neighbourhood searches for better solutions.

Search sequence is the term used to represent a sequence of solutions obtained
from repeated application of low-level heuristics to a starting solution, until
the time limit is reached. Within the sequential framework, this single search
sequence changes between the intensification and diversification strategies, de-
pending on which low-level heuristic is used. The decision on this transition is
crucial and can increase efficiency of the search. Diversifying at the last iteration
would be a trivial example of search inefficiency.

Figure 2 demonstrates the importance of the transition between intensifica-
tion and diversification. In this figure, the rule for intensification is simply to
accept only non-worsening solutions (CPU 1, and CPU 3). The diversification
strategy accepts worsening solutions when no better solution can be found (CPU
2, and CPU 4). The best solution obtained by CPU 4 is obviously unobtainable if
only the intensification strategy is used. Although this combination of strategies
gives better solution quality than using any single strategy alone, other com-
binations might give even better solutions. By selecting the right solution (at
the right time) and the right combination of strategies, search coverage and effi-
ciency of processor usage will be increased, thus the chances of finding solutions
closer to the global optimum will also be increased.
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Fig. 2. Branching of the search sequence

Fig. 3. Task representation and distribution on hierarchical architecture

3.1 Parallel Architectures

In order to investigate the benefit of parallelisation for hyper-heuristics, two
parallel architectures were designed: hierarchical and hybrid-agent. The hier-
archical approach aims to investigate the benefits of branching in the search
sequence, while the hybrid-agent approach advances the previous investigation
on the transfer of good solutions between agents.

In the hierarchical approach, the hyper-heuristic is located on one processor,
called the controller. The controller distributes tasks to every other processor
under its control. The term task represents the application of a selected low-level
heuristic to a selected solution within the controller’s collection, with specified
time and failure limits. The failure limit acts as a stopping mechanism when
the low-level heuristic cannot improve the solution any further after a number
of iterations. Once the task is completed, the processor returns the modified
solution to the controller. The controller then determines whether to keep or
discard the incoming solution.

A number of hierarchical groups are formed as agents in the hybrid-agent
approach. Each agent is initialised with different starting solutions. Only the
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Fig. 4. Hybrid-agent architecture

Controller of each agent is allowed to communicate. The successful agent can
request a service of the others via this communication by transferring their good
solutions. Theoretically, different agents starting from the same initial solution
will produce different results, as their accumulated performance data from pre-
vious tasks will differ, resulting in different strategies. The communication rate
between controllers is maintained at a regular but infrequent rate to prevent
premature convergence of the search.

3.2 Asynchrony and Load Balancing

Each task is given time and failure limits as stopping mechanisms. The Processor
applies the low-level heuristic specified within the task description to the given
solution. During task execution, failures (iterations not improving the solution)
are counted. Tasks terminate on reaching the time or failure limits, and the pro-
cessor then initiates communication to the controller and returns the completed
task.

Processors thus work independently until reaching their specified limits, and
initiating the communication with the controller this way makes the process
asynchronous. This reduces the amount of idle waiting time when the processing
power is varied between processors or if the duration of the search is different.

Load balancing also benefits from the asynchronous design; as long as the
task queue at the controller is not empty, all processors will be kept busy. When
task results are returned, the sending processor is known to be available, and
the controller assigns it a new task from the queue.

3.3 Multiple Branches

Branching of the search sequence (Figure 2), to introduce different strategies
(intensification and diversification) can be carried out at any stage of the search,
and is used in both architectures. A maximum number of branching points is
specified, with the value chosen to maintain the balance of search space coverage
and available processing power. Too few branches may not broaden the search
sufficiently, whilst too many would reduce the opportunities for finding high-
quality solutions.

Experimentally, it was determined that at least one-third of the branches
should be allocated to diversification, to maintain a variety of searches and act as
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an escape mechanism from local optima. We suspect that it would be more ben-
eficial to adjust adaptively the number of diversifying branches. If performance
trends in existing branches can be monitored, we could use the information to
adjust the allocation appropriately.

The branching points are generated from the diversification branches. When-
ever an improving solution is found, an intensification branch is created. While
a diversification branch might carry on finding new interesting neighbourhoods,
the new branch will be trying to find the optimum of the neighbourhood. When
reaching the maximum number of branches, work on less promising branches will
be suspended, but maybe resumed later, depending on whether better branches
are subsequently found.

4 Results

4.1 Sequential Hyper-heuristic

To give a good understanding of the nature of the scheduling and a better insight
into what can be further generalised before the performance suffers, we compare
the performance of our generic approach (Table 1) with those in [26] which use
max–min ant system (MMAS) and random restart local search (RRLS).

The experiments were run on a processor on the White Rose Grid [29]. pa-
rameters α, β, and γ for the choice function are chosen as 0.7, 0.2, and 0.1
respectively. The experiments compare the solving performance of five small
problem instances (100 events, five rooms, and five features) and five medium
instances (400 events, 10 rooms, and five features).

In term of feasibility, we see that the hyper-heuristic was able to produce a
feasible solution for each instance whereas RRLS could not. In particular, RRLS
could not produce any feasible solutions in 40 runs on M5. In terms of cost
(soft constraint violations) we found that the best solution produced by hyper-
heuristic in five runs gave better cost than the average cost of RRLS in most
cases.

This approach was compared to a more problem specific algorithm (MMAS).
As the problem size increases, MMAS begins to have a performance advantage,
as seen from the results of M3– M5. It is suspected that by adaptively tuning
the parameters (α, β, and γ), the hyper-heuristic should be able to overcome
these small differences in the violation numbers.

4.2 Distributed Hyper-heuristic

The distributed asynchronous hyper-heuristic was tested using the White Rose
Grid. The experiments evaluate this design and examine the impact of some
important design parameters: number of processors, solution collection size, etc.
For these experiments, we used all 20 instances of the PATAT timetabling com-
petition problems [30]. The research indicates several areas in which performance
can be improved.
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Table 1. Performance comparison between MMAS, RRLS and our hyper-heuristics.
In the HH column, the format is: average soft constraint violation for feasible solution
/ best soft constraint violation in all runs. In HH, feasible solutions were obtained in
all five runs. In the RRLS column, 77.5% and 100% correspond to the proportion of
infeasible solutions in 40 runs. Otherwise, for both MMAS and RRLS, feasible solutions
were found at the end of each run. The best results are shown in bold.

HH MMAS RRLS

S1 2.4 / 1 1 8
S2 4.9 / 3 3 11
S3 4.7 / 1 1 8
S4 4.6 / 1 1 7
S5 2.6 / 0 0 5

M1 190.6 / 182 195 199
M2 185.2 / 164 184 202.5
M3 262.4 / 250 248 (77.5%)
M4 182.6 / 168 164.5 177.5
M5 237.8 / 222 219.5 (100%)
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Fig. 5. System performance using different number of processors

The results in Figures 5–10 are the average of five runs, of 15 minutes each,
solving the first problem instance provided (400 events, 10 rooms, 10 features
and 200 students) where initial solutions are randomly generated.

The first experiment uses the hierarchical architecture with a maximum of
three search branches to examine how well the system performs when the num-
ber of Processors increases. Figure 5 shows the average time needed to reach a
feasible solution. It shows that the performance of the algorithm increases when
more Processors are added. The time to feasible solution decreases dramati-
cally when the number of processors increases from one to three but although
the time decreases slightly afterward, the improvements are noticeably less dra-
matic. This could be because of the limited number of search branches and the
limited number of low-level heuristics used, increasing the chances of several
processors working on the same region of solution space.
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While the benefit of adding extra Processors is obvious when measuring the
hard constraint violations, Figure 6 shows more subtle but equally important
results when the final fitness (number of soft constraint violations) is examined.
It seems that the performance suffers if too many processing units are used with
too few search branches, probably due to a degree of repetition by the small
number of low-level heuristics. This graph shows three curves, the first uses a
hierarchical approach that keeps one search branch in memory, the second keeps
three search branches in memory and the last keeps five. It is clear that the
optimal number of processors is related to the number of search branches that
the hyper-heuristic works on concurrently, the optimal number of processors
increasing with the number of search branches kept.

We investigated further the effect of variation in the number of solutions kept
at one time. Figure 7 shows how the number of the search branches retained af-
fects the algorithm performance. When only one processor is used it appears to
be most effective to keep one search branch, as with the serial approach, but as
more processors are used the optimal size of the solution population increases,
suggesting a direct relationship between processors used and optimal population
size. It appears that a small population causes an increased likelihood of becom-
ing trapped in local optima. An excessively large population of solutions may
lead to an overall increase in processing time in order to reach feasible solutions,
as processing power is wasted trying to optimise less promising solutions.
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Fig. 9. Effect of communications interval on time taken to reach feasibility

The task of the controller is very different to that of the processors running
low-level heuristics. By looking at the idle time of the controller we can estimate
its capacity in terms of how many processors it can control. Figure 8 suggests
that it would need to be controlling about 40 processors before reaching 100%
usage, when the inevitable delays became an issue.

We examined our hybrid-agent architecture to determine optimal communi-
cation intervals between controllers. Figures 9 and 10 are the results of exper-
iments using two controllers and three processors each. Figure 9 shows that in
order to maintain the variety of solutions, and not having all the nodes converg-
ing prematurely, we should specify the length in between each communication
to be within the range of 25–35 seconds. We can compare the time to reach a
feasible solution for the hybrid architecture with results obtained for the hierar-
chical architecture in Figure 5. Using the same number of CPUs (one controller
and seven processors), the former model increases robustness without a decrease
in performance.

Figure 10 shows the optimal communication interval at 30 seconds for the
more challenging task of lowering constraint violations and shows clearly that if
the interval is too long or too short sub-optimal results are achieved.

The 20 problem instances are used vary in the number of events and resources.
We used the hierarchical approach with three processors, allowing a maximum
of two search branches for the parallel version. Table 2 compares the result from
our sequential and parallel approaches. The first number represents the time in
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Table 2. Performance comparison between the serial and parallel version

S 146/235 72/208 127/233 408/467 – 213/398 422/510 92/240 131/206 306/247
P 118/205 78/165 152/218 299/427 571/524 134/357 517/509 87/197 120/182 343/223
S 129/243 – 260/310 – 256/369 717/192 511/510 50/181 144/390 615/281
P 101/220 241/258 183/257 441/531 253/368 85/172 689/166 637/179 196/336 134/265

seconds to reach a feasible region and the second number represents the soft
constraint violations after the time limit. This shows that the parallel hyper-
heuristic is promising, solving all the problems within the time limit and that
problems 5, 12, 14 cannot be solved within the available time using a sequential
approach. While the parallel approach usually reaches a feasible solution faster
than a serial approach, its real benefits are in finally reaching a better solution
(fewer soft constraint violations), which it does in every case.

5 Conclusion

5.1 Discussion

In this paper we have shown how hyper-heuristics can be easily and effectively
used for timetabling. A hyper-heuristic framework was designed and developed
in order to obtain an understanding of the nature of the problem before taking
further steps in building a framework for a general scheduler. We have shown
that, though the choice-function-based hyper-heuristics are not problem-specific,
they manage to obtain as good or better timetables in small-to-medium sized
problems as those purposely designed for the problem. Automatic parameter
tuning for the choice function will be added to increase the selection perfor-
mance, which may improve performance, especially on larger problems. We feel
that the low-level heuristic can be further generalised using non-specific per-
formance statistics, such as the number of violations of individual constraints,
whilst preserving the reusability of the whole framework.

Carrying out intensification and diversification simultaneously has been in-
vestigated on two parallel architectures: hierarchical and hybrid-agent. The in-
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Table 3. Best result in the competition (min/max) [30]

45/257 25/128 61/266 112/441 77/412 3/246 5/281 4/214 16/184 54/308
38/273 79/290 71/364 25/345 14/235 11/300 69/409 24/153 40/414 0/185

vestigations have shown that it is useful for the controller to keep several branch-
ing points, and that the number should be adaptively set during the search. We
have discovered close links between the number of processors used and the opti-
mal configuration of the algorithm.

The issue of scalability is an important one and while logically and experi-
mentally we have shown that our approach scales sensibly to a point, we also feel
that if we were to aim to run the algorithm on massively parallel or peer to peer
resources, a less heterogeneous approach will be needed. An approach in which
controller and processor functions are combined into a single agent will be in-
vestigated. Under such a scheme, search branches could run on separate agents,
without the group controller, and heuristic selection capability would be derived
from individual agent experience rather than the average of all experiences.

5.2 Further Work

Several issues arose during this research and we are investigating several options
to improve the performance and generality of our approach.

Firstly, a set of low-level heuristic precursors could be added to the scheduler.
These would be used for building low-level heuristics automatically, by providing
information on which parts of the schedule need to be tackled, and good ways to
tackle them. The scheduler can use these precursors or the low-level heuristics
that are provided by the problem provider. Two low-level heuristic classes have
been discussed, intensification and diversification. A third group, conditioning
heuristics, will be investigated. These aim not to improve the solution directly,
but rather to create a state from which others can then generate an overall
improvement.

Secondly, it seems fair to say that the best source of information in problem
solving, other than that provided within the algorithm, is information collected
while solving it. For our general scheduler, we intend to make available infor-
mation such as the contribution to overall fitness of individual assignments in
the solution and individual terms in the fitness function, and data on the times
at which changes were made. This will make the search process more effective,
by allowing heuristics to be selected based on their ability to improve specific
features of a solution, and to target specific solution characteristics. Just as im-
portantly, it ensures that heuristics are generally selected only when the current
solution has characteristics that they can expect to resolve.

We have found a problem at the crossover between feasible and infeasible
solutions when using a single choice function. Because infeasible components
generally have high contributions to the fitness function, a heuristic that reaches
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a feasible solution receives a high performance score, causing repeated calls to
the same heuristic for a long consecutive period afterward. When the heuristic is
ineffective in the feasible region, this can be inefficient. We propose a multi-level
hyper-heuristic in solving this, with a top-level controller selecting from a set of
hyper-heuristics based on solution feasibility and strategy. These hyper-heuristics
then choose suitable low-level heuristics for the specific situation. This makes the
decision-making process in the search more explicit, and allows heuristics to be
designed in the knowledge that they would be used at appropriate times. This
would also make the selection of low-level heuristic against the constraint group
more effective. The long-term influence of previously applied low-level heuristics
on current ones will also be examined. This extends the idea of performance met-
rics for pairs of heuristics to sequences of arbitrary length, potentially improving
the efficiency of the selection process, especially for conditioning heuristics.

Finally, we noticed that in the parallel implementation, preserving one branch
for sub-optimal solutions generated by diversification heuristics proved essential
in avoiding stagnation at local minima. We will further this study to adjust adap-
tively the number of diversifying branches: for example, to see if machine learning
can be used to predict search trends to help the scheduler to balance the intensifica-
tionanddiversificationphases.Anautonomous agent approachwillbe investigated
to see whether having an independent decision-making mechanism on every pro-
cessor helps increase overall performance. Apart from getting closer to the global
optimum, the scalability of the algorithm would also increase. We will also investi-
gate howparallelprocessing can improve the searchprocess,by avoiding premature
convergence and strategically applying methods for escaping local optima.
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Abstract. When a train arrives at a station, it often stops for some time
before continuing, giving rise to a window of relief opportunities (WRO),
during which the train may be handed over between drivers. Incorpo-
rating these windows into the scheduling model may help improve the
robustness and efficiency of driver schedules. However, if it is formulated
as a set covering problem, the incorporation of WROs would cause the
resulting model to be too big to be solved in realistic times with current
technology.

In this paper, we propose a combined integer programming and lo-
cal search approach. In the first step, WROs are approximated, and the
problem is solved using integer programming. Using the solution thus ob-
tained as a starting point, WROs are restored and a multi-neighbourhood
local search algorithm takes over. We also investigate the possibility of
deriving a new set of approximations from the local search solution, and
loop back to the integer programming phase.

The algorithm is tested using real-life data from a large rail network
in Scotland, producing improved, operational schedules for this network.

1 The Driver Scheduling Problem

Driver scheduling (also known as run cutting) is the problem of determining the
composition of a set of driver shifts (a schedule) for a day’s transport operation
requiring coverage by drivers. Shifts are in turn formed by spells, which are
sections of continuous work on a vehicle. The main objective is to minimise the
operational cost of the schedule (usually measured either in number of shifts,
total payable hours, or a combination of both). Driver scheduling can be seen as
the third process in transport operations planning, coming after route/timetable
planning and vehicle scheduling, and before driver rostering. We will concentrate
in this paper on train driver scheduling. Instance input information includes
vehicle diagrams or blocks, which specify the work to be covered, some description
of the network (nodes, walking and/or taxi passenger travel times, etc.), labour
agreement rules (which govern the formation of shifts, and are usually quite
complex), and other time allowances and schedule constraints, e.g. capping the
number of drivers at a small depot [7].

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 71–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



72 I. Laplagne, R.S.K. Kwan, and A.S.K. Kwan

Although the main objective is usually centred on efficiency, in the last few
years there has also been increasing interest in enhancing the capability of
schedules to recover from irregularities in operations; more specifically, sched-
ules should assist in avoiding, as much as possible, the propagation of delays.
Measures of enhancing schedule robustness could be incorporated into the prob-
lem either through constraints or as penalties in the cost function. Most of the
work on robust schedules has been done in the area of air transportation. Ehrgott
and Ryan [2] introduce a bicriteria framework (considering cost and robustness
as separate objective functions), and an algorithm to obtain Pareto optimal so-
lutions from this model. A discussion of the trade-off between robustness and
efficiency can be found in [1].

1.1 Generate and Select (GaS)

Generate and Select is possibly the most widely adopted approach to solve the
driver scheduling problem. GaS consists of two main steps. In the generation
phase, GaS builds a (very large) set C of candidate shifts. These shifts satisfy
all the constraints specified in labour agreement rules. Usually, some constraints
such as minimum spell length are added to limit the size of C; note that these
constraints are artificial, in the sense that they are not needed to properly de-
scribe the problem. In the selection phase, a minimal cost subset S ⊂ C such
that all vehicle work is covered is selected to form a schedule. The problem is
thus effectively formulated as an (ILP) set partitioning problem, where shifts
are sets of pieces of vehicle work and a legal schedule is a set of shifts that
covers all vehicle work. In practice, however, a set covering formulation is used
instead; this allows for a piece of work to be covered by more than one shift (i.e.
overcover), which usually makes finding feasible solutions easier.

The ILP model is presented in Equation (1), where n is the number of can-
didate shifts, m is the number of work pieces, xj indicates whether shift j is
selected (xj = 1) or not (xj = 0), cj is the cost of shift j, and aij is 1 if and only
if shift j covers work piece i. W1 and W2 are used to balance the different objec-
tives. Some domain-specific constraints will appear as extra constraints to the
model; for example, the number of drivers at a specific depot k can be capped
with a constraint

∑
j∈Sk

xj ≤ bk. Many constraints governing the validity of
shifts (including the artificial constraints described earlier) are not explicit in
the model, but rather implicit in the generation of the set of candidate shifts:

min W1

∑n
j=1 cjxj + W2

∑n
j=1 xj

s.t.
∑n

j=1 aijxj ≥ 1 , 1 ≤ i ≤ m ,

xj ∈ {0, 1} , 1 ≤ j ≤ n .

(1)

1.2 Windows of Relief Opportunities

Vehicle runs range from a few hours to eighteen or even more hours. This means
that more than one driver may be needed to cover a single run of vehicle work.
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Drivers can only be relieved at particular <location, time> pairs; these are
called relief opportunities (ROs). In the context of train driver scheduling, relief
opportunities happen almost exclusively at train stations or at depots. We will
say that a relief opportunity is active in a schedule if a driver relief takes place
at that RO in the schedule; otherwise we will say that the RO is inactive.

When a train arrives at a station, it often stops for some time before con-
tinuing. We call these windows of relief opportunities (WROs). The attention
of a driver may be required throughout the train’s stay at the station platform.
Sometimes a train may be allowed to be unattended by immobilising it on arrival
and mobilising it again before departure, in which case the driver getting off the
train does not have to wait for the driver getting on to arrive. However, these
activities take time and it might not be worth the trouble unless the stoppage at
the station is significantly long. Although WROs exist, they are usually simpli-
fied in driver scheduling as a single <location, time> pair, using the train’s
arrival time at the station.

1.3 Modelling WROs

The three main motivations of incorporating WROs into the scheduling model
are as follows.

– It enriches the scheduling model. Information such as window length or atten-
dance constraints, for example, allows users to better describe the real-world
situation.

– More efficient schedules can be obtained. Given an instance I of the schedul-
ing problem, the solution space of a model for I which contemplates WROs
is a superset of those of its “approximated” counterparts, and thus the op-
timal solutions in the former model are always better than or equal to those
obtainable in the latter.

– Robustness can be enhanced. Although this could be thought of as a special
form of cost reduction, it is especially important per se, because windows
provide for a very specific way of creating buffers, thus helping avoid the
cascading of delays. Figure 1 shows an example where a time window is used
to create a 3-minute buffer for driver S2. Suppose the WRO is such that
the train must remain attended, and S1 is to take work on another vehicle
after being relieved from vehicle A by S2. Because there is a three-minute
period in which both S1 and S2 are covering the window, S2 can begin its
spell on vehicle A up to 3 minutes late without causing any disruption to
the execution of S1. Had this WRO been modelled as a single <location,
time> pair, there would have been no opportunity to consider the creation
of this buffer.

2 Expanding the Scheduling Model

We want to expand the scheduling model, incorporating WROs as compre-
hensibly as possible. WROs could be modelled by a discrete set of contiguous
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S1

S2

vehicle A

10-min

time window

Fig. 1. An example on how WROs can be used to enhance robustness

vehicle A

10-min
time window

legal spell s

new legal spells obtained
if the window is considered

Fig. 2. Combinatorial explosion in the number of shifts when incorporating time win-
dows into the scheduling model. Spells which are legal in the non-windowed model
usually give rise to many new legal spells if a WRO on one of its ends is expanded.

<location, time> pairs, e.g. at each minute within the time window. In GaS,
however, this would result in a combinatorial explosion in the number of legal
shifts, which in turn would make the selection phase impracticably long. To il-
lustrate this problem, consider Figure 2. Suppose s is a legal spell on vehicle
A. The right end of the spell is marked by the presence of a 10-minute WRO,
which in a non-windowed formulation is approximated by its arrival time. Now,
if we expand the time window as explained before, 10 new ROs will be added.
Because these new ROs are so close to the original one, it is very likely that
changing the end-RO for spell s to any of the new ROs will result in a new legal
spell. This means that there exist 10 new legal spells now. The combinatorial
nature in which spells are mixed to form shifts adds up to create a huge new set
of valid shifts.

2.1 A Two-Phase Approach to the Expanded Scheduling Problem

To overcome the difficulties presented while extending the scheduling model, we
propose a two-phase scheme. In the first phase, GaS is run on an approximated
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0.
generate a set A of approximations for the WROs in the set of
vehicle blocks B (using arrival times)

1. run Generate and Select on the model approximated by A,
obtaining a schedule SGaS

2. run Local Search on an extended (i.e. non-approximated) model
for B, with initial solution SGaS , to obtain an improved solution SLS

Fig. 3. The proposed two-phase approach

(i.e. non-windowed) model of the problem, yielding a solution SGaS. After that,
windows are restored to the model, and a local search phase is run, using SGaS

as the initial solution. The approach is illustrated in Figure 3. It is worth noting
that:

1. to obtain the initial set of approximations for the time windows, arrival times
are used; this is consistent with preferred practice, as already mentioned;

2. because the solution set of the windowed model is a superset of any ap-
proximated model, SGaS is naturally a feasible solution for the expanded
(windowed) scheduling model, and thus can be safely used as an initial so-
lution for the local search phase.

2.2 The Local Search Phase

The choice of a local search method for the second phase of our proposal is quite
natural, because we want to exploit the fact that we already have an algorithm
to obtain near-optimal solutions for the approximated model (TRACS, see Section
2.3). But, in addition, local search happens to be complementary to GaS in other
areas. Essentially, local search is not restricted to the set of shifts generated by
GaS (as the selection phase in GaS is). We exploit this fact in two ways. First,
moves can work at a piece-level (i.e. the atomic unit on which spells and shifts
are built upon). Second, it is usually the case that GaS is provided with certain
parameters to restrict the size of the resulting pool of shifts; a typical example is
restricting the length of spells. These parameters need not be enforced during the
local search, allowing it to use shifts which would be deemed illegal during the
generation phase of GaS, even under an approximated model. This adds another
way of achieving improvements in the schedule, which is actually independent
of the introduction of windows to the model.

The Moves. Apart from any moves that may be applicable to the non-windowed
scenario, special consideration must be put in the way in which windows can be
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S1

S2

S1,1 S1,2

S2,1 S2,2

S′
1

S′
2

S2,2S1,1

S2,1 S1,2

Fig. 4. Example of a move: spell swapping. S1 is a shift with two spells S1,1, S1,2;
S2 is a shift with two spells S2,1, S2,2. Dotted lines represent non-driving periods.
First, spells S1,2 and S2,2 are swapped (move-specific perturbation). Then, ROs that
are relevant to the perturbation just performed are inspected for optimal relief times
within WROs.

exploited. Our first idea was to design some window-related moves, along with
some other moves for the non-windowed problem. However, we realised that win-
dows could be exploited in practically every move that we could think of for the
non-windowed version. Therefore, in our approach, a move is a composition of
two steps. The first step is a specific perturbation to a subset of the shifts of
the current schedule. The second one is a generic procedure that, given a set R
of (active) relief opportunities, analyses the possibility of altering the times at
which reliefs take place inside any windows that may belong to R. Each move
selects this set R according to the characteristics of the perturbations it has per-
formed on the first step. For example, if a move splits a shift into two shifts, the
second phase will probably receive a set that consists of the relief opportunities
happening at the ends of those two new shifts. An example of this two-step way
of implementing a move can be seen in Figure 4. After the specific perturbation
(in this case, a spell swap) is performed, the relief opportunities delimiting the
gaps between the new spells are chosen as the set R to be passed to the window-
evaluating routine (these are shown with arrows in the figure). The routine will
test retiming the relief inside any window that may exist at those ROs, generat-
ing different sets of candidate shifts from S′

1, S′
2, which only differ in the relief

times inside windows in R. Eventually, the best of these options will be chosen
as the new solution.

The validity of schedules is governed by shift-level and schedule-level con-
straints. An example of the former is the maximum shift length; an example
of the latter, the number of part-time shifts in relation to the total number of
shifts in the schedule. Since a move is basically a perturbation of a subset of
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shifts of the current solution, shift-level constraints need only be checked for
shifts that have been perturbed.1 However, dealing with real-life train driver
scheduling implies that the resulting shifts must adhere to a large and complex
set of labour agreement rules. This makes the task of assessing the feasibility
of a potential shift hard. In our implementation, the local search interfaces in a
black-box fashion with existing checking routines that are used in the genera-
tion phase of the GaS solver, guaranteeing that shift-level constraints are treated
consistently throughout the whole procedure. It is worth noting that the relief
retiming trials in the second stage of a move may not only decrease the cost
of a solution, but also turn an infeasible solution into a feasible one. Therefore,
candidate solutions are not checked for validity during the first step of the move,
but rather for each possible combination of relief timings inside the set R of ROs
derived by the move.

Moves Implemented. We designed a two-level hierarchy for moves. L0 moves
are atomic moves, i.e., they do not resort to other moves to perform the pertur-
bation.

– Retiming of a relief inside a time window. In the first phase, an (active)
WRO is selected. In the second phase, all possible retimings of the relief
inside that window are evaluated.

– 1-point crossover. Two shifts are selected. One relief opportunity (windowed
or not) is selected on each shift. The portions of the shifts to the right of those
ROs are exchanged (if certain basic checks are satisfied). Because selected
ROs are not necessarily placed at spell boundaries, this move can in effect
break existing spells. Also, if the shifts share an RO, it is possible to select
this RO as the crossover point. In this case, the so-far active RO becomes
inactive after the exchange. In the second phase, ROs selected as crossover
points are tested for relief retiming.

– Transfer of spells and pieces of work. Individual spells or pieces of work can
be transferred from one shift to another. Begin and end ROs of the spell
or piece transferred are tested for relief retiming in the second phase of the
move.

Some of the L0 moves we use were originally developed by Shen [8] and Shen
and Kwan [9] for a simplified version of the problem.

L0 moves are used or combined into L1 moves. Some of these moves are high-
level, requiring perhaps a sequence of many L0 moves to be called; for example,
“shift dismembering” is an L1 move in which a procedure systematically tries to
transfer every piece of work in a shift to other shifts in the schedule. Other L1

moves are aimed at avoiding the cost of calling L0 moves which we can predict
will generate infeasible solutions, and instead only calling L0 moves for which
certain checks are satisfied. Therefore, although the feasibility of a shift is tested
with external, black-box-like checking routines, some domain-specific knowledge
is incorporated into the local search for efficiency reasons.
1 This may include shifts which were not initially selected by the move, but which

took part in a relief retiming in the second step of the move.
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Finally, the overall driving scheme (what we call an L2 move) is quite sim-
plistic at the moment. Several loops of sequential calls to L1 moves are tried,
sometimes combined with conditioning phases (see next section). At the mo-
ment, we are using the disposition that experimentally showed the best results.
We are investigating more intelligent and adaptive ways of doing this.

Conditioning. All the moves described above are called with the intention of
decreasing the cost of the current solution; therefore, new solutions are accepted
only if the cost is decreased (or, under certain circumstances, not increased).
This may lead the local search to quickly stagnate in a local optimum. Meta-
heuristic approaches like Tabu Search [4] or Simulated Annealing [5] attempt to
alleviate this problem by accepting certain cost-increasing moves; however, those
approaches leave the cost function and (to a certain extent) the neighbourhoods
unchanged.

We want to be more proactive in guiding the local search to good areas, and
away from local optima; more specifically, we intend to favour certain structural
properties in the solutions, which intuitively could lead the local search to better
final solutions. As an example, short-spreadover shifts might be easier to “dis-
member” into other shifts; if the cost function is based on the number of shifts
in the schedule, having a schedule with many short-spreadover shifts could make
the task of reducing the number of shifts in the solution easier. The way we
favour the appearance of these properties is by temporarily changing the cost
function with which the local search is conducted. We call these the conditioning
phases.

We investigated favouring two different properties:

1. Generate short-spreadover shifts. For that purpose, the cost of a move (which
is a perturbation to a subset Sm ⊆ S of shifts) is the decrease in the minimum
spreadover of Sm (mins∈Sm spreadover(s)), relative to the original minimum
spreadover in Sm before executing the move.

2. Generate long inter-spell gaps of non-work time, which may increase the
chances of adding new work to the shifts in those gaps, and also of performing
some spell-swapping moves that were previously infeasible. For that purpose,
the cost of a move is defined to be the increase in the maximum inter-spell
gap of Sm, relative to the original maximum inter-spell gap in Sm before
executing the move.

The first criterion produced better results than the second. Overall, this way of
alternating between conditioning and non-conditioning phases has the inconve-
nience that moves executed in one phase may be later undone by moves made on
the following phase, because different, often conflicting, cost functions are used
in each phase. In our experience, it is quite complex to tailor the specific moves
and cost functions to stop this from happening. Instead, it might be better to
adopt a more general solution, borrowing from the concepts of the tabu list and
aspiration criteria in Tabu Search.



A Hybridised Integer Programming and Local Search Method 79

Table 1. Results of the GaS+LS approach for a real-life instance. Two variants of the
hybridised method were analysed: in the first one, the artificial constraints introduced
by the GaS model are enforced during the local search phase; in the second one, they
are removed.

Artificial constraints GaS GaS + LS Improvement

Not relaxed 459.48 h 458.13 h −0.34%
Relaxed N/A 455.18 h −0.98%

2.3 Experiments

The algorithm was tested using real-life instances from the Scottish train opera-
tor Scotrail. A typical instance contains around 1,000 relief opportunities, which
under the usual set of constraints (including the artificial ones) results in a pot
of around 170,000 candidate shifts generated during the execution of GaS.

We used TRACS as the GaS solver. This is a commercial package developed
over the last 30 years by the University of Leeds, which is currently being used
by 30 transport companies in the UK [6], [10], [3]. Through extensive testing
by experienced schedulers in the transport industry, TRACS solutions have con-
sistently produced solutions at least as good, most often better, than the best
known solutions. Hence, TRACS’ solutions are regarded as near-optimal in this
paper. The solutions obtained after the local search phase adhere to all operating
rules as defined by the operator for its scheduling exercises.

Schedule Cost. We first analysed the potential of the new approach for reduc-
ing the cost of a schedule. Results for a sample run are shown in Table 1. For an
average train operator, a 1% cost reduction in the drivers schedules would mean a
saving of several hundred thousand pounds per year. The improvements obtained
are thus considerable for train operators, especially given the near-optimality of
the initial solution (on the approximated model).

Schedule Robustness. WROs could play a very important role in increasing
schedules’ robustness. Interaction with schedulers has allowed us to identify some
aspects of a schedule that are key to enhancing its capability of absorbing delays
that may occur during operation. We have defined two such indicators.

1. Slack is the unproductive time during signing on, mealbreak or joinup. Slack
occurs naturally in a schedule; it might be added to a shift so that it conforms
to some labour union rules. Moreover, slack in a shift could be used to
absorb some delay when it occurs. The scheduler has to strike a balance
between producing a cost-efficient schedule and adding enough slack so that
the schedule meets robustness criteria.

2. When a train is so delayed that the slack in the driver’s shift is unable to
absorb it, a pragmatic way which a train crew manager would employ is to
switch an available driver, say d, at the same location to take over the next
train that the delayed driver was due to take on. This way the train driver
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Table 2. Results of the GaS + LS approach for a real-life instance, using measures of
robustness in the LS phase. Both total slack and number of swap opportunities could
be increased, at no extra cost in the schedule.

Measure of robustness SGaS After LS Improvement

slack 1,604 1,648 2.74%
swapOpp 6 8 33.33%

can be relieved and have his/her legal break, and then take on the train that
was originally assigned to d. We refer to this as a swap opportunity.

To test the capability of our approach in tackling robustness, we translated
these two measures of robustness into separate cost functions: given a schedule
S, slack(S) computes the total minutes of slack in S, and swapOpp(S) computes
the number of swap opportunities in S. Let c(S) be the original cost function
related to the number of shifts and total payable hours in S. Then, the GaS
phase is still executed using c as the cost function, generating a solution SGaS .
The local search phase, however, is now driven by one of the new, robustness-
related cost functions. It is likely that train operators will want to balance cost
and robustness in a schedule. For these initial tests we decided to force the local
search to guarantee that every solution obtained during its execution is as cost-
efficient as the starting solution, SGaS ; this was achieved by adding a constraint
c(S′) ≤ c(SGaS), where S′ is any candidate solution being considered during the
local search phase.

Results for experiments on the same data used in the previous tests are pre-
sented in Table 2. These suggest that both measures of robustness can be in-
creased by using our approach, with no additional cost to the schedule.

3 Looping Back to GaS

3.1 Motivation

The final step in the approach proposed in Section 2.1 is a call to a local search
phase, which produces a schedule SLS. Now, even if the schedule was generated
on the extended, windowed model, all driver reliefs in SLS happen at precise time
points. Therefore, SLS is also a solution for a particular approximated model
ALS , namely that obtained by approximating all windows of relief opportuni-
ties by the times at which the reliefs are taking place in SLS (inactive WROs
are approximated by their arrival times). If cost(SLS) < cost(SGaS), it can be
argued that ALS is a better approximated model than the one derived from A,
which was used in the GaS phase.

The GaS approach has been very good in solving approximated models; in par-
ticular, TRACS is being successfully used by transport operators for their schedul-
ing tasks. Therefore, if restricted to an approximated model, it may happen that
GaS/TRACS can perform better than the local search we have implemented. It
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0.
set i := 1; generate a set A1 of approximations for the WROs in
the set of vehicle blocks B (using arrival times)

1.
run Generate and Select on the model approximated by Ai,
obtaining a schedule SGaS

i

2a. run Local Search on an extended (i.e. non-approximated) model
for B, with initial solution SGaS

i , obtaining SLS
i

2b.
generate a new set of approximations Ai+1 for the windows in B,
based on the active relief opportunities in SLS

i

2c. set i := i + 1; go to step 1

Fig. 5. The loop-back version of the algorithm: a new set of approximations Ai+1 is
generated from the solution SLS

i obtained in the last call to local search, and fed back
to the GaS solver

may thus be wise to attempt solving the problem for the approximated model
ALS using GaS. Once this first loop-back to GaS is established, it is natural to
consider extending the idea to running GaS and local search in a loop, iterating
until no further improvement is achievable. The algorithm is presented in the
following section.

3.2 A Loop-Back Version of the Algorithm

The loop-back version of the algorithm is presented in Figure 5. Again, an ini-
tial set A1 of approximations is generated using the arrival times. GaS and local
search phases are then carried out in sequence. In step 5, a new set of approx-
imations Ai+1 is generated according to the times at which reliefs are taking
place inside windows in SLS

i , and the GaS+LS loop starts again with this new
set of approximations.

3.3 Experiments

We present two sets of experiments on the loop-back mechanisms to GaS. These
provide initial evidence that the approach is viable, pointing out at the same
time the main issues arising when implementing such a scheme.

One: Unconstrained GaS Phases. On the first set of experiments, the only
information derived from the local search phase for the next call to GaS is that
of the next set of approximations Ai+1. We call these unconstrained experiments,
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Fig. 6. Unconstrained experiments for the GaS+LS loop. The x-axis shows the number
of iteration of the loop; the y-axes show two measures of cost, number of shifts and
payable hours. The objective is to first minimise the number of shifts, and then the
total payable hours.

because even if we know that solutions with specific cost values exist (we obtained
them on the local search phase), we don’t force GaS to equal or better those costs.
The results of a typical run are shown in Figure 6.

As shown in the figure, the behaviour of the loop is erratic. Since the local
search is set to accept only cost-decreasing solutions for these experiments, it
is intuitive to expect that the overall behaviour of the cost function during the
loop is decreasing. The reason why this is not reflected in the actual results is
that the GaS solver is not an exact algorithm, and some heuristics are built into
it to speed up the CPU times; for example, with the default settings the branch
and bound phase will stop as soon as it reaches a “good enough” solution, which
might not be the best that can be achieved if all branches are explored. It is
still interesting to see that, even with these settings, the loop has been able to
generate better solutions (iterations 9 and 10) than the one obtained on the first
iteration. This supports the intuition that considering time windows would lead
to more efficient solutions.

Two: Constrained Schedule Size on GaS Phases. For the second set of
experiments, we added a hard constraint on the calls to GaS, specifying that the
number of shifts in the final solution must not exceed the one obtained in the
previous call to the local search. The results are shown in Figure 7.

The results show that GaS now enforces the max-schedule-size condition.
However, since there was no constraint issued on the total payable hours, the
behaviour on that component of the cost is still erratic. It is easy to think of
different ways of further constraining the GaS phase to control its behaviour. As
an example, we tried adding a constraint on the total payable hours; however,
this seemed to render the solver unable to find a feasible solution. At the time
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Fig. 7. Cost-constrained experiments for the GaS + LS loop: schedule size and total
payable hours vs iteration number. While the constraint on schedule size succeeds in
controlling the upper limit on size, the end result is worse than the one obtained when
the constraint was not enforced. The algorithm is erratic when dealing with payable
hours.

of writing this paper, we do not have a final explanation for this. However, we
can think of several possible reasons for this, including:

1. The local search solution is present at some node of the branch-and-bound
tree, but a limit on the number of nodes to expand prevents the algorithm
from finding it; this limit is currently set to 5,000 nodes.

2. Because the GaS solver we are using includes a preprocessing phase, in which
some relief opportunities deemed not useful are taken out of the problem,
it may happen that the solution found in the local search (and every other
solution with equal or better cost) is actually left out of the solution space
considered by the branch-and-bound phase (no matter how many nodes are
visited). Forcing TRACS to consider all ROs is not viable, because of the
resulting increase in problem size.

3. Because the generation phase is artificially constrained to restrict the number
of shifts generated, it might happen that some of the shifts in the local search
solution are not available to the next phase of GaS. We can circumvent this
problem by explicitly adding those shifts to the pot available for the selection
phase; in fact, the choice of shifts to add is not restricted to those in the
final schedule SLS

i , but could also include shifts generated during the search
process.

The reasons just described are quite independent from each other, and therefore
it is possible that we have to tackle all of them before being able to get GaS
to always find a solution that is better than or equal to the one obtained in
the previous call to local search. However, tackling any of them would involve
relaxing some heuristic rule which was originally added to make the execution
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time of the GaS phase feasible. This means that we must be intelligent in how
to relax them, the way we solved the third problem being an example of that.

4 Conclusions

The experiments conducted in this paper suggest that a local search approach
is capable of overcoming the limitations of the Generate and Select approach
on an extended scheduling model, which fully incorporates windows of relief
opportunities. We have developed different algorithms which show that cost
improvements can be achieved; we also show that there is room for enhancing
the robustness of the schedules. Better models need to be built to analyse the
how cost and robustness can be tackled at the same time.

There are many open areas, which are subject to further research. The local
search phase should be less conservative; on the other hand, constraints on shift
structure mean that generating feasible perturbations of the current solution
(schedule) may be a hard task. These two observations suggest that it could be
useful to accept infeasible intermediate solutions. We are currently working on
the application of repair heuristics, with two specific purposes: to measure how
“far” an infeasible solution is from the feasible region, and to provide a way to
cost feasible and infeasible solutions alike. The problem of cycling when including
conditioning phases must also be properly studied. While the test instances used
did not contain schedule-level constraints, more of them should be handled by
the local search phase in order to make this a general-purpose tool.

The loop-back version of the algorithm is still quite basic at this point, and our
intuition is that much better results might be obtained with the right algorithms.
These should be centred on better exploiting the information gathered during
a local search phase for the next call to the GaS phase, which may include
new shifts generated during the search, information about relief opportunities
that were instrumental in producing cost improvements, etc. Feasible solutions
obtained during the LS phase could even help in pruning the branch-and-bound
tree on the following call to GaS.
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Abstract. Service network design is critical to the profitability of ex-
press shipment carriers. In this paper, we consider the problem of de-
signing the integrated service network for premium and deferred express
shipment delivery. Related existing models adapted to this problem are
intractable for realistic problem instances, requiring excessive computer
memory and solution times. We extend existing models and introduce
a new approach to solve the resulting integrated service network design
model. Our approach results in order or magnitude reductions in the
numbers of variables to be considered in the integer program, allowing
us to solve previously unsolvable problem instances. Applying our ap-
proach to the service network design problems of a large express package
service provider, we demonstrate the potential for tens of millions of dol-
lars in annual operating cost savings, and reductions in the numbers of
aircraft needed to perform the service.

1 Introduction

In 1998, UPS generated revenues of $7.1 billion in domestic, air-express shipment
service [12]. In 2002, the revenue of UPS’ air-express shipment service grew by
more than 15%, to about $8.2 billion [12]. Many Wall Street analysts attributed
UPS’ revenue growth and gain in market share to its emphasis on operating effi-
ciency [10]. Efficient operations give a carrier a decisive competitive advantage,
allowing the carrier to price its service more aggressively and gain market share,
or use the cash flow generated to make further advantageous investments.

Given the high-revenue and low-operating margins of air express shipment
service, even a single-digit percentage reduction in operating costs translates to
a significant increase in profitability. Because service network design is at the
core of express shipment delivery, it is a critical element in achieving operat-
ing efficiency. In this paper, we develop optimization models and algorithms to
facilitate the design of cost-minimizing express shipment service.

1.1 Problem Description

Express shipment carriers operate transportation equipment, including both air-
craft and ground vehicles, and fixed facilities, such as hubs, to serve customer
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Fig. 1. Express package service operations

pick-up and delivery requests within tight time windows. Figure 1 depicts a
partial express shipment delivery service network. Typically, packages are trans-
ported by ground vehicles to ground centers, or more specifically, origin ground
centers. A ground center can serve as both an origin and a destination ground
center, depending on whether the operation is a pickup or delivery. A ground
center is usually associated with a city, although there might be several ground
centers for a large city. After packages arrive at the origin ground center, an
origin sort is conducted to determine the routing for each package based on
its destination and a pre-specified package service plan. Although there are ex-
ceptions, the shipment is transported to a gateway (that is, an airport) either
by a ground vehicle or a small aircraft. Packages at gateways are then loaded
onto jet aircraft and transported over a pickup route to a hub. Upon arrival at
a hub, packages are sorted, consolidated by destination, and loaded for delivery
along delivery routes to final destination gateways. At the destination gateway,
packages are offloaded onto ground vehicles or small aircraft and transported to
their respective destination ground centers. At the destination ground center, a
destination sort is conducted, and packages are loaded onto ground vehicles for
final delivery.

Carriers usually offer different levels of service and charge higher premiums
for higher levels of service. The level of service is characterized by the time
from pick-up to delivery. For example, UPS offers both next-day and second-day
services. For shipments picked up on a given day, next-day service has guaranteed
delivery by the early morning of the next day, typically before 10am, and second-
day service has guaranteed delivery by the end of the second day. For both
services, the full premium is refunded to customers if delivery is not made on
time [13].
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Operations for different services are similar, with the same equipment and
facilities used, although at different times. More specifically, the same aircraft is
used to deliver next-day shipments during the night and second-day shipments
during the day. Although next-day and second-day operations are performed
sequentially, the two services are linked. Fleet position as a result of the pickup
and delivery operation of the next-day operation affects fleet position and costs
associated with the second-day operation, and vice versa. In the carrier’s current
practice, because of problem size and complexity, tactical planning for next-day
and second-day services is done sequentially, solving two independent problems,
one for next-day and another for second-day service, with fleet position fixed
in the second problem based on the results of the first. Planning next-day and
second-day services simultaneously, that is, considering the integrated next-day
and second-day problem, is the focus of the research we describe in this paper.

1.2 Contributions and Paper Outline

The contributions of our research include:

– Designing a solution methodology to solve the integrated next-day and
second-day express shipment service problem. Because existing approaches
are intractable for large-scale problems, we introduce a new approach that
allows us to solve previously unsolvable problem instances. In addition to
its relevance to express package delivery, our approach can also be applied
to other problem types, including multi-commodity flow problems and crew-
scheduling problems, to reduce model size and improve solution speed; and

– Demonstrating the efficacy of our approach on problem instances provided
by a large U.S. carrier. Our results indicate that tens of millions of dollars
in annual operating costs can be saved, with even greater potential savings
in aircraft ownership costs and hub set-up and maintenance costs.

In Section 2 of this paper, we present our modeling approach for the inte-
grated next-day and second-day express shipment service design problem. Then,
in Section 3, we detail our solution approach involving decomposition and col-
umn generation. In Section 4, by applying our approach to data representing
the integrated next-day and second-day express shipment operation of UPS, we
demonstrate the scalability and practical significance of our work.

2 Modeling the Integrated Next-Day and Second-Day
Express Air Service Problem

The integrated next-day and second-day express shipment service problem of
a large U.S. carrier is to determine a cost-minimizing service network design
for next-day and second-day operations simultaneously. Costs are incurred for
aircraft operation (including ferry flights), ground vehicle operation and package
handling. Ferry flights represent the repositioning of empty aircraft, usually to
increase aircraft productivity. Aircraft operating cost includes two components:
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1. block time cost including crew and fuel costs resulting from operating a flight
leg;

2. fixed cycle cost incurred on each flight leg, typically including the landing
fees and other one-time charges.

Ground vehicle operating costs, largely based on the distance traveled, are much
smaller than aircraft operating costs, and hence, we consider them to be zero.
Package handling cost also includes two components: a cost based on block time
and a fixed handling cost. Block time cost is a proxy for the marginal fuel cost,
and handling cost largely includes the package handling cost at ground centers
and hubs. Package handling costs are insignificant compared to aircraft operating
costs, and hence, we consider them also to be zero.

The shipments for each origin–destination pair must follow a pre-defined
service plan specifying the origin and destination gateways, and the hub at
which the packages will be sorted. Given this, we aggregate shipments by origin-
gateway–destination-gateway pairs, referred to as origin–destination (O–D)
commodities or origin–destination volumes hereafter. We consolidate O–D com-
modities originating from the same gateway and assigned to the same hub into a
single gateway–hub demand, defined as the pickup demand for the gateway–hub
pair. Similarly, we consolidate O–D commodities destined to the same gateway
and assigned to the same hub into a single gateway–hub demand, defined as the
delivery demand for the gateway–hub pair. We assume all demands are deter-
ministic.

In addition to serving all demands within specified time windows, express
shipment service network design is subject to a number of restrictions, including:

1. Conservation of aircraft at gateways and at hubs: the number of arriving air-
craft of a specified type must equal the number departing, for each location;

2. Airport capacity: the number of aircraft arrivals at a hub cannot exceed the
number of aircraft parking spots at the hub;

3. Aircraft count: the number of aircraft of each fleet type used must not exceed
the available number;

4. Aircraft capacity: the packages assigned to each aircraft cannot exceed the
aircraft capacity; and

5. Hub sort capacity: the packages routed through a hub must not exceed its
sort capacity.

Various forms of the express shipment service network design problem have
been studied. Grünert and Sebastian [5] identify planning tasks faced by postal
and express shipment companies and define corresponding optimization mod-
els. Leung and Cheung [9] propose models for the ground distribution network
design problem. Kuby and Gray [8] consider the limited capacity, single-hub
problem and apply the formulation to a case study involving Federal Express’
west-coast hub. Barnhart and Schneur [2] present a formulation for the uncapac-
itated single-hub problem and Kim et al. [6], Krishnan et al. [7] and Armacost
et al. [1] consider a capacity-restricted, multi-hub problem with flexible hub
assignment, and conclude that service network design models, containing both
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integer aircraft route variables, referred to as design variables, and continuous
package flow variables, have associated tractability issues. Their corresponding
linear programming (LP) relaxations have solutions that are often fractional and
difficult to transform into good-quality feasible solutions. Armacost et al. [1] re-
port success in overcoming these tractability issues by applying extended formu-
lation techniques that embed package flow decisions within the design variables.
Given this, we address the integrated next-day and second-day express ship-
ment service design problem by adapting the modeling approach of Armacost et
al. and developing a new decomposition algorithm.

2.1 A Daily Model for the Integrated Problem

Figure 2 depicts the service timeline for the next-day operation, assuming pack-
ages are collected on Day 1. Carriers schedule pickup of packages from customers
as late as possible to allow customers sufficient time to prepare their packages.
Hence, packages arrive at origin ground centers in the late afternoon or early
evening. After the origin sort in the evening, packages moving by air service are
transported to origin gateways at night and loaded onto aircraft. From origin
gateways, aircraft are transported along next-day air (NDA) pickup routes and
arrive at hubs in the late night or early morning of the next day. The hub sort
for NDA packages starts around midnight and lasts for 2–3 hours. After the hub
sort, packages are delivered to their destination gateways, and then their des-
tination ground centers, arriving in the early morning of the next day. At that
point, the destination sort occurs at the ground center and packages are loaded
onto ground vehicles and delivered to customers to meet delivery requirements.
The same next-day air operation, starting with air pickup and ending with air
delivery, is repeated each day except Sunday.

The second-day operation is similar to the next-day operation except for
an expanded service time. Figure 2 depicts the service timeline for the second-
day operation, assuming packages are collected on Day 1. At the origin ground
center, the origin sort for second-day packages begins at night after the origin
sort for next-day packages is completed. Then, second-day packages to be trans-
ported via air service stay at the origin ground center overnight, while others
are transported to destination ground centers or hubs via ground service. On
the morning of the next day, second-day packages at origin ground centers are
transported to gateways and loaded onto aircraft that have just completed their
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NDA delivery routes. Aircraft then follow second-day air (SDA) pickup routes,
arriving at hubs before noon. After the hub sort, packages are delivered either
to destination ground centers via ground service or to destination gateways via
air service. In the case of air delivery, aircraft carrying SDA packages arrive at
destination gateways in the evening of Day 2. After SDA packages are unloaded,
aircraft are available to begin their NDA pickup routes. The unloaded SDA pack-
ages are transported to destination ground centers, where they wait overnight
for other second-day packages transported via ground. On the morning of Day 3,
the destination sort for second-day packages begins after the completion of the
destination sort for NDA packages collected on Day 2. SDA packages are then
delivered to customers in the afternoon. Note that compared with the next-day
service, the extended service time allows more extensive use of ground transport.

Although the complete second-day operation spans three days, as depicted
in Figure 3, we can model the SDA operation as a daily problem, that is, the
same operation is repeated daily, because a new second-day operation initiates
each day. We illustrate this concept as follows. In Figure 4, we depict second-day
operations over three days. The number in parentheses at the upper left corner
of each box indicates the starting day of the corresponding SDA operation. We
refer to a second-day operation starting on Day n as second-day operation n.
On any given day n, there are three sets of second-day activities underway, one
set for packages entering the system on Day (n − 2), one set for those entering
on Day (n − 1), and finally, one for those on Day n. In the morning of Day n,
the destination sort for second-day operation (n− 2) is conducted and packages
of second-day operation (n − 1) are transported by air to hubs. Around noon,
packages of second-day operation (n − 1) are sorted at hubs, and then, in the
afternoon, packages of second-day operation (n− 2) are delivered to customers.
Next, in the late afternoon, packages of second-day operation (n−1) are delivered
by air to destination gateways, and packages of second-day operation n are
collected from customers. Finally, in the night, the origin sort for the second-
day operation n is conducted. As is evident in Figure 4, the same air operation
is repeated daily in second-day operations.

By recognizing that the second-day express shipment service operation can be
captured by a single, representative day, we are able to model the integrated next-
day and second-day operation as a daily problem. This allows us to minimize
the number of variables and constraints in our models, and helps to reduce the
challenges associated with solving these very large-scale formulations.
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2.2 Integrated Problem Formulation

Armacost et al. [1] present a new model for express shipment service network
design using composite variables to reduce fractionality of the LP relaxation and
enhance tractability. They define a demand composite to be a set of aircraft
routes providing sufficient capacity to transport all the demand between the
nodes contained in the selected aircraft routes. We illustrate the concept through
a simple example in which we have three units of demand to be transported from
gateway i to hub h. There is a single fleet type with capacity of two units. The
operating cost of each aircraft on the route i to H is 10 units. One possible
composite variable, denoted c, is two aircraft from i to h with cost 20, providing
four units of capacity to transport all three units of demand. Note that one
aircraft from i to h is not a valid composite variable because two units of capacity
is insufficient to serve all the demand from i to h. In conventional network
design models, to ensure that the three units of demand are served, we specify
a constraint

2 y ≥ 3 ,

with variable y representing the number of aircraft selected. The optimal solution
to the LP relaxation is then 1.5 aircraft, with 15 units of operating cost. In
contrast, with composite variables, the condition that all demand must be served
can be specified as

c ≥ 1 .

In the optimal solution to the LP relaxation using composite variables, c
equals one, implying that two aircraft are selected to serve the demand, with a
total operating cost of 20 units. This small example illustrates the improved LP
bound achievable with composite variables.

We apply the demand composite modeling concept to the integrated problem
and introduce the following notation. Let T indicate the type of service: next-
day (denoted N) or second-day (denoted S); and let O indicate the operation:
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pickup (denoted P ) or delivery (denoted D). We define the following additional
sets and variables.

Sets

F set of fleet types.
H set of hubs.
N set of gateways.
CT set of demand composites for NDA (T = N) or SDA (T = S) network.

CT
O

{
set of pickup (O = P ) or delivery (O = D) demand composites for
NDA (T = N) or SDA (T = S) network.

Data

aT
h

{
number of aircraft parking spots at hub h for NDA (T = N)
or SDA (T = S) network.

bih
T,O

{
pickup (O = P ) or delivery (O = D) demand between gateway i
and hub h for NDA (T = N) or SDA (T = S) network.

γr
c number of aircraft routes r in demand composite c.

dc cost of demand composite c, dc =
∑

r∈c γr
cdr.

df
ij ferrying cost for an aircraft of type f ferried from gateway i to j.

nT
f

{
number of aircraft of typef available for NDA (T = N)
or SDA (T = S) network.

γf
c number of aircraft of type f in demand composite c.

γf
c (i)

{
number of aircraft of fleet type f originating at gateway i (or hub h)
in demand composite c.

γf
c (i)

{
number of aircraft of fleet type f destined to gateway i (or hub h)
in demand composite c.

δih
T,O,c=

⎧⎪⎪⎨
⎪⎪⎩

1 if demand composite c covers NDA (T = N) or SDA (T = S)
pickup (O = P ) or delivery (O = D) demand between gateway i
and hub h, and
0 otherwise.

Decision Variables

vc equals 1 if demand composite c is selected, and 0 otherwise.

�T,O
f,i

⎧⎨
⎩

number of aircraft of type f on the ground at gateway (hub) i
during NDA (T = N) or SDA (T = S) pickup (O = P ) or
delivery (O = D) operation. �T,P

f,i = �T,D
f,i , if i /∈ H .

φT,f
ij

{
number of aircraft of type f ferried from gateway (hub) i to j after
the NDA (T = N) or SDA (T = S) operation.

We present the following formulation (INS) for the integrated NDA-SDA
problem:
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min
∑

T={N,S}

∑
c∈CT

dcvc +
∑

T={N,S}

∑
i∈N

∑
j∈N

df
ijφ

T,f
ij (1)

subject to ∑
c∈CS

D

γf
c (i)vc −

∑
c∈CN

P

γf
c (i)vc − �N,P

f,i + �S,D
f,i

+
∑

j∈N ,j �=i

φS,f
ji −

∑
j∈N ,j �=i

φS,f
ij = 0, i ∈ N , f ∈ F , (2)

∑
c∈CN

D

γf
c (i)vc −

∑
c∈CS

P

γf
c (i)vc + �N,D

f,i − �S,P
f,i

+
∑

j∈N ,j �=i

φN,f
ji −

∑
j∈N ,j �=i

φN,f
ij = 0, i ∈ N , f ∈ F , (3)

∑
c∈CT

P

γf
c (h)vc + �T,P

f,h −
∑

c∈CT
D

γf
c (h)vc − �T,D

f,h = 0, h ∈ H, f ∈ F, T = {N, S} ,

(4)∑
c∈CT

P

γf
c vc ≤ nf , f ∈ F, T = {N, S} , (5)

∑
f∈F

∑
c∈CT

P

γf
c (h)vc ≤ ah, h ∈ H, T = {N, S} , (6)

∑
c∈CT

O

δih
T,O,cvc ≥ 1, (i, h) : bih

T,O > 0, T = {N, S}, O = {P, D}, i ∈ N , h ∈ H ,

(7)

vc ∈ {0, 1} for all c ∈ CN ∪ CS ,

�T,O
f,i ∈ Z+ for T = {N, S}, O = {P, D}, i ∈ N ,

φN,f
ij , φS,f

ij ∈ Z+ for i, j ∈ N , i �= j, f ∈ F .

The objective is to minimize the sum of the total NDA and SDA operat-
ing costs and the ferry costs between the operations. Constraints (2) and (3),
the boundary balance constraints, ensure that aircraft at gateways are balanced
between NDA and SDA operations. Constraints (2) require that the number of
aircraft of type f at a gateway (hub) i at the start of the NDA pickup operation
equals the number of aircraft of type f at gateway (hub) i at the end of the SDA
delivery operation, adjusted by the number of aircraft of type f ferried into and
out of gateway (hub) i at that time. Constraints (3) similarly require that the
number of aircraft of type f at a gateway (hub) i at the end of the NDA deliv-
ery operation equals the number of aircraft of type f at gateway (hub) i at the
beginning of the SDA pickup operation, adjusted by the number of aircraft of
type f ferried into and out of gateway (hub) i at the end of the NDA operations.
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Constraints (4) are hub balance constraints that ensure conservation of flow of
aircraft by type at each hub, for both the NDA and SDA operation. The count
constraints (5) limit the number of aircraft of each fleet type selected in the NDA
and in the SDA operation to be no more than the number available. We need
only to specify these constraints for pickup routes because conservation of flow
constraints ensure that aircraft count will also be satisfied for delivery. The land-
ing constraints (6) ensure that the number of aircraft arriving at a hub during
NDA and during SDA operations does not exceed the parking spots available. We
similarly only specify the landing constraints for pickup routes because aircraft
conservation of flow ensures satisfaction for delivery. The cover constraints (7)
ensure that at least one composite is selected to cover each nonzero gateway–hub
demand. Because each demand composite is guaranteed to serve the associated
gateway–hub demands fully, the cover constraints also ensure satisfaction of the
aircraft capacity constraints. Finally, the last set of constraints ensure that the
solution is comprised of a non-negative, integer number of composite variables,
representing a set of aircraft routes, some of which will be flown by more than
one aircraft.

3 Solving the Integrated NDA-SDA Formulation

Populating the INS formulation with all possible variables results in an in-
tractable model: computer memory requirements and solution times are exces-
sive. To address this issue, we use column generation to reduce the number of
columns considered in solving the IP.

In column generation, we maintain a restricted version of the original model,
called the restricted master problem (RMP), which includes only a limited set
of columns. At each so-called master iteration, we solve the RMP to obtain a set
of dual prices. Using this set of dual prices, we can either compute the reduced
cost of each column explicitly, or solve a pricing sub-problem, as in Dantzig–
Wolfe decomposition [4], to identify columns that potentially can improve the
objective value of the RMP. If a problem has a diagonal block structure, pricing
sub-problems can be specified for each block, resulting in simpler sub-problems.
We repeat the process until no column is generated in one master iteration.

In this section, we explore different solution approaches for the INS for-
mulation. We refer to the first approach as naive column generation; a stan-
dard column-generation approach in which demand composite variables with
negative-reduced cost are generated as needed, with restrictions on the num-
ber of variables generated per iteration. In the second approach, referred to as
aggregate information-enhanced column generation, smaller hub pickup or deliv-
ery sub-problems are solved to generate the necessary variables, and a master
column represents the network design for the pickup or delivery operation of
a hub. In the third approach, referred to as disaggregate information-enhanced
column generation, we similarly solve hub pickup or delivery sub-problems, but
each master column represents a demand composite variable, and we partition
the hub sub-problem solution, that is, the solution to the pricing problem, into
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Table 1. UPS next-day air network design problem statistics

Columns 195,009
Rows 3,302
Nonzeros 2,062,466

Table 2. Settings for CPLEX 6.5 MIP solver

Parameter Setting

Backtrack 0.85
Branching direction Up direction selected first
Node selection Best estimate search
Variable selection Based on strong branching
Relative best IP–best bound gap tolerance 0.0001

individual demand composites when adding columns to the RMP. In each of
these solution approaches, we limit column generation to the root node LP re-
laxation, and consider only columns generated in solving the root node LP in
branch-and-bound.

To evaluate these solution approaches, we first apply them to UPS’ NDA
problem only, not the integrated NDA-SDA problem, to gain insights into their
respective effectiveness. The UPS NDA network includes 101 gateways, 7 hubs,
9 fleet types, 198 pickup and 195 delivery gateway–hub demands. Formulation
statistics are reported in Table 1.

All computations were performed on an HP C3000 workstation with 400MHz
CPU and 2GB RAM, running HPUX 10.20. The models and column genera-
tion processes were compiled using HP’s aCC compiler with calls to the ILOG
CPLEX 6.5 Callable Library [3]. CPLEX MIP Solver settings are reported in
Table 2. For parameters not indicated, the CPLEX default values were used.

3.1 Naive Column Generation

In naive column generation, we evaluate the cost of demand composite variables
explicitly using the dual prices obtained from solving the RMP. Denote the ob-
jective coefficient vector for demand composite variables as d, and the constraint
matrix for demand composite variables in constraints (2)–(7) as B1,B2,H,N,A
and C, respectively, and let the dual vector of the corresponding constraints be
denoted πB1 , πB2 , πH, πN, πA and πC. The reduced cost vector of demand
composite variables is given by

d′ − (πB1 )́B1 − (πB2 )́B2 − (πH)́H− (πN)́N− (πA)́A− (πC )́C .

Demand composite variables with negative reduced cost are generated when
solving the LP relaxation. In order to limit the size of the integer programming



Logistics Service Network Design for Time-Critical Delivery 97

Table 3. All-column and naive column generation results for the UPS NDA problem

Solution approach

AC NCG

Columns generated – 16259
IP objective value – +0.01%
Run time (s):

Root node LP 28 23
IP 8692 1550

model, we evaluate the effect of limiting the number of columns generated in one
iteration to at most 100, 500, 1000, 2000, and 4000, respectively, and determine
that generating at most 1000 columns in an iteration results in the fewest number
of columns generated.

Our results for the naive column generation approach, limiting the number
of columns generated in one iteration to at most 1000, are reported in Table 3.
For comparison, we also solve the problem with all demand composite variables
present, referred to as the all-column approach. “AC” represents the all-column
approach, and “NCG” represents the naive column generation approach. In both
approaches, the optimal LP value is the same. The objective value of the best IP
solution using the naive column generation approach is 0.01% higher than that
obtained with the all-column approach. This difference is explained by the fact
that we generate columns only at the root node of the branch-and-bound tree,
and hence, we do not consider certain demand composite variables whose reduced
cost becomes negative as we branch in the branch-and-bound solution algorithm.
This small degradation of the objective value is compensated for by the reduction
in algorithmic complexity resulting from limiting column generation to the root
node. In comparing running times, the naive column generation approach takes
less than one fifth of the time required by the all-column approach.

3.2 Aggregate Information-Enhanced Column Generation

In our information-enhanced column generation approach, instead of generating
individual demand composite variables with negative reduced cost, we generate
a set of demand composite variables that is both feasible and has, summing over
the demand composites in the set, a negative reduced cost.

We define a set of pickup (or delivery) demand composites to be a hub pickup
(or delivery) composite if it

1. includes integer numbers of aircraft routes; and
2. satisfies the count constraints, and the landing and cover constraints specified

for the pickup (or delivery) gateway–hub demands, at a set of hubs.

We introduce the following additional notation.
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Sets and Data

HT set of hub composites for the NDA (T = N) or SDA (T =S) network.

HT
O

{
set of pickup (O = P ) or delivery (O = D) hub composites for the
NDA (T = N) or SDA (T = S) network.

dΘ cost of hub composite Θ, dΘ =
∑

c∈Θ dc.

γf
Θ number of aircraft of type f in hub composite Θ.

γf
Θ(i)

{
number of aircraft of type f originating at gateway (hub) i in hub
composite Θ.

γf
Θ(i)

{
number of aircraft of type f destined to gateway (hub) i in hub
composite Θ.

δih
T,O,Θ=

⎧⎪⎪⎨
⎪⎪⎩

1 if hub composite Θ covers NDA (T = N) or SDA (T = S)
pickup (O = P ) or delivery (O = D) demand between gateway i
and hub h, and
0 otherwise.

Decision Variables

vΘ equals 1 if hub composite Θ is selected, and 0 otherwise.

We rewrite the INS formulation with hub composite variables (INS-H) as
follows:

min
∑

T={N,S}

∑
Θ∈HT

dΘvΘ +
∑

T={N,S}

∑
i∈N

∑
j∈N

df
ijφ

T,f
ij (8)

subject to ∑
Θ∈HS

D

γf
Θ(i)vΘ −

∑
Θ∈HN

P

γf
Θ(i)vΘ − �N,P

f,i + �S,D
f,i

+
∑

j∈N ,j �=i

φS,f
ji −

∑
j∈N ,j �=i

φS,f
ij = 0, i ∈ N , f ∈ F (9)

∑
Θ∈HN

D

γf
Θ(i)vΘ −

∑
Θ∈HS

P

γf
Θ(i)vΘ + �N,D

f,i − �S,P
f,i

+
∑

j∈N ,j �=i

φN,f
ji −

∑
j∈N ,j �=i

φN,f
ij = 0, i ∈ N , f ∈ F (10)

∑
Θ∈HT

P

γf
Θ(h)vΘ + �T,P

f,h −
∑

Θ∈HT
D

γf
Θ(h)vΘ − �T,D

f,h = 0, h ∈ H, f ∈ F, T = {N, S}

(11)∑
Θ∈HT

P

γf
ΘvΘ ≤ nf , f ∈ F, T = {N, S} (12)

∑
f∈F

∑
c∈HT

P

γf
Θ(h)vc ≤ ah, h ∈ H, T = {N, S} (13)
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∑
Θ∈HT

O

δih
T,O,ΘvΘ ≥ 1, (i, h) : bih

T,O > 0, T = {N, S}, O = {P, D}, i ∈ N , h ∈ H

(14)

vΘ ∈ {0, 1} for all Θ ∈ HN ∪HS

�T,O
f,i ∈ Z+ for T = {N, S}, O = {P, D}, i ∈ N

φN,f
ij , φS,f

ij ∈ Z+ for i, j ∈ N , i �= j, f ∈ F

The formulation is the same as the INS formulation except that demand
composite variables are replaced with hub composite variables. It is straightfor-
ward to show [11] that the INS-H formulation is at least as strong as the INS
formulation. In the following example we describe a case in which the INS-H
formulation is strictly stronger than the INS formulation.

Consider the example in Figure 5. There is a single fleet type with two units
of capacity. We want to cover all gateway–hub demands in the example. We
only consider the pickup operation for simplicity, but we can easily expand the
examples to include delivery operations and aircraft balance without affecting
formulation strength.

We consider only the demand composite variables and hub composite vari-
ables in the figure. (Other demand and hub composite variables do not affect the
optimal integer or LP relaxation solution to the INS and INS-H formulation.)
Excluding the balance, count, and landing constraints, the INS formulation is

Min 6dc1 + 5dc2 + 12dc3 + 12dc4 + 8dc5

dc3 + dc4 = 1
dc1 + dc3 + dc5 = 1
dc2 + dc4 + dc5 = 1

dci ∈ {0, 1}, i = 1, 2, . . . , 5 .

The resulting optimal solution to the LP relaxation is {dc1 = 0, dc2 = 0,
dc3 = 0.5, dc4 = 0.5, dc5 = 0.5}, with objective value 16.

Excluding the balance, count, and landing constraints, the INS-H formulation
is

Min 17hc1 + 18hc2

hc1 + hc2 = 1 .

The optimal solution to the LP relaxation is {hc1 = 1, hc2 = 0}, with
objective value 17.

We denote the dual vector for constraints (9)–(14) as πB1 , πB2 , πH, πN, πA

and πC, respectively. Let CT,O,h be the subset of NDA (T = N) or SDA (T = S)
demand composite variables covering subsets of gateway–hub demands to hub h
in the case of pickup (O = P ) or subsets of gateway–hub demands from hub h
in the case of delivery (O = D), and vT,O,h the vector indicating the selection of
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Demand composite variables:

dc1: one route 2-H covering demand 2-H.
dc2: one route 3-H covering demand 3-H.
dc3: one route 1-2-H covering demands 1-H and 2-H.
dc4: one route 1-3-H covering demands 1-H and 3-H. 
dc5: one route 2-3-H covering demands 2-H and 3-H.

Hub composite variables:
hc1: one route 1-2-H and one route 3-H  

covering demands 1-H, 2-H and 3-H.
hc2: one route 1-3-H and one route 2-H  

covering demands 1-H, 2-H and 3-H.

1

1-H: 1 unit

2-H: 1 unit

3-H: 1 unit

H

2

3

(12, 2)

(12, 2)

(8, 2)

(dr, ur)
i H

(5, 2)

(6, 2)

Fig. 5. Example of hub composite variable

those demand composite variables. Following the matrix notation introduced in
describing naive column generation, we denote the constraint matrix for demand
composite variables in CT,O,h in constraints (2)–(7) as BT,O,h

1 , BT,O,h
2 , HT,O,h,

NT,O,h, AT,O,h, CT,O,h, respectively. Denote the right-hand-side vector of con-
straints (5) and (6) for T = {N, S} as nT and aT . Denote the right-hand-side
vector of constraints (7) for gateway–hub demands for T = {N, S}, O = {P, D}
and h ∈ H as IT,O,h. We define the following sub-problem for T = {N, S},
O = {P, D}, and h ∈ H :

min [d′ − (πB1 )́BT,O,h
1 − (πB2 )́BT,O,h

2 − (πH)́HT,O,h

−(πN)́NT,O,h − (πA)́AT,O,h − (πC )́CT,O,h]vT,O,h (15)

subject to

AT,O,h vT,O,h ≤ aT (16)

NT,O,h vT,O,h ≤ nT (17)

CT,O,h vT,O,h ≥ IT,O,h (18)

vc ∈ {0, 1}, c ∈ CT,O,h . (19)

Constraints (16) ensure that the selected demand composite variables at hub
h satisfy the landing constraints at all hubs. We consider all hubs because the
demand composite variables in CT,O,h might include routes entering or depart-
ing hubs other than h. Constraints (17) are the count constraints, specified for
each fleet type, and constraints (18) are the cover constraints specified for each
gateway–hub demand to or from hub h.

The solution to a sub-problem is a hub composite, and the objective value is
its reduced cost. If the objective value of a solution is negative, we add the cor-
responding hub composite variable to the RMP. The process terminates if after
solving all sub-problems, one for the pickup operation and one for the delivery
operation at each hub, and for NDA and SDA, not one sub-problem solution
has a negative objective value. Because we ensure the set of columns generated
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Table 4. Aggregate information-enhanced column generation results for the UPS NDA
problem

Columns generated 7101
Master iterations 270
Objective value:

root node LP +0.001%
IP n/a

Run time (s):
root node LP 2842
IP n/a

are feasible and the sum of their reduced cost is negative, we call this approach
information-enhanced column generation. We refer to the information-enhanced
column generation approach in which a sub-problem solution is introduced into
the RMP in its aggregate form, that is, as a hub composite variable, aggregate
information-enhanced column generation.

We apply aggregate information-enhanced column generation to the same
UPS NDA problem instance that we solved with the naive column generation
and the all-column approaches. Our results are reported in Table 4. Compared
with the INS formulation, the optimal LP objective value increases by 0.001%.
The MIP solver, however, runs out of memory and fails to find a feasible inte-
ger solution after 20 hours with the set of columns generated. The best bound
achieved at that point is 2.4% higher than the true IP optimal objective value.

3.3 Disaggregate Information-Enhanced Column Generation

The columns generated by the aggregate information-enhanced column gener-
ation at the root node of the branch-and-bound tree fail to provide a feasible
solution. The issue is that too many decisions are embedded in a column of the
RMP. To overcome this issue, we introduce disaggregate information-enhanced
column generation.

We replace the INS-H formulation with the INS formulation as the RMP. At
each master iteration, we similarly solve the pricing problem (15)–(19) for the
pickup and delivery operation of each hub and for NDA and SDA. If the objective
value of a sub-problem is negative, instead of adding to the RMP a single column
representing all the demand composite variables in the sub-problem solution, we
partition the solution into individual demand composite variables and add to the
RMP those that are not currently included. (Some demand composite variables
might have been included in the RMP in earlier iterations.)

We apply disaggregate information-enhanced column generation to the same
UPS NDA problem instance and report our results in Table 5.

Using disaggregate information-enhanced column generation, we generate
less than 1% of all possible columns, and less than 10% of the number of columns
generated using naive column generation. This indicates that the hub-based
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Table 5. Disaggregate information-enhanced column generation results for the UPS
NDA problem

Columns generated 1535
Master iterations 34
IP objective value +0.11%
Run time (s):

root node LP 307
IP 185

sub-problems are more effective than naive column generation in identifying
columns that can be used in an optimal solution. The root node LP converges
to the true objective value, but the IP objective value is somewhat worse than
that obtained with naive column generation, because columns are again gener-
ated only at the root node of the branch-and-bound tree. Compared with the
naive column generation and the all-column approaches, the root node LP re-
laxation takes longer to solve, but the IP solution time is significantly reduced
using disaggregate information-enhanced column generation. Overall, disaggre-
gate information-enhanced column generation achieves a 70% reduction in total
solution time compared with naive column generation, and a 95% overall reduc-
tion compared with the all-column approach.

Compared with aggregate information-enhanced column generation, disag-
gregate information-enhanced column generation not only produces fewer col-
umns, but also converges in fewer master iterations. Most importantly, solutions
with objective values close to the optimal value can be identified with the set of
columns generated.

4 Case Study

We apply the disaggregate information-enhanced column generation approach
to the integrated UPS NDA-SDA problem, with the objective to minimize daily
operating costs. Problem statistics are reported in Table 6.

To compare the integrated solution to sequential solutions, we use disaggre-
gate information-enhanced column generation to solve in sequence the NDA and
SDA problems. To solve the SDA problem, which is relatively small compared
to the NDA problem, we generate only 3113 columns, or 1.4% of all variables,
using the disaggregate information-enhanced column generation approach.

In Table 7, we compare the results of the sequential and integrated approaches
with the solution generated by planners at UPS. Costs are reported as the
percentage difference from those of the UPS solution. In the UPS solution, the
SDA network is designed manually, while the design of the NDA network is
accomplished using the composite variable approach of Armacost et al. [1].

In the first scenario, the unconstrained NDA and SDA problem, boundary
balance conditions are not enforced between the NDA and SDA operations, and
the two problems are solved independently, without aircraft balance constraints.
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Table 6. UPS Integrated NDA-SDA problem statistics

Composite variables NDA SDA
168372 59969

Ferry and ground variables 76215
Rows 4623
Master iterations 33
Generated demand composite variables 3113

Their combined solution value provides an upper bound on the potential savings
achievable through integration of the NDA and SDA problems. In the second
scenario, the NDA problem is first solved without aircraft balance constraints.
Then the SDA problem is solved with balance constraints ensuring that the NDA
operations can be executed as planned. The resulting total cost is slightly better
than that of the UPS solution. Notably in this case, ferry costs increase signif-
icantly because many ferry flights are required to re-position aircraft before or
after the NDA operation to perform the SDA operations. These ferry costs more
than offset the savings achieved in the NDA solution. In the third scenario, a
reverse sequence is followed, the SDA problem, without aircraft balance condi-
tions, is first solved, and the NDA problem, with balance constraints ensuring
the execution of the SDA operations, is then solved. The resulting operating
costs of the NDA solution are greater than those of the UPS solution, but the
daily total cost is much lower. This sequential approach produces less expensive
solutions than the previous one for the following reasons:

– Because the SDA operation uses only about one third of the fleet used in the
NDA operation, there is sufficient flexibility to position the unused aircraft
in the SDA operation to match the needs of the NDA operation; and

– Most aircraft re-positioning for the SDA operation can be accomplished with
revenue flight movements in the NDA operation, given the large number of
NDA gateway–hub demands to be served.

In the last scenario, we solve the integrated NDA-SDA problem with dis-
aggregate information-enhanced column generation. Although ferrying costs are
more than double those in the UPS solution, the NDA and SDA operating costs
are both reduced, reflecting the better coordinated aircraft movements. The
daily operating cost savings of the integrated approach translates into tens of
millions of dollars annually. Compared with the best sequential approach, the
savings from the integrated approach come from: (1) reduced ferry costs; and
(2) better coordinated NDA and SDA fleet movements. Beyond the tens of mil-
lions of dollars in operating cost savings, two fewer aircraft are needed in the
integrated solution than in the sequential solution. This is significant because
annual ownership costs for aircraft measure in the millions of dollars.

In all scenarios, savings attributable to the NDA operation are small or
nonexistent, whereas savings attributable to the SDA operation are large,
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Table 7. Sequential and integrated approach results for the UPS NDA-SDA problem

Daily revenue Daily ferry Total daily Fleet
Scenario flight cost flight cost cost usage

1 Unconstrained SDA −23.4% −100% −15.9%
Unconstrained NDA −7.3%

2 Unconstrained NDA −7.3% +903.6% −0.3% −4
Constrained SDA −17.5%

3 Unconstrained SDA −23.4% +218.5% −5.9% −3
Constrained NDA +1.9%

4 Integrated SDA −19.5% +140.7 −8.1% −5
Integrated NDA −1.2%

reflecting the carrier’s use of the Armacost et al. [1] optimization approach to
design their NDA network, but not the SDA network.

We acknowledge that some operating requirements are not considered ex-
plicitly in our models. The staging of package arrivals at hubs is one example.
Hence, the savings reported here might not be fully realized.

5 Summary

In this paper, we adapt the Armacost et al. [1] model to solve the integrated
next-day and second-day express shipment service design problem, and present
a new solution approach designed for large-scale problems. Our disaggregate
information-enhanced column generation approach is shown to generate many
fewer columns and help reduce IP solution time significantly. By solving the inte-
grated NDA-SDA problem, we demonstrate potential savings of tens of millions
of dollars.

We make the following observations about column generation approaches.
First, high quality columns, that is, columns that are likely to be present in the
optimal solution, and fewer generated columns can be achieved if interactions
among columns are considered. This point is seen by comparing the perfor-
mance of the naive and disaggregate information-enhanced column generation
approaches. Second, better convergence and fewer generated columns can be
achieved if a column in the restricted master problem includes fewer decisions.
Specifically, in disaggregate information-enhanced column generation, each col-
umn in the RMP represents a single demand composite variable, indicating the
selection of a small number of aircraft and routes. In contrast, each column in the
RMP in aggregate information-enhanced column generation represents decisions
for all aircraft routes at a hub.

In the service network design problem, using the disaggregate information-
enhanced column generation approach, we generate a set of columns representing
a solution to a sub-network of the overall network design problem. This ap-
proach greatly reduces the total number of columns generated, and is efficient in
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identifying columns that are likely to be in an optimal solution. We can extend
this idea to other classes of problems. For example, in the multi-commodity net-
work flow problem, we can establish at each iteration, a feasible flow in part of
the network, instead of a single commodity flow.
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Abstract. This paper describes the University Course Timetabling
Problem (UCTP) used in the International Timetabling Competition
2003 organized by the Metaheuristics Network and presents a state-of-
the-art heuristic approach towards the solution of the competition in-
stances. It is a greatly improved version of the winning competition entry.
The heuristic is divided into three phases: at first, a feasible timetable
is constructed, then Simulated Annealing (SA) is used to order the thus
created time-slots optimally, and finally SA is used to swap individual
events between time-slots to improve the solution quality.

1 Timetabling Problems

Timetabling describes a problem that usually arises in an educational context
(schools, universities, conferences). At its core is the task of placing entities
generically called events (courses, classes, exams, lessons, talks) into a timetable
made up of a limited number of atomic units called time-slots. Literature de-
scribing both timetabling models and solution algorithms abounds, for a recent
overview see [18].

Here, we are concerned with a special class of timetabling problems called
course timetabling [4]. The task is to place courses (e.g. university courses) in a
weekly timetable, such that all students can attend all their courses, i.e. with-
out requiring a student to attend two events at the same time (called a stu-
dent clash). In this basic formulation, course timetabling is equivalent to graph
colouring [9]. In addition to the universally present hard constraint of student
clashes, there are more complex timetabling models in the literature adding fur-
ther hard constraints–such as room availability–and soft constraints, that lay
the foundation for an objective function to assess solution quality beyond mere
feasibility [5].

With regards to algorithmic solution strategies, the easiest and least success-
ful heuristics are constructive approaches, usually inspired by sequential graph
colouring methods. For examples, see [6] and [3]. While often efficient in pure
graph colouring environments these methods fail, on their own, to deal well with
the complex nature of the objective function. Yet they play a major role in com-
bination with many meta-heuristics, where they represent one of the main ways

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 109–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to incorporate domain-specific knowledge. Almost all meta-heuristic concepts
have been applied to timetabling problems.

A simulated annealing approach on a larger, partially benchmarked, set of
problems can be found in [22] and a tabu search approach with extensive anal-
ysis of the implemented algorithm is given in [10]. Hopfield neural networks are
used in [19] with some original improvements to overcome the common problem
of pre-mature convergence to local optima often seen in neural network opti-
mization approaches. Various approaches based on genetic algorithms have been
implemented. For some examples see [15] and [13]. A very detailed implementa-
tion of a CSP approach is presented in [8].

A number of implementations have originated in connection with the Inter-
national Timetabling competition. A very recent implementation of ant colony
optimization for timetabling problems is described in [21]. A highly successful
hybrid approach, mainly based on simulated annealing, is given in [7]. Other
entries included a great deluge algorithm [2] and a multi-neighbourhood local
search [11].

2 The International Timetabling Competition

In 2002/03 the Metaheuristics Network organized an International Competition
on a problem called University Course Timetabling Problem (UCTP) [17]. The
competition sought to promote research in the field of timetabling and to es-
tablish a widely accepted benchmark problem for the timetabling community.
The UCTP model is a reduction of a real-world timetabling problem encoun-
tered at Napier University, Edinburgh, UK. The (artificial) instances used for
the competition were produced with an instance generator written by Paechter1.

2.1 UCTP

The UCTP consists of a set of n events E = {e1, . . . , en} to be scheduled in a set
of 45 timeslots T = {t1, . . . , t45} (five days in a week, nine time-slots a day), and
a set of j rooms R = {r1, . . . , rj} in which events can take place. Additionally,
there is a set of students S who attend the events, and a set of features F provided
by rooms and required by events. Each student attends a subset of events. A
feasible timetable is one in which all events have been assigned a time-slot and
a room, so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the assigned room is big enough for all the attending students and provides

all the features required by the event;
– only one event is taking place in each room at a given time.

In addition, a feasible candidate timetable is penalized equally for each oc-
currence of the following soft constraint violations:
1 http://www.dcs.napier.ac.uk/~benp
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– a student has a class in the last slot of the day;
– a student has more than two classes in a row on a given day (one penalty

for each class above the first two);
– a student has exactly one class during a day.

Infeasible timetables are worthless and are considered equally bad regardless
of the actual level of in-feasibility. The objective is to minimize the number of
soft constraint violations in a feasible timetable. For all instances under consid-
eration, it is known that a zero penalty solution exists.

2.2 The Competition

The International Timetabling Competition began on October 1st 2002 with
the publication of 10 instances of the UCTP. On March 17th, 2003 another 10
instances were released and solutions to all 20 instances had to be submitted
by the end of March. Only entries with feasible timetables for all problems were
considered. It is known that all instances have a feasible solution without soft
constraint violations.

For an entry to be accepted, the rules stipulated the following:

The algorithm should not take account of additional knowledge about the
instance (e.g. results from previous runs or other processing). The same
version (and parameters) of the algorithm must be used for all instances
(i.e. the algorithm should not “know” which instance it is solving).

Nonetheless, submission of different random seeds for different instances was
allowed, thus enabling the selection of the best run of the algorithm over a range
of different seeds. The results had to be obtained within a given time limit (to
be determined for every machine by running a provided benchmark program).

The results of the competition, descriptions of various entries and the exact
rules for determining the winner can be found on the competition web page [1].
The official winner of the competition is an early version of the algorithm de-
scribed in this paper. At that time, its results ranked second behind a cooperative
effort of members of the Metaheuristic Network, which was not allowed to enter
the competition.

The remainder of the paper is organized as follows. In Section 3, the algorithm
used to solve the UCTP is described in detail. Section 4 presents the algorithm’s
performance on the benchmark instances and an analysis of some aspects of the
algorithm. Finally, the findings are summarized in Section 5.

3 The Algorithm

In this section, the algorithm used to solve the UCTP will be described in detail.
At first, some general comments about the internal data structures will be made.
Then, the three phases will be discussed in detail. Phase I of the algorithm tries
to construct a feasible initial timetable within 40 time-slots, leaving the five
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Fig. 1. Flow chart of the three-phase algorithm for UCTP

penalized end-of-day slots empty. In Phase II, the time-slots created before are
sequenced using Simulated Annealing (SA) in order to minimize the objective
function value. Once this is done, Phase III swaps individual events between
time-slots, always maintaining feasibility. This is first done by a standard SA
approach. Then–to obtain the final solution–the same neighbourhood structure
is used at lower temperatures with periodical restarts at the best solution found
so far. A flowchart representation of the algorithm is given in Figure 1.

3.1 Pre-processing and Data Structures

As there is a time limit for finding the solutions, besides a powerful algorithmic
concept, efficient data structures and internal representations of the problem are
needed to obtain competitive results. While some design choices presented in the
following will be helpful for many algorithms, others are tailored more closely to
the needs of this particular approach and will therefore not necessarily provide
benefits in other settings.

The first step is to reduce the whole information contained in the instance
file to a compact format. Besides the generic information provided (number of
students, events and rooms) everything else can be represented in two matri-
ces, the incidence matrix and the event–room matrix. The incidence matrix de-
scribes the hard constraints stemming from student clashes: we imagine a graph
where events are nodes and edges indicate that two events share at least one
student and can therefore not be scheduled together. The matrix of dimension
(events×events) representing this graph is the incidence matrix. The event–room
matrix has been compiled from the information about which features are needed
by events, which are provided by rooms and whether the room size can accom-
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modate a given event. This leads to a matrix of dimension (events × rooms),
indicating which rooms are feasible for a given event.

Before starting to solve the problem, one useful manipulation of the inci-
dence matrix is implemented. As we will accept only feasible moves in Phase
III, every move has to be checked for feasibility before evaluating the objective
function. There are two possible sources of infeasibility: either a student clash
occurs or it is not possible to find suitable rooms for all events scheduled in a
given time-slot. The first is computationally easy to detect by looking at the
incidence matrix, while the second one needs a maximum matching algorithm
for bipartite graphs to be run on a subset of rows from the event–room matrix.
So, it is computationally attractive to shift information to the incidence matrix,
if possible.

We observe that there are a substantial number of events with only one room
option. Two such events having the same room as their only option can obviously
not be scheduled together. Therefore, we search for the subsets of events with
the same single room option and introduce edges into the incidence matrix so
that these subsets form cliques in the graph, i.e. all possible edges between
these events are present. The beauty of this step is that—while not altering the
trajectory of the algorithm itself—it speeds up the detection of infeasibilities
considerably.

A second manipulation, suggested in [20], goes a step further: based on the
observation that some of these subsets of events sharing the same room as their
single option have exactly 40 member events and the knowledge that a perfect
timetable exists, further alterations are implemented. Given such a subset of size
40, we do not only know that these events form a clique in the incidence matrix,
but can also conclude that in the perfect solution no other event is assigned to
this particular room. If it were, we would need more than 40 time-slots to place
all events from this subset conflict-free, thus incurring end-of-day penalties. This
allows us to delete this room as an option for all other events from the event–
room matrix. As this may create new single room option events, this step has
to be implemented iteratively until there are no further changes. Unfortunately,
this does not just speed up the algorithm, but changes its results, as flexibility in
the possible assignments is lost. Experiments show that the algorithm presented
here does suffer from this step, and it was therefore not used. Nonetheless, for
other algorithms it may be beneficial.

Besides these two static matrices, we keep a number of dynamic data struc-
tures during the execution. First, we have an attendance matrix of dimension
(students×45) that tells us for the current timetable in which time-slots a given
student has events. Also, we have a matrix of dimension (students×5) that keeps
track of the number of events per day for a given student. These two will allow
us to implement a cheap evaluation of new timetables. To represent the current
timetable, we have arrays identifying the time-slot and room of every event, as
well as a representation that gives us the events currently placed in a particular
time-slot. This last information reduces the computational effort when checking
the feasibility of neighbourhood moves.
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3.2 Phase I: Feasibility

With these preparations completed, we can enter Phase I, where we try to con-
struct an initial feasible timetable using graph colouring and maximum matching
algorithms. In this phase, we will try to assign events to time-slots and within
the time-slots to rooms in such a way that no hard constraints are violated. At
first, we will attempt to achieve this goal using only time-slots without penalty,
thus implicitly catering for the soft constraint involving end-of-day events. If this
fails, we open up the yet unused but available slots.

Initial Attempt. We start by using a sequential colouring algorithm for the
graph given by the incidence matrix. The order in which events are considered
for colouring is the degeneracy order [23]. The degeneracy order is found in the
following way: at first, the event with the minimum degree in the original graph
is identified and placed last in the degeneracy order. Then, this event is removed
from the graph. In the remaining subgraph we, again, identify the minimum
degree event, place it in the second-last position of the degeneracy order and
remove it from the graph. This procedure is repeated until all events are placed
in the degeneracy order.

The assignment of a time-slot (which we identify with the colours) to the
event under consideration works in the following way: we determine all those
slots among the initial 40 slots that are feasible for the event, i.e. there is no
colour conflict with an already placed event. Among these options we assign a
slot with the minimal number of events in it, provided the number of events
in this time-slot does not exceed the number of rooms. Events that cannot be
assigned to a time-slot are placed in a pool of unassigned events for further
consideration.

After this initial assignment of time-slots, we run a maximum matching al-
gorithm for bipartite graphs [14] for each time-slot. The bipartite graph is the
subgraph of the event–room matrix where we only use those rows that corre-
spond to the events assigned to the time-slot under consideration. Events that
do not get a room in a maximum matching are removed from the list of events
in this time-slot and go into the pool of events that need further consideration.

Improvement Attempt. We call the next phase improvement attempt and
describe it here in full detail. It will be used in unchanged form later again. The
idea is to take every unplaced event and scan the 40 existing time-slots: first we
check whether there is a colour-conflict with a given time-slot and if there is none
whether we can add the event to the time-slot such that a maximum matching
algorithm can assign rooms to this event and to all events that were previously
in the time-slot. If this is possible, the event is assigned to this time-slot and
room and leaves the pool of unassigned events.

There are two mechanisms by which this may work at this point:

– events that could not find a time-slot and therefore entered the pool during
the colouring phase of the initial attempt may now fit in some time-slots
where events were removed during the room assignment phase.
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– events removed during the room assignment phase may well fit into other
time-slots.

Shuffling. For the events still left, there is no way of placing them conflict-free,
unless we change existing assignments. We call the first step in this direction
shuffling. For a number of iterations we look at every event from the pool of
unplaced events and choose a time-slot at random. First we check whether there
is a colour-conflict between the unplaced event and the chosen time-slot. If this
is not the case, we provisionally assign the event to this time-slot and run a max-
imum matching algorithm. If, as a result, all events in this time-slot—including
the added event—are assigned to a feasible room, we have managed to place an
unassigned event. If not, there must be one event in this time-slot without room.
We take this one event and put it into the pool of unplaced events (note that the
number of events with feasible room assignments cannot drop below the initial
number, hence there is at most one such event). The hope is that in such a case
the newly unassigned event is different from the initially unassigned event. If this
is true, we run the procedure called improvement attempt (see Section 3.2) for
this event before placing it in the pool of unassigned events, hoping that it fits
into a different time-slot. To increase our chance, that the initially unassigned
event is part of the new maximum matching, we randomize the order in which
nodes appear in the maximum matching algorithm.

Blow-Ups. The events that are still left must be considered as problematic
and we have to go one step further in using invasive measures, that change
the assignments made so far. The idea here is to force the placement of an
unassigned event in an existing time-slot by first removing all events from this
time-slot (blow-up). Then, we place the unassigned event in the now empty time-
slot. Next, we fill up the time-slot with those removed events that do not have a
colour-conflict with the initially unassigned event. Then we assign rooms to the
events and place those events that had a colour-conflict or that were not given
a room in the pool of unassigned events.

In this way, we accept changes that may lead to an increased number of
unplaced events. After this change, we apply improvement attempt to all unas-
signed events and afterwards we run a number of repetitions of the shuffling step.
After a certain number of blow-up steps (i.e. blow-ups combined with improve-
ment attempt and shuffling), we restart the whole procedure at the assignment
that was the best so far in terms of number of unassigned events. This is neces-
sary, as often the number of unplaced events would otherwise just keep growing.

Opening the Last Slots. Events that are not placed despite the above efforts
are distributed over the last five time-slots with the methods described above. If
this does not place these events conflict-free in the five new time-slots, we could
use the shuffling and blow-up steps on all 45 time-slots to overcome problems. In
reality, however, this proves unnecessary, as the number of events left after the
blow-ups are for all instances and all random seeds below 5, which guarantees
finding a feasible initial assignment.
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3.3 Phase II: Slot Sequence

Having found a feasible assignment which does in the majority of cases satisfy the
soft constraint of not using end-of-day time-slots, we turn our attention towards
the other two soft constraints, namely students with single events on a day and
students with more than two events in a row. In Phase II of the algorithm, we
take the time-slots formed during Phase I and try to sequence them optimally.
The individual time-slots, i.e. the grouping of the events into 45 subsets, are not
changed. For this optimization we will use Simulated Annealing (SA) [12].

The solution space are all possible permutations of the time-slots and the
neighbourhood move is swapping two entries of the permutation. This formu-
lation automatically preserves feasibility. Improving moves and side steps are
always accepted. Deteriorating moves are accepted with a probability

P (Acceptance|Δ, T ) = e−
Δ
T

where Δ is the size of the deterioration in the objective function and T the
current temperature. There are 35 different temperature levels T , starting at
Tstart = 6.5 and going down to Tend = 1.5. The schedule used is a standard
geometric cooling, this means

Tn+1 = Tn × (1 − δt)

where δt � 1 is determined in such a way, that Tend is reached after 35 steps.
At a given temperature, all possible moves are tried in a deterministic order,
independently of the acceptance or rejection of earlier moves. We note that
this simulated annealing problem has a connected search space and that the
neighbourhoods are equi-sized.

Our selection process differs in two respects from the standard. Firstly, we
choose to scan the neighbourhood deterministically instead of randomly. Sec-
ondly, we do not react in any way if a move is accepted, i.e. we do not restart
the neighbourhood scanning in this new solution but continue with the pre-
defined deterministic neighbourhood search from this new solution. We choose
this approach to reduce computation time. We can be sure that every possible
pair exchange is considered at least once per temperature without running a
large number of random steps. This is acceptable as this phase is only a sup-
portive measure for the main part of the algorithm, which is described in the
next section. It is not desirable to spend much computation time in order to
improve the result of this phase as it is very likely that by fixing the time-slots
in this feasible but arbitrary way, the optimal sequence will have an objective
function value far away from the overall achievable optimum of 0.

3.4 Phase III: Exchange of Events

This phase forms the main part of the algorithm, both in terms of time consump-
tion as well as impact. The basic idea is again a local search guided by Simulated
Annealing. The starting position in the solution space will be the best timetable
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found by sequencing. The neighbourhood is defined by all timetables where ex-
actly one pair of events has swapped time-slots. In comparison with other neigh-
bourhoods suggested, see for example [16], this is a very simple structure. We
only accept moves where this swap does not lead to infeasibilities, be it student
clashes or events that cannot be assigned a room within their time-slot.

As we have in most instances managed to put all events into 40 time-slots,
this insistence on feasibility while only considering pair swaps, seriously curtails
the algorithm’s flexibility. After all, there are no events that could be swapped
in the five end-of-day slots. Instead of complicating the algorithm by introduc-
ing another neighbourhood move that changes only one event, we introduce 10
so-called dummy events. These are additional events without students attending
them that can go in all rooms. We place two of them in every end-of-day time-
slots, so that they can take part in the swapping of events. Apart from keeping
the simple neighbourhood structure, this allows us also to control the maximum
number of events in end-of-day time-slots. In the final timetable, these dummy
events are just removed. This has the same flavour as allowing temporary in-
feasibilities to occur (if we think of end-of-day penalties as hard constraints), in
the hope that they will be correctable later but allowing the local search in the
meantime to discover more attractive regions of the search space.

A second manipulation of the problem deals with empty events, i.e. original
events that have no students. One could think of this as a flaw in the instance gen-
erator, but there is actually a reasonable interpretation for them: they are events
whose audience cannot be determined in advance. So, they should not in any way
affect the objective function, yet they have to be placed in the timetable. In the
original formulation, these events may not be able to go into all rooms. This is
changed for the reminder of the search. Of course, this has to be corrected in the
final timetable. Those empty events that end up in a room that is infeasible have
to be placed somewhere else in the timetable. This is relatively easy as they clash
with no other events. They can also go into end-of-day slots without causing penal-
ties. It turns out that this repair of the final timetable was always possible and no
timetable had to be discarded because of this. The reason why this helps is that
valuable room resources in the not-penalized time-slots are not blocked by events
that could be placed in end-of-day slots without incurring penalties.

Main Schedule. As mentioned above, we use a SA approach to optimize the
current timetable with a neighbourhood that is defined by all feasible swaps of
two events. Improving moves and side steps are always accepted. Deteriorating
moves are accepted with a probability

P (Acceptance|Δ, T ) = e−
Δ
T

where Δ is the size of the deterioration in the objective function and T the
current temperature. We start at Tstart = 4 and go down to Tend = 0.36. The
cooling schedule we use between these two temperatures is not the standard
geometric cooling. Instead, in our schedule the inverse temperature T−1 grows
linearly. This leads to
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T−1
n+1 = T−1

n + δt ≡ Tn+1 =
1

T−1
n + δt

≈ Tn × (1 − δt × Tn) .

So, in contrast to geometric cooling, the cooling factor between two steps de-
pends on the current temperature. The two different schedules plus a linear
schedule are shown in Figure 2. This schedule was chosen as preliminary tests
showed it to perform better than geometric or linear cooling, mainly because a
high starting temperature was found to be important for good results and the
geometric schedule spends too little time in low temperature regions when used
with a high Tstart.

For a given temperature T , all possible moves are tried in a deterministic
order, independently of the acceptance or rejection of earlier moves, i.e. if a move
is accepted we do not restart the neighbourhood search in this new solution but
continue the deterministic scanning order from the new solution. This makes for
events2−events

2 moves per temperature level. We will call this quantity a cycle.
The majority of moves in a cycle will be discarded as infeasible. Again, we do
not follow the standard SA procedure of selecting neighbours at random.

In contrast to Phase I, it is not practical to preset the number of temperature
steps between Tstart and Tend. There are huge differences in time demand from
instance to instance for the completion of one cycle. Therefore, we first try to get
an on-line prediction of the time demand for a given instance. For a fixed time
(roughly 5% of the available time) we run the SA routine at T=0.15 recording
how many cycles can be completed in this time. We then determine the number
of temperature levels or cycles to be used in this phase, so that at its end 80% of
the available time has been used, i.e. 20% remains for the last part of phase III.

Earlier, we described how we manipulated the incidence matrix to speed
up the detection of infeasible moves by translating room conflicts into student
clashes. But swaps that do not cause student clashes have still to be checked
for whether rooms can be assigned. As mentioned above, a standard maximum
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matching algorithm for bipartite graphs between events and rooms in a time-
slot is used. The simple structure of our neighbourhood allows us to save time
on this. In order to determine whether we can assign rooms to the old events
in a time-slot plus the new one minus the one that has left, we do not start
the maximum matching algorithm from scratch. Instead, we start the matching
algorithm with the partial assignment of the old events to their rooms. This way,
there is at most one augmenting path to be found, which greatly reduces the
time demand.

For the actual evaluation of feasible moves, we use a fast Δ-evaluation. In-
stead of re-evaluating the whole timetable, we make maximum use of the old
value plus our knowledge of the neighbourhood structure. First, we determine
all the students that are in one of the two events to be swapped, but not in both.
Only these students are relevant for the change in the objective function value.
We then use their rows in the old attendance matrix, the matrix describing for
every student in which time-slot he has events, to determine the change caused
by the swap. We only have to look two time-slots up and two time-slots down
in this matrix to decide on the change in penalty from consecutive events. The
penalty in single events per day can easily be determined from the matrix giving
for every student the number of appearances per day. Changes in end-of-day
penalties are straightforward to calculate. If a move is accepted, the data are
updated before the next move.

Greedy Search. As a final step to improve the timetable, we run the SA search
as described above with a different schedule until the time limit is reached.
The starting temperature is Tstart = 0.5 and the end temperature is Tend =
0.1 with 100 temperature steps between them. This phase is meant to greedily
optimize the best solution found so far, placing emphasis on exploitation instead
of exploration. At the end of the schedule, the greedy search is restarted, but
not in the current solution but in the best found so far. This is repeated until
the time limit is reached.

4 Results

In this section, the performance of the algorithm on the 20 competition instances
will be presented. For every instance, 50 runs with different random seeds are
recorded. If not indicated otherwise, quantitative results will be given as the
mean over these 50 runs.

Table 1 presents the distribution of the computation time over the different
phases in percent. Note that, due to rounding errors, the results may not add
up to 100%. Those runs that were prematurely aborted, because an optimal
solution was discovered within the time limit, have not been considered for in
this table. We clearly notice the dominating role that the main schedule of
Phase III plays in the algorithm. We also see that our online time prediction
is reasonably accurate. We wanted to save 20% of the time for the greedy part
of Phase III and have managed to design the main schedule accordingly. Phase
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Table 1. Run time distribution over the different phases in percent of total time, for
the 20 competition instances

Instance 1 2 3 4 5 6 7 8 9 10

Phase I 3.4 1.5 8.4 6.5 8.6 0.5 0.4 1 0.7 7.9
Phase II 2.5 2.5 2.5 3.6 3.6 3.6 4.2 2.9 2.7 2.5
Phase III Main 74.9 70.7 70.1 72.6 72.7 80.1 80.1 71.8 72.5 72
Phase III Greedy 19.1 25.3 19 17.3 15.1 15.8 15.3 24.3 24.1 17.7

Instance 11 12 13 14 15 16 17 18 19 20

Phase I 5.3 8.4 6.7 2.7 1.6 0.3 12.3 1.5 3.8 0.2
Phase II 2.7 2.5 3.1 4.2 3.6 2.7 3.6 3 3.6 3.3
Phase III Main 72.1 71.2 71 78 79.8 68.5 69.3 80.6 74.8 74.1
Phase III Greedy 20 17.9 19.1 15.1 14.9 28.5 14.8 14.9 17.7 22.4

II, the sequencing of the initial time-slots, takes up only a small portion of the
overall time. Interestingly, the variation in the time demand for Phase II between
the instances is almost perfectly correlated with the number of students in the
instance (correlation value of 0.97). The time demand of Phase I varies greatly
among instances, indicating that finding a feasible timetable is not equally hard
for the competition instances.

This claim is also supported by the first row of Table 2. Here, we see the
average number of events that could not be placed into the 40 time slots, i.e. that
had to go into end-of-day slots. For a number of instances, all runs succeeded in
placing all events, but for others there were regularly events left. We note that
even for the events with higher average values, such as instances 5 and 17, there
were never more than five events left. So, finding a feasible timetable was always
possible. The time Phase I takes and the average number of end-of-day events is
with 0.93 highly correlated, supporting the notion that variation in time demand
for Phase I is due to varying difficulty of successful initialization.

At this point we note that the competition instances are well-behaved in
terms of constrainedness. It is perfectly possible and maybe more realistic to have
instances where the generation of feasible initial timetables is harder, especially
when using only 40 instead of 45 time-slots. Evidently, the algorithm presented
here would have to be modified in order to deal with such a situation, as it
depends on the successful completion of Phase I. There is currently work in
progress to use Grouping Genetic Algorithms to generate initial timetables for
UCTP instances where the presented method fails.

The further rows of Table 2 show the objective function value of the best
solution found so far at the end of the respective phase. Phase I values are
not yet optimized and represent therefore some kind of random sample from
the feasible solution space. Unsurprisingly, the values are again almost perfectly
correlated (values of 0.98) with the number of students. This could be expected
from a random sample, as all penalties are tied to students, and therefore the
more students there are the more penalty we can incur. Phase II manages to cut
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Table 2. Results at the end of the individual phases, for the 20 competition instances

Instance 1 2 3 4 5 6 7 8 9 10

Phase I: end-of-day events 0.3 0.0 2.4 0.6 3.1 0.0 0.0 0.0 0.0 1.8
Phase I 537 493 545 760 846 800 859 634 547 539
Phase II 245 219 262 350 392 347 365 271 249 261
Phase III Main 32 15.9 32.6 61.6 73.8 6.6 11.1 6.5 12.3 36.4
Phase III Greedy 30.2 11.4 31 60.8 72.1 2.4 8.9 2 5.8 35

Instance 11 12 13 14 15 16 17 18 19 20

Phase I: end-of-day events 0.6 2.7 1.2 0.2 0.0 0.0 3.3 0.0 0.3 0.0
Phase I 557 535 662 889 761 582 820 516 786 761
Phase II 259 246 301 368 325 274 387 225 367 330
Phase III Main 16.9 78.1 48.6 27 12 9.7 56.4 14.2 19.6 3.5
Phase III Greedy 12.9 76.3 47.1 22.3 8.4 3.4 54 9.4 16.4 0.5

the objective function value drastically by ordering the time-slots. An interesting
observation is that the improvement achieved in this phase is very similar for
all instances. The resulting values are highly concentrated around 45% of the
starting value.

Evidently, the main schedule of Phase III has the most significant impact on
the objective function. The values of the previous phases show no correlation
with these values. The greedy part of Phase III can still improve these results,
but it seems that its impact is higher on those instances that have already a low
penalty value.

Before we discuss the final results in more detail, including the best values
found, we take a quick look at the effect of the dummy events introduced in
Section 3.4. In Figure 4 we see a panel of all 20 instances. In every panel box, we
can see the average performance over 20 runs for a varying number of dummy
events, indicated by the circle. The crosses mark the best solution found over 20
runs. We realize that the effect is not homogeneous over the instances. Never-
theless, we try to make some general comments. In general, too many dummy
events lead to a loss in performance, clearly so for 20 dummy events, and also to
a lesser extent for 15. Since the more dummy events, the greater the flexibility
in the exchange phase, we must introduce other information to understand this
result.

The time demand to complete a single cycle of the exchange phase, i.e. trying
to exchange all possible pairs of events, increases steeply with the number of
dummy events. In other words, as the number of dummy events goes up, the
number of cycles that can be completed within the time limit goes down. This
effect is very pronounced, as exchanges involving one dummy event are much
more likely to be feasible. Therefore, their evaluation is much more likely to
involve a fitness function evaluation. In a situation where this is a complexity
driver, this leads to increasing time demand. So, we can say that the gains in
flexibility have to be balanced with the losses in speed.
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Fig. 3. Best and average performance for varying number of dummy events, for the 20
competition instances

Table 3. Best results from different algorithms, for the 20 competition instances

Instance 1 2 3 4 5 6 7 8 9 10

Official Competition Winner 45 25 65 115 102 13 44 29 17 61
Best Algorithm at the Competition 57 31 61 112 86 3 5 4 16 54
Chirandini et al. 45 14 45 71 59 1 3 1 8 52
3-phase approach 16 2 17 34 42 0 2 0 1 21

Instance 11 12 13 14 15 16 17 18 19 20

Official Competition Winner 44 107 78 52 24 22 86 31 44 7
Best Algorithm at the Competition 38 100 71 25 14 11 69 24 40 0
Chirandini et al. 30 75 55 18 8 5 46 24 33 0
3-phase approach 5 55 31 11 2 0 37 4 7 0

On the other hand, there is a good number of instances where the total ab-
sence of any dummy events will cause a sub-optimal performance. Most notably
against this trend is the performance on instance 5. The graphs do indeed sug-
gest that a low number of dummy events, i.e. 5 or 10, will be best for the overall
performance, although maybe not optimally for certain instances. As the final
choice was based on best and not mean performances, 10 dummy events were
used in the final version of the algorithm, although 5 looks better on the mean
values.

Figure 4 shows boxplot graphics for the 50 runs per competition instance.
The boxes show the limits of the middle half of the data with the line inside
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Fig. 4. Boxplots showing the 50 individual runs on the 20 competition instances

the box representing the median. The whiskers indicate extreme points. It gives
us an idea about the variability of the performance for different random seeds.
Clearly, the variability increases with the mean values. It also shows us that
the best results for the instances are not lucky outliers, but fit very well to the
overall distribution of results.

Table 3 presents the best values obtained by different algorithms. The official
competition winner is an early version of the three-phase approach presented
here, the best algorithm at the competition is an early version of the Chirandini
et al. algorithm [7]. Both algorithms were in the aftermath of the competition
substantially improved. This has led to significantly enhanced performances. The
results for both up-to-date version are taken from 50 different seeds runs. The
three-phase approach yields the best result achieved on all 20 instances. On four
of them, it finds an optimal timetable.

5 Conclusion

This paper presents a state-of-the-art algorithm for the University Course Time-
tabling Problem (UCTP) based on Simulated Annealing. The results clearly
outperform the next best algorithm known for UCTP. Yet, there remains plenty
of scope for further research and improvement. Only for four out of 20 instances
has a global optimum been found so far and, on some instances, the best objective
function value is still far away from 0.

It is shown that, with a straightforward approach, it is possible to construct
initial feasible timetables that use few or none of the penalized time-slots. Fur-
thermore, a simple neighbourhood seems to suffice in order to achieve excellent
results in the optimization phase.



124 P. Kostuch

The computational results for the so-called dummy events indicate that the
temporary acceptance of infeasible moves (if we think of end-of-day penalties
as hard constraints) or at least moves that are clearly hurting the objective
function, has beneficial effects by increasing the algorithm’s flexibility. Yet, the
amount of such moves or the degree of infeasibility accepted has to be balanced
carefully.
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Abstract. Many real-life problems are dynamic, with changes in the
problem definition occurring after a solution to the initial formulation
has been reached. A minimal perturbation problem incorporates these
changes, along with the initial solution, as a new problem whose solu-
tion must be as close as possible to the initial solution. A new iterative
forward search algorithm is proposed to solve minimal perturbation prob-
lems. Significant improvements to the solution quality are achieved by
including new conflict-based statistics in this algorithm. The proposed
methods were applied to find a new solution to an existing large scale
class timetabling problem at Purdue University, incorporating the initial
solution and additional input changes.

1 Introduction

Most existing solvers are designed for static problems. These problems can be
expressed, solved by appropriate means, and the solution applied without any
change to the problem statement. Many real-life problems [18], [11], [9], [16], [12],
however, are subject to change. Additional input requirements produce a new
problem derived from the original problem. The dynamics of such a problem may
require changes during the solution process, or even after a solution is generated.
In many real-life situations, it is necessary to alter the solution process so that
the dynamic aspects of the problem definition are taken into account.

Problem changes may result from changes to environmental variables, such
as broken machines, delayed flights, or other unexpected events. Users may also
specify new properties based on the solution found so far. The goal is to find
an improved solution for the user. Naturally, the problem solving process should
continue as smoothly as possible after any change in the problem formulation.
In particular, the solution of the altered problem should not differ significantly
from the solution found for the original problem. There are several reasons to
keep a new solution as close as possible to the existing solution. If the solution
has already been published, such as the assignment of gates to flights, frequent
changes would confuse passengers. Moreover, changes to a published solution
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may necessitate other changes if initially satisfied wishes of users are violated by
the proposed changes. This may create an avalanche reaction.

In this paper we focus on handling dynamic changes in course timetabling.
In particular, our work is motivated by the class timetabling problem at Purdue
University [15]. Here timetables for each semester are created nearly a semester
in advance. Once timetables are published they require many changes based on
additional input. These changes must be incorporated into the problem solution
with minimal impact on any previously generated solution. Thus, the primary
focus of our work is to provide support for making minimal changes to the
generated timetable.

Our problem solver is based on constraint satisfaction techniques [4] which
are frequently applied to solve timetabling problems [7], [3], [15], [12]. Moreover,
dynamic constraint satisfaction [18], [11], [17] is able to cover dynamic aspects
in the problem. The minimal perturbation problem as defined in [1], [16] allows
us to express our desire to keep changes to the solution (perturbations) as small
as possible.

We introduce a new iterative forward search algorithm to solve the minimal
perturbation problem. It is based on our earlier work on solving methods for
the static (initial) problem [12]. The method also allows us to solve the initial
problem. The basic difference in application is that the optimization of the num-
ber of changes (perturbations) is not included while solving the initial problem.
Our algorithm is close to local search methods [10]; however, it maintains partial
feasible assignments as opposed to the complete conflicting assignments charac-
teristic of local search. Similar to local search, we process local changes in the
assignment. This allows us to generate a complete solution and to improve the
quality of the assignment at the same time.

New conflict-based statistics are proposed to improve the quality of the final
solution. Conflicts during the search are memorized and their potential repetition
is minimized. Conflict-based heuristics have been successfully applied in earlier
works [5], [8]. In our approach, the conflict-based statistics work as advice in the
value selection criterion. They help to avoid repetitive, unsuitable assignments of
the same value to a variable by memorizing conflicts caused by this assignment
in the past. The proposed heuristics do not limit the number of conflicts and
assignments that are memorized. We have extended our search algorithm using
these conflict-based statistics. Note, however, that this is a general strategy that
can be applied in other problem solvers.

The paper is organized as follows. Section 2 describes the timetabling problem
at Purdue University that motivates our work. The subsequent section introduces
the minimal perturbation problem and surveys related works on dynamic prob-
lems. Section 4 describes the iterative forward search algorithm. The subsequent
section introduces conflict-based heuristics and defines how they have been in-
cluded in the search algorithm. The solution of our class timetabling problem is
discussed in Section 6. A short summary of the implemented system, along with
experimental results for the initial and minimal perturbation problems, conclude
the paper.
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2 Motivation—Timetabling Problem

The primary purpose of our work is to solve a real timetabling problem at
Purdue University (USA). Here the timetable for large lecture classes is con-
structed by a central scheduling office in order to balance the requirements of
many departments offering large classes that serve students from across the
university. Smaller classes, usually focused on students in a single discipline, are
timetabled by “schedule deputies” in the individual departments. Such a complex
timetabling process, including subsequent student registration, takes a rather
long time. Initial timetables are generated about half a year before the semester
starts. The importance of creating a solver for a dynamic problem increases with
the length of this time period and the need to incorporate the various changes
that arise.

Rescheduling of classes in the timetable for large lectures is the primary fo-
cus of this paper. This problem consists of about 830 classes (forming almost
1800 meetings) having a high density of interaction that must fit within 50 lecture
rooms with capacities up to 474 students. Room availability is a major constraint
for Purdue. Overall utilization of the time available in rooms exceeds 78%; more-
over, it is around 94% for the four largest rooms. About 90,000 course requests
by almost 30,000 students must also be considered. 8.4% of class pairs have at
least one student enrolment in common.

The timetable maps classes (students, instructors) to meeting locations and
times. A major objective in developing an automated system is to minimize the
number of potential student course conflicts which occur during this process.
This requirement substantially influences the automated timetable generation
process since there are many specific course requirements in most programs of
study offered by the University.

To minimize the potential for time conflicts, Purdue has historically sub-
scribed to a set of standard meeting patterns. With few exceptions, 1 hour ×
3 day per week classes meet on Monday, Wednesday, and Friday at the half hour
(7:30, 8:30, 9:30, . . .). 1.5 hour × 2 day per week classes meet on Tuesday and
Thursday during set time blocks. 2 or 3 hours × 1 day per week classes must
also fit within specific blocks, etc. Generally, all meetings of a class should be
taught in the same location. Such meeting patterns are of interest to the problem
solution as they allow easier changes between classes having the same or similar
meeting patterns.

Currently, the timetable for Purdue University is constructed by a manual
process. We have proposed an automated timetabling system to solve the initial
problem [15]. This solution was based on constraint logic programming (CLP)
with soft constraints. The CLP solver is currently undergoing comparison with
the new solver described in this paper.

3 Minimal Perturbation Problem and Related Works

Dynamic problems appear frequently in real-life planning and scheduling ap-
plications where the task is to “minimally reconfigure schedules in response to
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a changing environment” [16]. Dynamic changes in the context of timetabling
problems were first studied in [6]. Issues of interactive timetabling which needs
to handle dynamic aspects of the problem were discussed in [3], [13], [12]. A
survey of existing approaches to dynamic scheduling can be found in [9]. In an
annotated bibliography included in the CP 2003 tutorial on dynamic constraint
solving [17], it is notable that only four papers were devoted to the problem of
minimal changes. An extended version of this tutorial will be published in [18].
The minimal perturbation problem was described formally in [16] and solved by
a combination of linear and constraint programming. We have extended this def-
inition in [1] and proposed a solution algorithm based on the Branch&Bound
algorithm. An algorithm inspired by heuristic repair and limited discrepancy
search has also been proposed in [14].

To define the minimal perturbation problem, we will consider an initial (orig-
inal) problem, its solution, a new problem, and some distance function which
allows us to compare solutions of the initial and the new problem. Subsequently
we look for a solution of the new problem with minimal distance from the initial
solution. Let us now look at particular components (for detailed information
see [1]).

We can define both the initial and the new problem as a constraint satisfac-
tion problem (CSP) [4]. It is a triple (V, D, C) where V is a finite set of variables,
D is a set of possible values for variables (domain), and C is a finite set of con-
straints restricting the values of variables. A solution to a CSP is a complete
assignment of the variables that satisfies all the constraints.

A distance function can be defined with the help of perturbations [1], [16],
[14]. A perturbation is a variable that has a different value in the solutions of the
initial and the new problem. Some perturbations must be present in each new
solution. So called input perturbation means that a variable must have different
values in the initial and changed problem because of some input changes (e.g.,
a course must be scheduled at a different time in the changed problem). The
distance function can be defined as the number of additional perturbations. They
are given by subtraction of the final number of perturbations and the number
of input perturbations.

4 Iterative Forward Search Algorithm

In this section, an iterative forward search algorithm and its general setting are
presented. It is based on local search methods [10], but in contrast to classi-
cal local search techniques, it operates over a feasible, though not necessarily
complete, solution. In such a solution, some variables can be left unassigned;
however, all hard constraints on assigned variables must be satisfied. Similar to
backtracking-based algorithms, this means that there are no violations of hard
constraints.

Working with feasible incomplete solutions has several advantages compared
to the complete infeasible solutions that usually occur in local search techniques.
For example, when the solver is not able to find a complete solution, a feasible



130 T. Müller, H. Rudová, and R. Barták

procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
unassigned = conflicting variables(current, variable, value);
unassign(current, unassigned);
assign(current, variable, value);
if better (current, best) then best = current

end while
return best

end procedure

Fig. 1. Pseudo-code of the search algorithm

one can be returned: i.e., a solution with the least number of unassigned vari-
ables found. Especially in interactive timetabling applications, such solutions are
much easier to visualize, even during the search, since no hard constraints are
violated. For instance, two lectures never use a single resource (e.g., a classroom)
at the same time. Moreover, because of the iterative character of the search, the
algorithm can easily start, stop, or continue from any feasible solution, either
complete or incomplete.

The search is processed iteratively (see Figure 1 for the algorithm). During
each step, either an unassigned or an assigned variable may be selected. Typically
an unassigned variable is chosen. An assigned variable may be selected when all
variables are assigned but the solution is not good enough, for example when
there are still many violations of soft constraints. Once a variable is selected,
a value from its domain is chosen for assignment. Even if the “best” value is
selected, its assignment to the selected variable may cause some hard conflicts
with already assigned variables. Such conflicting variables are removed from the
solution and become unassigned. Finally, the selected value is assigned to the
variable. The search is terminated when the desired solution is found or when
there is a timeout, expressed for example as a maximal number of iterations or
available time being reached. The best solution found is then returned.

Each current solution must be feasible at all times, but an assignment of
a value to a variable may cause conflicts with other variables. For example, let
the values of variables A, B and C must be different, and variable A is assigned
the value 3. When variable B, together with the value 3, are selected during
the following step, the value of A becomes unassigned during the assignment
B = 3. In our algorithm, the function conflicting variables computes the
set of conflicting variables that will be unassigned in the subsequent step.

The above algorithm schema is parametrized by several functions, namely

– the variable selection (function selectVariable),
– the value selection (function selectValue),
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– the termination condition (function canContinue) and
– the solution comparator (function better).

These functions are discussed below.

Termination Condition. The termination condition determines when the al-
gorithm should finish. For example, the solver should terminate when the maxi-
mum number of iterations or another given timeout value is reached. Moreover,
it can stop the search process when the current solution is good enough (e.g., all
variables are assigned and/or some other solution parameters are in the required
ranges). As an example, the solver can stop when all variables are assigned and
less than 10% of soft constraints are violated. The user may also terminate the
process.

Solution Comparator. The solution comparator compares two solutions: the
current solution and the best solution found. This comparison can be based on
several criteria. For example, it can lexicographically order solutions according
to the following criteria: the number of unassigned variables (a smaller num-
ber is better) or the number of violated soft constraints. Soft constraints can
be weighted according to their importance and/or preferences. Then, a sum of
weights of violated soft constraints can be used as the second criterion.

Variable Selection. As mentioned above, the presented algorithm requires
a function that selects a variable to be (re)assigned during the current iteration
step. This problem is equivalent to a variable selection criterion in constraint
programming. There are several guidelines for selecting a variable [4]. In local
search, the variable participating in the largest number of violations is usually
selected first. In backtracking-based algorithms, the first-fail principle is often
used: i.e., a variable whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints or the variable
with the smallest domain, etc.

The variable selection criterion is split into two cases. If some variables remain
unassigned, the first-fail principle can be applied as the basis for selection. Other
choice could be the random selection of the unassigned variable. Because the
algorithm does not need to stop when a complete feasible solution is found, the
second case occurs when all variables are assigned but the solution does not meet
the termination condition. Here we choose the variable for which a change of its
value appears to offer the best opportunity for improvement of the solution. This
may be, for example, a variable whose value violates the highest number of soft
constraints.

Value Selection. After a variable is selected, we need to find a value to be
assigned. This problem is usually called “value selection” in constraint program-
ming [4]. Typically, the most useful advice is to select the best-fit value. So,
we are looking for a value which is the most preferred for the variable and also
which causes the least trouble during the future search. This means that we need
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to find a value with minimal potential for future conflicts with other variables.
Note that we are not using constraint propagation explicitly in our algorithm.
However, the power of constraint propagation can be substituted to some extent
by sophisticated value selection. It can take into account possible future conflicts
by analysing the past conflicts.

For example, a value which violates the smallest number of soft constraints
among values with the smallest number of hard conflicts (i.e., the values whose
assignment to the selected variable violate the smallest number of hard con-
straints) can be selected.

4.1 Adjustment for Solving a Minimal Perturbation Problem

Despite the local search nature of the IFS algorithm, there are some adjustments
needed to effectively solve the MPP. The goal of these adjustments is to minimize
the number of additional perturbations. The easiest way to do this is to adopt
variable and value selection heuristics that prefer the previous assignments (but
not always, to avoid cycling).

For example, value selection heuristics can be adopted to select the initial
value (if it exists) randomly with a probability Pinit (it can be rather high,
e.g. 50–80%). In cases where the initial value is not selected, original value selec-
tion can be applied. Also, if there is an initial value in the set of best-fit values
(e.g., among values with the minimal number of hard and soft conflicts), the
initial value can be preferred here as well. Otherwise, a value can be selected
randomly from the constructed set of best-fit values. A disadvantage of such
heuristics is that the probability Pinit has to be selected carefully: if it is too
small, the search can easily move away and the number of additional perturba-
tions will grow during the search. If it is too high, the search will stick too much
with the initial solution and, if there is no solution with a small number of addi-
tional perturbations, it will be hard to find a feasible solution. We have achieved
the best results using this probability Pinit of around 60% (see Section 7.2 for
details).

Variable selection heuristics can also assist in finding a solution with a small
number of perturbations. For example, when all variables are assigned, a variable
that is not assigned its initial value should be selected (e.g., randomly among all
variables that are not assigned their initial values), and that participates in the
highest number of violated soft constraints.

5 Conflict-Based Statistics

In this section, a very promising extension of the iterative forward search algo-
rithm is presented. The idea behind it is to memorize conflicts and to avoid their
potential repetition. When a value v0 is assigned to a variable V0, hard conflicts
with previously assigned variables (e.g., V1 = v1, V2 = v2, . . . , Vm = vm) may
occur. These variables V1, . . . , Vm have to be unassigned before the value v0 is
assigned to the variable V0. These unassignments, together with the reason for
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their unassignment (i.e., the assignment V0 = v0), and a counter tracking how
many times such an event occurred in the past, is stored in memory.

Later, if a variable is selected for assignment again, the stored information
about repetition of past hard conflicts can be taken into account: for example,
in the value selection heuristics. Assume that the variable V0 is selected for
an assignment again (e.g., because it became unassigned as a result of a later
assignment), we can weight the number of hard conflicts created in the past for
each possible value of this variable. In the above example, the existing assignment
V1 = v1 can prohibit the selection of value v0 for variable V0 if there is again
a conflict with the assignment V1 = v1.

Conflict-based statistics are a data structure which memorizes the number of
hard conflicts that have occurred during the search (e.g., that assignment V0 = v0

resulted c1 times in an unassignment of V1 = v1, c2 times of V2 = v2, . . . and cm

times of Vm = vm). More precisely, they form an array

CBS[Va = va, Vb �= vb] = cab

stating that the assignment Va = va caused the unassignment of Vb = vb a total
of cab times in the past. Note that in case of n-ary constraints (where n > 2),
this does not imply that the assignments Va = va and Vb = vb cannot be used
together. The proposed conflict-based statistics do not actually work with any
constraint, they only memorize unassignments and the assignment that caused
them. Let us consider a variable Va selected by the selectVariable function and
a value va selected by selectValue. Once the assignment Vb = vb is selected by
conflicting variables to be unassigned, the array cell CBS[Va = va, Vb �= vb]
is incremented by one.

The data structure is implemented as a hash table, storing information for
conflict-based statistics. A counter is maintained for the tuple A = a and B �= b.
This counter is increased when the value a is assigned to the variable A and b is
unassigned from B. The example of this structure

A = a ⇒

⎧⎪⎪⎨
⎪⎪⎩

3 × B �= b
4 × B �= c
2 × C �= a

120 × D �= a

expresses that variable B lost its assignment b three times and its assignment c
four times, variable C lost its assignment a two times, and D lost its assignment a
120 times, all because of later assignments of value a to variable A. This structure
is being used in the value selection heuristics to evaluate existing conflicts with
the assigned variables. For example, if there is a variable A selected and if the
value a is in conflict with the assignment B = b, we know that a similar problem
has already occurred three times in the past, and hence the conflict A = a is
weighted with the number 3.

Then, a min-conflict value selection criterion, which selects a value with the
minimal number of conflicts with the existing assignments, can be easily adapted
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to a weighted min-conflict criterion. The value with the smallest sum of the
number of conflicts multiplied by their frequencies is selected.

Stated in another way, the weighted min-conflict approach helps the value
selection heuristics to select a value that might cause more conflicts than another
value, but these conflicts occurred less frequently, and therefore they have a lower
weighted sum. As we will show in Section 7.1, this can help considerably with
getting the search algorithm out of a local optimum.

Extensions. The presented approach can be successfully applied in other search
algorithms as well. For example, in the local search, we can memorize the assign-
ment Vx = vx, which was selected to be changed (re-assigned). A reason for such
selection can be retrieved and memorized together with the selected assignment
Vx = vx as well. Note that typically an assignment which is in a conflict with
some other assignments is selected.

Furthermore, the presented conflict-based statistics can be used not only
inside the solving mechanism. The constructed ‘implications’ together with the
information about frequency of their occurrences can be easily accessed by users
or by some add-on deductive engine to identify inconsistencies1 and/or hard
parts of the input problem. The user can then modify the input requirements in
order to eliminate problems found and let the solver continue the search with
this modified input problem.

6 Solution for Timetabling Problem

In this section we will discuss an application of the above-described algorithm
for the large lecture timetabling problem at Purdue University. The modelling
part will be described first, followed by the description of the algorithm.

6.1 Problem Representation

Due to the set of standardized time patterns and administrative rules in place
at the university, it is generally possible to represent all meetings of a class
by a single variable. This tying together of meetings considerably simplifies the
problem constraints. Most classes have all meetings taught in the same room,
by the same instructor, at the same time of day. Only the day of week differs.
Moreover, these days and times are mapped together with the help of meeting
patterns: e.g., a 2 hours × 3 days per week class can be taught only on Monday,
Wednesday, Friday, beginning at five possible times (7:30, 9:30, 11:30, 1:30, 3:30).

In addition, all valid placements of a course in the timetable have a one-to-
one mapping with values in the variable’s domain. This domain can be seen as
a subset of the Cartesian product of the possible starting times, rooms, etc., for
a class represented by these values. Therefore, each value encodes the selected

1 Actually, this feature allows discovery of all inconsistent data inputs during solution
of the Purdue University timetabling problem.
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time pattern (some alternatives may occur: e.g., 1.5 hour × 2 day per week may
be an alternative to 1 hour × 3 day per week), selected days (e.g., a two-meeting
course can be taught in Monday–Wednesday, Tuesday–Thursday, Wednesday–
Friday), and possible starting times. A value also encodes the instructor and
selected meeting room. Each such placement also encodes its preferences (soft
constraints), combined from the preference for time, room, building and available
equipment of the room. Only placements with valid times and rooms are present
in a domain. For example, when a computer (classroom equipment) is required,
only placements in a room containing a computer are present. Also, only rooms
large enough to accommodate all the enrolled students can be present in valid
class placements. Similarly, if a time slice is prohibited, no placement containing
this time slice is in the class’s domain.

The variable and value encodings described above leave us with only two
types of hard constraints to be implemented: resource constraints (expressing
that only one course can be taught by an instructor or in a particular room
at the same time), and group constraints (expressing relations between several
classes: e.g., that two sections of the same lecture cannot be taught at the same
time, or that some classes have to be taught immediately after another).

There are three types of soft constraints in this problem. First, there are
soft requirements on possible times, buildings, rooms, and classroom equipment
(e.g., computer or projector). These preferences are expressed as integers:

−2 . . . strongly preferred
−1 . . . preferred

0 . . . neutral (no preference)
1 . . . discouraged
2 . . . strongly discouraged

As mentioned above, each value, besides encoding a class’s placement (time,
room, instructor), also contains information about the preference for the given
time and room. Room preference is a combination of preferences on the choice of
building, room, and classroom equipment. The second group of soft constraints
is formed by student requirements. Each student can enroll in several classes,
so the aim is to minimize the total number of student conflicts among these
classes. Such conflicts occur if the student cannot attend two classes to which he
or she has enrolled because these classes have overlapping times. Finally, there
are some group constraints (additional relations between two or more classes).
These may either be hard (required or prohibited), or soft (preferred), similar
to the time and room preferences (from −2 to 2).

6.2 Search Algorithm

In Section 4, we described four functions which parametrize the proposed algo-
rithm. Here we will describe their exact settings in our timetabling solver.

The quality of a solution is expressed as a weighted sum combining soft time
and classroom preferences, satisfied soft group constrains and the total number
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of student conflicts. This allows us to express the importance of different types
of soft constraints. The following weights are considered in the sum:

Wstudent . . . weight of a student conflict,
Wtime . . . weight of a time preference of a placement,
Wroom . . . weight of a classroom preference of a placement,
Wconstr . . . weight of a preference of a satisfied soft group constraint.

Note that preferences of all time, classroom and group soft constraints go from
−2 (strongly preferred) to 2 (strongly discouraged). So, for instance, the value of
the weighted sum is increased when there is a discouraged time or room selected
or a discouraged group constraint satisfied. Therefore, if there are two solutions,
the better of them has the lower weighted sum of the above criteria. Moreover,
additional solution parameters can be included in this comparison as well. For
instance, we can also discourage empty half-hour time segments between classes
(such half-hours cannot be used since all events require at least one hour) or
usage of classrooms that are too large (having more than 50% excess seats).

The termination condition stops the search when the solution is complete
and good enough (expressed as the number of perturbations and the solution
quality described above). It also allows for the solver to be stopped by the user.
Characteristics of the current and the best achieved solution, describing the
number of assigned variables, time and classroom preferences, the total number
of student conflicts, etc., are visible to the user during the search.

The solution comparator prefers a more complete solution (with a smaller
number of unassigned variables) and a solution with a smaller number of pertur-
bations among solutions with the same number of unassigned variables. If both
solutions have the same number of unassigned variables and perturbations, the
solution of better quality is selected.

If there are one or more variables unassigned, the variable selection criterion
picks one of them randomly. We have compared several approaches for variable
selection using domain sizes, number of previous assignments, number of con-
straints in which the variable participates, etc. However, there was no significant
improvement in this timetabling problem in comparison with the random selec-
tion of an unassigned variable. The reason could be that it is easy to go back
when a wrong variable is picked—such a variable is unassigned when there is
a conflict with it in some of the subsequent iterations.

When all variables are assigned, an evaluation is made for each variable
according to the above-described weights. The variable with the worst evaluation
is selected because this variable promises the best improvement in optimization.

We have implemented a hierarchical handling of the value selection criteria.
There are three levels of comparison. At each level a weighted sum of the cri-
teria described below is computed. Only solutions with the smallest sum are
considered in the next level. The weights express how quickly a complete solu-
tion should be found. Only hard constraints are satisfied in the first level sum.
Distance from the initial solution (MPP), and a weighting of major preferences
(including time, classroom requirements and student conflicts), are considered
in the next level. In the third level, other minor criteria are considered. Such a
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criterion could be for instance a usage of a room that is too large or a number
of empty half-hour time segments between classes. In general, a criterion can be
used in more than one level: for example, with different weights.

The above sums order the values lexicographically: the best value having the
smallest first level sum, the smallest second level sum among values with the
smallest first level sum, and the smallest third level sum among these values.
As mentioned above, this allows diversification of the importance of individual
criteria. In general, there can be more than three levels of these weighted sums,
however three of them seem to be sufficient for spreading weights of various
criteria for our problem.

The value selection heuristics also allow for random selection of a value with
a given probability Prw (random walk, e.g., 2%) and, in the case of MPP, to
select the initial value (if it exists) with a given probability Pinit (e.g., 60%).

Criteria used in the value selection heuristics can be divided into two sets.
Criteria in the first set are intended to generate a complete assignment:

1. Number of hard conflicts, weighted by Vconf,1 in the first level, Vconf,2 in the
second level and Vconf,3 in the third level.

2. Number of hard conflicts, weighted by their previous occurrences (see
conflict-based statistics section) and by Vwconf,1..3.

Additional criteria allow better results to be achieved during optimization:

3. Number of student conflicts caused by the value if it is assigned to the
variable, weighted by Vstudent,1..3.

4. Soft time preference caused by a value if it is assigned to the variable,
weighted by Vtime,1..3.

5. Soft classroom preference caused by a value if it is assigned to the variable
(combination of the placement’s building, room, and classroom equipment
compared with preferences), weighted by Vroom,1..3.

6. Preferences of satisfied soft group constraints caused by the value if it is
assigned to the variable, weighted by Vconstr,1..3.

7. Difference in the number of assigned initial values if the value is assigned to
the variable (weighted by VΔinit,1..3): −1 if the value is initial, 0 otherwise,
increased by the number of initial values assigned to variables with hard
conflicts with the value.

Let us emphasize that the criteria 3–7 are needed for optimization only, i.e. they
are not needed to find a feasible solution.2 Furthermore, assigning a different
weight to a particular criterion influences the value of the corresponding objective
function (see Figure 3 with comparison between criteria 3 and 4). The solver
returns good results in reasonable time (e.g., in 30 minutes time limit) when
the total sum of the weights used in additional criteria (3–7) in the first level
corresponds to one-half of the weight Vwconf,1 (2). The weights in the second
level usually correspond to the weights used for the solution quality comparison
(Wstudent, Wtime, Wroom, and Wconstr).
2 A feasible solution must satisfy hard constraints.
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7 Implementation and Experiments

The timetabling system is implemented in Java. It contains a general implemen-
tation of the iterative forward search algorithm described above. The general
solver operates over variables and values with a selection of basic general heuris-
tics, comparison, and termination functions. It may be customized to fit a par-
ticular problem (as it has been extended for Purdue University timetabling) by
implementing variable and value definitions, adding hard and soft constraints,
and extending the algorithm’s parametric functions.

Besides the above discussed solver, the timetabling application for Purdue
University also contains a web-based graphical user interface (written using Java
Server Pages) which allows management of several versions of the data sets
(input requirements, solutions, changes, etc.), browsing the resultant solutions
(see Figure 2), and tracking and managing changes between them.

The following experiments were performed on the complete Fall 2004 data
set, including 830 classes to be placed in 50 classrooms. The classes included
represent 89,677 course requirements for 29,808 students. The results presented
here were computed on 1GHz Pentium III PC running Windows 2000, with
512 MB RAM and J2SDK 1.4.2. We have achieved similar results with Fall 2001
and Spring 2005 data sets as well, even though they are quite different in the
number of requirements (Fall 2004 is the most constrained one out of these three
data sets).

Below, we present two types of experiments. The first experiment investigates
finding an initial solution This is followed by experiments on the minimal per-
turbation problem (i.e., where there is an existing solution plus a set of changes
to be applied to it). Solving an initial problem can be seen as a special case of
MPP where all variables are new and therefore have no initial values.

If not stated otherwise, the solution quality weights Wstudent, Wtime, Wroom

and Wconstr in the solution quality weighted sum are set to zero in the following
experiments. First level weight for the weighted hard conflicts Vwconf,1 is set to 1,
all other weights in the value selection criterion are set to zero. Also, there is no
random value selection (Prw = 0). This way, by default, only the hard constraints
are considered during the search. We will show how the other weights influence
the search process and the overall solution quality.

7.1 Initial Problem

The experiments in Table 1 present the behaviour of the solver with respect to
various settings of weights for particular criteria (the student conflicts, violated
time preferences, and violated room preferences). It is important to see that the
weights for particular criteria can be easily adjusted. This allows us to emphasize
or suppress particular optimization criteria and it results in the corresponding
change of the solution quality.

Time refers to the amount of time required by the solver to find the presented
solution. Satisfied enrolments gives the percentage of satisfied requirements for
courses chosen by students. Preferred time and preferred room correspond to
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Fig. 2. Generated timetable at web-based graphical user interface

the satisfaction of time and room preferences respectively. 100% corresponds
to a case when all classes are placed in their most preferred times or rooms,
0% means a case when the least preferred locations are used. Preferences of soft
group constraints are not presented, since there are no such constraints in the
Fall 2004 data set (all group constraints are either required or prohibited).

A complete solution was found on every run of all experiments in Table 1
except the experiment marked No CBS. Average values together with their RMS
(root-mean-square) variances of the best achieved solutions from 10 different runs
found within 30 minute time limit are presented.

The experiment marked No preference presents average solutions obtained
without any preferences on the soft constraints. All solution quality weights W
and value selection weights V are set to zero, except of the weight Vwconf,1 = 1
(weight of the weighted hard conflicts in the first level of the value selection).

The following three experiments marked Students, Time and Rooms are
minimizing just one of the criteria: the student conflicts, violated time pref-
erences, or violated room preferences. The Students experiment uses the same
weights as the No preference experiment, but student weights are the following:
Vstudent,1 = 0.5, Vstudent,2 = Wstudent = 1. Similarly, the Time experiment uses
weights Vtime,1 = 0.5, Vtime,2 = Wtime = 1 and the Rooms experiment weights
Vroom,1 = 0.5, Vroom,2 = Wroom = 1.
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Table 1. Solutions of the initial problem

Test case No preference Students Time Rooms

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Time [min] 0.16 ± 0.03 9.18 ± 4.47 18.79 ± 7.35 0.17 ± 0.01
Satisfied enrolments [%] 98.26 ± 0.15 99.74 ± 0.02 98.19 ± 0.13 98.18 ± 0.24
Preferred time [%] 62.54 ± 1.19 65.57 ± 1.53 98.75 ± 0.13 62.14 ± 0.94
Preferred room [%] 63.64 ± 2.29 62.96 ± 1.67 63.72 ± 1.64 98.58 ± 0.29

Students + Students +
Test case Time Time + Rooms No CBS
Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 98.42 ± 0.20

Time [min] 19.96 ± 5.34 14.79 ± 4.87 24.08 ± 4.42
Satisfied enrolments [%] 99.61 ± 0.03 99.79 ± 0.01 99.52 ± 0.06
Preferred time [%] 95.70 ± 0.32 95.02 ± 0.37 94.62 ± 0.43
Preferred room [%] 62.68 ± 2.23 75.30 ± 2.30 83.77 ± 1.49

The experiment marked Students + Time equally combines student con-
flicts with time preferences, weights are Vstudent,1 = Vtime,1 = 0.25, Vstudent,2 =
Vtime,2 = Wstudent = Wtime = 1.

The next experiment (marked Students + Time + Rooms) most closely cor-
responds to reality. Here all the soft preferences are considered. Student conflicts
and time preferences are weighted equally, room preferences are considered much
less important. Weights of student conflicts and time preferences are the same as
in the previous experiment (marked Students + Time). Moreover, the weights on
room preferences are Vroom,2 = Wroom = 0.2. Note that rooms are not considered
in the first level of the value selection criteria.

Finally, the last experiment (marked No CBS ) presents average solutions
obtained from the solver without conflict-based statistics. The weights on soft
constraints are the same as in the previous experiment. But there is Vconf,1 = 1
(weight of a hard conflict) instead of Vwconf,1 = 1 (weight of a hard conflict
weighted by CBS). Vwconf,1 is set to zero. The solver was not able to find a
complete solution within the given 30 minute time limit, not even when 2%
random walk selection was used (Prw = 0.02) to avoid cycling. Furthermore,
there were at least five unassigned classes after three hours of running time.

Figure 3 compares several experiments giving different stress on student con-
flicts and time preferences. Average values from the best solutions of 10 different
runs found within 30 minute time limit are presented.

Only student conflicts or time preferences are considered in the border experi-
ments marked students and time respectively. In the middle (experiment marked
1:1 ), student conflicts and time preferences are equally weighted. The experiment
marked 3:1 prefers student conflicts three times as much as time preferences (i.e.,
weights of student conflicts are three times higher than weights of time prefer-
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Fig. 3. Comparison of satisfied student enrolments and time preferences: average qual-
ity of the solution (left), improvement of the solution in terms of percentage of the 1:1
solution (right)

ences) and vice versa. For instance, the experiment marked 1:2 has the following
weights: Vwconf,1 = 1, Vstudent,1 = 0.2, Vtime,1 = 0.4, Vstudent,2 = Wstudent = 1,
Vtime,2 = Wtime = 2.

7.2 Minimal Perturbation Problem

The following experiments were conducted on one of the complete initial solu-
tions computed in the previous set of experiments (column marked Students +
Time + Room in Table 1). Input perturbations were generated such that a given
number of randomly selected variables were not allowed to retain the values they
were assigned in the initial solution. Therefore, these classes cannot be scheduled
to the same placement as in the initial solution (either room or starting time
must be different). Only variables with more than one value in their domains
were used. For each number of input perturbations, 10 different sets of input
perturbations (i.e., variables with initial values prohibited) were generated. The
following figures show the average parameter values of the best solutions found
within 10 minutes.

The aim of the first set of experiments is to find a suitable setting for Pinit

(probability of selection of an initial value) and VΔinit,1..3 (difference in the num-
ber of perturbations in value selection). In each experiment, we have executed
10 tests for each of 10, 20, 30, . . . , 100 input perturbations respectively (100 runs
in total). The average number of assigned variables together with the average
number of additional perturbations are presented in Table 2. One or a combi-
nation of the criteria is used in each experiment. The second column refers to
the set of criteria described in Table 3.

Let us look at the explanation of this table. For instance, the expression
0.25s=1, 1.0s=2 in the column marked Vstudents,s means that Vstudents,1 is set
to 0.25 and Vstudents,2 is set to 1. The first case (Δinit = 0) corresponds to the
settings of the Students + Time + Room experiment. In remaining Δinit sets, we
tried to decrease the importance of other value selection criteria in comparison
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Table 2. Comparison of several approaches to MPP

Test case Assigned Number of
Pinit Δinit variables [%] perturbations

0.5 0 100.00 13.83
0.6 0 99.98 13.48
0.7 0 99.96 13.33
0.8 0 99.95 12.94

0 2 100.00 31.40
0.6 2 99.99 13.26

0 1 100.00 13.70
0.6 1 100.00 11.90

Table 3. Meaning of Δinit

Δinit VΔinit,i Vstudent,s Vtime,t Vroom,r

0 – 0.25s=1, 1.0s=2 0.25t=1, 1.0t=2 0.2r=2

1 0.5i=1 1.0s=2 1.0t=2 0.2r=2

2 1.0i=2 0.25s=1, 1.0s=3 0.25t=1, 1.0t=3 0.2r=3

with the initial value delta. For Δinit = 1, the first level value selection criterion
VΔinit,1 is used and the other optimization criteria which were placed in the first
level are disabled (Vstudent,1, Vtime,1 are set to zero). And the third line (Δinit=2)
corresponds to a case when the second level value selection criterion VΔinit,2 is
used and the other optimization criteria from the second level (Vstudent,2, Vtime,2,
Vroom,2) are moved to the third level.

Let us discuss particular experiments from Table 2. In the first four experi-
ments (marked Pinit = 0.5, . . . , Pinit = 0.8), the minimal perturbation problem
was solved only by changing the value selection criteria so that it selected the
initial value with a given probability (50%, 60%, 70% and 80% respectively).
Otherwise, it worked exactly as Students + Time + Room experiment, since
all the other weights were the same. As the Pinit probability is rising, we can
see that the average number of additional perturbations is descending, but the
algorithm is loosing the ability to find a complete solution in every run (in the
given 10 minute time limit).

Similarly, we can see that using just the second level value selection criterion
VΔinit,2 is able to find a complete solution all the time, but the average number
of additional perturbations is too high. A combination with the 60% probability
of an initial value selection helps to improve the average number of additional
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Fig. 4. Absolute number of average additional perturbations (left) and average ad-
ditional perturbations in terms of percentage of the number of input perturbations
(right)

perturbations, but again, there were some cases where a complete solution was
not found.

Using the first level value selection criterion VΔinit,1 seems to be very promis-
ing. All the presented experiments with this criterion were able to find a complete
solution. Moreover, the experiment marked Pinit = 0.6, Δinit = 1 (combining
VΔinit,1 with 60% initial value selection probability) gave us the best results from
the above experiments, since the average number of additional perturbations was
the smallest. The following results (see Figures 4 and 5) were computed using
the weights from this experiment.

Figure 4 presents the average number of additional perturbations (variables
that were not assigned their initial values though not prohibited). Additional
perturbations are presented wrt. the absolute number of input perturbation (i.e.,
up to about 13.4% of input perturbations is considered). The best solution found
within 10 minutes from each experiment is taken into account. The number of
additional perturbations grows with the number of input perturbations.

The graph on the left of Figure 5 shows the average quality of the resulting
solutions in the same manner as presented in Table 1. Because the initial solution
is (at least locally) optimal, and because the number of additional perturbations
is the primary minimization criterion, it is not surprising that the quality of the
solution declines with an increasing number of input perturbations. The weight-
ing between time preferences, student conflicts, and other parameters considered
in the optimization can have a similar influence as seen in the initial solutions.

Finally, the graph on the right of Figure 5 presents the average time needed
to find the best solution. Note that a 10 minute time limit for finding a best
solution was set. The influence of this limit is seen mostly on the right portion
of the chart, where the number of input perturbations exceed 50.

Other Problems. Some MPP results of a preliminary version of the above de-
scribed iterative forward search algorithm (e.g., without conflict-based statistics)
on the random placement problem (see http://www.fi.muni.cz/∼hanka/rpp/
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Fig. 5. Average solution quality (left), average time (right)

for details) are presented in our earlier work [1]. Here, it is compared with an
algorithm combining branch-and-bound approach and the limited assignment
number (LAN) search algorithm [2]. In this comparison, the iterative forward
search algorithm was significantly better in its computational speed and in the
number of additional perturbations than the other algorithm.

8 Conclusions

We have proposed and implemented a solution to a large-scale university time-
tabling problem. Our proposal includes a new iterative forward search algorithm
that is extended by conflict-based statistics which we believe can be generalized
to other search algorithms. Both ideas combined together suffice to solve the
problem and the role of additional heuristics can be minimized. Our problem
solver is able to construct a demand-driven timetable as well as incorporate dy-
namic aspects. The initial solution generated by our solver satisfies the course
requests of more than 99% of students together with about 95% of time require-
ments. The automated search was able to find suitable times and classrooms for
all classes. The experiments with a MPP give us very promising results as well.
Within 10 minutes, the solver was able to find a complete, high-quality solution
with a small number of additional perturbations.

Our future research will include extensions of the proposed general algorithm
together with improvements to the implemented solver. We would like to do
an extensive study of the proposed Minimal Perturbation Problem solver and
its possible application to other, non-timetabling problems. We are also planning
to compare our results with the previous CLP solver [15] we have implemented.
We are currently extending the CLP solver with some of the features included
here to present a fair comparison.

We are also working on extensions to the implemented solver to cover addi-
tional requirements and problem features required by Purdue University. The
strategy for computing perturbations needs to be extended as well. For ex-
ample, a change in time is usually much worse than a movement to a differ-
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ent classroom. The number of enrolled/involved students should also be taken
into account. Another factor is whether the solution has already been published
or not.
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Abstract. In this paper a new student sectioning algorithm is proposed.
In this method a fuzzy clustering, a fuzzy evaluator and a novel feature
selection method is used. Each student has a feature vector, contains
his taken courses as its feature elements. The best features are selected
for sectioning based on removing those courses that the most or the
fewest numbers of students have taken. The Fuzzy c-Means classifier
classifies students. After that, a fuzzy function evaluates the produced
clusters based on two criteria: balancing sections and students’ schedules
similarity within each section. These are used as linguistic variables in a
fuzzy inference engine. The selected features determine the best students’
sections. Simulation results show that improvement in sectioning perfor-
mance is about 18% in comparison with considering all of the features,
which not only reduces the feature vector elements but also increases the
computing performance.

1 Introduction

The course timetabling problem essentially involves the assignment of weekly
lectures to time periods and lecture room in such a way that a set of constraints
satisfy. Current methods for tackling timetabling problems include evolutionary
algorithms [14], [15], [17], [29], [30], genetic algorithms [12], [13], [18], [19], [20],
graph-based methods [10], [11], [35], simulated annealing [2], [3], tabu search [24],
[33], [34], neural networks [26], hybrid and heuristic approaches [6], [7], [28], [38],
constraint logic programming [1], [9], [21], [23], [32], ant colony optimization [36]
and fuzzy expert systems [5].

A particular problem related to timetabling is student sectioning. This prob-
lem is due to courses which involve a large number of students. For a variety
of reasons, splitting these students into a few smaller sections is desirable: for
example,

1. Room capacity requirements: when number of students in a course is
greater than every room capacity.

2. The policies of the institution: some institutions have rules about maximum
capacity of courses (e.g. 50 for specialized courses and 60 for public courses).

3. A good student sectioning may reduce the number of edges in the conflict
matrix [16].

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 147–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Most previous works related to the course scheduling problem have concen-
trated on timetable construction, with little regard to student sectioning.

Selim [35] introduced the idea of split vertices and made a start to determine
those vertices, which should be split in order that the chromatic number may be
reduced. Selim treated the problem as a conflict graph and showed how one could
pick out certain vertices in the conflict graph to split, reducing the chromatic
number of the graph to the desired value by increasing the number of sections
in the timetable. With this idea Selim decreases the chromatic number of the
conflict matrix, from 8 to 3. Thus the total number of periods needed is reduced.

The main algorithm of Laporte and Desroches [25] has the following stages:

1. Constructing student schedules without taking into account section enroll-
ments and room capacities.

2. Balancing section enrollments.
3. Respecting room capacities.

One of its interesting features is the weight it gives to the overall quality of
student schedules.

Aubin and Ferland [6] generate an initial timetable with an assignment of
the students to the course sections; then an iterative procedure is used which
adjusts the timetable and the grouping successively until no more improvement
of the objective function can be obtained. At each iteration, two procedures are
used:

1. Given the grouping generation during the preceding iteration, the timetable
is modified to reduce the number of conflicts.

2. With this timetable, the grouping of students is modified to reduce the num-
ber of conflicts.

Hertz [24] used a tabu search technique for both timetabling and sectioning
problems. He assumed that the numbers of students in each section are fixed.
The neighborhood N(s) of a solution s consists of all those grouping which can
be obtained from s by exchanging the two students of two different sections of
a course.

The initial student sectioning of Muller and Rudova [27] is based on Carter’s
[16] homogeneous sectioning and it is intended to minimize future student con-
flicts. They attempt to improve the solution with respect to the number of
student conflicts. This is achieved via section changes during the search. Each
student enrollment in a course with more than one section was processed. An
attempt was made to switch it with a student enrollment from a different sec-
tion. If this switch decreased the total number of student conflicts, it would be
applied.

Amintoosi et al. [4] introduced a fuzzy sectioning method which decreases
the average number of conflicts in a genetic timetabling program.

In this paper we concentrate on initial student sectioning prior to timetabling.
A new student-sectioning algorithm is proposed. In the proposed method a fuzzy
clustering, a fuzzy evaluator and a novel feature selection method are used.
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A Fuzzy c-Means algorithm classifies students in a large class into smaller
sections. Each student has a feature vector in fuzzy classifier. The courses taken
by each student are its feature elements.

The produced clustering is evaluated with a fuzzy function, according to
some criteria: size of clusters and students’ schedules similarity of each section.
The above parameters have been used in a fuzzy inference engine as linguistic
variables for clustering evaluation.

By removing those courses that have been taken by the most or by the fewest
numbers of students, the best features (courses) are selected. Appropriate values
for the most and the fewest values are determined with an iteration procedure.
In each iteration, courses which contain each of the following properties are
removed:

– courses which have been taken by a high percentage of students, greater than
a specified threshold, and

– those that have been taken by a low percentage of students, lower than
another threshold.

A Fuzzy c-Means classifier classifies remaining courses. The produced clusters
are evaluated by the mentioned fuzzy function. The best classification of students
will be ready at the end of the above loop.

Simulation results in the average case show that about 53% of courses are
essential for clustering and with these selected courses the clustering performance
would be about 18% more efficient.

The reminder of this paper is organized as follows. Section 2 describes the
fuzzy C-means clustering algorithm. In Section 3, the proposed method is ex-
plained in more detail and in Section 4 simulation results are considered. Section
5 concludes.

2 Fuzzy c-Means Clustering

Fuzzy c-Means (FCM) is a data clustering algorithm in which each data point
is associated with a cluster through a membership degree. Most analytical fuzzy
clustering approaches are derived from Bezdeck’s FCM [8], [31]. This tech-
nique partitions a collection of NT data points into r fuzzy groups and finds
a cluster center in each group, such that a cost function of a dissimilarity mea-
sure is minimized [22]. The algorithm employs fuzzy partitioning such that a
given data point can belong to several groups with a degree specified by mem-
bership grades between 0 and 1. A fuzzy r-partition of input feature vector
X = {x1, x2, . . . , xNT } ⊂ �n is represented by a matrix U = [μik], where the
entries satisfy the following constraints:

μik ∈ [0, 1] , 1 ≤ i ≤ r , 1 ≤ k ≤ NT (1)
r∑

i=1

μik = 1 , 1 ≤ k ≤ NT (2)

0 <
NT∑
k=1

μik < NT , 1 ≤ i ≤ r . (3)



150 M. Amintoosi and J. Haddadnia

U can be used to describe the cluster structure of X by interpreting μik as
the degree of membership of Xk to cluster i. A proper partition U of X may be
defined by the minimization of the following objective function:

Jm(U, C) =
NT∑
k=1

r∑
i=1

(μik)md2
ik (4)

where m ∈ [1, +∞] is weighting exponent called the fuzzifier, C = {c1, c2, . . . , cr}
is the vector of the cluster centres, and dik is the distance between Xk and the
ith cluster. Bezdek proved that if m ≥ 1, d2

ik > 0, 1 = i = r, then U and C
minimize Jm(U, C) only if the entries of them are computed as follows:

μ∗
ik =

1
r∑

j=1

(dik/djk)
2

m−1

(5)

c∗i =

NT∑
k=1

(μik)mxk

NT∑
k=1

(μik)m

. (6)

One of the major factors that influences the determination of appropriate
clusters of points is the dissimilarity measure chosen for the problem. Indeed,
the computation of the membership degrees μ∗

ik depends on the definition of the
distance measure dik, which is the inner product of norms (quadratic norms) on
Rn. The squared quadratic norm (distance) between a pattern vector Xk and
the center ci of the ith cluster is defined as follows:

d2
ik = ||xk − ci||G = (xk − ci)T G(xk − ci) (7)

where G is any positive definite (n × n) matrix. The identity matrix is the
simplest and most popular choice of G.

The FCM algorithm consists of a series of iterations alternating between
Equations (5) and (6). This algorithm converges to either a local minimum or a
saddle point of Jm(U, C). FCM is used to determine the cluster centers ci and
the membership matrix U for a given r value as follows:

Step1 : Initially the membership matrix is constructed using random values
between 0 and 1, such that constraints (1)–(3) are satisfied.

Step2 : For each cluster i (i = 1, 2, . . . , r) the fuzzy cluster centres ci are
calculated using Equation (6).

Step3 : For each cluster i, the distance measures dik are computed using
Equation (7).

Step4 : The cost function in Equation (4) is computed and if either it is
found to be below a certain tolerance value, or its improvement over the previous
iteration (dJm) is below a certain threshold, then it is stopped and the clustering
procedure is terminated.
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Step5 : A new U using Equation (5) is computed and steps 2–5 are repeated.

By using the above fuzzy clustering procedure, the students in large classes
are divided into r clusters. Clustering evaluation is done with a fuzzy function.
This fuzzy evaluation is based on a fuzzy inference engine. In the next section
the proposed method is explained.

3 The Proposed Method

The aim is to allocate students of a course into smaller sections, satisfying the
following criteria:

1. Student course selections must be respected.
2. Section enrollments should be balanced, i.e. all sections of the same course

should have roughly the same number of students;
3. Section capacities and policies of institute should not be exceeded.
4. Student schedules in each section would be the same as each other (as much

as possible).

A fuzzy c-Means algorithm is used for student sectioning [4]. This algorithm
satisfies criterion 1. Other criteria are evaluated at the evaluation phase. A fuzzy
inference engine evaluates the produced clustering. With a well-defined set of
rules [4], the criteria 2–4 are considered.

Removing those courses that have been taken by the most or the fewest
numbers of students achieved the best feature elements. The simulation results
show that about 53% of features are important for classification; in addition, the
clustering performance with selected features is better than the performance in
the case that all features were considered.

The proposed algorithm contains three basic parts as follows:

– method of data representation,
– fuzzy clustering and fuzzy evaluation,
– feature selection method.

The following sections explain the basic parts of the proposed method.

3.1 Data Representation

In the proposed method each student has a feature vector. The courses taken by
each student are its feature elements, represented by a bit array. Suppose that
P is the number of all courses and Vi is the list of taken courses by student i.
As shown in Equation (8), Vi is the feature vector of the ith object (student):

Vi = (Vi1 , . . . , ViP ) , Vij =

{
1 if student i has taken lesson j

0 otherwise .
(8)

Table 1 shows an example for five students. Column 2 contains the selected
courses list from three total courses, which are taken by each student. Column
3 shows the corresponding feature vector for each student. If sectioning of A is
desirable, students 1 and 2 will be in Section 1, and others remain in the second
section. Column 4 displays the sectioning results.
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Table 1. List of courses taken by five students and their corresponding feature vectors

Student Courses taken Feature vector Section no.

1 A, B 110 1
2 A, B 110 1
3 A, C 101 2
4 A, C 101 2
5 A, C 101 2

3.2 Fuzzy Clustering and Fuzzy Evaluation

In our algorithm Fuzzy C-Mean has been used as classifier. The input of the
classifier is the students’ feature vectors, as explained in the previous section.
For simplicity, the number of clusters is assumed to be 2.

Clustering evaluation has been done with a fuzzy function. Rates of section
balancing and similarity of students’ schedules in each section (criteria 1 and 2)
are its inputs and its output is the clustering performance. Two lingual variables
“Density” and “N1PerN2” (N1/N2) are defined as inputs of a fuzzy inference
engine. Density of clusters is the sum of the common courses of all student
pairs (a, b) such that students a, b lie in the same section. By dividing the
mentioned summation with its maximum value, the value of “Density” will be
normalized.“N1PerN2” represents the section’s balancing rate. It is supposed
that N1 is the size of the smaller section and hence, the range of this variable
is between 0 and 1. Since the number of students in each section should be as
equal as possible, the suitable values of N1PerN2 are close to 1. Figure 1 shows
the membership functions of the mentioned variables.

The output of the fuzzy inference engine is named “Performance” and has
the following values: Bad, NotBad, Medium, Good and Excellent. Our Fuzzy
rules were defined as follows:

Fuzzy Rules

Rule 1:
if (Density is High) and (N1PerN2 is Suitable) then (Performance is Excellent)
Rule 2:
if (Density is High) and (N1PerN2 is Middle) then (Performance is Good)
Rule 3:
if (Density is High) and (N1PerN2 is UnSuitable) then (Performance is Bad)
Rule 4:
if (Density is Med) and (N1PerN2 is Suitable) then (Performance is Good)
Rule 5:
if (Density is Med) and (N1PerN2 is Middle) then (Performance is Medium)
Rule 6:
if (Density is Med) and (N1PerN2 is UnSuitable) then (Performance is Bad)
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Fig. 1. Membership functions of our linguistic variables: “Density” (upper),
“N1PerN2” (lower)

Rule 7:
if (Density is Low) and (N1PerN2 is Suitable) then (Performance is NotBad)
Rule 8:
if (Density is Low) and (N1PerN2 is Middle) then (Performance is Bad)
Rule 9:
if (Density is Low) and (N1PerN2 is UnSuitable) then (Performance is Bad)

The rules are defined such that the influence of unsuitable sections sizes is
more than the effect of students’ schedules similarity. Rules 3, 6 and 9 reflect
this. Hence the decision surface of our rules’ database shown in Figure 2 has an
asymmetric face.

Fig. 2. Decision surface of our rules’ database
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3.3 Feature Selection Method

Feature selection plays an important role in classification problems. Advances in
feature selection not only reduce the dimension of feature vector but also reduce
the complexity of classifier. The most important rule in feature selection is re-
ducing the feature elements as far as possible such that their class discrimination
remains [37].

As you can see in Table 1, the first feature (course A) is common between
all vectors (students). Removing it should not influence the clustering results.
In our problem it seems that removing the following courses is a good idea:

1. courses that the most number of students have been taken;
2. courses that the fewest number of students have been taken.

Removing those courses that none of the students or all of them have taken
is done in a pre-processing stage. One problem is to specify the appropriate
threshold values for the most and the fewest parameters. An exhaustive search
procedure finds them as follows: the percentage of students that have taken each
course is determined and these values are finite. The number of such courses is
equal to or less than the number of all courses. If P is the number of all courses
taken by the students of the class, a procedure with worst time complexity O(P 2)
will find the appropriate values for the most and the fewest. Before entering a
loop, the percentage of students that have taken each course, and the percentage
that have not taken each course, are determined. Each value of these two lists
can be a threshold for the most (T1) and the fewest (T2) parameters, respectively.
In each iteration, those courses for which the percentage of students which have
taken them is greater than T1, or for which the percentage of students that have
not taken them is greater than T2, will be removed.

The fuzzy C-Means algorithm classifies students based on these selected
courses (features). After that, the fuzzy function evaluates the produced clusters
based on two criteria: balancing sections and students’ schedules similarity of
each section. After the last iteration the best classification of students will be
arrived at. The following pseudo-code illustrates the overall procedure. In this
algorithm Clustering() is a classifier function and ClusteringEvaluation() is an
evaluator function.

AllCourses = Set of all courses that students of this
course have taken; //(All Features)
List1 = Percentage of students that have taken each

course, sorted in non increasing order;
Thresholds1 = Distinct elements of List1;
List2 = Percentage of students that have not taken each

course, sorted in non increasing order;
Thresholds2 = Distinct elements of List2;

for i: = 1 to length(Thresholds1) do
begin
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MaxSet = Set of Courses that percentage of students
which have taken them > Thresholds1[i];

for j: = 1 to length(Thresholds2) do
begin

MinSet = Set of Courses that percentage of students
which have not taken them > Thresholds2[j];

SelectedFeatures = AllCourses – (MaxSet ∪ MinSet);
Clusters = Clustering(SelectedFeatures);
if ClusteringEvaluation(Clusters) is better than

previous clusters’ performance then
begin

BestClusters = Clusters;
T1 = Thresholds1[i];
T2 = Thresholds2[j];

end; // end if
end; // end for j

end; // end for i

4 Simulation Results

The information used for simulation is taken from the Mathematics department
at Sabzevar University. Students and courses are randomly selected with the
following characterization:

– total number of students: 210;
– number of courses: 38.

The simulator program has been written with Matlab on a Windows platform.
Figure 3(a) shows the feature vectors for a course with 67 students and to-
tal 31 features. Figure 3(b) highlights the selected features. As can be seen
in the last row of Table 2 (related to this course) the number of selected fea-
tures (NSF column) is 16 out of 31. With these selected features the perfor-
mance is better by about 35% (P1/P2 column) than with consideration of all
features.

At each iteration of the feature selection algorithm, performance is evaluated
with the selected features. The values of the fuzzy function’s inputs are varying
with every set of selected courses (features). Figure 4 demonstrates the inputs
and output values of fuzzy evaluator function in a total of 179 iterations for the
mentioned course with 67 students. The best solution is shown with a circle on
iteration no 87 in Figures 4 and 5. The values of the “Density”, “N1PerN2”,
“Performance” and the number of selected features are 0.73, 0.97, 0.75 and 16
respectively. The first iteration (values: 0.78, 0.60, 0.56 and 31) corresponds with
the case in which all features have been considered in clustering. As can be seen,
performance increases by about 35% (0.75/0.56 = 1.35).
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The simulation results on 12 courses are shown in Table 2. As can be seen,
the performance with the proposed method (P1) is always better than or equal
to the performance when all features are considered (P2) in clustering. All of
the features are required only in three examples (Examples 3, 10 and 11). In
the average case, 53% of features are required and performance is increased by
about 18%.

(a)       (b)

Fig. 3. (a) Feature vectors for a course with 67 students and 31 features (courses). (b)
The selected features (columns in the figure) are highlighted.

Fig. 4. The values of inputs and output of fuzzy evaluator function in the Feature
Selection Algorithm. Dashed, dotted and solid lines represent the value of “Density”,
“N1PerN2” and “Performance”, respectively. The best solution is shown with a circle
on iteration no. 87.
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Fig. 5. The best number of selected features is 16 and demonstrated with a circle on
iteration no. 87. The point formation depicts the outer and the inner loops in the
proposed feature selection algorithm.

Table 2. The simulation results for 12 courses. P1 is the best performance achieved
(with selected features), P2 is the performance taking into account all the courses. NSF
is the best number of selected features, NTF is the number of total features, T1 and
T2 are the values of the most and the fewest parameters.

LessonNo N1PerN2 P1 P2 P1/P2 NSF NTF NSF/NTF T1 T2

1 0.8 0.76 0.49 1.56 5 18 0.28 1 0.44
2 0.95 0.5 0.49 1.03 27 34 0.79 0.33 0.95
3 0.8 0.75 0.75 1 29 29 1 1 0.97
4 0.76 0.54 0.52 1.03 26 34 0.76 1 0.93
5 0.75 0.65 0.58 1.13 3 22 0.14 1 0.64
6 0.56 0.39 0.24 1.61 2 11 0.18 0.5 0.57
7 0.7 0.63 0.57 1.1 7 30 0.23 1 0.71
8 0.86 0.65 0.51 1.28 10 31 0.32 0.33 0.77
9 0.76 0.69 0.64 1.08 6 34 0.18 1 0.71
10 0.89 0.66 0.66 1 33 33 1 1 0.97
11 0.79 0.58 0.58 1 31 31 1 1 0.98
12 0.97 0.75 0.56 1.35 16 31 0.52 0.25 0.9
Average 0.80 1.18 0.53

5 Concluding Remarks

In this paper a novel course selection method and a fuzzy evaluation function for
the student sectioning problem is proposed. Our aim is to allocate students of
a course to smaller sections—prior to timetabling—so as to satisfy the following
criteria:

– student course selections must be respected,
– section enrollments should be balanced,
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– section capacities and rules of institution should not be exceeded,
– student schedules in each section should be the same as each other (as far

as possible).

Firstly, with a Fuzzy c-Means algorithm, students in a large class have been
classified. Each student has a feature vector in the fuzzy classifier. The courses
taken by each student are his/her features. In contrast to the usual graph-based
sectioning, not only is the number of courses common to two students important,
but also the number of courses that is not taken by both of them is significant.
Secondly, the produced clusters are evaluated with a fuzzy function, according
to two criteria: balancing sections and students’ schedules similarity of each
section. By removing those courses that the most students or the fewest students
have taken, the best features (courses) are selected. Simulation results in the
average case show that about 53% of courses are essential for clustering. The
best classification of students corresponds with these selected features. Clustering
performance with these selected features is increased by about 18% compared
with considering all of the features.
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Abstract. In this paper we deal with the problem of building a time-
table for the courses of a university faculty. We propose an integer linear
programming approach based on column generation. Each column is as-
sociated with a weekly timetable of a single course. The constraints refer-
ring to classroom occupancy and the non-overlapping in time of courses
are in the integer linear programming matrix. The constraints and pref-
erences related to a single course timetable are embedded in the column
generation procedure. Generating a column for a course amounts to se-
lecting the currently best time slots in the week. The interaction between
the column generation procedure and the branch-and-bound method is
also discussed. Some computational results are shown.

1 Introduction

Building a timetable for a university faculty is a common task which has been
carried out in many different ways. The reason for this diversity is perhaps
that each faculty has its own peculiarities which suggest home-made timetabling
methods. Although the core of a timetable is an assignment problem, there are
always additional constraints which make the problem difficult and not suitable
to a general purpose algorithm. Only some of the work done in designing faculty
timetables has emerged into the literature. General characteristics of the problem
can be found in the papers [10], [11].

The methods fall generally into two categories: heuristic methods and integer
linear programming methods. The latter cannot be classified as exact methods
because very rarely is the branch-and-bound tree fully explored due to the size of
most problems. For a review of recent timetabling methods, especially heuristics,
see [9].

In the integer linear programming formulation the problem is usually modeled
with binary variables expressing the fact that a certain course has been assigned
to certain time slots and to certain classrooms, and constraining the variables
accordingly. This has been the approach taken by several authors, as in [6], [3].

However, the integrality relaxation of this model does not provide a strong
bound and this has obvious drawbacks in terms of computing time. Besides, the
need of introducing more realistic preferences over the set of variables associated
with a single course as a whole, instead of just the preference sum for each time
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slot, cannot be practically done. This makes it sometimes very difficult to “drive”
a solution to a better one.

Therefore this approach is sometimes coupled with heuristic techniques which
on the one hand reduce the complexity of the model and on the other hand allow
the user to friendly interact with the procedure to obtain acceptable solutions.
See for instance the SAPHIR system described in [4] and based on [1], where the
authors also faced a problem feature which is not required in our model, namely
the grouping of students in different course sections. The rigidity of the syllabi
in Italian universities, with very few elective courses, results in a straightforward
grouping task.

In this paper we propose an original approach which is essentially based on
an integer linear programming formulation, but, instead of the usual assignment
binary variables, we use binary variables for each weekly course timetable. Due to
the exponential number of different course timetables the formulation requires
a column generation scheme. The use of column generation procedures is in
general recommended because part of the combinatorial structure of the problem
is already embedded in the constraint matrix, thus providing stronger bounds
(see the next section). The power of column generation techniques has been
always recognized. See for instance [2], [7]. Recently, in [8] this approach was
experimented (real data were used to test the model) for the timetable problem
in high schools, which however has a quite different structure to that in academic
faculties.

The problem we face consists of courses, classrooms and time slots. Courses
must be assigned to both classrooms and time slots by respecting constraints
of non-simultaneous use of the same classrooms in the same time slot and non-
overlapping in time of certain groups of lectures. These are the main constraints
we have to take care of. There are preferences on the time slots due to teaching
reasons and lecturers’ preferences as well. The lecturers may also express their
preferences on the whole set of time slots. However, these preferences cannot
be fully arbitrary and must be known in advance for them to be taken care of
during the column generation phase.

It is convenient to decompose the problem by first considering classroom
types instead of single classrooms, with the idea that classrooms of the same
type are interchangeable. The main integer linear programming model considers
classroom types. Once a timetable is computed, courses are easily assigned to
single classrooms.

In our main model a column is associated with a weekly timetable of a
single course. The matrix rows take care of the constraints referring to classroom
occupancy and non-overlapping in time of some courses.

It turns out that generating a column for a course can be computed very
quickly because it amounts to picking the best numbers in an array. Once a
fractional solution of the integrality relaxation is found we compute an integral
solution by resorting to an integrality solver on the generated columns. This may
already provide a good solution.
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If we want to improve the solution (or if we need to find a solution at all
because there was none with the generated columns) we have to start a branch-
and-price procedure. However, the column generation scheme conflicts with the
branch-and-bound method. There are some subtle issues connected to this point.
We are confronted with an NP-hard problem and we show how dynamic pro-
gramming techniques can be used to design a pseudopolynomial algorithm to
generate columns under the additional requirements that some variables are
fixed to zero.

The approach proposed in this paper has two main advantages: the first one
derives from the combinatorial properties of the model and, as already remarked,
results in a better bound for the branch-and-bound procedure; the second one
consists in the possibility of better “controlling” the structure of the weekly
schedule, as we shall see later.

The main features of the model are discussed in Sections 2–4. A small example
is provided in Section 5 to better show how columns are generated. The issues
related to the branch-and-price procedure are described in Section 6. In Section 7
we briefly describe the computational results obtained by applying the method
to the real data of our faculty. Finally, we show in Section 8 how courses are
assigned to classrooms.

2 The Integer Linear Programming Model

We assume that the classrooms can be partitioned into sets of classrooms of the
same type. Classrooms of the same type are interchangeable, i.e. a course can be
assigned to any classroom of a certain type. Hence it is simpler to first assign a
course to a classroom type and later, via a simple assignment problem, assign the
course to a specific classroom. Therefore in this phase we only consider classroom
types. We address the problem of assigning courses to classrooms in Section 8.
Let K be the set of classroom types and let nk be the number of classrooms of
type k ∈ K.

Let C be the set of courses. Usually a course is ideally suited to a certain
classroom type. However, it may be convenient, in case of unavailability, to
assign it to a classroom of a different type, if available and feasible. For instance
a course with few students should be placed in a small classroom, but it may
also be assigned to a large classroom, although this is less preferred in general.
Let K(c) be the set of feasible classroom types for course c.

The timetable we consider is weekly. The week is partitioned in a set of
time slots. The time slots do not necessarily have the same duration, although
equal time slots (e.g. two hours or one hour each) are preferable in the column
generation phase. In this paper we only consider equal time slots. Let H be the
set of time slots. Let d(c) be the required number of time slots for course c.

A typical feature of faculty timetabling is that certain courses must not be
taught in the same time slot. The most obvious case concerns courses taught by
the same person. Besides, there are always courses which should be attended by
the same group of students and therefore must be scheduled in different times.
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Let us define as Cq ⊂ C, q ∈ Q, the sets of non-overlapping courses (with Q
an abstract index set). Conversely, let Q(c) := {q ∈ Q : c ∈ Cq}, i.e. the list of
non-overlapping groups to which c belongs.

Let P (c) be the set of timetable patterns for the course c. By “pattern” we
mean an assignment of all the required hours per week for the course to definite
time slots and definite classroom types. The number of possible patterns for each
course is exponential, but we will generate only a subset of patterns. In order to
constrain the patterns we need to define the following matrices:

a(kh)(jc) =

⎧⎪⎨
⎪⎩

1 if course c is assigned the time slot h in a classroom of type k

for the pattern j ∈ P (c)
0 otherwise

a′
(h)(jc) =

⎧⎪⎨
⎪⎩

1 if course c is assigned the time slot h

for the pattern j ∈ P (c)
0 otherwise .

Clearly a′
(h)(jc) = 0 if and only if a(kh)(jc) = 0 for each k ∈ K and

∑
h∈H

a′
(h)(jc) =

∑
h∈H

∑
k∈K(c)

a(kh)(jc) = d(c) j ∈ P (c), c ∈ C .

We introduce the following variables:

xjc =

{
1 if pattern j ∈ P (c) is used for course c

0 otherwise
(1)

The constraints are as follows: we require that∑
c∈C

∑
j∈P (c)

a(kh)(jc) xjc ≤ nk k ∈ K, h ∈ H (2)

to avoid simultaneous use of more than nk classrooms of type k. We require that∑
c∈Cq

∑
j∈P (c)

a′
(h)(jc) xjc ≤ 1 h ∈ H, q ∈ Q (3)

to impose non-overlapping of courses in the same group q. We require that∑
j∈P (c)

xjc = 1 c ∈ C (4)

to impose that a course is assigned to exactly one pattern. The number of rows
of the problem is given by |H | · |K|+ |H | · |Q|+ |C|, which can be large but not
intractable. We consider as objective function the maximization of a preference∑

c∈C

∑
j∈P (c)

rjc xjc (5)
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where
rjc =

∑
h∈H

∑
k∈K(c)

a(kh)(jc) skhc

and skhc is the preference of using the time slot h and the classroom type k for
the course c.

Therefore the integer linear programming problem consists in the maximiza-
tion of (5) subject to (1)–(4). The approach to solve it is via branch-and-bound
with column generation (i.e. branch-and-price). The integrality constraint is re-
laxed to xjc ≥ 0 and the patterns (i.e. the columns) are generated until opti-
mality of the integrality relaxation is reached. At this point, unless the solution
is integer, the branch-and-price procedure starts.

If we compare this model to the usual model in which binary variables are
associated to course-time slots assignments (assignment model) we may observe
that each feasible solution of the integrality relaxation of (1)–(4) can be easily
turned into a feasible solution of the integrality relaxation of the assignment
model, whereas the converse is not true in general (if for instance the assign-
ment variables have different values for the same course in different time slots).
Therefore, the integrality relaxation of the model of this paper yields a better
bound than the relaxation of the assignment model.

3 Column Generation

Let us define the dual variables wkh, vhq, uc for the constraints (2)–(4) respec-
tively. Then the dual constraints are∑

h∈H

∑
k∈K

a(kh)(jc) wkh +
∑
h∈H

∑
q∈Q(c)

a′
(h)(jc) vhq + uc

≥
∑
h∈H

∑
k∈K

a(kh)(jc) skhc , j ∈ P (c) , c ∈ C ,

i.e.∑
h∈H

( ∑
k∈K

a(kh)(jc) (wkh−skhc)+
∑

q∈Q(c)

a′
(h)(jc) vhq

)
+uc ≥ 0, j ∈ P (c), c ∈ C .

So, in order to generate a pattern j for the course c, we have to minimize, with
respect to a and a′,∑

h∈H

( ∑
k∈K

a(kh)(jc) (wkh − skhc) +
∑

q∈Q(c)

a′
(h)(jc) vhq

)
. (6)

Let us define

ŵhc = min
k∈K(c)

wkh − skhc

v̂hc : =
∑

q∈Q(c)

vhq
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and
thc := ŵhc + v̂hc .

Then minimizing (6) is equivalent to minimizing, for each c,

∑
h∈H

thc a′
(h)(jc) . (7)

Minimizing (7) can be subject to some constraints or preferences related to
the particular course. Let us consider some relevant cases.

The simplest case is the one without constraints, i.e. any set of d(c) time slots
is feasible for course c. In the sequel, to ease the notation, we drop the dependence
of d on c. In this case minimizing (7) can be done by selecting the d minimum
values of thc, h ∈ H . This computation can be carried out with complexity
O(|H | log d). It is clear that we deal with fixed and generally small values of |H |
and d and consequently, it is seems out of place to provide asymptotic bounds.
Yet it is useful to realize that the algorithm for a column generation is a fast
one.

Quite often we are not allowed to assign more than one time slot per day to
a course. In this case the minimization of (7) is carried out by selecting the d
minimum values of thc on different days. This is simply carried out by taking
the best values of thc for each day, let us denote them by t̂1, t̂2, t̂3, t̂4, t̂5, and
then selecting the d best values out of them. Here we need just to scan all |H |
values and then to scan at most twice the t̂i values.

Sometimes teachers prefer to teach on consecutive days without any particu-
lar preference for the actual days. Then the pattern is generated by considering
the best value among (t̂1 + t̂2 + t̂3), (t̂2 + t̂3 + t̂4), (t̂3 + t̂4 + t̂5) (if for instance
d = 3).

Another preference expressed sometimes by teachers consists in having all
classes either all in the morning or all in the afternoon. This can be easily
carried out by considering the d best values of thc of the morning hours and the
d best values of thc of the afternoon hours and by selecting the better solution.

Finally, in case the time slots do not consist of two consecutive hours (as
is anyway advisable in general) but of single hours, one typical requirements is
that hours for the same course come out in pairs as much as possible. This type
of constraint is particularly nasty in the usual formulation. But here it does not
make the pattern generation too much harder. Suppose we have to allocate five
hours and four of them must be in pairs. Furthermore, let us assume that no
more than two hours per day can be taught. Then we compute the best values
t̂1, t̂2, t̂3, t̂4, t̂5 as before. We also compute all values thc + th′c with h and h′

consecutive hours and we take the best of these values for each day. Let t̃1, t̃2,
t̃3, t̃4, t̃5 be these values. Now we have to select three different indices i, j, k such
that t̃i + t̃j + t̂k is maximum. Although implementing this computation is not
straightforward, the computation itself is quick.

Let Mc be the minimum obtained for the course c (no matter the particular
rule to generate the pattern for that course). If Mc + uc ≥ 0 the optimality
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condition is satisfied for the course c whereas if Mc+uc < 0 the pattern obtained
by minimizing (7) has to be inserted into the matrix.

4 Initialization

Since finding a feasible timetable is by itself NP-hard, we cannot initialize the
matrix with a set of feasible patterns. It is more convenient to introduce artificial
variables zc to the equality constraints (4), which become∑

j∈P (c)

xjc + zc = 1 , c ∈ C (8)

and the original objective function is replaced by

min
c∈C

zc , i.e. max
c∈C

−zc .

The only difference in the column generation procedure is that the values s are
zero. The initial solution is taken as zc = 1 and xjc = 0. Due to the null value of
xjc, any pattern can be used to fill up the matrix initially. However, we may even
think of starting without any pattern at all and generate all of them. Indeed,
no matter which are the initial patterns, the initial values for the dual variables
are whk = 0, vhq = 0, uc = −1, and therefore the first generated patterns can
be any. In order to speed up the computation it is advisable to use as objective
function a weighted sum of the original objective and the artificial one.

We recall that we solve the relaxed problem and therefore the initial solution
can be fractional. In other words we may find an initial fractional feasible solution
even if there is no feasible integer solution.

5 An Example

We limit ourselves to show one single column generation, because everything
else is standard. The example is a small instance for illustration purposes. Let
us suppose that there are four time slots (H = 4) and five courses c1, c2, c3, c4, c5

with d(c1) = 2, d(c2) = 2, d(c3) = 1, d(c4) = 1, d(c5) = 2. The courses are
grouped into two non-overlapping sets C1 = {c1, c2} and C2 = {c3, c4, c5}. There
are two classroom types (K = {k1, k2}) and two classrooms for each type, i.e.
n(k1) = n(k2) = 2. The relationship between courses and classrooms is defined
as K(c1) = {k1}, K(c2) = K(c5) = {k2}, K(c3) = K(c4) = {k1, k2}. We assume
that the ideal classroom type for courses c3 and c4 is k1. They can fit type k2

but in this case their preferences (columns 3 and 4 of table below) are reset to 0.
The preferences are

shc =

⎛
⎜⎜⎝

0 2 1 2 2
2 0 1 0 2
1 1 0 1 1
2 1 2 1 0

⎞
⎟⎟⎠ .
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Let us suppose that three columns have been generated for each course, so
that the matrix A (constraints (2)) is (the columns in boldface correspond to
the current solution)

k1

⎧⎪⎨
⎪⎩

k2

⎧⎪⎨
⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix A′ (constraints (3)) is

C1

⎧⎪⎨
⎪⎩

C2

⎧⎪⎨
⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the assignment matrix (constraints (4)) is⎛
⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎠ .

The objective function coefficients are

( 1 4 3 1 3 1 1 2 1 0 2 1 1 4 3 )

so that the current solution value is 13. The computed dual variables at this
stage are

w = 0 , vh1 = (0 2 0 1) , vh2 = (1 0 0 0) , uc = (1 2 2 1 3) .

So we compute the following values for the course c1:

ŵh1 = min
k∈K(c1)

wkh − skhc = w1h − s1hc = (0 − 2 − 1 − 2) ,

v̂h1 := vh1 = (0 2 0 1)

and
th1 := ŵh1 + v̂h1 = (0 0 − 1 − 1) .
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We have to allocate two time slots for course c1 so that the minimum is in
selecting time slots 3 and 4 with minimum value M1 = −2. Since M1 + u1 =
−1 < 0, the optimality condition is not satisfied for c1 and the pattern (0, 0, 1, 1)
has to be generated.

For the course c3 we have

ŵh3 = min
k∈K(c3)

wkh − skh3 = min{w1h − sh3 ; w2h} = −sh3 = (−1 − 1 0 − 2)

v̂h3 := vh2 = (1 0 0 0)

and
th3 := ŵh3 + v̂h3 = (0 − 1 0 − 2) .

In this case we have to allocate only one time slot and the best way to do it is
to allocate the fourth time slot. So M3 = −2. Since M3 + u3 = 0 the optimality
condition is satisfied and there is no need to generate columns for c3. We omit
the similar computations for the courses c2, c4 and c5.

6 Branch-and-Price Strategy

We first solve the relaxed problem by generating columns until optimality is
reached. If we end up with a fractional solution, we invoke a ILP routine on
the generated columns to get a first incumbent. Then we start a branch-and-
bound search. The branching is done by setting the fractional variables to 0 and
to 1. These additional constraints however conflict with the column generation
scheme. While fixing a variable to 1 poses no problem, there are problems in
fixing a variable to 0. Indeed there is no way to prevent generating again columns
whose corresponding variables are forced to 0.

We circumvent the problem as follows. Let us suppose that we are solving
a subproblem in the branch-and-bound tree for which (K − 1) variables have
been set to 0. If we compute the first K minima in (7), we are sure that among
those minima there is the minimum of (7) with the additional requirement of
excluding the (K − 1) columns associated to the variables set to 0.

However, computing the first K minima in (7) is not a straightforward prob-
lem. Let us consider the case when (7) is minimized without constraints. There
is an array of values T := {t1, t2, . . . , t|H|} (in general unrestricted in sign). Let
J ⊂ {1, 2, . . . , |H |}. The value of the subset J is defined as

∑
j∈J tj . We ask if

there are at least K distinct subsets of {1, 2, . . . , |H |} with value at most −uc.
This is a variant of the K-th LARGEST SUBSET problem, which is known to
be NP-hard (see for instance [5]). Our problem is a variant with subsets of equal
cardinality and values unrestricted in sign. It is not hard to see that the variant
is NP-hard as well. However, it may be solved pseudopolynomially, for instance
in the following way. Let Tj := {t1, t2, . . . , tj} and Ij := {1, 2, . . . , j}. Define
L(i, j) to be a list of the values of the K best subsets of Ij with i elements (the
list may have less than K values if K subsets do not exist) and L∗(i, j) to be
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the list of the corresponding subsets. Then the following dynamic programming
recursion holds:

L(i, j) = min{L(i, j − 1) ; tj + L(i − 1, j − 1)} (9)

where tj +L(i−1, j−1) means that the value tj is added to each value of the list
L(i− 1, j − 1) and the “min” operation is actually a merge operation extracting
the best K values from the two lists. The same merge operation is carried out
on L∗(i, j − 1) and L∗(i − 1, j − 1) ∪ j. This operation has complexity O(K)
on sorted lists and produces a sorted list. The meaning of (9) is that L∗(i, j) is
obtained by merging the lists which do not contain j and those which do. By
the optimality principle the latter are optimal if the subsets with one element
less up to j − 1 are optimal.

The recursion is initialized as

L(0, j) = {0}, L∗(0, j) = {∅}, j := 0, . . . , |H |

and is computed for increasing values of i and j (note that L(i, j) and L∗(i, j)
are undefined for i > j). The complexity is O(K |H | d). In our case due to the
small values of d, H and K this computation is quite fast.

The other cases of minimizing (7) can be taken care of in similar ways. For
instance if we consider the case of allowing at most one time slot per day, then
we denote the time slots as (jk) (jth time slot of day k) and define L(i, k) to be
a list of the values of the K optimal subsets up to the day k with i elements and
L∗(i, k) to be the lists of the same subsets. Then the recursion is as follows:

L(i, k) = min{L(i, k − 1) , t(1k) + L(i − 1, k − 1)) ,

t(2k) + L(i − 1, k − 1) . . . t(pk) + L(i − 1, k − 1)}

(p is the number of time slots per day) with complexity O(K |H | d) as before
(L∗(i, j) is computed accordingly).

7 Computational Results

We have applied the model to the actual data of one teaching period of our
faculty. There are 63 courses, 25 time slots (five days, five time slots per day),
four classroom types and 25 groups of non-overlapping courses. This can be
considered a medium size model. The starting LP model has 788 rows and 168
columns. We use CPLEX routines to solve the model.

Solving the LP relaxation requires 731 columns to be generated. The frac-
tional optimum has a value of 1443. At this point the CPLEX MIP routine is
called to solve the ILP problem with the currently generated columns. The MIP
routine returns the first incumbent with value 1411. The computation time up
to this point is 225 seconds, of which 173 seconds are spent on the MIP routine.

As expected, the LP relaxation provides a strong upper bound (it is a max-
imization problem). The gap is (1443 − 1411)/1443 = 0.02217, i.e. around 2%.
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Since the objective function is an artificial one, in the sense that the preferences
are numbers which reflect in an imprecise way the real preferences of teachers
and students, we might consider that any solution within a certain gap is accept-
able. This has the obvious implications that the branch-and-bound tree does not
grow too much. Indeed if we consider acceptable a gap within 3% we might just
take the first incumbent and stop the computation.

If, in contrast, we continue the computation to the very end, we need to build
a branch-and-bound tree with 556 nodes and depth 53 and generate 534 more
columns and we eventually find an integer solution of value 1443. This shows that
the gap provided by the relaxed model is actually zero for this instance. This
is quite remarkable. It raises, however, the need of finding a better incumbent
to prune more efficiently the branch-and-bound tree and also to look for better
strategies to explore the tree in order to find the optimum as soon as possible.
This is the subject of future research.

We also point out that it is advisable to implement a derived model in which
constraint violations are allowed at the price of high penalty values in the objec-
tive function. This does not introduce any new feature in the column generation
scheme. If there is no feasible solution (which unfortunately may happen) then
the artificial variables associated with the penalty values do not vanish and it is
possible to detect which constraints are responsible for the infeasibility, thereby
suggesting new requirements on the timetable.

Once an initial solution is available this can be modified manually by the
user either directly or by fixing part of the timetable and running the model
again. We are currently experimenting with this successive phase of timetable
building.

8 Assigning Courses to Classrooms

Once an integer solution is found to the main problem we have a complete
assignment for each time slot of each course to a certain classroom type. We
know that the constraint on the number of available classrooms for each type
is satisfied by the solution. It is therefore a trivial task to assign a definite
classroom for each course if we do not ask for more. In other words, as long
as we consider each time slot independent of the others, we may simply assign
in a greedy way the classrooms for each time slot. However, we usually would
like to have all lectures of the same course in the same classrooms. Although
this is not a compulsive requirement, it is a desired property of a timetable.
Sometimes, it is more than a soft requirement. If there are many students in a
class, it may be very annoying and time consuming having them moving around
between lectures.

So it is reasonable to require that certain lectures stay in the same classroom
as much as possible. Let the solution of the main model be represented by a set
of triples (c, h, k). Each triple states that course c is taught in time slot h in
classroom of type k. Clearly the problem we face is decomposed into classroom
types, so we may just consider pairs (c, h), taking for granted the classroom type.
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Let Z be the set pairs (c, h). We partition Z into sets Z1, Z2, . . . , Zf with the
idea that pairs in Zi should be in the same classroom as much as possible. The
partition can be specified manually by taking into account for instance courses
with the same groups of students.

Let R be the set of classrooms. Let us define variables

xchr :=

{
1 if the pair (c, h) is assigned to classroom r

0 otherwise

and variables

yjr :=

{
1 if a pair in Zj is assigned to classroom r

0 otherwise .

Then we may write the following constraints:∑
r

xchr = 1 (c, h) ∈ Z

stating that each pair must be assigned to a classroom,∑
c:(ch)∈Z

xchr ≤ 1 r ∈ R, h ∈ H

stating that for each time slot and each classroom there can be at most one
course, and

xchr ≤ yjr r ∈ R, (ch) ∈ Zj

to set y variables consistently with x variables. Then we minimize the number of
classroom changes within each set Zj by minimizing either

∑
jr yjr or maxjr yjr .

Due to the symmetry of the problem and also for practical reasons it is advisable
to introduce preferences qjr for the assignments between sets Zj and classroom r
so that we actually minimize

∑
jr qjr yjr.
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Abstract. This paper presents a model of generalized timetabling prob-
lem and a decomposition algorithm which can decompose large problems
into independent smaller subproblems—the search for a feasible solution
can then be easily parallelized. The timetabling problem consists in fix-
ing a sequence of meetings between teachers and students in a prefixed
period of time (typically a week), satisfying a set of constraints of various
types [9]. Course timetabling is a multi-dimensional NP-complete prob-
lem [4]. In this paper we present the multi-resource timetabling problem
(MRTP), our model for the generalized high-school timetabling prob-
lem. The MRTP is a search problem—a feasible solution is searched.
The main contribution of this paper is the Decomposition Algorithm for
MRTP to parallelize the search, so the whole MRTP can be easily dis-
tributed and parallelized. Our approach was applied to real-life instances
of high-school timetabling problems. Results are discussed at the end of
this paper and parallelized search is compared with the centralized one.

1 Introduction

The traditional high-school timetabling problem is defined as follows [9], [12]
(the terminology from the citations is used in this section; Section 2 defines the
terminology which is used in the rest of this paper):

We have m classes c1, . . . , cm, n teachers t1, . . . , tn, and p periods 1, . . . , p. We
are also given a non-negative integer matrix Rmxn, called requirements matrix,
where rij is the number of lectures given by teacher tj to class ci. The problem
consists in assigning lectures to periods in such a way that no teacher or class is
involved in more than one lecture at a time.

This definition does not reflect the following requirements [9]:

1. some lectures require special rooms (e.g. music education lecture requires a
music room);

2. some lectures may be given to more than one class (e.g. gymnastic lesson
may involve two classes together);

3. some constraints on timetables may be defined for teachers, classes, and
rooms (e.g. some teacher may be unavailable at some time).

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 177–189, 2005.
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All the requirements described above are generalized and considered in our multi-
resource timetabling problem (MRTP) model, which is described in Section 2.

It is well known that timetabling problems can be particularly difficult to
solve, especially when dealing with particularly large instances [2]. Academic
timetabling problems generally exhibit a specific structural property: courses
tend to be grouped into natural clusters of dense interaction patterns. In high
schools, each grade within the academic or vocational streams produces a clus-
ter. In universities, clusters tend to form around required courses within each
program and year. The number of edges between clusters is relatively sparse [3].

Our motivation was to find an algorithm which can split large problems into
smaller (preferably independent) instances that can be handled by conventional
algorithms (for example by backtracking). We believe that a lot of timetabling
problems have “hidden” internal structure that can be followed when the prob-
lem is decomposed.

Several decomposition techniques can be found in the literature [3], [2], [7],
[1]. Some of the techniques split a large problem into smaller ones, which can be
easily handled, but must be solved in a serial way. (Problem P is split into P1
and P2, P1 is solved, then P2 is solved. P2 depends on P1 because assignments
done for P1 influence assignments that can be applied to P2.) Such approaches
can be found in [3] and [2]. Another possibility is to fix some of the variables
to decrease the complexity of the problem (see [7] for details). Another way is
to use autonomous agents forming coalitions to split the search space and to
parallelize the search (see [1]).

We have developed a decomposition algorithm that splits the whole problem
into independent components which can be solved in a parallel way (possible
assignments for subproblem P1 do not influence possible assignments for P2 and
vice versa). MRTP is transformed into a non-oriented graph, color marking is
applied to the graph, and finally the decomposition algorithm discovers how to
decompose and parallelize the search. The algorithm is described in Section 3.2.

Our approach was applied to real-life instances. An example of search par-
allelization is given in Section 3.5. In Section 4 we discuss some results and we
compare parallelized search with the centralized one.

2 The Multi-resource Timetabling Problem Model

In the MRTP model we treat all teachers, classes, and rooms as resources. Each
resource has defined some constraints on its timetable.

All lessons are treated as events . Each event requires some number of re-
sources (e.g. a lesson of mathematics requires one teacher and one class, a gym-
nastic lesson may involve four resources: one teacher, two classes, and one special
room).

Hence, the MRTP can be described by a set of resources and a set of events.

Definition 1 (MRTP). An instance of the MRTP is described by the tuple
INPUT = 〈E, R〉, where R = {r1, . . . , rm} is a set of m resources and E =
{e1, . . . , en} is a set of n events to be scheduled.
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Definition 2 (Resource). Each resource ri is described by the tuple 〈Si, Ci〉,
where Si is a timetable associated with the resource ri, and Ci are constraints
for the resource ri.

Definition 3 (Event). Each event ei is described by the tuple 〈Si, Ci, Ri〉,
where Si is a timetable associated with the event ei, Ci are constraints for the
event ei, and Ri = {r1, . . . , rmi} is a set of mi resources required by the event
ei.

To schedule an event, all required resources must be properly scheduled to
the same time slot with respect to all event constraints and all constraints of
the required resources. Each event requires at least one resource (it may require
more than one resource) for its completion. At one time, each resource can be
occupied by one event at most. Event assignment is described more formally in
the following definition.

Definition 4 (Event assignment). Each event ei = 〈Si, Ci, Ri〉, for which
Si = [si1, . . . , siL], Ci = [ci1, . . . , ciL], Ri = {ri1, . . . , ri,mi}, and ri = 〈Sj , Cj〉, L
is length of the schedule, can be scheduled to the slot x if all of the following
conditions are satisfied:

1. The slot x of event’s timetable is not occupied and is not forbidden by any
event’s constraint.

2. All required resources have free slot x in their timetables.
3. None of the constraints of all required resources restricts us to use the slot

x.

Our goal is to schedule properly all events E from the input tuple INPUT. The
following definition describes what we mean by feasible solution of MRTP.

Definition 5 (Solution of MRTP). A solution of Multi-Resource Timetabling
Problem can be described by the set OUTPUT = {S1, . . . , Sm}, where Si is a
timetable for resource ri from the tuple INPUT. All events from the INPUT
tuple must be scheduled according to Definition 4.

2.1 Example of MRTP

In this section we use the MRTP model from the previous section to describe a
simple high school timetabling problem. The problem is very simple and is only
used to illustrate how the model can be used:

INPUT = 〈E, R〉 , R = {A, B, C, John, Bill, Ray, Joe} ,

E = {M1, M2, F1, F2, H1, H2, H3, A1, A2, Ph1} .

A, B, and C are classes (disjunctive groups of students); John, Bill, Ray, and
Joe are teachers. M1, M2, F1, F2, H1, H2, H3, A1, A2, and Ph1 are subjects
which should be scheduled. For simplicity we do not introduce any constraints
on timetables in this example. Also the timetables are simplified: each timetable
consists of three days, each day has three time slots.

Detailed descriptions of all events are summarized in Table 1.
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Table 1. Description of all events from the problem defined in this section

Event Event No of Required
name description instances resources

M1 Mathematics 1 A, John
M2 Mathematics 2 B, Joe
F1 Physics 2 A, John
F2 Physics 2 B, Joe
H1 History 1 A, Ray
H2 History 1 B, Bill
H3 History 1 C, Ray
A1 Art 1 C, Ray
Ph1 Philosophy 1 C, Bill
A2 Art 1 C, Bill

Table 2. One possible solution of the problem defined in this section: timetables for
the classes A, B, and C. Timetables for the teachers can be easily derived.

sA

H1 F1
F1
M1 H1

sB

M2
M2
H2 F2

sC

A2
A1 Ph1
H3

OUTPUT= { sA, sB, sC, sJohn, sBill, sRay, sJoe } .

One possible solution to the problem described above is shown in Table 2. We
present only timetables for the classes A, B, and C. Timetables for the teachers
(sJohn, sBill, sRay, and sJoe) can be easily derived.

3 Solution Approach

To parallelize the search we have developed a Decomposition Algorithm (DA)
which transforms the MRTP into a non-oriented graph, applies color marking to
the graph, and discovers how to decompose and parallelize the search. Subprob-
lems that are small enough (have acceptable complexity) are solved by back-
tracking.

The decomposition algorithm is described in the following listing:

function solveMRTP(MRTP p) {
solutions := {};
p := sortEvents(p);
g := MRTP2graph(p);
for i := 1 to noOfDecompositionsToTry {

edges := findEdgesToRemove(g, i);
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(p1, p2) := satisfyEvents(edges);
if hasGoodComplexity(p1)

sol1 := solveMRTP(p1);
else

sol1 := solveLocally(p1);
if hasGoodComplexity(p2)

sol2 := solveMRTP(p2);
else

sol2 := solveLocally(p2);
sol := integratePartialSolutions(sol1, sol2 );
solutions := solutions + {sol};

}
bestSolution := findBestSolution(solutions);
return bestSolution;

}

3.1 MRTP as Non-oriented Graph

The MRTP is transformed to a non-oriented graph as follows:

1. Each resource is represented as one graph node.
2. Each event is transformed into a set of edges. The set of edges forms complete

subgraph under all nodes representing resources required by the event to its
completion.

Figure 1 shows a graph for one event which requires four resources for its comple-
tion (such event does not appear in our example). The example from Section 2.1
transformed into non-oriented graph is shown in Figure 2.

3.2 Decomposition

Parallelization of the MRTP is based on splitting of the whole problem into in-
dependent subproblems. Splitting of the problem into independent subproblems
corresponds to splitting the graph into isolated subgraphs (the subgraphs are
not connected by any edge).

In most cases we have to remove some edges from the graph to split it. There
are usually more sets of edges that can be removed from the graph to split it. Our
goal is to select the proper set of edges which is small enough and which splits
the graph into two subgraphs of approximately same size. We have developed
a color marking algorithm (CMA) which marks the graph with two colors and
discovers the proper set of edges which should be removed from the graph. The
CMA is described in Section 3.3.

Once we have found the proper set of edges to be removed, we can start
with decomposition of the problem. The removed edges correspond to events
which must be scheduled to split the MRPT into two subproblems which are
independent. These two subproblems may be solved in parallel and the found
solutions may be easily integrated.
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Fig. 1. Graphical representation of one event which requires four resources for its
completion (teachers Jim and Ann do teach together class D in room Lab1)

Fig. 2. Graphical representation of the problem from Section 2.1

��� ���

Fig. 3. The graph from Figure 2 divided into two isolated subgraphs

The selected event must be scheduled carefully (with respect to emerging
subproblems) otherwise the subproblems will be restricted too much (inappro-
priate placement of the event reduces too much the set of all possible assignments
that can be applied to the subproblem).
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The graphical representation of example from Section 2.1 is in Figure 2. If
we remove the edge “H3, A1” the graph is split into two independent subgraphs,
see Figure 3.

If we schedule events H3 and A1, the remaining events are split into two
independent sets:

G1 = {M2, F2, H2, Ph1, A2}, G2 = {M1, F1, H1} .

All resources are also split into two sets:

G1r = {B, C, Bill, Joe}, G2r = {A, John, Ray} .

By scheduling an event from set G1 only resources from set G1r may be affected.
The same holds for sets G2 and G2r. The problem was split into two independent
subproblems.

3.3 Color Marking Algorithm

This section describes the CMA designed to discover the set of edges which
should be removed to split the whole graph into isolated subgraphs.

The CMA is based on the following idea: We remove one edge from the graph.
One node, to which the removed edge was connected, will obtain red color and
the second one will obtain blue color. Then the color is propagated through the
edges and the color loses its intensity. When the color propagation is finished,
each node has a portion of blue and red color. The node is finally colored by the
color of which the node has bigger portion. At the end, red nodes form the first
subgraph and blue nodes form the second one (see Figure 4).

If the graph has z edges we start the CMA z-times to obtain all possible
color markings of the graph. From all these color markings we select the most
appropriate based on its rating. The rating is composed of the two components:
(a) number of edges which were removed from the graph (smaller number is
preferred), and (b) difference between sizes of two subgraphs (the size of both
subgraphs should be similar). When an edge is removed from the graph, the
corresponding event has to be scheduled. This decision is made locally—a partial
schedule is formed.

The CMA is briefly described in the following listing:

for each node n in the graph {
n.red portion = 0;
n.blue portion = 0;

}
for each edge e in the graph {

remove e from the graph;
node1 = the 1st node to which e was connected;
node1.red portion = 100;
node1.blue portion = 0;
node2 = the 2nd node to which e was connected;
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node2.red portion = 0;
node2.blue portion = 100;
repeat {

changed = false;
for each node n in graph {

call routine propagate color(n);
}

} until (changed == false);
count a rating for the colored graph;

}
select the partitioning with the best rating;

routine propagate color(node n) {
no of edges = number of all edges connected to the node n;
red portion to propagate = n.red portion / no of edges ;
blue portion to propagate = n.blue portion / no of edges ;
for each edge e connected to the node n {

neighbor node = node to which the selected edge e is connected
if (red portion to propagate > neighbor node.red potion) {

neighbor node.red portion = red portion to propagate;
changed = true;

}
if (blue portion to propagate > neighbor node.blue potion) {

neighbor node.blue portion = blue portion to propagate;
changed = true;

}
}

}

3.4 Examples of Graph Decomposition

All possible decompositions of the problem from Section 2.1 are illustrated in
Figure 5. Decompositions of some other problems are shown in Figure 6. These
problems are not described in this paper and the graphs are only to illustrate
the decomposition of larger problems.

3.5 Example of Search Parallelization

The complete decomposition of the problem from Section 2.1 is shown in Fig-
ure 7. At the beginning, we start with all events in one set. This set is received
by the first scheduler, which schedules events H3 and A1 locally. After this the
problem splits into two independent subproblems (events M2, F2, H2, Ph1, A2
represent the first subproblem, and events M1, F1 and H1 form the second sub-
problem). Then each subproblem is decomposed recursively as shown in Figure 7.
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Fig. 4. The colored graph from Figure 2 (assigned portion of red and blue color is above
each node). The edge which must be removed to split the graph into two subgraphs is
dashed.
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Fig. 5. Possible decompositions of the graph from Figure 2. Hatched nodes form the
first subgraph, nodes without hatching form the second subgraph.

The parallelization of the search is shown in Figure 8. The problem is split
into two subproblems: one was dedicated to the machine M2 and the second one
was dedicated to the machine M4. The machine M2 (resp. M4) decomposed the
given subproblem into two new subproblems: one was solved by machine M2
(resp. M4) itself, the second one was dedicated to the machine M3 (resp. M5).
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Fig. 6. Some problems represented as graphs and decomposition of them. If dashed
edges are removed, each graph is split into two subgraphs, one being formed by the
hatched nodes, the second by the remaining nodes.

4 Results

We have implemented a distributed scheduler written in Java 1.4 [10]. Some
tests were performed to verify and exemplify the usability and performance of
our approach. We run all these tests on PCs with Pentium III 866 MHz processor,
256 MB RAM, under Microsoft Windows 2000.

We would like to present results for some real-life problems which were
treated. Each problem description contains the complexity of the problem and
the search times (for centralized and parallel search). Results are summarized in
Table 3.
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Fig. 7. Decomposition of the problem from section 2.1. Boxes represent tasks which
were scheduled locally by schedulers to split the given problem into subproblems.

Fig. 8. Parallelization of the search. Hatched boxes represent decomposition, schedul-
ing, and integration of found solutions.

For example, problem number 3 is the problem of construction of timetable
for a high school with nine classes, 36 teachers (some of them are external teach-
ers), and 158 subjects. All the information needed for timetable construction
was released by the school management.

Thanks to our decomposition technique, we were able to parallelize the whole
search which resulted in the faster searching. We hope to optimize the Decom-
position Algorithm in the future.

We wanted to compare our algorithm with another algorithm based on de-
composition, but were not able to find any results that were directly comparable.
There are some interesting papers about decomposition algorithms [5], [6], [3],
[2], but they deal with other problems which cannot be directly compared with
our MRTP. We agree with paper [11], which concludes that

Although the STP (School Timetabling Problem) is a classical optimiza-
tion problem, there is still no set of test-problems with the particular
characteristics described in . . . (at least, none that we know of to date)
that can be used as benchmark.
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Table 3. Some treated real-life problems. Comparison of parallelized and centralized
search.

Complexity Search time (s)

Problem Resources Events Centralized Parallel

1 40 56 13.6 11.2
2 43 111 24.8 21.4
3 45 158 36.2 28.6

5 Conclusions

We have developed a model for a class of timetabling problems called the multi-
resource timetabling problems. We have developed a decomposition algorithm
which allows us to parallelize the search. The approach was successfully evalu-
ated, and it has the following advantages:

1. The whole problem can be split into smaller independent subproblems which
can be solved in parallel.

2. Integration of found solutions is very simple and straightforward because
the all subproblems are independent. There is no need for communication or
synchronization between two subproblems during the search.

3. The parallel search allows us to use modern grid computing techniques to
solve our problem in a short time.
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1 École des Mines de Nantes, LINA CNRS,
4 rue Alfred Kastler, BP 20722, F-44307 Nantes Cedex 3, France

{hcambaza, jussien, pdavid}@emn.fr
2 ISoft, Chemin de Moulon,
91190 Gif sur Yvette, France

demazeau@isoft.fr

Abstract. Timetabling problems have been frequently studied due to
their wide range of applications. However, they are often solved manually
because of the lack of appropriate computer tools. Although many ap-
proaches mainly based on local search or constraint programming seem
to have been quite successful in recent years, they are often dedicated to
specific problems and encounter difficulties in dealing with the dynamic
and over-constrained nature of such problems.

We were confronted with such an over-constrained and dynamic prob-
lem in our institution. This paper deals with a timetabling system based
on constraint programming with the use of explanations to offer a dy-
namic behaviour and to allow automatic relaxations of constraints. Our
tool has successfully answered the needs of the current planner by pro-
viding solutions in a few minutes instead of a week of manual design.
We present in this paper the techniques used, the results obtained and
a discussion on the effects of the automation of the timetabling process.

1 Introduction

Timetabling problems have been frequently studied because of their wide range
of applications. Scheduling activities occur in any human organization and be-
come quickly critical for large administrations. However, timetabling problems
are often solved manually because of the lack of appropriate computer tools.
Although many approaches mainly based on local search or constraint program-
ming seem to have been quite successful in recent years, they are often highly
dedicated to specific problems. This is due to the wide variety of problems which
differ for example for education timetabling between schools, universities, engi-
neering schools and more specific educational institutions. Among those prob-
lems, two main difficulties are encountered: first, timetabling problems are often
over-constrained and optimization criteria are hard to define. The optimization
objective is often hard to express for the scheduling office itself because of the

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 190–207, 2005.
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confusion induced by the manual process of resolution. Second, they are intrin-
sically dynamic: activities, resources or constraints are sometimes unknown or
can often change at the last moment.

We were confronted with such an over-constrained and dynamic problem in
our institution. We took the opportunity to experiment with PaLM [14], our ex-
planation based constraint solver, in a real-world situation. The system is based
on constraint programming with the use of explanations [15] to offer a dynamic
behaviour (the problem is not solved again from scratch when constraints are
added or removed) and to allow an automatic relaxation of constraints in case
of over-constrained problems. The tool has already been introduced for solving
dynamic RCPSP (Ressource Constrained Project Scheduling Problems) in [9].
Experiments on academic problems such as the RCPSP encouraged us to apply
the technique in a real world situation. Our tool has successfully answered the
needs of the planner by providing solutions in a few minutes instead of a week
of manual computation.

This paper is organized as follows. Section 2 introduces the timetabling prob-
lem we solved. Formal models are then presented in Section 3: a linear and a
constraint formulation are given. Section 4 presents the basics of explanation-
based constraint programming and our results are discussed in Section 5.

2 Problem Description

The problem was met in a French engineering school: the École des Mines de
Nantes (EMN). EMN offers a four-year programme which consists of a two-
year common core followed by two specialized years. There are nine possible
specializations in various areas of study like computer science, production and
logistics, environment or management (a complete list is provided in Table 1).
EMN tries to offer as much choice as possible to its students.

In this paper, we report our work on the third-year timetabling problem. All
students are supposed to choose a major and a minor (among the nine possible
specializations) and a set of open courses. The idea is to let them finalize their
choices for their final year where either the major or the minor becomes the only
set of courses that they follow. Notice that the choice of a specialization implies a
fixed set of required courses. The task is to design a weekly timetable which will be
in use for a complete semester. Each course available for the studied semester is to
be assigned to a half-day slot during the week. The main problem is to determine
which courses will happen simultaneously. The aim is to allow as many students
as possible to attend all the required courses of their two choices and as many as
possible of their free choices. Each option (an option is a topic or an area of study
chosen by a student to specialize in during his last year) is defined by two sets of
required courses (depending if the topic is a major or a minor).

2.1 Static Part of the Problem

The built timetable must verify a given set of constraints. Both hard and soft
constraints can be defined. Hard constraints are as follows:
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– topic availability: required courses of each topic have to be assigned non-
overlapping slots;

– pre-requisite: some courses are pre-requisite for others and must therefore
take place in different slots;

– room availability: a maximum number of courses is allowed simultaneously
because of room limitations.

The provided timetable must meet all these hard constraints. Moreover, soft
constraints are highly desirable for a useable timetable:

– teachers’ availability: teachers can specify their availability on given slots dur-
ing the week;

– major/minor selection: for each student, the major and minor required courses
should be scheduled in non-overlapping slots;

– free course selection: additional courses chosen by a given student must fall
in different slots.

Although no precise preference function is defined, the person in charge first
tries to satisfy teachers as much as possible(many teachers come fromother schools
or universities) and to leave students free to attend their major/minor choice. Sec-
ondly, the objective is to fulfil the other students’ requests in order to provide each
of them with a conflict-free schedule. The main problem consists in optimizing
both objectives:

1. minimize the number of violated pairs of options (major/minor);
2. minimize the number of violated pairs of courses (violated pairs of options

and courses will be denoted as conflicts in the latter).

For the first semester, the priority is given to the number of pairs of options
available and for the second semester, it consists in minimizing the number of
conflicts between courses. (Optimization was not required at the beginning by
the planner and became possible once the satisfaction of hard constraints had
been successfully taken into account.)

Typical instances for the first semester of the third year in EMN involve 120
students, 30 different courses, nine main topics and seven courses per student.
The 30 courses have to be assigned in seven timeslots. Notice that, even if the
number of courses and students is quite small compared to typical universities,
the student schedule is complete. 72 pairs of options are possible, three courses are
required for a major and two for a minor. Around 30 pairs among the 72 are effec-
tively chosen by students and the distribution of option over the pairs is varied.
We cannot predict a priori that any two options will never be together. For exam-
ple, environment and computer science options are not incompatible (a particular
instance can be seen in Table 1). Therefore, the problem is often over-constrained,
only considering the soft constraints concerning major/minor selection.

The student scheduling problem [5] (SSP) has the same objective: providing
conflict-free schedules. Students need to be assigned to courses in the classical SSP
(the timetable is already done) whereas our problem consists in assigning courses
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Table 1. The allocation of minor and major choices in a particular instance (the pair
(ACC, QRS) has been chosen by two students for instance). Options are the following:
Computer systems engineering (CSE), Computer science as an aid to decision-making
(CSAD), Organization and management of information technologies (OMIT), Auto-
matic control and industrial computation (ACC), Operations management in produc-
tion and logistics (OMPL), Quality and reliability of systems (QRS), Environmental
engineering (EG), Energetic system engineering (ESE), Nuclear and associated tech-
nologies (NT).

�������Major
Minor

OMIT CSE EG CSAD QRS OMPL ACC NT ESE

OMIT – 7 1 4 1 10 0 0 0
CSE 4 – 0 13 0 0 2 0 0
EG 1 0 – 0 2 0 0 3 5
CSAD 0 6 2 – 0 1 1 0 0
QRS 0 0 0 0 – 7 0 0 1
OMPL 2 0 4 0 13 – 2 0 1
ACC 4 3 1 0 2 9 – 1 3
NT 1 0 4 0 0 0 0 - - 2
ESE 0 0 4 0 0 0 0 1 –

to timeslots (the timetable is built according to student’s requests). A similar
problem is solved in [22] where a feasible and personalized weekly timetable is as-
signed to every student of a Spanish Engineering School. But in this case again,
several groups have been already done for every subject, every group has a fixed
timetable and is already scheduled to lecturers. Actually, our problem can be seen
as a specific demand driven timetabling problem [5] where the number of satisfied
course requests is to be maximized.

2.2 Dynamic Part of the Problem

One of the main requirements from the scheduling office was the possibility to
quickly change a previous solution in order to take unexpected events into ac-
count. Constraints concerning the students are supposed to be quite static, even
if the timetabling can be computed whereas some student choices are still miss-
ing. The dynamic part of the schedule is more related to logistic problems and
unexpected events concerning:

– the link with timetabling of other years (the four years share common re-
sources: rooms, equipment for practical sessions but also teachers);

– the requirement of the teachers (insiders and specially outsiders).

It is for instance usual that the availability of an outside contributor to a
course remains unknown until the last moment. Moreover, as teachers are in-
volved in courses for different years whose timetables are not scheduled at the
same period, unexpected constraints concerning teachers occur frequently. The
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dynamic changes considered here focus on the addition of constraints (teacher
availability or logistic needs). The literature on dynamic timetabling is not very
rich. However, our dynamic changes are related to the minimal perturbation prob-
lem which consists in incorporating the changes, along with the initial solution,
as a new problem whose solution must be as close as possible to the previous
one. [18] proposes a local search method on partial feasible assignments guided
by conflicts statistics to solve the minimal perturbation problem. Our approach
is quite different but also pragmatic (see Section 4.3). However, recent dedicated
complete methods can also be found in [1].

3 Formal Models

The input data for a given timetable are the following:

– Courses = {1, 2, . . . , n};
– Options = {1, 2, . . . , o};
– Students = {1, 2, . . . , m};
– ∀i ∈ Options ,Requisite1i ⊂ Courses;
– ∀i ∈ Options ,Requisite2i ⊂ Courses;
– ∀s ∈ Students,Choicess ⊂ Courses
– R is the maximum number of free rooms in a each timeslot;
– NP is the number of time periods in a week;
– wi1i2 denotes the conflicts associated to a pair of courses (i1, i2): for example,

the number of students that took the pair (i1, i2).

Let Courses be the set of courses, Options be the set of options, Requisite1i

be the first set of required courses for option i and Requisite2i, the second set
of required courses for the same option i. For each student s, the inputs are his
major and minor O1s, O2s and his free choice of courses FreeCoursess ⊂ Courses.
Therefore, the complete set of courses, Choicess, corresponding to a student s is
equal to Requisite1O1s∪Requisite2O2s∪FreeCoursess.

3.1 A Linear Programming Model

A linear model can be expressed using Boolean variables xij which take the value
1 if the course i is placed in the timeslot j and 0 otherwise:

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , NP} xij = {0, 1} .

Integrity Constraints Each course must be placed exactly once:

∀i ∈ {1, . . . , n},
∑

j

xij = 1 .
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Hard Constraints

Option validity: ∀o ∈ Options ,∀j ∈ {1, . . . , NP} ,
∑

i∈Requisite1o
xij ≤ 1 .

Linked courses: ∀i1, i2 pre-requisite , ∀j ∈ {1, . . . , NP} , xi1j + xi2j ≤ 1 .
Room availability: ∀j ∈ {1, . . . , NP} ,

∑
i∈Courses xij ≤ R .

Soft Constraints

Teacher availability: teacher of course i is absent at period p , xip = 0 .
Option choice: ∀s ∈ Students ,

∀j ∈ {1, . . . , NP} ,
∑

i∈
Requisite1O1s

∪Requisite2O2s

xij ≤ 1 .

Course choice: 1 ∀s ∈ Students,
∀j ∈ {1, . . . , NP} ,

∑
i∈Choices

xij ≤ 1 .

This model corresponds to the problem as it was first expressed by the schedul-
ing office. These requirements were modified to consider an optimization model
which minimizes the number of conflicts once the problem has been proved to be
over-constrained. An optimization function could be added using yi1,i2 Boolean
variables to express the fact that the courses i1 and i2 are placed in the same
timeslot. An optimization function could be written (with appropriate channelling
constraints to link x and y variables):

min
∑

(i1,i2)∈Courses×Courses

yi1j2 × wi1,i2 .

3.2 A Constraint Programming Model

Constraint programming (CP) techniques have been widely used to solve schedul-
ing problems. A constraint satisfaction problem (CSP) consists of a set V of vari-
ables defined by a corresponding set of possible values (the domain D) and a set
C of constraints. A solution for the problem is an assignment of a value to each
variable such that all the constraints are simultaneously satisfied. The constraints
are handled through a propagation mechanism which allows the reduction of the
domains of variables and the pruning of the search space. The propagation mech-
anism coupled with a backtracking scheme allows the search space to be explored
in a complete way.

CP seems a good approach to our problem, as almost all the constraints de-
scribed here fall within difference constraints (except room availability)i.e.courses
that cannot be scheduled into the same period. We can therefore enforce our
model by using global constraints like the alldifferent [19] or global cardinality 2

1 This constraint includes the previous one but the distinction will be made for relax-
ation.

2 This is denoted by gcc(X, lb, ub) where X is a set of variables, and lb and ub are two
sets of integers where lbi and ubi gives the minimal and maximal number of times
the value i must appear in X.
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[20] constraints. Such constraints constitutes an efficient way to handle recur-
rent patterns or sub-problems, they contain complex algorithms able to efficiently
prune large portions of the search space.

The constraint model proposed uses n integer variables xi denoting the times-
lots in which courses i are scheduled.

∀i ∈ {1, . . . , n}, domain(xi) = [1, . . . , NP ] .

Hard Constraints These can be simply written as follows:

Option validity: ∀o ∈ Options , alldifferent(xi|i ∈ Requisite1o)
Linked courses: ∀i, j linked courses, xi �= xj

Room availability: gcc({xi|i ∈ Courses}, {0|(1, . . . , NP )}, {R|(1, . . . , NP )}) .

Soft Constraints

Teacher availability: teacher of course i is absent at period p ,xi �= p

Option choice: ∀s ∈ Students , alldifferent
(

xi|i ∈
Requisite1O1s

∪Requisite2O2s

)
Course choice: ∀s ∈ Students , alldifferent(xi|i ∈ Choices) .

The problem is highly symmetric. In fact, disregarding the teachers’ availabil-
ity constraints, two timeslots are interchangeable. A partial assignment of at least
two timeslots is equivalent to exchanging the slots. When the search algorithm
has proven that one assignment is inconsistent, it is a waste of effort to try the
equivalent permuted assignment.

The problem can be seen as a generalized assignment problem (GAP). It is a
well-known NP-complete combinatorial optimization problem which consists of
assigning a set of tasks (courses) to a set of resources (half-day timeslots). But
it can also be considered as a weighted CSP which minimizes the weighted sum
of unsatisfied constraints (by considering a weight for each soft constraint). The
weight wi1,i2 can be associated to each elementary difference xi1 �= xi2 . Coeffi-
cients can be added to distinguish minor choice and free course choices. However,
our goal was firstly to provide a solution to hard constraints and, as requested by
the planner, to quickly re-compute a solution in case of changes (often concerning
teachers) or to simulate different scenarii with unknown data.

The dynamic and over-constrained aspect of the problem led us to consider
constraint programming with specific enhancements: explanations.

4 Explanations for Constraint Programming

Solving dynamic constraint problems has led to different approaches. Two main
classes of methods can be distinguished: proactive and reactive methods. On the
one hand, proactive methods propose to build robust solutions that remain solu-
tions even if changes occur. On the other hand, reactive methods try to reuse as
much as possible of previous reasonings and solutions found in the past. Reactive
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methods avoid restarting from scratch and can be seen as a form of learning. One
of the main methods currently used to perform such learning in dynamic con-
straint solving is a justification technique that keeps trace of inferences made by
the solver during the search. Such an extension of classical constraint program-
ming has been recently introduced. It is called explanation-based constraint pro-
gramming (e-constraints) and it has already proved its interest in many appli-
cations [14] including dynamic constraint solving. One can refer to [9] to find an
example of using explanations to solve timetabling problems. We recall in this sec-
tion what explanation-based constraint programming is and how it can be used.

4.1 Definition

An explanation records information to justify a decision of the solver as a reduc-
tion of domain or a contradiction. It is made of a set of constraints C′ (a subset of
the original constraints of the problem) and a set of decisions, dc1, dc2, . . . , dcn,
taken during search (e.g. the branching part of a branch-and-bound algorithm
such as x = a or x < y).

An explanation of the removal of value a from variable v will be written as
follows:

C′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v �= a .

An explanation e1 is said to be more precise than e2 if and only if e1 ⊂ e2.
The more precise the explanation, the more relevant the learning about the infer-
ence is. When a domain is emptied, a contradiction is identified. An explanation
for this contradiction is computed by uniting each explanation of each removal
of value of the variable concerned. At this point, intelligent backtracking algo-
rithms that question a relevant decision appearing in the conflict are conceivable
[4]. By keeping in memory a relevant part of the explanations involved in conflicts,
a learning mechanism can be implemented [16]. Notice that a nogood is associated
with any explanation: dc1 ∧ dc2 ∧ · · · ∧ dcn ∧ v = a.

4.2 Computing Explanations

During propagation, constraints are awaken (like agents or daemons) each time a
variable domain is reduced (this is an event) possibly generating new events (value
removals). A constraint is fully characterized by its behaviour regarding the basic
events such as value removal from the domain of the variables and domain bound
updates. Explanations for events are computed when the events are generated.

Explanations for Basic Constraints. It is easy to provide explanations for
basic constraints. The following example shows how to compute them.

Example 1. Let us consider a two-variable toy problem: x and y with the same
set of possible values [1, 2, 3]. Let us state the constraint x > y. The resulting sets
of possible values are [2, 3] for x and [1, 2] for y. An explanation for this situation is
the constraint x > y. Now, let us suppose that we choose to add the constraint x =
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2. The only resulting possible value for x is 2. The explanation of the modification
is the constraint x = 2. The other consequence is that the remaining value for y
is 1. The explanation for this situation is twofold: a direct consequence of the
constraint x > y and also an indirect consequence of constraint x = 2.

Precise Explanations for Global Constraints. Computing a precise expla-
nation for global constraints may not be easy because it is necessary to study
the algorithms used for propagation. However, there always exists a generic ex-
planation: the current state of the domains of each variable of the constraints.
[21] describes how to provide precise explanations for the all-different constraint
involved in our timetabling problem.

4.3 Explanations for Handling Dynamic Problems

Incremental constraint addition to a problem is a well-known issue in classical
constraint programming solvers: it is often the usual way constraints are added
to the constraint system. However, incremental constraint retraction is not so
easy. Several extensions have been proposed to handle dynamic retraction of con-
straints: some of them [2], [12] analyse the reduction operators to be able to de-
termine the past effects of a constraint and so incrementally retract it; others,
following [3], store information to achieve that determination.

Explanations (or simplifications) may be used as past effect determination
tools [6], [15].

Dynamic Constraint Retraction. Dynamic constraint retraction of a con-
straint c can be achieved through the following steps in an explanation-based sys-
tem:

1. Disconnecting. The first step is to remove the retracted constraint c from the
constraint network (no further propagation).

2. Setting back values. The second step is to undo the past effects of the con-
straints, both the direct (each time the constraint operators have been ap-
plied) and indirect (further consequences of the constraint through operators
of other constraints) effects of that constraint. We can easily put back in its
domain, each value whose explanation contains the constraint. Past events
are recorded in explanations.

3. Re-propagate. It is finally necessary to re-propagate in order to reach a con-
sistent state. As our explanations are neither minimal nor unique, many ways
exist to deduce the removal of a value and only one of those ways is stored in
the current explanation. Therefore a new propagation is necessary.

Re-propagation of Constraints. Although determining the past effects of a
constraint c is quite easily done by referring to the explanations that do con-
tain reference to c, efficient re-propagation is not provided in classical constraint
solvers. Indeed, another event needs to be handled: value restoration (or bound
restoration). Instead of calling a general local consistency operator for hand
ling this new event, it is possible to design new operators dedicated to this re-
propagation phase. See [7] for more details.

-
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4.4 Solving Over-Constrained Problems

Computing explanations for conflicts and for incrementally removing a constraint
from a constraint system leads to over-constrained problems.

Consider the classical enumeration process used to solve CSP as a dynamic se-
quence of constraint additions (assigning variables) and retractions (backtracks).
We can apply a simple strategy [15]: solve the complete constraint system as usual
and, if necessary (i.e. once the problem has been proven over-constrained), use
the conflict explanation to identify the next constraint system to consider (using
a comparator [23] that takes into account the user’s preferences) and perform the
constraint modification (retraction(s) and/or addition(s)) incrementally still us-
ing explanations. This process is iterated as long as no suitable solution is found.
The use of the comparator guarantees the optimality of the solution. Section 5.3
explains in more detail how this process leads to an optimization with respect to
soft constraints.

Notice that search is made in the space of possible relaxations in opposition to
the space of possible assignments in more classical approaches. We can carry this
idea further and imagine a local search process in the space of possible relaxations
(see Section 5.3).

5 Solving Dynamic Timetabling Problems

5.1 An Interactive Tool

Our system has been implemented using PaLM [14] and the Java Swing API to
design the graphical interface. PaLM is launched as a background process and
waits for dynamic events: addition, retraction of constraints or asking of a new
solution (during search, the graphical user interface is locked). As the success of
the tool was largely dependent on a user-friendly interface as well as the ability
to solve the problem, we paid particular attention to the planner’s needs and her
manual process.

A screenshot of the implemented system can be seen in Figure 1. One can
see a classic timetable representation with seven timeslots and 30 courses. Each
line corresponds to a timeslot. Boxes in the left column give information on the
complete timeslot (number of conflicts and number of involved students). Inside a
timeslot, courses are ordered according to the number of involved students (from
warm to cold colours, dark to light on the picture). Each course corresponds to a
box with the following information: conflicts with every other course in the same
slot, number of involved students, reference to the course and the kind of dynamic
constraint added on it. Tool Tip texts help to know the purpose of each number
by simply pausing with the cursor over it. Constraints can be added using a mouse
left click on the course or the concerned timeslot. A new window allows the con-
straint and other courses or timeslots involved to be selected. The current state of
dynamic constraints added since the beginning is also maintained, allowing easy
removals.

The automated timetabling system implemented met the requirements of the
scheduling office by proposing the following features:
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– A dynamic behaviour. Three kinds of constraints can be added or removed:
equality, difference and alldifferent, either between courses or courses with
timeslot. By dynamically adding/retracting constraints or changing their wei
ght, the planner is able to perform simulations on the solution, to evaluate its
ro

-

bustness and tomanually build(in interactionwith the tool) good solutions.
– A complete visualization of conflicts in each timeslot and for each course with

its neighbours offers the possibility to make judicious dynamic changes to a
solution. Previous indicators used by the planner in the manual process, such
as the number of inactive students in a timeslot, have been included. Addi-
tional statistics on a solution are accessible through a menu to evaluate the
results in more details.

5.2 Results

The first results were of great interest for the planner:

– The tool is able to provide better solutions quickly. A solution was found
manually in a week when 10 solutions are now obtained in about 10 minutes.
Moreover, solutions have a better quality than those found by hand even if no
optimization is done. Nevertheless, the planner is forced to pre-allocate some
courses to allow a quick computation of a solution. This is a simple way to
reduce the symmetries of the problem. A good way of doing this consists in
setting the required courses of the most chosen option in different slots, as
they will not be found together in any conceivable good solution.
We compared the result during the start-up year of the tool and noticed that
conflicts were reduced by around 20% in both semesters. Moreover, the num-
ber of students able to follow their minor choice increased by 3% (this corre-
sponds to a reduction of 10% of the number of unsatisfied students concerning
their minor). The tool was good enough to be accepted by the scheduling of-
fice and, since then, six semesters have been scheduled with it.

– Unexpected events, or unknown data can be taken into account quickly before
the start of the courses without changing the original solution too much. The
system does not provide any guarantee on the perturbation. It does not ensure
one obtains the minimal perturbation. However, the stability of a solution
has been analysed for scheduling problems in [8], [10], [11] using the same
technique and proved to be quite effective.

– A simulation tool: the tool is able to be quickly used by the planner to simu-
late different situations. Common-sense assumptions were made to make the
manual scheduling process easier and are now questioned and simulated with
the tool. For example, Human social science courses were often put together in
the last timeslot considering that each student is forced to choose one course
in this field. However, best solutions do not necessarily respect such assump-
tions. Dynamic abilities intend here to take advantage of the know-how of
the planner as much as possible because she remains a central element in the
process of resolution.
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Fig. 1. A timetable with seven timeslots and 30 courses. Light boxes on the left give
information on the complete timeslot (number of conflicts and number of students con-
cerned). In a timeslot, courses are ordered according to the number of students con-
cerned (from warm to cold colours). Each course corresponds to a box with the follow-
ing information: conflicts with every neighbours, number of involved student and the
kind of added manual constraints. Tool Tip Texts help to know the purpose of each
number.
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5.3 Post-optimization Processing

When solving an instance by hand, the planner focused on the satisfaction of hard
constraints and teacher wishes. As hard constraints are successfully taken into
account with the current system, the planner can focus more on student wishes.
Once he/she is experienced with the tool, the time gained is used to optimize the
solution through a simulation process. We noticed how the planner brought her
know-how into play to interact with the tool using its dynamic abilities and to
focus on the optimization objective. This was a new aspect of her work, as she
had been more focused on hard constraints in the past. It was therefore, for us, a
second step of resolution.

Her manual process can be seen as a manual local search around the first so-
lution given by the system and we came naturally to the point of automating the
technique as a local search.

User Preferences. Preferences are taken into account during the relaxation of
constraints. When the problem has been proved over-constrained, we use the cur-
rent contradiction explanation and the user preferences to identify the constraint
to be relaxed. The use of a simple comparator (a comparator is a partial order
on configurations) [23] that considers the constraint with the minimal weight en-
sures that the heaviest weight among the relaxed constraints is minimal in any
solution. It guarantees the optimality of the solution according to this compara-
tor. A configuration is defined by two sets of constraints (A, R) where A is the set
of active constraints and R the set of relaxed constraints. A configuration C is
said to be preferred to C′ according to a given comparator. In the previous case,
two configurations are compared on the heaviest weight of their constraints.

The solutions provided in this way are close to the planner’s objective and
first solutions have been shown to be good solutions. However, a more precise
objective could be the minimization of the weighted sum of relaxed constraints.

Such a comparator needs all the contradiction explanations computed during
the search to determine (each time a new contradiction occurs) the new set (of
constraints) of minimal weight that covers every contradiction explanation. This
leads to two main problems:

– the number of contradiction explanations can be exponential;
– finding the set of minimal weight covering the whole set of explanations is an

NP-hard problem (set covering problem).

To overcome those problems and try to provide better solutions, we decided
to perform local search techniques. This choice was directed by the well-known
ability of local search techniques to efficiently improve an initial solution gener-
ated using a heuristic method. However, a very different approach for performing
the search has been tried using the dynamic abilities of our system.

Local Search in the Space of Configurations. Local search techniques can
be seen as methods which iteratively apply simple moves to a solution. Among
the wide variety of techniques, tabu search is a local metaheuristic which avoids
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input: a configuration (A, R) and the constraint problem pb,
(1) begin

(2) while time limit not reached do

(3) for each ct in R do

(4) add ct to A and changes its weight to 100
(5) (A′, R′) ← searchOneSolution(pb) in less than N new decisions
(6) if (conflict(A′, R′) < conflict(A, R)) then
(7) bestMove ← ct
(8) endif

(9) restore previous configuration (A, R ) by:
(10) removing ct from A′

(11) adding all c ∈ A\A′

(12) endfor

(13) update tabu list:
(14) store bestMove and its weight in the list and if the size is exceeded:
(15) remove from the list the first constraint and restore its weight
(16) add bestMove to A with a weight of 100
(17) (A, R ) ← searchOneSolution(pb)
(18) endwhile

(19) end

Fig. 2. Tabu search in configurations space.

entrapment in local minima. It has already proved its use in solving timetabling
problems [13]. We use here one of the simplest forms of tabu search without achiev-
ing an effective balance of intensification and diversification. But instead of per-
forming the search on complete or partial assignments as usual, we perform the
search in the space of configurations using the dynamic abilities of an explanation-
based constraint solver.

Let (A, R) be the configuration reached at the end of the first step of the
search. As the use of a simple comparator gives good results, we start from this
point a local search in a second step of resolution. The tabu search is performed by
trying to add a constraint from R to A. The neighbour function (a move) consists
therefore in adding a relaxed constraint to the set of active constraints. To avoid
cycling, the weight of the constraint is dynamically changed to an infinite value
(in our case, 100). Adding a constraint with an infinite weight to A can lead to
very difficult sub-problems. Therefore, to reduce the computational effort of each
move, we limited the number of extensions (or backtracks, or repairs) allowed to
find a new solution. Once the constraint of R leading to the best solution has been
added to A, we store it in a tabu list with its original weight. As long as the con-
straint appears in the list, its weight stays infinite in the problem, forbidding its
relaxation. When the constraint leaves the list, it takes back its original weight
and becomes relaxable.

Local search methods traditionally encounter difficulties in taking hard con-
straints into account. Notice that the solution provided here after each move sat-
isfies hard constraints because arc-consistency is maintained after each retraction
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Table 2. Results obtained on three years. Instances X1 correspond to a first semester
problem and instances X2 to a second semester.

First solution Tabu (5 min)

Instances Opt Conflicts Obj. fct Opt Conflicts Obj. fct

A1 6 162 282 5 138 238
B1 11 151 391 13 140 380
C1 7 160 320 5 133 273
Improvement: 10.3%

A2 – 54 54 – 49 49
B2 – 97 97 – 90 90
C2 – 117 117 – 103 103
Improvement: 9.7%

or addition of constraint. When no solutions are found for every constraint of R,
we can decide to increase the number of extensions allowed or to stop the search.

The neighbourhood of a configuration (A, R) is defined by transferring a con-
straint from R to A, the computation of a consistent state with this move leads to
relaxation of some constraints from A to R. Therefore, the configuration reached
(A′, R′) can be far from the original one. The limitation of the number of exten-
sions to re-compute a solution from the previous one ensures remaining in a close
neighbourhood of (A, R) and limiting the time needed to compute a move. More-
over, after proving that a move is not reachable in the limit of time allowed, it
can be removed from the neighborhood until the current configuration has been
changed enough. It is a waste of time of proving at each step that a move does
not not belong to the current neighbourhood.

Results on Optimization. The tabu is able to improve the first solutions by
around 10% in both semesters. It compensates one main problem of the simple
comparator used by the solver to relax constraints: all the constraints of one level
can be relaxed whereas only one constraint of a higher level needs to be relaxed
to get a solution (this is called a flooding phenomenon). Table 2 summarizes the
conflict on major/minor choices (option choices in column Opt), free choices in
column Conflicts and the value of the optimization function considered to per-
form optimization.

6 Discussion

The tool can successfully solve the problem even if optimization is still an open
question. Of course, as mentioned before, it is still necessary to pre-affect some
courses by hand to reduce symmetries and to obtain an efficient resolution. We
would like to emphasize that the tool is unable to replace the planner’s work.
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On the contrary, although much progress has been made in this research field,
timetabling problems remain very difficult and specific. Computer tools still need
to be open and interactive to take advantage of the know-how of the planner. In
our case, the tool has significantly changed her work and opened new perspec-
tives. Common-sense assumptions, needed when the problem is solved by hand
(to reduce its complexity) can now be questioned and others evaluated. By exe-
cuting thankless work, the tool gives freedom to the planner who can analyse the
problem without any reductionist assumptions. Therefore, her understanding and
way of doing it have considerably changed with the tool which gives efficient and
relevant information about the problem. Only the planner knows what makes a
good solution, has in mind the complete problem with its human dimension and
is used to students and teachers’ behaviour. That is why an objective function is
so hard to define clearly and why the know-how of the planner is so critical.

We have tried to develop an efficient tool based on recent technologies in or-
der to answer precise needs, which is a quite different objective compared to the
resolution of very hard and academic problems.

7 Conclusions and Further Work

We have presented in this paper a practical application of an explanation-based
system to solve a school timetabling problem. The system has proved its efficiency
when it was accepted by the scheduling office. First, our intention was to show the
interest of using explanation techniques to solve dynamic and over-constrained
timetabling problems. Second, we presented a different local search technique that
tries to take advantage of both constraint programming for satisfying hard con-
straints and local search for its performance in an optimization context. We plan
in the future to keep working on the problem itself as well as the tool:

– Our next step would be to improve the system with user-friendly explana-
tions [17] to answer to legitimate questions of the planner such as: Why is
the problem over-constrained? Contradictions could be explained to the user
by providing the explanation computed for the contradiction in a high level
representation.

– Further experiments have to be done concerning the optimization process.
After the local search phase, we intend to restart the search with the new
upper bound. Efficient lower bounds and branching scheme will therefore be
needed. A more precise study on the problem has to be carried out to evaluate
the quality of the first solution found.

Although work remains to understand the problem, these first results show
that explanation constraint programming can be successfully integrated in a real-
world situation.
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Abstract. This paper presents a tiling algorithm for high school time-
tabling. The meetings are grouped into small, regular clusters called tiles,
each of which is thereafter treated as a unit. Experiments with three
actual instances show that tiling, coupled with an alternating path algo-
rithm for assigning resources to meetings after times are fixed, produces
good, comprehensible timetables in about ten seconds.

1 Introduction

As a recent survey makes clear [1], the problem of automatically constructing
timetables for high schools remains far from solved. This paper offers a new ap-
proach based on grouping meetings together into small clusters called tiles. Al-
though there are some drawbacks in doing this, there are significant advantages:
the resulting timetable is comprehensible to the timetable planner; assignment of
teachers to classes is simplified; and run times are reduced to about ten seconds,
freeing the timetable planner to explore alternative scenarios quickly.

After a description of the high school timetabling problem (Section 2), this
paper offers an overview of tiles and the tiling algorithm (Section 3). Sections
describing the phases of the algorithm follow. Results are presented for three
instances taken from a high school in Sydney, Australia (Section 8).

2 Specification

High school timetabling problems vary from place to place. The problem de-
scribed here is the one occurring in Australian high schools.

In high school timetabling problems, the meetings are timetabled on a weekly
or fortnightly cycle. Time is partitioned into periods of equal length. One com-
mon pattern is a week of 40 periods, each 40 minutes in length, spread over five
days. Adjacent periods may be adjacent in time, or separated by a meal break
or by the end of a day.

Unlike university timetabling, where each student follows an individual time-
table, high school students are grouped together into student groups (often called
classes, but that word can also mean the meetings they attend, and is so used
here). The members of one student group (typically 30 students) follow the same

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 208–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Tiling Algorithm for High School Timetabling 209

timetable and may be treated as a unit. Four or five student groups, containing
all the students of a certain age group, make one form (also called a year). Aus-
tralian high schools have six forms, called Year 7, Year 8, and so on to Year 12.

A typical high school has 50 or more teachers. They are partitioned into
faculties: subject areas, such as English, History, Mathematics, and so on. Some
teachers have qualifications spanning more than one faculty, and some meetings
(such as Sport) are taught by teachers in several faculties. Within faculties the
teachers have further specialties, and our model allows any number of capabilities
(such as Drama, or Senior History) to be defined and granted to arbitrary subsets
of the teachers. A teacher may have many capabilities, not just one. Teachers
have quotas specifying their workload. A common example would be a teacher
whose quota is 30 periods per week (out of the maximum of 40), with a preference
for at most 7 periods on any one day (out of the maximum 8). Head teachers or
teachers with other duties have smaller quotas, and there are part-time teachers
who are available only on nominated days.

Although most rooms are ordinary classrooms, there are specialised rooms
such as Science laboratories (possibly also usable as ordinary classrooms) and
Computer laboratories. Again, our model allows any number of these capabilities
to be defined and granted to arbitrary subsets of the rooms. Rooms could also
have quotas or be unavailable at certain times, for example for maintenance,
although there are no cases of this in our data.

Student groups, teachers, and rooms (collectively,resources) play fundamen-
tally the same role in timetabling: each must be assigned to meetings, avoiding
clashes. However, there are differences in detail. Student group resources attend
something at every period of the week, and are always preassigned to meetings—
there is never a request to choose a student group, as there is with teachers and
rooms. Teachers differ from rooms in that it is important for the same teacher to
attend all of the periods allocated to each class meeting. One does not want Ms
Smith to take some English class for three of its six periods, and Mr Brown to
take it for the other three. That would be a split assignment, and it is permissible
but undesirable.

A meeting is an entity in which a set of resources meet together at a set of
times. The times and resources may be preassigned, meaning fixed in advance
to particular values, or they may be left open to the solver to choose. Meetings
may request any number of times, and may request blocks of adjacent times
not separated by breaks (these are called double periods, triple periods, etc).
It is preferred for these times to be spread evenly through the week, and that
undesirable times (such as the last period on any day, when the students are
tired and restless) should not be concentrated in one meeting. Student group
resources are always preassigned. In our data, teachers and rooms are usually
not preassigned. Instead, meetings request resources with given capabilities: a
History teacher, a Science laboratory, or whatever.

In traditional class–teacher timetabling [6], each meeting contains one teacher
and one student group, but our meetings typically request more resources than
this. For example, in the junior years the students in each form may be grouped
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by ability for Mathematics, meaning that the Mathematics classes of that form
must run simultaneously, leading to one large meeting requesting four or five
student groups, Mathematics teachers, and rooms. In the higher years there are
electives : sets of meetings planned to run simultaneously so that students can
choose one. There may be seven or eight teachers, with varying capabilities, plus
rooms in such meetings.

Occasionally there are composite classes, in which students from different
forms study a specialised subject together. Although the students follow different
curricula, the common subject matter makes such a class feasible. Composite
classes are created when the school wants to offer some subject as an elective,
but there are too few interested students in any one form to justify it. Their effect
on timetabling is to cause two electives from different forms (those containing
the specialised option) to be merged.

Our data also contain several kinds of staff meetings, requesting various pre-
assigned subsets of the teachers, but no student groups or rooms. These meetings
are equivalent to free time for the purposes of calculating teachers’ daily and
weekly quotas, but they can be involved in clashes like other meetings.

The objective is to assign times, teachers and rooms with the desired capa-
bilities to the slots, avoiding clashes and not overloading any teachers. These
two requirements are hard constraints and they dominate the problem. If nec-
essary, a resource assignment may be split between two teachers as described
above, and as a last resort the smaller of the two fragments may be occupied by
a teacher not qualified for the requested capability. Meetings must receive the
number of times they request, but the block structure and spread through the
week of these times are soft constraints.

3 Overview

In this section we define tiles and present an overview of our algorithm. Following
sections then explain its phases in more detail.

Consider a typical meeting, such as the English class of student group 7C in
the bghs98 instance. This meeting requests 6 times including two double periods,
student group resource 7C, one English teacher, and one ordinary classroom. We
can think of this meeting as a 3 × 6 rectangle:

7C

1 EnglishTeacher

1 OrdinaryClassroom

Its width is the number of times requested, although sometimes we give a
sequence of numbers for the width, defining the required block structure. For
example, width 2 2 1 1 requests six times including exactly two double periods.
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Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

8CKOAS-Maths 8C-History

8K-History

8O-History

8A-History

8S-History

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

8C-English

8K-English 8K-English

8O-English 8O-English

8A-English 8A-English

8S-English 8S-English

8C-Music

8K-Music

8O-Music

8A-Music

8S-Music

Fig. 1. Two examples of tiles from the bghs98 instance. Each has width 2 2 1 1,
as marked by the wedges. Each smaller rectangle represents one meeting, including
appropriate resources (not shown).

Its height is the number of resources required, although again we often give more
detail—a list of the resources required—and call that the height.

Several meetings may be grouped together into a larger entity of a specific
width and height, which we call a tile. For example, suppose we decide to run the
English classes of the five Year 7 student groups simultaneously. This produces a
tile of width 6 and height 15, containing the five Year 7 student group resources,
five English teachers, and five ordinary classrooms.

Figure 1 contains two other examples of tiles. The students are grouped by
ability for Mathematics, so the five Mathematics classes must run simultane-
ously and are combined into one large meeting in the input data. The adjacent
History classes do not have to run simultaneously, but fitting them neatly along-
side Mathematics forces them to. The second tile illustrates a construction, well
known to manual timetablers, called the runaround. There are only two Music
teachers and two Music rooms, so the five Music classes cannot run simultane-
ously. By interleaving them among other meetings as shown, the tile demands
only one of each at any one time.

Our recipe for producing comprehensible timetables may now be stated: first
place all of the meetings neatly into tiles, then timetable the tiles so as to ensure
that for each pair of timetabled tiles Ti and Tj, Ti and Tj either contain exactly
the same set of times, or else have no times in common. In our test instances there
are 40 times in the week, and the timetable is planned around an ideal pattern of
six classes each six periods wide, plus four periods of sport and optional religious
instruction, so it is natural to build six six-period tiles and one four-period tile in
each form. This common set of widths, or major columns, could be inferred, but
it forms such a basic part of the timetable planner’s thinking that we have chosen
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instead to require it to be given as part of the input data. When timetabled,
the four-period tiles must all contain the same set of four times, if the rule laid
down just above is to be satisfied; but the six-period ones may be timetabled
together in whatever way utilizes resources best. The reader might care to look
ahead to Figure 3, which shows a timetable following this pattern.

Our algorithm proceeds in four phases, each the subject of a following section.
First, specific times during the week are assigned to the major columns (Sec-
tion 4). Next, tiles are created and meetings inserted into them and timetabled
within them (Section 5). Third, the tiles are timetabled against each other by
placing them into the major columns (Section 6), using an algorithm that first
timetables the Year 12 tiles, then the Year 11 tiles, and so on, building up layers
until the timetable is complete. Finally, specific resources are allocated to the
meetings’ resource slots (Section 7).

4 Column Layout

The first step in our algorithm is to assign times to each of the major columns.
Figure 2 gives a typical example of what is wanted: each column spread evenly
through the week, with its blocks of times not interrupted by meal breaks.

This is an easy problem in practice so we will be brief. A tree search is used
which first attempts to give each column one period on each of a set of days that
is spread evenly through the week. Once this is achieved the search continues
downwards, with columns making requests to days for their single periods to
be exchanged for larger blocks, until every column has the block structure it
requires. Each day maintains a small bin packing of the blocks it has promised
to columns into the intervals between meal breaks, solved exhaustively as each
request arrives.

Columns may have preassigned times, propagated from classes. For example,
if some class requests Mon1 and Mon2, then a preassignment of these times to

Day 1 Day 2 Day 3 Day 4 Day 5

Period 1 Column 1 Column 4 Column 5 Column 5 Column 3

Period 2 Column 1 Column 4 Column 5 Column 5 Column 3

Period 3 Column 0 Column 3 Column 1 Column 4 Column 0

Period 4 Column 0 Column 3 Column 1 Column 4 Column 1

Period 5 Column 2 Column 2 Column 0 Column 2 Column 2

Period 6 Column 3 Column 2 Column 0 Column 2 Column 6

Period 7 Column 4 Column 5 Column 3 Column 0 Column 6

Period 8 Column 5 Column 6 Column 4 Column 1 Column 6

Fig. 2. A typical layout of a week of 40 times into six columns of width 2 2 1 1 plus
one of width 3 1. Double lines indicate meal breaks.
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some column will occur. Time preassignments are rare and we assume that they
do not overconstrain this problem.

In practice this algorithm finds layouts like the one in Figure 2 with virtually
no backtracking. It has produced larger (two-week) layouts with ease. At present
it does not try to equalize the number of morning and afternoon times granted
to each column (a common soft requirement), but this could easily be added in
a final stage which permutes blocks of times within days.

5 Tile Layout

The second phase of our algorithm builds, for each form, a set of tiles holding
the meetings of that form. This task is usually trivial in the senior forms, where
the set of widths of all meetings equals, or almost equals, the set of tile widths,
but non-trivial in the junior years, which typically contain many small meetings.
For example, the Year 8 meetings from the bghs98 instance have widths

2 2 1 English 2 2 1 Mathematics 2 2 1 Science
2 2 Languages 2 2 Health 1 1 1 Geography
1 1 1 History 2 Art 2 Sport
2 Technology 2 Design 1 1 Music

and must be packed into the usual six tiles of width 2 2 1 1 and one of width
3 1. We wish to minimize the number of meetings split across two tiles, creating
a bin packing problem.

Some of these entries represent single meetings (e.g. Mathematics) while
others represent a set of five meetings, one for each student group (e.g. English).
For comprehensibility, even in this second case we prefer to place all the meetings
for one subject into the same tile.

Our current algorithm uses a tree search which first searches for a packing
that does not split any meetings over two tiles. If that fails, it splits the smallest
meeting in two in all possible ways and tries again. If that fails it splits the
two smallest meetings in two in all possible ways, and so on. It usually works
quite well (Section 8) but during development has occasionally entered on a long,
fruitless search. We plan to replace it with a heuristic method which we believe
will do just as well in practice, so instead of describing our current algorithm
further we now present some considerations of importance to any tile layout
algorithm.

Although we place all the meetings for a single subject within one tile, it is not
always possible for them to run simultaneously there, because resources may not
be sufficient, and this leads to the runarounds already mentioned (Section 3).
The key quantity is the minimum runaround width, the minimum number of
times that a set of meetings must spread through if its demands are to be
satisfied. For example, five one-period Music classes must spread through at
least three times if two Music teachers are all that are available. In general, the
minimum runaround width is the maximum, over all resource demands made by
the meetings, of
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⌈
Width of one meeting × Number of occurrences of demand

Number of resources available to satisfy demand

⌉
.

Each set of meetings is classified as vertical (meaning that the meetings must run
simultaneously, as in the case of Mathematics where the input data demands it),
runaround (meaning requiring a runaround, because the minimum runaround
width is greater than each meeting’s width), or easy, meaning that either layout
will work. For example, in Figure 1, Mathematics is vertical, Music is runaround,
and the others are easy.

For a set of meetings to be timetabled within one tile it is of course necessary,
to begin with, that the total width of all meetings containing any one student
group resource should not exceed the tile width. Beyond this, there must be room
for the runaround meetings to spread out in. When several sets of runaround
meetings lie in the same tile, they interleave with each other but still occupy
width equal to their total width, so this total must be at least as large as every
minimum runaround width. Easy meetings may be co-opted into the runaround,
as English is in Figure 1, to help achieve this runaround condition, which is
sufficient as well as necessary for a timetable to exist, provided that the resource
demands of the different sets of meetings do not interact.

Some tiles contain meetings from several forms, and consequently when a tile
layout algorithm begins it may find that some of the tiles it is given are not empty.
It must check for each of its sets of meetings whether resources are sufficient to
permit them to enter such tiles. In particular, when some major column’s width
is unique, as is the case for the width 4 column of the bghs98 instance, we only
ever create one tile for that column, and that tile holds meetings from every
form.

There is an artificial fixed form of fixed tiles holding meetings with pre-
assigned times. Each fixed tile is permanently assigned to a particular major
column, and since the times assigned to columns are known at this point, any
meetings with preassigned times can find their way via the columns to the fixed
tiles they belong in. These fixed tiles also record resource unavailabilities at par-
ticular times, converted in the usual manner into artificial meetings occupying
those resources at those times. If a form contains a meeting with one or more
preassigned times, that meeting will have already been assigned to the corre-
sponding fixed tile when the form’s tile layout begins, and that fixed tile will be
one of the tiles handed to the tile layout algorithm.

To summarize, the aim of a tile layout algorithm is to assign its sets of
meetings to tiles, avoiding violations of the runaround condition and resource
sufficiency problems, minimizing the number of meetings that are split in two,
and paying attention to block structure. Some of the meetings it is given may
have already been assigned to some of its tiles, and these preassignments must be
respected. We believe that a heuristic algorithm that assigns the widest meetings
first, keeping vertical and runaround meetings apart as far as possible, looking
ahead to avoid resource sufficiency traps, and splitting one meeting in a best-fit
manner whenever it gets stuck, will do all this very well.
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After meetings are allocated to tiles, they are timetabled within them so as
to satisfy resource limits and time block structure requests as far as possible.
For single-form tiles this is a small search problem easily solved to optimality;
for large multi-form tiles, see the remarks at the end of Section 6.

Although it has not occurred yet in our data, it is quite possible for the
minimum runaround width of some set of meetings to exceed the tile width.
In that case the runaround must spread over more than one tile, or perhaps it
could trigger part-form tiling, where the student group resources of one form are
partitioned into two parts, each of which is then treated as a separate form. At
present our algorithm always partitions the Year 7 and Year 8 forms into two
part-forms, using a simple clustering algorithm to decide which student groups
to place in each partition. These decisions could be automated, or optionally
taken from the timetable planner. Most of the meetings in the higher forms are
vertical, so there is nothing to gain from part-form tiling those forms.

6 The Main Timetabling Phase

After all the meetings have been allocated to tiles, and timetabled within them,
the next step is to timetable the tiles against each other; that is, to assign the
tiles to columns. We call this the main timetabling phase.

Underlying any main timetabling algorithm will be a test, probably called
many times, for determining whether a given set of tiles is compatible: able to run
simultaneously without exceeding resource limits. We consider this compatibility
testing problem first.

The simplest way to test a set of tiles for compatibility is to merge their
meetings into one large tile of the same width and timetable it. This is likely to
be too slow when many calls on the test are made.

Three faster compatibility tests have been tried. Each gives an upper bound
on the number of unassignable tixels (a tixel is one resource at one time) that
will result from placing the tiles into the same major column. All three methods
assume that the individual tiles have been timetabled, and never redo these
individual timetables.

The simplest method uses a worst-case measure of the demand for resources
made by each tile. If demand varies at different columns of the tile, we take for
each type of demand the maximum over the columns. For example, if the five
classes do Mathematics simultaneously for some of the tile’s times, and History
simultaneously for the rest, then the tile’s demand will include five Mathematics
teachers and five History teachers, but only five rooms.

Now form a bipartite graph with one left-hand node for each resource of the
instance, and one right-hand node for each resource demand made by each tile
in the set being tested. Edges join demand nodes to all resources qualified to
satisfy that demand. Find a maximum matching in this graph. The desired upper
bound is the number of unmatched demand nodes, multiplied by the common
tile width to give a result in tixels.
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The second method is a refinement of the first, in which the demand nodes
are weighted by the number of tixels that would be deficient if the node remained
unmatched. For example, suppose a tile requires two Computer laboratories at
two of its times, one Computer laboratory at two of its times, and no Computer
laboratories at the other two times—a total of six tixels altogether. This would be
represented by two Computer laboratory demand nodes, the first weighted 4 and
the second 2. The maximum matching is now required to minimize the weight
of the unmatched nodes. For example, if one of our two Computer laboratory
nodes was unmatched, it would be the weight 2 one, reflecting the fact that
withholding one laboratory from this tile would cost 2 unassigned tixels. If both
were unassigned the cost would be 6 tixels. The total weight of unmatched
nodes gives a more refined measure of incompatibility, and finding maximum
node-weighted matchings is not much harder than finding unweighted ones.

The test we currently use is a yet further refinement. It is considerably slower
than the first two, but still fast enough for our purposes. Each tile is assumed as
before to be timetabled in one fixed way. The test works by combining the tiles
one by one into a larger tile, so let us suppose that ktiles have been taken and
we now wish to add in the (k+1)st.

For each column (individual time) of the combined tile, find the demands
made on resources by that column. Do the same for each column of the tile to
be added. Take the first column of the combined tile and the first column of the
tile to be added, merge their demands together into one bipartite graph, find
a maximum matching, and count the number of unmatched nodes. This is the
number of unallocated tixels that would result if these columns were aligned. Do
this for every combination of one column from the combined tile and one from
the incoming tile—if the tile width is W , a total of W 2 tests.

Now build a complete bipartite graph whose left-hand nodes are the columns
of the combined tile, and whose right-hand nodes are the columns of the incoming
tile. Weight the edge connecting a pair of nodes by the outcome of the test on
the corresponding columns. Find a maximum matching of minimum cost in this
graph, giving a permutation of the columns of the incoming tile that minimizes
the number of unallocated tixels. Permute the timetable of the incoming tile
according to this matching, and merge the tile into the combined tile. Repeat
until all tiles are merged. The total weight of the last min-cost matching will
then be an upper bound on the number of unallocatable tixels if these tiles are
timetabled together.

This last test has the advantage when tiles with tall, thin demands meet.
For example, in the bghs98 instance there is a Year 9 tile that requires (among
other things) five Physical Education teachers simultaneously for two of its six
times, and a Year 10 tile that also requires five Physical Education teachers for
two simultaneous times. There are five Physical Education teachers altogether.
The first test would rate the incompatibility of these two tiles at 30 tixels (five
teachers times six times), the second at 10 tixels (five teacher nodes of weight
two each ), while the third recognises that there are no unallocatable tixels
at all.
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Mon3 Mon4 Wed5 Wed6 Thu7 Fri3

11-2/12-1

10-English

9-Maths

8AS-Art12-D&8A-Spo 8A-Spo

8S-Spo 8S-Spo

8A-Geo 8A-Geo

8S-Geo 8S-Geo

8C-Science 8C-Science

8K-Science 8K-Sci

8O-Science

8C-Mus

8K-Mus

8O-Mus

7A-Science 7A-Science

7S-Science 7S-Science

7A-Lan

7S-Lan

7C-HPP-Sport

7K-HPP-Sport

7O-HPP-Sport

60

Mon1 Mon2 Wed3 Wed4 Thu8 Fri4

11-3-Maths/12-3

11-3-Maths/12-3

11-3-Maths/12-3

11-3/1 11-3/1 11-3/1

11-3/1 11-3/1 11-3/111-3/1 11-3/1 11-3/1

E10-6 E10-6 E10-6E10-4 E10-4

9-Science-1

9-Science-2
9-Scie 9-Science-3

9-Science-4 9-Scie

9-Science-5 9-Science-5

9-Musi

9-Musi

9-Musi

9-Musi

9-Musi

8-LPD-5678 8-LPD-56788CKO-A 8CKO-A

8AS-D& 8AS-D&

7A-English

7S-English

7C-His 7C-His 7C-His

7K-His 7K-His 7K-His

7O-His 7O-His 7O-His

7C-Geo 7C-Geo 7C-Geo

7K-Geo 7K-Geo 7K-Geo

7O-Geo 7O-Geo 7O-Geo

61

Tue5 Tue6 Thu5 Thu6 Mon5 Fri5

11-4/12-4-Maths

11-4/12-4-Maths

11-4/12-4-Maths

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

10-Science

E9-6 E9-6E9-4 E9-4

8A-English

8S-English 8S-Eng

8A-Mus

8S-Mus

8CKO-D 8CKO-D8C-Spo 8C-Spo

8K-Spo 8K-Spo

8O-Spo 8O-Spo

8C-Geo 8C-Geo

8K-Geo 8K-Geo

8O-Geo 8O-Geo

7A-Mus 7A-Mus

7S-Mus 7S-Mus

7A-His 7A-History
7S-His 7S-His 7S-His

7A-Lan

7S-Lan

7C-English

7K-English

7O-English

62

Tue3 Tue4 Fri1 Fri2 Mon6 Wed7

11-5/12-5

11-5/12-5

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

10-Maths

9-English-1

9-English-2

9-English-3

9-English-4

9-English-5

8-LPD- 8-LPD-12348CKO-D 8CKO-D

8AS-D& 8AS-D&

7A-Maths

7S-Maths

7CKO-A 7CKO-A7CKO-D 7CKO-D7CKO-D 7CKO-D

63

Tue1 Tue2 Thu3 Thu4 Mon7 Wed8

12-6

11-6

E10-710-PD

E9-7 E9-79-PD-1 9-PD-1

9-PD-2 9-PD-2

9-PD-3 9-PD-3

9-PD-4 9-PD-4

9-PD-5 9-PD-5
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Fig. 3. A timetable for the bghs98 instance described in Section 8, created by the
algorithm of Section 6. Each row contains the meetings attended by one student group.
Each narrow column represents one of the 40 times of the week; these are grouped into
seven major columns, within which traces of the tiles that were placed in those columns
are clearly visible. The tile at bottom left is an example of a multi-form tile; it spans
Years 11 and 12. One can also see part-form tiles for Year 7 at the top, one set for
student groups 7C, 7K, and 7O, the other for 7A and 7S.

Several algorithms for the main timetabling phase have been implemented
and tested, including a set covering algorithm (which generates many sets of
compatible tiles and then tries to select some sets which contain every tile exactly
once), various tree search algorithms, and an augmenting path algorithm inspired
by the algorithm of Section 7. In no case did any of these other algorithms
outperform the algorithm about to be described.

Take each form in turn and assign its tiles to suitable columns, beginning with
the fixed form and ending with the part-form forms, which have small height
and so make good fillers of cracks. Suppose that k forms have been allocated to
columns in this way and we now wish to allocate the (k + 1)st form. Test each
tile in the (k + 1)st form for compatibility with each column. To be considered
even minimally compatible the tile must have the same width as the column and
not have been previously assigned to any other column (a tile may be in multiple
forms, in which case it will be assigned a column along with the first of its forms
that is timetabled, and must not be assigned to some other column afterwards).
Build a bipartite graph in which the left-hand nodes are the columns and the
right-hand nodes are the tiles of the current form. Edges join tiles to those
columns with which they are minimally compatible. These edges are weighted
by the number emerging from the compatibility test of this tile with this column.
Find a minimum cost maximum matching in this graph; its cost will be an upper
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bound on the number of unassignable tixels created by adding in these tiles. Make
the assignments of tiles to columns indicated by this matching and proceed to
the next form. An example of a timetable created by this algorithm appears in
Figure 3.

The algorithms for testing tiles for compatibility and for the main timetabling
are essentially the same, only operating at different scales. Both algorithms are
weighted versions of the meta-matching algorithm of [2], without the look-ahead
tests employed there.

Should some kind of tree search seem indicated in future, one interesting one
we have tried is based on finding an alternating cycle of minimum cost in the
min-cost flow at each level. Applying this cycle gives the maximum matching of
second-minimum cost, giving two matchings of each form so that a small binary
tree of alternative assignments may be searched.

After the tiles’ columns are fixed, each column receives a final timetabling
which attempts to give its meetings the block structures they require, while
minimizing unallocated tixels. This is a general timetabling problem, and despite
being limited to one column it can still be challenging. Our current algorithm
embarks on a long tree search which is terminated early to keep running time
down. It is slow and unreliable and needs to be replaced by an algorithm based
on (but not limited to) the matchings found when constructing the column, so
we will say no more about it here. Instead we offer a method of reducing the
problem size which should be useful to any algorithm for timetabling multiple
forms within one column.

Consider a meeting that happens to stretch the full column width. Its resource
demands naturally affect the feasibility of timetabling the column, but because
they are constant at every position, they cannot influence any meeting in the
column to choose one position over another.

Next consider the set of all meetings in a column containing a given student
group resource, and suppose that together they stretch to the full column width
(as is almost always the case). A resource demand common to all these meetings
is effectively a full-width demand with the properties just outlined. For example,
if student group 7C attends English for one part of a tile and Geography for
the rest, and both classes require an ordinary classroom, then that requirement
might as well lie in a single full-width meeting.

When such requirements are subtracted out it is often possible to recognise
that the timetabling problem for some forms is independent of other forms. For
example, if Year 7 is attending English and Geography while Year 10 is attending
Science and Music, then the two forms may be timetabled independently. We
frequently find that the number of forms that must be timetabled together is
reduced to three or four using this analysis.

7 Resource Allocation

After times are assigned to meetings, the last major phase of our algorithm is to
assign resources. The method to be used here could be applied to any situation
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in which resources are to be assigned after the times of meetings have been fixed,
although, as we will see, it relies to some extent on the coherence provided by
tiling.

At first sight resource allocation may seem trivial, since time assignment
is supposed to guarantee that for each time, resources are sufficient to cover
all the slots of all the meetings running at that time. However, merely using
the resources provided by that guarantee would produce large numbers of split
assignments.

A tree search algorithm was tried for this problem. The teachers were taken
one faculty at a time and assigned in all possible ways. Despite full propagation
of constraints and grouping of equivalent resource slots to avoid searching sym-
metrical situations, this method was never able to search the full tree, and often
the best solution it could find in a reasonable time (several minutes) was easily
improved by a small chain of exchanges.

This experience suggested a switch to an alternating path algorithm, as used
in bipartite matching. Choose a currently unfilled slot of maximum width. See
if there is a teacher able to fill this slot (the teacher must be free at its times,
and adding the slot to the teacher’s current load must not overload the teacher).
If so, assign that teacher and move on to the next widest unfilled slot. If not,
see if there is a teacher who would be able to fill this slot if only one of the
slots that teacher is currently teaching was taken away and given to some other
teacher able to fill it. If so, make the indicated chain of two assignments and one
deassignment, and move on. If not, look for a longer chain of three assignments
and two deassignments, and so on. In searching for these chains, possible assign-
ments and deassignments are marked visited when they are first considered. No
already visited assignment or deassignment may be revisited in the course of one
search. This prevents loops, and ensures that only a limited amount of time is
spent assigning any one slot. If the search fails, then the slot is left unassigned
for the time being.

The chain of assignments and deassignments is actually carried out by the
algorithm as the search proceeds. At any moment where the state is feasible
(where no teacher is overloaded), the total weight of the assignments in that
state is compared with the total weight of the best solution found so far, and the
best solution is replaced with the current one if the current weight is greater.
The weight of an assignment is the number of times in the slot being assigned (so
that large slots are favoured over small ones). If quota overflows are allowed the
amount of any overflow is subtracted from the weight, to discourage overflowing
even though it is permitted. Split assignments (see below) are also discouraged
by being given smaller weights.

A few failed slots can be retrieved by a second pass, attempting again to
assign slots that failed the first time around. This achieves nothing in the tra-
ditional applications of the alternating path method, where the first pass pro-
duces an optimal result, but in our more complex situation it does produce
an occasional extra assignment. After that, a third pass is made in which split
assignments and partial assignments are permitted, as we now describe.
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Fig. 4. Part of the teacher allocation for instance bghs98, showing the teachers and
classes for Physical Education. This allocation is perfect: all classes are covered, there
are no split assignments, and as many teachers as possible are teaching Sport outside
the faculty. The number in parentheses after each teacher is the remaining unused
portion of the teacher’s quota. This faculty is lightly loaded.

Enhancing the basic algorithm to include split assignments is quite straight-
forward: a split assignment merely affects the quotas of two teachers rather than
one. The problem with split assignments is not one of definition, it is their large
number. Consider a slot occupying T times, and for which there are R qualified
resources. Then there are R possible ordinary assignments (one for each qualified
resource), but R(R − 1)(2T−1 − 1) split assignments: choose an arbitrary non-
trivial subset of the times, assign an arbitrary qualified resource to that subset,
assign some other qualified resource to the remaining times, and divide by two to
correct for counting every assignment twice. For typical values such as R = 10
and T = 6 this is already in the thousands and growing rapidly. Introducing
thousands of objects in order to model something that we would rather not use
anyway does not seem cost-effective; we have not tried it.

As mentioned earlier, we choose not to introduce split assignments at all
initially, to give the algorithm a chance to show what it can do without them.
When they are eventually introduced, they are in the form of assignment facto-
ries rather than the assignments themselves. These factories are lists of qualified
resources and subsets of times, from which assignments can be generated. When
a factory for some meeting is present, it will be asked to produce a single as-
signment which would terminate the search at that meeting. It then searches its
lists for a pair of resources that can split the current slot between them while
both remaining not overloaded. Any such assignment is added to the pool of
assignments and competes with them. If not used it is removed again. Partial
assignments are handled in the same way.

This algorithm has proved to be fast and almost perfect (Section 8). It does
not need to assign the teachers faculty by faculty as the tree search method did.
Some detailed examples of its results appear in Figures 4 and 5. We offer the
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Fig. 5. Another part of the teacher allocation for instance bghs98, showing the teachers
and classes for Art. This allocation is much less perfect: there is one split assignment,
shown in italics, partly unallocated, for which a correcting alternating path exists that
the algorithm has failed to find; plus two other unallocated classes, caused by assigning
four simultaneous Art classes when there are only three Art teachers. If these meetings’
times were moved, the Art teachers would need to be assigned less Sport in order to take
them, since the total remaining unused teachers’ quota is only 3 times. This suggests
that it would have been better if some Art classes had been timetabled over Sport,
rather than classes from some other subject in which the teachers are more lightly
loaded.

following explanation for its success in a context where the guarantees it usually
operates under are absent.

The literature contains occasional references to an exact network flow algo-
rithm for resource allocation (for example, [1] cites [4] on this point). It is easy
to find such a network for our problem in the special case where all meetings re-
quire the same number of times, each pair of meetings either clashes completely
or not at all, and no split assignments are allowed. Then limits on the number of
times a teacher may teach may be converted into limits on the number of classes
a teacher may teach, by dividing by the common meeting length and rounding
down. Each path in the network begins with an edge from the source to a node
representing one teacher, of capacity equal to the number of classes that teacher
may teach, then proceeds via an edge of capacity 1 to a node representing that
teacher’s availability at a particular set of times, thence to each node represent-
ing a class at that set of times that the teacher is qualified for, and from there
to the sink with capacity 1.

It is easy to verify that the usual max-flow algorithm on this network is
equivalent to our algorithm above. There is also a matroid intersection formu-
lation whose equivalence is even more intuitive. Thus, in this special case, our
algorithm is optimal.
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When we move to the general problem, two sources of NP-completeness ap-
pear: when meetings vary in length, fitting them into teachers’ quotas is a bin
packing problem; and when they clash in arbitrary ways, the clash graph (in
which nodes are meetings and edges join pairs of clashing meetings) changes
from a set of disjoint cliques to an arbitrary graph, producing a node colour-
ing problem [3]. Thus the alternating path method cannot be optimal in the
general case, but we argue now that it stands an excellent chance of doing well
nevertheless.

The algorithm sorts the meetings by decreasing number of times, assigning
the meetings with the most times first. In bin packing terms this is the ‘first fit
decreasing’ heuristic, for which there are quite good performance guarantees [5].
In the common situation where the largest meeting size is equal to the column
width, and no meetings of that size are split across two columns, the algorithm
will be optimal while assigning these large meetings.

The node colouring intractability is mitigated by the use of tiles. Most meet-
ings occupy a single tile, so the clash graph is close to the set of disjoint cliques
of the tractable special case. Meetings split across two tiles spoil the disconnect-
edness, and meetings that occupy less than the full column width may not clash
with other short meetings in their column; but these cases are in the minority.

8 Results

This section analyses the performance of our algorithm on three instances taken
from a high school in Sydney, Australia. A statistical description of these in-
stances appears in Table 1. These instances contain staff meetings, which are
not yet included in our solutions except when their times are preassigned. Staff
meetings do not affect teacher quotas, they merely make the teachers involved
unavailable when they are running.

Run times for the four phases and in total are given in Table 2. Total times
were checked against wristwatch time. Both the tile layout and main timetabling
phases include laying out meetings within the tiles created by those phases, and
this operation in its current defective state (Section 6) dominates the cost of both
these phases, so speed improvements can be expected here in future. The times
given for resource allocation include a stopgap attempt at room allocation using
the teacher allocation algorithm. When a dedicated room allocation algorithm
is installed, resource allocation time should decrease by two to three seconds.

The quality of the solutions found for the three instances is summarized
in Table 3. The algorithm always assigns the correct number of times to each
meeting, never introduces student group clashes, and prefers to leave teacher
and room slots unassigned rather than introducing teacher and room clashes. So
the possible defects are time layout problems (wrong number of double periods,
meeting spread over too few days, etc.), missing teacher and room assignments,
and split teacher assignments.

The number of meetings with some kind of time layout problem is quite high
at present (over 40% in two instances), but this is less serious that it may seem.



A Tiling Algorithm for High School Timetabling 223

Table 1. Statistical description of the three instances tested, showing the number of
times in the week, meetings, teachers, rooms, and student groups. The last three lines
show, for each of the three resource groups, the number of tixels of demand for that
resource group as an absolute number and as a percentage of the number of tixels of
supply for that resource group. (A tixel is one resource at one time.) For students and
rooms the tixel supply is just the number of resources times the number of times in
the week, but for teachers it is less owing to teachers’ quota limits. The demand for
student groups is less than 100% because a few final year students attend marginally
less than full time.

Instance description bghs93 bghs95 bghs98

Times in the week 40 40 40
Meetings 148 146 152
Teachers 53 52 56
Rooms 46 48 45
Student groups 23 27 30
Teacher demand (tixels) 1489 (95.3%) 1378 (95.4%) 1408 (96.6%)
Room demand (tixels) 1295 (70.4%) 1306 (68.0%) 1357 (75.4%)
Student group demand (tixels) 872 (98.0%) 1041 (99.3%) 1197 (99.8%)

Table 2. Run times in seconds for the three instances tested. The tests used a 1.2GHz
Pentium IV running Redhat Linux 5.1. Run times are as reported by the Linux time
command, which is accurate to one second.

bghs93 bghs95 bghs98

Column layout 0.0 0.0 0.0
Tile layout 2.0 7.0 1.0
Main timetabling 2.0 6.0 5.0
Resource allocation 6.0 6.0 6.0
Total time 10.0 19.0 12.0

Table 3. Solution quality for the three instances tested. The table shows both the
absolute number of each possible kind of defect, and the number as a percentage of the
number of meetings, room tixels, teacher slots, or teacher tixels as appropriate.

bghs93 bghs95 bghs98

Meetings with at least one time layout problem 19 (13.8%) 63 (43.2%) 63 (41.4%)
Room tixels unassigned during time assignment 33 (2.5%) 12 (0.9%) 26 (1.9%)
Teacher slots split by resource assignment 13 (2.9%) 31 (6.7%) 21 (4.8%)
Teacher tixels unassigned during time assignment 4 (0.3%) 12 (0.9%) 10 (0.7%)
Teacher tixels unassigned during resource assignment 11 (0.7%) 25 (1.8%) 20 (1.4%)
Total teacher tixels unassigned 15 (1.0%) 37 (2.7%) 30 (2.1%)

Most of the problems concern assigning one more or less double period than
was requested, and often there would not be a strong preference about this in
any case. We hope to capture better data concerning time layout preferences in
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future, including optional alternatives and priorities, and this plus the planned
new algorithm for distributing meetings to tiles (Section 5) should reduce the
number of time layout problems to an acceptable level.

We have not yet written a dedicated room assignment algorithm, so the table
only reports the number of tixels for which rooms are not available after the
main timetabling phase. Since room constancy is not required this is probably
the exact number of unassigned rooms that will occur in the end (the only
possible problem being the need for room constancy in double periods). These
unassignable room demands are for specialised laboratories whose demand is
very tight. This problem is quite common in high schools and is not of major
concern, since, given its low relative frequency, it is not difficult to ensure that
no class meets in an inappropriate room for more than one of its times, and the
teacher would organise the classroom material accordingly. Our remarks below
about reducing unallocated teacher tixels also apply to rooms.

The number of split teacher assignments seems to be close to optimal now. In
other experiments, not reported in detail here, in which teachers were allowed to
take just one more period than their quota, but with a penalty if this occurred,
the number of teachers who exceeded their quota was quite modest (between 10
and 20), and the number of split assignments typically halved. This, along with
hand analysis, provides good evidence that split assignments are mainly needed
to pack classes into teachers’ quotas, and thus are inevitable.

This leaves the problem of assigning qualified teachers to classes. Although
as a last resort an unqualified teacher may be assigned, this is considered much
worse than assigning an inappropriate room, and our absolute numbers of unas-
signed slots are at present too high for our timetables to be usable.

Unassigned teacher tixels are created in two ways. First, during the main
timetabling, a decision may be made to run tiles simultaneously that results
in the demand for teachers with a certain capability at some time exceeding
the number of teachers qualified for that capability available at that time. The
number of tixels affected by defective main timetabling in our instances is quite
small (4, 12, and 10), and close examination shows that some of them are caused
by defective layout of meetings within large tiles. Our new algorithm (Section 6)
should correct that problem. Beyond that, it will be necessary to break open the
tile structure to swap fragments of classes containing unassignable teachers to
other times where teachers are available. Hand analysis of our current solutions
indicates that this will succeed most of the time. Any of the meetings contribut-
ing to the excessive demand may be moved, and we would naturally choose to
try to move small classes rather than large electives.

The second chance to create unassigned teacher tixels comes during resource
assignment, when the resource allocation algorithm is unable to assign a teacher
or split teacher to a slot, even if there are teachers free. Examination of the
data suggests that many of these problems arise from various imbalances in the
supply of teachers.

For example, some faculties are lightly loaded, so their teachers should take
some classes from outside the faculty. But the number of such outside classes is
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very limited (in our instances, essentially only Sport), so care must be taken to
ensure that the faculty’s own classes are not scheduled at the same time as these
other classes. Our algorithm is currently quite blind to the need for this, although
we can diagnose the situation well by comparing supply with demand for each
faculty. On occasions during development we have observed solutions in which
the right decisions were made fortuitously, and these contained significantly fewer
unassigned tixels than reported in our formal results.

9 Conclusions

The work reported in this paper is ongoing, and our results at the time of
writing are not perfect. Nevertheless, they show that it is possible to construct
high school timetables of high quality in about ten seconds. Our key innovations
are tiling and an effective resource allocation algorithm based on alternating
paths. The alternating path algorithm might find application in other resource
allocation tasks, although it does rely on tiling to ensure that the graph colouring
problems it faces are not too severe.

Things to do immediately include getting staff meetings into tiles, replacing
the tile layout algorithm, replacing the algorithm for timetabling the meetings
within a single tile, writing a room allocator, and writing code for breaking open
the tile structure and swapping small parts of meetings that failed to receive
their needed resources to better times. Ideas for detecting and correcting resource
supply imbalances could be developed further.

When all this is done our timetables should be good enough to show to high
schools. Australian high schools are just now receiving broadband Internet con-
nections, so exciting prospects are opening up for delivering timetabling across
the Internet. Fast response time will be important.
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Abstract. In this paper, we introduce an extension of the classi-
cal Resource-Constrained Project Scheduling Problem: the Multi-skill
Project Scheduling Problem. We consider a project made up of activities
that must be implemented by a staff: every member of this staff masters
one or more skill(s). An activity needs a given amount of each skill with
a fixed minimum level of mastering. For each unit of a skill needed, we
have to assign an employee who masters the required level of this skill
during the whole processing time of the activity. The objective is to min-
imize the duration of the project, i.e. the makespan. We introduce here
two lower bounds used to evaluate the minimum duration.

1 Introduction

This paper deals with the Multi-skill Project Scheduling Problem (MSPSP) with
hierarchical levels of skill. In this problem, there is a project to schedule, in
which activities need to be done by staff members who master specific skills at
specific level of ability. It can be seen as an extension of the classical Resource-
Constrained Project Scheduling Problem with multiple modes of execution (MM-
RCPSP), but in our problem the number of modes allowed for each activity
corresponds to the number of subsets of staff members that are able to satisfy
needs, and this number can be very large. This is the reason why methods used
for the MM-RCPSP, for example in [7], [13], [16], [12], [18], [23], cannot be used
directly for the MSPSP. Here the goal is to find some efficient lower bounds that
are not too time-consuming, in order both to evaluate heuristic methods (as for
example in [6]) and to be used in a branch-and-bound method. Section 2 presents
the problem; Section 3 is devoted to lower bounds, then we show experimental
results (Section 4), before concluding in Section 5.

2 Multi-skill Project Scheduling

The MSPSP is a model that can be applied to different cases of project man-
agement. We focus on a particular case of multi-skill project scheduling that
appears when we have to take into account different levels of skill abilities.
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2.1 General Case

As in the classical project scheduling problem (RCPSP, MM-RCPSP), we want
to schedule a project in a minimum elapsed time, respecting resource and prece-
dence constraints. A project is made up of a set of activities Ai, i ∈ {0, . . . , n},
that represent all the steps of the project. Each activity has to be processed
without preemption. Between the activities of the project, there exist prece-
dence relations (Ai, Aj) that can be modelled using an activity-on-node graph
G = (A, E, d). In this precedence graph, we include the dummy source A0 and
the dummy sink An that represent the beginning and the end of the project, re-
spectively. Each activity has given needs of resources. In our case, the resources
are staff members that have to be assigned to activities.

Moreover, the resources, which are staff members Pm, m ∈ {0, . . . , M}, can-
not be chosen arbitrarily. To satisfy each need of an activity Ai, we have to
assign a person according to his/her skill that must match the required skill
during the whole processing time pi of activity Ai. Actually, a staff member can
master or not each skill needed in the project. Thus, to schedule an activity we
have to choose among all the staff members who possess the required skill for
each need. Besides that, the employees may not be available all along the time
horizon; this means we are allowed to assign a person for the need of an activity
Ai starting at time ti only if he/she is available during the total duration of the
activity, i.e. during [ti, ti + pi[.

2.2 Hierarchical Levels of Skills

There has been considerable research on workforce planning and project schedul-
ing. For example, the nurse rostering problem [8] is well studied: it assigns em-
ployees to satisfy all the needs on all the shifts, trying to find a fair solution
for everybody. The course timetabling problem has also been studied (for exam-
ple in [1]). It consists in finding a timetable for each lesson, respecting teachers
availabilities and the rooming constraints. The authors in [14] present a prob-
lem related to course scheduling but to minimize the total cost. The paper [2]
treats simultaneously the problem of minimizing the project duration and the
associated manpower cost. Although the notion of skill has been studied with
respect to some workforce planning problems (as in [25]), to the best of our
knowledge, very few papers deal with hierarchical levels of skills in the field of
project scheduling [15].

For the MSPSP with hierarchical levels of skills, we evaluate for each em-
ployee the level l of quality he/she guarantees regarding skill Sk according to
his/her experience. In the same way, we evaluate for each activity its level of
difficulty. Then, we can deduce Sl

k, the level l of mastering skill Sk that will be
required, and the number bl

i,k of employees that will be required for level l of
this skill Sk to process Ai. So, we have to assign to each need somebody that
masters this skill at least at the required level. We also know the total number
of persons required, for each level of each skill, allowing this number to be equal
to zero.

The notation used in this paper is defined in Table 1.



Multi-skill Project Scheduling Problem 231

Table 1. Input data and auxiliary notation

Activity data
n the index of the last activity,

Ai, i ∈ {0, . . . , n} the set of activities of the project: A0 is dummy
start node and An the dummy end of the project,

pi, i ∈ {0, . . . , n} the processing time of activity Ai,
(Ai, Aj) ∈ E if there exists a precedence relation between Ai

and Aj ,
G = (A, E, d) the precedence graph.

Resource data
K number of skills,
L number of levels per skill,

M number of staff members,
Sk, k ∈ {0, . . . , K} set of skills: k is the number of the skill,

Sl
k, k ∈ {0, . . . , K}, l ∈ {0, . . . , L} set of levels of skills; k is number of the skill

and l the level (1 is first level of mastering skill
and L is the highest level),

Pm, m ∈ {0, . . . , M} staff members,
Sm,k = l, m ∈ {0, . . . , M}, the maximum level l at which Pm can do Sk,

k ∈ {0, . . . , K}
to simplify: Sl′

m,k = 1 ∀l′ ≤ l, if Pm can do Sk at level l, 0 otherwise,
A(Pm, t), m ∈ {0, . . . , M} = 1 if Pm is available at time t, 0 otherwise,

t ∈ {0, . . . , Tmax}
bl
i,k, i ∈ {0, . . . , n} number of persons able to do Sk at level l,

k ∈ {0, . . . , K}, l ∈ {0, . . . , L} required to execute Ai.

Auxiliary notation
ri release date of activity Ai,
d̃i deadline of activity Ai,
ti starting time of activity Ai,

A(Pm, t1, t2) = t2−1
t=t1

A(Pm, t), total time Pm is available between t1 and t2.
m ∈ {0, . . . , M}

2.3 Example and Integer Linear Program

The MSPSP model can be applied to some project scheduling problems that
arise in the software development industry, where employees are programmers,
analysts, designers, etc [15]. In this section we give an example of such a prob-
lem. The project to be implemented is made up of four activities linked by the
precedence relationship presented in Figure 1.

Needs of the activities are summarized in Table 2 and skills of employees are
presented in Table 3. There are two levels per skill. We are interested in schedules
that minimize the makespan of the project. Finding a solution consists in fixing
starting times of all the activities of the project and assigning a subset of staff
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Fig. 1. Precedence graph of the project of the example

Table 2. Needs of activities of the example

Skill S1 Skill S2 Skill S3 Skill S4

bl
i,k S1

1 S2
1 S1

2 S2
2 S1

3 S2
3 S1

4 S2
4

A1 1 1 0 0 1 0 1 0
A2 0 0 0 1 0 0 1 0
A3 0 0 1 0 2 0 0 0
A4 1 0 0 0 0 1 0 0

Table 3. Skills of employees of the example

Skill S1 Skill S2 Skill S3 Skill S4 Unavailability period(s)

S1
1 S2

1 S1
2 S2

2 S1
3 S2

3 S1
4 S2

4 no. (start, end)

P0 1 1 1 1 0 0 0 0 1 (2, 4)
P1 0 0 1 1 1 1 0 0 0 –
P2 0 0 1 0 1 1 1 1 0 –
P3 1 0 1 0 1 0 0 0 2 (2, 3); (6, 8)
P4 1 0 0 0 0 0 1 1 0 –
P5 1 0 0 0 1 1 0 0 1 (7, 10)

members to each activity, according to their needs. We present a feasible solution
for this problem in Figure 2.

The MSPSP can be modelled by the integer LP formulation below, where

– xi,m,t = 1 if Pm begins to work for Ai at time t, 0 otherwise
– δl

i,m,k = 1 if Pm does Sk at level l for Ai, 0 otherwise:

∀(i, j) ∈ E,

∑M
m=0

∑Tmax
t=0 xi,m,t · t∑K

k=0

∑L
l=0 bl

i,k

+ pi ≤
∑M

m=0

∑Tmax
t=0 xj,m,t · t∑K

k=0

∑L
l=0 bl

j,k

, (1)
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Fig. 2. One feasible solution for the example

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑
t=0

xi,m,t ≤ 1 , (2)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑
t=0

xi,m,t · t ≤
∑M

h=0

∑Tmax
t=0 xi,h,t · t∑K

k=0

∑L
l=0 bl

i,k

, (3)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M}, ∀k ∈ {1, . . . , K},
∀l ∈ {1, . . . , L}, δl

i,m,k ≤ Sl
m,k , (4)

∀i ∈ {1, . . . , n},
M∑

m=0

Tmax∑
t=0

xi,m,t · t =
K∑

k=0

L∑
l=0

bl
i,k , (5)

∀i ∈ {1, . . . , n},
M∑

m=0

δl
i,m,k = bl

i,k , (6)

∀m ∈ {1, . . . , M},
n∑

i=0

t∑
d=t−pi+1

xi,m,d ≤ 1 , (7)

∀i ∈ {1, . . . , n}, ∀m ∈ {1, . . . , M},
Tmax∑
t=0

xi,m,t =
K∑

k=0

L∑
l=0

δl
i,m,k , (8)
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min Cmax =
∑Tmax

t=0

∑M
m=0 xn,m,t · t∑K

k=0

∑L
l=0 bl

n,k + pn

.

Equation (1) ensures that two activities that respect the precedence relation
do not overlap. Equation (2) allows staff members to be assigned to an activity
only once. Equation (3) obliges all the staff members assigned to a common
activity to start at the same time. According to Equation (4), a person cannot
be assigned to a need if he/she does not master the level of the skill needed.
Equation (5) ensures that the number of persons that do an activity is equal to
the sum of the need of this activity. Equation (6) obliges the number of persons
that are assigned to a level of a skill to be equal to the needs for this level of
this skill, for each activity. Equation (7) ensures that a person will not start
an activity during the whole processing time of an activity he/she is already
assigned to. Finally, Equation (8) ensures that a person participates in all the
activities he/she starts.

This model is a time-indexed one, and in the general case a simple relax-
ation of this kind of model does not provide good lower bounds as it has been
demonstrated for RCPSP. It is necessary to use constraint programming and /or
a cutting plane technique [4], [10] to have good bounds. But these methods are
too time-consuming: our goal is to develop an efficient lower bound that may be
used both to compute a global lower bound and that may be used at each node
of a branch-and-bound method. Thus, we focus on other types of lower bound
formulation.

2.4 Literature Review

The MSPSP is a kind of problem very close to the classical MM-RCPSP [24],
[12], [13], [7] and can be considered as a particular case of it. Actually, in the
multi-mode RCPSP, every activity has different possible modes of execution.
One mode is defined by a given quantity of each resource and an associated
processing time, and for each activity there exists a finite number of modes (less
than ten in the classical instances). If we apply this model to our problem, a
mode corresponds to a feasible subset of staff members that can be assigned to
an activity according to the required skills, while the processing time remains
the same for all modes.

To the best of our knowledge, most of the methods that exist for the MM-
RCPSP are based on explicit enumeration of all possible modes (even for com-
puting lower bounds the authors of [7] use variables ξi,m that are equal to 1
if and only if Ai is processed in mode m). For the MSPSP the number of dif-
ferent modes, i.e. the number of different subsets of staff members that can be
assigned to an activity, may become huge. For example if we want to solve an
instance with three skills with only one level for each skill, and 10 employees,
some activities may have more than 1,000 modes each. Then, according to the
LP formualtion proposed by [7], the number of variables grows quickly and the
problem becomes intractable even for small size instances.
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The problem we want to solve can also be seen as a particular case of the
multi-resource shop [9], where every activity has specific fixed needs for each
type of resource, a type of resource being defined by a set of machines. The
difficulty is that the sets of resources corresponding to each different type are
not disjoint. In our problem the resources are always the employees and the set
of resources is those who master the required level of the skill needed.

3 Lower Bounds

As mentioned previously, the lower bounds we are looking for must provide a
good trade-off between their efficiency and their time-consumption because they
will be used in a branch-and-bound method at each node of the search tree. We
have adapted two such bounds that have been proposed for RCPSP. Notice that
the two bounds that we have adapted, namely from [22] and [3], are two of the
most efficient ones to be used in branch-and-bound methods, considering respec-
tively instances with high ratio of disjunction between activities and instances
with few disjunctions between activities (see [11] and [3] for further details).

Here we present two classical lower bounds for the RCPSP that we adapt
for the MSPSP. Both of them are destructive, which means that we fix a value
D we want to test and either we detect a contradiction, i.e. we prove that the
project cannot end before D and then D+1 is a valid lower bound, or we cannot
detect an infeasibility and then D is decreased. Practically, we use binary search
between the value given by the critical path and a valid upper bound [6].

For these two methods it is necessary that each activity has a time window.
So, first of all, we use the precedence graph to compute the release date ri

of each activity Ai, according to the release dates and the durations of all its
predecessors. Setting ri = L(0, Ai) as the longest path from the source to the
activity Ai, then the value D, which is a lower bound for the project duration
we are testing, is propagated from the last activity to the first in order to get
deadlines d̃i(D) for the activities. Here d̃i(D) is equal to L(Ai, An) − pi, the
longest path from an activity to the sink of the project. Notice that these two
lower bounds are mainly based on [ri, d̃i(D)], thus they can be applied even if
generalized precedence relationships are considered.

Notice that we have adapted these two lower bounds to MSPSP because their
efficiency on a large range of RCPSP instances has been proved.

3.1 Graph of Compatibility

The first lower bound that we have adapted from RCPSP was introduced by
[22] and is based on the notion of a block. A block is a feasible subset of ac-
tivities that can be processed simultaneously, i.e. violating neither the resource
constraints nor the precedence constraints. In the MSPSP framework, the prece-
dence constraints can be simply verified, and checking whether a subset J of
activities does not violate the resource constraints if its activities are in progress
at the same time can be done using a max-flow formulation (see Figure 5). Thus,
the bound of Mingozzi can be adapted to the MSPSP.
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Fig. 3. Graph G1 used for testing the needs of Ai and Aj

More precisely, we have adapted the third bound (LB3) of [22] that is based
on the use of disjunction between a couple of activities due to the resource
constraint. For each couple of activities Ai and Aj (except the dummy activities),
we test if it is possible for them to be in progress at the same time. First of
all, we have to check that there is no precedence relationship between the two
activities. Then we have to test if their time windows overlap, i.e. if there exists
an intersection between [ri,d̃i(D)] and [rj ,d̃j(D)], and finally we have to check
the resource constraints. To find out if there are enough resources to schedule the
two activities Ai and Aj during a common period, we solve the corresponding
assignment problem using a max-flow formulation. The graph G1 = (X1, F, c),
X1 = {Ai, Aj}

⋃
{Sl

k|∀k ∈ {0, . . . , K}, ∀l ∈ {0, . . . , L}}
⋃
{Pm|∀m ∈ {0, . . . , M}}

in which we search for a maximum flow is presented in Figure 3.
In this graph, the two nodes of the first column symbolize the activities Ai

and Aj we are testing. The nodes of the second column represent each level of
each skill Sl

k needed by the activities, and the third column of nodes corresponds
to the staff members Pm that can be assigned to one of those activities. Edges
have maximum capacity: for those from activity Ai to a level of a skill Sl

k this
capacity is equal to the number of required staff members: bl

i,k. From a staff
member to the sink (p) this capacity is equal to 1 in order to limit a person
to do one thing at a time. The edge between a level of a skill Sl

k and a person
Pm exists if the person is able to do this level of this skill, i.e. if Sl

m,k = 1. We
compute the maximum flow in order to compare it to the sum of the needs of
the two activities (

∑K
k=0

∑L
l=0(b

l
i,k + bl

j,k)) and conclude if the two activities can
be in progress at the same time.

Property 1. If the maximum flow found in graph G1 is strictly less than the sum
of the needs of the two activities (

∑K
k=0

∑L
l=0(b

l
i,k+bl

j,k)), there is a contradiction
for the activities Ai and Aj to be in progress at the same time, and we can
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conclude that those two activities have to be scheduled in two time-intervals
that do not overlap.

Proof. The proof is obvious due to the graph construction.

Once all those verifications have been done, we know exactly which couple of
activities can be in progress at the same time, i.e. (Ai, Aj) ∈ E′. We can then
build the graph of compatibility. Based on the precedence graph G = (A, E, d)
we define a graph G′ = (A, E′), in which there is an edge between two activities
(Ai, Aj) if no infeasibility has been detected and they can be scheduled in a
common interval. We associate a weight with each node, equal to the duration
pi of the corresponding activity Ai. Then, we search for a maximum-weighted
stable set in this graph, in order to determine the longest set of activities that
cannot be in progress at the same time, which is a lower bound of the project
duration.

But finding a maximum-weighted stable set in a graph is NP-hard in the
strong sense. This is the reason why we first try to solve it through a heuristic
method as in [22]. This method is a greedy algorithm. First, we take all the nodes
corresponding to the activities of the critical path, and then we add possible
nodes one by one, in order of decreasing weights, until we cannot add any other
node. A second way to compute the stable set is based on a MIP formulation
solved with Cplex (1). Practical results show that this problem is well-solved.
The model used is the following, where xi ∈ {0, 1}, xi = 1 if Ai is in the stable
set:

max
n∑

i=0

pi · xi s.t. ∀(Ai, Aj) ∈ E′ xi + xj ≤ 1 . (9)

3.2 Energetic Reasoning Based Lower Bound

In [3] and [21] satisfiability tests and time-bound adjustments were introduced
for the classical RCPSP. Satisfiability tests can notably be used to find if a
given schedule can complete before a global deadline D and then can be used to
compute a destructive lower bound. Energetic reasoning is based on the fact that
in a given time interval [t1, t2], we are able to detect if all the mandatory parts of
the activities that have to be processed in this time interval can be done or not.
The mandatory part of activity Ai that has to be scheduled between t1 and t2 is
computed either by left-shifting or right-shifting the activity in its time window
[ri, d̃i(D)]. Then we are sure that if there exists at least one time interval where
those mandatory parts cannot be satisfied, i.e. there are not enough resources,
then the lower bound can be increased to D + 1.

In order to use energetic reasoning, we compute all time intervals [t1, t2],
where t1 ∈ {ri, ri + pi, d̃i(D) − pi, ∀i ∈ {1, . . . , n}} and t2 ∈ {ri + pi, d̃i(D) −
pi, d̃i(D), ∀i ∈ {1, . . . , n}}, t1 < t2. All these time intervals are to be tested. This
set of time points is a subset of those that have been proved to be relevant for
bounding RCPSP [3]. They have not been proved to be relevant for the MSPSP,
but the two problems are very close, so we assume that at least those time points
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Fig. 4. Computation of the mandatory part of an activity

are interesting for our problem, and we cannot add all the possible time points
because this lower bound is already as slow as acceptable, as is proved in Section
4.2.

To test the interval [t1, t2], we have to compute the mandatory part of each
activity in this interval. The mandatory part of an activity is the minimum part
of this activity we have to schedule in this interval if we do not want to violate
the time window of the activity. The mandatory part of Ai between t1 and t2,
w(i, t1, t2), is (see Figure 4)

w(i, t1, t2) = min(max(0, ri + pi − t1), max(0, t2 − (d̃i(D) − pi)), pi, t2 − t1) .

Once all the mandatory parts are computed we check if there are enough
available resources in this interval to execute at least all these mandatory parts.
As above, this problem can be modelled as an assignment problem that can be
solved using a max-flow formulation. To do this, we use the graph G2(t1, t2, D)
presented in Figure 5, where we search for a maximum flow in order to verify
property 2. This graph is made of the first column of nodes that represent each
level of each skill Sl

k and of the second column of nodes that corresponds to the
staff members. Each edge from s to a level of a skill Sl

k has a maximum capacity
equal to the mandatory parts times the number of persons needed for this level
l of this skill (

∑n
i=0

∑K
k=0

∑L
l=0(w(i, t1, t2) · bl

i,k)). Edges between levels of skills
Sl

k and staff members Pm exist if the staff member masters this level of the
skill, i.e. Sl

m,k = 1. These edges have the maximum capacity equal to the length
of the time interval [t1, t2]. Finally, the edge between person Pm and p has the
maximum capacity equal to the total time this person is available between t1
and t2, which is equal to A(Pm, t1, t2).
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Fig. 5. Solving the assignment problem for energetic lower bound

Property 2. If there is at least a time-interval [t1, t2] where the maximum flow
in G(t1, t2, D) is strictly less than the sum of the mandatory parts times the
number of persons needed (

∑n
i=0

∑K
k=0

∑L
l=0(w(i, t1, t2) · bl

i,k)), then D+1 is a
valid lower bound.

Proof. The proof is obvious due to the graph construction.

4 Experimental Results

4.1 Instances Generation

Since there are no standard benchmark instances for the problem this paper
deals with, we have generated some instances to test our methods. In fact, the
problem is really close to other project management problems like the MM-
RCPSP and multi-resource shop, but to validate our lower bounds we have to
take instances where the number of “modes” or possible subsets of persons are
much more numerous. Thus, we decided to keep the precedence graph from the
PSPlib instances [19], [20], and build the data sets on those graphs. We have
taken 180 instances from the single mode RCPSP, with 30, 60 and 90 activities,
and a network complexity equal to 1.5, 1.8 or 2.1. Then for each instance, we
have randomly generated between three and six different skills with three levels
of ability. Then we have generated a number of persons between five and 30, and
defined their skills in order to have at least one feasible solution. The instances
we have generated in this way represent a wide range of instances, according
to the disjunctive ratio on precedence and disjunctive ratio on resource defined
in [3]. Some of them are strongly constrained so there are very few blocks of
activities that can be scheduled in parallel, and other have many activities that
can be in progress at the same time.
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Table 4. Deviation between the two lower bounds and the upper bound given by the
tabu search

LB with energetic LB with graph Best of the
No. of No. of reasoning (%) of compatibility (%) two LB (%)

activities instances Av. Max. Av. Max. Av. Max.

30 60 3.06 16.66 2.95 13.63 2.53 13.636
60 60 8.03 20.58 11.34 28.2 7.35 18.6
90 60 11.47 26.47 22.34 47.17 11.17 25
Total 180 7.52 26.47 12.21 47.17 7.02 25

Table 5. Computational time of the lower bounds

No. of No. of LB with energetic LB with graph
activities instances reasoning (s) of compatibility (s)

30 60 0.938 0.012
60 60 3.013 0.04
90 60 5.99 0.15
Total 180 3.31 0.07

4.2 Results

Using 180 generated data sets, we have obtained the results presented in Table 4.
In this table, the lower bounds are compared to the best known upper bound for
each instance. These upper bounds have been obtained by a tabu search we have
applied to the specific problem with hierarchical levels of skills, inspired by [6].
This tabu search has been adapted from the one for RCPSP [17]. Thus, in the first
step, activities are sorted in a list, according to a classical priority rule (Minimum
Slack Time, Latest Starting Time,. . .), and we apply a dispatching rule adapted
from the Serial Schedule Scheme to define a solution. Then a neighbour is defined
by swapping two activities in the priority list, respecting precedence constraints.
Moves that do not modify the current solution in terms of starting times of
activities are not allowed. All generated solutions are stored using a hashtable,
with the index of the iteration in which the solution has been explored. These
solutions are considered to be tabu during a given number of iterations, in order
to avoid cycling.

The deviation presented in Tables 4 and 5 is equal to: upper bound−lower bound
upper bound .

In these tables we do not show the results given by the lower bound based on the
graph of compatibility when the stable set is computed by the greedy algorithm
because this method is not efficient: it is clearly dominated by the two other
lower bounds. Notice that the minimum deviation between LB and UB is not
reported because it is always equal to zero.
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These results clearly show that the lower bound given by energetic reasoning
is better than the lower bound given by the graph of compatibility for every
instance. However, Table 5 shows that this lower bound is much more time
consuming. Although the average deviation is more important for the method
based on the graph of compatibility, there exist some instances where this lower
bound is more efficient than the other one. This is why the third column has been
included in Table 4 in order to take the best one from the two lower bounds.
It appears that the deviation we get considering the best from the two lower
bounds is better than the one obtained by the energetic reasoning-based lower
bound. So, the two lower bounds appear to be complementary. This is due to
the fact that they do not consider the same aspect of the problem: the graph of
compatibility first considers the activities two by two, and checks if there is a
resource conflict between them in the whole time horizon, whereas the energetic
lower bound checks a set of activities but only for restricted time intervals.

Notice that even if the lower bounds seem very time consuming, they will be
used in this way, i.e. included into binary search on D, only at the root node
of the search tree. In every other node of a branch-and-bound method, it will
not be useful to search for lower bound by binary search, it is only necessary
to check if the current value of the best upper bound minus one is feasible or
not. If this value cannot be respected, that means that at least one of the two
lower bounds detects infeasibility, so the node is pruned. Thus, the time needed
at each node will be drastically reduced.

In order to find out if the lower bound limitations are particularly linked
to one feature (or more) of the instances, as it appears for the RCPSP [3], we
have tried to classify our instances and find a link between the average deviation
and the ratio of resource disjunction between activities, the ratio of precedence
disjunction between activities or the average number of couple of activities that
have no contradiction to be assigned in parallel. No conclusion can be drawn
because none of these features appears to be directly influential.

Finally, the average deviation increases dramatically when the size of the
instances grows, but this gap may be due to the quality of the upper bound
used. Actually, the tabu search we used is not guaranteed to be really efficient
for the kind of instances with hierarchical levels of skill we consider, and the
gap with the optimum is unknown. On some instances we have generated for
the MSPSP without hierarchical levels of skills, i.e. certainly less difficult, the
average deviation between the best lower bounds and the upper bound is around
4%.

5 Conclusion

This paper deals with the MSPSP, which is an extension of the RCPSP. In this
particular scheduling problem, the resources are staff members with specific skills
and levels of skills that allow them to be assigned to different kind of activities
of the project. Each activity has a specific need for each level of each skill.
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We have proposed a model for this problem, and introduced two lower bounds,
adapted from lower bounds known for the RCPSP. The results show that the
lower bounds are complementary and efficient.

The research direction we focus on now is to design an exact method in order
to compute optimal solutions for small and medium size instances. This method
will be used to determine whether the gap between lower bounds and upper
bound is due to the upper bound or not. Our two lower bounds will be used in
the branch-and-bound method. This exact method is already in progress [5].
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Une Approche Énergétique. RAIRO-APII 26 (1992) 453–481

22. Mingozzi, A., Maniezzo, V., Riciardelli, S., Bianco, L.: An Exact Algorithm for the
Resource-Constrained Project Scheduling Problem Based on a New Mathematical
Formulation. Manage. Sci. 44 (1998) 714–729
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Abstract. Metaheuristic approaches to examination timetabling prob-
lems are usually split into two phases: an initialisation phase in which a
sequential graph colouring heuristic is employed to construct an initial
solution and an improvement phase in which the initial solution is gradu-
ally improved. Different hybridisations of metaheuristics with sequential
heuristics are known to lead to solutions of different quality. A Case
Based Reasoning (CBR) methodology has been developed for selecting
an appropriate sequential construction heuristic for hybridisation with
the Great Deluge metaheuristic. In this paper we propose a new similarity
measure between two timetabling problems that is based on fuzzy sets.
The experiments were performed on a number of real-world benchmark
problems and the results were also compared with other state-of-the-art
methods. The results obtained show the effectiveness of the developed
CBR system.

1 Introduction

Examination timetabling is an important and difficult task for educational insti-
tutions since it requires expensive human and computer resources and has to be
solved several times every year. Timetabling can be defined to be the problem of
allocating a set of examinations over a limited number of time periods subject
to constraints in such a way as to generate no conflicts between any two exami-
nations. For example, no student should be required to attend two examinations
at the same time and no student should have two examinations on the same day.

The timetabling problem can be represented as an undirected weighted graph
where vertices represent examinations, while edges represent conflicts between
examinations (i.e. an edge connects examinations with common students) [24].
To both vertices and edges weights are assigned that correspond to the number
of students enrolled in the examinations and the number of students enrolled
in two examinations that are in conflict, respectively. For illustration purposes,
a simple timetabling problem (with four examinations) is shown in Figure 1.
For example, the weight of Math is 30 because 30 students are enrolled in this
course. The edge connecting AI and PA1 is assigned weight 9 because there are
nine students who are enrolled in both examinations. The timetabling problem
is closely linked to the graph colouring problem [24], which is concerned with
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Fig. 1. A simple example of examination timetabling problem

the colouring of the vertices in such a way that no two adjacent vertices are
coloured by the same colour. In the context of examination timetabling, colours
correspond to time periods. In Figure 1, it can be seen that at least four different
time periods are required to solve the problem since no two examinations which
are in conflict with each other should be scheduled in the same time period.

Both the examination timetabling problem and the graph colouring prob-
lem are known to be NP-complete [29]. However, the examination timetabling
problem has an additional wide variety of hard and soft constraints [24]. Hard
constraints are those that must be completely satisfied. Solutions which do not
violate hard constraints are called feasible solutions. Soft constraints are not
essential to the feasibility of a timetable, but their satisfaction is highly desir-
able. In practice, the quality of an examination timetable is evaluated by some
measure of satisfaction of soft constraints since it is usually impossible to fully
satisfy all of them. A thorough review of the variety of constraints imposed on
examination timetabling can be seen in [4].

1.1 Heuristics for Examination Timetabling

The complexity and the large size of the real-life university examination timetabl-
ing problems required development of different heuristics which were employed
with reasonable success for their solving over the last 40 years [12], [18], [38].
Early research was focused on sequential heuristics for solving graph colouring
problems [7], [20], [21], [46]. The main idea of these heuristics is to schedule
examinations one by one, starting from the examination which is evaluated as
the most “difficult” for scheduling. Different heuristics measure the “difficulty”
of each examination in different ways. The drawback of these heuristics is that
they have different performance on varied problem instances [23].

In recent years, there has been an increased interest in application of meta-
heuristics to examination timetabling problem solving because these techniques
can take into consideration soft constraints and are usually able to generate
more satisfactory solutions than sequential heuristics alone can do. In practice,
timetabling problems are usually solved by a two-phase approach that consists
of initialisation and improvement phases. In the first phase, an initial solution
is iteratively constructed by using an appropriate sequential heuristic. The im-
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provement phase gradually improves the initial solution by using a metaheuris-
tic such as Simulated Annealing [31], [35], [45], Memetic Algorithm [8], [13],
[15], GRASP [25] and Tabu Search [27], [47]. However, the performance of some
metaheuristics is known to be highly dependent on the parameter values [6]. For
example, it is well known that the settings of the cooling parameters have a great
importance to the successful application of Simulated Annealing [45]. Further-
more, the performance of many approaches may vary from one problem instance
to another, because they were developed specifically for solving one particular
class of real-world problems [2].

In practice, a timetable administrator needs to make a great effort to se-
lect an appropriate (successful) sequential heuristic for hybridisation with a
metaheuristic, and then needs to “tailor” the chosen heuristics by utilising the
domain-specific knowledge to obtain a preferred solution for a given problem.
Recently, the development of more general timetabling approaches that are ca-
pable of solving a variety of problems with different characteristics equally well,
has attracted the attention of the timetabling community. In particular, the re-
search into hyper-heuristics for examination timetabling gave promising results.
Hyper-heuristics is defined as “the process of using (meta-)heuristics to choose
(meta-)heuristics to solve the problem in hand” [5]. Terashima-Maŕın et al. [44]
introduced an evolutionary approach as a hyper-heuristic for solving examination
timetabling problems. In their approach, a list of different sequential heuristics,
parameter value settings, and the conditions for swapping sequential heuristics
are encoded as chromosomes. The timetable is built by using the best chromo-
some found by a genetic algorithm. Burke et al. [6] proposed a hyper-heuristic
for timetabling problems in which the selection of heuristics is controlled by a
tabu search algorithm. Tabu search approaches were employed within the hyper-
heuristic framework that searched for different permutations of graph heuristics
for solving both exam and course timetabling problems [3], [10].

1.2 Case-Based Heuristic Selection

Case-based reasoning (CBR) [32] is an artificial intelligence methodology which is
an effective alternative to traditional rule-based systems. It is in particular useful
for generating intelligent decisions in weak-theory application domains [26]. CBR
stems from the observation that similar problems will have similar solutions [34].
Rather than defining a set of “IF THEN” rules or general guidelines, a CBR
system solves a new problem by reusing previous problem solving experience,
stored as cases in the case base. In CBR, a new input problem is usually solved
by four steps: retrieve a case that is the most similar to the new problem, reuse
and revise the solution of the retrieved case to generate a solution for the new
problem, and retain the new input problem and its solution as a new case in the
case base.

In the domain of scheduling, there have been some attempts to resort to CBR
for achieving the intelligent heuristic selection so that the flexibility and robust-
ness of scheduling is enhanced. Current CBR systems for heuristic selection fall
into two categories: algorithm reuse and operator reuse. The basic underlying
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assumption of the CBR systems in the first category is that it is likely that
an approach proved to be effective for solving a specific problem will be also
effective for solving a similar problem. In these CBR systems, a case contains a
problem representation and an algorithm known to be effective for its solving.
Schmidt [43] proposed a CBR framework to choose an appropriate algorithm for
a given production scheduling problem. Schirmer [42] designed a similar CBR
system for solving project scheduling problems and showed that the CBR sys-
tem outperformed a number of metaheuristics. A case-based reasoning system
was developed by Burke et al. for solving university course timetabling problems
[9], [11].

The CBR scheduling systems in the second category iteratively reuse the op-
erators for solving a new input problem. A case in these systems describes a
context in which a previously used scheduling operator proved to be successful.
Miyashita and Sycara [36] built a CBR system called CABINS for solving job
scheduling problems in which sub-optimal solutions were improved by iteratively
employing a number of move operators, selected by CBR. Petrovic, Beddoe, and
Berghe [37] developed a CBR system for nurse rostering problems in which
the constraint satisfaction procedure was driven by iterative application of the
scheduling repair operators employed in previously encountered similar situa-
tions. Burke, Petrovic, and Qu [19] proposed a novel case based hyper-heuristic
for solving timetabling problems. A timetable was iteratively constructed by
using a number of heuristics, which were selected by a CBR controller.

In general, the CBR systems’ effectiveness depends on the proper definition
of the similarity measure, because it determines which case will be used for
solving a new input problem. In the current CBR scheduling systems for heuristic
selection, cases are usually represented by the sets of attribute-value pairs, while
the similarity between two cases is calculated as the distance between their
attribute sets. The attributes and their weights can be set either empirically
[36], [37], [42] or by employing knowledge discovery methods [19].

The objective of our research is to raise the level of generality of metaheuristic
approaches to examination timetabling problems. A CBR system [40], [41] based
on algorithm reuse was developed which produced high quality solutions for a
range of different examination timetabling problems. The CBR system selected
an appropriate sequential heuristic for the initialisation of the Great Deluge
algorithm (GDA) [28]. GDA has been chosen due to its simplicity of use in terms
of required parameters and high-quality results that it produced for examination
timetabling problems. It has been shown that sequential heuristic selected for the
initialisation phase had a great impact on the quality of the final solution [41].
In addition, a sequential heuristic which provided a “good” starting point for
the GDA search in solving a particular timetabling problem, was proved to be
good for the GDA initialisation in solving a similar timetabling problem.

Our research is focused on the application of sequential heuristics in the ini-
tialisation phase of the GDA. In the CBR system developed, a case consists of a
description of an examination timetabling problem and the sequential heuristic
that was used to construct a good initial solution for the GDA applied to the
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problem. The selection of the sequential heuristic for a new input problem com-
prises the following steps. The similarity between the new input problem and
each problem stored in the case base is calculated. A case which is the most simi-
lar to the new input problem is retrieved, and the associated sequential heuristic
of the retrieved case is used for the GDA initialisation for a new input problem.

In this paper, we discuss different representations of timetabling problems and
corresponding similarity measures. The first representation takes into consider-
ation the number of students involved in examinations and uses weighted graph
representation of the timetabling problem [40]. The second representation does
not consider number of students and uses unweighted graph representation [41].
We propose a new similarity measure based on weighted graph representation,
which instead of using crisp number of students involved in the conflicts uses
linguistic terms (Low, Medium, High) to evaluate the importance of conflicts
between two examinations. Fuzzy sets are used to model these linguistic terms.

The paper is organised as follows. Section 2 provides a brief introduction
to GDA and different sequential heuristics that are used for the initialisation
phase. Section 3 describes briefly two different similarity measures based on the
weighted and unweighted graph representation of timetabling problems, and in-
troduces a new fuzzy similarity measure. Section 4 briefly introduces the retrieval
process in our CBR system. Section 5 presents a series of experiments on bench-
mark problems that were carried out to evaluate the performance of the new
CBR system. The final conclusions are presented in Section 6.

2 Great Deluge Algorithm and Sequential Heuristics

Great Deluge Algorithm (GDA) is a local search method proposed by Dueck [28].
Compared to the well known Simulated Annealing approach, GDA uses a sim-
pler acceptance rule for dealing with the move that leads to a decrease in the
solution quality. Such a worse intermediate solution can be accepted if the value
of the objective function of the solution is smaller than a given upper boundary
value, referred to as “water-level”. Water-level is initially set to be the penalty of
the initial solution multiplied by a predefined factor. After each move, the value
of the water-level is decreased by a fixed rate, which is computed based on the
time that is allocated for the search (expressed as the total number of moves).
One important characteristic of the GDA is that better solutions could be ob-
tained with the prolongation of the search time of the algorithm [1]. This may
not be valid in other local search algorithms in which the search time cannot be
controlled. Burke et al. developed a GDA algorithm for examination timetabl-
ing [1]. The authors proposed to use the total number of moves, which expresses
the computational time that the user is willing to spend, in the calculation of
water level.

A variety of sequential heuristics can be used to construct initial solutions for
the GDA. Five different heuristics are used in this research:
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1. Largest Degree, which schedules examinations with the largest number of
conflicts first,

2. Largest Enrolment, which priorities for scheduling examinations with the
largest student enrolment,

3. Largest Colour Degree, which prioritises examinations with the largest num-
ber of conflicts that they have with already scheduled examinations,

4. Largest Weighted Degree, which estimates the difficulty of scheduling of each
examination by the weighted conflicts, where each conflict is weighted by the
number of students who are enrolled in both examinations, and

5. Least Saturation Degree, which schedules examinations with the least num-
ber of available periods for placement first.

They can be further hybridised with Maximum Clique Detection [30], Backtrack-
ing [33], and Adding Random Elements [17]. In total, 40 different sequential
heuristics are investigated. The details of these heuristics are given in [41].

3 Similarity Measures for Examination Timetabling
Problems

A properly defined similarity measure has a great impact on the CBR system. On
the other hand, similarity measure is tightly connected with the representation
of the cases. In this section we will briefly introduce two different similarity
measures between examination timetabling problems based on different graph
representations, which we investigated in our previous research work. A new
similarity measure will be introduced next, which addresses some deficiencies of
the previous ones.

3.1 Similarity Measure Based on Weighted Graph Representation

A timetabling problem is represented by a undirected weighted graph G =
(V, E, α, β), where V is the set of vertices that represent examinations, E ⊆
V × V is the finite set of edges that represent conflicts between examinations,
α : V �→ N+ assigns a positive integer weight to each vertex that corresponds
to the number of students enrolled in the examination, β :E �→ N+ is an as-
signment of weight to each edge which corresponds to the number of students
enrolled in two examinations that are in conflict. The similarity measure between
a new input problem Gq = (Vq, Eq, αq, βq) and a problem stored in the case base
Gs = (Vs, Es, αs, βs) is based on the graph isomorphism, which is known to
be a NP-complete problem. An isomorphism is presented by a vertex-to-vertex
correspondence f : Vq → Vs which associates vertices in Vq with those in Vs. In
our notation, vertices and edges of graph Gq are denoted by Latin letters, while
those of graph Gs are denoted by Greek letters.

The similarity degree between two vertices, a ∈ Vq and χ ∈ Vs, determined by
correspondence f is denoted by DSf (a, χ) and calculated in the following way:
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DSf (a, χ) =

{
min(αq(a), αs(χ)) if f(a) = χ

0 otherwise .
(1)

Similarly, DSf (x, γ) represents the similarity degree between two edges de-
termined by correspondence f , where x = (a, b) ∈ Eq and γ = (χ, δ) ∈ Es and
is calculated as follows:

DSf (x, γ) =

{
min(βq(x), βs(γ)) if f(a) = χ and f(b) = δ

0 otherwise .
(2)

The label φ is used to denote an extraneous vertex or edge in a graph, which
is not mapped by correspondence f . DSf (a, φ), DSf (φ, χ), DSf ((a, b), φ) and
DSf (φ, (χ, δ)) are set to be equal to 0.

Finally, the similarity degree SIM1f (Gq, Gs) between the graphs Gq and Gs

determined by correspondence f is calculated in the following way:

SIM1f (Gq, Gs) =
Fv + Fe

Mv + Me
(3)

where

Fv =
∑
a∈Vq

∑
χ∈Vs

DSf (a, χ) (4)

Fe =
∑

x∈Eq

∑
γ∈Es

DSf (x, γ) (5)

Mv = min

⎛
⎝∑

a∈Vq

αq(a),
∑
χ∈Vs

αs(χ)

⎞
⎠ (6)

Me = min

⎛
⎝ ∑

x∈Eq

βq(x),
∑

γ∈Es

βs(γ)

⎞
⎠ . (7)

Note that the value of DSf (Gq, Gs) ∈ [0, 1] is subject to correspondence f . The
task is to find a correspondence f that yields as high value of DSf (Gq , Gs) as
possible.

The results obtained using the weighted graph representation and described
similarity measure are given in [40] (the normalisation of SIM1f (Gq, Gs), per-
formed by dividing with (Mv + Me) is calculated here differently than in [40]
due to the changes in the retrieval process which will be described in Section 4).

3.2 Similarity Measure Based on Unweighted Graph Representation

A timetabling problem is represented by a graph G = (V, E). The numbers of
students who are sitting examinations and are involved in examination conflicts
are not taken into consideration.
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Fig. 2. New problem P and the case base with cases A and B

The similarity degree DSf (a, χ) between two vertices in Gq and Gs deter-
mined by correspondence f is calculated in the following way:

DSf (a, χ) =

{
1 if f(a) = χ

0 otherwise .
(8)

Similarly, the calculation of the similarity degree DSf (x, γ) between two edges
determined by correspondence f , where x = (a, b) ∈ Eq and γ = (χ, δ) ∈ Es, is
given by

DSf (x, γ) =

{
1 if f(a) = χ and f(b) = δ

0 otherwise .
(9)

In such a definition of similarity between two timetabling problems a mapped
pair of vertices/edges in two graphs contributes to the similarity by a constant
value 1 (independently from a number of students involved in the mapped ver-
tices/edges). Finally, the similarity degree SIM2f (Gq, Gs) between Gq and Gs

determined by correspondence f is calculated in the following way:

SIM2f (Gq, Gs) =
Fv + Fe

Mv + Me
(10)

where

Fv =
∑
a∈Vq

∑
χ∈Vs

DSf (a, χ) (11)

Fe =
∑

x∈Eq

∑
γ∈Es

DSf (x, γ) (12)

Mv = min(|Vq |, |Vs|) (13)
Me = min(|Eq|, |Es|) (14)

where |V | and |E| denote the cardinality of the sets V and E, respectively.
Experimental results show that the similarity measure SIM2 on average outper-
forms SIM1 on benchmark problems established within university timetabling
community [41].
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Table 1. Similarity between timetabling problems P and A, B, by similarity measure
SIM1

P and A P and B

Fv 30 + 30 + 30 + 30 = 120 30 + 30 + 30 + 30 = 120
Fe 3 + 5 + 1 + 1 + 1 + 1 = 12 3 + 1 + 9 = 13
Mv min(120, 120) = 120 min(120, 120) = 120
Me min(16, 20) = 16 min(16, 20) = 16
SIM1(P,∗ ) (120 + 12)/(120 + 16) = 0.97 (120 + 13)/(120 + 16) = 0.978

3.3 Fuzzy Similarity Measure Based on Weighted Graph
Representation

The similarity measure SIM1 is investigated further. In order to find a case in
the case base that is similar to the new timetabling problem, i.e. to establish a
“good” isomorphism between two graphs, two issues are considered. Firstly, it
is necessary to find a “good” correspondence between vertices/edges of the new
timetabling problem and the one stored in the case base. Secondly, weights of the
vertices/edges should have equal or similar values. However, it was noticed that
in some situations the similarity measure SIM1 will give priority to a graph with
less similar structure to the new input problem but with the same (high) weights
of the corresponding vertices/edges over a graph with more similar structure but
different weights of the corresponding vertices/edges.

To illustrate this observation let us consider three timetabling problems whose
structures are given in Figure 2: a new input problem P and problems A and
B which are stored in the case base. Let us suppose that the established graph
isomorphism(s) associates vertices in P and those in A(B) that have the same
examination names. The similarities between P and A and B are given in Table 1.

Similarity measure SIM1 evaluates case B to be more similar (although slightly)
to new problem P than case A. Obviously, following the definition of similarity
SIM1 the weights of the corresponding edges of P and B that are equal con-
tribute more to the similarity than the corresponding edges of P and A which do
not have the same weights. However, graph P has the same structure as graph
A, but is structurally very different to graph B. These observations motivated
the definition of the new similarity measure SIM3 to improve the effectiveness
of the previously developed CBR system [40], [41]. This similarity measure does
not consider vertex weights but only edge weights because they indicate the size
of the conflict between the examinations. The corresponding edges will still con-
tribute to the similarity between two graphs, but their contribution needs to be
smaller than their weights. The procedure for calculation of the contribution of
the edge weights to the similarity measure consists of two steps:
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Step I The corresponding edges of the two graphs are classified to sets: Low
Weight, Medium Weight and High Weight. In order to avoid a rigid definition of
strict boundaries of these sets, fuzzy sets [48, 49] are used for their modelling.
Unlike classical sets in which each object is either a member or not a member of
a given set, a fuzzy set Ã defined on a universe of discourse U is characterised
by a membership function uÃ(x) ∈ [0, 1] that assigns to each object x ∈ U a
degree of membership of x in Ã. The membership functions for three fuzzy sets
Low Weight (W̃1), Medium Weight (W̃2) and High Weight (W̃3) are given in
Figure 3.

Parameters a, b, c, d, e are defined in the following way. Parameter a defines
the lower bound of the set Low Weight and is set to be 1 (weight of edges are
positive integers). Parameter b is calculated as the mean value of all edge weights
in the graph:

b =

∑
x∈E

β(x)

|E| . (15)

The assumption is that the edges whose weight is smaller than the mean
weight have high degree of membership to Low Weight. Parameter e is set to be
the maximum edge weight in the graph:

e = max
x∈E

β(x) . (16)

Parameters c and d are set to divide the [b, e] interval into equal sizes:

c = b +
e − b

3
=

2b + e

3
(17)

d = b + 2
e − b

3
=

b + 2e

3
. (18)
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The result of step I is the classification of the corresponding edge weights in
the established graph isomorphism given by a triplet(

u
low wt

(β(x)), u
med wt

(β(x)), u
high wt

(β(x))
)

which denotes a membership degree of edge x to three fuzzy sets: Low Weight,
Medium Weight and High Weight.

Step II Based on the classification obtained in step I, the weight of the edge is
assigned a real number Wx which determines its contribution to the similarity
measure between two graphs. Experiments indicated that real number should
not be greater than the average edge weight in the graph. It is calculated using
the formula

Wx =

3∑
i=1

hiuw̃i(β(x))

3∑
i=1

uw̃i(β(x))
(19)

where h1 is set to be 1; h2 is set as mean of h1 and h3; h3 is set as mean weight
of all edges’ weights of the graph of the new input timetabling problem.

The similarity degree between two vertices a and χ on correspondence f is
defined as follows:

DSf (a, χ) =

{
1 if f(a) = χ

0 otherwise .
(20)

The similarity degree between two edges x and γ, where x = (a, b) ∈ Eq and
γ = (χ, δ) ∈ Es, on correspondence f is denoted by DS f(x, γ):

DSf (x, γ) =

{
min(Wx, Wγ) if f(a) = χ and f(b) = δ

0 otherwise
(21)

where Wx and Wγ are the new edge weights for edges x and γ, respectively.
Similarity degree SIM3f (Gq, Gs) between two undirected weighted graphs Gq

and Gs on correspondence f is calculated as

SIM3f (Gq, Gs) =
Fv + Fe

Mv + Me
(22)

where

Fv =
∑
a∈Vq

∑
χ∈Vs

DSf (a, χ) (23)

Fe =
∑

x∈Eq

∑
γ∈Es

DSf (x, γ) (24)

Mv = (|Vq|, |Vs|) (25)

Me = min

⎛
⎝ ∑

x∈Eq

W (x),
∑

γ∈Es

Wγ

⎞
⎠ (26)
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where Mv and Me are the maximum values that Fv and Fe can take, respectively.
The procedure for calculation of the similarity between case P and cases A

and B from the case base is illustrated by an example given in Figure 2. The
calculation of “new weights” of edges with which they will contribute to the
similarity measure are given in Table 2, while Table 3 presents the calculation of
new similarities between cases P and A and B. According to this new similarity
measure, case A is more similar to case P than case B.

4 Retrieval Process

A case base may contain a large number of cases. The retrieval process of the
CBR system has to establish a graph isomorphism between a new problem and
all cases in the case base. In order to enable the faster retrieval a filtering phase
is introduced which retrieves the subset of cases from the case base using a
set of features, that we refer to as shallow properties. They reflect the size and
the complexity of the problem: f1, the number of examinations; f2, the number
of enrolments; f3, the number of time periods available; f4, the density of the
conflict matrix (calculated as the ratio of the number of examinations in conflict
to the square of the total number of examinations).

The nearest neighbour is used to calculate the similarity degree of two cases
based on the shallow properties, represented by feature sets Fq and Fs:

SIMshallow(Fq, Fs) = 1 −

√√√√ 1
n

n∑
i=1

distance (fqi , fsi)
2 (27)

where n is the number of features, fqi and fsi are the values of the ith feature
in Fq and Fs, respectively, and the distance between two feature values fqi and
fsi is computed as

distance(fqi , fsi) =
∣∣∣∣ fqi − fsi

fmaxi − fmini

∣∣∣∣ (28)

where fmaxi
and fmini

are the maximum and minimum values of the ith feature
recorded in the case base.

The cases whose similarity with the new problem is greater than the pre-
defined threshold (empirically set to be 0.6) are passed to the Tabu Search
algorithm [39] which searches for the best graph isomorphism SIM1 in terms of
defined similarity measures (SIM1, SIM2 or SIM3) between the new problem and
the retrieved subset of cases. Finally, the general similarity measure is calculated
between the new problem Cq and a case Cs from the subset of cases, using the
formula

SIM(Cq , Cs) = SIMshallow(Fq, Fs) · SIMf (Gq , Gs) . (29)
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Table 3. Similarity between timetabling problem P and A, B, by the new similarity
measure SIM3

Similarity Fv Mv Fe Me SIM3 (P , *)

P and A 4 4 7.9 min(7.9, 10.67) = 7.9 (4 + 7.9)/(4 + 7.9) = 1.0
P and B 4 4 4.9 min(7.9, 6.34) = 6.34 (4 + 4.9)/(4 + 6.34) = 0.86

5 Experimental Results

The experiments were performed on a number of real-world examination prob-
lems from different universities that has been collected and used as benchmark
problems. The objectives of the experiments are

– to compare different similarity measures;
– to investigate whether the new similarity measure can enable retrieval of the

most effective sequential heuristics for the benchmark problems;
– to evaluate the new CBR system performance by comparing it with the other

state-of-the-art approaches to examination timetabling.

ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ gives the benchmark prob-
lems. Their characteristics are shown in Table 4.

The cost function of these problems takes into consideration the spread of stu-
dent’s examinations. The cost function was adopted in the research on university
examination timetabling and enables comparison between different timetabling
approaches. It can be described by the following formula [23]:

ws =
32
2s

, s ∈ {1, 2, 3, 4, 5} (30)

where ws is the cost given to the solution whenever a student has to take in two
examinations scheduled s periods apart from each other. Experiments were run
on a PC with a 1400 MHz Athlon processor and 256 MB RAM.

5.1 Case Base Initialisation

In our experiments, the initial case base was seeded with a number of ex-
amination timetabling problems that were randomly generated (more details
are given in [41]). Seeding problems differ in three parameters: the number
of examinations (n), the number of students (s), and the density of the con-
flict matrix (d). Three seeding problems were created for each combination of
these parameters, which are random variables with a normal distribution where
mean of n ∈ {100, 200, 300, 400}, mean of s ∈ {10 × n, 20 × n}, and mean of
d ∈ {0.07, 0.15, 0.23}. For each n, s and d, the proportion of the standard devi-
ation and the mean was set as 0.05. Thus, 72 (3 × 4 × 2 × 3) different seeding
problems were generated for the case base.
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In order to find the best initialisation heuristic for each seeding problem, the
GDA initialised by each sequential heuristic was run for 5 times using 20 × 106

iterations (this value was set empirically), while the water-level was set to 1.3
(this value is taken from [14]). These values for the number of iterations and for
the water-level will be employed in most of the experiments presented in this
paper. Finally, three case bases were established: a small, a middle and a large
case base with 24, 48 and 72 cases, respectively.

5.2 Evaluation of Similarity Measures

The purpose of this set of experiments is to evaluate the effectiveness of the
proposed similarity measure SIM3. This new similarity measure is also compared
with the similarity measures SIM1 and SIM2.

Having established three case bases and defined three different similarity mea-
sures, each combination of a case base and a similarity measure was employed
to choose a sequential heuristic for each of the 12 benchmark problems. We
adopted the method described in [41] to evaluate whether the retrieved sequen-
tial heuristic is effective for the benchmark problem. For each benchmark prob-
lem, the GDA was run five times initialised by each sequential heuristic. After
that sequential heuristics were sorted in ascending order by the average final
solution cost obtained. The rank of the sequential heuristic H for the problem
P is denoted by R(H, P ).

The System Effectiveness Degree SED(P ) indicates the distance between the
sequential heuristic used in the case retrieved from the case base denoted by
HCB and the heuristic Hbest which is the best for the GDA initialisation for the
benchmark problem P (R(Hbest, P ) = 1). It is calculated as

SED(P ) = 1 − R(HCB
, P ) − 1

N − 1
(31)

where N is the total number of heuristics used for the GDA initialisation. A high
value of SED indicates the high effectiveness of the retrieved sequential heuristic.
For each combination of the case base and the similarity measure, the average
SED(P ) values were computed for all benchmark problems and are shown in
Figure 4.

It is evident that the SED values of SIM3 are higher than those of SIM1
and SIM2 for all three case bases. This result justifies the new fuzzy similarity
measure. The experimental results also show that the growth of the size of the
case base leads to the retrieval of more effective sequential heuristics.

5.3 System Performance on Benchmark Problems

The following set of experiments aims to investigate the effectiveness of our CBR
system by comparing the obtained results with those of other approaches. The
CBR system with the similarity measure SIM3 and the large case base were used
to solve benchmark problems. In each experiment, our CBR system selected
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Fig. 4. Performance of different similarity measures

a sequential heuristic for a benchmark problem. The problem was solved by
running the retrieved sequential heuristic and the GDA successively for 200×106

iterations, five times with varying random number seeds. System Effectiveness
Degree SED is calculated for each retrieved sequential heuristic. Table 5 shows
our results and the best results achieved by the exhaustive search across all
heuristics.

It can be seen that CBR succeeded in suggesting the appropriate heuristics
for the GDA initialisation and thus resulted in high-quality solutions. The new
CBR initialisation was successful in finding the best heuristics for the benchmark
problem lse-f-91, sta-f-83 and uta-s-92. For seven problem instances car-f-92, car-
s-91, ear-f-83, hec-s-92, kfu-s-93, rye-f-92 and yor-f-83, the retrieved heuristics
are among the four best (0.923 ≤ SED ≤ 0.974). It is important to note that
the developed CBR initialisation took in average less than 10 minutes for each
timetabling problem, while an exhaustive test needed more than six hours.

Table 6 shows the comparison of the average results generated by three other
state-of-the-art approaches: the GDA where the initial solution was constructed
by saturation degree (SD) [1], the GDA initialised by the adaptive heuristic [14],
[16], the GDA where the saturation degree heuristic was applied with the maxi-
mum clique detection (MCD) and backtracking (BT) in the initialisation phase
(this heuristic was suggested by Carter et al. [22] to be the best constructive
heuristic). Each problem instance was solved five times. The time (in seconds)
shown is the average time spent on the search. The GDA was also allocated the
same number of iterations 200*106 for each approach. In this experiment, we
employed the higher number of iterations than in the previous ones in order to
compare our results with the published ones. The times shown are different due
to the use of computers of different characteristics.

For nine benchmark problems, our CBR system obtained best average results
(highlighted by bold characters). For two problems, second best average results
were obtained. Even more, for eleven benchmark problems the best value of the
cost function was obtained as a result of appropriate GDA initialisation. The
obtained results prove the significance of the appropriate initialisation of GDA.
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Table 5. Comparison of results for benchmark problems obtained by the exhaustive
search and CBR initialisation of the GDA

Exhaustive test CBR (|CB| = 72, SIM3)

Retrieval Run GDA Retrieval Run GDA

Data SED Time (s) Cost Time (s) SED Time (s) Cost Time (s)

car-f-92 1.00 35700 3.97 1080 0.923 491 3.99 1027
car-s-91 1.00 42739 4.52 1310 0.948 1733 4.53 1040
ear-f-83 1.00 15245 34.78 690 0.949 445 34.87 690
hec-s-92 1.00 20874 11.32 1490 0.923 73 11.36 1021
kfu-s-93 1.00 19643 14.11 689 0.974 1402 14.35 751
lse-f-91 1.00 15095 10.78 595 1.00 1170 10.78 559
rye-f-92 1.00 20123 8.74 862 0.974 683 8.79 699
sta-f-83 1.00 12368 158.02 676 1.00 91 158.02 649
tre-s-92 1.00 16495 8.03 730 0.744 972 8.10 844
uta-s-92 1.00 32094 3.20 1051 1.00 839 3.20 1051
ute-s-92 1.00 10755 25.70 557 0.769 172 26.10 574
yor-f-83 1.00 26723 36.85 1200 0.949 348 36.88 1243

Finally, we also compare our results with those produced by the state-of-the-
art timetabling metaheuristics: Simulated Annealing (SA) [35], Tabu search [47],
and GRASP [25]. The average of the scores for the twelve problem instances is
shown in Table 7.

We can see that our CBR system outperformed other metaheuristics. Our
CBR system obtained the best average results for seven benchmark problems
and the second best average results for two benchmark problems. In addition,
it is clear that the additional time on the case retrieval is required by our CBR
system. However, the time spent on the selection of an appropriate sequential
heuristic is justified by the quality of the results.

6 Conclusions

Different graph representation of examination timetabling problems and the cor-
responding similarity measures between two problems have been discussed. They
are used in the CBR system for heuristic initialisation of GDA. The experimen-
tal results on a range of real world examination timetabling problems prove that
the new fuzzy similarity measure based on weighted graph representation leads
to the good selection of sequential heuristic for the GDA initialisation. By as-
signing linguistic terms to the edge weights of the timetabling graphs, the new
similarity measure enables the retrieval of the timetabling problem from the case
base which is structurally similar to the new problem.

We have also demonstrated that the CBR system with the new similarity
measure can efficiently select a good heuristic for the GDA initialisation for
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most of the benchmark problems, and even more it outperforms the other state-
of-the-art solution approaches based on GDA. This research makes a further
contribution to the attempt of development of a general metaheuristic framework
for timetabling, which is not tailored for a particular timetabling problem, i.e.
works well on a range of different timetabling problems. We believe that this
new similarity measure along with the proposed CBR methodology are also
applicable to other domains such as personnel scheduling, job shop scheduling,
and project scheduling.
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Abstract. In this paper we introduce an examination timetabling prob-
lem from the MARA University of Technology (UiTM). UiTM is the
largest university in Malaysia. It has 13 branch campuses and offers 144
programmes, delivered by 18 faculties. This dataset differs from the oth-
ers reported in the literature due to weekend constraints that have to
be observed. We present their examination timetabling problem with re-
spect to its size, complexity and constraints. We analyse their real-world
data, and produce solutions utilising a tabu-search-based hyper-heuristic.
Since this is a new dataset, and no solutions have been published in the
literature, we can only compare our results with an existing manual so-
lution. We find that our solution is at least 80% better with respect
to proximity cost. We also compare our approach against a benchmark
dataset and show that our method is able to produce good quality results.

1 Introduction

Work on timetabling problems has been published since the 1960s [17]. Since
then, numerous researchers have been working on problems ranging from sports
timetabling [35], railway timetabling [14], [25] and educational timetabling [2],
[3], [6], [15], [17], [30].

Most academic institutions face the problem of scheduling both courses and
examinations in every semester or term. As the difficulty of the problem in-
creases, due to a large number of students, courses, examinations, rooms and
invigilator constraints, an automated timetabling system that can produce fea-
sible, and high quality timetables, is often required. The timetabling procedure
at universities and schools varies from manual timetabling, semi-automated
timetabling to fully automated timetabling. A survey conducted by Burke et
al. [10] received feedback from 56 registrars from British universities with regard

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 270–293, 2005.
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to the nature of their examination timetabling problem, how they solved it (man-
ual or automated) and what qualities were considered for a good examination
timetable. They discovered that only 58% (32 universities) of their respondents
used a computer at some stage in producing their examination timetable and 21%
(11 universities) of these had a scheduling system. Only two universities used
commercial software whilst the other systems were developed in house. Thus,
while commercialised software is available, such as, EXAMINE [16], Syllabus-
Plus [23], ConBaTT [24], OPTIME [28], and CelCAT [32], many universities
are yet to be convinced that an automated system will provide a satisfactory
solution. Universities may need to develop their own system or customise a
commercial system to fulfil their specific needs. Once a customised system is de-
veloped, it will also require full support with frequent updates and maintenance
due to changes in academic policy or educational structures.

An early survey by Comm and Mathaisel [19] in 1988 involving 1494 U.S.
college registrars concluded that there was a large market for a computerised
timetabling system and that most registrars were unhappy with their current
systems. The survey showed that a computerised system must produce good
quality timetables allowing some user intervention, it must be easy to use and
be comprehensive and compatible with any previous systems. JISC (Joint Infor-
mation System Committee) Technology Applications Programme [26] published
findings from a questionnaire from which they received replies from 16 univer-
sities in the UK. The universities were asked whether a central computerised
system was in use and for their views on its effectiveness. The report concluded
that centralising the whole process of room bookings, examination timetables
and lecture timetabling was carried out in phases using a wide variety of soft-
ware packages and there was a need for full and complete management support
for such systems.

The above surveys show that much computerisation has taken place over the
years, and there is ongoing research on new techniques and methods to solve
timetabling problems so as to produce better quality solutions. In this paper, we
focus on the examination timetabling problem faced by universities. Carter and
Laporte [17] defined the basic problem as “the assigning of examinations to a lim-
ited number of available time periods in such a way that there are no conflicts or
clashes”. A timetable is feasible if all examinations can be scheduled and all other
hard constraints are not violated. Student conflict exists if at least one student is
scheduled to sit for more than one examination at the same time. This conflict is
categorised as a hard constraint and should be eliminated. A proximity constraint
is an example of a soft constraint that canbe violated, if necessary.Aweightedprox-
imity cost is assigned whenever a student has to sit for two examinations scheduled
at most five slots apart. A lower proximity cost relates to a better quality solution
and thus our objective is to minimise the proximity cost.

Carter et al. [18] provide a set of benchmark examination timetabling in-
stances from real examination problem datasets from universities across the
world. They applied a variety of constructive algorithms, with backtracking,
based on graph colouring heuristics and solve the problem with and without
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capacity constraints (capacitated and un-capacitated problem). The solution
quality is measured by an objective function based on proximity cost. A lower
proximity cost indicates that, on average, a student will have his/her examina-
tions better spread over the length of his/her examination period and, therefore,
will have more time to concentrate on each examination.

Burke et al. [12] introduced another dataset from the University of Notting-
ham that also includes room requirements and capacities. They used a memetic
algorithm and a weighted objective function for adjacent, overnight and un-
scheduled examinations. Burke et al. [11] apply some sequential heuristics and
various ordering techniques to allocate examinations to slots whilst not violating
the clash and capacity constraints.

Merlot et al. [29] introduced two new datasets from the University of Mel-
bourne that includes two additional hard constraints: examination availability
(examinations preassigned to specific slots) and large examinations (large exami-
nations scheduled in the first n slots). They used a hybrid algorithm (a constraint
method, simulated annealing and hill climbing) to find a feasible schedule and
found that they have to relax the constraints (by adding additional slots to the
large examinations constraints) so as to produce a clash free timetable.

All of the datasets described above are available via

– ftp://ftp.mie.utoronto.ca/pub/carter/testprob
– ftp://ftp.cs.nott.ac.uk/ttp/Data and
– http://www.or.ms.unimelb.edu.au/timetabling

We presented the examination timetabling problem from the MARA Univer-
sity of Technology in [20]. MARA University of Technology (UiTM) is the largest
university in Malaysia with a total number of students approaching 100,000. The
university has 13 branch campuses, one in every state in Malaysia with 144 pro-
grammes offered by 18 faculties. A common examination timetable is shared
amongst all campuses andprogrammes since students sitting for the sameexamina-
tion paper must take it at the same time, irrespective of their geographical location.

UiTM uses an examination scheduling program [36] (developed in-house, us-
ing the COBOL language, about 30 years ago) to produce a first draft of the
examination timetable. The timetable then goes through a manual update pro-
cess by scheduling new courses and removing old ones.

Apart from the constraints that are common for examination timetabling [8],
[15], [17], [33], UiTM has to consider the following additional constraint: If an
examination falls on a state public holiday and there are students from that state
sitting for the examination then the examination must be moved to another
slot. Malaysia has a number of public holidays that are not shared between
states. Data on the available space for examinations are not considered when
moving examinations and therefore every faculty, centre and branch campus
needs to provide prompt feedback on space availability for examinations already
scheduled. Once the examination timetable is in its final draft, it is sent to all
faculties and branch campuses for the assignment of rooms and invigilators.

In this paper, we apply a tabu-search-based hyper-heuristic approach to the
UiTM examination timetabling problem. This method has been used to solve
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the Carter benchmark datasets and has produced competitive results compared
to other methods [27]. Hyper-heuristic [7], [9] methods operate at a higher level
of abstraction than other search methods and are able to intelligently choose a
(meta-)heuristic to be applied at any given time. We refer to Burke et al. [7] for
further motivation and discussion on the emergence of hyper-heuristics in solving
optimisation problems. An example of a hyper-heuristic approach for solving a
large-scale university examination timetable can be seen in Terashima-Marin
et al. [34]. The problem is solved in phases. Each phase uses a different set of
heuristics and a switch condition determines when to move from one phase to the
other. A genetic algorithm, using an indirect chromosome representation, was
used to evolve the choice of heuristics and the switch condition. Another recent
application of hyper-heuristic on timetabling problems is presented Burke et al.
[5]. The hyper-heuristic uses tabu search to search for different permutations of
graph heuristics that solve both examination and course timetabling problems.
A further use of a hyper-heuristic is in solving multi-objective [4] space allocation
and timetabling problems. The idea is to choose, at each iteration, a heuristic
that is suitable for the optimisation of a given, individual objective.

Tabu search is a meta-heuristic that has been applied successfully on exam-
ination timetabling problem [21], [37]. In this paper, we incorporate the tabu
list mechanism in our hyper-heuristic framework to help guide the selection of
heuristics.

In the next section, we present a detailed description of the examination
timetabling problem at the MARA University of Technology. Section 3 provides
a description of our tabu-search-based hyper-heuristic and Section 4 presents
our algorithm with this new large dataset. We show how it compares with the
only other known solution to this problem. Section 5 concludes with a summary
and presents potential future research directions.

2 UiTM Examination Timetable Problem Formulation

2.1 Problem Description

MARA University of Technology (UiTM) is the largest university in Malaysia
with 13 branch campuses. The Centre for Integrated Information System (CIIS),
UiTM has responsibility for planning and managing the overall Information
Technology strategy in UiTM and fulfilling administrative and academic needs.
One of its information system modules, Integrated Student Information Systems
(iSIS), was designed and developed as a collaborative project. This system offers
six main modules encompassing the complete Student Life Cycle process, from
Intake to Convocation and Alumni. The four principal modules comprise the
Student Intake System, Academic Affairs Systems, Student Affairs System and
Student Accounting System. Thirteen personnel headed by a senior information
system officer provide support for the system and two information system officers
are specifically assigned to the examination unit.

We have been fortunate to acquire most of our examination data from the
CIIS. The data are classified by faculty and branch campuses. The total number
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Table 1. Characteristics of UiTM dataset

No. of
Branch No. of student Avg exam

No. campuses students exams per student

1 Shah Alam 40,275 222,559 5.52
2 Melaka 4,447 25,334 5.70
3 Negeri Sembilan 315 1,913 6.07
4 Johor 4,057 22,109 5.45
5 Perak 5,366 31,518 5.87
6 Perlis 5,824 32,807 5.63
7 Kelantan 3,515 19,627 5.58
8 Terengganu 4,842 27,444 5.67
9 Pahang 4,607 27,221 5.91

10 Sarawak 4,800 25,618 5.34
11 Sabah 2,423 11,470 4.73
12 Penang 1,453 9,296 6.40
13 Kedah 2,751 15,285 5.56

UiTM-03 (Total) 84,675 472,201 5.56

of students enrolled in Semester 2, 2002/03 was 84,675, course enrolment was
472,201 and the total number of courses to be scheduled was 2,650 (see Table 1).

The data supplied from CIIS were in the form of: a list of examinations that
must be scheduled, a list of examinations that must be scheduled at the same
time (concurrent), a list of students and their course selection (split by campuses)
and an examination timetable that was used in the May 2003 semester. We do
not have any information regarding capacity or other hard constraints that were
imposed via feedback by faculties or campuses. The original list of examinations
has 2,650 examinations to be scheduled, but after computing the enrolment
for each examination using the student file, examinations with zero enrolments
were removed even though these examinations were present in the examination
timetable. Examinations with zero enrolments will have no effect in the way
we compute solution quality and therefore can be removed from the timetable.
There are 491 examinations with zero enrolments and so we only need to schedule
2,159 examinations. Data accuracy is one of the difficulties in processing data
from a large university that involves many faculties and campuses. We believe
that these examinations have zero enrolments because officers in faculties and
campuses may not have up-to-date information on the exact course enrolments
and, also, students add or drop courses at the last moment.

2.2 Problem Formulation

We can represent the examination timetabling problem as follows:

1. E: a set of m examinations E1, E2, . . ., Em.
2. S: a set of n slots S1, S2, . . ., Sn.
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3. U : a set of u campuses U1, U2, . . . , Uu.
4. A final examination timetable Tmn such that: Tik = 1 if examination i is

scheduled in slot k, 0 otherwise.
5. CampusType = {A, B} where campus type A has half-day Saturday and

full-day Sunday weekend and campus type B has half-day Thursday and
full-day Friday weekend.

6. A conflict matrix Cmm such that Cij = total number of students sitting for
both examinations i and j categorised by campus type.

7. A co-schedule matrix Rmm such that Rik = 1 if examination i and exami-
nation k must be scheduled in the same time slot, 0 otherwise.

The examination timetabling problem is to assign examinations to n number of
slots subject to various constraints, so as to minimise various costs. The total
number of slots is already fixed and the examination scheduler must schedule
examinations into at most n slots. There are 2,159 examinations with some
examinations being held concurrently. Even though each examination may have
a different duration (120, 150 or 180 minutes), we will treat each examination as
occupying a complete slot of 180 minutes. The total number of examination days
is 20 and each day will have two slots (morning and afternoon), i.e. we will have
40 slots in which to assign examinations. We categorise each campus (A or B) to
indicate which days or slots must not be used in assigning examinations taken
by students in that particular campus. Campuses in category A have weekend:
half-day on Saturday and full-day on Sunday while campuses in category B have
weekend: half-day on Thursday and full-day on Friday. The examination dates
were from 20th April 2003 to 10th May 2003 with 1st May as a public holiday
across all campuses, so no examinations can be scheduled on this day. For this
dataset, we are not concerned with other public holidays since none occur on a
different day for different states. On other occasions there might be a situation
where a campus has a public holiday and others do not.

Constraints. Hard constraints are those which cannot be violated. A timetable
that violates a hard constraint will render it infeasible. Such infeasibilities may
be unavoidable in certain cases and universities have to take drastic measures
to resolve the problem.

The following hard constraints are present in the UiTM dataset:

a Conflict: no student should sit for more than one examination in the same
slot:

m∑
i=1

m∑
j=1

n∑
k=1

TikTjkCij = 0 .

If examination i and examination j are scheduled in slot k, the number of
students sitting for both examination i and j (Cij) must be equal to zero,
and this should be true for all examinations already allocated.

b Co-schedule: examinations that must be scheduled together must be assigned
in the same time slot.
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For all examinations i:
m∑

j=1

n∑
k=1

TikTjkRij =
m∑

j=1

Rij .

All examinations that must be scheduled with examination i should be as-
signed to the same slot k.

c All examinations must be scheduled:
n∑

k=1

Tik = 1 i = 1, . . . , m .

Each examination, (E1, E2, . . . , Em) should be scheduled only once.

Costs. Other additional soft constraints that are specific to university require-
ments can be added to this problem. We determine the cost of an examination
timetable solution based on the penalty given if certain soft constraints are vio-
lated. The soft constraints that we consider are as follows:

a Proximity cost. A proximity cost xs is given whenever a student has to sit
for two examinations scheduled s periods apart: these weights are x1 = 16,
x2 = 8, x3 = 4, x4 = 2 and x5 = 1. Pik is the proximity cost if examination
i is scheduled in slot k.
The total proximity cost of a timetable is as follows:

m∑
i=1

n∑
k=1

TikPik .

b Weekend cost. The current examination timetable scheduler schedules ex-
aminations during the weekend. We can try to produce a better quality
timetable by penalising examinations that are scheduled during the weekend.
Weekends for category A campuses are half-day on Saturday and full-day on
Sunday and weekends for category B campuses are half-day on Thursday
and full-day on Friday. A penalty cost of 16 is given whenever a student has
to sit for a weekend examination. Wik is the proximity cost if examination i
is scheduled in slot k.
The total weekend cost is as follows:

m∑
i=1

n∑
k=1

TikWik .

Finally, our objective is to optimise the following:

m∑
i=1

n∑
k=1

TikPik +
m∑

i=1

n∑
k=1

TikWik

i.e. minimise the total proximity cost and the weekend cost.
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3 Tabu Search Based Hyper-heuristic

A hyper-heuristic [7], [9] works at a higher level of abstraction than a meta-
heuristic and does not necessarily require domain knowledge. A hyper-heuristic
only has access to non-domain-specific information that it receives from the
heuristics that it operates upon. A hyper-heuristic can be implemented as a
generic module that has a common interface to the various low-level heuristics
and other domain specific knowledge (typically the evaluation function) of the
problem being solved. Initially, the hyper-heuristic needs to know the number
of n heuristics provided by the low-level heuristic module. It will guide the
search for good quality solutions by setting up its own strategy for calling and
evaluating the performance of each heuristic known by their generic names H1,
H2, . . . , Hn. The hyper-heuristic does not need to know the name, purpose or
implementation detail of each low-level heuristic. It just needs to call a specific
heuristic, Hi, and the heuristic may modify the solution state and return the
result via an evaluation function. The low-level-heuristic module can be viewed
as a “black box” that hides the implementation details and only returns a new
solution and a revised value for the evaluation function.

3.1 Hyper-heuristic Module

The hyper-heuristic module is the focus of this research, where we need to design
and test strategies that can intelligently select the best heuristic that will help
guide the search to either intensify or diversify the exploration of the search
region.

The general framework for our hyper-heuristic is as follows:

Step 1 Construct initial solution
Step 2 Do

Consider heuristics that are not tabu
Choose the best heuristic (with the best improvement)
Apply chosen heuristic and make the heuristic tabu
Update solution
Update the tabu status of heuristics in the tabu list

Until terminating condition

The initial solution is produced using a constructive heuristic (largest degree
or saturation degree [17]. Next, a randomisation (randomly move examinations
to other valid slots) is carried out in order to start different runs with different
solutions. In Step 2 we explore the neighbourhood to search for a better solution
or local optima (and possibly global optima). The framework is similar to a local
search except that in Step 2, we explore the neighbourhood by selecting which
heuristic to use to update the current solution.

The core part of the algorithm is Step 2, where we need to decide which
heuristics are candidates to be applied and which heuristic we actually apply.
Each heuristic differs in how it decides to move, thus creating its own search
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region (heuristic search space) in the solution search space. In the search for good
quality solutions, the hyper-heuristic exhibits a type of reinforcement learning
that will assist in an intelligent action at each decision point. At this point, the
hyper-heuristic can actually choose intelligently when to intensify or diversify
the search because we believe that allowing the low-level heuristics to compete
at each iteration and selecting the heuristic with the best performance will help
to balance the diversification and intensification of the solution search space.
Heuristics that have been applied become tabu so that in the next iteration we
can explore the solution space of other low-level heuristics that may perform
well but, perhaps, not as well as the previous heuristics that are now tabu.

The hyper-heuristic monitors the behaviour of each low-level heuristic by
storing information about their performance using an adaptive memory. Our
hyper-heuristic uses a tabu list that is of a fixed length n, where n is the number
of low-level heuristics. Instead of storing moves, each tabu entry stores (non-
domain) information about each heuristic i.e. heuristic number, recent change
in evaluation function, CPU time taken to run the heuristic, and tabu status (or
tabu duration, which is the term we use here). Tabu duration indicates how long
a heuristic should remain tabu and, will therefore, not be applied in the current
iteration. If the tabu duration is zero, the heuristic is said to be tabu inactive
and can be applied to update the solution. If the tabu duration is non-zero, the
heuristic is said to be tabu active and may not be used to update the solution.
The tabu duration is set for a heuristic whenever a tabu restriction is satisfied.
After each iteration, the tabu duration is decremented until it reaches zero and
the heuristic is now tabu inactive. We do not use any aspiration criteria since a
tabu active heuristic will have its tabu duration decremented in each iteration,
and will eventually be tabu inactive. If all heuristics are tabu active in any
iteration, no heuristics will be evaluated and obviously none will be applied.
Therefore, a heuristic changes its status from tabu active to tabu inactive only
when the tabu duration is zero. In using a tabu list, we need to decide what
tabu duration value works best for a given problem instance.

Our first implementation used a deterministic tabu duration where, in each
run, we used a fixed range of tabu duration and compared the final best solu-
tion. In our previous work [27], we showed empirically, using deterministic tabu
durations, that an effective tabu duration is dependent upon the conflict matrix
density of a given examination timetabling problem instance. In general, having
a low tabu duration allows the exploration to move within the same heuristic
search space and a high tabu duration allows exploration into other regions. If a
tabu duration is too high, we found that the quality of the solution deteriorates
since good heuristics are made tabu for too long. If a tabu duration is too low (or
equal to zero), we have limited ourselves to search within a small region in the
solution space. In this paper, we will consider both deterministic tabu durations
and random dynamic tabu durations. Random dynamic tabu duration uses a
tabu duration range (tmin and tmax), and at each decision point, when making a
heuristic tabu, a tabu duration value is selected at random from the given range.
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The next issue we have to address is the mechanism for updating a solution.
At each iteration, we compare the solution from each heuristic and take the best
solution. We use three different strategies for accepting the best solution at each
decision point. First, is to accept the solution from the best performing heuris-
tic. This best solution may not improve the current or previous best solution.
Second, is to accept the best solution and if this solution improves the previous
solution, the same heuristic will be applied until it cannot improve the solution
anymore (steepest ascent hill climbing). Third, is to accept the best solution
only if the solution is less than a boundary penalty. The boundary penalty was
first introduced by Dueck [22] in his great deluge algorithm (GDA). Burke et al.
[13] have also applied it to examination timetabling. The algorithm deals with
feasible solutions and will accept worse solutions if the cost evaluation is less
than or equal to a boundary, called level. The level is reduced at each iteration
using a decay rate that is dependent upon the initial cost evaluation, desired
cost evaluation and the time for the algorithm to achieve this desired cost.

We have implemented and tested three different hyper-heuristics, which in-
corporate the various strategies mentioned above.

1. The simplest form, i.e. the Basic Tabu Search Hyper-heuristic (TSHH-B),
considers all tabu inactive heuristics and applies the heuristic that has the
best improvement only. The algorithm iterates for a fixed time (4 hours).

2. The second hyper-heuristic is Tabu Search Hyper-heuristic with Hill Climb-
ing (TSHH-HC), which adds to TSHH-B a successive call to the best per-
forming heuristic until no further improvement is made.

3. The third hyper-heuristic is Tabu Search Hyper-heuristic with Great Deluge
(TSHH-GD), which updates a solution within a certain boundary only. The
execution time is limited by a number of steps (i.e. 10,000,000 iterations) and
the algorithm will terminate if there is no improvement in the last 10,000
iterations. The time taken by a TSHH-GD iteration is longer compared to
GDA because GDA generates only one new solution by doing a random move
while TSHH-GD generates several solutions as it calls every heuristic which
is not tabu. Each low-level heuristic may also take a longer time than just
a random move. The decay rate is calculated as the difference between the
desired cost and the initial cost divided by the number of iterations. In each
iteration, the boundary is lowered by the decay rate. A solution from the
best performing low-level heuristic is accepted to modify the current solution
if it is better than the previous solution or it is lower than the boundary.

For each of these hyper-heuristics, we apply both deterministic and random
dynamic tabu durations.

3.2 Low-Level Heuristics Module

Low-level heuristics are heuristics that allow movement through a solution space
and that require domain knowledge and are problem dependent. Each heuristic
creates its own heuristic search space that is part of the solution search space.
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The idea is to build a collection of (possibly) simple moves or choices since we
would like to provide a library of heuristics that can be selected intelligently by
a hyper-heuristic tool.

The heuristics change the current state of a problem into a new state by ac-
cepting a current solution and returning a new solution. Each low-level heuristic
can be considered as improvement heuristics that returns a move, a change in
the penalty function and the amount of time taken to execute the heuristic.
The best performing heuristic should cause a maximum decrease in penalty (the
lowest value). Each move from an individual heuristic may cause the search to
probe into the current neighbourhood or to explore a different neighbourhood.
A change in the penalty value means changing the penalty value for each of
the soft constraints that were violated (first-order conflict, second-order conflict,
etc) or moving an examination into an unscheduled list (examination becomes
unscheduled and violates hard constraints).

We use the same low-level heuristics as in [27]:

1. Five graph colouring heuristics that select an examination from an unsched-
uled list and schedule it into the best available slot that maximises the re-
duction in penalty. The heuristics are: largest enrolment, largest examination
conflict, largest total student conflict, largest examination conflict already
scheduled, and examination with least valid slots.

2. Five move heuristics that select an examination, either at random, with
maximum penalty, with highest second order conflict or highest first order
conflict. This examination is rescheduled into a new random slot or a new
slot which maximises the reduction in either the total penalty, total first
order conflict or second order conflict.

3. Two swap heuristics that select an examination, either at random, with
maximum penalty or with minimum penalty. The two examinations selected
will swap slots subject to no hard constraint violations.

4. A heuristic that removes a randomly selected examination from the exam-
inations already scheduled. This is the only heuristic which will move the
search into an infeasible region because any examination may be unsched-
uled. We make sure that the search can move back into its feasible region
by un-scheduling examinations that have other valid slots to move to in the
next iteration.

All of the above low-level heuristics are either 1-opt (one move) or 2-opt (two
moves) and there is also a mixture of some randomness and some deterministic
selection of examinations and slots. We purposely use low-level heuristics that
are simple moves rather than complex low-level heuristics because we want to
make sure that the hyper-heuristic can recognise good moves and make an intel-
ligent decision based on these simple moves. Furthermore, we want to make the
problem-domain knowledge heuristics easy to implement and the hyper-heuristic
more generalised.
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Table 2. Comparison of results between Uitm-03 and Car-s-91 datasets

Tabu Uitm-03 Car-s-91

Duration TSHH-B TSHH-HC TSHH-GD TSHH-B TSHH-HC TSHH-GD

0 2.16 2.08 2.14 6.88 6.78 6.85
1 1.55 1.55 1.44 6.83 6.88 7.01
2 1.93 1.94 1.37 5.37 5.14 5.15
3 3.95 3.84 1.35 6.31 6.04 4.93
4 6.37 6.33 1.44 6.91 7.10 5.01
Random 1.65 1.63 1.40 5.43 5.31 5.6

4 Experimental Results

We have implemented and tested our tabu search based hyper-heuristic frame-
work on a PC with an AMD Athlon 1 GHz processor, 128 Mb RAM and Windows
2000. The program was coded in C++ using an object-oriented approach. We
defined and implemented the hyper-heuristic and heuristics as objects that have
a common interface and can interact with each other. In our previous paper [27],
we tested the simplest form of our hyper-heuristic module TSHH-B with deter-
ministic tabu duration on Carter’s examination timetabling benchmark data.
We compared the results (using proximity cost per student) and found that the
method is able to find good solutions on all datasets. Our tabu-search-based
hyper-heuristic method has also added a significant improvement to tabu search
because our results are better in all cases compared to the tabu search approach
of Di Gaspero and Schaerf [21]. Without changing the low-level heuristics, we
tested two more hyper-heuristics with two different objective functions and pro-
duced results with respect to minimising proximity cost and minimising both
proximity and weekend cost

4.1 Proximity Cost Evaluation Method

We use our previous method (TSHH-B) and proximity cost evaluation func-
tion on our new dataset. We also run our new and improved method: tabu-
search-based hyper-heuristic with hill climbing (TSHH-HC) and tabu-search-
based hyper-heuristic with great deluge (TSHH-GD), with Carter’s examination
timetabling benchmark data and the Uitm-03 dataset. Here, we discuss the al-
gorithm performance when applied to the Uitm-03 dataset and compare its be-
haviour with one other dataset, i.e. Car-s-91 (one of the benchmark datasets).
Car-s-91 (Carleton University, Ottawa) is one of the largest datasets with 682
examinations to be scheduled in 35 slots, 16,925 students and 56,877 student
examinations.

The first column in Table 2 shows the tabu duration, i.e. how long a heuristic is
placed in the tabu list. We tested with both deterministic and random dynamic
tabu durations. The best result for Car-s-91 is 4.50 published by Yong and
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Table 3. Compare results for UiTM dataset with other solution methods

TSHH-B TSHH-HC TSHH-GD Manual GD SA

UiTM-03 1.55 1.55 1.35 12.83 1.40 1.68

Petrovic [38]. They used a combination of case base reasoning using a fuzzy
similarity measure to choose sequential heuristics during the construction phase
and then the great deluge algorithm. The next best result of 4.65, published by
Burke and Newall [1], uses a combination of adaptive initialisation strategies and
the great deluge algorithm. Both methods are based upon the idea that good
initial solutions fed to the great deluge algorithm will produce good solutions.
Referring to Table 2, our best result for Car-s-91 is 4.93 using the tabu-search-
based hyper-heuristic and the great deluge with a tabu duration of 3. Thus,
the hyper-heuristic is able to produce a good-quality solution for the Car-s-91
dataset, even though the initial solution is not as good as the initial solutions in
[1], [38]. Our method shows similar behaviour between both datasets, where the
best result is obtained using tabu search hyper-heuristic and great deluge with
a tabu duration of 3. Table 3 compares our best result on the UiTM dataset
with the existing manual solution, the great deluge algorithm and simulated
annealing.

Figures 1 and 2 show the best proximity cost, with various tabu durations ob-
tained for the Uitm-03 and Car-s-91 datasets. In our tabu-based hyper-heuristic
strategy, we apply the concept of heuristics cooperating with each other rather
than penalising a non-performing heuristic. When the tabu duration is greater
than zero, we apply a tabu restriction where a heuristic will be tabu active if
its solution value has been accepted to update the current solution. The heuris-
tic will remain tabu active for a number of steps equal to tabu duration. We
make a heuristic tabu because we want to direct the search to other possible
heuristic search spaces. Eventually we may return to a heuristic search space
once it is no longer tabu active and can give the best solution amongst all tabu
inactive heuristics. Similar to the tabu search meta-heuristic, we need to decide
which tabu duration (or list size in tabu search) works best for a given problem
instance. For the UiTM dataset (Figure 1), as the tabu duration increases, so-
lution quality improves, and once it reaches its best tabu duration, the solution
quality begins to deteriorate as we increase the tabu duration further. Car-s-91
(Figure 2) shows only a slight difference when the tabu duration equals zero and
tabu duration equals one for both hyper-heuristics that either incorporate hill
climbing or great deluge. In that instance, solution quality is better when tabu
duration is zero compared to when the tabu duration is one and improves again
after that.

Figures 3–5 show the hyper-heuristic performance with different tabu dura-
tions. The graphs show how the hyper-heuristic explores the search space. Both
TSHH-B and TSHH-HC show more dispersed points in the graph compared to
TSHH-GD because the boundary penalty used in great deluge directs the search
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Fig. 2. Hyper-heuristic methods on Car-s-91

to a much better solution. The lower tabu duration does not show much move-
ment in the search space and it might be trapped in local optima. As we increase
the tabu duration, it shows more movement and exploration of search space and
is therefore able to find a better quality solution. As the tabu duration increases
it becomes more difficult to get better solutions since many heuristics stay tabu
too long and the hyper-heuristic has no option but to take the best solution from
the worst heuristics. TSHH-GD is better at not moving to a worse solution since
it is also directed by the boundary penalty and thus will not make bad moves
in such a way that it cannot get back to good solution space. Figure 6 shows
a comparison of the TSHH-GD with great deluge algorithm (see the algorithm
in [11]). We ran both algorithms for 4 hours and traced the penalty evaluation
at every 5,000 iterations (steps). The TSHH-GD converges faster in terms of
steps but it actually takes longer because each iteration explores various heuris-
tic solution space and may take 10 times longer compared to the great deluge
algorithm.
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Fig. 3. Basic tabu-search-based hyper-heuristic for UiTM dataset

4.2 Proximity and Weekend Cost Evaluation Method

The UiTM dataset has an additional constraint or criterion, i.e. a weekend cost
that needs to be minimised. The proximity cost and weekend cost are combined
into one objective function with the same weights for proximity cost and a weight
of 16 for every student who has to sit for a weekend examination.

The high-level part of the hyper-heuristic does not need to be changed. The
low-level heuristics, which require more knowledge about the problem, need to
be adjusted. The cost evaluation function is also modified to reflect a change in
the objective function. The unscheduled examination weight needs adjustment
(new weight of 10,000) and a new weekend weight added. In the previous im-
plementation, two heuristics minimise the second- and third-order conflict (a
conflict by a student having to sit for examinations, 1 or 2 slots apart). In the
current implementation, a new heuristic, reduces a conflict by a student who has
to sit for a weekend examination.

In general, we can further improve our low-level heuristics by generalising the
number of conflicts and the type of conflicts we want to minimise. A separate low-
level heuristic can be used to minimise a specific criteria and the hyper-heuristic
can choose which criteria to optimise in each decision step. In this way, the tabu
search hyper-heuristic is also a general method that can solve an examination
timetabling problem with multiple objectives. Petrovic and Bykov [31] solve
the examination timetabling problem with multiple objectives by dynamically
changing the weights of the criterion during the search process. The hyper-
heuristic approach does this implicitly because it has the intelligence to choose
between the low-level heuristic that minimises the first or the second criterion.
The only parameter that we need to adjust would be the most suitable weights
associated with the conflicts or criteria.

In the UiTM problem, it is important to associate appropriate weights with
the weekend conflict violation and the unscheduled examination. Currently the
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Fig. 4. Tabu-search-based hyper-heuristic with Hill Climbing for UiTM dataset

low-level heuristics are able to optimise a bi-criteria problem and can easily be
extended to optimise a number of criteria (e.g. minimise usage of smaller rooms).
In deciding what is an appropriate weight, we need to consider the importance
of a criterion and how it will influence the search direction. A high weekend
weight will push the search into a higher proximity cost since the number of
examination slots will be reduced. Experiments were conducted with weights of
32 and 16 associated with a weekend conflict. Finally, a weight of 16 is chosen
because a weight of 32 was too high and caused the search to become trapped
and not able to improve the solution. The weekend weight is also the same (and
therefore as important) as the weight for students who have examinations in
adjacent periods.

The unscheduled examination weight of 5,000 that is being used with bench-
mark datasets is also not suitable for the UiTM dataset. Normally the unsched-
uled weight determines whether an examination is better being unscheduled, or
scheduled and causing high proximity cost. A weight of 5,000 for an unscheduled
examination is not suitable because the total number of students is too large and
this will direct the search into an infeasible region since the remove examination
heuristic will outperform other heuristics by un-scheduling an examination. In
the UiTM problem, the unscheduled examination weight is fixed at 10,000.

UiTM Proximity and Weekend Cost Analysis. Table 4 shows the same
hyper-heuristics being applied but with the different objective function. The
results should be higher than in Table 2 since we are also taking into account
the penalty for weekend examinations. On average, we could say that students
may not have to sit for weekend examinations or sit for an adjacent examination
since the best solution (cost of 7.12 by TSHH-GD with tabu duration = 3) is less
than the weight for a weekend examination or adjacent examinations. However,
this is not true since we do need to look at the overall timetable and count the
number of students who have to sit for adjacent or weekend examinations.
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Fig. 5. Tabu-search-based hyper-heuristic with Great Deluge for UiTM dataset

Table 4. UiTM-03 dataset that minimised proximity and weekend cost

Tabu UiTM-03

Duration TSHH-S TSHH-HC TSHH-GD

0 10.10 9.29 12.12
1 9.27 11.20 11.46
2 9.87 9.70 10.04
3 17.36 17.31 7.12
4 16.42 17.16 7.92
Random 9.51 9.65 8.04

Tables 5 and 6 show the number of students and percentage of students in-
volved in a conflict that occur in two of the solutions produced. Table 5 is an
analysis of the best result by the tabu search based hyper-heuristic with great
deluge (TD = 3). Table 6 is an analysis of the best result by tabu search based
hyper-heuristic with hill climbing (TD = 1). The columns show each of the con-
straints that we are minimising. The gap number indicates a gap between two
examinations that a student is sitting. The results seem consistent with the ob-
jective of minimising proximity and weekend cost. The best solution has a lower
cost in all of the individual constraints that we wish to minimise.

The weekend cost contributes a high percentage to the total cost in both
solutions (last row in Tables 5 and 6). Therefore, it is beneficial to look at how the
initial solution and the unscheduled examination weight affect the performance
of the hyper-heuristic.

New Initial Solution and Dynamic Unscheduled Examination Weight.
Previously, the constructive heuristic used to generate the initial solution for the
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Fig. 6. Comparing TSHH-GD and Great Deluge algorithm performance

Table 5. Data characteristic of solution with 7.12 proximity and weekend cost (by
TSHH-GD with TD = 3)

Gap = 1 Gap = 2 Gap = 3 Gap = 4 Gap = 5 Weekend

Total cost 88,464 86,536 59,440 45,104 29,488 294,208
Avg cost per student 1.04 1.02 0.70 0.53 0.35 3.47
Number of students 5,529 10,817 14,860 22,552 29,488 18,388
% of total students 6.53% 12.77% 17.55% 26.63% 34.82% 21.72%
% of cost 14.66% 14.35% 9.85% 7.48% 4.89% 48.77%

Uitm-03 dataset was the same as the constructive heuristic for the benchmark
datasets. With that initial solution, the hyper-heuristic is able to produce a
feasible solution that is much better when compared to the existing manual
solution. The constructive heuristic for benchmark datasets does not need to
differentiate between weekend and non-weekend slots, and therefore does not
prioritise which slots to assign an examination to. The results for Uitm-03 dataset
in Tables 5 and 6 show that the weekend cost contributes almost half of the total
cost. Therefore, it is worth considering prioritising non-weekend slots in the
constructive heuristic, i.e. we need to inject more knowledge about the problem
domain so as to produce an initial solution that starts from a reasonable point
in the search space that does not violate one of the important constraints that
we want to minimise. The only modification in the constructive heuristic is
in determining which is the first available slot for an examination. The new
constructive algorithm will only consider weekend slots if non-weekend slots are
unavailable. During the search, the algorithm will also use the same criteria when
moving an examination. This method should direct the search along a trajectory
that avoids weekend slots.

Another issue that needs to be addressed is whether the unscheduled weight of
10,000 is suitable for the Uitm-03 dataset. In deciding which low-level heuristic
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Table 6. Data characteristic of solution with 9.27 proximity and weekend cost (by
TSHH-B with TD = 1)

Gap = 1 Gap = 2 Gap = 3 Gap = 4 Gap = 5 Weekend

Total cost 172,688 115,512 69,344 53,930 30,579 343,296
Avg cost per student 2.04 1.36 0.82 0.64 0.36 4.05
Number of students 10,793 14,439 17,336 26,965 30,579 21,456
% of total students 12.75% 17.05% 20.47% 31.85% 36.11% 25.34%
% of cost 21.99% 14.71% 8.83% 6.87% 3.89% 43.71%

to select, the hyper-heuristic uses two important factors, i.e. cost of the objective
function and non-tabu low-level heuristics. If the remove examination heuristic
un-schedules an examination with a proximity cost higher than the unscheduled
weight, it would seem advantageous to un-schedule the examination. The heuris-
tics that reschedule examinations might find it difficult to improve the objective
function since the new proximity cost may be greater than the un-schedule cost.
This will eventually cause some examinations not being scheduled at the end
of the search. The unscheduled weight does play an important role in deciding
whether we need to un-schedule some examinations so that other conflicting ex-
aminations can be scheduled into the vacated slot. Therefore, instead of using
a fixed unscheduled weight, we can use a dynamic un-scheduled weight that is
dependent upon the number of students. Thus, in this implementation, the cost
of un-scheduling an examination differs for each examination, i.e. the cost of
un-scheduling an examination ei is calculated as 60 multiplied by the number of
students enrolled in examination ei or 5,000, whichever is the maximum.

Table 7 shows a comparison of the results obtained using two different initial
solutions and fixed and dynamic unscheduled weights. The old solution indicates
an initial solution used in the previous experiment (Table 4). The new solution is
produced using the new constructive heuristic. The last four columns in Table 7
show the results produced by TSHH-B and TSHH-HC with fixed deterministic
tabu duration between 0 and 4. Each run takes one hour. Since we already
have results from previous experiment (Table 4) of a four-hour run with fixed
unscheduled weight and old initial solution, we did not run it again for one hour.
Moreover, the one-hour run with the new parameters has already improved the
results compared to the four-hour run. The TSHH-GD is not tested with this
parameter because we want to observe how the dynamic unscheduled weight and
new initial solution affect the final results and it should be sufficient to test the
first two methods only.

From Table 7, we can conclude that with the new solution, both methods are
able to produce better solutions compared to the best method (TSHH-GD) that
was initialised with the old solution (Table 4). A dynamic unscheduled weight
also assists the hyper-heuristic in deciding which low-level heuristic is in favour.
Since the best solution is when TD equals zero, this implies that the hyper-
heuristic does not even need a tabu list to help manage the low-level heuristics.
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Table 7. Results with two different initial solutions and two unscheduled weight mode

Dynamic weight Fixed weight

Old solution New solution Old solution New solution
TD (1 h run) (1 h run) (4 h run)∗ (1 h run)

Basic tabu search 0 6.98 4.40 10.10 18.43
based hyper- 1 7.67 4.91 9.27 20.60
heuristic (TSHH-B) 2 10.23 6.64 9.88 7.16

3 16.99 8.73 17.36 8.67
4 16.75 15.11 16.42 15.43

Tabu search based 0 6.77 4.25 9.29 16.64
hyper-heuristic with 1 7.70 6.01 11.20 16.88
hill climbing 2 10.12 5.93 9.70 6.94
(TSHH-HC) 3 16.91 8.95 17.31 9.94

4 16.30 14.74 17.16 16.09
∗ As Table 4.

Table 8. Data characteristic of solution with 4.40 proximity and weekend cost. Best
solution for TSHH-B with new initial solution and dynamic weight.

Gap = 1 Gap = 2 Gap = 3 Gap = 4 Gap = 5 Weekend

Total cost 80,672 73,984 58,820 50,476 30,881 78,064
Avg cost per student 0.95 0.87 0.69 0.60 0.36 0.92
Number of students 5,042 9,248 14,705 25,238 30,881 4,879
% of total students 5.95% 10.92% 17.37% 29.81% 36.47% 5.76%
% of cost 21.63% 19.84% 15.77% 13.54% 8.28% 20.93%

Table 9. Data characteristic of solution with 6.98 proximity and weekend cost. Best
solution for TSHH-B with old initial solution and dynamic weight.

Gap = 1 Gap = 2 Gap = 3 Gap = 4 Gap = 5 Weekend

Total cost 91,360 89,440 55,808 47,600 29,472 277,440
Avg cost per student 1.08 1.06 0.66 0.56 0.35 3.28
Number of students 5,710 11,180 13,952 23,800 29,472 17,340
% of total students 6.74% 13.20% 16.48% 28.11% 34.81% 20.48%
% of cost 15.46% 15.13% 9.44% 8.05% 4.99% 46.93%

Tables 8–10 present a detailed analysis of the best solution with different pa-
rameters. With the new initial solution that avoids weekend slots, the hyper-
heuristic is able to improve the weekend conflicts, implying that with more
knowledge about the problem domain injected into the initial solution construc-
tion phase and the low-level heuristics, the hyper-heuristic can perform better.
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Table 10. Data characteristic of solution with 6.94 proximity and weekend cost. Best
solution for TSHH-HC with new initial solution and fixed weight.

Gap = 1 Gap = 2 Gap = 3 Gap = 4 Gap = 5 Weekend

Total cost 135,360 92,664 89,080 58,090 32,723 89,768
Avg cost per student 1.60 1.09 1.05 0.69 0.39 1.06
Number of students 8,460 11,583 22,270 29,045 32,723 5,611
% of total students 9.99% 13.68% 26.30% 34.30% 38.65% 6.63%
% of cost 27.20% 18.62% 17.90% 11.67% 6.58% 18.04%

With this good initial solution and a fixed unscheduled weight, we can also get
a reasonable result compared to solutions with a dynamic unscheduled weight.
As a general method and without the extra knowledge, the hyper-heuristic can
also produce competitive results (compared to a manual solution) for the UiTM
dataset specification (as shown in Table 3).

5 Conclusions

Collecting data from a large university is a difficult task, but with the help of
a distributed network and a frequent update of student information, we can
facilitate the automated process of producing examination schedules that are
feasible and may satisfy everybody involved. The Uitm-03 dataset is a large
real-world examination timetabling problem. Its data may not exactly reflect all
the required information such as validated student data and implicit constraints,
however, other crucial data such as the actual timetable used and the list of
examinations to be scheduled are consistent with the real problem. All data
inconsistencies were removed prior to processing so that the dataset is as close
as possible to the actual problem. The important constraints are considered in
the search engine with a flexibility of adding additional constraints if necessary.

Tabu-search-based hyper-heuristics have been shown to produce feasible and
good quality solutions on other benchmark datasets [27]. The same hyper-
heuristic framework was tested with the Uitm-03 dataset. An additional cri-
terion of minimising the weekend cost is added to the objective function and
with no modification to the hyper-heuristic framework it is able to produce
good quality solutions. It is obvious that the nature of the Uitm-03 dataset is
different from the benchmark datasets because of an additional objective cri-
teria, a larger number of students and the maximum number of examinations
in conflict is high compared to the average number of examinations in conflict.
Thus, by adding such knowledge in the form of a new constructive heuristic in
the initialisation phase, prioritising non-weekend slots and dynamic unscheduled
examination weights, the hyper-heuristic framework is able to produce a much
better solution. It is such knowledge that differentiates problem instances and
as such the hyper-heuristic is a general method that was shown to be effective
on benchmark datasets and also on the UiTM problem.
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Currently, the tabu search hyper-heuristic method is dependent upon the
tabu duration value. Future work will investigate an adaptive tabu strategy of
selecting the best tabu duration at each decision point. This method should free
the hyper-heuristic from the problems of parameter tuning.
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Abstract. A hybrid Multi-Objective Evolutionary Algorithm is used
to tackle the uncapacitated exam proximity problem. In this hybridiza-
tion, local search operators are used instead of the traditional genetic
recombination operators. One of the search operators is designed to re-
pair unfeasible timetables produced by the initialization procedure and
the mutation operator. The other search operator implements a sim-
plified Variable Neighborhood Descent meta-heuristic and its role is to
improve the proximity cost. The resulting non dominated timetables are
compared with those produced by other optimization methods using 15
public domain datasets. Without special fine-tuning, the hybrid algo-
rithm was able to produce timetables with good rankings in nine of the
15 datasets.

1 Introduction

This paper presents a hybrid Multi-Objective Evolutionary Algorithm (MOEA)
designed for the uncapacitated exam proximity problem in which a timetable has
to offer student maximum free time between exams while satisfying the clashing
constraint (exam conflicts) and without regard to the seating capacity. The pro-
posed multi-objective approach also considers timetable length as an optimiza-
tion objective. It is thus possible to generate a set of alternative solutions without
multiple execution of the optimization process. The hybridization is inspired by
Radcliffe and Surry’s Memetic Algorithm (MA) [22]. Its structure is compara-
ble to other modern hybrid evolutionary timetabling algorithms as described in
Silva et al. [23]. In the basic MA, local search operators are added to the ge-
netic recombination and mutation operators and local optimization is performed
following the genetic reproduction phase. To obtain a reasonable computation
requirement, the local search operators are usually implemented as greedy hill
climbers. It is possible to introduce more sophisticated local search heuristics but
the optimization response time will increase as a function of search complexity.
A way to incorporate advanced local search heuristics while maintaining accept-
able computation time is to remove the genetic recombination operator from the
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MA. The genetic recombination can be viewed as an exploitation strategy where
the search focuses on neighbors of good solutions. A local search heuristic can
play the same exploitative role in exam timetabling problems.

This paper is organized as follows. Section 2 describes the problem model
including the clashing constraint (exam conflicts). Section 3 presents a brief
survey of previous methods. This survey is restricted to research carried out
on the datasets provided by Carter et al. [6], Burke et al. [4] and Merlot et
al. [15]. Section 4 explains the multi-objective approach investigated in this work.
Section 5 details the results, and the conclusions follow in Section 6.

2 Problem Description

Given a set of exams E = {e1, e2, . . . , e|E|} and a set of timeslots T = {1, 2, . . . ,
|T |}, the goal of examination timetabling is to obtain an assignment where each
exam in E is allocated to a timeslot in T . The result of such an assignment is
a timetable represented here by a set h of ordered couples (t, e) where t ∈ T
and e ∈ E . A timetable h is called feasible if it satisfies all required constraints.
Otherwise, h is identified as unfeasible. A fundamental requirement in exam
timetabling is to prohibit clashing, or exam conflicts (a student having to take
two or more exams in a given timeslot). In this work, clashing is a hard constraint
and can be expressed as

|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 . (1)

In (1), ηij is the number of students taking exam ei and exam ej, εjk ∈ {0, 1}
is a binary quantity with εjk = 1 if exam ej is assigned to timeslot k. Otherwise,
εjk = 0. A timetable is feasible if (1) is satisfied.

The basic examination timetabling problem is to minimize the number of
timeslots used in a feasible timetable. This minimization problem is defined as

minimize u1 = |T | ,

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 .
(2)

Note that (2) is equivalent to the graph-coloring problem. A more elaborate
problem is the exam proximity problem (EPP). A practical timetable should
allow students to have more free time between exams. Thus, the objective of
the EPP is to find a feasible timetable while minimizing the number of students
having to take consecutive exams. Equation (3) is a variant of the EPP model
where q is the number of timeslots per day, N ≥ 0 is the number of free timeslots
between exams and K is a constant representing the maximum timetable length.
That is,

minimize u2 =
1
2

|T |−(N+1)∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk+(N+1) , ∀k where k mod q �= 0 ,
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s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 , |T | ≤ K . (3)

The above model represents an Uncapacitated Exam Proximity problem
(UEPP) because it does not take into account classroom seating capacity.

3 Previous Methods

The UEPP has been investigated by many researchers. However, the problem
formulation and enrollment data are often defined by the environment and re-
quirements of a particular institution. As a result, many methods and algorithms
have been proposed to solve particular instances of the UEPP.

This section surveys previous solution methods applied to a collection of
publicly available datasets. The datasets used in this work are from Carter et
al. [6], Burke et al. [4] and Merlot et al. [15]. They contain actual enrollment data
taken from several universities and academic institutions. A common proximity
metric has also been defined for the datasets which is a weighted version of (3)
with 0 < N ≤ 4 (counting the number of students having 0–4 free timeslots
between exams). This proximity metric can be expressed using (3) as follows:

f =

4

x=0
wi+1 u2|q=|T |,N=x

Ns
,

u2|q=|T |,N=x = 1
2

|T |−(x+1)∑
k=1

|ε|∑
i=1

|ε|∑
j=1

ηijεikεjk+(x+1) ,

∀k where k mod |T | �= 0 .

(4)

In the above equation wi are are the weighting factors, Ns is the total student
enrollment and u2|q=|T |,N=x means computing the objective function using q =
|T | and N varies from x = 0 to x = 4. In (4), the timeslots are numbered
contiguously with no overnight gap. The weighting factors were proposed by
Carter et al. [6]. They are w1 = 16, w2 = 8, w3 = 4, w4 = 2, and w5 = 1. Thus,
(4) can be viewed as the average proximity cost of a given timetable and the
resulting UEPP is

minimize f =
4∑

i=0

wi+1 u2|q=|T |,N=i

/
Ns ;

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 ,

|T | ≤ K .

(5)

Early solution techniques were derived from sequential graph coloring heuris-
tics. These heuristics attempt to assign each exam to a timeslot according to
some ordering schemes. Carter et al. [6] successfully applied a backtracking se-
quential assignment algorithm to produce feasible timetables for the UEPP. The
backtracking feature enables the algorithm to undo previous assignments and
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thus escape from cul-de-sacs. In all, 40 different strategies have been imple-
mented. The results showed that the effectiveness of the sequential assignment
algorithm is related to the ordering scheme and the nature of the datasets. Note
that the backtracking sequential assignment is a deterministic algorithm. This
means that, for a given dataset and ordering scheme, it will always produce the
same timetable.

In Burke et al. [4], an initial pool of timetables is generated by grouping
together exams with similar sets of conflicting exams. Then timetables are ran-
domly selected from the pool, weighted by their objective value, and mutated
by rescheduling randomly chosen exams. Hill climbing is then applied to the
mutated timetable to improve its quality. The process continues with the new
pool of timetables. Caramia et al. [5] developed a set of heuristics to tackle the
UEPP with excellent results. First, a solution is obtained by a greedy assignment
procedure. This procedure selects exams based on a priority scheme which gives
high priority to exams with high clashing potential. Next, a spreading heuristic
is applied to decrease the proximity penalty of the solution without lengthening
the timetable. However, if the spreading heuristic failed to provide any penalty
decrease then another heuristic is applied to decrease the proximity penalty by
adding one extra timeslot to the solution. These heuristics are reapplied until no
further improvement can be found. A perturbation technique is also described
in which the search process is restarted by resetting the priority and proximity
penalty.

The proximity problem was also investigated by Di Gaspero and Schaerf [10].
Their approach starts with a greedy heuristic to assign timeslots to all exams
having no common students. The remaining unassigned exams are distributed
randomly to different timeslots. The solution obtained is then improved by a
tabu search algorithm using a short-term tabu list with random tabu tenure.
The search neighborhood is defined as the set of exams that can be moved from
one timeslot to another without violating the constraints. A further reduction
of the neighborhood is obtained by using the subset of exams currently in con-
straint violation. To improve the proximity cost, Di Gaspero and Schaerf also
implemented the shifting penalty mechanism from Gendreau et al. [14].

A Tabu Search algorithm (called OTTABU) with a recency-based and a
frequency-based Tabu list was implemented by White and Xie [25]. An initial
solution is first generated by a bin-packing heuristic (“largest enrollment first”).
If the initial solution is unfeasible, then a Tabu Search is executed to remove all
constraint violations using the set of clashing exams as neighborhood. Another
Tabu Search is used to improve the quality of the feasible solution. This time,
the neighborhood is the set of exams that can be moved from one timeslot to
another without causing any clashes. White and Xie also devised an estimation
technique for the Tabu tenure based on enrollment, the number of exams having
the same pool of students and the number of students taking the same exams.
More recently, Paquete and Stutzle [20] considered the UEPP by casting the
constraints as part of an aggregated objective function. The search process is
prioritized and is realized by the use of a Tabu Search algorithm with a short-
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term Tabu list and random tenure. The 1-opt neighborhood is defined by the
subset of exams with constraint violations.

A three-stage approach using constraint programming, simulated annealing
and hill climbing was proposed by Merlot et al. [15]. An initial timetable is
generated by constraint programming. The resulting timetable is then improved
by a simulated annealing algorithm using the Kempe chain neighborhood [17]
and a slow cooling schedule. In the last stage, a hill climbing procedure is applied
to further improve the final timetable. The GRASP meta-heuristic [12] was also
used to solve the UEPP. Casey and Thompson [7] used a probabilistic version of
the sequential assignment algorithm from Carter et al. to realize the construction
phase of GRASP. In the improvement phase of GRASP, they ordered the exams
according to their contribution to the objective value. Then, for each exam, a
timeslot is found such that the objective value is decreased. The construction
and improvement phases are restarted with a blank timetable a number of times
and the best timetable is kept.

Burke and Newall [3] investigated the effectiveness of the local search ap-
proach to improve the quality of timetables. In their work, an adaptive technique
is used to modify a given heuristic ordering for the sequential construction of
an initial solution. They then compared the average and peak improvement ob-
tained by three different search algorithms: Hill Climbing, Simulated Annealing
and an implementation of the Great Deluge algorithm [11]. The reported results
indicated that the Adaptive Heuristics and Great Deluge combination provided
significant enhancement to the initial solution.

A fuzzy inference approach was developed by Asmuni et al. [1] to verify the
effectiveness of multiple ordering in the sequential construction of exam timeta-
bles. To construct a timetable, exams are first scheduled sequentially according
to an ordering scheme. However, some of the exams may remain unscheduled
after this step. For the unscheduled exams, a fuzzy expert system is used to de-
termine a new ordering. A modified backtracking algorithm is then executed to
assign timeslots to the unscheduled exams according to the new ordering. This
second step is repeated until all the exams are scheduled. As described in [1],
the fuzzy expert system has two inputs taken from different combination of the
following heuristic ordering criteria:

1. Largest degree first (LDF),
2. Largest enrollment first (LEF),
3. Greatest available timeslot first—saturation degree (SDF).

Fuzzification of the input variables resulted in a fuzzy degree of membership in
the qualifying linguistic set (i.e. small, medium and high). These fuzzified inputs
are then related to the output by a set of if-then rules. Since the rules may
have several connectives (AND, OR), the standard min–max operators are used to
deal with fuzzy inference. Finally, the centroid defuzzification technique is carried
out to obtain a single crisp output value. This crisp output value represents the
order of a given exam. The results given in [1] indicated that the fuzzy inference
approach provided better proximity cost for several datasets than the traditional
single-ordering scheme [6].



A Hybrid Multi-objective Evolutionary Algorithm 299

4 Multi-objective Approaches

Multi-objective ETP is a more general and flexible formulation than its single-
objective counterpart. The following is a brief summary of three different
multi-objective strategies investigated by researchers. Further details on multi-
objective timetabling metaheuristics can be found in Silva et al. [23].

The method of compromise programming is used by Burke et al. [2] to seek
a timetable which is minimally located from a given reference point. In their
work, the reference point is obtained by generating good quality timetables in
terms of each objective using the saturation degree ordering scheme. While the
distance between the current timetables and the reference point is measured by
the Euclidean distance. The resulting timetables are then improved by an iter-
ative algorithm combining two variation operators: hill-climbing and mutation.
Burke et al. were able to generate good quality timetables for the NOT-F-94
dataset with nine different objectives including the seating capacity.

Another interesting multi-objective approach is the one described by Petrovic
and Bykov [21]. They developed a guided multi-objective optimization technique
using a reformulated Great Deluge algorithm [11] and a previously generated
reference timetable. The guidance is provided by defining a curve extending
from the origin of the multi-dimensional objective space through the reference
timetable’s objective values. To drive the search along the predefined curve, the
authors incorporated a variable weighting procedure within the Great Deluge
algorithm—each objective function is now associated with a weighting factor.
The search algorithm selects the largest objective value of the current timetable
and increases its weight. This causes the Great Deluge algorithm to lower the
acceptance level of the corresponding objective. The algorithm continues with its
weighting adjustment, timetable generation and acceptance until the maximum
number of iterations is reached. This approach resulted in high-quality timetables
for several datasets using nine different objectives including the seating capacity
(same as [2]).

A computational analysis involving multi-objective evolutionary algorithms
is given by Paquete and Foncesa for the general examination timetabling prob-
lem [19]. They compared the effectiveness of several evolutionary operators using
Foncesa and Fleming’s constrained multi-objective evolutionary framework [13].
For the problem encoding, they implemented a direct representation where each
position in the chromosome corresponds to an exam. Their analysis showed that
the Pareto-ranking technique performed better than the linear-ranking tech-
nique. Also, when time constraint is considered, independent mutation of each
chromosome position outperforms single-position mutation.

4.1 Hybrid MOEA Implementation

As shown in Section 3, the UEPP is traditionally treated as a single objective
combinatorial optimization problem. The timetable length is chosen a priori and
is part of the constraint set. In the context of resource planning, it is often desir-
able to assess the impact of timetable length on the proximity cost. A timetable
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Procedure HMOEA

P(t): population at iteration t
R(t): intermediate population at iteration t
L1, L2 : local search operators

U : archive update procedure

Mαm: uniform mutation operator with mutation rate αm

S: constrained dominance binary tournament operator

OUTPUT

Q(t): archive containing non dominated timetables

Initialize P0 and Q0 of size N with random timetables

For each iteration t ← 0, 1, . . . , Imax do

// Step 1) Apply local searches to the combined population

R(t) ← L2(L1({P(t) ∪Q(t)}))
// Step 2) Compute ranking for the resulting timetables

F(h),∀h ∈ R(t)

// Step 3) Update archive

Q(t+1) ← U(R(t))
// Step 4) Create new population by mutation and selection

P(t+1) ← S(Mαm(R(t)))
End for

Fig. 1. Working principle of the proposed hybrid MOEA

length versus proximity cost assessment can also provide the planner with com-
promise solutions to the timetabling problem. Equation (6) is a bi-objective
formulation capable of realizing such an assessment:

minimize f1 = |T | ,

f2 =
4∑

i=0

wi+1 u2|q=|T |,N=i

/
Ns ,

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 .

(6)

Now the task is to find a feasible timetable while minimizing timetable length
and proximity cost simultaneously.

The proposed hybrid MOEA is a Pareto-based optimization heuristic which
uses an auxiliary population (archive) to maintain the best non-dominated so-
lutions. Each potential solution in the population is a timetable (feasible or
unfeasible). The timetables are assigned a rank based on the objective functions
f1 (timetable length) and f2 (proximity cost). A special feature in the proposed
hybrid MOEA is the substitution of the recombination operator by two local
search operators. Local search algorithms are used here to remove constraint vi-
olations and to improve the proximity cost. The following pseudo-code explains
the operating principle of the algorithm.
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In Figure 1, the main population at iteration t is denoted by P(t) and the
archive by Q(t). Both P(t) and Q(t) contain N timetables and their size remains
constant during the optimization process. The initial timetables are generated
randomly without regard to their feasibility. The first local search operator L1 is
used to remove constraint violations, while the second local search operator L2

is used to decrease the proximity cost. The timetables produced by L1 and L2

form a combined intermediate population R(t) of 2N timetables. Next, a rank-
ing value is computed for each timetable in R(t) using Zitzler’s Pareto Strength
concept [26]. The non-dominated timetables are then inserted into the archive
using an archive update rule. Finally, each timetable in the intermediate popu-
lation is mutated with probability αm. Since there are 2N timetables in R(t), N
timetables are discarded from R(t) using the constrained tournament selection
technique [18]. The remaining N timetables form the new population P(t+1),
and the evolution process continues for Imax iterations.

4.2 Population and Archive Initialization

The same initialization procedure is applied to the main population P(t) and the
archive Q(t). Both P(t) and Q(t) can each contain N timetables and are divided
into β slots l0 > l1, . . . , > lβ representing different timetable lengths. For each
slot i, N/β random timetables with length li are generated. The number of slots
and the range of the timetable length are determined according to the published
results available for the datasets. Note that the initialization procedure will also
produce unfeasible timetables. These unfeasible timetables with be repaired with
the help of local search operators. This is explained in more detail in the next
section.

4.3 Search Operators L1 and L2

In the hybrid MOEA implementation, local search operators are used instead
of the traditional genetic recombination operators. This hybridization scheme
enables the evolutionary process focus better on the optimization task. Both
local searches L1 and L2 are in fact Tabu Search algorithms. The search operator
L1 implements a classic Tabu Search using a simple 1-opt neighborhood. This
neighborhood is defined by an ordered triple (e, ti, tj), where e is an exam in
schedule conflict with at least one other exam, and ti �= tj are two different
timeslots such that e can be moved from ti to tj without creating a new conflict.
The idea is to decrease the number of constraint violations for the timetables
currently in the main population P(t) and in the archive Q(t).

In order to improve the proximity cost of the timetables, the search operator
L2 implements a simplified version of the VND (Variable Neighborhood Descent)
meta-heuristic [16]. Two neighborhoods, the Kempe chain interchange [17,24]
and 1-move, are used in L2 with Tabu Search as the search engine. In the simpli-
fied VND, local searches are executed in n > 1 neighborhoods sequentially. The
initial solution of the current search is the best solution obtained from the previ-
ous search. Since there are n > 1 neighborhoods involved, it is conjectured that
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VND has better search space coverage than do single neighborhood search tech-
niques [16]. In our implementation, the Kempe chain interchange neighborhood
is used first. Similar to the 1-opt neighborhood, a Kempe chain is defined by
an ordered triple (e, t0, t1), where exam e is assigned to timeslot t0 and t0 �= t1.
However, exam e is now selected by sampling the set of exams. Consider a graph
G where the vertices are the exams and an edge exists between vertices ei and
ej if at least one student is taking exams ei and ej . Each vertex in G is labeled
with the exam’s assigned timeslot, and an edge linking two exams indicates a
potential clashing situation. A Kempe chain (e, t0, t1) is a connected subgraph
induced by a subset of linked exams assigned to timeslots t0 and t1. The subset
of linked exams must also contain the exam e. In other words, it is the subset of
exams reachable from e in the digraph D given by

V (D) = {Vt0} ∪ {Vt1} ,
E(D) =

{
(u, w) : (u, w) ∈ E(G), u ∈ Vti ∧ w ∈ Vt(i+1) mod 2

}
,

(7)

where E(G) represents the set of edges in graph G and Vti is the subset of exams
assigned to timeslot ti that are reachable from exam e. Thus, a Kempe chain
interchange is the relabeling of each chain vertex in timeslot t0 to timeslot t1,
and vice versa. This relabeling is conflict-free if the original timetable is also
conflict-free. It is also applicable to unfeasible timetables.

In the Tabu Search implementation, we choose Nk Kempe chains and apply
the best chain as the current move. To sample a chain, we choose two linked ex-
ams randomly without replacement from the set of exams and use their timeslots
as t0 and t1. One disadvantage of the Kempe chain interchange neighborhood
is that the number of useful chains decreases as the search progresses toward a
local optimum [17]. To avoid this pitfall, we use another neighborhood to ex-
plore the search space. After NI iterations without improvement by the Kempe
chain interchange, we start another Tabu Search using the 1-move neighbor-
hood. To select a move from the 1-move neighborhood, we sample Nm legal
moves (moving one exam from its assigned timeslot to another timeslot without
creating constraint violations) and the one with the best proximity cost is se-
lected. The initial timetable for the 1-move neighborhood search is the current
best timetable.

As shown in Figure 2, f(·) represents the proximity cost, TSkci designates a
Tabu Search with the Kempe chain interchange neighborhood and TS1−move

indicates the one using a 1-move neighborhood. For a given timetable, the
search terminates when no further improvement can be obtained by TSkci and
TS1−move.

4.4 Ranking Computation

The timetables in the combined intermediate population R(t) are to be ranked in
order to determine their quality relative to the current population. The ranking
computation process assigns a numerical value to each timetable according to
their dominance performance in the current population [8]. An efficient ranking
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Operator L2(H)
f(·): proximity cost

h: current best timetable

INPUT

H: set of timetables in the current population and in the archive,

H ≡ P(t) ∪Q(t).
OUTPUT

R(t): combined intermediate population

For each h ∈ H do,

while true,

// Apply Tabu Search with Kemp chain interchange

// Stopping criterion: NI iterations

h′ ← TSKci(h)
// h′ is better than h ?

If f2(h′) > f2(h),
// No. Apply Tabu Search to h using 1-move neighborhood

h′ ← TS1−move(h)
// h′ is better than h ?

If f2(h′) > f2(h),
// No. Exit While loop and process next timetable

next

End If

End If

// update current best timetable

h ← h′

End While

R(t) ← {R(t)} ∪ {h}
End Do

Fig. 2. Search operator L2 implements a simplified VND meta-heuristic

procedure is the one based on the Pareto Strength concept used in the SPEA-
II multi-objective evolutionary algorithm [26]. In this procedure, a timetable’s
Pareto strength C(·) is the number of timetables it dominates in the combined
intermediate population. That is,

C(hi) =
∣∣∣{hj : hj ∈ R(t) ∧ hi � hj

}∣∣∣ , (8)

where the symbol � corresponds to the Pareto dominance relation. For a P ob-
jective minimization problem with objective functions f1, f2, . . . , fp, a timetable
h1 is said to dominate another timetable h2, denoted here by h1 � h2, if and
only if

1. fi(h1) ≤ fi(h2) , i = 1, 2, . . . P ,
2. ∃i such that fi(h1) < fi(h2) .

(9)
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Using the Pareto strength given by (8), the ranking F(·) of a timetable hi is
determined by the Pareto strength of its dominators,

F(hi) =
∑

hj	hi,hj∈R(t)

C(hj) . (10)

Thus, the ranking of a timetable as given in (10) measures the amount of dom-
inance applied to it by other timetables. In this context, a small ranking value
indicates a good quality timetable.

4.5 Archive Update

The purpose of an archive is to memorize all current non dominated timetables.
To admit a timetable hi ∈ R(t) into the archive Q(t), no member of Q(t) should
dominate hi, that is

¬∃hj ∈ Q(t), hj > hi . (11)

Equation (11) is the archive admission criterion. By contrast, hi may dominate
some members of Q(t). In this case, all dominated members are removed and hi

is inserted into Q(t). Another possible situation arises where hi and the members
of Q(t) do not dominate each other. Then, hi ∈ R(t) replaces hj ∈ Q(t) if and
only if the following conditions are met:

1. |hi| = |hj| ,
2. F(hi) < F(hj) .

(12)

Thus, a timetable replaces another timetable of same length but with a lower
rank.

4.6 Mutation and Selection

The uniform mutation operator Mαm is used in this work to provide diversifica-
tion in the evolution process. Each exam within a timetable hi has a mutation
probability αm = 1/|hi|. To mutate a timetable, we assign a random timeslot to
the selected exams. The resulting effect is a slight perturbation to the scheduling
composition of the timetables. However, this is a destructive process because it
can introduce constraint violations into feasible timetables. The search operator
L1 will later be used to repair the unfeasible timetables created by the uniform
mutation.

A selection procedure S is executed after all timetables have been mutated.
The goal is to select N timetables from the combined intermediate population
R(t) to create the next population P(t+1). Since the mutation operator can
produce both feasible and unfeasible timetables, the selection procedure must
be able to discriminate between them. This is accomplished by the use of the
constrained dominance binary tournament [18] to select the timetables. A binary
tournament involves two randomly selected timetables. The selected timetables
are compared and the winner is inserted into the new population P(t+1). In order
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Table 1. Dataset characteristics

Dataset Number of exams Number of students

CAR-F-92 543 18419
CAR-S-91 682 16925
EAR-F-83 190 1125
HEC-S-92 81 2823
KFU-S-93 461 5349
LSE-F-91 381 2726
MEL-F-01 521 20656
MEL-S-01 562 19816
NOT-F-94 800 7896
RYE-F-92 486 11483
STA-F-83 139 611
TRE-S-92 261 4360
UTA-S-92 622 21266
UTE-S-92 184 2749
YOR-F-83 181 941

to decide which timetable is the winner, the constrained dominance relation is
used [8]. Given two timetables h1 and h2 with constraint violations c1 and c2,
timetable h1 is said to constraint-dominate h2, denoted here by h1 �c h2, if one
of the following conditions is met:

1. c1 = 0 and c2 > 0, or
2. c1 > 1, c2 > 1 and c1 < c2, or
3. c1 = c2 and h1 � h2.

(13)

The conditions given by (13) always favor timetables with fewer conflict vio-
lations. However, when both timetables have identical conflict violations, the
constrained dominance relation is reduced to the simple dominance relation.

5 Experimental Results

The hybrid MOEA described in Section 4 was tested on 15 datasets. Table 1
shows the number of exams and the number of students for each dataset.
Datasets MEL-F-01 and MEL-F-02 were contributed by Merlot [15]. Dataset
NOT-F-94 is by Burke [4]. All other datasets are taken from Carter [6].

Table 2 gives the algorithmic parameters and environmental settings used in
the experiments. For the VND search operator L2, Nk neighbors in the Kempe
chain interchange neighborhood and Nm neighbors in the 1-move neighborhood
were selected randomly to determine the current best move. The number of
selected neighbors Nk and Nm are identified as the “neighborhood sample size”
in Table 2. The range of timetable length (objective function f1) depends on
the datasets. Five timetable lengths centered on published values were retained
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Table 2. Hybrid MOEA parameters and environmental setting

Parameter Value

Number of runs 5 per dataset
Number of iterations Imax = 500
Number of slots in archive β = 8
Population and archive size |Q(t)| = |P(t+1)| = 80
Neighborhood sample size Nk = Nm = 50
Number of non-improvement iterations NI = 100
Mutation probability 1/|hi|
Computer Athlon XP 2.2 GHz, 512 MB RAM
OS Linux 2.4.2-2
Compiler and optimization level GNU v2.96, -O3

in the archive. The average and best proximity costs of the non-dominated
timetables were computed using the weighting factors presented in Section 3.
The results are detailed in Table 3. It is important to note that no fine-tuning of
the hybrid MOEA has been performed and that the same parameters are used
for all datasets. Although the numerical results (see Table 3) summarize the
overall effectiveness of the hybrid MOEA well, it is often interesting to appreci-
ate the dynamics of the search process. Figures 3 and 4 show the progress of the
non dominated timetables in the archive for the dataset YOR-F-83. Eight differ-
ent timetable lengths are used in the figures to help visualize the non-dominated
front.

The effects of the hybrid MOEA can be clearly identified in Figure 4. As
the optimization progresses, more and more non dominated timetables of vari-
ous timetable lengths were admitted to the archive. After 125 iterations, all the
empty slots in the archive were occupied with non dominated timetables. Simul-
taneously, the hybrid MOEA tries to lower their proximity cost. The lowering
of the proximity cost can be observed by noticing the vertical displacement of
the points in Figure 4 and by the trace left by the non-dominated timetables in
Figure 3.

A comparison with other published results was also conducted in order to
asses the effectiveness of the hybrid MOEA against other optimization methods.
Since most published results for the UEPP are based on the single-objective
approach with a fixed timetable length, the performance of the hybrid MOEA
will also be shown for that particular timetable length.

From the results given in Table 4, the hybrid MOEA obtained the best score
in three datasets. It is worth mentioning that the hybrid MOEA also achieved a
second-best position in six of the 15 datasets. In summary, the proposed multi-
objective evolutionary algorithm was able to produce high-quality timetables in
comparison to other optimization methods.
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Table 3. Non-dominated timetables and their proximity cost (5 runs per dataset)

Dataset Results Time (min)

CAR-F-92 |T | 30 31 32 33 34
Best 4.9 4.5 4.2 4.2 3.9
Avg 4.9 4.7 4.3 4.5 4.1 583

CAR-S-91 |T | 32 33 34 35 36
Best 6.1 5.7 5.4 5.4 5.2
Avg 6.2 5.9 5.5 5.5 5.3 816

EAR-F-83 |T | 23 24 25 26 27
Best 38.0 34.2 31.6 28.8 26.7
Avg 39.0 35.6 31.9 29.7 27.5 102

HEC-S-92 |T | 17 18 19 20 21
Best 12.0 10.4 9.3 8.1 7.3
Avg 12.1 10.5 9.3 8.2 7.5 27

KFU-S-93 |T | 19 20 21 22 23
Best 15.8 14.3 12.1 11.0 10.0
Avg 16.2 14.4 12.8 11.6 10.3 165

LSE-F-91 |T | 17 18 19 20 21
Best 12.3 11.3 9.7 8.5 7.7
Avg 12.6 11.5 10.1 9.3 8.1 92

MEL-F-01 |T | 26 27 28 29 30
Best 3.6 3.2 2.8 2.9 2.4
Avg 3.7 3.2 2.9 2.9 2.5 269

MEL-S-01 |T | 29 30 31 32 33
Best 2.8 2.6 2.4 2.3 2.0
Avg 3.0 2.7 2.5 2.3 2.1 281

NOT-F-94 |T | 22 23 24 25 26
Best 7.8 6.9 6.2 5.7 5.0
Avg 8.1 7.2 6.6 5.9 5.1 289

RYE-F-92 |T | 22 23 24 25 26
Best 9.8 8.8 7.8 7.0 7.0
Avg 10.1 9.1 8.1 7.2 7.3 218

STA-F-83 |T | 13 14 15 16 17
Best 157.0 140.2 125.2 112.7 101.4
Avg 157.1 140.4 126.0 113.2 101.6 26

TRE-S-92 |T | 21 22 23 24 25
Best 10.3 9.4 8.6 7.9 7.2
Avg 10.5 9.4 8.8 8.1 7.3 126

UTA-S-92 |T | 34 35 36 37 38
Best 3.7 3.5 3.3 3.2 3.2
Avg 3.9 3.6 3.4 3.2 3.2 265

UTE-S-92 |T | 10 11 12 13 14
Best 25.3 20.7 16.8 13.9 11.5
Avg 25.5 21.2 17.1 14.2 11.6 25

YOR-F-83 |T | 19 20 21 22 23
Best 44.6 40.6 36.4 33.8 31.6
Avg 45.6 41.0 37.6 34.5 31.9 89
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Table 4. Comparison with other methods

Dataset hMOEA Car Whi Di1 Cara Bur Mer Di2 Paq Cas Asm

CAR-F-92 Best 4.2 6.2 – 5.2 6.0 4.0 4.3 – – 4.4 4.6
32 timeslots Avg 4.4 7.0 4.7 5.6 – 4.1 4.4 – – 4.7 –
CAR-s-91 Best 5.4 7.1 – 6.2 6.6 4.6 5.1 – – 5.4 5.3
35 timeslots Avg 5.5 8.4 – 6.5 – 4.7 5.2 – – 5.6 –
EAR-F-83 Best 34.2 36.4 – 45.7 29.3 36.1 35.1 39.4 40.5 34.8 37
24 timeslots Avg 35.6 40.9 – 46.7 – 37.1 35.4 43.9 45.8 35.0 –
HEC-S-92 Best 10.4 10.6 – 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.8
18 timeslots Avg 10.5 15.0 – 12.6 – 11.5 10.7 11.0 12.0 10.9 –
KFU-S-93 Best 14.3 14.0 – 18.0 13.8 13.7 13.5 – 16.5 14.1 15.8
20 timeslots Avg 14.4 18.8 – 19.5 – 13.9 14.0 – 18.3 14.3 –
LSE-F-91 Best 11.3 10.5 – 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1
18 timeslots Avg 11.5 12.4 – 15.9 – 10.8 11.0 13.0 15.5 15.0 –
MEL-F-01 Best 2.8 – – – – – 2.9 – – –
28 timeslots Avg 2.9 – – – – – 3.0 – – –
MEL-S-01 Best 2.4 – – – – – 2.5 – – –
31 timeslots Avg 2.5 – – – – – 2.5 – – –
NOT-F-94 Best 6.9 – – – – – 7.0 – – –
23 timeslots Avg 7.2 – – – – – 7.1 – – –
RYE-F-92 Best 8.8 7.3 – – 6.8 – 8.4 – – – 10.4
23 timeslots Avg 9.1 8.7 – – – – 8.7 – – – –
STA-F-83 Best 157.0 161.5 – 160.8 158.2 168.3 157.3 157.4 158.1 134.9 160.4
13 timeslots Avg 157.1 167.1 – 166.8 – 168.7 157.4 157.7 159.3 135.1 –
TRE-S-92 Best 8.6 9.6 – 10.0 9.4 8.2 8.4 – 9.3 8.7 8.7
23 timeslots Avg 8.8 10.8 – 10.5 – 8.4 8.6 – 10.2 8.8 –
UTA-S-92 Best 3.5 3.5 – 4.2 3.5 3.2 3.5 – – – 3.6
35 timeslots Avg 3.6 4.8 4.0 4.5 – 3.2 3.6 – – – –
UTE-S-92 Best 25.3 25.8 – 29.0 24.4 25.5 25.1 – 27.8 25.4 27.8
10 timeslots Avg 25.5 30.8 – 31.3 – 25.8 25.2 – 29.4 25.5 –
YOR-F-83 Best 36.4 36.4 – 41.0 36.2 36.8 37.4 39.7 38.9 37.5 40.7
21 timeslots Avg 37.5 45.6 – 42.1 – 37.3 37.9 41.7 41.7 38.1 –

Car: Carter et al. [6]; Whi: White and Xie [25];
Di1: Di Gaspero and Shaerf [10]; Cara: Caramia et al. [5];
Bur: Burke and Newall [3]; Mer: Merlot et al. [15]
Di2: Di Gaspero [9]; Paq: Paquete and Stutzle [20];
Cas: Casey and Thompson [7]; Asm: Asmuni et al. [1]

6 Conclusions

The hybrid MOEA performed well in comparison to nine other methods. Most
published results for the UEPP using these publicly available datasets are based
on the single-objective approach. A systematic comparison of the non dominated
sets was not possible. In spite of this, the hybrid MOEA demonstrated its ef-
fectiveness by producing timetables with competitive objective values in nine of
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the 15 datasets without special fine-tuning. Moreover, the MOEA approach was
able to generate non dominated timetables for a range of timetable lengths as
alternative solutions. A contribution of this work is the use of a single framework
to cover all the necessary timetabling steps:

– Initialization: Random initialization of the population and the archive;
– Search (exploitation): Variable Neighborhood Search operator and the rank-

ing of the timetable by Pareto Strength;
– Search (exploration): Destructive uniform mutation with repair operator to

obtain feasible timetables;
– Solution selection: Archive admission and non dominated timetable replace-

ment criteria.

All these steps are fully integrated into the hybrid MOEA presented in this
paper.
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Abstract. The aim of this paper is to consider flexible constraint satis-
faction in timetabling problems. The research is carried out in the con-
text of university examination timetabling. Examination timetabling is
subject to two types of constraints: hard constraints that must not be vi-
olated, and soft constraints that often have to be violated to some extent.
Usually, an objective function is introduced to measure the satisfaction
of soft constraints in the solution by summing up the number of students
involved in the violation of the constraint.

In existing timetabling models the binary logic strategy is employed
to handle the satisfaction of the constraints, i.e. a constraint is either
satisfied or not. However, there are some constraints that are difficult to
evaluate using the binary logic: for example, the constraint that large
exams should be scheduled early in the timetable. Fuzzy IF–THEN rules
are defined to derive the satisfaction degree of this constraint, where both
the size of the exam and the time period that the exams are scheduled in
are expressed using the linguistic descriptors Small, Medium and Large,
and Early, Middle and Late, respectively. In a similar way, the constraint
that students should have enough break between two exams is modelled.
A number of memetic algorithms with different characteristics are de-
veloped where corresponding fitness functions aggregate the satisfaction
degrees of both fuzzy constraints. The proposed approach is tested on
real-world benchmark problems and the results obtained are discussed.

1 Introduction

Examination and course timetabling are considered to be very important admin-
istrative activity at universities. This research is focused particularly on univer-
sity examination timetabling problems [10], [29]. The examination timetabling
problem is defined to be a problem of assigning a number of exams into a limited
number of time periods, subject to constraints [37]. University usually offers a
collection of modules and each student may choose a certain number of modules.
This, of course, increases the complexity of timetabling problems. Examination
timetabling is subject to two types of constraints: hard and soft. Hard constraints
must not be violated, while soft constraints are desirable to satisfy, but often it
is not possible to find a solution that satisfies all of them, i.e. they have to be
violated to some extent. Hard and soft constraints differ significantly between

E. Burke and M. Trick (Eds.): PATAT 2004, LNCS 3616, pp. 313–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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universities. A typical hard constraint, that is also considered in this research,
is that no student can be scheduled to sit two exams at the same time. Often,
the constraint that total resources at any time should not exceed the resource
available is considered to be a hard constraint. For example, for each time period
there should be enough room space available for the exams that are scheduled
in that time period. There exist a variety of constraints that are treated as soft,
which could be grouped in the categories including:

– Time assignment : for example, some exams have to be scheduled in particu-
lar time periods, or large exams should be scheduled earlier in the timetable
to give enough time for their assessment.

– Spreading events out in time: for example, the university aims to increase
the free time periods between each student examinations.

– Time constraints between events: for example, an exam needs to be scheduled
before/after the other.

– Resource assignment : for example, an exam must be scheduled in a particular
room.

Comprehensive overviews of different constraints that are imposed by universities
are given in [17].

There is a wide variety of different approaches to examination timetabling
including graph colouring heuristics [5], variety of meta-heuristics including the
great deluge algorithm [4], simulated annealing [35], tabu search [19], [36], and
memetic algorithms [6], [14], [16], heuristic problem decomposition methods [13],
adaptive heuristics [7], hyper-heuristic methods [9], and case-based reasoning [3],
[28].

In the majority of these approaches, an objective function is introduced to
measure the quality of the obtained timetables by measuring the satisfaction of
soft constraints. However, the majority approaches consider only a single soft
constraint on proximity of exams for students, i.e. they take into consideration
only the requirement that students should have enough break between two ex-
aminations.

The main aim of the research presented in this paper is to consider other
constraints that can be imposed on timetabling. These constraints are of dif-
ferent nature, i.e., incompatible with each other and even more in conflict with
each other, i.e. an attempt to improve the satisfaction of one constraint may lead
to worsening of the other constraint. Recent years have seen an acceleration of
interest in multi-criteria approaches to examination timetabling, although the
field has not been fully explored yet [21]. In these approaches examination time-
tabling problems are stated as multicriteria problems, while criteria measure the
violations of constraints. Paquete and Fonseca [26] developed a multiobjective
evolutionary algorithm based on Pareto-ranking. The idea of compromise pro-
gramming was used in order to find the solution which is closest to the ideal
solution which does not violate any of the constraints [12]. Petrovic and Bykov
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[30] developed a multicriteria approach in which weights are dynamically changed
in order to direct the search of the criteria space along the specified trajectory.
These approaches can better handle multiple criteria (constraints) than can a
single objective function.

Our research is focused on constraints that are difficult to describe using the
binary logic strategy (i.e. it is difficult to state whether a constraint is fully sat-
isfied or not). A typical example is the constraint on large exams that should be
put in the early part of the timetable, which, to the best of our knowledge, has
not been handled in approaches described in the timetabling literature. Such a
constraint requires a description of imprecise terms large exams and early part
of the timetable, together with the definition of the measure of the satisfaction
of this constraint in the constructed timetable. Fuzzy sets and fuzzy logic have
been successfully applied to address imprecise and vague terms in various ap-
plication domains [33]. A fuzzy set is a very general concept that extends the
notion of a standard set defined by a binary membership of objects in the set,
by introducing various degrees of memberships [20]. Fuzzy scheduling models
have recently attracted increased interest among the scheduling research com-
munity [34]. However, the application of fuzzy theory to timetabling problems
in particular has been very limited. Fuzzy constraints have been employed in
nurse rostering [23] and in university timetabling problems, although in a differ-
ent context, namely in ordering exams for scheduling using a number of graph
colouring heuristics [1] and in determining the weights of conflicts among the
exams in [38].

Apart from the constraint on large exams, we also consider the constraint
that students should have a break between two consecutive exams. These two
constraints are incommensurable in the sense that their violations in the time-
table are measured by different measurement units with different scales. Usually,
the violation of the second constraint is assessed by the number of students who
have exams “close” to each other. Following this approach the violation of the
first constraint can be measured by the number of large exams that are not
scheduled in appropriate “early” time slots eventually weighted by the num-
ber of students sitting these exams. However, an objective function that adds
these two measurements with different scales would not be appropriate. There-
fore, we employ fuzzy sets to introduce gradualism in the constraint satisfaction.
Namely, the degree of a constraint satisfaction is described by five fuzzy sets:
Low, Medium-low, Medium, Medium-high, and High. Fuzzy IF-THEN rules are
defined to derive the satisfaction degree of each of the constraints. A number
of memetic algorithms with different characteristics are developed whose fitness
function aggregates the satisfaction degrees of both fuzzy constraints.

The paper is organised as follows. Section 2 introduces fuzzy sets and fuzzy
IF–THEN rules. Fuzzy constraints considered in this research are described in
Section 3. Section 4 presents fuzzy memetic algorithms which employ fuzzy con-
straints. The experimental results obtained on benchmark problems are given in
Section 5, followed by conclusions.
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Fig. 1. A fuzzy rule-based system

2 Fuzzy Sets and Approximate Reasoning

Fuzzy sets provide an appropriate modelling tool for treating imprecise infor-
mation [39]. They are generalisations of classical or so-called crisp sets. A crisp
set dichotomises the objects of a given universe of discourse in the sense that an
object either belongs or does not belong to the set. However, in many real-life
situations, such as categorisation of exams with respect to their size, a rigorous
definition of the set boundary is not appropriate. A fuzzy set A can be defined
by a membership function μA(x) which assigns to each object x in the universe
of discourse X a value representing its grade of membership in this fuzzy set:

μA : X → [0, 1] .

Therefore an object may belong to the fuzzy set to a greater or smaller degree
which is conventionally represented by a real-number from the interval [0, 1].

Fuzzy IF–THEN rules can be used to capture human knowledge/experience
of a particular domain using imprecise assertions [25]. A fuzzy rule-based system
comprises four components which are depicted in Figure 1: a fuzzifier, a fuzzy
rule-base, a fuzzy inference engine and a defuzzifier:

1. A fuzzifier takes the crisp input values and determines the degrees to which
they belong to fuzzy sets in the premises of the rules.

2. A fuzzy rule base (FRB) consists of fuzzy rules

FRB = {R1, . . . , Rm, . . . , RM}

where Rm, m = 1, . . . , M denote fuzzy rules. Rules connect premises to
conclusion. For instance, a rule Rm with two premises and one conclusion is
represented by

Rm : IF(x is Am) AND (y is Bm) THEN z is Cm

where Am, Bm and Cm, m = 1, . . . , M are fuzzy sets.
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3. A fuzzy inference engine (FIE) implements approximate reasoning, which is
the process of deriving imprecise conclusions using imprecise premises [40].
The first step is to evaluate premises of each rule. In our case a conjunction
of two premises has to be evaluated. Different triangular norms can be used
[27]. The definition of triangular norms is given in the Appendix. In this
paper, we use the algebraic product as the triangular norm. The product
of the values of the corresponding membership degrees of the premises is
calculated and taken as the truth value of the premises of each rule:

μAm×Bm(x, y) = μAm(x) ∗ μBm(y) m = 1, . . . , M .

For crisp inputs x0 and y0 the truth value of the premises of the rule is

μAm(x0) ∗ μBm(y0) .

The next step is to infer a possible conclusion taking into consideration the
calculated truth value of the premises of the rule. Different triangular co-
norms are applicable here [27], and their definition is given in the Appendix.
The most common method is to use the truth value of the rule premises
and “to cut” the membership function of the conclusion of the rule at that
level. As a result, the fuzzy set denoted by Am(x0) × Bm(y0) → Cm with
the following membership function is obtained:

μAm(x0)×Bm(y0)→Cm
(z) = min {μAm×Bm(x0, y0), μCm(z)} .

While in the operation of a classical rule based system only one rule whose
premises are true is fired, in the fuzzy rule based system all the rules fire.
The final fuzzy set is determined by aggregation of all the obtained fuzzy
sets in the rule conclusions into a single fuzzy set R:

μR(z) = max {μA1(x0)×B1(y0)→C1(z), . . . , μAM (x0)×BM (y0)→CM
(z)} .

4. A defuzzifier maps a final fuzzy set obtained as a result of firing all the rules
in the FRB to a crisp value which “most appropriately” represents the fuzzy
set. Different mappings can be defined and used in the defuzzification. We
use a well-known defuzzifier which calculates the centre of gravity:

r =

∞∫
−∞

xμR(x)dx

∞∫
−∞

μR(x)dx

.

3 Fuzzy Constraints

In our research fuzzy sets are used to model imprecise constraints imposed on
examination timetabling. For each constraint we define a number of fuzzy IF–
THEN rules in which both premises and the conclusion are described by fuzzy
sets. The conclusion of each rule describes the satisfaction of the constraint on
the basis of the premises. Before describing fuzzy rules defined for each constraint
the notation that will be used in the description of fuzzy rules is given:
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– N = 1, . . . , N indicate exams,
– N is the total number of examinations,
– M is the number of students,
– P is the given number of time periods,
– S is the number of time periods per day,
– C = (cij)N×N is a symmetrical conflict matrix where elements cij , i, j =

1, . . . , N , i �= j represent the number of students taking both examinations i
and j, while the diagonal elements cnn, n = 1, . . . , N of this matrix represent
the number of students who take exam n,

– T = (tn)N represents a timetable as a vector, where tn indicates the assigned
time period for exam n = 1, . . . , N .

3.1 Constraint on Large Exams

The constraint that large exams should be placed early in the timetable is dif-
ficult to model using crisp sets with strict boundaries. It is too rigorous to use
a crisp number of students who take the exam as a discriminator for the size
of an exam. Also, it is difficult to define a set of early periods in the timetable
using the ordinal number of time periods. Fuzzy sets are used to represent both
linguistic variables Size of Exam and Time Period that the exam is scheduled
into. Size of Exam is described by terms Small, Medium and Large, while Time
Period is assessed as Early, Middle and Late with respect to its position in the
timetable.

The linguistic terms that are assigned to Size of Exam are given in Figure
2. The membership functions defined are subjective. They should capture the
timetabling officer’s system of values and are dependent on the examination
timetabling context. We define the support of each of these linguistic terms
with respect to the size of the largest exam, which is denoted by X . It can be
determined from the conflict matrix C:

X = max
n=1,...,N

cnn .

For example, the exam whose size is (X + 1)/8 belongs to a set of Small size
exams with a high degree (0.8). It also belongs to a set of Medium size exams
but with a lower degree (0.2).

Similarly, linguistic terms for Time Period, Early, Middle, Late, are defined
with respect to the total number of time periods P . They are given in Figure 3.

The satisfaction degree of the constraint on large exams is derived using these
two linguistic variables Size of Exam and Time Period. The satisfaction degree
is assessed as Small, Medium-small, Medium, Medium-high and High whose
membership functions are presented in Figure 4.

Nine fuzzy rules are defined to derive for each exam the satisfaction degree
(SD) of the constraint on large exams. They cover all combinations of values
of linguistic variables in the premises of the rules. They reflect the timetabling
officer’s preferences to the allocation of exams with respect to their size. For
example, large exams should be placed in early time periods. If this is the case
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Fig. 3. Linguistic variable Period

the satisfaction degree of the constraint of such an exam is High. Small exams
can be placed anywhere with light preferences toward the middle and the late
part of the timetable. The fuzzy rules for the constraint on large exams are given
in Figure 5.

As an illustration, let us assume that the size of exam is 100 (X=799), while
the time period the exam is scheduled in is 6 (P=23). The truth value of the first
rule whose premises are Size of Exam is Small AND Time Period is Early is
equal to 0.8×0.5 = 0.4. That value is used to “cut” the fuzzy set Medium-high in
the conclusion of the rule. All the rules are fired leading to the resultant fuzzy set
that was represented as greyed in Figure 6. Its centre of gravity (0.765) presents
the satisfaction degree of the constraint on large exams for that particular exam.

The overall satisfaction degree of the constraint on large exams, denoted
by f1, of the timetable T is calculated as the minimum of satisfaction degrees
obtained for all exams en, n = 1, . . . , N :

f1(T ) = min{μfn(en)|n = 1, . . . , N} .

We consider such defined non-compensatory overall satisfaction degree to be
appropriate for this constraint because it evaluates the timetable taking into
consideration the worst placed exam.
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Medium-high

Satisfaction0 1.00.25 0.5 0.75
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Fig. 4. Linguistic variable Satisfaction of the constraint on large exams

IF Size of Exam is Small AND Time Period is Early THEN Satisfaction is Medium-high
IF Size of Exam is Small AND Time Period is Middle THEN Satisfaction is High
IF Size of Exam is Small AND Time Period is Large THEN Satisfaction is High
IF Size of Exam is Medium AND Time Period is Early THEN Satisfaction is Medium-high
IF Size of Exam is Medium AND Time Period is Middle THEN Satisfaction is Medium
IF Size of Exam is Medium AND Time Period is Large THEN Satisfaction is Medium-low
IF Size of Exam is Large AND Time Period is Early THEN Satisfaction is High
IF Size of Exam is Large AND Time Period is Middle THEN Satisfaction is Medium
IF Size of Exam is Large AND Time Period is Large THEN Satisfaction is Low

Fig. 5. Fuzzy rules for the constraint on large exams

3.2 Constraint on Proximity of Exams

Similarly to the constraint on large exams, fuzzy IF–THEN rules are defined
to derive the satisfaction degree of the constraint on proximity of exams for
each pair of exams that are in conflict. Two linguistic variables are defined:
Common Students to denote the number of students common for two exams in
conflict and Period Difference between these exams. The linguistic terms Small,
Medium, and Large are used to evaluate both linguistic variables. Of course, these
linguistic terms have different membership functions for each linguistic variable.
Membership functions of the linguistic terms defined for Common Students and
for Period Difference are given in Figures 7 and 8, respectively.

Linguistic terms for common students are defined taking into consideration
the maximum number of students common for two exams:

Cmax = max {ckl|k, l = 1, . . . , N, k �= l} .

The membership functions of linguistic terms for Period Difference is based
on the total number of time periods P and the number of time periods per day
S. For example, a two days difference between two exams with common students
is considered to be Large with membership degree 1 (μLarge(2S) = 1).
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Fig. 6. Example of firing fuzzy rules for the constraint on large exams when Size of
Exam is 100 and Time Period is 6
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Fig. 7. Linguistic variable Common Students

Nine fuzzy IF–THEN rules are defined to deduce the satisfaction degree of
the constraint on proximity of exams for each pair of exams that are in conflict
and are given in Figure 9. For example, if there is a Large number of common
students for a pair of exams and there is a Small period difference between these
two exams then the satisfaction degree is Low. On the other hand, if there is a
Large period difference for a pair of exams the satisfaction is Low independently
from the number of students common for these two exams.

Overall satisfaction of the constraint on proximity of exams, denoted by f2,
of timetable T is calculated in the following way:
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f2(T ) =

N−1∑
i=1

N∑
j=i+1

μf2(ei, ej)

C

where ei and ej , i, j = 1, . . . , N , are exams, while C is the total number of pairs
of exams in conflict. Such defined overall satisfaction is compensatory one, which
means that a higher satisfaction degree of one pair of exams can compensate, to
a certain extent, for a lower satisfaction degree of another pair of exams.

4 Fuzzy Memetic Algorithms for Examination
Timetabling

Genetic algorithms mimic the natural evolution process throughout the search
for a solution. A genetic algorithm handles a population of solutions through gen-
erations following the principles of natural selection, namely the fittest solutions
have greater chances to survive to the next generation. The fitness of a solution
is determined by the value of the objective function achieved by the solution.
The members of the new population are created by application of evolutionary
operators, which change the parts of the current solutions.

A memetic algorithm attempts to improve the performance of a genetic algo-
rithm by performing local neighbourhood search [24]. The local search explores
the neighbourhood of the solutions produced by the genetic algorithm trying to
reach local optima for each solution. Improved solutions are then passed to the
next generation of the genetic algorithm.

In the memetic algorithms developed for timetabling the objective function
aggregates the satisfaction degree of both constraints:

F (T ) = w1 ∗ f1(T ) + w2 ∗ f2(T ) (1)

where w1 and w2 denote relative importance of each constraint (w1 + w2 = 1).
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The initial solutions of the memetic algorithms are constructed by Brelaz’s
saturation degree graph colouring sequencing heuristic [2]. This heuristic sched-
ules exams sequentially, one by one, commencing with the exams with the least
number of available periods for placement. The exams from the largest clique
of the graph (i.e., the largest set of mutually conflicting exams) are scheduled
first. In order to maintain the diversity of the solutions, an exam to be scheduled
next is selected from a subset of randomly chosen exams from the clique (the
size of the subset was set as 30% of the total number of exams). Laporte and
Desroches’ backtracking method was used to schedule the exams that cannot be
assigned to any time period [22].

Six different memetic algorithms have been developed and tested on univer-
sity examination timetabling benchmarks problems. All these algorithms employ
the same fitness function given in (1) and construct the initial solutions in the
described way. The components that differ these algorithms are given in Table 1
and are described in detail below followed by the list of components comprised
by each algorithm.

Evolutionary Operators. These manipulate members of the current popula-
tion to form solutions of the next generation.

The use of crossover operators which combine two different solutions was
shown not to be beneficial in genetic algorithms for university timetabling [32].
Therefore, only mutation operators, which manipulate single solution aiming to
escape local optima in the search space are defined. They are labelled as light if
they have a random element or heavy if they do not have it. They are defined
as follows:

1. Light Mutation 1 chooses randomly an exam from the timetable and resched-
ules it into another randomly chose valid time period;

2. Light Mutation 2 chooses randomly an exam from the timetable and resched-
ules it into another valid time period that causes the least decrease to the
objective function value;

3. Light Mutation 3 swaps exams from randomly chosen time periods;
4. Heavy Mutation reschedules the exam with the least satisfaction degree and

places it into the best valid time period with respect to the objective function.

Hill-Climbing Local Search. This is applied to the offspring solutions ob-
tained by the evolutionary operators. It reschedules each exam into the best
valid time period with respect to the objective function. The exams are ordered
for rescheduling using a number of heuristics:

1. Largest Degree (LD): exams with the largest number of conflicts are resched-
uled first.

2. Largest Weighted Degree (LWD): exams with the largest sum of the weighted
conflicts are rescheduled first, where each conflict is weighted by the number
of students who are enrolled in both exams.
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3. Number of Enrolments (ENR): exams with the largest student enrollment
are rescheduled first.

4. Order of the Timetable (TT). exams are rescheduled following their schedule
in the solution.

5. Random order (RO).

Operator Selection Method. Three different operator selection methods are
developed:

– Non-adaptive: the list of evolutionary and Hill Climbing operators is prede-
fined and does not change during the search. Two different predefined lists
are used:
• MA1: Light Mutation 1 and Heavy Mutation while Hill climbing operator

randomly chooses LD, LWD, NOR, and TT to order exams.
• MA2 Light Mutation 2 and Heavy Mutation while Hill climbing operator

randomly chooses LD, LWD, NOR, and TT to order exams.
– Adaptive MA: the list of evolutionary and Hill Climbing operators changes

depending on the improvement of the average value of the objective function
of the last two generations. If the improvement is smaller than a threshold
(defined as 0.0002), then Light Mutation 1 and Light Mutation 3 are applied
successively, and the exams ordering method for hill climbing is randomly
selected from LD, LWD and NOR. Otherwise, the applied mutation operator
is randomly selected from Light Mutation 2 and Heavy Mutation, and hill
climbing orders exams using RO.

The rationale behind combining components in an algorithm is as follows. If
the improvements between generation is little we allow more randomness in the
search. Mutation operators are combined in order to change the current solution
more than a single mutation can do, thus enabling the search to avoid the local
optimality. To some extent, this combination functions similarly to the increase
of the mutation rate in a standard evolutionary algorithm. Hill climbing in non-
adaptive algorithms is given more choice for ordering exams than in adaptive
algorithms to enable them to generate better solutions.

Population Selection Methods. Two different selection methods have been
utilised to select individuals for the reproduction for the next generation:

1. Static Selection: an evolutionary operator is applied to every solution in a
population.

2. Dynamic Selection: solutions are selected from a population using the classic
roulette wheel where the probability of the solution to be selected increases
with its fitness.

Table 1 summarises the components of all six memetic algorithms.
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Table 1. Fuzzy memetic algorithms developed for examination timetabling

Algorithm Population
Selection

Change in
operators?

Mutation Hill
Climbing

Adaptive
Static
Memetic
Algorithm
(ASMA)

Static
(Each
Individual)

Yes
(Adaptive)

Improvement
Little

Light
Mutation 1
and then
Light
Mutation 3

Randomly
ordered
exams

Improvement
Significant

Randomly
selected
from Light
Mutation 2
and Heavy
Mutation

Randomly
selected
from LD,
LWD,
ENR

Static
Memetic
Algorithm
1 (SMA1)

Static
(Each
Individual)

No (Non-
Adaptive)

Randomly selected from
Light Mutation 1 and
Heavy Mutation

Randomly
selected
from LD,
LWD,
ENR, TT

Static
Memetic
Algorithm
2 (SMA2)

Static
(Each
Individual)

No (Non-
Adaptive)

Randomly selected from
Light Mutation 2 and
Heavy Mutation

Randomly
selected
from LD,
LWD,
ENR, TT

Adaptive
Dynamic
Memetic
Algorithm
(ADMA)

Dynamic
(Roulette
Wheel)

Yes
(Adaptive)

Improvement
Little

Light
Mutation 1
and then
Light
Mutation 3

Randomly
ordered
exams

Improvement
Significant

Randomly
selected
from Light
Mutation 2
and Heavy
Mutation

Randomly
selected
from LD,
LWD,
ENR

Dynamic
Memetic
Algorithm
1 (DMA1)

Dynamic
(Roulette
Wheel)

No (Non-
Adaptive)

Randomly selected from
Light Mutation 1 and
Heavy Mutation

Randomly
selected
from LD,
LWD,
ENR, TT

Dynamic
Memetic
Algorithm
2 (DMA2)

Dynamic
(Roulette
Wheel)

No (Non-
Adaptive)

Randomly selected from
Light Mutation 2 and
Heavy Mutation

Randomly
selected
from LD,
LWD,
ENR, TT
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Table 2. The benchmark examination timetabling problems

No. of No. of No. of Density of
Periods exams students enrol- conflict

Data Institution (P ) (N) (M) ments matrix

Ear-f-83 Earl Haig Collegiate
Institute, Toronto

24 190 1,125 8,109 0.29

Hec-s-92 Ecole des Hautes
Etudes Commercials,
Montreal

18 81 2,823 10,632 0.20

Lse-f-91 London School of
Economics

18 381 2,726 10,918 0.06

Sta-f-83 St Andrew’s Junior
High School,
Toronto

13 139 611 5,751 0.14

Tre-s-92 Trent University,
Peterborough,
Ontario

23 261 4,360 14,901 0.18

Ute-s-92 Faculty of
Engineering,
University of
Toronto

10 184 2,750 11,793 0.08

Yor-f-83 York Mills Collegiate
Institute, Toronto

21 181 941 6,034 0.27

5 Experiments on Benchmark Problems

A number of real-world examination problems from different universities have
been collected and used as benchmark problems within the timetabling com-
munity. They can be obtained from the Web page with the following URL:
ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. Characteristics of these prob-
lems are shown in Table 2.

All the experiments were run on a PC with a 1800 Mhz P-4 processor and 256
MB RAM. Six fuzzy memetic algorithms were used to solve the above benchmark
problems. The following parameters were set for all memetic algorithms: the
population size was 10, the total number of generations was 30, w1 = 0.5, w2 =
0.5. Each experiment was run five times and average results are obtained. The
results are summarised in Table 3. The table also shows the average time (in
seconds) spent on the search.

From Table 3 it can be seen that among the six developed methods for
majority of benchmark problems (6 out of 7) the best results are obtained by
applying the Adaptive Static Memetic Algorithm (ASMA).

In the current literature majority of the state-of-the-art approaches to exam-
ination timetabling methods consider only constraint of the proximity of exams
and use Carter’s objective function [18]. Due to the different objective function
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Table 4. Evaluation of the timetables produced by ASMA method (w1 = 0.5, w2 = 0.5)

Problem Av. period / P Adj. Same day Next day Rem.

Ear-f-83 9 / 24 8 8 8 76
Hec-s-92 7 / 18 14 10 15 61
Lse-f-91 7 / 18 7 11 11 71
Sta-f-83 8 / 13 16 14 14 55
Tre-s-92 10 / 23 8 8 8 75
Ute-s-92 4 / 10 19 16 17 47
Yor-f-83 8 / 21 8 10 9 72

Table 5. Evaluation of the timetables produced by ASMA method (w1 = 0.95, w2 =
0.05)

Problem Av. period / P Adj. Same day Next day Rem.

Sta-f-83 6 / 13 17 15 14 54

used in this approach it is not possible to compare it with other state-of-the-art
approaches. Nevertheless, some form of evaluation of the obtained timetables
needs to be performed. The best solution for each benchmark problem found by
the ASMA algorithm was thoroughly investigated. In order to assess the place-
ment of large exams, we employ the following method. An exam is regarded as
a large one if its enrolment is greater than 0.75 × X , where X is the maximum
size among all exams. Here we use a crisp set boundary to define large exams
(which can be considered as a deficiency of this evaluation, but can serve the
purpose). The two numbers in the first column in the table shows the average
period numbers that the large exams are scheduled into and the total number
of time periods. It can be noticed that in all but one solution large exams are
placed in the first half of the timetable, even more around the first third of the
timetable. The remaining columns in the table are related to the constraint on
proximity of exams.

Let us consider a weighted a graph which represents an examination time-
tabling problem. Vertices represent exams, while there is an edge between two
vertices if the corresponding exams are in conflict. The weight associated with
an edge represents the number of students who sit both exams. The column Adj
in Table 4 shows the percentage of weighted edges in such a graph which connect
exams scheduled into adjacent periods. Similarly, columns Same Day and Next
Day show the percentage of weighted edges in the graph which connect exams
scheduled on the same day or on the next day (period difference between exams is
greater than 3). The column Rem shows that the largest percentage of weighted
edges connects exams that are scheduled with at least two days between them.

The alterations of weights will lead to improvement of the satisfaction of one
constraint at the expense of the other one. For example let us assume that the
timetable officer wants to “improve” the placement of large exams in the time-
table constructed for Sta-f-83 benchmark problem. New pair of weights, w1 =
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0.95, w2 = 0.05, will lead to better timetables with respect to large exams at the
reasonable expense of the constraint of proximity of the exams. The evaluation
of the timetables obtained with the new weights is illustrated in Table 5.

6 Conclusions

This paper presents a novel fuzzy-sets-based approach to modelling constraints
imposed on university examination timetabling that are difficult, or even impos-
sible, to describe using the binary logic (i.e. a constraint is either satisfied or not).
A typical such constraint is considered, namely the constraint that large exams
should be put in the early part of the timetable. Fuzzy IF-THEN rules are de-
fined to derive the satisfaction degree of the constraint, which is expressed using
the linguistic descriptors. In the similar way the constraint that students should
have enough break between two exams is modelled. The membership functions
of the fuzzy sets used in the fuzzy IF-THEN rules are subjective in their nature
and enable the timetable officer to express his/her preferences. An additional ad-
vantage of using fuzzy sets to derive the satisfaction degrees is that they have the
same range of values in the interval [0, 1]. It enables a multiple constraints with
different measurement units of different scales to be treated together, i.e. they
are combined in an overall satisfaction degree of all the constraints. A number
of memetic algorithms were developed which used the aggregated satisfaction
degree of all the constraints as the objective function. In the described approach
a sum of the satisfaction degrees of the two constraints is used to aggregate the
individual satisfaction degrees of each constraint.

Future research work will be carried out in the following directions:

1. Other types of aggregation of satisfaction degrees of the constraints and their
effect of the timetable will be investigated.

2. Other constraints that can be imposed on examination timetabling will be
considered to be included in the described framework.

3. Modelling of uncertain constraints using fuzzy sets is subjective in nature and
it relies on timetable officer’s subjective opinion. Therefore, the sensitivity
of a constructed timetable to small changes to membership functions used
in the fuzzy IF-THEN rules will be examined.
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Appendix

A triangular norm *:[0,1]×[0,1]→[0,1] is a function with the following properties
[31]:

(i) commutativity a*b = b ∗ a
(ii) associativity a *(b ∗ c) = (a ∗ b) ∗ c
(iii) monotonicity if a ≤ b and c ≤ d, then a ∗ c ≤ b ∗ d
(iv) a∗1 = a and a*0 = 0.

A triangular conorm +:[0,1]×[0,1]→[0,1] is a function with the following prop-
erties [31]:

(i) commutativity a+b = b + a
(ii) associativity a +(b + c) = (a + b) + c
(iii) monotonicity if a ≤ b and c ≤ d, then a + c ≤ b + d
(iv) a+0 = a and a+1 = 1.
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Abstract. In this paper, we address the issue of ordering exams by
simultaneously considering two separate heuristics using fuzzy meth-
ods. Combinations of two of the following three heuristic orderings are
employed: largest degree, saturation degree and largest enrolment. The
fuzzy weight of an exam is used to represent how difficult it is to sched-
ule. The decreasingly ordered exams are sequentially chosen to be as-
signed to the last slot with least penalty cost value while the feasibil-
ity of the timetable is maintained throughout the process. Unschedul-
ing and rescheduling exams is performed until all exams are scheduled.
The proposed algorithm has been tested on 12 benchmark examination
timetabling data sets and the results show that this approach can pro-
duce good quality solutions. Moreover, there is significant potential to
extend the approach by including a larger range of heuristics.

1 Introduction

Examination timetabling is essentially the problem of allocating exams to a
limited number of time periods in such a way that none of the specified hard
constraints are violated. A timetable which satisfies all hard constraints is often
called a feasible timetable. In addition to the hard constraints, there are often
many soft constraints whose satisfaction is desirable (but not essential). The
set of constraints which need to be satisfied is usually very different from one
institution to another, as reported by Burke et al. [10]. However, a common hard
constraint across all problem instances is the requirement to avoid any student
being scheduled for two different exams at the same time.

In practice, each institution usually has a different way of evaluating the
quality of a feasible timetable. In many cases, the measure of quality is calculated
based upon a penalty function which represents the degree to which the soft
constraints are satisfied.
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Over the years, numerous approaches have been investigated and developed
for exam timetabling. Such approaches include constraint programming [18],
[26], [30], [34], graph colouring [13], [15], [21], case-based reasoning [17], hyper-
heuristics [13] and various metaheuristic approaches including greedy local search
[19], [23], genetic algorithms [11], [28], tabu search [29], simulated annealing [41],
the great deluge algorithm [7], [14] and hybridized methods [34] which draw on
two or more of these techniques. Discussions about other approaches can be
found in papers by Bardadym [4], Burke et al. [12], Burke and Petrovic [16],
Carter [20], Carter and Laporte [22], De Werra [27], Petrovic and Burke [35] and
Schaerf [39].

Since being introduced by Zadeh in 1965 [43], fuzzy methodologies have been
successfully applied in a wide range of real-world applications. In scheduling
and timetabling applications, fuzzy evaluation functions have been utilised in a
number of different applications. For example, Dahal et al. [25] considered such
approaches in generator maintenance scheduling, and Abboud et al. [1] used
fuzzy target gross sales (fuzzy goals) to find “optimal” solutions of a manpower
allocation problem, where several company goals and salesmen constraints need
to be considered simultaneously. Fuzzy methodologies have been investigated for
other timetabling problems such as aircrew rostering [40], driver scheduling [31]
and nurse rostering [3].

In the specific context of examination timetabling, fuzzy methods have been
implemented for measuring the problem similarity in case-based reasoning by
Yang and Petrovic [42]. In this work, a fuzzy similarity measure is used to retrieve
a good heuristic ordering for a new problem based on comparison with previous
problems that are stored in the case base. The selected heuristic ordering is then
applied to the new problem for generating an initial solution before applying the
Great Deluge Algorithm in the improvement stage. Their results indicated that
the performance of this algorithm is better when this fuzzy similarity measure
is applied in the initialisation stage compared to other initialisation approaches.

In [37], Petrovic et al. employed fuzzy methodologies to measure the satisfac-
tion of various soft constraints. The authors described how they modelled two
soft constraints, namely constraint on large exam and constraint on proximity
of exams, in the form of fuzzy linguistic terms and defined the related rule set.
A memetic algorithm was then implemented to evaluate their approach on the
same 12 benchmark problem instances that are considered in this paper.

Approaches which order the events prior to assignment to a period have been
discussed by several authors including Boizumault et al. [5], Brailsford et al. [6],
Burke et al. [9], Burke and Newall [15], Burke and Petrovic [16] and Carter et
al. [21]. In the context of the same benchmark data sets used in our experiments,
this sequencing strategy has been implemented by Carter et al. [21], Burke and
Newall [15] and Burke et al. [13]. In [21], the authors used four different types of
heuristic ordering to rank the exams in decreasing order to estimate how difficult
it is to schedule each of the exams. They considered largest degree, saturation
degree, largest weighted degree and largest enrolment. These heuristics were used
individually each time they wanted to order the exams. Then, the exams were
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selected sequentially and assigned to a time slot that satisfied all the specified
constraints. If no clash-free time slot was found, backtracking was implemented.
The process was continued until all the exams were scheduled and a feasible
solution was produced. Burke and Newall [15] applied an adaptive heuristic
technique in which they start ordering by a particular heuristic and then alter
that heuristic ordering to take into account the penalty that exams are imposing
upon the timetable. Recently, Burke et al. [13] proposed a new hyper-heuristic
approach for solving timetabling problems. Instead of using a single heuristic
to find solutions for course and examination timetabling problems, a sequence
of heuristics is applied. The authors used tabu search and deepest descent lo-
cal search in order to find the best list of heuristics to guide the constructive
algorithm in finding the “best solution” for each problem instance.

In this paper, a fuzzy methodology is used to rank exams based on an assess-
ment of how difficult they are to schedule taking into account multiple heuris-
tics. This paper is motivated by the observation that the consideration of more
than one heuristic to rank the exams may lead to rankings that better reflect
the actual difficulty of placing the exam, as several factors are simultaneously
taken into account. The fuzzy multiple heuristic ordering method described in
this paper should not be confused with multi-criteria approaches to examination
timetabling, such as those described in Arani and Lotfi [2], Burke et al. [8], Lotfi
and Cerveny [33], and Petrovic and Bykov [36]. In our approach, two heuris-
tic orderings are simultaneously considered to rank the exams, whereas [2], [8],
[33], [36] employ multi-criteria approaches to evaluate timetabling solutions and
describe approaches which can handle this.

In the following section, the proposed algorithm and the experiments carried
out are explained in detail. Section 3 describes the results obtained. These results
are discussed and some concluding comments presented in Sections 4 and 5
respectively.

2 Methods

2.1 The Basic Sequential Construction Algorithm

There is a well known analogy between a basic version of the timetabling problem
(no soft constraints) and the graph colouring problem (see [9]). Indeed, some of
the best known timetabling heuristics are based upon graph colouring heuristics
and these can be employed within a basic and simple timetabling algorithm (see
Figure 1). We consider three different versions of the basic algorithm, which
employ three different heuristic orderings respectively and require the following
steps to assign all exams to a time slot. First, the exams are ordered (most
difficult first) by applying one of the ordering heuristics. The following heuristics
are employed as ordering criteria:

Largest Degree (LD) First. The degree of an exam is simply a count of the
number of other exams which conflict in the sense that students are enrolled
in both exams. This heuristic orders exams in terms of those with the highest
degree first.
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Sort unscheduled exams using selected heuristic ordering; 
Insert exams into the last timeslot with least penalty; 
While there exist unscheduled exam 

Perform the process for scheduling the unscheduled exams; 
Sort unscheduled exams using selected heuristic ordering; 

End while 

Fig. 1. Pseudo-code for general framework of sequential construction algorithm

Largest Enrolment (LE) First. The number of students enrolled for each
exam is used to order the exams (the highest number of students first).

Least Saturation Degree (SD) First. The number of time slots available is
used to order the exams. The basic motivation is that exams with less time
slots available are more likely to be difficult to be scheduled. The fewer time
slots that are available, the higher up the ordering is the exam.

Then, exams are selected sequentially from the ordering and assigned a valid
time slot that will cause the minimum penalty cost for that exam. If no clash-free
time slot is available, the exam is skipped and the process continued with the
next exam. The skipped exams are then revisited and a process for scheduling
the unscheduled exams is carried out (see Figure 2).

The sequential construction algorithm used here is similar to the approach
applied by Carter et al. [21] with some modification. Basically, there are three
differences between these two algorithms. The first difference is in the initial stage
of the algorithm. In our algorithm we apply the heuristic ordering to all exams,
whereas Carter et al.’s algorithm first finds the maximum-clique of examinations
and assigns them to different time slots, and then applies heuristic ordering to
the remaining exams. The second difference is in the selection of a free time slot.
A search is carried out to find the clash free time slot with least penalty cost in
order to assign each exam to a time slot. In our algorithm, if several time slots
are available, then the last available time slot in the list will be selected. (It was
found that the choice of assigning exams to the last available time slot or the
first available time slot did not make much difference, as the main purpose of
this was simply to spread out the student’s timetable.) In contrast, Carter et al.
chose the first clash-free time slot found in which to assign the exam.

Thirdly, for reshuffling a scheduled exam, we randomly select a time slot from
the list of time slots with the same minimum number of scheduled exams that
needed to be “bumped back”, whereas Carter et al. used minimum disruption
cost to break any ties. A detailed overview of the “unschedule and reschedule
scheduled exams” algorithm is shown in Figure 2.

2.2 The Fuzzy Multiple Heuristic Ordering

In many decision making environments, it is often the case that several factors
are simultaneously taken into account. Often, it is not known which factor(s)
need to be emphasized more in order to generate a better decision. Somehow
a trade-off between the various (potentially conflicting) factors must be made.
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k := number of unscheduled exams; 
For u := 1 to k  

Select exam[u]; 
Find timeslots where exam[u] can be inserted with minimum number of 
scheduled exams need to be removed from the timeslot; 
If found more than one slot with the same number of scheduled exams 
need to be removed 
Select a timeslot randomly from the candidate list of slots, ts; 

End if 
c :=  number of exam in timeslot tsu that conflict with exam[u];  
For m := 1 to c 
  Select exam[m]; 

If found another timeslot with minimum cost to move exam[m] 
Move exam[m] to the timeslot; 

else 
Bump back exam[m] to unscheduled exam list; 

End if 
End for 
Insert exam[u] to timeslot tsu; 
Remove exam[u] from unscheduled exam list; 

End for 

Fig. 2. Pseudo-code for rescheduling the scheduled exams

The general framework of fuzzy reasoning facilitates the handling of such un-
certainty. A fuzzy set A of a universe of discourse X (the range over which the
variable spans) is characterized by a membership function μA : X → [0, 1] which
associates with each element x of X a number μA(x) in the interval [0, 1], with
μA(x) representing the grade of membership of x in A. The precise meaning
of the membership grade is not rigidly defined, but is supposed to capture the
“compatibility” of an element to the notion of the set.

Fuzzy systems are used for representing and employing knowledge that is
imprecise, uncertain, or unreliable. They usually consist of four main intercon-
nected components: an input fuzzifier, a set of rules, an inference engine, and
an output processor (defuzzifier). Rules which connect input variables to output
variables in “IF . . . THEN . . . ” form are used to describe the desired system
response in terms of linguistic variables (words) rather than mathematical for-
mulae. The “IF” part of the rule is referred to as the “antecedent”, the “THEN”
part is referred to as the “consequent”. The number of rules depends on the num-
ber of inputs and outputs, and the desired behaviour of the system. Once the
rules have been established, such a system can be viewed as a non-linear map-
ping from inputs to outputs. It is not appropriate to present a full description
of the functioning of fuzzy systems here; the interested reader is referred to Cox
[24] for a simple treatment or Zimmerman [44] for a more complete treatment.

The fuzzy inference process is illustrated for a three-rule system based on
two input variables, LD and LE. Each of the input and output variables are
associated with three linguistic terms; fuzzy sets corresponding to meanings of
small, medium and high. These membership functions are chosen arbitrarily to
span the universe of discourse of the variable. A rule set connecting the input
variables (LD and LE) to a single output variable, examweight, is constructed.
The following three rules are used to illustrate the behaviour of this example
system (note that this is only an illustrative example; the membership functions
and rules used in each actual experiment are described in Section 2.3):
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Fig. 3. A three-rule Mamdani inference process

Rule 1: IF (LD is small) AND (LE is medium) THEN (examweight is small)
Rule 2: IF (LD is medium) AND (LE is medium) THEN (examweight is medium)
Rule 3: IF (LD is medium) AND (LE is high) THEN (examweight is high)

The first stage is to normalize the input values within the range [0, 1]. The
transformation is as follows:

v′ =
(v − minA)

(maxA − minA)

where v is the actual value in the initial range [minA, maxA]. For example, if
v = 10 in [0, 20], the normalized value v′ is 0.5 in the new range [0, 1].

Figure 3 illustrates the inferencing of this system (a Mamdani inference pro-
cess) with normalized values for LD and LE of 0.4 and 0.65, respectively. For
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each rule in turn, the fuzzy system operates as follows. The input component
(“fuzzifier”) computes the membership grade for each input variable based on
the membership functions defined. That is, in Rule 1, the membership grade is
computed for LD in the fuzzy set small and for LE in the fuzzy set medium.
As shown in the figure, the determined grades of membership for each input
variable are

μsmall(LD = 0.4) = 0.15
and

μmedium(LE = 0.65) = 0.6 .

With these fuzzified values, the inference engine then computes the overall
truth value of the antecedent of the rule (Rule 1 ) by applying the appropri-
ate fuzzy operators corresponding to any connective(s) (AND or OR). In the
example, the fuzzy AND operator is implemented as a minimum function:

Rule 1 IF (LD is small) AND (LE is medium)
μRule1 = μsmall(LD = 0.4) ∧ μmedium(LE = 0.65)

= min(0.15, 0.6)
= 0.15 .

Next, the inference engine applies the implication operator to the rule in order
to obtain the fuzzy set to be accumulated in the output variable. In this case,
inferencing is implemented by truncating the output membership function at
the level corresponding to the computed degree of truth of the rule’s antecedent.
The effect of this process can be seen in the consequent part of Rule 1 in which
the membership function for the linguistic term small was truncated at the level
of 0.15. The same processes are applied to the rest of the rules in turn.

Finally, all the truncated output membership functions are aggregated to-
gether to form a single fuzzy subset (labelled as Final Output in Figure 3) by
taking the maximum across all the consequent sets. A further step (known as
“defuzzification”) is then performed if (as is usual) the final fuzzy output is to be
translated into a crisp output. We applied a common form of this process, termed
“centre of gravity defuzzification” as it is based upon the notion of finding the
centroid of a planar figure, as given by∑

i

μ(xi) · xi

μ(xi)
.

In the example of Figure 3, the output for the fuzzy system (that represents how
difficult the exam is to be scheduled) is 0.48 for the given inputs (i.e an exam
with LD and LE of 0.4 and 0.65, respectively).

All exams in the given problem instance are evaluated using the same fuzzy
system, and the sequential constructive algorithm uses the crisp output of each
exam for ordering all exams. The exam with the biggest crisp value is selected
to be scheduled first, and the process continues until all the exams are scheduled
without violating any of the hard constraints.
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2.3 Description of Experiments

A number of experiments were carried out in which progressively more sophis-
ticated fuzzy mechanisms were created to order the exams. In each experiment
this ordering is simply inserted into the basic general algorithm presented in
Figure 1.

Single Heuristic Ordering. In order to provide a comparative test, the al-
gorithm was initially run without implementing fuzzy ordering. That is, in this
approach, the exams in the problem instances were ordered based on a single
heuristic ordering. All the exams were then selected to be scheduled based on
this ordering.

Fixed Fuzzy LD+LE Model. Next, a fixed fuzzy model that took into ac-
count multiple heuristic ordering was implemented. Two out of the three ordering
heuristics described in Section 2.1, namely largest degree (LD) and largest en-
rolment (LE), were selected as input variables. The membership functions used
in this experiment are shown in Figure 4. The choice of these membership func-
tions was based on “trial and error” to test how the algorithm would work when
exams were ordered with the aid of fuzzy reasoning.

The fuzzy rules used in this experiment are shown in Table 1. For simplicity,
the fuzzy rules are expressed as a linguistic matrix (see [32]). In such a linguistic
matrix, the left-most column and the first row denote the variables involved in
the antecedent part of the rules. The second column contains the linguistic terms
applicable to the input variable shown in the first column; those in the second
row correspond to the input variable shown in the first row. Each entry in the
main body of the matrix denotes the linguistic values of the consequent part
of a rule. For instance, the bottom-right entry in Table 1 is read as “IF LD is
high AND LE is high THEN examweight is very high”. The same representation
is also used to express the fuzzy rule sets for the experiments explained in the
following sections. Note that, in addition to the three basic terms, the hedge
“very” was utilized to create two extra terms for the output variable. The “very”
hedge squares the membership grade μ(x) at each x of the fuzzy set for the term
to which it is applied. Thus the membership function of the fuzzy set for “very
small” is obtained by squaring the membership function of the fuzzy set “small”.

Tuned Fuzzy LD+LE Model. Fuzzy modelling can be thought of as the task
of designing a fuzzy inference system. The selection of important parameters

Table 1. Fuzzy rule set for fixed fuzzy LD+LE model

LE VS: very small
S M H S: small

S VS VS M M: medium
LD M M M H H: high

H S M VH VH: very high
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Fig. 4. Membership functions for fixed fuzzy LD+LE model

Table 2. Fuzzy rule set for tuned fuzzy LD+LE model
LE VS: very small

S M H S: small
S VS S M M: medium

LD M S M H H: high
H M H VH VH: very high

for the inference system is crucial, as the overall system behaviour is highly
dependent on a large number of factors, such as how the membership functions
are chosen, the number of rules involved, the fuzzy operator used, and so on.
For the purpose of finding a better fuzzy model, a relatively straightforward
tuning procedure was implemented in order to investigate whether the initial
choice of fuzzy model was appropriate. This tuning procedure was then applied
to different combinations of multiple ordering heuristics.

As an initial extension to the Fixed Fuzzy LD+LE Model, a restricted form
of exhaustive search was used to find the most appropriate shape for the fuzzy
membership functions in the system. There are very many alternatives that
may be used when constructing a fuzzy model. In our implementation, we ar-
bitrarily restricted the search based on the membership functions as shown in
Figure 5. Triangular shape membership functions were employed to represent
small, medium and high. However, the fuzzy model was then altered by moving
the point cp along the universe of discourse. This single point corresponded to
the right edge for the term small, the centre point for the term medium and
the left edge for the term high. Thus, there was one cp parameter for each fuzzy
variable (two inputs and one output).

A search was then carried out to find the best set of cp parameters. During
this search, each point cp (for any of the fuzzy variables) can take a value between
0.0 and 1.0 inclusive. Increments of 0.1 were used (i.e. the values 0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) for data sets that have 400 and fewer
exams, and 0.25 increments (i.e. the values 0.0, 0.25, 0.5, 0.75 and 1.0) for data
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Table 3. Fuzzy rule set for tuned fuzzy SD+LE model

SD VS: very small
S M H S: small

S M S VS M: medium
LE M H M S H: high

H VH H M VH: very high

sets that have more than 400 exams. The effect of varying the point cp from 0.0
to 1.0 is shown in Figure 6.

In this experiment, the combination of LD and LE heuristics were again
used as the fuzzy input variables. The fuzzy rule set used is shown in Table 2.

Tuned Fuzzy SD+LE Model. In this experiment, the same approach as
above was employed, but now the combination of SD and LE were used as the
fuzzy input variables. A new fuzzy rule set was required as the SD heuristic is
reversed compared to the LD and LE heuristics. The fuzzy rule set is presented
in Table 3.
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3 Experimental Results

In this section the results obtained in each experiment are presented. In all ex-
periments, the basic algorithm of Figure 1 was employed. The only difference was
the heuristic ordering used. The experiments were carried out with 12 bench-
mark data sets made publicly available by Carter et al. Table 4 reproduces the
problem characteristics.

A proximity cost function was used to measure the timetable quality. The
maximum capacity for each time slot was not taken into account. Only feasible
timetables were accepted. The penalty function is taken from Carter et al. [21]. It
is motivated by the goal of spreading out each student’s examination schedule. If
two exams scheduled for a particular student are t time slots apart, the weight is
set to wt = 25−t where t ∈ {1, 2, 3, 4, 5}. The weight is multiplied by the number
of students that sit for both of the scheduled exams. The average penalty per
student is calculated by dividing the total penalty by total number of students.
The following formulation was used (adapted from Burke et al. [7]), in which the
goal is to minimize ∑N−1

i=1

∑N
j=i+1 sijw|pj−pi|

T
,

where N is the number of exams, sij is the number of students enrolled in both
exam i and j, pi is the time slot where exam i is scheduled, and T is the total
number of students; subject to 1 ≤ |pj − pi| ≤ 5.

The algorithm was developed using Java-based object oriented programming.
The fuzzy inference engine developed by Sazonov et al. [38] was implemented.
The experiments were run on a PC with a 1.8 GHz Pentium 4 and 256MB of
RAM. In the case of the Single Heuristic Ordering and the Fixed Fuzzy LD+LE
Model each instance was run five times. In the other experiments (that involved
tuning the fuzzy model), the aim was to search for the best fuzzy model to guide
the constructive algorithm. In order to reduce the size of the search space, only
the membership functions are tuned, whereas the fuzzy rule set is fixed. In this
tuning process, for problem instances that have 400 and fewer exams, the al-
gorithm was tested on 1331 (three variables and 11 options: 113) membership
function combinations. Problem instances that have more than 400 exams were
tested on 125 (three variables and five options: 53) membership function combi-
nations. Because of this, each instance was only run twice. For all experiments,
only the best results are selected and presented in Table 5.

For comparison, the best results obtained by Carter et al. [21] when using
various different heuristics to order the exams are shown in column 2 of Table 5.
The results obtained for our three varieties of Single Heuristic Ordering are
presented in columns 3–5. The results obtained for the Fixed Fuzzy LD+LE
Model are shown in column 6. In general, these results are worse than for the
best Single Heuristic Ordering, except for the STA-F-83 data set, where the
fixed fuzzy model obtained the best result. This observation suggested that there
might be promise in the fuzzy approach and prompted us to undertake further
investigations with tuned fuzzy models. The results for the Tuned Fuzzy LD+LE
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Table 4. Examination timetabling problem characteristics

Number Number Number of Conflict
Data set of slots of exams students density

CAR-F-92 32 543 18419 0.14
CAR-S-91 35 682 16925 0.13
EAR-F-83 24 190 1125 0.27
HEC-S-92 18 81 2823 0.42
KFU-S-93 20 461 5349 0.06
LSE-F-91 18 381 2726 0.06
RYE-F-92 23 486 11483 0.08
STA-F-83 13 139 611 0.14
TRE-S-92 23 261 4360 0.18
UTA-S-92 35 622 21266 0.13
UTE-S-92 10 184 2750 0.08
YOR-F-83 21 181 941 0.29

Table 5. Experimental results for single and fuzzy heuristic orderings

Fixed Tuned Tuned
fuzzy fuzzy fuzzy

Carter Single Heuristic Ordering LD+LE LD+LE SD+LE
Data set et al. [21] LD LE SD model model model

CAR-F-92 6.2 5.56 5.03 5.50 5.65 4.62 4.56
CAR-S-91 7.1 6.38 5.90 5.91 6.31 5.60 5.29
EAR-F-83 36.4 40.58 45.88 49.10 48.14 38.41 37.02
HEC-S-92 10.8 14.98 14.94 14.27 16.93 12.53 11.78
KFU-S-93 14.0 18.63 16.46 18.60 18.29 16.53 15.81
LSE-F-91 10.5 15.08 14.52 13.46 16.84 12.35 12.09
RYE-F-92 7.3 12.95 11.12 11.60 12.98 11.75 10.38
STA-F-83 161.5 173.09 171.87 178.24 161.21 160.42 160.75
TRE-S-92 9.6 10.98 9.93 10.81 10.36 9.05 8.67
UTA-S-92 3.5 4.48 4.78 3.83 5.16 3.87 3.57
UTE-S-92 25.8 35.19 28.80 33.14 30.54 28.65 28.07
YOR-F-83 41.7 45.60 43.53 45.27 46.41 41.37 39.80

Model are shown in column 7 and those for the Tuned Fuzzy SD+LE Model in
column 8.

The best fuzzy results obtained in Table 5 are highlighted in bold font. The
corresponding membership functions of the fuzzy model which obtained the best
result for each data set are presented in Figures 7 and 8. It can be seen that the
membership functions differ in each case: i.e., there is no generic fuzzy model
which suits all the data sets.
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4 Discussion

Amongst the three Single Heuristic Ordering, it would appear that LE is the
“best” in this context as it produced the best solution for eight out of the 12
data sets, compared to only one for LD (for EAR-F-83) and three for SD (for
HEC-S-92, LSE-F-91 and UTA-S-92). It also can be seen that, when compared
to Carter et al.’s best results, our simplified version of their algorithm produced
worse results in 10 out of the 12 data sets, but a slightly better timetable was
obtained for the CAR-F-92 and CAR-S-91 cases. The Fixed Fuzzy LD+LE Model
only achieves a better result than the best Single Heuristic Ordering in one out
of the 12 data sets (STA-F-83). However, the rules and membership functions
for this initial fuzzy model were completely arbitrary, so it may be surprising
that it achieved a best result even once.

It is evident that the Tuned Fuzzy LD+LE Model produced better results
than the Fixed Fuzzy LD+LE Model in all cases. Although entirely expected,
this observation was taken as confirmation that the fuzzy system was capturing
meaningful information and that the tuning procedure, although not finding the
truly optimal fuzzy model (in the sense of the globally best set of membership
functions for the given set of rules and other fixed aspects of the fuzzy system),
was operating successfully. In comparison with best Single Heuristic Ordering,
the Tuned Fuzzy LD+LE Model obtained better results in all cases except for
the KFU-S-93, RYE-F-92 and UTA-S-92 data sets.

The Tuned Fuzzy SD+LE Model went on to produce better results than the
Tuned Fuzzy LD+LE Model for all cases except the STA-F-83 data set. When
compared to Carter et al.’s original results, the tuned fuzzy models operating on
two heuristics simultaneously (taking the best tuned fuzzy model for each data
set) obtained better results for five out of the 12 data sets. These were the CAR-
F-92, CAR-S-91, STA-F-83, TRE-S-92 and YOR-F-83 data sets. Although these
results have since been bettered by many authors (see the discussion of Table 6
below), these have been based on iterative improvement techniques rather than
the constructive approach employed by Carter et al. and ourselves.

Initially, the choice to use a combination of the LD and LE heuristics was
based on the fact that these heuristics are static in the sense that they only have
to be calculated once at the beginning of the ordering process. In contrast, the
SD heuristic must be recalculated after each exam is assigned to a slot. Thus, it
was felt that tuning the fuzzy model based on the LD + LE combination would
be quicker. The choice to use the SD+LE combination in the subsequent model
was based on the observation that the LE heuristic ordering, when used alone,
obtained the minimum penalty cost for eight out of the 12 data sets while the
SD heuristic ordering obtained the minimum cost for three out of 12. Thus it
was felt that these offered the most promising combination of two heuristics.

The design of the fuzzy rule sets was based on three assumptions:

– if LD is High then examweight is High
– if LE is High then examweight is High
– if SD is Small then examweight is High.
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Fig. 7. Best fuzzy model for data sets CAR-F-92, CAR-S-91, EAR-F-83, HEC-S-92,
KFU-S-93 and LSE-F-91

However, it must be emphasized that the rule sets specified in Tables 1–3 are
only one possible instance (in the case of each experiment) out of a very large
number of alternatives. Due to the very large number of degrees-of-freedom in
any fuzzy model, it is very rare that the first fuzzy system constructed will
perform at an acceptable level. Usually some form of optimization or performance
tuning of the system will need to be undertaken. The most significant influences
on performance of a fuzzy system are likely to be the number and location
of the membership functions and the number and form of the rules. In our
implementation, the number and form of the rules are kept fixed in all cases.
Although the fuzzy membership functions were, to a certain extent, tuned to
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Fig. 8. Best fuzzy model for data sets RYE-F-92, STA-F-83, TRE-S-92, UTA-S-92,
UTE-S-92 and YOR-F-83

obtain good performances, there was no attempt in the current work to tune
the rule sets. It is highly likely that, given sufficient time to perform the tuning,
a set of fuzzy rules leading to better performance of the fuzzy models could be
obtained.

In Table 5, we have demonstrated that, in all cases, tuning the fuzzy model
produces better results, as might be expected. This confirms our hypothesis that
simultaneous ranking of multiple heuristic ordering can produce better results.
The fact that the best fuzzy results are all obtained using different fuzzy mem-
bership functions, as shown in Figures 7 and 8, means that no generic fuzzy
model has been obtained at this stage. Such a generic model would be necessary
if the approach is to be applied quickly and efficiently to novel data sets. The
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Table 6. Results comparison

Our best Burke and Burke Caramia Casey and Merlot
Data set results Newall [14] et al. [7] et al. [19] Thompson [23] et al. [34]

CAR-F-92 4.56 4.10 4.2 6.0 4.4 4.3
CAR-S-91 5.29 4.65 4.8 6.6 5.4 5.1
EAR-F-83 37.02 37.05 35.4 29.3 34.8 35.1
HEC-S-92 11.78 11.54 10.8 9.2 10.8 10.6
KFU-S-93 15.81 13.90 13.7 13.8 14.1 13.5
LSE-F-91 12.09 10.82 10.4 9.6 14.7 11.0
RYE-F-92 10.35 – 8.9 6.8 – 8.4
STA-F-83 160.42 168.73 159.1 158.2 134.9 157.3
TRE-S-92 8.67 8.35 8.3 9.4 8.7 8.4
UTA-S-92 3.57 3.20 3.4 3.5 – 3.5
UTE-S-92 27.78 25.83 25.7 24.4 25.4 25.1
YOR-F-83 40.66 37.28 36.7 36.2 37.5 37.4

lack of such a generic fuzzy model may cast doubt regarding the usability and
flexibility of this approach. This indicates that care must be taken when apply-
ing fuzzy techniques: it is certainly not the case that just because it is fuzzy it
is necessarily better.

Table 6 shows the performance of our algorithm in comparison with selected
recently published results on Carter et al.’s benchmarks. The best result amongst
the compared techniques for each data set is highlighted in bold font. Collec-
tively, these results have been selected to show the best known results for each
data set. Although our algorithm has not beaten the best known result for any
data set, its performance is broadly competitive with the others in the sense
that it it not the worst in 6 out of the 12 data sets. It is also worth pointing out
that our algorithm produces solutions for all 12 data sets, and that in two of
the cases where ours produces the worst result, at least one of the other papers
did not quote any result. However, it has to be kept in mind that our method is
a simple constructive initial solution, compared to the other methods which are
iterative improvement approaches. Although our results are well behind more
recent results, especially those of Caramia et al., interestingly our fuzzy con-
structive algorithm can beat Caramia et al.’s results for data sets CAR-F-92,
CAR-S-91 and TRE-S-92.

Finally, some remarks should be made concerning the time required for our
algorithm. In doing so, it is vital that a distinction must be made between the
time taken to perform the tuning of the fuzzy models and the time taken to
construct a solution once each fuzzy model is fixed. Once the fuzzy model is
fixed, the time taken to construct a solution is no longer (in a practical sense)
than the time taken when using a single heuristic ordering: that is, the additional
time taken for the fuzzy system to perform its ordering is negligible. Indeed,
there is some evidence (which we are investigating further at present) that, once
the fuzzy model is fixed, solutions are constructed more quickly using the fuzzy
ordering. It seems that this may be due to the lack of required backtracking when
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the fuzzy ordering is used. However, the time taken in tuning each fuzzy model
is very significant. Of course, if a generic fuzzy model could be found—that is a
single fuzzy model that produces good quality initial solutions for all data sets
(including the 12 benchmark data sets used here and novel data sets)—then the
approach could be widely adopted, with significant impact.

5 Conclusions

As far as the authors are aware, no other published work has described the
exploration of fuzzy methodologies for simultaneously ordering exams in the
construction of examination timetables. In this study, we have investigated a
fuzzy methodology to use multiple heuristic ordering simultaneously. Our eval-
uation indicates that better solutions can be produced by this approach when
compared against each of the heuristics alone. This is the key point of the paper.
Our method does not produce any of the best benchmark results, but we only
used a limited number of heuristics to demonstrate the potential. This paper has
established that there is significant potential in taking this approach further by
adding more heuristics.

We are encouraged by these promising initial results and aim to extend this
work further. Future research avenues may include:

– investigating other combinations of heuristic ordering (using combinations
of three or more heuristics),

– investigating different sets of fuzzy rules and fuzzy membership functions,
– exploring the use of more sophisticated optimization algorithms when tuning

these and other fuzzy models, and
– testing the algorithms on course timetabling problems.
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