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Abstract. We present tableau calculi for some logics of default reason-
ing, as defined by Kraus, Lehmann and Magidor. We give a tableau proof
procedure for preferential and cumulative logics. Our calculi are obtained
by introducing suitable modalities to interpret conditional assertions.
Moreover, they give a decision procedure for the respective logics and
can be used to establish their complexity.

1 Introduction

In the early 90’ [11] Kraus, Lehmann and Magidor (from now on KLM) pro-
posed a formalization of non-monotonic reasoning that was early recognized as
a landmark. Their work stemmed from two sources: the theory of nonmonotonic
consequence relations initiated by Gabbay [6] and the preferential semantics pro-
posed by Shoham [13] as a generalization of Circumscription. Their works lead to
a classification of nonmonotonic consequence relations, determining a hierarchy
of stronger and stronger systems.

According to the KLM framework, defeasible knowledge is represented by
a (finite) set of nonmonotonic conditionals or assertions of the form A |∼ B
whose reading is normally (or typically) the A’s are B’s. The operator ”|∼”
is nonmonotonic, in the sense that A |∼ B does not imply A ∧ C |∼ B. For
instance, a knowledge base K may contain the following set of conditionals:
adult |∼ work, adult |∼ taxpayer, student |∼ adult, student |∼ ¬work, student |∼
¬taxpayer, retired |∼ adult, retired |∼ ¬work, whose meaning is that adults typ-
ically work, adults typically pay taxes, students are typically adults, but they
typically do not work, nor do they pay taxes, and so on. Observe that if |∼
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were interpreted as classical (or intuitionistic) implication, we simply would get
student |∼ ⊥, retired |∼ ⊥, i.e. typically there are not students, nor retired peo-
ple, thereby obtaining a trivial knowledge base. One can derive new conditional
assertions from the knowledge base by means of a set of inference rules.

In KLM framework, the set of adopted inference rules defines some funda-
mental types of inference systems, namely, from the weakest to the strongest:
Cumulative (C) , Loop-Cumulative (CL), Preferential (P) and Rational logic
(R). All these systems allow one to infer new assertions from K without incur-
ring in the trivialising conclusions of classical logic: regarding our example, in
none of them, one can infer student |∼ work or retired |∼ work. In cumulative
logics (both C and CL) one can infer adult ∧ student |∼ ¬work (giving prefer-
ence to more specific information), in Preferential logic P one can also infer that
adult |∼ ¬retired (i.e. typical adults are not retired). In the rational case R, if
one further knows that adult �|∼ ¬married (i.e. it is not the case the adults are
typically unmarried), one can also infer that adult ∧ married |∼ work.

From a semantic point of view, to the each logic (C, CL, P, R) corresponds
one kind of models, namely, possible-world structures equipped with a preference
relation among worlds or states. More precisely, for P we have models with a
preference relation (an irreflexive and transitive relation) on worlds. For the
stronger R the preference relation is further assumed to be modular. For the
weaker logic CL, the preference relation is defined on states, where a state can
be identified, intuitively, with a set of worlds. In the weakest case of C, the
preference relation is on states, as for CL, but it is no longer assumed to be
transitive. In all cases, the meaning of a conditional assertion A |∼ B is that B
holds in the most preferred worlds/states where A holds.

In KLM framework the operator ”|∼” is considered as a meta-language oper-
ator, rather than as a connective in the object language. However, it has been
readily observed that KLM systems P and R coincide to a large extent with the
flat (i.e. unnested) fragments of well-known conditional logics, once we interpret
the operator ”|∼” as a binary connective [3], [2], [10].

A recent result by Halpern and Friedman [4] has shown that preferential
and rational logic are quite natural and general systems: surprisingly enough,
the axiom system of preferential (likewise of rational logic) is complete with
respect to a wide spectrum of semantics, from ranked models, to parametrized
probabilistic structures, ε-semantics and possibilistic structures. The reason is
that all these structures are examples of plausibility structures and the truth in
them is captured by the axioms of preferential (or rational) logic. These results,
and their extensions to the first order setting [5] are the source of a renewed
interest in KLM framework.

Even if KLM was born as an inferential approach to nonmonotonic reasoning,
curiously enough, there has not been much investigation on deductive mecha-
nisms for these logics. In short, the state of the art is as follows:

- Lehmann and Magidor [12] have proved that validity in P is coNP-complete.
Their decision procedure for P is more a theoretical tool than a practical al-
gorithm, as it requires to guess sets of indexes and propositional evaluations.



668 L. Giordano et al.

They have also provided another procedure for P that exploits its reduction
to R. However, the reduction of P to R breaks down if boolean combinations
of conditionals are allowed, indeed it is exactly when such combinations are
allowed that the difference between P and R arises.

- A tableau proof procedure for C has been given in [1]. Their tableau proce-
dure is fairly complicated; it uses labels and it contains a cut-rule. Moreover,
it is not clear how it can be adapted to CL and P.

- In [7] it is defined a labelled tableau calculus for the conditional logic CE
whose flat fragment (i.e. without nested conditionals) corresponds to P.
That calculus needs a fairly complicated loop-checking mechanism to ensure
termination. It is not clear if it matches complexity bounds and if it can be
adapted in a simple way to CL.

- Finally, decidability of P and R has also been obtained by interpreting
them into standard modal logics, as it is done by Boutilier [2]. However, his
mapping is not very direct and natural, as we discuss below.

- To the best of our knowledge, for CL no decision procedure and complexity
bound was known before the present work.

In this work we begin our investigation of tableau procedures for KLM logics,
by considering the cases of P and CL. The investigation of tableau calculi for
the weakest C and the strongest R is left for future work. Our approach is
based on a novel interpretation of P into modal logics. As a difference with
previous approaches (e.g. Lamarre [3] and Boutillier [2]), that take S4 as the
modal counterpart of P, we consider here modal logic G. Our tableau method
provides a sort of run-time translation of P into modal logic G.

The idea is simply to interpret the preference relation as an accessibility
relation: a conditional A |∼ B holds in a model if B is true in all A-worlds w that
are minimal. An A-world is minimal if all smaller worlds are not A-worlds. The
relation with modal logic G is motivated by the fact that we assume, following
KLM, the so-called smoothness condition, which is related to the well-known
limit assumption. This condition ensures indeed that A-minimal worlds exist, by
preventing an infinitely descending chain of worlds. This condition is therefore
ensured by the finite-chain condition on the accessibility relation (as in modal
logic G). Therefore, our interpretation of conditionals is different from the one
proposed by Boutilier, who rejects the smoothness condition and then gives a
less natural (and more complicated) interpretation of P into modal logic S4.

However, we do not give a formal translation of P into G, we appeal to the
correspondence as far as it is needed to derive the tableau rules for P. For
deductive purposes, we believe that our approach is more direct, intuitive, and
efficient than translating P into G and then using a calculus for G.

We are able to extend our approach to the case of CL by using a second
modality which takes care of states. More precisely, we show that we can map
CL-models into P-models with an additional modality. The very fact that one
can interpret CL into P by means of an additional modality does not seem to
be previously known and might be of independent interest. In both cases, P
and CL, we can define a decision procedure and obtain also a complexity bound
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for these logics, namely that they are both coNP-complete. In case of CL this
bound is new, to the best of our knowledge.

2 KLM Logics

We briefly recall the axiomatizations and semantics of the two KLM systems we
consider: P and CL. For a complete picture of KLM systems, see [11].

2.1 Preferential Logic P

The language of KLM logics consists just of conditional assertions A |∼ B.
We consider a richer language allowing boolean combinations of assertions and
propositional formulas. Our language L is defined from a set of propositional
variables ATM , the boolean connectives and the conditional operator |∼. We
use A, B, C, ... to denote propositional formulas, whereas F, G, ... are used to de-
note all formulas (even conditionals); Γ, ∆, ... represent sets of formulas, whereas
X, Y, ... denote sets of sets of formulas. The formulas of L are defined as follows:
if A is a propositional formula, A ∈ L; if A and B are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L.

The axiomatization of P consists of all axioms and rules of propositional
calculus together with the following axioms and rules (notice that � denotes
provability in the propositional calculus):

• REF. A |∼ A (reflexivity)
• LLE. If � A ↔ B, then (A |∼ C) → (B |∼ C) (left logical equivalence)
• RW. If � A → B, then (C |∼ A) → (C |∼ B) (right weakening)
• CM. ((A |∼ B) ∧ (A |∼ C)) → (A ∧ B |∼ C) (cautious monotonicity)
• AND. ((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C)
• OR. ((A |∼ C) ∧ (B |∼ C)) → (A ∨ B |∼ C)

The semantics of P is defined by considering possible world structures with
a preference relation (a strict partial order) w < w

′
whose meaning is that w

is preferred to w
′
. We have that A |∼ B holds in a model M if B holds in all

minimal worlds (with respect to the relation <) where A holds. This definition
makes sense provided minimal worlds for A exist whenever there are A-worlds.
This is ensured by the smoothness condition in the next definition.

Definition 1 (Semantics of P, Definition 16 in [11]). A preferential model
is a triple M = 〈W , <, V 〉 where: W is a non-empty set of items called worlds;
< is an irreflexive and transitive relation on W; V is a function V : W �−→
pow(ATM ), which assigns to every world w the set of atoms holding in that
world. We define the truth conditions for a formula F as follows:

• If F is a boolean combination of formulas, M, w |= F is defined as for
propositional logic;

• Let A be a propositional formula; we define Min<(A) = {w ∈ W | M, w |= A
and ∀w

′
.w

′
< w implies M, w

′ �|= A};
• M, w |= A |∼ B if for all w

′ ∈ Min<(A) we have M, w
′ |= B.
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The relation < satisfies the following condition, called smoothness: if M, w |= A
then w ∈ Min<(A) or ∃w

′ ∈ Min<(A) such that w
′
< w.

We say that a formula F is valid in a model M, denoted with M |= F , if
M, w |= F for every w ∈ W. A formula is valid if it is valid in every model M.

Notice that the truth conditions for conditional formulas are given with re-
spect to single possible worlds for uniformity sake. Since the truth value of a con-
ditional only depends on global properties of M, we have that: M, w |= A |∼ B
iff M |= A |∼ B.

Now we introduce the language LP of the calculus introduced in the next
section. LP extends L by formulas of the form �A, where A is propositional,
whose intuitive meaning is as follows: �A holds in a world w if A holds in all
the worlds w

′
such that w

′
< w:

Definition 2 (Truth condition of modality �). We define the truth condi-
tion of a boxed formula as follows:

M, w |= �A if for every w
′ ∈ W if w

′
< w then M, w

′ |= A

It is easy to see that � has the properties of the modal system G: the acces-
sibility relation (defined as xRy if y < x) is transitive and does not have infinite
ascending chains. From definition of Min<(A) in Definition 1 above, and Defi-
nition 2, it follows that for any formula A, w ∈ Min<(A) iff M, w |= A ∧ �¬A.

2.2 Loop Cumulative Logic CL

The next KLM logic we consider is CL, weaker than P. The axiomatization of
CL can be obtained from the axiomatization of P by removing the axiom OR
and by adding the following infinite set of axioms LOOP:

(LOOP ) (A0 |∼ A1) ∧ (A1 |∼ A2)...(An−1 |∼ An) ∧ (An |∼ A0) → (A0 |∼ An)

Notice that these axioms are derivable in P.

Definition 3 (Loop-cumulative models, Definition 13 in [11]). A loop-
cumulative model is a tuple M = 〈S, l, <, V 〉. S is a set, whose elements are
called states. Given a set U of possible worlds, l : S �→ 2U is a function that
labels every state with a nonempty set of worlds. < is an irreflexive and transitive
relation on S. V is a valuation function V : U �−→ pow(ATM ), which assigns to
every world w the atoms holding in that world. For s ∈ S and A propositional,
we let s |≡ A if ∀w ∈ l(s), w |= A. Let Min<(A) be the set of minimal states
s such that s |≡ A. We define M, s |≡ A |∼ B if ∀s

′ ∈ Min<(A), s
′ |≡ B. We

assume that < satisfies the smoothness condition.

Here again, we define satisfiability of conditionals with respect to states rather
than to models for uniformity reasons. Indeed, a conditional is satisfied by a state
of a model only if it is satisfied by all the states of that model, hence by the
whole model. We show that we can map loop-cumulative models into preferen-
tial models extended with an additional accessibility relation R. We call these
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preferential models CL-preferential structures. The idea is to represent states as
sets of possible worlds related by R in such a way that a formula is satisfied
in a state s just in case it is satisfied in all possible worlds w

′
accessible from

its corresponding w. The syntactic counterpart of the extra accessibility relation
R is a modality L. Given a loop-cumulative model M and the corresponding
CL-structure M′

, M, s |≡ A iff for its corresponding w, M′
, w |= LA.

As we will see, this mapping enables us to use a variant of the tableau calculus
for P to deal with system CL. As for P, the tableau calculus for CL will use
boxed formulas. Thus, the formulas that appear in the tableau for CL belong
to the language LL obtained from L as follows: (i) if A is propositional, then
A ∈ LL; LA ∈ LL; �¬LA ∈ LL; (ii) if A, B are propositional, then A |∼ B ∈ LL;
(iii) if F is a boolean combination of formulas of LL, then F ∈ LL. Observe
that the only allowed combination of � and L is in formulas of the form �¬LA
where A is propositional.

We can map loop-cumulative models into preferential structures with an ad-
ditional accessibility relation as defined below:

Definition 4 (CL-preferential structures). A model has the form M =
〈W , R, <, V 〉 where: W, <, and V are defined as in Definition 1, and R is a
serial accessibility relation. We add to the truth conditions for preferential mod-
els in Definition 1 the following clause:

M, w |= LA if for all w
′

wRw
′
implies M, w

′ |= A

Moreover, we need to change the truth condition for conditional formulas as
follows: M, w |= A |∼ B if for all w

′ ∈ Min<(LA) we have M, w
′ |= LB.

We can prove the following proposition:

Proposition 1. A set of conditional formulas {(¬)A1 |∼ B1, . . . , (¬)An |∼ Bn}
is satisfiable in a loop-cumulative model 〈S, l, <, V 〉 iff it is satisfiable in a CL-
preferential model 〈W, R, <, V 〉.

3 The Tableau Calculus for Preferential Logic P

In this section we present a tableau calculus for P called T P, then we analyze
it in order to obtain a decision procedure for this logic. We also give an explicit
complexity bound for P.

Definition 5 (The calculus T P). The rules of the calculus manipulate sets
of formulas Γ . We write the shorthand Γ, F to denote Γ ∪{F}. Moreover, given
Γ we define the following notation:

– Γ � = {�A | �A ∈ Γ} −Γ �↓
= {A | �A ∈ Γ} −Γ |∼+

= {A |∼ B | A |∼ B ∈ Γ}
– Γ |∼−

= {¬(A |∼ B) | ¬(A |∼ B) ∈ Γ} − Γ |∼± = Γ |∼+ ∪ Γ |∼−

The tableau rules are given in Figure 1. Due to space limitations, we only give
propositional rules for ¬ and ∧. We say that a tableau is closed if all its leaves
contain both F and ¬F , for a formula F ∈ LP .
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(AX) Γ, F,¬F (¬)
Γ, ¬¬F

Γ, F

(|∼+)
Γ, A |∼ B

Γ,¬A, A |∼ B Γ,¬�¬A, A |∼ B Γ, B, A |∼ B

(|∼−)
Γ,¬(A |∼ B)

A, �¬A,¬B, Γ |∼±
(�−)

Γ,¬�¬A

Γ �, Γ �↓
, Γ |∼±, A, �¬A

(∧+)
Γ, F ∧ G

Γ, F, G
(∧−)

Γ,¬(F ∧ G)

Γ, ¬F Γ,¬G

Fig. 1. Tableau system T P

Fig. 2. A derivation of ((adult |∼ work) ∧ (retired |∼ adult) ∧ (retired |∼ ¬work)) →
(adult |∼ ¬retired). For readability, we use a to denote adult, r for retired, and so on.

Our tableau calculus T P is based on a runtime translation of conditional
assertions into modal logic G. As we have seen this allows a characterization
of the minimal worlds satisfying a formula A (i.e., the worlds in Min<(A))
as the worlds w satisfying the formula A ∧ �¬A. It is tempting to provide a
full translation of the conditionals in the logic G, and then to use the standard
tableau calculus for G. To this purpose, we can exploit the transitivity properties
of G frames to capture the fact that conditionals are global to all worlds by
the formula �(A ∧ �¬A → B). Hence, the overall translation of a conditional
formula A |∼ B could be the following one: (A∧�¬A → B)∧�(A∧�¬A → B).
However, there are significant differences between the calculus resulting from the
translation and our calculus.

Using the standard tableau rules for G on the translation, we get the rule
(|∼+) as a derived rule. Instead, the rule for dealing with negated conditionals
(which are translated in G into a disjunction of two formulas, namely (A∧�¬A∧
¬B) ∨ �(A ∧ �¬A ∧ ¬B)), is rather different.
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Let us first observe that the rule (|∼−) we have introduced precisely cap-
tures the intuition that: (1) conditionals are global (all conditionals are kept
in the conclusion of the rule) and (2) when moving to a new minimal world,
all the boxed formulas (positive and negated) are removed. Conversely, when
the tableau rules for G are applied to the translation of the negated condition-
als, we get two branches (due to the disjunction). None of the branches can
be eliminated. In both branches all the boxed formulas are kept, while negated
conditionals are erased. This is quite different from our rule (|∼−), and it is not
that obvious that the calculus obtained by the translation of P conditionals in
G is equivalent to T P.

Also observe that, from the semantic point of view, the model extracted from an
open tableau has the structure of a forest, while the model constructed by applying
the tableau for G to the translation of conditionals has the structure of a tree.
This difference is due to the fact that the above translation of P in G uses the
same modality � both for capturing the minimality condition and for modelling
the fact that conditionals are global. For this reason, a translation to G as the one
proposed above for P, would not be applicable to the cumulative logic C, as the
relation < is not transitive in C. Moreover, the treatment of both the logics C and
CL would anyhow require the addition to the language of a new modality to deal
with states. The advantage of the runtime translation we have adopted is that of
providing a uniform approach to deal with the different logics.

The system T P is sound and complete with respect to the semantics.

Theorem 1 (Soundness of T P). The system T P is sound with respect to the
semantics, i.e. if there is a closed tableau for a set Γ , then Γ is unsatisfiable.

To prove the completeness of T P we have to show that if F is unsatisfiable,
then there is a closed tableau starting with F . We prove the contrapositive, that
is: if there is no closed tableau for F , then there is a model satisfying F . This
proof is inspired by [8]. First of all, we distinguish static and dynamic rules.
The rules (|∼−) and (�−) are called dynamic, since their conclusion represents
another world with respect to the premise; the other rules are called static, since
the world represented by premise and conclusion(s) is the same. Moreover, we
have to introduce the saturation of a set of formulas Γ . Given a set of formulas
Γ , we say that it is saturated if all the static rules have been applied.

Definition 6 (Saturated sets). A set of formulas Γ is saturated with respect
to the static rules if the following conditions hold:

– if F ∧ G ∈ Γ then F, G ∈ Γ ;
– if ¬(F ∧ G) ∈ Γ then ¬F ∈ Γ or ¬G ∈ Γ ;
– if ¬¬F ∈ Γ then F ∈ Γ ;
– if A |∼ B ∈ Γ then ¬A ∈ Γ or ¬�¬A ∈ Γ or B ∈ Γ .

Lemma 1. Given a consistent finite set of formulas Γ , there is a consistent,
finite, and saturated set Γ

′ ⊇ Γ .



674 L. Giordano et al.

By Lemma 1, we can think of having a function which, given a consistent
set Γ , returns one fixed consistent saturated set, denoted by SAT(Γ ). Moreover,
we denote by APPLY(Γ, F ) the result of applying to Γ the rule for the principal
connective in F . In case the rule for F has more conclusions (the case of a branch-
ing), we suppose that the function APPLY chooses one consistent conclusion in
an arbitrary but fixed manner.

Theorem 2 (Completeness of T P). T P is complete with respect to the se-
mantics.

Proof. As mentioned above, we assume that no tableau for Γ0 is closed, then we
construct a model for Γ0. We build X , the set of worlds of the model, as follows:

1. initialize X = {SAT(Γ0)};
while X contains unresolved nodes do

2. choose an unresolved Γ from X;
3. for each formula ¬(A |∼ B) ∈ Γ

3a. let Γ¬(A|∼B) =SAT(APPLY(Γ, ¬(A |∼ B)));
3b. if Γ¬(A|∼B) �∈ X then X = X ∪ {Γ¬(A|∼B)};

4. for each formula ¬�¬A ∈ Γ , let Γ¬�¬A =SAT(APPLY(Γ, ¬�¬A));
4a. add the relation Γ¬�¬A < Γ ;
4b. if Γ¬�¬A �∈ X then X = X ∪ {Γ¬�¬A}.

5. mark Γ as resolved;
endWhile;

This procedure terminates, since the number of possible sets of formulas that
can be obtained by applying T P’s rules to an initial finite set Γ is finite. We
construct the model M = 〈X, <X , V 〉 for Γ as follows:

• <X is the transitive closure of the relation <;
• V (Γ ) = {P | P ∈ Γ ∩ ATM }

In order to show that M is a preferential model for Γ , we prove the following:

Fact 1. The relation <X is acyclic.

Fact 2. For all formulas F and for all sets Γ ∈ X we have that:

(i) if F ∈ Γ then M, Γ |= F ; (ii) if ¬F ∈ Γ then M, Γ �|= F .

By the above Facts the proof of the completeness of T P is over, since M is
a model for the initial set Γ0. �

A relevant property of the calculus that will be useful to estimate the com-
plexity of logic P is the so-called disjunction property of conditional formulas:

Proposition 2 (Disjunction property). If there is a closed tableau for Γ, ¬(A
|∼ B), ¬(C |∼ D), then there is a closed tableau either for Γ, ¬(A |∼ B) or for
Γ, ¬(C |∼ D).

The reason why this property holds is that the (|∼−) rule discards all the other
formulas that could have been introduced by its previous application.
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3.1 Decision Procedure for P

In general, non-termination in tableau calculi can be caused by two different
reasons: 1. some rules copy their principal formula in the conclusion, thus can
be reapplied over the same formula without any control; 2. dynamic rules can
generate infinitely-many worlds, creating infinite branches.

Concerning the second source of non-termination (point 2.) we show that
the generation of infinite branches due to the interplay between rules (|∼+) and
(�−) cannot occur. Indeed, as we will see, the application of (�−) to a formula
¬�¬A (introduced by (|∼+)) adds the formula �¬A to the conclusion, so that
(|∼+) can no longer consistently introduce ¬�¬A. This is due to the properties
of � in G, which do not hold in other systems as K4. Furthermore, the (|∼−)
rule can be applied only once to a given negated conditional on a branch, thus
infinitely-many worlds cannot be generated on a branch.

Concerning point 1. the above calculus T P does not ensure a terminating
proof search due to (|∼+), which can be applied without any control. We ensure
the termination by putting some constraints on T P. The intuition is as follows:
one does not need to apply (|∼+) on the same conditional formula A |∼ B more
than once in the same world, therefore we keep track of positive conditionals
already used by moving them in an additional set Σ in the conclusions of (|∼+),
and restrict the application of this rule to unused conditionals only. The dynamic
rules re-introduce formulas from Σ in order to allow further applications of (|∼+)
in the other worlds. This machinery is standard.

(|∼+)
Γ, A |∼ B; Σ

Γ,¬A; Σ, A |∼ B Γ,¬�¬A; Σ, A |∼ B Γ, B; Σ, A |∼ B

(|∼−)
Γ,¬(A |∼ B); Σ

Σ, A, �¬A,¬B, Γ |∼±; ∅
(�−)

Γ, ¬�¬A;Σ

Σ, Γ �, Γ �↓
, Γ |∼±, A, �¬A; ∅

Fig. 3. The calculus T PT. Propositional rules are as in Figure 1 addicting Σ.

Theorem 4 below shows that no additional machinery is needed to ensure
termination. Notice that this would not work in other systems (for instance, in
K4 one needs a more sophisticated loop-checking as described in [9]).

The terminating calculus T PT is presented in Figure 3. The calculus T PT is
sound and complete with respect to the semantics: the soundness is immediate,
and the completeness easily follows from the fact that two successive applications
of (|∼+) to the same conditional in the same world are useless.

Theorem 3 (Soundness and completeness of T PT). The calculus T PT is
sound and complete w.r.t. the semantics.
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In order to prove that T PT ensures a terminating proof search, we define
a complexity measure on a set of formulas Γ and the corresponding set of
positive conditionals already used Σ, denoted by m(Γ ; Σ), which consists of four
measures c1, c2, c3 and c4 in a lexicographic order. We write A |∼ B ∈+ Γ (resp.
A |∼ B ∈− Γ ) if A |∼ B occurs positively (resp. negatively) in Γ , where positive
and negative occurrences are defined in the standard way. We also denote by
cp(F ) the complexity of a formula F .

Definition 7 (Lexicographic order). We define m(Γ ; Σ) = 〈c1, c2, c3, c4〉
where: c1 =| {A |∼ B ∈− Γ} |, c2 =| {A |∼ B ∈+ Γ ∪ Σ | �¬A �∈ Γ} |,
c3 =| {A |∼ B ∈+ Γ} |, and c4 =

∑
F∈Γ cp(F ). We consider the lexicographic

order given by m(Γ ; Σ).

Intuitively, c2 represents the number of positive conditionals which can still
create a new world. The application of (�−) reduces c2: indeed, if (|∼+) is applied
to A |∼ B, this application introduces a branch containing ¬�¬A; when a new
world is generated by an application of (�−) on ¬�¬A, it contains A and �¬A.
If (|∼+) is applied to A |∼ B once again, then the conclusion where ¬�¬A is
introduced is closed, by the presence of �¬A in that branch. c3 is the number
of conditionals not yet considered in that branch.

Theorem 4 (Termination of T PT). T PT ensures a terminating proof search.

Proof sketch. Let Γ
′
; Σ

′
be obtained by an application of a rule of T PT to a

premise Γ ; Σ. It can be easily proved that m(Γ
′
; Σ

′
) < m(Γ ; Σ). �

We conclude this section with a complexity analysis of T PT, in order to
prove that validity in P is coNP-complete. First of all, notice that we could
take advantage of the disjunction property (Proposition 2). By this property we
can reformulate the (|∼−) rule as follows:

Γ, ¬(A |∼ B); Σ
(|∼−)

Σ, A, �¬A, ¬B, Γ |∼+
; ∅

This rule reduces the length of a branch at the price of making the proof
search more non-deterministic.

We give a non-deterministic algorithm for testing satisfiability in P that: (i)
takes a set of formulas Γ as input; (ii) returns SAT iff Γ is satisfiable.

By the disjunction property, we can consider a negated conditional at a time.
Indeed, for Γ, ¬(A |∼ B), ¬(C |∼ D) to be satisfiable, it is sufficient that both
Γ, ¬(A |∼ B) and Γ, ¬(C |∼ D), separately considered, are satisfiable. For each
negated conditional, the algorithm GENERAL-CHECK applies the rule (|∼−) to it,
and calls the algorithm CHECK on the resulting set of formulas. CHECK is a non-
deterministic algorithm that tests satisfiability in P of a set of formulas not
containing negated conditionals. One can see that, when a negated conditional at
a time is considered, a set of formulas is satisfiable in a preferential model if and
only if it is satisfiable in a linearly ordered model (this can be proven directly, by
transforming our canonical model in Theorem 2 into a linearly ordered model,
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and has also been proved in [12]). The algorithm CHECK verifies if there is a
linearly ordered model satisfying the initial set of formulas. To this purpose, it
makes use of a stronger version of the rule (�−) in which, roughly speaking,
each branch coming from the conclusion represents a possible linear model of
the premise. The strengthened version of (�−) is the following (we use Γ �−

−i to
denote {¬�¬Aj ∨ Aj | ¬�¬Aj ∈ Γ ∧ j �= i}):

Γ, ¬�¬A1, ¬�¬A2, ..., ¬�¬An
(�−)

Γ |∼±, Γ �, Γ �↓
, A1, �¬A1, Γ

�−

−1 | ... | Γ |∼±, Γ �, Γ �↓
, An, �¬An, Γ �−

−n

An important feature of this reformulation with respect to the original (�−)
rule is that no backtracking on the choice of the formula ¬�¬Ai is needed as all
alternatives are kept in the conclusion.

We call LT PT the calculus obtained by replacing in T PT the initial rules
(|∼−) and (�−) with the ones reformulated above. We can prove that LT PT

is sound and complete w.r.t. the preferential models by proving the following
proposition:

Proposition 3. There is a closed tableau for Γ in T PT iff there is a closed
tableau for Γ in LT PT.

Let EXPAND(Γ ) be a procedure that returns one saturated expansion of Γ
w.r.t. all static rules. In case of a branching rule, EXPAND nondeterministically
selects (guesses) and applies one conclusion of the rule. The algorithm is defined
below; in brackets we give the complexity of each operation, considering that
n =| Γ |.

CHECK(Γ )
1. Γ ←− EXPAND(Γ ); (O(n))
2. if Γ contains an axiom then return UNSAT; (O(n2))
3. if {¬�¬A | ¬�¬A ∈ Γ} = ∅ then return SAT;
4. else if ({¬�¬A | ¬�¬A ∈ Γ} �= ∅) then

4a. let {¬�¬A1, . . . , ¬�¬Ak} be all the negated boxed conditionals in Γ ;
4b. choose i = 1, . . . , k;
4c. CHECK(APPLY(Γ, ¬�¬Ai));

The above procedure allows to decide the satisfiability of a set of formulas
(not containing negated conditionals). To see that the decision problem is in
NP, observe that: (1) the complexity of each call to the procedure EXPAND is
polynomial. Indeed, as the number of different subformulas is at most O(n),
EXPAND makes at most O(n) applications of the static rules. (2) The test that a
set Γ (of size O(n)) of formulas contains an axiom has at most complexity O(n2).
(3) The number of recursive calls to the procedure CHECK is at most O(n), since
in a branch the rule (�−) can be applied only once to each formula ¬�¬Ai, and
the number of different negated box formulas is at most O(n).

Let us now define a procedure to decide whether an arbitrary set of formulas
Γ (possibly containing negated conditionals) is satisfiable:
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GENERAL-CHECK(Γ )
1. Γ ←− EXPAND(Γ ); (O(n))
2. let ¬(A1 |∼ B1), . . . , ¬(Ak |∼ Bk) be all negated conditionals in Γ ;

2.1. for all i = 1, . . . , k result[i] ←− CHECK(APPLY(Γ, ¬(Ai |∼ Bi))) ;
3. if for all i = 1, . . . , n result[i]==SAT then return SAT;

else return UNSAT;

By the subformula property, the number of negated conditionals which can
occur in Γ is at most O(n). Hence, the procedure GENERAL-CHECK calls to the
algorithm CHECK at most O(n) times.

Theorem 5 (Complexity of P). The problem of deciding validity for prefer-
ential logic P is coNP-complete.

Proof. The procedure GENERAL-CHECK allows the satisfiability of a set of formu-
las of logic P to be decided in nondeterministic polynomial time. The validity
problem for P is therefore in coNP. As coNP-hardness is immediate (this logic
includes classical propositional logic), we conclude that the validity problem for
logic P is coNP-complete. �

This result matches with the known complexity results for logic P [12]. Due to
the coNP lower bound, the above method provides a computationally optimal
reasoning procedure for logic P.

4 The Tableau Calculus for Loop Cumulative Logic CL

In this section we develop a tableau calculus T CL for CL, and we show that
it can be turned into a terminating calculus. This provides a decision procedure
for CL and a coNP-membership upper bound for validity in CL.

The calculus T CL can be obtained from the calculus T P for preferential
logics, by adding a suitable rule for dealing with the modality L. We define
Γ L↓

= {A | LA ∈ Γ}. Our tableau system T CL for CL is shown in Figure 4
and is obtained by introducing the new modality L in the rules of T P and by
adding the new rule (L−). Observe that rules (|∼+) and (|∼−) have been changed
as they introduce the modality L in front of the propositional formulas A and
B in their conclusions. The new rule (L−) is a dynamic rule.

The proof of the completeness of the calculus can be done as for the preferen-
tial case, provided we suitably modify the procedure for constructing a model for
a finite consistent set of formulas Γ of LL. First of all, we modify the definition
of saturated sets as follows:

• if A |∼ B ∈ Γ then ¬LA ∈ Γ or ¬�¬LA ∈ Γ or LB ∈ Γ

For this notion of saturated set of formulas we can still prove Lemma 1 for
language LL.

Theorem 6 (Completeness of T CL). T CL is complete with respect to the
semantics.



Analytic Tableaux for KLM Preferential and Cumulative Logics 679

(|∼+)
Γ, A |∼ B

Γ,¬LA, A |∼ B Γ,¬�¬LA, A |∼ B Γ, LB, A |∼ B
(|∼−)

Γ, ¬(A |∼ B)

LA, �¬LA,¬LB, Γ
|∼±

(L−)
Γ,¬LA

where either {¬LA} �= ∅ or Γ L↓ �= ∅
Γ L↓

,¬A
(�−)

Γ,¬�¬LA

Γ �, Γ �↓
, Γ |∼±, LA, �¬LA

Fig. 4. Tableau system T CL. If ¬LA is not in the premise of (L−) (i.e. {¬LA} = ∅)
the rule allows to step from Γ to Γ L↓

. The boolean rules are omitted.

Proof. We define a procedure for constructing a model satisfying a set of formulas
Γ0 ∈ LL by modifying the procedure for the preferential logic P. We add to the
procedure two new steps 4’ and 4”, between step 4 and step 5 as follows:

4’. if {¬LA | ¬LA ∈ Γ} �= ∅ then
for each ¬LA ∈ Γ , let Γ¬LA =SAT(APPLY(Γ, ¬LA));

4’ a. add the relation Γ R Γ¬LA;
4’ b. if Γ¬LA �∈ X then X = X ∪ {Γ¬LA};

4”. else if Γ L↓ �= ∅ then, let Γ ′ =SAT(APPLY(Γ, L−));
4” a. add the relation Γ R Γ ′;
4” b. if Γ ′ �∈ X then X = X ∪ {Γ ′};

This procedure terminates. We construct the model M = 〈X, RX , <X , V 〉 by
defining <X and V as in the case of P and by letting RX the relation obtained
from R above augmented with all the pairs (Γ, Γ ) such that Γ ∈ X and Γ has
no R-successor. It is easy to show that the following properties hold for M:

• for all Γ, Γ
′ ∈ X , if (Γ, Γ

′
) ∈ RX and LA ∈ Γ then A ∈ Γ

′
;

• for all formulas F and for all sets Γ ∈ X we have that: (i) if F ∈ Γ
then M, Γ |= F ; (ii) if ¬F ∈ Γ then M, Γ �|= F . �

4.1 Decision Procedure for CL

Let us now analyze the calculus T CL in order to obtain a decision procedure
for CL logic. First of all, we reformulate the calculus as we made for P, ob-
taining a system called T CLT: we reformulate the (|∼+) rule so that it ap-
plies only once to each conditional in each world, by adding of an extra set Σ.
We reformulate the other rules accordingly. Notice that the rule (L−) does not
need to be further reformulated since it can only be applied a finite number of
times. Exactly as we made for P, we consider a lexicographic order given by
m(Γ ; Σ) =< c1, c2, c3, c4 >, and easily prove that each application of the rules
of T CLT reduces this measure. Thus, T CLT ensures termination. Furthermore,
the decision algorithm for P described in section 3 can be adapted to CL. The
procedure CHECK has to be modified by introducing the following steps 4’ and
4” between steps 2 and 3:
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4’. else if {¬LA | ¬LA ∈ Γ} �= ∅ then
4’a. for all ¬LAi ∈ Γ do CHECK(APPLY(Γ, ¬LAi));

4”. else if {LA | LA ∈ Γ} �= ∅ then
4”a. CHECK(APPLY (Γ, L−));

Observe that the two recursive calls of CHECK in 4’a and 4”a do not generate
further recursive calls. By this reason, one obtains the following result:

Theorem 7 (Complexity of CL). The problem of deciding validity for CL is
coNP-complete.

5 Conclusions

In this paper, we have presented tableau calculi for some of the KLM logical
systems for default reasoning. We have given a tableau calculus for preferential
logic P and for loop-cumulative logic CL. The calculi presented give a decision
procedure for the respective logics, whose complexity is coNP for both P and
CL. We will make a detailed comparison with existing works ([1], [7], [12]) in a
full paper.

We plan to extend our calculi to the other KLM systems, namely to the weaker
C and to the stronger R. For C we conjecture that a complete calculus is given
by a variant of T CL in which the (�−) rule is weakened so that it does not
enforce the transitivity of the preferential relation <. Another development of
our work will be the extension to the first order case. The starting point will be
the analysis of first order preferential and rational logics by Friedman, Halpern
and Koller in [5].

Acknowledgements. We are grateful to the anonymous referees for their very
helpful comments.
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