
Matching with Regular Constraints

Temur Kutsia1,� and Mircea Marin2,��

1 Research Institute for Symbolic Computation,
Johannes Kepler University, A-4040 Linz, Austria

tkutsia@risc.uni-linz.ac.at
2 Graduate School of Systems and Information Engineering,

University of Tsukuba, Tsukuba 305-8573, Japan
mmarin@cs.tsukuba.ac.jp

Abstract. We describe a sound, terminating, and complete matching
algorithm for terms built over flexible arity function symbols and con-
text, function, sequence, and individual variables. Context and sequence
variables allow matching to move in term trees to arbitrary depth and
breadth, respectively. The values of variables can be constrained by reg-
ular expressions which are not necessarily linear. We describe heuristics
for optimization, and discuss applications.

1 Introduction

We describe an algorithm to solve matching problems for terms built over flexible
arity function symbols and context, function, sequence, and individual variables.
Context and sequence variables can be constrained by regular expressions. These
four kinds of variables, together with regular constraints, make the term tree
traversal and subterm extraction process very flexible: The algorithm can explore
terms in a uniform way in vertical (via function and context variables) and in
horizontal (via individual and sequence variables) directions.

Context variables may be instantiated with a context—a term with a hole,
while function variables match a single function symbol. Hence, context vari-
ables support “vertical movement” in the tree in arbitrary depth, and function
variables do the same in one depth level only. Sequence and individual variables
can be seen as the “horizontal counterparts” for context and function variables:
Sequence variables match arbitrarily long sequences of terms, and individual
variables match only a single term.

Sequence variables can be constrained by regular expressions over terms. The
values of constrained variables are required to be elements of the corresponding
regular word language. Context variables are constrained by regular expressions
over contexts. The values of constrained context variables should be elements of
� Supported by the Austrian Science Foundation (FWF) under the Project SFB F1302

and F1322.
�� Supported by the JSPS Grant-in-Aid no. 17700025 for Scientific Research sponsored

by the Japanese Ministry of Education, Culture, Sports, Science and Technology
(MEXT).

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 215–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 T. Kutsia and M. Marin

the corresponding regular tree language (it extends the result from [29] where
context variables have been restricted by regular expressions over function sym-
bols). Moreover, regular expressions are not limited to be linear. This gives a
powerful data extraction mechanism. On the other hand, we do not allow recur-
sion in constraints. The algorithm with regular constraints is sound, terminating,
and complete. We show how to optimize the algorithm by early failure detection
and branching reduction heuristics, and discuss possible applications.

The paper is organized as follows: Preliminary notions are introduced in Sec-
tion 2. In Section 3 we describe the Csm algorithm and its optimizations. Csm
with regular expressions is addressed in Section 4. Applications are discussed in
Section 5. Related work is reviewed in Section 6. Section 7 concludes.

Due to space limitations, proofs are given in a technical report [30].

2 Preliminaries

We assume the following mutually disjoint sets of symbols fixed: individual vari-
ables VInd, sequence variables VSeq, function variables VFun, context variables
VCon, and function symbols F . The sets VInd, VSeq, VFun, and VCon are count-
able. The set F is finite or countably infinite. All the symbols in F except a
distinguished constant ◦ (called a hole) have flexible arity. We will use x, y, z for
individual variables, x, y, z for sequence variables, F, G, H for function variables,
C, D, E for context variables, and a, b, c, f, g, h for function symbols. We may
use these meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t).

In C(t) the term t can not be a sequence variable. We will write a for the term
a() where a ∈ F . The meta-variables s, t, r, maybe with indices, will be used for
terms. A function symbol f is called the head of f(t1, . . . , fn). A ground term is
a term without variables. A context is a term with a single occurrence of the hole
constant ◦. To emphasize that a term t is a context we will write t[◦]. A context
t[◦] may be applied to a term s that is not a sequence variable, written t[s], and
the result is the term consisting of t with ◦ replaced by s. We will use C and D,
with or without indices, for contexts.

A substitution is a mapping from individual variables to those terms which are
not sequence variables and contain no holes, from sequence variables to finite,
possibly empty sequences of terms without holes, from function variables to
function variables and symbols, and from context variables to contexts, such that
all but finitely many individual and function variables are mapped to themselves,
all but finitely many sequence variables are mapped to themselves considered as
singleton sequences, and all but finitely many context variables are mapped to
themselves applied to the hole. For example, the mapping {x �→ f(a, y), x �→
��, y �→ �a, C(f(b)), x�, F �→ g, C �→ g(◦)} is a substitution.1 We will use lower

1 To improve readability we write sequences between the symbols � and �.

Matching with Regular Constraints 217

case Greek letters σ, ϑ, ϕ, and ε for substitutions, where ε denotes the empty
substitution. As usual, indices may be used with the meta-variables.

Substitutions are extended to terms: vσ = σ(v) for v ∈ VInd ∪ VSeq, C(t)σ =
σ(C)[tσ], F (t1, . . . , tn)σ = σ(F)(t1σ, . . . , tnσ), f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a
ϕ such that σϕ = ϑ. A substitution σ is more general than ϑ on a set of
variables V , denoted σ ≤·V ϑ, if there exists a ϕ such that vσϕ = vϑ for all
v ∈ V . A Csm problem is a finite multiset of term pairs (Csm equations), written
{s1 � t1, . . . , sn � tn}, where the s’s and the t’s contain no holes, the s’s are
not sequence variables, and the t’s are ground. We will also call the s’s the query
and the t’s the data. Substitutions are extended to Csm equations and problems
in the usual way. A substitution σ is called a matcher of the Csm problem
{s1 � t1, . . . , sn � tn} if siσ = ti for all 1 ≤ i ≤ n. We will use Γ and ∆ to
denote Csm problems. A complete set of matchers of a Csm problem Γ is a set
of substitutions S such that (i) each element of S is a matcher of Γ , and (ii)
for each matcher ϑ of Γ there exist a substitution σ ∈ S such that σ ≤· ϑ. The
set S is a minimal complete set of matchers of Γ if it is a complete set and two
distinct elements of S are incomparable with respect to ≤·.
Example 1. The minimal complete set of matchers for the context sequence
matching problem {C(f(x)) � g(f(a, b), h(f(a), f))} consists of three elements:
{C �→ g(◦, h(f(a), f)), x �→ �a, b�}, {C �→ g(f(a, b), h(◦, f)), x �→ a}, and
{C �→ g(f(a, b), h(f(a), ◦)), x �→ ��}.

3 Matching Algorithm

We now present inference rules for deriving solutions for Csm problems. A system
is either the symbol ⊥ (failure) or a pair Γ ; σ, where Γ is a Csm problem and
σ is a substitution. The inference system I consists of the transformation rules
listed below. The indices n and m are non-negative unless otherwise stated.

T: Trivial

{t � t} ∪ Γ ; σ =⇒ Γ ; σ.

IVE: Individual Variable Elimination

{x � t} ∪ Γ ; σ =⇒ Γϑ; σϑ, where ϑ = {x �→ t}.

FVE: Function Variable Elimination

{F (s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {F �→ f}.

PD: Partial Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {s1 � t1, . . . , sk−1 � tk−1, f(sk, . . . , sn) � f(tk, . . . , tm)} ∪ Γ ; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n, m)+1, and si /∈ VSeq

for all 1 ≤ i < k.

218 T. Kutsia and M. Marin

TD: Total Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tn)} ∪ Γ ; σ =⇒ {s1 � t1, . . . , sn � tn} ∪ Γ ; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn) � t} ∪ Γ ; σ =⇒ {f(s1ϑ, . . . , snϑ) � t} ∪ Γϑ; σϑ,

where ϑ = {x �→ ��}.

W: Widening

{f(x, s1, . . . , sn) � f(t, t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(x, s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {x �→ �t, x�}.

CVD: Context Variable Deletion

{C(s) � t} ∪ Γ ; σ =⇒ {sϑ � t} ∪ Γϑ; σϑ, where ϑ = {C �→ ◦}.

D: Deepening

{C(s) � f(t1, . . . , tm)} ∪ Γ ; σ =⇒ {C(sϑ) � tj} ∪ Γϑ; σϑ,

where ϑ = {C �→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m, and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn) � g(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥, if f /∈ VCon ∪ VFun and f �= g.

AD: Arity Disagreement

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥,

if m �= n and si /∈ VSeq for all 1 ≤ i ≤ n, or m = 0 and si /∈ VSeq for some 1 < i ≤ n.

We may use the rule name abbreviations as subscripts, e.g. Γ1; σ1 =⇒T Γ2; σ2 for
the Trivial rule. SVD, W, CVD, and D are non-deterministic rules. A derivation
is a sequence Γ1; σ1 =⇒ Γ2; σ2 =⇒ · · · of system transformations.

Definition 1. A Csm algorithm M is any program that takes a system Γ ; ε as
input and uses the rules in I to generate a complete tree of derivations, called
the matching tree for Γ , in the following way:

1. The root of the tree is labeled with Γ ; ε.
2. Each branch of the tree is a derivation. The nodes in the tree are systems.
3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concurrently.
No rules are applicable to the leaves.

The algorithm M was first introduced in [29]. The leaves of a matching tree are
labeled either with the systems of the form ∅; σ or with ⊥. The branches that end
with ∅; σ are successful branches, and those that end with ⊥ are failed branches.
We denote by SolM(Γ) the solution set of Γ generated by M, i.e., the set of all
σ’s such that ∅; σ is a leaf of the matching tree for Γ .

Theorem 1. The matching algorithm M terminates for any input problem Γ
and generates a minimal complete set of matchers of Γ .

Matching with Regular Constraints 219

Moreover, M never computes the same matcher twice. If we are not interested
in bindings for certain variables, we can replace them with the anonymous vari-
ables: “ ” for any individual or function variable, and “ ” for any sequence or
context variable. It is straightforward to adapt the rules in I to such cases: If
an anonymous variable occurs in the rule IVE, FVE, SVD, W, CVD, or D then
the substitution ϑ in the same rule is ε. Strictly speaking, if {s � t} is a Csm
problem where s contains anonymous variables and ϑ is a solution computed by
the adapted version of the algorithm then sϑ is not identical to t (because it still
contains anonymous variables) but is embedded in t.

We can use (the adapted form of) M for multi-slot information extraction
from data by nonlinear queries (cf. e.g. [38]):

Example 2. Solving the Csm problem

{C(F (, D(f(x)), , E(f(x)),)) � f(g(b, f(a), f(a)), f(b), f(a))}

by M gives three solutions:

{C �→ ◦, D �→ g(b, ◦, f(a)), E �→ ◦, F �→ f, x �→ a},
{C �→ ◦, D �→ g(b, f(a), ◦), E �→ ◦, F �→ f, x �→ a},
{C �→ f(◦, f(b), f(a)), D �→ ◦, E �→ ◦, F �→ g, x �→ a}.

It extracts contexts under which two equal subtrees of the form f(x) are located.
With the help of function variables one can also extract contexts under which
two equal leaves lie: {C(F (, D(G()), , E(G()),)) � f(g(a, b), a)} returns
{C �→ ◦, D �→ g(◦, b), E �→ ◦, F �→ f, G �→ a} (remember that a() = a).

The algorithm M can be further optimized by detecting failure early and avoiding
branching whenever possible. Below we consider some of the methods to achieve
this. Let s � t be a Csm equation where s = f(s1, . . . , sn) and t = f(t1, . . . , tm).
Then s � t fails if any of the following matching pretests succeeds:

1. The number of symbol occurrences N different from context and sequence
variables in s is greater than that in t. For instance, if s = f(C(a), F (x), y)
and t = f(a, a), then N(s) = 4, N(t) = 3 and, hence, s � t fails.

2. If s contains a function symbol that does not occur in t like, for instance,
for s = f(x, C(a), b) and t = f(c, b) where a does not occur in t.

3. If the sequence of heads of s’s is not a subsequence of the sequence of heads
of t’s. This is the case, for instance, for s = f(C(a), g(x), x, g(y)) and t =
f(a, g(a), f(a)), where the sequence g, g is not a subsequence of a, g, f .

4. If the minimum depth of s is greater than the depth of t. The minimum depth
of a term is computed as the depth without context variables. For instance,
the minimum depth of s = f(f(C(F (x, f(a)))), g(a, f(x))) is 4, and s does
not match t = f(f(a, f(a)), g(a, f(b))) whose depth is 3.

Various such pretests are known in the term indexing literature; see, e.g. [42].

220 T. Kutsia and M. Marin

Branching is caused by context and sequence variables that permit multiple
bindings. It happens in the rules SVD, W, CVD, and D. In certain cases back-
tracking can be avoided if we can detect the right binding early enough. For
instance, for the matching equation f(x) � f(a, b, c) we can compute the solu-
tion {x �→ �a, b, c�} immediately instead of applying the rule W three times and
then SVD once. Therefore, a good heuristics would be first, to select such equa-
tions as early as possible, and second, to facilitate generating such equations. To
achieve the latter whenever possible, we introduce the following two rules:

Sp: Splitting

{f(x, s1, . . . , si, . . . , sn) � f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1) � f(t1, . . . , tj−1), si � tj ,
f(si+1, . . . , sn) � f(tj+1, . . . , tm)} ∪ Γ ; σ, where head(si) = head(tj).

TlD: Tail Decomposition

{f(x, s1, . . . , si−1, y, si+1, . . . , sn) � f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1, y) � f(t1, . . . , tj), si+1 � tj+1, . . . , sn � tm} ∪ Γ ; σ,

if sk /∈ VSeq for all i < k ≤ n and n − i = m − j.

Note that Sp still introduces branching because there can be several choices of
si and tj . (Branching factor can be reduced by tailoring early failure pretests
into Sp.) Applying Sp and TlD eagerly together with early failure detection tests
and the deterministic rules from I eventually generates Csm problems where se-
quence variables occur in the equations like f(x) � t and f(x, s1, . . . , sn, y) � t.
Here s’s are variables or have function or context variables in the topmost
position. The equations of the former type can be solved immediately, while
the latter ones can be attacked either by SVD and W rules, or by eliminat-
ing sequence variables by Diophantine techniques. It can be done as follows:
Let f(s1, . . . , sn) � f(t1, . . . , tm) be a Csm problem, where x1, . . . , xk are all se-
quence variables among s’s, and Ni is the number of occurrences of xi (at the top-
most level). We associate a linear Diophantine equation

∑k
i=1 NiXi = m−n+k

to each such Csm problem and solve it for X ’s over naturals. If the equation is
unsolvable then the matching attempt fails. Otherwise, a solution li for each Xi

specifies the length of sequence the variable xi can be bound with. Therefore,
we replace f(s1, . . . , sn) � f(t1, . . . , tm) with new matching problems f(si) �
f(tji , . . . , tji+ki) for each 1 ≤ i ≤ n, where j1 = 1, ji+1 = ji +ki +1, jn +kn = m,
ki = li − 1 if si is a sequence variable, and ki = 0 otherwise. Since linear
Diophantine equations can have several solutions, this technique introduces a
branching point. For instance, the matching problem {f(x, y) � f(a, b)} will
lead either to {f(x) � f(), f(y) � f(a, b)}, to {f(x) � f(a), f(y) � f(b)}, or
to {f(x) � f(a, b), f(y) � f()}.

Although solving linear Diophantine equations over naturals is NP-complete,
in practice it may still be useful to apply this technique for certain problems.
Hence, in this way a Csm problem can essentially be reduced to matching with
individual, context, and function variables. For such problems we can easily
adapt context matching optimization techniques from [41] and add them to M.

Matching with Regular Constraints 221

4 Matching Algorithm with Regular Constraints

Regular expressions provide a powerful mechanism for restricting data values.
The classical approach to regular expression matching is based on automata. In
this section we show that regular expression matching can be easily incorporated
into the rule-based framework of Csm.

Regular expressions on terms are defined by the following grammar:

R ::= t | �� | �R1, R2� | R1|R2 | R∗,

where t is a term without holes, �� is the empty sequence, “,” is concatena-
tion, “|” is choice, and “∗” is repetition (Kleene star). The operators are right-
associative; “*” has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual way:
��σ = ��, �R1, R2�σ = �R1σ, R2σ�, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗. Each
regular expression on terms R defines the corresponding regular language L(R).

Regular expressions on contexts are defined as follows:

Q ::= C | �Q1, Q2� | Q1|Q2 | Q∗.

Like for regular expressions on terms, substitutions are extended to regular ex-
pressions on contexts in the usual way. Each regular expression on contexts Q
defines the corresponding regular tree language L(Q) as follows:

L(C) = {C}.
L(�Q1, Q2�) = {C1[C2] | C1 ∈ L(Q1) and C2 ∈ L(Q2)}.

L(Q1|Q2) = L(Q1) ∪ L(Q2).
L(Q∗) = {◦} ∪ L(�Q, Q∗�).

Membership atoms are atoms of the form Ts in R or Cv in Q, where Ts is
a finite, possibly empty, sequence of terms, and Cv is either a context or a
context variable. Regular constraints are pairs (p, f) where p is a membership
atom and f is a flag that is a boolean expression (with the possible values 0 or 1).
The intuition behind the regular constraint (Ts in R, f) is that Ts ∈ L(R)\{��}
for f = 1 and Ts ∈ L(R) for f = 0.2 Similarly, the intuition behind (Cv in Q, g)
is that Cv ∈ L(Q)\{◦} for g = 1 and Cv ∈ L(Q) for g = 0. It will be needed later
to guarantee that the regular matching algorithm terminates. Substitutions are
extended to regular constraints in the usual way. A regular Csm problem is a
multiset of matching equations and regular constraints of the form:

{s1 � t1, . . . , sn � tn, (x1 in R1, f1), . . . , (xm in Rm, fm),

(C1 in Q1, g1), . . . , (Ck in Qk, gk)},
2 Note that (Ts in R∗, 1) does not have the same meaning as (Ts in �R, R∗�, 0): Just

take a∗ as R.

222 T. Kutsia and M. Marin

where all x’s and all C’s are distinct and do not occur in R’s and Q’s.3 We will
assume that all x’s and C’s occur in the matching equations. A substitution σ is
called a regular matcher for such a problem if siσ = ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1},
xjσ ∈ L(Rjσ)fjσ, and C lσ ∈ L(Qlσ)glσ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
1 ≤ l ≤ k, where L(R)0 = L(R), L(R)1 = L(R) \ {��}, L(Q)0 = L(Q), and
L(Q)1 = L(Q) \ {◦}.

A straightforward way to solve regular Csm problems would be first com-
puting matchers and then testing whether the values of constrained variables
satisfy the corresponding constraints. Testing can be done by automata con-
structed from regular expressions for each computed matcher. (Since regular
expressions contain variables that get instantiated during the matching process,
the automata would be different for each matcher.) Below we propose a different
approach that saves the effort of solution testing. We construct an algorithm
that computes the correct answers directly. Another advantage of this approach
is that we are not restricted to linear regular expressions.

We define the inference system IR to solve regular Csm problems. It operates
on systems Γ ; σ where Γ is a regular Csm problem and σ is a substitution. The
system IR includes all the rules from the system I, but SVD, W, CVD, and D
need an extra condition on applicability: For the variables x and C in those rules
there should be no regular constraint (x in R, f) and (C in Q, g) in the matching
problem. There are additional rules in IR for the variables constrained by regular
constraints listed below. For the function symbols NonEmptySeq, NonEmptyCtx,
and ⊕ used in these rules the following equalities hold: NonEmptySeq() = 0 and
NonEmptySeq(r1, . . . , rn) = 1 if ri /∈ VSeq for some 1 ≤ i ≤ n; NonEmptyCtx(◦) =
0 and NonEmptyCtx(C) = 1 if the context C contains at least one symbol different
from context variables and the hole constant; 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 =
0 ⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in ��, f)} ∪ Γ ; σ

=⇒
� {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, with ϑ = {x �→ ��} if f = 0,
⊥ if f = 1.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in s, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {x �→ s} and s /∈ VSeq.

SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in y, f)} ∪ Γ ; σ =⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ,

where ϑ = {x �→ y} if f = 0. If f = 1 then ϑ = {x �→ �y, y�, y �→ �y, y�} where y is a
fresh variable.

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in R1|R2, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn) � t, (x in Ri, f)} ∪ Γ ; σ, for i = 1, 2.

3 This restriction can be relaxed allowing occurrences without cycles.

Matching with Regular Constraints 223

CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in �R1, R2�, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x �→ �y1, y2�}, and f1 and f2 are computed
as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 = NonEmptySeq(y1) ⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn) � t, (x in R∗, 0)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {x �→ ��}.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y in R, 1), (x in R∗, 0)} ∪ Γϑ; σϑ,

where y is a fresh variable and ϑ = {x �→ �y, x�}.

HREC: Hole in a Regular Expression for Contexts

{C(s) � t, (C in ◦, g)} ∪ Γ ; σ

=⇒
� {C(s)ϑ � t} ∪ Γϑ; σϑ, with ϑ = {C �→ ◦} if g = 0,
⊥ if g = 1.

CxREC: Context in a Regular Expression for Contexts

{C(s) � t, (C in C, g)} ∪ Γ ; σ =⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ,

where C �= ◦, head(C) /∈ VCon, and ϑ = {C �→ C}.

CVREC: Context Variable in a Regular Expression for Contexts

{C(s) � t, (C in D(◦), g)} ∪ Γ ; σ =⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ,

where ϑ = {C �→ D(◦)} if g = 0. If g = 1 then ϑ = {C �→ F (x, D(◦), y), D �→
F (x, D(◦), y)}, where F, x, and y are fresh variables.

ChREC: Choice in a Regular Expression for Contexts

{C(s) � t, (C in Q1|Q2, g)} ∪ Γ ; σ =⇒ {C(s) � t, (C in Qi, g)} ∪ Γ ; σ,

for i = 1, 2.

CREC: Concatenation in a Regular Expression for Contexts

{C(s) � t, (C in �Q1, Q2�, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪ Γϑ; σϑ,

where D1 and D2 are fresh variables, ϑ = {C �→ D1(D2(◦))}, and g1 and g2 are compu-
ted as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and g2 = NonEmptyCtx(D1) ⊕ 1.

RREC1: Repetition in a Regular Expression for Contexts 1

{C(s) � t, (C in Q∗, 0)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {C �→ ◦}.

RREC2: Repetition in a Regular Expression for Contexts 2

{C(s) � t, (C in Q∗, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t, (D in Q, 1), (C in Q∗, 0)} ∪ Γϑ; σϑ,

where D is a fresh variable and ϑ = {C �→ D(C(◦))}.

224 T. Kutsia and M. Marin

A regular Csm algorithm MR is defined in a similar way to the algorithm M
(Definition 1) with the only difference that the rules of IR are used instead of
the rules of I. From the beginning, each flag in the input problem is set either to
0 or to 1. Note that the rules in IR work either on a selected matching equation,
or on a selected pair of a matching equation and a regular constraint. No rule
selects a regular constraint alone. We denote by SolMR(Γ) the solution set of Γ
generated by MR. The following theorems show that MR is sound, terminating,
and complete.

Theorem 2 (Soundness of MR). Let Γ be a regular Csm problem. Then every
substitution σ ∈ SolMR(Γ) is a regular matcher of Γ .

Theorem 3 (Termination of MR). MR terminates on any input.

Theorem 4 (Completeness of MR). Let Γ be a regular Csm problem, ϑ
be a regular matcher of Γ , and V be a variable set of Γ . Then there exists a
substitution σ ∈ SolMR such that σ ≤·V ϑ.

We can adapt MR to anonymous variables like we did for M. However, a remark
has to be made about using anonymous variables in regular expressions with
Kleene star. There they behave differently from named singleton variables and
play a similar role as, for instance, the pattern Any in [24]. The reason is that
the variables that had only one occurrence in the matching problem (in an
expression with Kleene star) will have two occurrences after the application
of the RRET2 and RREC2 rules, while duplicated anonymous variables are not
considered to be the same. It affects solvability. For instance, the regular Csm
problem {f(x) � f(g(a), g(b)), (x in g()∗, 0)} has a solution {x �→ �g(a), g(b)�}
while the problem {f(x) � f(g(a), g(b)), (x in g(x)∗, 0)} is unsolvable because it
is reduced to {f(x) � f(g(b)), (x in g(a)∗, 0)}. In general, the notion of a regular
matcher for regular Csm problems with anonymous variables has to be redefined:
First, we write s � t iff the term s (maybe with holes) whose only variables are
anonymous variables can be made identical to the ground term t (maybe with
holes) by replacing anonymous variables in s with the corresponding expressions
(terms, term sequences, function symbols, contexts) and applying contexts as
long as possible. For instance, f(, ((◦, , a)),) � f(a, f(b, g(◦, ◦, b, a)), c).
Next, we write �t1, . . . , tn� ∈· S iff there exists �s1, . . . , sn� ∈ S such that si � ti
for each 1 ≤ i ≤ n. Now, let a regular Csm problem be {s1 � t1, . . . , sn � tn,
(x1 in R1, f1), . . . , (xm in Rm, fm), (C1 in Q1, g1), . . . , (Ck in Qk, gk)}, where
s’s, R’s, and Q’s may contain anonymous variables. A substitution σ is a regular
matcher for such a problem if siσ � ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1}, xjσ ∈·
L(Rjσ)fjσ, and Clσ ∈· L(Qlσ)glσ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤
k, where the only variables in siσ, Rjσ, and in Qlσ are anonymous variables.
For instance, {x �→ �g(a), g(b)�, x �→ c, C �→ f(g(◦))} is a regular matcher for
the matching problem {f(x, C(x),) � f(g(a), g(b), f(g(c)), d), (x in g()∗, 0),
(C in f(, g(◦),), 0)}.

Special failure detection tests can be incorporated into MR. For instance, we
can add the rule {f(x, s1, . . . , sn) � f(), (x in R, 1)} ∪ Γ ; σ =⇒ ⊥.

Matching with Regular Constraints 225

Note that for a problem Γ there might be σ, ϑ ∈ SolMR(Γ) such that vσ = vϑ
for all v in the set of variables of Γ . This is the case, for instance, for {f(x) �
f(a, b, b, a), (x in �a∗, b∗�∗, 0)} and {C(a) � f(g(a), f(a)), (C in (f(, ◦,)∗|
g(, ◦,)∗)∗, 0)}. It can be avoided by replacing regular expressions with the
equivalent “disambiguated” ones like, e.g. star normal forms [5]. Such an equiv-
alent formulation for the matching problems above are {f(x) � f(a, b, b, a),
x in ((a|b)∗, 0)} and {C(a) � f(g(a), f(a)), (C in (f(, ◦,)| g(, ◦,))∗, 0)}.

As syntactic sugar for regular context expressions, we let function symbols,
function variables, and context variables be used as the basic building blocks for
regular expressions. Such regular expressions are understood as abbreviations for
the corresponding regular expressions on contexts. For example, �F, f |�C, g�∗�
abbreviates �F (, ◦,), f(, ◦,)|�C(◦), g(, ◦,)�∗�. Answer substitutions can
also be modified correspondingly. In this way MR will understand the regular
path expression syntax.

5 Applications

Csm is the main pattern matching mechanism in the rule-based programming
system ρLog [33,35]. ρLog supports strategic programming with deterministic
(labeled) conditional transformation rules, matching with regular constraints,
and is built on top of the Mathematica system. As an example, we show a ρLog
clause (in a conventional notation) that implements rewriting: C(x) →rewrite(z)

C(y) ⇐ x →z y. Assume that we have another clause a →r b that defines the
rule labeled by r. Then the query f(a, a) →rewrite(r) x (read: find such an x
to which f(a, a) can be rewritten by r) succeeds twice: with x = f(b, a) and
x = f(a, b). The order in which these answers are generated (and, hence, the
term traversal strategy) is defined by the order of matching rules in Csm that
compute bindings for C.

Another ρLog example is the program that from a given term selects subterms
whose nodes are all labeled with a. It consists of the following three clauses

(x) →a-subt x ⇐ x →NF[a’s] true, a →a’s true, C(a(a, x)) →a’s C(a(x)),
where NF is the ρLog strategy for a normal form computation.

Csm can be used to achieve more control on rewriting, to match program
schemata with programs (cf. semi-unification [11], see also [9]), in Web site ver-
ification (e.g. in a rewriting-based framework similar to [1]), in Xml querying,
transformation, schema matching, and related areas. For this purpose (especially
for Xml related applications) we would need to extend our matching algorithm
for orderless function symbols. (The orderless property generalizes commutativ-
ity for flexible arity function symbols.) Such functions are important for Xml
querying because the users often are not concerned with the actual order of
elements in an Xml document. A straightforward but inefficient way of deal-
ing with orderless functions is to consider all possible permutations of their
arguments and applying the Csm. To achieve a better performance one can
carry over some known techniques from AC-matching to Csm with orderless
functions.

226 T. Kutsia and M. Marin

In our opinion, a (conditional) rewriting-based query language that imple-
ments Csm with orderless functions would possess the advantages of both nav-
igational (path-based) and positional (pattern-based) types of Xml query lan-
guages. (See [18] for a recent survey on this topic.) It would easily support,
for instance, a wide range of queries (selection and extraction, reduction, nega-
tion, restructuring, combination), parent-child and sibling relations and their
closures, access by position, unordered matching, order-preserving result, par-
tial and total queries, multiple results, and other properties. Moreover, the rule-
based paradigm would provide a clean declarative semantics. As an example, we
show how to express a reduction query. Reduction is one of the query operations
described as desiderata for Xml query languages in [32] and, according to [4], is
a bottleneck for many of them. Let the Xml data (translated into our syntax)
consist of the elements of the form:

manufacturer(mn-name(Mercury), year(1999),
model(mo-name(SLT), front -rating(3 .84), side-rating(2 .14), rank(9)), . . .).

The reduction query operation is formulated as follows: From the manufactu-
rer elements drop those model sub-elements whose rank is greater than 10, and
elide the front-rating and side-rating elements from the remaining models. It can
be expressed as a rule manufacturer(x) →NF[Reduce] y that evaluates as follows:
Its left hand side matches the data, the obtained instance is rewritten into the
normal form with respect to the rule Reduce, and the result is returned in y.
Reduce is defined by two conditional rewrite rules:

manufacturer(x1 ,model(, rank(x),), x2)
→Reduce manufacturer(x1 , x2) ⇐ x > 10 .

manufacturer(x1 ,model(y1 , front -rating(), side-rating(), rank(x), y2), x2)
→Reduce manufacturer(x1 ,model(y1 , rank(x), y2), x2) ⇐ x ≤ 10 .

In general, we believe that such a language would be a good candidate to meet
many of the requirements for versatile Web query languages [7]. At least, the
core principles of referential transparency and answer-closedness, and incomplete
queries and answers can be easily supported. As for dealing with nonhierarchical
relations provided by, e.g. Id/IdRef links (that naturally asks for the graph data
model), one could apply techniques of equational Csm to query such data. As an
equational theory we could specify (oriented) equalities between constants repre-
senting IdRefs and terms that correspond to Ids. If such a theory can be turned
into a convergent rewrite system, it would mean that the data it represents con-
tains no cycles via Id/IdRefs. It would be interesting to study equational Csm
in more details. Another interesting and useful future work would be to identify
the types of matching problems that Csm can solve efficiently.

6 Related Work

Solving equations with context variables has been intensively investigated in
the recent years; see e.g, [13,14,31,39,40,41]. Context matching is NP-complete.

Matching with Regular Constraints 227

Decidability of context unification is still an open question. Sequence matching
and unification was addressed, for instance, in [3,20,23,26,27,28,34]. Sequence
unification (and, hence, matching as well) is decidable.

There is a rich literature on matching with regular expressions, especially in
the context of general-purpose programming languages and semistructured data
querying. Regular expressions are supported in Perl, Emacs-Lisp, XDuce [25],
CDuce [2], Xtatic [19], and in the languages based on XPath [12], just to name a
few. Various automata-based approaches have been proposed for Xml querying;
see, e.g. [36,6,37,16,10]. Context matching is closely related to the evaluation of
conjunctive queries over trees [22].

Hosoya and Pierce [25] propose regular expression pattern matching for devel-
oping convenient programming constructs for tree manipulation in a statically
typed setting. Similar in spirit to Ml style pattern matching, their algorithm uses
regular expression types to dynamically match values. Patterns can be recursive
(under certain restrictions that guarantee that the language remains regular).
Recursion allows to write patterns that match, for instance, trees whose nodes are
labeled with the same label. Csm does not allow recursion in regular constraints.
That is why we needed three ρLog clauses above to solve the problem of selecting
terms with all a-labeled nodes. Patterns of Hosoya and Pierce are restricted to be
linear. We do not have such a restriction. In general, non-linearity is one of the
main difficulties for tree automata-based approaches [15]. Niehren et al [38] use
tree automata for multi-slot information extraction from semistructured data.
The automata are restricted to be unambiguous that limits n-ary queries to fi-
nite unions of Cartesian closed queries (Cartesian products of monadic queries),
but this restricted case is processed efficiently. For monadic queries an efficient
and expressive information extraction approach, monadic Datalog, was proposed
by Gottlob and Koch [21].

Simulation unification [8] uses the descendant construct that is similar to
context variables in the sense that it allows us to descend in terms to arbitrary
depth, but it does not allow regular expressions along it. Also, sequence variables
are not present there. However, it can process unordered and incomplete queries,
and it is a full scale unification, not a matching.

Our technique of using flags in constraints to guarantee termination is sim-
ilar to that of Frisch and Cardelli [17] for dealing with ambiguity in matching
sequences against regular expressions.

7 Conclusions

We described a sound, complete and terminating matching algorithm for terms
built over flexible arity function symbols and context, sequence, function, and
individual variables. Values of some context and sequence variables can be con-
strained by regular expressions. The constraints are not restricted to be linear.
We discussed ways to optimize the main algorithm as well as some of the possible
applications. Interesting future developments would be the complexity analysis
of the algorithm and extending Csm for equational case.

228 T. Kutsia and M. Marin

References

1. M. Alpuente, D. Ballis, and M. Falaschi. A rewriting-based framework for web
sites verification. Electr. Notes on Theoretical Comp. Science, 124(1):41–61, 2005.

2. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose
language. In Proc. of ICFP’03, pages 51–63. ACM, 2003.

3. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712
of LNAI. Springer, 1999.

4. A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. ACM
SIGMOD Record, 29(1):68–79, 2000.

5. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197–213, 1993.

6. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-05,
Hong Kong University of Science and Technology, 2001.

7. F. Bry, Ch. Koch, T. Furche, S. Schaffert, L. Badea, and S. Berger. Querying
the web reconsidered: Design principles for versatile web query languages. Int. J.
Semantic Web Inf. Syst., 1(2):1–21, 2005.

8. F. Bry and S. Schaffert. Towards a declarative query and transformation lan-
guage for XML and semistructured data: Simulation unification. In Proc. of ICLP,
number 2401 in LNCS, Copenhagen, Denmark, 2002. Springer.

9. B. Buchberger and A. Crǎciun. Algorithm synthesis by Lazy Thinking: Examples
and implementation in Theorema. Electr. Notes Theor. Comput. Sci., 93:24–59,
2004.

10. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise
tree automata. In V. van Oostrom, editor, Proc. of RTA’04, volume 3091 of LNCS,
pages 105–118. Springer, 2004.

11. E. Chasseur and Y. Deville. Logic program schemas, constraints and semi-unifica-
tion. In Proc. of LOPSTR’97, volume 1463 of LNCS, pages 69–89. Springer, 1998.

12. J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0. W3C,
1999. Available from: http://www.w3.org/TR/xpath/.

13. H. Comon. Completion of rewrite systems with membership constraints. Part I:
Deduction rules. J. Symbolic Computation, 25(4):397–419, 1998.

14. H. Comon. Completion of rewrite systems with membership constraints. Part II:
Constraint solving. J. Symbolic Computation, 25(4):421–453, 1998.

15. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available from:
http://www.grappa.univ-lille3.fr/tata, 1997.

16. M. Frick, M. Grohe, and Ch. Koch. Query evaluation on compressed trees. In
Proc. of LICS’03, pages 188–198. IEEE Computer Society, 2003.

17. A. Frisch and L. Cardelli. Greedy regular expression matching. In Proc. of
ICALP’04, pages 618–629, 2004.

18. T. Furche, F. Bry, S. Schaffert, R. Orsini, I. Horroks, M. Kraus, and O. Bolzer.
Survey over existing query and transformation languages. Available from:
http://rewerse.net/deliverables/i4-d1.pdf, 2004.

19. V. Gapeyev and B. C. Pierce. Regular object types. In L. Cardelli, editor, Proc.
of ECOOP’03, volume 2743 of LNCS, pages 151–175. Springer, 2003.

20. M. Ginsberg. The MVL theorem proving system. SIGART Bull., 2(3):57–60, 1991.
21. G. Gottlob and Ch. Koch. Monadic Datalog and the expressive power of languages

for web information retrieval. J. ACM, 51(1):74–113, 2004.

Matching with Regular Constraints 229

22. G. Gottlob, Ch. Koch, and K. Schulz. Conjunctive queries over trees. In A. Deutsch,
editor, Proc. of PODS’04, pages 189–200. ACM, 2004.

23. M. Hamana. Term rewriting with sequences. In: Proc. of the First Int. Theorema
Workshop. Technical report 97–20, RISC, Johannes Kepler University, Linz, 1997.

24. H. Hosoya. Regular expression pattern matching—a simpler design. Manuscript,
2003.

25. H. Hosoya and B. Pierce. Regular expression pattern matching for XML. J. Func-
tional Programming, 13(6):961–1004, 2003.

26. T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables
and Flexible Arity Symbols. PhD thesis, Johannes Kepler University, Linz, 2002.

27. T. Kutsia. Unification with sequence variables and flexible arity symbols and its ex-
tension with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque,
and V. Sorge, editors, Proc. of Joint AISC’2002—Calculemus’2002 Conference,
volume 2385 of LNAI, pages 290–304. Springer, 2002.

28. T. Kutsia. Solving equations involving sequence variables and sequence functions.
In B. Buchberger and J. A. Campbell, editors, Proc. of AISC’04, volume 3249 of
LNAI, pages 157–170. Springer, 2004.

29. T. Kutsia. Context sequence matching for XML. In M. Alpuente, S. Escobar,
and M. Falaschi, editors, Proc. of WWV’05, pages 103–119, 2005. (Full version to
appear in ENTCS).

30. T. Kutsia and M. Marin. Matching with regular constraints. Technical Report
05-05, RISC, Johannes Kepler University, Linz, 2005.

31. J. Levy and M. Villaret. Linear second-order unification and context unification
with tree-regular constraints. In L. Bachmair, editor, Proc. of RTA’2000, volume
1833 of LNCS, pages 156–171. Springer, 2000.

32. D. Maier. Database desiderata for an XML query language. Available from:
http://www.w3.org/TandS/QL/QL98/pp/maier.html, 1998.

33. M. Marin. Introducing ρLog. Available from:
http://www.score.is.tsukuba.ac.jp/~mmarin/RhoLog/, 2005.

34. M. Marin and D. Ţepeneu. Programming with sequence variables: The Sequentica
package. In Proc. of the 5th Int. Mathematica Symposium, pages 17–24, 2003.

35. M. Marin and T. Ida. Progress of ρLog, a rule-based programming system. In 7th
Intl. Mathematica Symposium (IMS’05), Perth, Australia, 2005. To appear.

36. A. Neumann and H. Seidl. Locating matches of tree patterns in forests. In Proc.
of FSTTCS’98, volume 1530 of LNCS, pages 134–145. Springer, 1998.

37. F. Neven and T. Schwentick. Query automata on finite trees. Theoretical Computer
Science, 275:633–674, 2002.

38. J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata.
In Proc. of DBPL’05, 2005.

39. M. Schmidt-Schauß. A decision algorithm for stratified context unification. J. Logic
and Computation, 12(6):929–953, 2002.

40. M. Schmidt-Schauß and K. U. Schulz. Solvability of context equations with two
context variables is decidable. J. Symbolic Computation, 33(1):77–122, 2002.

41. M. Schmidt-Schauß and J. Stuber. On the complexity of linear and stratified
context matching problems. Theory Comput. Systems, 37:717–740, 2004.

42. R. C. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In J. A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, pages 1853–1964.
Elsevier and MIT Press, 2001.

	Introduction
	Preliminaries
	Matching Algorithm
	Matching Algorithm with Regular Constraints
	Applications
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

