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Abstract. Separation logic is a subset of the quantifier-free first order logic. It
has been successfully used in the automated verification of systems that have
large (or unbounded) integer-valued state variables, such as pipelined processor
designs and timed systems. In this paper, we present a fast decision procedure
for separation logic, which combines Boolean satisfiability (SAT) with a graph
based incremental negative cycle elimination algorithm. Our solver abstracts a
separation logic formula into a Boolean formula by replacing each predicate with
a Boolean variable. Transitivity constraints over predicates are detected from
the constraint graph and added on a need-to basis. Our solver handles Boolean
and theory conflicts uniformly at the Boolean level. The graph based algorithm
supports not only incremental theory propagation, but also constant time theory
backtracking without using a cumbersome history stack. Experimental results on
a large set of benchmarks show that our new decision procedure is scalable, and
outperforms existing techniques for this logic.

1 Introduction

Separation logic (also called difference logic) is a subset of the quantifier-free first order
logic for which efficient decision procedures exist. It has been successfully used in
the automated verification of systems that have large (or unbounded) integer-valued
state variables, such as pipelined processor designs and timed systems. Since integer
variables and arithmetic operators are not flattened into the bit vector format, separation
logic can model and verify systems at a higher abstraction level than Boolean logic. The
UCLID verifier [4], for instance, relies on the decision procedure for separation logic
as its back-end engine.

A separation logic formula contains the standard Boolean connectives as well as
separation predicates of the form (vi − vj ≤ c) where vi, vj are integer variables and
c is an integer constant. The validity of a separation logic formula can be checked
by translating it to an equi-satisfiable Boolean formula, which in turn is checked by
a Boolean SAT solver. Many existing techniques took this approach to leverage the
recent advances of Boolean SAT algorithms, with differences only in the timing of
the transformation and in the Boolean encoding methods. In particular, they can be
classified as either eager or lazy depending on when the transformation happens.

In the eager approaches [4, 18, 16, 19], separation logic formulae are converted to
equi-satisfiable Boolean formulae in a single step. The two existing encoding methods
used during the transformation are small domain encoding and per constraint encoding.
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In small domain encoding, integer variables and arithmetic operators are bit-blasted
with a sufficiently large vector size. In per constraint encoding, the formula is abstracted
by replacing each predicate with a Boolean variable, and then augmented by adding all
possible transitivity constraints over predicates. In addition, a hybrid method can be
used to combine the strength of these two encoding schemes. A previous experimental
study [16] showed that per constraint encoding based approach is often faster than small
domain encoding. However, the complete set of transitivity constraints is added in one
shot regardless of whether they are needed or not.

In the lazy approaches [2, 1, 8, 9, 3], transitivity constraints are added only dynami-
cally on a “need-to” basis to augment the Boolean skeleton. Whenever the assignment
to the Boolean skeleton is not consistent with the separation predicates, a transitivity
constraint is added to eliminate the inconsistency before SAT search is resumed. Lazy
approaches exploit the fact that transitivity constraints are often highly redundant and
some of them may never be needed in solving the validity problem.

Deciding separation logic is an NP-complete problem [13]. However, experience
with Boolean SAT solvers shows that practically efficient search heuristics often ex-
ist even for NP-complete problems. For example, the recent advances of DPLL SAT
solvers (Davis-Putnam-Logemann-Loveland [7]) have led to their widespread applica-
tion in industry settings, e.g. in verification of pipelined microprocessors. The two tech-
nical breakthroughs responsible for much of the performance improvement are (1) con-
flict analysis based learning and non-chronological backtracking [17] and (2) watched
literal based fast Boolean Constraint Propagation (BCP) [11, 10]. These two parts, how-
ever, remain the weak links in separation logic solvers based on the lazy approach.

In this paper, we propose a procedure for lazily deciding separation logic by com-
bining a DPLL Boolean SAT procedure with an efficient graph algorithm in the style
of recent SAT Modulo Theory (SMT) solvers. Our emphasis is on the efficient imple-
mentation of conflict analysis (for both Boolean and theory conflicts) and on the data
structure that supports fast theory backtracking. Our method maintains and incremen-
tally updates a constraint subgraph for all active separation constraints. The theory part
only receives assignments from the Boolean part and detects conflicts; it does not per-
form exhaustive theory propagation nor feed back implications. Theory conflicts are
removed by augmenting the Boolean formula with conflicting clauses. Our procedure
is both sound and complete; it terminates as soon as a consistent assignment is found or
all possible cases are explored.

A major contribution of this paper is our fast theory propagation and backtracking
algorithm, which not only prunes theory constraints incrementally, but also performs
constant time backtracking. Unlike the existing techniques in [2, 9, 3, 6], we do not need
expensive book-keeping on the constraint graph for (non-chronological) backtracking,
nor do we need a history stack to store any of its previous states. In fact an analogy ex-
ists between our graph-based constraint propagation (GCP) algorithm and the watched
literal based Boolean constraint propagation (BCP) in Chaff [11], in that both have
constant time backtracking.

In [3], an incremental and layered procedure for deciding linear arithmetic logic was
proposed for the MathSat solver. It includes a separation logic solver based on incre-
mental Bellman-Ford algorithm for detecting theory conflicts, but no further details of
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the algorithm are available in [3] or related papers. In particular, it is not clear how their
theory backtracking is implemented and what the backtracking cost is.

The more recent work by Cotton [6] also has an incremental negative cycle detection
algorithm, but is significantly different from ours in backtracking. In the broader area,
the work by Ramalingam et al. [15] is the first dynamic algorithm for arbitrary edge
weighted graphs that has a per edge complexity bound better than that of Bellman-
Ford. The cycle detection algorithm in our approach has the same complexity bound as
[15]. In addition to incremental cycle elimination, we propose several optimizations for
its tighter integration with the Boolean SAT solver and for fast backtracking.

In [9], a DPLL(T) framework was proposed for SAT modulo theories, but including
only EUF logic. Recently, the DPLL(T) approach has been extended to separation logic
[12]. They perform exhaustive theory propagation, making the algorithm quite differ-
ent from ours. We have implemented a variant of [12] on top of our own solver; our
experiments show that this addition can further improve the performance of our solver
on examples where theory conflicts play a larger role.

We also provide in this paper experimental comparisons of our solver with the latest
versions of both DPLL(T) and MathSAT, as well as other solvers including ICS [8],
UCLID [4], and TSAT++ [1]. The results show that our new algorithm outperforms
these existing techniques, particularly on harder test cases.

The rest of the paper is organized as follows. We give technical background in Sec-
tion 2, describing separation logic, the transformation to SAT, and the constraint sub-
graph. We then give the overall algorithm in Section 3. Our fast GCP and incremental
negative-cycle detection algorithms are described in Section 4. We give experimental
results in Section 6, and then conclude in Section 7.

2 Separation Logic

Definition 1. A separation logic formula consists of the standard propositional con-
nectives and predicates of the form vi − vj ≤ c, where vi and vj are integer variables
and c is a constant.

To canonize the individual predicates, we impose an order on the integer variables such
that i ≤ j for all constraints of the form vi − vj ≤ c. Input formulae that do not meet
this above requirement are normalized through rewriting, before they are given to the
solver. For example, (x − y > 5) is equivalent to ¬(x − y ≤ 5), while (x − y < 5)
is equivalent to (x − y ≤ 4). For predicates in the form of x ≤ c, a common integer
variable ZERO can be added to encode the predicates into (x−ZERO ≤ c). Note that
with the implicit order on all integer variables, predicates (x−y ≤ 5) and (y−x ≤ −6)
are mapped to the same Boolean variable (P and ¬P ) instead of two.

The validity of a separation formula can be checked by a Boolean SAT solver via
transformation. The first step is to abstract the original formula φ into a Boolean skele-
ton φbool, by replacing separation predicates with fresh Boolean variables. Since tran-
sitivity constraints among predicates are removed, φbool has all the possible satisfying
assignments of φ, and possibly more. Formula φbool is put into the Conjunctive Normal
Form (CNF) before it is given to the SAT solver. A CNF formula is a conjunction of
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clauses, each of which is a disjunction of literals. A literal is a Boolean variable or its
negation.

An example of a separation logic formula is given as follows,

(x − y ≤ 2 ∨ x − z ≤ 6) ∧ (x − y ≤ 2 ∨ ¬(x − z ≤ 6))∧
(¬(x − y ≤ 2) ∨ y − z ≤ 3) ∧ (¬(x − y ≤ 2) ∨ ¬(y − z ≤ 3) ∨ w − y ≤ 10)
(¬(x − y ≤ 2) ∨ w − y ≤ 10) ,

where w, x, y and z are all integer variables. Note that this formula is already in the
CNF format. After replacing the predicates by Boolean variables as follows,

A : (x − y ≤ 2), B : (x − z ≤ 6), C : (y − z ≤ 3), D : (w − y ≤ 10)

φ is abstracted into φbool:

(A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬A ∨ D) .

Although the Boolean assignment (A, ¬B, C, D) satisfies φbool, the set of correspond-
ing separation constraints do not have a solution. In fact, (x − y ≤ 2 ∧ y − z ≤ 3) →
(x − z ≤ 5). To make the Boolean formula equi-satisfiable to φ, one must augment
φbool with transitivity constraints among separation predicates to rule out inconsistent
assignments. In the above example, we can derive the constraint A∧C → B to augment
the Boolean skeleton.

A set of separation predicates can be mapped to a weighted directed graph, called
the constraint graph. Every negative weight cycle in this graph represents a transitivity
constraint.

Definition 2. The constraint graph G of a set of separation predicates is a weighted
directed graph whose vertices correspond to integer variables and whose edges corre-
spond to predicates and their negations. In particular, (vi − vj ≤ c) corresponds to
the edge (vj , vi) with weight c, and ¬(vi − vj ≤ c) corresponds to (vi, vj) with weight
(−c − 1).

A constraint subgraph contains all the vertices but a subset of the edges of a constraint
graph. A full or partial assignment to φbool induces a constraint subgraph, which has
only those edges corresponding to the active constraints.

Theorem 1. Let Gs be the constraint subgraph induced by a (partial) assignment to
φbool. The assignment is consistent with the set of separation predicates if and only if
Gs does not have a negative weight cycle.

As an example, the constraint graph for the set of predicates {A, B, C, D} is given
in Figure 1. The positive and negative phases of each predicate are mapped to two
different edges. Such a graph implicitly encodes all the possible transitivity constraints.
The constraint subgraph corresponding to the assignment (A, ¬B, C, D) is given in
Figure 2, which has a negative weight cycle (x → z → y → x).

In the lazy approaches, transitivity constraints in Gs are added dynamically when-
ever they are needed. However, this requires a call to the negative cycle detection algo-
rithm every time a full or partial assignment is found. A standard graph-based approach
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¬A : −3
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¬C : −4
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¬B : −7

A : 2

¬D : (y − w ≤ −11)

¬C : (z − y ≤ −4)

A : (x − y ≤ 2)
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¬B : (z − x ≤ −7)
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D : (w − y ≤ 10)

D : 10

¬D : −11

Fig. 1. Constraint graph for the predicate set {A, B, C, D}
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z w

C : 3

¬B : −7

A : 2
A : (x − y ≤ 2)

¬B : (z − x ≤ −7)

C : (y − z ≤ 3)

D : (w − y ≤ 10)
D : 10

Fig. 2. Constraint subgraph induced by the assignment (A, ¬B, C, D)

for detecting negative cycles is the Bellman-Ford shortest path algorithm, which gives
negative cycles as a by-product. In practice, the number of calls to a negative cycle de-
tection procedure can be extremely large, therefore making it a potential bottleneck for
lazy separation logic solvers.

3 SLICE: The New Solver

We present a new solver called SLICE (for Separation Logic solver with Incremental
Cycle Elimination), which tightly integrates a DPLL style SAT procedure with a fast
graph-based constraint propagation algorithm. The theory part in SLICE is kept quite
passive. It only reports conflicts, but does not propagate implications back as in [12].
However, it is equipped with new data structures that support efficient propagation and
constant time backtracking.

3.1 The Overall Algorithm

The overall algorithm of SLICE can be viewed as a modification of the DPLL procedure
(Figure 3). It takes the Boolean skeleton φbool as input, and initializes the constraint sub-
graph Gs with all the vertices – one for each integer variable – but no edges. Procedure
decide() picks one Boolean variable at a time and assigns it either true or false. When all
Boolean variables are assigned and there is no conflict, it returns with SAT; if a conflict
appears before any decision is made (i.e. the decision level is 0), we declare the formula
UNSAT.
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slice_sat() {
while (1) {

if (decide()) {
while (slice_cp()==CONFLICT) {

level = conflict_analysis();
if (level < 0)
return UNSAT;

else
back_track(level);

}
}else

return SAT;
}

slice_cp() {
if (bcp()==CONFLICT)

return CONFLICT;
else if (gcp()==CONFLICT)) { //propagate constraints on graph

add_conflicting_clause(); //add new constraints on Boolean formula
return CONFLICT;

}else
return NO_CONFLICT;

}

Fig. 3. SLICE: The new decision procedure for separation logic

SLICE only makes Boolean decisions. Implications of these decisions are propa-
gated first by bcp() among Boolean clauses, then by gcp() in the constraint subgraph.
Note that the passing of implications from Boolean to theory part is one-way; there is
no feedback from gcp() to bcp(). BCP is based on unit implication, i.e. when all the
other literals are set to false in a clause, the only remaining one must evaluate to true.
GCP is based on the incremental negative cycle detection algorithm (details in Sec-
tion 4). If either of them detects a conflict, we perform conflict analysis to locate the
decision level at which the conflict is triggered. After adding a conflict clause to rule
out the same assignment in the future, the procedure backtracks non-chronologically to
the appropriate decision level and resumes the search. Procedure slice sat() terminates
as soon as a valid assignment is found or all possible cases have been explored.

3.2 Handling Conflicts

Conflicts from BCP and GCP are both handled at the Boolean level, by the same conflict
analysis procedure. Our Boolean SAT solver is based on Chaff [11], which maintains an
implication graph by recording the clause responsible for each implication (called the
antecedent) and associating it with the implied variable. BCP detects a conflict when it
finds a conflicting clause. During conflict analysis, we start from the conflicting clause
and trace backward in the implication graph, to locate a proper cut-set (e.g. the 1st
UIP in Chaff) between the decision nodes and the conflict. A conflict clause is then
derived and added to the clause database, after which the procedure backtracks non-
chronologically to the decision level where the conflict is triggered.

In GCP, we maintain a constraint subgraph to store all the active predicates, but do
not maintain any data structure to store the implication relation. Every time a predi-
cate is assigned at the Boolean level, its corresponding edge is scheduled to be added
to the constraint subgraph. GCP starts adding and propagating edges only after BCP
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finishes, in order to amortize the cost of GCP (other heuristically driven schemes are
also possible to change the ratio of calls to BCP and GCP). For each negative cycle de-
tected during the propagation, it adds a conflicting clause whose literals are the negation
of the edges on the negative cycle. Note that this particular call sequence guarantees
that the added conflicting clause is always irredundant—otherwise, BCP would have
detected the conflict. When we jump back to the Boolean level, the added conflicting
clause enables us to perform conflict analysis and non-chronological backtracking using
the same procedure, as if the conflict is detected during BCP.

We use the example in Section 2 to illustrate how conflicts are handled. Here we use
¬D@L1 to denote that Variable D is set to false at decision level 1.

– Assume that the SAT procedure makes the following decisions/implications,

¬D@L1; decision
¬A@L1; due to (¬A ∨ D)
¬B@L1; due to (A ∨ ¬B)
(A ∨ B) = false; conflict!

Note that the first line is decision and the rest are implications. By tracing back
from (A ∨ B), we find the 1st UIP (¬A@L1), add the conflict clause (A), and
backtrack to decision level 0. Backtracking restores all the assignments made to
D, A and B.

– The added clause (A) forces the SAT procedure to flip the value of A,

A@L0; due to (A)
D@L0; due to (¬A ∨ D)
C@L0; due to (¬A ∨ C)

¬B@L1; satisfiable assignment!

At this point, BCP finishes without detecting any conflict. This Boolean assignment
induces the constraint subgraph in Figure 2. However, GCP finds a negative weight
cycle due to {A, ¬B, C}, and adds a conflicting clause (¬A∨B ∨¬C). The added
clause itself represents a conflict in the Boolean part, therefore triggers the 1st UIP
conflict analysis. After adding a conflict clause (B), we backtrack again to decision
level 0.

– The added clause (B) forces the SAT procedure to flip the value of B.

A@L0; due to (¬A);
D@L0; due to (¬A ∨ D);
C@L0; due to (¬A ∨ C);
B@L0; due to (B);

Another call to GCP confirms that this is a consistent assignment; therefore, the
separation logic formula is satisfiable.

We should note that both the conflicting clauses added for negative cycles and the
conflict clauses learned from conflict analysis can be made volatile; that is, they are
allowed to be deleted. In many modern SAT solvers, periodically deleting redundant
clauses has been helpful in solving hard SAT problems. The removal of conflict clauses
does not affect the completeness of the SAT algorithm (for proof, please refer to [20]).
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In practice, however, we choose to make the conflicting clauses added for negative
cycles non-volatile, since they represent the constraints not yet contained in the original
Boolean formula φbool. On the other hand, we make conflict clauses volatile since they
are always redundant (though their existence may help prune the search space).

4 Negative Cycle Elimination

Let the constraint subgraph Gs = (V, E) be a weighted directed graph, w[u, v] be the
weight of edge (u, v), and d[v] be the cost of node v. The following statements are
equivalent: (1) The set of separation constraints has a valid solution {d[v]}; and (2)
there is no negative weight cycle in the corresponding constraint subgraph.

Bellman-Ford solves the single-source shortest-paths problem in graphs where edge
weights can be negative; as a by-product, it also detects negative-weight cycles that
are reachable from the source (cf. [5]). Although several separation logic solvers use
Bellman-Ford to detect theory conflicts, it is not very suitable for a tight on-line inte-
gration with the Boolean SAT solver. This is especially true when the cycle detection
algorithm must be called every time a predicate is assigned. In such a case, even making
Bellman-Ford incremental is not very effective. However, studying Bellman-Ford does
shed some light on how an efficient theory solver can be implemented.

The basic operation in searching for a solution is relax, which operates on edges as
shown below. Here pi[v] represents the edge responsible for the last change to d[v]; it
can be used to retrieve the negative weight cycles.

relax (u,v) {
if (d[v] > d[u] + w[u,v]) {

d[v] = d[u] + w[u,v];
pi[v] = (u,v);

}
}

An edge is stable if relax does not change the cost of its sink node. A solution is
found when all edges are stable. Each solution {d[v]} represents a class of solutions
{d[v] + c}, since (d[v] ≤ d[u] + w[u, v]) implies (d[v] + c ≤ d[u] + c + w[u, v]).
If a solution exists, all edges will become stable after a bounded number of relaxing
operations. When there is no solution (i.e. some negative cycles exist), some edges
can never become stable. This is the basis of many existing negative cycle detection
algorithms, including Bellman-Ford.

However, the original Bellman-Ford algorithm runs n × m relax operations (where
n and m are the number of nodes and edges, respectively) before checking whether all
edges are stable. The first optimization is to stop relaxing as soon as all edges are stable,
or to stop as soon as possible in the presence of negative cycles.

Bellman-Ford returns more information than needed for negative cycle detection or
finding an arbitrary solution. Assume that Ax ≤ b is a system of m separation con-
straints in n integer variables, Bellman-Ford algorithm gives a solution that maximizes∑n

i=1 xi subject to Ax ≤ b and xi ≤ 0 for all xi ([5]). We recognize and exploit the
fact that if the purpose is to search for an arbitrary solution or simply to detect negative
cycles, we can use an arbitrary set of initial node values as the starting point. Note that
the proof follows Pratt’s theorem in [14] (and also in [5]).
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Proposition 1. For the purpose of detecting negative weight cycles, Bellman-Ford is
sound and complete by starting with an arbitrary set of initial node values (instead of
initializing d[v] to ∞).

Although the initial node values do not affect the correctness of the algorithm, they
do affect the run-time in practice. Typically, the closer {d[v]} is to a solution, the less
effort is needed for the relaxing phase to converge. For example, if the current {d[v]} is
already a solution, then no edge needs to be relaxed. Our new GCP algorithm exploits
this fact by updating the subgraph incrementally.

Let the set {di[v]} be the stable node values after adding the i-th edge. The key
invariant to our negative cycle detection algorithm is given as follows:

Theorem 2. If no conflict is detected by the previous call to negative cycle detection,
all edges in the subgraph must have been stable. Therefore, the set {di[v]} of node
values is always a valid solution to the current set of separation constraints.

Since there is no negative cycle in the subgraph, if adding a new edge creates one,
the cycle must go through the new edge. In the relaxing phase, if the new edge is relaxed
more than once, we declare it as a conflict.

The algorithm is given in Figure 4. Initially, the constraint subgraph contains all the
nodes but no edge. Each time a separation predicate is assigned a value, the correspond-
ing edge is scheduled to be added. After each SAT decision (and after BCP finishes),
we search for negative weight cycles in the subgraph. Starting from the newly added
edge (u, v), we propagate the value of the separation predicate. If all edges eventually

gcp()
{

for each predicate assigned at current level {
added edge (u,v);
if (detect_negative_cycle(u,v))

return CONFLICT;
}
return NO_CONFLICT;

}

detect_negative_cycle(u,v)
{

if (d[v]>d[u]+w[u,v]) {
relax (u,v);
enqueue(v);

}
while ((x=dequeue())!=NULL) {

for each edge (x,y) { // sequenced with priority queue
if (d[y]>d[x]+w[x,y]) {
if (u==x && v==y)

return TRUE;
else {

relax (x,y);
enqueue(y);

}
}

}
}
return FALSE;

}

Fig. 4. Incremental negative cycle detection algorithm
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become stable, the FIFO queue becomes empty, meaning that there is no negative cycle.
If there exists a negative cycle, the cycle must go through edge (u, v); therefore we can
detect it when node v is visited again during the constraint propagation. The cycle can
be retrieved by following pi[v] all the way back to edge (u, v).

Given a constraint subgraph with n nodes and k edges, the detection algorithm can
run in O(n log n + k) time per added separation predicate. Since all edges are stable
before adding (u, v), we can sequence our relaxation operations with a Fibonacci heap
based priority queue ordering nodes according to their maximal node value changes
[15] and [6]. If there is no negative weight cycle even after adding (u, v), relaxing will
converge after going through those nodes exactly once. However, it is worth pointing out
that this worst-case complexity bound seldom reflects the performance of the algorithm
in practice.

Unlike Bellman-Ford which recomputes node values each time from scratch, our
new algorithm propagates the constraints incrementally. Since all existing edges are al-
ready stable before the addition of the new edge, the number of edges that need to be
relaxed is often significantly reduced. For example, if the new edge is already stable un-
der the previous {dj [v]} (i.e. node values at the j-th decision level), then no propagation
is needed; if the new edge is not stable but {dj [v]} is already very close to a solution,
then not many edges need to be relaxed. Data in Section 6 show that the reduction in
the number of relax operations can be several orders of magnitude.

5 Efficient Backtracking

Efficient implementation of backtracking on the theory part is important since in prac-
tice the number of backtracks is often very large. This imposes two constraints on de-
signing a backtracking algorithm: First, it should have low runtime overhead; second,
it should be scalable in terms of memory usage. For instance, the approach of storing
the theory solver’s states at all previous decision levels in a history stack does not scale
well in practice. In SLICE, we do not need such a history stack, and we do not need to
restore the theory solver’s state either, even during non-chronological backtracking.

Indeed, the invariant maintained by our algorithm makes a constant-time backtrack-
ing possible. Note that in Chaff’s two-literal watch list based BCP, backtracking in the
Boolean part has already been made a constant time operation – Chaff does not update
during backtracking any of the affected clauses and their watched literals. Similarly,
in SLICE we do not need to update (or restore) any of the node values; the procedure
remains sound and complete as long as all existing edges are stable before every call to
negative cycle detection. We shall show in the following that this invariant is maintained
throughout the solving process.

First, the invariant always holds when we add edges to the subgraph and there is no
conflict in either BCP or GCP. Let {dj [v]} be the node values at the j-th decision level.
If no conflict is detected, {dj [v]} is a solution to the set of separation constraints after
the call to negative cycle detection. Furthermore,

Theorem 3. {dj[v]} is also a solution for the set of separation constraints at any pre-
vious decision level i such that i ≤ j.
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This is because constraint subgraphs at previous levels contain subsets of these
edges—a solution remains valid when some constraints are dropped. We should note
that multiple edges can be added at each decision level, and a conflict detected in GCP
is guaranteed to involve at least one assignment at the current decision level.

Second, if backtracking from decision level j to i is triggered by a conflict in BCP,
the node values right before backtracking are {dj−1[v]} (since GCP has not been per-
formed yet). The only thing we need to do is to delete edges added after decision level
i. However, we do not have to restore the node values from {dj−1[v]} back to {di[v]}.
More often than not, {dj−1[v]} is a better solution than {di[v]} since it satisfies more
separation constraints. In practice, relaxation of edges will be avoided later if some of
the deleted edges are added back.

Third, if backtracking from decision level j to i is triggered by a conflict in GCP,
by the time we detect the negative cycle (i.e. edge (u, v) is revisited), {dj [v]} may no
longer be a valid solution (because some edges may still need to be relaxed). We have
two choices in restoring the invariant. If we keep relaxing the edges other than (u, v)
until convergence, we will get a set {dj [v]} that is a solution at the previous level.
However, if we want to stop the propagation as soon as the first conflict is detected,
backtracking is no longer constant-time since we need to restore a valid solution. We
can record the node value changes during the current cycle detection call and restore
them as soon as we detect the first negative cycle. Note that only local changes in the
current call need to be recorded (as opposed to all the solver states between level i and
level j), even when the backtracking is non-chronological. Finally, none of these two
choices affects the worst-case complexity of negative cycle detection.

The Working Example. Figure 5 shows the constraint subgraphs at different stages of
applying our GCP algorithm. We use the same separation logic formula (from Section 2)
as an example. The initial subgraph is given at the left top, in which all node are initial-
ized to 0. The subgraph at the right top is after the partial assignment (¬D, ¬A, B); note
that no constraint propagation is needed when the edges (z, x) and (x, y) are added, be-
cause they are already stable under the existing node values after (w, y) is added. When
backtracking from this partial assignment, we only delete the three edges while leav-
ing the node values unchanged. The right bottom subgraph is under the assignment
(A, ¬B, C, D), which has a negative weight cycle. After backtracking and setting B
true, the subgraph is shown at the left bottom. At this point, all Boolean variables are
assigned and there is no conflict, the separation formula is proved to be satisfiable. Note
that the set of {d[v]} values is a solution to the current set of separation constraints.

6 Experiments

We have implemented our new decision procedure on top of the zChaff SAT solver, by
integrating the incremental negative cycle elimination algorithm with the DPLL based
SAT search. During the implementation of our graph algorithm, effort has been made
to make sure that both adding and deleting an edge take constant time.

We have conducted experiments with a set of 385 public benchmark formulae gen-
erated from verification problems and scheduling problems. It includes 159 formulae of
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the MathSAT suite, 99 of the SAL suite, 31 of the DLSAT suite, 60 DTP formulae, and
36 diamonds formulae. All the experiments were run on a workstation with 3.0 GHz
Intel Pentium 4 processor and 2 GB of RAM running Red Hat Linux 7.2. We set the
time limit to 3600 seconds and the memory limit to 1 GB.

(a) initial constraint subgraph
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Fig. 5. Applying the graph based constraint propagation

Table 1 compares SLICE’s Incremental Negative Cycle Detection with Bellman-
Ford. Columns 1-3 show for each set of formulae the suite name, the category and the
number of formulae. Column 4 gives the average percentage of non-Boolean variables
(or separation predicates). Columns 5-8 are from SLICE runs with incremental cycle
detection, which include the average percentage of GCP generated conflicts, the ratio
of BCP calls to GCP calls, the percentage of CPU time spent in GCP, and the aver-
age number of relaxed nodes per negative cycle detection call. Columns 9-10 are from
solver runs with Bellman-Ford, which include the information on CPU time and the
number of relaxed nodes per call to Bellman-Ford. Note that only two columns are pre-
sented for Bellman-Ford, because the percentage of GCP conflicts and the BCP/GCP
ratio stay roughly unchanged with both cycle detection algorithms.

The data show that our incremental graph algorithm significantly reduces the over-
head of GCP. Compared to Bellman-Ford, the reduction in the number of relax opera-
tions can be several orders of magnitude. In fact, except for diamonds, the number of
nodes relaxed per call have been reduced to single digit or less. The hand-made dia-
monds formulae [18] are known to have exponential number of negative cycles, each of
which contains half of the separation constraints in the formulae.
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Table 1. Comparison of Incremental Negative Cycle Detection and Bellman-Ford

Benchmarks Data from SLICE runs
Incremental cycle detection Bellman-Ford

suite name num. of non-Boolean conflicts in num. of time in num. of time in num. of
formulae vars (%) GCP (%) BCP/GCP GCP (%) relax GCP (%) relax

mathsat FISCHER 119 30 1 20 8 2 46 17
PO2 7 40 2 16 0 1 14 13
PO3 9 30 1 14 16 0.4 25 9
PO4 11 20 1 13 9 0.3 46 5
PO5 13 13 1 13 4 0.2 57 4

sal lpsat 20 13 1 10 10 2 62 49
inf-bak 20 50 32 7 30 3 70 294
fischer 59 60 12 21 18 7 80 1186

DLSAT abz5 12 100 32 12 55 7 49 1152
ba-max 19 13 22 8 25 4 84 233

DTP 60 100 62 8 47 0.4 89 205
diamonds 36 100 3 2 66 79 89 1101

We have also conducted experimental comparison of our new algorithm with other
state-of-the-art tools, including UCLID, MathSAT, ICS, TSAT++, and DPLL(T). For all
tools, their latest public available released versions were used. For DPLL(T), it includes
their latest development as described in [12]. For UCLID we used the default “hybrid
method” which combines the strengths of per constraint and small-domain encoding.
The overall result is given in scatter plots in Figure 6. Here the x-axis is the CPU time
of SLICE, while the y-axis is the CPU time for other solvers. For DPLL(T), which is the
closest competitor on this set of benchmarks, we also give the scatter plot in linear scale.

The result shows that SLICE performs significantly better than UCLID, MathSAT,
and ICS on the majority of the benchmarks. The only cases on which UCLID runs
faster are some smaller diamonds formulae. However, SLICE finishes all the 36 dia-
monds formulae within 1 hour, but UCLID times out on 8 larger ones. ICS 2.0 runs
faster than SLICE on several formulae from the MathSAT suite, although overall ICS
2.0 is much less robust. The comparison with TSAT++ shows that SLICE performs sig-
nificantly better on most cases. DPLL(T) is the closest competitor to SLICE on this set
of benchmarks. However, as is shown by the last scatter plot, SLICE tends to do better
on harder cases, therefore seems to be more robust and scalable.

Note that in most of these benchmark examples the percentage of GCP conflicts is
very low, which indicates that computing all theory consequences as in [12] will not
pay off. We have also implemented in our solver a variant of the exhaustive theory
propagation technique of [12], which spends a limited (but not exhaustive) amount of
effort in deriving theory implications. We then conducted controlled experiments on
a set of randomly generated DTP formulae; in these formulae, the number of integer
variables and separation constraints can be carefully controlled. (Due to space limit, we
omit the result table.) Our experiments show that on examples in which GCP conflicts
play a larger role, spending a limited amount of effort in deriving theory implications
can significantly improve the performance of SLICE.
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SLICE vs. UCLID SLICE vs. MathSAT SLICE vs. ICS 2.0

SLICE vs. TSAT++ SLICE vs. DPLL(T) SLICE vs. DPLL(T)

Fig. 6. Performance comparison in scatter plots: The CPU time is in seconds. The x-axis is for
SLICE. Comparison with DPLL(T) is also shown in the linear scale.

7 Conclusions

We have presented a fast decision procedure for separation logic, which has an efficient
theory engine for incremental conflict detection and constant time backtracking. The
graph based theory solver allows fast backtracking without any additional bookkeeping.
Controlled experiments indicate that the incremental algorithm is superior to the naive
approach of Bellman-Ford; it significantly reduces the overhead of graph based con-
straint propagation. Performance evaluation on a set of public benchmarks shows that
our new solver significantly outperforms leading separation logic solvers. For future
work, we want to investigate more efficient ways of handling equality and inequality
relations than translating them into separation predicates.
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